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Zusammenfassung

Diese Arbeit widmet sich der Suche nach berandeten Flächen, die sich als kritische Punkte des
Willmore-Funktionals unter Dirichlet-Randbedingungen erweisen. Dabei beschränken wir uns
auf Flächen, die sich als Graphen einer reellen Funktion im R2 darstellen lassen. Das bedeutet,
dass sie im R3 eingebettet und gleichzeitig auf R2 projizierbar sind. Dieser Ansatz hat Vorteile,
wie die Kontrolle des Durchmessers und des Flächeninhalts, sowie die Tatsache, dass die explizite
Wahl der Koordinaten oft analytische Berechnungen vereinfacht. Es gibt jedoch auch Nachteile,
wie zum Beispiel die Möglichkeit, die Projizierbarkeit durch Minimierungsprozesse zu verlieren.

Eine Strategie besteht darin, die Euler-Lagrange-Gleichung, die hier als Willmore-Gleichung
bezeichnet wird, für die Graphenfunktion umzuschreiben und als ein elliptisches Randwertprob-
lem zu lösen. In dieser Arbeit wurde die Willmore-Gleichung als ein biharmonischer Operator
mit einer rechten Seite in Divergenzform umgeschrieben. Dies ermöglichte es uns, unter Ver-
wendung des Linearisierungsverfahrens und gewichteter Sobolev-Räume die Existenz einer im
Inneren glatten Lösung bloß unter einer C1+α-Kleinheit an die Randdaten zu zeigen.

Eine andere Möglichkeit besteht darin, den Gradientenfluss des Willmore-Funktionals, den
sogenannten Willmore-Fluss, zu betrachten. Wir haben ihn für die Graphenfunktion als eine
parabolische Gleichung vierter Ordnung umgeschrieben. Mit Hilfe von zeitgewichteten parabolis-
chen Hölder-Räumen konnten wir die Kurzzeitexistenz für C1+α-glatte Anfangsdaten und C4+α-
Dirichlet-Randdaten ableiten. Darüber hinaus wurde die Langzeitexistenz mit Konvergenz gegen
einen kritischen Punkt für ausreichend kleine C1+α-Normen der Anfangsdaten bewiesen. Wenn
wir die Divergenzstruktur der Willmore-Flussgleichung ausnutzen, können wir sogar Kurz- und
Langzeitexistenz mit Zeitkonvergenz gegen einen kritischen Punkt für ausreichend kleine C2+α-
Normen der Anfangs- und Randdaten in ungewichteten parabolischen Räumen zeigen.

Ein weiteres Werkzeug, das wir verwenden, ist die Untersuchung der Kompaktheitseigen-
schaften von Willmore-Minimalfolgen. Dabei bauen wir auf den Ergebnissen von Deckelnick,
Grunau und Röger auf, die zuerst die W 1,1 ∩ L∞-Norm durch die Willmore-Energie und die
Randdaten beschränkt haben. Anschließend haben sie im Kontext von BV die L1-Relaxation
des Willmore-Funktionals definiert und einen Minimierer gefunden. Um die Frage der Regular-
ität zu klären, versuchen wir, die relaxierte Willmore-Energie zu charakterisieren. Deckelnick,
Grunau und Röger haben den Anteil der Energie beschrieben, der aus dem absolut stetigen An-
teil von ∇u stammt. In dieser Arbeit gelingt es uns, unter Verwendung von Varifaltigkeiten und
Maß-Funktionspaaren einen zusätzlichen Anteil hinzuzufügen, der auch vertikale Komponen-
ten beschreiben kann. Schließlich zeigen wir anhand eines Gegenbeispiels, dass eine endliche
relaxierte Willmore-Energie einen Cantor-Anteil nicht ausschließt.
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Abstract

This thesis is devoted to the search for surfaces with boundary that serve as critical points of the
Willmore functional under Dirichlet boundary conditions. Our focus is on surfaces that can be
expressed as graphs of real functions defined on R2. These surfaces are embedded in R3 while
also projecting onto R2 simultaneously. This approach offers several advantages, including control
over diameter and surface area and the fact that explicit coordinates often simplify analytical
calculations. However, it also comes with disadvantages, such as the potential loss of projectability
during minimization processes.

One strategy involves reformulating the Euler-Lagrange equation, referred to here as the Will-
more equation, for the graph function and solving it as an elliptic boundary value problem. In
this work, we express the Willmore equation as a biharmonic operator with a right-hand side in
divergence form. This approach allows us to demonstrate the existence of a solution smooth in the
interior, provided that the C1+α-norm of the boundary data is small enough, using linearization
techniques and weighted Sobolev spaces.

Another possibility is to examine the gradient flow of the Willmore functional, known as the
Willmore flow. We rewrite it for the graph function as a fourth-order parabolic equation. By
employing time-weighted parabolic Hölder spaces, we establish short-term existence for initial
data with C1+α-smoothness and Dirichlet boundary data with C4+α-regularity. Furthermore, we
prove long-term existence with convergence toward a critical point for sufficiently small C1+α-
norms of the initial data. Leveraging the divergence structure of the Willmore flow equation, we
can even demonstrate short- and long-term existence with convergence over time to a critical point
for sufficiently small C2+α-norms of both the initial and boundary data in unweighted parabolic
spaces.

Another tool we use is to study the compactness properties of Willmore minimal sequences. We
are building upon the results of Deckelnick, Grunau, and Röger, who initially bounded theW 1,1 ∩
L∞-norm of the boundary data by Willmore energy and boundary data and further investigated
the L1-relaxation of the Willmore functional in the context of BV . We aim to characterize the
relaxed Willmore energy, adding contributions not only from the absolutely continuous part of
∇u but also from vertical components. Finally, we provide a counterexample demonstrating that
finite relaxed Willmore energy does not exclude the existence of a Cantor component.
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1 Introduction

1.1 State of the Art

In this work, we study boundary value problems for the graphical case within both elliptic and
parabolic settings for the first variation of the Willmore energy. This is a particularly interesting
and important topic in the field of calculus of variations and partial differential equations with a
geometric background. Geometrically, we consider sufficiently smooth two-dimensional surfaces
S, with or without boundary, mostly embedded inR3 and therefore with some normal vector field
N : S → S2 orthogonal to tangent space on each point. Then the Willmore energy of S is defined
by

W(S) :=
1

4

∫
S
H2
S dS(1)

with the mean curvature HS = κ1 + κ2 defined as the sum of the principal curvatures. It is worth
noticing that regarding the normalization factor 1

4 in front of the integral, there are several values
in the literature. In this setting, the term H2

S measures the local density of how the surface is
curved from the extrinsic point of view. More precisely, this can be seen as averaged curvature
at some point on S with respect to the ambient space, where, for example, curvatures on both
sides of a saddle-shaped surface average out. If H > 0 at some point p0 on the surface, then we
view the surface as being local bending in average towards N(p0) the normal vector of S at p0 in
average. In case H < 0, the surface is bending more towards −N(p0). Therefore, W(S) describes
the total bending energy of the surface S. Already introduced by Germain in [Ger13] and Poisson
at the beginning of the 19th century, it was considered again early in the 20th century by Thomsen
[Tho23] in the conformal geometry framework and then popularized by Willmore.

Mathematically, one can regard the Willmore functional as the second-simplest interesting
differential geometric functional, next to the area functional. In particular, the link to minimal
surfaces (minimizers of the area functional) is obvious since these have vanishing mean curvature
and, therefore, minimize the Willmore energy. Hence, the Willmore surfaces, among other things,
generalize the concept of minimal surfaces.

For surfaces with prescribed boundary or even without a boundary at all (1) is equivalent to∫
S ∥A∥

2 dS or
∫
S(H

2
S/4− KS) dS, with Gaussian curvature KS = κ1 · κ2 and second fundamental

form A describing local variance of the normal fields. One of the most characteristic geometric
properties of the Willmore functional is the invariance of

∫
S(H

2
S/4−KS) dS under conformal trans-

formations Φ: R3 → R
3 of the ambient space, i.e., under Möbius transformations and especially

scaling, rotation, and inversions. This was proved by Willmore in [Wil96] and earlier by Blaschke
[Bla24].

The Willmore energy for two-dimensional surfaces in R3 arises not only in a mathematical
context. For example, it is also widely used in the modeling of thin elastic plates that resist
bending, where it was first studied by Germain and Poisson [Ger13]. Furthermore, the Willmore
energy arises in the description of biomembranes as lipid bilayers introduced by Helfrich and
Canham in [Hel73] and [Can70] as a term in the Canham-Helfrich energy functional, which also
includes area, Gaussian curvature, and spontaneous curvature terms.

One interesting topic to study is the Euler-Lagrange equation for the stationary problem asso-
ciated with the Willmore energy. For a sufficiently smooth surface, S we introduce the Willmore
equation by setting the first variation of the Willmore energy [Dal12, p.7 Remark 2.3, (2.1)] equal

7



to zero

∆SHS + 2HS

(
1

4
H2
S −KS

)
= 0 on S(2)

with ∆S the Laplace Beltrami operator on S. One of its basic properties is given by the fact that it
defines a quasilinear equation of fourth order that is elliptic, but not uniformly. Namely, when large
variations of the tangent planes occur, then a strong degeneration of ellipticity takes place. Also,
in [Wil96] Willmore proved that smooth solutions of the Willmore equation, called the Willmore
surfaces, are critical points of the Willmore functional. In the present work, we especially want to
know whether such critical points exist and, if they exist, how regular they are. Comparing the
Willmore energy with the area functional, the analogue to the Willmore equation is H = 0, the
minimal surface equation which is discussed in detail in [DHS10].

Furthermore, interesting developments occur from studying the L2-gradient flow of the Will-
more energy, called the Willmore flow. To describe the evolution of a surface under such a flow,
one considers a sufficiently smooth one-parameter family of immersions f : [0, T )× Σ → R

3 with
T > 0 and Σ ⊂ R

3 some fixed surface (two-dimensional submanifold of R3). Therefore, f(t,Σ)
is a surface with ν(t, . ) : Σ → S2 some normal vector field on f(t,Σ). Then, such a family of
immersions solves the Willmore flow equation if⟨∂tf, ν⟩ = −

{
∆f(t,Σ)Hf(t,Σ) + 2Hf(t,Σ)

(
1

4
H2
f(t,Σ) −Kf(t,Σ)

)}
in [0, T )× f(Σ)

f(0, . ) = f0 in Σ

(3)

where ⟨∂tf, ν⟩ represents the normal velocity and f0 : Σ → R
3 is some given immersion. The

parameter T plays the role of the lifespan of the solution, whereas in case T = ∞ we call such
a solution global. In particular, this is a quasilinear (not strictly) parabolic evolution equation of
fourth order, related to the Willmore equation. Depending on the setting, we are interested in
studying the existence, regularity, and uniqueness of solutions. If we again compare the Willmore
case with the area functional, one could relate the Willmore flow equation to the mean curvature
flow, which has been widely worked on.

One of the motivations to study this gradient flow is that after proving short-term existence,
one hopes to derive some bounds on the local solution. The first one is that the Willmore energy
is decreasing. From these bounds and further necessary conditions on data, it may be possible to
prove global existence. For T → ∞, one expects a stationary solution that satisfies the Willmore
equation. Thus, solving the Willmore flow problem provides an alternative approach to the
existence of the Willmore surfaces.

Numerically, due to their smoothing and other properties, the Willmore flow techniques are
used in surface restoration [CDD+04]. In this framework, one wants to replace a damaged region
of a surface, for example, a broken statue, with a surface patch given by a Willmore surface.

There are basically two most common surface classes to investigate. Namely, 2–dimensional
manifolds without boundary, called closed surfaces and surfaces with prescribed boundary ∂S.
Additionally, there is a distinction between bounded and unbounded surfaces, where, except in
the introduction, we consider only compact surfaces.

1.1.1 Closed Surfaces

In this case, both the elliptic and the parabolic problem corresponding to the Willmore energy are
rather well studied. Foremost, considering the elliptic case, in contrast to the minimal surfaces,
compact Willmore surfaces without boundaries exist, and the most obvious example is the sphere.
In addition, there are some interesting bounds on the Willmore energy for closed surfaces. Already
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Willmore proved [Wil96] by using the Gauss-Bonnet-theorem that for any closed two-dimensional
surface as immersion f : Σ → R

3 one has

W(f(Σ)) ≥ 4π

with equality if and only if f(Σ) is a round sphere. Based on the divergence theorem on manifolds,
Li and Yau [LY82] proved that ifΣ ⊂ R3 is a closed smooth surface and f : Σ → R

3 is an immersion
of multiplicity k ∈ N then W (f(Σ)) ≥ k · 4π.

After gaining experience with the topological class of tori, in 1965 Willmore conjectured that
any immersion f : T → R

3 of the two-dimensional torus T intoR3 would satisfy

W(f(T )) ≥ 2π2

with equality, if and only if T is in the conformal class of the Clifford torus. This statement stayed
very challenging for the mathematical community for decades until 2012, when Marques and
Neves proved this conjecture in [MN14a] by using Almgren-Pitts min-max theory (see [MN14b]
for references).

Whether closed compact Willmore minimizers exist in the class of genus-g-surfaces for any
given genus g ∈ N0 was positively answered by Simon in [Sim93] combined with work of Bauer
and Kuwert in [BK03].

The Willmore flow for closed compact two-dimensional immersed surfaces in R3 and also in
higher dimensions was deeply investigated in various works by Simonett, Schätzle, and Kuwert. In
[Sim01] Simonett proved that solutions exist globally and converge exponentially fast to a sphere,
provided that they start close to spheres with respect to the C2+α-topology. Later, Kuwert and
Schätzle proved in [KS01], [KS04] in codimension one that for initial energy less than or equal to 8π,
the Willmore flow of immersions of the sphere exists for all time and converges to a round sphere.
Also in [KS02] they have given a lower bound on the lifespan of a smooth solution, depending
solely on how much the curvature of the initial surface is concentrated in space. Later, in [CFS09]
Chill, Fasangova and Schätzle proved that in the case that the initial surface f0(M) is W 2,2 ∩ C1-
close to a C2 local minimizer of the Willmore functional, then there exists a global solution for
the Willmore flow with initial data f0 that converges to a C2 local Willmore minimizer after some
reparametrization.

Even though a lot of research has been done in the area of geometric evolution equations
of higher order, the understanding of whether without smallness conditions the Willmore flow
develops singularities in finite or infinite time is far from being complete. Furthermore, it is still not
clear how to extend the flow after such a singularity. Numerically, Mayer and Simonett provided
in [MS02] numerical evidence that the Willmore flow may develop singularities in finite time if a
smallness condition is violated. In [Bla09] Blatt gave an example with a singularity to form, which
has its Willmore energy arbitrarily close (from above) to 8π and does not converge to a Willmore
immersion under the Willmore flow. It happens that either the diameter of the surface becomes
unbounded or a small quantum of the curvature concentrates in finite or infinite time.

We should also mention some results considering unbounded surfaces. By using calculations
done in [DD06] by Dziuk and Deckelnick, Koch and Lamm showed [KL12] the existence of a
globally unique and analytic solution for the Willmore flow (besides other geometric flows) for
graphs onR2 (so-called entire graphs) with Lipschitz initial data and small Lipschitz norm. There,
they heavily used the scaling behavior of the Willmore flow and some special structure of the
Willmore equation written in the graphical case. We will also intensively use this kind of structure
in the present thesis.
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1.1.2 Surfaces with Boundary

In order to obtain a potentially well-posed problem, appropriate boundary conditions have to be
added to the Willmore equation, which can get quite involved. Structurally, it is a fourth-order
equation. Hence, we need two sets of conditions on boundary values. In [Nit93] the author
provided a variety of possible choices accompanied by corresponding existence results for small
data in strong topologies. Also in [BGN17] various boundary conditions are discussed.

There are two kinds of boundary conditions we want to mention. The first is the so-called
Dirichlet problem. In this setting, we are searching for the Willmore surfaces S in R3, or even the
Willmore minimizers, where its boundary ∂S and the corresponding tangential planes along ∂S
are both prescribed. It is also called a clamped boundary condition since it fixes the position of
the boundary and the angle (relative to ambient space) with which the surface meets its boundary.
The second boundary condition is the Navier problem, where we replace the angle condition
by prescribing the mean curvature of the surface on the boundary ∂S. Indeed, by setting the
vanishing mean curvature of S on the boundary, we get natural conditions arising from the first
variation of the Willmore functional.

Boundary value problems for the Willmore surfaces and the Willmore flow evolution become
more involved, and much less is known when compared with closed surfaces. One of the reasons
is that we cannot directly apply scaling arguments. The other is that, in general, no a-priori
bounds are known neither for the solution of the Willmore equation nor for the Willmore energy-
minimizing sequences or minimizers. In the general case, only if the Willmore energy is lower than
4π, the diameter and area are both bounded by the Willmore energy and the length of boundary
∂S as provided in Subsection 4.1. In contrast, as shown by Grunau, Deckelnick, and Röger [DGR17,
p.5 Theorem 2] for the graphical case, both diameter and area can be bounded for arbitrary fixed
Willmore energy.

In general, since the Willmore equation is strongly nonlinear, uniqueness of a solution may
not be expected, see [Eic16]. Moreover, for the one-dimensional variant of the Willmore equation
with Navier boundary conditions (in that case, the position and the curvature are prescribed
on ∂S), Deckelnick and Grunau [DG07, Theorem 1] provided two symmetric solutions, if the
boundary conditions lie in some special admissible range. Furthermore, in the framework of the
Willmore surfaces of revolution with Navier boundary conditions and vanishing mean curvature
at the boundary, Dall’Acqua, Deckelnick, and Wheeler [DDW13] provided the existence of three
different solutions to the same data. Despite that, Dall’Acqua [Dal12] showed uniqueness in the
case of the boundary of a Willmore surface touching a sphere or a plane tangentially with the
condition that the curves bound a strictly star-shaped domain with respect to the corresponding
geometry. Then, the Willmore surface is a part of that sphere or the plane, respectively. This is a
consequence of invariances for trivial data and does not rule out the possibility of non-uniqueness
for non-trivial data.

For the Navier boundary value problem of the higher-dimensional Willmore flow with van-
ishing mean curvature on the boundary, Menzel proved (see her very interesting thesis [Men21])
short-time existence where the initial data satisfy some regularity and compatibility conditions
with the boundary data and the solution is a graph over a reference manifold. This is based on
using higher order (fourth order in space and first order in time) anisotropic Sobolev spaces on
manifolds as solution space.

To get an idea of which kind of phenomena may be expected, we can restrict ourselves to some
special situations imposing different kinds of symmetry or projectability conditions on the surface
under consideration and hope that some geometric and analytic information on the Willmore
energy, minimizers, or minimizing sequences will be obtained. As the degree of symmetry or
projectability decreases, obtaining results gets more and more difficult.
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In this work, we will use almost always projectability. More precisely, in the graphical case in
R

3 we represent a surface S by a parametrization Ω ∋ (x1, x2) 7→ (x1, x2, u(x))
T where Ω ⊂ R

2

is a sufficiently smooth bounded domain and u : Ω → R is a sufficiently smooth mapping. We
especially write S = Γ(u) and call it a graph of u. Then the Willmore equation can be rewritten as
a nonlinear biharmonic equation in the form

∆2u = F (D4u,D3u,D2u,∇u) in Ω,(4)

where ∆2 = ∆∆ is the biharmonic operator and F (D4u,D3u,D2u,∇u) is a non-linear polynomial
in D4u,D3u, D2u, ∇u and

√
1 + ∥∇u∥2−1 that will be linear in D4u and D3u. Moreover, all non-

vanishing monomials are at least of degree three. The equation (4) can be used for proving the
existence in spaces Sobolev spaceW 4,p(Ω)oder HölderC4+α(Ω). Studying the divergence structure
of the right side F (D4u,D3u,D2u,∇u) like in [KL12] will allow us to use weaker solution spaces
of second order instead of fourth order.

Regarding the Dirichlet boundary condition, the elliptic problem is given by prescribed bound-
ary values of the solution and its normal derivative on the boundary ∂Ω.

∆Γ(u)HΓ(u) + 2HΓ(u)

(
1

4
H2

Γ(u) −KΓ(u)

)
= 0 in Ω,

u = g0,
∂u

∂ν
= g1 on ∂Ω

(W)

with some sufficiently smooth functions g0 and g1 on ∂Ω.
In the parabolic graphical case, we can likewise rewrite the Willmore flow equation as a

biharmonic heat flow equation with nonlinear right-side

∂tu+∆2u = F (D4u,D3u,D2u,∇u) in Ω,(5)

where F up to the factor
√

1 + |∇u|2 plays the same role as in (4). For the Willmore flow equation,
we study the immersion mapping f(t, x) = (x, u(x, t))T , x ∈ Ω which in this case is an embedding
and consider the parabolic Dirichlet problem with respect to upward normal

∂tu+Q

{
∆Γ(u)HΓ(u) + 2HΓ(u)

(
1

4
H2

Γ(u) −KΓ(u)

)}
= 0 in Ω× (0, T ],

u(x, t) = g0(x),
∂u

∂ν
(x, t) = g1(x), (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(WF)

where Q =
√
1 + |∇u|2. The associated numerical C1-finite element method for this problem

was provided by Deckelnick, Katz, und Schieweck in [DKS15] with quasioptimal error bounds in
Sobolev norms for the solution and its time derivative. Additionally, we need some compatibility
conditions

g0 = u0(x), g1(x) =
∂u0
∂ν

(x), x ∈ ∂Ω.(CC)

for the solution u to be at least C1(Ω).

1.1.3 Direct Methods of the Calculus of Variations

The basic idea in the direct methods is to consider some (possibly improved) minimizing sequences
{vk}k∈N in a suitable space satisfying the boundary conditions. One idea may be to obtain
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compactness by modifying this sequence such that some norm of the sequence itself stays bounded.
If these bounds turn out to be strong enough, then we can use the usual local-weak-compactness
and weakly-lower-semicontinuity reasoning [GO23] in the Sobolev space W 2,2 to get the existence
and regularity of the minimizing solution. In the case of surfaces of revolution, this idea works out,
as shown in [DDG08] and [DFGS11] by Dall’Acqua, Deckelnick, Fröhlich, Grunau, and Schieweck.
However, the construction of such modifications is not obvious at all and is very subtle. For now,
no such construction is known for the graphical general two-dimensional case, and it is not clear
how to meaningfully choose or modify the minimizing sequence here since to stay inW 2,2 one has
to match not only the functions but also their derivatives.

Despite that, Deckelnick, Grunau, and Röger [DGR17] developed a new framework for graphs
involving a L1-lower semicontinuous relaxation of the Willmore functional W . By assuming
graphical projectivity as some sort of obstacle condition, they derived general area and diameter
bounds for all possible values of the Willmore energy [DGR17, Theorem 2]. In this way, they
obtained bounds in the spaceBV (Ω)∩L∞(Ω), which they have naturally chosen to be the solution
class. They also proved that this L1-lower semicontinuous envelope W is actually the largest
possible L1-lower semicontinuous extension of W to L1(Ω). Finally, by using direct methods, they
showed the existence of a minimizer in the class BV (Ω) ∩ L∞(Ω).

To obtain compactness more easily, Schätzle, Kuwert [KS01], Simon [Sim93] and others have
chosen the realm of varifolds, that is to say, geometric measure theory. Here, we refer to Menne
[Men17]. These are, in general, non-parametric non-smooth surfaces associated with a measure
and have generalized mean curvature. This approach allows for separating the existence proof
from regularity discussions. As previously mentioned, this often comes at the expense of lack-
ing regularity. Introduced by Almgren as the foundation stone for showing the existence of a
generalized minimal surface, it has turned out to be highly influential in geometric analysis; see
the proof of the Willmore conjecture by F. Marques and A. Neves [MN14a]. Furthermore, Menne
[Men13] was able to show that m-dimensional curvature varifolds, which also have a generalized
second fundamental form, can be covered by a countable collection of C2-regular m-dimensional
submanifolds of Rn up to a null set. Additionally, the second fundamental form of the varifold
agrees almost everywhere with the second fundamental form induced by these C2-submanifolds.

Regarding the Dirichlet problem, Schätzle [Sch10] showed the existence of the Willmore mini-
mizers in S3 ≡ R3∪{∞} in a very general context, making use of geometric measure theory. In fact,
the minimizers may be branched, unbounded, not a graph, or even contain ∞. A slightly different
classical parametric approach was chosen by Da Lio-Palmurella-Rivière in [DLPR20] with an area
constraint, where the authors also obtained the existence of the Willmore surfaces with prescribed
boundary and boundary Gauss map.

The case of surfaces with a smooth closed embedded planar curve as boundary and fixed
topology was studied by Pozzetta in [Poz21]. Using an approach similar to that presented by
Simon in [Sim93], he proved that minimizers do not exist for the minimization problem of the
Willmore energy given genus g ≥ 1 and natural Navier boundary condition H = 0, where only
the position of the boundary curve is given by a fixed circle. Thus, this is a minimization problem
without clamped condition, where the conormal is free. Despite the non-existence result, he was
able to give the infimum value of the Wilmore energy, which is the energy of the closed minimizing
surface of genus g minus 4π.

Similar to the area functional, the following phenomenon may occur. If one considers compact
minimizers in R3 with boundaries consisting of a given family of disconnected smooth closed
curves, it may happen that direct minimization of the Willmore energy leads to limits that are also
disconnected. Thus, it makes sense to impose topological constraints on the minimizer. In [NP20a]
Novaga and Pozzetta considered connected compact surfaces. Provided that the infimum of the
problem is strictly smaller than 4π, they proved the existence of a connected compact Willmore
surface in the class of integer rectifiable curvature varifolds with the assigned boundary conditions.
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They used sequences of varifolds with boundary and uniformly bounded Willmore energy and
concluded the convergence of their supports in Hausdorff distance.

1.1.4 Higher-order Equations

Instead of considering the Willmore equation and the Willmore flow equation from a geometrical
perspective, we can investigate these equations as purely analytical fourth-order boundary value
problems with a nonlinear right-hand side. Then it is possible to apply versatile results both on
elliptic and parabolic higher-order operators, where much progress has been made in already 60s
and 70s by Krasovskiı̆ [Kra67a], Belonosov [Bel79] and Solonnikov [Sol65, LSU68] as well as more
recently by Maz’ya, Mayboroba and Barton [MM09, MMS10, BM16].

The most famous example of higher-order elliptic operators, namely the polyharmonic operator,
is iteratively defined by ∆m = ∆∆m−1,m ∈ N. Corresponding boundary value problems have
been intensively investigated. We refer the reader to [GGS10], [ADN59], and the survey [BM16] for
non-smooth domains and references therein. It should be noted that the existence and regularity of
the solution of the Dirichlet problem strongly depend on the chosen solution space, the regularity
of the coefficients, and the boundary data, as well as the regularity of ∂Ω.

First, like in [Gru18], we want to point out the differences to the well-studied elliptic operators
of second order, like the Laplace operator, which causes more intricacies in the case of fourth
and higher-order operators. One of the main difficulties is the lack of general maximum and
comparison principles and Harnack inequalities. Since the Willmore functional also involves
second derivatives, one cannot simply pass to u+ or |u| like in Stampacchia’s approach to the
maximum principle [MS68]. These phenomena already occur with the biharmonic operator and
the corresponding functional u 7→

∫
Ω(∆u)

2 dx. Despite that, for higher-order elliptic operators,
there are still some situations [GGS10] where the positivity of solutions is preserved.

For the study of inhomogeneous elliptic boundary problems [ADN59], much work was put into
deriving estimates of the fundamental solutions and the corresponding Green function. Basing
upon the explicit formula for the polyharmonic operator in a ball by Boggio [Bog05] optimal
(from above and below by multiples of the same function) estimates were derived by Grunau,
Sweers, and Dall’Acqua [GS97, DAS04]. The Green functions for general higher-order operators
were considered by Krasovskiı̆ [Kra67a, Kra67b], but at the cost of high regularity imposed on
the boundary. Terms modeling the boundary behavior were added by Dall’Acqua and Sweers
[DAS04]. In general, the Green function may change sign. Therefore, it is important to show that
the negative part is small in the sense that it is bounded by the product of the squared distances
to the boundary, which was provided by Grunau, Robert, and Sweers [GRS11]. In particular,
they estimated Green functions plus suitable multiples of these boundary terms from above and
from below by the same positive prototype function. For the case of non-smooth domains, Green
function estimates are due to Mayboroda and Maz’ya [MM09]. These results also allow sharp
pointwise and Lp- estimates on derivatives of the solution.

Various works are concerned with the parabolic case. The classic par excellence is the work by
Ladyzenskaja, Solonnikov, and Ural’ceva [LSU68]. Later, Dong and Zhang [DZ15] proved Schauder
estimates for solutions of 2mth-order parabolic systems both in divergence and nondivergence case
with boundary data in the cylindrical domain over a Cm,α-smooth base domain. These estimates
also hold for systems with time-irregular coefficients for operators. They also showed [DK11]
Lp-solvability of higher order parabolic systems with leading coefficients in BMO spaces, see (108)
in Subsection 5.4. In general, more rough initial data, where, in particular, certain compatibility
conditions on their derivatives are not to be assumed, lead to an initial loss of regularity. This
issue was addressed in the framework of weighted parabolic Hölder spaces by Belonosov [Bel79]
and further by Solonnikov and Khachatryan [SK80] in a slightly more general situation. For the
Willmore flow with rough initial data in Lipschitz class for entire graphs we again refer to [KL12].
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For all existence results in this work, we use linearization methods combined with Banach
fixed point theorem (contraction mapping principle). This is possible since both in the elliptic and
the parabolic case, one can separate a linear elliptic operator and a right-hand side consisting of
lower-order terms like in [KL12] with a degree of at least three and term linearD4u and containing
to |∇u|2 (see (R), (L). This method requires, as usual, smallness conditions for the data in the
elliptic case or short-time existence in the parabolic case. However, exploiting the divergence form
of the problem and estimates adapted to this, we can work in much weaker (larger) spaces, like
weighted Sobolev and parabolic Hölder spaces, than previous works as [Nit93]. Morally in the
present work, it suffices to consider (small) boundary data in C1+ε, see Theorem 1. We describe
our results in some detail below in Section 1.2.

1.1.5 Further Research

In this section, we want to briefly mention some further research related to the study of the
Willmore energy, but without direct overlap with this thesis. This list is by no means complete.

⋄ Instead of assuming projectivity, one can take axial symmetry for two-dimensional surfaces
embedded in R3. Consequently, surfaces of revolutions arise. These are then described
by their profile curves, which are graphs over one-dimensional intervals. This comes with
the huge advantage that the Willmore equation and, in particular, its analysis stay one-
dimensional. As already mentioned, much work [DDG08, DFGS11] was done by Grunau,
Dall’Acqua, Deckelnick, Fröhlich, and Schieweck. Surprisingly, in this setting, one can rewrite
the Willmore functional in the hyperbolic half plane as a simple one-dimensional curvature
integral [HJP92] which was introduced by Bryant-Griffith [BG86], then fruitfully used by
Langer-Singer [LS84] for curves parameterized by arclength and later by Eichmann [Eic16,
Eic17] for, among others, a nonuniqueness result for the Willmore surfaces of revolution with
dirichlet data.

⋄ Another possibility is to consider the one-dimensional Willmore energy, also called elastic
energy. Here, one assumes invariance with respect to translations in a chosen direction. For
a regular and sufficiently smooth curve γ : I → R

n, n ≥ 2 it is given by

E(γ) =
∫
I
|κ⃗γ |2(s) ds(6)

where s = |∂xγ|dx denotes the arclength element and κ⃗γ = ∂2ssγ denotes the curvature
vector of γ with s the arclength. Critical points of E(γ) are called elastic curves that satisfy
the one-dimensional Willmore equation

∂2ssκ+
1

2
κ3 = 0 on γ(I).

For the graphical case in R2 it was studied by Deckelnick and Grunau [DG07, DG09] under
Dirichlet as well as under Navier boundary conditions. For suitable boundary data, they
investigated the symmetry and stability properties of multiple solutions and provided some
closed expressions. For the symmetric case, then applied an idea of Euler, see [Eul52, pp.
233-234].
For the case of general Willmore curves in R2, Mandel [Man15] solved the Navier problem
and the Dirichlet problem. For open curves in Euclidean space subject to clamped boundary
conditions andL2-flow of elastic curves, Lin [Lin12] showed long-time existence of solutions.
Moreover, in [DPS16] Dall’Acqua, Pozzi, and Spener proved that the solution to the one-
dimensional Willmore flow L2-converges for large time to a critical point of the functional.
They used a Łojasiewicz–Simon gradient inequality for the elastic energy.
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⋄ One further recent development concerns obstacle problems for Willmore energy, where the
admissible functions have to be above the given obstacle. The one-dimensional graphical
case with Navier boundary conditions was considered by Dall’Acqua-Deckelnick [DD18].
Müller extended this approach to some larger class of pseudographs and provided in [Mül19]
nonexistence results for what he calls large cone obstacles in the case of graph curves. Further,
he also studied [Mül20, Mül21] the Willmore gradient flow with obstacles. For surfaces of
revolution, the obstacle problem was investigated by Okabe and Grunau [GO23], where they
also considered the one-dimensional Willmore equation with clamped boundary conditions
and proved the necessity of explicit smallness conditions on general obstacles.

⋄ Furthermore, one can study the elastic energy for open and closed curves. Here, Barrett,
Garcke, and Nürnberg [BGN12] initiated the study of curve networks meeting in junctions.
Suitable boundary conditions at junctions were studied by Garcke, Menzel, and Pluda in
[GMP19] where they investigated which boundary conditions are suitable to build a well-
posed problem. In the case of Theta–networks, namely planar networks composed of three
curves of classH2, regular and which form 120◦ at the two junctions, Dall’Aqua, Novaga, and
Pluda [DNP20] showed the existence and suitable regularity of minimizers of elastic energy
combined plus a length-term. We also refer to the p-elastic flow generalization [NP20b], a
survey and lectures on curves and networks under elastic flow [MPP21, MNP19].

⋄ We also want to mention the phase field approach for surfaces. Here, one considers a surface
as an interface between two phases represented by the auxiliary scalar phase field, which
takes values 1 and −1 for each of the phases. In the phase field approximation, the values of
the phase field vary smoothly in (−1, 1) in a layer of finite width around the interface. For the
limit of infinitesimal width, it leads to the surface as the boundary ∂E of a setE with the role
of phase with order +1. Especially the phase-field approximates the function χE −χEc . This
approach is useful for evolution and minimization problems since it can handle topological
changes of phases or interfaces.
The initial work in this setting for the Willmore energy was done by De Giorgi, who con-
jectured a reasonable approximation in [DG91]. Röger and Schätzle then analyzed and
proved in [RS06] that in n = 2, 3 a modification of De Giorgi’s functional Γ-converges (see
[Bra06, NDL06]) to the sum of the Willmore and perimeter functional.

⋄ One can also consider surfaces confined to a prescribed container. For the unit ball in R3

as confinement and prescribed surface area, Müller and Röger [MR14] investigated smooth
embeddings of the sphere into the unit ball and studied the minimization problem for the
Willmore functional by modifying a minimizing sequence. They also estimated the minimal
Willmore energy from above and below. In the interesting case, when the prescribed surface
area exceeds 4π, the surface area of the unit sphere, the minimizer becomes nonconvex and
cannot be a C2-small perturbation of S2. Additionally, they showed a sharp increase in the
optimal Willmore energy at 4π. Furthermore, Dondl, Lemenant, and Wojtowytsch used a
phase field approach to study the minimization of the Willmore energy confined to a given
container and with connectedness constraint, see [DLW17].

⋄ Moreover, one can study closed surfaces with a prescribed isoperimetric ratio, which is
defined for an immersion f : Σ → R

3 by

I(f) = 36π
V(f)2

A(f)3
(7)

where A(f) and V(f) denote the area and the signed volume enclosed by the immersed
surface. For sphere-type surfaces, Schygulla showed in [Sch12] the existence of smooth
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minimizers of the Willmore functional with a prescribed isoperimetric ratio. For immersions
with fixed genus, further studies were done in [KMR14, MS23], which led to the result that
the infimum for a given fixed genus is always attained provided the energy is below the
threshold 8π. The corresponding non-local L2-gradient flow of the Willmore functional for
the case of immersed surfaces, which preserves the isoperimetric ratio, was introduced and
studied by Rupp in [Rup24].

1.2 New Contributions

At this point, we want to compactly present the main results on two-dimensional surfaces with
boundary in R3, which are proved in this thesis. For each of the four research directions, we
condense various statements to one or two theorems and briefly mention the other remaining new
results.

1.2.1 Willmore Equation

In the elliptic case, we prove various results regarding different regularity assumptions, where all
theorems require some kind of smallness of the boundary data and exploit the divergence form of
the right-hand side. This is needed to apply a fixed point argument to a linearized problem. One
of the novelties is the application of weighted Sobolev spaces W 2,a

p (Ω) to the Willmore problem.
With an appropriate parameter choice, these spaces are embedded in C1(Ω), hence have bounded
gradient norm ∥∇u∥L∞(Ω), which turns to be essential for the linearization estimates. Since the
weighted Sobolev spaces have quite an elaborate trace theory, we rather use the Hölder boundary
data to formulate the following theorem.

1 Main Theorem

Let Ω ⊂ R
2 be a bounded domain with ∂Ω ∈ C1+α for some α ∈ (0, 1). Assume that β ∈ (0, α), g0 ∈

C1+α(∂Ω) and g1 ∈ Cα(∂Ω). Additionally, we suppose that ∥g0∥C1+α(∂Ω) + ∥g1∥Cα(∂Ω) < K for some
K > 0.

Then there exists a constant δ = δ(α, β,K,Ω) > 0 such that if ∥g0∥C1(∂Ω) + ∥g1∥C0(∂Ω) < δ, then
there exists a solution u ∈ C1+β(Ω) ∩ C∞(Ω) to the Dirichlet problem (W)

This result can be found in Subsection 5.4 in Corollary 33, combined with Theorem 36 in
Subsection 5.5. One of the key observations heavily used is rewriting the Willmore equation in
the semilinear divergence form done in Lemma 18. There we multiply the geometric Willmore
equation (2) with Q =

√
1 + |∇u|2 and get with Einstein summation notation

∆2u = Dib
i
1[u] +D2

ijb
ij
2 [u] in Ω,(8)

where bi[u] are polynomials consisting of D2u,∇u and Q−1 that contains monomials with poly-
nomial degrees greater than two. Furthermore b1[u] is quadratic in D2u and b2[u] is linear in D2u
and moreover ∣∣b1[u]∣∣ ≤ C|∇u| · |D2u|2,

∣∣b2[u]∣∣ ≤ C|∇u|2|D2u|

with some algebraic constantC. We want to emphasize that it is important to multiply the Willmore
equation with

√
1 + |∇u|2 because in another case, like in [KL12], we would get an additional term

b0[u] which is cubic in D2u.
Lemma 18 allows for defining a notion of variational solution where only its derivatives up

to order two are involved. Proved in Lemma 18, it allows us to choose spaces with up to second
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derivatives instead of using spaces with derivatives of the fourth order. This is natural because of
the Willmore energy, which also consists only of derivatives up to the second order.

Also, we want to point out that, similar to the biharmonic equation, due to the elliptic struc-
ture of the Willmore equation, the solution is smooth in the interior of Ω, and the regularity
up to the boundary is as smooth as consistent with the boundary data. Compared with the
C4+α(Ω)-smallness condition required by Nitsche [Nit93], this is a significant progress. Further
improvements are the radically reduced regularity assumptions on the boundary ∂Ω itself. Apply-
ing the same techniques, future research can address cases where the boundary includes Lipschitz
pieces and edges with angles approaching π, as discussed in [MMS10, p. 43].

In Subsections 5.2 and 5.3 we use unweighted and hence familiar frameworks: Hölder spaces
C2+α(Ω) and Sobolev spacesW 2,p(Ω). Again, by linearization, we show the existence of a solution
with small boundary data. It is also important to notice that only using weighted Sobolev spaces
allows us to work with even weaker boundary Hölder spaces than in the unweighted Sobolev
case. In the unweighted case, by trace theorem for W 2,p(Ω) with p > 2 one can only work with
boundary spaces C1+α(∂Ω) such that α greater than 1/2. In contrast, in the weighted framework,
all boundary regularity data with α ∈ (0, 1) are allowed.

Furthermore, we want to emphasize that since all these results are rather analytical than
geometric, one can generalize them to other problems that have a similar structure, like the
Helfrich equation.

1.2.2 Willmore Flow

In the parabolic case, we study existence, uniqueness, and regularity of the graphical Willmore
flow solutions under smallness conditions. We first prove the short-time existence of a solution
with initial and boundary data in various regularity classes. One of the main novelties here is the
use of the low regularity initial data, which may lie in Cm+α(Ω), m ∈ {1, 2, 3} where the Dirichlet
boundary data come from Hölder spaces C4+α(∂Ω). This can be achieved by using so-called
weighted parabolic Hölder spaces C4+α,1+α/4

m+α (Ω × (0, T ]) for some T > 0 as solution space. The
Hölder-norms of the spatial derivatives of order higher than m + α are weighted with powers of
the time variable t ∈ (0, T ], hence allowing higher derivatives to blow up for t→ 0.

As an important consequence, in contrast to the unweighted case (m = 4), like in [DKS15],
fewer compatibility conditions between initial values and Dirichlet data have to be imposed. Here
is the additional condition on boundary data, which is no longer necessary

0 = ∆Γ(u0)H(u0) + 2H

(
1

4
H2 −K

)
(u0), on ∂Ω.

This equation represents the fact that the boundary of the surface has to stay fixed (∂tu = 0 by
the Willmore equation) in time already at t = 0. For references, see [LSvW92]. This reflects the
smoothing property of the Willmore flow, similar to the biharmonic heat flow, since for t > 0
the initial Cm+α surface becomes instantaneously as smooth as the boundary data permit. For
the elastic curve flows, the compatibility conditions play an important role in [Men21, GMP19] or
[DP14, Appendix D.].

2 Main Theorem

Suppose m ∈ {1, 2, 3} and Ω is a bounded domain in R2 with C4+α boundary for some α ∈ (0, 1).
Further, let u0 ∈ Cm+α(Ω), g0 ∈ C4+α(∂Ω) and g1 ∈ C3+α(∂Ω) with ∥u0∥Cm+α(Ω) + ∥g0∥C4+α(∂Ω) +

∥g1∥C3+α(∂Ω) < K for some K > 0.

a (local) Then there exists time T = T (α,m,K,Ω) such that there is a unique solution u ∈
C

4+α,1+α/4
m+α (Ω× (0, T ]) of the Willmore flow problem (WF).
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b (global) There exists C180 = C180(α,Ω) > 0 such that if

∥u0∥C1+α(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) < C180

then a unique solution for the Willmore-flow (WF) exists for all times such that for all T > 0 : u ∈
C

4+α,1+α/4
1+α (Ω× (0, T ]).

c (subconvergence) Moreover, for the global solution in (b) there exists a time-sequence {tk}k∈N ⊂ R+

with limk→∞ tk = +∞ and a critical point of Willmore energy u∞ ∈ C4+β(Ω) for all β ∈ (0, α)
such that

u(tk) −→
k→∞

u∞ in C4+β(Ω).

The local and global existence results are obtained in Subsection 6.3 in Theorems 47, 49 and the
subconvergence to a Willmore surface can be found in Subsection 6.6 in Theorem 59. Here, to use
the weighted Schauder estimates by Belonosov [Bel79] we have rewritten the graphical Willmore
flow equation in the way that the right-hand side represented by some polynomial R consisting
of derivatives up to the order three (see Lemma 40)

ut = −L∇uu+R(∇u,D2u,D3u) in Ω× (0, T ]

where L∇u is a fourth order elliptic operator in case ∇u ∈ C1(Ω). The monomials of R which
contain D3u are also linear in D3u and moreover, by (R) it holds∣∣R(∇u,D2u,D3u)| ≤ C|D3u| · |D2u| · |∇u|+ C|D2u|3(9)

where C is some algebraic constant. Thus, the degree of all monomials is at least three. It should
be noticed that L∇u is not ∆2 and R is not in divergence form.

We can further weaken the regularity assumptions on the initial surface to u0 ∈ C1(Ω) in
Subsection 6.4. At the cost of an additional smallness condition on ∥u0∥C1(Ω) we obtain short-time
existence in Theorem 54. More precisely, this means that there is a constant C188 = C188(α,Ω)
such that if ∥u0∥C1(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) < C188 then there is a unique solution in the
weighted parabolic class C4+α,1+α/4

1 (Ω× (0, 1]) of the Willmore flow problem (WF).
Furthermore, in addition to the weighted framework, we work with unweighted parabolic

Hölder spaces of second order C2+α,(2+α)/4
x,t (Ω × [0, T ]). In comparison to the weighted Hölder

spaces, we reduce the regularity assumptions on the boundary data gi and the solution itself from
C4+α to C2+α at the cost of more regular initial values u0, which are here in C2+α(Ω) instead of
being merely in C1+α(Ω).

3 Main Theorem

SupposeΩ is a bounded domain inR2 withC2+α boundary for some α ∈ (0, 1). Further, let u0 ∈ C2+α(Ω),
g0 ∈ C2+α(∂Ω) and g1 ∈ C1+α(∂Ω).

a (local) Then there exists time T depending only on α, the bound ∥u0∥C2+α(Ω) ≤ C and Ω such that
there is a solution u ∈ C

2+α,(2+α)/4
x,t (Ω× [0, T ]) of the Willmore flow problem (WF).

b (global) There exists further a constant C205 = C205(α,Ω) such that if

∥u0∥C2+α(Ω) < C205

then there exists a solution u of the Willmore flow problem (WF) for all times, such that for all
T > 0 : u ∈ C

2+α,(2+α)/4
x,t (Ω× [0, T ]).
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c (convergence) Moreover, there exists a constant C217 = C217(Ω, α) such that if ∥u0∥C2+α(Ω) < C217

then there exists a critical point of the Willmore energy u∞ ∈ C2+α(Ω) such that

u(t) −→
t→∞

u∞ in C2+β(Ω)

for all β ∈ (0, α).

It is proven in Theorems 56, 58 and 60 in Subsections 6.5 and 6.6.
In order to use the Schauder estimates by Dong and Zhang [DZ15], we have to rewrite the

Willmore flow equation once again such that we recover a right-hand side in divergence form,
which was done by Koch and Lamm [KL12] for graphs overR2 (also see (133)

∂tu+∆2u = f0[u] +∇if
i
1[u] +D2

ijf
ij
2 [u] in Ω× (0, T ].

The terms fi[u] are again polynomials consisting ofD2u,∇u andQ−1 with degree of each monomial
at least three and satisfying∣∣f0[u]∣∣ ≤ C|D2u|3,

∣∣f1[u]∣∣ ≤ C|D2u|2 · |∇u|,
∣∣f2[u]∣∣ ≤ C|D2u| · |∇u|2

with some algebraic constant C.
Since for a solution of the Willmore flow the Willmore energy stays bounded, we use the

diameter (i.e. L∞-)bounds in terms of the initial Willmore energy and the diameter of the boundary
derived by Deckelnick, Grunau, and Röger [DGR17, Thm 2]. Actually, it has an advantage over
the elliptic case, where we cannot simply use this a-priori estimate. To prove global existence
and convergence to a Willmore surface, we use interpolation techniques. Hence, we need some
smallness condition for all times, which is not provided by the L∞-estimate in [DGR17, Thm. 2].
This yields bounds by the Willmore energy and diamΩ, where the latter is fixed and not assumed
to be small. That is the reason to derive L2-smallness in Theorem 16 in Section 4.

Lastly, we want to emphasize that even when applying the Willmore flow as t approaches
infinity, we may still fail to reach a Willmore minimizer. Even in cases where global existence is
guaranteed, we can only anticipate a Willmore surface, representing a critical point, as the limit.

1.2.3 Compactness Results

To study minimizing sequences for the Willmore functional of graphs, Deckelnick, Grunau, and
Röger considered in [DGR17] sequences with uniformly bounded Willmore energy and the behav-
ior of the Willmore functional regarding L1-convergence. Due to working in the class of graphs,
one has to expect jump discontinuities for the limit functions, which may result in vertical parts
and possibly even a highly irregular Cantor part, as explained below.

Since by estimates in [DGR17, Thm. 2] the diameter and area are also bounded, the authors
have chosen the space of functions with bounded variation BV (Ω)∩L∞(Ω). The gradient of such
functions can be decomposed as ∇u = ∇au+∇ju+∇cu where ∇au is the absolutely continuous
part of ∇u in respect to the Lebesgue measure, ∇ju is the jump part and ∇cu is the Cantor part,
all defined in Subsection 7.2. The jump part represents the vertical walls of the function and
the remaining singular Cantor part is illustrated by contributions to the Cantor set of the Cantor
ternary function.

By considering the absolutely continuous part ∇au ∈ L1(Ω) of ∇u ∈ BV (Ω), Deckelnick,
Grunau, and Röger could define the absolutely continuous contribution to the Willmore energy
and bound it in a lower semicontinuity estimate for the limit. Based on their work, we want to
characterize the missing contribution in their lower semicontinuity estimate in the following the-
orem. The missing parts are described in the framework of measure-function pairs and curvature
varifolds.

19



4 Main Theorem

Let Ω ⊂ R
2 be a bounded domain with a C2–boundary, φ ∈ C2

0 (R
2) and M > 0. Furthermore, let

{uk}k∈N be a given sequence in W 2,2(Ω) that satisfies for some given M > 0:

∀k ∈ N : uk − φ ∈ W̊ 2,2(Ω) and W(uk) ≤M.

Then there exists a function u ∈ BV (Ω) ∩ L∞(Ω) such that after passing to a subsequence

uk → u in L1(Ω) (k → ∞).

For each graph Γ(uk) we call Qk :=
√

1 + |∇uk|2 the area element and µk the graph area measure.
Furthermore, we define the unit upwards pointing normal field Ñk : Ω → S2. Then:

i There exist functions Ñ : Ω → S2, H̃ : Ω → R and a Radon measure µ on Ω such that∫
Ω
|Ha|2Qa dx+

∫
Ω\AD(u)

|H̃|2 dµ =

∫
Ω
|H̃|2 dµ ≤ lim inf

k→∞

∫
Ω
H2
kQk dx,

where AD(u) is the set where u is approximately differentiable. For definitions, see (193) and (194).

ii Additionally, there is a W 2,2 ∩ C1-surface Σ with boundary and the sequence of oriented varifolds
V o[Γ(uk) ∪ Σ, Nk, 1, 0] converge in the varifold sense to a curvature varifold V [Γ ∪ Σ, N, 1, 0] with
mean curvature vector in the varifold sense H⃗ = HN .
Here, Γ is the essential boundary of the sublevel set of u and furthermore, we have∫

Ω
|Ha|2Qa dx+

∫
(Ω\AD(u))×R

∥H⃗∥2 d∥V ∥ =

∫
Ω×R

∥H⃗∥2 d∥V ∥ ≤ lim inf
k→∞

∫
Ω
H2
kQk dx.

1.2.4 Finite Relaxed Willmore Energy and Nonzero Cantor Part

While in the general case, the arising of the jump parts for finite “relaxed” Willmore energy W is
expected, one would intuitively guess that rather highly irregular Cantor parts vanish for finite
relaxed Willmore energy. Moreover, by second-order rectifiability, proved by Menne in [Men13], a
graph with finite Willmore energy represented by a varifold is, up to an area null set, a countable
collection of C2-manifolds. This all makes the following main theorem very surprising, since
geometrically one would rather expect infinite relaxed Willmore energy by the non-vanishing
Cantor part. It seems that by naively applying projection techniques, one can get these irregular
sets. Still, it is an open question whether Willmore minimizers may have a nonzero Cantor part.

Here, developing an idea from unpublished notes of Grunau we construct an example for
the case of the one-dimensional-Willmore functional. Here SBV ((0, 1)) is the subspace af all
BV ((0, 1)) functions with vanishing Cantor part.

5 Main Theorem

There exists a function u ∈ BV ((0, 1)) with W(u) < ∞ so that |(u′)c|((0, 1)) > 0 and especially
u /∈ SBV ((0, 1)).

1.3 Outline

In the following, we give a brief outline of the present work. The new results are contained in
Sections 4, 5, 6 and 8.

The others provide foundations and recall important definitions and theorems. There is also
an Appendix with some supplementary material, a list of references, and a table of notation.
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2 In Section 2 we recall some basic geometric quantities like mean curvature, the Willmore en-
ergy, and the second fundamental form in the graphical case and rewrite them as polynomials
consisting of derivatives of u as functions over Ω.

3 In Section 3 we recall the available theory of higher-order elliptic operators and then describe
the general scheme of how to apply a fixed point argument by freezing the nonlinear part in
both the elliptic and the parabolic case.

4 In Section 4 we investigate which bounds can be proved in terms of the Willmore energy and
boundary values. In particular, we discuss diameter and area bounds, as well as especially
L2-smallness estimates needed later in Section 6 for global existence results.

5 In Section 5 we show the existence of a smooth solution of the Willmore equation in different
settings. First, we consider Hölder spaces and use Schauder estimates to provide existence.
Then we use Lp estimates to get the result in the Sobolev framework. Subsequently, the
existence is provided in a weighted setting, which allows us to use C1+α data with a small
Lipschitz norm. Interior regularity is also shown.

6 In Section 6 we prove existence and regularity in different parabolic Hölder spaces. We begin
by considering different weighted Hölder spaces with initial values in Cm+α(Ω) or C1(Ω)
and investigate smallness conditions for global existence and subconvergence to a Willmore
surface. In the unweighted case, we take u0 ∈ C2+α(Ω) and use the divergence structure of
the equation.

7 In Section 7 we recall the definitions and properties ofBV functions, measures-function pairs
and varifolds.

8 In Section 8 we show additional compactness properties of Willmore energy-bounded se-
quences. We conclude by giving an example of a BV function with finite relaxed Willmore
energy and nonzero Cantor part.
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2 Geometric Preliminaries

In this chapter, we want to recall some basic geometric definitions and theorems, both consid-
ering graphs and, in general, non-embedded, immersed surfaces, which are allowed to have
self-intersections. We aim to revisit fundamental concepts that quantify the curvature of the im-
mersed manifold within the ambient Euclidean space. Additionally, to intrinsic curvature, which
solely relies on a chosen metric on the manifold without any reference to the ambient geometry,
we have to introduce the concept of extrinsic curvature, which characterizes the curvature of the
immersed surface in relation to the ambient space. Mean curvature, Gaussian curvature, second
fundamental form, and the Willmore energy are concepts we want to introduce. We especially
need local representations of curvatures and their derivatives in order to rewrite the Willmore
equation and Willmore flow equation as elliptic and parabolic equations for a graph.

2.1 Geometry of Immersions

We considerΣ, a smooth surface with or without boundary ∂Σ, thus a two-dimensional manifold,
for references see [Lee12, Lee97]. Further, we are assuming Σ to be connected without loss of
generality, and with ∂Σ ⊂ Σ the boundary ofΣ, which is diffeomorphic to a disjoint union of copies
ofR or S1. Additionally, for k > 0 letΣ be immersed inR2+k viaC2-class f : Σ ↪→

(
R2+k, ⟨ . , . ⟩R2+k

)
with ⟨ . , . ⟩R2+k the Euclidean inner product onR2+k. This means that for all x ∈ Σ the differential
dfx : TxΣ → R

2+k is injective. We denote for each x ∈ Σ

dfx : TxΣ → Tf(x)R
2+k ∼= R2+k

the differential, which we also call push-forward, of the mapping f at point x ∈ Σ. Since by [Lee12,
p.54] the tangent vectors at x ∈ Σ act as linear maps Dτ : C

∞(Σ) → R for each τ ∈ TxΣ, called
derivations at x ∈ Σ, we can define the differential by

dfx(τ)(h) = Dτ (h ◦ f)

for allh ∈ C∞(R2+k). In this situation the codimension is given by codim f(Σ) = 2+k−dim f(Σ) =
k. Next, we equip Σ with g = f∗⟨ . , . ⟩R2+k , the pull-back Riemannian metric of the standard
Euclidean metric along f . In detail, this means

gx(τ, ξ) := ⟨dfx(τ),dfx(ξ)⟩R2+k .

for all x ∈ Σ and τ, ξ ∈ TxΣ. This means that f is an isometric immersion. If we consider local
charts (U,φ) of Σ then by writing f = f ◦ φ−1 we obtain the local representation

gij = g(∂i, ∂j) = ⟨∂if, ∂jf⟩R2+k , i, j,= 1, 2.

where ∂i denotes the regular partial derivative inR2 and also the vector fields on Σ. Furthermore,
we define the area element factor

√
det (gij) and the inverse

(
gij
)
= (gij)

−1. The integration is
carried out using the induced area measure in local representation

µg =
√
det (gij)L2

in each local chart, where L2 is the standard Lesbegue measure on R2 for local coordinates. The
measure µg is the local representation of µf the volume measure induced by f on Σ. It corresponds
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to the 2-dimensional Hausdorff measure defined by the geodesic distance on Σ (refer to [Lee12,
Chapter 16]).

Next, with respect to Riemannian structure, we can define ∇f(Σ) and ∇R2+k the corresponding
Levi-Civita connections on Σ andR2+k respectively. Acting on functions ∇R2+k

= (∂1, . . . , ∂2+k)
T is

the ordinary gradient in R2+k. Then for each map h ∈ C1(Σ) with an extension h ∈ C1(R2+k) on
R

2+k, thus h = h ◦ f , we get

gx(∇f(Σ)h, ξ) =
〈
∇R2+k

h,dfx(ξ)
〉
R2+k

for all ξ ∈ TxΣ. In that case, ∇f(Σ)h is a gradient of h on Σ, which is the orthogonal projection to
the tangent space of the ambient space gradient. One quickly convinces oneself that the definition
does not depend on any particular choice of the orthonormal basis. In local coordinates, we have

(∇f(Σ)h)i = gij∂jh, i = 1, 2,

where here and in the subsequent content, we will employ the summation convention for repeated
indices unless explicitly stated.

To study further geometric properties of Σ immersed in R2+k, we also need the relate the
tangent space of Σ to that of f(Σ). Hence we want shortly define the orthogonal decomposition
of Tf(x)R2+k ∼= R

2+k in parts tangential or normal to TxΣ. Namely, the inner product ⟨ . , . ⟩R2+k

signifies orthogonality in R2+k. To be precise, we have the orthogonal decomposition R2+k =

dfx (TxΣ)⊕ (dfx (TxΣ))
⊥ where we use ( · )⊤ to indicate the projection onto dfx (TxΣ). Thus, ( · )⊥

the projection onto (dfx (TxΣ))
⊥ is well defined.

Now, let X(Σ) denote the space of tangent vector fields on Σ. Each vector field V ∈ X(Σ) can
be extended to local vector field V ∈ X(R2+k), which can be build out of local extensions. In fact,
since f is an immersion, then it is also locally an embedding. Hence, for any point x ∈ Σ \ ∂Σ,
there is a neighborhood U of x in Σ such that if V is the restriction of V to U , then dfx(V ) can be
extended to a vector field onR2+k that is locally defined in a neighborhood of f(x).

For the later formulation of the Willmore equation, we also need the notation of the divergence
and the Laplace operator with respect to the embedding. Let V ∈ X(R2+k) be a C1 vector field
with compact support, and let {ei}2+ki=1 be a chosen fixed orthonormal basis of R2+k. We express
X as V i = ⟨V, ei⟩, i = 1, . . . , 2 + k the Cartesian coordinates of V . Based on this, we define the
divergence of V on Σ as follows:

divf(Σ) V := ⟨ei,∇f(Σ)V i⟩,(10)

since we can locally extend V to a vectorfield on R2+k. It is important to note that this definition
holds for points in Σ \ ∂Σ. Additionally, one can verify that the result remains independent of the
specific choice of the orthonormal basis. Moving on, we define the Laplace-Beltrami operator of h on
Σ for a C2-function h : Σ → R as the divergence of the gradient of h:

∆f(Σ)h := divf(Σ)∇f(Σ)h.

It is shown in [Gul14, Appendix] that this definition is consistent with those given in [Lee12]. The
Laplace-Beltrami operator of h can also be calculated locally via the following representation

∆f(Σ)h =
1
√
g
∂i
(√
g · gij∂jh

)
(11)
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1 Definition (Second Fundamental Form)

Let x ∈ Σ \ ∂Σ then the second fundamental form in Ax : X(Σ)× X(Σ) → (dfx(TxΣ))
⊥ is the operator

Ax(X,Y ) :=
(
∇R2+k

X
Y
)⊥
f(x)

whereX,Y are local extensions of dfx(X),dfx(Y ) in a neighborhood of f(x). In fact, it defines a symmetric
tensor that is independent of the specific extensions X,Y , see [Lee97, Lemma 8.1.]. Moreover, we define the
squared norm of the second fundamental form by

∥Ax∥2g :=
2∑

i,j=1

∥∥Ax(τi, τj)
∥∥2
R2+k ,(12)

where
∥∥ .∥∥2

R2+k is the Euclidean norm in R2+k and (τi)
2
i=1 is an orthonormal basis of TxΣ, which can be

chosen arbitrarily.

Next, let assume that the ambient space is R3, hence codim f(Σ) = 1, the normal space
(dfx(TxΣ))

⊥ is one-dimensional and additionally there also exists a global continuous unit normal
fieldN , thusNx ∈ (dfx(TxΣ))

⊥ for all x ∈ Σ. Then we may define the scalar second fundamental form
A : X(Σ)× X(Σ) → R by:

Ax(X,Y ) :=
〈
Ax(X,Y ), Nx

〉
R2+k =

〈(
∇R2+k

X
Y
)
f(x)

, Nx

〉
R3

(13)

for all x ∈ Σ \ ∂Σ, where X,Y are local extensions of dfx(X),dfx(Y ) in a neighborhood of f(x).
Then the components of local representation are

Aij = A(∂i, ∂j) =
〈
∂2ijf,N

〉
R3 , i, j,= 1, 2.

If N is an inward pointing unit vector field normal along the standard round sphere embedded in
R3, then the second fundamental form is positive. Furthermore, in local coordinates, the square
norm of the second fundamental form takes the following shape

∥A∥2g := ∥Ax∥2g =
∑
i,j,k,ℓ

gijgkℓAikAjℓ.(14)

Let us go back to R2+k. For many situations, A carries more information than needed, so
instead we take the mean value over all tangential directions. This is the trace with respect to the
metric, which is an invariant of the second fundamental form A.

2 Definition (Mean Curvature)

For each x ∈ Σ \ ∂Σ we define the vector of mean curvature by

Hx :=
2∑
i=1

Ax(τi, τi) ∈ (dfx(TxΣ))
⊥,(15)

with τ1, τ2 be an orthonormal basis of TxΣ. We want to emphasize that we omit the factor 1/2 before the
sum. The squared norm of H is simply the Euclidean squared vector length ∥H∥2g = ∥H∥2

R2+k . Next, if
codim f(Σ) = 1, we take the scalar mean curvature, analogous to the scalar second fundamental form so
let H : Σ → R:

Hx := ⟨H, N⟩(x) =
2∑
i=1

Ax(τi, τi).(16)
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Furthermore, we want to introduce the second invariant of A, which is the determinant with
respect to the metric, called the Gaussian curvature. In contrast to the mean curvature, it is
independent of the ambient space, thus it depends solely on the induced metric g on Σ.

3 Definition (Gaussian Curvarture)

For x ∈ Σ\∂Σ and τ1, τ2 an orthonormal basis of TxΣ the Gaussian curvature K : Σ\∂Σ → R is pointwise
defined by

Kx := ⟨Ax(τ1, τ1),Ax(τ2, τ2)⟩R2+k − ⟨Ax(τ1, τ2),Ax(τ1, τ2)⟩R2+k .

There are some relations between mean curvature, Gaussian curvature, and the second funda-
mental form that are used later (see [KS12, (1.1.2)-(1.1.7)])

∥H∥2g = ∥A∥2g + 2K, ∥A∥2g ≥ 2K, ∥H∥2g ≥ 4K and 2∥A∥2g ≥ ∥H∥2g.(17)

In case codim f(Σ) = 1, the mean and Gaussian curvatures have the following local represen-
tation

H = traceg A = gijAij , K = detg A = det
(
gikAkj

)
.

For surfaces immersed into R3, both curvatures can be conveniently written in terms of the
principal curvatures. At any given point x ∈ Σ\∂Σ it is possible to select an orthogonal basis τ1, τ2
of TxΣ, such that the eigenvalues, denoted as k1 and k2, of matrix representation A are displayed
along its diagonal. Consequently, we obtain the following expressions

Hx = k1 + k2, Kx = k1k2.

Particularly, the eigenvalues are called the principal curvatures.
Since we want to deal with surfaces with boundary that are described by curves, we introduce

immersed curves. The immersion property of f implies that the restriction of f on ∂Σ is an immersion
of each component of ∂Σ which are curves diffeomorphic to R or S1. Let us begin by noting that
if γ : (0, 1) → Σ is a parametrization of a smooth curve, then it can be regarded as a smooth curve
f ◦ γ in R2+k whose image lies within f(Σ) ⊂ R2+k. Furthermore, for any point x ∈ ∂Σ we define
the conormal cof : ∂Σ → R2+k to be the unique unit vector cof (x) ∈ R2+k pointing outwards of Σ
that is tangent along f(Σ) and normal along f(∂Σ).

The Gaussian curvature induced by g is related to the topology of the surface in a fundamental
way by the Gauss-Bonnet Theorem. Namely, K integrated over Σ with respect to µf is equal to
χ(Σ) the Euler characteristic of Σ up to a boundary term later discussed. It is a significant result
that χ(Σ) is a topological invariant. By [DHS10, p. 38] for compact, orientable, and connected
C2-smooth surfaces with C2-smooth edges, the Euler characteristic is given by χ(Σ) = 2− 2g− r,
where g represents the genus, defined as the maximum number of cuts along simply closed and
disjoint curves that yield a connected cut surface, and r is the number of connected components
considered as closed curves.

For the boundary term in the Gauss-Bonnet Theorem, we want to define the orientation of
the boundary. Here we assume Σ with codim f(Σ) = 1 be oriented with a global continuous
unit normal field N , thus Nx ∈ (dfx(TxΣ))

⊥ for all x ∈ Σ. Then we say the parametrization
γ : (0, 1) → ∂Σ positive oriented, if at any point s ∈ (0, 1), the determinant of the matrix consisting
of the tangent vector ∂t(f ◦ γ)(t), the unit co-normal inward pointing cof ◦γ(t) and N ◦ γ(t) is
positive. If we set Y : (0, 1) → f(∂Σ) by Y = f ◦ γ we can define the signed geodesic curvature by

κg(s) =
1

|Y ′(s)|3
det
(
Y ′(s), Y ′′(s), N(γ(s))

)
.(18)
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4 Theorem (Gauss-Bonnet Theorem)

Let (Σ, g) be oriented smooth Riemannian 2-dimensional compact manifold isometrically immersed in R3

via f : Σ ↪→
(
R3, ⟨ . , . ⟩R3

)
with C1, . . . , Cℓ C

2-smooth closed curves forming the immersed boundary
f(∂Σ). Then, the following equality holds:∫

Σ
K dµf +

ℓ∑
i=1

∫
Ci

κg(s) ds = 2πχ(Σ),(19)

where K denotes the Gaussian curvature and κg(s) is the geodesic curvature of the arclength parameterized
curves Ci. The boundary components {Ci}ni=1 must be parameterized in a positively oriented manner.

Proof: The proof of this theorem can be found in [DC16].

There is also an integral geometrical theorem for the mean curvature. Namely, it is linked to
tangential divergence in an extension of the Euclidean divergence theorem to nonflat submanifolds
ofRn and vector fields that are non-tangential in general.

5 Theorem (Non-tangential Divergence Theorem)

Let (Σ, g) be oriented smooth Riemannian 2-dimensional compact manifold isometrically immersed in R3

via f : Σ ↪→
(
R3, ⟨ . , . ⟩R3

)
with immersed boundary f(∂Σ) and unit co-normal pointing inward cof .

Then, for every vector field X ∈ X(R3) it holds:∫
Σ
divf(Σ)X dµf = −

∫
Σ
⟨X,H⟩R3 dµf −

∫
f(∂Σ)

⟨X, cof ⟩R3 ds.(20)

Proof: The proof of this theorem can be found in [Sim83, p.45].

In case X(f(x)) ∈ dfx(TxΣ) for all x ∈ Σ it follows ⟨X,H⟩R3 ≡ 0 and we get the tangential
divergence theorem. Next, we want to introduce the Willmore energy for immersion.

6 Definition (Willmore Energy for Immersions)

If Σ is C2-surface, f : Σ ↪→
(
R3, ⟨ . , . ⟩R3

)
is a C2-immersion and H is the mean curvature of f then we

define the Willmore energy for f(Σ) by

W
(
f(Σ)

)
=

1

4

∫
Σ
H2 dµf ,

where dµf is the surface form locally induced by g, i.e. by the pullback of the Euclidean metric.

By using equation (17) and the Gauss-Bonnet Theorem, we can relate the Willmore energy to
the integrated square norm of the second fundamental form

4W(f) =

∫
Σ
∥A∥2g dµf − 2

ℓ∑
i=1

∫
Ci

κg(s) ds+ 4πχ(Σ).(21)

This identity yields that if we fix the topology of Σ and the immersed boundary f(∂Σ) with
the signed geodesic curvature, then we can also estimate

∫
Σ ∥A∥2g dµf , which is the L2-norm of

the second fundamental form by the Willmore energy. In reverse, by (17) we can also estimate
1
2

∫
Σ ∥A∥2g dµf ≥ W(f(Σ)).
There is a generalization of the Willmore energy to a functional involving area, Gaussian

curvature, and spontaneous mean curvature. It is called Helfrich functional [Hel73, Can70], which
is defined for a C2 immersion f : Σ → R

3

Wα,H0,γ(f(Σ)) = α

∫
Σ
dµf +

1

4

∫
Σ
(H −H0)

2 dµf − γ

∫
Σ
K dµf
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with parameters α,H0, γ, where for α,H0, γ = 0 we obtain the Willmore functional. The first
term describes the surface area of f(Σ) and H0 in the second term stands for spontaneous mean
curvature, which is preferred if we minimizeW0,H0,0(f(Σ)). The term with Gaussian curvature can
be handled by the Gauss-Bonnet Theorem and boundary data. Consequently, bounds for Wα,γ,H0

directly yield bounds for the area if α ̸= 0, and subsequently, for the Willmore energy. If we want
a physically meaningful model, then we have to choose a special range of parameter values. By
the discussion in [Nit93] we have to assume α ≥ 0, 0 ≤ γ ≤ 1, and γH2

0 ≤ 4α(1 − γ). Especially,
these constraints guarantee that the entire integrand α+ 1

4 (H −H0)
2 − γK ≥ 0 pointwise.

Critical points f : Σ → R3 of the functional Wα,H0,γ solve the Euler-Lagrange equation [Nit93,
p. 368 (21)]

∆ΣH + 2H

(
1

4
H2 −K

)
− 2(α+H2

0 )H + 2H0K = 0

which we call the Helfrich equation. For α,H0 = 0, we recover the Willmore equation. If
f : Σ ↪→

(
R3, ⟨ . , . ⟩R3

)
solves the Helfrich equation then f is called a Helfrich surface.

For closed surfaces, for λ > 0 one can also add the term λ volΣ which represents the volume
enclosed by f(Σ). It is set by [MW13])

vol Σ = −1

3

∫
Σ
⟨f,N⟩R3 dµf , the signed enclosed volume,

whereN denotes the inward-pointing unit normal on Σ. By the divergence theorem, in the case of
an embedding, the expression above agrees with the measure of the interior. In this case, we also
have to add −2λ to the Helfich equation to get the correct Euler-Lagrange equation.

2.2 Geometry of Graphs

In this subsection, we want to apply the definitions of the previous subsection to graphs. Our
goal is to write down the mean and Gaussian curvatures as well as the Willmore energy and the
Willmore equation in local coordinates.

Let Ω ⊂ R
2 be a bounded domain (open, nonempty, and connected subset) with a sufficiently

smooth boundary ∂Ω and the exterior boundary normal ν : ∂Ω → S2 where S2 is the unit sphere
inR3. For a C2-smooth function u : Ω → Rwe call its graph the surface:

Γ(u) :=
{(
x, u(x)

) ∣∣∣ x ∈ Ω
}
.

In the following, we use the notation ∂iu = uxi . First, we note that the function u parameterizes
the surface Γ(u) as follows:

f : Ω ∋ (x1, x2) 7→

 x1

x2

u(x1, x2)

 ∈ Γ(u) ⊂ R3, ∂1f =

 1
0
ux1

 , ∂2f =

 0
1
ux2

 .(22)

In fact, in this case it is an immersion f : Ω ↪→
(
R3, ⟨ . , . ⟩R3

)
and Σ = Ω is a flat surface with

boundary ∂Ω. As local coordinates, we use the Cartesian coordinates for Ω. For each x ∈ Ω
the vectors ∂if span the tangent space of Γ(u) which we set by TxΓ(u) := dfx(TxΩ). The first
fundamental form here is the restriction of the Euclidean scalar product of R3 to Γ(u). In local
coordinates, it follows

(gij) :=
(
⟨∂if, ∂jf⟩

)
=

(
1 + u2x1 ux1ux2
ux1ux2 1 + u2x2

)
.
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From now on, we use the following notation for the area element:

Q :=
√
1 + |∇u|2 =

√
det(gij).

The inverse of (gij) by denoted (gij). In the graphical case, we have

(gij) =
1

Q2

(
1 + u2x2 −ux1ux2
−ux1ux2 1 + u2x1

)
.

According to [Gul14, Theorem A.7 (e)], the covariant derivative of a function F : Ω → R takes the
shape

∇Γ(u)F = gkℓ∂kF∂ℓf

=
1

Q2

((1 + u2x2)∂1F − ux1ux2∂2F
) 1

0
ux1

+
(
− ux1ux2∂1F + (1 + u2x1)∂2F

) 0
1
ux2


=

1

Q2

 1 + u2x2 −ux1ux2
−ux1ux2 1 + u2x1
ux1 ux2

 ·
(
∂1F
∂2F

)
.

Since, by definition, Ω is an oriented surface, Γ(u) is also oriented. Here, we choose the unit
normal vector field N : Ω → R

3 to be directed upward. Locally, it has the following representation

N =
1√

1 + |∇u|2

(
−∇u
1

)
.(23)

Subsequent, since the normal space (dfx(TxΩ))⊥ is only one-dimensional here, that is, it consists
of a line, we can restrict ourselves to the scalar second fundamental form Ax : TxΩ × TxΩ → R

given in (13). In local coordinates, it has the following representation:

Aij = Ax(∂if, ∂jf) = −⟨∂if,D∂jfN⟩.(24)

But since we have ⟨N, ∂if⟩ = 0, the relation ⟨D∂fiN, ∂jf⟩ + ⟨N,D∂fi∂jf⟩ = 0 holds. Because of
[Gul14, Lemma A.4], the relation D∂fi∂jf = ∂ijf holds. So it results

Aij = ⟨N, ∂ijf⟩ =
1

Q

〈 0
0

uxixj

 ,

−ux1
−ux2
1

〉 =
uxixj
Q

.(25)

Then we get the local representation of the Weingarten-mapping W = −dN :

(Aij) =
( 2∑
ℓ=1

giℓAℓj

)
=

1

QQ2

(
1 + u2x2 −ux1ux2
−ux1ux2 1 + u2x1

)
◦
(
ux1x1 ux1x2
ux2x1 ux2x2

)
=

1

Q3

(
(1 + u2x2)ux1x1 − ux1ux2ux1x2 (1 + u2x2)ux1x2 − ux1ux2ux2x2
−ux1ux2ux1x1 + (1 + u2x1)ux1x2 −ux1ux2ux1x2 + (1 + u2x1)ux2x2

)
.

(26)

with the square norm of the second fundamental form

∥A∥2g =
2∑

i,j,k,ℓ=1

gijgkℓAikAjℓ.
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For the square norm of the second fundamental form, Deckelnick, Grunau, and Röger [DGR17,
Lemma 1] proved the following estimate with the Euclidean matrix norm of the Hessian of u

|D2u|2

Q2
=

2∑
i,j=1

u2
xixj

Q2
≥ ∥A∥2g ≥

|D2u|2

Q6
.(27)

Because the codimension equals one, we can take the scalar mean curvature as described in
(16). Furthermore, we want to write down the mean curvature in local representationAij . We also
note that H is the trace of the Weingarten mapping (see [Gul14, Theorem A.7 (a)]).

H = trace
(
(Aij)

)
= ∇ ·

(
∇u
Q

)
=

∆u

Q
−

∇u ·
(
∇|∇u|2

)
2Q3

=
∆u

Q
−

∇u ·
(
D2u∇u

)
Q3

=
1

Q3

(
ux1x1(1 + u2x1 + u2x2)− ux1(ux1x1ux1 + ux1x2ux2)

+ ux2x2(1 + u2x1 + u2x2)− ux2(ux1x2ux1 + ux2x2ux2)
)

=
1

Q3

(
ux1x1(1 + u2x2)− 2ux1ux1x2ux2 + ux2x2(1 + u2x1)

)
.

(28)

Since the Gaussian curvature is the determinant of (Aij), we get

K = det
(
(Aij)

)
=

detD2u

Q4
.

In [Gul14] one can see that this definition is equivalent to the one defining K as the determinant
of the Weingarten mapping (W = −dN , N unit normal field). Moreover, the Willmore functional
for the graph of u takes the following shape:

W(u) =
1

4

∫
Ω
H2
√
1 + |∇u|2 dx =

1

4

∫
Ω

∣∣∣∣∇ ·
(
∇u
Q

) ∣∣∣∣2Qdx,

The Laplacian of mean curvature can be calculated via (11):

∆Γ(u)H =
1

Q
∂i
(
Qgij∂jH

)
=

1

Q

∂

∂x1

{
1

Q

(
(1 + u2x2)

∂

∂x1
H − ux1ux2

∂

∂x2
H
)}

+
1

Q

∂

∂x2

{
1

Q

(
− ux1ux2

∂

∂x1
H + (1 + u2x1)

∂

∂x2
H
)}

.

(29)

Finally, we want to mention the first variation of the Willmore functional for graphs. Among
other things, it is important for us to obtain the boundary terms and the divergence structure of
the Willmore equation.

7 Theorem (First Variation of the Willmore Functional)

Let Ω be a bounded, C4-smooth bounded domain with the exterior unit normal vector field ν (the negative
conormal) and u ∈ C4(Ω), φ ∈ C2(Ω), then it holds:

〈
W ′(u), φ

〉
=

d

dt
W(u+ tφ)

∣∣∣∣
t=0

=
1

2

∫
Ω

{
∆Γ(u)H + 2H

(
1

4
H2 −K

)}
φdx

− 1

2

∫
∂Ω

[
F · ν +

(
∂

∂τ
Ψ

)
· τ − κgΨ · ν

]
φds+

1

2

∫
∂Ω

Ψ · ν ∂φ
∂ν

ds,
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with τ : ∂Ω → S1 as a tangent unit vector field on ∂Ω, and let κg be the geodesic curvature of the boundary
with respect to the parametrization such that Ω is on the left side of the parametrization. Here, we use the
notation

F =
1

Q

(
I − ∇u⊗∇u

Q2

)
∇
(
QH

)
− H2

2Q
∇u, Ψ =

√
QH

 1(
1 + |∇u|2

) 1
4

(
I − ∇u⊗∇u

1 + |∇u|2

)
ν

 ,

where I stands for the 2 × 2-unit martix and ⊗ for the matrix-tensor product. In particular, one has the
divergence structure:

∇ · F = ∆Γ(u)H + 2H

(
1

4
H2 −K

)
.

Proof: See Section "variational formulation and discretization" in [DKS15]. For details, we also
refer to [Gul17, Theorem 3.9].
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3 Analytic Preliminaries

First, we have to recall the most fundamental spaces like the Hölder, Lebesgue, or Sobolev spaces.
Foremost, we define the Hölder spaces. Here, we adopt the notation used in the work [LSvW92].
We also use the multi-index-notation, i.e., ω = (ω1, . . . , ωn) ∈ Nn

0 , |ω| = |ω1|+ · · ·+ |ωn| and:

Dωf =
∂|ω|

∂xω1
1 · · · ∂xωn

n
f, ∂i :=

∂

∂xi
,

for clarity and better readability.
Let n ∈ N and Ω ⊂ Rn be an open set. In this chapter, we only consider real-valued functions

on Ω,Ω or ∂Ω, and we define a seminorm called the Hölder coefficient for 0 < α ≤ 1 as follows:

[f ]Cα(Ω) := sup

{∣∣f(x)− f(y)
∣∣

|x− y|α

∣∣∣∣∣ x, y ∈ Ω, x ̸= y

}
.

For the special case whenα = 1, the above definition corresponds to the Lipschitz condition. Assume
Ω ⊂ Rn is bounded, and 0 < α < β ≤ 1. In this case, we can apply the following useful inequality
frequently throughout the paper:

[f ]Cα(Ω) ≤ diam(Ω)β−α[f ]Cβ(Ω).(30)

For k ∈ N0,we use Ck(Ω) to represent the space of k-differentiable functions on Ω ⊂ R
n. We define

the space Ck(Ω) as the set of all functions f ∈ Ck(Ω) for which the following holds: f , along with
all derivatives of f of order ≤ k, can be continuously extended to Ω.

In the case, where Ω is compact, one can define a norm on Ck(Ω) as follows:

∥f∥Ck(Ω) :=
∑
|ℓ|≤k

sup
x∈Ω

∣∣Dℓf(x)
∣∣, f ∈ Ck(Ω).

We also recall the notation of the closed support of f

supp f = {x ∈ Ω | f(x) ̸= 0}.

Then by Ckc (Ω) we denote the space of functions f ∈ Ck(Ω) with compact support in Ω. We can
now define the Hölder spaces for bounded domains Ω ⊂ Rn, where 0 < α < 1. To avoid confusion
with spaces of differentiable functions, we specifically require k ∈ N0 so that k + α ̸∈ N:

Ck+α(Ω) :=
{
f ∈ Ck(Ω)

∣∣∣ ∀|ℓ| = k : [Dℓf ]Cα(Ω) <∞
}
, ∥f∥Ck+α(Ω) := ∥f∥Ck(Ω) +

∑
|ℓ|=k

[Dℓf ]Cα(Ω),

Here, for f ∈ Ck+α(Ω), the Hölder norm is denoted by ∥f∥Ck+α(Ω). The Hölder spaces are Banach
spaces. There is a product estimate for Hölder functions, which involves seminorms. Let u, v ∈
Cα(Ω), α ∈ (0, 1):

[uv]Cα(Ω) ≤ sup
x∈Ω

∣∣u(x)∣∣ · [v]Cα(Ω) + [u]Cα(Ω) · sup
x∈Ω

∣∣u(x)∣∣.(31)

It follows that:

∥gf∥Cα(Ω) ≤ ∥g∥Cα(Ω) · ∥f∥Cα(Ω).
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Further, since it is important for the regularity issues, we want to define the smoothness of
boundary. Let Ω ⊂ R

n be a bounded open set. For ℓ ∈ R≥0 we say that the boundary ∂Ω is
Cℓ-smooth, if there is a finite number of closed balls {Bi}Ni=1, whose interior covers the boundary
∂Ω ⊂

⋃N
i=1 int(Bi), such that there exist Cℓ-diffeomorphisms {φi}Ni=1 from each Bi to the unit ball

B := B1(0) and for each i = 1, . . . , N it holds:

φi(Ω ∩Bi) = B ∩ {xn > 0}, φ(∂Ω ∩Bi) = B ∩ {xn = 0},

where {xn > 0} := {x ∈ Rn|xn > 0} and {xn = 0} := {x ∈ Rn|xn = 0}. We call {Bi}Ni=1 a finite
open covering of ∂Ω. In particular, ∂Ω is a (n− 1)-dimensional Cℓ-smooth submanifold.

As in [MMS10, Subsection 6.1] we call Ω a Lipschitz bounded domain, if there exists a finite
open covering {Bi}Ni=1 of ∂Ω such that, for each i ∈ {1, . . . , N}, after a rigid motion of Rn the
intersectionBi∩Ω coincides with the segment ofBi lying in the over-graph of a Lipschitz function
ψi : Rn−1 → R. Subsequently, we define the Lipschitz constant of a bounded Lipschitz domain
Ω ⊂ Rn as:

(32) inf max{∥∇ψi∥L∞(Rn−1) : 1 ≤ i ≤ N}

where we take the infimum over all possible finite open coverings of ∂Ω with corresponding
Lipschitz functions. For example,C1-smooth bounded domains have vanishing Lipschitz constant
and a square has the Lipschitz constant equal to one. This definition is based on the notion of
minimally smooth domains in [Ste70, Subsection 3.3 p 189]. Also, for each Lipschitz domain, there
exists the surface measure on ∂Ω and outward-pointing normal vector ν almost everywhere with
respect to the surface measure on ∂Ω due to Rademacher’s Theorem.

Let us continue with defining the Lebesgue space Lp(Ω) for each 1 ≤ p < ∞. It comprises
measurable functions u on Ω that satisfy the condition:

∥u∥Lp(Ω) :=

(∫
Ω
|u(x)|p dx

)1/p

<∞.

By Lploc(Ω) we denote the space of locally integrable functions, which means its Lebesgue integral is
finite on all compact subsets K of Ω.

Subsequently, we define the Sobolev spaceWm,p(Ω) as the set of real-valued functionsu ∈ Lploc(Ω)
with the property that Dαu ∈ Lploc(Ω) for all |α| ≤ m. For u in this space, we have the following
norm:

∥u∥Wm,p(Ω) :=

 ∑
|α|≤m

∥Dαu∥pLp(Ω)

1/p

<∞.(33)

It is worth noting that in the case m = 0, we recover the Lebesgue space Lp(Ω) = W 0,p(Ω),
and when m = 1, it becomes the Sobolev space W 1,p(Ω). For Lipschitz domains the space C∞(Ω)
is dense in Wm,p(Ω) with respect to the norm (33), see [GT01, Subsection 7.6 and Problem 7.11].
Consequently, we haveWm,p(Ω) =

{
closure of C∞(Ω) in Wm,p(Ω)

}
with respect to the norm (33).

Furthermore, we define the homogeneous Sobolev space as follows:

W̊m,p(Ω) :=
{

closure of C∞
c (Ω) in Wm,p(Ω)

}
(34)

Both Wm,p(Ω) and W̊m,p(Ω) are separable Banach spaces.
Regarding the embedding results for Sobolev spaces, let Ω ⊂ Rn be a bounded domain with a

Lipschitz boundary. If p > n and 0 < λ ≤ 1− n
p , then it follows that:

W 1,p(Ω) ↪→↪→ Cλ(Ω).

32



Assume q ≥ p with n
q − n

p + 1 > 0. Then we have the compact embedding:

W 1,p(Ω) ↪→↪→ Lq(Ω).

In the context of β ≤ ℓ, the Hölder space Cβ(∂Ω) on the boundary is the set of all functions
g : ∂Ω → R satisfying ∀i ∈ {1, . . . , N} the property g ◦ φ−1

i ∈ Cβ(B ∩ {xn = 0}), where the norm
is defined with respect to parametrizations by arclength (the geodesic distance). The Lebesgue
spaces on the boundary are defined similarly. Since for each Lipschitz domain, there exists the
surface measure S on ∂Ω, then we can define the Lebesgue space on boundary Lp(∂Ω) for each
1 ≤ p <∞ that comprises surface S-measurable functions g on ∂Ω such that

∥g∥Lp(∂Ω) :=

(∫
∂Ω

|g(x)|p dS(x)
)1/p

<∞.

In case ∂Ω is a curve parametized by a C1-smooth map γ : I → R
n with I ⊂ R, then ∥g∥Lp(∂Ω) =

∥g ◦ γ∥Lp(I) in case ∥γ′∥ ≡ 1. The last condition on γ′ characterizes parametrizations by arclength.

3.1 Higher-Order Elliptic Operators & Fixed Point Methods

Since we want to rewrite the Willmore equation as an elliptic equation and the Willmore flow
equation as a parabolic equation, let us recall the following general definition. Let m ∈ N such
that m ≥ 2, then we call L a divergence-form m-order elliptic real scalar operator with variable
real coefficients in the case it is acting on scalar functions u : Rn → R

Lu = L(x,Dx)u :=
∑

|α|=|β|=m

Dα
(
Aαβ(x)D

βu
)
, x ∈ Ω,(35)

whereDα = ∂α =
(
∂
∂x1

)α1

· · ·
(

∂
∂xn

)αn

and α = (α1, . . . , αn). Further, we assume that Ω ⊂ Rn is a
domain with Lipschitz boundary ∂Ω and compact closureΩ as well asAαβ : Ω → R are measurable
bounded coefficients so that for some C > 0∑

|α|=|β|=m

∥Aαβ∥L∞(Ω) ≤ C.

Furthermore, we impose the Legendre–Hadamard ellipticity condition on coefficients Aαβ which for
our real case is defined by the following inequality∑

|α|=|β|=m

Aαβ(x)ξ
αξβ ≥ λ∥ξ∥2m(36)

for all x ∈ Ω and ξ ∈ Rn. We call λ the ellipticity constant. In this context, it is worth noting that
it is not the most general form of an elliptic operator. Like in [MS11, p.37], one can consider op-
erators with complex coefficients acting on a vector-valued function and satisfying the coercitivity
condition.

The most famous classical examples of elliptic operators are polyharmonic operators, namely
iterations of the Laplace operator, defined inductively by

∆mu = ∆(∆m−1u).

where in the case m = 2 we especially call ∆2 the biharmonic operator or the bilaplacian.
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It is canonical to search for the solutions of the general elliptic equation consisting of the elliptic
operator L and some right-hand side functions fα ∈ Lloc(Ω), |α| ≤ m

Lu =
m∑

|α|=0

Dαfα(37)

which we describe in the following way. Let the function u be a variational solution to (37) if the
following equation is valid:

∀v ∈ C∞
0 (Ω) :

∑
|α|=|β|=m

∫
Ω
DαvAαβ(x)D

βudx =
m∑

|α|=0

(−1)|α|
∫
Ω
fα ·Dαv dx.

In case boundary data is considered, one naturally takes the traces of lower-order derivates.
Here ones exploits the Lipschitz structure of Ω, namely, there exists the outward unit normal
ν = (ν1, . . . , νn). Thus, for every 0 ≤ k ≤ m− 1 we take normal derivatives

∂ku

∂νk
:=

∑
|α|=k

k!

α!
ναTr[Dαu],(38)

where Tr is the boundary trace operator and for each multiindex α = (α1, . . . , αn) we define
να := να1

1 · · · ναn
n . At this point, we can recall the corresponding inhomogeneous Dirichlet problem

for such an operator 
∑

|α|=|β|=m

Dα
(
Aαβ(x)D

βu
)
= 0 for x ∈ Ω,

∂ku

∂νk
= gk on ∂Ω, 0 ≤ k ≤ m− 1,

(39)

where gk : ∂Ω → R are some measurable functions with respect to the surface measure, which are
traces of some weak differentiable function in the sense of (38) and its regularity class that will be
specified later. Especially, it will depend on regularity classes of u and the boundary ∂Ω.

For the second-order elliptic equation, the maximum modulus theorem is a well-known classical
result. It was extended to the solutions of the biharmonic equation by Miranda and then general-
ized by Agmon-Douglis-Nirenberg for higher-order elliptic operators for half-space with constant
coefficients with no lower-order terms. Finally, Agmon [Agm60] established the weak maximum
principle on smooth domains. Which, like pointed out by [BM16], roughly speaking states that for
a solution u to the equation Lu = 0 in Ω, where L is a 2m-order elliptic operator with coefficients
smooth enough and Ω smooth, it follows

max
|α|≤m−1

∥Dαu∥L∞(Ω) ≤ C max
|β|≤m−1

∥Dβu∥L∞(∂Ω).(40)

3.2 Fixed Point Methods

In this work, we use exclusively Banach fixed point theorem out of various fixed point results. There-
fore, throughout the subsequent discussions, when we refer to a "fixed point," it is synonymous
with the "Banach fixed point."

8 Theorem (Banach Fixed Point Theorem)

Let (X, d) be a complete metric space (X, d) and ∅ ̸=M ⊂ X . Let (X, d) be

T : M →M
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be given an contraction mapping, i.e., k ∈ (0, 1) and for all x, y ∈M holds:

d(Tx, Ty) ≤ k d(x, y).

Then the following statements hold:

a T has exactly one fixed point, i.e., there is exactly one solution x ∈M of the equation:

Tx = x.

b The iterative sequence {xi}∞i=1 defined by the equation below converges to exactly one solution for all
initial values x0 ∈M :

x0 ∈M, xi+1 := Txi, i ∈ N0.

Proof: [Dei10] Theorem 7.1 page 39.

The proofs of existence theorems for small data in the elliptic case and short-time existence
Theorems in the parabolic case are both based on the same two steps of a linearization technique.
The first one solves the associated linear problem, and the second uses some fixed point argument
to extend the result to the nonlinear case. The first step is done by discussing the biharmonic case,
and for the second step, we separate the elliptic linear part L[u] and non-linear part f [u] in the
following sense

elliptic: L[u] = f [u] in Ω, TruΩm−1 = g,

parabolic: ∂tu+ L[u] = f [u] in Ω× (0, T ], TruΩm−1 = g and u|t=0 = u0
(41)

with some trace operators for Ω. Then we freeze the non-linear part f [u] by replacing uwith some
w from some appropriate space

elliptic: L[u] = f [w] in Ω, TruΩm−1 = g,

parabolic: ∂tu+ L[u] = f [w] in Ω× (0, T ], TruΩm−1 = g and u|t=0 = u0.
(42)

Depending on the regularity assumption on the boundary and Dirichlet’s data, we choose some
spaces X,H for u and f [u] which will strongly depend on the setting of Ω and boundary data class.
Furthermore, we need boundary spaces D for u|∂Ω and for parabolic case I for initial values u|t=0.
Then, we want to get existence results and estimates for (42)

elliptic: ∥u∥X ≤ C∥f [w]∥H + C∥g∥D
parabolic: ∥u∥X ≤ C∥f [w]∥H + C∥g∥D + ∥u0∥I.

So we can define some iteration mappings G : X → X by setting for every w ∈ X some u = G(w)
as solution of (42).

Now, if we could obtain some fixpoint u ∈ X, hence u = G(u), then we could conclude the
existence and regularity results for the nonlinear problem (41). Thus, we reformulated our situation
as a fixed point problem and we have to show that G : M → M is a self-map and contraction on
some closed nonempty set M ⊂ X. Both properties are obtained by setting some restrictions on
M, for example in the elliptic case, we need some smallness conditions on boundary data, and in
the parabolic case, we have to choose existence time small enough.
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3.3 Interpolation Spaces

As a technical tool for achieving smallness in some norms, we often use interpolation inequalities.
There exists a vast theory of interpolation spaces, including some abstract space-construction
techniques. These, roughly speaking, produce some Banach space Y lying between two Banach
spaces D and X in the sense that the injections D ⊂ Y ⊂ X are continuous and moreover there
are a constants C > 0 and α ∈ [0, 1] thus that

∀x ∈ D : ∥x∥Y ≤ C∥x∥1−αD · ∥x∥αX

with corresponding norms. We call such estimates interpolation inequalities, and these are the
results we need from interpolation theorems. We will consequently choose ∥x∥X to be bounded
and ∥x∥D small enough to achieve smallness in ∥x∥Y .

Some examples are Lp-spaces and Hölder-Spaces. It is a well known fact, that for 1 ≤ p0 ≤
p1 ≤ ∞ and u ∈ Lp1(Ω) ∩ Lp0(Ω) it follows with the Hölder’s inequality

∥u∥Lp(Ω) ≤ C∥u∥1−θLp0 (Ω) · ∥u∥
θ
Lp1 (Ω), with 1

p
=

1− θ

p0
+

θ

p1
.

9 Theorem (Hölder Interpolation Result)

For Ω ⊂ Rn, 0 ≤ a ≤ b and Ω bounded with Cb boundary, 0 < λ < 1 there is a constant C1 = C1(Ω, a, b)
such that

∥u∥Ca(Ω) ≤ C1∥u∥Cb(Ω), ∥u∥Cλa+(1−λ)b(Ω) ≤ C1∥u∥λCa(Ω)
· ∥u∥1−λ

Cb(Ω)
.(43)

with Ck(Ω) = Ck−1,1(Ω) in this Theorem.

Proof: Here we want to use [Hö76, Theorem A.5 p. 50], but since it is only valid for convex sets,
we have to extend u to a convex set. In our case, it will be a ball.

Let b = k + α, and R > 0 with Ω ⊂ BR(0). By the proof of [GT01, Lemma 6.37] there exists
C2 = C2(Ω, k, α) and an extension operator T : Ck+α(Ω) → Ck+α0 (BR(0)) such that

∀ 0 ≤ j + β ≤ k + α : ∥Tu∥
Cj+β

0 (BR(0))
≤ C2∥u∥Cj+β(Ω).

Then by [Hö76, Theorem A.5 p. 50] applied in BR(0) with a constant C3 = C3(a, b, R) it follows

∥u∥Cλa+(1−λ)b(Ω) ≤ ∥Tu∥
C

λa+(1−λ)b
0 (BR(0))

≤ C3∥Tu∥λCa
0 (BR(0)) · ∥Tu∥

1−λ
Cb

0(BR(0))

≤ C3

(
C2∥u∥Ca(Ω)

)λ · (C2∥u∥Cb(Ω)

)1−λ
≤ C3C2∥u∥λCa(Ω)

· ∥u∥1−λ
Cb(Ω)

.

We finish the proof by setting C1 = C3C2.

For the study of the long-time existence of the Willmore-flow solutions, we also need a Hölder
interpolation involving L2(Ω)-norm, over which we will have more control than overC0(Ω)-norm.
The idea is the same as in [DPS16, after 5.16]

10 Theorem (Hölder-Lp Interpolation Result)

If m > 0, ∂Ω ∈ Cm+α and α ∈ (0, 1) then for u ∈ Cm+α(Ω), there exist θ ∈ (0, 1)

∥u∥Cm(Ω) ≤ C∥u∥1−θ
Cm+α(Ω)

· ∥u∥θL2(Ω).
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Proof: We use the interpolation results for Besov spaces by [BL76, Thm 6.4.5 (3)] with θ = 2(b −
a)/(4 + 2b): (

Bs0
p0,q0 , B

s1
p1,q1

)
θ,p∗

= Bs∗
p∗,q∗ , (s0 ̸= s1, p

∗ = q∗, 1 ≤ p0, p1, q0, q1 ≤ ∞)

with additional restrictions

s∗ = (1− θ)s0 + θs1,
1

p∗
=

1− θ

p0
+

θ

p1
,

1

q∗
=

1− θ

q0
+
θ

q1
.

With q0 = p0 = 2 by [Tri78, Theorem 4.6.1 (b) p. 328 ] we get Bs
2,2 = Hs

2 the generalized Sobolev
Space. By [Tri10, Subsection 1.5.1 Theorem (ii) p.29] for s > 0, thenBs

∞,∞ = Cs ( Hölder–Zygmund
space [Tri10, Subsection 1.2.2]) and by [Tri10, Subsection 1.2.2 Theorem (ii)] if 0 < s ̸= integer, then
Cs = Cs (

B0
2,2, B

s1
∞,∞

)
θ,p∗

= Bs∗
p∗,q∗ .(44)

To fulfill the above restrictions we set p∗ = q∗ = 2/(1− θ) and s∗ = θs0, thus(
L2(Ω), Cs1(Ω)

)
θ,p∗

= Bθs1
2

1−θ
, 2
1−θ

.(45)

By [Tri78, Theorem 4.6.1. (b) p.327]: For 1 < p < ∞, 1 ≤ r ≤ ∞, t ≥ 0 and s > t + n/p it follows
Bs(Ω) ⊂ Ct(Ω), and by the proof of (e) and (d) of 2.8.1 on page 205 in [Tri78] the embedding is
continuous. In our case: θs1 > t + (1 − θ) so that s1/(1 − 1/θ) > t, so we can find θ ∈ (0, 1) for
every t < s1. Next, we use the interpolation inequality [Tri78, Thm 1.3.3. p.25]

∥u∥Ct(Ω) ≤ C∥u∥1−θ
L2(Ω)

∥u∥θ
Cs1 (Ω)

.

We used ∂Ω ∈ Cm+α for smoothering.

Also, we need an interpolation result for Hölder boundary spaces.

11 Lemma (Hölder Boundary Interpolation Result)

For Ω ⊂ Rn bounded with C2+α-smooth boundary, γ, α ∈ (0, 1) there exists a constant C4 such that

∥g∥C1+γ(∂Ω) ≤ C4∥g∥
1− γ

1+α

C1(∂Ω)
· ∥g∥

γ
1+α

C2+α(∂Ω)

Proof: First, we take a glance at the exponents

1 + γ = θ · 1 + (1− θ) · (2 + α) ⇔ θ =
1 + α− γ

1 + α
.

Let ψ be the solution of the biharmonic problem{
∆2ψ = 0, in Ω,

ψ = g, ∂νψ = ∂νg, in ∂Ω,

Then by Hölder-Schauder-estimates (see [GGS10, Theorem 2.19 p.45]), we obtain

∥ψ∥C2+α(Ω) ≤ C5∥g∥C2+α(∂Ω)

Furthermore with the Miranda result

∥ψ∥C1(Ω) ≤ C6∥g∥C1(∂Ω)

Combing the results gives

∥g∥C1+γ(∂Ω) ≤ ∥ψ∥C1+γ(Ω) ≤ C1∥ψ∥
1− γ

1+α

C1(Ω)
∥ψ∥

γ
1+α

C2+α(Ω)
≤ C4∥g∥

1− γ
1+α

C1(∂Ω)
∥g∥

γ
1+α

C2+α(∂Ω)
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4 Estimates Involving the Willmore-Energy

This chapter discusses various estimates involving the Willmore energy for surfaces with bound-
aries. It is essential to ask which quantities can be bounded by the Willmore energy. Here we
will recall some diameter and area estimates, shown for immersed surfaces with W(f(Σ)) < 4π
by Rivière [Riv13], and Pozzetta [Poz21] and for general graphs by Grunau, Röger and Deckelnick
[DGR17]. Actually, for the following chapters, we only need the L2-smallness Theorem 16 from all
presented results. It is used to prove the global existence of the graphical Willmore flow for small
data in Section 6.

4.1 Immersions

Foremost, we handle the case of immersions, which generally lack projectivity. We want to recall a
diameter estimate where Rivière uses Simon’s monotonicity formula extended by boundary terms
for Lipschitz immersions into Rm with L2-bounded second fundamental form [Riv13]. These
results use the non-tangential divergence theorem on surfaces, which can be found in [Sim83].

Let Σ be a bounded surface with smooth boundary and let f : Σ ↪→ R
m be a C2-immersion of

Σ. Denote by M := f(Σ) the immersed surface with metric g and µf which corresponds to the
Hausdorff measure H2 on f(M). Moreover, let − cof = ν⃗ be the unit limiting tangent vector field
to M on ∂M orthogonal to it and oriented in the outward direction. In what follows, we write
∥ . ∥ = ∥ . ∥Rm . Then by [Riv13, pp. 21, Lemma A.3] for any chosen point p0 ∈ Rm and any two
radii 0 < t < T < +∞ the following identity holds

H2 (M∩BT (p0))

T 2
− H2 (M∩Bt (p0))

t2

=

∫
M∩BT (p0)\Bt(p0)

∥∥∥∥∥H⃗4 +
(p− p0)

⊥

∥p− p0∥2

∥∥∥∥∥
2

dH2(p)− 1

16

∫
M∩BT (p0)\Bt(p0)

∥H⃗∥2 dH2

− 1

2T 2

∫
M∩BT (p0)

〈
p− p0, H⃗

〉
dH2(p) +

1

2t2

∫
M∩Bt(p0)

〈
p− p0, H⃗

〉
dH2(p)

+
1

2

∫
∂M∩BT (p0)

(
1

T 2
− 1

ρ2t

)
⟨p− p0, ν⃗⟩ dl∂M(p)

(46)

where ρt := max {∥p− p0∥ , t} and (p− p0)
⊥ represents the orthogonal projection of the vector

p − p0 onto the normal plane (TpM)⊥ to the surface at point p. We are calling this identity the
monotonicity formula in the presence of a boundary.

12 Theorem (Lemma 1.2 p.4. Rivière [Riv13])

Let Σ ⊂ R
n be bounded C2-surface and Σ ↪→ f(Σ) =: M be an immersed surface with boundary. Then

the following estimate holds:

4π ≤ 1

4

∫
M

∥H⃗∥2 dH2 + 2
H1(∂M)

supx∈M dist(x, ∂M)
(47)

where H1(∂M) is the 1-dimensional Hausdorff measure of the boundary of the immersion M.

The above equality is obtained by the flat 2-dimensional disc so that (47) is optimal.
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Proof: Theorem 12 is obtained by passing Rivière’s monotonicity formula with boundary (46) to
the limit the inner radius t→ 0 and the outer radius T → ∞. In that case all terms containing T−2

vanish and ρt becomes ∥p− p0∥. Moreover, by the Cauchy–Schwarz inequality, we get∣∣∣∣∣ 1t2
∫
M∩Bt(p0)

〈
p− p0, H⃗

〉
dH2(p)

∣∣∣∣∣
2

≤ 1

t2

∫
M∩Bt(p0)

∥p− p0∥2

t2
dH2(p)

∫
M∩Bt(p0)

∥H⃗∥2 dH2

≤ H2 (M∩Bt (p0))
t2

∫
M∩Bt(p0)

∥H⃗∥2 dH2

so that for a point p0 ∈ M \ ∂M it holds

π · k +
∫
M

∥∥∥∥∥H⃗4 +
(p− p0)

⊥

∥p− p0∥2

∥∥∥∥∥
2

dH2(p) ≤ 1

2

∫
∂M

〈
p− p0

∥p− p0∥2
, ν⃗

〉
dH1(p) +

1

16

∫
M

∥H⃗∥2 dH2(48)

since H2 (M∩Bt (p0))t−2 → k · π for t → 0 with k ∈ N the M in point p0. Subsequently, we take
p0 ∈ M as a point where supx∈M dist(x, ∂M) is attended: supx∈M dist(x, ∂M) = supp∈∂M ∥p−p0∥.
From (48) we deduce

4π · k − 1

4

∫
M

∥H⃗∥2 dµ ≤ 2

∫
∂M

1

∥p− p0∥
dH1(p) ≤ 2

H1(∂M)

supx∈M dist(x, ∂M)
.

Theorem 12 can be considered as a generalization of the classical Li–Yau inequality [LY82],
which yields that for an immersed surface, the Willmore energy is greater than 4π times multiplic-
ity. Especially, an immersion of a compact closed surface with the Willmore energy below 8π has
to be an embedding. Thus, it has no self-intersection. In a similar way, by inspecting the proof of
Theorem 12, one can state that if M is an immersion of compact closed surface satisfying

1

4

∫
M

∥H⃗∥2 dH2 + 2
H1(∂M)

d(∂M,M)
< 8π

than M is embedded. Next, we want to present a diameter bound by using the inequality (47) for
the Willmore energy smaller than 4π, which was already used in the proof of Proposition 4.2. in
[Poz21] by Pozzetta.

13 Proposition

Let Σ ⊂ R
n be a bounded C2-surface and Σ ↪→ f(Σ) =: M be an immersed surface with boundary and

W(M) < 4π. Then we have a diameter bound

sup
x∈M

dist(x, ∂M) ≤ 2H1(∂M)

4π −W(M)
, thus diamM ≤ 4H1(∂M)

4π −W(M)
+ diam ∂M.

Proof: If we choose q, p ∈ M such that ∥p − q∥ = diamM and also p∗, q∗ ∈ ∂M which satisfy
∥p− p∗∥ = dist(p, ∂M) and ∥q − q∗∥ = dist(q, ∂M). We conclude

diamM = ∥p− q∥ ≤ ∥p− p∗∥+ ∥q − q∗∥+ ∥p∗ − q∗∥ ≤ 4H1(∂M)

4π −W(M)
+ diam ∂M.
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By using the monotonicity formula for surfaces without boundary in his classical work [Sim93,
Lemma 1.1 p 283], Simon provided a diameter estimate of a smooth surface M involving its area
H2(M) √

H2(M)/W(M) ≤ diam(M) ≤ 2

π

√
H2(M)W(M)

with diam(M) := supx,y∈M |x − y|. For optimal constants, we refer to Topping’s work [Top98].
Thus, if we have an area bound by the Willmore energy, we can also estimate the diameter from
above and below. In [Sim93, Lemma 1.2 p 283] Simon also proved a celebrated diameter estimate
involving the L1-norm of the second fundamental form A in case M is connected and compact

diamM ≤ C7

(∫
M

∥A∥g dH2 +
∑
i

diamΓi

)
(49)

where Γi’s are the connected components of ∂M and C7 some constant only depending on space
where M is embedded.

Then in [Top08] Topping proved that for every connected closed surface Σ ↪→ f(Σ) = M ∈ R3

it holds diam(M) ≤ 16
π

∫
M |H|dH2 and further generalized this result to m-dimensional compact

manifolds without a boundary for general codimension: diam(M) ≤ C8(m)
∫
M ∥H∥m−1 dHm. For

the definition of mean curvature vector form-dimensional submanifolds ofRn, we refer to [Sim83,
eq. 7.4 p.45]. Here, we emphasize that, in contrast, our work primarily considers surfaces with
boundary, thus m = 2. This result of Topping was then extended to surfaces with boundary by
Menne and Scharrer [MS17] in the framework of varifolds: For dimensions 1 < m < n the intrinsic
diameter dint(M) of a compact m-dimensional connected submanifold M ⊂ Rn can be bounded

dint(M) ≤ C9(m)

(∫
M

|HM|m−1 dHm +

∫
∂M

|H∂M|m−2 dHm−1

)
(50)

where C9(m) is a constant that does not have a simple form. Since we want to consider only the
case m = 2, we rather use the result shown by Miura [Miu22] in R3. His approach provided
explicit constants and revealed a direct link to the Topping diameter estimate by constructing a
thin closed surface out of a surface with a boundary.

14 Theorem

Let Σ ↪→ f(Σ) =: M ⊂ R
3 denote a compact two-dimensional surface immersed into Euclidean 3-space.

Then

diam(M) ≤ 16

π

(∫
M

|H| dH2 +
π

2
H1(∂M)

)
(51)

Proof: Here we use [Miu22, Theorem 1.1.] with n = 3 and estimate CT (3) ≥ π/16, where the
constant is defined in [Miu22, (1.1)] and the estimate was shown in [Miu22, (A.1)].

For the Willmore energy smaller than 4π, we also have an area bound for immersed surfaces. It
can be proved by making use of Michael-Simon inequality (for the inequality, we refer to [Whe15,
Theorem 11.]) or alternatively like Pozzetta in [Poz21, proof of Proposition 4.2] by rescaling like in
the following theorem.

15 Theorem

Let Σ ↪→ f(Σ) =: M ⊂ R
3 denote a compact two-dimensional surface immersed into Euclidean 3-space

W(M) < 4π. Then we have an area bound

H2(M) ≤ R2W(M) +RH1(∂M)
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with the "radius"

R :=
1

2

(
4H1(∂M)

4π −W(M)
+ diam ∂M

)
.

Proof: By Theorem 12 we have diamM ≤ 2R. Then, we follow the argumentation of Pozzetta in
[Poz21, p.16]. So after a translation, we can assume that M ⊂⊂ BR(0). Putting M′ := 1

RM ⊂⊂
B1(0) it follows by the divergence theorem with the vector fieldR3 ∋ x 7→ x ∈ R3

2H2(M′) =

∫
M′

divM′ x dH2 = −
∫
M′

⟨H⃗ ′, x⟩dH2 +

∫
∂M′

⟨x, ν⃗ ′⟩ dH1

= −
∫
M′

⟨H⃗ ′, x⊥⟩ dH2 − 1

4

∫
M′

∥H⃗ ′∥2 dH2 +W(M′)−
∫
M′

dH2 +H2(M′)

−
∫
M′

∥x⊥∥2 dH2 +

∫
M′

∥x⊥∥2 dH2 +

∫
∂M′

⟨x, ν⃗ ′⟩ dH1

= −
∫
M′

(
1− ∥x⊥∥2

)
dH2 −

∫
M′

∥∥∥∥∥H⃗ ′

2
+ x⊥

∥∥∥∥∥
2

dH2 +H2(M′)

+W(M′) +

∫
∂M′

⟨x, ν⃗ ′⟩dH1.

The first term in the second last line is negative since M′ ⊂⊂ B1(0), and the second term is also
negative. Since |M| = R2|M′|, W(M) = W(M′) and H1(∂M) = RH1(∂M′) we get

|M| ≤ R2W(M) +RH1(∂M)

which finishes the proof.

Finally, we will briefly mention some results for closed surfaces not further used in this work.
We begin with the result by Röger and Schätzle [RS12], who proved that for smoothly embedded
surfaces M in R3 of sphere type with an enclosed inner region one can control the isoperimetric
deficit, which is the difference of the isoperimetric ratio (7) from the optimal value given by the
round sphere. This estimate was used in [GNR20] by Goldman, Novaga, and Röger where they
considered a variational model for charged elastic drops in R3 with contribution by area, the
Willmore energy, and the Riesz interaction energy. Depending on the weights of contributions,
they proved that for a small charge, unique minimizers are either balls or centered annuli, and for
a large charge, the minimizers do not exist. In [GNR20, Proposition 4.3 p.32] they also showed
uniform area and diameter bounds for closed bounded surfaces with volume constraint and the
Willmore energy strictly below 8π.

4.2 Graphs

Due to projectivity in the graphical case, there are better estimates available. Here we again
consider a smooth domain Ω ⊂ R2 with ν the unit vector field on ∂Ω orthogonal to it and oriented
outwards, as well as φ : Ω → R a C2-smooth boundary datum and graphs u : Ω → R in class

M :=
{
u ∈W 2,2(Ω)

∣∣ (u− φ) ∈ W̊ 2,2(Ω)
}

representing Dirichlet boundary conditions. In the graphical setting Deckelnick, Grunau, and
Röger [DGR17, Theorem 2] provided area and diameter bounds by the Willmore energy, ∥φ∥W 2,2(∂Ω)

and the geometry of the domain. We want to emphasize that their result does not set any assump-
tions on values of the Willmore energy, like W(M) < 4π in the immersed setting. As noticed in
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[Gru18], such an estimate does not hold for general non-projectable surfaces due to the scaling
invariance of the Willmore functional. For example, one sets Ω = B1(0) with an arbitrarily large
ball above it, then cuts off a disk hole around the south pole and then connects this to the given
Dirichlet boundary conditions at the cost of adding only uniformly bounded Willmore energy.

To achieve their area and diameter bounds, Deckelnick, Grunau, and Röger used (49) the
diameter estimate with ∥A∥L1(M) proved in [Sim93, Lemma 1.2 p 283] by Simon. A simpler
graphical version of this Lemma with explicit constants can be found in [Gul14, Satz 4.2]. In
this subsection, we want first to slightly improve this result by instead using Theorem 14. In this
way we reduce the assumption ∥φ∥W 2,1(∂Ω) to ∥φ∥W 1,1(∂Ω) and provide explicit constants. In the
second part, we prove a new smallness estimate on ∥u∥L2(Ω) in contrast to the bound on ∥u∥L∞(Ω)

in [DGR17, Theorem 2] without smallness statement.

16 Theorem

Suppose that φ ∈ C2
c (R

2) and u ∈W 2,2(Ω) that satisfies u− φ ∈ W̊ 2.2(Ω).

a Then it follows with ∥φ∥W 1,1(∂Ω) = ∥φ ◦ γ∥W 1,1(I) and γ : I → R
2 is a parametrization by arclength

of the boundary ∂Ω that

sup
x∈Ω

|u|+
∫
Ω
Qdx ≤ 64

(
H2(Ω) +H1(∂Ω) + ∥φ∥W 1,1(∂Ω) +

162

π2
W(u)

)(
1 + |Ω|W(u)

)
.

b Let K > 0, and ∥(φ ◦ γ)′∥L1(I) < K. Then for each ε > 0 there exists δ(ε,K,Ω) > 0 such that

W(u) + ∥φ∥L1(∂Ω) ≤ δ ⇒ ∥u∥L2(Ω) < ε.

Proof: We begin with the same crucial integral
∫
Ω uH dx as used in [DGR17, Theorem 2]. Here

we apply the two-dimensional divergence Theorem in Ω and Q2 = 1 + |∇u|2 to obtain∫
Ω
uH dx

(28)
=

∫
Ω
udiv

(
∇u
Q

)
dx

div.
=

thm.
−
∫
Ω

|∇u|2

Q
dx+

∫
∂Ω

u∂u∂ν
Q

ds.(52)

This identity is used in both statements. Our main goal for a and b is to estimate the∫
Ω |∇u|2/Qdx term.

a Here we use the proof in [DGR17, Theorem 2] with Theorem 14 and Hölder’s inequality to get

π

16
sup
x∈Ω

|u| ≤
∫
M

|H|dH2 +
π

2
H1(∂M) ≤

√∫
Ω
|H|2Qdx

√∫
Ω
Qdx+

π

2

∫
∂Ω

√
1 + |φ′|2 ds

≤
√
4W(u)

√∫
Ω
Qdx+

π

2

(
H1(∂Ω) + ∥φ′∥L1(∂Ω)

)
.

(53)

We conclude with (52) and Hölder’s inequality and the notations |Ω| = H2(Ω) and |∂Ω| = H1(∂Ω)∫
Ω
Qdx =

∫
Ω

1

Q
dx+

∫
Ω

|∇u|2

Q
dx ≤ |Ω|+

∫
Ω
|uH| dx+

∫
∂Ω
φ

∂u
∂ν√

1 + |∇u|2
ds

1≤Q
≤ |Ω|+ 16

π

(√
4W(u)

√∫
Ω
Qdx+

π

2

(
|∂Ω|+ ∥φ′∥L1(∂Ω)

))√
4|Ω|W(u) + ∥φ∥L1(∂Ω)

≤ |Ω|+ 162

2π2
|Ω|(4W(u))2 +

1

2

∫
Ω
Qdx+ 8

(
|∂Ω|+ ∥φ′∥L1(∂Ω)

)√
4|Ω|W(u) + ∥φ∥L1(∂Ω)
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≤ 2|Ω|+ 2∥φ∥L1(∂Ω) +
163

π2
|Ω|(W(u))2 + 32

(
|∂Ω|+ ∥φ′∥L1(∂Ω)

)√
|Ω|W(u).

Then we use again (53) and Hölder’s inequality to show

sup
x∈Ω

|u|+
∫
Ω
Qdx ≤

√
2
162

π2
W(u)

√
2

∫
Ω
Qdx+ 8

(
H1(∂Ω) + ∥φ′∥L1(∂Ω)

)
+

∫
Ω
Qdx

≤ 162

π2
W(u) +

∫
Ω
Qdx+

∫
Ω
Qdx+ 8

(
|∂Ω|+ ∥φ′∥L1(∂Ω)

)
≤ 4
(
|Ω|+ ∥φ∥L1(∂Ω)

)
+ 2

162

π2
(
16|Ω|W(u) + 1

)
W(u)

+ 8
(
|∂Ω|+ ∥φ′∥L1(∂Ω)

) (
1 + 2 · 4

√
|Ω|W(u)

)
≤ 64

(
|Ω|+ |∂Ω|+ ∥φ∥W 1,1(∂Ω) +

162

π2
W(u)

)(
1 + |Ω|W(u)

)
.

b To achieve a L2-smallness condition, we use: boundness of ∥u∥L∞(Ω) and ∥∇u∥L1(Ω) in combi-
nation with Hölder’s inequality as interpolation. Hence, we need smallness of ∥u∥W 1,1(Ω) which
we deduce by estimating

∫
Ω |∇u|2/Qdx instead of

∫
ΩQdx. In this way, we do not use H2(Ω) that

cannot be chosen as small as wanted because it is fixed.
We assume that ∥φ∥L1(∂Ω) < K. By a we know that there is a constant C10 that depends

entirely on |∂Ω|, K,W(u) such that

sup
x∈Ω

|u|+
∫
Ω
Qdx ≤ C10.

Then, we again use the identity (52)∫
Ω

|∇u|2

Q
dx =

∫
∂Ω

∂u

∂ν

u

Q
ds−

∫
Ω
uH dx ≤ ∥φ∥L1(∂Ω) + sup

x∈Ω

∣∣u(x)∣∣ ∫
Ω
|H|dx

≤ ∥φ∥L1(∂Ω) + C10

√
|Ω|W(u)

thus we can also estimate ∥∇u∥L1(Ω) by

∫
Ω
|∇u|dx ≤

(∫
Ω
Qdx

) 1
2
(∫

Ω

|∇u|2

Q
dx

) 1
2

≤ (C10)
1
2

(
∥φ∥L1(∂Ω) + C10

√
|Ω|W(u)

) 1
2
.

By using the Hölder’s inequality with 1
p +

1
q = 1

2 + 1
2 = 1, hence the Cauchy-Schwarz inequality,

we finally get(∫
Ω
u2 dx

)2

=

(∫
Ω
|u|

3
2 |u|

1
2 dx

)2

≤
(∫

Ω
|u|3 dx

)(∫
Ω
|u| dx

)
≤ |Ω| sup

x∈Ω

∣∣u(x)∣∣3C11

(∫
Ω
|∇u| dx+

∫
∂Ω

|u| ds

)

≤ C3
10|Ω|C11

(
(C10)

1
2

(
∥φ∥L1(∂Ω) + C10

√
|Ω|W(u)

) 1
2
+ ∥φ∥L1(∂Ω)

)
where we additionally used Poincare-Friedrich’s inequality with constant C11(Ω). The proof is
finished by choosing the Willmore energy and ∥φ∥L1(∂Ω) small enough.
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Deckelnick, Grunau and Röger also showed, that [DGR17, Lemma 1] with |D2u| the Euclidean
norm of Hessian of u one can estimate |D2u|Q−3 ≤ ∥A∥g. Additionally, by [DGR17, Lemma 2] we
know that∫

Ω

|D2u|2

Q5
dx ≤

∫
Ω
∥A∥2gQdx ≤ 4W(u) + 2

(
∥φ∥W 2,1(∂Ω) + ∥κ∥L1(∂Ω)

)
+ 2πχ(Ω

)
where κ is the (signed) curvature of ∂Ω, χ(Ω) the Euler characteristic [DHS10] and all boundary
spaces are defined with parametrizations by arclength. This estimate motivates the search for
stronger than the W 1,1(Ω)-norm norms, which one can estimate by the boundary data and the
Willmore energy. Unfortunately, Deckelnick, Grunau, and Röger presented various counterexam-
ples for such estimates. They showed in [DGR17, Example 2] that for p > 1, no W 1,p(Ω)-norm
may be estimated in terms of the Willmore energy. This example is rotationally symmetric with
|∇u| = ∞ along a circle and thus, via following Theorem 17, has W(u) ≥ 2π leaving the possi-
bility for an estimate for functions with W(u) < 2π. Furthermore, in [DGR17, Example 1], they
constructed a function with unbounded gradients and arbitrarily small Willmore energy simulta-
neously. Additionally, in [DGR17, Example 3] there is a Willmore finite function u ̸∈W 2,2(Ω).

For later interpolation techniques, theL2-smallness is sufficient for proving the global existence
of the Willmore flow. A simple question arises in this context: Is there a similar smallness estimate
for the L∞-norm? To our knowledge, this question has not been unanswered yet. Despite that,
one may ask for a situation when the Willmore energy gets large. There is a simple bound from
below for the Navier boundary conditions that can be deduced. Nevertheless, it is not used in the
following chapters. Here by conv(Ω) we denote the convex hull of Ω.

17 Theorem

Let α > 0 and u ∈ C2(Ω) so that u|∂Ω = 0 and ∂u
∂ν |∂Ω∩conv(Ω) < −α < 0. Then it holds

2π

(
1− 1√

1 + α2

)
≤ W(u).

Especially, in assumptions we can replace ∂Ω ∩ conv(Ω) by {x ∈ ∂Ω |κ(x) > 0}.

Proof: This is a modification of the proof for Willmore’s estimate W(M)) ≥ 4π for a closed surface
M. We closely follow the presentation of Proposition 1.1 in [KS12, p.2]. The basic step will be to
estimate the measure of the image of the Gauss map for points with positive Gaussian curvature.
By the pointwise relation 1

4H
2−K = 1

2∥A
0∥2g, shown in [KS12, (1.1.7)] with ∥A0∥g the length of the

trace free second fundamental form, we can show that

W
(
u) ≥

∫
Γ(u),K>0

K dH2.

Next, we use the pointing upwardN : Ω → S2 and obtain like in Proposition 1.1 in [KS12, p.2] that
for any unit vector N0 ∈ S2 we can choose a point x0 ∈ Ω:〈(

x0
u(x0)

)
, N0

〉
!
= max

x∈Ω

〈(
x

u(x)

)
, N0

〉
.(54)

Especially, in the case x0 ̸∈ ∂Ω, we have N(x0) = N0 and K(x0) ≥ 0. In the case x0 ∈ ∂Ω, we
know that x0 ∈ convΩ since (54) is a linear optimization problem. Furthermore, JgN = |K| the
Jacobian of the Gauss map is the Gaussian curvature, which we will show in the following. Like
in [KS12] we consider at some point in Ω the charts with gij = δij (orthonormal frame). Then
we obtain that {∂1f, ∂2f,N} forms an orthonormal basis of the ambient space R3. Consequently,
since ∥N∥2

R3 = 1 we get ∇N ⊥ N . Then by (24)

Aij = −⟨∂if,D∂jfN⟩ = −⟨∂if, ∂jN⟩.
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Thus, since {∂1f, ∂2f,N} are orthogonal we conclude

∂iN = −Ai1∂1f −Ai2∂2f.

With symmetry Aij = Aji we calculate the Jacobian

(JgN)2 = det (⟨∂iN, ∂jN⟩R3) = det (Ai1Aj1 +Ai2Aj2) = det ((AℓkAkm)ij)

= det(Aij)
2 = K2,

so that using the area formula it follows

W(u) ≥
∫
Γ(u),K>0

JgN dH2 ≥ H2
(
N(K ≥ 0)

)
.(55)

Next, we want to show that the following spherical cap is a subset of N(K ≥ 0):

Cα :=

{
N ∈ S2

∣∣∣∣ ⟨N, (0, 0, 1)T ⟩ > 1√
1 + α2

}
.

We assume that there exists a N0 ∈ Cα so that the corresponding maximizing x0 from (54) lies
in ∂Ω then it is in convΩ and for such a point we have ∂u

∂ν < −α. We denote ν0 := ν(x0) and
∂u
∂ν0

:= ∂u
∂ν (x0).

From maximizing property (54) we obtain that T(x0,0)
(
∂Ω× {0}

)
⊥ N0 where especially ∂Ω×

{0} = ∂Γ(u). Also by definition we have T(x0,0)
(
∂Ω × {0}

)
⊥ (νT0 , 0) and T(x0,0)

(
∂Ω × {0}

)
⊥

(0, 0, 1)T . Thus N0, (ν
T
0 , 0) and (0, 0, 1)T lie in the same plane

(
T(x0,0)(∂Ω × {0})

)⊥. Then we use
the two-dimensional Pythagoras theorem to obtain

1 =
∣∣∣〈N0, N0

〉∣∣∣2 = ∣∣∣〈(νT0 , 0)T , N0

〉∣∣∣2 + ∣∣∣〈(0, 0, 1)T , N0

〉∣∣∣2.(56)

Next we want to show that the tangent vector in (x0, 0) showing inward with respect to Γ(u) is(
−νT0 ,− ∂u

∂ν0

)T . Firstly, like in [DGR17, Remark 1] we consider a positively oriented parametrization
s 7→ c(s) ∈ ∂Ω of (a connected component of) ∂Ω with respect to its arclength so that c(0) = x0.
Then the natural unit tangent vector is τ(s) = c′(s). In particular we have that ν1 = τ2, ν2 = −τ1

uν(s) =
∂u

∂ν

(
c(s)

)
, γ(s) =

(
c(s)T , 0

)T
, N

(
γ(s)

)
=

1√
1 + u2ν

 −ν1uν
−ν2uν

1

(γ(s)).
Then it follows

(
− νT0 ,− ∂u

∂ν0

)
⊥ N(γ(0)). Furthermore

(
− νT0 ,− ∂u

∂ν0

)
⊥ γ̇(0), thus

(
− νT0 ,− ∂u

∂ν0

)
⊥

T(x0,0)(
(
∂Ω× {0}

)
.

In the next step, since (νT0 , 0) ⊥ (0, 0, 1)T via orthogonal projections we have:〈(
−νT0 ,−

∂u

∂ν0

)T
, N0

〉
= − 1

〈
(νT0 , 0)

T , N0

〉
− ∂u

∂ν0

〈
(0, 0, 1)T , N0

〉
≥ − 1

∣∣∣〈(νT0 , 0)T , N0

〉∣∣∣+ α
〈
(0, 0, 1)T , N0

〉
.

Then we use the Pythagoras equation (56) and the definition of Cα to show〈(
−νT0 ,−

∂u

∂ν0

)T
, N0

〉
(56)
≥ − 1

√
1−

〈
(0, 0, 1)T , N0

〉2
+ α

〈
(0, 0, 1)T , N0

〉
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N0∈Cα
> − 1

√
1− 1

√
1 + α22

+ α
1√

1 + α2

=
−
√
1 + α2 − 1 + α√

1 + α2
= 0.

Since the toΓ(u) tangent vector
(
−νT0 ,− ∂u

∂ν0

)T is inward showing there exists a curveγ : [0, ϵ] → Γ(u)

with γ(0) = x0 and γ′(0) =
(
− νT0 ,− ∂u

∂ν0

)T . It follows that this curve can exceed the maximum of
(54) for t > 0 small enough

⟨γ(t), N0⟩ = ⟨γ(0), N0⟩+ t⟨γ′(0), N0⟩+O(t2)

= ⟨x0, N0⟩+ t

(〈(
−νT0 ,−

∂u

∂ν0

)T
, N0

〉
+O(|t|)

)
> ⟨x0, N0⟩, for t small enough.

Hence, the condition of x0 in (54) is violated. This means, that for allN0 ∈ Cα there exists a x0 ̸∈ ∂Ω
so that N0 = N(x0) and especially that Cα ⊂ N(K ≥ 0)). Finally, we achieve with (55)

W
(
Γ(u)

)
≥ H2(Cα) = 2π

(
1− 1√

1 + α2

)
.
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5 Elliptic Theory

In his survey article [Nit93] Nitsche investigated C4+α-regularity and the existence of solutions for
the Willmore equation with the appropriate boundary conditions. He decomposed the problem
into a coupled system of second-order elliptic equations complemented by coupled Dirichlet
boundary data. One consists of the Dirichlet problem for u with the prescribed mean curvature,
and the other considers the Willmore equation as a second-order equation for the mean curvature
H itself. In this setting, he used perturbation arguments to show the existence of a unique solution
in the regularity class C4+α(Ω) at the cost of the smallness of C4+α(∂Ω)-norm for the boundary
data.

From here on, one way to go is to consider weaker boundary spaces, where, due to non-linearity
of the Willmore equation, one should expect that some kind of smallness of boundary data norm
is necessary for any existence theorem. As a result, if one wants to move away from classical
solutions, one has to work with weaker classes like Hölder Cm+α(Ω) or Sobolev spaces Wm,p(Ω)
with m ≤ 4, even though for the last one the trace theory is more involved.

5.1 Willmore Equation

In this chapter, we want to investigate the Willmore equation in the framework of variational
solutions. To work on it effectively, we have to investigate the structure of the Willmore equation
in the graphical situation. Already Nitsche recalled in [Nit93] a well-known fact that the principal
part of the Willmore equation is effectively the biharmonic operator after some linearization. More
precisely, from the work of Dziuk and Deckelnick [DD06, (1.5)-(1.9)] for the Willmore flow of
graphs one observes that the Willmore equation is in fact a fourth-order equation, thus involving
fourth-order derivatives, if written in the graphical case as

0 = ∆gH +
1

2
H3 − 2HK = div

(
1

Q

((
I − ∇u⊗∇u

Q2

)
∇(QH)

)
− H2

2Q
∇u
)
,(57)

since the mean curvature consists of second-order derivatives

H = div

(
∇u
Q

)
=

∆u

Q
− ∇u · (D2u∇u)

Q3
.

The main idea here is to separate the biharmonic part ∆2u in (57) from other terms in a new
way which is similar to the rewriting done by Koch and Lamm in [KL12, Lemma 3.2 p. 215] in
the context of the Willmore flow. As a consequence, we can use various existence and regularity
results for inhomogeneous biharmonic problems in weaker spaces.

One of the key points of proving the existence results is that the concrete form of the "nonlinear"
terms is not what we want to focus on. To absorb all arising algebraic constants, we have to introduce
some notation already used in [KL12, p. 215]. Thus, let the star ⋆ denote an arbitrary linear
combination of indices contractions for derivatives of u. For example, consider |∇u|2 = ∇u ⋆∇u
and ∇iuD

2
iju∇ju = ∇u ⋆ D2u ⋆∇u, that yields

H = Q−1 ⋆ D2u+Q−3 ⋆∇u ⋆ D2u ⋆∇u.(58)

Furthermore, we introduce an abstract notation for gradient polynomials

Pℓ(∇u) = ∇u ⋆ · · · ⋆∇u︸ ︷︷ ︸
ℓ-times
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which helps us to formulate the non-biharmonic divergence terms in the following Lemma.

18 Lemma

The Willmore equation (57) can be rewritten as

0 = div

(
1

Q

((
I − ∇u⊗∇u

Q2

)
∇(QH)

)
− H2

2Q
∇u
)

= ∆2u−Dib
i
1[u]−D2

ijb
ij
2 [u](59)

where

b1[u] = D2u ⋆ D2u ⋆
3∑

k=1

Q−2k−1P2k−1(∇u),

b2[u] = D2u ⋆

2∑
k=1

Q−2k−1P2k(∇u) +D2u ⋆ P2(∇u) ⋆ (Q(1 +Q))−1.

(60)

Proof: The reformulation of the Willmore equation will proceed term by term. We begin with
calculating the derivation of the surface term

∇(Q) =
D2u∇u

Q

which we need for the first term that will include the biharmonic part

div

(
1

Q
∇(QH)

)
= div

(
∇(H) +

D2u∇u
Q3

QH

)
= ∆

(
∆u

Q

)
−∆

(
∇u(D2u∇u)

Q3

)
+ div

(
D2u∇u
Q3

QH

)
.

Especially since (1−Q)(1 +Q) = 1−Q2 = 1− 1− |∇u|2 = −|∇u|2, it follows

∆

(
∆u

Q

)
=∆

(
∆u+

(
1

Q
− 1

)
∆u

)
= ∆2u+∆

(
1−Q

Q
∆u

)
= ∆2u−∆

(
|∇u|2

Q(1 +Q)
∆u

)
.

Thus we obtain

div

(
1

Q
∇(QH)

)
= ∆2u−∆

(
|∇u|2

Q(1 +Q)
∆u

)
−∆

(
∇u(D2u∇u)

Q3

)
+ div

(
D2u∇u
Q3

QH

)
.

The second term in (57) we want to rewrite by using the Einstein notation is the following

∇i

(
∇iu∇ju

Q3
∇j(QH)

)
= ∇i

(
∇j

(
∇iu∇ju

Q3
QH

)
−∇j

(
∇iu∇ju

Q3

)
QH

)
=∇i

(
∇j

(
∇iu∇ju

Q3
QH

)
− (−3)∇j(Q)

∇iu∇ju

Q4
QH − ∇j(∇iu∇ju)

Q3
QH

)
=∇i

(
∇j

(
∇iu∇ju

Q3
QH

)
+ 3

∇iu∇ju(D
2u∇u)j

Q5
QH −

D2
iju∇ju+D2

jju∇iu

Q3
QH

)

= D2
ij

(
∇iu∇ju

Q2
H

)
+ div

(
3
∇u · (D2u∇u)

Q4
H∇u− H

Q2
D2u∇u− ∆uH

Q2
∇u
)

= D2
ij

(
∇iu∇ju

Q2
H

)
+ div

(
−3

H2

Q
∇u− H

Q2
D2u∇u+ 2

∆uH

Q2
∇u
)
.
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We combine the results and get

∆gH +
1

2
H3 − 2HK = ∆2u−∆

(
|∇u|2

Q(1 +Q)
∆u+

∇u(D2u∇u)
Q3

)
−D2

ij

(
∇iu∇ju

Q2
H

)
+ div

(
5

2

H2

Q
∇u+ 2

H

Q2
D2u∇u− 2

∆uH

Q2
∇u
)
.

Since by (58) we haveH = D2u⋆
∑2

k=1Q
−2k+1P2k−2(∇u)we can combine the terms and reformulate

the Willmore equation

∆gH +
1

2
H3 − 2HK = ∆2u+∆

(
D2u ⋆ P2(∇u) ⋆ (Q(1 +Q))−1

)
+∆

(
D2u ⋆ Q−3P2(∇u)

)
+D2

(
D2u ⋆

2∑
k=1

Q−2k−1P2k(∇u)

)
+ div

(
D2u ⋆ D2u ⋆∇u ⋆ Q−1

(
Q−2 +Q−4P2(∇u) +Q−6P4(∇u)

))
+ div

(
D2u ⋆ D2u ⋆

2∑
k=1

Q−2k−1P2k−1(∇u)

)
.

We combine the terms above and arrive at

0 = ∆gH +
1

2
H3 − 2HK = ∆2u−Dib

i
1[u]−D2

ijb
ij
2 [u]

with divergence terms on the right-hand side defined above.

To explain the importance of the preceding lemma, we want to make two remarks about the
structure of bℓ for ℓ = 1, 2. The first one is that the lower-order terms are written in divergence form.
Especially in difference to the parabolic case in [KL12], the term b0, defined as a non-divergent
term by 0 = ∆2u + b0[u] +Dib

i
1[u] +D2

ijb
ij
2 [u], is lacking. Furthermore, since b1 and b2 involve at

least one ∇u and at most twoD2u and are at least quadratic in the first and second derivative terms
without higher derivatives of u, it will be possible to reduce the regularity assumptions from C4+α

to the spaces involving only up to second derivatives.
Now, since we have reformulated the Willmore equation as an inhomogeneous biharmonic

equation and the ∆2 operator is a positive bilinear form and a higher-order elliptic operator, we
can use the variational solution’s definition from Chapter 3.1. Thus, we say the function u is a
variational solution to (59) if the following equation is valid,

∀v ∈ C∞
0 (Ω) : 0 =

∫
Ω
∆u∆v dx+

∫
Ω
bi1[u]Div dx−

∫
Ω
bij2 [u]D

2
ijv dx,(61)

where u should lie at least in W 2,2
loc (Ω) for the above equation to make sense. The term b1[u] acts

like D2u ⋆ D2u⋆(something bounded) and b2[u] operates like D2u⋆(something bounded).
We also note that until now we have not introduced the boundary conditions which are needed

for the discussion of existence and uniqueness. The main reason is that the complexity of notation
for the traces of the function spaces depends strongly on the spaces themselves and, therefore, will
be made clear in each situation.

5.2 Hölder Case

This section is devoted to the existence of the C2+α(Ω) Willmore surfaces in the weak sense of (61).
Here, we study which conditions on the boundary data are sufficient for a graphical solution to
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exist. Foremost, we need some appropriate smoothness for the boundary ∂Ω itself. Since we want
to use C2+α(∂Ω) and the Schauder estimates from [GGS10, p.45 Theorem 2.19], we assume that
∂Ω ∈ C4+α.

Then the Willmore equation with prescribed Dirichlet boundary values can be considered a
special case of the general biharmonic boundary problem{

∆2u = b0 +Dib
i
1 +D2

ijb
ij
2 in Ω ⊂ R2,

u = g0, ∂νu = g1 on ∂Ω,
(62)

which is a divergence type fourth-order elliptic boundary value problem with gi ∈ C2−i+α(∂Ω) for
i = 0, 1. In theC2+α-framework, it is also clear that for u ∈ C2+α(Ω) its trace u|∂Ω lies inC2+α(∂Ω).

In order to collect some results needed for the proof of the main Theorem 21 we have to modify
the Agmon-Miranda maximum modulus estimate and C2+α Schauder estimates from [GGS10] so
that the right-hand side terms b0, b1, b2 are admitted to be in weaker spaces.

19 Proposition

Let Ω ⊂ R
2 be a bounded domain with C4+α boundary. Furthermore, assume that α ∈ (0, 1), s, t ∈

(1,∞), p ∈ (2,∞), g0 ∈ C2+α(∂Ω), g1 ∈ C1+α(∂Ω), b0 ∈ L
2

1−α (Ω) ∩ Ls(Ω), b1 ∈ L
2

1−α (Ω) ∩ Lt(Ω)
and b2 ∈ Cα(Ω). Then (62) admits a unique solution u ∈ C2+α(Ω). Moreover, there exist constants
C12 = C12(α, s,Ω), C13 = C13(α, s, t,Ω) and C14 = C14(α, s, t, p,Ω) such that

∥u∥C2+α(Ω) ≤ C12

(
∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω) + ∥b0∥

L
2

2−α (Ω)
+ ∥b1∥

L
2

1−α (Ω)
+ ∥b2∥Cα(Ω)

)
,(63)

∥u∥C1+α(Ω) ≤ C13

(
∥g0∥C1+α(∂Ω) + ∥g1∥Cα(∂Ω) + ∥b0∥Ls(Ω) + ∥b1∥

L
2

2−α (Ω)
+ ∥b2∥

L
2

1−α (Ω)

)
,(64)

∥u∥C1(Ω) ≤ C14

(
∥g0∥C1(∂Ω) + ∥g1∥C0(∂Ω) + ∥b0∥Ls(Ω) + ∥b1∥Lt(Ω) + ∥b2∥Lp(Ω)

)
.(65)

Proof: We split problem (62) into four biharmonic subproblems, one containing the Dirichlet
boundary data and the others containing each bi, i = 0, 1, 2 on the right-hand side separately.{

∆2ψ = 0, in Ω,

ψ = g0, ∂νψ = g1, on ∂Ω,

{
∆2φ0 = b0, in Ω,

φ0 = ∂νφ0 = 0, on ∂Ω,{
∆2φ1 = Dib

i
1, in Ω,

φ1 = ∂νφ1 = 0, on ∂Ω.

{
∆2φ2 = D2

ijb
ij
2 , in Ω,

φ2 = ∂νφ2 = 0, on ∂Ω.

First, consider ψ as the solution of the biharmonic problem with the same boundary conditions as
in (62). We emphasize that by [GGS10] [Theorem 2.19 p.45] a solution to this Dirichlet problem
exists. The uniqueness can be shown by multiplying the left side of the equation with ψ and
integrating over Ω so that we get ∥D2ψ∥L2(Ω) = 0. Thus, the associated homogeneous problem
only admits the trivial solution. This allows us to use the following Schauder estimates for the
classical solutions [GGS10] [Theorem 2.19 p.45]

∥ψ∥C2+α(Ω) ≤ C15

(
∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω)

)
,

∥ψ∥C1+α(Ω) ≤ C16

(
∥g0∥C1+α(∂Ω) + ∥g1∥Cα(∂Ω)

)
,

where C15, C16 and all following constants throughout the proof depend only on Ω and α.
Additionally, the uniqueness of the Dirichlet solution justifies the use of the Agmon–Miranda

maximum principle without the L1-part on the right-hand side [Agm60, Theorem 1, p.78]

∥ψ∥C1(Ω) ≤ C17

(
∥g0∥C1(∂Ω) + ∥g1∥C0(∂Ω)

)
.
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Further on, we consider φ0 as a solution of the homogeneous subproblem containing only b0
on the right-hand side. In fact, b0 ∈ L

2
2−α (Ω) ∩ Ls(Ω) ensures the existence. Thus we obtain the

following a priori Lp-elliptic estimate [GGS10, Theorem 2.20, p.46]

∥φ0∥
W

4, 2
2−α (Ω)

≤ C18∥b0∥
L

2
2−α (Ω)

, ∥φ0∥W 4,s(Ω) ≤ C19∥b0∥Ls(Ω).

Furthermore, the Sobolev embedding [GGS10, Theorem 2.6] with C1-boundary yields

∥φ0∥C2+α(Ω) ≤ C20∥φ0∥
W

4, 2
2−α (Ω)

≤ C21∥b0∥
L

2
2−α (Ω)

as well as the estimate

∥φ0∥C1(Ω) ≤ ∥φ0∥C1+α(Ω) ≤ C22∥φ0∥W 4,s(Ω) ≤ C23∥b0∥Ls(Ω).(66)

For divergence-type parabolic equations, there are Lp-estimates even under weaker regularity
assumptions of the right-hand side. This fact will prove to be extremely useful in the subproblems
involving φ1 and φ2. In the case of φ1 we use b1 ∈ L

2
1−α (Ω). Therefore, in the same way as in

Lemma 4.26 in [GGS10, p.132] the existence is ensured and

∥φ1∥C2+α(Ω) ≤ C24∥φ1∥
W

3, 2
1−α (Ω)

≤ C25∥b1∥
L

2
1−α (Ω)

(67)

since one further Sobolev embedding is available. Again, we obtain

∥φ1∥C1+α(Ω) ≤ C26∥φ1∥
W

3, 2
2−α (Ω)

≤ C27∥b1∥
L

2
2−α (Ω)

,

∥φ1∥C1(Ω) ≤ C28∥φ1∥
C1+2− 2

t (Ω)
≤ C29∥φ1∥W 3,t(Ω) ≤ C30∥b1∥Lt(Ω).

It remains to discuss the problem involving φ2. To prove the C1-bound, we stay in the Lp-
framework. According to Theorem 2.22 in [GGS10, p.47] the existence of the unique solution
φ2 ∈ W̊ 2,p(Ω) is shown. Combining it with some embedding arguments and the especially
important assumption p > 2, we conclude

∥φ2∥C1(Ω) ≤ C31∥φ2∥W 2,p(Ω) ≤ C32∥b2∥Lp(Ω).

In the same way as (67), we obtain

∥φ2∥C1+α(Ω) ≤ C33∥φ2∥
W

2, 2
1−α (Ω)

≤ C34∥b2∥
L

2
1−α (Ω)

.

To estimate the C2+α-norm of φ2 we again use the Theorem 2.19 in [GGS10, p.45] for the classical
solution. The corresponding equation admits a uniqueC2+α-solutionφ2 and the following estimate
holds

∥φ2∥C2+α(Ω) ≤ C35∥b2∥Cα(Ω).

Since all the solutions ψ, φ0, φ1 and φ2 are obtained and estimated, the solution u of (62) is
determined by addition, u = ψ+φ0+φ1+φ2. This completes the proof by establishing the C2+α-
and C1-estimates.

If we impose additional regularity assumptions on boundary and b0, namely ∂Ω ∈ C16, we can
weaken the Ls-norm on b0 in the ∥u∥C1(Ω) estimate (65) to s = 1. Actually, by [DAS04, Proposition
17 Remark 19, 21 p. 482] the weighted gradient estimate the inequality (66) can be improved

∥φ0∥C0(Ω) + ∥∇φ0∥C0(Ω) ≤ C36∥b0∥L1(Ω).
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Nevertheless, since we do not need b0 to estimate with L1-norm, we drop this assumption, thus
not imposing ∂Ω ∈ C16.

From here on we shift away from the general problem towards the Willmore equation, thus we
prove some simplifying estimates for the bi[u], i = 1, 2 terms in the case of the bounded gradient.
Significantly, the difference estimates for the proof of contraction for the fixed point theorem are
needed.

20 Lemma

Let s ∈ (1,∞), α ∈ (0, 1), i, j, ℓ, k ∈ N0, i ≥ 1, k ≥ 2 then there exist constants C37 = C37(Ω, s, i, j) and
C38 = C38(Ω, s, α, j, ℓ, k) such that if u ∈ C2+α(Ω) with ∥∇u∥C0(Ω) ≤ 1 then we can estimate∥∥D2u ⋆ D2u ⋆ Q−jPi(∇u)

∥∥
Ls(Ω)

≤ C37∥D2u∥2L2s(Ω)∥∇u∥C0(Ω),∥∥D2u ⋆ Q−j(1 +Q)−ℓPk(∇u)
∥∥
Cα(Ω)

≤ C38∥D2u∥Cα(Ω)∥∇u∥Cα(Ω).
(68)

Furthermore, suppose w ∈ C2+α(Ω) with ∥∇w∥C0(Ω) ≤ 1 then it follows∥∥∥D2u ⋆ D2u ⋆ Q−j(u)Pi(∇u) −D2w ⋆ D2w ⋆ Q−j(w)Pi(∇w)
∥∥∥
Ls(Ω)

≤ C37∥u− w∥W 2,2s(Ω)

(
∥D2u∥L2s(Ω) + ∥D2w∥L2s(Ω)

)(
∥u∥W 2,2s(Ω) + ∥w∥W 2,2s(Ω)

)(69)

as well as∥∥D2u ⋆ Q−j(1 +Q)−ℓ(u)Pk(∇u)−D2w ⋆ Q−j(1 +Q)−ℓ(w)Pk(∇w)
∥∥
Cα(Ω)

≤ C38∥u− w∥C2+α(Ω)

(
∥D2u∥Cα(Ω) + ∥D2w∥Cα(Ω)

)(
∥∇u∥Cα(Ω) + ∥∇w∥Cα(Ω)

)
.

(70)

Proof: If necessary, we write Q = Q(u) and Pi = Pi(∇u) for clarity.

1 We begin with the estimate (68). The inequalityQ =
√
1 + |∇u|2 ≥ 1 and ∥∇u∥C0(Ω) ≤ 1 yields

∣∣D2u ⋆ D2u ⋆ Q−jPi
∣∣ ≤ C39|D2u|2 ·

∣∣∣|∇u|i√1 + |∇u|2
(−j)∣∣∣ ≤ C40|D2u|2 · ∥∇u∥C0(Ω),∣∣D2u ⋆ Q−j(1 +Q)−ℓPk

∣∣ ≤ C41|D2u| ·
∣∣∣|∇u|k√1 + |∇u|2

(−j)(
1 +

√
1 + |∇u|2

(−j))−ℓ∣∣∣
≤ C42|D2u| · ∥∇u∥C0(Ω)

(71)

By using Ls(Ω) norms on the first inequality, we obtain the first estimate in (68). In order to
prove the second estimate in (68) we use C0(Ω) norms for the second inequality in (71). Up to
this point, only the Hölder seminorm estimate is missing. As a preparatory step, we observe
that for the Hölder seminorm [Q−j ]Cα(Ω) + [(1 +Q)−ℓ]Cα(Ω) ≤ C43(j, ℓ)[∇u]Cα(Ω) and [gh]Cα(Ω) ≤
∥g∥C0(Ω)[h]Cα(Ω) + [g]Cα(Ω)∥h∥C0(Ω). Thus, by ∥Q−j∥C0(Ω) + ∥(1 +Q)−ℓ∥C0(Ω) ≤ 2 it follows

[
D2u ⋆ Q−j(1 +Q)−ℓPk

]
Cα(Ω)

≤ C44


[D2u]Cα(Ω)∥∇u∥

k
C0(Ω)

+ ∥D2u∥C0(Ω)[∇u]Cα(Ω)∥∇u∥
k
C0(Ω)

+ ∥D2u∥C0(Ω)[∇u]Cα(Ω)∥∇u∥
k−1
C0(Ω)


≤ C45

(
∥D2u∥C0(Ω)[∇u]Cα(Ω) + [D2u]Cα(Ω)∥∇u∥C0(Ω)

)
.

By applying the embedding Cα(Ω) ↪→↪→ C0(Ω) the last inequality in (68) is shown.
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2 Next we use Lemma 96 and again ∥Q−j∥C0(Ω) ≤ 1 as well as ∥∇u∥C0(Ω), ∥∇w∥C0(Ω) ≤ 1 to
prove (69)∣∣D2u ⋆ D2u ⋆ Q−j(u)Pi(∇u)− D2w ⋆ D2w ⋆ Q−j(w)Pi(∇w)

∣∣
≤ C46

∣∣∇u ⋆ D2u ⋆ (D2u−D2w)
∣∣+ C46

∣∣∇w ⋆ D2u ⋆ (D2u−D2w)
∣∣

+ C46

∣∣∇u ⋆ D2w ⋆ (D2u−D2w)
∣∣+ C46

∣∣∇w ⋆ D2w ⋆ (D2u−D2w)
∣∣

+ C46

∣∣D2u ⋆ D2u ⋆ (∇w −∇u)
∣∣+ C46

∣∣D2u ⋆ D2w ⋆ (∇u−∇w)
∣∣

+ C46

∣∣D2w ⋆ D2w ⋆ (∇u−∇w)
∣∣.

(72)

We emphasize that by the proof of Lemma 96 the terms including Q−j(w)−Q−j(u) are absorbed
by (∇w −∇u). Namely by Lemma 96.

∣∣Q−j(w)−Q−j(u)
∣∣ ≤ ∣∣∇w −∇u

∣∣ ∣∣∣∣∣∣
(
∇w +∇u

)(
Q(w) +Q(u)

) k∑
ℓ=1

Qℓ−1(w)Qk−ℓ(u)

Qk(w)Qk(u)

∣∣∣∣∣∣ ≤ k
∣∣∇w −∇u

∣∣.
We conclude by applying the Ls(Ω)-norm that∥∥∥D2u ⋆ D2u ⋆ Q−j(u)Pi(∇u)− D2w ⋆ D2w ⋆ Q−j(w)Pi(∇w)

∥∥∥
Ls(Ω)

≤ C47

(
∥∇uD2u∥L2s(Ω) + ∥∇wD2u∥L2s(Ω)

+ ∥∇uD2w∥L2s(Ω) + ∥∇wD2w∥L2s(Ω)

)
∥D2w −D2u∥L2s(Ω)

+ C48

(
∥D2u∥2L2s(Ω) +

∥∥|D2w||D2u|
∥∥
Ls(Ω)

+ ∥D2u∥2L2s(Ω)

)
∥∇w −∇u∥C0(Ω).

By Hölder’s inequality∥D2wD2u∥Ls(Ω) ≤ ∥D2u∥L2s(Ω)∥D2w∥L2s(Ω), Young’s inequality and Sobolev
embedding W 2,2s(Ω) ↪→ C1(Ω), this finishes the proof of (69). Namely

∥∇w −∇u∥C0(Ω) ≤ C49∥w − u∥W 2,2s(Ω), and ∥∇uD2u∥L2s(Ω) ≤ C50∥u∥W 2,2s(Ω) · ∥D2u∥L2s(Ω).

3 The proof of the last estimate (70) also involves C0(Ω) and seminorm inequalities and the
assumptions ∥∇u∥C0(Ω), ∥∇w∥C0(Ω) ≤ 1. First, we consider

∣∣D2u ⋆ Q−j(1 +Q)−ℓ(u)Pk(∇u)− D2w ⋆ Q−j(1 +Q)−ℓ(w)Pk(∇w)
∣∣

≤ C51

∣∣∇u ⋆∇u ⋆ (D2u−D2w)
∣∣+ C51

∣∣∇u ⋆∇w ⋆ (D2u−D2w)
∣∣

+ C51

∣∣∇w ⋆∇w ⋆ (D2u−D2w)
∣∣+ C51

∣∣∇u ⋆ D2u ⋆ (∇u−∇w)
∣∣

+ C51

∣∣∇u ⋆ D2w ⋆ (∇u−∇w)
∣∣+ C51

∣∣∇w ⋆ D2u ⋆ (∇u−∇w)
∣∣

+ C51

∣∣∇w ⋆ D2w ⋆ (∇w −∇u)
∣∣.

(73)

It directly follows∥∥D2u ⋆ Q−j(u)(1 +Q)−ℓ(u)Pk(∇u)− D2w ⋆ Q−j(w)(1 +Q)−ℓ(w)Pk(∇w)
∥∥
C0(Ω)

≤ C38∥u− w∥C2+α(Ω)

(
∥D2u∥C0(Ω) + ∥D2w∥C0(Ω)

)
·
(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

)
.

By applying the C0(Ω)-norm on both sides we get the C0(Ω)-part in the Cα(Ω)-estimate (70). For

53



the seminorm part, by using k ≥ 2 we observe similarly that[
D2u ⋆ Q−j(1 +Q)−ℓ(u)Pk(∇u)−D2w ⋆ Q−j(1 +Q)−ℓ(w)Pk(∇w)

]
Cα(Ω)

≤ ∥∇w −∇u∥C0(Ω)


(
∥D2u∥C0(Ω) + ∥D2w∥C0(Ω)

)(
[∇u]Cα(Ω) + [∇w]Cα(Ω)

)
+
(
[D2u]Cα(Ω) + [D2w]Cα(Ω)

)(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

)


+ [∇w −∇u]Cα(Ω)

(
∥D2u∥C0(Ω) + ∥D2w∥C0(Ω)

)(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

)
+ ∥D2u−D2w∥C0(Ω)

(
[∇u]Cα(Ω) + [∇w]Cα(Ω)

)(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

)
+ [D2u−D2w]Cα(Ω)

(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

)(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

)
where we again used [gh]Cα(Ω) ≤ ∥g∥C0(Ω)[h]Cα(Ω) + [g]Cα(Ω)∥h∥C0(Ω).

At this point, we are prepared for the main theorem of this subsection, namely our goal is to
prove the existence of the solution for the Willmore equation rewritten in Lemma 18 in variational
form for small Dirichlet data {

∆2u = Dib
i
1[u] +D2

ijb
ij
2 [u] in Ω,

u = g0, ∂νu = g1 on Ω.
(74)

with the following conditions (60) imposed on the structure of the right-hand side

b1[u] = D2u ⋆ D2u ⋆

3∑
k=1

Q−2k−1P2k−1(∇u),

b2[u] = D2u ⋆
2∑

k=1

Q−2k−1P2k(∇u) +D2u ⋆ P2(∇u) ⋆ (Q(1 +Q))−1.

The principal significance of the Theorem below is that for a givenC2+α-bound on the boundary
data, only smallness in the C1-norm is required, even though some special structural properties
of b1 and b2 are used.

21 Theorem

Assume that α ∈ (0, 1) , ∂Ω ∈ C4+α, g0 ∈ C2+α(∂Ω) and g1 ∈ C1+α(∂Ω). Additionally, we suppose that
∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω) < K for some K > 0.

Then there is a constant δ = δ(K,Ω, α) > 0 such that if ∥g0∥C1(∂Ω) + ∥g1∥C0(∂Ω) < δ, then there
exists a variational solution u ∈ C2+α(Ω) to the Willmore-type Dirichlet problem, thus u solves (74) with
the right-hand side (60).

Proof: The main idea is to apply a fixed point argument, which is divided into four steps for
the sake of clarity. Without the restriction of generality, we can also assume, by increasing K if
necessary, that K ≥ 1.
1 Definition of the iteration map and set

We begin by defining the iteration mapping G : C2+α(Ω) → C2+α(Ω). For each w ∈ C2+α(Ω) we
set Gw as the solution v of the following problem{

∆2v = Dib
i
1[w] +D2

ijb
ij
2 [w] in Ω,

v = g0, ∂νv = g1 on ∂Ω.
(75)

By Theorem 2.19 in [GGS10, p.45] the existence and the C2+α(Ω)-regularity ofGw is ensured, thus
the mapping G is well-defined.
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Furthermore, we introduce the constant δ, which bounds the C1(Ω)-norm of the boundary
data. For the proof-making work, we will impose four conditions on δ, where the first one is

2C14δ ∈ (0, 1)(C1)

and the other conditions (C2), (C3) and (C4) which we specify in the following. Next, we define
the corresponding non-empty set

MK
δ :=

{
u ∈ C2+α(Ω)

∣∣∣ ∥u∥C1(Ω) ≤ 2C14δ, ∥u∥C2+α(Ω) ≤ 2C12K
}
,

where C12 and C14 are constants in (63) and (65).
2 G is a self-map

In this paragraph, we show that G maps MK
δ to MK

δ . Let w ∈ MK
δ then Gw ∈ C2+α(Ω) solves

problem (75). In the first part of the proof, we consider the estimate of the C2+α(Ω)-norm of Gw.
Since the first condition (C1) yields ∥w∥C1(Ω) < 1, we can incorporate the Schauder estimate (63)
from Proposition 19 with the preliminary estimates (68) for the b′is in Lemma 20. Combining these
results yields

∥Gw∥C2+α(Ω) ≤ C12

(
∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω) + ∥b1[w]∥

L
2

1−α (Ω)
+ ∥b2[w]∥Cα(Ω)

)
≤ C12

(
K + C52∥D2w∥2

L
2

1−α (Ω)
∥∇w∥C0(Ω) + C53∥D2w∥Cα(Ω)∥∇w∥Cα(Ω)

)
≤ C12K + C54

(
∥w∥2

C2+α(Ω)
∥w∥C1(Ω) + ∥w∥C2+α(Ω)∥w∥C2(Ω)

)
,

(76)

where C54 and all other constants in this proof depend only on α,Ω and the algebraic structure of
b1 and b2. What is still lacking is the bound on C2(Ω)-norm of w in terms of δ. That is obtained by
the real interpolation inequality Theorem 9 with λ = α

1+α , a = 1, b = 2 + α

∥w∥C2(Ω) ≤ C1∥w∥
α

1+α

C1(Ω)
· ∥w∥

1
1+α

C2+α(Ω)
.(77)

Applying this to the result (76) yields

∥Gw∥C2+α(Ω) ≤ C12K + C54

(
(2C12K)22C14δ + C1∥w∥

1+ 1
1+α

C2+α(Ω)
· ∥w∥

α
1+α

C1(Ω)

)
≤ C12K + C54

(
(2C12K)22C14δ + C1(2C12K)

2+α
1+α · (2C14δ)

α
1+α

)
.

(78)

At this point, we want to impose the second condition on δ in the way that the right-hand side of
the equation above is small enough. Hence, we choose δ0 = δ0(α,Ω,K) depending onK such that

C54

(
(2C12K)22C14δ0 + C1(2C12K)

2+α
1+α · (2C14δ0)

α
1+α

)
≤ C12K.(C2)

Then by monotonicity, we get

∀δ ∈ (0, δ0] ∀w ∈ MK
δ : ∥Gw∥C2+α(Ω) ≤ 2C12K.(79)

In the second part, we consider the C1(Ω)-norm of Gw. Here we again use the Schauder
estimate (65) from Proposition 19 thereby employing estimates (68) for the bi terms where we can
set t = p ∈ (2,∞) arbitrarily since w ∈ C2+α(Ω)

∥Gw∥C1(Ω) ≤ C14

(
∥g0∥C1(∂Ω) + ∥g1∥C0(∂Ω) + ∥b1[w]∥Lp(Ω) + ∥b2[w]∥Lp(Ω)

)
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≤ C14

(
δ + C55

(
∥D2w∥2L2p(Ω)∥∇w∥C0(Ω) + ∥D2w∥Lp(Ω)∥∇w∥C0(Ω)

))
≤ C14

(
δ + C56

(
∥w∥2

C2(Ω)
∥∇w∥C0(Ω) + ∥w∥C2(Ω)∥∇w∥C0(Ω)

))
.

In the above inequality, we want to factor out δ so that the corresponding coefficient is smaller
than 2C14. This can be achieved by using interpolation (77) for the C2(Ω) norm

∥Gw∥C1(Ω) ≤ C14

(
δ + C56

(
C2
1∥w∥

2
1+α

C2+α(Ω)
∥w∥

1+ 2α
1+α

C1(Ω)
+ C1∥w∥

1
1+α

C2+α(Ω)
∥w∥

1+ α
1+α

C1(Ω)

))
≤ C14

(
δ + C57

(
K

2
1+α δ1+

2α
1+α +K

1
1+α δ1+

α
1+α

))
≤ C14δ

(
1 + C57

(
K

2
1+α δ

2α
1+α +K

1
1+α δ

α
1+α

))
.

(80)

Now, to get a self-map we choose some δ1 = δ1(α,Ω,K) by

C57

(
K

2
1+α δ

2α
1+α

1 +K
1

1+α δ
α

1+α

1

)
≤ 1.(C3)

Together with δ0 defined by (C2) the third condition on δ is imposed by considering only the case

δ ≤ δ1,

which gives us ∥Gw∥C1(Ω) ≤ 2C14δ. Combining the results in this paragraph shows that

0 < δ ≤ min
{
(2C14)

−1, δ0, δ1
}
: w ∈ MK

δ ⇒ Gw ∈ MK
δ .

3 G is a contraction

The last property we have to check is contraction, thus for all u,w ∈ MK
δ the difference between

Gw and Gu has to be estimated. Note that Gu−Gw is a solution of the following problem{
∆2(Gu−Gw) = Di

(
bi1[u]− bi1[w]

)
+D2

ij

(
bij2 [u]− bij2 [w]

)
in Ω,

Gu−Gw = 0, ∂νGu− ∂νGw = 0 on ∂Ω,
(81)

thus similarly to the previous steps by Proposition 19 it follows together with (69) and (70) that

∥Gu− Gw∥C2+α(Ω)

≤ C12

(
∥b1[u]− b1[w]∥

L
2

1−α (Ω)
+ ∥b2[u]− b2[w]∥Cα(Ω)

)
≤ C58∥D2u−D2w∥

L
4

1−α (Ω)

(
∥D2u∥L2s(Ω) + ∥D2w∥L2s(Ω)

)
+ C58∥u− w∥C2+α(Ω)

(
∥D2u∥Cα(Ω) + ∥D2w∥Cα(Ω)

)(
∥∇u∥Cα(Ω) + ∥∇w∥Cα(Ω)

)
≤ C59∥u− w∥C2+α(Ω)

(
K
(
∥∇u∥Cα(Ω) + ∥∇w∥Cα(Ω)

))
by applying the interpolation inequality (77). Further, we need to estimate the C1+α(Ω)-norms. It
is possible since C1+α(Ω) is an interpolation space between C2+α(Ω) and C1(Ω). Thus, by the real
interpolation inequality Theorem 9 with λ = 1

1+α , a = 1, b = 2 + α

∥w∥C1+α(Ω) ≤ C1∥w∥
1

1+α

C1(Ω)
· ∥w∥

α
1+α

C2+α(Ω)
.(82)

Applying this to the last inequality yields

∥Gu−Gw∥C2+α(Ω) ≤ C60

(
K1+ α

1+α δ
1

1+α

)
∥u− w∥C2+α(Ω).
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To obtain a contraction, we need to impose the last condition on δ. Hence, we choose some δ2 such
that

C60K
1+ α

1+α δ
1

1+α

2 <
1

2
.(C4)

Then, by monotonicity, we can assert that

0 < δ ≤ δ2 ⇒ ∀u,w ∈ MK
δ : ∥Gu−Gw∥C2+α(Ω) ≤

1

2
∥u− w∥C2+α(Ω).(83)

4 Applying the fixed point theorem

By combining all four conditions on δ

0 < δ ≤ min
{
1/(2C14), δ0, δ1, δ2

}
all assumptions of the fixed point theorem are satisfied. Thus, there exists a unique fixed point
u ∈ MK

δ ⊂ C2+α(Ω) such that u = Gu. This finally means that u solves the original problem (74)
in the space MK

δ .

At this point, we want to remark on elliptic regularity. Namely, if the boundary data are
more regular g0 ∈ C4+α(∂Ω), g1 ∈ C3+α(∂Ω), then the solution is also more regular u ∈ C4+α(Ω).
Despite that, theCα(∂Ω) andC1(∂Ω)-norm smallness condition for the existence of such u Cα(∂Ω)
and C1(∂Ω)-norm remains the same.

The preceding observation, when looked at more general right-hand side terms bi, leads to a
similar existence result, thus this proof idea is not unique to the Willmore equation. The main
point is to observe that we use some kind of non-linearity, namely bi’s must be at least a D2u,∇u-
polynomial of the second order with some Hölder interpolation inequalities. This is needed to
extract δ like in C1(Ω) estimate (80) as well as to achieve the contraction inequality (83). Thus, we
generalize our results to the following problem{

∆2u = f0[u] +Dif
i
1[u] +D2

ijf
ij
2 [u] in Ω,

u = g0, ∂νu = g1 on ∂Ω.
(84)

22 Theorem

Assume that α ∈ (0, 1) , ∂Ω ∈ C4+α, g0 ∈ C2+α(∂Ω) and g1 ∈ C1+α(∂Ω). Additionally, we suppose that
∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω) < K for some K > 0. We impose the following conditions on the structure
of the right-hand side

f0[u] = Pk0(D
2u)Pℓ0(∇u)Q−m0(∇u),

f1[u] = Pk1(D
2u)Pℓ1(∇u)Q−m1(∇u), f2[u] = Pk2(D

2u)Pℓ2(∇u)Q−m2(∇u)
(85)

for some i = 0, 1, 2 : ki, ℓi,mi ∈ N0, with ki + ℓi ≥ 2.
Then there exists a constant µ = µ(K,α,Ω) > 0 such that if ∥g0∥C1(∂Ω) + ∥g1∥C0(∂Ω) < µ, then there

exists a variational solution u ∈ C2+α(Ω) to (84) with the right-hand side (85).

Proof: Since we do not want to replicate the complete proof of the previous theorem, we will only
highlight the changes to be made.

First, we change the iteration mapping G : C2+α(Ω) → C2+α(Ω). In order to incorporate f0 we
set Gw as the solution v of the following problem{

∆2v = f0[w] +Df1[w] +D2f2[w] in Ω,

v = g0, ∂νv = g1 on ∂Ω.
(86)
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The C2+α-regularity and existence of Gw is ensured by [GGS10, Theorem 2.19 p.45]. Since we
are not assuming ℓi ≥ 2, we might not have enough ∇u-terms in some estimates. Thus contrary
to the proof of Theorem 21 in (80) we cannot extract δ1 in ∥Gw∥C1(Ω) ≤ C61δ

1 · δε estimate via
interpolation, and let C61δ

ε small enough. Therefore, we replace the C1(Ω)-norm with a Hölder
norm C1+γ(Ω), where γ > 1− α and define

MK
δ :=

{
u ∈ C2+α(Ω)

∣∣∣ ∥u∥C1+γ(Ω) ≤ 2C13δ, ∥u∥C2+α(Ω) ≤ 2C12K
}

which we consider as a closed subspace of complete space C2+β(Ω) with β < α, which is the main
trick here. Let us assume that ∥g0∥C1+γ(∂Ω) + ∥g1∥Cγ(∂Ω) ≤ C13δ and

2C13δ ≤ 1(C1)

Since we will need to estimate ∥u∥C2(Ω), we conclude with λ ∈ (0, 1) such that 2 = λ(1 + γ) + (1−
λ)(2 + α) the interpolation inequality

∥u∥C2(Ω) ≤ C62∥u∥λC1+γ(Ω)
· ∥u∥1−λ

C2+α(Ω)
.(87)

To show that G is a self-map, we estimate the C2+α-norm of Gw. Since ∥w∥C2+α(Ω) < K, one can
show in the same way as in Lemma 20 that with constants C63, C64, C65, C66 depending only on
K,Ω, ki, ℓi and α∥∥f0[w]∥∥C0(Ω)

+
∥∥f1[w]∥∥C0(Ω)

+
∥∥f2[w]∥∥C0(Ω)

≤ C63∥w∥2C2(Ω)
≤ C64∥u∥2λC1+γ(Ω)

· ∥u∥2−2λ
C2+α(Ω)

,∥∥f2[w]∥∥Cα(Ω)
≤ C65∥w∥C2+α(Ω)∥w∥C2(Ω) ≤ C66∥u∥λC1+γ(Ω)

· ∥u∥2−λ
C2+α(Ω)

.

We combine this with the Schauder estimate (63) and obtain

∥Gw∥C2+α(Ω) ≤ C12

 ∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω) + ∥f0[w]∥
L

2
2−α (Ω)

+ ∥f1[w]∥
L

2
1−α (Ω)

+ ∥f2[w]∥Cα(Ω)


≤ C12K + C67

(
δ2λ ·K2−2λ + δλ ·K2−λ

)
where C67 depends only on on K,Ω and α. Further, choosing δ such that

C77

(
δ2λ ·K2−2λ + δλ ·K2−λ

)
≤ C12K(C2)

we get ∥Gw∥C2+α(Ω) ≤ 2C12K. For the C1+γ(Ω)-estimate we use the Schauder results from Propo-
sition 19 and especially (87) for some s > 0

∥Gw∥C1+γ(Ω) ≤ C13

 ∥g0∥C1+γ(∂Ω) + ∥g1∥Cγ(∂Ω) + ∥f0[w]∥Ls(Ω)

+ ∥f1[w]∥
L

2
2−γ (Ω)

+ ∥f2[w]∥
L

2
1−γ (Ω)


≤ C13δ + C68

(
δ2λ ·K2−2λ

)
≤ C13δ +

(
C69δ

2λ−1 ·K2−2λ
)
δ.

In fact 2λ− 1 > 0 since by γ > 1− α and 2 = λ(1 + γ) + (1− λ)(2 + α) = λ(1 + γ − 2− α) + 2 + α
it follows

λ =
α

α+ 1− γ
>

α

α+ α
=

1

2
.
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This shows that (
C69δ

2λ−1 ·K2−2λ
)
< C13(C3)

can be achieved. Thus, we add this condition to the previous assumptions on δ. As a consequence,
we get ∥Gw∥C1+γ(Ω) < 2 ≤ C13δ and moreover Gw ∈ MK

δ . This means that for δ small enough, G
is a self-map.

For the discussion of the contraction property, we also change some details. Here, we consider
Gu−Gw as a solution to a modified problem{

∆2(Gu−Gw) = f0[u]− f0[w] +Di

(
f i1[u]− f i1[w]

)
+D2

ij

(
f ij2 [u]− f ij2 [w]

)
in Ω,

Gu−Gw = 0, ∂νGu− ∂νGw = 0 on ∂Ω.

Since we consider MK
δ as a subspace of C2+β(Ω) we estimate Gu−Gw in the C2+β(Ω)-norm. By

Proposition 19, which shows existence and Schauder estimates of solutions and ∥u∥Cβ(Ω), ∥w∥Cβ(Ω)

≤ C70K it follows with C71 = C71(β,K,Ω), C72 = C72(β,K,Ω)

∥Gu−Gw∥C2+β(Ω) ≤ C12(β)

 ∥f0[u]− f0[w]∥
L

2
2−β (Ω)

+ ∥f1[u]− f1[w]∥
L

2
1−β (Ω)

+ ∥f2[u]− f2[w]∥Cβ(Ω)


≤ C71

(
∥u∥C2+β(Ω) + ∥w∥C2+β(Ω)

)
· ∥u− w∥C2(Ω)

+ C72

(
∥u∥C2(Ω) + ∥w∥C2(Ω)

)
· ∥u− w∥C2+β(Ω)

≤ C73

∥u∥λ
C1+γ(Ω)

∥u∥1−λ
C2+α(Ω)

+ ∥w∥λ
C1+γ(Ω)

∥w∥1−λ
C2+α(Ω)

+ ∥u∥ξ
C1+γ(Ω)

∥u∥1−ξ
C2+α(Ω)

+ ∥w∥ξ
C1+γ(Ω)

∥w∥1−ξ
C2+α(Ω)

 · ∥u− w∥C2+β(Ω)

≤ C74

(
δλK1−λ + δξK1−ξ

)
· ∥u− w∥C2+β(Ω)

where ξ = (α − β)/(1 + α − γ) since by interpolation ∥u∥C2+β(Ω) ≤ C75∥u∥ξC1+γ(Ω)
∥u∥1−ξ

C2+α(Ω)
. We

emphasize that we used β > α. Next, we get the contraction by imposing the condition

C74

(
δλK1−λ + δξK1−ξ

)
< 1/2.(C4)

Hence, it follows the contraction

∀u,w ∈ MK
δ : ∥Gu−Gw∥C2+β(Ω) ≤

1

2
∥u− w∥C2+β(Ω).

By contraction mapping principle, we get the solution of problem (84). In the last step, we observe
that by Lemma 11, we can use the interpolation inequality on boundary

∥g0∥C1+γ(∂Ω) + ∥g1∥Cγ(∂Ω)

≤ C4

(
∥g0∥C1(∂Ω) + ∥g1∥C0(∂Ω)

)1− γ
1+α ·

(
∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω)

) γ
1+α

≤ C76µ
1− γ

1+αK
γ

1+α
!
≤ C13δ

to achieve δ small enough by choosing µ sufficient smaller such that the conditions (C1), (C2), (C3),
(C4) are satisfied, and thus finishing the proof.
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5.3 Sobolev Case

This chapter treats the Willmore equation employing its biharmonic expansion under even weaker
regularity assumptions than in the Hölder class. Here, we pursue the derivation of existence
theorems in the Sobolev framework. This means that we consider second derivatives in the weak
sense.

Even though there exist trace theorems for Sobolev spaces W 2,p(Ω) such that we can define
Dirichlet boundary conditions in the same way as for the Hölder case, we omit this description
and consider only the class of functions u ∈W 2,p(Ω) such that u−φ ∈ W̊ 2,p(Ω) for a givenW 2,p(Ω)
representing the boundary conditions.

For the general existence result, we will need some biharmonic preliminary estimates in the
Lp-framework analogous to Proposition 19 in the Hölder case.

23 Proposition

Let Ω ⊂ R
2 be a bounded domain with ∂Ω ∈ C3. Assume that s ∈ (1,∞), p ∈ (2,∞), t > 2p

2+p > 1 and
φ ∈W 2,p(Ω), b0 ∈ Ls(Ω), b1 ∈ Lt(Ω) and b2 ∈ Lp(Ω). Then the following problem

∆2u = b0 +Dib
i
1 +D2

ijb
ij
2 in Ω ⊂ R2,

admits a weak solution u ∈ W 2,p(Ω) with u − φ ∈ W̊ 2,p(Ω). Moreover, there exist constants C77 =
C77(p,Ω), C78 = C78(p, s, t,Ω) and C79 = C79(Ω), C80 = C80(p, s,Ω) such that

∥u∥W 2,p(Ω) ≤ C77∥φ∥W 2,p(Ω) + C78

(
∥b0∥Ls(Ω) + ∥b1∥Lt(Ω) + ∥b2∥Lp(Ω)

)
,

∥u∥C1(Ω) ≤ C79∥φ∥C1(Ω) + C80

(
∥b0∥Ls(Ω) + ∥b1∥Ls(Ω) + ∥b2∥Lp(Ω)

)
.

Proof: We begin with the observation that from t > 2p
2+p > 1 it follows p > 2. In this situation,

we should split the problem (62) into three parts. Thus, we are investigating the solvability of the
following problems in the homogeneous space W̊ 2,p(Ω)

∆2ψ0 = b0 in Ω, ∆2ψ1 = Dib
i
1 in Ω, ∆2ψ2 = D2

ijb
ij
2 −∆2φ in Ω,

so that we could recombine u = φ+ ψ0 + ψ1 + ψ2. Since φ ∈ W 2,p(Ω), the last problem including
ψ2 is solvable by [GGS10, Thm. 2.20 p. 46] for the case k = 2. Moreover, we obtain

∥ψ2∥W 2,p(Ω) ≤ C81(Ω, p)
(
∥φ∥W 2,p(Ω) + ∥b2∥Lp(Ω)

)
.

With the same theorem in the case k = 4 we get with the Sobolev embedding for all s ∈ (1,∞)

∥ψ0∥W 2,p(Ω) ≤ C82∥ψ0∥W 4,s(Ω) ≤ C83(Ω, p, s)∥b0∥Ls(Ω).

Furthermore, we use [GGS10, Lemma 4.2 p. 132] and the Sobolev embedding with t > 2p
2+p > 1 to

obtain

∥ψ1∥W 2,p(Ω) ≤ C84∥ψ1∥W 3,t(Ω) ≤ C85(Ω, p, s, t)∥b1∥Lt(Ω).

Finally, theC1(Ω) estimate was already proved in Proposition 19 for p > 2 in the Hölder framework.
By combining the results above, the desired estimate follows.

With regard to the following existence Theorem 25, we again consider the bi[u]’s as defined in
(60), which are specified by the Willmore equation. Since bi[u]’s include the terms D2u ⋆ D2u, it is
important to notice that in the lemma below, we require p > 2! At this point, we want furthermore
to prove some preparatory estimates. Here, in the Sobolev case, we can take advantage by partly
reusing Lemma 20 already proved in the Hölder case.
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24 Lemma

Let p ∈ (2,∞), i, j, ℓ, k ∈ N0, i ≥ 1, k ≥ 2 then there exists a constant C86 = C86(Ω, p) such that if
u ∈W 2,p(Ω) with ∥∇u∥C0(Ω) ≤ 1 then we can estimate∥∥D2u ⋆ D2u ⋆ Q−jPi(∇u)

∥∥
Lp/2(Ω)

≤ C86∥D2u∥2Lp(Ω)∥∇u∥C0(Ω),∥∥D2u ⋆ Q−j(1 +Q)−ℓPk(∇u)
∥∥
Lp(Ω)

≤ C86∥D2u∥Lp(Ω)∥∇u∥C0(Ω).
(88)

Furthermore suppose w ∈W 2,p(Ω) with ∥∇w∥C0(Ω) ≤ 1 then it follows∥∥∥D2u ⋆ D2u ⋆ Q−j(u)Pi(∇u) −D2w ⋆ D2w ⋆ Q−j(w)Pi(∇w)
∥∥∥
Lp/2(Ω)

≤ C86∥u− w∥W 2,p(Ω)

(
∥D2u∥Lp(Ω) + ∥D2w∥Lp(Ω)

)(
∥u∥W 2,p(Ω) + ∥w∥W 2,p(Ω)

)(89)

as well as∥∥D2u ⋆ Q−j(1 +Q)−ℓ(u)Pk(∇u)−D2w ⋆ Q−j(1 +Q)−ℓ(w)Pk(∇w)
∥∥
Lp(Ω)

≤ C86∥u− w∥W 2,p(Ω)

(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

) (
∥u∥W 2,p(Ω) + ∥w∥W 2,p(Ω)

)
.

(90)

Proof: The estimates in (88) had been proven in the same manner as (68) in Lemma 20 by using
the inequalities (71). Analogously, by setting s = p/2 in the proof of (69) we obtain (89).

For the proof of the last estimate we apply a Lp-norm on the inequality (73)∥∥D2u⋆ Q−j(1 +Q)−ℓ(u)Pk(∇u)− D2w ⋆ Q−j(1 +Q)−ℓ(w)Pk(∇w)
∥∥
Lp(Ω)

≤ C87

(
∥∇u∥2

C0(Ω)
+ ∥∇u∥C0(Ω)∥∇w∥C0(Ω) + ∥∇w∥2

C0(Ω)

)
∥D2u−D2w∥Lp(Ω)

≤ C88

(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

) (
∥D2u∥Lp(Ω) + ∥D2w∥Lp(Ω)

)
∥∇u−∇w∥C0(Ω).

We finish the proof by applying the Sobolev embedding W 2,p(Ω) ↪→↪→ C1(Ω) for p > 2.

At this point, we want to prove the existence of theW 2,p(Ω)-solution for the rewritten Willmore
equation in biharmonic expansion

∆2u =Dib
i
1[u] +D2

ijb
ij
2 [u] in Ω.(91)

with the right-hand side terms (60)

b1[u] = D2u ⋆ D2u ⋆

3∑
k=1

Q−2k−1P2k−1(∇u),

b2[u] = D2u ⋆
2∑

k=1

Q−2k−1P2k(∇u) +D2u ⋆ P2(∇u) ⋆ (Q(1 +Q))−1

in the class
{
v ∈ W 2,p(Ω)

∣∣ v − φ ∈ W̊ 2,p(Ω)
}

where φ ∈ W 2,p(Ω) is some small given function
representing the boundary data. In contrast to the Hölder case, here we will need smallness not
only in the C1(Ω) norm but also in a Sobolev norm like ∥ . ∥W 2,p−ε(Ω). The reason is that we have
to apply some interpolation argument for the spaceW 2,q(Ω) for some q ∈ (1, p) andW 2,q(Ω) is not
an interpolation space between W 2,p(Ω) and C1(Ω).

25 Theorem

Assume that p ∈ (2,∞) and K ∈ (0,∞), ∂Ω ∈ C3, and φ ∈ W 2,p(Ω). Additionally, we suppose that
∥φ∥W 2,p(Ω) < K for some K > 0.

Then there is a constant µ = µ(K, p,Ω) > 0 such that if ∥φ∥W 2,1(Ω) < µ, then there exists a weak
solution u ∈ W 2,p(Ω) to the Willmore-type Dirichlet problem, thus u solves (91) in the class

{
v ∈

W 2,p(Ω)
∣∣ v − φ ∈ W̊ 2,p(Ω)

}
with the right-hand side (60).
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Proof: Again, we split the proof into several steps to use the fixed point argument.
1 Definition of the iteration map & set

We define the iteration map G : W 2,p(Ω) → W 2,p(Ω). Let G(u) be defined as the solution w of the
following problem in the class

{
v ∈W 2,p(Ω)

∣∣ v − φ ∈ W̊ 2,p(Ω)
}

∆2w = Dib
i
1[u] +D2

ijb
ij
2 [u] in Ω.(92)

Let q ∈ (2, p). To introduce the iteration set, we need a constant δ > 0 which will be specified
depending on Ω, p and q in four inequalities (C1),(C2),(C3) and (C4) below. First, let us revisit
the constant of the Sobolev embedding into the C1(Ω) space. For any t > 2 let C89(Ω, t) be the
embedding constant of the W 2,t ↪→ C1(Ω), so that we have for all u ∈W 2,t(Ω)

∥u∥C1(Ω) ≤ C89(t,Ω)∥u∥W 2,t(Ω).

Further, we define the iteration set

MK
δ :=

{
u ∈W 2,p(Ω)

∣∣ ∥u∥W 2,q(Ω) ≤ 2C77(q,Ω)δ, ∥u∥W 2,p(Ω) ≤ 2C77(p,Ω)K
}

where δ is some constant that has to fulfill several conditions that we will establish in the course
of the proof. The first condition is

2C77(q,Ω)C89(q,Ω)δ < 1,(C1)

therefore for all u ∈ MK
δ it follows ∥u∥C1(Ω) < 1. Also, it is worth noting that we choose q > 2

because in the case q ≤ 2 we cannot abandon either smallness in theC1(Ω) orW 2,q(Ω)-norm, since
only in the case q > 2 one has the Sobolev embedding W 2,q(Ω) ↪→↪→ C1(Ω).

We also observe thatW 2,q(Ω) is actually an interpolation space betweenW 2,1(Ω) andW 2,p(Ω).
This means for φ ∈W 2,p(Ω)

∥φ∥W 2,q(Ω) ≤ C90∥φ∥αW 2,1(Ω)∥φ∥
1−α
W 2,p(Ω)

≤ C91µ
αK1−α(93)

with α = (p/q − 1/)/(p− 1) ∈ (0, 1). It follows, that by choosing µ > 0 small enough, we can get

∥u∥W 2,q(Ω) ≤ 2C77(q,Ω)δ < C91µ
αK1−α

for all u ∈ MK
δ .

2 G is a self-map

Let w ∈ MK
δ . Since we want to apply Lemma 24 with the W 2,p(Ω)-estimate of Proposition 23 we

need some t for the b1-term. We can choose some t = p
2 since 2p

2+p <
p
2 . It follows by the first

condition ∥w∥C1(Ω) < 1. This yields

∥Gw∥W 2,p(Ω) ≤ C77(p,Ω)∥φ∥W 2,p(Ω) + C78(p,Ω)
(∥∥b1[w]∥∥Lp/2(Ω)

+ ∥b2[w]∥Lp(Ω)

)
≤ C77(p,Ω)K + C92

(∥∥D2w
∥∥2
Lp(Ω)

∥∥∇w∥C0(Ω) +
∥∥D2w

∥∥
Lp(Ω)

∥∥∇w∥C0(Ω)

)
≤ C77(p,Ω)K + C93(Ω, p)(K

2δ +Kδ).

By choosing δ0 such that

C93(Ω, p)(δ0K
2 +Kδ0) ≤ C77(p,Ω)K,(C2)

we impose the second constraint on δ, hence considering only δ ∈ (0, δ0). In this case, we get
∥Gw∥W 2,p(Ω) ≤ 2C77(p,Ω)K.
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Next we have to estimate the W 2,q(Ω)-norm. Since q > 2, in the same way as in W 2,p(Ω)-
estimate, we conclude

∥Gw∥W 2,q(Ω) ≤ C77(q,Ω)∥φ∥W 2,q(Ω) + C78(q,Ω)
(∥∥b1[w]∥∥Lq/2(Ω)

+ ∥b2[w]∥Lq(Ω)

)
≤ C77(q,Ω)δ + C94

(∥∥D2w
∥∥2
Lq(Ω)

∥∥∇w∥C0(Ω) +
∥∥D2w

∥∥
Lq(Ω)

∥∥∇w∥C0(Ω)

)
≤ C77(q,Ω)δ + C95(Ω, q)(δ

2 + δ)δ.

We formulate the third constraint by choosing δ1 such that

C95(Ω, q)(δ
2
1 + δ1) ≤ C77(q,Ω).(C3)

For all δ′s smaller than δ0, δ1 and satisfying (C1) the map G : MK
δ → MK

δ is a self map.
3 G is a contraction

For the last property, we have to check the contraction property, thus for all u,w ∈ MK
δ the

difference between Gw and Gu has to be estimated. It can be noticed that Gu−Gw is a solution to
the problem

∆2(Gu−Gw) = Di

(
bi1[u]− bi1[w]

)
+D2

ij

(
bij2 [u]− bij2 [w]

)
in Ω,(94)

in the class W̊ 2,p(Ω). Similarly to the previous step, we again use Proposition 23. Next, we choose
some t > 1 such that 2p

2+p < t < p
2 . We put t = p

2+p +
p
4 , as the arithmetic mean, then we have

∥Gu−Gw∥W 2,p(Ω) ≤ C78(p, t,Ω)
(∥∥b1[u]− b1[w]

∥∥
Lt(Ω)

+
∥∥b2[u]− b2[w]

∥∥
Lp(Ω)

)
.

Now, we can estimate each of the parts with estimates with the results from Lemma 24. First, we
use (89) and show by 2t < p that∥∥b1[u]− b1[w]

∥∥
Lt(Ω)

≤ C86(Ω, t)∥u− w∥W 2,2t(Ω)

(
∥D2u∥2L2t(Ω) + ∥D2w∥2L2t(Ω)

)
≤ C96∥u− w∥W 2,p(Ω)

(
∥D2u∥2L2t(Ω) + ∥D2w∥2L2t(Ω)

)
≤ C97∥u− w∥W 2,p(Ω)

(
∥D2u∥αL1(Ω)∥D

2u∥1−αLp(Ω) + ∥D2u∥αL1(Ω)∥D
2w∥1−αLp(Ω)

)2
≤ C98∥u− w∥W 2,p(Ω)(δ

αK1−α)2

by the Lp-interpolation with α = (p/2t− 1)/(p− 1) ∈ (0, 1). Furthermore, by using (90) we get∥∥b2[u]− b2[w]
∥∥
Lp(Ω)

≤ C86∥u− w∥W 2,p(Ω)

(
∥∇u∥C0(Ω) + ∥∇w∥C0(Ω)

) (
∥u∥W 2,p(Ω) + ∥w∥W 2,p(Ω)

)
≤ C99∥u− w∥W 2,p(Ω)δK.

Subsequently, we combine the results above and get for some C100 = C100(p,Ω)

∥Gu−Gw∥W 2,p(Ω) ≤ C100

(
(δαK1−α)2 + δK

)
∥u− w∥W 2,p(Ω).

By choosing δ2 = δ2(p,K,Ω) small enough we can achieve

C100(δ
2α
2 K2−2α + δ2K) ≤ 1

2
(C4)

which is the last condition on δ. It follows for δ ≤ δ2 satisfying all the previous constraints
(C1),(C2),(C3)

∥Gu−Gw∥W 2,p(Ω) ≤ 1

2
∥u− w∥W 2,p(Ω),
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therefore G is a contraction on MK
δ .

4 Using the fixed point theorem

In the last step we combine all necessary conditions (C1),(C2),(C3) and (C4) on δ

0 < δ ≤ min
{
1/
(
2C77C89(q,Ω)

)
, δ0, δ1, δ2

}
(95)

The fixed point theorem yields the existence of a unique fixed point u ∈ MK
δ ⊂ W 2,p(Ω) such

that u = Gu. Thus u ∈ W 2,p(Ω) is a solution of the Willmore equation in
{
v ∈ W 2,p(Ω)

∣∣ v − φ ∈
W̊ 2,p(Ω)

}
.

To finish the proof, we again observe the estimate (93) and conclude that by choosing µ > 0
small enough, we can fulfill all δ conditions (95).

We can generalize the results to more general right-hand side terms bi by using ideas from the
proof corresponding to the Willmore equation. To apply Lp-interpolation inequalities, we require
a non-linearity in bi’s as a D2u,∇u, u-polynomial. Thus, we consider the following differential
equation

∆2u = f0[u] +Dif
i
1[u] +D2

ijf
ij
2 [u] in Ω.(96)

Unlike in the Hölder case, here, due to Hölder’s inequality, f2[u]may contain only oneD2u at most.
Otherwise, we can not use Proposition 23 properly, since ∥u∥W 2,p(Ω) is estimated by ∥f2[u]∥Lp(Ω).
Moreover, the Lp(Ω)-power p ∈ (1,∞) has to be chosen big enough, depending on the number of
D2u-terms in f0[u] and f1[u].

26 Theorem

We impose the following conditions on the structure of the right-hand side

f0[u] = Pk0(D
2u)Pℓ0(∇u)Q−m0(∇u),

f1[u] = Pk1(D
2u)Pℓ1(∇u)Q−m1(∇u), f2[u] = D2u ⋆ Pℓ2(∇u)Q−m2(∇u)

(97)

for some i = 0, 1 : ki, ℓi,mi ∈ N0, with ki + ℓi ≥ 2 and ℓ2,mi ∈ N0, with ℓ2 ≥ 1.
Assume that p ∈ (2,∞) such that p > k0 and p > 2(k1 − 1). Let ∂Ω ∈ C3 and φ ∈ W 2,p(Ω).

Additionally, we suppose that ∥φ∥W 2,p(Ω) < K for some K > 0.
Then there exists a constant µ = µ(K, p,Ω) > 0 such that if ∥φ∥W 2,1(Ω) < µ, then there exists a weak

solution u ∈ W 2,p(Ω) to the generalized Willmore-type Dirichlet problem, thus u solves (96) in the class{
v ∈W 2,p(Ω)

∣∣ v − φ ∈ W̊ 2,p(Ω)
}

with the right-hand side (97).

Proof: We only consider the case ki > 0 for all i = 1, 2, 3. Thus each fi[u] contains at least oneD2u.
The other case is an easy matter to check.

Since we are familiar with the proof of Theorem 25, we only highlight important changes to
be made. First, we change the iteration map G : W 2,p(Ω) → W 2,p(Ω). Let G(u) be defined as the
solution w

∆2w = f0[u] +Dif
i
1[u] +D2

ijf
ij
2 [u] in Ω.(98)

in the class
{
v ∈ W 2,p(Ω)

∣∣ v − φ ∈ W̊ 2,p(Ω)
}

. Let q ∈ (2, p) such that q > k0 and q > 2(k1 − 1).
Furthermore, suppose δ and MK

δ play the same role as in the proof of Theorem 25 only with one
difference that we consider the same ∅ ̸= MK

δ with

MK
δ =

{
u ∈W 2,p(Ω)

∣∣ ∥u∥W 2,q(Ω) ≤ 2C77(q,Ω)δ, ∥u∥W 2,p(Ω) ≤ 2C77(p,Ω)K
}

as a closed subset of W 2,q(Ω) instead of W 2,p(Ω) (by Fatou’s Lemma), which is one of the main
tricks in this proof. This will prove useful in showing the property contraction. We will also use
the interpolation result (93) for boundary data φ.
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In order to prove that G : MK
δ → MK

δ is a self map, we choose the first condition on δ like in
(C1) in the proof of Theorem 25 such that

∀u ∈ MK
δ : ∥u∥C1(Ω) < 1.(99)

In order to apply Lemma 24 with the W 2,p(Ω)-estimate of Proposition 23 we choose some t0 ∈(
1, pk0

)
and t1 ∈

(
2p
2+p ,

p
k1

)
since 2p

2+p <
2p

2+2(k1−1) =
p
k1

by assumptions imposed on p. Letw ∈ MK
δ .

Then it follows by interpolation with some α0, α1, α2 ∈ (0, 1)

∥Gw∥W 2,p(Ω) ≤ C77(p,Ω)∥φ∥W 2,p(Ω) + C78(p,Ω)
(∥∥f0[w]∥∥Lt0 (Ω)

+
∥∥f1[w]∥∥Lt1 (Ω)

+
∥∥f2[w]∥∥Lp(Ω)

)
≤ C77(p,Ω)K + C101

∥∥D2w
∥∥k0
Lk0t0 (Ω)

∥∥∇w∥∥ℓ0
C0(Ω)

+
∥∥D2w

∥∥k1
Lk1t1 (Ω)

∥∥∇w∥∥ℓ1
C0(Ω)

+
∥∥D2w

∥∥
Lp(Ω)

∥∥∇w∥∥ℓ2
C0(Ω)


≤ C77(p,Ω)K + C102

(
∥w∥k0α0

W 2,1(Ω)
∥w∥k0(1−α0)

W 2,p(Ω)
δℓ0 + ∥w∥k1α1

W 2,1(Ω)
∥w∥k1(1−α1)

W 2,p(Ω)
δℓ0

+ ∥w∥W 2,p(Ω)δ
ℓ2

)
≤ C77(p,Ω)K + C103(p,Ω)

(
δk0α0+ℓ0Kk0(1−α0) + δk1α1+ℓ1Kk1(1−α1) +Kδℓ2

)
.

From here on, we consider only δ satisfying

C103(p,Ω)
(
δk0α0+ℓ0Kk0(1−α0) + δk1α1+ℓ1Kk1(1−α1) +Kδℓ2

)
≤ C77(p,Ω)K.(C2)

Thus, we obtain ∥Gw∥W 2,p(Ω) ≤ 2C77(p,Ω)K. To estimate the W 2,q(Ω)-norm we observe, that
2q
2+q <

q
k1

and 1 < q
k0

. It follows by Proposition 23 that,

∥Gw∥W 2,q(Ω) ≤ C77(q,Ω)∥φ∥W 2,q(Ω) + C78(q,Ω)
(∥∥f0[w]∥∥Lq/k0 (Ω)

+
∥∥f1[w]∥∥Lq/k1 (Ω)

+
∥∥f2[w]∥∥Lq(Ω)

)
≤ C77(q,Ω)δ + C104

∥∥D2w
∥∥k0
Lq(Ω)

∥∥∇w∥∥ℓ0
C0(Ω)

+
∥∥D2w

∥∥k1
Lq(Ω)

∥∥∇w∥∥ℓ1
C0(Ω)

+
∥∥D2w

∥∥
Lq(Ω)

∥∥∇w∥∥ℓ2
C0(Ω)


≤ C77(q,Ω)δ + C105(Ω, q)

(
δk0+ℓ0 + δk1+ℓ1 + δ1+ℓ2

)
.

This means that we have only to consider δ such that

C105(Ω, q)
(
δk0+ℓ0−1 + δk1+ℓ1−1 + δℓ2

)
≤ C77(q,Ω).(C3)

So that we get ∥Gw∥W 2,q(Ω) ≤ 2C77(q,Ω)δ. With all constraints imposed on δ above, the map
G : MK

δ → MK
δ is a self-map.

To check the contraction property, suppose u,w ∈ MK
δ and observe thatGu−Gw is a solution

of the modified problem

∆2(Gu−Gw) =
(
f0[u]− f0[w]

)
+Di

(
f i1[u]− f i1[w]

)
+D2

ij

(
f ij2 [u]− f ij2 [w]

)
in Ω,(100)

in the class W 2,q
0 (Ω). Note here that we have chosen q instead of p. In the same way as in the

previous step, we use Proposition 23 and get

∥Gu−Gw∥W 2,q(Ω) ≤ C78(q,Ω)

(∥∥f0[u] − f0[w]
∥∥
Lq/k0 (Ω)

+
∥∥f1[u]− f1[w]

∥∥
Lq/k1 (Ω)

+ ∥f2[u]− f2[w]∥Lq(Ω)

)
.
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Furthermore, we estimate the previous inequality piecewise. In a similar way as in the results
from Lemma 24 by using Sobolev embedding and Hölder inequality in the case k0, k1 ≥ 2 we can
show that∥∥f0[u]− f0[w]

∥∥
Lq/k0 (Ω)

≤ C106(q,Ω)∥u− w∥W 2,q(Ω)

(
∥u∥k0−1+ℓ0

W 2,q(Ω)
+ ∥w∥k0−1+ℓ0

W 2,q(Ω)

)
≤ C107∥u− w∥W 2,q(Ω)δ

k0+ℓ0−1,∥∥f1[u]− f1[w]
∥∥
Lq/k1 (Ω)

≤ C108(q,Ω)∥u− w∥W 2,q(Ω)

(
∥u∥k1−1+ℓ1

W 2,q(Ω)
+ ∥w∥k1−1+ℓ1

W 2,q(Ω)

)
≤ C107∥u− w∥W 2,q(Ω)δ

k1+ℓ1−1,

∥f2[u]− f2[w]∥Lq(Ω) ≤ C109(q,Ω)∥u− w∥W 2,q(Ω)

(
∥u∥ℓ2

W 2,q(Ω)
+ ∥w∥ℓ2

W 2,q(Ω)

)
≤ C107∥u− w∥W 2,q(Ω)δ

ℓ2 .

By combining the estimates above we get for some constant C110 = C110(q,Ω)

∥Gu−Gw∥W 2,q(Ω) ≤ C110(δ
k0+ℓ0−1 + δk1+ℓ1−1 + δℓ2)∥u− w∥W 2,q.(Ω)

As the last constraint, we consider only δ satisfying

C110(δ
k0+ℓ0−1 + δk1+ℓ1−1 + δℓ2) ≤ 1

2
(C4)

which yields ∥Gu−Gw∥W 2,q(Ω) ≤ 1
2∥u− w∥W 2,q(Ω), therefore G is a contraction on MK

δ .
With all δ’s conditions (C1), (C2),(C3) and (C4) in mind and the fact that MT

δ is a closed
subset of W 2,q(Ω) we obtain by the fixed point Theorem the existence of a unique fixed point
u ∈ MK

δ such that u = Gu. Thus, u ∈ W 2,p(Ω) is a weak solution of the equation (96) in the class{
v ∈ W 2,p(Ω)

∣∣ v − φ ∈ W̊ 2,p(Ω)
}

with the right-hand side (97). As the last step, we again use the
interpolation (93) to observe that we only need smallness in the W 2,1(Ω)-norm of φ.

5.4 Weighted Sobolev Case

We can generalize the results from the previous subsection to the framework of weighted Sobolev
spaces where some additional positive a.e. measurable functions are multiplied to the Lebesgue
measure as weights. For our purposes, we choose as weights the powers of d(x) := dist(x, ∂Ω),
that means the distance function to the boundary. Such weights are not only the canonical choice,
but they also have the advantage of requiring less regularity on boundary and Dirichlet boundary
data if the power is positive. The reason is that while approaching the boundary, the distance
function decreases, and therefore, the integral contributions will play less and less of a role.

In the beginning, we have to recall the definition of weighted Lebesgue, Sobolev, and Besov
spaces. In this context, up to embedding theorems, we mostly follow the description given in
[MS11] and [MMS10]. First, we define for each 1 ≤ p ≤ ∞ and β ∈ R the weighted Lebesgue space
Lp(Ω; dβ) as a set of all measurable functions u on Ω such that

∥u∥Lp(Ω;dβ) :=

(∫
Ω
|u(x)|pd(x)β dx

)1/p

<∞.

In our applications, we want to consider various powers of d(x), but not all values for powers are
allowed. Especially we consider only

p ∈ (1,∞), a ∈
(
−1

p
, 1− 1

p

)
,(pa)
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although we will mainly consider a ≥ 0 cases. Then we can define the weighted Sobolev space
Wm,a
p (Ω) as the space of real-valued functions u ∈ Lploc(Ω) with the property that Dαu ∈ Lploc(Ω)

for all |α| ≤ m, for which

∥u∥Wm,a
p (Ω) :=

 ∑
|α|≤m

∥Dαu∥pLp(Ω;dap)

1/p

<∞.(101)

It is important to notice that in the case ∂Ω is a Lipschitz boundary and a = 0 we recover the
unweighted Sobolev space Wm,p(Ω) and in the case m = 0 it becomes the weighted Lebesgue
space Lp(Ω; dap) =W 0,a

p (Ω). It is also known that in case Ω is a bounded Lipschitz domain C∞(Ω)
is dense in Wm,a

p (Ω) like in the unweighted case

Wm,a
p (Ω) =

{
closure of C∞(Ω) in Wm,a

p (Ω)
}

with respect to the norm (101). For the proofs, we refer the reader for a ≥ 0 to [Kuf80, p.55 Theorem
7.2] and for a < 0 to [Kuf80, p.119 Remarks 11.12 (iii)].

Further, we need the homogeneous weighted space, see [MMS10, Subsection 6.1], and its dual
space defined by

W̊m,a
p (Ω) :=

{
closure of C∞

c (Ω) in Wm,a
p (Ω)

}
, W−m,−a

p′ (Ω) :=
(
W̊m,a
p (Ω)

)∗
(102)

with dual exponent p′ = p/(p − 1). By [Kuf80, p.18 Theorem 3.6] the space Wm,a
p (Ω) and both

W̊m,a
p (Ω),W−m,−a

p′ (Ω) are separable Banach spaces.
Analogously to the unweighted case, for weighted Sobolev spaces there exists a variety of

embedding theorems into spaces of continuous functions, Hölder functions, or into other weighted
Sobolev spaces. Moreover, since we have more parameters, like powers of weights, even more
combinations of weighted embeddings arise than for the unweighted case. For bounded Lipschitz
domains the most work was done by Kufner, Brown, and Opic in [Kuf80], [OK90], [BO92] and
[Bro98]. We only mention the embeddings we need in what follows.

27 Lemma

Let Ω ⊂ Rn be a bounded domain with a Lipschitz boundary. Let p and a satisfy the conditions (pa).

a Then we have the continuous embedding

W̊ 1,a
p (Ω) ↪→ Lp(Ω; dap−p).

b Furthermore suppose q ≥ p with n
q − n

p + 1 > 0, a ≤ 0, γ ∈ R satisfying

γ + n

q
− ap+ n

p
+ 1 > 0, then W̊ 1,a

p (Ω) ↪→↪→ Lq(Ω; dγ),

thus, this embedding is compact.

c If p > n, a ≤ 1− n
p and 0 < λ < 1− a− n

p then it follows

W̊ 1,a
p (Ω) ↪→↪→ Cλ(Ω),

thus this embedding is compact.

d Assume q ≥ p with n
q − n

p + 1 > 0, γ ∈ R satisfying

γ + n

q
− n− 1

p
> 0, then W 1,a

p (Ω) ↪→↪→ Lq(Ω; dγ),

thus, this embedding is compact.
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Proof: At the beginning, let us recall some notation used in the literature cited for the embedding
theorem. We set for α, β ∈ R a weighted Sobolev space with different power of weight for the first
derivative

W 1,p(Ω; dβ, dα) :=
{
u ∈ Lp(Ω; dβ)

∣∣∣ ∥u∥W 1,p(Ω;dβ ,dα) = ∥u∥Lp(Ω;dβ) + ∥Du∥Lp(Ω;dα) <∞
}

with W 1,p
0 (Ω; dβ, dα) the closure of C∞

c (Ω) under ∥ . ∥W 1,p(Ω;dβ ,dα).
a Here we use [OK90, p.274 Theorem 19.10] with β = ap, α = ap − p and q = p, κ = 1 and get

the continuous embedding

W̊ 1,a
p (Ω) =W 1,p

0 (Ω; dβ, dβ) ↪→ Lp(Ω; dα) = Lp(Ω; dap−p).

b In the work of Opic and Kufner [OK90, p.275 Theorem 19.12] we set κ = 1, since Ω ∈ C0,1 has
a Lipschitz boundary, and put β = ap and α = γ thus β ≤ 0.
c The embeddings of the weighted Sobolev spaces into the spaces of continuous functions have

been proved by R. C. Brown and B. Opic in [BO92]. To use these results, we set A = ∂Ω as a
singular set and Ωa = Ω in [BO92] on pages 282 and 283. Then the condition (A1) in chapter 3 in
[BO92] is satisfied with r(t) = d(t)/2 since

∀t ∈ Ω : B(t, d(t)/2) ̸= ∅ and also
⋃
t∈Ω

B(t, d(t)/2) = Ω.

For the Hölder embedding we want to show [BO92, p. 292 (5.8)-(5.9) ] with definitions

C(Ω; dβ0) =

{
u ∈ C(Ω)

∣∣∣∣ sup
s∈Ω

(
dβ1(s)|u(s)|

)
<∞

}
,

C0,λ(Ω; dβ0 , dβ1 , {U(t)}) =

{
u ∈ C(Ω; dβ0)

∣∣∣∣∣ sup
s∈U(t),s ̸=t

(
dβ1(s)

|u(s)− u(t)|
|s− t|λ

)
<∞

}

By setting {U(t)} = {B(t, 12d(t))}, β0 = 0 = β1, γ = α− p we obtain the inequality

0 = β1p > γ

(
1− n

p
− λ

)
+ α

(
n

p
+ λ

)
= ap− p+ n+ λp

which is satisfied with λ < 1 − a − n
p . Hence the inequality [BO92, p. 292 (5.8) ] is strict and by

[BO92, p. 292 (5.9) and p.295 Remark 5.2] the embedding is compact

W 1,p(Ω; dap−p, dap) =W 1,p(Ω; dα−p, dα) ↪→↪→ Cλ
(
Ω; 1, 1,

{
B
(
t, 12d(t)

)})
and especially

W̊ 1,a
p (Ω) ↪→↪→ Cλ(Ω)

since Ω is compact with Lipschitz boundary and u = 0 on ∂Ω for u ∈ W̊ 1,a
p (Ω).

d Again, in the work of Opic and Kufner [OK90, p.275 (19.39) Theorem 19.11] we set κ = 1, since
Ω ∈ C0,1 has a Lipschitz boundary, and put β = ap and α = γ.

From these embedding Theorems, we can draw some conclusions. First, from Lemma 27 d
for q = p we get some simpler embedding

∀γ > −1 : W 1,a
p (Ω) ↪→↪→ Lp(Ω; dγ),(103)
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and especially W 1,a
p (Ω) ↪→↪→ Lp(Ω). Furthermore, by taking u ≡ 1 with a = 0, we observe that

the distance to boundary function d satisfies dγ ∈ L1(Ω) for all γ > −1 while Ω has a Lipschitz
boundary. Likewise, as it is pointed out in [MMS10, p.208 (7.1)] from (103) we can deduce that the
following norm in

Wm,a
p (Ω) ∋ u 7→

∑
|α|=m

∥Dαu∥Lp(Ω;dap) + ∥u∥Lp(ω)

where ω ̸= ∅ is an open domain with ω ⊂ Ω, is equivalent to norm (101) on Wm,a
p (Ω). It is shown

in Lemma 99 by using a weighted Poincare inequality proved in Lemma 98.
In a similar spirit, one can investigate norm equivalence on spaces W̊m,a(Ω). By using some

Hardy-type inequalities [OK90] Kufner has shown in [Kuf80, p. 91 Theorem 9.2] that the following
norm lacking all lower-order terms

W̊m,a
p (Ω) ∋ u 7→

 ∑
|α|=m

∥Dαu∥pLp(Ω;dap)

1/p

(104)

is equivalent to (101) on W̊m,a
p (Ω). Furthermore, by using among other things the embedding

theorem in Lemma 27 a , one can obtain one more equivalent norm. Especially, by [Kuf80, p. 94
Theorem 9.7] the norm (101) is equivalent to

W̊m,a
p (Ω) ∋ u 7→

 ∑
|α|≤m

∥Dαu(x)∥p
Lp(Ω;d(a−m+|α|)p)

1/p

on W̊ 1,a
p (Ω). Moreover, the same Theorem [Kuf80, p. 94 Theorem 9.7] states that one can charac-

terize W̊m,a
p (Ω) not only as closure of C∞

c (Ω) but also as

W̊m,a
p (Ω) =

u ∈Wm,p
loc (Ω)

∣∣∣∣∣∣
∑

|α|≤m

∥Dαu(x)∥p
Lp(Ω;d(a−m+|α|)p)

<∞

 .

Regarding the trace theory of the weighted Sobolev spaces in Lipschitz domains, we use the
well-developed results in [MMS10, p. 208 Chapter 7]. In fact, we will first define spaces for traces
Tr[Dαu] and then define spaces for Dirichlet data ∂ku

∂νk
=
∑

|α|=k
k!
α!ν

αTr[Dαu] in the sense of (38)
for higher-order boundary value problems. Initially, we need to recall a definition of the Besov
space on boundary Bs

p(∂Ω) with p ∈ (1,∞) and s ∈ (0, 1) depending on a

s := 1− a− 1

p
∈ (0, 1),(S)

consisting of functions f ∈ Lp(∂Ω) satisfying the following condition

∥f∥Bs
p(∂Ω) := ∥f∥Lp(∂Ω) +

(∫
∂Ω

∫
∂Ω

∣∣f(x)− f(y)
∣∣p

|x− y|n−1+sp
dSx dSy

) 1
p

<∞

where by dS we denote the surface element on ∂Ω. In fact, by [MS11, Lemma 1 p.39] Bs
p(∂Ω) is

a trace space of W 1,a(Ω) in the sense that for a satisfying (pa) and s defined by (S) the operator
Tr : W 1,a

p (Ω) → Bs
p(∂Ω) is well-defined, bounded, onto, linear, and has the homogeneous space

W̊ 1,a
p (Ω) as its null space. Moreover, there exists an extension operator E : Bs

p(∂Ω) → W 1,a
p (Ω),

which is also linear and continuous and satisfies Tr ◦E = Id.
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Now, we want to introduce higher-order Besov spaces on the boundary of a Lipschitz domain. Let
p ∈ (1,∞), s ∈ (0, 1) and m ∈ N then

Ḃm−1+s
p (∂Ω) := closure of

{
(Dαv|∂Ω)|α|≤m−1

∣∣ v ∈ C∞
c (Rn)

}
in Bs

p(∂Ω).

The trace and extension theorem for Ḃm−1+s
p (∂Ω) andWm,a

p (Ω) is proven in [MMS10, Proposi-
tion 7.3]. It states for parameters a, s like in (pa), (S) and Tr :W 1,a

p (Ω) → Bs
p(∂Ω) above, that there

ist a higher-order trace operator trm−1 : Wm,a
p (Ω) → Ḃm−1+s

p (∂Ω) which is a well-defined, linear,
bounded operator, onto setting trm−1 u := {Tr[Dαu]}|α|≤m−1. Moreover, W̊m,a

p (Ω) is its null-space,
and there exists a linear continuous extension operator E : Ḃm−1+s

p (∂Ω) → Wm,a
p (Ω) such that

trm−1 ◦E = Id.
Next, we have to discuss the space for the Dirichlet data, which differs from trace spaces like

Bm−1+s
p (∂Ω). So we understand the boundary data {gk}0≤k≤m−1 in (39) in the following sense

[MMS10, p.229 Theorem 7.8 (7.107)]: there exists an array (vector-valued function)

ḟ = {fα}|α|≤m−1 ∈ Ḃm−1+s
p (∂Ω) such that gk =

∑
|α|=k

k!

α!
ναfα for each 0 ≤ k ≤ m− 1.

Then by Ẇm−1+s
p (∂Ω) we denote the set of families {gk}0≤k≤m−1. We also set the corresponding

norm [MMS10, p.223 Theorem 7.8 (7.78)] by

∥g∥Ẇm−1+s
p (∂Ω) :=

∑
|α|≤m−1

∥fα∥Bs
p(∂Ω).

There are corresponding trace and extension results for this space shown in [MMS10, p.223 The-
orem 7.8]. Therefore, there is a well-defined, bounded Trm−1 : Wm,a

p (Ω) ∋ u 7→
{
∂ku
∂νk

}
0≤k≤m−1

∈
Ẇm−1+s
p (∂Ω) with right-inverse Extm−1 : Ẇm−1+s

p (∂Ω) → Wm,a
p (Ω) that is also well-defined and

bounded linear operator that Trm−1 ◦Extm−1 = Id. In this context, the most important fact for us
is that the null-space of Trm−1 consists precisely of functions in W̊m,a

p (Ω). Hence

W̊m,a
p (Ω) =

{
u ∈Wm,a

p (Ω)

∣∣∣∣ ∂ku∂νk
= 0 on Ω for 0 ≤ k ≤ m− 1

}
.(105)

By [MMS10, corollary 7.11] the space Ẇ 1+s
p (∂Ω), which we only need to in our casem = 2, has

actually a rather simple form. For its description, we introduce the tangential derivative

∂

∂τjk
:= νj

∂

∂xk
− νk

∂

∂xj
, 1 ≤ j, k ≤ n.

Then the tangential gradient on the surface ∂Ω is given by

∇tan :=

 n∑
j=1

νj
∂

∂τjk


1≤k≤n

= ∇− ∂

∂ν
.(106)

This enables us to define Sobolev spaces of order one on ∂Ω that is important for the case m = 2,
which we will use later. Let φ : I → ∂Ω parametrization by arclength, then for 1 < p < ∞ we
define

L1
p(∂Ω) :=

{
f ◦ φ ∈W 1,p(I)

∣∣ ∥f∥L1
p(∂Ω) := ∥f∥Lp(∂Ω) + ∥∇tanf∥Lp(∂Ω) <∞

}
.
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Finally, by [MMS10, p. 232 Corollary 7.11] the space Ẇ 1+s
p (∂Ω) takes the shape

Ẇ 1+s
p (∂Ω) =

{
(g0, g1) ∈ L1

p(∂Ω)⊕ Lp(∂Ω)
∣∣ νg1 +∇tang0 ∈ Bs

p(∂Ω)
}

(107)

with the corresponding norm

∥g∥Ẇ 1+s
p (∂Ω) := ∥g0∥Bs

p(∂Ω) + ∥νg1 +∇tang0∥Bs
p(∂Ω)

where p ∈ (1,∞) and s ∈ (0, 1).
Since we have defined weighted Sobolev spaces and spaces for Dirichlet data, let us revisit the

inhomogeneous Dirichlet problem (39) for an elliptic operator A
∑

|α|=|β|=m

Dα
(
Aαβ(x)D

βu
)
= F for x ∈ Ω,

∂ku

∂νk
= gk on ∂Ω, 0 ≤ k ≤ m− 1.

(inD)

with right-hand side F ∈ W−m,a
p (Ω), and boundary data g := {gk}0≤k≤m−q ∈ Ẇm−1+s

p (∂Ω).
Solvability and uniqueness for (inD) in the weighted Sobolev-Besov setting has been shown in
[MMS10, p. 169 Theorem 1.1] under some further assumptions on the Lipschitz bounded Ω and
the elliptic bounded coefficients Aαβ . It can be found in Proposition 28. In order to formulate the
last condition, we have to define the BMO modulo VMO character of a function f ∈ L1(Ω) by the
quantity

{f}∗,Ω := lim
ε→0

(
sup
t∈Ω

∫
−
Bn

ε (t)∩Ω

∫
−
Bn

ε (t)∩Ω

∣∣f(x)− f(y)
∣∣dx dy)

whereBn
ε (t) stands for n-dimensional open ball with the center t and radius ε. Similarly, we define

{f}∗,∂Ω := lim
ε→0

(
sup
t∈∂Ω

∫
−
Bn

ε (t)∩∂Ω

∫
−
Bn

ε (t)∩∂Ω

∣∣f(x)− f(y)
∣∣ dSx dSy) .

Now, we can state the existence and regularity result in the weighted Sobolev setting.

28 Proposition

Let Ω ⊂ R
n be a bounded Lipschitz domain with the exterior normal vector ν and Aαβ, |α| = |β| = m

bounded measurable coefficients of an elliptic operator L in the sense (36). Further, suppose p ∈ (1,∞) and
s ∈ (0, 1) with a := 1− s− 1/p according to (pa) as well as F ∈W−m,a

p (Ω), and Dirichlet boundary data
g := {gk}0≤k≤m−q ∈ Ẇm−1+s

p (∂Ω). Then there exist a constant C111 > 0 depending only on Ω and the
ellipticity constant of L such that if

{ν}∗,∂Ω +
∑

|α|=|β|=m

{Aαβ}∗,Ω ≤ C111 s(1− s)
(
p2(p− 1)−1 + s−1(1− s)−1

)−1
(nuA)

then there exists a unique solution u ∈Wm,a
p (Ω) to the inhomogeneous Dirichlet problem (inD). Moreover,

there exists a constant C112 = C112(∂Ω, Aαβ, p, s) such that

∥u∥Wm,a
p (Ω) ≤ C112

(
∥g∥Ẇm−1+s

p (∂Ω) + ∥F∥W−m,a
p (Ω)

)
.

Proof: Theorem 8.1. on page 233 in [MMS10].
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It is possible to replace the technical condition (nuA) with some directly involving BMO and
VMO spaces. Which stand, respectively, for the space of functions of bounded mean oscillations and
its subspace of functions of vanishing mean oscillations considered either on ∂Ω for ν or on Ω forAαβ .
More precisely, we call f ∈ L1

loc(Ω) a BMO(Ω)-function if

∥f∥∗ := sup
t∈Ω

∫
−
Bn

ε (t)∩Ω

∣∣∣∣∣ f(x)−
∫
−
Bn

ε (t)∩Ω
f(y) dy

∣∣∣∣∣dx <∞(108)

which becomes a norm on this space after dividing out constant functions. We define the space
VMO(Ω) consisting of functions f ∈ BMO(Ω) satisfying

lim
ε→0

(
sup
t∈Ω

∫
−
Bn

ε (t)∩Ω

∣∣∣∣∣ f(x)−
∫
−
Bn

ε (t)∩Ω
f(y) dy

∣∣∣∣∣ dx
)

= 0.

This space is discussed in detail by [Sar75]. The spaces BMO(∂Ω) and VMO(∂Ω) are defined in the
same way by replacing in the formula above Ω with ∂Ω. One of the basic properties of VMO(Ω) or
VMO(∂Ω) is that it includes uniformly continuous functions that are bounded in Ω or ∂Ω.

If we now denote by dist (f,VMO(Ω)) for an arbitrary function f ∈ BMO(Ω) its distance to
VMO(Ω) measured in the BMO norm ∥ .∥∗ then it follows the equivalence dist (f,VMO(Ω)) ∼
{f}∗,Ω. With the same results for ∂Ω we can reformulate the condition (nuA) as

dist (ν,VMO(∂Ω)) +
∑

|α|=|β|=m

dist (Aαβ,VMO(Ω)) ≤ C s(1− s)
(
p2(p− 1) + s−1(1− s)−1

)−1
.

Consequently, if ν ∈ VMO(∂Ω) and Aαβ ∈ VMO(Ω) for |α| = |β| = m the condition (nuA)
is fulfilled for all values p ∈ (1,∞), s ∈ (0, 1). This is especially the case when ∂Ω ∈ C1 and
Aαβ ∈ C0(Ω) for |α| = |β| = m. The same inequality (nuA) is also valid if ∥ν∥∗+

∑
|α|=|β|=m ∥Aαβ∥∗

is small enough. Regarding the regularity of the boundary, we notice that depending on p, s one
can achieve ∥ν∥∗ small enough by allowing only a sufficiently small Lipschitz constant for the
boundary. As noticed in [MS11, p.43], some examples with ∥ν∥∗ small enough are Lipschitz graph
polyhedral domains with dihedral angles chosen sufficiently close to π, depending on p and s. It
means that the Lipschitz boundary makes only small kinks.

In the case of the Lipschitz class boundary, there is also a generalization of Miranda’s maximum
modulus Theorem proved by Pipher and Verchota in [PV93].

29 Proposition (Pipher, Verchota)

SupposeΩ ⊂ Rn, n = 2, 3 is a bounded Lipschitz graph domain. Moreover, letu be the uniqueL2-solution of
(35) for ∆2u = 0 with the given Dirichlet boundary data g0 ∈ L1

2(∂Ω), g1 ∈ L2(∂Ω) and |∇u| ∈ L∞(∂Ω).
Then

sup
x∈Ω

∣∣∇u(x)∣∣ ≤ C113∥∇u∥L∞(∂Ω)

with C113 depending only on the Lipschitz structure of ∂Ω.

Proof: [PV93, p. 387 Theorem 1.2].

Like in the unweighted Sobolev setting, we need some preliminary estimates. The following
one concerns a general biharmonic problem with a divergence right-hand side. Furthermore, in
order to be able to use weighted embedding result W̊ 2,a

p (Ω) ↪→↪→ C1(Ω) by Lemma 27 c , we have
to restrain the distance weight powers to a < 1− 2

p .
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30 Proposition

Let Ω ⊂ R
2 be a bounded Lipschitz domain with exterior normal vector ν satisfying (nuA). Furthermore,

assume that p > 2, p ≥ t > 2p
2+p−ap , 0 < a < 1 − 2

p and h1 ∈ Lt(Ω; d2at), h2 ∈ Lp(Ω; dap) as well as
g := {g0, g1} ∈ Ẇ 1+s

p (∂Ω) such that g0, νg1+∇tang0 ∈ L∞(∂Ω) with s := 1−a− 1
p . Then the following

Dirichlet problem ∆2u = Dih
i
1 +D2

ijh
ij
2 in Ω,

∂ku

∂νk
= gk on ∂Ω, 0 ≤ k ≤ 1,

(109)

admits a unique weak solutionu ∈W 2,a
p (Ω)∩C1(Ω). Moreover, there exist constantsC114 = C114(p, t, a, ∂Ω),

C115 = C115(a, ∂Ω) such that

∥u∥
W 2,a

p (Ω)
≤ C112∥g∥Ẇ 1+s

p (∂Ω) + C114

(
∥h1∥Lt(Ω;d2at) + ∥h2∥Lp(Ω;dap)

)
,

∥D2u∥L1(Ω;da) ≤ C115∥νg1 +∇tang0∥L∞(∂Ω) + C114

(
∥h1∥Lt(Ω;d2at) + ∥h2∥Lp(Ω;dap)

)
,

∥∇u∥L∞(Ω)+ ≤ C113∥νg1 +∇tang0∥L∞(∂Ω) + C114

(
∥h1∥Lt(Ω;d2at) + ∥h2∥Lp(Ω;dap)

)
.

Proof: Here, we want to incorporate the embedding lemma 27 and Proposition 28 where we set
n = 2. In order to prove the C1(Ω) estimate, we split (109) in two parts∆2w = 0 in Ω,

∂kw

∂νk
= gk on ∂Ω, 0 ≤ k ≤ 1,

∆2v = Dih
i
1 +D2

ijh
ij
2 in Ω,

∂kv

∂νk
= 0 on ∂Ω, 0 ≤ k ≤ 1,

1 We begin with considering v. In this situation, by definition (102) we have to check Dih
i
1 +

D2
ijh

ij
2 ∈W−2,a

p (Ω) =
(
W̊ 2,−a
p′ (Ω)

)∗. Therefore, let φ ∈ C∞
c (Ω) and t′ = t/(t− 1) the dual exponent

of t then we obtain∣∣∣∣∫
Ω
φDh1 dx

∣∣∣∣ = ∣∣∣∣∫
Ω
Dφh1 dx

∣∣∣∣ ≤ ∫
Ω
|Dφ|d−2ad2a|h1|dx ≤ ∥Dφ∥Lt′ (Ω;d−2at′ )∥h1∥Lt(Ω;d2at)

by Hölder inequality. Now, what we have to show is the following estimate

∥Dφ∥Lt′ (Ω;d−2at′ ) ≤ C116∥Dφ∥W̊ 1,−a

p′ (Ω)
.(110)

Hence we have to check that the assumptions of Lemma 27 b are satisfied. First, we observe by
putting t′ → q and p′ → p in Lemma 27 b (here one hast to check q ≥ p, i.e. t′ ≥ p′) that we get
the first assumption

2

t′
− 2

p′
+ 1 =

2

p
− 2

t
+ 1 >

2

p
− p+ 2

p
+ 1 = 0

since t > 2p
2+p−ap ≥ 2p

2+p . The second condition follows by additionally setting γ → −2at′ in Lemma
27 b

−2at′

t′
− −ap′

p′
+

2

p
− 2

t
+ 1 = −a+ 2

p
− 2

t
+ 1 > 0.

Therefore, we obtain the compact embedding W̊ 1,−a
p′ (Ω) ↪→↪→ Lt

′
(Ω; d−2at′) and the estimate (110)

follows. Next, we consider the h2 part. Again with some φ ∈ C∞
c (Ω) we conclude∣∣∣∣∫

Ω
φD2h1 dx

∣∣∣∣ = ∣∣∣∣∫
Ω
D2φh1 dx

∣∣∣∣ ≤ ∫
Ω
|D2φ|d−ada|h2|dx ≤ ∥D2φ∥Lp′ (Ω;d−ap′ )∥h2∥Lp(Ω;dap).
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Combining two results, we get∣∣∣∣∫
Ω
φ(Dih

i
1 +D2

ijh
ij
2 ) dx

∣∣∣∣ ≤ ∥φ∥
W̊ 2,−a

p′ (Ω)
· C117

(
∥h1∥Lt(Ω;d2at) + ∥h2∥Lp(Ω;dap)

)
.(111)

Since C∞
c (Ω) is dense in W̊ 2,−a

p′ (Ω) the mapping

W̊ 2,−a
p′ (Ω) ∋ u 7→

∫
Ω
u(Dih

i
1 +D2

ijh
ij
2 ) dx

lies inW−2,a
p (Ω)with its norm bounded by a multiple of

(
∥h1∥Lt(Ω;d2at) + ∥h2∥Lp(Ω;dap)

)
. Finally, we

use Proposition 28 and obtain existence, uniqueness of a solution v ∈W 2,a
p (Ω) to the homogeneous

Dirichlet problem as well as the W 2,a
p (Ω)-a-priori estimate. Moreover, since ∂kv

∂νk
= 0 on ∂Ω for

0 ≤ k ≤ 1 it follows by (105) that v ∈ W̊ 2,a
p (Ω) and we get the following estimate

∥v∥
W̊ 2,a

p (Ω)
≤ C112C118

(
∥h1∥Lt(Ω;d2at) + ∥h2∥Lp(Ω;dap)

)
.

By Hölder’s inequality and boundedness of Ω, we also get

∥D2v∥L1(Ω;da) ≤ C119

(
∥h1∥Lt(Ω;d2at) + ∥h2∥Lp(Ω;dap)

)
.

Further on, since p > 2 and a < 1 − 2
p we have the weighted embedding W̊ 2,a

p (Ω) ↪→↪→ C1(Ω) by
Lemma 27 c . Thus, we conclude

∥v∥C1(Ω) ≤ C120

(
∥h1∥Lt(Ω;d2at) + ∥h2∥Lp(Ω;dap)

)
.

2 Now, let us turn to the biharmonic Dirichlet problem corresponding tow with inhomogeneous
boundary data. Here, we again are making use of Proposition 28 and get existence and uniqueness
in W 2,a

p (Ω) as well as

∥w∥
W 2,a

p (Ω)
≤ C112∥g∥Ẇ 1+s

p (∂Ω).

The followingL∞-gradient estimate involves Proposition 29 (the Agmon-Miranda maximum mod-
ulus estimate) proved by Pipher and Verchota for Lipschitz domains. To be able to use this result,
we have to relate Dirichlet boundary data g ∈ Ẇ 1+s

p (∂Ω) to the space WA1,∞(∂Ω) (for notation
see [PV93]). First, we observe, that by [MMS10, p.230 Corollary 7.10] there exists an array in
non-Dirichlet trace space f ∈ Ḃ1+s

p (∂Ω) such that

g0 = f0, g1 = νf1 and f1 = νg1 +∇tang0

and by trace Theorems Tr(u) = g0,Tr(∇u) = f1 = νg1 + ∇tang0. Now since g0 ∈ L1
2(∂Ω), g1 ∈

L2(∂Ω) then Proposition 29 yields

∥∇w∥L∞(Ω) ≤ C113∥νg1 +∇tang0∥L∞(∂Ω).

3 Next, we use the result that the maximal function dominates square functions in L2 [DKPV97,
p.1455 Theorem 2] and get∫

Ω
|D2w(x)|2d(x) dx ≤ C121

∫
∂Ω

|N(∇w)|2 ds ≤ C122∥∇w∥2L∞(∂Ω)

where N(∇u) is the non-tangential maximal function of a function ∇u on boundary.∣∣∣∣∫
Ω
|D2w(x)|d

1
2 (x)da−

1
2 (x) dx

∣∣∣∣ ≤ C123∥∇w∥L∞(∂Ω) ·
∫
Ω
d2a−1 dx <∞

since due to a ≥ 0 we have 2a − 1 > −1. Finally by combining the above results, the proof is
complete.
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Similar to the unweighted case, in the following Lemma, we take some preparatory steps
needed to applying a fixed point argument.

31 Lemma

Let p ∈ (2,∞), a ∈
(
− 1

p , 1 − 1
p

)
and i, j, ℓ, k ∈ N0, i ≥ 1, k ≥ 2 then there exists a constant C124 =

C124(Ω, p, a) such that if u ∈W 2,a
p (Ω) with ∥∇u∥L∞(Ω) ≤ 1 then it follows∥∥D2u ⋆ D2u ⋆ Q−jPi(∇u)

∥∥
Lp/2(Ω;dap)

≤ C124∥D2u∥2Lp(Ω;dap)∥∇u∥L∞(Ω),∥∥D2u ⋆ Q−j(1 +Q)−ℓPk(∇u)
∥∥
Lp(Ω;dap)

≤ C124∥D2u∥Lp(Ω;dap)∥∇u∥L∞(Ω).
(112)

Furthermore suppose w ∈W 2,a
p (Ω) with ∥∇w∥L∞(Ω) ≤ 1 then it follows∥∥∥D2u⋆ D2u ⋆ Q−j(u)Pi(∇u) −D2w ⋆ D2w ⋆ Q−j(w)Pi(∇w)

∥∥∥
Lp/2(Ω;dap)

≤ C124∥u− w∥
W 2,a

p (Ω)

(
∥D2u∥2Lp(Ω;dap) + ∥D2w∥2Lp(Ω;dap)

)
)

(113)

as well as ∥∥D2u ⋆ Q−j(1 +Q)−ℓ(u)Pk(∇u)−D2w ⋆ Q−j(1 +Q)−ℓ(w)Pk(∇w)
∥∥
Lp(Ω;dap)

≤ C124∥u− w∥
W 2,a

p (Ω)

(
∥∇u∥L∞(Ω) + ∥∇w∥L∞(Ω)

) (
∥u∥

W 2,a
p (Ω)

+ ∥w∥
W 2,a

p (Ω)

)
.

(114)

Proof: In the same way as in Lemma 24.

We are now equipped to prove the existence of the weightedW 2,p
a (Ω) solution for the rewritten

Willmore equation ∆2u = Dib
i
1[u] +D2

ijb
ij
2 [u] for x ∈ Ω,

∂ku

∂νk
= gk on ∂Ω, 0 ≤ k ≤ 1,

(115)

with the right-hand side given by (60) and some boundary conditions g := {g0, g1} lying in the
Dirichlet boundary space Ẇ 1+s

p (∂Ω) characterized by (107)

Ẇ 1+s
p (∂Ω) =

{
(g0, g1) ∈ L1

p(∂Ω)⊕ Lp(∂Ω)
∣∣ νg1 +∇tang0 ∈ Bs

p(∂Ω)
}

with boundary functions space

L1
p(∂Ω) :=

{
f ◦ φ ∈W 1,p(I)

∣∣ ∥f∥L1
p(∂Ω) := ∥f∥Lp(∂Ω) + ∥∇tanf∥Lp(∂Ω) <∞

}
and tangent gradient (106) ∇tan = ∇ − ∂

∂ν . Moreover the term νg1 + ∇tang0 will play the role of
∇u at the boundary. Subsequently, in Corollary 33, it will be shown that boundary condition data
belonging to the C1+α class can be accommodated within the more general space Ẇ 1+s

p (∂Ω).

32 Theorem

Let Ω ⊂ R
2 be a bounded Lipschitz domain with exterior normal vector ν satisfying (nuA). Furthermore,

assume that p ∈ (2,∞), a ∈
(
0, 1− 2

p

)
, as well as g := {g0, g1} ∈ Ẇ 1+s

p (∂Ω) such that g0, νg1+∇tang0 ∈
L∞(∂Ω) with s := 1− a− 1

p . Additionally, we suppose that ∥g∥Ẇ 1+s
p (∂Ω) < K for some K > 0.

Then there exists a constant δ = δ(Ω,K, p, a) > 0 such that if

∥νg1 +∇tang0∥L∞(Ω) < δ

then there exists a weak solution u ∈ W 2,a
p (Ω) to the Willmore-type Dirichlet problem, thus u solves (115)

with the right-hand side (60).
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Proof: We use the usual steps to apply a fixed point argument.
1 Definition of the iteration map & set

We define the iteration map G by setting Gv for each v ∈ W 2,a
p (Ω) as the solution w ∈ W 2,a

p (Ω) to
the boundary problem ∆2w = Dib

i
1[v] +D2

ijb
ij
2 [v] in Ω,

∂ku

∂νk
= gk on ∂Ω, 0 ≤ k ≤ 1.

(116)

Existence, regularity, and uniqueness are provided by Proposition 28.
Since a < 1− 2

p , we set q ∈
(

2
1−a , p

)
by q := 1

2

(
2

1−a + p
)

Then we observe that by q > 2
1−a > 2 it

follows a < 1− 2
q and thus the spaceW 2,a

q (Ω) (with the same a as inW 2,a
p (Ω)!) is also well-defined.

Moreover, sinceΩ is boundedW 2,a
p (Ω) ↪→↪→W 2,a

q (Ω) by Hölder’s inequality. Further on, we define
the iteration set

MK
δ :=

{
u ∈W 2,a

p (Ω)

∣∣∣∣∣ ∥∇u∥L∞(Ω) ≤ 2C113δ, ∥D2u∥L1(Ω;da) ≤ 2C115(a,Ω)δ,

∥u∥
W 2,a

p (Ω)
≤ 2C112(p, a,Ω)K

}

with δ > 0 some constant, which will be specified by several conditions that we will state in the
following.

First we observe, that there exists a power γ := p
q
q−1
p−1 ∈ (0, 1) such that we can interpolate

∥D2u∥Lq(Ω;daq) ≤ ∥D2u∥1−γ
L1(Ω;da)

∥D2u∥γLp(Ω;dap).(117)

We formulate the first condition by

2C113δ1 ≤ 1,(WC1)

hence for all δ ≤ δ1 we get ∥∇u∥L∞Ω) ≤ 1 for all u ∈ MK
δ thus we can use the results in Lemma 31.

2 G is a self-map

Suppose w ∈ MK
δ . In order to prepare us for the application of Proposition 30, we need to discuss

the possible t values for the b1 term. Actually, we want to justify that we can put t = p
2 . Therefore,

while 0 < a ≤ 1− 2
p it follows 1 < p(1−a)

2 . We deduce

1 <
2p

2− ap+ p
=

p

1 + p(1−a)
2

<
p

2
= t.(118)

By Proposition 30 and ∥w∥L∞(Ω) ≤ 1 as well as the condition (WC1) for Lemma 31 we conclude

∥Gw∥
W 2,a

p (Ω)
≤ C112∥g∥Ẇ 1+s

p (∂Ω) + C114

(
∥b1[w]∥Lp/2(Ω;dap) + ∥b2[w]∥Lp(Ω;dap)

)
≤ C112(p, a,Ω)K + C125

(∥∥D2w
∥∥2
Lp(Ω;dap)

∥∥∇w∥L∞(Ω) +
∥∥D2w

∥∥
Lp(Ω;dap)

∥∥∇w∥L∞(Ω)

)
≤ C112(p, a,Ω)K + C126(Ω, p, a)(K

2δ +Kδ).

Thus, we impose the second constraint on δ by choosing δ2 such that

C126(Ω, p)(δ2K
2 +Kδ2) ≤ C112(p, a,Ω)K,(WC2)

and from here on consider only δ ∈ (0, δ2). It follows that ∥Gw∥
W 2,a

p (Ω)
≤ 2C112(p, a,Ω)K.

The corresponding W 2,a
q (Ω)-estimate is similar. Hence, we conclude

∥D2Gw∥L1(Ω;da) ≤ C115(a,Ω)δ + C127

(∥∥D2w
∥∥2
Lq(Ω;daq)

∥∥∇w∥L∞(Ω) +
∥∥D2w

∥∥
Lq(Ω;daq)

∥∥∇w∥L∞(Ω)

)
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≤ C115(a,Ω)δ + C128(Ω, a)((δ
1−γKγ)2 + δ1−γKγ)δ.

We now state the third constraint by choosing δ3 by

C128(Ω, a)(δ
1−γ
3 Kγ2 + δ1−γ3 Kγ) ≤ C112(q, a,Ω).(WC3)

It remains to consider the gradient estimate. Again, by Proposition 30 and Lemma 31 it follows

∥∇(Gw)∥L∞(Ω) ≤ C113∥νg1 +∇tang0∥L∞(∂Ω) + C114

(
∥b1[w]∥Lq/2(Ω;daq) + ∥b2[w]∥Lq(Ω;daq)

)
≤ C113δ + C128(Ω, q, a)((δ

1−γKγ)2 + δ1−γKγ)δ.

Therefore, we set the fourth condition by

C128(Ω, q, a)((δ
1−γ
4 Kγ)2 + δ1−γ4 Kγ) ≤ C113.(WC4)

Combining the above results yields that the map G : MK
δ → MK

δ is a self map for all δ smaller
than δ1, δ2, δ3 and δ4.
3 G is a contraction

The last property we want to verify is the contraction property, thus for allu,w ∈ MK
δ the difference

betweenGw andGu has to be bounded. First, we notice thatGu−Gw is a solution to the following
problem

∆2(Gu−Gw) = Di

(
bi1[u]− bi1[w]

)
+D2

ij

(
bij2 [u]− bij2 [w]

)
in Ω,

in the class W̊ 2,a
p (Ω). In the same way as in the previous step, we want to use again the Proposition

30 and ∥w∥L∞(Ω) ≤ 1with Lemma 31. In preparation, we observe that by (118) we are able to choose
some t > 0 such that max

{
2p

2−ap+p ,
q
2

}
< t < p

2 . Especially, we put t := 1
2 max

{
2p

2−ap+p ,
q
2

}
+ p

4 as
the arithmetic mean. Therefore

∥Gu−Gw∥
W 2,a

p (Ω)
≤ C114(p, t,Ω)

(
∥b1[u]− b1[w]∥Lt(Ω;d2at) + ∥b2[u]− b2[w]∥Lp(Ω;dap)

)
.

At this point, it makes sense to estimate each part separately. We begin with the b1 terms∥∥b1[u] − b1[w]
∥∥
Lt(Ω;d2at)

≤ C124∥u− w∥
W 2,a

2t (Ω)

(
∥D2u∥2L2t(Ω;d2at) + ∥D2w∥2L2t(Ω;d2at)

)
≤ C129∥u− w∥

W 2,a
2t (Ω)

(
∥D2u∥αLq(Ω;dqa)∥D

2u∥1−αLp(Ω;dpa) + ∥D2u∥αLq(Ω;dqa)∥D
2u∥1−αLp(Ω;dpa)

)
with α > 0 by Lp-interpolation, since we have chosen 2t = αq + (1 − α)p to lie strictly between q
and p. While (u− w) ∈ W̊ 2,a

p (Ω) ↪→↪→ C1(Ω) and for Ω bounded W̊ 2,a
p (Ω) ↪→↪→ W̊ 2,a

2t (Ω) we get∥∥b1[u]− b1[w]
∥∥
Lt(Ω;d2at)

≤ C130∥u− w∥
W 2,a

p (Ω)
(δ1−γKγ)2αK2(1−α).

We continue with the b2-term∥∥b2[u] − b2[w]
∥∥
Lp(Ω;dap)

≤ C124∥u− w∥
W 2,a

p (Ω)

(
∥∇u∥L∞(Ω) + ∥∇w∥L∞(Ω)

) (
∥u∥

W 2,a
p (Ω)

+ ∥w∥
W 2,a

p (Ω)

)
≤ C131∥u− w∥

W 2,a
p (Ω)

δK.

We combine the both estimates and obtain for some constant C132 = C132(p, a,Ω)

∥Gu−Gw∥
W 2,a

p (Ω)
≤ C132((δ

1−γKγ)2αK2(1−α) + δK)∥u− w∥
W 2,a

p (Ω)
.
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Hence, by setting δ5 = δ5(p, q,K,Ω) such that

C132

(
(δ1−γ5 Kγ)2αK2(1−α) + δ5K

)
∥u− w∥W 2,p(Ω) ≤

1

2
(WC5)

we get the final condition on δ. For each δ ≤ δ5 satisfying all the previous constraints (WC1),
(WC2), (WC3), (WC4) we obtain for all u,w ∈ MK

δ

∥Gu−Gw∥
W 2,a

p (Ω)
≤ 1

2
∥u− w∥

W 2,a
p (Ω)

.

Therefore if we put δ ≤ min{δ1, δ2, δ3, δ4, δ5} then G is a contraction on MK
δ .

4 Making use of the fixed point theorem

Finally, we combine all conditions (WC1),(WC2),(WC3),(WC4) and (WC5) on δ

0 < δ ≤ δ0 := min
{
δ1, δ2, δ3, δ4, δ5

}
(119)

and use Banach fixed point theorem to get the existence of a unique fixed pointu∗ ∈ MK
δ ⊂W 2,a

p (Ω)

such that u∗ = Gu∗. Therefore u∗ ∈ W 2,a
p (Ω) is a solution of the Willmore equation in W 2,a

p (Ω).

33 Corollary

Assume that Ω ⊂ R
2, α ∈ (0, 1) , β ∈ (0, α), ∂Ω ∈ C1+α, g0 ∈ C1+α(∂Ω) and g1 ∈ Cα(∂Ω). Addition-

ally, we suppose that ∥g0∥C1+α(∂Ω) + ∥g1∥Cα(∂Ω) < K for some K > 0.
Then there exists a constant δ = δ(α, β,K,Ω) > 0 such that if ∥g0∥C1(∂Ω)+∥g1∥C0(∂Ω) < δ, then there

exists a weak solution u ∈ C1+β(Ω) ∩W 2,2/(α−β)
loc (Ω) to the Willmore-type Dirichlet problem, therefore u

solves (74) with the right-hand side (60).

Proof: Let s ∈ (β, α) that will be specified later. At the beginning, we want to prove that
Cα(∂Ω) ↪→↪→ Bs

p(∂Ω) for each p > 2. Let f ∈ Cα(∂Ω) then we make a use of Besov norm
definition

∥f∥Bs
p(∂Ω) = ∥f∥Lp(∂Ω) +

(∫
∂Ω

∫
∂Ω

∣∣f(x)− f(y)
∣∣p

|x− y|2−1+sp
dSx dSy

) 1
p

≤ |∂Ω|∥f∥C0(∂Ω) +

(∫
∂Ω

∫
∂Ω

|x− y|−1+(α−s)p dSx dSy

) 1
p

∥f∥Cα(∂Ω) <∞

since α− s > 0 and ∂Ω ∈ C1+α. Furthermore, ν ∈ Cα(∂Ω) yields ∇tang0 ∈ Cα(∂Ω) and moreover
g0 ∈ L1

p(∂Ω). Hence, with g1 ∈ Cα(∂Ω) it follows νg1 +∇tang0 ∈ Bs
p(∂Ω) with

∥νg1 +∇tang0∥L∞(∂Ω) ≤ C133(∂Ω)
(
∥g0∥C1(∂Ω) + ∥g1∥C0(∂Ω)

)
and we conclude that g := {g0, g1} ∈ Ẇ 1+s

p (∂Ω).
In order to use Theorem 32 we recall the possible values of p > 2 and 0 ≤ a := 1−s− 1

p < 1− 2
p .

Thus we have to choose p later in the range of

1

p
< min (s, 1− s) .(120)

Under this condition and boundary data constraints, we obtain u ∈W 2,a
p (Ω), the unique solution to

the Willmore problem (74) with the right-hand side (60). It follows in particular that u ∈W 2,2
loc (Ω).
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Now, let w ∈W 2,a
p (Ω) be solution to the biharmonic equation with Dirichlet boundary data{

∆2w = 0, in Ω,

w = g0, ∂νu = g1 on ∂Ω.

then by [GGS10, Theorem 2.19 p. 45 ] we have the following Schauder estimate

∥w∥C1+α(∂Ω) ≤ C134∥g0∥C1+α(∂Ω) + C135∥g0∥Cα(∂Ω).

Furthermore, by Lemma 27 (c) with λ = 1− a− 2
p = s− 1

p we can use the compact embedding

W̊ 2,a
p (Ω) ↪→↪→ C

1+s− 1
p (Ω).

For the purpose of the right Hölder power, we set the parameters

s :=
1

2
(α+ β) and p :=

1

s− β
=

2

α− β
.

Then we check that the condition for p in (120) is fulfilled

1

p
= s− β < s and 1

p
=

1

2
(α− β) = α− s < 1− s.

Therefore, with w − u ∈ W̊ 2,a
p (Ω) we obtain w − u ∈ C1+β(Ω) and

∥w − u∥C1+β(Ω) ≤ C136∥w − u∥
W̊ 2,a

p (Ω)
.

Consequently, we get u ∈ C1+β(Ω) ∩W 2,1−α
2/(α−β)(Ω). Therefore u ∈W

2,2/(α−β)
loc (Ω).

5.5 Higher Regularity

Due to some structural properties of the Willmore-type equation (57), via bootstrapping it is actu-
ally possible to show that, despite using lower regularity spaces Cα+2(Ω),W 2,p(Ω) and W 2,a

p (Ω),
the solution u is smooth in Ω. Moreover, if the Dirichlet data has more regularity than Ẇ 1+s

p (∂Ω)
then the solution u has as much regularity as allowed by trace theorems, thus up to the boundary.

At this point, let us recall the Willmore equation (57) described in Lemma 18 as

∆gH +
1

2
H3 − 2HK = ∆2u−∆

(
|∇u|2

Q(1 +Q)
∆u+

∇u(D2u∇u)
Q3

)
−D2

ij

(
∇iu∇ju

Q2
H

)
+ div

(
5

2

H2

Q
∇u+ 2

H

Q2
D2u∇u− 2

∆uH

Q2
∇u
)

= ∆2u−Dib
i
1[u]−D2

ijb
ij
2 [u]

with Q =
√

1 + |∇u|2 and the divergence structure

b1[u] = D2u ⋆ D2u ⋆

3∑
k=1

Q−2k−1P2k−1(∇u),

b2[u] = D2u ⋆
2∑

k=1

Q−2k−1P2k(∇u) +D2u ⋆ P2(∇u) ⋆ (Q(1 +Q))−1.
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The basic idea of how to gain more regularity is to combine the biharmonic operator with the b2
terms to a new elliptic operator L(∇u) depending only on ∇u defined later such that we deal with
an equation of the form

L(∇u)w = ∇ · P.

where for some miltiindex α we will mostly put Dαu in the place of w and P corresponds to some
right-hand side in divergence form. Moreover, in the case of w with vanishing trace, the W 3,p

norm of w can be bounded by the Lp(Ω)-norm of P , as observed in Proposition 23 for ψ1. This will
improve interior regularity fromW 2,p toW 3,p, the idea that we can successively use for derivatives
of any order.

Now let us define

L(∇u)w = ∆2w −∆

(
|∇u|2

Q(1 +Q)
∆w +

∇u(D2w∇u)
Q3

)
−D2

ij

(
∇iu∇ju

Q2

(
∆w

Q
− ∇u(D2w∇u)

Q3

))
=

∑
|α|,|β|=2

Dα
(
Aαβ(∇u)Dβu

)
Especially, in case w = u we get L(∇u)u = ∆2u − D2

ijb
ij
2 [u]. Moreover, let NB(∇u) be the non-

biharmonical part of L(∇u) such that L(∇u)w − ∆2w = D2NB(∇u)[w]. In particular, it has the
form

D2
ij

(
NBij

(∇u)[w]
)
= −∆

(
|∇u|2

Q(1 +Q)
∆2w +

∇u(D2w∇u)
Q3

)
−D2

ij

(
∇iu∇ju

Q2

(
∆w

Q
− ∇u(D2w∇u)

Q3

))
.

Again in the case w = u we get NB(∇u)[u] = −b2[u].
Next, let us discuss ellipticity. For each ξ = (ξ1, ξ2) ∈ R2 it follows∑
|α|,|β|=2

ξα1
1 ξα2

2

(
Aαβ(∇u)ξβ11 ξβ22

)
=

(
1− |∇u|2

Q(1 +Q)

)
(∥ξ∥2)2 − 2

∥ξ∥2 (∇u · ξ)2

Q3
+

(∇u · ξ)4

Q5

=
1

Q

(
∥ξ∥2 − (∇u · ξ)2

Q2

)2

≥ ∥ξ∥4

Q5

thus for each u ∈ C1(Ω) the operator L(∇u) is strongly elliptic.
In more detail, the main idea is to formally rewrite the Willmore-type equation such that for

each multi-index γ with |γ| ∈ N order derivative

L(∇u)D
γu = Di

(
P iγ [u]

)
(121)

with Pγ [u] = Pγ(D
|γ|+2u,D|γ|+1u, . . . ,∇u) a polynomial consisting of derivatives of order up to

|γ| + 2. Especially, P i0[u] = bi1[u]. Hence for each γ, the structure of such polynomial has to be
described more precisely. Such Pγ involves higher derivatives of b1 and b2, where we have to
subtract some terms associated with L(∇u).

We can reconstruct the structure of Pγ [u] in the following way. We formally m-times differen-
tiate the both sides of the Willmore-type equation ∆2u = Dib

i
1[u] +D2

ijb
ij
2 [u] and obtain

∆2Dγu = DiD
γbi1[u] +D2

ijD
γbij2 [u].(122)

Therefore, we conclude by definition of L(∇u)

L(∇u)D
γu = ∆2Dγu+D2

ij

(
NBij

(∇u)[D
γu]
) (122)

= DiD
γbi1[u] +D2

ij

(
Dγbij2 [u] +NBij

(∇u)[D
γu]
)
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= Di

(
Dγbi1[u] +Dj

(
Dγbij2 [u] +NBij

(∇u)[D
γu]
))
.

Thus we set

P iγ [u] := Dγbi1[u] +Dj

(
Dγbij2 [u] +NBij

(∇u)[D
γu]
)
.(123)

In the following lemma, we will observe that in Dγbij2 [u] +NBij
(∇u)[D

γu] all terms that include
D2Dγu cancel out. The reason is that by product rule the only possibility to get the DγD2u-terms
by differentiating bij2 [u] |γ|-times is to differentiate all D2u-terms in bij2 [u] |γ|-times (all other terms
have lower order). This is equivalent to replacing all D2u-terms in bij2 [u] by DγD2u-terms. In fact,
the resulting term is by definition equal to −NBij

(∇u)[D
γu]. This is important because otherwise,

we would have to move these terms from the right-hand side to the operator L(∇u). The remaining
terms give us Pγ [u] for which we derive some preparatory estimates.

34 Lemma

Let Ω ⊂ R
n be a bounded domain with Cm−1,1 boundary, m ∈ N,m > 2, p > 2, u ∈ Wm,a

p (Ω) and γ a
multiindex with |γ| = m− 2.

Then there exits a constant C137 = C137(m) depending only on the algebraic structure of b1 and b2 and
m such that

for m = 3 :
∣∣Pγ [u]∣∣ ≤ C137(3)

(
|D3u| · |D2u|+ |D2u|3

)
,

for m = 4 :
∣∣Pγ [u]∣∣ ≤ C137(4)

(
|D4u| · |D2u|+ |D3u|2 + |D3u| · |D2u|2 + |D2u|4

)
.

If m ≥ 5 then it follows with some constant C138 depending on a, p,m,Ω and the algebraic structure of
b1 and b2 ∥∥Pγ [u]∥∥Lp(Ω;dap)

< C138

(
∥u∥2Wm,a

p Ω) + ∥u∥mWm,a
p Ω)

)
.

Proof: 1 We begin with m = 3. Thus, we have to describe Pγ corresponding to ∇u. Then for
|γ| = 1 we use ∇Q−1 = Q−3D2u ⋆∇u and get.

∇b1[u] = D3u ⋆ D2u ⋆

3∑
k=1

Q−2k−1P2k−1(∇u) +D2u ⋆ D2u ⋆ D2u ⋆

3∑
k=1

Q−2k−1P2k−2(∇u)

+D2u ⋆ D2u ⋆ D2u ⋆
3∑

k=1

Q−2k−3P2k(∇u)

= D3u ⋆ D2u ⋆

3∑
k=1

Q−2k−1P2k−1(∇u) + P3(D
2u) ⋆

4∑
k=1

Q−2k−1P2k−2(∇u).

Furthermore, we have to differentiate the corresponding b2[u] twice. First, since ∥∇u∥Q−1 < 1 and
Q−1 < 1 it follows ∣∣∇b1[u]∣∣ ≤ C139

(
|D3u| · |D2u|+ |D2u|3

)
.

In a similar way, for b2[u] we first calculate

∇bij2 [u] = D2∇u ⋆
2∑

k=1

Q−2k−1P2k(∇u) +D2u ⋆ D2u ⋆
3∑

k=1

Q−2k−1P2k−1(∇u)

+D2∇u ⋆ P2(∇u) ⋆ (Q(1 +Q))−1 +D2u ⋆ D2u ⋆∇u ⋆ (Q(1 +Q))−1
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+D2u ⋆ D2u ⋆ P3(∇u) ⋆
(
Q−3 ⋆ (1 +Q)−1 +Q−2 ⋆ (1 +Q)−2

)
.

At this point, we observe that the terms corresponding to NB(∇u)[∇u] are those with D2∇u-term.
Thus we conclude

∇bij2 [u] +NBij
(∇u)[∇u] = D2u ⋆ D2u ⋆

3∑
k=1

Q−2k−1P2k−1(∇u)

+D2u ⋆ D2u ⋆∇u ⋆ (Q(1 +Q))−1

+D2u ⋆ D2u ⋆ P3(∇u) ⋆
(
Q−3 ⋆ (1 +Q)−1 +Q−2 ⋆ (1 +Q)−2

)
.

(124)

Similar to b1[u] we get∣∣∇(∇bij2 [u] +NBij
(∇u)[∇u]

)∣∣ ≤ C140

(
|D3u| · |D2u|+ |D2u|3

)
.

2 For the case m > 3, we observe that |∇Q−1| = |Q−3D2u ⋆∇u| ≤ |D2u|Q−2. Since in each
term ofDγbi there are always more Q′s than ∇u′s, by applying the absolute value later on, we can
skip the parts involving ∇u and Q. Furthermore, since all terms we want to derive have structure
given by a ⋆-chain of derivatives

D|γ|+2u ⋆ D|γ|+1u ⋆ · · · ⋆ D2u ⋆∇u ⋆ Q−1,

only by derivingQ−1 the chain gets an additional linkD2u. Thus after applying the absolute value,
we get at most m-product of derivatives of order greater than 1. Hence, by skipping all ∇u and Q
we get schematically,

D2b1[u] ∼ D4u ⋆ D2u+D3u ⋆ D3u+D3 ⋆ P2(D
2u) + P4(D

2u),

Dγb1[u] ∼ Dmu ⋆ D2u+Dm−1u ⋆ Q1(D
m−2u, . . . ,D2u) +Q2(D

m−2u, . . . ,D2u)

for m = |γ| + 2 > 4 and Qi(D
γu, . . . ,D2u) stands for some polynomial consisting of derivatives

up to order γ. Moreover, Q2 has a polynomial degree of m and that of Q1 is lower than m− 1.
Furthermore, by embedding results in Lemma 27 d and especially (103) for p > n and Cm−1,1

boundary of Ω, it follows

Wm,a
p (Ω) ↪→↪→Wm−1,p(Ω) ↪→↪→ Cm−2(Ω).

Hence, we can estimate ∥u∥Cm−2(Ω) ≤ C141∥u∥Wm,a
p (Ω). By combing the results we get

∥Dγb1[u]∥Lp(Ω;dap) ≤ C
(
∥u∥2Wm,a

p (Ω) + ∥u∥mWm,a
p (Ω)

)
.(125)

For the b2[u] estimate we first observe that Dγbij2 [u] +NB(∇u)[∇u] ∼ Dγ−1bij1 [u] again by skipping
∇u and Q. It follows

∇
(
Dγbij2 [u] +NBij

(Dγu)[∇u]
)

∼ Dmu ⋆ D2u + Dm−1u ⋆ P1(D
m−2u, . . . ,D2u) + P2(D

m−2u, . . . ,D2u)

and we can conclude∥∥∥∇(Dγbij2 [u] +NBij
(∇u)[D

γu]
)∥∥∥
Lp(Ω;dap)

≤ C
(
∥u∥2Wm,a

p (Ω) + ∥u∥mWm,a
p (Ω)

)
.(126)

We finish the proof by combining (125) and (126).
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5.5.1 Interior Regularity

In this subsection, we want to show that each solution of the Willmore-type equation is smooth
in the interior of Ω. Our strategy is to demonstrate that if u ∈ W k,p

loc (Ω) then u ∈ W k+1,p
loc (Ω) by

using a bootstrap argument for the formulation (121) with (123). We consider for each point in Ω
a sequence of shrinking open balls in which we step-wise gain one order of regularity. One of the
main tools is the next lemma, where we show more regularity in a smaller inner open ball for the
operator L(∇u)w with divergence right-hand side. Especially, the assumption u ∈ C1 is important.

35 Lemma

Let t, s > 1, x0 ∈ Rn, u ∈ C1(B2R(x0)), h ∈ Lt(B2R(x0)). Furthermore suppose w ∈ W 2,s(B2R(x0))
with w · |D2u| ∈ Lt(B2R(x0)) satisfying

L(∇u)w = Dh in B2R(x0)(127)

then w ∈W 3,t(BR(x0)) and the following local estimate holds

∥w∥W 3,t(BR(x0)) ≤ C142

(
∥h∥Lt(B2R(x0)) +

∥∥w · |D2u|
∥∥
Lt(B2R(x0))

+ ∥w∥Lt(B2R(x0))

)
.(128)

with C142 = C142(∇u, t, R).

Proof: Here we want to use the result in [ADN59, Theorem 15.1” p. 707] for ℓ = 3 in order to
obtain inner W 3,t regularity. Thus we have to rewrite the operator L and (127)

L(∇u)w =
∑

|α|,|β|=2

Dα1
(
Aαβ(∇u)Dα2Dβw

)
+

∑
|α|,|β|=2

Dα1

(
Dα2

(
Aαβ(∇u)

)
Dβw

)
= Dh.

with |α1| = 1 = 4 − ℓ. Next we observe that the estimate
∣∣∇Aαβ(∇u)∣∣ ≤ C143

∣∣D2u
∣∣ holds. Since

the coefficients Aαβ(∇u) are continuous, by [ADN59, Theorem 15.1” p. 707] we conclude that
w ∈W 3,t(BR(x0)) with

∥w∥W 3,t(BR(x0)) ≤ C142

(
∥h∥Lt(B2R(x0)) +

∥∥|D2u|w
∥∥
Lt(B2R(x0))

+ ∥w∥Lt(B2R(x0))

)
so that the proof is finished.

36 Theorem

Assume p > 2, 0 ≤ a ≤ 1 − 1
p and u ∈ C1(Ω) ∩W 2,a

p (Ω) is a solution to the Willmore-type Dirichlet
problem (115) with the right-hand side (60).

Then u ∈ C∞(Ω).

Proof: Here, we want to use Lemma 35 locally in Ω to show more internal regularity iterativly. We
begin by choosing an open ball in Ω. More precisely, let x0 ∈ Ω then there exists d(x0) > 0 and we
can consider Bd(x0)(x0) ⊂ Ω.

1 Our first goal is to show that

∀s > 2 ∃ ρ > 0 : u ∈W 2,s(Bρ(x0)) ∩W 3,s/2(Bρ/2(x0))

by considering an elliptic equation for u, thus (121) with |α| = 0. We begin by observing that since
u ∈ C1(Ω) ∩W 2,a

p (Ω) solves (115) with the right-hand side (60), it follows u ∈ C1(Bd(x0)(x0)) ∩
W 2,p(Bd(x0)(x0)) with

L(∇u)u = Dib
i
1[u] in Bd(x0)(x0).
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In order to use Lemma 35 for this equation we chose 2R = d(x0), t = p/2 then b1 ∈ Lp/2(Bd(x0)(x0))
with

∥b1∥Lp/2(Bd(x0)
(x0))

≤ ∥D2u∥Lp(Bd(x0)
(x0)) <∞.

Then, by u ∈ C1(Bd(x0)(x0)) it follows u ∈W 3,p/2(Bd(x0)/2(x0)) with

∥u∥W 3,p/2(Bd(x0)/2
(x0))

≤ C144

(
∥b1∥Lp/2(Bd(x0)

(x0))
+ ∥D2u∥Lp(Bd(x0)

(x0)) + ∥u∥Lp/2(Bd(x0)
(x0))

)
≤ C145

(
∥u∥W 2,p(Bd(x0)

(x0))

)
<∞

(129)

where C145 and most of the following constants are also depending on ∇u.

2 In this step, we want to discuss how to raise the integrability power to arbitrary powers. First,
we observe that by Sobolev’s embedding theorem it follows

for p ≥ 4 : u ∈W 3,p/2(Bd(x0)/2(x0)) ↪→W 2,s(Bd(x0)/2(x0)) for all s > 1,

for p < 4 : u ∈W 3,p/2(Bd(x0)/2(x0)) ↪→W 2,2p/(4−p)(Bd(x0)/2(x0)).

where we observe that 2
4−pp > p for p > 2. Especially in case 2

4−pp ≥ 4 we can again apply the
arguments in step 1 with radius d(x0)/2 and get

u ∈W
3, p

4−p (Bd(x0)/4(x0)) ↪→W 2,s(Bd(x0)/4(x0)) for all s > 1.

Hence, we only have to discuss the case p < 4 and 2
4−pp < 4 where we can again use Lemma 35

like in step 1 with radius d(x0)/2, t = p
4−p and obtain

u ∈W 2,ℓ0(Bd(x0)/4(x0)) for ℓ0 :=
2

4− 2p
4−p

2p

4− p
>

(
2

4− p

)2

p

since 2p
4−p > p > 2. In case ℓ0 < 4 we repeat the same procedure and get ℓ1 >

(
2

4−p

)3
p with

u ∈W 2,ℓ1(Bd(x0)/8(x0)). Thus, by applying Lemma 35 with on Bd(x0)/2j+1(x0)

ℓj :=
2

4− ℓj−1
ℓj−1, for j = 1, 2, . . .

at most ln
(
4
p

)
/ ln

(
2

4−p

)
times one obtains ℓk ≥ 4 for some k = k(p) ∈ N. Hence

∀s > 2 : u ∈W 2,s(Bd(x0)/2k+3(x0)) ∩W 3,s/2(Bd(x0)/2k+4(x0)).

3 In the following, we want to show that u is C2-smooth in some small ball, so that the estimates
in Lemma 34 for Pα[u] involving D2u in some nonlinear manner become much easier to handle.
We set s = 2p and get with some ρ = ρ(s) < d(x0)

u ∈W 2,2p(Bρ(x0)) ∩W 3,p(Bρ/2(x0)).

Therefore, by Sobolev’s embedding it follows u ∈ C2(Bρ(x0)) and we conclude for the results of
Lemma 34 in the case m = 3∥∥∇b1[u] +∇

(
∇bij2 [u] +NBij

(∇u)[∇u]
)∥∥
Lp(Bρ(x0)))

≤ C137

(
∥D3u∥Lp(Bρ(x0)) · ∥D

2u∥
C0(Bρ(x0))

+ ∥D2u∥3Lp(Bρ(x0))

)
≤ C146

(
∥u∥2W 3,p(Bρ(x0))

+ ∥u∥3W 3,p(Bρ(x0))

)
.
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Actually, in the next step 4 we will also show that u ∈W 4,p(Bρ/2(x0)) by iteration argument. For
preparation, we assume only for the next estimate u ∈ W 4,p(Bρ/2(x0)) ↪→↪→ W 3,p(Bρ/2(x0)) since
p > 2 and show by Lemma 34 for m = 4∥∥D2b1[u] +D2

(
∇bij2 [u] +NBij

(∇u)[∇u]
)∥∥
Lp(Bρ/2(x0))

≤ C147

∥u∥W 4,p(Bρ/2(x0))
· ∥D2u∥

C0(Bρ(x0))
+ ∥u∥2W 3,2p(Bρ/2(x0))

+ ∥u∥3W 3,p(Bρ/2(x0))
· ∥D2u∥2

C0(Bρ(x0))
+ ∥D2u∥4

C0(Bρ(x0))


≤ C148

(
∥u∥2W 4,p(Bρ/2(x0))

+ ∥u∥3W 4,p(Bρ/2(x0))
+ ∥u∥4W 4,p(Bρ/2(x0))

)
.

4 By induction on m ≥ 3, we want to establish u ∈ Wm,p(Bρ/2m−2(x0)) by using step 3 and
Lemma 34 for the unweighted case a = 0 on Bρ/2m−2(x0) and Lemma 35. From now on, for any
fixedm ≥ 3 assume that u ∈W 3,2p(Bρ/2(x0)) form = 3 and u ∈Wm,p(Bρ/2m−2(x0)) form ≥ 4 and
let γ be any multiindex with

|γ| = m− 2.

Our goal is to prove thatDγu ∈W 2,p(Bρ/2m−2(x0)) satisfy the corresponding elliptic equation (121)
with (123). Therefore we can choose any test function ṽ ∈ C∞

c (Bρ/2m−2(x0)) and set

v := (−1)|γ|Dγ ṽ

and use it for the Willmore-type equation L(∇u)u = Dib
i
1[u]. Since by Lemma 34 Dγb1[u] ∈

Lp(Bρ/2m−2(x0)) we get with Aαβ as coefficients of L(∇u) and integration by parts

∑
|α|,|β|=2

∫
Ω
Aαβ(∇u)DαuDβ

(
(−1)|γ|Dγ ṽ

)
dx = −

∫
Ω
b1[u] · ∇(−1)|γ|Dγ ṽ dx

=

∫
Ω
∇iD

γbi1[u]ṽ dx.

For the part with elliptic coefficients it follows∑
|α|,|β|=2

∫
Ω
Aαβ(∇u)DαuDβ

(
(−1)|γ|Dγ ṽ

)
dx =

∑
|α|,|β|=2

∫
Ω
Dγ
(
Aαβ(∇u)Dαu)Dβ ṽ dx

=
∑

|α|,|β|=2

∫
Ω
Aαβ(∇u)DαDγu)Dβ ṽ dx+

2∑
i,j=1

∫
Ω

(
Dγbij2 [u] +NBij(∇u)[Dγu]

)
D2
ij ṽ dx

=
∑

|α|,|β|=2

∫
Ω
Aαβ(∇u)(DαDγu)Dβ ṽ dx−

2∑
i,j=1

∫
Ω
∇i

(
Dγbij2 [u] +NBij

(∇u)[D
γu]
)
∇j ṽ dx

where NB(∇u) represents the non-biharmonical elements of L(∇u) like defined in Lemma 35 and
∇
(
Dγb2[u] +NB(∇u)[D

γu]
)
∈ Lp(Bρ/2m−2(x0)). Therefore, Dγu ∈Wm−2

p (Bρ/2m−2(x0)) solves

L(∇u)D
γu = Di

(
Dγ(bi1[u]) +∇j

(
Dγbij2 [u] +NBij

(∇u)[D
γu]
))

= Di(P
i
γ [u]) in Bρ/2m−2(x0).

Then again by Lemma 34 and step 3 we get Pα[u] ∈ Lp(Bρ/2m−2(x0)) with∥∥Pα[u]∥∥Lp(Bρ/2m−2 (x0))
≤ C149

(
∥u∥2Wm,p(Bρ/2m−2 (x0))

+ ∥u∥mWm,p(Bρ/2m−2 (x0))

)
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and by Lemma 35 we obtain that Dγu ∈W 3,p(Bρ/(2m−1)(x0)) with

∥Dγu∥W 3,p(Bρ/2m−1 (x0)) ≤ C142

∥u∥2Wm,a
p (Bρ/2m−2 (x0))

+ ∥u∥mWm,a
p (Bρ/2m−2 (x0))

+
∥∥|D2u| · |Dγu|

∥∥
Lp(Bρ/2m−2 (x0))

+ ∥Dγu∥Lp(Bρ/2m−2 (x0))

 .

Hence u ∈ Wm+1
p (Bρ/2m−1(x0)). By applying the same scheme to all m = 3, 4, . . . we deduce

infinite differentiability in x0 since Wm
p (Bρ/2m−2(x0)) ↪→↪→ Cm−1(Bρ/2m−1(x0)).

5.5.2 Boundary Regularity

With a slightly different technique, we can also obtain higher boundary regularity in the case
Dirichlet data provides enough regularity.

37 Theorem

Letm ∈ N,m ≥ 2, and ∂Ω ∈ Cm. Furthermore, assume p, q > 2, 0 ≤ a ≤ 1− 1
p andu ∈ C1(Ω)∩W 2,a

p (Ω)

is a solution to the Willmore-type Dirichlet problem (115) with the right-hand side (60) and u−φ ∈ W̊ 2,a
p (Ω)

with some φ ∈Wm,q(Ω) ∩W 2,a
p (Ω).

Then u ∈Wm,q(Ω).

Proof: 1 At the beginning, we observe that by interior regularity Theorem 36 u ∈ C∞(Ω) and
moreover for all multi-index γ we get

L(∇u)D
γu = Di

(
P iγ [u]

)
in Ω.

Subsequently, consider a biharmonical problem with boundary data given by φ. Thus, let u0 ∈
Wm,q(Ω) be the solution of the following problem

L(∇u)u0 = 0 in Ω

such that u0 − φ ∈ W̊m,q(Ω). Then we get the estimate

∥u0∥Wm,q(Ω) ≤ C150∥φ∥Wm,q(Ω).

2 Consider first the case |γ| = 1. Especially, since in Ω:

∆2∇u0 +D2∇(NB(∇u)[u0]) = ∇L(∇u)(u0) = 0(130)

it follows that

L(∇u)(∇u0) = ∆2∇u0 +D2NB(∇u)[∇u0]
(130)
= D2NB(∇u)[∇u0]−D2∇

(
NB(∇u)[u0]

)
,

where in the right side the terms with D2∇u0 cancel out

L(∇u)(∇u) = Di

(
∇(bi1[u]) +∇j

(
∇bij2 [u] +NBij

(∇u)[∇u]
))
,

where on the right-hand side the terms with D2∇u cancel out. Thus we get

L(∇u)(∇(u− u0)) = Di

(
∇(bi1[u]) +∇j

(
∇bij2 [u] +NBij

(∇u)[∇u]
))

−D2
(
NB(∇u)[∇u0]−∇

(
NB(∇u)[u0]

))
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By (111) from Proposition 30 and general weighted Sobolev estimate 28, as well as (124) we get
similar to the arguments given in interior regularity Theorem 36 step 1 that ∇(u−u0) ∈W 2,a

p/2(Ω)

with

∥∇(u− u0)∥W 2,a
p/2

(Ω)
≤ C151

(
∥b1[u]∥Lp/2(Ω;dap/2) +

∥∥|D2u|2
∥∥
Lp/2(Ω;dap/2)

+
∥∥|D2u| · |D2u0|

∥∥
Lp/2(Ω;dap/2)

)
<∞.

Then by weighted embedding Lemma 27 d we obtain

∀s < p : W 1,a
p/2(Ω) ↪→↪→ Ls(Ω).

Hence it follows ∇(u− u0) ∈W 2,s(Ω).

3 In case q < p then we have it follows u ∈W 2,q(Ω). Let us now assume that q ≥ p. Then we can
choose any s = 1

2(2 + p) ∈ (2, p). Let us assume that s > 4, then it follows s/2 > 2 > 2
2/q+1 = 2q

2+q

and we can use unweighted Proposition 23 from Sobolev theory with t = s and p = q and get for

L(∇u)(u− u0) = Dib
i
1[u] in Ω

with u− u0 ∈ W̊ 2,q(Ω) the Lq-estimate

∥u− u0∥W 2,q(Ω) ≤ C152∥b1[u]∥Ls/2(Ω) ≤ C153

(
∥u∥W 2,s(Ω) + ∥u− u0∥W 2,s(Ω)

)
≤ C154

(
∥u∥

W 2,a
p (Ω)

+ ∥u∥
W 2,a

p (Ω)
+ ∥φ∥W 2,q(Ω)

)
.

That means u ∈W 2,q(Ω).
In case s ≤ 4 by using the same iteration technique as in interior regularity Theorem 36 step

1 to get with some k ∈ N

∥u− u0∥W 2,ℓi (Ω) ≤ C∥u− u0∥W 2,ℓi−1 (Ω) with ℓ0 = s, ℓi =
2

4− ℓi−1
ℓi−1, i = 1, . . . , k

and either ℓk > 4 or ℓ ≥ q. In both cases, we obtain u ∈ W 2,q(Ω). In the case m > 2, we can
conclude like in Theorem 36 steps 2 and 3 iterative for each 2, . . . ,m.

38 Theorem

Let m ∈ N,m ≥ 2, ℓ = max{4,m} and ∂Ω ∈ Cℓ+α. Further, assume u ∈ C1(Ω) ∩W 2,a
p (Ω) is a solution

to the Willmore-type Dirichlet problem (115) with the right-hand side (60) and Dirichlet data g = {g0, g1}
such that g0 ∈ Cm+α(∂Ω) and g1 ∈ Cm−1+α(∂Ω) for some α ∈ (0, 1).

Then u ∈ Cm+α(Ω).

Proof: First, we observe that by Theorem 37 u ∈ C∞(Ω) ∩Wm,p(Ω) for all p > 2. This means
u ∈ Cm−1+β(Ω) for all β ∈ (0, 1).

We continue with a biharmonical problem with g boundary data. Thus, let u0 ∈ Cm+α(Ω) be
the solution of the following problem{

L(∇u)u0 = 0 in Ω

u0 = g0,
∂u0
∂ν = g1 on ∂Ω.

Then since u ∈ C1+α(Ω) by [ADN59, p. 680 Theorem 9.3] we get existence and Hölder-estimate

∥u0∥Cm+α(Ω) ≤ C155

(
∥g0∥Cm+α(∂Ω) + ∥g1∥Cm−1+α(∂Ω)

)
.
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To obtain Cm+α regularity, with each multiindex γ such that |γ| = m− 2 we get

L(∇u)D
γu = Di

(
Dγ(bi1[u]) +∇j

(
Dγbij2 [u] +NBij

(∇u)[D
γu]
))

in Ω.

Let us first consider the case m = 2. Then, with the same calculation as in Theorem 37 2 we get
for all p > 2 by Proposition 23 from Sobolev theory

∥∇(u0 − u)∥W 2,p/2(Ω) ≤ C156∥b1[u]∥Lp/2(Ω)

+ C157

∥∥∥∇(bij2 [u]− bij2 [u0]) +NBij
(∇u)[∇u]−NBij

(∇u)[∇u0]
∥∥∥
Lp/2(Ω)

≤ C158

(
∥u∥W 2,p(Ω) + ∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω)

)
with C158 depending on ∇u,Ω, p. Thus for some s = 2p > 2 big enough we get

∥∇(u0 − u)∥C1+α(Ω) ≤ C159∥∇(u0 − u)∥W 2,s(Ω) ≤ C160

(
∥u∥W 2,s/2(Ω) + ∥g0∥C2+α(∂Ω) + ∥g1∥C1+α(∂Ω)

)
<∞.

This means u ∈ C2+α(Ω).
Next, assume m > 2 and u ∈ Cm−1+α(Ω). Therefore using results from the proof in Lemma 34

we get for each multiindex γ with |γ| = m− 2

∥Dγu−Dγu0∥C2+α(Ω) ≤ C161∥D|γ|−1b1[u]∥Cα(Ω)

+ C162

∥∥∥D|γ|−1
(
∇(bij2 [u]− bij2 [u0]) +NBij

(∇u)[∇u]−NBij
(∇u)[∇u0]

)∥∥∥
Cα(Ω)

≤ C163

(
∥u∥Cm−1+α(Ω) + ∥g0∥Cm+α(∂Ω) + ∥g1∥Cm−1+α(∂Ω)

)
hence u ∈ Cm+α(Ω).
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6 Parabolic Theory

In this chapter, we study the Willmore flow initial boundary value problem with irregular initial
data by using time-weighted and unweighted parabolic Hölder spaces (see [Bel79]). For graphs
on R2, it was already done in [KL12], where initial data was merely Lipschitz. Since we have
prescribed boundary values, to get continuity for t ↘ 0 we have to make sure that the initial and
boundary values are consistent with each other. With C4+α-regularity of initial data u0, only if u0
satisfies the condition

0 = ∆Γ(u0)H(u0) + 2H

(
1

4
H2 −K

)
(u0), on ∂Ω(uCC)

the solution of the Willmore flow will stay C4+α-bounded for t ↘ 0. In fact, it is preferable
to avoid (uCC), since the compatibility condition cannot be realized well numerically, and is also
not physically relevant, since like for biharmonic heat flow, irregularities are expected to smooth
out. First, we have to formulate the Willmore flow equation for the graphical case such that the
divergence structure is usable. Then, we linearize the parabolic problem by freezing coefficients.
Thus, one can use weighted and unweighted parabolic Hölder spaces estimates of the linear theory.
Then, one moves to the spaces with smaller Hölder power and formulates a fixed point problem to
obtain local existence. The case of this C3+α smooth initial data was already handled in [Gul17].
In this work, we want to use the same methods for Cm+α,m = 1, 2 class u0.

6.1 Willmore Flow

Like in the elliptic case, we again use the work of Dziuk and Deckelnick [DD06, (1.5)-(1.9)] and Koch
and Lamm [KL12] for the Willmore flow of graphs. There, they have written the Willmore-flow
equation (3) for the graphical case as

−ut
Q

= ∆gH +
1

2
H3 − 2HK = div

(
1

Q

((
I − ∇u⊗∇u

Q2

)
∇(QH)

)
− H2

2Q
∇u
)
,(131)

with the mean curvature in the form

H = div

(
∇u
Q

)
=

∆u

Q
− ∇u · (D2u∇u)

Q3
.

In this chapter, we are searching for the maximal existence time of the Willmore flow problem:

∂tu+Q

{
∆Γ(u)H + 2H

(
1

4
H2 −K

)}
= 0 in Ω× (0, T ],

u(x, t) = g0(x), (x, t) ∈ ∂Ω× [0, T ],

∂u

∂ν
(x, t) = g1(x), (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = u0(x), x ∈ Ω

(WF)

where we have to mention the corresponding compatibility conditions (CC)

g0 = u0(x), g1(x) =
∂u0
∂ν

(x), x ∈ ∂Ω(CC)
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and (uCC) for u0 ∈ C4+α(Ω) and u(t, . ) ∈ C4+α(Ω) for t ↘ 0. Further, we want to split the
right-hand side of the Willmore flow equation in two different ways. To present these parts more
clearly, we again use ⋆ notation from [KS01] and [KL12]. These denote a linear combination of
tensor contractions for derivatives of u. With the results out of [KL12, Lemma 3.2 p.215] we denote

Pi(u) = ∇u ⋆∇u ⋆ · · · ⋆∇u︸ ︷︷ ︸
i-times

.(132)

Especially in this notation, the Willmore flow equation takes the shape

∂tu+∆2u = f0[u] +∇if
i
1[u] +D2

ijf
ij
2 [u] =: f [u](133)

with right-hand side terms

f0[u] = D2u ⋆ D2u ⋆ D2u ⋆
4∑

k=1

Q−2kP2k−2(∇u)

f1[u] = D2u ⋆ D2u ⋆

4∑
k=1

Q−2kP2k−1(∇u)

f2[u] = D2u ⋆
2∑

k=1

Q−2kP2k(∇u).

(134)

Next, we want to split the Willmore flow equation in another way into two parts. One is linear
in the fourth-order derivatives, and the other is a polynomial of derivatives up to the third order.
For the linear part, we have to prove uniform ellipticity. It can be shown that

Q∆Γ(u)H + 2QH

(
1

4
H2 −K

)
= L(∇u)D4u+R(∇u,D2u,D3u).(A)

with the operator

L(∇u)D4u =
∑
k+ℓ=4

Lkℓ(∇u)∂kx1∂
ℓ
x2u,

where the coefficients are

Lkℓ(∇u) =


L40(∇u)
L31(∇u)
L22(∇u)
L13(∇u)
L04(∇u)


T

=
1

Q4


(1 + u2x2)

2

−4(1 + u2x2)ux1ux2
2(1 + u2x2)(1 + u2x1) + 4u2x1u

2
x2

−4(1 + u2x1)ux1ux2
(1 + u2x1)

2


T

.(L)

With this explicit representation, it can be proven that L(∇u) is uniformly elliptic provided its
gradient is bounded.

39 Lemma (Ellipticity)

Let u ∈ C1(Ω), then with ξ = (ξ1, ξ2) ∈ R2:

1(
1 + ∥∇u∥2

C0(Ω)

)2 |ξ|4 ≤ ∑
k+ℓ=4

Lkℓ(∇u)ξk1ξℓ2 ≤ 4|ξ|4.

Proof: [Gul17, Lemma 6.6]
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The polynomial term R contains monomes of derivatives and 1/Q2. If these containD3u, then
only linearly and in combination with up to one D2u. If a monom does not contain any D3u, then
it includes up to three D2u. With (134) and D(Q−2ℓ) = D2u ⋆∇u ⋆ Q−2(ℓ+1) it results

R(∇ u,D2u,D3u)

= − f0[u]−∇if
i
1[u]−D2

ijf
ij
2 [u] + ∆2u− L(∇u)D4u

= D2u ⋆ D2u ⋆ D2u ⋆

4∑
k=1

Q−2kP2k−2(∇u)

+D

[
D2u ⋆ D2u ⋆

4∑
k=1

Q−2kP2k−1(∇u)

]

+D2

[
D2u ⋆

2∑
k=1

Q−2kP2k(∇u)

]
+∆2u− L(∇u)D4u

= D2u ⋆ D2u ⋆ D2u ⋆

4∑
k=1

Q−2kP2k−2(∇u)

+D3u ⋆ D2u ⋆
4∑

k=1

Q−2kP2k−1(∇u) +D2u ⋆ D2u ⋆ D2u ⋆

4∑
k=1

Q−2(k+1)P2k(∇u)

+D

[
D3u ⋆

2∑
k=1

Q−2kP2k(∇u) +D2u ⋆ D2u ⋆
3∑

k=1

Q−2kP2k−1(∇u)

]
+∆2u− L(∇u)D4u

= D2u ⋆ D2u ⋆ D2u ⋆

5∑
k=1

Q−2kP2k−2(∇u) +D3u ⋆ D2u ⋆

4∑
k=1

Q−2kP2k−1(∇u)

+D3u ⋆ D2u ⋆
2∑

k=1

Q−2(k+1)P2k+1(∇u) +D3u ⋆ D2u ⋆
3∑

k=1

Q−2kP2k−1(∇u)

+D2u ⋆ D2u ⋆ D2u ⋆
3∑

k=1

Q−2(k+1)P2k(∇u)

= D3u ⋆ D2u ⋆

4∑
k=1

Q−2kP2k−1(∇u) +D2u ⋆ D2u ⋆ D2u ⋆

4∑
k=0

Q−2(k+1)P2k(∇u).

(R)

We collect the above results to the following lemma.

40 Lemma

The Willmore flow equation (131) can be rewritten as

−ut = Qdiv

(
1

Q

((
I − ∇u⊗∇u

Q2

)
∇(QH)

)
− H2

2Q
∇u
)

= L(∇u)D4u+R(∇u,D2u,D3u) in Ω× (0, T ]

(135)

where L and R are given by (L) and (R).

6.2 Parabolic Hölder Spaces

In this chapter, we treat the theory of classical solutions of parabolic differential equations of fourth
order. For this purpose, we will deal with parabolic Hölder spaces. Therefore, for these spaces,
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we recall the existence and uniqueness theorem for fourth-order parabolic differential equations
with the Schauder estimates.

Just as in the case of the elliptic differential equations, we have to switch to the Hölder spaces
for optimal regularity. There, however, one should treat the time and place components separately
because the problem behaves asymmetrically with respect to the components. The definition of
parabolic Hölder spaces for higher orders with their properties can be found in works [Sol65] and
[LSvW92]. Instead of working in Ω we work in the parabolic case in the closed time cylinder over
Ω

QT := Ω× [0, T ].

Since the Willmore equation, with which we will deal later, is a fourth-order parabolic differential
equation, we will always stick to the fourth order in the following discussion (in Belonosov’s
notation in [Bel79] that means m = 2).

Let Ω ⊂ R
n be bounded with C4+α-smooth boundary ∂Ω , T > 0. We define for any positive

ℓ ̸∈ N the parabolic Hölder norm

∥u∥
C

ℓ, ℓ4
x,t (QT )

:=
∑

4k+|β|≤⌊ℓ⌋

sup
(x,t)∈QT

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣+ ∑
4k+|β|=⌊ℓ⌋

sup
t∈[0,T ]

[
Dk
tD

β
xu( . , t)

]
Cℓ−⌊ℓ⌋(Ω)

+
∑

ℓ−4<4k+|β|<ℓ

sup
x∈Ω

[
Dk
tD

β
xu(x, . )

]
C

ℓ−4k−|β|
4

(
[0,T ]

),
and for ℓ ∈ Nwe set

∥u∥
C

ℓ, ℓ4
x,t (QT )

:=
∑

4k+|β|≤⌊ℓ⌋

sup
(x,t)∈QT

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣+ ∑
ℓ−4<4k+|β|<ℓ

sup
x∈Ω

[
Dk
tD

β
xu(x, . )

]
C

ℓ−4k−|β|
4

(
[0,T ]

),
as well as for s ≤ ℓ the norm:

∥u∥
C

ℓ, ℓ4
s (QT )

= sup
t<T

t
ℓ−s
4 [u]ℓQ′

t
+

∑
s<4k+|β|<ℓ

sup
(x,t)∈Ω×(0,T ]

t
4k+|β|−s

4

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣+
∥u∥

C
s, s4
x,t (QT )

, s ≥ 0,

0, s < 0,

where Q′
t = Ω× [t/2, t] and:

[u]ℓQ′
t
=

∑
4k+|β|=⌊ℓ⌋

sup
t′∈[t/2,t]

[
Dk
tD

β
xu( . , t

′)
]
Cℓ−⌊ℓ⌋(Ω)

+
∑

ℓ−4<4k+|β|<ℓ

sup
x∈Ω

[
Dk
tD

β
xu(x, . )

]
C

ℓ−4k−|β|
4

(
[t/2,t]

).
In fact, this notation is from [SK80]. In Lemma 91 in Appendix, we show that it is equivalent to the
definitions of norms by Belonosov in [Bel79]. Next we define the weighted parabolic Hölder spaces for
ℓ > s ̸∈ N on QT = Ω× (0, T ]

s > 0 : C
ℓ, ℓ

4
s (QT ) :=

u ∈ C0(QT )

∣∣∣∣∣∣∣∣
for 0 < 4k + |β| ≤ ⌊s⌋ : ∃ Dk

tD
β
xu in QT ,

for ⌊s⌋ < 4k + |β| ≤ ⌊ℓ⌋ : ∃ Dk
tD

β
xu in QT ,

and ∥u∥
C

ℓ, ℓ4
s (QT )

<∞

 ,

s < 0 : C
ℓ, ℓ

4
s (QT ) :=

u ∈ C0(QT )

∣∣∣∣∣∣
for ⌊0⌋ < 4k + |β| ≤ ⌊ℓ⌋ : ∃ Dk

tD
β
xu in QT ,

and ∥u∥
C

ℓ, ℓ4
s (QT )

<∞

 .

In case s ∈ N we define Cℓ,
ℓ
4

s (QT ) to be the the closure of the Cℓ,
ℓ
4

x,t (QT )-functions with respect to

the Cℓ,
ℓ
4

s (QT )-norm. Additionally, we define Cℓ,
ℓ
4

x,t (QT ), the unweighted parabolic Hölder spaces onQT

92



by setting s = ℓ in the definition of Cℓ,
ℓ
4

s (QT ). In the same way we can define Cℓ,
ℓ
4

s (∂Ω× (0, T ]) for
ℓ ̸∈ N with s ≤ ℓ on the weighted parabolic Hölder space on boundary ∂Ω× (0, T ] by replacing Ω with
∂Ω in the upper definition.

For a u ∈ C
ℓ, ℓ

4
s (QT ) its derivatives Dk

tD
β
xu in QT are continuous for k ∈ N0, β ∈ Nn

0 , 4k + |β| ≤
⌊s⌋. By results presented in [Bel79, p.154] i C

s, s
4

r (QT ) is a Banach space, ii C
s, s

4
x,t (QT ) ⊂ C

s, s
4

r (QT )

and Cs,
s
4

s (QT ) = C
s, s

4
x,t (QT ) and by iii for 4k + |β| ≤ ℓ

∥Dk
tD

βu∥
C

ℓ−4k+|β|, ℓ−4k+|β|
4

r−4k+|β| (QT )
≤ ∥u∥

C
ℓ,ℓ/4
r (QT )

(136)

and by v with C164(T ) bounded for T → 0

∥uw∥
C

ℓ,ℓ/4
r (QT )

≤ C164(T )∥u∥Cℓ,ℓ/4
r1

(QT )
∥w∥

C
ℓ,ℓ/4
r2

(QT )
(137)

where r = min(r1, r2, r1 + r2).
One of the fundamental theorems we use excessively for the linearization method is Schauder

existence and estimates results for weighted parabolic Hölder spaces. In the following, we will
assume that the Dirichlet boundary data is in C4+α-regularity class with α ∈ (0, 1). Therefore we
set ℓ = 4 + α.

41 Theorem (Weighted Existence)

Let Ω ⊂ Rn bounded,C4+α-smooth domain, 0 < α < 1, s ∈ [0, 4+α], ν(x) the exterior normal in x ∈ ∂Ω,
f ∈ C

α,α
4

s−4 (QT ), for all β ∈ Nn such that |β| ≤ 4: aβ ∈ C
α,α/4
max{0,s−4}(QT ). Moreover, we assume, that the

uniform ellipticity condition is fulfilled

λ|ξ|4 ≤
∑
|β|=4

aβ(x, t)ξ
β ≤ Λ|ξ|4, ∀ξ ∈ Rn, (x, t) ∈ QT .

with constants 0 < λ ≤ Λ. Consider the following initial value problem with u0 ∈ Cs(Ω), φ ∈
C

4+α,1+α/4
s (∂Ω× (0, T ]), h ∈ C

3+α, 3+α
4

s−1 (∂Ω× (0, T ]):

∂u

∂t
(x, t)+

∑
|β|≤4

aβ(x, t)D
β
xu(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = φ(x, t),
∂u

∂ν
(x, t) = h(x, t), (x, t) ∈ ∂Ω× [0, T ],

with the compatibility conditions

φ(x, 0) = u0(x), h(x, 0) =
∂u0
∂ν

(x) x ∈ ∂Ω,

only for s ≥ 4:
∂φ

∂t
(x, 0) = −

∑
|β|≤4

aβ(x, 0)D
β
xu0(x) + f(x, 0) x ∈ ∂Ω.

Then there is a unique solution u ∈ C
4+α,1+α/4
s (QT ) for the initial value problem.

Proof: Combined results from [Bel79, S. 185] theorem 4 with Dirichlet boundary values and
[LSvW92].
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42 Theorem (Weighted Schauder Estimate)

For the initial value problem above, the following Schauder estimate holds:

∥u∥
C

4+α,1+α/4
s (QT )

≤ C165(T )

 ∥f∥
C

α,α/4
s−4 (QT )

+ ∥φ∥
C

4+α,1+α/4
s (∂Ω×(0,T ])

+ ∥h∥
C

3+α, 3+α
4

s−1 (∂Ω×(0,T ])
+ ∥u0∥Cs(Ω)


where C165 : R+ → R+ is a monotone function that depends on λ,Λ,Ω and c > 0 such that for all |β| ≤ 4:
∥aβ∥Cα,α/4

max{0,s−4}(QT )
< c.

Proof: [Bel79, p. 184] Corollary, (4.10) for m = 2, r = s, s = 4 + α with Dirichlet boundary
conditions.

6.3 Time-Weighted Cm+α
-C4+α

-case

In this subsection, we consider the case where the initial data isu0 ∈ Cm+α,m = 1, 2, 3, 4.Therefore,
we set s = m+ α, f = R and (aβ) ∼= L(∇u) with time-constant Dirichlet boundary values φ = g0
and h = g1. Let us first recall the weighted norm for our case. We begin with the unweighted term

∥u∥
C

m+α,m+α
4

x,t (QT )
=

∑
4k+|β|≤m

sup
(x,t)∈QT

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣+ ∑
4k+|β|=m

sup
t∈[0,T ]

[
Dk
tD

β
xu( . , t)

]
Cα(Ω)

+
∑

m−4+α<4k+|β|≤m

sup
x∈Ω

[
Dk
tD

β
xu(x, . )

]
C

m+α−4k−|β|
4

(
[0,T ]

).
Then, we continue with the weighted norm

∥u∥
C

4+α,1+α
4

m+α (QT )
= sup

t<T
t
4−m

4 [u]4+α
Q′

t
+

∑
m<4k+|β|≤4

sup
(x,t)∈QT

t
4k+|β|−m−α

4

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣+ ∥u∥
C

m+α,m+α
4

x,t (QT )

with Q′
t = Ω× [t/2, t] and

[u]4+α
Q′

t
=

∑
4k+|β|=4

sup
t′∈[t/2,t]

[
Dk
tD

β
xu( . , t

′)
]
Cα(Ω)

+
∑

1≤4k+|β|≤4

sup
x∈Ω

[
Dk
tD

β
xu(x, . )

]
C

4+α−4k−|β|
4

(
[t/2,t]

).
To show the short-time existence in theC4+α,1+α

4
m+α (QT )-space via a linerization method, we have

to verify various technical properties, which for better readability are moved to Appendix. One
of the tricks is to change the Hölder power to γ ≤ α so that for vanishing initial values we have
control via T

α−γ
4 . This will allow us to choose a time small enough for us to apply a fixed-point

argument.

43 Lemma

Let m = 1, 2, 3, 4. If u ∈ C
4+α,1+α

4
m+α (QT ) and ∀x ∈ Ω

∀4k + |β| ≤ m : Dk
tD

β
xu(x, 0) = 0

then there is a constant C166 = C166(α, γ) such that for all 0 < γ < α and T ≤ 1

∥u∥
C

4+γ,1+
γ
4

m+γ (QT )
≤ C166T

α−γ
4 ∥u∥

C
4+α,1+α

4
m+α (QT )

.

Proof: The proof is presented in Appendix Lemma 92.
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Also we have to estimate the right hand side term R in the C
4+α,1+α

4
m+α−4 (QT )-norm by the

C
4+γ,1+ γ

4
m+γ (QT )-norm of u. Since R consists of products of derivatives u, we need the following

fundamental product estimates.

44 Lemma (Product Rule)

Let m = 1, 2, 3, 4 and 0 < γ ≤ α, α/2 ≤ γ. If u, v, w ∈ C
4+γ,1+ γ

4
m+γ−4 (QT ) and T ≤ 1, then there is a

constant C167 = C167(α, γ,Ω) depending on algebraic structure of R and L such that

∥∇u∥
C

α,α4
max{0,m+α−4}(QT )

≤ C167∥∇u∥
C

3+γ,
3+γ
4

m+γ−1 (QT )
,(138)

∥D3wD2u∥
C

α,α4
m+α−4(QT )

≤ C167∥D3w∥
C

1+γ,
1+γ
4

m+γ−3 (QT )
· ∥D2u∥

C
2+γ,

2+γ
4

m+γ−2 (QT )
,(139)

∥D2uD2 wD2v∥
C

α,α4
m+α−4(QT )

≤ C167∥D2u∥
C

2+γ,
2+γ
4

m+γ−2 (QT )
· ∥D2w∥

C
2+γ,

2+γ
4

m+γ−2 (QT )
· ∥D2v∥

C
2+γ,

2+γ
4

m+γ−2 (QT )
.

(140)

Proof: See Appendix Lemma 93.

45 Lemma (Hölder Estimates I)

Let m = 1, 2, 3, 4 and 0 < γ, α < 1, T ≤ 1 then there exist constants C168 = C168(Ω, α, γ) and kH ∈ N
depending on algebraic structure of R and L, so that:

∥∥R(∇u,D2u,D3u)
∥∥
C

α,α/4
m+α−4(QT )

≤ C168

(
1 + ∥∇u∥

C
3+γ,

3+γ
4

m+γ−1 (QT )

)kH
∥∇u∥3

C
3+γ,

3+γ
4

m+γ−1 (QT )
,∑

k+ℓ=4

∥Lkℓ(∇u)∥Cα,α/4
max{0,m+α−4}(QT )

≤ C168

(
1 + ∥∇u∥4

C
3+γ,

3+γ
4

m+γ−1 (QT )

)
.

Proof: We refer to Appendix Lemma 94.

For applying the fixed point theorem, we also have to verify the contraction property. Hence,
we need to estimate the differences of the right-hand sides and also the differences of the elliptic
components.

46 Lemma (Hölder Estimates II)

Let m = 1, 2, 3, 4 and 0 < γ, α < 1, T ≤ 1 then there exist constants C169 = C169(α, γ,Ω) and k′H ∈ N
depending on algebraic structure of R and L so that for u,w ∈ C

4+γ,1+γ/4
m+γ−4 (QT ) it holds∥∥R(∇u,D2u,D3u)−R(∇w,D2w,D3w)

∥∥
C

α,α/4
m+α−4(QT )

+
∑
k+ℓ=4

∥Lkℓ(∇u)− Lkℓ(∇w)∥Cα,α/4
max{0,m+α−4}(QT )

≤ C169

(
1 + max

{
∥u∥

C
4+γ,1+γ/4
m+γ (QT )

, ∥w∥
C

4+γ,1+γ/4
m+γ (QT )

})k′H
·max

{
∥u∥

C
4+γ,1+γ/4
m+γ (QT )

, ∥w∥
C

4+γ,1+γ/4
m+γ (QT )

}2
· ∥∇(u− w)∥

C
3+γ,

3+γ
4

m+γ−1 (QT )
.

Proof: The proof is similar to 94, where additionally we need to consider how to rewrite a difference
of polynomials as in Lemma 96.

47 Theorem (Existence of a Unique Solution for Small Times)

Let Ω ⊂ R
2 bounded with a C4+α-smooth boundary and the exterior normal ν as well as m = 1, 2, 3, 4.
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Then there exists T ∈ (0, 1), so that there is a unique solution u ∈ C
4+α,1+α/4
m+α (QT ) of the Willmore flow

problem (WF) where u0 ∈ Cm+α(Ω), g0 ∈ C4+α(∂Ω) and g1 ∈ C3+α(∂Ω) with

g0(x) = u0(x), g1(x) =
∂u0
∂ν

(x) x ∈ ∂Ω

and additionally, in the case m = 4 we need the compatibility condition

0 = ∆Γ(u0)H(u0) + 2H

(
1

4
H2 −K

)
(u0), x ∈ ∂Ω.

Proof: The main idea of this proof is to modify the quasilinear problem to a linear problem by
freezing all derivatives of order smaller than four. To do this, we define a fixed point problem for
an iterative solution of a linear parabolic differential equation whose fixed point then coincides
with the desired solution of the Willmore flow equation. To ensure the validity of this approach,
we need to check that the assumptions of the Banach fixed point theorem (see Theorem 8) are
satisfied. The proof structure can be outlined as follows:

1 Adaptation of the time-independent boundary values to the parabolic Hölder spaces by the con-
stant continuation in time to apply Schauder existence theorem and estimates,

2 Definition of the iteration mapping G as well as the iteration set M for the fixed point problem,

3 The iteration mapping is a self-mapping: G : M → M,

4 The iteration mapping is a contraction: u,w ∈ M : ∥G(u)−G(w)∥ ≤ q∥u− w∥, q ∈ (0, 1),

5 Application of the fixed point theorem to infer the existence of the fixed point,

6 Uniqueness of solution in the parabolic Hölder space C4+α,1+α/4
m+α (QT ).

In the first two steps T ∈ (0, 1) is not chosen, then in 3 and 4 we choose the time small
enough for using the Banach fixed point Theorem.
1 Boundary Values Discussion

Since the boundary values u|∂Ω( . , t) = g0( . ), ∂νu|∂Ω( . , t) = g1( . ) are fixed for all t ∈ [0, 1], we can
extend these on Ω× (0, T ]. Thus we set t ∈ (0, 1]:

g0(x, t) := g0(x), g1(x, t) := g1(x), ∀x ∈ ∂Ω.

Then all time derivatives of g0 vanish, in particular for all time Hölder seminorms are zero

∥g0∥C4+α,1+α/4
m+α (∂Ω×(0,1])

= ∥g0∥C4+α(∂Ω), ∥g1∥
C

3+α, 3+α
4

m−1+α (∂Ω×(0,1])
= ∥g1∥C3+α(∂Ω).

Additionally, we have to extend u0 ∈ Cm+α(Ω), but not in the trivial constant way, because in
the casem < 4 the extension would not be C4+α(Ω) for t > 0, and thus also not in C4+α,1+α/4

m+α (Q1).
We extend by solving the following biharmonic heat equation

∂tv = −∆2v = −∂41v − 2∂21∂
2
2v − ∂42v, in Ω× (0, 1],

v(x, 0) = u0(x), x ∈ Ω,

v(x, t) = g0(x, t), (x, t) ∈ ∂Ω× [0, 1],

∂v

∂ν
(x, t) = g1(x, t), (x, t) ∈ ∂Ω× [0, 1].

(A)
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It is an easy matter to check that (A) fulfills the requirements of Theorem 41. So there exists
u0 ∈ C

4+α,1+α/4
m+α (Q1) that solves (A). Also we get the Schauder estimate in Theorem 42 with a

constant C165(1) depending only on Ω,m, α and the structure of (A)

∥u0∥C4+α,1+α/4
m+α (Q1)

≤ C165(1)
[
∥g0∥C4+α,1+α/4

m+α (∂Ω×(0,1])
+ ∥g1∥

C
4+α, 3+α

4
m−1+α (∂Ω×(0,1])

+∥u0∥Cm+α(Ω)

]
≤ C170

(
Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥Cm+α(Ω)

)
.

(141)

The compatibility conditions are satisfied, since v( . , 0) = u0:

g0(x, 0) = g0(x) = u0(x), g1(x, 0) = g1(x) =
∂u0
∂ν

(x) x ∈ ∂Ω.

In case m = 4, we simply take extend u0(x, t) := u0(x), x ∈ Ω, t ∈ [0, 1]. Then u0 ∈ C
4+α,1+α/4
m+α (Q1)

and (141) is also fulfilled.
2 Definition of the Iteration Map and Set

We define iteration map GT : C4+α,1+α/4
m+α (QT ) → C

4+α,1+α/4
m+α (QT ) by freezing the coefficients of L

and R. For each w ∈ C
4+α,1+α/4
m+α (QT ) we set v = GTw as a solution of

∂tv = − L(∇w)D4v −R
(
∇w,D2w,D3w

)
, in Ω× (0, T ],

v(x, 0) = u0(x), x ∈ Ω,

v(x, t) = g0(x, t), (x, t) ∈ ∂Ω× [0, T ],

∂v

∂ν
(x, t) = g1(x, t), (x, t) ∈ ∂Ω× [0, T ].

(G)

Sincew ∈ C
4+α,1+α/4
m+α (QT ) then due to Lemma 45L(∇w) ∈ C

α,α/4
max{0,m+α−4}(QT ),R

(
∇w,D2w,D3w

)
∈

C
α,α/4
m+α−4(QT ). Additionally, by Lemma 39 one obtains uniform ellipticity, and by Theorem 41 there

exists v = GTw ∈ C
4+α,1+α/4
m+α (QT ). Therefore, this mapping is well defined.

For the case m = 4, we also need the existence of GTu0 with the estimates to get later the same
derivatives in t = 0 as for the fixed point solution, see (146). For GTu0 by Theorem 45 it holds for
|β| = 4 that

∥Lβ1,β2(∇u0)∥Cα,α/4
max{0,m+α−4}(QT )

≤ C168

(
1 + ∥u0∥4

C
4+α,1+α/4
m+α (Q1)

)
,

and one also has the uniform ellipticity by (141) with

|ξ|4(
1 + ∥∇u0∥2C0(QT )

)2 ≤
∑
k+ℓ=4

Lkℓ(∇w)ξk1ξℓ2 ≤ 4|ξ|4.

Using the Schauder estimate in Theorem 42 for the boundary problem (G) with constant C165 it
results

∥GTu0∥C4+α,1+α/4
m+α (QT )

Thm. 42
≤ C165(1)

∥R(∇u0, D2u0, D
3u0)∥Cα,α/4

m+α−4(QT )
+ ∥g0∥C4+α(∂Ω)

+ ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)

 ,
Lem. 45
≤

(143)
C171

(
Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥Cm+α(Ω)

)
,

(142)
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We choose γ ∈ (0, α) and define the closed subset of C4+γ,1+γ/4
m+γ (QT ) as the iteration-set

MT :=

w ∈ C
4+γ,1+γ/4
m+γ (QT )

∣∣∣∣∣∣
∥w −GTu0∥C4+γ,1+γ/4

m+γ (QT )
≤ 1, v(x, 0) = u0(x), x ∈ Ω,

v(x, t) = g0(x), ∂νv(x, t) = g1(x), (x, t) ∈ ∂Ω× [0, T ]

 .(M)

which is non-trivial since GTu0 ∈ MT . For all w ∈ MT we also obtain an useful estimate

∥w∥
C

4+γ,1+γ/4
m+γ (QT )

≤ ∥w −GTu0∥C4+γ,1+γ/4
m+γ (QT )

+ ∥GTu0∥C4+γ,1+γ/4
m+γ (QT )

(142)
≤ 1 + C171.(143)

3 G is a self-map

Here we want to show that GT : MT → MT by using the Schauder estimates in Theorem 42. Let
w ∈ MT , then by Theorem 45 we obtain for |β| = 4

∥Lβ1,β2(∇w)∥Cα,α/4
max{0,m+α−4}(QT )

≤ C168

(
1 + ∥w∥4

C
4+γ,1+γ/4
m+γ (Q1)

) (143)
≤ C168

(
1 + (1 + C171)

4
)
,

which is bounded by a constant non depending on T .
Also by (143) we have an uniform ellipticity on MT with constants λ and Λ for all w ∈ MT ,

T ∈ (0, 1) depending only on Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω) and ∥u0∥Cm+α(Ω)

λ :=
1(

1 +
(
1 + C171

)2)2 , Λ := 4,
Lem. 39⇒ λ|ξ|4 ≤

∑
k+ℓ=4

Lkℓ(∇w)ξk1ξℓ2 ≤ Λ|ξ|4.(144)

By the Schauder estimate in Theorem 42 for the boundary problem (G) with constant C165 for
all w ∈ MT it follows that for v = GTw

∥v∥
C

4+α,1+α/4
m+α (QT )

Thm. 42
≤ C165(1)

∥R(∇w,D2w,D3w)∥
C

α,α/4
m+α−4(QT )

+ ∥g0∥C4+α,1+α/4
m+α (∂Ω×(0,T ])

+ ∥g1∥
C

3+α, 3+α
4

m−1+α (∂Ω×(0,T ])
+ ∥u0∥Cm+α(Ω)

 ,
Lem. 45
≤

(143)
C172

(
Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥Cm+α(Ω)

)
,

(145)

where by Theorem 42, previous work in 1 and (143) the T -independent constantC165(1) depends
only on C171 and Ω.

Further, we have to show that by choosing T small enough, we obtain v ∈ MT . First, we
consider the difference v −GTu0

∥v −GTu0∥C4+α,1+α/4
m+α (QT )

≤ ∥v∥
C

4+α,1+α/4
m+α (QT )

+ ∥GTu0∥C4+α,1+α/4
m+α (QT )

≤ C172 + C171

=: C173

(
Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥Cm+α(Ω)

)
.

So the difference is C4+α,1+α/4
m+α (QT )-bounded, because GTu0 and v are C4+α,1+α/4

m+α (QT )-bounded.
The v − GTu0 derivatives of the order smaller than three vanish at time t = 0. The reason is that
v(x, 0) = u(x) = GTu0(x, 0) for all x ∈ Ω fulfill the same initial conditions

∀|β| ≤ m ∀x ∈ Ω: Dβ
xv(x, 0)−Dβ

xGTu0(x, 0) = Dβ
xu0(x)−Dβ

xu0(x) = 0.

In the case m = 4, one can use the Willmore flow equation and derive

∀x ∈ Ω: Dtv(x, 0)−DtGTu0(x, 0) = 0(146)
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where only for this step we need GTu0. For m < 4 we could take u0 instead.
Next, we consider the parabolic Hölder space with a smaller Hölder power C4+γ,1+γ/4

m+γ (QT )
and apply Lemma 43 for v−GTu0. In this case, the initial conditions vanish (see also (146), so that

∥v −GTu0∥C4+γ,1+γ/4
m+γ (QT )

≤ C166∥v −GTu0∥C4+α,1+α/4
m+α (QT )

· T
α−γ
4 ≤ C166C173 · T

α−γ
4 .

By choosing T < 1/(C166C173)
4

α−γ , we get v ∈ MT and thus GT : MT → MT , because:

∥v −GTu0∥C4+γ,1+γ/4
m+γ (QT )

≤ 1.

4 G is a contraction

In this paragraph, we want to show that for T small enough, GT : MT → MT is a contraction. Let
u,w ∈ MT , then because GTw and GTu have the same initial values it holds

GTu(x, 0)−GTw(x, 0) = u0(x)− u0(x) = 0, x ∈ Ω,

GTu(x, t)−GTw(x, t) = g0(x, t)− g0(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

∂(GTu−GTw)

∂ν
(x, t) = g1(x, t)− g1(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ].

Thus GTu−GTw solves the following linear initial value problem (Z). Let v = GTu−GTw be the
solution of the following problem

∂tv = − 1

2

(
L(∇u) + L(∇w)

)(
D4v

)
− 1

2

(
L(∇u)− L(∇w)

)(
D4(GTu+GTw)

)
−R

(
∇u,D2u,D3u

)
+R

(
∇w,D2w,D3w

)
in Ω× (0, T ],

v(x, 0) = 0, x ∈ Ω,

v(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

∂νv(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ].

(Z)

The operator 1
2

(
L(∇u) + L(∇w)

)
∈ C

α,α/4
max{0,m+α−4}(QT ) is again uniformly elliptic, with the same

time-independent constants λ and Λ as in (144) for L(∇u) and L(∇w). Moreover, by the Schauder
estimates for G(u) and G(w) as solutions of (G) it follows that

∥D4(GTu+ GTw)∥Cα,α/4
m+α−4(QT )

≤ ∥GTu∥C4+α,1+α/4
m+α (QT )

+ ∥GTw∥C4+α,1+α/4
m+α (QT )

≤ 2C172

(
Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥Cm+α(Ω)

)
.

(147)

Again, by Theorem 42 one obtains a Schauder estimate for GTu − GTw as solution of (Z) with a
constant C165(1) depending only on ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥Cm+α(Ω) and Ω

∥GTu− GTw∥C4+α,1+α/4
m+α (QT )

≤ C165(1) ·

∥∥∥∥∥∥−
1

2

(
L(∇u)− L(∇w)

)(
D4(GTu+GTw)

)
−R

(
∇u,D2u,D3u

)
+R

(
∇w,D2w,D3w

)
∥∥∥∥∥∥
C

α,α/4
m+α−4(QT )

(137)
≤ C165(1)

2
·
∥∥(L(∇u)− L(∇w)

)∥∥
C

α,α/4
max{0,m+α−4}(QT )

·
∥∥(D4(GTu+GTw)

)∥∥
C

α,α/4
m+α−4(QT )

+ C165(1)
∥∥R(∇u,D2u,D3u)−R(∇w,D2w,D3w)

∥∥
C

α,α/4
m+α−4(QT )

.
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Further, let us estimate by 46 and (147) for D4(GTu+GTw)

∥GTu −GTw∥C4+α,1+α/4
m+α (QT )

≤ C174 · ∥u− w∥
C

4+γ,1+γ/4
m+γ (QT )

,

for all u,w ∈ MT with a new constant C174 depending only on Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω),
∥u0∥Cm+α(Ω). Once again we apply Lemma 43 to estimate GTu−GTw with vanishing initial data

∥GTu − GTw∥C4+γ,1+γ/4
m+γ (QT )

≤ C166 C174T
α−γ
4 · ∥u− w∥

C
4+γ,1+γ/4
m+γ (QT )

.

Finally, we obtain GT a contraction on MT by choosing T < 1/
(
C166 C174

) 4
α−γ .

5 Applying the Fixed Point Theorem

For a time T small enough, we can use the fixed point theorem and get a fixed point v∗ ∈ MT ⊂
C

4+γ,1+γ/4
m+γ (QT )with v∗ = GT v

∗.This v∗ solves the original Willmore-flow problem (WF). Actually,
we obtain even stronger regularity v∗ ∈ C

4+α,1+α/4
m+α (QT )by using the Schauder estimate in Theorem

42

∥v∗∥
C

4+α,1+α/4
m+α (QT )

≤ C172

(
Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥Cm+α(Ω)

)
.

6 Uniqueness

Until now, we only obtained the uniqueness in MT . To show that there exists only one solution in
C

4+α,1+α/4
m+α (QT ), we have to define a new initial value problem. Like in the step 4 one has to choose

time small enough and use Lemma 43 to relate the norms C4+α,1+α/4
m+α (QT ) and C4+γ,1+γ/4

m+γ (QT ).
With T time as in the step 4 and u ∈ MT the solution in the step 5 and w ∈ C

4+α,1+α/4
m+α (QT ′)

another solution, we consider only T ′ < T without loss of generality. Additionally, let 0 < T0 < T ′

then u− w is a solution of the following initial value problem

∂tv = − 1

2

(
L(∇u) + L(∇w)

)(
D4v

)
− 1

2

(
L(∇u)− L(∇w)

)(
D4(u+ w)

)
−R

(
∇u,D2u,D3u

)
+R

(
∇w,D2w,D3w

)
in Ω× (0, T0],

v(x, 0) = 0, x ∈ Ω,

v(x, t) = 0, (x, t) ∈ ∂Ω× [0, T0],

∂νv(x, t) = 0, (x, t) ∈ ∂Ω× [0, T0].

(Ew)

It follows that 1
2

(
L(∇u)+L(∇w)

)
∈ C

α,α/4
max{0,m+α−4}(QT0) is again an uniform elliptic operator with

time-independent ellipticity constants

λ∗ :=
1

2
(
1 + ∥u∥2

C
4+α,1+α/4
m+α (QT ′ )

+ ∥w∥2
C

4+α,1+α/4
m+α (QT ′ )

) , Λ∗ := 4.

Moreover, we obtain the estimates

∥D4(u+ w)∥
C

α,α/4
m+α−4(QT0

)
≤ ∥u∥

C
4+α,1+α/4
m+α (QT ′ )

+ ∥w∥
C

4+α,1+α/4
m+α (QT ′ )

,

∥L(∇u) + L(∇w)∥
C

α,α/4
max{0,m+α−4}(QT0

)

(45)
≤ C168


(
1 + ∥u∥

C
4+α,1+α/4
m+α (QT ′ )

)kH
+
(
1 + ∥w∥

C
4+α,1+α/4
m+α (QT ′ )

)kH
 .
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Once again, by Theorem 42 there exists a Schauder estimate with a constantC165(1) for the problem
(Ew) which depends only on ∥u∥

C
4+α,1+α/4
m+α (QT ′ )

, ∥w∥
C

4+α,1+α/4
m+α (QT ′ )

and Ω. Like in step 4 :

∥u− w∥
C

4+α,1+α/4
m+α (QT0

)

≤ C165(1)

2
·
∥∥(L(∇u)− L(∇w)

)∥∥
C

α,α/4
max{0,m+α−4}(QT0

)
·
∥∥(D4(u+ w)

)∥∥
C

α,α/4
m+α−4(QT0

)

+ C165(1)
∥∥R(∇u,D2u,D3u)−R(∇w,D2w,D3w)

∥∥
C

α,α/4
m+α−4(QT0

)

≤ C174 · ∥u− w∥
C

4+γ,1+γ/4
m+γ−4 (QT0

)
,

where C174 depends only on ∥u∥
C

4+α,1+α/4
m+α (QT ′ )

, ∥w∥
C

4+α,1+α/4
m+α (QT ′ )

and Ω. By Lemma 43 it holds

∥u− w∥
C

4+γ,1+γ/4
m+γ (QT0

)
≤ C166 C174T

α−γ
4

0 · ∥u− w∥
C

4+γ,1+γ/4
m+γ (QT0

)
.

In the following, we choose T0 < 1/
(
C166 C174

) 4
α−γ so that

∥u− w∥
C

4+γ,1+γ/4
m+γ (QT0

)
= 0.

Therefore, u and w are identical in C
4+γ,1+γ/4
m+γ (QT0). To show the equality in t ∈ (T0, T

′] we
first consider the unweighted case m = 4 and use the fact, that the time T0 depends only on Ω

and the bounds on C
4+α,1+α/4
x,t (QT ′)-norm of u and w. Namely, since ∀x ∈ Ω : Dβ

xu(x, T0) =

Dβ
xw(x, T0) and by choosing the same uniqueness time T0, we obtain uniqueness on the time

interval [0,min{2T0, T ′}]. In the same way, we can repeat this procedure until we reach T ′.
By the definition of the weighted norms, in the cases m = 1, 2, 3 for all times greater than

T0 > 0, the solution of the initial problem is actually in the unweighted Hölder space for times
between T0 and T ′

∥u∥
C

4+α,1+α/4
x,t (Ω×[T0,T ′])

≤ C(T0, T
′)∥u∥

C
4+α,1+α/4
m+α (QT ′ )

,

∥w∥
C

4+α,1+α/4
x,t (Ω×[T0,T ′])

≤ C(T0, T
′)∥w∥

C
4+α,1+α/4
m+α (QT ′ )

.

Furthermore, the compatibility condition (CC) is fulfilled for all times in [T0, T
′]. Thus one can

take u(x, T ′) ≡ w(x, T ′) as the new initial value for the corresponding initial value problem on
C

4+α,1+α/4
x,t (Ω × [T0, T

′]). Hence, it results u = w in C
4+α,1+α/4
x,t (Ω × [T0, T

′]) and thus u = w in
C

4+α,1+α/4
m+α (QT ′). Finally, we extend w with u up to T and get the uniqueness in C4+α,1+α/4

m+α (QT ).

In the next part of the chapter, we want to investigate global existence of the graphical Willmore
flow solutions. Especially, we will need a lower bound on short existence time in order to be able
to extend the local solution by this fixed time. In this way, we will prevent blow-ups. In what
follows we always assume the compatibility condition (CC) for u0, g0 and g1.

48 Lemma

Supposem = 1, 2, 3, 4, then these exist constants C175 = C175(m,α,Ω), C176 = C176(m,α,Ω) and a time
0 < T1(m,α,Ω) < 1 such that if

∥u0∥Cm+α(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) ≤ C175(148)

then there exists a unique solution u ∈ C
4+α,1+α/4
m+α (QT1) of the Willmore flow problem (WF) and

∥u∥
C

4+α,1+α/4
m+α (QT1

)
≤ C176

(
∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)

)
.(149)
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Proof: Let us begin by assuming that C175 ≤ 1. Then the short time existence Theorem 47 states
that there exists the time T0 = T0(m,α,Ω) and the solution u ∈ C

4+α,1+α/4
m+α (QT0) of (WF) and

especially there is an estimate

∥u∥
C

4+α,1+α/4
m+α (QT0

)
≤ C172

(
Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥Cm+α(Ω)

)
≤ C177

where C177 = C177(m,α,Ω) since C175 ≤ 1. Let T ∈ (0, T0), then u solves the following problem
(G) 

∂tu = − L(∇u)D4u−R
(
∇u,D2u,D3u

)
, in Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = g0(x), (x, t) ∈ ∂Ω× [0, T ],

∂u

∂ν
(x, t) = g1(x), (x, t) ∈ ∂Ω× [0, T ].

(G)

Sinceu ∈ C
4+α,1+α/4
m+α (QT0) it follows that according to Lemma 45R

(
∇u,D2u,D3u

)
∈ C

α,α/4
m+α−4(QT ).

Combining this result with Lemma 39 we infer by Theorem 42 that there is a Schauder estimate
for T ∈ (0, T0]

∥u∥
C

4+α,1+α/4
m+α (QT )

≤ C165(T )

 ∥R
(
∇u,D2u,D3u

)
∥
C

α,α/4
m+α−4(QT0

)
+ ∥g0∥C4+α(∂Ω)

+ ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)


whereC165 : R+ → R+ is a monotone function depending only on (G), Ω and theC4+α,1+α/4

m+α (QT0)-
norm of u since we can bound the ellipticity condition constant and the leading coefficients by
Lemma 45

λ ≤ 1(
1 + ∥u∥2

C
4+α,1+α/4
m+α (QT0

)

)2 , ∥L(∇u)∥
C

α,α/4
max{0,m+α−4}(QT )

≤ C168(1 + ∥u∥4
C

4+α,1+α/4
m+α (QT0

)
).

It should be particularly noticed that as in the proof of Theorem 47, we can select γ = α/2 < α and
obtain

∥u∥
C

4+α,1+α/4
m+α (QT )

≤ C165(T )

C168

(
1 + ∥u∥

C
4+γ,1+γ/4
m+γ (QT )

)kH
∥u∥3

C
4+γ,1+γ/4
m+γ (QT )

+ ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)

 .

Evidently, since ∥u∥
C

4+α,1+α/4
m+α (QT0

)
≤ C177(m,α,Ω) we emphasize that there is an estimate on the

Schauder constants

∀T ≤ T0 : C165(T ) ≤ C165(T0) := C178(m,α,Ω).(150)

Furthermore, there exists a constant C179(α, γ,m,Ω) such that ∀T ≤ T0 :

∥u∥
C

4+γ,1+γ/4
m+γ (QT )

≤ C179 ⇒ C178C168

(
1 + ∥u∥

C
4+γ,1+γ/4
m+γ (QT )

)kH
∥u∥2

C
4+γ,1+γ/4
m+γ (QT )

≤ 1

2C166
(151)

where constant C166 is from Lemma 43 and depends on α and γ
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Next, we consider the proof of the short-time existence Theorem 47 and modify the set MT

defined in (M) by

MT :=

w ∈ C
4+γ,1+γ/4
m+γ (QT )

∣∣∣∣∣∣
∥w −GTu0∥C4+γ,1+γ/4

m+γ (QT )
≤ C179/2, v(x, 0) = u0(x), x ∈ Ω,

v(x, t) = g0(x), ∂νv(x, t) = g1(x), (x, t) ∈ ∂Ω× [0, T ]

 .

Similar to the Theorem 47 we find a fixed point u of GT : MT → MT whenever T = T1(≤ T0)
is small enough. If we set γ = α/2, then with the help of C175 ≤ 1 we see that T1 depends only
on m,α and Ω. Furthermore we notice that u ∈ C

4+α,1+α/4
m+α (QT1) and u is the solution of (G) for

T = T1. According to the above definition of MT we conclude

∥u∥
C

4+γ,1+γ/4
m+γ (QT1

)
≤ C179

2
+ ∥GTu0∥C4+γ,1+γ/4

m+γ (QT1
)
.(152)

In this step we choose C175 = C175(C179,m,Ω) small enough for the first time to achieve the
C

4+α,1+α/4
m+α (QT1) norm of GTu0 smaller than C179/2:

∥GTu0∥C4+α,1+α/4
m+α (QT1

)

≤ C165(T1)

C168

(
1 + ∥u0∥C4+γ,1+γ/4

m+γ (QT1
)

)kH
∥u0∥2

C
4+γ,1+γ/4
m+γ (QT1

)
∥u0∥C4+α,1+α/4

m+α (QT1
)

+ ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)


≤ C179/2

where C165(T1) is a constant depending on ∥u0∥C4+γ,1+γ/4
m+γ (QT1

)
in a similar way to C165(T1) of (G)

depending on ∥u∥
C

4+γ,1+γ/4
m+γ (QT1

)
. Finally, combining this result with (152) we infer

∥u∥
C

4+γ,1+γ/4
m+γ (QT1

)
≤ C179.

We can therefore apply the above statement (151). Namely, by using theC4+α,1+α/4
m+α (QT1)-Schauder

estimate for the solution u of (G) in Theorem 47 and T1 ≤ T0 we then get

∥u∥
C

4+α,1+α/4
m+α (QT1

)

≤ C165(T1)

C168

(
1 + ∥u∥

C
4+γ,1+γ/4
m+γ (QT1

)

)kH
∥u∥3

C
4+γ,1+γ/4
m+γ (QT1

)

+ ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)


(150)
≤ C178

C168

(
1 + ∥u∥

C
4+γ,1+γ/4
m+γ (QT1

)

)kH
∥u∥2

C
4+γ,1+γ/4
m+γ (QT1

)
C166T

α−γ
4

1 ∥u∥
C

4+α,1+α/4
m+α (QT1

)

+ ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)


(151)
≤ C178

(
1

2C178
∥u∥

C
4+α,1+α/4
m+α (QT1

)
+ ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)

)
.

Collecting terms, we conclude

∥u∥
C

4+α,1+α/4
m+α (QTs )

≤ 2C178

(
∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)

)
≤C176

(
Ω,m, α

) (
∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥Cm+α(Ω)

)
.
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49 Theorem (Global Existence)

Suppose Ω is a domain in R2 with C4+α-smooth boundary then there exists C180 = C180(α,Ω) > 0 such
that if

∥u0∥C1+α(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) < C180

then the solution for the Willmore-flow (WF) exists for all times t ∈ (0,∞)

Proof: We first assume, that C180 ≤ C175(1, α,Ω)/2 with C175 introduced in the previous Lemma.
In fact, by Lemma 48 there is T1 = T1(1, α,Ω) such that u ∈ C

4+α,1+α/4
1+α (QT1) solves (WF) uniquely.

Notice that we can estimate the space Hölder norm by its parabolic Hölder norm

∥u∥
C

4+α,1+α
4

1+α (QT1
)
≥
∑
|β|≤1

sup
(x,t)∈Ω×(0,T1]

∣∣∣Dβ
xu(x, t)

∣∣∣+ ∑
|β|=1

sup
t∈[0,T1]

[
Dβ
xu( . , t)

]
Cα(Ω)

= sup
t∈[0,T1]

∥u(t)∥C1+α(Ω).
(153)

Moreover we choose C180 ≤ C175/(2C176), where especially C176(1, α,Ω) does not depend on C180.
Then by Lemma 48 we get

sup
t∈[0,T1]

∥u(t)∥C1+α(Ω)

(153)
≤ ∥u∥

C
4+α,1+α

4
1+α (QT1

)
≤ C176

(
∥u0∥C1+α(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω)

)
≤ C175/2.

(154)

Due to the C1+α(Ω)-bound in the previous equation, we can continue the Willmore flow for t > T1
but for a short time.

Suppose, contrary to our claim, that there is a finite maximal existence time T2 > 0 such that
∀T ∈ (T1, T2) for the following boundary value problem

∂tv = − L(∇v)D4v −R
(
∇v,D2v,D3v

)
, in Ω× [T1, T ],

v(x, 0) = u(x, T1), x ∈ Ω,

v(x, t) = g0(x), (x, t) ∈ ∂Ω× [T1, T ],

∂v

∂ν
(x, t) = g1(x), (x, t) ∈ ∂Ω× [T1, T ].

(155)

there exists a uniqueC4+α,1+α/4
x,t (Ω×[T1, T ])-solution. Therefore, we can set∀t ∈ [T1, T2) : u(x, t) :=

v(x, t). Further, we will consider the maximal time T3 ∈ [T1, T2) such that

∀t ∈ [0, T3] : ∥u(t)∥C1+α(Ω) ≤ C175/2.(156)

Obviously, by (154) we obtain T3 ≥ T1. Combining C180 ≤ C175/2 with the bound (156) we have

∀t ∈ [0, T3] : ∥u(t)∥C1+α(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) ≤ C175/2 + C175/2 = C175.(157)

By virtue of the previous Lemma 48 with the same time T1(1, α,Ω) it follows that ∀t ∈ [T1, T3] :

∥u∥
C

4+α,1+α/4
1+α (Ω×(t−T1,t])

(157)
≤ C176

(
∥u( . , t− T1)∥C1+α(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω)

)
(157)
≤ C176C175.

104



The definition of the weighted Hölder spaces leads to the estimate ∀t ∈ [T1, T3] :

∥u∥
C

4+α,1+α
4

1+α (Ω×(t−T1,t])
≥
∑
|β|≤1

sup
(x,t′)∈Ω×(t−T1,t]

∣∣∣Dβ
xu(x, t

′)
∣∣∣

+ sup
(x,t′)∈Ω×(t−T1,t]

(t′ − t+ T1)
2−α
4

∣∣∣D3
xu(x, t

′)
∣∣∣

+ sup
(x,t′)∈Ω×(t−T1,t]

(t′ − t+ T1)
1−α
4

∣∣∣D2
xu(x, t

′)
∣∣∣

≥ sup
x∈Ω

T
2−α
4

1

∣∣∣D3
xu(x, t)

∣∣∣+ sup
x∈Ω

T
1−α
4

1

∣∣∣D2
xu(x, t)

∣∣∣+ ∑
|β|≤1

sup
x∈Ω

∣∣∣Dβ
xu(x, t)

∣∣∣.
Since the minimal existence time T1 depends only on α and Ω we conclude

∀t ∈ [T1, T3] : ∥u(t)∥C3(Ω) ≤
(
1 + T

−2+α
4

1 + T
−1+α

4
1

)
C176C175 ≤ C181

where C181 depends only on α and Ω. By the interpolation Theorem 10 there exists 0 < β < 1 such
that

∀t ∈ [T1, T3] : ∥u(t)∥C1+α(Ω) ≤ C182(α,Ω)∥u(t)∥C2(Ω) ≤ C183(α,Ω)∥u(t)∥βL2(Ω)
· ∥u(t)∥1−β

C2+α(Ω)

≤ C183∥u(t)∥βL2(Ω)

(
C182(α,Ω)∥u(t)∥C3(Ω)

)1−β
≤ C183∥u(t)∥βL2(Ω)

(
C182C181

)1−β
with C181, C182 and C183 constants depending only on Ω and α, and especially independent of
C180. Let us suppose for the moment that we could bound ∥u(t)∥L2(Ω) for all times t ∈ [T1, T3]
small enough so that

∀t ∈ [T1, T3] : ∥u(t)∥C1+α(Ω) <
C175

4

which would be a contradiction to (156). Thus, we could conclude T3 = T2 so especially in the
maximal time T2 one still would have C1+α-regularity for u( . , T2). Then, it would be possible to
continue the solution, which contradicts the maximality of T2. This would complete the proof of
T2 = ∞.

So our goal is to show, that with smaller C180 we can achieve ∥u(t)∥L2(Ω) small enough. We
first observe, that from (153)

sup
x∈Ω

T
1−α
4

1

∣∣∣D2
xu(x, T1)

∣∣∣+ ∑
|β|≤1

sup
x∈Ω

∣∣∣Dβ
xu(x, T1)

∣∣∣ ≤ ∥u∥
C

4+α,1+α
4

1+α (QT1
)

⇒ ∥u(T1)∥C2(Ω) ≤ (1 + T
− 1−α

4
1 )∥u∥

C
4+α,1+α

4
1+α (QT1

)

(154)
≤ C183C176

(
∥u0∥C1+α(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω)

)
≤ C183C176C180

whereC183 depends on T1 and T1 still depends only onα andΩ. By choosingC180 small enough we
can get ∥u(T1)∥C2(Ω) even smaller. Moreover, u(T1) has finite Willmore energy and it is decreasing
for all t > T1.

∀t > T1 : W
(
u(t)

)
≤ W

(
u(T1)

)
≤ ∥u(T1)∥3C2(Ω)

|Ω|.

By choosing C180 small enough with Theorem 16 b we achieve ∥u(t)∥L2(Ω) so small enough.
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50 Corollary

Suppose Ω is a domain in R2 with C4+α boundary, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω) = 0 then there exists
C184 = C184(α,Ω) > 0 such that if

∥u0∥C1+α(Ω) < C184

then the solution for the Willmore-flow (WF) exists for all times t ∈ (0,∞).

6.4 Time-Weighted C1
-C4+α

-case

In this subsection, we weaken the regularity assumptions on the initial data to u0 ∈ C1(Ω) on
the cost of also imposing a smallness condition on the data. That means we set s = 1, f = R
and (aβ) ∼= L(∇u) with time-constant Dirichlet boundary values φ = g0 and h = g1. Like in the
previous case, for proving the short-time existence in theC4+α,1+α

4
1 (QT )-space, we have to establish

some auxiliary results. Let Ω ⊂ Rn be bounded with C4+α-boundary ∂Ω and T > 0. We consider
the norm

∥u∥
C

1, 14
x,t (QT )

=
∑
|β|≤1

sup
(x,t)∈QT

∣∣∣Dβ
xu(x, t)

∣∣∣+ sup
x∈Ω

[
u(x, . )

]
C

1
4

(
[0,T ]

)
and for parameter s ≤ ℓ the norm:

∥u∥
C

4+α,1+α/4
1 (QT )

= sup
t<T

t
3+α
4 [u]4+α

Q′
t

+
∑

2≤4k+|β|≤4

sup
(x,t)∈QT

t
4k+|β|−1

4

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣+ ∥u∥
C

1, 14
x,t (QT )

where Q′
t = Ω× [t/2, t] and:

[u]4+α
Q′

t
=

∑
4k+|β|=4

sup
t′∈[t/2,t]

[
Dk
tD

β
xu( . , t

′)
]
Cα(Ω)

+
∑

1≤4k+|β|≤4

sup
x∈Ω

[
Dk
tD

β
xu(x, . )

]
C

4+α−4k−|β|
4

(
[t/2,t]

).
Let us compare this norm with that ofC4+α,1+α/4

1+α (QT ). The term [u]4+α
Q′

t
remained the same, but gets

more weight tα/4 more weight as well as the |Dk
tD

β
xu(x, t)|-terms. Moreover, in comparison to the

C
1+α,(1+α)/4
x,t (QT )-case theC1,1/4

x,t (QT )-norm is missing the spatial Hölder seminorm [∇u( . , t)]Cα(Ω)

and the temporal Hölder seminorm [∇u(x, . )]Cα/4([0,T ]). Also, it is not clear how to use the trick
with changing the Hölder power to γ ≤ α. Thus, we will also have to choose the parabolic
boundary norms small enough for us to apply a fixed point argument. Therefore, we drop γ in the
following lemmas.

51 Lemma

Let 0 < α < 1. If u, v, w ∈ C
4+α,1+α

4
1 (QT ) and T ≤ 1. Then there exists a constant C185 = C185(Ω) such

that

∥D3wD2u∥
C

α,α4
−3 (QT )

≤ C185∥D3w∥
C

1+α, 1+α
4

−2 (QT )
· ∥D2u∥

C
2+α, 2+α

4
−1 (QT )

,(158)

∥D2uD2wD2v∥
C

α,α4
−3 (QT )

≤ C185∥D2u∥
C

2+α, 2+α
4

−1 (QT )
· ∥D2w∥

C
2+α, 2+α

4
−1 (QT )

· ∥D2v∥
C

2+α, 2+α
4

−1 (QT )
,(159)

∥∇u∥
C

α,α4
0 (QT )

≤ C185∥∇u∥
C

3+α, 3+α
4

0 (QT )
.(160)

Proof: See Appendix Lemma 95.

Further, we again show preliminary results.
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52 Lemma (Hölder Estimates I)

Let 0 < α < 1, T ≤ 1. Then there exist constants C186 = C186(Ω, α) and kH ∈ N depending on algebraic
structure of R and L, so that it holds for all u ∈ C

4+α,1+α/4
1 (QT )∥∥R(∇u,D2u,D3u)

∥∥
C

α,α/4
−3 (QT )

≤ C186

(
1 + ∥∇u∥

C
4+α,1+α/4
1 (QT )

)kH
∥∇u∥3

C
4+α,1+α/4
1 (QT )

,∑
k+ℓ=4

∥Lkℓ(∇u)∥Cα,α/4
0 (QT )

≤ C186

(
1 + ∥∇u∥4

C
4+α,1+α/4
1 (QT )

)
.

Proof: The proof is similar to Appendix Lemma 94.

53 Lemma (Hölder Estimates II)

Let 0 < α < 1, T ≤ 1. Then there exist constants C187 = C187(Ω, α) and k′H ∈ N depending on algebraic
structure of R and L, so that it holds for all u,w ∈ C

4+α,1+α/4
1 (QT )∥∥R(∇u,D2u,D3u)−R(∇w,D2w,D3w)

∥∥
C

α,α/4
−3 (QT )

≤ C187

(
1 + max

{
∥u∥

C
4+α,1+α/4
1 (QT )

, ∥w∥
C

4+α,1+α/4
1 (QT )

})k′H
·max

{
∥u∥

C
4+α,1+α/4
1 (QT )

, ∥w∥
C

4+α,1+α/4
1 (QT )

}2
· ∥u− w∥

C
4+α,1+α/4
1 (QT )

,∑
k+ℓ=4

∥Lkℓ(∇u)− Lkℓ(∇w)∥Cα,α/4
0 (QT )

≤ C187

(
1 + max

{
∥u∥

C
4+α,1+α/4
1 (QT )

, ∥w∥
C

4+α,1+α/4
1 (QT )

})k′H · ∥u− w∥
C

4+α,1+α/4
1 (QT )

.

Proof: The proof is similar to 94, where additionally we need to consider how to rewrite a difference
of polynomials as in Lemma 96.

54 Theorem (Short Time Existence)

Let 0 < α < 1,T = 1. Then there is a constantC188 = C188(Ω, α) such that ifu0 ∈ C1(Ω), g0 ∈ C4+α(∂Ω)
and g1 ∈ C3+α(∂Ω) as well as

∥u0∥C1(Ω) + ∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) < C188

then there exists a solution u ∈ C
4+α,1+α/4
1 (Q1) of the initial Willmore flow problem (WF).

Proof: As in the proof of Theorem 47, we split the proof into several steps.

1 Definition of the iteration map and set

In the same manner as in 1 in the proof of Theorem 47 we extend the boundary data and get
u0 ∈ C

4+α,1+α/4
1 (Q1) that solves (A). Also, we obtain with the Schauder estimate in Theorem 42

that

∥u0∥C4+α,1+α/4
1 (Q1)

≤ C189

(
Ω, ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥C1(Ω)

)
.(161)

For the Banach fixed point theorem we have to define iteration map G1 : C
4+α,1+α/4
1 (Q1) →

C
4+α,1+α/4
1 (Q1) by setting v = G1w as a solution of (G) Then since w ∈ C

4+α,1+α/4
1 (Q1), by to

Lemma 52 L(∇w) ∈ C
α,α/4
0 (Q1), R

(
∇w,D2w,D3w

)
∈ C

α,α/4
−3 (Q1). The uniform ellipticity is

obtained by Lemma 39, and by Theorem 41 there exists v = G1w ∈ C
4+α,1+α/4
1 (Q1). Hence, the

mapping is well-defined.
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Since we assume that T = 1, we also have the Schauder estimate

∥G1w∥C4+α,1+α/4
1 (Q1)

Thm. 42
≤ C165(1)

∥R(∇w,D2w,D3w)∥
C

α,α/4
−3 (Q1)

+ ∥g0∥C4+α(∂Ω)

+ ∥g1∥C3+α(∂Ω) + ∥u0∥C1(Ω)

 .(162)

Let us define a non-trivial set which is characterized by boundary conditions and the smallness of
the C4+α,1+α/4

1 (Q1)-norm a

M1 :=

w ∈ C
4+α,1+α/4
1 (Q1)

∣∣∣∣∣∣∣
∥w∥

C
4+α,1+α/4
1 (Q1)

≤ Ĉ, w( . , 0) = u0,

w(x, t) = g0(x),
∂w

∂ν
(x, t) = g1(x), (x, t) ∈ ∂Ω× [0, 1].

(163)

where Ĉ is a constant that we specify in the following. The setM1 is non-empty because it contains
in 1 constructed u0 for C188 small enough.
2 G is a self-map

Now we observe that for w ∈ M1 it holds

∥Lβ1,β2(∇u0)∥Cα,α/4
0 (Q1)

≤ C168

(
1 + Ĉ4

)
,

and we also obtain a uniform ellipticity by (141) with

|ξ|4(
1 + Ĉ2

)2 ≤
∑
k+ℓ=4

Lkℓ(∇w)ξk1ξℓ2 ≤ 4|ξ|4.

So by (162) and T = 1 we conclude by Lemma 52 that it holds

∥G1w∥C4+α,1+α/4
1 (Q1)

≤ C165(1)

C186(1 + ∥w∥
C

4+α,1+α/4
1 (Q1)

)kH∥w∥3
C

4+α,1+α/4
1 (Q1)

+ ∥g0∥C4+α(∂Ω)

+ ∥g1∥C3+α(∂Ω) + ∥u0∥C1(Ω)


≤ C190

[
C186(1 + Ĉ)kH Ĉ3 + ∥g0∥C4+α(∂Ω)

+ ∥g1∥C3+α(∂Ω) + ∥u0∥C1(Ω)

]
.

From now on, we always assume that Ĉ satisfies the following condition

C190C186(1 + Ĉ)kH Ĉ2 ≤ 1

2
.(C1)

We also have to set a condition on the parabolic boundary values

∥g0∥C4+α(∂Ω) + ∥g1∥C3+α(∂Ω) + ∥u0∥C1(Ω) ≤
Ĉ

2C190
.(C2)

Consequently, by (C1) and (C2) ∥G1w∥C4+α,1+α/4
1 (Q1)

≤ Ĉ it follows that G1 is a self-map.

3 G is a contraction

Let u,w ∈ M1, then as in Theorem 41 G1u − G1w solves the linear initial value problem (Z).
The operator 1

2

(
L(∇u) + L(∇w)

)
∈ C

α,α/4
0 (Q1) is again uniformly elliptic, with the same time-

independent constants λ and Λ as for L(∇u) and L(∇w). Furthermore, it follows that

∥D4(G1u+ G1w)∥Cα,α/4
0 (Q1)

≤ ∥G1u∥C4+α,1+α/4
0 (Q1)

+ ∥G1w∥C4+α,1+α/4
0 (Q1)

≤ 2Ĉ.
(164)
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Once again, by Theorem 41 we get the Schauder estimate G1u−G1w as solution of (Z) with a
constant C165(1) depending only on ∥g0∥C4+α(∂Ω), ∥g1∥C3+α(∂Ω), ∥u0∥C1(Ω) and Ω such that

∥G1u− G1w∥C4+α,1+α/4
1 (Q1)

≤ C165(1) ·

∥∥∥∥∥∥−
1

2

(
L(∇u)− L(∇w)

)(
D4(G1u+G1w)

)
−R

(
∇u,D2u,D3u

)
+R

(
∇w,D2w,D3w

)
∥∥∥∥∥∥
C

α,α/4
−3 (Q1)

(137)
≤ C165(1)

2
·
∥∥(L(∇u)− L(∇w)

)∥∥
C

α,α/4
0 (Q1)

·
∥∥(D4(G1u+G1w)

)∥∥
C

α,α/4
−3 (Q1)

+ C165(1)
∥∥R(∇u,D2u,D3u)−R(∇w,D2w,D3w)

∥∥
C

α,α/4
−3 (Q1)

(164)
≤ C165(1)C187Ĉ

(
1 + max

{
∥u∥

C
4+α,1+α/4
1 (Q1)

, ∥w∥
C

4+α,1+α/4
1 (Q1)

})k′H
· ∥u− w∥

C
4+α,1+α/4
1 (Q1)

+ C165(1)C187

(
1 + max

{
∥u∥

C
4+α,1+α/4
1 (Q1)

, ∥w∥
C

4+α,1+α/4
1 (Q1)

})k′H
·max

{
∥u∥

C
4+α,1+α/4
1 (Q1)

, ∥w∥
C

4+α,1+α/4
1 (Q1)

}2
· ∥u− w∥

C
4+α,1+α/4
1 (Q1)

≤ C165(1)C187(1 + Ĉ)k
′
H (Ĉ + Ĉ2)∥u− w∥

C
4+α,1+α/4
1 (Q1)

.

Therefore, we add another condition on Ĉ

C165(1)C187(1 + Ĉ)k
′
H (Ĉ + Ĉ2) ≤ 1

2
.(C3)

It follows that by conditions (C1), (C2), (C3) we have

∥G1u −G1w∥C4+α,1+α/4
1 (Q1)

≤ 1

2
· ∥u− w∥

C
4+α,1+α/4
1 (Q1)

.

That means that G1 is a contraction on M1.
4 Applying the fixed point Theorem

In this step for ∥u0∥C1(Ω)+∥g0∥C4+α(∂Ω)+∥g1∥C3+α(∂Ω) ≤ Ĉ
2C190

=: C188 (see (C2)) small enough one
uses the fixed point theorem and obtains a fixed point v∗ ∈ M1 ⊂ C

4+α,1+α/4
1 (Q1) with v∗ = H1v

∗.
This v∗ solves the original Willmore-flow problem (WF) in the space M1.

6.5 Time-Unweighted C2+α
-C2+α

-case

Until now, unlike in the elliptic case, we did not use the divergence structure of the Willmore-flow
equation (133) derived in [KL12]. In this section, we want to use this structure and incorporate
the results from [DZ15] for Schauder’s estimate and solvability for divergence-type higher-order
systems in cylindrical domains. Here, we will deal with weaker parabolic Hölder spaces in
C2+α-initial value and C2+α-boundary values framework, which will allow us to work with the
Willmore-flow without weighted derivatives.

In this case we consider the norm from Subsection 6.2 from with ℓ = 2 + α

∥u∥
C

2+α, 2+α
4

x,t (QT )
=
∑
|β|≤2

sup
(x,t)∈QT

∣∣∣Dβ
xu(x, t)

∣∣∣+ ∑
|β|=2

sup
t∈[0,T ]

[
Dβ
xu( . , t)

]
Cα(Ω)

+
∑

0≤|β|≤2

sup
x∈Ω

[
Dβ
xu(x, . )

]
C

2+α−|β|
4

(
[0,T ]

),
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Next, we want to recall some notation used in from [DZ15] for the parabolic Hölder spaces (there
they used reversed order of space and time). For a function u we define semi norms

"parabolic" [u]a,b,QT
:= sup

{ ∣∣u(x, t)− u(y, s)
∣∣

|t− s|a + |x− y|b

∣∣∣∣∣ (x, t), (y, s) ∈ QT , (t, x) ̸= (s, y)

}
,

"temporal" ⟨u⟩a,QT
:= sup

{ ∣∣u(x, t)− u(x, s)
∣∣

|t− s|a

∣∣∣∣∣ (x, t), (x, s) ∈ QT , t ̸= s

}
,

"spatial" [u]∗
b,QT

:= sup

{ ∣∣u(x, t)− u(y, t)
∣∣

|x− y|b

∣∣∣∣∣ (x, t), (y, t) ∈ QT , x ̸= y

}

and the spatial norm

∥u∥∗
α,QT

:= ∥u∥L∞(QT ) + [u]∗
α,QT

∼= sup
(x,t)∈QT

∣∣u(x, t)∣∣+ sup
t∈[0,T ]

[
u( . , t)

]
Cα(Ω)

,

where α ∈ (0, 1). By Cα∗(QT ) we denote the space corresponding to ∥ . ∥∗
α,QT

. Dong and Zhang

also defined an equivalent norm of C2+α,(2+α)/4
x,t (QT )

∥u∥
C

2+α, 2+α
4

x,t (QT )

∼= ∥u∥ 2+α
4
,2+α := ∥u∥L∞(QT ) +

∑
|β|≤2

[Dβu] 2+α−|β|
4

,α,QT
.

Their fourth-order operators are of the form

Lu =
∑

|k|,|ℓ|≤2

Dk(AkℓDℓu)

where for each k ≤ 2 and ℓ ≤ 2, Akℓ is an real-valued measurable function with

∀|k|, |ℓ| ≤ 2 : |Akℓ| ≤ K

for some K > 0. They also impose the ellipticity condition on the leading coefficients∑
|k|=|ℓ|=2

Akℓξkξℓ ≥ λ|ξ|2(165)

with some constant λ > 0. Their main result was the following Schauder estimate.

55 Theorem (Schauder Estimate and Existence)

Let α ∈ (0, 1) and T ∈ (0,∞]. Assume fβ ∈ Cα∗(QT ) for |β| = 2 and fβ ∈ L∞(QT ) for |β| < 2.
Suppose that the the operator L satisfy the Legendre-Hadamard condition (165), and Akℓ ∈ Cα∗(QT ). Let
g be a smooth function inR3 and Ω ∈ C2+α. Then

∂tu+ Lu =
∑

|β|≤2D
βf in Ω× (0, T ),

u = g,Du = Dg on ∂Ω× [0, T ),

u = g on Ω× {0}

has a unique variational solution u such that u ∈ C
2+α, 2+α

4
x,t

(
Ω ×

[
0,min(T, k)

))
for any k > 0, and it

satisfies the Schauder estimate

∥u∥
C

2+α, 2+α
4

x,t (QT )
≤ C191

(
∥u∥L2

(
Ω×(0,T )

) + F +G
)
,(166)
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where

F =
∑
|β|=2

[fβ]
∗
α,QT

+
∑
|β|<2

∥fβ∥L∞(QT ),

G =
∑
|β|=2

∥Dαg∥∗
α,QT

+
∑
|β|<2

∥Dβg∥L∞(QT ) + ∥gt∥L∞(QT )

and C191 > 0 is a constant depending only on λ,K,Ω, α and a bound on ∥Akℓ∥∗α. Moreover, for any
constant k > 0, we have

∥u∥
C

2+α, 2+α
4

x,t

(
Ω×

[
0,min(T,k)

)) ≤ C192e
C193k

(
Fk +Gk

)
,

where

Fk =
∑
|β|=2

[fβ]
∗
α,Ω×

[
0,min(T,k)

) + ∑
|β|<2

∥fβ∥L∞
(
Ω×

[
0,min(T,k)

))
Gk =

∑
|β|=2

∥Dβg∥∗
α,Ω×

[
0,min(T,k)

) + ∑
|β|<2

∥Dβg∥L∞
(
Ω×

[
0,min(T,k)

)) + ∥∂tg∥L∞
(
Ω×

[
0,min(T,k)

)),
C192 > 0 is a constant depending only on λ,K,Ω, α and a bound on ∥Akℓ∥∗α, as well as C193 > 0 is a
constant depending only on λ, and K.

Proof: [DZ15] Theorem 2.1 p. 5.

Let us now recall the Willmore flow graphical representation by Koch and Lamm (133) with
(134)

∂tu+∆2u = f0[u] +∇if
i
1[u] +D2

ijf
ij
2 [u]

with the right-hand side (see [KL12, Lemma 3.2 p. 215])

f0[u] = D2u ⋆ D2u ⋆ D2u ⋆

4∑
k=1

Q−2kP2k−2(∇u),

f1[u] = D2u ⋆ D2u ⋆

4∑
k=1

Q−2kP2k−1(∇u),

f2[u] = D2u ⋆
2∑

k=1

Q−2kP2k(∇u).

(167)

Now, if we combine ∆2u with f2[u] to an L∇uu then we obtain

L∇uu = ∆2u−D2
ijf

ij
2 [u] = ∆2u−∆

(
∇Q · ∇u

Q

)
−D2

ij

(
∇iu∇ju

Q
H

)
.

Therefore, for each u ∈ C1(Ω) we can define the elliptical operator L∇u acting on w ∈ W 2,2
loc (Ω)

with

L∇uw = ∆2w −∆

(
(∇u)T ·D2w ◦ ∇u

Q2[u]

)
−D2

ij

(
∇iu∇ju

Q[u]

(
∆w

Q[u]
− (∇u)T ·D2w ◦ ∇u

Q3[u]

))
(168)

where Q[u] =
√
1 + |∇u|2 depends only on u. For this operator, we have the ellipticity condition

∑
|k|,|ℓ|=2

L∇u,kℓξ
kξℓ =

(
|ξ|2 −

(
ξ · 1

Q[u]
∇u
)2
)2

≥ |ξ|4
(
1− |∇u|2

Q2[u]

)2

≥ |ξ|4

Q4[u]
.(169)
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It follows that we have the Willmore flow equation in the form

∂tu+ L∇uu = f0[u] +∇if
i
1[u].

With these preparatory results, we can prove the short-time existence.

56 Theorem (Short Time Existence)

Let α ∈ (0, 1), Ω ∈ C2+α and u0 ∈ C2+α(Ω), then there exists time T depending only on α, the bound on
∥u0∥C2+α(Ω) ≤ C and Ω such that there exists a unique variational solution u ∈ C

2+α,(2+α)/4
x,t (QT ) of the

initial Willmore flow problem
∂tu+∆2u = f0[u] +∇if

i
1[u] +D2

ijf
ij
2 [u] in Ω× (0, T ),

u = u0, Du = Du0 on ∂Ω× [0, T ),

u = u0 on Ω× {0}

with the right-hand side (167).

Proof: We split the proof into six steps.
1 Definition of the iteration map and set

Let 0 < γ = α/2 < α. As in the proof of Theorem 47 we extend u0 to u0 in time by setting u0(x, t) :=
u0(x) for all x ∈ Ω. Then, we define the iteration map HT : C

2+α,(2+α)/4
x,t (QT ) → C

2+α,(2+α)/4
x,t (QT )

in the following way. For each w ∈ C
2+α,(2+α)/4
x,t (QT ) we set v = HTw as a solution of

∂tv = − L∇wv + f0[w] +∇if
i
1[w], in Ω× (0, T ),

v(x, 0) = u0(x), x ∈ Ω,

v(x, t) = u0(x), (x, t) ∈ ∂Ω× [0, T ),

Dv(x, t) = Du0(x), (x, t) ∈ ∂Ω× [0, T ).

(170)

Sincew ∈ C
2+α,(2+α)/4
x,t (QT ) it follows the coefficients ofL∇w are inCα∗(QT ), f i1[w] ∈ L∞(QT ), f0[w] ∈

L∞(QT ) and by Theorem 55 there exists HTw ∈ C
2+α,(2+α)/4
x,t (QT ). Thus, this mapping is well

defined. Also, we assume that T ≤ 1, then we have the Schauder estimate

∥HTw∥C2+α,(2+α)/4
x,t (QT )

≤ C192e
C193

∑
|β|<2

∥fβ[w]∥L∞(QT ) + ∥u0∥C2+α(Ω)

(171)

with C192, C193 depending only on a bound on ∥w∥Cα∗(QT ).

2 H is a self-map

Let us define a non-trivial set

MT :=
{
w ∈ C

2+α, 2+α
4

x,t (QT )
∣∣∣ ∥w − u0∥

C
2+γ,

2+γ
4

x,t (QT )
≤ 1
}
.(172)

For T ≤ 1 it holds for all w ∈ MT

∥the coefficients of L∇w∥Cα∗(QT ) + ∥∇w∥Cα∗(QT ) ≤ C194∥∇w∥Cα∗(QT ) ≤ C195∥w∥
C

2+γ,
2+γ
4

x,t (QT )

w∈MT

≤ C196(α, γ,Ω, ∥u0∥C2+α(Ω))
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where C196 depends only on α, γ,Ω and the C2+γ(Ω)-norm of u0 since γ < α. That also means
that there is an ellipticity constant λ = λ(α, γ,Ω, ∥u0∥C2+α(Ω)). Now we observe that for w ∈ MT

by (171) and T ≤ 1 with C192, C193 depending on C196 it holds

∥HTw∥
C

2+α, 2+α
4

x,t (QT )
≤ C192e

C193

(
∥u0∥C2+α(Ω) + sup

t∈(0,T )

(
∥D2w∥3

C0(Ω)
+ ∥D2w∥2

C0(Ω)

))

≤ C192e
C193 sup

t∈(0,T )

(
∥u0∥C2+α(Ω) + ∥w∥3

C
2+γ,

2+γ
4

x,t (QT )
+ ∥w∥2

C
2+γ,

2+γ
4

x,t (QT )

)
≤ C197(α, γ,Ω, ∥u0∥C2+α(Ω))

by the definition of MT . Then we have for w ∈ Mt the estimate

∥HTw − u0∥C2+α,(2+α)/4
x,t (QT )

≤ ∥HTw∥C2+α,(2+α)/4
x,t (QT )

+ ∥u0∥C2+α(Ω) ≤ C197 + ∥u0∥C2+α(Ω)

≤ C198(α, γ,Ω, ∥u0∥C2+α(Ω))

and with the same technique as in Lemma 92 we conclude

∥HTw − u0∥
C

2+γ,
2+γ
4

x,t (QT )
≤ C199T

α−γ
4 ∥HTw − u0∥

C
2+α, 2+α

4
x,t (QT )

≤ C199C198T
α−γ
4 .

By choosing T small enough we can achieve ∥HTw∥C2+α,(2+α)/4
x,t (QT )

≤ 1 and HT is a self-map.

3 HT is a contraction

Let u,w ∈ MT , then because HTw and HTu have the same initial values

HTu(x, 0)−HTw(x, 0) = u0(x)− u0(x) = 0, x ∈ Ω,

HTu(x, t)−HTw(x, t) = u0(x)− u0(x) = 0, (x, t) ∈ ∂Ω× [0, T ],

D(HTu−HTw)(x, t) = Du0(x)−Du0(x) = 0, (x, t) ∈ ∂Ω× [0, T ].

This means that v := HTu−HTw solves the following linear initial value problem
∂tv = − 1

2

(
L∇u + L∇w

)
(v)− 1

2

(
L∇u − L∇w

)
(HTu+HTw)

+ f0[u]− f0[w] +∇i(f
i
1[u]− f i1[w])), in Ω× (0, T ],

v(x, 0) = 0, x ∈ Ω,

v(x, t) = 0, Dv(x) = 0, (x, t) ∈ ∂Ω× [0, T ].

(Yw)

Analogously by Theorem 55 one obtains the Schauder estimateHTu−HTw as solution of (Yw)
with the same λ and constant C196

∥HTu− HTw∥
C

2+α, 2+α
4

x,t (QT )

≤ C192e
C193 ·

 ∥f0[u]− f0[w]∥L∞(QT ) +
∥∥f1[u]− f1[w]

∥∥
L∞(QT )

+ C200 ∥∇w −∇u∥Cα∗(QT ) ·
(
∥D2HTu∥Cα∗(QT ) + ∥D2HTw∥Cα∗(QT )

)
w∈MT

≤ C201(α, γ,Ω, ∥u0∥C2+α(Ω)) · ∥u− w∥
C

2+γ,
2+γ
4

x,t (QT )
.

Therefore, we conclude

∥HTw −HTu∥
C

2+γ,
2+γ
4

x,t (QT )
≤ C199T

α−γ
4 ∥HTw −HTu∥

C
2+α, 2+α

4
x,t (QT )

113



≤ C199C201T
α−γ
4 · ∥u− w∥

C
2+γ,

2+γ
4

x,t (QT )
.

Next, by choosing time small enough, we can achieve

∥HTu −HTw∥
C

2+γ,
2+γ
4

x,t (QT )
≤ q · ∥u− w∥

C
2+γ,

2+γ
4

x,t (QT )
,

with q < 1 for all u,w ∈ MT . Thus, the mapping HT is a contraction.

4 Applying the fixed point theorem

In this step for a time T small enough one uses the fixed point Theorem 8 in C2+γ,(2+γ)/4
x,t (QT ) and

gets a fixed point v∗ ∈ MT ⊂ C
2+α,(2+α)/4
x,t (QT ) with v∗ = HT v

∗. This v∗ solves the original Will-
more flow problem (WF) in the space MT . There is still uniqueness in the space C2+α,(2+α)/4

x,t (QT )
to show.

5 Uniqueness

Here, we will use the same initial value problem (Yw). Let v∗ ∈ MT be the fixed point solution in
4 . Furthermore we assume there is an another solutionw ∈ C

2+α,(2+α)/4
x,t (QT ′) where we consider

only T ′ < T without loss of generality. Additionally, let the time 0 < T0 < T ′ < 1, which we will
take like in 3 small enough. Then v∗ −w is a solution of the (Yw) and we have a similar Schauder
estimate

∥v∗− w∥
C

2+α, 2+α
4

x,t (QT0
)

≤ C192e
C193 ·

 ∥f0[u]− f0[w]∥L∞(QT0
) +
∥∥f1[u]− f1[w]

∥∥
L∞(QT0

)

+ C202 ∥∇w −∇u∥Cα∗(QT0
) ·
(
∥D2HT0u∥Cα∗(QT0

) + ∥D2HT0w∥Cα∗(QT0
)

)


≤ C203∥v∗ − w∥
C

2+γ,
2+γ
4

x,t (QT0
)

with constantC203 depending only on α, γ,Ω andC2+γ,(2+γ)/4
x,t (QT ′)-norms of v∗ and u. Since these

norms are fixed we can choose T0 and ∥∇u0∥C0(Ω) small enough so that

∥v∗ − w∥
C

2+α, 2+α
4

x,t (QT0
)
≤ 1

2
∥v∗ − w∥

C
2+α, 2+α

4
x,t (QT0

)
.

Thus we get:

∥v∗ − w∥
C

2+α, 2+α
4

x,t (QT0
)
= 0.

This means that v∗ andw are identical inC2+α,(2+α)/4
x,t (QT0). To end the proof, we also have to show

the equality in t ∈ (T0, T
′]. Here we observe, that the time T0 depends only on Ω and the bounds

of C2+α,(2+α)/4
x,t (QT0)-norms of v∗ and w. Since ∥v∗( . , T0) − w( . , T0)∥C2+α(Ω) = 0 by choosing the

same uniqueness time T0, one obtains uniqueness on [0,min{2T0, T ′}]. Finally, we repeat this
procedure until one reaches T ′. We emphasize that γ = α/2 depends only on α.

In order to show global existence similar to Theorem 49, we need an a-priori estimate for the
following problem

∂tv = −∆2v + f0[w] +∇if
i
1[w] +D2

ijf
ij
2 [w], in Ω× (0, T ),

v = 0, Dv = 0 on ∂Ω× [0, T ),

v = 0 on Ω× {0}.

(173)
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In the next Lemma, for the global existence we will need to replace in the Schauder estimate (166)
the norm ∥u∥L2

(
Ω×(0,T )

) in Theorem (55) by ∥u∥L∞
(
Ω×(0,T )

). In contrast to the former, the latter can
be controlled by the diameter estimate (a) in Theorem 16 by Grunau, Deckelnick, and Röger.

57 Lemma

Let v, w ∈ C
2+α, 2+α

4
x,t (QT ) such that v is a solution of (173) then

⟨v⟩ 2+α
4
,QT

+ [D2v]α
4
,α,QT

≤ C204

∥w∥L∞
(
QT

) + ∑
|β|<2

∥fβ[w]∥L∞
(
QT

) + sup
t∈(0,T )

∥f2[w]( . , t)∥Cα(Ω)


where C204 depends on Ω and α.

Proof: See the proof of Proposition 5.2 in [DZ15].

58 Theorem (Global Existence)

There exist a constant C205 = C205(α,Ω) such that if

∥u0∥C2+α(Ω) < C205(174)

then there exists a solution u of the Willmore flow problem
∂tu+∆2u = f0[u] +∇if

i
1[u] +D2

ijf
ij
2 [u] in Ω× (0, T ),

u = u0, Du = Du0 on ∂Ω× [0, T ),

u = u0 on Ω× {0}

with the right-hand side (167) for all times, such that ∀T ∈ (0,∞) : u ∈ C
2+α, 2+α

4
x,t (QT ). Furthermore

there exists a constant C206 = C206(α,Ω) such that

∀t ∈ (0,∞) : ∥u( . , t)∥C2+α(Ω) ≤ C206.(175)

Proof: First, we take ∥u0∥C2+α(Ω) < C205 and specify C205 later. By the short time existence in
Theorem 56 we obtain a solution u ∈ C

2+α,(2+α)/4
x,t (QT̃ ) with some T̃ depending only on α, Ω and

C205. We can local extend the solution in time, if u( . , T̃ ) ∈ C2+α(Ω), so that we can work with the
maximum existence time Tmax > 0.

We assume Tmax < ∞ and consider constant Ĉ that we specify later. We also consider the
maximal time T Ĉmax that

∀t ∈ [0, T Ĉmax) : ∥u( . , t)∥C2+α(Ω) < Ĉ.

Especially in this case ∥u0∥C2+α(Ω) < Ĉ. By Lemma 57 we know that for all T ∈ (0, Tmax) it holds

⟨u− u0⟩ 2+α
4
QT

+ [D2(u− u0)]α
4
,α,QT

≤ C204

∥u− u0∥L∞(QT ) + ∥u0∥C2+α(Ω) +
∑
|β|<2

∥fβ[u]∥L∞(QT ) + sup
t∈(0,T )

∥f2[u]( . , t)∥Cα(Ω)

 .

First, since Q ≥ |∇u| it follows |Q−ℓPℓ(∇u)| ≤ C207 with some constant C207 depending only on
algebraic structure of Pℓ(∇u). We conclude (where all constants are algebraic)

∥f0[u]∥L∞(QT ) ≤ C208∥D2u∥3
L∞(QT )

4∑
k=1

∥∥Q−2kP2k−2(∇u)
∥∥
L∞(QT )

≤ C209∥D2u∥3
L∞(QT )

,
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∥f1[u]∥L∞(QT ) ≤ C210∥D2u∥2
L∞(QT )

4∑
k=1

∥∥Q−2kP2k−1(∇u)
∥∥
L∞(QT )

≤ C211∥D2u∥2
L∞(QT )

∥∇u∥C0(Ω),

[f2[u]]Cα(Ω) ≤ ∥D2u∥C0(Ω)

2∑
k=1

[
Q−2kP2k(∇u)

]
Cα(Ω)

+ [D2u]Cα(Ω)

2∑
k=1

∥∥Q−2kP2k(∇u)
∥∥
C0(Ω)

≤ ∥D2u∥C0(Ω)[∇u]Cα(Ω)∥∇u∥C0(Ω) + [D2u]Cα(Ω)∥∇u∥
2
C0(Ω)

where we used Q−1 ≤ 1 and the Hölder seminorm product estimate (31) as well as [Q−1]Cα(Ω) =

[∇u]Cα(Ω). We deduce

sup
t∈(0,T )

∥u( . , t)∥C2+α(Ω) ≤ ∥u∥
C

2+α,(2+α)/4
x,t (QT )

(134)
≤ C212

(
∥u∥L∞(QT ) + ∥u0∥C2+α(Ω) + sup

t∈(0,T )
∥u( . , t)∥3

C2+α(Ω)

)
.

The solution of the Willmore flow u has a L∞(Ω)-bound [DGR17] (or Theorem 16 a ). By this
bound, we can not choose the L∞(Ω)-norm small enough in contrast to the L2(Ω)-norm. For
preparing a L2(Ω)-bound in Theorem 16 b we use a interpolation inequality in Theorem 10 for
all T ∈ (0, Tmax)

∥u( . , t)∥L∞(Ω) ≤ ε∥D2u( . , t)∥Cα(Ω) + C(ε)∥u( . , t)∥L2(Ω).

Consequently, we obtain for all T ∈ (0, Tmax)

sup
t∈(0,T )

∥u( . , t)∥C2+α(Ω) ≤ C213

 sup
t∈(0,T )

∥u( . , t)∥L2(Ω) + ∥u0∥C2+α(Ω)

+ sup
t∈(0,T )

∥u( . , t)∥3
C2+α(Ω)

 .

By choosing Ĉ small enough and from now on fixed: C213(Ĉ
2) ≤ 1

2 we get

∀t ∈ (0, T Ĉmax) : ∥u( . , t)∥C2+α(Ω) ≤ 2C213

(
sup

t∈(0,T )
∥u( . , t)∥L2(Ω) + ∥u0∥C2+α(Ω)

)
(176)

Since the Willmore energy stays bounded for all t ≥ 0 we get

W(u) + ∥φ∥L1(∂Ω) ≤ W(u0) + ∥φ∥L1(∂Ω) ≤ C∥u0∥C2+α(Ω).

Next by choosing byC205 (depending on Ĉ andC213) smaller we get ∥u0∥C2+α(Ω) smaller, therefore
we can also achieve ∥u( . , t)∥L2(Ω) small enough by Theorem 16 b so that

∀t ∈ (0, T Ĉmax) : ∥u( . , t)∥C2+α(Ω) ≤
Ĉ

2
.

which gives a contradiction to the maximality property of T Ĉmax. Therefore, the existence is global
in time.

6.6 Subconvergence/Convergence to a Critical Point

59 Theorem (Subconvergence)

Let g0 ∈ C4+α(∂Ω), g1 ∈ C3+α(∂Ω), u0 ∈ C1(Ω) and (u(t))t∈R+ a global solution of the Willmore flow
equation with u(0) = u0.
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Let us assume that maxt∈R+ ∥u( . , t)∥C1(Ω) < C188, where C188 is a constant from the short time
existence Theorem 54, or u is the global solution in Theorem 49, then there exists a timesequence (tk)k∈N ⊂
R+ with limk→∞ tk = +∞ and a critical point of the Willmore energy u∞ such that ∀β ∈ (0, α) :

u(tk) −→
k→∞

u∞ in C4+β(Ω).

Proof: In this proof, we want to discuss the subconvergence.
First, let us consider the case maxt∈R+ ∥u( . , t)∥C1(Ω) < C188. Even though u0 is allowed to be

merely C1, here we are assuming C4+α regularity on the Dirichlet boundary data. Hence it is pos-
sible to show a globalC4+α(Ω)-bound for u in case t > 1. Since for all t ≥ 0: ∥u( . , t)∥C1(Ω) < C188,
by the short time existence result Theorem 54 there exists short existence time T̃ = 1 independent
of t so that

∀t > 0: ∥u∥
C

4+α,1+α/4
1 (Ω×(t,t+1])

≤ C214(Ω, α).

In other case when u is the global solution in Theorem 49, we can use (156)

∀t > 0: ∥u(t)∥C1+α(Ω) ≤ C175/2 ⇒ ∥u∥
C

4+α,1+α/4
1+α (Ω×(t,t+T1])

≤ C215(Ω, α)

with some T1 ∈ (0, 1) from Lemma 48. Thus in both cases ∀t > 0 : u( . , t) ∈ C4+α(Ω) and moreover
∀t > 1 : ∥u( . , t)∥C4+α(Ω) < C216. Furthermore, since the Dirichlet boundary data is constant with
respect to time, one can show that

∀t0 > 0 :
d

dt
W(u)

∣∣∣
t=t0

= −1

2

∫
Ω

∣∣∣∣∆Γ(u)H + 2H

(
1

2
H2 −K

)∣∣∣∣2Qdx
∣∣∣
t=t0

= −1

2

∫
Ω
|∂tu|2Qdx

∣∣∣
t=t0

≤ 0,

hence the Willmore energy decreases monotonically. It follows ∀t1, t2 ∈ (0,∞)

W
(
u( . , t2)

)
−W

(
u( . , t1)

)
= −1

2

∫ t2

t1

∫
Ω

∣∣∂tu|2Qdx dt.

We let t1 → 0 and t2 → ∞. In fact, since W ≥ 0 and Q ≥ 1 we obtain the estimate

∥∂tu∥L2(Ω×R+) ≤
√
2W(u0)

concluding (t 7→ ∥∂tu( ., , t)∥2L2(Ω)) ∈ L1(R+). Thus there exists {tk}k∈N ⊂ R a time-sequence
with limk→∞ tk = +∞ and

∥∂tu( ., , tk)∥2L2(Ω) −→
k→∞

0.(177)

We can assume, that t1 > 1, then the sequence
{
u(tk)

}
k∈N is uniformly bounded inC4+α(Ω). Thus,

there exists a subsequence {tkℓ}ℓ∈N and u∞ ∈ C4+β(Ω) for each 0 < β < 1 such that u(tkℓ) → u∞ in
any C4+β(Ω). Moreover by the equation (177) and uniform C4+α(Ω)-bounds on the subsequence
it follows

∆
Γ
(
u( ., ,tk)

)H + 2H

(
1

2
H2 −K

)(
u( ., , tk)

)
−→
k→∞

0 in C0(Ω).

Thus, we conclude that u∞ is indeed a critical point satisfying the graphical Willmore equation:

∆Γ(u∞)H + 2H

(
1

2
H2 −K

)
(u∞) = 0.
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In the subsequent theorem, we establish that as t→ ∞, there is convergence towards a unique
critical point. This critical point is derived from the elliptic solution to the Willmore equation, as
detailed in Theorem 21 in Section 5. At that point, it was necessary to impose a smallness condition
on the C2+α-boundary data, which we also assume for the temporal limit for the Willmore flow
solution.

60 Theorem (Convergence)

In the case u0 ∈ C2+α(Ω) there exists a constant C217 = C217(Ω, α) such that if ∥u0∥C2+α(Ω) < C217 then
there exists a unique u∞ ∈ C2+α(Ω), which is also a critical point of the Willmore energy, such that

u(t) −→
t→∞

u∞ in C2+β(Ω)

for all β ∈ (0, α).

Proof: In this proof, we want to show the convergence to the critical limit for a small C2+α(Ω)
norm. To begin, let us recall the results from Lemma 57 and the proof of Theorem 58. There in
(176) we could show that we can make the global C2+α(Ω) bound of u as small as desired, if we
choose ∥u0∥C2+α(Ω) small enough

∀t ∈ R+ : ⟨u⟩ 2+α
4
,Ω×(0,∞) + ∥u( . , t)∥C2+α(Ω) ≤ 2C213

(
sup

t∈(0,∞)
∥u( . , t)∥L2(Ω) + ∥u0∥C2+α(Ω)

)
.

(178)

The Willmore energy stays bounded for all times, therefore, we get

W(u) + ∥φ∥L1(∂Ω) ≤ C∥u0∥C2+α(Ω).

Hence by Theorem 16 ∥u( . , t)∥L2(Ω) can be achieved small enough by choosing ∥u0∥C2+α(Ω) small
enough.

For ∥u0∥C2+α(Ω) < δ small enough we obtain the solution of the Willmore equation u∞ with
the same boundary values as u0 by Theorem 21. We emphasize that in (178) we also obtained a
temporal Hölder estimate on u. Thus, if we can bound a Lp norm over Ω× [T̃ ,∞) of the difference
between solution u and the limit u∞, the convergence of u( . , t) to u∞( . ) for all t→ +∞ follows.

For this purpose, we write u− u∞ as the solution to the following problem{
∂t(u− u∞) + ∆2(u− u∞) = f0[u]− f0[u∞] +∇i

(
f i1[u]− f i1[u∞]

)
+D2

ij

(
f ij2 [u]− f ij2 [u∞]

)
in Ω,

u− u∞ = 0, Du−Du∞ = 0 on ∂Ω.

By multiplying with u−u∞ and integrating by parts as well as using the Poincare and the Cauchy-
Schwarz inequality, we obtain for all t ≥ 0

1

2

∫
Ω
∂t|u− u∞|2 dx+

∫
Ω
|D2(u− u∞)|2 dx

≤ C218

(∫
Ω
|f0[u]− f0[u∞]|2 dx+

∫
Ω
|f1[u]− f1[u∞]|2 dx+

∫
Ω
|f2[u]− f2[u∞]|2 dx

)
≤ C219max

{
∥u∥C2(Ω), ∥u∞∥C2(Ω)

}2 · ∥∇u−∇u∞∥2L2(Ω)

+ C220max
{
∥u∥C2(Ω), ∥u∞∥C2(Ω)

}2 · ∥D2u−D2u∞∥2L2(Ω)

≤ C221 sup
t′≥0

∥∥u( . , t′)∥∥2
C2(Ω)

∫
Ω
|D2(u− u∞)|2 dx.
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For supt≥0

∥∥u( . , t)∥∥2
C2(Ω)

small enough it follows by integrating over time and Poincare inequality

∥u− u∞∥2L2(Ω×R+) ≤ C222(Ω)

∫ ∞

0

∫
Ω
|D2(u− u∞)|2 dx dt ≤ 2C222

∫
Ω
|u0 − u∞|2 dx

thus we conclude

lim
t→∞

∫ t+1

t

∫
Ω
|u− u∞|2 dx dt = 0.

Since we could show that ⟨u⟩ 2+α
4
,Qt

and ∥u( . , t)∥C2+α(Ω) are bounded, we use interpolation result
to obtain the following

lim
t→∞

∥u− u∞∥C0(Ω×[t,t+1]) → 0.

In remains to show that limt→∞ u = u∞ in C2+β(Ω) which follows by interpolation and global
C2+α(Ω) bounds. The uniqueness of u∞ follows from the uniqueness of the C0(Ω)-limit for
limt→∞ u convergence.
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7 Varifolds, Measures & BV

This section will recall basic definitions and theorems considering measures, varifolds, and BV-
functions. These results are needed for the next Section 8 in which compactness results for the
Willmore functional for graphs in the framework of varifolds, measure-functions pairs, and BV-
functions are presented.
Notation: Whenever 0 < ρ <∞ and x ∈ Rn, we define an open ball and a sphere:

Bρ(x) =
{
y ∈ Rn

∣∣ ∥y − x∥ < ρ
}

and Sn−1 =
{
y ∈ Rn

∣∣ ∥y∥ = 1
}

LetB(X) be the set of all Borel subsets of a spaceX . LetC0
c (X) be the space of continuous functions

on X with compact support.

7.1 Radon Measures

To obtain compactness results we will work with Radon measures. They form the backbone
of the definition of varifolds and measure-function pairs and help to characterize the different
contributions of the gradient of a BV-function. This subsection follows the presentation from
[All72, 2.3 Measures p.424]. We call µ : X → R≥0 ∪ {+∞} a Borel regular measure on a locally
compact Hausdorff space X if

∀A ⊂ X : µ (A) = inf
{
µ(B)

∣∣ A ⊂ B and B is a Borel set
}
,

and whenever B1, B2, . . . is a disjoint sequence of Borel sets of X

∀A ⊂ X : µ

(
A ∩

∞⋃
k=1

Bk

)
=

∞∑
k=1

µ(A ∩Bk).

The support of a Borel regular measure µ is

suppµ = X \
⋃{

G
∣∣ G is open and µ(G) = 0

}
.

For each subset B of X , we set the restriction of measure µ

∀A ⊂ X : (µ B)(A) = µ(B ∩A).(179)

Next, we want to recall theµ-measurability of sets and functions. We say a setE ⊂ X µ-measurable
if there exist a set Z with µ(Z) = 0 and a Borel set B that E = B ∪Z. Whenever Y is a topological
space and f : X → Y we say a function f with values in Y is µ-measurable if the domain of f is
µ-almost equal X and for all open U ⊂ Y the set f−1(U) ∩X is µ-measurable.

The push-forward of a measure by mapping π : X → Y is defined by

∀K ∈ B(Y ) : π#µ(K) = µ
(
π−1(K)

)
.

We call µ a Radon measure onX if µ is a Borel regular measure onX and finite on each compact
subset of X which means

∀K ⊂ X : K compact ⇒ µ(K) <∞.
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Subsequently, we define integration by introducing simple functions g : X → R = R ∪ {±∞}
which are defined by having just a countable image. It is called µ-integrable simple if one of the
following terms is finite∫

g+ dµ :=
∑

0≤y≤∞
y · µ

(
(g+)−1(y)

)
,

∫
g− dµ :=

∑
0≤y≤∞

y · µ
(
(g−)−1(y)

)
with g+ = max(g, 0) and g− = (−g)+. For a function f : X → R, we define its upper and lower
integral by ∫ ∗

f dµ := inf

{∫
g dµ

∣∣∣∣ g simple, µ-integrable and g ≥ f µ-a.e
}

∫
∗
f dµ := sup

{∫
g dµ

∣∣∣∣ g simple, µ-integrable and g ≤ f µ-a.e
}
.

Further, we call a µ-measurable function f : X → R µ-integrable if∫
X
f dµ =

∫
f dµ :=

∫ ∗
f dµ =

∫
∗
f dµ < +∞.

Next, we recall the restriction of a Borel regular measure µ for a nonnegative extended real-
valued function f that domain is X up to µ-null set

∀A ⊂ X : (µ f)(A) =

∫ ∗

A
f dµ =

∫ ∗

X
fχA dµ.(180)

Whenever X is a locally compact space, due to Riesz representation theorem, each linear
functional in the form F : C0

c (X) → R that is nonnegative on the nonnegative members of C0
c (X)

can be uniquely represented by a Radon measure. In this sense, we write

∀f ∈ C0
c (X) : µ(f) :=

∫
X
f dµ.

Then we can rewrite µ as a variation measure for every open A ⊂ X

µ(A) = sup

{∫
A
f dµ

∣∣∣∣ f ∈ C0
c (X), |f | ≤ 1, supp(f) ⊂ V

}
.

The convergence for the Radon measures is defined in the dual sense. For the sequence {µi}i∈N and µ
the Radon measures in X and Y ⊂ X we denote

µi → µ in Y, if ∀φ ∈ C0
c (Y ) : µk(φ) → µ(φ).(181)

Further, we recall the definition of Lp-spaces. Let µ be a Radon measure on X and f : X → R

a µ-measurable function. Like in [AFP00, Definition 1.16 p.9], we set for each p ∈ [1,∞)

∥f∥Lp(µ) :=

(∫
X
|f |p dµ

) 1
p

and for p = ∞ we define

∥f∥L∞(µ) := inf
{
C ∈ [0,∞]

∣∣ |f | ≤ C µ-a.e in X
}
.

By Lp(µ) or Lp(X,µ) we denote the real vector space of functions f : X → R satisfying ∥f∥Lp(µ) <
∞. The semi-norm ∥ . ∥Lp(µ) becomes a norm if one considers functions that are equal µ-a.e. as

121



identical. By Lp(µ;Rm) we denote the space of Rm-valued functions with finite Lp(µ;Rm)-norm,
which is defined in the same way as the Lp(µ)-norm where the absolute value is replaced by
euclidean length of a vector inRm.

The next convergence theorems for integrals with respect to a Radon measure are among the
most used tools in the framework of Lp(µ)-spaces.

61 Theorem (Convergence Theorems)

Assume {fk}∞k=1 is a sequence of functions in L1(µ).

1 (Fatou’s Lemma) Then
∫
X
lim inf
k→∞

fk dµ ≤ lim inf
k→∞

∫
X
fk dµ, provided that all fk ≥ 0.

2 (Monotone Convergence Theorem) Let f1 ≤ f2 ≤ · · · ≤ fk ≤ fk+1 ≤ . . . . Then

lim
k→∞

∫
X
fk dµ =

∫
X

lim
k→∞

fk dµ.

3 (Dominated Convergence Theorem) Assume g ≥ 0, g, f ∈ L1(µ), fk → f, k → ∞ µ-a.e. and
∀k ∈ N : |fk| ≤ g. Then

lim
k→∞

∫
X
|fk − f | dµ = 0.

4 (A.e. convergent subsequence) Assume f ∈ L1(µ) with
∫
X
|fk − f | dµ = 0. Then there exists a

subsequence {fkℓ}∞ℓ=1 such that

fkℓ → f, for ℓ→ ∞ µ-a.e..

Proof: [EG15, Theorems 1.17-1.21]

In the following, we always consider X ⊂ R
n. Further, we want to recall how to derive one

Radon measure with respect to another, which is provided in the next theorem for X = Ω ⊂ Rn.

62 Theorem (Besicovitch Derivation Theorem)

Let µ be a positive Radon measure in an open set Ω ⊂ R
n and η a Rm-valued Radon measure. Then, for

µ-a.e. x in the support of µ the limit

f(x) := lim
ρ↘0

η
(
Bρ(x)

)
µ
(
Bρ(x)

)
exists inRm and moreover the unique Radon-Nykodym decomposition of η is given by η = fµ+ ηs, where
ηs = η E and E is the µ-negligible set

E = (Ω \ suppµ) ∪

{
x ∈ suppµ

∣∣∣∣∣ limρ↘0

|η|
(
Bρ(x)

)
µ
(
Bρ(x)

) = ∞

}
.

Proof: By [AFP00, Theorem 2.22 (Besicovitch derivation Theorem) p.54].

We will also need the following result, which allows identifying functions µ-a.e..
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63 Theorem (Fundamental Lemma of Calculus of Variations for Radon measures)

Let µ be a positive Radon measure on an open set Ω ⊂ Rn, f ∈ L1(µ;Rm). Suppose that

∀g ∈ C0
c (Ω):

∫
Ω
gf dµ = 0

then for µ-a.e. x in the support of µ:

f(x) = 0.

Proof: Here, we want to use the Besicovitch derivation theorem. So we define a Radon measure
ν := fµ which is ν(A) =

∫
A f dµ for any measurable set A ⊂ Ω. This means ν ≪ µ. From the

assumption we get with [EG15, Theorem 1.8 p.13]

A ⊂ Ω open =⇒ ν(A) = sup

{∫
Ω
uf dµ

∣∣∣∣ u ∈ C0
c (Ω), |u| ≤ χA

}
= 0.

Then by Theorem 62 it follows that for µ a.e. x in the support of µ:

f(x) = lim
ρ↘0

ν
(
Bρ(x)

)
µ
(
Bρ(x)

) = 0.

.

One important class of outer measures, which defines k-dimensional analogies of the area
without using parametrizations are Hausdorff measures. This intrinsic approach is helpful in
geometric measure theory. For k ≥ 0 and A ⊂ R

n we define the k−dimensional Hausdorff measure
of A by

Hk(A) := lim
δ↘0

ωk
2k

inf

{∑
i∈I

[
diam(Ai)

]k ∣∣∣∣∣diam(Ai) < δ,A ⊂
⋃
i∈I

Ai

}

where ωk is the Lk measure of k-dimensional unit ball. For all k ∈ [0,∞) Hk is a Borel regular
measure, see [EG15, Theorem 2.1 p.82].

Consequently, we can define the notion of a rectifiable set [ABG98], Definition 2.1 p.6]. Let
E ⊂ R

n, then we call A countably Hk-rectifiable if A can be covered with the sequence of C1-
hypersurfaces Γi up to a Hk-null set. This means

Hk

(
A \

∞⋃
i=1

Γi

)
= 0.

Furthermore, we call A Hk-rectifiable if A is countably Hk-rectifiable and it holds Hk(A) < +∞.
By Besicovitch-Marstrand-Mattila Theorem in [AFP00, Theorem 2.63 p. 83] we know that every
A ∈ B(Rn)withHk(A) <∞ isHk-rectifiable if and only if the upper and lower k-dimensional densities
of Hk A are equal 1:

Θ∗
k(Hk A, x) := lim sup

ρ↘0

Hk
(
A ∩Bρ(x)

)
ωkρk

= 1 = lim inf
ρ↘0

Hk
(
A ∩Bρ(x)

)
ωkρk

=: Θ∗k(Hk A, x)

for Hk-a.e. x ∈ A.
One can also study the density properties of k-rectifiable measures and show that they are

asymptotically concentrated near to x on an affine k-plane for Hk-a.e. x. This k-plane generalizes
the classical tangent space in differential geometry. In the same way as in [ABG98], we define
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the approximate tangent space Tank(Hk A, x) of a Hk-rectifiable set A at x by the k-plane P ⊂ Rn
(the set of all k-planes will be defined later in Subsection 7.4 such that, by using the dilations of A
around x denoted by Aρ = ρ−1(A− x), we have with multiplicity θ ∈ R

∀ϕ ∈ C1
c (Rn) : lim

ρ↘0

∫
Aρ

ϕ(y) dHk(y) =

∫
P
θϕ(y) dHk(y).

Then, by [Fed69, 3.2.25] the mapping x 7→ Tank(Hk A, x) is defined Hk-a.e. on A and is Hk-
measurable. Also, by [Sim83, Remark 11.5] we have the locality result

Tank(Hk A, x) = Tank(Hk B, x) for Hk-a.e. x ∈ A ∩B

for any Hk-rectifiable sets A,B. By [AFP00, Theorem 2.83 (Rectifiability criterion for measures)
p.93] the multiplicity is given for Hk-a.e. x by

θ(x) = Θk(Hk A, x) := lim
ρ↘0

Hk
(
A ∩Bρ(x)

)
ωkρk

.

Next, we want to present the area and coarea formula. The first describes how to compute Hk-
measure of image f(B) of a Lipschitz map f : Rk → R

N , N ≥ k generalizing parameterized surface
area formula. The second generalizes Fubini’s Theorem in the following way. For a Lipschitz map
f : RM → R

k and a HN -rectifiable E ⊂ RM we can slice E into level sets {f = t}∩E such that the
HN -integral over E is given by Lk-integral over slices-volume HN−k(E ∩ {f = t}).

Further,M ⊂ Rn+ℓ is supposed to beHn-measurable, so that we can expressM =
⋃∞
j=0Mj with

Hn(M0) = 0 and disjointMj is Hn-measurable, Hn(Mj) <∞, moreoverMj ⊂ Nj , j ≤ 1, whereNj

are embedded n-dimensional C1-submanifolds ofRn+ℓ. Let f : U → R
m be locally Lipschitz with

U ⊂ Rn+ℓ an open subset, then by definitions presented in Subsection 2.1 the gradient of f is given
Hn-a.e locally by ∇Mf(y) = ∇Njf(y), y ∈Mj . Corresponding, the differential dMfx : TxM → R

m

is dMfx(τ) = Dτf(x) = ⟨τ,∇Mf(x)⟩, τ ∈ TxM and the adjoint of dMfx by (dMfx)
∗ : Rm → TxM

which is characterized by

∀v ∈ Rm ∀u ∈ TxM : ⟨(dMfx)∗(v), u⟩TxM = ⟨v,dMfx(u)⟩Rm .(182)

64 Theorem (Area Formula for Rectifiable Sets)

Let U ⊂ R
n+ℓ an open subset, M ⊂ U a Hn-measurable, n-rectifiable set and f : U → R

m locally
Lipschitz, m = n+ ℓ ≥ n, ℓ ≥ 0 and h is any non-negative Hn-measurable function on M and in the case
f |M is 1 : 1. Then it holds ∫

M
hJMf dHn =

∫
f(M)

h ◦ f−1 dHn

with the Jacobian JMf (x) for Hn-a.e. x ∈M given by

JMf (x) =
√
det J(x) =

√
det
(
(dMfx)∗ ◦ (dMfx)

)
(183)

where J(x) is the matrix with Dτpf(x) · Dτqf(x) in the p-th row and q-th column for τ1, . . . , τn any
orthonormal basis of TxM .

Proof: [Sim83, 2.6 p. 77].
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65 Theorem (Co-Area Formula for Rectifiable Sets)

Let U ⊂ R
n+ℓ an open subset, M ⊂ U a Hn-measurable, n-rectifiable set and f : U → R

m locally
Lipschitz, m ≤ n = m + k, k ≥ 0, g is a given non-negative Hn-measurable function and A ⊂ M any
Hn-measurable. Then it holds∫

A
gJM∗

f dHn =

∫
Rm

(∫
f−1(y)∩A

g dHk

)
dLm(y)

where JM∗
f is the adjoint Jacobian

JM∗
f (x) =

√
det
(
(dMfx) ◦ (dMfx)∗

)
.(184)

Proof: [Sim83, 2.9 p. 77].

For, in our case the most important, case π : R3 ∋ (x1, x2, x3) 7→ (x1, x2) ∈ R2 the orthogonal
projection in the first two components we want to calculate the adjoint Jacobian. For that let φ
be a local representation of surface M at p. We represent the tangential space by TxM ∋ w =
w1∂1φ+ w2∂2φ. In local representation we have

(
dMπφ

)
w =

(
1 0 0
0 1 0

)
◦
(
w1∂1φ+ w2∂2φ

)
=

(
∂1φ1 ∂2φ1

∂1φ2 ∂2φ2

)
◦
(
w1

w2

)
So we can locally rewrite (182)

〈(
dMπφ

)∗
v, (gij) w

〉
R2 =

〈
v,

(
∂1φ1 ∂2φ1

∂1φ2 ∂2φ2

)
◦ w
〉
R2

⇒
(
dMπφ

)∗
= (gij) ◦

(
∂1φ1 ∂1φ2

∂2φ1 ∂2φ2

)
.

Finally, we can deduce

det

((
∂1φ1 ∂2φ1

∂1φ2 ∂2φ2

)
◦ (gij) ◦

(
∂1φ1 ∂1φ2

∂2φ1 ∂2φ2

))
= det

((
∂1φ1 ∂2φ1

∂1φ2 ∂2φ2

))2
1

det
(
(gij)

) .
Next, we want to compare these terms with the last component of the normal. By Lagrange’s
identity, we get

N =
1√

det

(
∥∂1φ∥2 ⟨∂1φ, ∂2φ⟩

⟨∂2φ, ∂1φ ∥∂2φ∥2
) (∂1φ× ∂2φ

)
=

1√
det
(
(gij)

)
∂1φ2∂2φ3 − ∂1φ3∂2φ2

∂1φ3∂2φ1 − ∂1φ1∂2φ3

∂1φ1∂2φ2 − ∂1φ2∂2φ1

 .

Therefore, the adjoint Jacobian is equal to the absolute value of the third component of the normal

JM∗
f (p) =

√
det
(
(dMπp) ◦ (dMπp)∗

)
= |N3|(p).(185)

7.2 Functions of Bounded Variation and Fine Properties of Functions

In this subsection, we want to recall the definition of spaces of bounded variation and some of
their fine properties. Since we want to consider Willmore bounded graph sequences in Subsection
8.2, by Theorem 16 the L1(Ω)-norm of ∇u, also called variation, will stay bounded. Especially
the W 1,1-Sobolev functions have bounded variation

∫
Ω |∇u|dx, which plays a role in variational

problems like least area problems. The justification for the inclusion of BV-spaces instead of W 1,1-
spaces in the field of calculus of variations is that theW 1,1-spaces do not exhibit useful compactness
property, like Theorem 66 for BV-functions.
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Let Ω ⊂ R
n be an open and bounded set, u ∈ L1(Ω). We say that u belongs to the space of

functions of bounded variation if its distributional derivatives ∇iu for i = 1, . . . , n are given by finite
signed Radon measures on Ω in the following sense

∀g ∈ C1
c (Ω;R

n) :

∫
Ω
⟨∇u, g⟩Rn dx =

∫
Ω
udiv g dx.

The total variation of ∇u of a function u ∈ L1(Ω) is given by∫
Ω
|∇u| = sup

{∫
Ω
udiv g dx

∣∣∣∣ g ∈ C1
c (Ω;R

n) and ∥g∥L∞(Ω) ≤ 1

}
.

Then, the space of L1-functions with bounded variation is denoted by

BV (Ω) :=

{
u ∈ L1(Ω)

∣∣∣∣ ∫
Ω
|∇u| <∞

}
For each u ∈ BV (Ω) the ∇u and |∇u| are vector valued and scalar Radon-measures respectively
on Rn and R. These can be decomposed in a absolutely continuous part of ∇u with respect to Ln
and a singular part ∇su which consists out of a jump part ∇ju and a Cantor part ∇cu

∇u = ∇auLn +∇su = ∇auLn +∇ju+∇cu.

Furthermore, it is possible to characterize the singular part more precisely as restrictions on the
following sets with the help of the following sets

Σu :=

{
x ∈ Ω

∣∣∣∣∣ limρ↘0

|∇u|
(
Bρ(x)

)
ρn

= ∞

}
, Θu :=

{
x ∈ Ω

∣∣∣∣∣ limρ↘0

|∇u|
(
Bρ(x)

)
ρn

ρ > 0

}
.

Then we have the restrictions of ∇u as Radon measures [AFP00, Prop. 3.92 p. 184]

∇auLn = ∇u (Ω \ Σu), ∇uj = ∇u Θu, ∇cu = ∇u (Σu \Θu)

where by Besicovitch derivation theorem [AFP00, Theorem 2.22 p.54] the absolutely continuous
part is computed for all x ∈ Ω \ Σu by

∇au(x) = lim
ρ↘0

∇u
(
Bρ(0)

)
ωnρn

with ∇au ∈ Lloc(Ω;R
n) and moreover Ln(Σu) = 0.

It is also possible to describe the jump part more directly. To do so, we define the approximate
jump points [AFP00, p.163 Def. 3.67]. Let u ∈ L1

loc(Ω;R
m) and x ∈ Ω. We say that x is an

approximate jump point of u if there exist a, b ∈ Rm and ν ∈ SN−1 such that a ̸= b and

lim
ρ↘0

−
∫
B+

ρ (x,ν)

∣∣u(y)− a| dy = 0, lim
ρ↘0

−
∫
B−

ρ (x,ν)

∣∣u(y)− b
∣∣dy = 0.(186)

with the convenient notation

B+
ρ (x, ν) :=

{
y ∈ Bρ(x)

∣∣ ⟨y − x, ν
〉
> 0
}
, B.

ρ(x, ν) :=
{
y ∈ Bρ(x)

∣∣ ⟨y − x, ν
〉
< 0
}
.

Up to a permutation a↔ b and a change of sign of ν the triplet (a, b, ν) is uniquely determined by
(186) and is denoted by (u+(x), u−(x), νu(x)). We also denote Ju as the set of approximate jump
points. Moreover, by [AFP00, Definition 3.67] Ju ⊂ Θu is Hn−1-rectifiable and Hn−1(Θu \ Ju) = 0
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[AFP00, Proposition 3.92]. Also, by [AFP00, Thm 3.78 p. 173] we know that with νu, which denotes
a Borel unit normal vector field to Ju, it follows

∇ju = (u+ − u−)⊗ νuHn−1 Ju

where u+ and u− are the traces of u on Ju.
The main justification for the usage of the BV-spaces is the following compactness theorem.

We again emphasize that the Sobolev space W 1,1(Ω) does not have such a Theorem.

66 Theorem (Compactness for BV functions)

Let Ω ⊂ Rn be open and bounded, with Lipschitz boundary ∂Ω. Assume {uk}∞k=1 is a sequence in BV (Ω)
satisfying

sup
k∈N

{
∥uk∥L1(Ω) + |∇uk|(Ω)

}
<∞.

Then there exists a subsequence {ukj}∞j=1 and a function u ∈ BV (Ω) such that

ukj → u in L1(Ω) and lim
k→∞

∫
Ω
φ∇uk =

∫
Ω
φ∇u, for all φ ∈ C0

c (Ω).

We call the last property the weak∗ convergence of ∇uk to ∇u.

Proof: [AFP00, Theorem 3.23 Definition 3.11]

We want also to consider the sublevelsets of graphs. Then, such a set E has a finite perimeter,
meaning that the indicator function χE lies in BV-space. Hence, theoretically, its boundary has a
bounded surface area and an inner normal measure. We recall a Ln-measurable set E ⊂ Rn to be
a set of finite perimeter if the characteristic functions χE have a finite perimeter of E relative to open
U ⊂ Rn

P(E,U) :=

∫
U
|∇χE | <∞

so that χE lies in BV (U). We use here the notation U to avoid confusion with Ω because later
we will set U = BR(0) × R where Ω ⊂ BR(0) ⊂ R

2. This total variation of ∇χE measures the
(n − 1)-dimensional Hausdorff area of ∂E ∩ U . Like in [AFP00, Definition 3.54 p.154] we further
call the reduced boundary FE the collection of all points x ∈ supp |∇χE | ∩ U such that the limit

νE(x) := lim
ρ↘0

∇χE
(
Bρ(x)

)
|∇χE |

(
Bρ(x)

)
exists in RN and satisfies |νE(x)| = 1. The function νE : FE → Sn−1 is called generalized inner
normal to E. The motivation for introducing the reduced boundary is to have a set of boundary
points where we can define an inner normal in a measure-theoretical sense. From [AFP00, p.154]
we know that FE is a countably Hn−1-rectifiable. Also by the Besicovitch derivation Theorem
[AFP00, Theorem 2.22, p.54] |∇χE | is concentrated on FE and furthermore [AFP00, Theorem 3.59
(De Giorgi) p.157] yields

|∇χE | = HN−1 FE.(187)

Moreover, the polar decomposition ∇χE = νE |∇χE | holds. Like in [AFP00, Definition 3.60 p.158],
for every t ∈ [0, 1] and every Ln-measurable set E ⊂ Rn we denote:

Et :=

{
x ∈ Rn

∣∣∣∣∣ limρ↘0

∣∣Bρ(x) ∩ E∣∣∣∣Bρ(x)∣∣ = t

}
.
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While one can consider E0 and E1 a the measure theoretic exterior and interior of the set E, the
essential boundary of E is defined as:

∂∗E := Rn \ (E0 ∪ E1).(188)

By [AFP00, Theorem 3.61. (Federer) p.158] we know that for E a set of finite perimeter in U and it
holds

FE ∩ U ⊂ E1/2 ⊂ ∂∗E and Hn−1
(
U \ (FE ∪ E1 ∪ E0)

)
= 0.(189)

Hence, it follows that up to Hn−1-null set the essential and reduced boundaries are the same

Hn−1(∂∗E \ FE) = 0.(190)

The rather abstract measure theoretical notion of sets of finite perimeter still allows the usual
Gauss-Green Theorem provided the usage of the measure-theoretic boundary FE.

67 Theorem (Gauss-Green Theorem)

For any setE of finite perimeter inU the distributional derivative ∇χE is aRn-valued finite Radon measure
in U and it holds

∀φ ∈ C1
c (U ;Rn) :

∫
E
divφdx = −

∫
FE

⟨νE , φ⟩ dHn−1.(191)

Proof: [AFP00] thm. 3.36 p.143 and equation (3.47) p. 154 and (189).

Not only that, but it is also possible to introduce the notion of the mean curvature of FE in
the sense of Luckhaus-Sturzenhecker [LS95]. They introduced it for a parabolic mean curvature
problem in a time cylinder Ω × (0, T ), T > 0. In contrast, we define the mean curvature for the
reduced boundary of sets in U ⊂ Rn.

68 Definition (Mean Curvature of the Reduced Boundary, [LS95] (0.4))

Let U ⊂ R
n be open and bounded, and let E be a set of finite perimeter in U . Then we say that a reduced

boundary FE has mean curvature, if there exists such a function H ∈ L1(|∇χE |;R) that satisfies

∀ζ ∈ C∞
c (U ;Rn) :

∫
U

(
divRn ζ −

(
∇χE
|∇χE |

)T
◦Dζ ◦ ∇χE

|∇χE |

)
|∇χE | =

∫
U
Hζ∇χE ,

It can be checked that this definition is consistent with the classical notion of mean curvature
for graphs. Namely, in case ∂E ∩ U is a C1-class two-dimensional submanifold M of R3 then
|∇χE | = H2 (∂E ∩ U). Furthermore, one can check that N := −∇χE/|∇χE | is a normal vector
field to M by the classical Gaussian theorem (see step 4 in proof of Theorem 89). Then, by the
tangential divergence theorem, it follows with test functions ζ ∈ C∞

c (U ;R3) that∫
U

(
divR3 ζ −

(
∇χE
|∇χE |

)T
◦Dζ ◦ ∇χE

|∇χE |

)
|∇χE |

=

∫
M

(
divR3 ζ −NT ◦Dζ ◦N

)
dH2 =

∫
M

divTxM ζ(x) dH2 tang. Div
=

Thm.
−
∫
M
H⃗ · ζ dH2

= −
∫
M
Hζ ·N dH2 =

∫
U
Hζ∇χE .

Next, we want to introduce some fine properties of functions. Let u ∈ L1
loc(Ω;R

m), by Lebesgue
set of u, denoted by Lu, we call the set of all points x ∈ Ω such that [AFP00, Definition 3.63 p.160]

∃z = zu(x) ∈ Rm : lim
ρ↘0

−
∫
Bρ(x)

∣∣u(y)− z
∣∣dy = 0.(192)
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Like in [GMS92, p. 54] by Giaquinta, Modica and Souček, we call for each x ∈ Lu

ũ(x) := zu(x)

the Lebesgue value of u at x ∈ Lu (Ambrosio, Fusco and Pallara [AFP00, Defintion 3.63 p. 160] call
it the approximate limit of u at x). The complement of the Lebesgue set is denoted by Su := Ω \ Lu.
It is known that Su is Hn−1-rectifiable [Fed69, 4.5.9(16)]. Furthermore, by Lebesgue point, we call
each point such that

lim
ρ↘0

−
∫
Bρ(x)

∣∣u(y)− u(x)
∣∣dy = 0.(193)

Furthermore, the limit function u∗ ∈ L1
loc(R

n)

u∗(x) :=

{
limr↘0 −

∫
Bρ(x)

u dy, if limit exists
0, otherwise

is called the precise representative on u in x ∈ Ω. It is possible [EG15, Theorem 5.19 p. 241] that
the above limit exists even if x is not a Lebesgue point, if f has a "measure theoretic jump" across
some hyperplane, thus approximate jump points. Next, we say that a function u : Ω → R

m has an
approximate limit at x ∈ Rn if there exists z ∈ Rm such that

∀ε > 0 : lim
r↘0

Ln
(
Br(x) ∩

{
|u− z| ≥ ε

})
Ln
(
Br(x)

) = 0.

Then z is uniquely determined and we set the approximate limit of u at x ∈ Ω by

aplim
y→x

u(y) := z.

Moreover, we call u approximately continuous at x ∈ Rn if the condition aplim
y→x

u(y) = u(x) is satisfied.

If u ∈ L1(Ω), then the Lebesgue set is also the set of approximate continuity since, like in [EG15,
Remark p. 59], it holds

Ln
(
Br(x) ∩

{
|u− z| ≥ ε

})
Ln
(
Br(x)

) ≤ 1

ε
−
∫
Br(x)

|u− z|dy.

Therefore, for all x ∈ Lu it holds u∗(x) = aplim
y→x

u(y) = ũ(x) (see [GMS92, Proposition 4 p. 62]) .

Now like in [EG15, Definition 6.1 p. 262], we can define a general notion of differentiability.
Let u ∈ L1

loc(Ω;R
m) and x ∈ Ω\Su. We say u is approximately differentiable at x if there exists am×n

matrix L such that

aplim
y→x

∣∣u(y)− ũ(x)− L(y − x)
∣∣

|y − x|
= 0.(194)

If u is approximately differentiable at x the matrix L, uniquely determined by (194), is called the
approximate differential of u at x and denoted by apDu. We also denote the set of points where
u is approximately differentiable by AD(u) ⊂ Ω \ Su. Actually, in [GMS92, Definition 5 p. 63]
we can find a slightly weaker definition which uses aplimsup instead of aplim. Since we will use
BV-functions, which have stronger differentiability properties, we better stick to (194).
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69 Theorem (Differentiability for BV functions)

Any function u ∈ BV (Ω;Rm) is approximately differentiable at Ln-almost every point of Ω. Moreover, if
x ∈ Ω \ (Su ∪ S∇au ∪ Σu) then it follows

lim
ρ↘0

−
∫
Bρ(x)

∣∣u(y)− ũ(x)− ⟨∇au, (y − x)⟩
∣∣

ρ
dy = 0 and apDu(x) = ∇au(x)

Therefore, the approximate differential apDu is the density of the absolutely continuous part of ∇u with
respect to Ln almost Ln-everywhere. Also it follows that

Ω \ (Su ∪ S∇au ∪ Σu) ⊂ AD(u).

Proof: [EG15, Proof of Theorem 6.1 p.258, conditions (a),(b) and (c)] and [AFP00, 3.83 p.176].

Moreover, by the theorem of Federer-Vol’pert [AFP00, Thm. 3.78 p. 173] it follows for u ∈
BV (Ω;Rm) that the discontinuity set Su is countably Hn−1-rectifiable and Hn−1(Su \ Ju) = 0 with
the jump set Ju. This means that Hn−1(AD(u) ∩ Ju) = 0.

Following the results from [ABG98] and [GMS92], we want to connect the approximate dif-
ferentiability and the set AD(u) to the rectifiability properties of its graph. We especially want to
describe the Hn-integration on a graph over the set AD(u). First, we need the following approxi-
mation theorem.

70 Theorem (Federer)

Let A be a measurable set in Rn and let u : A → R be a measurable Ln-a.e. approximately differentiable
function. Then there exists a non decreasing sequence {Cj}j∈N of measurable sets and a sequence {uj}j∈N
of Lipschitz functions inRn such that

u = uj on Cj , Ln
(
A \

∞⋃
j=1

Cj

)
= 0 and ∇au(x) = ∇uj(x) Ln-a.e x ∈ Cj .

Proof: [GMS92, Theorem 7 of part 1].

The next theorem is an analogy to Theorem 2.11 from [ABG98], where one uses the classical
area formula for Lipschitz functions and the exhaustion from Theorem 70.

71 Theorem

Let M ⊂ Rn of dimension n with Ln(M) < +∞, let u : M → R be Ln-differentiable at every point in M ,
and let ΓM :=

{
x, u(x)

∣∣ x ∈M
}
⊂ Rn ×R be the graph of u on M and Hn(ΓM ) < +∞. Then

i ΓM∩AD(u) is Hn-measurable and

Hn(ΓM∩AD(u)) =

∫
M∩AD(u)

Qa dx,

where Qa :=
√

1 + |∇au|2

ii Furthermore, then we have for any bounded Borel function η∫
ΓM∩AD(u)

η(x, y) dHn(x, y) =

∫
M∩AD(u)

η
(
x, u(x)

)
Qa(x) dx.(195)
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Proof: For the first part i , we define the function

Φ: M → R
n+1 : Φ(x) =

(
x, u(x)

)
,

Then Φ is Ln-a.e. approximately differentiable in M . By Theorem 70 we can exhaust AD(u)
by a non decreasing sequence of measurable sets {Fk}∞k=1 and find Lipschitz functions Φk ∈
Lip(Rn), k ∈ N such that{

Φk(x) =
(
x, uk(x)

)
= Φ(x), on Fk, DΦk = DΦ a.e. on Fk, AD(u) ⊂

⋃∞
k=1 Fk.

With the area formula in Theorem 64 for Lipschitz graphs we get for each k ∈ N the Jacobian
[GMS92, Section 3 Theorem 2 (Area Formula) p. 79]

JR
n

Φk
=
√
det
(
DiΦk ·DjΦk

)
i,j=1,...,n

=
√

1 + |∇uk|2.

With these results, we conclude∫
M∩AD(u)∩Fk

√
1 + |∇au|2 dx =

∫
M∩AD(u)∩Fk

√
1 + |∇auk|2 dx

=

∫
Rn+1

H0
(
M ∩AD(u) ∩ Fk ∩ Φ−1(y)

)
dHn(y)

=

∫
Rn+1

χΦ(M∩AD(u)∩Fk) dH
n(y).

Now we observe that the characteristic functions χΦ(M∩AD(u)∩Fk) are non-negative and Hn–
measurable [Sim83, Thm 1.8]. Moreover the sequence {χΦ(M∩AD(u)∩Fk)}k∈N increases pointwise
to χΦ(M∩AD(u)), so that χΦ(M∩AD(u)) is also Hn-measurable. By monotone convergence Theorem
we obtain ∫

Rn+1

χΦ(M∩AD(u)∩Fk) dH
n(y) →

k→∞

∫
Φ(M∩AD(u))

dHn(y).

Analogously, since we have by Theorem 69 (Calderon Zygmund) Ln(M \AD(u)) = 0 andAD(u)∩
Fk ↗ AD(u) as well as

√
1 + |∇ua|2χAD(u)∩Fk

is positive and increasing pointwise to
√
1 + |∇ua|2

it follows ∫
M∩AD(u)∩Fk

√
1 + |∇au|2 dx →

k→∞

∫
M∩AD(u)

√
1 + |∇au|2 dx.

The second part ii follows by an analogous calculation by approximation with simple functions.

7.3 Measure-Function Pairs & Disintegration Theorem

In this subsection, we recall the definition of measure-function pairs and corresponding theorems
from [Mos01] and [Hut86]. This approach allows us to investigate the subconvergence of a sequence
of Radon measures combined with a sequence of L1

loc-functions. Later, in the case of graphs, we
will take a sequence of two-dimensional Lebesgue measures with area elementsQ and as functions
the mean curvature or the normal vector field.

Let E ⊂ R
n be an open subset or some manifold embedded in Rn. Suppose µ is a Radon

measure on E and f : E → R
m is well defined µ-almost everywhere, f ∈ L1

loc(µ;R
m) where

L1
loc(µ;R

m) is the space of locally µ-integrable functions on E with values in Rm. Then we say
(µ, f) is a measure-function pair over E with values inRm.
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72 Definition (Measure-Function Pair Weak Convergence)

Suppose {(µk, fk)}∞k=1 and (µ, f) are measure-function pairs over E with values in Rm. Additionally,
suppose µk → µ in E as k → ∞ (see (181)). Then we say (µk, fk) converges to (µ, f) in the weak sense in
E and write

(µk, fk)⇀ (µ, f) if µk fk → µ f

in the sense of vector-valued measures. In other words, if

∀φ ∈ C0
c (E;Rm) :

∫
⟨fk, φ⟩dµk →

k→∞

∫
⟨f, φ⟩ dµ.

In the same way as in [Mos01] we say that (µk, fk) converge in the weak Lp-sense to (µ, f), denoted as

(µk, fk)
Lp

⇀ (µ, f), if (µk, fk)⇀ (µ, f) ∧ ∥fk∥Lp(µk) uniformly bounded.

Mostly, we want to study measure-function pair convergence with respect to some functional,
which will stay bounded. In our case, the Willmore energy or the area functional can play such a
role.

73 Assumption (Hutchinson [Hut86] 4.1.2)

Suppose F : E ×Rm → R. We denote variables in E ×Rm by (y, q). F shall always satisfy the following
conditions:

1 F is continuous.

2 F is non-negative: ∀(y, q) ∈ E ×Rm : F (y, q) ≥ 0.

3 F is convex in the q variables:

∀λ ∈ (0, 1), y ∈ E, p ∈ Rm, q ∈ Rm : F (y, λp+ (1− λ)q) ≤ λF (y, p) + (1− λ)F (y, q).

If the above equation holds strictly, then we call F strictly convex.

4 F has non-linear growth in the q variables, i.e. there exists a continuous function φ : E × [0,∞) →
[0,∞), 0 ≤ φ(y, s) ≤ φ(y, t), for 0 ≤ s ≤ t and y ∈ E, φ(y, t) → ∞ locally uniformly in y as
t→ ∞, and

∀(y, q) ∈ E ×Rm : φ(y, |q|)|q| ≤ F (y, q).

74 Definition (F -strong Convergence, Hutchinson [Hut86] 4.2.2 p.54)

Suppose {(µk, fk)}k∈N and (µ, f) are measure-function pairs over E with values inRm. We write

(µ, f) ∈ F , if
∫
E
F
(
y, f(y)

)
dµ(y) <∞,

(µk, fk) ∈ F uniformly, if
∫
E
F
(
y, fk(y)

)
dµk(y) ≤ C0.

for some C0 > 0. Furthermore, suppose µk → µ in E, we say (µk, fk) converges to (µ, f) in the F -strong
sense (in E), and we write

(µk, fk)
F→ (µ, f),

if the following holds:
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i ∀k ∈ N : (µk, fk) ∈ F ,

ii If Ekj :=
{
y ∈ E

∣∣ |y| ≥ j ∨
∣∣fk(y)∣∣ ≥ j

}
, then:

lim
j→∞

∫
Ekj

F
(
y, fk(y)

)
dµk = 0, uniformly in k,

iii ∀φ ∈ C0
c (E ×Rm) : lim

k→∞

∫
E
φ
(
y, fk(y)

)
dµk(y) =

∫
E
φ
(
y, f(y)

)
dµ(y).

Next, we need to know how a product of two sequences of function-products acts if the
sequences of measures are the same. This will allow us to combine the limits of normal vector
fields and mean curvatures.

75 Theorem (Product Rule)

Let p, r ∈ (1,∞), such that 1
r + 1

p = 1. Suppose that µk, µ are Radon measures on E and that fk ∈
Lp(µk;R

m), f ∈ Lp(µ;Rm), gk ∈ Lr(µk;R
m), g ∈ Lr(µ;Rm). It follows

(µk, fk)
Lp

→ (µ, f) ∧ (µk, gk)
Lr

⇀ (µ, g) ⇒ (µk, fk · gk)
L1

⇀ (µ, f · g)(196)

where by (µk, fk)
Lp

→ (µ, f) we mean the F -strong convergence with F (y, q) = |q|p.

Proof: Proposition 3.2 p 6. in [Mos01].

The next theorem provides further convergence properties.

76 Theorem (Convergence Theorem)

Suppose {(µk, fk)}∞k=1 is a sequence of measure-function pairs over E ⊂ R
n with values in Rm. Further,

suppose µ is a Radon measure on E and µk → µ in E as k → ∞. Then the following is true:

i If (µk, fk) ∈ F uniformly then some subsequence of {(µk, fk)}∞k=1 converges in the weak sense to a
measure-function pair (µ, f) for some f .

ii If (µk, fk) ∈ F uniformly and (µk, fk)⇀ (µ, f) then:∫
E
F (y, f(y)) dµ ≤ lim inf

k→∞

∫
E
F (y, fk(y)) dµk.

iii If F is strictly convex (see Assumption 73) and {(µk, fk)}∞k=1 ⊂ F then the following are equivalent:

a (µk, fk)
F→ (µ, f),

b (µk, fk)⇀ (µ, f) and ∫
E
F (y, fk(y)) dµk →

∫
E
F (y, f(y)) dµ.

Proof: [Hut86, Theorem 4.4.2 p. 58]

Since we will work with graphs, we will work with Radon measures on some domain Ω ⊂ R2

with a limit µ from area measure sequence. Also, we will obtain a Hausdorff measure from a
varifold limit. Hence, it makes sense to split an integral over the Hausdorff measure into an
integration over µ and some other auxiliary measure. This splitting will be called disintegration.
In preparing for the disintegration theorem, we need a definition for measurable measure-valued
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maps from [AFP00, Definition 2.25 p.56]. Let E ⊂ R
n and G ⊂ R

m be open sets, µ a positive
Radon measure onE as well as x 7→ νx a function which assigns to each x ∈ E aRm-valued Radon
measure νx on G. We say that this map is µ-measurable if

∀B ∈ B(G) : x 7→ νx(B) is µ-measurable

where µ-measurability was defined in the beginning of Subsection 7.1

77 Theorem (Disintegration Theorem)

Let m ≥ 1, E ⊂ Rn and G ⊂ Rm open sets, ν an Rm-valued Radon measure on E ×G, π : E ×G → E
the projection on the first factor and µ = π#|ν| is a push-forward, which means ∀K ∈ B(E) : µ(K) =
µ
(
π−1(K)

)
.

Let us assume that µ us a Radon measure, i.e. that |ν|(K ×G) <∞ for any compact set K ⊂ E.
Then there existRm-valued finite Radon measures νx on G such that x 7→ νx is µ-measurable,

|νx|(F ) = 1, µ-a.e. in E

and for any f ∈ L1
(
E ×G, |ν|

)
it holds

f(x, . ) ∈ L1
(
G, |νx|

)
µ-a.e. x ∈ E,(197)

x 7→
∫
G
f(x, y) dνx(y) ∈L1(E,µ),

∫
E×G

f(x, y) dν(x, y) =

∫
E

(∫
G
f(x, y) dνx(y)

)
dµ(x).(198)

Moreover, if ν ′x is any other µ-measurable map satisfying (198) for every bounded Borel function with
compact support and such that ν ′x(G) ∈ L1

loc(E,µ), then νx = ν ′x for µ-a.e. x ∈ E.

Proof: [AFP00, Theorem 2.28, p.57]

7.4 Varifolds

In this subsection, we introduce varifolds, their curvature properties, and compactness results. Like
in [Hut86, Chapter 3], assume N be a smooth p-dimensional Riemannian manifold isometrically
imbedded in Rn (n ≥ p). Further, let Gm,n

(
Gom,n

)
be the Grassmannian manifold of all unoriented

(oriented) m-dimensional subspaces of Rn. We can consider each given unoriented m-subspace
P ⊂ Rn as the projection matrix

[Pij ] ∈ Rn×n

of the orthogonal projection over P = B ◦BT with B = (b1, b2, . . . , bm) filled with an orthonormal
basis ofP . Hence, as noted in [Man96] we can considerGm,n as a compact subset ofRn×n endowed
with relative metric. For example, one can show that in the oriented case Go2,3 ∼= S2 and in the
unoriented case G2,3

∼= RP 2 = S2/{Id,− Id}.
If we denote by q the standard 2-fold covering map q : Gom,n → Gm,n then we can set

Gm(N) =
(
N ×Gm,n

)
∩ {(x, P ) |P ⊂ TxN}, Gom(N) =

(
N ×Gom,n

)
∩ {(x, P ) | q(P ) ⊂ TxN}

An unoriented (oriented) m-varifold V on N is a Radon measure on Gm(N) (Gom(N)). The sets of
such varifolds are denoted by

Vm(N) and Vo
m(N).

By varifold convergence, we understand the convergence in the sense of Radon measures. For
{Vk}k∈N ⊂ Vm(N)(Vo

m(N)) and V ∈ Vm(N)(Vo
m(N)) we write

Vk → V if ∀φ ∈ C0
c (G

(o)
m (Rn)) : Vk(φ) → V (φ).
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For each oriented varifold V ∈ Vo
m(N) we define

q#V ∈ Vm(N)

the corresponding unoriented varifold associated to V by projection onto Gm(N).
Next we define the associated Radon measure on N obtained by projection π : N ×Gm,n → N :

∥V ∥ = µ = µV = π#V, µ(A) = V (A×Gm,n)(199)

Suppose E ⊂ R
n is a countably m-rectifiable, Hm-measurable and θ, θi > 0 are locally Hm-

measurable functions on E. Additionally, let us assume that an orientation function ξ : E → Gom,n
is Hm-measurable and suppose that ξ(x) is one of the two oriented approximate tangent planes
TxE := Tanm(Hm E, x) toE at x forHm E. Then we define rectifiable varifolds, ∀φ ∈ C0

c (Gm(R
n))

or φ ∈ C0
c (G

o
m(R

n)) respectively:

V1 = v(E, θ), V2 = v(E, ξ, θ1) + v(E,−ξ, θ2),

V1(φ) =

∫
E
θ(x)φ(x, TxE) dHm(x),

V2(φ) =

∫
E
[θ1(x)φ(x, ξ(x)) + θ2(x)φ(x,−ξ(x))] dHm(x).

We denote the corresponding sets of such rectifiable varifolds by

RVm(R
n) and RVo

m(R
n).

In the case the functions θ, θ1, θ2 are integer-valued, we call V1, V2 integral varifolds which belong to
the corresponding classes

IVm(R
n) and IVo

m(R
n).

Let us shortly discuss how to reformulate a regular and oriented surface S in R3 with normal
vector field N( . ) to the rectifiable varifold setting. First, we set the surface measure µ := H2 S.
Then for each p ∈ S we set Radon measures by delta-distributions on Go2,3

∼= S2 or G2,3
∼= RP 2

respectively {
νp := δN(p)( . ) in oriented varifold case,
νp := δ(N(p))⊥( . ) in unoriented varifold case.

and νp = 0 for p ̸∈ S. In oriented varifold case, we can set for all B ∈ B(R3 × S2)

V(S,N( . ))(B) =

∫
R3

(∫
S2
χB(p, x) dνp(x)

)
dµ(p).

For the unoriented varifold case, we simply replace S2 withRP 2 in the above formula and consider
B ∈ B(R3 ×RP 2). Additionally, we get for all A ⊂ R3

∥V(S,N( . ))∥(A) = V(S,N( . ))(A× S2) =
∫
R3

χA(p) d(H2 S)(p) = µ(A ∩ S) = H2(A ∩ S).

We continue on with the first variation ofm-varifold V , that we define as the linear functional on
C1
c (R

n;Rn) vector fields:

∀X ∈ C1
c (R

n;Rn) : δV (X) :=

∫
Gm(Rn)

divP X(x) dV (x, P ),
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where we define

∀P ∈ Gm,n : divP X :=
n∑
i=1

∇P
i X

i =
n∑

i,j=1

PijDjX
i

with∇Pφ = P (∇φ) is the projection onP and for {ei}ni=1 the orthonormal basis ofRn∇P
i := ei·∇P .

For V ∈ Vm(R
n) we recall the total variation of δV to be the largest Borel regular measure on Rn

such that

∥δV ∥(G) = sup{δV (g) | g ∈ C1
c (R

n;Rn), spt g ⊂ G and |g| ≤ 1}

whenever G is an open subset ofRn, see [All72, p. 435 with M = Rn].
In [Men13, Thm. 1] Menne has shown that if V ∈ IVm(U) and ∥δV ∥ is a Radon measure or

V is a curvature varifold then V is countable C2-rectifiable. That means there exists a countable
collection {Ck}k∈N ofm-dimensional submanifolds ofRn of class 2 such that ∥V ∥(U \∪k∈NCk) = 0
and each member Ck of the collection has ∥V ∥-a.e. the same mean curvature vector as V in U ∩M .

78 Definition (Weak Mean Curvature, [Mon14] Def 2.10)

Let V be an unoriented m-varifold on Rn and H⃗ : Gm(R
n) → R

n a L1
loc(V )-function, then we say that V

has weak curvature H⃗ if one has

∀X ∈ C1
c (R

n;Rn) : δV (X) :=

∫
Gm(Rn)

divP X(x) dV (x, P ) = −
∫
Gm(Rn)

H⃗ ·X dV (x, P ).(200)

For V = v(E, θ) ∈ RVm(R
n) with weak mean curvature we write H⃗(x) = H⃗(x, TxE), so we get:∫

E
divE X dµV = −

∫
E
H⃗(x) ·X dµV ,(201)

where divE X(x) := divTxE X(x) is the tangential divergence, and TxE is the µV -a.e. existing approximate
tangent vector space to E at x. From [All72, 4.1] it follows that δV E = −µv H⃗ . For the oriented case,
we define

δV = δ(q#V ).

Suppose that the first variation of V is locally bounded, then according to [Men17] there exists
a ∥V ∥-almost unique locally ∥V ∥-summable, Rn-valued function mean curvature H⃗(·) satisfying
the equation (200). Moreover [Hut86, Remark 5.2.3.]

∀B ⊂ Rn : ∥δV ∥(B) =

∫
B
∥H⃗∥ dµV .

Next we introduce the notation: for a given φ = φ(x, P ) ∈ C1(Rn × Rn×n) we denote the
partial derivatives with respect to the variables xi and Pij respectively by:

Diφ and D∗
jkφ for i, j, k ∈ {1, . . . , n}.

79 Definition (Curvature Varifold)

Suppose U is an open subset of Rn. We say a integral varifold V ∈ IVm(R
n) has generalized curvature

and generalized second fundamental form in U if there exist R-valued functions Bijk for 1 ≤ i, j, k ≤ n,
defined V U -almost everywhere in Gm(Rn) such that the following is true :
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i (V, [Bijk]) is a measure-function pair on Gm(Rn) with values inRn×n×n

ii One has ∀i = 1, . . . , n with [Pij ] ∈ Gm,n the following

∀φ = φ(x, P ) ∈ C1
c (R

n ×Rn×n) : 0 =

∫
Gm(N)

(
PijDjφ+BijkD

∗
jkφ+Bjijφ

)
dV,

where we sum over all the values of the index if the index variable appears twice in a single term.

We call the function B generalized curvature and write

SUV or SUV (x, P ) = [Bijk(x, P )].

In this case, we say V ∈ IVm(R
n) is a curvature varifold on U . Furthermore we call an oriented varifold

V ∈ IVo
m(R

n) an oriented curvature varifold on U if q#V ∈ CVm(R
n) and denote the corresponding

unoriented and oriented classes by

CVm(R
n) and CVo

m(R
n).

Let us return to more a general case were V ∈ IVm(R
n) is am-varifold onN ↪→ R

n,m < p ≤ n,
(m = dimV, p = dimN ) we can define an orthogonal projection matrix Q onto the tangent space
of N :

TxN = Q(x) := [Qij ] ∈ Rn×n.

80 Definition (Generalized Second Fundamental Form)

Let V ∈ CVm(R
n) ∩Vm(N). We define the generalized second fundamental form of V in N as L1

loc(V )
function:

A : Gm(N) → R
n×n×n, Akij(x, P ) := PℓjBikℓ − PℓjPiq

∂Qkℓ
∂xq

(x)(202)

where we sum over all the values of the index if the index variable appears twice in a single term.

In the Appendix, in Lemma 102 it is shown that this definition is consistent with that of the
classical second fundamental form introduced in Definition 1. At this point, it is important to
notice that here we follow the notation of Mondino in [Mon14, p.7 bottom], instead of that of
Hutchinson, who calls A the curvature andB the second fundamental form. The Hutchinson also
showed that B can be expressed in terms of A:

Bijk = Akij +Ajik + PjℓPiq
∂Qℓk
∂xq

(x) + PkℓPiq
∂Qℓj
∂xq

(x).(203)

Furthermore according to [Hut86, 5.2.3 p. 62] we have P = Tanm(µV , x) for V a.e. (x, P ) and

H⃗i(V, x) = Bjij(x,Tanm(µV , x)) for µV a.e. x ∈ U.(204)

The weak curvature vector can also be described with A-terms by (203).

H⃗i = Ajji +Aijj + PiℓPjq
∂Qℓj
∂xq

(x) + PjℓPjq
∂Qℓi
∂xq

(x).(205)

In the case where the varifold is considered directly on Rn (N = R
n), we obtain TxRn ∼= R

n, so
that Q is in this case a unit matrix, those derivatives vanish.

As shown by Brakke, if V is an integral varifold and ∥δV ∥ is a Radon measure, then the mean
curvature vector is perpendicular to the varifold at V -almost everywhere.
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81 Theorem (Perpendicularity Theorem, Brakke)

If V = v(E, 1) ∈ IVk(R
n) and ∥δV ∥ is a Radon measure then V -a.e.:

H⃗ ⊥ TxE.

Proof: [Bra78] Brakke Thm 5.8 p.157.

Now, we can use the fact that by Theorem 81 the tangential projection of H⃗ is zero. Therefore,
we obtain

H⃗i
205
= Ajji +Aijj

202
= PℓiBjjℓ +Aijj = PℓiH⃗ℓ +Aijj

81
= Aijj ,(206)

by the symmetry Bjjℓ = Bjℓj , see [Hut86, 5.2.4. (i)].
We want to finish the subsection by presenting varifold compactness results. These strong

theorems are the justification for using the (curvature) varifold framework. They provide existence,
thus the remaining difficulty is showing higher regularity.

82 Theorem (Allard Compactness Theorem, Not-Oriented)

Let (Vj)k∈N ⊂ IVo
m(R

n) be a sequence of m-rectifiable varifolds with locally bounded first variation on an
open set Ω ⊂ Rn. If

sup
k∈N

{∥∥Vk(W )
∥∥+ ∥δVk∥(W )

}
≤ c(W ) <∞

for every open setW ⊂⊂ Ω, then there exists a subsequence {Vkℓ}ℓ∈N converging weakly-∗ to am-rectifiable
varifold V ∈ IVo

m(R
n) with locally bounded first variation on Ω and:

∥δV ∥(W ) ≤ lim inf
ℓ→∞

∥δVkℓ∥(W ), ∀W ⊂⊂ Ω.

Proof: [All72, Thm. 5.6. p. 452]

83 Theorem (Compactness Theorem for Oriented Integral Varifolds, Hutchinson)

Let Rn =
⋃∞
i=1Ai where Ai are open. Then for any sequence {Mi}∞i=1 of positive constants the following

is sequentially compact w.r.t. oriented varifold convergence:{
V ∈ IVo

m(R
n)
∣∣ ∀i ∈ N : (µV + ∥δV ∥)(Ai) ≤Mi

}
.

Proof: [Hut86, Thm. 3.1 p. 49]

84 Assumption (Notation Hutchinson [Hut86] 5.2.8. p. 65)

Suppose F : Gm(N)×Rn×n×n → R. We denote variables in Gm(N)×Rn×n×n by ((x, P ), B). F shall
always satisfy the following conditions:

1 F is continuous.

2 F is non-negative: ∀((x, P ), B) ∈ Gm(N)×Rn×n×n : F ((x, P ), B) ≥ 0.

3 F is convex in the B variables: ∀λ ∈ (0, 1), (x, P ) ∈ Gm(N), B,B ∈ Rn×n×n :

F ((x, P ), λB + (1− λ)B) ≤ λF ((x, P ), B) + (1− λ)F ((x, P ), B).

If the above equation holds strictly, then we call F strictly convex.

4 F has non-linear growth in the B variables, i.e. there exists a continuous function φ : Gm(N) ×
[0,∞) → [0,∞), 0 ≤ φ((x, P ), s) ≤ φ((x, P ), t), for 0 ≤ s ≤ t and (x, P ) ∈ Gm(N),
φ((x, P ), t) → ∞ locally uniformly in (x, P ) as t→ ∞, and

∀((x, P ), B) ∈ Gm(N)×Rn×n×n : φ((x, P ), |B|)|B| ≤ F ((x, P ), B).
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Let F satisfy Assumption 84 then for each V ∈ CVm(E), we define

FE [V ] =

∫
Gm(E)

F
(
(x, P ),SEV (x, P )

)
dV (x, P ).(207)

Suppose {Vk}∞k=1 ⊂ CVm(E) and V ∈ CVm(E). Then we say Vk converges to V in the weak sense
in E, and write

Vk
C,E
⇀ V if (Vk E,SEVk)⇀ (V E,SEV )

in Gm(E) in the sense of measure-function pair weak convergence (72)

85 Theorem (Compactness, Lower Semicontinuity)

Let FE be like in the above Definition 84. Suppose {Vk}∞k=1 ⊂ CVm(E), V ∈ IVm(N), Vk → V in
Gm(E) and FE [Vk] is bounded uniformly in k. Then

V ∈ CVm(E), Vk
C,E
⇀ V, and FE [V ] ≤ lim inf

k→∞
FE [Vk].

Proof: [Hut86, Thm 5.3.2. p.66]
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8 Compactness Results

This chapter provides additional results to the work done in [DGR17] by Deckelnick, Grunau,
and Röger. In their work, they demonstrated several key results. First, in [DGR17, Theorem
2] they proved the L∞ and area bounds like in Theorem 16 a for the surfaces as graphs on
a bounded smooth domain with sufficiently regular Dirichlet or Navier boundary data which
allows working in the L∞ ∩ BV -setting. Then, they introduced the L1-lower semicontinuous
relaxation of the Willmore functional and showed lower-bound and compactness estimates for
Willmore energy-bounded sequences, which allowed them to show the existence of a minimizer
in the L∞ ∩ BV -space for the relaxed energy. Also importantly, since the graph is described by a
BV -function they were able to characterize the lower bound for a suitable subset of BV by a term
originating from the mean curvature of the absolutely continuous part of the gradient as Radon
measure.

In this chapter in Subsection 8.1 the results from [DGR17], based on which we will construct
new contributions, are presented. Then, in Subsection 8.2, we will add terms to the lower-bound
mentioned above. Namely, by rewriting aW 2,2- sequence as a sequence of measure-function pairs
or varifolds, we can recover an until now missing irregular term for the lower-bound. For example,
it can represent the curvature supported on the vertical jump part. This work is strongly based
on unpublished notes of Deckelnick, Grunau, and Röger done subsequently to [DGR17]. Finally,
in Subsection 8.3 based on unpublished notes of Grunau, we will construct a one-dimensional
example of a BV -function with Cantor part and finite relaxed Willmore energy.

8.1 Preliminaries

As mentioned above, considering sequences with uniformly bounded Willmore energy subject to
appropriate boundary conditions, by Theorem 16 theL∞(Ω)∩BV (Ω)-space forms a natural frame-
work to work with. The reason is that such L∞(Ω) ∩ BV (Ω)-bounded sequences are precompact
in L1(Ω). Additionally, as shown by counterexamples in [DGR17, Examples 1 and 2], no a-priori
bounds in W 1,p(Ω), 1 < p ≤ ∞ can be achieved in terms of the Willmore energy. In general, the
subsequence limit point of a Willmore energy bounded sequence in W 2,2(Ω) will instead lie not
better than in L∞(Ω) ∩ BV (Ω). Consequently, as discussed in Subsection 7.2 the limit point may
have jump discontinuities and a highly irregular Cantor part. Also, it is not absolutely clear how
to characterize the Willmore energy for BV (Ω)-functions.

Furthermore, we have to define the boundary conditions. In what follows, let us always
assume that Ω ⊂ R

2 is a bounded C2-smooth domain with exterior normal vector ν : ∂Ω → S1.
The boundary data is then represented by a given function φ ∈ C2

c (R
2). Furthermore, we can

define the set of functions satisfying the Dirichlet boundary conditions represented by φ by

M :=
{
v ∈W 2,2(Ω)

∣∣∣ v − φ ∈ W̊ 2,2(Ω)
}
.

In [DGR17] it was showed that uniformly Willmore energy bounded sequences {uk}k∈N ⊂ M
have L1(Ω)-convergent subsequences. Therefore, it makes sense to investigate the behavior of the
Willmore energy under L1(Ω)-convergence, whereby the limit point may not lie in M. Deckelnick,
Grunau and Röger has chosen the L1-lower semicontinuous relaxation of the Willmore functional:

W : L1(Ω) → [0,∞], W(u) := inf

{
lim inf
k→∞

W (uk)

∣∣∣∣ M ∋ uk → u in L1(Ω)

}
,
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which they showed is the lower-semicontinuous extension of the classical Willmore functional
on M [DGR17, Theorem 4]. One of the main difficulties is that a more explicit characterization
of the relaxation has not been obtained, yet. For the one-dimensional case, this was achieved in
[DMFLM09] (also see Subsection 8.3). However, Deckelnick, Grunau, and Röger were able to show
some (mild) regularity properties for the limit point and also give a lower bound of the relaxed
Willmore energy given by the absolutely continuous part of ∇u. It is defined as an absolutely
continuous contribution to the Willmore energy in the following.

Let u ∈ BV (Ω) with the R2-valued measure ∇u and its the absolutely continuous part ∇au ∈
L1(Ω). Furthermore, we define Qa :=

√
1 + |∇au|2 and the absolutely continuous contribution to the

Willmore energy as

Wa(u) :=


1

4

∫
Ω

(
∇ · ∇

au

Qa

)2

Qa dx if ∇
au

Qa
∈ H(div,Ω) and the integral is finite

∞ else ,

where H(div,Ω) := {u ∈ L2(Ω) | div u ∈ L2(Ω)} is a Hilbert space [Tem01, Chapter 1, Section 1.2].

The main results in [DGR17] are presented in the next theorem. It states that each energy-
bounded sequence has a L1-convergent subsequence, such that the BV (Ω) ∩ L∞(Ω) limit point
has some regularity ∇au

Qa ∈ H(div,Ω) and has finite the absolutely continuous contribution to the
Willmore energy Wa with some estimate from above.

86 Theorem (Theorem 3 in [DGR17])

Let {uk}k∈N be a given sequence in W 2,2(Ω) that satisfies uk − φ ∈ W̊ 2,2(Ω) for all k ∈ N and

lim inf
k→∞

W (uk) <∞.

Then there exists a function u ∈ BV (Ω) ∩ L∞(Ω) with ∇au
Qa ∈ H(div,Ω) such that after passing to a

subsequence

uk → u in L1(Ω) (k → ∞) and Wa(u) ≤ lim inf
k→∞

W (uk) .

If in addition u ∈ W 1,1(Ω) then the mean curvature H = ∇ · ∇u√
1+|∇u|2

∈ L2(Ω) exists in the weak sense
and it holds

W(u) =
1

4

∫
Ω
H2
√
1 + |∇u|2dx ≤ lim inf

k→∞
W (uk) .(208)

Proof: [DGR17, Theorem 3]

This means W(u) = W(u) for u ∈ M. Regarding boundary data for the limit point u, in
[DGR17] it was also proved that the trace on ∂Ω of u satisfies he boundary condition u = φ H1-
almost everywhere on {(Qa)−1 > 0} ∩ ∂Ω [DGR17, Proposition 2] and ∇au · ν = ∇φ · ν H1-almost
everywhere on ∂Ω.

At this point, it should be noticed that (208) can also be deduced from the corresponding
lower semicontinuity theorem in the framework of integral currents proved by Schätzle in [Sch09,
Theorem 5.1] with some additional work.

Next, we want to list some convergence results which were also proved [DGR17] and will be
used in the next subsection. These are some auxiliary sequences with some compactness properties
provided by Theorem 16 in the proof of Theorem 86. It was shown that [DGR17, (35)]

qk :=
(
1 + |∇uk|2

)−5/4
→ q ∈W 1,2(Ω) in Lp(Ω), p ∈ (1,∞), and almost everywhere in Ω.
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Moreover, by [DGR17, (39)] q > 0 L2-almost everywhere in Ω. Additionally, the set {q = 0}
represents the points where the graph of u may become vertical. Furthermore, by [DGR17,
(47),(48)] with some set E ⊂ Ω such that H1(E) = 0 it follows

∇uk → ∇au in {q > 0}\E,(209)

Qk :=

√
1 + |∇uk|2 →

√
1 + |∇au|2 = Qa in {q > 0}\E(210)

therefore ∇uk → ∇au and Qk → Qa almost everywhere in Ω.
There are also convergence properties of the mean curvatures so that after passing to a subse-

quence

Hk := div

(
∇uk
Qk

)
⇀ div

(
∇au

Qa

)
= Ha in L2(Ω).(211)

By [DGR17, (53)] it even holds

Hk

√
Qk ⇀ Ha

√
Qa in L2(Ω).

In the next theorem, which is a corollary to Theorem 86 we want to recall the existence result
of the extended functional W . There, a minimizing sequence for the Willmore functional was
considered. Then it followed that the regularity property stated in Theorem 86 is satisfied, and the
minimizer attains the boundary conditions in a sense explained above. Also, we want to emphasize
that the Dirichlet boundary conditions encoded by φ are assumed by restricting approximating
sequences to be in M, thus to the set of functions that satisfy in W 2,2(Ω) the boundary conditions
fixed by φ.

87 Theorem (Theorem 5 in [DGR17])

There exists a function u ∈ BV (Ω) ∩ L∞(Ω) such that

∀v ∈ L1(Ω) : W(u) ≤ W(v).

Proof: [DGR17, Theorem 5].

8.2 Additional Compactness Results

In this subsection, we want to present additional compactness results based on unpublished notices
of Deckelnick, Grunau, and Röger. They extend the statements of Theorem 86, such that the lower
bound Wa(u) gets an additional term not originating from ∇au.

Especially, we want to investigate the convergence of area measures and normal vectors. Hence,
we make some new definitions. For each graph Γ(uk), we call Qk the area element and

µk = QkL2 Ω

the graph area measure. Furthermore, we define the unit upwards pointing normal fields Nk :
Γ(uk) → S2 and associate functions on Ω Ñk : Ω → S2 by

Nk

(
x, uk(x)

)
:=

1

Qk

(
−∇uk

1

)
, Ñk(x) = Nk

(
x, uk(x)

)
.

We also define the unit upward pointing normal fields of the absolutely continuous part ∇au by

Na :=
1

Qa

(
−∇au

1

)
.
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Since we also want to incorporate the boundary into our discussion, we have to extend the
sequence of functions and measures from Ω to a bigger open ball BR(0) ⊂ R

2. Otherwise, the
test functions in Definition 72 introducing the measure-function pair weak convergence would be
merely in C0

c (Ω).
Furthermore, to be able to work with varifolds (without boundary), we also want to extend the

surfaces with boundary Γ(uk), k ∈ N to closed C1 ∩W 2,2 surfaces Γ(uk) ∪ Σ with some auxiliary
surface Σ with boundary depending only on φ Dirichlet boundary data. Σ in some sense "closes"
Γ(uk) geometrically while still having a uniformly bound on the Willmore energy. In detail, the
additional parts in Ω×Rwill consist of constant graphs over Ω that are strictly separated from all
Γ(uk), which is possible by L∞-bound on uk by the Willmore energy (Theorem 16). The closing of
graphs will be done similarly to the technique presented by Miura in [Miu22].

88 Lemma (Extensions)

For given φ ∈ C2
c (R

2) and M > 0, let {uk}k∈N be a given sequence in W 2,2(Ω) that satisfies

∀k ∈ N : u− φ ∈ W̊ 2,2(Ω) and ∀k ∈ N : W(uk) ≤M.

Then there is a radius R = R(diam(suppφ), ∥φ∥W 1,1(∂Ω),Ω,M) such that:

a For each k ∈ N there is an extension uk ∈ W̊ 2,2(BR(0))

∀x ∈ BR(0) \ Ω: uk(x) = φ(x) and ∀x ∈ Ω: uk(x) = uk(x).

We also extend the values of the limit u to u, as well as normal vector fieldsNk, Ñk, the mean curvature
Hk, and the surface measure µk by the values corresponding to the graph of φ outside of Ω without
changing the notation.

b There is a constant C223 > 0 and a surface Σ with boundary ∂Σ, constructed only based on
diam(suppφ), ∥φ∥W 2,2(BR(0)), ∥φ∥W 1,1(∂Ω),Ω,M such that Γ(uk) ∪ Σ is a closed embedded C1 ∩
W 2,2 surface with

Γ(uk) ∪ Σ ⊂ B2R(0)×R, H2(Γ(uk) ∪ Σ) + diam(Γ(uk) ∪ Σ) ≤ C223.

We also extend the values of the normal vector fields Nk, Ñk, and the mean curvature Hk outside of
Γ(uk) by choosing the values of that on the surface Σ without changing the notation.

Proof: a First, let assume, thatR > diam(supp(φ)). We extend each functionuk byφ onBR(0)\Ω.
Let R > 0 such that Ω ⊂ supp(φ) ⊂ BR(0). For each k ∈ Nwe define

∀x ∈ BR(0) \ Ω: uk(x) := φ(x) and ∀x ∈ Ω: uk(x) := uk(x)

then uk ∈ W̊ 2,2(BR(0)) with supp(uk) ⊂
(
supp(φ) ∪ Ω

)
⊂ BR(0).

b Here in addition to the condition on R in a we assume that R > ∥φ∥L∞(BR(0)) +H2(Γ(uk))
and

R > 64

(
H2(Ω) +H1(∂Ω) + ∥φ∥W 1,1(∂Ω) +

162

π2
M

)(
1 + |Ω|M

)
.

Then by Theorem 16 a we get ∥u∥L∞(Ω) < R.
In order to construct Σ, we observe that we can glue Γ(uk) on top of the convex hull of a horn

torus which has the radius of the tube R and distance R from the center of the tube to the axis of
revolution. Hence, the parametrization of the horn torus is given byxy

z

 (θ, φ) =

(R+R cos θ) cosφ
(R+R cos θ) sinφ

R(sin θ − 1)


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for θ, φ ∈ [0, 2π). We denote this horn torus as T2
R,R. Then we remove the upper flat circle

BR(0) × {0} from the convex hull of T2
R,R denoted by conv(T2

R,R) and glue it to Γ(uk). It follows
that for each k ∈ N

Σk := Γ(uk) ∪
(
conv(T2

R,R) \ (BR(0)× {0})
)

is a C1 ∩W 2,2 surface without boundary. We can estimate its Willmore energy

W(Σk) ≤ W(uk) +W(φ) +W(conv(T2
R,R)) ≤M +W(φ) +W(T2

R,R),

H2(Σk) ≤ H2(Γ(uk)) +H2(Γ(φ|BR(0))) +H2(T2
R,R) +H2(BR(0)))

≤ R+H2(Γ(φ|BR(0))) +H2(T2
R,R) + πR2,

diam(Σk) ≤ diam(Γ(uk)) + diam(Γ(φ|BR(0))) + diam(T2
R,R)

≤
R≥|u|,|φ|

4R+ diam(T2
R,R).

Therefore, all quantities on the right-hand sides can estimated by R,diam(suppφ), ∥φ∥W 2,2(BR(0)),
∥φ∥W 1,1(∂Ω),Ω and M independent of k ∈ N. We finish the proof by defining

Σ := conv(T2
R,R) \ (BR(0)× {0})

with the property Σ ∪ Γ(uk) = Σk for all k ∈ N. The embedding property is due to R >
∥φ∥L∞(BR(0)), ∥u∥L∞(Ω).

Now, we are ready to state the main result of this subsection.

89 Theorem (Additional Compactness Results)

For given φ ∈ C2
c (R

2) and M > 0, let {uk}k∈N be a given sequence in W 2,2(Ω) that satisfies

∀k ∈ N : u− φ ∈ W̊ 2,2(Ω) and ∀k ∈ N : W(uk) ≤M.

Then there exists a subsequence {ukℓ}ℓ∈N and u ∈ BV (Ω) ∩ L∞(Ω) with

ukℓ → u in L1(Ω) (ℓ→ ∞).

Moreover, the following holds:

a There exist functions Ñ : Ω → S2, H̃ : Ω → R and a Radon measure µ on Ω such that for all
p ∈ (1,∞) it follows

(µk, Ñk)
Lp

→ (µ, Ñ), (µk, Hk)
L2

⇀ (µ, H̃), (µk, HkNk)
L1

⇀ (µ, H̃Ñ).

Additionally, we have

Wa(u) +

∫
Ω\AD(u)

|H̃|2 dµ =

∫
Ω
|H̃|2 dµ ≤ lim inf

k→∞

∫
Ω
H2
kQk dx.

b Let {uk}k∈N, u, R and Σ as in Lemma 88. Then the sequence of oriented varifolds {V o[Γ(uk) ∪
Σ, Nk, 1, 0]}k∈N converges in varifold sense to the curvature varifold V o[Γ ∪ Σ, N, 1, 0] with mean
curvature vector in varifold sense H⃗ = HN and Γ the reduced boundary of the sublevel set of u

V o[Γ(uk) ∪ Σ, Nk, 1, 0] → V o[Γ ∪ Σ, N, 1, 0] ∈ CV0(B2R(0)×R)

and furthermore

Wa(u) +

∫
(Ω\AD(u))×R

|H⃗|2 d∥V ∥ =

∫
Ω×R

|H⃗|2 d∥V ∥ ≤ lim inf
k→∞

∫
Ω
H2
kQk dx.
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c Also, we can relate the different mean curvature to each other

Ha(x) = H(x, u(x)) and Ha(x) = H̃(x) L2-a.e..

There exist R-valued finite Radon measures νx on R with νx(R) = 1 µ-a.e. such that x → νx is
µ-measurable and

H̃(x) =

∫
R

H(x, r) dνx µ-a.e in Ω and νx = δu(x) L2-a.e..

Proof: We split this proof into six parts. In 1 we investigate the measure-function pair conver-
gence of the normal field or mean curvature with the area measure and combine its limits. Then, in
2 we reformulate the graphs as varifolds and compare the normal vector field limit with a normal

field of the varifold sequence limit. Next, in 3 we look at mean curvature vector convergence. In
4 we again rewrite graphs as characteristic functions of sublevelsets in BV-framework and show

that the mean curvature of the varifold limit coincides with the generalized mean curvature of FE
in the sense of Luckhaus-Sturzenbecker. In Step 5 , we, via disintegration theorem, relate the Ha

to that of the varifold limit. Finally, in the last step 6 we look at lower semicontinuites of the cur-
vature varifold convergence and measure-pair convergence and separate the part corresponding
to the absolutely continuous part of ∇u.

1 Due to Theorem 86 it follows after passing to a subsequence there exists u ∈ BV (Ω) ∩ L∞(Ω)

with ∇au
Qa ∈ H(div,Ω) such that

∃u ∈ BV (Ω) ∀p ∈ [1,∞) : uk → u in Lp(Ω) and a.e. in Ω.

Moreover, due to Theorem 16 a , we possess uniform bounds on the area measures defined on
Ω ⊂ R

2. Since we have ∇uk → ∇au as well as Qk → Qa in {q > 0} \ E,H1(E) = 0 (209) and in
particular q > 0 almost everywhere [DGR17, (39)], we obtain that Ñℓ → Na almost everywhere in
Ω.

From now on, we use the extension results from Lemma 88 a . Henceforth, it follows that after
passing to a subsequence the measuresµk converge to a Radon measureµwith spt(µ−µk) ⊂ BR(0),
since µ ≡ µk for arbitrary k outside of Ω. We observe that ∀p ∈ [1,∞) :

sup
k

∫
BR(0)

(
∥Ñk∥p + |Hk|2

)
dµk = sup

k

∫
R2

(
1 + |Hk|2

)
dµk

≤ sup
k

(∫
Ω
Qk dx+W(uk)

)
+

∫
BR(0)

√
1 + |∇φ|2 dx+W(φ)

≤
Thm.16

C <∞.

(212)

Now we consider the measure-function pairs (µk, Ñk) and (µk, Hk) over BR(0) with the func-
tions FN,p : R2 ×R3 → R for p ∈ (1,∞) and FH : R2 ×R→ R :

FN,p(x,N) := ∥N∥p, FH(x,H) := |H|2.(213)

These functions are i nonnegative, ii continuous iii convex, and iv have nonlinear growth
in the variable N or H . The measure-function pair {(µk, Ñk)}k∈N is then FN,p-bounded and
{(µk, Hk)}k∈N FH -bounded by (212).
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Since µk → µ (see definition (181)) we obtain by Theorem 76 i subsequences of {(µk, Ñk)}k∈N
and {(µk, Hk)}k∈N that converge in the weak sense to a measure-function pair

(
µ, Ñ) and

(
µ, H̃):

(µk, Ñk)
Lp

⇀ (µ, Ñ),(214)

(µk, Hk)
L2

⇀ (µ, H̃).(215)

This means that especially for any ξ ∈ C0
c (BR(0);R

3) and ν ∈ C0
c (BR(0)) it holds∫

BR(0)
⟨Ñk, ξ⟩dµk →

∫
BR(0)

⟨Ñ , ξ⟩ dµ,
∫
BR(0)

νH̃k dµk →
∫
BR(0)

νH̃ dµ.(216)

Next, we use a special calculation to control the L2-differences in the sequence of the normal
fields:∫
BR(0)

1

2
∥Ñk − Ñℓ∥2(Qk +Qℓ) dx =

∫
BR(0)

1

2

∥∥∥∥ 1

Qk

(
−∇uk

1

)
− 1

Qℓ

(
−∇uℓ

1

)∥∥∥∥2 (Qk +Qℓ) dx

=

∫
BR(0)

[
1− ⟨∇uk,∇uℓ⟩+ 1

QkQℓ

]
(Qk +Qℓ) dx

=

∫
BR(0)

[
(QkQℓ)(Qk +Qℓ)

QkQℓ
− ⟨∇uk,∇uℓ⟩+ 1

Qk
− ⟨∇uk,∇uℓ⟩+ 1

Qℓ

]
dx

=

∫
BR(0)

[
(∥∇uk∥2 + 1)Qℓ + (∥∇uℓ∥2 + 1)Qk

QkQℓ
− ⟨∇uk,∇uℓ⟩+ 1

Qk
− ⟨∇uk,∇uℓ⟩+ 1

Qℓ

]
dx

=

∫
BR(0)

[
∥∇uk∥2

Qk
+

∥∇uℓ∥2

Qℓ
− ⟨∇uk,∇uℓ⟩

Qk
− ⟨∇uk,∇uℓ⟩

Qℓ

]
dx

=

∫
BR(0)

〈
∇uk −∇uℓ,

∇uk
Qk

− ∇uℓ
Qℓ

〉
dx

= −
∫
BR(0)

(uk − uℓ)

(
div

∇uk
Qk

− div
∇uℓ
Qℓ

)
dx

= −
∫
BR(0)

(uk − uℓ)
(
H̃k − H̃ℓ

)
dx→ 0 (k, ℓ→ ∞),(217)

because we have L2(BR(0))-bounds on H̃k and uk → u in L2(BR(0)). Especially, since Qk ≥ 1 this
implies that {Ñk}k∈N is a Cauchy sequence in L2, hence Ñk → Ñ in L2 and up to a subsequence
Ñk → Ñ a.e.. Furthermore, it follows by (217), the weak convergence (216) with Ñk ∈ C0

c (BR(0))
and Lebesgue dominated convergence heorem that

0 = lim
k,ℓ→∞

∫
BR(0)

1

2
∥Ñk − Ñℓ∥2(Qk +Qℓ) dx

= 2 lim
k,ℓ→∞

∫
BR(0)

(1− ⟨Ñk, Ñℓ⟩)Qℓ dx(
= 2 lim

k,ℓ→∞

∫
BR(0)

1

2
∥Ñk − Ñℓ∥2Qk dx = lim

k→∞

∫
BR(0)

∥Ñk −Na∥2Qk dx

)
(214)
= 2 lim

k→∞

∫
BR(0)

(1− ⟨Ñk, Ñ⟩) dµ

= 2

∫
BR(0)

(
1

2
− 1

2
∥Ñ∥2

)
dµ+ 2 lim

k→∞

∫
BR(0)

(
1

2
− ⟨Ñk, Ñ⟩+ 1

2
∥Ñ∥2

)
dµ
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=

∫
BR(0)

(1− ∥Ñ∥2) dµ+ lim
k→∞

∫
BR(0)

∥∥∥Ñk − Ñ
∥∥∥2 dµ.

There is a way to see that
∫
BR(0)(1− ∥Ñ∥2) dµ ≥ 0 due to Theorem 76 ii because (µk, Nk) is FN,p

bounded for p = 2:∫
BR(0)

∥Ñ∥2 dµ ≤ lim inf
k→∞

∫
BR(0)

∥Ñk∥2 dµk = lim inf
k→∞

∫
BR(0)

1 dµk =

∫
BR(0)

1 dµ.

As a result we have that Ñk → Ñ in L2(µ) in BR(0) and up to a subsequence Ñk(x) → Ñ(x) for
µ-a.e. x ∈ BR(0). Also, we get

lim
k→∞

∫
BR(0)

∥∥∥Ñk − Ñ
∥∥∥2 dµ = 0.(218)

Moreover, we observe that due to ∥Ñk∥ ≡ 1

0 ≤ (1− ∥Ñ∥)2 = 1− 2∥Ñ∥+ ∥Ñ∥2 ≤ 1− 2⟨Ñk, Ñ⟩+ ∥N∥2 =
∥∥∥Ñk − Ñ

∥∥∥2 .
With (218) it follows that ∥Ñ∥ = 1 µ-almost everywhere.

Therefore, it follows by the measure convergence µk → µ in BR(0) for each p ∈ (1,∞):

lim
k→∞

∫
BR(0)

∥Ñk∥p dµk = lim
k→∞

∫
BR(0)

1 dµk = lim
k→∞

∫
BR(0)

1 dµ =

∫
R2

∥Ñ∥p dµ.

By Theorem 76 iii we obtain (µk, Ñk)
FN,p→ (µ, Ñ), written as

(µk, Ñk)
Lp.→ (µ, Ñ).(219)

From that it follows with the weak convergence (µk, Hk)
L2

⇀ (µ, H̃) and the product-rule Theorem
75, that:

(µk, HKÑk)
L1

⇀ (µ, H̃Ñ).(220)

2 Now, we translate the situation into a varifold setting. Here, we use the extensions from
Lemma 88 b . So we associate to each uk, k ∈ N the unoriented and oriented integral 2-varifolds
V o
k = V o[Γ(uk) ∪ Σ, Nk, 1, 0] ∈ IVo

2(R
3), Vk = V [Γ(uk) ∪ Σ, 1] ∈ IV2(R

3) defined by:

∀ψ ∈ C0
c

(
B2R(0)×R×G2,3

)
: Vk(ψ) =

∫
Γ(uk)∪Σ

ψ
(
z,Nk(z)

⊥)1 dH2(z),

∀ψ ∈ C0
c

(
B2R(0)×R× S2

)
: V o

k (ψ) =

∫
Γ(uk)∪Σ

[
1 · ψ

(
z,Nk(z)

)
+ 0 · ψ

(
z,−Nk(z)

)]
dH2(z).

It follows that ∥Vk∥ = H2 (Γ(uk) ∪ Σ) is the mass measure of Vk.
The compactness theorems by Allard 82 and Hutchinson 83 yield after passing to a subsequence

nonoriented V [Γ ∪ Σ, θ] and oriented V o[Γ ∪ Σ, N, θ+, θ−] limit integer 2-varifolds. Here Γ ∪ Σ ⊂
B2R(0) × R is a 2-rectifiable set without boundary, N : Γ ∪ Σ → S2 (we choose an orientation
arbitrarily) is an H2-measurable unit normal field and θ, θ+, θ− : Γ ∪ Σ → N are H2-integrable
functions, such that

V o
k

∗
⇀ V o in C0

c

(
(B2R(0)×R)× S2

)∗
,(221)
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Vk
∗
⇀ V in C0

c

(
(B2R(0)×R)×G2,3

)∗
,(222)

∥Vk∥
∗
⇀ ∥V ∥ in C0

c (B2R(0)×R)∗.(223)

The set Γ should be glued on the boundary of Σ in a sense Γ ∩Σ ⊂ ∂Σ. Additionally, θ = θ+ + θ−

and ∥V ∥ = θH2 (Γ ∪ Σ) so that:

∀ψ ∈ C0
c

(
B2R(0)×R×G2,3

)
: V (ψ) =

∫
Γ∪Σ

ψ
(
z,N(z)⊥

)
θ dH2(z),

∀ψ ∈ C0
c

(
B2R(0)×R× S2

)
: V o(ψ) =

∫
Γ∪Σ

[
θ+ · ψ

(
z,N(z)

)
+ θ− · ψ

(
z,−N(z)

)]
dH2(z),

where only the part concentrated on Γ should attract our attention.
Furthermore, the compactness Theorem by Allard 82 implies that V has locally bounded first

variation on B2R(0)×R and also generalized mean curvature H⃗ .
By the weakly-∗ convergence (221) of oriented varifolds, we conclude

∀g ∈ C0
c (B2R(0)×R× S2) :

V o(g) = lim
k→∞

V o
k (g) = lim

k→∞

∫
Γ(uk)

g
(
z,Nk(z)

)
dH2(z) +

∫
Σ\Γ(uk)

g
(
z,Nk(z)

)
dH2(z)

= lim
k→∞

∫
BR(0)

g
((
x, uk(x)

)
, Ñk(x)

)
Qk(x) dx+

∫
Σ\Γ(uk)

g
(
z,Nk(z)

)
dH2(z).

Then, we can conclude

∀g ∈ C0
c (B2R(0)×R× S2) :

∫
Γ
θ+(z)g

(
z,N(z)

)
+ θ−(z)g

(
z,−N(z)

)
dH2(z)

= lim
k→∞

∫
Γ(uk)

g
(
z,Nk(z)

)
dH2(z)

= lim
k→∞

∫
BR(0)

g
((
x, uk(x)

)
, Ñk(x)

)
Qk(x) dx.

Next, we want to relate the varifold measure ∥V ∥ to the Radon measure µ from step 1 . By (219)
we know that (µk, Ñk)

Lp

→ (µ, Ñ) for which we choose the test function g̃(x, v) = g
(
(x, r), v) ∈

C0
c (BR(0) × S2) independent of the u-variable r. Then, by the strong convergence Definition 74

iii we obtain∫
Γ
θ+(z)g̃

(
(z1, z2)

T , N(z)
)
+ θ−(z)g̃

(
(z1, z2)

T ,−N(z)
)
dH2(z) =

∫
BR(0)

g̃
(
x, Ñ(x)

)
dµ(x).(224)

If we insert the test function g
(
(x, r), v) = ĝ(x) ∈ C0

c (BR(0)), then we get with the same arguments
as above that it holds∫

Γ

(
θ+(z) + θ−(z)

)
ĝ(z1, z2) dH2(z) =

∫
BR(0)

ĝ(x) dµ(x).

By uniqueness result in the Riesz representation theorem, this means that the projected measure
of ∥V ∥ and µ are the same:

πR
2

# (∥V ∥ Γ) = µ

while πR2
: R3 → R

2 denotes the orthogonal projection onto R2 ∼= R
2 × {0} and πR

2

# (∥V ∥ Γ)
denotes the corresponding push-forward.
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By the disintegration theorem (Theorem 77) there existR-valued finite Radon measures x 7→ νx
onBR(0) that are πR2

# (∥V ∥ Γ) = µ-measurable and for any f ∈ L1(BR(0)×R, ∥V ∥) we conclude∫
BR(0)×R

f(z) d(∥V ∥ Γ)(z)
(198)
=

∫
BR(0)

(∫
R

f(x, r) dνx(r)

)
d
(
πR

2

# (∥V ∥ Γ)
)
(x)

=

∫
BR(0)

(∫
R

f(x, r) dνx(r)

)
dµ(x).

(225)

Since ∥V ∥ Γ = θH2 Γ, θ = θ+ + θ− it follows that∫
BR(0)

g̃
(
x, Ñ(x)

)
dµ

=

∫
BR(0)×R

θ+(z)g̃
(
(z1, z2)

T , N(z)
)
+ θ−(z)g̃

(
(z1, z2)

T ,−N(z)
)

θ(z)
d(∥V ∥ Γ)(z)

(225)
=

∫
BR(0)

[∫
R

(
θ+(x, r)

θ(x, r)
g̃
(
x,N(x, r)

)
+
θ−(x, r)

θ(x, r)
g̃
(
x,−N(x, r)

))
dνx(r)

]
dµ(x).

If we now again take the test functions g̃(x, v) = η(x)vi, i ∈ {1, 2, 3}, η ∈ C0
c (BR(0)), then we can

deduce that∫
BR(0)

η(x)

(∫
R

θ+(x, r)− θ−(x, r)

θ(x, r)
N(x, r) dνx(r)

)
dµ(x) =

∫
BR(0)

η(x)Ñ(x) dµ(x).

Since we can choose any η ∈ C0
c (BR(0)) it follows by the fundamental lemma of calculus of

variations for Radon measures (Theorem 63 that for µ-almost all x ∈ BR(0)∫
R

θ+(x, r)− θ−(x, r)

θ(x, r)
N(x, r) dνx(r) = Ñ(x).(226)

Due to ∥Ñ∥ = 1µ-almost everywhere and ∥N∥ = 1 by the existence statement from the Hutchinson
compactness Theorem 83, and by the disintegration theorem 77, νx is a probability measure
νx(R)=1 µ-a.e. we obtain µ-a.e.

1 = ∥Ñ(x)∥ ≤
∫
R

∣∣∣∣θ+(x, r)− θ−(x, r)

θ(x, r)

∣∣∣∣ ∥∥N(x, r)
∥∥dνx(r) ≤ ∫

R

∣∣∣∣θ+(x, r)− θ−(x, r)

θ(x, r)

∣∣∣∣ dνx(r)
≤ max

r∈R

∣∣∣∣θ+(x, r)− θ−(x, r)

θ+(x, r) + θ−(x, r)

∣∣∣∣ 1 ≤ 1.

It follows that for µ-almost all x ∈ BR(0) :
∣∣θ+(x, r) − θ−(x, r)

∣∣ = ∣∣θ+(x, r) + θ−(x, r)
∣∣ νx-almost

everywhere. Thus, for µ-almost all x for νx-almost all r either θ+(x, r) = 0 or θ−(x, r) = 0. Further,
we can multiply (226) by Ñ(x) then µ-a.e. it follows

1 = ⟨Ñ(x), Ñ(x)⟩ =
∫
R

θ+(x, r)− θ−(x, r)

θ(x, r)
⟨N(x, r), Ñ(x)⟩dνx(r)

≤
∫
R

∥∥N(x, r)
∥∥ · ∥∥Ñ(x)

∥∥dνx(r) = 1.

Since θ+(x,r)−θ−(x,r)
θ(x,r) ⟨N(x, r), Ñ(x)⟩ ≤ 1 which means for µ-almost all x ∈ BR(0) :

θ+(x, r)− θ−(x, r)

θ(x, r)
⟨N(x, r), Ñ(x)⟩ = 1 νx-almost everywhere.
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In the case θ− = 0, we have νx-almost everywhere ⟨N(x, r), Ñ(x)⟩ = 1 so that by ∥N∥, ∥Ñ∥ = 1
we obtain N(x, r) = Ñ(x). Analogously in the case θ+ = 0, we have νx-almost everywhere
N(x, r) = −Ñ(x). This shows that for µ-almost all x for νx-almost all r ∈ R one of the following
two properties holds {

θ− = 0, and N(x, r) = Ñ(x),

θ+ = 0, and N(x, r) = −Ñ(x).
(227)

So we can redefine N in such a way that θ− = 0, θ = θ+ and moreover N(x, r) = Ñ(x) holds
∥V ∥ Γ-almost everywhere.

3 Next, we want to show that V has a generalized second fundamental form A ∈ L2(V ). From
(14) and (17) it follows ∥A∥2g = H2− 2K [DGR17, (11) p. 6]. Hence, by [DGR17, Lemma 2 (17)] and
extension Lemma 88 b we know that∫

B2R(0)×R
∥(A)k∥2g d∥Vk∥ is uniformly bounded(228)

since the topology of Γ(uk) ∪ Σ is fixed and we can use the Gauss-Bonnet theorem. Further. we
define a functional in the sense of the compactness Theorem 85

∀V ′ ∈ CV2(B2R(0)×R) : FA
B2R(0)×R[V

′] :=

∫
G2(R3)

∣∣SB2R(0)×RV
′(x, P )

∣∣2 dV ′(x, P ).

Relative to the generalized curvature SB2R(0)×R the integrand is continuous, convex, non-negative,
and has non-linear growth. Thus it follows with (228) and Theorem 85 that V ∈ CV2(B2R(0)×R)
and:

Vk
C,B2R(0)×R

⇀ V
Def. after Thm 84⇒ (Vk B2R(0)×R,SB2R(0)×RVk)⇀ (V B2R(0)×R,SB2R(0)×RV ).

Here, we use generalized curvature instead of generalized second fundamental form in order to
use compactness Theorem 85, which is formulated for generalized curvature. By the definition of
the weak measure-function pair convergence Definition 72 this means

∀ψ ∈ C0
c (B2R(0)×R×R3×3;R3×3×3) :∫

G2(R3)
⟨SB2R(0)×RVk, ψ⟩ dVk →

k→∞

∫
G2(R3)

⟨SB2R(0)×RV, ψ⟩dV.

Moreover, from (206) we know that the generalized mean curvature vector is

H⃗ =

(
3∑
i=1

(SB2R(0)×RV )jii

)3

j=1

So we can choose the test function ψ, so that:

∀ζ ∈ C0
c (B2R(0)×R;R3) :

∫
B2R(0)×R

⟨H⃗k, ζ⟩ d∥Vk∥ →
k→∞

∫
B2R(0)×R

⟨H⃗, ζ⟩ d∥V ∥.(229)

Now, the mean curvature vector H⃗ is V -a.e. orthogonal to corresponding tangential space by
the Brakke perpendicularity Theorem 81. Hence, being inR3 implies H⃗||N V -a.e. we can define

H := ⟨H⃗,N⟩(230)
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and write H⃗ = HN for the oriented limit varifold V .

4 Let us define the sublevel set of u and the sublevel set of uk

E :=
{
(x, h) ∈ BR(0)×R

∣∣ h < u(x)
}

Ek :=
{
(x, h) ∈ BR(0)×R

∣∣ h < uk(x)
}

Since Γ(uk) is a W 2,2-graph one obtains ∂Ek = Γ(uk). There exist the characteristic functions
χEk

, χE : BR(0)×R→ 0, 1 of the sublevelsets of functions uk and u:

χk := χEk
=

(
x
h

)
=

{
1, if h < uk(x),

0, else,
χ := χE =

(
x
h

)
=

{
1, if h < u(x),

0, else.

Since uk → u in L1(BR(0)) we obtain∫
BR(0)×[−R,R]

|χk − χ| dL3 =

∫
BR(0)

(∫ R

−R

∣∣∣∣χk (xh
)
− χ

(
x
h

)∣∣∣∣dh) dx

=

∫
BR(0)

(∫ R

−R

(
χ{uk(x)≤h<u(x)} + χ{uk(x)>h≥u(x)}

)
dh

)
dx

=

∫
BR(0)

|uk − u|dx→ 0, for k → ∞.

Therefore, it follows χk → χ in L1(BR(0) × (−R,R)). The uniform area bound in terms of
the Willmore energy in Theorem 16 implies that the sequence of perimeters of the sublevel sets
P (Ek, BR(0) × (−R,R)) = H2

(
Γ(uk)

)
is uniformly bounded. Especially, by BV-definition this

means that χk ∈ BV (BR(0)× (−R,R)). By compactness Theorem 66 for BV -functions there exist
a subsequence and a function χ̂ ∈ BV (BR(0)× (−R,R)) such that χk → χ̂ in L1(BR(0)× (−R,R)).
With χk → χ in L1(BR(0)× (−R,R)) we then deduce that χ ∈ BV (BR(0)× (−R,R)).

Furthermore, it follows by (187) and (189) that |∇χ| = H2 FE is a Radon measure onBR(0)×R
with the support on the reduced boundary of E in the sense of definition in (188) ([AFP00, Thm
3.36 (3.62) p. 159]). Moreover, FE may not be contained in the graph over u in the Lebesgue
points. The former can also contain additional vertical parts.

We define

∇χ
|∇χ|

(x) := νE(x) = lim
ρ→0

∇χ
(
Bρ(x)

)
|∇χ|

(
Bρ(x)

) .
Next, we use the Gauss-Green Theorem 67 for BV characteristic functions. Again by the oriented
varifold convergence (221) we obtain ∀ψ ∈ C1

c (BR(0)×R;R3) :∫
FE

ψT ◦ −∇χ
|∇χ|

dH2 = −
∫
FE

⟨ψ, νE⟩ dH2 (191)
=

∫
(BR(0)×R)∩E

divψ dx

=

∫
BR(0)×R

χdivψ dx = lim
k→∞

∫
BR(0)×R

χk divψ dx
classical
=

Gauss
lim
k→∞

∫
Γk

⟨ψ,Nk⟩ dH2

(221)
=

∫
Γ
⟨ψ,N⟩θ dH2.

We conclude that up to an H2-null set

FE = Γ, θ = 1, N = − ∇χ
|∇χ|
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holds. Especially, the varifold V has unit density, ∥V ∥ = |∇χ| and the support supp(V ) coincides
in BR(0)×R with the reduced boundary FE of E the sublevel set of u up to a H2-null set. Since
N is normal to TxΓ H2-a.e. it follows

∑
PkℓN

ℓ = 0. Therefore, since the situation in embedded in
R

3 we get δkℓ = Pkℓ+NkN ℓ which means Px = x−⟨x,N⟩N . We conclude ∀ψ ∈ C∞
c (BR(0);R

3) :∫
BR(0)×R

(
divR3 ψ −

(
∇χE
|∇χE |

)T
◦Dψ ◦ ∇χ

|∇χ|

)
|∇χ|

=

∫
Γ

(
divR3 ψ −NT ◦Dψ ◦N

)
dH2 =

∫
Γ

(∑
i

Diψ
i −
∑
kℓ

NkDkψ
ℓN ℓ

)
dH2

=

∫
Γ

(∑
kℓ

PkℓDkψ
ℓ

)
dH2 =

∫
Γ
divTxΓ ψ(x) dµV (x)

(201)
= −

∫
Γ
⟨H⃗, ψ⟩ dµV

(230)
= −

∫
Γ
H⟨ψ,N⟩ dH2 =

∫
BR(0)×R

Hψ∇χ.

ThusH coincides with the generalized mean curvature ofFE in the sense of Luckhaus-Sturzenbecker
[LS95] written in Definition 68.

5 By (211) the weak convergence Hk ⇀ Ha = div
(
∇au
Qa

)
in L2(BR(0)) follows. Additionally,

since ⟨e⃗3, Ñk⟩Qk = 1 by (229) we get for any η ∈ C0
c (BR(0))∫

BR(0)
ηHa dx =

(211)
lim
k→∞

∫
BR(0)

ηHk dx = lim
k→∞

∫
BR(0)

ηHk⟨e⃗3, Ñk⟩Qk dx

= lim
k→∞

∫
BR(0)×R

⟨H⃗k, ηe⃗3⟩ d∥Vk∥
(229)
=

∫
BR(0)×R

η⟨H⃗, e⃗3⟩d∥V ∥

=

∫
BR(0)×R

HηN3 d∥V ∥.

(231)

In the next step, we want to relate different limits of mean curvature H,Ha and H̃ of the
sequence of graphs {Γ(uk)}k∈N. To use the co-area formula Theorem 65, we first obtain for the
projection πR2

: BR(0) ×R → BR(0), π
R

2
(x, z) 7→ x that by (185) its Jacobian is JVπ = N3 H2-a.e..

We conclude∫
BR(0)×R

HηN3 d∥V ∥ =

∫
FE

HηN3 dH2 =

∫
R2

∫
(πR2 )−1(x)∩FE

Hη dH0 dL2(x)

=

∫
BR(0)

H
(
x, u(x)

)
η(x) dx

(232)

because ∥V ∥ Γ = H2 FE. Because of the varifold convergence, we get∫
BR(0)

η dx = lim
k→∞

∫
BR(0)

η⟨e⃗3, Ñk⟩Qk dx
(222)
=

∫
BR(0)×R

η⟨N, e⃗3⟩d∥V ∥ =

∫
FE

ηN3 dH2

=

∫
R2

∫
(πR2 )−1(x)

η dH0 dL2(x)

so that νx = δu(x) L2-almost everywhere. Furthermore it follows that the set (πR2
)−1(x) ∩ FE

containsL2-a.e. exactly one element
(
x, u(x)

)
. Since (232) and (231) are valid for any η ∈ C0

c (BR(0))
we get

Ha(x) = H
(
x, u(x)

)
L2-a.e..(233)
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Also, it holds

Ha(x) = H̃(x) L2-a.e..(234)

Next, we want to relateH to H̃ . By the measure-function pair convergence (220) of the (µk, H̃kÑk)
and again using the disintegration result (225) we get ∀ζ ∈ C0

c (BR(0);R
3) and some η ∈ C∞

0 (R)
with η|[−R,R] ≡ 1∫

BR(0)
⟨ζ, Ñ⟩H̃ dµ

(220)
= lim

k→∞

∫
BR(0)

⟨ζ, ÑkH̃k⟩dµk = lim
k→∞

∫
BR(0)×R

⟨H⃗k, ζ⟩η d(∥Vk∥ Γ(uk)

(229)
=

∫
BR(0)×R

⟨H⃗, ζ⟩η d(∥V ∥ Γ) =

∫
BR(0)×R

⟨ζ,N⟩ηH d(∥V ∥ Γ)

(198)
=

∫
BR(0)

⟨ζ(x), Ñ(x)⟩
(∫
R

H(x, r) dνx(r)

)
dµ(x).

By Theorem 63, the fundamental lemma of calculus of variations for Radon measures, we obtain

H̃(x) =

∫
R

H(x, r) dνx(r) for µ-almost all x ∈ BR(0).(235)

In contrast to the case (233) the formula (235) also contains information about vertical parts.

6 Let AD(u) be the set of points where u is approximately differentiable. We observe that u is
approximately differentiable by Calderon-Zygmund Theorem 69 on the Borel set AD(u) ⊂ Ω with
L2(Ω \AD(u)) = 0. By using the general area formula in Theorem 71 and disintegration Theorem
77 we have for all η ∈ C∞

c (Ω×R)∫
AD(u)

η
(
x, u(x)

)
Qa(x) dx

Thm. 71
=

∫
Γ∩(AD(u)×R)

η(z) dH2(z) =

∫
AD(u)×R

η(z) d(∥V ∥ Γ)(z)

=

∫
R3

η(z) d
(
∥V ∥ (Γ ∩ (AD(u)×R))

)
(z)

Thm. 77
=

∫
AD(u)

∫
R

η(x, r) dνx dµ(x).

This implies that µ AD(u) = QaL2 AD(u) and νx = δu(x) for L2-almost all x ∈ AD(u).
Finally, we characterize some parts of the missing contribution in the semicontinuity estimate

by Grunau-Deckelnick-Röger. To do so, we again redefine the Willmore-functional in the sense of
the compactness Theorem 85:

∀V ′ ∈ CV2(Ω×R) : FH
Ω×R[V

′] :=

∫
G2(R3)

3∑
j=1

(
3∑
i=1

(SΩ×RV
′)jii

)2

dV ′(x, P ).

Relative to the generalized curvature SΩ×R the integrand is continuous, convex, non-negative, and
has non-linear growth. While the Willmore energy of the sequence is uniformly bounded, by
Theorem 85 we also get the lower semicontinuity∫

Ω×R
|H⃗|2 d∥V ∥

Thm.85
≤ lim inf

k→∞

∫
Ω
|H⃗k|2 d∥Vk∥ = lim inf

k→∞

∫
Ω
H2
kQk dx.

So, we obtain the missing Willmore varifold part:∫
Ω
|Ha|2Qa dx+

∫
(Ω\AD(u))×R

|H⃗|2 d∥V ∥ =

∫
Ω×R

|H⃗|2 d∥V ∥ ≤ lim inf
k→∞

∫
Ω
H2
kQk dx.
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Furthermore, by the FH functional from (213), we also have the lower semicontinuity∫
Ω
|Ha|2Qa dx+

∫
Ω\AD(u)

|H̃|2 dµ =

∫
Ω
|H̃|2 dµ ≤ lim inf

k→∞

∫
Ω
H2
kQk dx.

8.3 Finiteness of the Relaxed Willmore Energy Does Not Imply SBV

The Cantor part of a BV-function is difficult to handle. Therefore, it would be important to
characterize the situations when the singular part of the gradient consists only of a jump part.
In the context of the Willmore functional, one would expect that a non-vanishing Cantor part
would cause the relaxed Willmore energy to blow up since it is highly irregular. Surprisingly,
finite relaxed energy does not completely exclude a Cantor part in the derivative as shown in the
following example. It is based on unpublished notes of H.-Ch. Grunau and concerns the one-
dimensional Willmore functional. This, in turn, heavily relies upon [DMFLM09, Prop. 2.3 & Thm
3.4. pp. 2356 ff and 2373].

First, we shortly recall the one-dimensional Willmore energy, also called elastic energy, defined
in (6). If we consider a regular and sufficiently smooth curve γ : I → R

n, n ≥ 2 it is given by the
total squared curvature functional

E(γ) =
∫
I
|κ⃗γ |2(s) ds

with s the arclength and κ⃗γ = ∂2ssγ the curvature vector of γ. Actually, here we are only interested
in projectable curves. Therefore, in the same way as in [DG07] we consider curves as graphs over
the unit interval [0, 1] instead of arclength parametrization. For each function u : [0, 1] → R we
define the arclength curve γ : I → R

2 obtained by reparametrizing the curve [0, 1] ∋ x 7→ (x, u(x))
to the arclenght. Then according to [DG07] for graph[u] = γ(I) the Willmore functional takes the
shape

W(u) =

∫
graph[u]

κ2(x) ds(x) =

∫ 1

0
κ2(x)

√
1 + u′(x)2 dx(236)

with the curvature κ

κ(x) =
d

dx

(
u′(x)√

1 + u′(x)2

)
=

u′′(x)√
1 + u′(x)2

3 .

If u : [0, 1] → R has finite one-dimensional Willmore energy as a graph, then we can extend it to
a function u : [0, 1]2 → R with finite two-dimensional Willmore energy as a graph. We simple set
for all x, y ∈ [0, 1]2 : u(x, y) = u(x). Then it follows

W(u) =
1

4
W(u) and

∫
[0,1]2

∥∇u∥2 dx dy =

∫
[0,1]

|u′|2 dx

Next, we want to recall the space ofBV functions with one variable as in [DMFLM09, Subsection
2.1]. As in Subsection 7.2 a function u ∈ L1((a, b)) belongs to BV ((a, b)) if and only if its total
variation V(u, (a, b)) is finite

V(u, (a, b)) := sup

{∫ b

a
uφ′ dx

∣∣∣∣ φ ∈ C1
0 ((a, b)) and ∥φ∥∞ ≤ 1

}
< +∞.
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Then, u′, called the distributional derivative of u, is a bounded scalar Radon-measure on (a, b)
with the total variation measure |u′|. Especially, by [AFP00, Proposition 3.6] it holds |u′| ((a, b)) =
V (u, (a, b)). Further, due to Lebesgue decomposition, we can split the distributional derivative
into its absolutely continuous part (u′)a and singular part (u′)s with respect to L1 on (a, b)

u′ =
(
u′
)a L1 +

(
u′
)s

=
(
u′
)a L1 +

(
u′
)j

+
(
u′
)c

where (u′)j is its jump part and (u′)c is its Cantor part characterized later. It can be shown that
every function u in BV ((a, b)) is L1-a.e. differentiable in (a, b) and for L1-a.e. x in (a, b) the
derivative is given by (u′)a (x). Also, for every function u ∈ BV ((a, b)) there are left and right
approximate limits

uℓ(y) := lim
ε↘0

1

ε

∫ y

y−ε
u(x) dx and ur(y) := lim

ε↘0

1

ε

∫ y+ε

y
u(x) dx

which are well defined at every point y ∈ (a, b) and left and right continuous, respectively. In fact,
the functions ur and uℓ coincide a.e with respect to L1. The complementary null set where the
functions u− and u+ differ is called the set of essential discontinuities or jump points of u

Su :=
{
y ∈ (a, b)

∣∣uℓ(y) ̸= ur(y)
}
.

This set is at most countable. Considering the singular part (u′)s in more detail, we can rewrite
the jump part sum with the counting measure H0 concentrated on Su so that(

u′
)s

= (ur − uℓ)H0 Su +
(
u′
)c
.

The jump part is often referred to as an atomic measure and the Cantor part as a singular diffuse
measure. There is also a notion of the total variation for a function defined everywhere. We recall
that u : (a, b) → R has bounded pointwise variation pV(u, (c, d)) over the interval (c, d) ⊂ (a, b) if

pV(u, (c, d)) := sup
k∑
i=1

|u (yi)− u (yi−1)| < +∞,

where we take the supremum over all finite families of points (y0, y1, . . . , yk) such that c < y0 < y1 <
· · · < yk < d and k ∈ N. The above-defined left and right approximate limits are in fact precise
and good representatives of u ∈ BV ((a, b)). This means for every interval (c, d) ⊂ (a, b)∣∣u′∣∣ ((c, d)) = pV(uℓ, (c, d)) = pV(ur, (c, d))

If we now consider a general function u ∈ L1((a, b)) that has bounded pointwise total variation in
(a, b), then it belongs toBV ((a, b)), with |u′| ((c, d)) ≤ pV(u, (c, d)) for every interval (c, d) ⊂ (a, b).

Finally, we want to recall Theorem 66 stating a compactness result for BV spaces. If {uk}∞k=1 is
a sequence in BV ((a, b)) satisfying the bounds

sup
k

{
∥uk∥L1((a,b)) + |u′k|((a, b))

}
<∞

then there is a subsequence {ukj}∞j=1 and a limit function u ∈ BV ((a, b)) with the following
convergence properties

ukj → u in L1((a, b)) as j → ∞ and lim
j→∞

∫ b

a
φ∇uj =

∫ b

a
φ∇u, for all φ ∈ C0((a, b)).
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Now, let us focus on some results presented in [DMFLM09]. There the authors consider the
following functional for a total variation-based model for image restoration involving a second-
order derivative term that eliminates the staircase effect. For a exponent p ∈ (1,+∞) let Fp :
L1((a, b)) → [0,+∞] be defined by

Fp(u) :=


∫ b

a

∣∣u′∣∣ dx+

∫ b

a
ψ
(
u′
) ∣∣u′′∣∣p dx if u ∈W 2,p((a, b)),

+∞ otherwise,

where ψ : R → (0,+∞) is a bounded Borel function to be specified, jet. In this definiton, we
extend Fp to L1((a, b)) by setting Fp(u) := +∞ if u ∈ L1((a, b)) \W 2,p((a, b)). Then one uses the
theory of relaxation and identifies its lower semicontinuous envelope with respect to the strong
L1-convergence. For every u ∈ L1((a, b)) we set

Fp(u) := inf

{
lim inf
k→∞

Fp(uk)
∣∣∣∣ uk → u ∈ L1((a, b))

}
.(237)

where we take the infimum over all sequences {uk}k∈N in L1((a, b)) with uk → u ∈ L1((a, b)). At
this point, let us very briefly compare Fp with the Willmore energy. We take p = 2 and get

F2(u) = W(u) +

∫ b

a

∣∣u′∣∣ dx, with ψ(τ) :=
1

(1 + τ2)5/2
for all τ ∈ R.(238)

It means that we can apply arguments from [DMFLM09] on the one-dimensional Willmore func-
tional. But first, let us present two additional necessary conditions on a bounded Borel function
ψ : R → (0,+∞). It must satisfy

M :=

∫ +∞

−∞
(ψ(t))1/p dt < +∞ and inf

t∈K
ψ(t) > 0 for every compact set K ⊂ R.(239)

If we now define Ψp : R → [0,M ] as the antiderivative of ψ1/p by

Ψp(t) :=

∫ t

−∞
(ψ(s))1/p ds,

and the function Ψ−1
p : [0,M ] → R as the inverse function of Ψp, then for every u ∈W 1,p((a, b)) we

obtain

Fp(u) =
∫ b

a
|u′| dx+

∫ b

a

∣∣∣∣ ddx(Ψp ◦ u′(x)
)∣∣∣∣p dx.(240)

In [DMFLM09, Theorem 3.4] the authors also identify the relaxation of the functional Fp with
respect to strong convergence in L1((a, b)). In detail, they define the subspace of L1-functions that
can be approximated by Fp-bounded sequences, that they call Xp

ψ((a, b)) [DMFLM09, Definition
3.1 and Remark 3.2] which we will recall in a moment. With regard to (240), one of the properties
of a functions u ∈ Xp

ψ((a, b)) has to be v := Ψp ◦ (u′)a ∈ W 1,p((a, b)). Since Ψ−1
p is continuous and

v ∈ C0([a, b]) by Sobolev embedding it follows that (u′)a = Ψ−1
p (v) is continuous on [a, b] with

values in R. Next, we denote the sets where the absolutely continuous part (u′)a blows up by

Z+
[(
u′
)a]

:=
{
x ∈ (a, b)

∣∣ (u′)a = +∞
}
, Z− [(u′)a] := {x ∈ (a, b)

∣∣ (u′)a = −∞
}
.

Then, we can define the set

Xp
ψ((a, b)) :=

{
u ∈ BV ((a, b))

∣∣∣Ψp ◦
(
u′
)a ∈W 1,p((a, b)),

((
u′
)s)± is concentrated on Z± [(u′)a]} .
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With the set Xp
ψ the authors in [DMFLM09, Theorem 3.4] were able to identify the relaxation

of Fp with respect to strong convergence in L1((a, b)) defined in (237) by

Fp(u) =


∣∣u′∣∣ ((a, b)) + ∫ b

a

∣∣v′∣∣p dx if u ∈ Xp
ψ((a, b)),

+∞ otherwise

where v := Ψp ◦ (u′)a in the the higher-order term depends only on (u′)a.
Here we want to discuss some properties of functions u ∈ Xψ((a, b)). Namely, for every jump

point x0 with ur (x0) − uℓ (x0) > 0 it holds limx→x0 (u
′)a (x) = +∞ and for every jump point x0

with ur (x0)− uℓ (x0) < 0 we have limx→x0 (u
′)a (x) = −∞. Furthermore, if u′ has a non-vanishing

Cantor or jump part, then u′ cannot have a bounded absolutely continuous part. This means that
piece-wise constant functions with jumps and the Cantor function are excluded from Xp

ψ((a, b))

since Z± [(u′)a] = ∅. The same applies to polygons. For the case p = 2, this means that the Cantor
function (for definition, see the proof of Theorem 90) or piece-wise smooth graph with corners has
infinite relaxed one-dimensional Willmore energy.

0 1

1

x

y

Figure 1: a Cantor function.

From the above Cantor function example, one may expect that all functions with Cantor part
can be excluded from Xp

ψ((a, b)). Surprisingly, in [DMFLM09, Remark 3.2 (iv)] Maso, Fonseca,
Leoni, and Morini constructed functions with nontrivial Cantor part in Xp

ψ((a, b)) for the case
2 > p > 1 near 1 provided ψ satisfies ψ(t) ≤ ct−α for all t ≥ 1 and for some c > 0, α > 1. The
Willmore functional as a part in F2 defined in (238) satisfy this condition with α = 5 and condition
(239) like shown in [DG07, Lemma 1.]. In the next theorem, we want to extend this result to p = 2,
hence the relaxed Willmore energy

W(u) := inf

{
lim inf
k→∞

W(uk)

∣∣∣∣ uk → u ∈ L1((a, b))

}
by constructing a function with W(u) < +∞ and nonvanishing Cantor part. This is in fact a
surprising result since p = 2 is not near p = 1 and therefore is not covered by [DMFLM09, Remark
3.2 (iv)].

90 Theorem

There exists a function u ∈ BV ((0, 1)) with W(u) < +∞ so that |(u′)c|((0, 1)) > 0 and especially
u /∈ SBV ((0, 1)).
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Proof: By the results presented in [DMFLM09], we know that Cantor function fδ : → [0, 1] defined
below in the step 2 has W(fδ) = +∞. Therefore, it is not a suitable example. One of the main
problems is that the measure ((u′)s)

+ is concentrated on a Cantor-set and not on Z+ [(u′)a] = ∅.
We can correct this if we add to the Cantor function a continuous function U : [0, 1] → (−∞,∞)
( 3 - 6 ) that obeys (u′)a = +∞ on the Cantor-set Dδ. Additionally, U is supposed to have finite
one-dimensional Willmore energy. The added-up function fδ+U then has finite relaxed Willmore
energy, and interestingly fδ does contribute the Cantor part but not any Willmore energy. To show
the finite value of the Willmore energy, in step 7 we will approximate fδ + U by a Willmore
equibounded sequence of functions uk ∈ W 2,2 for k ∈ N. These are constructed by locally replac-
ing the Cantor part with the same-length jump part and then replacing a jump part with a linear
non-vertical slope.

1 First, for clarity we define the functions

Ψ2(t) :=

∫ t

−∞

1

(1 + τ2)
5
4

dτ, M := Ψ2(∞) =

∫
R

1

(1 + τ2)
5
4

dτ =

√
πΓ
(
3
4

)
Γ
(
5
4

) .(241)

by [DG07, Lemma 1.] with Γ the gamma function and

Ψ2 : R→ [0,M ], Ψ−1
2 : [0,M ] → R.

Further, we denote by ψ the following function for all τ ∈ R

ψ(τ) :=
1

(1 + τ2)5/2
.

For in u ∈ W 2,2((0, 1)), by slightly abusing the notation in [DMFLM09], we define the Willmore
functional

F2(u) :=

∫ 1

0
ψ(u′)|u′′|2 dx =

∫ 1

0

u′′(x)2(
1 + u′(x)2

)5/2 =

∫ 1

0
κ(x)2

√
1 + u′(x)2 dx

=

∫
graph[u]

κ(x)2 ds(x) =

∫ 1

0

(
d

dx
Ψ2

(
u′(x)

))2

dx.

Here we abandon the term
∫ 1
0 |u′| dx. In this context, we want to emphasize that by Lemma 101

only small values of W(u) (along with the boundary condition) imply a ∥u′∥L1((0,1))-bound and
thus also a length bound for the graph of u. Conversely, in cases where the smallness criteria
are not fulfilled, the graph could potentially feature arbitrarily long vertical parts that are not
penalized by W(u) at all.

2 In the next step following [DMFLM09, pp.2356 ff] we construct the generalized Cantor set Dδ
and function fδ. With

δ ∈ (0, 1/2)(C1)

which will be specified later. We cut out the open interval of length (1− 2δ)

I11 := (δ, 1− δ)

from the closed interval [0, 1] so that two intervals remain, each of length δ :

[0, 1] \ I11 = [0, δ] ∪ [1− δ, 1].
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We again cut out of [0, δ] ∪ [1− δ, 1] the open intervals each of the length δ(1− 2δ)

I12 :=
(
δ2, δ(1− δ)

)
, I22 :=

(
(1− δ) + δ2, (1− δ) + δ(1− δ)

)
= (1− δ + δ2, 1− δ2).

We repeat the procedure on [0, 1] \ (I11 ∪ I12 ∪ I22) and remove four open intervals I13, I23, I33, I44,
and repeat it successively of the resulting closed set. After (j−1) steps, only 2j−1 intervals remain,
each of them of length δj−1. Then, in the current j-th step we cut out from each of these 2j−1

intervals the open central part of length δj−1(1− 2δ)

Ikj , k = 1, . . . , 2j−1

so that in particular I1j =
(
δj , δj−1(1− δ)

)
. The length of all Ijk for fixed j is δj−1(1− 2δ). Further,

we define the generalized closed Cantor set by

Dδ := [0, 1] \
∞⋃
j=1

2(j−1)⋃
k=1

Ikj .(242)

with the corresponding approximative Cantor function

gℓ :=
1

(2δ)ℓ

1−
ℓ∑

j=1

2(j−1)∑
k=1

1Ikj (x)

 , fℓ :=

∫ x

0
gℓ(ξ) dξ.

In fact, by Lemma 100 a the generalized Cantor set has zero Lebesgue measure. For each
step ℓ the the function fℓ takes constant value (2k − 1)/2j on Ikj , j = 1, . . . , ℓ, k = 1, . . . 2j−1.
On the intermediate 2ℓ intervals of length δℓ the function fℓ increases linearly with slope 1/(2δ)ℓ,
which is the value of gℓ. As mentioned above, there are only 2ℓ intervals of length δℓ where gℓ is
non-vanishing. Then

fℓ(1) =
1

(2δ)ℓ
2ℓδℓ = 1.

Since gℓ ≥ 0, each function fℓ is monotonically increasing. It follows fℓ : [0, 1] → [0, 1].
By Lemma 100 b for ℓ → ∞ we have uniform convergence fℓ → f =: fδ to the continuous

Cantor function with (f ′δ)
a(x) ≡ 0 and (f ′δ)

c(x) is supported on the Cantor set Dδ. The function fδ
is monotonically increasing but also constant on [0, 1] \ Dδ. Moreover fδ(0) = 0 and fδ(1) = 1.

0 1

1

x

y

Figure 2: fδ for δ = 0.2
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3 In the next step, we construct the derivative of the function U we want to add to the Cantor
function fδ so that the derivative of fδ + U has a Cantor part and finite relaxed Willmore energy.
We call the derivative w := wδ ∈ L1((0, 1)) and want it to map [0, 1] continuously on [0,∞] and
to obey Ψ2 ◦ w ∈ W 1,2((0, 1)) which means that the desired forthcoming example should have
integrable mean curvature and w(x) = +∞ ⇔ x ∈ Dδ. In comparison to [DMFLM09] the choice
of the singular function Φ below is a new contribution of H-Ch. Grunau. We choose

β ∈
(
2

3
, 1

)
,(C2)

that will later guarantee finite Willmore energy in each interval Ikℓ. Also, we define

Φ: [0, 1] → [0,∞], Φ(x) = Cβ

(
1

xβ(1− x)β
− 4β

)
,

with normalization constant Cβ such that∫ 1

0
Φ(x) dx = 1.

We can calculate the normalization constant by

C−1
β =

∫ 1

0

(
1

xβ(1− x)β
− 4β

)
dx = B(1− β, 1− β)− 4β =

Γ(1− β)2

Γ(2− 2β)
− 4β

where B is the Euler’s Beta function [DLMF, (5.12.1)]. Up to some scaling and shift Φ will play
the role as a port of the absolutely continuous part. Thus we consider for x ∈ [0, 1] with [DLMF,
(8.17.7)]

C−1
β

∫ x

0
Φ(s) ds = Bx(1− β, 1− β)− 4βx =

x1−β

β + 1
2F1(1− β, β, 2− β;x)− 4βx

where Bx is the incomplete Beta function and 2F1 is the hypergeometric function.

0 1

5

x

y

0 1

1

x

y

Figure 3: left: Φ(x) for β = 3
4 ; right:

∫ x
0 Φ(s) ds for β = 3

4 .

The term −4β in the definition of Φ is chosen so that Φ stays positive, thus later we have
monotonicity for its primitive function. It follows that Φ(1/2) = 0 and moreover Φ is convex since
the second derivative is strictly positive.

Φ′(x)

Cβ
=

−β
xβ+1(1− x)β

+
β

xβ(1− x)β+1
=
β
[
− (1− x) + x

]
xβ+1(1− x)β+1

=
β
[
2x− 1

]
xβ+1(1− x)β+1

,
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Φ′′(x)

Cβ
= β

2

xβ+1(1− x)β+1
− β(β + 1)

(2x− 1)(1− 2x)

xβ+2(1− x)β+2
= β

2x(1− x) + (1− 2x)2 + β(1− 2x)2

xβ+2(1− x)β+2

= β
(1− x)2 + x2 + β(1− 2x)2

xβ+2(1− x)β+2
> 0.

Next, we choose a parameter s > 4 such that

2−s−1 > 21−
3
2
s(C3)

so that later we can find a number δ between 2−s−1 and 21−3s/2. Let akj be the centre of the interval
Ikj , i.e.

Ikj =

[
−1

2
δj−1(1− 2δ) + akj , akj +

1

2
δj−1(1− 2δ)

]
.

Consequently, in each Ikj , we put a scaled-down version Φ such that the resulting function stays
integrable. We set x ∈ Ikj :

Φkj := 2sj +Φ

(
x− akj

(1− 2δ)δj−1
+

1

2

)
, w(x) := wδ(x) :=

{
Φkj(x), if x ∈ Ikj

∞, if x ∈ Dδ.
(243)

The term 2sj in Φkj is an extra added constant slope since Φkj will be a derivative. It will play
an important role in achieving finite Willmore energy because it will appear in the denominator.
Now we integrate wδ on Ikj . Since |Ikj | = δj−1(1− 2δ) we get∫

Ikj

wδ(x) dx =

∫
Ikj

Φkj(x) dx = 2sj(1− 2δ)δj−1 + (1− 2δ)δj−1

∫ 1

0
Φ(x) dx

= (1− 2δ)δj−1(2sj + 1),

⇒
∫ 1

0
wδ(x) dx =

∞∑
j=1

2j−1(1− 2δ)δj−1(2sj + 1) =
1− 2δ

2δ

∞∑
j=1

(2δ)j(2sj + 1).

With an extra condition

δ < 2−s−1 ⇔ 2s+1δ < 1(C4)

it follows by using results for geometric series that∫ 1

0
wδ(x) dx =

1− 2δ

2δ

(
2s+1δ

1− 2s+1δ
+

2δ

1− 2δ

)
= 2s

1− 2δ

1− 2s+1δ
+ 1 <∞.

4 The function Ψ2 ◦ wδ is continuous and therefore in L∞((0, 1)) ⊂ L2((0, 1)). Moreover, we can
calculate the classical derivative on each interval Ikj

(Ψ2 ◦ wδ)′(x) = (Ψ2 ◦ Φkj)′(x) = Ψ′
2

(
Φkj(x)

)
· Φ′

kj(x)

=
1

(1 + Φkj(x)2)5/4
· Φ′

(
x− akj

(1− 2δ)δj−1
+

1

2

)
· 1

(1− 2δ)δj−1
.

On the boundaries of the intervals Ikj it follows thatwδ = ∞ thus we extendΨ2◦wδ byM = Ψ2(∞)
so that we get a pointwise absolutely continuous function that has a.e. a derivative whose primitive
function equals Ψ2 ◦ wδ itself as will be shown in the following (also see [Nat61, Chapter 7]).
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By definition, the function Ψ2 ◦wδ is continuously differentiable in the interior of each interval
Ikj . Moreover, in the next step 5 we prove that (Ψ2 ◦ wδ)′ ∈ L2((0, 1)) therefore also (Ψ2 ◦ wδ)′ ∈
L1((0, 1)). We want to show that

∀x ∈ [0, 1] : (Ψ2 ◦ wδ)(x) =
∫ x

0
(Ψ2 ◦ wδ)′(ξ) dξ + M︸︷︷︸

=(Ψ2◦wδ)(0)

(244)

where M was defined in (241). For this purpose, consider

∀j ∈ N, k = 1, . . . , 2j−1 :

∫
Ikj

(Ψ2 ◦ wδ)′(ξ) dξ =M −M = 0.

For each x ∈ Dδ, we then check (244)∫ x

0
(Ψ2 ◦ wδ)′(ξ) dξ +M =

∑
Ikj left of x

∫
Ikj

(Ψ2 ◦ wδ)′(ξ) dξ +M

= 0 +M = (Ψ2 ◦ wδ)(x). ✓

In case x ̸∈ Dδ, thus x ∈ Ijk for some j ∈ N, jk ∈ {1, . . . , 2j−1}, there exists the left boundary point
of Ijk, which we denote by x0 ∈ Dδ. It follows∫ x

0
(Ψ2 ◦ wδ)′(ξ) dξ +M =

∫ x0

0
(Ψ2 ◦ wδ)′(ξ) dξ +

∫ x

x0

(Ψ2 ◦ wδ)′(ξ) dξ +M

= 0 + (Ψ2 ◦ wδ)(x)−M +M = (Ψ2 ◦ wδ)(x). ✓

Therefore we proved (244).

5 Our next aim is to show that

Akj :=

∫
Ikj

(
(Ψ2 ◦ wδ)′(x)

)2
dx <∞.

In what follows, we use the notation ⪯ meaning an inequality up to a constant which is then not
written. It is important to observe that the following estimates are uniform with respect to k and
j. Below, in the second inequality in the third line, the same singular behavior of the function Φ
close to 0 and close to 1 is important.

Akj =
δ2

(1− 2δ)2δ2j

∫
Ikj

[
Φ′
(

x−akj
(1−2δ)δj−1 + 1

2

)]2
(
1 +

[
2sj +Φ

(
x−akj

(1−2δ)δj−1 + 1
2

)]2)5/2
dx

⪯ δ

(1− 2δ)δj

∫ 1

0

[Φ′ (y)]2(
1 + [2sj +Φ(y)]2

)5/2 dy 2δ<2−s

⪯
(C4)

δ−j
∫ 1

0

[Φ′ (y)]2

(2sj +Φ(y))5
dy

⪯ δ−j
∫ 1

0

y−2(β+1)(1− y)−2(β+1)

(2sj + Cβy−β(1− y)−β)5
dy ⪯ δ−j

∫ 1

0

y−2(β+1)

(2sj + Cβy−β)5
dy

⪯ δ−j
∫ 1

0

y−2(β+1)

(2sj + Cβy
−β)2︸ ︷︷ ︸

⪰y−2β

(2sj + Cβy−β)3
dy ⪯ δ−j

∫ 1

0

y−2

(2sj + Cβy
−β)3/2︸ ︷︷ ︸

⪰y−3β/2

(2sj + Cβy
−β)3/2︸ ︷︷ ︸

⪰23sj/2

dy

⪯ 1(
δ2

3
2
s
)j ∫ 1

0
y−2+ 3

2
β dy.
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It is also important to notice, that due to the |u′′|2
(1+u′2)5/2

-structure the term 2sj in the definition of Φ
appears here in the denominator resulting in 23sj/2 in the last line. Since we have chosen β ∈ (23 , 1)
the last integral is finite, hence we get

Akj ⪯
1(

δ2
3
2
s
)j <∞.

Observe that this estimate does not depend on k. Now, we add the integrals Akj over all the
intervals Ikj and obtain

∫
[0,1]\Dδ

[
(Ψ2 ◦ wδ)′(x)

]2
dx =

∞∑
j=1

2j−1∑
k=1

Akj ⪯
∞∑
j=1

2j−1∑
k=1

(
δ−12−

3
2
s
)j ≤ ∞∑

j=1

(
δ−121−

3
2
s
)j
<∞

in the case that δ and s satisfy an extra condition

δ−121−
3
2
s < 1 ⇔ δ > 21−

3
2
s.(C5)

which is compatible with the first condition (C4) because by (C3) one can choose s > 4 with
2−s−1 > δ > 21−3s/2. For example, one admissible choice is s = 5 and δ = 1/80.

6 For this step, we choose some fixed δ and s according to (C4), (C5), (C3), (C2) and (C1). Finally,
we can define the actual function u ∈ BV ((0, 1)) as counterexample

u(x) :=

∫ x

0
wδ(ξ) dξ + fδ(x).

where fδ is the Cantor function defined in step 2 and u is continuous on [0, 1]. Furthermore, we
can decompose the derivative of u into absolutely continuous and a Cantor part

(u′)a = wδ, (u′)c = (f ′δ)
c.

Additionally, we define the absolutely differentiable part U of u by

U(x) :=

∫ x

0
wδ(ξ) dξ =

∫ x

0
(u′)a(ξ) dξ

without the Cantor part of u. It can be shown that U has a weak curvature (similar to bowler
example [DGR17, Example 2]) but no integrable second derivative. In detail, in [0, 1] \ Dδ the
function U has the classical second derivative in each x ∈ Ikj

w′
δ(x) = Φ′

(
x− akj

(1− 2δ)δj−1
+

1

2

)
· 1

(1− 2δ)δj−1
.

ThusU has a locally integrable weak second derivative in [0, 1]\Dδ. In order to investigate whether
the weak second derivative of U is also L1-integrable, we consider∫

Ikj

∣∣w′
δ(x)

∣∣dx =
δ

(1− 2δ)δj

∫
Ikj

∣∣∣∣Φ′
(

x− akj
(1− 2δ)δj−1

+
1

2

)∣∣∣∣dx
⪰
∫ 1

0

β
∣∣2y − 1

∣∣
yβ+1(1− y)β+1

dy

⪰
∫ 1

0

1

yβ+1(1− y)β+1
dy ⪰

∫ 1

0

1

y5/3(1− y)5/3
dy = ∞
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since β ∈
(
2
3 , 1
)
. Therefore, the last integral diverges independently of k and j, and therefore

w′
δ ̸∈ L1((0, 1)) and U ̸∈ W 2,1((0, 1)). Despite that U has integrable curvature (also its geodesic

curvature inR2), especially κU is integrable since by step 5∫ 1

0
κU (x)

2
√
1 + U ′(x)2 dx =

∫
graph[U ]

κU (x)
2 dsU (x) =

∫ 1

0

( d

dx
Ψ2

(
U ′(x)︸ ︷︷ ︸
=wδ(x)

))2
dx <∞.

7 Our next claim is

F2(u) ≤
∫ 1

0

(
d

dx
(Ψ2 ◦ wδ)

)2

dx =

∫ 1

0

(
w′
δ(x)

)2(
1 + wδ(x)2

)5/2 dx = F2(U) = Fa
2 (u).

Here, we want to successively improve the regularity of the above constructed u, simultaneously
controlling the increase of the Willmore energy.

a First, we replace the total variation of the Cantor part with a jump part.
Claim: There is a sequence {uk}k∈N ⊂ BV ((0, 1)) with (u′k)

c = 0 such that uk → u in
L1((0, 1)) and it holds

lim inf
k→∞

Fa
2 (uk) := lim inf

k→∞

∫ 1

0

((
(u′k)

a
)′
(x)
)2

(
1 +

(
(u′k)

a
)2
(x)
)5/2 dx ≤ Fa

2 (u).

Proof: In fact, the generalized Cantor set

Dδ =
{
x ∈ [0, 1]

∣∣∣∣ ∣∣∣(u′)a(x)∣∣∣ = ∞
}

=

{
x ∈ [0, 1]

∣∣∣∣ (u′)a(x) = +∞
}

is closed and, especially, of measure zero. For each k ∈ N we define the open 1/k-
neighborhoods of Dδ

Ak :=

{
x ∈ [0, 1]

∣∣∣∣ dist(x,Dδ) < 1

k

}
, Ak+1 ⊂ Ak,

⋂
k∈N

Ak = Dδ, lim
k→∞

|Ak| = 0.

Furthermore, for each k ∈ Nwe denote the family of the connected components ofAk having
non-empty intersection with Dδ by

{
Ikj
}
j∈Jk

with Jk a suitable index set. Since by definition
the helenght of each of the connected components of Ak is greater than 1

k , then each of the
indexes sets Jk contain less than k elements. Moreover, we choose for each j ∈ Jk a point
xkj ∈ Ikj ∩Dδ∩(0, 1) lying in the generalized Cantor set. It follows that (u′)a(xkj ) = +∞, which
is one of the main points of the whole construction, and limx↘0 u(x) = 0. Additionally, we
choose

ckj := (u′)s
(
Ikj
)

and define

uk(x) :=

∫ x

0
(u′)a(ξ) dξ +

∑
{j∈Jk |xkj≤x}

ckj .

Hence, we replaced the total variation of the Cantor part with a jump part. Next, observe
that

(u′k)
a = (u′)a =⇒ Fa

2 (uk) = Fa
2 (u).
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According to the definition of uk, for x ∈ [0, 1] \ Ak we have uk(x) = u(x), thus point-wise

∀x ∈ [0, 1] \
⋂
k∈N

Ak = [0, 1] \ Dδ : u(x) = lim
k→∞

uk(x).

Since u(x) and uk(x) are monotonically increasing and ∀k ∈ N ∀x ∈ [0, 1]: 0 ≤ uk(x) ≤ u(1),
the Lebesgue’s theorem yields that

uk → u in L1((0, 1)) for k → ∞.

b Here we use the replacement technique like in [DMFLM09, Theorem 3.4]. Namely, the
vertical jump part will be replaced by a linear non-vertical linear slope, such that the curve
remains C1. For the next calculations, we keep a sufficiently large k ∈ N fixed and consider

û := uk

For each k there is only a finite number |Jk| of intervals Ikj , and so only a finite number
of jump points xkj . Therefore we assume w.l.o.g. that (û′)s consists of a single jump point
(x0) ∈ (0, 1). Because of the way we constructed û, we can find sequences of points {xℓ}∞ℓ=1

and {yℓ}∞ℓ=1 such that xℓ ↗ x0 and yℓ ↘ x0 and

û′(xℓ) = û′(yℓ) ↗ +∞, û(xℓ) ↗ û−(x0) = lim
x↗x0

û(x), û(yℓ) ↘ û+(x0) = lim
x↘x0

û(x).

Since the function x 7→ û(xℓ) + (û′)(xℓ)(x − xℓ) is affine, there exists for every sufficiently
large ℓ a zℓ ∈ (x0, 1) such that

û+(x0) = û(xℓ) + (û′)(xℓ)(zℓ − xℓ).

Furthermore, the sequence {zℓ}∞ℓ=1 is such that zℓ ↘ x0 because (u′)a ↗ +∞ as xℓ ↗ x0
which is also an important fact. Then we define for ℓ ∈ N large enough the function

ûℓ(x) :=


û(x), if 0 ≤ x ≤ xℓ,

û(xℓ) + (û′)(xℓ)(x− xℓ), if xℓ ≤ x ≤ zℓ,

û(x+ yℓ − zℓ) + û+(x0)− û(yℓ), if zℓ ≤ x ≤ 1.

It follows that between xℓ and zℓ the function is affine with the constant slope (û′)(xℓ), and
thus does now carry any curvature because of (û′′)|(xℓ,zℓ) = 0. Moreover,

lim
x↗xℓ

û′ℓ(x) = (û′)(xℓ) = (û′)(yℓ) = lim
x↘zℓ

û′ℓ(x)

thus ûℓ ∈ W 1,1((0, 1)), ûℓ → û in L1((0, 1)). Since by the construction, we in general replace
a curved part with a straight line, we can only reduce the Willmore energy

F2(ûℓ)
2
= Fa

2 (ûℓ) ≤ Fa
2 (û).

Notice that until now, we replaced one jump with one finite slope in each component Ikj of
Ak. Since U ̸∈W 2,2((0, 1)) we may still not be in W 2,2((0, 1)).
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c In this step, we keep fixed ℓ sufficiently large and consider

ũ := ûℓ.

Claim. We can find a sequence {ũj}j∈N ⊂W 2,2((0, 1)) such that ũj → ũ in L1((0, 1)) and

F2(ũj) = Fa
2 (ũj) ≤ Fa

2 (ũ) = F2(ũ).

Proof: What we want to do now is to bound the second derivative by cutting off the first
derivative, especially near the points where still (u′)a = +∞.
We have 0 ≤ ũ′ = (ũ′)a, thus for each j ∈ Nwe define w̃j(x) := min{j, ũ′(x)} so that |w̃j | ≤ j.
In points where we did any replacing in this or the previous step b (by linear slope), we have
w̃′
j ≡ 0. For the other points, we want to show that for each j the derivative w̃′

j is bounded.
Thus, for each interval Ikm, k = 1, . . . , 2m−1 from the generalized Cantor set construction we
only consider the points

x ∈ Ikm with
∣∣∣∣2sm +Φ

(
x− akm

(1− 2δ)δm−1
+

1

2

)∣∣∣∣ ≤ j.(245)

Since Φ ≥ 0 we only have to work with intervals such that 2sm ≤ j. Hence for each j ∈ N
we have only finite many intervals Ikm with k = 1, . . . , j1/s/2 and m ≤ log(j)/(s log(2)). We
want to show that there is a constant Cj independent of k and m so that for x in (245)∣∣∣∣ 1

(1− 2δ)δ(m−1)
Φ′
(

x− akm
(1− 2δ)δm−1

+
1

2

)∣∣∣∣︸ ︷︷ ︸
=:
∣∣w̃′

j(x)
∣∣

≤ Cj .(246)

Namely, from (245) and Φ ≥ 0 we conclude

0 ≤ Φ

(
x− akm

(1− 2δ)δm−1
+

1

2

)
≤ j.

Since Φ ∈ C2((0, 1)), there exists ε = ε(j) also depending on Φ such that for y ∈ (0, 1) it holds

Φ(y) ≤ j ⇒ y ∈ [ε(j), 1− ε(j)] ⇒
∣∣Φ′(y)

∣∣ ≤ C224(ε(j)) := max
[ε(j),1−ε(j)]

∣∣Φ′(x)
∣∣ .

For x in (245) we get the estimate∣∣∣∣ 1

(1− 2δ)δ(m−1)
Φ′
(

x− akm
(1− 2δ)δm−1

+
1

2

)∣∣∣∣ ≤ C224(ε(j))

(1− 2δ)δ(log(j)/(s log(2))−1)
=: Cj .

Thus, for each j the absolute value of the derivative |w̃′
j | is bounded by Cj .

Next, it follows that w̃j ∈W 1,∞((0, 1)) = C0,1((0, 1)) and

ũj(x) :=

∫ x

0
w̃j(ξ) dξ → ũ(x) a.e.,

monotonically, hence in L1 and since ũ is continuous. Now, we obtain

F2(ũj) = Fa
2 (ũj) =

∫ 1

0

((
(ũ′j)

a
)′
(x)
)2

(
1 +

(
(ũ′j)

a
)2
(x)
)5/2 dx =

∫ 1

0

(
w̃′
j(x)

)2(
1 +

(
w̃j(x)

)2)5/2 dx ≤ Fa
2 (ũ).
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Finally, we combine the steps a , b , c and find that:

F2(u) ≤ Fa
2 (u).

It is essential to notice that the Cantor part of the function is due to special projection. If
one rotates the Cantor function, that is monotonically increasing, clockwise, then it immediately
becomes a Lipschitz function, which by [AFP00, Theorem 3.16 p 127] lacks a singular part. Thus,
the Cantor part vanishes by rotation. The relaxed one-dimensional Willmore energy of the Cantor
function stays infinite, reflecting its geometric nature. The reason is that (u′)a is non-continuous.

Similar arguments apply likewise to the example function constructed in Theorem 90 above.
Since it is monotonically increasing, a clockwise rotation instantly lets the Cantor part vanish.
Interestingly, in the same example, the Cantor part does not contribute any Willmore energy.
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9 Appendix

91 Lemma

For 4µ+ |ν| ≤ s, we have (see notation in [Bel79])

[u]QT
r,s,t = sup

Ω×(0,T ]

(
θ

s−r
4

∣∣∆t
τD

µ
t D

ν
xu
∣∣ · |t− τ |

s−4µ−|ν|
4

)
∼= sup

t<T
t
s−r
4 sup

x∈Ω

[
Dµ
t D

µ
xu(x, . )

]
C

s−4µ−|ν|
4

(
[t/2,t]

)
where θ = min(t, τ). Also for 4µ+ |ν| = ⌊s⌋ it holds

[u]QT
r,s,x = sup

Ω×(0,T ]

(
t
s−r
2m

∣∣∆x
yD

µ
t D

ν
xu
∣∣ · |x− y|[s]−s

)
∼= sup

t<T
t
s−r
4 sup

t′∈[t/2,t]

[
Dµ
t D

ν
xu( . , t

′)
]
Cs−⌊s⌋(Ω)

.

Proof: Here, we prove only the first equivalence. W.l.o.g. let us assume that w ∈ C∞(QT ), then
we have to show

sup
Ω×(0,T ]

(
θ

s−r
4

∣∣∆t
τw
∣∣ · |t− τ |

s−4µ−|ν|
4

)
∼= sup

t<T
t
s−r
4 sup

x∈Ω

[
w(x, . )

]
C

s−4µ−|ν|
4

(
[t/2,t]

).
For the sake of simplicity, we define A = s−r

4 and B = s−4µ−|ν|
4 . Let τ < t then there exists m ∈ N0

such that t = 2mτ + γ with γ < 2mτ . Also, W.l.o.g. let m > 0, since otherwise all sums in the
following estimates vanish. We conclude that

∣∣w(t)− w(τ)
∣∣ ≤

m∑
ℓ=1

∣∣w(2ℓτ)− w(2ℓ−1τ)
∣∣+ ∣∣w(t)− w(2mτ)

∣∣
≤

m∑
ℓ=1

C225[w]CB([2ℓ−1τ,2ℓτ ]) ·
∣∣2ℓτ − 2ℓ−1τ

∣∣B + C225[w]CB([t/2,t]) ·
∣∣t− 2mτ

∣∣B
≤ C225

m∑
ℓ=1

[w]CB([2ℓ−1τ,2ℓτ ]) · 2(ℓ−1)B|τ |B + C225[w]CB([t/2,t]) ·
∣∣γ∣∣B

≤ C225

m∑
ℓ=1

sup
t<T

(
tA[w]CB([t/2,t])

)
· (2ℓ|τ |)−A2(ℓ−1)B|τ |B

+ C225 sup
t<T

(
tA[w]CB([t/2,t])

)
· |t|−A

∣∣γ∣∣B
≤ C225 sup

t<T

(
tA[w]CB([t/2,t])

)
·

(
|t|−A

∣∣γ∣∣B +
m∑
ℓ=1

|τ |−A2(ℓ−1)B|τ |B
)

since 2ℓ > 1. Next, we multiply it with some term and get

|τ |A
∣∣w(t)− w(τ)

∣∣
|t− τ |B

≤ C225 sup
t<T

(
tA[w]CB([t/2,t])

)
·

(∣∣∣τ
t

∣∣∣A ∣∣∣∣ γ

t− τ

∣∣∣∣B +

m∑
ℓ=1

2(ℓ−1)B

∣∣∣∣ τ

t− τ

∣∣∣∣B
)

≤ C225 sup
t<T

(
tA[w]CB([t/2,t])

)
·

(
1 +

1

(2m − 1)B

m∑
ℓ=1

2B−1ℓ

)

since, by definition, it holds∣∣∣τ
t

∣∣∣ < 1,

∣∣∣∣ γ

t− τ

∣∣∣∣ = ∣∣∣∣ γ

(2m − 1)τ + γ

∣∣∣∣ ≤ 1,

∣∣∣∣ τ

t− τ

∣∣∣∣ = ∣∣∣∣ τ

(2m − 1)τ + γ

∣∣∣∣ ≤ 1

2m − 1
.
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Further, we use the geometric series and derive

|τ |A
∣∣w(t)− w(τ)

∣∣
|t− τ |B

≤ C225 sup
t<T

(
tA[w]CB([t/2,t])

)
·
(
1 +

1

(2m − 1)B
|1− 2Bm|
|1− 2B|

)
.

Finally, we can estimate |1− 2Bm|/(2m − 1)B by a constant which is independent of m. Hence we
obtain

|τ |A
∣∣w(t)− w(τ)

∣∣
|t− τ |B

≤ C226 sup
t<T

(
tA[w]CB([t/2,t])

)
with some constant C226 that depends only on A and B.

92 Lemma

Let m = 1, 2, 3, 4. If u ∈ C
4+α,1+α/4
m+α (QT ) and ∀x ∈ Ω

∀4k + |β| ≤ m : Dk
tD

β
xu(x, 0) = 0

then there is a constant C166 = C166(α, γ) such that for all 0 < γ < α and T ≤ 1 it holds

∥u∥
C

4+γ,1+
γ
4

m+γ (QT )
≤ C166T

α−γ
4 ∥u∥

C
4+α,1+α/4
m+α (QT )

Proof: The case m = 4 was already considered in [Gul17]. For the following proof we write

C227 := ∥u∥
C

4+α,1+α/4
m+α (QT )

.

Then, we split the C4+γ,1+ γ
4

m+γ (QT )-norm into different parts.

∥u∥
C

4+γ,1+
γ
4

m+γ (QT )
=

∑
m<4k+|β|≤4

sup
(x,t)∈Ω×(0,T ]

t
4k+|β|−m−γ

4

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣
︸ ︷︷ ︸

1

+ ∥u∥
C

m+γ,
m+γ

4
x,t (QT )

+ sup
t∈(0,T ]

t
4−m

4 [u]4+γ
Q′

t
,

where we also separate the last two terms into and use α > 0

∥u∥
C

m+γ,
m+γ

4
x,t (QT )

=
∑

m−3≤4k+|β|≤m

sup
x∈Ω

[
Dk
tD

β
xu(x, . )

]
C

m+γ−4k−|β|
4

(
[0,T ]

)
︸ ︷︷ ︸

2

+
∑

4k+|β|≤m

sup
(x,t)∈QT

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣
︸ ︷︷ ︸

3

+
∑

4k+|β|=m

sup
t∈[0,T ]

[
Dk
tD

β
xu( . , t)

]
Cγ(Ω)︸ ︷︷ ︸

4

.

[u]4+γ
Q′

t
=

∑
1≤4k+|β|≤4

sup
x∈Ω

[
Dk
tD

β
xu(x, . )

]
C

4−4k−|β|+γ
4

(
[t/2,t]

)
︸ ︷︷ ︸

5

+
∑

4k+|β|=4

sup
t∈[t/2,t]

[
Dk
tD

β
xu( . , t)

]
Cγ(Ω)︸ ︷︷ ︸

6

.
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1 Since t < T ≤ 1 we estimate for m < 4k + |β| ≤ 4

sup
(x,t)∈Ω×(0,T ]

t
4k+|β|−m−γ

4

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣ ≤ sup
(x,t)∈Ω×(0,T ]

t
4k+|β|−m−α

4

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣tα−γ
4 ≤ C227T

α−γ
4 .

2 This term is the first part of the unweighted parabolic Hölder norm C
m+γ,(m+γ)/4
x,t (QT ). For all

m− 3 ≤ 4k + |β| ≤ m and for all x ∈ Ω we conclude[
Dk
tD

β
xu(x, . )

]
C

m+γ−4k−|β|
4

(
[0,T ]

) ≤ [Dk
tD

β
xu(x, . )

]
C

m+α−4k−|β|
4

(
[0,T ]

) · |T |m−4k−|β|+α−(m−4k−|β|+γ)
4

≤ C227T
α−γ
4 .

3 Since the temporal Hölder seminorms are bounded, we obtain for all m − 3 ≤ 4k + |β| ≤ m

and for all x ∈ Ω[
Dk
tD

β
xu(x, . )

]
C

m+α−4k−|β|
4

(
[0,T ]

) ≤ C227

⇒ sup
t∈(0,T ]

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣ ≤ C227T
m+α−4k−|β|

4 + sup
x∈Ω

∣∣∣Dk
tD

β
xu(x, 0)

∣∣∣︸ ︷︷ ︸
=0

.

4 As the last part of the Cm+γ,(m+γ)/4
x,t (QT )-norm we estimate the spatial Hölder seminorm for

4k + |β| = m. Thus we consider x, y ∈ Ω and t ∈ [0, T ] then it holds∣∣∣Dk
tD

β
xu(x, t)−Dk

tD
β
xu(y, t)

∣∣∣
|x− y|γ

≤


∣∣∣Dk

tD
β
xu(x, t)−Dk

tD
β
xu(y, t)

∣∣∣
|x− y|α


γ
α

·
∣∣∣Dk

tD
β
xu(x, t)−Dk

tD
β
xu(y, t)

∣∣∣1− γ
α

3
≤


∣∣∣Dβ

xu(x, t)−Dβ
xu(y, t)

∣∣∣
|x− y|α


γ
α

·
∣∣∣∣2C227T

α/4 + 2 sup
x∈Ω

∣∣∣Dβ
xu(x, 0)

∣∣∣∣∣∣∣1− γ
α

.

Therefore, due to initial values, we conclude

sup
t∈[0,T ]

[
Dk
tD

β
xu( . , t)

]
Cγ(Ω)

≤ 21−
γ
αC227T

α−γ
4 .

5 With the temporal seminorm estimate and 1 ≤ 4k + |β| ≤ 4, x ∈ Ω and t ∈ (0, T ] like in 2 we
get

t
4−m

4

[
Dk
tD

β
xu(x, . )

]
C

4−4k−|β|+γ
4

(
[t/2,t]

) ≤ t
4−m

4

[
Dk
tD

β
xu(x, . )

]
C

4−4k−|β|+α
4

(
[t/2,t]

) · tα−γ
4

t≤T
≤ C227T

α−γ
4 .

6 Next, we estimate the spacial Hölder seminorm of the time derivative, 4k + |β| = 4:

sup
(x,t)∈Ω×(0,T ]

t
4−m−α

4

∣∣∣Dk
tD

β
xu(x, t)

∣∣∣ ≤ C227 ⇒ ∀(x, t) ∈ Ω× (0, T ] :
∣∣∣Dk

tD
β
xu(x, t)

∣∣∣ ≤ C227t
α+m−4

4 .

So we see that for x, y ∈ Ω and t′ ∈ [t/2, t], 4k + |β| = 4 like in 4 :

t
4−m

4

∣∣∣Dk
tD

β
xu(x, t′)−Dk

tD
β
x(y, t′)

∣∣∣
|x− y|γ
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≤

 t 4−m
4

∣∣∣Dk
tD

β
xu(x, t′)−Dk

tD
β
xu(y, t′)

∣∣∣
|x− y|α


γ
α

·
∣∣∣2C227t

′α+m−4
4 t

4−m
4

∣∣∣1− γ
α
.

Hence, we conclude for 4k + |β| = 4

sup
t∈(0,T ]

t
4−m

4 sup
t′∈[t/2,t]

[
Dk
tD

β
xu( . , t

′)
]
Cγ(Ω)

≤ 21−
γ
αC227t

α−γ
4 ≤ 21−

γ
αC227T

α−γ
4 .

93 Lemma

Let m = 1, 2, 3, 4 and 0 < γ ≤ α, α/2 ≤ γ. If u, v, w ∈ C
4+γ,1+ γ

4
m+γ−4 (QT ) and T ≤ 1, then there is a

constant C167 = C167(α, γ,Ω) depending on algebraic structure of R and L such that

∥∇u∥
C

α,α/4
max{0,m+α−4}(QT )

≤ C167∥∇u∥
C

3+γ,
3+γ
4

m+γ−1 (QT )
(138)

∥D3wD2u∥
C

α,α/4
m+α−4(QT )

≤ C167∥D3w∥
C

1+γ,
1+γ
4

m+γ−3 (QT )
· ∥D2u∥

C
2+γ,

2+γ
4

m+γ−2 (QT )
(139)

∥D2uD2 wD2v∥
C

α,α/4
m+α−4(QT )

≤ C167∥D2u∥
C

2+γ,
2+γ
4

m+γ−2 (QT )
· ∥D2w∥

C
2+γ,

2+γ
4

m+γ−2 (QT )
· ∥D2v∥

C
2+γ,

2+γ
4

m+γ−2 (QT )
.

(140)

Proof: For m = 4, we refer to [Gul17]. By definition, it follows

∥h∥
C

α,α/4
m+α−4(QT )

= sup
t<T

t
4−m

4

(
sup

t′∈[t/2,t]

[
h( , , t′)

]
Cα(Ω)

+ sup
x∈Ω

[
h(x, . )

]
Cα/4

(
[t/2,t]

))
+ sup

(x,t)∈Ω×(0,T ]

t
4−m−α

4

∣∣h(x, t)∣∣.
First, in preparation for the later estimates, we omit the weights and conclude for t′ ∈ [t/2, t][
D3w ·D2u( . , t′)

]
Cα(Ω)

= sup
x∈Ω

∣∣D3w(x, t′)
∣∣ · [D2u( . , t′)

]
Cα(Ω)

+
[
D3w( . , t′)

]
Cα(Ω)

· sup
x∈Ω

∣∣D2u(x, t′)
∣∣

≤ sup
x∈Ω

∣∣D3w(x, t′)
∣∣ · sup

x∈Ω

∣∣D3u(x, t′)
∣∣α · sup

x∈Ω

∣∣D2u(x, t′)
∣∣1−α

+ sup
x∈Ω

∣∣D4w(x, t′)
∣∣α · sup

x∈Ω

∣∣D3u(x, t′)
∣∣1−α · sup

x∈Ω

∣∣D2u(x, t′)
∣∣

and for the temporal seminorm, it holds[
D3w · D2u(x, . )

]
Cα/4

(
[t/2,t]

)
≤ sup

t′∈[t/2,t]

∣∣D3w(x, t′)
∣∣ · [D2u(x, . )

]
Cα/4

(
[t/2,t]

) + sup
t′∈[t/2,t]

∣∣D2u(x, t′)
∣∣ · [D3w(x, . )

]
Cα/4

(
[t/2,t]

)
≤ sup

t′∈[t/2,t]

∣∣D3w(x, t′)
∣∣ · ( t

2

) 2+γ−α
4 [

D2u(x, . )
]
C

2+γ
4

(
[t/2,t]

)
+ sup
t′∈[t/2,t]

∣∣D2u(x, t′)
∣∣ · ( t

2

) 1+γ−α
4 [

D3w(x, . )
]
C

1+γ
4

(
[t/2,t]

)
≤ t

2+γ−α
4 sup

t′∈[t/2,t]

∣∣D3w(x, t′)
∣∣ · [D2u(x, . )

]
C

2+γ
4

(
[t/2,t]

)
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+ t
1+γ−α

4 sup
t′∈[t/2,t]

∣∣D2u(x, t′)
∣∣ · [D3w(x, . )

]
C

1+γ
4

(
[t/2,t]

).
Then we estimate each part by itself. The first case is m = 1 here it holds

sup
(x,t)∈Ω×(0,T ]

t
3−α
4

∣∣D3w· D2u(x, t)
∣∣ ≤ sup

(x,t)∈Ω×(0,T ]

T
2γ−α

4 t
3−2γ

4

∣∣D3w ·D2u(x, t)
∣∣

≤ T
2γ−α

4 sup
(x,t)∈Ω×(0,T ]

t
2−γ
4

∣∣D3w(x, t)
∣∣ · sup

(x,t)∈Ω×(0,T ]

t
1−γ
4

∣∣D2u(x, t)
∣∣.

Furthermore, for the spatial seminorm, we derive for t′ ∈ [t/2, t]

t
3
4

[
D3w· D2u( . , t′)

]
Cα(Ω)

≤ T
2γ−α

4 t
3−2γ+α

4

[
D3w ·D2u( . , t′)

]
Cα(Ω)

≤ T
2γ−α

4 sup
x∈Ω

∣∣t 2−γ
4 D3w(x, t′)

∣∣ · sup
x∈Ω

∣∣t 2−γ
4 D3u(x, t′)

∣∣α · sup
x∈Ω

∣∣t 1−γ
4 D2u(x, t′)

∣∣1−α
+ T

2γ−α
4 sup

x∈Ω

∣∣t 3−γ
4 D4w(x, t′)

∣∣α · sup
x∈Ω

∣∣t 2−γ
4 D3w(x, t′)

∣∣1−α · sup
x∈Ω

∣∣t 1−γ
4 D2u(x, t′)

∣∣.
Analogously, we conclude

t
3
4

[
D3w ·D2u(x, . )

]
Cα/4

(
[t/2,t]

)
≤ T

2γ−α
4 sup

t′∈[t/2,t]

∣∣t 2−γ
4 D3w(x, t′)

∣∣ · t 34 [D2u(x, . )
]
C

2+γ
4

(
[t/2,t]

)
+ T

2γ−α
4 sup

t′∈[t/2,t]

∣∣t 1−γ
4 D2u(x, t′)

∣∣ · t 34 [D3w(x, . )
]
C

1+γ
4

(
[t/2,t]

).
The proof for ∥D2uD2wD2v∥

C
α,α/4
α−3 (QT )

is similar. For the case m = 2, it results

sup
(x,t)∈Ω×(0,T ]

t
2−α
4

∣∣D3w ·D2u(x, t)
∣∣ ≤ T

1+γ−α
4 · sup

(x,t)∈Ω×(0,T ]

t
1−γ
4

∣∣D3w(x, t)
∣∣ · sup

(x,t)∈Ω×(0,T ]

∣∣D2u(x, t)
∣∣.

Next, for the spacial seminorm with weight, we get for t′ ∈ [t/2, t]

t
2
4

[
D3w ·D2u( . , t′)

]
Cα(Ω)

≤ T
1+γ−(1−γ)α

sup
x∈Ω

∣∣t 1−γ
4 D3w(x, t′)

∣∣ · ∣∣t 1−γ
4 D3u(x, t′)

∣∣α · sup
x∈Ω

∣∣D2u(x, t′)
∣∣1−α

+ T
1+γ−α

4 sup
x∈Ω

∣∣t 2−γ
4 D4w(x, t′)

∣∣α · sup
x∈Ω

∣∣t 1−γ
4 D3w(x, t′)

∣∣1−α · sup
x∈Ω

∣∣D2u(x, t′)
∣∣

and for the temporal seminorm, we derive

t
2
4

[
D3w ·D2u(x, . )

]
Cα/4

(
[t/2,t]

) ≤ T
1+2γ−α

4 sup
t′∈[t/2,t]

∣∣t 1−γ
4 D3w(x, t′)

∣∣ · t 24 [D2u(x, . )
]
C

2+γ
4

(
[t/2,t]

)
+ T

1+γ−α
4 sup

t′∈[t/2,t]

∣∣D2u(x, t′)
∣∣ · t 24 [D3w(x, . )

]
C

1+γ
4

(
[t/2,t]

).
For the case m = 3, we compute

sup
(x,t)∈Ω×(0,T ]

t
1−α
4

∣∣D3w ·D2u(x, t)
∣∣ ≤ sup

(x,t)∈Ω×(0,T ]

∣∣D3w(x, t)
∣∣ · sup

(x,t)∈Ω×(0,T ]

∣∣D2u(x, t)
∣∣
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as well as the following estimate for t′ ∈ [t/2, t]

t
1
4

[
D3w ·D2u( . , t′)

]
Cα(Ω)

≤ T
1
4 sup
x∈Ω

∣∣D3w(x, t′)
∣∣ · ∣∣D3u(x, t′)

∣∣α · sup
x∈Ω

∣∣D2u(x, t′)
∣∣1−α

+ T
1−(1−γ)α

4 sup
x∈Ω

∣∣t 1−γ
4 D4w(x, t′)

∣∣α · sup
x∈Ω

∣∣D3w(x, t′)
∣∣1−α · sup

x∈Ω

∣∣D2u(x, t′)
∣∣.

Further, we work with the temporal seminorm on [t/2, t] and conclude

t
1
4

[
D3w ·D2u(x, . )

]
Cα/4

(
[t/2,t]

)
≤ T

2+γ−α
4 sup

t′∈[t/2,t]

∣∣D3w(x, t′)
∣∣ · t 14 [D2u(x, . )

]
C

2+γ
4

(
[t/2,t]

)
+ T

1+γ−α
4 sup

t′∈[t/2,t]

∣∣D2u(x, t′)
∣∣ · t 14 [D3w(x, . )

]
C

1+γ
4

(
[t/2,t]

).
At last, we consider the gradient estimate

∥∇u∥
C

α,α/4
0 (QT )

= sup
t<T

tα/4

(
sup

t′∈[t/2,t]

[
∇u( , , t′)

]
Cα(Ω)

+ sup
x∈Ω

[
∇u(x, . )

]
Cα/4

(
[t/2,t]

))
+ sup

(x,t)∈Ω×(0,T ]

∣∣∇u(x, t)∣∣.
In preparation, we derive

sup
x∈Ω

[
∇u(x, . )

]
C

m+α−1
4

(
[0,T ]

) ≤ C ⇒ sup
(x,t)∈Ω×(0,T ]

∣∣∣∇u(x, t)∣∣∣ ≤ CT
m+α−1

4 + sup
x∈Ω

∣∣∣∇u(x, 0)∣∣∣.
Therefore, now we can estimate

tα/4 sup
x∈Ω

[
∇u(x, . )

]
Cα/4

(
[t/2,t]

) ≤ tα/4
(
t

2

) 3+γ−α
4 [

∇u(x, . )
]
C

3+γ
4

(
[t/2,t]

)
≤ T

m−1+γ
4 t

4−m
4

[
∇u(x, . )

]
C

3+γ
4

(
[t/2,t]

).
For m = 2, 3 it follows

tα/4 sup
t′∈[t/2,t]

[
∇u( , , t′)

]
Cα(Ω)

≤ Tα/4 sup
(x,t)∈Ω×(0,T ]

∣∣∣D2
xu(x, t)

∣∣∣α sup
(x,t)∈Ω×(0,T ]

∣∣∣2∇u(x, t)∣∣∣1−α.
For m = 1 we conclude

tα/4 sup
t′∈[t/2,t]

[
∇u( , , t′)

]
Cα(Ω)

≤ T
αγ
4 sup

(x,t)∈Ω×(0,T ]

∣∣∣t 1−γ
4 D2

xu(x, t)
∣∣∣α sup

(x,t)∈Ω×(0,T ]

∣∣∣2∇u(x, t)∣∣∣1−α.

94 Lemma (Hölder Estimates I)

Let m = 1, 2, 3, 4 and 0 < γ, α < 1, T ≤ 1 then there exist constants C168 = C168(Ω, α, γ) and kH ∈ N
depending on algebraic structure of R and L, so that:∥∥R(∇u,D2u,D3u)

∥∥
C

α,α/4
m+α−4(QT )

≤ C168

(
1 + ∥∇u∥

C
3+γ,

3+γ
4

m+γ−1 (QT )

)kH
∥∇u∥3

C
3+γ,

3+γ
4

m+γ−1 (QT )
,

∑
k+ℓ=4

∥Lkℓ(∇u)∥Cα,α/4
max{0,m+α−4}(QT )

≤ C168

(
1 + ∥∇u∥4

C
3+γ,

3+γ
4

m+γ−1 (QT )

)
.

173



Proof: Here, we use the formula (R). Then, we can estimate∥∥R(∇u,D2u,D3u)
∥∥
C

α,α/4
m+α−4(QT )

(137)
≤ C164

∥∥D3u ⋆ D2u
∥∥
C

α,α/4
m+α−4(QT )

4∑
k=1

∥∥∥Q−2kP2k−1(∇u)
∥∥∥
C

α,α/4
max{0,m−α−4}(QT )

+ C164

∥∥D2u ⋆ D2u ⋆ D2u
∥∥
C

α,α/4
m−α−4(QT )

4∑
k=0

∥∥∥Q−2(k+1)P2k(∇u)
∥∥∥
C

α,α/4
max{0,m−α−4}(QT )

.

By Lemma 44 we conclude that for all ℓ, b ∈ N0∥∥∥Q−ℓPb(∇u)
∥∥∥
C

α,α/4
max{0,m−α−4}(QT )

≤C164

∥∥∥Q−ℓ(∇u)
∥∥∥
C

α,α/4
max{0,m−α−4}(QT )

∥Pb(∇u)∥Cα,α/4
max{0,m−α−4}(QT )

(160)
≤ C164(1 + C167∥∇u∥

C
3+γ,

3+γ
4

m+γ−1 (QT )
)ℓ(C167∥∇u∥

C
3+γ,

3+γ
4

m+γ−1 (QT )
)b.

Again by Lemma 44: (139) and (140) we obtain∥∥R(∇u,D2u,D3u)
∥∥
C

α,α/4
m+α−4(QT )

≤ C228∥D3u∥
C

1+γ,
1+γ
4

m+γ−3 (QT )
· ∥D2u∥

C
2+γ,

2+γ
4

m+γ−2 (QT )

4∑
k=1

(1 + ∥∇u∥
C

3+γ,
3+γ
4

m+γ−1 (QT )
)2k∥∇u∥2k−1

C
3+γ,

3+γ
4

m+γ−1 (QT )

+ C229∥D2u∥3
C

2+γ,
2+γ
4

m+γ−2 (QT )

4∑
k=0

(1 + ∥∇u∥
C

3+γ,
3+γ
4

m+γ−1 (QT )
)2(k+1)∥∇u∥2k

C
3+γ,

3+γ
4

m+γ−1 (QT )

≤ C168∥D2u∥3
C

2+γ,
2+γ
4

m+γ−2 (QT )

(
1 + ∥∇u∥

C
3+γ,

3+γ
4

m+γ−1 (QT )

)kH
.

95 Lemma

Let 0 < α < 1. If u, v, w ∈ C
4+α,1+α

4
1 (QT ) and T ≤ 1. Then there exists a constant C185 = C185(Ω) such

that

∥D3wD2u∥
C

α,α/4
−3 (QT )

≤ C185∥D3w∥
C

1+α, 1+α
4

−2 (QT )
· ∥D2u∥

C
2+α, 2+α

4
−1 (QT )

(247)

∥D2uD2wD2v∥
C

α,α/4
−3 (QT )

≤ C185∥D2u∥
C

2+α, 2+α
4

−1 (QT )
· ∥D2w∥

C
2+α, 2+α

4
−1 (QT )

· ∥D2v∥
C

2+α, 2+α
4

−1 (QT )

(248)

∥∇u∥
C

α,α/4
0 (QT )

≤ C185∥∇u∥
C

3+α, 3+α
4

0 (QT )
+ sup
x∈Ω

∣∣∇u(x, 0)∣∣(249)

Proof: By definition, it holds

∥h∥
C

α,α/4
−3 (QT )

= sup
t<T

t
3+α
4

(
sup

t′∈[t/2,t]

[
h( , , t′)

]
Cα(Ω)

+ sup
x∈Ω

[
h(x, . )

]
Cα/4

(
[t/2,t]

))
+ sup

(x,t)∈Ω×(0,T ]

t
3
4

∣∣h(x, t)∣∣.
First, we prepare for the later estimation for t′ ∈ [t/2, t][

D3w ·D2u( . , t′)
]
Cα(Ω)

= sup
x∈Ω

∣∣D3w(x, t′)
∣∣ · [D2u( . , t′)

]
Cα(Ω)
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+
[
D3w( . , t′)

]
Cα(Ω)

· sup
x∈Ω

∣∣D2u(x, t′)
∣∣

≤ C230(Ω) sup
x∈Ω

∣∣D3w(x, t′)
∣∣ · sup

x∈Ω

∣∣D3u(x, t′)
∣∣α · sup

x∈Ω

∣∣D2u(x, t′)
∣∣1−α

+ C231(Ω) sup
x∈Ω

∣∣D4w(x, t′)
∣∣α · sup

x∈Ω

∣∣D3u(x, t′)
∣∣1−α · sup

x∈Ω

∣∣D2u(x, t′)
∣∣

and also we conclude[
D3w ·D2u(x, . )

]
Cα/4

(
[t/2,t]

) ≤ sup
t′∈[t/2,t]

∣∣D3w(x, t′)
∣∣ · [D2u(x, . )

]
Cα/4

(
[t/2,t]

)
+ sup
t′∈[t/2,t]

∣∣D2u(x, t′)
∣∣ · [D3w(x, . )

]
Cα/4

(
[t/2,t]

)
≤ t

2
4 sup
t′∈[t/2,t]

∣∣D3u(x, t′)
∣∣ · [D2u(x, . )

]
C

2+α
4

(
[t/2,t]

)
+ t

1
4 sup
t′∈[t/2,t]

∣∣D2u(x, t′)
∣∣ · [D3w(x, . )

]
C

1+α
4

(
[t/2,t]

).
Furthermore, we can estimate

sup
(x,t)∈Ω×(0,T ]

t
3
4

∣∣D3w ·D2u(x, t)
∣∣ ≤ sup

(x,t)∈Ω×(0,T ]

t
2
4

∣∣D3w(x, t)
∣∣ · sup

(x,t)∈Ω×(0,T ]

t
1
4

∣∣D2u(x, t)
∣∣.

Moreover, we get for t′ ∈ [t/2, t] that it holds

t
3+α
4

[
D3w ·D2u( . , t′)

]
Cα(Ω)

≤ C232(Ω) sup
x∈Ω

∣∣t 24D3w(x, t′)
∣∣ · ∣∣t 24D3u(x, t′)

∣∣α · sup
x∈Ω

∣∣t 14D2u(x, t′)
∣∣1−α

+ C233(Ω) sup
x∈Ω

∣∣t 34D4w(x, t′)
∣∣α · sup

x∈Ω

∣∣t 24D3w(x, t′)
∣∣1−α · sup

x∈Ω

∣∣t 14D2u(x, t′)
∣∣

and in the same way, it follows

t
3+α
4

[
D3w ·D2u(x, . )

]
Cα/4

(
[t/2,t]

) ≤ sup
t′∈[t/2,t]

∣∣t 24D3w(x, t′)
∣∣ · t 3+α

4

[
D2u(x, . )

]
C

2+α
4

(
[t/2,t]

)
+ sup
t′∈[t/2,t]

∣∣t 14D2u(x, t′)
∣∣ · t 3+α

4

[
D3w(x, . )

]
C

1+α
4

(
[t/2,t]

).
The proof for ∥D2uD2wD2v∥

C
α,α/4
−3 (QT )

is similar. At last, we consider

∥∇u∥
C

α,α/4
0 (QT )

= sup
t<T

tα/4

(
sup

t′∈[t/2,t]

[
∇u( , , t′)

]
Cα(Ω)

+ sup
x∈Ω

[
∇u(x, . )

]
Cα/4

(
[t/2,t]

))
+ sup

(x,t)∈Ω×(0,T ]

∣∣∇u(x, t)∣∣.
as well as temporal Hölder seminorm term

tα/4 sup
x∈Ω

[
∇u(x, . )

]
Cα/4

(
[t/2,t]

) ≤ tα/4
(
t

2

) 3
4 [

∇u(x, . )
]
C

3+α
4

(
[t/2,t]

) ≤ t
3+α
4

[
∇u(x, . )

]
C

3+α
4

(
[t/2,t]

)
and the spatial Hölder seminorm term

tα/4 sup
t′∈[t/2,t]

[
∇u( , , t′)

]
Cα(Ω)

≤ C234(Ω) sup
(x,t)∈Ω×(0,T ]

∣∣∣t 14D2
xu(x, t)

∣∣∣α sup
(x,t)∈Ω×(0,T ]

∣∣∣∇u(x, t)∣∣∣1−α.
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96 Lemma

Let βi ∈ N2
0 for each i = 1, . . . ,m then∏m

i=1D
βi
x u

Qk(u)
−
∏m
i=1D

βi
x w

Qk(w)
=

(
∇w +∇u

)(
Q(w) +Q(u)

) k∑
ℓ=1

m∏
i=1

Qℓ−k−1(w)Q−ℓ(u)
)
Dβi
x u(∇w −∇u)

−
m∑
ℓ=1

ℓ−1∏
i=1

m∏
i=ℓ+1

Dβi
x wD

βi
x u

Qk(w)

(
Dβℓ
x w −Dβℓ

x u
)
.

Proof: It is the same proof as in [Gul17, step 2 in the proof of Lemma 6.8 p. 73] First, consider∏m
i=1D

βi
x u

Qk(u)
−
∏m
i=1D

βi
x w

Qk(w)
=

∏m
i=1D

βi
x uQk(w)−

∏m
i=1D

βi
x wQk(u)

Qk(u)Qk(w)

=

(
Qk(w)−Qk(u)

)∏m
i=1D

βi
x u−Qk(u)

(∏m
i=1D

βi
x w −

∏m
i=1D

βiu
)

Qk(u)Qk(w)
.

Next, we work with the second part and derive

m∏
i=1

Dβi
x w −

m∏
i=1

Dβiu =
m∏
i=1

Dβi
x w −

m∏
i=1

Dβiu+
m∑
ℓ=0

ℓ∏
i=1

Dβi
x w

m∏
i=ℓ+1

Dβi
x u−

m∑
ℓ=0

ℓ∏
i=1

Dβi
x w

m∏
i=ℓ+1

Dβi
x u

=

m∑
ℓ=1

ℓ∏
i=1

Dβi
x w

m∏
i=ℓ+1

Dβi
x u−

m−1∑
ℓ=0

ℓ∏
i=1

Dβi
x w

m∏
i=ℓ+1

Dβi
x u

=

m∑
ℓ=1

[
ℓ∏
i=1

Dβi
x w

m∏
i=ℓ+1

Dβi
x u−

ℓ−1∏
i=1

Dβi
x w

m∏
i=ℓ

Dβi
x u

]

=
m∑
ℓ=1

[
ℓ−1∏
i=1

Dβi
x w

m∏
i=ℓ+1

Dβi
x u
(
Dβℓ
x w −Dβℓ

x u
)]
.

The difference terms can be calculated in the same way

Qk(w)−Qk(u) =
k∑
ℓ=1

[
Qℓ−1(w)Qk−ℓ(u)

(
Q(w)−Q(u)

)]

=

(
Q(w)−Q(u)

)(
Q(w) +Q(u)

)
(
Q(w) +Q(u)

) k∑
ℓ=1

Qℓ−1(w)Qk−ℓ(u)

=

(
(∇w)2 − (∇u)2

)
(
Q(w) +Q(u)

) k∑
ℓ=1

Qℓ−1(w)Qk−ℓ(u)

=

(
∇w −∇u

)(
∇w +∇u

)(
Q(w) +Q(u)

) k∑
ℓ=1

Qℓ−1(w)Qk−ℓ(u).

By combining the results, we obtain∏m
i=1D

βi
x u

Qk(u)
−
∏m
i=1D

βi
x w

Qk(w)
=

(
∇w +∇u

)(
Q(w) +Q(u)

) k∑
ℓ=1

m∏
i=1

Qℓ−k−1(w)Q−ℓ(u)
)
Dβi
x u(∇w −∇u)
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−
m∑
ℓ=1

ℓ−1∏
i=1

m∏
i=ℓ+1

Dβi
x wD

βi
x u

Qk(w)

(
Dβℓ
x w −Dβℓ

x u
)
.

The next Lemma explains how with embedding, one can get better weight powers for lower
derivatives.

97 Lemma

Let 1 ≤ q, p < ∞, α, β, γ ∈ R, Ω ⊂ R
n is quasibounded, α − γ ≥ p and q > p and p > n or p < n and

p ≤ q < pn
n−p and

β

q
>
γ

p

(
1 +

n

q
− n

p

)
+
α

p

(
n

p
− n

q

)
Then, the following embedding is compact

W 1,p(Ω; dγ , dα) ↪→↪→ Lq(Ω; dβ)

Proof: [Bro98, p.338 corollary 3.1].

98 Lemma (Poincare’s Inequality)

Let Ω ⊂ Rn be a bounded Lipschitz domain and ω ̸= ∅ an open subset of Ω. Further, assume 1 < p < ∞.
Then there exists a constant C235 = C235(n, ω,Ω, p, a) such that∥∥∥∥u− 1

|ω|

∫
ω
u(x) dx

∥∥∥∥
Lp(Ω;dap)

≤ C235∥Du∥Lp(Ω;dap)

for each function u ∈W 1,a
p (Ω).

Proof: We will use the basic idea of proving unweighted Poincare inequality from [Eva10, p.290
Chapter 5.8.1 Theorem 1], namely arguing by contradiction. First of all, we recall the notation

(u)ω =
1

|ω|

∫
ω
u(x) dx

for the average of u over ω. By contradiction, we assume there exists for each k ∈ N a function
uk ∈W 1,a

p (Ω) with

∥uk − (uk)ω∥Lp(Ω;dap) > k∥Duk∥Lp(Ω;dap) ≥ 0.

If we now renormalize by defining

vk :=
uk − (uk)ω

∥uk − (uk)ω∥Lp(Ω;dap)

,

therefore, we obtain the following properties

(vk)ω = 0, ∥vk∥Lp(Ω;dap) = 1, ∀k ∈ N : ∥Dvk∥Lp(Ω;dap) <
1

k
.(250)

Especially, the sequence {vk}k∈N is bounded in W 1,a
p (Ω). Since by (103) we have compact embed-

ding W 1,a
p (Ω) ↪→↪→ Lp(Ω; dpa), there exist a subsequence {vkℓ}ℓ∈N and a function v ∈ Lp(Ω; dap)

such that

vkℓ → v in Lp(Ω; dap), thus (v)ω = 0, ∥v∥Lp(Ω;dap) = 1.(251)
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It follows that for each φ ∈ C∞
c (Ω) and each component j ∈ {1, . . . , n} the condition in (250)

implies ∫
Ω
φxjv dx = lim

ℓ→∞

∫
Ω
φxjvkℓ dx = − lim

ℓ→∞

∫
Ω
φvkℓ,xj dx = 0.

Then we get Dv ≡ 0 a.e. and thus v ∈ W 1,a
p (Ω). Since Ω is connected, we conclude that v is

constant. Consequently, by (v)ω we obtain v ≡ 0 a.e., since ω is a open set. Hence ∥v∥Lp(Ω;dap) = 0,
a contradiction to (251).

99 Lemma (Equivalence of Weighted Norms)

Let Ω ⊂ Rn a bounded Lipschitz domain, 1 < p <∞ and ω ̸= ∅ is an open subset of Ω. Then

Wm,a
p (Ω) ∋ u 7→

∑
|α|=m

∥Dαu∥Lp(Ω;dap) + ∥u∥Lp(ω)

is equivalent to (101) on Wm,a
p (Ω).

Proof: Since by (103) the embedding Wm,a
p (Ω) ↪→↪→ Wm−1,a

p (Ω) is compact, we can use the
Ehrling’s Lemma and Young’s inequality to show that for all ε > 0 there exists a constant Cε
such that

∥u∥p
Wm−1,a

p (Ω)
≤ ε∥u∥p

Wm,a
p (Ω)

+ Cε∥u∥pLp(Ω;dap)

≤ ε∥Dmu∥pLp(Ω;dap) + ε∥u∥p
Wm−1,a

p (Ω)
+ Cε∥u∥pLp(Ω;dap).

Consequently, we set ε = 1
2 and use again Young’s inequality to derive

∥u∥Wm,a
p (Ω) ≤ C236

(
∥Dmu∥Lp(Ω;dap) + ∥u∥Lp(Ω;dap)

)
.

Next, we observe that by weighted Poincare’s inequality formulated in Lemma 98 it follows

∥u∥Lp(Ω;dap) ≤ C235

(
∥Du∥Lp(Ω;dap) +

1

|ω|

∫
ω
|u|(x) dx · ∥1∥Lp(Ω;dap)

)
≤ C237

(
∥Du∥Lp(Ω;dap) + ∥u∥Lp(ω)

)
since ω is also bounded.

100 Lemma

Let Dδ and fδ be the Cantor set and function defined in Theorem 90. Furthermore, let fℓ the functions
defined in step 2 of Theorem 90. Then

a L1(Dδ) = 0,

b Moreover, there exists a function fδ ∈ C0([0, 1])with fℓ → fδ inC0([0, 1]) for ℓ→ ∞with fδ(0) = 0
and fδ(1) = 1. Also it follows that f ′δ = (f ′δ)

c, which is supported on Dδ.

Proof: a Since the intervals Ikj are non-overlapping, we conclude by countable additivity and
2δ < 1 that it holds

L1(Dδ) = 1−
∞∑
j=1

2(j−1)∑
k=1

L1(Ikj) = 1−
∞∑
j=1

2(j−1)∑
k=1

(1− 2δ)δj−1

= 1−
∞∑
j=1

(2δ)(j−1)(1− 2δ) = 1− (1− 2δ)
∞∑
j=0

(2δ)j = 1− 1− 2δ

1− 2δ
= 0.
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b First, we want to observe the self-similarity property of the construction of fℓ. Foremost, let
m ≥ ℓ then it follows that fℓ = fm in sets where fℓ is constant:

⋃ℓ
j=1

⋃2(j−1)

k=1 Ikj which we will show
in the following.

The complementary set [0, 1] \
⋃ℓ
j=1

⋃2(j−1)

k=1 Ikj consists of 2ℓ intervals Jiℓ, i = 1, . . . 2ℓ of length
δℓ. We want to prove that both fℓ and fm rise to the same level in each Jiℓ. By the construction of fm,
there are intervals where fm is constant, which are cut out of in each interval Jiℓ. The remaining
2m−ℓ intervals in Jiℓ are of length δm−ℓ · |Jiℓ| = δm. Here gm is non-vanishing. We conclude∫

Jiℓ

f ′m dx =

∫
Jiℓ

gm dx =
1

(2δ)m
2m−ℓδm =

1

2ℓ
=

δℓ

(2δ)ℓ
=

∫
Jiℓ

gℓ dx =

∫
Jiℓ

f ′ℓ dx.

Since fℓ and fm are both constant on
⋃ℓ
j=1

⋃2(j−1)

k=1 Ikj , it follows that fℓ = fm on
⋃ℓ
j=1

⋃2(j−1)

k=1 Ikj .
Furthermore, with the same arguments, we observe that for all x ∈ Jiℓ, i = 1, . . . 2ℓ (in comple-

ment the situation is trivial fℓ = fm)

|fℓ − fm|(x) ≤
∫ x

0

∣∣∣∣∣∣ 1

(2δ)ℓ

1−
ℓ∑

j=1

2(j−1)∑
k=1

1Ikj (x)

− 1

(2δ)m

1−
m∑
j=1

2(j−1)∑
k=1

1Ikj (x)

∣∣∣∣∣∣ dx
≤
∫
Jiℓ

∣∣∣∣∣∣ 1

(2δ)ℓ
− 1

(2δ)m

1−
m∑
j=1

2(j−1)∑
k=1

1Ikj (x)

∣∣∣∣∣∣dx
≤
∣∣∣∣ 1

(2δ)ℓ
− 1

(2δ)m

∣∣∣∣ 2m−ℓδm +
1

(2δ)ℓ
(δℓ − 2m−ℓδm)

<

∣∣(2δ)m − (2δ)ℓ
∣∣

(2δ)m+ℓ
2m−ℓδm +

ℓ∑
j=m+1

2j−1∑
k=1

1

(2δ)m
δj−1(1− 2δ)

=
∣∣(2δ)m−ℓ − 1

∣∣ 1
2ℓ

+
1

2ℓ
<

3

2ℓ

thus ∀m ≥ ℓ : ∥fℓ − fm∥C0([0,1]) <
3
2ℓ

. The sequence {fℓ}ℓ∈N is a Cauchy sequence in C0([0, 1]).
Therefore there exists a function fδ ∈ C0([0, 1]) with fℓ → fδ in C0([0, 1]) for ℓ → ∞. Also since
∀ℓ ∈ N : fℓ(0) = 0 and fℓ(1) = 1 we have fδ(0) = 0 and fδ(1) = 1.

On the open set
⋃∞
j=1

⋃2(j−1)

k=1 Ikj the function fδ is constant and hence f ′δ ≡ 0 there. Since
L1(Dδ) = 0 then (f ′δ)

a ≡ 0. Moreover, since fδ is continuous, there are not any jump parts.
Furthermore since |Df |((0, 1)) = fδ(1)− fδ(0) = 1 > 0, it follows that

f ′δ = (f ′δ)
c,

where the later is supported on Dδ.

101 Lemma

Let u : [0, 1] → R be sufficiently smooth, with associated curvature κ. We assume that

∥κ∥L1((0,1))(u) < 1−

∣∣∣∣∣∣ u(1)− u(0)√
1 +

(
u(1)− u(0)

)2
∣∣∣∣∣∣ .

Then we have the following L∞-estimate for the derivative u′

∥u′∥L∞ ≤

√
1 +

(
u(1)− u(0)

)2∥κ∥L1((0,1))(u) + |u(1)− u(0)|√
1 +

(
u(1)− u(0)

)2(
1− ∥κ∥L1((0,1))(u)

)
− |u(1)− u(0)|

.
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Proof: This proof is based on unpublished notes of Grunau and Deckelnick. There exists ξ ∈ (0, 1)
such that (u(1)− u(0))/1 = u′(ξ). Then∣∣∣∣∣ u′(x)√

1 + u′(x)2

∣∣∣∣∣ =
∣∣∣∣∫ 1

0
κ(τ) dτ

∣∣∣∣+
∣∣∣∣∣ u′(ξ)√

1 + u′(ξ)2

∣∣∣∣∣ .
It follows

∣∣u′(x)∣∣ ≤ (∥κ∥L1((0,1)) +

∣∣∣∣∣ u′(ξ)√
1 + u′(ξ)2

∣∣∣∣∣
)(

1 +
∣∣u′(x)∣∣)

which finishes the proof.

102 Lemma (Generalized and Classical Second Fundamental Form)

Let M and N be the isometrical embedded Riemannian submanifolds ofRn such that M with m = dimM
is embedded inN . Then, the classical second fundamental form ofM with respect toN is also the generalized
second fundamental form defined in Definition 80. That means for 1 ≤ i, j, k ≤ n〈

A(ei, ej), ek
〉
= Pℓj(PitDtPkℓ)− PℓjPitDtQkℓ = PℓjBikℓ − PℓjPiqDqQkℓ(252)

Proof: We recall the classical second fundamental form with respect to N at x ∈M

A : TxM × TxM → NxM, A(v, w) = (Dvw)
⊥,

where z⊥ is the projection component intoNxM and the covariant differentiation inRn is denoted
by Dvw. Next we extend the situation into Rn by projections of TxRn into TxM denoted by
TxR

n ∋ v 7→ vT ∈ TxM

A : TxR
n × TxR

n → TxR
n, A(v, w) = A(vT , wT ).

Now let {ei}ni=1 be the canonical orthonormal basis ofRn. We define the components of A by

Akij =
〈
A(ei, ej), ek

〉
, 1 ≤ i, j, k ≤ n.

In the case of codimN M = 1 (codimension relative to N ), the space NxM is one-dimensional and
let N be a locally defined normal vector field. Then we can compare with the more convenient
definition

A(τ, η) := −⟨η,DτN⟩N, τ, η ∈ TxR
n.

Also, in the codimN M = 1 case, we have the scalar second fundamental form

A(τ, η) := −⟨η,DτN⟩ =
〈
A(τ, η), N

〉
. τ, η ∈ TxR

n.

Let x ∈ M and φ a local parametrization of M near x so that φ(0) = x. In the local formulation,
we then have the coordinates

Aij = A(Diφ,Djφ) = −⟨Diφ,DDjφN⟩ = ⟨N,Dijφ⟩, 1 ≤ i, j ≤ m.

It is important to notice thatAkij are coordinates relative to the orthogonal base ofRn defined extrin-
sically, unlike the local coordinatesAij defined with respect to local parametrization. Nevertheless,
we can relate each form to each other over the relation between the Riemannian metric on TxM and
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the Euclidian metric on TxRn. Let W,V ∈ TxM with W =
∑

iW
iDiφ(0) and V =

∑
j V

jDjφ(0),
since M is isometrically embedded inRn then

⟨V,W ⟩Rn =
m∑

i,j=1

V iW jgij

∣∣∣
0
=

m∑
i,j=1

V iW j
m∑

k,ℓ=1

gikg
kℓgℓj

∣∣∣
0
=

m∑
k,ℓ=1

gkℓ
m∑
i=1

V igik

m∑
j=1

W jgℓj

∣∣∣
0

=

m∑
k,ℓ=1

gkℓ
〈 m∑
i=1

V iDiφ,Dkφ
〉〈 m∑

j=1

W jDjφ,Dℓφ
〉∣∣∣

0

=
m∑

k,ℓ=1

gkℓ⟨V, ∂kφ⟩⟨W,Dℓφ⟩
∣∣∣
0
.

(253)

From which one can directly deduce ℓ = 1, . . . , n : eTℓ =
∑m

i,j=1 g
ij⟨eℓ, Diφ⟩Djφ. Next, we refor-

mulate Aik in terms of Aℓst and Dkφ. For 1 ≤ i, k ≤ m we get

Aik = A(Diφ,Dkφ) =
n∑

t,s=1

⟨Diφ, et⟩⟨Dkφ, es⟩A(et, es)

=
n∑

t,s,ℓ=1

⟨Diφ, et⟩⟨Dkφ, es⟩
〈
A(et, es), N

ℓeℓ
〉

=
n∑

t,s,ℓ=1

⟨Diφ, et⟩⟨Dkφ, es⟩AℓtsN ℓ

since one can define locally N = D1φ ∧ · · · ∧Dmφ/∥D1φ ∧ · · · ∧Dmφ∥, where wedge product is
intrinsically in TxN . Analogously, we obtain for 1 ≤ s, t, ℓ ≤ n

Aℓst =
〈
A(es, et)N, eℓ

〉
= A(eTs , e

T
t )N

ℓ

=
m∑

i,j,k,r=1

gij⟨et, Diφ⟩A(Djφ,Dkφ)g
kr⟨es, Drφ⟩N ℓ

=

m∑
i,j,k,r=1

gij⟨et, Diφ⟩gkr⟨es, Drφ⟩AjkN ℓ.

We can also compare the mean curvature definitions with the norm of the second fundamental
form. Let {τi}ni=1 a orthonormal basis of TxRn such that {τi}mi=1 a orthonormal basis of TxM then

m∑
i,j=1

gijAji =
m∑

i,j=1

gijA
(
Djφ,Diφ

)
=

m∑
i,j=1

gijA
( m∑
k=1

⟨Djφ, τk⟩τk,
m∑
ℓ=1

⟨Diφ, τℓ⟩τℓ
)

=

m∑
k,ℓ=1

A(τk, τℓ)

m∑
i,j=1

gij⟨Djφ, τk⟩⟨Diφ, τℓ⟩

(253)
=

m∑
k,ℓ=1

A(τk, τℓ)⟨τk, τℓ⟩ =
m∑
k=1

A(τk, τk) =

n∑
k=1

A(τk, τk)

=
n∑
k=1

A (eℓ, et)
n∑
ℓ=1

⟨τk, eℓ⟩
n∑
t=1

⟨τk, et⟩ =
n∑

ℓ,t=1

A (eℓ, et)
n∑
k=1

⟨τk, eℓ⟩⟨τk, et⟩

=

n∑
ℓ=1

A (eℓ, eℓ) =

n∑
ℓ,k=1

AkℓℓN
k = H(x).
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Moreover, we check the absolute value ∥A∥g. We use again {τi}ni=1 orthonormal basis of TxRn

such that {τi}mi=1 a orthonormal basis of TxM

m∑
i,j,k,ℓ=1

gijgkℓAikAjℓ =
m∑

i,j,k,ℓ=1

gijgkℓA(Diφ,Dkφ)A(Djφ,Dℓφ)

=
m∑

i,j,k,ℓ=1

gijgkℓ
m∑

r,q=1

⟨Diφ, τr⟩⟨Dkφ, τq⟩A(τr, τq)
m∑

s,t=1

⟨Djφ, τs⟩⟨Dℓφ, τt⟩A(τs, τt)

=

m∑
r,q,s,t=1

A(τr, τq)A(τs, τt)

m∑
i,j=1

gij⟨Diφ, τr⟩⟨Djφ, τs⟩
m∑

k,ℓ=1

gkℓ⟨Dkφ, τq⟩⟨Dℓφ, τt⟩

=
m∑

r,q,s,t=1

A(τr, τq)A(τs, τt)⟨τr, τs⟩⟨τq, τt⟩

=

m∑
r,q=1

A(τr, τq)A(τr, τq) =
n∑

r,q=1

A(τr, τq)A(τr, τq)

=

n∑
i,j,ℓ,k=1

A(ei, ej)A(eℓ, ek)

n∑
r=1

⟨ei, τr⟩⟨τr, eℓ⟩
n∑
q=1

⟨ej , τq⟩⟨τq, ek⟩

=
n∑

i,j=1

A(ei, ej)A(ei, ej) =
n∑

i,j,ℓ=1

(AℓijN
ℓ)2 =

n∑
i,j,ℓ=1

(Aℓij)
2 = ∥A∥2g(x)

since A is parallel to N .
Hutchinson defined the generalized curvature as weak [PiℓDℓPjk], which in classical case is

related to A by [Hut86, 5.1.1. Proposition p.60]

Akij = PℓjPitDt(Pkℓ −Qkℓ)(i)
PiℓDℓPjk = Akij +Ajik + PjℓPitDtQℓk + PkℓPitDtQℓj(ii)

As motivation for his Definition 79 of curvature varifold, Hitchinson used the tangential divergence
theorem. We want to recall his calculations [Hut86, p. 61]. First, suppose U ⊂ R

n open and
∂M ∩ U = ∅ and i ∈ {1, . . . , n}. Additionally, we need a test function

φ = φ(x, P ) ∈ C1(U ×Rn×n) and ∀P ∈ Rn×n : φ( . , P ) ∈ C1
0 (U).

Finally, we define the test vector field

X(x) = φ
(
(x, P (x)

)
ei.

By the tangential divergence theorem and ∂M ∩ U = ∅ it follows

0 =

∫
M

divTxM (XT ) dH2(x) =

∫
M
PrsDs(X

T )r dH2 =

∫
M
PrsDs(Pirφ) dH2

=

∫
M

[
PrsDs(Pir)φ+ PrsPirDsφ+ PrsPirD

∗
jkφDsPjk

]
dH2

=

∫
M

[
PisDsφ+ (PisDsPjk)D

∗
jkφ+ (PrsDsPir)φ

]
dH2

thus with some relabeling indices we notice that [PiℓDℓPjk] is fulfilling the equation for generalized
curvature in Definition 79 (ii) since P = Tanm(µV , x) for a.e. (x, P ). So that we can set Bijk =
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PiℓDℓPjk which by [Hut86, 5.2.2. Proposition, p. 62] is V -a.e. unique generalized curvature. Then
the classical second fundamental form

Akij
(i)
= Pℓj(PitDtPkℓ)− PℓjPitDtQkℓ = PℓjBikℓ − PℓjPiqDqQkℓ

which by Definition 80 is equal to the generalized second fundamental form.
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Glossary

∥f∥Ck(Ω) norm on space Ck(Ω) 33

[f ]Cα(Ω) Hölder coefficient on Ω 33

∥f∥Ck+α(Ω) Hölder norm on space Ck+α(Ω) 33

{f}∗,Ω BMO modulo VMO character of a function f ∈ L1(Ω) 73

∥f∥∗ BMO(Ω) norm of f ∈ BMO(Ω) 74

{f}∗,∂Ω BMO modulo VMO character of a function f ∈ L1(Ω) 73

[u]a,b,QT
"parabolic" semi-norm 112

⟨u⟩a,QT
"temporal" semi-norm 112

[u]∗
b,QT

"spatial" semi-norm 112

∥u∥∗
α,QT

"spatial" norm 112

∥f∥Lp(µ) :=
(∫
X |f |p dµ

) 1
p 123

(µ B) restriction of measure µ on a set B 122

(µ f) restriction of µ on a function f 123

↪→↪→ compact embedding 69

⪯ inequality up to a constant which is then not written 164

( · )⊤ projection onto dfx (TxΣ) 25

( · )⊥ projection onto (dfx (TxΣ))
⊥ 25

⋆ arbitrary linear combination of indices contractions for derivatives of u 49

⟨ . , . ⟩R2+k inner Euclidean product onR2+k 25

Ap second fundamental form of M in p 26

∥A∥g amount of the second fundamental form 26

AD(u) set of points where u is approximately differentiable 131

ap limy→x u(y) approximate limit 131

Ap scalar second fundamental form in p 26

Aij local representation of the scalar second fundamental form 30

Bn
ε (t) n-dimensional open ball with the center t and radius ε 73
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Bs
p(∂Ω) Besov space on boundary 71

Ḃm−1+s
p (∂Ω) higher-order Besov space on boundary 72

BMO(Ω) space of functions of bounded mean oscillations 74

B(X) set of all Borel subsets of a space X 122

BV (Ω) space of functions of bounded variation 128

Cβ(∂Ω) Hölder space on boundary 35

Ck(Ω) space of k-fold differentiable functions on Ω ⊂ Rn 33

Ckc (Ω) space of functions f ∈ Ck(Ω) with compact support in Ω 33

Ck(Ω) functions from Ck(Ω): all derivatives are continuous continuable on Ω 33

Ck+α(Ω) space of k + α-Hölder functions on Ω ⊂ Rn 33

C0
c (X) space of continuous functions on X with compact support 122

cof conormal on f(∂Σ) 27

conv(A) convex hull of a set A 46, 146

CVm(R
n) set of unoriented curvature varifolds 139

CVo
m(R

n) set of oriented curvature varifolds 139

C
ℓ, ℓ

4
β (QT ) weighted parabolic Hölder space of order ℓ and β on QT 94

C
ℓ, ℓ

4
x,t (QT ) parabolic Hölder space of order ℓ on QT 94

∂αf =
(
∂
∂x1

)α1

· · ·
(
∂
∂x1

)αn

f 35

D∗
jkφ partial derivatives of φ with respect to the variables Pij 138

∇tan tangential gradient 72

∆f(Σ)h Laplace-Beltrami operator of h 25

∆Γ(u)H Laplace-Beltrami operator of H on the graph 31

∆Mf Laplace-Beltrami operator from f to M 25

∇au absolutely continuous part of ∇u with respect to Ln 128

∇cu Cantor part of ∇u with respect to Ln 128

∇ju jump part of ∇u with respect to Ln 128

∇su singular part of ∇u with respect to Ln 128

∂Σ boundary of Σ 24

∇M Levi-Civita connection on M 25
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∆m polyharmonic operator 35

dfx differential of f in x ∈ Σ 24

d(x) = dist(x, ∂Ω) distance function to the boundary 68

divMX divergence from X to M 25

∂Ω sufficiently smooth boundary of Ω 29

Dτ derivation in direction τ 24

Dβf = ∂|β|

∂x
β1
1 ···∂xβnn

f , multi-index notation 33

∂∗E essential boundary of E 130

FE reduced boundary 129

(gij) coordinate representation of metric tensor 24, 29

(gij) inverse of (gij) 24, 30√
det (gij) area element factor 24

Gm,n manifold of unoriented m-dimensional subspaces ofRn 136

Gom,n manifold of oriented m-dimensional subspaces ofRn 136

Γ(u) graph of u : Ω → R 29

H(div,Ω) = {u ∈ L2(Ω) | div u ∈ L2(Ω)} 143

H scalar mean curvature 26

H(u) scalar mean curvature on graph Γ(u) 31

Hk(A) k−dimensional Hausdorff measure of A 125

IVm(R
n) set of unoriented integral varifolds 137

IVo
m(R

n) set of oriented integral varifolds 137

JMf Jacobian 126

JM∗
f adjoint Jacobian 127

Ju set of approximate jump points 128

κg signed geodesic curvature 27

K Gaussian curvature of M 27

L1
p(∂Ω) =

{
f ◦ φ ∈W 1,p(I)

∣∣ ∥f∥L1
p(∂Ω) := ∥f∥Lp(∂Ω) + ∥∇tanf∥Lp(∂Ω) <∞

}
72

Lp(Ω; dβ) weighted Lebesgue space 68

Ln n−dimensional Lebesgue measure 24
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Lp(Ω) Lebesgue space 34

Lp(∂Ω) Lebesgue space on boundary 35

Lp
loc

(Ω) space of locally integrable functions 34

Lp(X,µ) real vector space of functions f : X → R satisfying ∥f∥Lp(µ) <∞ 123

Lp(µ) real vector space of functions f : X → R satisfying ∥f∥Lp(µ) <∞ 123

Lp(µ;Rm) space ofRm-valued functions with finite Lp(µ;Rm)-norm 124

Lu Lebesgue set of u 130

Na unit upward pointing normal fields of the absolutely continuous part ∇au 145

νE generalized inner normal to E 129

ν : ∂Ω → S2 exterior boundary normal 29

Ω ⊂ R2 a bounded domain (open, nonempty, and connected subset) 29

ωk Lk measure of k-dimensional unit ball 125

P(E,Ω) perimeter of E relative to Ω 129

π#µ(K) push-forward of a measure 122

Pℓ(∇u) = ∇u ⋆ · · · ⋆∇u ℓ-times 49

p′ = p/(p− 1) the dual exponent of p 69

Q =
√
1 + |∇u|2, Jacobian of the area formula for graphs 30

Qa =
√

1 + |∇au|2 143

QT = Ω× [0, T ], closed time cylinder 94

QT = Ω× (0, T ] 94

q#V unoriented varifold associated to V by projection onto Gm(N) 137

R = R ∪ {±∞} 123

RP 2 = S2/{Id,− Id} real projective plane 136

RVm(R
n) set of unoriented rectifiable varifolds 137

RVo
m(R

n) set of oriented rectifiable varifolds 137

SBV ((a, b)) subspace af all BV ((a, b)) functions with vanishing Cantor part 22

Σ smooth surface with or without boundary ∂Σ 24

Σu = {x ∈ Ω | limρ↘0 |∇u|
(
Bρ(x)

)
/ρn = ∞} 128

Sn−1 =
{
y ∈ Rn

∣∣ ∥y∥ = 1
}

122
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suppµ support of a Borel regular measure µ 122

Su = Ω \ Lu the complement of the Lebesgue set 131

SUV generalized curvature of varifolds 139

T2
R,R horn torus 146

Tank(Hk A, x) approximate tangent space of a Hk-rectifiable set A at x 126

Θ∗
k(Hk A, x) upper k-dimensional density of Hk A 125

Θ∗k(Hk A, x) lower k-dimensional density of Hk A 125

Θu = {x ∈ Ω | limρ↘0 |∇u|
(
Bρ(x)

)
/ρn−1 > 0} 128

θ(x) = limρ↘0Hk
(
A ∩Bρ(x)

)
/ωkρ

k multiplicity 126

Tr boundary trace operator 36

∥V ∥ = µV = π#V associated Radon measure on N obtained by projection π : N ×Gm,n → N 137

VMO(Ω) space of functions of vanishing mean oscillations 74

volΣ volume enclosed by f(Σ) 29

V(u, (a, b)) total variation of u ∈ BV ((a, b)) 156

Wα,H0,γ Helfrich functional 28

Wa(u) absolutely continuous contribution to the Willmore energy 143

W(u) Willmore energy of a graph 31

W : L1(Ω) L1-lower semicontinuous relaxation of the Willmore functional 142

Wm,p(Ω) Sobolev space 34

W̊m,p(Ω) homogeneous Sobolev space 34

Ẇ 1+s
p (∂Ω) =

{
(g0, g1) ∈ L1

p(∂Ω)⊕ Lp(∂Ω)
∣∣ νg1 +∇tang0 ∈ Bs

p(∂Ω)
}

73

Ẇm−1+s
p (∂Ω) Dirichlet data space in weighted Sobolev case 72

Wm,a
p (Ω) weighted Sobolev space 69

W̊m,a
p (Ω) =

{
closure of C∞

c (Ω) in Wm,a
p (Ω)

}
homogeneous weighted space 69

W−m,−a
p′ (Ω) =

(
W̊m,a
p (Ω)

)∗
weighted dual space 69

X(Σ) space of tangent vector fields on Σ 25

χ(Σ) Euler characteristic of Σ 27

χE characteristic function of E 129
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Index

L1-lower semicontinuous relaxation of the Will-
more functional, 142

Hk-rectifiable
countably, 125

Hk-rectifiable, 125
µ-measurability of sets and functions, 122
k-dimensional density of Hk A

lower, 125
upper, 125

absolutely continuous contribution to the Will-
more energy, 143

absolutely continuous part, 128
adjoint, 126
adjoint Jacobian, 127
approximate

differential, 131
limit, 157

approximate jump point, 128
approximate limit, 131

left, 157
right, 157

approximate tangent space, 125
approximately

continuous, 131
differentiable, 131

arclength parametrizations , 35
area estimate, 42, 44
area formula, 126
associated Radon measure on N obtained by

projection π : N ×Gm,n → N , 137
atomic measure, 157

Banach fixed point theorem, 36
Besicovitch derivation Theorem, 124
Besov space on boundary, 71
Besov spaces on the boundary

higher-order, 72
biharmonic operator, 35
bilaplacian, 35
BMO modulo VMO character of a function, 73
Borel regular measure, 122
boundary

smoothness, 34
bounded domain, 29

Cantor part, 128
characteristic functions, 129
closed support of f , 33
co-area formula, 126
codimension, 24
compatibility condition, 91
complement of the Lebesgue set, 131
conormal, 27
contraction mapping, 37
convergence

F -strong measure-function pair, 134
varifold, 136
varifold in the weak sense, 141

convergence for the Radon measures, 123
countably Hk-rectifiable, 125
covariant derivative, 30
curvature

curve, 156
mean, 26
signed geodesic, 27
spontaneous mean, 29
vector, 156
weak mean, 138
Gaussian, 27

curvature varifold, 139

derivations, 24
diameter estimate, 41, 42, 44
differentiable functions, 33
differential, 24
disintegration theorem, 136
divergence of a vectorfield, 25
divergence structure, 32
dominated convergence theorem, 124
dual exponent, 69

elastic energy, 156
elliptic operator, 35
ellipticity constant, 35
essential boundary, 130
essential discontinuities, 157
extension operator, 71, 72
exterior boundary normal, 29

Fatou’s lemma, 124
finite perimeter, 129
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first fundamental form, 29
first variation of m-varifold, 137, 138
first variation of the Willmore functional, 31
functions of bounded mean oscillations, 74
functions of vanishing mean oscillations, 74
fundamental form

second, 26
second generalized, 139
first, 29

fundamental lemma of calculus of variations,
124

Gauss map, 46
Gauss-Bonnet Theorem, 28
Gauss-Green Theorem, 130
Gaussian curvature, 27
generalized curvature of varifolds, 139
generalized inner normal to E., 129
generalized second fundamental form, 139
graph, 29
Grassmannian manifold, 136

Hausdorff measure, 125
Helfrich equation, 29
Helfrich functional, 28
Helfrich surface, 29
higher-order Besov spaces on the boundary, 72
higher-order trace operator, 72
homogeneous Sobolev space, 34
homogeneous weighted space, 69
horn torus, 145
Hölder

boundary interpolation, 39
coefficient, 33
interpolation, 38
Lebesgue interpolation, 38
norm, 33
parabolic norm, 94
parabolic space, 94
parabolic space on the boundary, 95
space, 33
weighted parabolic space, 94
space on boundary, 35

immersed curves, 27
immersion, 24

isometric, 24
integrable, 123
integral varifold, 137
interpolation, 38

Lp, 38

boundary, 39
Hölder, 38
Hölder-Lp, 38

interpolation inequalities, 38
isometric immersion, 24

Jacobian, 126
adjoint, 127

jump part, 128

Laplace-Beltrami operator, 25
Lebesgue

point, 131
set, 130
value, 131

Lebesgue space, 34
boundary, 35

Legendre–Hadamard ellipticity condition, 35
Levi-Civita connections, 25
linerization, 37
Lipschitz boundary, 34
Lipschitz bounded domain, 34
Lipschitz condition, 33

manifold, 24
maximum modulus theorem, 36
mean curvature, 26

scalar, 26
vector, 26

mean curvature of the reduced boundary, 130
measurable measure-valued maps, 135
measure

atomic, 157
Borel regular, 122
Hausdorff, 125
restriction, 122
singular diffuse, 157

measure-function pair, 133
weak convergence, 133
weak convergence Lp-sense, 134
F -strong convergence, 134

metric, 24
minimal surfaces, 10
Miranda-Agmon maximum modulus priciple,

36
monotone convergence theorem, 124
monotonicity formula, 40
multi-index notation, 33
multiplicity, 126
multiplicity of immersion, 41

non-linear growth, 134
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non-tangential divergence theorem, 28
normal derivatives, 36

one-dimensional Willmore energy, 156
orientation function, 137
oriented immersion, 27

parabolic Hölder norm, 94
parabolic Hölder space, 94
perimeter, 129
perpendicularity theorem, 139
pointwise variation, 157
polyharmonic operators, 35
positive oriented parametrization, 27
precise representative, 131
principal curvatures, 27
projection matrix, 136
push-forward, 24

of a measure, 122

Radon measure, 122
rectifiable varifold, 137
reduced boundary, 129
relaxed Willmore energy, 159
restriction of measure µ, 122
right-hand side functions, 36

scalar mean curvature, 26
Schauder estimates, 52
second fundamental form, 26

scalar, 26
trace free, 46
amount, 26

signed geodesic curvature, 27
singular diffuse measure, 157
singular part, 128
smoothness of boundary, 34
Sobolev space, 34

homogeneous, 34
space of functions of bounded variation, 128
space of locally integrable functions, 34
star ⋆ notion, 49
strictly convex, 134
sublevelset of a graph, 129
surface, 24

tangential derivative, 72
tangential divergence theorem, 28
tangential gradient, 72
time cylinder, 94
total variation, 156, 157
trace free second fundamental form, 46

trace operator, 71

uniform ellipticity condition, 95
unoriented varifold associated to V by projec-

tion onto Gm(N), 137
unweighted parabolic Hölder spaces, 94

variational solution, 36
varifold, 136

convergence, 136
integral, 137
oriented, 137
rectifiable, 137
curvature, 139

vector of mean curvature, 26

weak mean curvature, 138
weak∗ convergence, 129
weight, 68
weighted Lebesgue space, 68
weighted parabolic Hölder space, 94
weighted Schauder estimate, 96
weighted Sobolev space, 69
Weingarten-mapping, 30
Willmore

energy, 9
energy one-dimensional, 156
energy relaxed, 159
equation, 49
flow problem, 91
functional, 9
functional L1-lower semicontinuous relax-

ation, 142
functional for a graph, 31
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