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Z USAMMENFASSUNG

Diese Arbeit widmet sich der Suche nach berandeten Flachen, die sich als kritische Punkte des
Willmore-Funktionals unter Dirichlet-Randbedingungen erweisen. Dabei beschrianken wir uns
auf Flachen, die sich als Graphen einer reellen Funktion im R? darstellen lassen. Das bedeutet,
dass sie im R? eingebettet und gleichzeitig auf R? projizierbar sind. Dieser Ansatz hat Vorteile,
wie die Kontrolle des Durchmessers und des Flacheninhalts, sowie die Tatsache, dass die explizite
Wahl der Koordinaten oft analytische Berechnungen vereinfacht. Es gibt jedoch auch Nachteile,
wie zum Beispiel die Moglichkeit, die Projizierbarkeit durch Minimierungsprozesse zu verlieren.

Eine Strategie besteht darin, die Euler-Lagrange-Gleichung, die hier als Willmore-Gleichung
bezeichnet wird, fiir die Graphenfunktion umzuschreiben und als ein elliptisches Randwertprob-
lem zu l6sen. In dieser Arbeit wurde die Willmore-Gleichung als ein biharmonischer Operator
mit einer rechten Seite in Divergenzform umgeschrieben. Dies ermdoglichte es uns, unter Ver-
wendung des Linearisierungsverfahrens und gewichteter Sobolev-Raume die Existenz einer im
Inneren glatten Losung blof unter einer C'!T*-Kleinheit an die Randdaten zu zeigen.

Eine andere Moglichkeit besteht darin, den Gradientenfluss des Willmore-Funktionals, den
sogenannten Willmore-Fluss, zu betrachten. Wir haben ihn fiir die Graphenfunktion als eine
parabolische Gleichung vierter Ordnung umgeschrieben. Mit Hilfe von zeitgewichteten parabolis-
chen Holder-Rdumen konnten wir die Kurzzeitexistenz fiir C'*“-glatte Anfangsdaten und C**<-
Dirichlet-Randdaten ableiten. Dartiber hinaus wurde die Langzeitexistenz mit Konvergenz gegen
einen kritischen Punkt fiir ausreichend kleine C1*®-Normen der Anfangsdaten bewiesen. Wenn
wir die Divergenzstruktur der Willmore-Flussgleichung ausnutzen, kénnen wir sogar Kurz- und
Langzeitexistenz mit Zeitkonvergenz gegen einen kritischen Punkt fiir ausreichend kleine C?<-
Normen der Anfangs- und Randdaten in ungewichteten parabolischen Raumen zeigen.

Ein weiteres Werkzeug, das wir verwenden, ist die Untersuchung der Kompaktheitseigen-
schaften von Willmore-Minimalfolgen. Dabei bauen wir auf den Ergebnissen von Deckelnick,
Grunau und Roger auf, die zuerst die Wbl n L*°-Norm durch die Willmore-Energie und die
Randdaten beschrinkt haben. Anschliefend haben sie im Kontext von BV die L!-Relaxation
des Willmore-Funktionals definiert und einen Minimierer gefunden. Um die Frage der Regular-
itat zu kldren, versuchen wir, die relaxierte Willmore-Energie zu charakterisieren. Deckelnick,
Grunau und Roger haben den Anteil der Energie beschrieben, der aus dem absolut stetigen An-
teil von Vu stammt. In dieser Arbeit gelingt es uns, unter Verwendung von Varifaltigkeiten und
Mafs-Funktionspaaren einen zusitzlichen Anteil hinzuzufiigen, der auch vertikale Komponen-
ten beschreiben kann. Schliefilich zeigen wir anhand eines Gegenbeispiels, dass eine endliche
relaxierte Willmore-Energie einen Cantor-Anteil nicht ausschliefst.



ABSTRACT

This thesis is devoted to the search for surfaces with boundary that serve as critical points of the
Willmore functional under Dirichlet boundary conditions. Our focus is on surfaces that can be
expressed as graphs of real functions defined on R?. These surfaces are embedded in R?® while
also projecting onto R? simultaneously. This approach offers several advantages, including control
over diameter and surface area and the fact that explicit coordinates often simplify analytical
calculations. However, it also comes with disadvantages, such as the potential loss of projectability
during minimization processes.

One strategy involves reformulating the Euler-Lagrange equation, referred to here as the Will-
more equation, for the graph function and solving it as an elliptic boundary value problem. In
this work, we express the Willmore equation as a biharmonic operator with a right-hand side in
divergence form. This approach allows us to demonstrate the existence of a solution smooth in the
interior, provided that the C1*®-norm of the boundary data is small enough, using linearization
techniques and weighted Sobolev spaces.

Another possibility is to examine the gradient flow of the Willmore functional, known as the
Willmore flow. We rewrite it for the graph function as a fourth-order parabolic equation. By
employing time-weighted parabolic Holder spaces, we establish short-term existence for initial
data with C'*“-smoothness and Dirichlet boundary data with C**“-regularity. Furthermore, we
prove long-term existence with convergence toward a critical point for sufficiently small C'!*o-
norms of the initial data. Leveraging the divergence structure of the Willmore flow equation, we
can even demonstrate short- and long-term existence with convergence over time to a critical point
for sufficiently small C**®-norms of both the initial and boundary data in unweighted parabolic
spaces.

Another tool we use is to study the compactness properties of Willmore minimal sequences. We
are building upon the results of Deckelnick, Grunau, and Réger, who initially bounded the whln
L*°-norm of the boundary data by Willmore energy and boundary data and further investigated
the L!-relaxation of the Willmore functional in the context of BV. We aim to characterize the
relaxed Willmore energy, adding contributions not only from the absolutely continuous part of
Vu but also from vertical components. Finally, we provide a counterexample demonstrating that
finite relaxed Willmore energy does not exclude the existence of a Cantor component.
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1 INTRODUCTION

1.1 STATE OF THE ART

In this work, we study boundary value problems for the graphical case within both elliptic and
parabolic settings for the first variation of the Willmore energy. This is a particularly interesting
and important topic in the field of calculus of variations and partial differential equations with a
geometric background. Geometrically, we consider sufficiently smooth two-dimensional surfaces
S, with or without boundary, mostly embedded in R? and therefore with some normal vector field
N: S — S? orthogonal to tangent space on each point. Then the Willmore energy of S is defined

by
(1) W(S) = le/SHL%dS

with the mean curvature Hg = k1 + k2 defined as the sum of the principal curvatures. It is worth
noticing that regarding the normalization factor 7 in front of the integral, there are several values
in the literature. In this setting, the term HZ measures the local density of how the surface is
curved from the extrinsic point of view. More precisely, this can be seen as averaged curvature
at some point on S with respect to the ambient space, where, for example, curvatures on both
sides of a saddle-shaped surface average out. If H > 0 at some point py on the surface, then we
view the surface as being local bending in average towards N (pg) the normal vector of S at pg in
average. In case H < 0, the surface is bending more towards —N (pg). Therefore, W(S) describes
the total bending energy of the surface S. Already introduced by Germain in [Ger13] and Poisson
at the beginning of the 19th century, it was considered again early in the 20th century by Thomsen
[Tho23]] in the conformal geometry framework and then popularized by Willmore.

Mathematically, one can regard the Willmore functional as the second-simplest interesting
differential geometric functional, next to the area functional. In particular, the link to minimal
surfaces (minimizers of the area functional) is obvious since these have vanishing mean curvature
and, therefore, minimize the Willmore energy. Hence, the Willmore surfaces, among other things,
generalize the concept of minimal surfaces.

For surfaces with prescribed boundary or even without a boundary at all (1) is equivalent to
JslIA[#dS or [¢(HZ/4 — Kg)dS, with Gaussian curvature Kg = k1 - k2 and second fundamental
form A describing local variance of the normal fields. One of the most characteristic geometric
properties of the Willmore functional is the invariance of [(HZ/4—Kg) dS under conformal trans-
formations ®: R® — R? of the ambient space, i.e., under Mobius transformations and especially
scaling, rotation, and inversions. This was proved by Willmore in [Wil96] and earlier by Blaschke
[Bla24].

The Willmore energy for two-dimensional surfaces in R? arises not only in a mathematical
context. For example, it is also widely used in the modeling of thin elastic plates that resist
bending, where it was first studied by Germain and Poisson [Ger13]. Furthermore, the Willmore
energy arises in the description of biomembranes as lipid bilayers introduced by Helfrich and
Canham in [Hel73] and [Can70] as a term in the Canham-Helfrich energy functional, which also
includes area, Gaussian curvature, and spontaneous curvature terms.

One interesting topic to study is the Euler-Lagrange equation for the stationary problem asso-
ciated with the Willmore energy. For a sufficiently smooth surface, S we introduce the Willmore
equation by setting the first variation of the Willmore energy [Dall2, p.7 Remark 2.3, (2.1)] equal

7



to zero
1
2 AsHg +2Hg <4H§—]C5> =0 onS

with Ag the Laplace Beltrami operator on S. One of its basic properties is given by the fact that it
defines a quasilinear equation of fourth order thatis elliptic, but not uniformly. Namely, when large
variations of the tangent planes occur, then a strong degeneration of ellipticity takes place. Also,
in [Wil96] Willmore proved that smooth solutions of the Willmore equation, called the Willmore
surfaces, are critical points of the Willmore functional. In the present work, we especially want to
know whether such critical points exist and, if they exist, how regular they are. Comparing the
Willmore energy with the area functional, the analogue to the Willmore equation is H = 0, the
minimal surface equation which is discussed in detail in [DHS10].

Furthermore, interesting developments occur from studying the L2—gradient flow of the Will-
more energy, called the Willmore flow. To describe the evolution of a surface under such a flow,
one considers a sufficiently smooth one-parameter family of immersions f: [0,7) x ¥ — R? with
T > 0and ¥ C R? some fixed surface (two-dimensional submanifold of R?). Therefore, f(t,¥)
is a surface with v(t,.): ¥ — S? some normal vector field on f(¢,%). Then, such a family of
immersions solves the Willmore flow equation if

1 )
(Ouf,v) = — {Af(t,E)Hf(t,E) +2H 1 x) <4H?(t,2) - ]Cf(t,E))} in [0,7) x f(%)

fO,.)=fp inX

©)

where (9, f,v) represents the normal velocity and fo: ¥ — R? is some given immersion. The
parameter 7' plays the role of the lifespan of the solution, whereas in case 7' = oo we call such
a solution global. In particular, this is a quasilinear (not strictly) parabolic evolution equation of
fourth order, related to the Willmore equation. Depending on the setting, we are interested in
studying the existence, regularity, and uniqueness of solutions. If we again compare the Willmore
case with the area functional, one could relate the Willmore flow equation to the mean curvature
flow, which has been widely worked on.

One of the motivations to study this gradient flow is that after proving short-term existence,
one hopes to derive some bounds on the local solution. The first one is that the Willmore energy
is decreasing. From these bounds and further necessary conditions on data, it may be possible to
prove global existence. For T' — oo, one expects a stationary solution that satisfies the Willmore
equation. Thus, solving the Willmore flow problem provides an alternative approach to the
existence of the Willmore surfaces.

Numerically, due to their smoothing and other properties, the Willmore flow techniques are
used in surface restoration [CDD"04]. In this framework, one wants to replace a damaged region
of a surface, for example, a broken statue, with a surface patch given by a Willmore surface.

There are basically two most common surface classes to investigate. Namely, 2-dimensional
manifolds without boundary, called closed surfaces and surfaces with prescribed boundary 05S.
Additionally, there is a distinction between bounded and unbounded surfaces, where, except in
the introduction, we consider only compact surfaces.

1.1.1 CLOSED SURFACES

In this case, both the elliptic and the parabolic problem corresponding to the Willmore energy are
rather well studied. Foremost, considering the elliptic case, in contrast to the minimal surfaces,
compact Willmore surfaces without boundaries exist, and the most obvious example is the sphere.
In addition, there are some interesting bounds on the Willmore energy for closed surfaces. Already



Willmore proved [Wil96] by using the Gauss-Bonnet-theorem that for any closed two-dimensional
surface as immersion f: ¥ — R?3 one has

W(f(X)) > 4n

with equality if and only if f(X) is a round sphere. Based on the divergence theorem on manifolds,
Liand Yau [LY82] proved thatif ¥ C R3 is a closed smooth surface and f: ¥ — R? is an immersion
of multiplicity k¥ € N then W (f(X)) > k - 4.

After gaining experience with the topological class of tori, in 1965 Willmore conjectured that
any immersion f: T — R? of the two-dimensional torus T into R? would satisfy

W(f(T)) = 2n°

with equality, if and only if T is in the conformal class of the Clifford torus. This statement stayed
very challenging for the mathematical community for decades until 2012, when Marques and
Neves proved this conjecture in [MN14a] by using Almgren-Pitts min-max theory (see [MN14b]
for references).

Whether closed compact Willmore minimizers exist in the class of genus-g-surfaces for any
given genus g € Ny was positively answered by Simon in [Sim93] combined with work of Bauer
and Kuwert in [BK03].

The Willmore flow for closed compact two-dimensional immersed surfaces in R? and also in
higher dimensions was deeply investigated in various works by Simonett, Schitzle, and Kuwert. In
[SimO01] Simonett proved that solutions exist globally and converge exponentially fast to a sphere,
provided that they start close to spheres with respect to the C?*-topology. Later, Kuwert and
Schitzle proved in [KS01], [KS04] in codimension one that for initial energy less than or equal to 87,
the Willmore flow of immersions of the sphere exists for all time and converges to a round sphere.
Also in [KS02] they have given a lower bound on the lifespan of a smooth solution, depending
solely on how much the curvature of the initial surface is concentrated in space. Later, in [CES09]
Chill, Fasangova and Schitzle proved that in the case that the initial surface fo(M)is W22 N C*-
close to a C? local minimizer of the Willmore functional, then there exists a global solution for
the Willmore flow with initial data f, that converges to a C? local Willmore minimizer after some
reparametrization.

Even though a lot of research has been done in the area of geometric evolution equations
of higher order, the understanding of whether without smallness conditions the Willmore flow
develops singularities in finite or infinite time is far from being complete. Furthermore, it is still not
clear how to extend the flow after such a singularity. Numerically, Mayer and Simonett provided
in [MS02] numerical evidence that the Willmore flow may develop singularities in finite time if a
smallness condition is violated. In [Bla09] Blatt gave an example with a singularity to form, which
has its Willmore energy arbitrarily close (from above) to 87 and does not converge to a Willmore
immersion under the Willmore flow. It happens that either the diameter of the surface becomes
unbounded or a small quantum of the curvature concentrates in finite or infinite time.

We should also mention some results considering unbounded surfaces. By using calculations
done in [DDO06] by Dziuk and Deckelnick, Koch and Lamm showed [KL12] the existence of a
globally unique and analytic solution for the Willmore flow (besides other geometric flows) for
graphs on R? (so-called entire graphs) with Lipschitz initial data and small Lipschitz norm. There,
they heavily used the scaling behavior of the Willmore flow and some special structure of the
Willmore equation written in the graphical case. We will also intensively use this kind of structure
in the present thesis.



1.1.2 SuRFACES WITH BOUNDARY

In order to obtain a potentially well-posed problem, appropriate boundary conditions have to be
added to the Willmore equation, which can get quite involved. Structurally, it is a fourth-order
equation. Hence, we need two sets of conditions on boundary values. In [Nit93] the author
provided a variety of possible choices accompanied by corresponding existence results for small
data in strong topologies. Also in [BGN17] various boundary conditions are discussed.

There are two kinds of boundary conditions we want to mention. The first is the so-called
Dirichlet problem. In this setting, we are searching for the Willmore surfaces S in R3, or even the
Willmore minimizers, where its boundary 0S5 and the corresponding tangential planes along 0.5
are both prescribed. It is also called a clamped boundary condition since it fixes the position of
the boundary and the angle (relative to ambient space) with which the surface meets its boundary.
The second boundary condition is the Navier problem, where we replace the angle condition
by prescribing the mean curvature of the surface on the boundary 9S. Indeed, by setting the
vanishing mean curvature of S on the boundary, we get natural conditions arising from the first
variation of the Willmore functional.

Boundary value problems for the Willmore surfaces and the Willmore flow evolution become
more involved, and much less is known when compared with closed surfaces. One of the reasons
is that we cannot directly apply scaling arguments. The other is that, in general, no a-priori
bounds are known neither for the solution of the Willmore equation nor for the Willmore energy-
minimizing sequences or minimizers. In the general case, only if the Willmore energy is lower than
47, the diameter and area are both bounded by the Willmore energy and the length of boundary
0S as provided in Subsection In contrast, as shown by Grunau, Deckelnick, and Roger [DGR17,
p.-5 Theorem 2] for the graphical case, both diameter and area can be bounded for arbitrary fixed
Willmore energy.

In general, since the Willmore equation is strongly nonlinear, uniqueness of a solution may
not be expected, see [Eicl6]. Moreover, for the one-dimensional variant of the Willmore equation
with Navier boundary conditions (in that case, the position and the curvature are prescribed
on 05), Deckelnick and Grunau [DG07, Theorem 1] provided two symmetric solutions, if the
boundary conditions lie in some special admissible range. Furthermore, in the framework of the
Willmore surfaces of revolution with Navier boundary conditions and vanishing mean curvature
at the boundary, Dall’Acqua, Deckelnick, and Wheeler [DDW13|] provided the existence of three
different solutions to the same data. Despite that, Dall’Acqua [Dal12] showed uniqueness in the
case of the boundary of a Willmore surface touching a sphere or a plane tangentially with the
condition that the curves bound a strictly star-shaped domain with respect to the corresponding
geometry. Then, the Willmore surface is a part of that sphere or the plane, respectively. This is a
consequence of invariances for trivial data and does not rule out the possibility of non-uniqueness
for non-trivial data.

For the Navier boundary value problem of the higher-dimensional Willmore flow with van-
ishing mean curvature on the boundary, Menzel proved (see her very interesting thesis [Men21]])
short-time existence where the initial data satisfy some regularity and compatibility conditions
with the boundary data and the solution is a graph over a reference manifold. This is based on
using higher order (fourth order in space and first order in time) anisotropic Sobolev spaces on
manifolds as solution space.

To get an idea of which kind of phenomena may be expected, we can restrict ourselves to some
special situations imposing different kinds of symmetry or projectability conditions on the surface
under consideration and hope that some geometric and analytic information on the Willmore
energy, minimizers, or minimizing sequences will be obtained. As the degree of symmetry or
projectability decreases, obtaining results gets more and more difficult.
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In this work, we will use almost always projectability. More precisely, in the graphical case in
R? we represent a surface S by a parametrization Q 3> (z1,z2) — (21,72, u(z))’ where Q C R?
is a sufficiently smooth bounded domain and u: Q — R is a sufficiently smooth mapping. We
especially write S = I'(u) and call it a graph of u. Then the Willmore equation can be rewritten as
a nonlinear biharmonic equation in the form

4 A%y = F(D*u, D?u, D*u,Vu) inQ,

where A? = AA is the biharmonic operator and F(D*u, D3u, D*u, Vu) is a non-linear polynomial

in D*u, D3, D?u, Vuand /T + [Vul2  that will be linear in D*u and D?u. Moreover, all non-
vanishing monomials are at least of degree three. The equation (4) can be used for proving the
existence in spaces Sobolev space W*P(Q) oder Holder C*+%(Q). Studying the divergence structure
of the right side F'(D*u, D3u, D*u, Vu) like in [KL12] will allow us to use weaker solution spaces
of second order instead of fourth order.

Regarding the Dirichlet boundary condition, the elliptic problem is given by prescribed bound-
ary values of the solution and its normal derivative on the boundary 0.

1 .
A Hra >+2Hr(u>< Py — ’Cr<u)> =0 inf,

ou
U=90, o =01 on 95}

(W)

with some sufficiently smooth functions gg and g; on 9€2.
In the parabolic graphical case, we can likewise rewrite the Willmore flow equation as a
biharmonic heat flow equation with nonlinear right-side

(5) o+ A?u = F(D*, D3u, D*>u,Vu) inQ,

where F up to the factor /1 + |Vu|? plays the same role as in (). For the Willmore flow equation,
we study the immersion mapping f (¢, z) = (z,u(z,t))?, z € Q which in this case is an embedding
and consider the parabolic Dirichlet problem with respect to upward normal

1 . _
8tu + Q{Af(u)HF(u) + 2H1"(u) <4Hg(u) — Kr(m) } =0 m Q) x (0, T]7
(WE) u(z,t) = go(x), %(m,t} =g (z), (z,t) €0 x[0,T],
U(IL‘,O) :’LLU(SU), T Eg»

where @ = /1 + |Vu|2. The associated numerical C'-finite element method for this problem
was provided by Deckelnick, Katz, und Schieweck in [DKS15] with quasioptimal error bounds in
Sobolev norms for the solution and its time derivative. Additionally, we need some compatibility
conditions

8u0

S (@), x € 09,

(CQ) go =wuo(z), gi(z)=

for the solution u to be at least C*(Q).

1.1.3 Direct METHODS OF THE CALCULUS OF VARIATIONS

The basicidea in the direct methods is to consider some (possibly improved) minimizing sequences
{vr}ren In a suitable space satisfying the boundary conditions. One idea may be to obtain

11



compactness by modifying this sequence such that some norm of the sequence itself stays bounded.
If these bounds turn out to be strong enough, then we can use the usual local-weak-compactness
and weakly-lower-semicontinuity reasoning [GO23] in the Sobolev space W22 to get the existence
and regularity of the minimizing solution. In the case of surfaces of revolution, this idea works out,
as shown in [DDGO08]] and [DFGS11] by Dall’Acqua, Deckelnick, Frohlich, Grunau, and Schieweck.
However, the construction of such modifications is not obvious at all and is very subtle. For now,
no such construction is known for the graphical general two-dimensional case, and it is not clear
how to meaningfully choose or modify the minimizing sequence here since to stay in W2 one has
to match not only the functions but also their derivatives.

Despite that, Deckelnick, Grunau, and Roger [DGR17] developed a new framework for graphs
involving a L'-lower semicontinuous relaxation of the Willmore functional W. By assuming
graphical projectivity as some sort of obstacle condition, they derived general area and diameter
bounds for all possible values of the Willmore energy [DGR17, Theorem 2]. In this way, they
obtained bounds in the space BV (€2) N L*>°(2), which they have naturally chosen to be the solution
class. They also proved that this L!-lower semicontinuous envelope W is actually the largest
possible L!-lower semicontinuous extension of W to L!(9). Finally, by using direct methods, they
showed the existence of a minimizer in the class BV (€2) N L>(2).

To obtain compactness more easily, Schitzle, Kuwert [KS01], Simon [Sim93] and others have
chosen the realm of varifolds, that is to say, geometric measure theory. Here, we refer to Menne
[Menl7]. These are, in general, non-parametric non-smooth surfaces associated with a measure
and have generalized mean curvature. This approach allows for separating the existence proof
from regularity discussions. As previously mentioned, this often comes at the expense of lack-
ing regularity. Introduced by Almgren as the foundation stone for showing the existence of a
generalized minimal surface, it has turned out to be highly influential in geometric analysis; see
the proof of the Willmore conjecture by F. Marques and A. Neves [MN14a]. Furthermore, Menne
[Men13] was able to show that m-dimensional curvature varifolds, which also have a generalized
second fundamental form, can be covered by a countable collection of Cg—regular m-dimensional
submanifolds of R™ up to a null set. Additionally, the second fundamental form of the varifold
agrees almost everywhere with the second fundamental form induced by these C?-submanifolds.

Regarding the Dirichlet problem, Schitzle [Sch10] showed the existence of the Willmore mini-
mizersinS? = R3U{oo} in a very general context, making use of geometric measure theory. In fact,
the minimizers may be branched, unbounded, not a graph, or even contain co. A slightly different
classical parametric approach was chosen by Da Lio-Palmurella-Riviére in [DLPR20] with an area
constraint, where the authors also obtained the existence of the Willmore surfaces with prescribed
boundary and boundary Gauss map.

The case of surfaces with a smooth closed embedded planar curve as boundary and fixed
topology was studied by Pozzetta in [Poz21]. Using an approach similar to that presented by
Simon in [Sim93], he proved that minimizers do not exist for the minimization problem of the
Willmore energy given genus g > 1 and natural Navier boundary condition H = 0, where only
the position of the boundary curve is given by a fixed circle. Thus, this is a minimization problem
without clamped condition, where the conormal is free. Despite the non-existence result, he was
able to give the infimum value of the Wilmore energy, which is the energy of the closed minimizing
surface of genus g minus 4.

Similar to the area functional, the following phenomenon may occur. If one considers compact
minimizers in R? with boundaries consisting of a given family of disconnected smooth closed
curves, it may happen that direct minimization of the Willmore energy leads to limits that are also
disconnected. Thus, it makes sense to impose topological constraints on the minimizer. In [NP20al
Novaga and Pozzetta considered connected compact surfaces. Provided that the infimum of the
problem is strictly smaller than 47, they proved the existence of a connected compact Willmore
surface in the class of integer rectifiable curvature varifolds with the assigned boundary conditions.
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They used sequences of varifolds with boundary and uniformly bounded Willmore energy and
concluded the convergence of their supports in Hausdorff distance.

1.1.4 HiGHER-ORDER EQUATIONS

Instead of considering the Willmore equation and the Willmore flow equation from a geometrical
perspective, we can investigate these equations as purely analytical fourth-order boundary value
problems with a nonlinear right-hand side. Then it is possible to apply versatile results both on
elliptic and parabolic higher-order operators, where much progress has been made in already 60s
and 70s by Krasovskii [Kra67a], Belonosov [Bel79] and Solonnikov [Sol65, [LSU68] as well as more
recently by Maz’ya, Mayboroba and Barton [MMO09, MMS10, BM16].

The most famous example of higher-order elliptic operators, namely the polyharmonic operator,
is iteratively defined by A™ = AA™"! m € N. Corresponding boundary value problems have
been intensively investigated. We refer the reader to [GGS10], [ADN59]], and the survey [BM16] for
non-smooth domains and references therein. It should be noted that the existence and regularity of
the solution of the Dirichlet problem strongly depend on the chosen solution space, the regularity
of the coefficients, and the boundary data, as well as the regularity of 0€2.

First, like in [Grul8], we want to point out the differences to the well-studied elliptic operators
of second order, like the Laplace operator, which causes more intricacies in the case of fourth
and higher-order operators. One of the main difficulties is the lack of general maximum and
comparison principles and Harnack inequalities. Since the Willmore functional also involves
second derivatives, one cannot simply pass to u™ or |u| like in Stampacchia’s approach to the
maximum principle [MS68]. These phenomena already occur with the biharmonic operator and
the corresponding functional u — [,(Au)? dz. Despite that, for higher-order elliptic operators,
there are still some situations [GGS10] where the positivity of solutions is preserved.

For the study of inhomogeneous elliptic boundary problems [ADN59], much work was put into
deriving estimates of the fundamental solutions and the corresponding Green function. Basing
upon the explicit formula for the polyharmonic operator in a ball by Boggio [Bog05] optimal
(from above and below by multiples of the same function) estimates were derived by Grunau,
Sweers, and Dall’Acqua [GS97, [DAS04]. The Green functions for general higher-order operators
were considered by Krasovskii [Kra67a, Kra67b], but at the cost of high regularity imposed on
the boundary. Terms modeling the boundary behavior were added by Dall’Acqua and Sweers
[DASO4]. In general, the Green function may change sign. Therefore, it is important to show that
the negative part is small in the sense that it is bounded by the product of the squared distances
to the boundary, which was provided by Grunau, Robert, and Sweers [GRS11]. In particular,
they estimated Green functions plus suitable multiples of these boundary terms from above and
from below by the same positive prototype function. For the case of non-smooth domains, Green
function estimates are due to Mayboroda and Maz’ya [MMQ9]. These results also allow sharp
pointwise and LP- estimates on derivatives of the solution.

Various works are concerned with the parabolic case. The classic par excellence is the work by
Ladyzenskaja, Solonnikov, and Ural’ceva [LSU68]|. Later, Dong and Zhang [DZ15] proved Schauder
estimates for solutions of 2mth-order parabolic systems both in divergence and nondivergence case
with boundary data in the cylindrical domain over a C""“-smooth base domain. These estimates
also hold for systems with time-irregular coefficients for operators. They also showed [DK11]
LP-solvability of higher order parabolic systems with leading coefficients in BMO spaces, see
in Subsection In general, more rough initial data, where, in particular, certain compatibility
conditions on their derivatives are not to be assumed, lead to an initial loss of regularity. This
issue was addressed in the framework of weighted parabolic Holder spaces by Belonosov [Bel79]
and further by Solonnikov and Khachatryan [SK80] in a slightly more general situation. For the
Willmore flow with rough initial data in Lipschitz class for entire graphs we again refer to [KL12].
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For all existence results in this work, we use linearization methods combined with Banach
fixed point theorem (contraction mapping principle). This is possible since both in the elliptic and
the parabolic case, one can separate a linear elliptic operator and a right-hand side consisting of
lower-order terms like in [KL12] with a degree of at least three and term linear D*u and containing
to |Vul|? (see @, . This method requires, as usual, smallness conditions for the data in the
elliptic case or short-time existence in the parabolic case. However, exploiting the divergence form
of the problem and estimates adapted to this, we can work in much weaker (larger) spaces, like
weighted Sobolev and parabolic Holder spaces, than previous works as [Nit93]. Morally in the
present work, it suffices to consider (small) boundary data in C I+e see Theorem (1l We describe
our results in some detail below in Section[1.2]

1.1.5 FurTHER RESEARCH

In this section, we want to briefly mention some further research related to the study of the
Willmore energy, but without direct overlap with this thesis. This list is by no means complete.

¢ Instead of assuming projectivity, one can take axial symmetry for two-dimensional surfaces
embedded in R3. Consequently, surfaces of revolutions arise. These are then described
by their profile curves, which are graphs over one-dimensional intervals. This comes with
the huge advantage that the Willmore equation and, in particular, its analysis stay one-
dimensional. As already mentioned, much work [DDGO08, IDFGS11] was done by Grunau,
Dall’Acqua, Deckelnick, Frohlich, and Schieweck. Surprisingly, in this setting, one can rewrite
the Willmore functional in the hyperbolic half plane as a simple one-dimensional curvature
integral [HJP92] which was introduced by Bryant-Griffith [BG86], then fruitfully used by
Langer-Singer [LS84] for curves parameterized by arclength and later by Eichmann [Eic16)
Eic17] for, among others, a nonuniqueness result for the Willmore surfaces of revolution with
dirichlet data.

¢ Another possibility is to consider the one-dimensional Willmore energy, also called elastic
energy. Here, one assumes invariance with respect to translations in a chosen direction. For
a regular and sufficiently smooth curve v: I — R",n > 2 it is given by

©®) Ey) = /I 17y 2(5) ds

where s = |9,7|dz denotes the arclength element and &, = &2

-y denotes the curvature
vector of v with s the arclength. Critical points of £(v) are called elastic curves that satisfy

the one-dimensional Willmore equation

1
%k + 5/13 =0 on~(I).
For the graphical case in R? it was studied by Deckelnick and Grunau [DGO07, IDGO9] under
Dirichlet as well as under Navier boundary conditions. For suitable boundary data, they
investigated the symmetry and stability properties of multiple solutions and provided some
closed expressions. For the symmetric case, then applied an idea of Euler, see [Eul52, pp.
233-234].

For the case of general Willmore curves in R?, Mandel [Man15] solved the Navier problem
and the Dirichlet problem. For open curves in Euclidean space subject to clamped boundary
conditions and L?-flow of elastic curves, Lin [Lin12] showed long-time existence of solutions.
Moreover, in [DPS16] Dall’Acqua, Pozzi, and Spener proved that the solution to the one-
dimensional Willmore flow L?-converges for large time to a critical point of the functional.
They used a Lojasiewicz-Simon gradient inequality for the elastic energy.
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¢ One further recent development concerns obstacle problems for Willmore energy, where the
admissible functions have to be above the given obstacle. The one-dimensional graphical
case with Navier boundary conditions was considered by Dall’Acqua-Deckelnick [DD18].
Miiller extended this approach to some larger class of pseudographs and provided in [Miil19]
nonexistence results for what he calls large cone obstacles in the case of graph curves. Further,
he also studied [Miil20, Miil21] the Willmore gradient flow with obstacles. For surfaces of
revolution, the obstacle problem was investigated by Okabe and Grunau [GO23], where they
also considered the one-dimensional Willmore equation with clamped boundary conditions
and proved the necessity of explicit smallness conditions on general obstacles.

o Furthermore, one can study the elastic energy for open and closed curves. Here, Barrett,
Garcke, and Niirnberg [BGN12] initiated the study of curve networks meeting in junctions.
Suitable boundary conditions at junctions were studied by Garcke, Menzel, and Pluda in
[GMP19] where they investigated which boundary conditions are suitable to build a well-
posed problem. In the case of Theta—networks, namely planar networks composed of three
curves of class H?, regular and which form 120° at the two junctions, Dall’Aqua, Novaga, and
Pluda [DNP20] showed the existence and suitable regularity of minimizers of elastic energy
combined plus a length-term. We also refer to the p-elastic flow generalization [NP20b], a
survey and lectures on curves and networks under elastic flow [MPP21, MNP19].

o We also want to mention the phase field approach for surfaces. Here, one considers a surface
as an interface between two phases represented by the auxiliary scalar phase field, which
takes values 1 and —1 for each of the phases. In the phase field approximation, the values of
the phase field vary smoothly in (—1, 1) in a layer of finite width around the interface. For the
limit of infinitesimal width, it leads to the surface as the boundary 0F of a set £ with the role
of phase with order +1. Especially the phase-field approximates the function x g — xge. This
approach is useful for evolution and minimization problems since it can handle topological
changes of phases or interfaces.

The initial work in this setting for the Willmore energy was done by De Giorgi, who con-
jectured a reasonable approximation in [DGY1]. Roéger and Schétzle then analyzed and
proved in [RS06] that in n = 2,3 a modification of De Giorgi’s functional I'-converges (see
[Bra06, NDL06]) to the sum of the Willmore and perimeter functional.

o One can also consider surfaces confined to a prescribed container. For the unit ball in R3
as confinement and prescribed surface area, Miiller and Roger [MR14] investigated smooth
embeddings of the sphere into the unit ball and studied the minimization problem for the
Willmore functional by modifying a minimizing sequence. They also estimated the minimal
Willmore energy from above and below. In the interesting case, when the prescribed surface
area exceeds 47, the surface area of the unit sphere, the minimizer becomes nonconvex and
cannot be a C%-small perturbation of S?. Additionally, they showed a sharp increase in the
optimal Willmore energy at 47. Furthermore, Dondl, Lemenant, and Wojtowytsch used a
phase field approach to study the minimization of the Willmore energy confined to a given
container and with connectedness constraint, see [DLW17].

o Moreover, one can study closed surfaces with a prescribed isoperimetric ratio, which is
defined for an immersion f: X — R? by

V(/)?
A(f)?

where A(f) and V(f) denote the area and the signed volume enclosed by the immersed
surface. For sphere-type surfaces, Schygulla showed in [Sch12] the existence of smooth

) Z(f) = 36m
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minimizers of the Willmore functional with a prescribed isoperimetric ratio. For immersions
with fixed genus, further studies were done in [KMR14, MS23], which led to the result that
the infimum for a given fixed genus is always attained provided the energy is below the
threshold 87. The corresponding non-local L2-gradient flow of the Willmore functional for
the case of immersed surfaces, which preserves the isoperimetric ratio, was introduced and
studied by Rupp in [Rup24].

1.2 New CONTRIBUTIONS

At this point, we want to compactly present the main results on two-dimensional surfaces with
boundary in R?3, which are proved in this thesis. For each of the four research directions, we
condense various statements to one or two theorems and briefly mention the other remaining new
results.

1.2.1 WiLLmoRrE EQuAaTiON

In the elliptic case, we prove various results regarding different regularity assumptions, where all
theorems require some kind of smallness of the boundary data and exploit the divergence form of
the right-hand side. This is needed to apply a fixed point argument to a linearized problem. One
of the novelties is the application of weighted Sobolev spaces W,*(Q) to the Willmore problem.
With an appropriate parameter choice, these spaces are embedded in C*(Q), hence have bounded
gradient norm [|Vu|| (), which turns to be essential for the linearization estimates. Since the
weighted Sobolev spaces have quite an elaborate trace theory, we rather use the Holder boundary
data to formulate the following theorem.

1 Main Theorem
Let Q C R2 be a bounded domain with 9 € C** for some o € (0,1). Assume that 3 € (0,a),go €
C1+(0Q) and g, € C*(0). Additionally, we suppose that ||gollc1+e(aq) + l|l91llce@a) < K for some
K > 0.

Then there exists a constant 6 = 6(a, 3, K, Q) > 0 such that if ||gollcraq) + ll91llcon) < 9, then
there exists a solution u € C1+P(Q) N C*(Q) to the Dirichlet problem

This result can be found in Subsection in Corollary combined with Theorem (36| in
Subsection One of the key observations heavily used is rewriting the Willmore equation in
the semilinear divergence form done in Lemma There we multiply the geometric Willmore
equation (2) with @ = /1 + |Vu|? and get with Einstein summation notation

(8) A%u = Db} [u] + Db [u]  inQ,

where b;[u] are polynomials consisting of D?*u, Vu and Q~! that contains monomials with poly-
nomial degrees greater than two. Furthermore b;[u] is quadratic in D?u and bs[u] is linear in D?u
and moreover

|b1[u]]| < C|Vu| - |D?ul?, |bo[u]| < C|Vul?| Dyl

with some algebraic constant C'. We want to emphasize that itis important to multiply the Willmore
equation with /1 + |Vu|? because in another case, like in [KL12], we would get an additional term
bo[u] which is cubic in D?uw.

Lemma [18| allows for defining a notion of variational solution where only its derivatives up
to order two are involved. Proved in Lemma 18} it allows us to choose spaces with up to second
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derivatives instead of using spaces with derivatives of the fourth order. This is natural because of
the Willmore energy, which also consists only of derivatives up to the second order.

Also, we want to point out that, similar to the biharmonic equation, due to the elliptic struc-
ture of the Willmore equation, the solution is smooth in the interior of €2, and the regularity
up to the boundary is as smooth as consistent with the boundary data. Compared with the
C47(Q))-smallness condition required by Nitsche [Nit93], this is a significant progress. Further
improvements are the radically reduced regularity assumptions on the boundary 0f? itself. Apply-
ing the same techniques, future research can address cases where the boundary includes Lipschitz
pieces and edges with angles approaching , as discussed in [MMS10, p. 43].

In Subsections [5.2]and |5.3| we use unweighted and hence familiar frameworks: Holder spaces
C?*t2(Q) and Sobolev spaces W2P(Q). Again, by linearization, we show the existence of a solution
with small boundary data. It is also important to notice that only using weighted Sobolev spaces
allows us to work with even weaker boundary Holder spaces than in the unweighted Sobolev
case. In the unweighted case, by trace theorem for W?2?(Q) with p > 2 one can only work with
boundary spaces C''*(99) such that « greater than 1/2. In contrast, in the weighted framework,
all boundary regularity data with « € (0, 1) are allowed.

Furthermore, we want to emphasize that since all these results are rather analytical than
geometric, one can generalize them to other problems that have a similar structure, like the
Helfrich equation.

1.2.2 WirLMORE FLow

In the parabolic case, we study existence, uniqueness, and regularity of the graphical Willmore
flow solutions under smallness conditions. We first prove the short-time existence of a solution
with initial and boundary data in various regularity classes. One of the main novelties here is the
use of the low regularity initial data, which may lie in C™*(Q), m € {1, 2, 3} where the Dirichlet
boundary data come from Holder spaces C4*(9€2). This can be achieved by using so-called
weighted parabolic Holder spaces Cit' %' /(@) x (0,T]) for some T > 0 as solution space. The
Holder-norms of the spatial derivatives of order higher than m + « are weighted with powers of
the time variable ¢ € (0, T, hence allowing higher derivatives to blow up for ¢ — 0.

As an important consequence, in contrast to the unweighted case (m = 4), like in [DKS15],
fewer compatibility conditions between initial values and Dirichlet data have to be imposed. Here

is the additional condition on boundary data, which is no longer necessary
1
0 = Apye) H (u0) + 2H<4H2 — IC) (up), on 9.

This equation represents the fact that the boundary of the surface has to stay fixed (0;u = 0 by
the Willmore equation) in time already at ¢ = 0. For references, see [LSvW92]. This reflects the
smoothing property of the Willmore flow, similar to the biharmonic heat flow, since for ¢t > 0
the initial C"** surface becomes instantaneously as smooth as the boundary data permit. For
the elastic curve flows, the compatibility conditions play an important role in [Men21},(GMP19] or
[DP14, Appendix D.].

2 Main Theorem

Suppose m € {1,2,3} and Q is a bounded domain in R? with C*** boundary for some o € (0,1).
Further, let ug € C™+2(Q), go € C4(0Q) and g1 € C3T(9Q) with [uoll gma@) + l90llcr+aan) +
g1l o3+ a0y < K for some K > 0.

(a) (local) Then there exists time T = T(a,m, K,Q) such that there is a unique solution u €
citedtally « (0,17) of the Willmore flow problem (WT).

m-to
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(v) (global) There exists Cigp = Ciso(cv, ) > 0 such that if

[uolloram + lgollcavaan) + [l91llcs+e(an) < Ciso

then a unique solution for the Willmore-flow (WE) exists for all times such that for allT > 0 : u €

CFet e @ < (0, 7).

(c) (subconvergence) Moreover, for the global solution in (b) there exists a time-sequence {t; } ren C R
with limy,_o tx = oo and a critical point of Willmore energy us, € C*P(Q) for all B € (0, )
such that

u(ty) — us in CHP(Q).
k—ro0
The local and global existence results are obtained in Subsection[6.3)in Theorems[47}[49)and the
subconvergence to a Willmore surface can be found in Subsection 6.6]in Theorem 59} Here, to use
the weighted Schauder estimates by Belonosov [Bel79] we have rewritten the graphical Willmore

flow equation in the way that the right-hand side represented by some polynomial R consisting
of derivatives up to the order three (see Lemma 40)

u = —Lyyu + R(Vu, D*>u, D3u)  inQ x (0,7

where Ly, is a fourth order elliptic operator in case Vu € C*(Q). The monomials of R which
contain D3 are also linear in D3u and moreover, by it holds

) |R(Vu, D*u, D3u)| < C|D3u| - |D*ul - |Vu| + C|D?uf®

where C' is some algebraic constant. Thus, the degree of all monomials is at least three. It should
be noticed that Ly, is not A? and R is not in divergence form.

We can further weaken the regularity assumptions on the initial surface to uy € C*(Q2) in
Subsection At the cost of an additional smallness condition on [[u||¢1 g, we obtain short-time
existence in Theorem More precisely, this means that there is a constant Cjgs = Cjgsg(«, 2)
such that if ||u0\|01(§) + [lgollcataaq) + l91llcs+aan) < Ciss then there is a unique solution in the
weighted parabolic class C; /4@ x (0,1]) of the Willmore flow problem (WE).

Furthermore, in addition to the weighted framework, we work with unweighted parabolic
Holder spaces of second order Cif{a’(“a)/ 4 (2 x [0,T]). In comparison to the weighted Holder
spaces, we reduce the regularity assumptions on the boundary data g; and the solution itself from
C4ra to C?* at the cost of more regular initial values up, which are here in C?*%(Q) instead of
being merely in C1T(Q).

3 Main Theorem
Suppose Q is a bounded domain in R? with C?T% boundary for some o € (0,1). Further, let ug € C*(Q),
go € C*t*(00) and g, € C'T2(99).

(@) (local) Then there exists time T" depending only on «, the bound |[uo|| c2+a ) < C and 2 such that
there is a solution u € Czj{a’(2+a)/4(§ x [0,T7) of the Willmore flow problem (WE).

@ (global) There exists further a constant Cap5 = Caos (v, 2) such that if

[|uo H02+a(§) < Cops

then there exists a solution w of the Willmore flow problem for all times, such that for all
T>0:ue oy < [0, 7]).
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(©) (convergence) Moreover, there exists a constant Ca17 = Ca17(S2, o) such that if ||uo|| c2ra(m) < Corr
then there exists a critical point of the Willmore enerqgy uo, € C*%(Q) such that

u(t) — us in C*HP(Q)

t—o0

forall 5 € (0, ).
It is proven in Theorems 56} 58 and [60]in Subsections [6.5/and

In order to use the Schauder estimates by Dong and Zhang [DZ15], we have to rewrite the
Willmore flow equation once again such that we recover a right-hand side in divergence form,
which was done by Koch and Lamm [KL12] for graphs over R? (also see (133)

Oru+ A%u = folu] + Vifilu] + D f5'[u] in Q2 x (0,7].

The terms f;[u] are again polynomials consisting of D?u, Vu and Q! with degree of each monomial
at least three and satisfying

|[folul| < CID*ul?, | filu]] < C|D*uf*- [Vul,  |f2[u]] < C|D*ul - [Vul?

with some algebraic constant C.

Since for a solution of the Willmore flow the Willmore energy stays bounded, we use the
diameter (i.e. L>°-)bounds in terms of the initial Willmore energy and the diameter of the boundary
derived by Deckelnick, Grunau, and Roger [DGR17, Thm 2]. Actually, it has an advantage over
the elliptic case, where we cannot simply use this a-priori estimate. To prove global existence
and convergence to a Willmore surface, we use interpolation techniques. Hence, we need some
smallness condition for all times, which is not provided by the L*>°-estimate in [DGR17, Thm. 2].
This yields bounds by the Willmore energy and diam €2, where the latter is fixed and not assumed
to be small. That is the reason to derive L?-smallness in Theorem [16]in Section 4l

Lastly, we want to emphasize that even when applying the Willmore flow as ¢ approaches
infinity, we may still fail to reach a Willmore minimizer. Even in cases where global existence is
guaranteed, we can only anticipate a Willmore surface, representing a critical point, as the limit.

1.2.3 ComracTNEss REsuLTS

To study minimizing sequences for the Willmore functional of graphs, Deckelnick, Grunau, and
Roger considered in [DGR17] sequences with uniformly bounded Willmore energy and the behav-
ior of the Willmore functional regarding L!-convergence. Due to working in the class of graphs,
one has to expect jump discontinuities for the limit functions, which may result in vertical parts
and possibly even a highly irregular Cantor part, as explained below.

Since by estimates in [DGR17, Thm. 2] the diameter and area are also bounded, the authors
have chosen the space of functions with bounded variation BV (€2) N L>°(€2). The gradient of such
functions can be decomposed as Vu = Vu + Viu + Véu where V%u is the absolutely continuous
part of Vu in respect to the Lebesgue measure, V/u is the jump part and V¢u is the Cantor part,
all defined in Subsection The jump part represents the vertical walls of the function and
the remaining singular Cantor part is illustrated by contributions to the Cantor set of the Cantor
ternary function.

By considering the absolutely continuous part Veu € LY(Q2) of Vu € BV(Q), Deckelnick,
Grunau, and Roger could define the absolutely continuous contribution to the Willmore energy
and bound it in a lower semicontinuity estimate for the limit. Based on their work, we want to
characterize the missing contribution in their lower semicontinuity estimate in the following the-
orem. The missing parts are described in the framework of measure-function pairs and curvature
varifolds.
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4 Main Theorem
Let Q C R? be a bounded domain with a CQ—boundary, p € Cg(IRQ) and M > 0. Furthermore, let
{uk ke be a given sequence in W2 () that satisfies for some given M > 0:

VkeN: uy—¢@ e W?(Q)  and W(u,) < M.
Then there exists a function u € BV (£2) N L>°(Q2) such that after passing to a subsequence
uy = u in LYQ) (k= ).

For each graph T'(uy) we call Qy = /1 +|Vuy|? the area element and yu. the graph area measure.
Furthermore, we define the unit upwards pointing normal field Ny, : Q — S?. Then:

(i) There exist functions N: Q — S?, H: Q — R and a Radon measure i on Q such that

[imepQrass [ japau= [ (aPap < imin [ £,
0 ﬁ\AD(u) Q k—oco 0

where Ap(u) is the set where u is approximately differentiable. For definitions, see (193) and (194).

(ii) Additionally, there is a W N C'-surface ¥ with boundary and the sequence of oriented varifolds
VO[T (ux) U X, Ny, 1,0] converge in the varifold sense to a curvature varifold VI U X, N, 1, 0] with
mean curvature vector in the varifold sense H = HN.

Here, I is the essential boundary of the sublevel set of w and furthermore, we have

JREERCR Y [PV = [ PV < it [ Q.
Q (Q\Ap (u)) xR QxR k—oo Jo

1.2.4 FiNiTE RELAXED WILLMORE ENERGY AND NONZERO CANTOR PART

While in the general case, the arising of the jump parts for finite “relaxed” Willmore energy W is
expected, one would intuitively guess that rather highly irregular Cantor parts vanish for finite
relaxed Willmore energy. Moreover, by second-order rectifiability, proved by Menne in [Men13], a
graph with finite Willmore energy represented by a varifold is, up to an area null set, a countable
collection of C?-manifolds. This all makes the following main theorem very surprising, since
geometrically one would rather expect infinite relaxed Willmore energy by the non-vanishing
Cantor part. It seems that by naively applying projection techniques, one can get these irregular
sets. Still, it is an open question whether Willmore minimizers may have a nonzero Cantor part.

Here, developing an idea from unpublished notes of Grunau we construct an example for
the case of the one-dimensional-Willmore functional. Here SBV((0,1)) is the subspace af all
BV ((0,1)) functions with vanishing Cantor part.

5 Main Theorem
There exists a function w € BV ((0,1)) with W(u) < oo so that |(v')¢|((0,1)) > 0 and especially
u ¢ SBV((0,1)).

1.3 OUTLINE

In the following, we give a brief outline of the present work. The new results are contained in

Sections [6land
The others provide foundations and recall important definitions and theorems. There is also
an Appendix with some supplementary material, a list of references, and a table of notation.
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@ In Sectionwe recall some basic geometric quantities like mean curvature, the Willmore en-
ergy, and the second fundamental form in the graphical case and rewrite them as polynomials
consisting of derivatives of u as functions over (2.

@ In Sectionwe recall the available theory of higher-order elliptic operators and then describe
the general scheme of how to apply a fixed point argument by freezing the nonlinear part in
both the elliptic and the parabolic case.

@ In Section@we investigate which bounds can be proved in terms of the Willmore energy and
boundary values. In particular, we discuss diameter and area bounds, as well as especially
L?-smallness estimates needed later in Section@ for global existence results.

@ In Sectionwe show the existence of a smooth solution of the Willmore equation in different
settings. First, we consider Holder spaces and use Schauder estimates to provide existence.
Then we use LP estimates to get the result in the Sobolev framework. Subsequently, the
existence is provided in a weighted setting, which allows us to use C1™® data with a small
Lipschitz norm. Interior regularity is also shown.

@ In Section@we prove existence and regularity in different parabolic Holder spaces. We begin
by considering different weighted Holder spaces with initial values in C™7*(Q) or C*(Q)
and investigate smallness conditions for global existence and subconvergence to a Willmore
surface. In the unweighted case, we take uy € C?7%(2) and use the divergence structure of
the equation.

@ In Section@we recall the definitions and properties of BV functions, measures-function pairs
and varifolds.

In Section |8 we show additional compactness properties of Willmore energy-bounded se-
quences. We conclude by giving an example of a BV function with finite relaxed Willmore
energy and nonzero Cantor part.
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2 GEOMETRIC PRELIMINARIES

In this chapter, we want to recall some basic geometric definitions and theorems, both consid-
ering graphs and, in general, non-embedded, immersed surfaces, which are allowed to have
self-intersections. We aim to revisit fundamental concepts that quantify the curvature of the im-
mersed manifold within the ambient Euclidean space. Additionally, to intrinsic curvature, which
solely relies on a chosen metric on the manifold without any reference to the ambient geometry,
we have to introduce the concept of extrinsic curvature, which characterizes the curvature of the
immersed surface in relation to the ambient space. Mean curvature, Gaussian curvature, second
fundamental form, and the Willmore energy are concepts we want to introduce. We especially
need local representations of curvatures and their derivatives in order to rewrite the Willmore
equation and Willmore flow equation as elliptic and parabolic equations for a graph.

2.1 GEOMETRY OF IMMERSIONS

We consider ¥, a smooth surface with or without boundary 9%, thus a two-dimensional manifold,
for references see [Leel2, [Lee97|]. Further, we are assuming ¥ to be connected without loss of
generality, and with 0¥ C ¥ the boundary of 3}, which is diffeomorphic to a disjoint union of copies
of Ror S'. Additionally, for k > 0let ¥ be immersed in R*™ via C?-class f: ¥ < (R*™ (.. )gaix)
with (... )p2++ the Euclidean inner product on R?**. This means that for all z € ¥ the differential
dfy: T,YX — R2>t* is injective. We denote for each z € ¥

dfy : ToX — TpR*TF = R*FF

the differential, which we also call push-forward, of the mapping f at point z € 3. Since by [Leel2,
p-54] the tangent vectors at x € ¥ act as linear maps D,: C*°(X) — R for each 7 € T, %, called
derivations at x € X, we can define the differential by

dfz(7)(h) = D-(ho f)

forall h € C>°(R?*¥). In this situation the codimension is given by codim f (%) = 2+k—dim f(X) =
k. Next, we equip ¥ with g = f*(.,.)g2+r, the pull-back Riemannian metric of the standard
Euclidean metric along f. In detail, this means

gI(Ta 5) = <dfac(7_)7 dfx(£)>]R2+k-

forall x € ¥ and 7,£ € T,.X. This means that f is an isometric immersion. If we consider local
charts (U, ) of X then by writing f = f o »~! we obtain the local representation

9i5 = g(ahaj) = <alf7 6jf>1[{2+k ) i,j,: 172

where 9; denotes the regular partial derivative in R? and also the vector fields on 3. Furthermore,
we define the area element factor \/det (¢;;) and the inverse (¢%) = (9ij)"". The integration is
carried out using the induced area measure in local representation

pig = y/det (gi;) L

in each local chart, where £? is the standard Lesbegue measure on R? for local coordinates. The
measure /i, is the local representation of /i the volume measure induced by f on X. It corresponds
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to the 2-dimensional Hausdorff measure defined by the geodesic distance on X (refer to [Leel2,
Chapter 16]).

Next, with respect to Riemannian structure, we can define V/(*) and VR the corresponding
Levi-Civita connections on ¥ and R>** respectively. Acting on functions VR — (ay,...,0555)  is
the ordinary gradient in R?**. Then for each map h € (%) with an extension h € C'(R?**) on
R2*¥, thus h = h o f, we get

9o (V€)= (VR R, d L (€) ) po

for all ¢ € T,X. In that case, V/(*)h is a gradient of h on X, which is the orthogonal projection to
the tangent space of the ambient space gradient. One quickly convinces oneself that the definition
does not depend on any particular choice of the orthonormal basis. In local coordinates, we have

(VIPIn)' = g90;h, i=1,2,

where here and in the subsequent content, we will employ the summation convention for repeated
indices unless explicitly stated.

To study further geometric properties of ¥ immersed in R?™*, we also need the relate the
tangent space of X to that of f(X). Hence we want shortly define the orthogonal decomposition
of Ty, R?*™* = R*™ in parts tangential or normal to 7. Namely, the inner product (., .) g2+
signifies orthogonality in R?>**. To be precise, we have the orthogonal decomposition R?** =
df, (T,2) @ (df, (T,2))" where we use (-)T to indicate the projection onto df, (7X). Thus, (- )+
the projection onto (d f; (T,%)) " is well defined.

Now, let X(X) denote the space of tangent vector fields on ¥. Each vector field V' € X(X) can
be extended to local vector field V' € X(IR?>**), which can be build out of local extensions. In fact,
since f is an immersion, then it is also locally an embedding. Hence, for any point z € ¥ \ 9%,
there is a neighborhood U of z in ¥ such that if V is the restriction of V to U, then df, (V) can be
extended to a vector field on R?** that is locally defined in a neighborhood of f(z).

For the later formulation of the Willmore equation, we also need the notation of the divergence
and the Laplace operator with respect to the embedding. Let V € X(R?**) be a C'! vector field
with compact support, and let {e;}2*F be a chosen fixed orthonormal basis of R***. We express
X as Vi = (V,e;),i = 1,...,2 + k the Cartesian coordinates of V. Based on this, we define the
divergence of V on ¥ as follows:

(10) div sy V = (e, V/EV),
since we can locally extend V to a vectorfield on R2*¥. It is important to note that this definition
holds for points in ¥ \ 0X. Additionally, one can verify that the result remains independent of the

specific choice of the orthonormal basis. Moving on, we define the Laplace-Beltrami operator of h on
¥ for a C?-function h: ¥ — IR as the divergence of the gradient of h:

Apyh = divy VI h,

It is shown in [Gul14, Appendix] that this definition is consistent with those given in [Leel2]. The
Laplace-Beltrami operator of i can also be calculated locally via the following representation

1 3
(11 Arsyvh = —0; (g g7 0;h
) soh= 75 (V9 ih)
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1 Definition (Second Fundamental Form)
Let x € ¥\ OX then the second fundamental form in A, : X(X) x X(X) — (df(TxX))" is the operator

AL(X,Y) = (V%MY) ;x)

where X, Y are local extensions of d f,(X), d f.(Y) in a neighborhood of f(z). In fact, it defines a symmetric
tensor that is independent of the specific extensions X, Y, see [[Lee97, Lemma 8.1.]. Moreover, we define the
squared norm of the second fundamental form by

2
2
(12) HA$H§ = Z HACC(T’UT]')H]RQ-HM
ij=1
where ||. HE{Q v 18 the Euclidean norm in R*** and (;)2_, is an orthonormal basis of T, which can be

chosen arbitrarily.

Next, let assume that the ambient space is R?, hence codim f(X) = 1, the normal space
(df(T,X))* is one-dimensional and additionally there also exists a global continuous unit normal
field N, thus N, € (d f2(Tp:X))* forall z € . Then we may define the scalar second fundamental form
A: X(¥) x X(¥) — Rby:

(13) A(X,Y) = (Ap(X,Y), Ny)pars = < (v%”’“?) o ,N1>R3

forall z € ¥\ 9%, where X,Y are local extensions of df,;(X),df.(Y) in a neighborhood of f(x).
Then the components of local representation are

If N is an inward pointing unit vector field normal along the standard round sphere embedded in
R3, then the second fundamental form is positive. Furthermore, in local coordinates, the square
norm of the second fundamental form takes the following shape

(14) A2 = ||Ag]lZ = Z g7 gF A Ajy.
.

Let us go back to R2*+k. For many situations, A carries more information than needed, so
instead we take the mean value over all tangential directions. This is the trace with respect to the
metric, which is an invariant of the second fundamental form A.

2 Definition (Mean Curvature)
For each z € ¥\ 0% we define the vector of mean curvature by

2

(15) HJ: = ZAx(Ti>Ti) € (dfl‘(TSCZ))J_v
=1

with 71, T be an orthonormal basis of T,>. We want to emphasize that we omit the factor 1/2 before the
sum. The squared norm of H is simply the Euclidean squared vector length HH||§ = HH||IQRQ +x- Next, if
codim f(X) = 1, we take the scalar mean curvature, analogous to the scalar second fundamental form so
let H: ¥ — R:

(16) H,:= (H,N)(z) = ZAx(n,n).



Furthermore, we want to introduce the second invariant of A, which is the determinant with
respect to the metric, called the Gaussian curvature. In contrast to the mean curvature, it is
independent of the ambient space, thus it depends solely on the induced metric g on X.

3 Definition (Gaussian Curvarture)
For z € ¥\ 0¥ and 71, T9 an orthonormal basis of T,,3 the Gaussian curvature K: ¥\ 0% — R is pointwise
defined by

Ky = (Ay(11,71), Au(72, T2)) m2tr — (Ax(T1,72), Ay (71, 72) )2+

There are some relations between mean curvature, Gaussian curvature, and the second funda-
mental form that are used later (see [KS12, (1.1.2)-(1.1.7)])

17)  [Hlg=lAll+2K, A7 >2K,  |H|3>4K and  2[A[7> [H]3.

In case codim f(X) = 1, the mean and Gaussian curvatures have the following local represen-
tation

H = tracey A = giinj, K = dety A = det (gikAkj> .

For surfaces immersed into IR3, both curvatures can be conveniently written in terms of the
principal curvatures. At any given point z € ¥\ 0¥ it is possible to select an orthogonal basis 7, 72
of T3, such that the eigenvalues, denoted as k; and k3, of matrix representation A are displayed
along its diagonal. Consequently, we obtain the following expressions

H, =k + ko, Ky;=kiko.

Particularly, the eigenvalues are called the principal curvatures.

Since we want to deal with surfaces with boundary that are described by curves, we introduce
immersed curves. The immersion property of f implies that the restriction of f on 0% is animmersion
of each component of 9% which are curves diffeomorphic to R or S'. Let us begin by noting that
if v : (0,1) — X is a parametrization of a smooth curve, then it can be regarded as a smooth curve
f o7 in R** whose image lies within f(X) C R?*k. Furthermore, for any point = € 9% we define
the conormal coy : 9% — R2** to be the unique unit vector cof(z) € R?** pointing outwards of ¥
that is tangent along f(X) and normal along f(9%).

The Gaussian curvature induced by g is related to the topology of the surface in a fundamental
way by the Gauss-Bonnet Theorem. Namely, K integrated over ¥ with respect to i is equal to
X(X) the Euler characteristic of 3 up to a boundary term later discussed. It is a significant result
that x(X) is a topological invariant. By [DHS10, p. 38] for compact, orientable, and connected
C?-smooth surfaces with C2-smooth edges, the Euler characteristic is given by x(X) = 2 — 2g — r,
where g represents the genus, defined as the maximum number of cuts along simply closed and
disjoint curves that yield a connected cut surface, and r is the number of connected components
considered as closed curves.

For the boundary term in the Gauss-Bonnet Theorem, we want to define the orientation of
the boundary. Here we assume ¥ with codim f(X) = 1 be oriented with a global continuous
unit normal field N, thus N, € (df.(7.X))* for all # € . Then we say the parametrization
v: (0,1) — OX positive oriented, if at any point s € (0, 1), the determinant of the matrix consisting
of the tangent vector 0;(f o v)(t), the unit co-normal inward pointing cos oy(t) and N o ~(t) is
positive. If weset Y : (0,1) — f(0X) by Y = f o v we can define the signed geodesic curvature by

(18) frg(5) = m det (Y(3), Y" (). N(+(s)))-
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4 Theorem (Gauss-Bonnet Theorem)

Let (X, g) be oriented smooth Riemannian 2-dimensional compact manifold isometrically immersed in R3
via f ¥ — (R3 (.,.)gs) with Cy,...,Cy C*-smooth closed curves forming the immersed boundary
f(0%). Then, the following equality holds:

‘
(19) /EICduf + Z/C kq(s)ds = 2mx(X),
i=17Ci

where K denotes the Gaussian curvature and k4(s) is the geodesic curvature of the arclength parameterized
curves C;. The boundary components {C;}I'_, must be parameterized in a positively oriented manner.

Proof: The proof of this theorem can be found in [DC16]. O

There is also an integral geometrical theorem for the mean curvature. Namely, it is linked to
tangential divergence in an extension of the Euclidean divergence theorem to nonflat submanifolds
of R™ and vector fields that are non-tangential in general.

5 Theorem (Non-tangential Divergence Theorem)

Let (X, g) be oriented smooth Riemannian 2-dimensional compact manifold isometrically immersed in R3
via f ¥ < (R? (.,.)gs) with immersed boundary f(0%) and unit co-normal pointing inward coy.
Then, for every vector field X € X(IR3) it holds:

(20) / divyesy X dpy = — / (X, H)gsdps — / (X, cof)grs ds.
) b £(0%)

Proof: The proof of this theorem can be found in [Sim83, p.45]. O

In case X(f(z)) € df;(T,X) for all x € X it follows (X, H)rs = 0 and we get the tangential
divergence theorem. Next, we want to introduce the Willmore energy for immersion.

6 Definition (Willmore Energy for Immersions)
If S is C?-surface, f : 5 — (R3,(.,.)gs) is a C*-immersion and H is the mean curvature of f then we
define the Willmore energy for f(X) by

1
W) = [ H
)
where dyuy is the surface form locally induced by g, i.e. by the pullback of the Euclidean metric.

By using equation and the Gauss-Bonnet Theorem, we can relate the Willmore energy to
the integrated square norm of the second fundamental form

l
(21) 4W(f):/2|A||§d,uf—ZZ/c kg(s)ds 4+ 4mx(X).
i=17Ci

This identity yields that if we fix the topology of ¥ and the immersed boundary f(0%) with
the signed geodesic curvature, then we can also estimate [y HA||§ dp s, which is the L2-norm of
the second fundamental form by the Willmore energy. In reverse, by we can also estimate
3 Js Al duy = W(f(Z)).

There is a generalization of the Willmore energy to a functional involving area, Gaussian
curvature, and spontaneous mean curvature. It is called Helfrich functional [Hel73| (Can70], which
is defined for a C? immersion f: ¥ — R3

1
Wettr 1) = [ g+ 3 [ (0 = Ho)? g = [ Ky
> 4 /s >
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with parameters «, Hy,y, where for «, Hy,yv = 0 we obtain the Willmore functional. The first
term describes the surface area of f(X) and Hj in the second term stands for spontaneous mean
curvature, which is preferred if we minimize W g, o(f(2)). The term with Gaussian curvature can
be handled by the Gauss-Bonnet Theorem and boundary data. Consequently, bounds for W, - u,
directly yield bounds for the area if o # 0, and subsequently, for the Willmore energy. If we want
a physically meaningful model, then we have to choose a special range of parameter values. By
the discussion in [Nit93] we have to assume a > 0, 0 < v < 1, and vH? < 4a(1 — 7). Especially,
these constraints guarantee that the entire integrand o + 1 (H — Hy)? — yK > 0 pointwise.

Critical points f : ¥ — R3 of the functional W, g,  solve the Euler-Lagrange equation [Nit93,
p. 368 (21)]

1
AsH +2H <4H2 - IC) —2(a+ H3H + 2HoK =0

which we call the Helfrich equation. For o, Hy = 0, we recover the Willmore equation. If
f ¥ < (R%(.,.)rs) solves the Helfrich equation then f is called a Helfrich surface.

For closed surfaces, for A > 0 one can also add the term A vol ¥ which represents the volume
enclosed by f(X). It is set by [MW13])

vol Y = —é / (f, N)grs dpy, the signed enclosed volume,
b

where N denotes the inward-pointing unit normal on X. By the divergence theorem, in the case of
an embedding, the expression above agrees with the measure of the interior. In this case, we also
have to add —2A to the Helfich equation to get the correct Euler-Lagrange equation.

2.2 GEOMETRY OF GRAPHS

In this subsection, we want to apply the definitions of the previous subsection to graphs. Our
goal is to write down the mean and Gaussian curvatures as well as the Willmore energy and the
Willmore equation in local coordinates.

Let Q C R? be a bounded domain (open, nonempty, and connected subset) with a sufficiently
smooth boundary 99 and the exterior boundary normal v: 9 — S? where S? is the unit sphere
in R3. For a C2-smooth function u: Q — R we call its graph the surface:

D(u) := {(az,u(ac)) ‘ x € ﬁ}

In the following, we use the notation 0;u = u,,. First, we note that the function u parameterizes
the surface I'(u) as follows:

z! 1 0
(22)  f:Q>3 (242 — z? e I'(u) C R?, of=101], of=]|1
u(x!, z?) Ug1 Ug2

In fact, in this case it is an immersion f : Q@ < (R3,(.,.)gs) and & = Q is a flat surface with
boundary 092. As local coordinates, we use the Cartesian coordinates for 2. For each x € Q
the vectors 0;f span the tangent space of I'(u) which we set by T,I'(u) := df.(T,Q). The first
fundamental form here is the restriction of the Euclidean scalar product of R? to I'(u). In local
coordinates, it follows

(9i5) == ((0:f, 0, 1)) = (1 + U uxlux?) .

2
UpiUzz 14U,
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From now on, we use the following notation for the area element:

Q=1+ |VU|2 = \/det(gij).

The inverse of (g;;) by denoted (¢*/). In the graphical case, we have

(¢7) = 11+ uig — U1 Uy
Q2 \—uziu,z 1+ uil ’

According to [Gul14, Theorem A.7 (e)], the covariant derivative of a function F': 0 — IR takes the
shape

VIWE = ¢"o.Fo,f

1 0
1
-0 ((1 +u2s)0 F — uw1u$282F) 0 |+ ( — U U201 F 4 (1 + uil)82F> 1
Uyl U2
1 1+ uig —Ugpl uzzz o F
= @ —Upityz 14wl |- <82F> .
Uyl Ugy2

Since, by deﬁnitioE, Q) is an oriented surface, I'(u) is also oriented. Here, we choose the unit
normal vector field N : Q — R? to be directed upward. Locally, it has the following representation

_ 1 —Vu
) N‘m( 1 )

Subsequent, since the normal space (d f,.(7,©2))* is only one-dimensional here, that s, it consists
of a line, we can restrict ourselves to the scalar second fundamental form A,: T,.Q x T, — R
given in (13). In local coordinates, it has the following representation:

(24) Aij = Az(0if, 0;f) = —(0if, Do; s N).

But since we have (N, 0;f) = 0, the relation (Dy, N, 0;f) + (N, Das,0;f) = 0 holds. Because of
[Gull4, Lemma A.4], the relation Dyy,0; f = 0;; f holds. So it results

1 0 — Uyl U
(25) A’ij = <N’ az]f> =3 0 y | —Ug2 = .
Q Ug: . 1 Q

Then we get the local representation of the Weingarten-mapping W = — dN::

2 1 1+ u? Uyl U u u
Ai~ _ ( iZA ) _ 22 0 Ypllg2 zlzl zlz2
( ]) ; g Ay QQ? \—uzu,z 1+ uil ° Uyl Ug2,2

2 2
_ 1 (14 ux2)u$1$1 — Ugl u3252u$1z2 (1+ UIQ)uz1z2 — u$1u§2u$2$2
Q3 —UplUp2 Uyl l + (1 + Uy )ux1x2 —Upl Up2Ugly2 + (1 =+ uzl)ux2x2

with the square norm of the second fundamental form

(26)

2
1Al = > gYg" Ay
ig k=1
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For the square norm of the second fundamental form, Deckelnick, Grunau, and Roger [DGR17,
Lemma 1] proved the following estimate with the Euclidean matrix norm of the Hessian of u

Ll [D2uf?

@ -3 e gz > 12

1,j=1

Because the codimension equals one, we can take the scalar mean curvature as described in

(16). Furthermore, we want to write down the mean curvature in local representation A;;. Wealso
note that H is the trace of the Weingarten mapping (see [Gull4, Theorem A.7 (a)]).

H = trace ((41)) = V - <W> CAu V- (VIVuP)  Au Vu- (D V)

Q) Q 2Q3 T Q Q3

2 2
Ugigr (1 + U1+ Uzz) — Uyt (Ug1 1 Uyt + Uyl 42Uy2)

1
(28) a @(

+ Ugp2,2 (1 + uil + uiz) — Uy2 (uxlxzux1 + U$2x2um2))

Q3 <um1x1(1 + u 2) — 2Ug1 Uyig2Uy2 + Uy2,2 (1 + uil))

Since the Gaussian curvature is the determinant of (A;'-), we get

det D?u
Q4
In [Gul14] one can see that this definition is equivalent to the one defining K as the determinant

of the Weingarten mapping (W = —dN, N unit normal field). Moreover, the Willmore functional
for the graph of u takes the following shape:

K = det (A1) =

vt (5)]

Qdx,

The Laplacian of mean curvature can be calculated via (11)):

1 1 0 1 0 0
iJ - 2N H — it ——
AF(U)H = (Qg 0; H) 1{ ((1 —}—umg) le Uyl Uy x2H)}

10 (1 9 , .0
+QW{Q<_%1%28$1H+(1+u$1)8x2H)}'

Finally, we want to mention the first variation of the Willmore functional for graphs. Among
other things, it is important for us to obtain the boundary terms and the divergence structure of
the Willmore equation.

(29)

7 Theorem (First Variation of the Willmore Functional)
Let Q be a bounded, C*-smooth bounded domain with the exterior unit normal vector field v (the negative
conormal) and u € C*(Q), ¢ € C?(Q), then it holds:

1/ 1,
== ApuH+2H<H —IC) pdx
s ven (G o)}
1 0 1 Oy
- = F- —U ) 7=k, = v d
2/89[ y+<aT ) T — Ky y]g@ds+2/89 Vo, 48
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with T: 0Q — S as a tangent unit vector field on 0N, and let r, be the geodesic curvature of the boundary
with respect to the parametrization such that §) is on the left side of the parametrization. Here, we use the
notation

1 Vu® Vu H? 1 Vu® Vu
F=—(r- "YU\ v(QH)- =Vu, U=yQH|—— (1-222"0
Q( @ ) (@) =g =4 (1+\w|2)i( Vi) )

where I stands for the 2 x 2-unit martix and ® for the matrix-tensor product. In particular, one has the
divergence structure:

V- F = ApuH + 2H<iH2 — /c).

Proof: See Section "variational formulation and discretization" in [DKS15|]. For details, we also
refer to [Gull7, Theorem 3.9]. O
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3 ANALYTIC PRELIMINARIES

First, we have to recall the most fundamental spaces like the Holder, Lebesgue, or Sobolev spaces.
Foremost, we define the Holder spaces. Here, we adopt the notation used in the work [LSvW92].

We also use the multi-index-notation, i.e., w = (w1,...,wy) € N§, |w| = |wi1| + - - + |wp| and:
ol! o)
DYf=————f, 0; = )
f Ozt - - Oz ! ! ox;

for clarity and better readability.
Let n € N and 2 C R" be an open set. In this chapter, we only consider real-valued functions
on Q, Q or 99, and we define a seminorm called the Hélder coefficient for 0 < a < 1 as follows:

|f(z) — f(y)]
|z —yl|*

mca(ﬁ) = sup{ x,y € Q, :U;éy}.

For the special case when o = 1, the above definition corresponds to the Lipschitz condition. Assume
2 C R"isbounded, and 0 < o < # < 1. In this case, we can apply the following useful inequality
frequently throughout the paper:

(30) [Nloa@y < diam(Q)°~[f]0s -

For k € No,we use C*(Q) to represent the space of k-differentiable functions on Q C R"™. We define
the space C*(Q) as the set of all functions f € C*(Q) for which the following holds: f, along with
all derivatives of f of order < k, can be continuously extended to Q.

In the case, where Q is compact, one can define a norm on Ck (Q2) as follows:

fllony == Y sup|Df(2)],  fe ).

o<k e
We also recall the notation of the closed support of f
supp f = {z € Q| f(z) # 0}.

Then by C*(Q2) we denote the space of functions f € C*(Q) with compact support in 2. We can
now define the Hdlder spaces for bounded domains 2 C R", where 0 < o < 1. To avoid confusion
with spaces of differentiable functions, we specifically require £ € Ny so that £ + o ¢ N:

cre@) = {f € CH@) | Vit = k: D floagy < 0}, I lorsa@ = Ifllcr@ + D 0 floe@y;
|t|=k

Here, for f € C*™*(Q), the Hélder norm is denoted by || f| cr-+a @) The Holder spaces are Banach
spaces. There is a product estimate for Holder functions, which involves seminorms. Let u,v €

C*(2), a € (0,1):
31 UV | ~amy < SUP |UT) | - V] ~varey + (U] ~aey - SUP [u(X)].
(31) [uv] o (®) xeg‘ ()| [v]c @) HC(Q) Ieg‘ ()‘
It follows that:

19/l ey < l9llca@) - 1 Fll oo @)
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Further, since it is important for the regularity issues, we want to define the smoothness of
boundary. Let Q@ C R" be a bounded open set. For ¢/ € R>o we say that the boundary 0f is
C’-smooth, if there is a finite number of closed balls {B;} fil, whose interior covers the boundary
00 C UZ]\L L int(B;), such that there exist C*-diffeomorphisms {¢;}~ , from each B; to the unit ball
B := B;(0) and for each i = 1,..., N it holds:

wi(2N B;) =BN{x, >0}, ¢OQNB;)=Bn{z, =0},

where {z,, > 0} := {z € R"|z,, > 0} and {z,, = 0} := {z € R"|x,, = 0}. We call {B;}Y, a finite
open covering of 99. In particular, 92 is a (n — 1)-dimensional C*-smooth submanifold.

As in [MMS10, Subsection 6.1] we call Q a Lipschitz bounded domain, if there exists a finite
open covering {B;}}¥., of 00 such that, for each i € {1,..., N}, after a rigid motion of R" the
intersection B; N () coincides with the segment of B; lying in the over-graph of a Lipschitz function
¥;: R"! — R. Subsequently, we define the Lipschitz constant of a bounded Lipschitz domain
Q2 CR"as:

(32) infmax{”vzz)iHLOO(Rn—l) 01 S ) S N}

where we take the infimum over all possible finite open coverings of 02 with corresponding
Lipschitz functions. For example, C'!'-smooth bounded domains have vanishing Lipschitz constant
and a square has the Lipschitz constant equal to one. This definition is based on the notion of
minimally smooth domains in [Ste70, Subsection 3.3 p 189]. Also, for each Lipschitz domain, there
exists the surface measure on 0f2 and outward-pointing normal vector v almost everywhere with
respect to the surface measure on 02 due to Rademacher’s Theorem.

Let us continue with defining the Lebesgue space LP(2) for each 1 < p < oco. It comprises
measurable functions u on € that satisfy the condition:

1/p
[ullr ) == </Q lu(x)|P dx) < 00.

By L{..(Q2) we denote the space of locally integrable functions, which means its Lebesgue integral is
finite on all compact subsets K of (.

Subsequently, we define the Sobolev space WP (Q) as the set of real-valued functions u € L{. ()
with the property that Dy € L? (Q) for all |o| < m. For u in this space, we have the following

loc
norm:
1/p

(33) lullwma@) = | D 1Dl | < oo

laj<m

It is worth noting that in the case m = 0, we recover the Lebesgue space LP(Q2) = W?(Q),
and when m = 1, it becomes the Sobolev space W'?(€2). For Lipschitz domains the space C*°(Q)
is dense in W™?(£2) with respect to the norm (33), see [GT0I} Subsection 7.6 and Problem 7.11].
Consequently, we have W"?(Q) = { closure of C*°(Q2) in W™?(Q) } with respect to the norm (33).
Furthermore, we define the homogeneous Sobolev space as follows:

(34) WmP(Q) := { closure of C2°(2) in W™P(Q) }

Both W"2(Q) and W™ () are separable Banach spaces.
Regarding the embedding results for Sobolev spaces, let 2 C R" be a bounded domain with a
Lipschitz boundary. If p > nand 0 < A <1 — 2, then it follows that:

WP(Q) —— CHNQ).
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Assume ¢ > p with ¢ — 2 + 1> 0. Then we have the compact embedding:
WP(Q) —— LYQ).

In the context of 3 < ¢, the Holder space C#(02) on the boundary is the set of all functions
g: 9Q — R satisfying Vi € {1,..., N} the property g o ;! € C%(B N {x, = 0}), where the norm
is defined with respect to parametrizations by arclength (the geodesic distance). The Lebesgue
spaces on the boundary are defined similarly. Since for each Lipschitz domain, there exists the
surface measure S on 0f), then we can define the Lebesgue space on boundary LP(0SY) for each
1 < p < oo that comprises surface S-measurable functions g on 0f2 such that

9l zr(a0) = </zm lg(z)[P dS(m)>1/p < 0.

In case 02 is a curve parametized by a Cl-smooth map v: [ — R" with I C IR, then | g|| Lr(0Q) =
lg oYl e (1) in case ||7'|| = 1. The last condition on ' characterizes parametrizations by arclength.

3.1 HiGHER-ORDER ELLIiPTIC OPERATORS & F1XxED POINT METHODS

Since we want to rewrite the Willmore equation as an elliptic equation and the Willmore flow
equation as a parabolic equation, let us recall the following general definition. Let m € N such
that m > 2, then we call L a divergence-form m-order elliptic real scalar operator with variable
real coefficients in the case it is acting on scalar functions u: R" — R

(35) Lu=L(z,D;)u := Z D* (Aag(x)Dﬁu), x €,
la|=|B]=m
where D% = 9% = (5971)&1 e (8‘97”)% and a = (aq,...,ay,). Further, we assume that 2 C R"isa

domain with Lipschitz boundary 92 and compact closure Q as well as A, 5: {2 — R are measurable
bounded coefficients so that for some C' > 0

> Aagllzeqo) < C.
|a|=|B|=m

Furthermore, we impose the Legendre—Hadamard ellipticity condition on coefficients A,z which for
our real case is defined by the following inequality

(36) > Aap(@)6? = Alg)Pm

la|=|8]=m

for all z € Q@ and £ € R"™. We call X the ellipticity constant. In this context, it is worth noting that
it is not the most general form of an elliptic operator. Like in [MS11, p.37], one can consider op-
erators with complex coefficients acting on a vector-valued function and satisfying the coercitivity
condition.

The most famous classical examples of elliptic operators are polyharmonic operators, namely
iterations of the Laplace operator, defined inductively by

Ay = A(A™ ).

where in the case m = 2 we especially call A? the biharmonic operator or the bilaplacian.
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It is canonical to search for the solutions of the general elliptic equation consisting of the elliptic
operator L and some right-hand side functions fo, € Lioc(Q2), |a| < m

(37) Lu = zmj D%,

|ee|=0

which we describe in the following way. Let the function u be a variational solution to if the
following equation is valid:

Yo e C3°(9) : /DO‘UA Dﬁud$_ |O‘/f - D% dzx.
la|=|Bl=m [ | 0

In case boundary data is considered, one naturally takes the traces of lower-order derivates.
Here ones exploits the Lipschitz structure of €2, namely, there exists the outward unit normal

v = (v1,...,vp). Thus, for every 0 < k < m — 1 we take normal derivatives
o*u k!
(38) k= Z al/a Tr[ D%,
|a|=k
where Tr is the boundary trace operator and for each multiindex o« = (a4, ..., a,) we define

v =" - 3. At this point, we can recall the corresponding inhomogeneous Dirichlet problem
for such an operator

> DY(Agp(x)D’u) =0 forzeQ,

39 |la|=|8|=m
(39) G
m:gk OnaQ, ngém—l,

where g;,: 902 — R are some measurable functions with respect to the surface measure, which are
traces of some weak differentiable function in the sense of and its regularity class that will be
specified later. Especially, it will depend on regularity classes of u and the boundary 0f2.

For the second-order elliptic equation, the maximum modulus theorem is a well-known classical
result. It was extended to the solutions of the biharmonic equation by Miranda and then general-
ized by Agmon-Douglis-Nirenberg for higher-order elliptic operators for half-space with constant
coefficients with no lower-order terms. Finally, Agmon [Agm60] established the weak maximum
principle on smooth domains. Which, like pointed out by [BM16], roughly speaking states that for
a solution u to the equation Lu = 0 in 2, where L is a 2m-order elliptic operator with coefficients
smooth enough and 2 smooth, it follows

(40) max || D%l pe(q) < C' max HDBUHLOO((‘)Q)

la|<m—1 [B|I<m

3.2 Fixep PoinTt METHODS

In this work, we use exclusively Banach fixed point theorem out of various fixed point results. There-
fore, throughout the subsequent discussions, when we refer to a "fixed point," it is synonymous
with the "Banach fixed point."

8 Theorem (Banach Fixed Point Theorem)
Let (X, d) be a complete metric space (X,d) and @ # M C X. Let (X, d) be

T: M —- M
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be given an contraction mapping, i.e., k € (0,1) and for all x,y € M holds:
d(Tz,Ty) < kd(z,y).
Then the following statements hold:

(a) T has exactly one fixed point, i.e., there is exactly one solution x € M of the equation:

T ==x.

(v) The iterative sequence {x;}3°, defined by the equation below converges to exactly one solution for all
initial values o € M:

xg € M, Tiy1 = Tx;,i € No.

Proof: [Deil0] Theorem 7.1 page 39. ]

The proofs of existence theorems for small data in the elliptic case and short-time existence
Theorems in the parabolic case are both based on the same two steps of a linearization technique.
The first one solves the associated linear problem, and the second uses some fixed point argument
to extend the result to the nonlinear case. The first step is done by discussing the biharmonic case,
and for the second step, we separate the elliptic linear part L[u| and non-linear part f[u] in the
following sense

elliptic: Lu] =f
(41) ,
parabolic: ~ Oyu+ Llu] = f

[’U,} in Q7 Tru%fl =9,

[u]in Q@ x (0,7), Truf , =ganduli—o = uo

with some trace operators for 2. Then we freeze the non-linear part f[u] by replacing v with some
w from some appropriate space

@) elliptic: Llu] = flw]in Q, Tru, | =g,
parabolic: ~ dyu + Lu] = flw]in Q x (0,T], Trull | = gand uli—o = uo.

Depending on the regularity assumption on the boundary and Dirichlet’s data, we choose some
spaces X, $) for u and f[u] which will strongly depend on the setting of 2 and boundary data class.
Furthermore, we need boundary spaces ® for u|sq and for parabolic case J for initial values u|;—o.
Then, we want to get existence results and estimates for

elliptic: [ullx < Cllflwllls + Cllgllo
parabolic: [ullx < Cllflwllls + Cllgllo + l[uoll-

So we can define some iteration mappings G : X — X by setting for every w € X some v = G(w)
as solution of (42).

Now, if we could obtain some fixpoint © € X, hence u = G(u), then we could conclude the
existence and regularity results for the nonlinear problem (41I). Thus, we reformulated our situation
as a fixed point problem and we have to show that G: M — M is a self-map and contraction on
some closed nonempty set M C X. Both properties are obtained by setting some restrictions on
M, for example in the elliptic case, we need some smallness conditions on boundary data, and in
the parabolic case, we have to choose existence time small enough.
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3.3 INTERPOLATION SPACES

As a technical tool for achieving smallness in some norms, we often use interpolation inequalities.
There exists a vast theory of interpolation spaces, including some abstract space-construction
techniques. These, roughly speaking, produce some Banach space Y lying between two Banach
spaces D and X in the sense that the injections D C Y C X are continuous and moreover there
are a constants C' > 0 and « € [0, 1] thus that

VeeD: |z|y < Cla|5® - |=%

with corresponding norms. We call such estimates interpolation inequalities, and these are the
results we need from interpolation theorems. We will consequently choose ||z||x to be bounded
and ||z|| p small enough to achieve smallness in ||z ||y .
Some examples are LP-spaces and Holder-Spaces. It is a well known fact, that for 1 < py <
p1 < ooand u € LP(Q2) N LPo(Q) it follows with the Holder’s inequality
1-60 60

[4 .
HUHL” < CHUHLPO : HUHLm Q) with ]; = o + 171

9 Theorem (Ho6lder Interpolation Result)
For Q c R", 0 < a < band Q bounded with C® boundary, 0 < X < 1 there is a constant C, = C1(92, a, b)
such that

3) o < Culldllgsgys  Tullgoercosngy < Crlllldugmy - Nulllssy
with C*(Q) = C*=1Y(Q) in this Theorem.

Proof: Here we want to use [H676, Theorem A.5 p. 50], but since it is only valid for convex sets,
we have to extend u to a convex set. In our case, it will be a ball.

Letb = k + o, and R > 0 with Q C Bg(0). By the proof of [GT01, Lemma 6.37] there exists
Cy = 02(Q, k, a) and an extension operator T': C**¢(Q) — C¥"*(Bg(0)) such that

VO<j+B8<k+a: HTUHC(J)'W(BR(O)) < Collull i+ )
Then by [H676, Theorem A.5 p. 50] applied in Br(0) with a constant C3 = C3(a, b, R) it follows

|/l crata- N < HTUH Aat(1=Mb (gL (0)) < C3HTUH)C\’{}(BR HTU”C”(B o)

< 03(C2||UHCa(§)) ‘ (C2||U||cb(§)

< C3Callul gy - lull gy

We finish the proof by setting C'; = C3C5. O

)I—A

For the study of the long-time existence of the Willmore-flow solutions, we also need a Holder
interpolation involving L?(£2)-norm, over which we will have more control than over C°(Q)-norm.
The idea is the same as in [DIP’S16), after 5.16]

10 Theorem (Holder-L? Interpolation Result)
Ifm > 0,00 € C™ ™ and o € (0,1) then for u € C™*(Q), there exist 6 € (0,1)

lullom@ < Clulb g - el 20y
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Proof: We use the interpolation results for Besov spaces by [BL76, Thm 6.4.5 (3)] with § = 2(b —
a)/(4+ 2b):

(B;87QO’B;},Q1)9, B;S: g (s0 # s1,p" = q",1 < po, p1,490,q1 < 0)
with additional restrictions
1 1-60 0 1 1-60 6
:(1—9)80+081, 7: —i—f’ —*: + —.
p Po p1 q q0 q1

With go = po = 2 by [Iri78) Theorem 4.6.1 (b) p. 328 | we get B3 , = HJ the generalized Sobolev
Space. By [1r110, Subsection 1.5.1 Theorem (ii) p.29] for s > 0, then B ., = C* (Holder-Zygmund
space [Iril0, Subsection 1.2.2]) and by [Tril0, Subsection 1.2.2 Theorem (ii)] if 0 < s # integer, then
C°=C*

(44) (B2 Biso)g e = By
To fulfill the above restrictions we set p* = ¢* = 2/(1 — ) and s* = s, thus
(45) (L*(9),C*1 (). = B .

1-6°1-6

By [Tri78, Theorem 4.6.1. (b) p.327]: For 1 < p < 00,1 < r < o0,t > 0and s > ¢ + n/p it follows
B#(Q) C C'(9), and by the proof of (e) and (d) of 2.8.1 on page 205 in [Iri78] the embedding is
continuous. In our case: 0s; > ¢t + (1 — ) so that s;/(1 —1/0) > t, so we can find 6 € (0,1) for
every t < s1. Next, we use the interpolation inequality [Tri78, Thm 1.3.3. p.25]

lullor @y < Cllull pz oy lellEe; @)

We used 9Q € C"* for smoothering. O
Also, we need an interpolation result for Holder boundary spaces.

11 Lemma (Holder Boundary Interpolation Result)
For Q C R™ bounded with C**®-smooth boundary, v, o € (0, 1) there exists a constant Cy such that

lallersron < Callallon g, - 191 5 ony

Proof: First, we take a glance at the exponents
l+a—v

1 =0-1 1-6)-(2 0=
+ v + ( )24+ < T o

Let ¢ be the solution of the biharmonic problem
A%)p =0, in Q,
¢ =9, 81/77/} = 8I/g7 in aQa
Then by Holder-Schauder-estimates (see [GGS10, Theorem 2.19 p.45]), we obtain
Y]l c2a@) < Csllgllcza(an)
Furthermore with the Miranda result
[¥ller@) < Csllglloron
Combing the results gives

Jiie
1+& 1+a 14+«

Hg”C“f“f(aQ) < kuc‘l-ﬂ <C ||w||c1 1+QH¢H02+a <C ||g||01(59)||g||c2+a((99)
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4 EstiMATES INVOLVING THE WILLMORE-ENERGY

This chapter discusses various estimates involving the Willmore energy for surfaces with bound-
aries. It is essential to ask which quantities can be bounded by the Willmore energy. Here we
will recall some diameter and area estimates, shown for immersed surfaces with W(f(X)) < 4x
by Riviere [Riv13], and Pozzetta [Poz21] and for general graphs by Grunau, Roger and Deckelnick
[DGR17]. Actually, for the following chapters, we only need the L?-smallness Theorem from all
presented results. It is used to prove the global existence of the graphical Willmore flow for small
data in Sectionldl

4.1 IMMERSIONS

Foremost, we handle the case of immersions, which generally lack projectivity. We want to recall a
diameter estimate where Riviére uses Simon’s monotonicity formula extended by boundary terms
for Lipschitz immersions into R™ with L2-bounded second fundamental form [RivI3]. These
results use the non-tangential divergence theorem on surfaces, which can be found in [Sim83].

Let . be a bounded surface with smooth boundary and let f: ¥ < R™ be a C?-immersion of
2. Denote by M := f(X) the immersed surface with metric g and p; which corresponds to the
Hausdorff measure #2 on f(M). Moreover, let — co; = 7 be the unit limiting tangent vector field
to M on OM orthogonal to it and oriented in the outward direction. In what follows, we write
|l = || lgm. Then by [Riv13} pp. 21, Lemma A.3] for any chosen point py € R™ and any two
radii 0 <t < T < +o0 the following identity holds

(46)
H (M Br (o) H2 (M By (o))
T2 t2
- 2
H —po)t 1 .
_ / £ (p pO) 5 7—[2(;0) _ / ||HH2 dHQ
MNBr(po)\Bt(po) 4 |2 — pol| 16 MNBr(po)\Bt(po)

1 / N 9 1 N 9
= p—po, H deJr/ p—po, H)dH(p
27 MnBT(po>< ’ > ®)+ 5 MﬂBt(p0)< " > ®)

1 / ( 1 1 ) o

T3 75 — =3 | (p = po, V) dlop(p)
2 Jomnmrwo) \T?

where p; := max {||p — pol| ,¢} and (p — po)" represents the orthogonal projection of the vector

p — po onto the normal plane (7, M)~ to the surface at point p. We are calling this identity the
monotonicity formula in the presence of a boundary.

12 Theorem (Lemma 1.2 p.4. Riviere [Riv13])
Let ¥ C R™ be bounded C?-surface and > — f(X) =: M be an immersed surface with boundary. Then
the following estimate holds:

HLH(OM)
sup,e aq dist(z, OM)

1 -
(47) dmr < / |H | dH? + 2
4 Jm

where H(OM) is the 1-dimensional Hausdorff measure of the boundary of the immersion M.

The above equality is obtained by the flat 2-dimensional disc so that is optimal.
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Proof: Theorem [12|is obtained by passing Riviére’s monotonicity formula with boundary to
the limit the inner radius ¢ — 0 and the outer radius 7' — oco. In that case all terms containing 72
vanish and p; becomes ||p — po||. Moreover, by the Cauchy-Schwarz inequality, we get

1

2
= 1 p—pol® ~
s leweyaee| < [ BemEaee) [ apa
£ J mnBu(po) B ImnBipe) M0Bi(po)

2 B .
< H (M 02 t (pﬂ)) / ||H||2 drHZ
t MOB:(po)

so that for a point pg € M \ dM it holds
g, p-p)*| .. 1 P—po  _\ .1 1 712 g2y
T 03 [, () 0 g [ Ve
since H2 (M N By (po))t~2 — k- 7 for t — 0 with k € N the M in point py. Subsequently, we take

po € M asapoint where sup, ¢ dist(z, 0 M) is attended: sup,¢ 4 dist(z, IM) = sup,espq [[P—pol|-
From (48) we deduce

(48) w-k+/

M

1 o 1 HLE(OM)
47r-k—/ H|?d <2/ ———dH Y (p) < 2 : .
4 Jm 1H du am |Ip — pol| (?) sup,e pq dist(z, M)

O]

Theorem (12| can be considered as a generalization of the classical Li-Yau inequality [LY82],
which yields that for an immersed surface, the Willmore energy is greater than 47 times multiplic-
ity. Especially, an immersion of a compact closed surface with the Willmore energy below 87 has
to be an embedding. Thus, it has no self-intersection. In a similar way, by inspecting the proof of
Theorem 12} one can state that if M is an immersion of compact closed surface satisfying

L H (OM)
— H|IPdH? +2——"" 72
4/M IHIF AR+ 255 A <57

than M is embedded. Next, we want to present a diameter bound by using the inequality (7) for
the Willmore energy smaller than 47, which was already used in the proof of Proposition 4.2. in
[Poz21]] by Pozzetta.

13 Proposition
Let 3 C R™ be a bounded C?-surface and ¥ — f(X) =: M be an immersed surface with boundary and
W(M) < 4. Then we have a diameter bound

1 1
sup dist(z, OM) < 2R OM) thus  diam M < A (OM)

) = I - WM)’ T wmy T oM.

Proof: 1If we choose ¢,p € M such that ||p — ¢|| = diam M and also p*, ¢* € dM which satisfy
llp — p*|| = dist(p,OM) and ||q¢ — ¢*|| = dist(q, 0M). We conclude

4HY(OM)

diam M = [p—ql| < |lp —p*[| + lg — ¢*[| + Ip" — ¢"|| < T —WM) + diam OM.
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By using the monotonicity formula for surfaces without boundary in his classical work [Sim93),
Lemma 1.1 p 283], Simon provided a diameter estimate of a smooth surface M involving its area
HH(M)

VH(M)/W(M) < diam(M) < = /HA(MW(M)

2
s
with diam(M) := sup, e |* — y|. For optimal constants, we refer to Topping’s work [Top98].
Thus, if we have an area bound by the Willmore energy, we can also estimate the diameter from
above and below. In [SIm93, Lemma 1.2 p 283] Simon also proved a celebrated diameter estimate
involving the L!-norm of the second fundamental form A in case M is connected and compact

(49) diam M < Cy (/ | All, dH? + ZdiamFZ)
M i

where I';’s are the connected components of 0 M and C7 some constant only depending on space
where M is embedded.

Then in [Top08] Topping proved that for every connected closed surface ¥ — f(X) = M € R3
it holds diam(M) < 18 [ ‘v [H| dH? and further generalized this result to m-dimensional compact
manifolds without a boundary for general codimension: diam(M) < Cg(m) [, [H|"~' d}™. For
the definition of mean curvature vector for m-dimensional submanifolds of IR™, we refer to [Sim83,
eq. 7.4 p.45]. Here, we emphasize that, in contrast, our work primarily considers surfaces with
boundary, thus m = 2. This result of Topping was then extended to surfaces with boundary by
Menne and Scharrer [MS17] in the framework of varifolds: For dimensions 1 < m < n the intrinsic
diameter din¢(M) of a compact m-dimensional connected submanifold M C R" can be bounded

(50) G (M) < Co(m) ( [ e+ rHaM!Mdel)
M oM

where Cy(m) is a constant that does not have a simple form. Since we want to consider only the
case m = 2, we rather use the result shown by Miura [Miu22] in R3. His approach provided
explicit constants and revealed a direct link to the Topping diameter estimate by constructing a
thin closed surface out of a surface with a boundary.

14 Theorem
Let ¥ — f(X) =: M C R? denote a compact two-dimensional surface immersed into Euclidean 3-space.
Then

(51) diam(M) < 22 (/ |H| A2 + ;T%l(a/w)>
@ M

Proof: Here we use [Miu22, Theorem 1.1.] with n = 3 and estimate Cr(3) > /16, where the
constant is defined in [Miu22| (1.1)] and the estimate was shown in [Miu22| (A.1)]. O

For the Willmore energy smaller than 47, we also have an area bound for immersed surfaces. It
can be proved by making use of Michael-Simon inequality (for the inequality, we refer to [Whel5,
Theorem 11.]) or alternatively like Pozzetta in [Poz21| proof of Proposition 4.2] by rescaling like in
the following theorem.

15 Theorem
Let ¥ — f(X) = M C R3 denote a compact two-dimensional surface immersed into Euclidean 3-space
W(M) < 4m. Then we have an area bound

H?(M) < RPW(M) + RH (M)
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with the "radius”

1 ( AHL(OM)

* 2 i

5 + diam (9./\/1) .

Proof: By Theorem [12) we have diam M < 2R. Then, we follow the argumentation of Pozzetta in

[Poz21), p.16]. So after a translation, we can assume that M CC Bg(0). Putting M’ := %M cC
By (0) it follows by the divergence theorem with the vector field R? > z + x € R?

QHQ(M’)_/ diVM:deQ——/ (H', ) d?—[2+/ (z,7') dH?
!/ / 8M/
- ‘/ () an? L

/ HPZdH2 + WM — [ dH? + HE (M)
M/
—/ ||g;ﬂ|2dH2+/ |ny||2d’H2+/ (z,7') dH!

M’ M oM’

4 M/
ﬁ/
:—/ (I—H:L'LHQ)d”H,Q—/ — +at
M/ M/ 2

+W(M’)+/ (x, 7)) dH .
oM’

2
dH? + H2 (M)

The first term in the second last line is negative since M’ CC B;(0), and the second term is also
negative. Since |M| = R?|M'|, W(M) = W(M') and H}(OM) = RH(OM') we get

IM| < RPW(M) + RH (OM)
which finishes the proof. O

Finally, we will briefly mention some results for closed surfaces not further used in this work.
We begin with the result by Roger and Schitzle [RS12], who proved that for smoothly embedded
surfaces M in R? of sphere type with an enclosed inner region one can control the isoperimetric
deficit, which is the difference of the isoperimetric ratio (7) from the optimal value given by the
round sphere. This estimate was used in [GNR20] by Goldman, Novaga, and Roger where they
considered a variational model for charged elastic drops in R? with contribution by area, the
Willmore energy, and the Riesz interaction energy. Depending on the weights of contributions,
they proved that for a small charge, unique minimizers are either balls or centered annuli, and for
a large charge, the minimizers do not exist. In [GNR20, Proposition 4.3 p.32] they also showed
uniform area and diameter bounds for closed bounded surfaces with volume constraint and the
Willmore energy strictly below 8.

4.2 GRAPHS

Due to projectivity in the graphical case, there are better estimates available. Here we again
consider a smooth domain 2 C R? with v the unit vector field on 9Q orthogonal to it and oriented
outwards, as well as ¢: Q2 — R a C?-smooth boundary datum and graphs u: 2 — R in class

M:={ueW»*(Q)|(u—y) € W22(Q)}

representing Dirichlet boundary conditions. In the graphical setting Deckelnick, Grunau, and
Roger [DGR17, Theorem 2] provided area and diameter bounds by the Willmore energy, || ||y12.2(90)
and the geometry of the domain. We want to emphasize that their result does not set any assump-
tions on values of the Willmore energy, like W(M) < 4= in the immersed setting. As noticed in
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[Grul8], such an estimate does not hold for general non-projectable surfaces due to the scaling
invariance of the Willmore functional. For example, one sets {2 = B;(0) with an arbitrarily large
ball above it, then cuts off a disk hole around the south pole and then connects this to the given
Dirichlet boundary conditions at the cost of adding only uniformly bounded Willmore energy.

To achieve their area and diameter bounds, Deckelnick, Grunau, and Roger used the
diameter estimate with ||A[[z1(r) proved in [Sim93, Lemma 1.2 p 283] by Simon. A simpler
graphical version of this Lemma with explicit constants can be found in [Gull4, Satz 4.2]. In
this subsection, we want first to slightly improve this result by instead using Theorem (14} In this
way we reduce the assumption [|¢[[y21(90) to [[¢|lw1.1(s0) and provide explicit constants. In the
second part, we prove a new smallness estimate on ||u| ;2(q) in contrast to the bound on [|ul| ()
in [DGR17, Theorem 2] without smallness statement.

16 Theorem ]
Suppose that ¢ € C2(R?) and u € W?2(Q) that satisfies u — p € W>2(Q).

Then it follows with ||¢||1.1 (80 poyllwrigyand y: I — R2 is a parametrization by arclength
(0Q) = W p Y 8
of the boundary 02 that

2
sgg lu| + /Q Qdx <64 <’H2(Q) + HL(OQ) + |||l 1oq) 16W(u)> (1 + |Q\W(u))

(v) Let K > 0, and ||(p o)’ 211y < K. Then for each € > 0 there exists 6(e, K, Q) > 0 such that
W(u) + llellprony <0 = ullpe@) <e

Proof: We begin with the same crucial integral fQ uwH dz as used in [DGR17, Theorem 2]. Here
we apply the two-dimensional divergence Theorem in Q and Q* = 1 + [Vu|? to obtain

. 9
Q Q Q thm.  Jo @ a0 @

This identity is used in both statements. Our main goal for (a) and (b) is to estimate the
Jo IVul?/Q dz term.

@ Here we use the proof in [DGR17, Theorem 2] with Theorem [14jand Hoélder’s inequality to get

16sup\u| </ |H|dH2 + 2 ”H (OM) \// \HPde\//de+ / V1I+]p|*ds
< VIPQ) | [ Qdo+ 3 (1109 + ¥ 130m)

(53)

We conclude with and Holder’s inequality and the notations || = #2(Q) and 09| = H!(99Q)
/de—/d +/de<|Q|+/|uH|dx+ @ids
Q - Q 00 \/1+ |Vul?
E \QI +— (\/ / Qdz + 5 (laﬁl + 11|21 (a0 )) VAW (u) + llell L1 o0

< \9|+ 2IQ\(4W /de+8 109 + 1€ L1 20)) VA2V (1) + [lo ] L1 (02
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163
SQ‘Q’+2"9@"L1(BQ)+ 5121 W(w))? + 32102 + 1€/ |21 (90) ) V1AW (w).

Then we use again (53) and Holder’s inequality to show

| 162 / /
2?W(u) 2/9de+8(%1(89)+\\¢\\Ll(m))+/9de

16
62
4121+ llellzoa)) + 2*(16|Q!W( )+ 1)W(u)

+ 8109 + ¢/l o) (1+2- 412V (w))

162
< 64 <|Q\ + 109 + [lellwr1 a0y + W(u)) (1 + yQ|W(u)).

supu\—l—/de
z€eQ Q

IN

IN

To achieve a L*-smallness condition, we use: boundness of ||ul| ;) and ||Vul| 1 (q) in combi-
nation with Holder’s inequality as interpolation. Hence, we need smallness of ||ul|y1.1(q) which
we deduce by estimating [, |Vu|?/Q dz instead of [, Q dz. In this way, we do not use H?(2) that
cannot be chosen as small as wanted because it is fixed.

We assume that [[¢]|;1(90) < K. By (a) we know that there is a constant C that depends
entirely on |0Q|, K, W(u) such that

sup |u| +/ Qdzx < Chp.
Q

z€Q

Then, we again use the identity

]Vu|2 ou u / /
——ds— [ uHdx < + sup |u(x H|dx
|5 [ G- Ielzsony +supu(@)] [ 18]

< el ) + CioV/ [2W(u)

thus we can also estimate ||Vul|;1(q) by

/Q|Vu| dz < (/Qde>; (/Q |V52 daz:)é < (Cro)? (”SOHLl —y |QW(u))é

By using the Holder’s inequality with % + % = 1+ 1 =1, hence the Cauchy-Schwarz inequality,
we finally get

</u dx) </ |ul2 |u|2d1:> < (/Q|u|3dx> (/Q|uydx)
< |Q\21€18‘u(:c)‘3011</Q|Vu]dx+/(m yu|ds>

1
< chfaicn ((€1o)* (Iellsion + Cov/ W) + loluson)

where we additionally used Poincare-Friedrich’s inequality with constant C11(€2). The proof is
finished by choosing the Willmore energy and ||| 15y small enough. O
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Deckelnick, Grunau and Roger also showed, that [DGR17, Lemma 1] with | D%u| the Euclidean
norm of Hessian of u one can estimate | D?u|Q 3 < || A||,. Additionally, by [DGR17, Lemma 2] we
know that

2,12
/Q ‘DQ;" do < /Q JAIZQdz < AW () + 2(Ipllwaron) + 1l o)) + 27()
where « is the (signed) curvature of 952, x(€2) the Euler characteristic [DHS10] and all boundary
spaces are defined with parametrizations by arclength. This estimate motivates the search for
stronger than the W1 (Q)-norm norms, which one can estimate by the boundary data and the
Willmore energy. Unfortunately, Deckelnick, Grunau, and Roger presented various counterexam-
ples for such estimates. They showed in [DGR17, Example 2] that for p > 1, no W!?(Q)-norm
may be estimated in terms of the Willmore energy. This example is rotationally symmetric with
|Vu| = oo along a circle and thus, via following Theorem (17, has YW (u) > 27 leaving the possi-
bility for an estimate for functions with W(u) < 2x. Furthermore, in [DGR17, Example 1], they
constructed a function with unbounded gradients and arbitrarily small Willmore energy simulta-
neously. Additionally, in [DGR17, Example 3] there is a Willmore finite function u ¢ W22(Q).

For later interpolation techniques, the L2-smallness is sufficient for proving the global existence
of the Willmore flow. A simple question arises in this context: Is there a similar smallness estimate
for the L>°-norm? To our knowledge, this question has not been unanswered yet. Despite that,
one may ask for a situation when the Willmore energy gets large. There is a simple bound from
below for the Navier boundary conditions that can be deduced. Nevertheless, it is not used in the
following chapters. Here by conv(£2) we denote the convex hull of €2.

17 Theorem
Let a > 0and u € C?() so that u|gq = 0 and %’aﬁmcom(ﬁ) < —a < 0. Then it holds

o (1 _ ﬁ) < W(u).

Especially, in assumptions we can replace O N conv(Q) by {z € 0Q| k(x) > 0}.

Proof: This is a modification of the proof for Willmore’s estimate WW(M)) > 4 for a closed surface
M. We closely follow the presentation of Proposition 1.1 in [KS12| p.2]. The basic step will be to
estimate the measure of the image of the Gauss map for points with positive Gaussian curvature.
By the pointwise relation $ H? — K = 3||A°||2, shown in [KS12, (1.1.7)] with || A°|, the length of the
trace free second fundamental form, we can show that

Wi(u) > / K dH2.
T(w),K>0

Next, we use the pointing upward N : Q — S? and obtain like in Proposition 1.1 in [KS12, p.2] that
for any unit vector Ny € S? we can choose a point z € (X

4 ((ut) ) Lmas( (o)) ¥0)-

Especially, in the case zo ¢ 0f2, we have N(z9) = Ny and K(zp) > 0. In the case z¢ € 052, we
know that g € conv Q) since (54) is a linear optimization problem. Furthermore, J,N = |K| the
Jacobian of the Gauss map is the Gaussian curvature, which we will show in the following. Like
in [KS12] we consider at some point in €2 the charts with g;; = J;; (orthonormal frame). Then
we obtain that {0, f, 2 f, N} forms an orthonormal basis of the ambient space R3. Consequently,
since [| N[} = 1 we get VN L N. Then by
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Thus, since {0, f, 0> f, N} are orthogonal we conclude
O;N = —Ajn01f — AipOaf.
With symmetry A;; = Aj; we calculate the Jacobian

(JgN) det ((8 N, 0; N>]R3) = det (AilAjl + AZ’QAJ‘Q) = det ((AgkAkm)ij)
= det(A;;)* = K2,

so that using the area formula it follows
(55) W(u) > / JyN dH? > H*(N(K > 0)).
(u),K£>0

Next, we want to show that the following spherical cap is a subset of N (K > 0):

Cy = {N€S2

T 1
(N, (0,0,1)7) > m}

We assume that there exists a Ny € C,, so that the corresponding maximizing xo from lies

in 99 then it is in conv ) and for such a point we have ‘3” < —a. We denote vy := v(zp) and
ou — ou ( x[))

vy ov
From maximizing property we obtain that T{,, ¢) (02 x {0}) L Ny where especially 9 x

{0} = Or'(u). Also by definition we have T{,, ¢)(9Q x {0}) L (1,0) and T{,, 0 (09 x {0}) L

(0,0,1)T. Thus N, (1§ ,0) and (0,0,1)” lie in the same plane (T{;, 0)(9 X {0})) . Then we use
the two-dimensional Pythagoras theorem to obtain

(56) 1= ‘<N0,N0>‘2 _ ‘<(ug,0)T,NO>‘2 (.0, 1)T,N0>‘2.

Next we want to show that the tangent vector in (z¢, 0) showing inward with respect to I'(u) is

(-, - g—;ﬁ)) . Firstly, like in [DGR17, Remark 1] we consider a positively oriented parametrization

s — c(s) € 09 of (a connected component of) 92 with respect to its arclength so that c¢(0) = y.

Then the natural unit tangent vector is 7(s) = ¢/(s). In particular we have that v! = 72,12 = —71

ou T 1 v Uty
uy(s) = 5-(e(9)), (s) = (e()7,0)", N(v(s) = Ny ( _Vfuu ) (v(5))-

Then it follows ( — 1§, —5%) L N(y(0)). Furthermore (— v, —5%) L 4(0), thus (— v, —5%) L

v
Tlag,0)((99 x {0}).
In the next step, since (¢{',0) L (0,0,1)T via orthogonal projections we have:

ou

s ou\"
<<_”°’_auo> ,N0> = —1{(vg,0)7" N0>—a—<(o 0,1)", No)
> 1(((1/3’,0)T,N0>‘ +a((0,0,1)T, Np).

Then we use the Pythagoras equation (56) and the definition of C, to show

ou T 2
<<_ng _aV0> 7N0> > = 1\/1 - <(0701 1)T7N0> —|—Oé<(0,0, 1)T7N0>
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NoeCly 1 1

> —1,/1— + «
VitaZr  Vi+a?

_—\/1—|—a2—1+a_0

V1+a2 '

Since the to I'(u) tangent vector (—1/, — 5’—% ) " isinward showing there existsa curve~y: [0, ¢] — I'(u)

with v(0) = z9 and v/(0) = ( — 1/, —887“0 T It follows that this curve can exceed the maximum of
for t > 0 small enough

(7(t), No) = (7(0), No) + t(+'(0), No) + O(t?)
ou\T
= (z0, No) +1 << (—VOT, —ayo> ,No> + O(|t|)>
> (x9, Np), for t small enough.

Hence, the condition of z in is violated. This means, that for all Ny € C,, there exists a zy & 0f2
so that Ny = N(z¢) and especially that C, C N(K > 0)). Finally, we achieve with

W(T(w) > H2(Ca) = 2r <1 _ \/11+7> .
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5 EvLrLietic THEORY

In his survey article [Nit93] Nitsche investigated C**®-regularity and the existence of solutions for
the Willmore equation with the appropriate boundary conditions. He decomposed the problem
into a coupled system of second-order elliptic equations complemented by coupled Dirichlet
boundary data. One consists of the Dirichlet problem for u with the prescribed mean curvature,
and the other considers the Willmore equation as a second-order equation for the mean curvature
H itself. In this setting, he used perturbation arguments to show the existence of a unique solution
in the regularity class C*%(Q) at the cost of the smallness of C47%(9Q)-norm for the boundary
data.

From here on, one way to go is to consider weaker boundary spaces, where, due to non-linearity
of the Willmore equation, one should expect that some kind of smallness of boundary data norm
is necessary for any existence theorem. As a result, if one wants to move away from classical
solutions, one has to work with weaker classes like Holder C™"%(Q) or Sobolev spaces W™? ()
with m < 4, even though for the last one the trace theory is more involved.

5.1 WiLLMmoRE EQuaTION

In this chapter, we want to investigate the Willmore equation in the framework of variational
solutions. To work on it effectively, we have to investigate the structure of the Willmore equation
in the graphical situation. Already Nitsche recalled in [Nit93] a well-known fact that the principal
part of the Willmore equation is effectively the biharmonic operator after some linearization. More
precisely, from the work of Dziuk and Deckelnick [DD06, (1.5)-(1.9)] for the Willmore flow of
graphs one observes that the Willmore equation is in fact a fourth-order equation, thus involving
fourth-order derivatives, if written in the graphical case as

1 /1 Vu® Vv H?
(57) 0= AgH + S H* — 2HK = div (Q ((1 _ “Q®2“> V(QH)) _ wvu) ,

since the mean curvature consists of second-order derivatives

H = div (vu> _Lu_Yu Duvu)
Q Q Q?

The main idea here is to separate the biharmonic part A%y in from other terms in a new
way which is similar to the rewriting done by Koch and Lamm in [KL12, Lemma 3.2 p. 215] in
the context of the Willmore flow. As a consequence, we can use various existence and regularity
results for inhomogeneous biharmonic problems in weaker spaces.

One of the key points of proving the existence results is that the concrete form of the "nonlinear"
terms is not what we want to focus on. To absorb all arising algebraic constants, we have to introduce
some notation already used in [KL12, p. 215]. Thus, let the star » denote an arbitrary linear

combination of indices contractions for derivatives of u. For example, consider |Vul? = Vux Vu
and V;uD;uVju = Vu x D*u+ Vu, that yields

(58) H=Q 'xD*u+ Q3 xVux*D?ux*Vu.
Furthermore, we introduce an abstract notation for gradient polynomials

Py(Vu) =Vux---xVu

£-times
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which helps us to formulate the non-biharmonic divergence terms in the following Lemma.

18 Lemma
The Willmore equation can be rewritten as

9 o= (5 ((1- TS viem) - 3o ) = 8% - Dl - Dl

Q Q? 2Q
where
3
bi[u] = D*u* D*u % Z Q 1Py (Vu),
(60) ,
bo[u] = D*ux Y Q' Py(Vu) + D?ux Py(Vu) x (Q(1+ Q)"
k=1

Proof: The reformulation of the Willmore equation will proceed term by term. We begin with
calculating the derivation of the surface term

D*uVu
V(Q) =
(@) 0
which we need for the first term that will include the biharmonic part
2
div ( 5 (QH)) = div <V(H) b ng uQH)

A Vu(D?*uV . ([ D*uV
()5 () ()

Especially since (1 - Q)(1+Q)=1-Q*=1-1— |Vu|? = —|Vu|?, it follows

A (AQ“> =A <Au—i— (22 - 1) Au> Au+ A ( QQAU> =A%u—A <Q(1Vi|2Q)Au> .

Thus we obtain

div ( 5 (QH)> A (Q'(lvi';)m) N (WZ;;‘W) + div <l)253quH) .

The second term in we want to rewrite by using the Einstein notation is the following

Vi (vigﬂ‘ VJ(QH)> =V; (Vj <ViZ;jUQH> =V (Vigj”) QH>

_v, (Vj (Vz‘UVjUQH> B (—3)Vj(Q)ViuvquH B W@j{)

Q3 Q* Q3
_v, ( Vi UV uQH) Viuvju(ljuVu)j QH — D?juvju + D?J’U«VZ’U«QH>
Q Q3
ViuVju . Vu - (D?*uVu) 9 AuH
:Dj< ) d1v<3Q4HV —@D uVu — 02 ——Vu
V., uV U H? H AuH
=D +div [ —=3=Vu — —D*uVu + 2—- w) .
y(Tgt) v (G- =
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We combine the results and get

A9H+;H3_2HK_A2u_A<|V“’Au+V“(DUVU)> _Di2j (WH>

QL+Q) Q? Q?
2
+div (;%vu + 2£r2D2uVu - 2AQ“2HVU> .

Since by (58) we have H = D?uxY 2_; Q~2*1 Py _5(Vu) we can combine the terms and reformulate
the Willmore equation

A H + %H?’ —2HK = A%u + A(D*ux Py(Vu) x (Q(1 + Q)1 + A(D*ux Q2 Pa(Vu))

2
+ D? <D2u > Q—%—IP%(W))

k=1
+div (D?*ux D*uxVux Q' (Q7% + Q P(Vu) + Q °Py(Vu)))

2
+ div (D% *D?ux >y Q‘Qk’_ngk_l(Vu)> .

k=1

We combine the terms above and arrive at
1 . g
0=A,H + §H3 — 2HK = A%u — Db} [u] — D};b3 [u]
with divergence terms on the right-hand side defined above. O

To explain the importance of the preceding lemma, we want to make two remarks about the
structure of by for ¢ = 1, 2. The first one is that the lower-order terms are written in divergence form.
Especially in difference to the parabolic case in [KL12], the term by, defined as a non-divergent
term by 0 = A2u + bg[u] + D;b}[u] + ijbg [u], is lacking. Furthermore, since b; and by involve at
least one Vu and at most two D?u and are at least quadratic in the first and second derivative terms
without higher derivatives of v, it will be possible to reduce the regularity assumptions from C**
to the spaces involving only up to second derivatives.

Now, since we have reformulated the Willmore equation as an inhomogeneous biharmonic
equation and the A? operator is a positive bilinear form and a higher-order elliptic operator, we
can use the variational solution’s definition from Chapter Thus, we say the function u is a
variational solution to (59) if the following equation is valid,

(61) Yo e CP(Q): 0= / AuAvdz + / b [u] Div da — / b [u] D dz,

Q Q Q
where u should lie at least in I/Vlicz(ﬂ) for the above equation to make sense. The term b;[u] acts
like D?u * D?ux(something bounded) and bs[u] operates like D?ux(something bounded).

We also note that until now we have not introduced the boundary conditions which are needed
for the discussion of existence and uniqueness. The main reason is that the complexity of notation
for the traces of the function spaces depends strongly on the spaces themselves and, therefore, will
be made clear in each situation.

5.2 HOLDER CASE

This section is devoted to the existence of the C**(Q) Willmore surfaces in the weak sense of (61).
Here, we study which conditions on the boundary data are sufficient for a graphical solution to
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exist. Foremost, we need some appropriate smoothness for the boundary o€ itself. Since we want
to use C?7%(91) and the Schauder estimates from [GGS10, p.45 Theorem 2.19], we assume that
o0 e Cre.

Then the Willmore equation with prescribed Dirichlet boundary values can be considered a
special case of the general biharmonic boundary problem

2 7 2 117 . 2
) {A u=by+ Db} + Dby in Q C R?,

u=gg, Ou=gs on Of),

which is a divergence type fourth-order elliptic boundary value problem with g; € C?~+(9Q) for
i =0, 1. In the C**-framework, it is also clear that for u € C?T*(Q) its trace u|gq lies in C?T*(9).

In order to collect some results needed for the proof of the main Theorem 21| we have to modify
the Agmon-Miranda maximum modulus estimate and C?™* Schauder estimates from [GGS10] so
that the right-hand side terms by, b1, b2 are admitted to be in weaker spaces.

19 Proposition

Let Q C R? be a bounded domain with C**< boundary. Furthermore, assume that o € (0,1), s,t €
(1,00),p € (2,00), go € C22(8Q), g1 € C*+(Q), by € LT=a () N L3(Q), by € L= (Q) N LH(Q)
and by € CY(Q). Then admits a unique solution v € C*™*(Q). Moreover, there exist constants
Cr2 = Ci2(a, 5,9),C13 = Ci3(a, 8,6, Q) and Cr4 = Cr4(a, s,t,p, Q) such that

(63) [ullgz+a@) < Cr2 (HQO\C?M(aQ) + llg1llcr+aan) + HbOHL%(Q) + Hbl”L%(Q) + Hbﬂca(g)) ;

64) [ullciva@) < Cm(HQOHcHa(a@) + [lg1llce(aq) + 1ol s (@) + HblHL%(Q) + Hb2HL%(Q)),

©5)  ullcr@) < CM(HQOHCl(aQ) + lg1llcoany + lbollLs ) + b1l Le(o) + ”b2”LP(Q)>-

Proof: We split problem into four biharmonic subproblems, one containing the Dirichlet
boundary data and the others containing each b;,7 = 0, 1, 2 on the right-hand side separately.

A%)p =0, in Q, A%py = by, in Q,

{ Y =go, O =g, on 9, { w0 = 0ypo =0, on 99,
A%py = Dib%, in Q, A%py = DEbY, in Q,

{ w1 =0,01 =0, on 0Q. { o =0,p2 =0, on 0N.

First, consider v as the solution of the biharmonic problem with the same boundary conditions as
in (62). We emphasize that by [GGS10] [Theorem 2.19 p.45] a solution to this Dirichlet problem
exists. The uniqueness can be shown by multiplying the left side of the equation with v and
integrating over ) so that we get || D?%|| r2@) = 0. Thus, the associated homogeneous problem
only admits the trivial solution. This allows us to use the following Schauder estimates for the
classical solutions [GGS10] [Theorem 2.19 p.45]

1%l zraqmy < Crs(llgollozra@a) + 191llcr+aan))
1%l graa) < Cro(llgollcrtaan) + llg1llce @),

where Ci5, C16 and all following constants throughout the proof depend only on €2 and «.
Additionally, the uniqueness of the Dirichlet solution justifies the use of the Agmon-Miranda
maximum principle without the L!-part on the right-hand side [Agm60, Theorem 1, p.78]

[l r @y < Crzlllgoller aay + llgillcony)-
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Further on, we consider ¢ as a solution of the homogeneous subproblem containing only by

on the right-hand side. In fact, by € = () N L*(Q) ensures the existence. Thus we obtain the
following a priori LP-elliptic estimate [GGS10, Theorem 2.20, p.46]
s leollwas @) < Crollboll s (-

H(IOOHWAL,% SCISHbOHL%(Q

@) )

Furthermore, the Sobolev embedding [GGS10, Theorem 2.6] with C''-boundary yields

lpollczta@ < Coollpoll a2, ) = ClebOHL%(

() Q)

as well as the estimate

(66) leollcrm) < llpollersay < Collpollwas ) < CasllbollLs(o)-

For divergence-type parabolic equations, there are LP-estimates even under weaker regularity
assumptions of the right-hand side. This fact will prove to be extremely useful in the subproblems

involving ¢ and ¢>. In the case of p; we use b; € Lﬁ (). Therefore, in the same way as in
Lemma 4.26 in [GGS10, p.132] the existence is ensured and

(67) lerllgzsa@ < Callonll o 2z o) < Cosllbnll ) 2g o

T=a (@) — )

since one further Sobolev embedding is available. Again, we obtain

lerllerea@ < Cosllerllyo,2; o < Corliball 2

)

(@) )
letlerg < 028||<P1H01+2_%@ < Cyllprllwsi) < CsollbillLe(a)-

It remains to discuss the problem involving ¢s. To prove the C!'-bound, we stay in the LP-
framework. According to Theorem 2.22 in [GGS10, p.47] the existence of the unique solution
2 € W2P(Q) is shown. Combining it with some embedding arguments and the especially
important assumption p > 2, we conclude

lo2llcr @y < Csillpzllwzr) < Csallba]|Lr(q)-
)

In the same way as (67), we obtain

leallerra@ < Caslloall a2, o) < Caallball 2

@ Q)
To estimate the C?T*-norm of ¢2 we again use the Theorem 2.19 in [GGS10), p.45] for the classical
solution. The corresponding equation admits a unique C**“-solution ¢, and the following estimate

holds

H()OQHC%LQ(Q) < 035||b2||ca(§)-

Since all the solutions 1, ¢y, ¢1 and ¢, are obtained and estimated, the solution u of is
determined by addition, u = 1 + ¢g + ¢1 + 2. This completes the proof by establishing the C?+°-
and C'-estimates. O

If we impose additional regularity assumptions on boundary and by, namely 92 € C'6, we can
weaken the L°*-norm on by in the ||u|]cl(§) estimate (65) to s = 1. Actually, by [DAS04, Proposition
17 Remark 19, 21 p. 482] the weighted gradient estimate the inequality can be improved

leollco@) + IVeollcogy < Cssllboll i (o)-
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Nevertheless, since we do not need b, to estimate with L'-norm, we drop this assumption, thus
not imposing 99 € C16.

From here on we shift away from the general problem towards the Willmore equation, thus we
prove some simplifying estimates for the b;[u],i = 1,2 terms in the case of the bounded gradient.
Significantly, the difference estimates for the proof of contraction for the fixed point theorem are
needed.

20 Lemma
Let s € (1,00),c € (0,1),4,4,¢,k € No,i > 1,k > 2 then there exist constants Cs; = Cs7(2, 8,14, j) and
Csg = O3s(9, 5, a, §, £, k) such that if u € C*T(Q) with IVull gogmy < 1 then we can estimate

HDQU*D2U*Q7]'P‘( u)l

S C37”D2/IJ/H%QS(Q) HVUHCO(5)7

Furthermore, suppose w € C*T(Q) with || Vwl|| ooy < 1 then it follows

HDzu*DZU*Q I () Py(V) —DZw*DZw*Q*J(w)Pi(Vw)H
(69) Ls(Q)
< Cagllu — wlwza) (1| D?ull2+(@) + 1Dl 2e(0y ) (lulliwasoy + lwllw22e(0) )

as well as

|2 Q1+ @)~ @P(Va) = D+ QI (14 Q) @) PV |

(70)
< Cagllu = wllgavay (1Dl ga ey + 1D wllca) ) (IVlloa@) + IVl oa) )-

Proof: If necessary, we write Q = Q(u) and P; = P;(Vu) for clarity.

@ We begin with the estimate (68). The inequality @ = /1 + [Vu|? > 1 and || Vul|coq) < 1yields

’D2U*D2U*Q_jpi‘ S C’39|D2u]2 . ‘|Vu|i\/ 1 + |V’LL|2(_j)‘ § C4O‘D2U|2 : HVUHCO(§)

7D D% Q7I(1+ Q)P < CulD%u| - ||Vul T+ a1+ It ywp”’)‘ﬂ

< Cpa|D?ul - ||V oy,
By using L*(€2) norms on the first inequality, we obtain the first estimate in (68). In order to
prove the second estimate in we use C°(Q2) norms for the second inequality in (7I). Up to

this point, only the Holder seminorm estimate is missing As a preparatory step, we observe
that for the Holder seminorm [Q_j]ca(Q) (14+Q)~ ]Ca @ < Cu3(J, O[Vulge iy and [gh] e (g) <

9]l co@y [Pl ca@y + [9lce@ 1Pl oy - Thus, by [[Q7 ]Hco +11+ Q)" HCO@) < 2it follows

[DzU]Ca(ﬁ)”VUHZO@
[ ux QI (1+ Q) ] ca (@) <Cyu | + ||D2UH()0(§)[VU]C&(§ ”VUHZ'O(Q

< Cs (ID%ul oy [Vu]ca@ + [DQu]Ca@Hw||CO@) .

By applying the embedding C*(Q) << C?(Q) the last inequality in is shown.
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Next we use Lemmaand again |]Q‘j||00(§) < Las well as |[Vullco, [Vwllgog) < 1 to

prove

|D*u* D*ux Q7 (u)P(Vu) — D*w+ D*w+ Q7 (w)P;(Vuw)|
< C’46|Vu * D?u % (D*u — D2w)‘ + C’46|Vw * D?u % (D*u — Dzw)’
(72) + Cu6|Vu * D*w x (D*u — D*w)| + Cu6|Vw * D*w * (D*u — D*w))|
+ 046‘D2u * D?u % (Vw — Vu)| + 046‘D2u * D?w x (Vu — Vuw)|
+ Cys| D*w x D*w % (Vu — V).

We emphasize that by the proof of Lemma [96|the terms including Q7 (w) — Q77 (u) are absorbed
by (Vw — Vu). Namely by Lemma 96|

(Yot Vi) $~Q~ (w)Q" ()
(Qw) +Qw) = P

Q7(w) ~ @7 (w)] <|Vu ~ Vul < k[Ve =Vl

We conclude by applying the L*(2)-norm that

HDzu * D?ux Q7 (u)Pi(Vu) — D*wx D*w % Q_j(w)B(vw)HLs(Q)

IVuD?ul| 2 + | VwD?ul| 125
< 47< " @) ID%0 = D2l 2

+ HVUDQQUHL%(Q) + HVU)DQUJHLQS(Q)
+ Cis (|1D%ul32: ) + ||| D] D?

Q) + ||D2UH%2S(Q)) [Vw — VUHCO@)

By Holder’s inequality || D*wD?ul| 1s(qy < [[D?ul| 25 (q) | D*w]| 125 (), Young's inequality and Sobolev
embedding W22%(Q) — C1(0Q), thls flrushes the proof of (69). Namely

va - VUHCO(ﬁ) < C49||w — UHWQ,Qs(Q), and ||VUD2’LL||L2g < C50||U||W2 2s(QQ) ° ||D2UHL23(Q)

@ The proof of the last estimate also involves C°(2) and seminorm inequalities and the
assumptions || Vul| o @) | Vw]| 7o @ < 1. First, we consider

D% Q(1+ Q) () (V) — DPwx Q9(1+ Q) (w) Py(Vaw)|
§C51}VU*VU*(D2U—DQUJ ‘+C51’Vu*Vw*(D2u—D2w)‘
(73) + C51|Vw * Vw * (D?u — DQw)‘ + C51|Vu D?ux (Vu — Vuw)|
+C51|Vu*D2w*(Vu—Vw)‘+C51‘Vw*D2u*(Vu—Vw)|
+C'51|Vw*D2w*(Vw—Vu)‘.

It directly follows

[D%u% Q77 (u)(1 + Q)~“(u) Pr(Vu) — D*wx Q7 (w)(1+ Q)" (w) Pe(Vw)| oy,

< Cagllu = wllgaraey (1D uloo@ + 100l oo ) - IVl ooy + va||00(§)) .
By applying the C°(©2)-norm on both sides we get the C°(€2)-part in the C*(Q2)-estimate (70). For
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the seminorm part, by using k£ > 2 we observe similarly that

[D*ux Q77 (1+ Q) “(u)Pi(Vu) = D*wx Q7 (1+ Q) f(w)Pk(Vwﬂ o @)

(1D%ullco@) + ID%0l oy ) ([Vidoa @ + [Veloo))
+ (DUl ey + [P wm)(uwum + IVl o)
+ (Vo = Vilga (1D%ull oo + 1D*wlloo@) ) (IVulloom) + IVl o
+ ID%u — D?wll oy ([Veloa(ay + Vel ea) ) (IVulloo@) + IVl oo )
+ [D%u = D] gu gy IVl coy + 1Vl ) (IVellco) + IVl o) )
where we again used [gh]ca(ﬁ) < ||g||CO(§) [h]Ca@) + [g]ca(ﬁ) HhHCO@). O

At this point, we are prepared for the main theorem of this subsection, namely our goal is to
prove the existence of the solution for the Willmore equation rewritten in Lemma|18|in variational
form for small Dirichlet data

71 {AQU = Dibi[u] + D3bY[u] in Q

u=gg, Oyu=gs on .

with the following conditions imposed on the structure of the right-hand side

3
bi[u] = D*ux D*ux Y Q' Py_1(Vu),
k=1

2
bolu] = D?ux Y Q7% Py (V) + D?ux Po(Vu) » (Q(1 + Q)"
k=1

The principal significance of the Theorem below is that for a given C>**-bound on the boundary
data, only smallness in the C'-norm is required, even though some special structural properties
of b1 and by are used.

21 Theorem
Assume that o € (0,1),0Q € C*%, gy € C*(0Q) and g1 € C1T*(90Q). Additionally, we suppose that
90llc2+a(a0) + l91llcr+aan) < K for some K > 0.

Then there is a constant § = §(K,Q,a) > 0 such that if ||gollc1a0) + l91llcopn) < 6, then there

exists a variational solution u € C**%(Q) to the Willmore-type Dirichlet problem, thus u solves (74) with
the right-hand side (60).

Proof: The main idea is to apply a fixed point argument, which is divided into four steps for
the sake of clarity. Without the restriction of generality, we can also assume, by increasing K if
necessary, that K > 1.

@ Definition of the iteration map and set
We begin by defining the iteration mapping G: C?T%(Q) — C?**%(Q2). For each w € C*™*(Q) we
set Gw as the solution v of the following problem

75) {A% = Db [w] + DXb[w] in Q,

v=gg, Oy v=g1 on .

By Theorem 2.19 in [GGS10), p.45] the existence and the C?*2(Q)-regularity of Gw is ensured, thus
the mapping G is well-defined.
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Furthermore, we introduce the constant §, which bounds the C'!(Q)-norm of the boundary
data. For the proof-making work, we will impose four conditions on d, where the first one is

(C1) 20146 € (0,1)

and the other conditions (C2), and which we specify in the following. Next, we define
the corresponding non-empty set

M§ = {’LL S 02+a ‘ ||U||C1 20145, Hu‘|02+a(§) < 2012K} ,

where C15 and C}4 are constants in and (65).

@ G is a self-map

In this paragraph, we show that G maps MX to ME. Let w € ME then Gw € C*(Q) solves
problem (75). In the first part of the proof, we consider the estimate of the C**(Q)-norm of Gw.
Since the first condition (CI) yields ||w|\cl @ < L we can incorporate the Schauder estimate
from Proposition[19with the preliminary estimates (68) for the b/s in Lemma[20] Combining these
results yields

|G| c2tam) < Crz <!90Hc@+a(an)4H91ch+a(aﬂ)4Hblhﬂ}HLl2a(Q)4Hb2VU]HCW(Q)>
(76) < Cur (K + Caall D0l s [V wlengy + Caall Pl Vo
< CroK + 054<||w\\é2+a(§)\|w”cl(ﬁ) + Ilw\|02+a(§)llecz(§)),

where C4 and all other constants in this proof depend only on «, €2 and the algebraic structure of
b1 and by. What is still lacking is the bound on C? (ﬁ)-norm of w in terms of §. That is obtained by

the real interpolation inequality Theoremﬂwith A=1fpa=1Lb=2+a
1
77) lwllexm < Crllwlfiig, - Il 5 g

Applying this to the result yields

||GIU||02+Q(§) S C12K + 054 <(2012K) 2014(5 + 01Hw||02+1:?m Hw| g;(lﬂ))

(78)
< CioK + Cyy ((2012K)22614(5 + 01(2012K)1+70‘ . (20145)m) .

At this point, we want to impose the second condition on 4 in the way that the right-hand side of
the equation above is small enough. Hence, we choose dy = dp (v, 2, K') depending on K such that

(CZ) 054 ((2012K)2201450 + Cl (2012[()?1—2 . (201450)11L0¢> < Cng.
Then by monotonicity, we get
(79) V6 € (0,00 Ywe M [Gullperag < 2012K.

In the second part, we consider the C'(Q)-norm of Gw. Here we again use the Schauder
estimate from Proposition [19] thereby employing estimates for the b; terms where we can
sett = p € (2, 00) arbitrarily since w € C?T*((Q2)

IGwlicr @ < Cua(llgollcran) + lgrllooan) + b1 lwlllze (@) + [1b2[w]l| o)
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< Cua (64 Css (ID%0) 2200 IV o gy + 1D 0] o) IV | oy ))
< Cua (54 Css (w22 gy I Vwlloo) + lwlloz@ Vel co) ) ) -

In the above inequality, we want to factor out ¢ so that the corresponding coefficient is smaller
than 2Cy4. This can be achieved by using interpolation (77) for the C%(2) norm

14 2 14
[Gulloxm < Cus (3+ Can (CHIOIEE, g lullor b + Calwll g lolen s ) )
(80) < Cua (5+C57(K1+Dc(5+1+Q+K1+a51+1+a>>

< C1ad (14 Cop (KTi707%% + KTaomia ) ).
Now, to get a self-map we choose some §; = 6;(a, 2, K) by
2a _a
(C3) Cs7 (Kliaéf*“ + K1+1a51”°“> <1.
Together with §y defined by the third condition on ¢ is imposed by considering only the case
o < 617
which gives us [[Gw||1 (g < 2C149. Combining the results in this paragraph shows that
0<6<min{(2C14)" ", 00,01} : weMf = Guwe Mf.

@ G is a contraction
The last property we have to check is contraction, thus for all u,w € MX the difference between
Gw and Gu has to be estimated. Note that Gu — Gw is a solution of the following problem

1) {A?(Gu — Gw) = D;(bi[u] — b} [w]) + DZ (b5 [u] — 0§ [w]) in Q,

Gu—Gw=0, 9,Gu—39,Gw=0 on 0,
thus similarly to the previous steps by Proposition[I9]it follows together with and that
|G Gl vy
< Caa (Il = wlul 2, o + 0] = el
< Css]|D*u — D*w| Lo (HDZUHL%(Q) + ||D2wHL2S(Q)>
+ Casllu = wllgasay (1Dl oo + 10?0l ca) ) IVl o) + IV oo )
< Crllu = wl ara@y (K (190l ca@y + IVl o) )

by applying the interpolation inequality (77). Further, we need to estimate the C1*(Q)-norms. It
is possible since C17%((Q2) is an interpolation space between C27(Q) and C' (). Thus, by the real

interpolation inequality Theorem@wuh A= 1 + ,a=1b=24+«

(82) Hw||01+a(Q) < ClHWHHCz ’ H ||é;ia(Q
Applying this to the last inequality yields

a 1
HGU - Gw”c2+a ) < CGO(K +1+a51+a> Hu — wHC2+a(§)
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To obtain a contraction, we need to impose the last condition on ¢. Hence, we choose some 2 such
that

o _1
(C4) Coo K765 < 1

Then, by monotonicity, we can assert that
1
(83) 0<6<d = Yu,weME: ||Gu-— Gwllgatam < §||u — W[ g2ta(m)-

@ Applying the fixed point theorem
By combining all four conditions on §

0<d< min{l/(2014),50,51,62}

all assumptions of the fixed point theorem are satisfied. Thus, there exists a unique fixed point
u € /\/lgf C C?*2(Q) such that u = Gu. This finally means that u solves the original problem
in the space MX. O

At this point, we want to remark on elliptic regularity. Namely, if the boundary data are
more regular gg € C*T(9Q), g1 € C3T*(9Q), then the solution is also more regular u € C4+(Q).
Despite that, the C*(99) and C'!(992)-norm smallness condition for the existence of such u C(92)
and C!(9Q)-norm remains the same.

The preceding observation, when looked at more general right-hand side terms b;, leads to a
similar existence result, thus this proof idea is not unique to the Willmore equation. The main
point is to observe that we use some kind of non-linearity, namely b;’s must be at least a D?u, Vu-
polynomial of the second order with some Holder interpolation inequalities. This is needed to
extract § like in C'1(Q2) estimate as well as to achieve the contraction inequality (83). Thus, we
generalize our results to the following problem
(30 {Nu = folul + Difi[u] + D% f{’[u] in Q,

u=go, Oyu=g; on O

22 Theorem
Assume that o € (0,1),0Q € C+% go € C*(00) and g, € C*H(0N). Additionally, we suppose that

llgollc2+e(aq) + lg1llcrte@n) < K for some K > 0. We impose the following conditions on the structure
of the right-hand side

folu) = Piy (D*u) Pey (Vu) Q™™ (V)

(85) 2 —m 2 —m
filu]l = P, (D u) Py, (Vu)Q™™ (Vu),  fa[u] = Pr, (D7u) P, (Vu)Q™™* (Vu)

forsomei =0,1,2: k;, £;, m; € No, with k; + £; > 2.
Then there exists a constant p = (K, o, Q) > 0 such that if || go||c1(a0) + |91]lcoan) < w then there
exists a variational solution u € C?T%(Q) to with the right-hand side (85).

Proof: Since we do not want to replicate the complete proof of the previous theorem, we will only
highlight the changes to be made.

First, we change the iteration mapping G : C**%(Q) — C?T%(Q). In order to incorporate f, we
set Gw as the solution v of the following problem

(86) {AQU = folw] + Dfi[w] + D? fo[w] in Q,

v=gg, Oyv=g1 on .
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The C**°-regularity and existence of Gw is ensured by [GGS10, Theorem 2.19 p.45]. Since we
are not assuming ¢; > 2, we might not have enough Vu-terms in some estimates. Thus contrary
to the proof of Theorem [21]in we cannot extract §! in 1Gwl[cr@) < Ce10" - 6° estimate via

interpolation, and let Cg16° small enough. Therefore, we replace the C 1(Q)-norm with a Holder
norm C1*7(Q), where v > 1 — o and define

ME = {u e 0@ ‘ lullori < 20136, [l gasag < 2C12K}

which we consider as a closed subspace of complete space C2*#(Q) with 8 < a, which is the main
trick here. Let us assume that ||gol|c1++(a0) + [|91]lcv(a0) < C136 and

(C1) 20130 < 1

Since we will need to estimate ||u[| 2 (g, we conclude with A € (0,1) such that 2 = A(1 +) + (1 -
A)(2 4 «) the interpolation inequality

(87) HU||C2( < 062||u||01+w Hu||02+a(Q)

To show that G is a self-map, we estimate the C**®-norm of Gw. Since [wll 24y < K, one can
show in the same way as in Lemma [20} g 0| that with constants Cg3, Cs4, Cgs, Ces depending only on
K,Q, ki, ¢; and o

Hfo[w HCO Q) + Hfl w]HcO(ﬁ) + HfQ[w]H00(Q < CG3HwH < CG4HU‘ Cl+'y ”U’ é%{i(ﬁ)?

Hf2 Hca(Q) < C65Hw||02+a )HwHC?(ﬁ) < CGGHUHCI-‘F’Y ||u| Cz+a( )’
We combine this with the Schauder estimate and obtain

g0llc2te@a) + lgtllcrtea@a) + Ifolw]]] 2 )

L7=a(Q)
AW, 2, o FI20lllce@)

HGwH02+a ©) < Ch2 (
T35 (Q)

< C12K + Cgr <(52/\ CKEP A K27)‘>
where Cg7 depends only on on K, €2 and «a. Further, choosing 4 such that
(C2) Crr (5” KT N KH) < C1oK

we get [|Gwl| g2+a(g) < 2C12K. For the C 1+7())-estimate we use the Schauder results from Propo-
sition[I9and especially for some s > 0

lgollcr+~a0) + ll91llcvaa) + I folw ]LS(Q))

HG’U)HC1+~,(§) <Ci3
+ Hfl[w]HL%(Q) + HfQ[ ]HLl =7 (Q)

< C130 + Ces (52/\ . K2*2/\) < C136 + <06952>‘*1 . K2*2>\) 5.
Infact2X —1 > 0sincebyy >1—aand2=A1+7)+(1-N)2+a)=AN1+y—-2—a)+ 2+«
it follows

« «

1
a+l-~7 a+a 2
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This shows that

(C3) (0695”—1 : KQ—”) < O

can be achieved. Thus, we add this condition to the previous assumptions on §. As a consequence,
we get [|Gw||c14+ gy < 2 < C130 and moreover Gw € M. This means that for § small enough, G
is a self-map.

For the discussion of the contraction property, we also change some details. Here, we consider
Gu — Gw as a solution to a modified problem

A (Gu — Gw) = folu] — folw] + Di(fiu] — fi[w]) + D2 (f5 [u] — f&[w]) in Q,
Gu—Gw=0, 0,Gu—0,Gw=0 on 0f.

Since we consider M as a subspace of C?*#(Q) we estimate Gu — Gw in the C?*#(Q2)-norm. By

Proposmon Wthh shows existence and Schauder estimates of solutions and Hu||0ﬁ Nwlgs @
< C70K it follows with 071 071 (5, K Q) 072 = 072(5, K Q)

Ifolu] = folwlll 2+ flu] = filwlll 2
1Gu — G| osng < Cra(B) 175 0) L@

+ [[folu] = folw]llcs @

< C71(HUHC2+B(§) + Hw||cz+/3(§)) ’ HU - wH(ﬁ(ﬁ)
+ C72(Hu”c2 9 T ”"UHC2(§)) lu— w”c%ﬁ(*)

A
el Gy el gty + 1014 @y 0l ey
= O3 N —wllars )

B - llE s g e IICM(Q S 7 e

gom@w@*+$K1$wm—wmﬂmﬂ

where £ = (o — 3)/(1 4+ o — ) since by interpolation ||u]|cz+/j(m < Cysllull We

Cl+’y(Q) || ||C2+a ﬁ)
emphasize that we used 8 > «. Next, we get the contraction by imposing the condition

(C4) Crg (W(H n 551(1—5) <1/2.

Hence, it follows the contraction

—_

Vu,w € M [Gu = Gul|c2+s @y < 5 llu — wllczrs @)

[\

By contraction mapping principle, we get the solution of problem (84). In the last step, we observe
that by Lemma |11} we can use the interpolation inequality on boundary

gollcr+v@0) + l91llcran)
1—-X
< Cy (llgollcroa) + lgrllco@ay) T - (lgollcz+aan) + lgillcrtaan)) rh

|
_ 0 0
< Crop' " THa KTha < O30

to achieve § small enough by choosing y sufficient smaller such that the conditions (CI), (C2), (C3),
(C4) are satisfied, and thus finishing the proof. O
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5.3 SoBoOLEvV CASE

This chapter treats the Willmore equation employing its biharmonic expansion under even weaker
regularity assumptions than in the Holder class. Here, we pursue the derivation of existence
theorems in the Sobolev framework. This means that we consider second derivatives in the weak
sense.

Even though there exist trace theorems for Sobolev spaces W2P(Q) such that we can define
Dirichlet boundary conditions in the same way as for the Holder case, we omit this description
and consider only the class of functions u € W?P(Q) such thatu — ¢ € W22(Q) fora given W2P(Q)
representing the boundary conditions.

For the general existence result, we will need some biharmonic preliminary estimates in the
LP-framework analogous to Proposition[19]in the Holder case.

23 Proposition
Let Q C R? be a bounded domain with 9 € C3. Assume that s € (1,00), p € (2,00), t > % > 1and

© € W2P(Q),by € L*(Q),b1 € LY(Q) and by € LP(Q). Then the following problem
A%u = by + Dby + DEbY  in Q C R?,
admits a weak solution u € WP(Q) with u — ¢ € W2P(Q). Moreover, there exist constants Cyy =
Cr7(p, ), Crs = Crs(p, 5,t,Q) and Crg = Cr9(2), Cso = Cso(p, 5, ) such that
lullw2r) < Crrllellwzey + Crs (1boll L) + 101l ey + b2l r @) »
lullor@y < Crollellory + Cso (1boll sy + 1011l zs @) + 1b2]l o)) -

Proof: We begin with the observation that from ¢ > ;Tpp > 1 it follows p > 2. In this situation,
we should split the problem into three parts. Thus, we are investigating the solvability of the
following problems in the homogeneous space W2?((2)

AMg=by in Q, A% =Dt} in QA% =DLbY — A% in Q,

so that we could recombine u = ¢ + 1y + 101 + 2. Since p € W2P(Q), the last problem including
1 is solvable by [GGS10, Thm. 2.20 p. 46] for the case k£ = 2. Moreover, we obtain

[a2llwze@) < Csi(Q,p) ([lellw2r@) + b2l e @))-
With the same theorem in the case k£ = 4 we get with the Sobolev embedding for all s € (1, c0)
[ollw2p(0) < Csalltollwas @) < Cs3(2,p, 8)|1bol| s ()

Furthermore, we use [GGS10, Lemma 4.2 p. 132] and the Sobolev embedding with ¢ > ;Tpp > 1to
obtain

[th1llwzp ) < Csallthrllwse ) < Css(€4p, s, 8) b1l Le(q)-

Finally, the C*(2) estimate was already proved in Propositionfor p > 2inthe Holder framework.
By combining the results above, the desired estimate follows. O

With regard to the following existence Theorem [25, we again consider the b;[u]’s as defined in
(60), which are specified by the Willmore equation. Since b;[u]’s include the terms D?u x D?u, it is
important to notice that in the lemma below, we require p > 2! At this point, we want furthermore
to prove some preparatory estimates. Here, in the Sobolev case, we can take advantage by partly
reusing Lemma [20already proved in the Holder case.
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24 Lemma
Let p € (2,00),1,7,4,k € No,i > 1,k > 2 then there exists a constant Cgg = Csg(S2, p) such that if

u € WP(Q) with Vullgo) < 1 then we can estimate
o |D?ux D2ux QIPA(Vu)|| oy < CrsllDul2u 0| Vet oy,
[D*ux Q77 (1 + Q)™ Pr(Vu) | 1y < Cs6ll D?ull ooy | Vull ooy

Furthermore suppose w € WP (Q) with || Vw|| coy < 1 then it follows

HDQU * D*ux Q7 (u)Py(Vu) — D*w* D*w+ Q7 (w) P(Vw)

(89) Le/2(9)

< Csollu — wlhwaqey (107l v (@) + 100wy (s + lwllwso
as well as
0 [D%u* Q77 (1 + Q)™ (W) Pu(Vu) = D*w* Q77 (1 + Q)™ (w) Pu(Vuw)||

< Cssllu = wllwasey (I Vulloo@) + V@l oo ) (lullwasy + lwllwas)

Proof: The estimates in had been proven in the same manner as in Lemma 20| by using
the inequalities (7I)). Analogously, by setting s = p/2 in the proof of we obtain (89).
For the proof of the last estimate we apply a LP-norm on the inequality (73)

[D%ux Q77 (1+ Q)™ (w) Pe(Vu) — D*wx Q77 (1 + Q)™ (w)Pe(Vw)|| 1
< Csr (V020 + I Vlloo IV llco) + 170120, ) ID% = D2wllsqe
< Csg (HVUH(;O@) + ||VU)H(JO(§)> (HD2U||LP(Q) + ||D2wHLP(Q)) Vu — Vw“co(ﬁ)'
We finish the proof by applying the Sobolev embedding W?(Q) < C1(Q) for p > 2. O

At this point, we want to prove the existence of the W27 ((2)-solution for the rewritten Willmore
equation in biharmonic expansion

(91) A*u = Dibi[u] + D5 [u]  in Q.
with the right-hand side terms

3
by [u] = D?%u % D?u % Z Q‘Qk—ngk_l(Vu),
k=1

2
bolu] = D*ux Y Q2 Py (V) + D*ux Po(Vu) x (Q(L + Q)"
k=1

in the class {v € WP(Q) } v—p € W2’p(ﬂ)} where ¢ € W?P(Q) is some small given function
representing the boundary data. In contrast to the Holder case, here we will need smallness not
only in the C*(Q) norm but also in a Sobolev norm like || . [w2.p-<(q)- The reason is that we have
to apply some interpolation argument for the space W24(2) for some ¢ € (1,p) and W24() is not
an interpolation space between W?%?()) and C*(Q).

25 Theorem
Assume that p € (2,00) and K € (0,00),0Q € C3, and p € W?P(Q). Additionally, we suppose that
lellw2r) < K for some K > 0.

Then there is a constant . = (K, p,2) > 0 such that if ||¢|[y21(0) < p, then there exists a weak
solution w € W?%P(Q) to the Willmore-type Dirichlet problem, thus u solves in the class {v €
W22(Q) | v — o € W2P(Q)} with the right-hand side (60).
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Proof: Again, we split the proof into several steps to use the fixed point argument.

@ Definition of the iteration map & set
We define the iteration map G: W2P(Q) — W?2P(Q). Let G(u) be defined as the solution w of the
following problem in the class {v € W?P(Q) |v — ¢ € W>P(Q)}

(92) A*w = Db} [u] + DEY [u]  in Q.

Let ¢ € (2,p). To introduce the iteration set, we need a Constant 0 > 0 which will be specified
depending on ,p and ¢ in four inequalities (CI} C3) and (C4) below. First, let us revisit
the constant of the Sobolev embedding into the Cl( ) space For any ¢ > 2 let Cgg(€2,t) be the
embedding constant of the W?2? — C1((Q), so that we have for all u € W2!((Q)

lullor @y < Csot, Q)lullwze()-
Further, we define the iteration set
MG = {u e WHP(Q) | lullw2a) < 2C77(q, )8, lullw2p@) < 2C77(p, QK }

where ¢ is some constant that has to fulfill several conditions that we will establish in the course
of the proof. The first condition is

(C1) 2C77(q,92)Cs9(q, )6 < 1,

therefore for all u € MX it follows [ullgr @)y < 1. Also, it is worth noting that we choose ¢ > 2

because in the case ¢ < 2 we cannot abandon either smallness in the C*(2) or W24(£2)-norm, since
only in the case ¢ > 2 one has the Sobolev embedding W?24(2) << C1(0Q).

We also observe that W24() is actually an interpolation space between W%1(Q) and W?27(Q).
This means for ¢ € W2P(Q)

(93) lellw2a@) < Coollellfy21q HcpHW2p < O p®K'—
witha = (p/qg—1/)/(p —1) € (0,1). It follows, that by choosing 1 > 0 small enough, we can get
l[ullwza(0) < 2C77(q, Q)6 < Corp* K=

for all u € M.
@ G is a self-map

Let w € MX. Since we want to apply Lemma 24 . 4 with the W?2P(Q)-estimate of Proposition [23{we
need some t for the b;-term. We can choose some t = f;’ since 22+p < g. It follows by the first
condition ||w|| o1 < 1. This yields
|Gwllw2r) < Crr(p, Dllellw2r@) + Crs(p, @ (Hbl HLP/Z(Q) + Hbﬂw]HLp(Q))
< Crr(p, Q) K + Con <HD27~UHLP(Q)HVUJHCO(§) + HDQMHLP(Q)vaHCO(§)>
< Crr(p, QK + Cos(, p)(K?6 + K§6).
By choosing dy such that
(€2) Co3(,p) (60 K> + Kdo) < Crr(p, VK,
we impose the second constraint on §, hence considering only § € (0,d¢). In this case, we get

Gwllw2r) < 2C77(p, VK.
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Next we have to estimate the W24(Q)-norm. Since ¢ > 2, in the same way as in W??(Q)-
estimate, we conclude

Gwllw2a) < Crr(q, Dlellw2.a) + Crs(q, 2) (Hbl [w][| Lo/ + Hb2[w]||Lq(Q))
< C77(q, )0 + Coy (HD2wHiq(Q)vaHCO(§) + HDQwHLq(Q)vaHCO(ﬁ))
< Crr(q, )6 + Cos(R2, q)(6* 4 6).
We formulate the third constraint by choosing d; such that
(C3) Co5(€, q)(67 + 61) < Cr7(g, ).

For all ¢’s smaller than 4y, §; and satisfying the map G: ME — ME is a self map.

@ G is a contraction

For the last property, we have to check the contraction property, thus for all u,w € MK the
difference between Gw and Gu has to be estimated. It can be noticed that Gu — Gw is a solution to
the problem

(94) A*(Gu — Gw) = D; (b[u] — bi[w]) + DZ (b5 [u] — b5 [w]) in Q,

in the class W22 (Q). Similarly to the previous step, we again use Proposition Next, we choose

some t > 1 such that 22Tpp <t< %. We putt = ﬁ + %, as the arithmetic mean, then we have

1Gu ~ Gullwangy < Crs(pt,9) ([[baled = biful | s g + [1Bal] = bolw]]| ey ) -

Now, we can estimate each of the parts with estimates with the results from Lemma First, we
use and show by 2¢ < p that

(|61 [u] — 51[w]HLt(Q) < Cs6(0, 1) [|u — w220 () (||D2U||i2t(9) + ||D2w||%2t(§z)>
< Cosllu = wilwarqey (IDul3arqy + 1 D*0) 220
2
< Corllu = wilwzs(ey (| D2l 1D ull i3, + 1D2ull3s gl D2l 7))
< Cosllu — wllyzp) (02 K'~*)?
by the LP-interpolation with o = (p/2t — 1)/(p — 1) € (0,1). Furthermore, by using we get
ol — bofu| 1y < Crollu — wllwancay (IVll ooy + 1Vllony) (o) + lollwese)
S ng”u — wHWZ,p(Q)éK.
Subsequently, we combine the results above and get for some Cio9 = Co0(p, €2)
HG’LL — GwHWz,p(Q) < 0100((5QK1_Q)2 + 5K) ||’LL — w”WQ,p(Q).

By choosing d2 = d2(p, K, §2) small enough we can achieve

1
(C4) Cr00(03° K72 + 8,K) < 5
which is the last condition on §. It follows for 6 < d; satisfying all the previous constraints

CD.2.3)

1
|Gu — Gwl[y2p) < EHU = w|lpw2p (),
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therefore G is a contraction on Mg( .

@ Using the fixed point theorem
In the last step we combine all necessary conditions (CI),(C2),(C3) and on d

(95) 0 < & < min {1/(2C7Cio(a, 2)), do, 61,6 }

The fixed point theorem yields the existence of a unique fixed point u € ME c W?P(Q) such
that u = Gu. Thus u € W2P(1) is a solution of the Willmore equation in {v € W?P(Q) |v — ¢ €

W2r(Q)}.
To finish the proof, we again observe the estimate and conclude that by choosing ;1 > 0
small enough, we can fulfill all 6 conditions (95). O

We can generalize the results to more general right-hand side terms b; by using ideas from the
proof corresponding to the Willmore equation. To apply LP-interpolation inequalities, we require
a non-linearity in b;’s as a D?u, Vu, u-polynomial. Thus, we consider the following differential
equation

(96) A%u = folu] + D; filu] + D2 fi'[u] in Q.

Unlike in the Holder case, here, due to Holder’s inequality, f2[u] may contain only one D?u at most.
Otherwise, we can not use Proposition 23| properly, since ||ul|y2.(q) is estimated by || f2[u]|Lr(q)-
Moreover, the LP(€2)-power p € (1, c0) has to be chosen big enough, depending on the number of
D?u-terms in fy[u] and fi[u].

26 Theorem
We impose the following conditions on the structure of the right-hand side

folu] = Py, (D*u) Py (Vu)Q ™™ (Vu),

(97) 2 —m 2 —m
Nilu] = Py, (D7u) Py, (Vu)Q@™™ (Vu),  folu] = D7ux Pp, (Vu)Q™"*(Vu)

forsome i =0,1: ki, ¢;, m; € No, with k; + €; > 2 and {3, m; € No, with {5 > 1.

Assume that p € (2,00) such that p > ko and p > 2(ky — 1). Let 0Q € C? and p € W?P(Q).
Additionally, we suppose that ||p||y2.» ) < K for some K > 0.

Then there exists a constant p = p(K,p, Q) > 0 such that if ||¢||w21(q) < u, then there exists a weak
solution u € W?P(Q) to the generalized Willmore-type Dirichlet problem, thus u solves in the class
{ve W?P(Q) |v—p € W2P(Q)} with the right-hand side ©7).

Proof: We only consider the case k; > 0 for all i = 1,2, 3. Thus each f;[u] contains at least one D*u.
The other case is an easy matter to check.

Since we are familiar with the proof of Theorem 25| we only highlight important changes to
be made. First, we change the iteration map G': WP(Q) — W2P(Q2). Let G(u) be defined as the
solution w

(98) A*w = folu] + D; filu] + D3 f3/[u] in Q.

in the class {v € W??(Q) ’v —p € VOVQJ’(Q)}. Let ¢ € (2,p) such that ¢ > kg and ¢ > 2(k; — 1).
Furthermore, suppose § and MX play the same role as in the proof of Theorem 25/only with one
difference that we consider the same @ # MEX with

M5 = {u e W*P(Q)| Jullwza) < 207(a, )8, |lullw2io) < 2077(p, QK }

as a closed subset of W24(Q2) instead of W2?(Q) (by Fatou’s Lemma), which is one of the main
tricks in this proof. This will prove useful in showing the property contraction. We will also use
the interpolation result (93) for boundary data ¢.
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In order to prove that G: MEX — M is a self map, we choose the first condition on § like in
(C1) in the proof of Theorem 25|such that

(99) Vue ME: lullor gy < 1.

In order to apply Lemma 24| with the WQ’p(Q)—estimate of Proposition [23| we choose some ) €
(1, o > andt; € (2+p i ) since 22+p < % 4 by assumptions imposed on p. Letw € ME.

Then it follows by interpolation with some ag, a1, a2 € (0,1)

|Gwllw2r@) < Crr(p, Dllellw2e@) + Crs(p, 2 (Hfo HLtO + || 1w HLtl(Q) + || falw HLp )>

 Crlp K 4 Con (HD%M o IVl én +D2wHLk1t1(g>Vw|co<m>
+ 1wl [0

< Ol K + iy <||wu‘;3§a(m|| ||’;3£p & 6‘0+|| 595 o 0l 5@0)
+ w205

< 077(p, Q)K + 0103(]?, Q) (6k0a0+ZoKko(l—a0) + (5k1a1+81 Kkl(l—al) + K(5€2> )
From here on, we consider only ¢ satisfying
(C2) Cho3(p, Q) (5koao+€oKko(1—ao) 4+ ghreatb prki(l—an) K5€2) < Crr(p, VK.

Thus we obtain ||Gw||W2,p(Q) < 2C77(p, Q) K. To estimate the W?24(Q)-norm we observe, that
2 % 7 < & and 1 < ;L. It follows by Propositionthat,

HG’WHWQ«I(Q) < Crr(q, )HSOHW2q @ + Crs(q,Q (Hfo HLq/ko(Q) + Hfl w HLq/kl(Q + Hf2[w]HLq(Q)>

| D*wll s ) 1920 oy + 100 e P2l oy )

< C77(q, )6 + Croa ( )
+ [|D wHLq(Q)vaHCOQ

< Crr(q, Q)6 + Cros(©,q) (850400 4 g4 4 1462 )
This means that we have only to consider ¢ such that
(C3) C105(£2,q) (5k°+eo_1 + et 4 5€2) < Cr7(q, ).

So that we get ||Gwlly2.4q) < 2C77(g,§2)0. With all constraints imposed on ¢ above, the map
G: ME — MK is a self-map.

To check the contraction property, suppose u, w € MX and observe that Gu — Gw is a solution
of the modified problem

(100)  A%(Gu— Gw) = (folu] — folw]) + D;(filu] — filw]) + D (3 [u] — f[w]) in 9,

in the class Wg (). Note here that we have chosen ¢ instead of p. In the same way as in the
previous step, we use Proposition 23|and get

|| folu) — fo[w]HLq/kO(Q) + || f1lu] = fl[w]HLq/kl(Q)>
Gu — Gw 2,q < C 7Q '
” HW () 78(q ) ( + HfQ[U] _ fQ[TU]HLQ(Q)
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Furthermore, we estimate the previous inequality piecewise. In a similar way as in the results
from Lemma 24| by using Sobolev embedding and Hélder inequality in the case ko, k1 > 2 we can
show that
o <C o 1+€0 ko—1+4g
1 Folu) = Folwll| parvo ) < Cr06(a, V)l = wllweaqey (lulwzalo) + lwlipzal;

< Crorllu — wl| w2yt

| f1lu] — fl[w]HL‘I/k’l(Q) < Cro8(q, Q) [lu — w|[wza(q) (HUHVVz ;Hl + [lw Hlljll/?_i%;)
< Crorllu — wl|w2.aie)d™ T,

I folt] — folwlzay < Croo(g, )l — wllwzaqey (Huuwzq 10220

S 0107Hu — wsz,q(Q)#Q.
By combining the estimates above we get for some constant C'19 = C110(g, 2)
||GU — G’U)”Wz a( < 0110(6k0+£0 1 5k1+€1_1 + 642)”U - wHWQ«‘I'(Q)

As the last constraint, we consider only § satisfying

(C4) Crip(aFothomt 4 ghtha=t 4 52 <

NN

which yields [|Gu — Gw||y2.4(q) < Hlu— wl|y2.9(q), therefore G is a contraction on ME.

With all §’s conditions (CI), (C2),(C3) and in mind and the fact that M7 is a closed
subset of W24()) we obtain by the fixed point Theorem the existence of a unique fixed point
u € ME such that u = Gu. Thus, u € W?P(Q) is a weak solution of the equation in the class
{v e W?P(Q)|v— ¢ € W2P(Q)} with the right-hand side (7). As the last step, we again use the
interpolation (93) to observe that we only need smallness in the W*!(Q2)-norm of ¢. O

5.4 WEeIGHTED SOBOLEV CASE

We can generalize the results from the previous subsection to the framework of weighted Sobolev
spaces where some additional positive a.e. measurable functions are multiplied to the Lebesgue
measure as weights. For our purposes, we choose as weights the powers of d(x) := dist(z, 02),
that means the distance function to the boundary. Such weights are not only the canonical choice,
but they also have the advantage of requiring less regularity on boundary and Dirichlet boundary
data if the power is positive. The reason is that while approaching the boundary, the distance
function decreases, and therefore, the integral contributions will play less and less of a role.

In the beginning, we have to recall the definition of weighted Lebesgue, Sobolev, and Besov
spaces. In this context, up to embedding theorems, we mostly follow the description given in
[MS11] and [MMSI10]. First, we define for each 1 < p < oo and 5 € R the weighted Lebesgue space
LP(Q;d?) as a set of all measurable functions u on €2 such that

1/p
[ull e (osa8) == </Q lu(z)|Pd(x)’ dx> < 0.

In our applications, we want to consider various powers of d(x), but not all values for powers are
allowed. Especially we consider only

1 1
(Pa) p S (1,00), a € (_p7 1— ) )
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although we will mainly consider @ > 0 cases. Then we can define the weighted Sobolev space
Wy () as the space of real-valued functions u € L} () with the property that D*u € L ()
for all |a| < m, for which

1/p
(101) [ullwzma (o) = ( > Da“i?(ﬂ;dap)) < o0

laj<m

It is important to notice that in the case 012 is a Lipschitz boundary and a = 0 we recover the
unweighted Sobolev space W™P(Q2) and in the case m = 0 it becomes the weighted Lebesgue
space LP(€; d") = Wy(). It is also known that in case 2 is a bounded Lipschitz domain C*°(Q)
is dense in W, (Q) like in the unweighted case

W(Q) = { closure of C*(Q) in W (Q)}

with respect to the norm (101)). For the proofs, we refer the reader for a > 0 to [Kuf80, p.55 Theorem
7.2] and for a < 0 to [Kuf80, p.119 Remarks 11.12 (iii)].

Further, we need the homogeneous weighted space, see [MMS10, Subsection 6.1], and its dual
space defined by

(102) W (Q) := { closure of C2°() in W™ ()}, W™ () = (v‘if;%a(m) "

with dual exponent p' = p/(p — 1). By [Kuf80, p.18 Theorem 3.6] the space W,"*(£2) and both
W (Q), W, 7%(9) are separable Banach spaces.

Analogously to the unweighted case, for weighted Sobolev spaces there exists a variety of
embedding theorems into spaces of continuous functions, Holder functions, or into other weighted
Sobolev spaces. Moreover, since we have more parameters, like powers of weights, even more
combinations of weighted embeddings arise than for the unweighted case. For bounded Lipschitz
domains the most work was done by Kufner, Brown, and Opic in [Kuf80], [OK90], [BO92] and
[Bro98|]. We only mention the embeddings we need in what follows.

27 Lemma
Let Q@ C R™ be a bounded domain with a Lipschitz boundary. Let p and a satisfy the conditions (pa).

(a) Then we have the continuous embedding
i71l.a . jap—
W, () — LP(Q;d™P7P).

(v) Furthermore suppose q > p with 74— 5 1t1>0,a<0,7 € Rsatisfying

Yy+n ap+n
q

thus, this embedding is compact.

+1>0, then — Wre(Q) —— LY(Q;d"),

(© pr>n,a§1—%and0</\<1—a—%thenitfollows
i71,a XD
W, () == C*(Q),
thus this embedding is compact.
(4) Assume q > pwith 2 — 2 41> 0,y € R satisfying

y+n n-—1
q p

thus, this embedding is compact.

> 0, then W,() <> LU(Q;d),
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Proof: At the beginning, let us recall some notation used in the literature cited for the embedding
theorem. We set for o, 8 € R a weighted Sobolev space with different power of weight for the first
derivative

WAe(Q; %, d) = {u € IP(9 &) |lullwroar.any = Il ogar + 1 Dull ooy < o0}

with Wol’p(Q; d?,d®) the closure of C2°(Q) under || . w1048 ,d0)-
@ Here we use [OK90, p.274 Theorem 19.10] with 8 = ap,a = ap —pand ¢ = p,x = 1 and get
the continuous embedding

Whe(Q) = WP (Q;d°, dP) — LP(Q;d%) = LP(;d 7).

@ In the work of Opic and Kufner [OK90, p.275 Theorem 19.12] we set x = 1, since 2 € C%! has
a Lipschitz boundary, and put = ap and o =« thus 5 < 0.

The embeddings of the weighted Sobolev spaces into the spaces of continuous functions have
been proved by R. C. Brown and B. Opic in [BO92]. To use these results, we set A = 02 as a
singular set and 2, = € in [BO92] on pages 282 and 283. Then the condition (A1) in chapter 3 in
[BO92] is satisfied with r(t) = d(t)/2 since

VteQ: B(td(t)/2) #2 andalso U B(t,d(t)/2) = Q.
te

For the Holder embedding we want to show [BO92, p. 292 (5.8)-(5.9) ] with definitions

C(Q; dP) = {u € ()

sup (@ (5)|u(s)]) < oo} ,

seQ
sup (a0 < oo}

CONQ;dP,d™ {U(t)}) = S u € C(2;d™)
SEU(t),s7#t

By setting {U/(t)} = {B(t, 1d(t))}, Bo = 0 = B1,7 = o — p we obtain the inequality

0251p>’y<1—2—)\>+a<z+>\):ap—p+n+)\p

which is satisfied with A <1 —a — 2. Hence the inequality [BO92, p. 292 (5.8) ] is strict and by
[BO92, p. 292 (5.9) and p.295 Remark 5.2] the embedding is compact

WP(Q;dP7P, dP) = WHP(Q;d* P, dY) —— C (1,1, {B (¢, 3d(t))})
and especially
Whe(Q) = CNQ)

since {1 is compact with Lipschitz boundary and u = 0 on 992 for u € W,"*(€).

@ Again, in the work of Opic and Kufner [OK90, p.275 (19.39) Theorem 19.11] we set x = 1, since
Q € C%! has a Lipschitz boundary, and put 8 = ap and a = . O

From these embedding Theorems, we can draw some conclusions. First, from Lemma @ @
for ¢ = p we get some simpler embedding

. lLa .
(103) Vy>—1:  WprHQ) << LP(Qd),
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and especially W,*(Q) << L?(Q). Furthermore, by taking u = 1 with a = 0, we observe that
the distance to boundary function d satisfies d” € L'(Q) for all ¥ > —1 while (2 has a Lipschitz
boundary. Likewise, as it is pointed out in [MMS10, p.208 (7.1)] from we can deduce that the
following norm in

W Q) S ues > 1D poqauaery + [l o)

laj=m

where w # @ is an open domain with @ C (), is equivalent to norm on W,"*(Q). It is shown
in Lemma [99)by using a weighted Poincare inequality proved in Lemma

In a similar spirit, one can investigate norm equivalence on spaces W"%(2). By using some
Hardy-type inequalities [OK90] Kufner has shown in [Kuf80, p. 91 Theorem 9.2] that the following
norm lacking all lower-order terms

1/p
(104 W (©) 3 u s (Z Dau’;pm;dw))

|a|=m

is equivalent to (T0I) on W;"*(Q). Furthermore, by using among other things the embedding
theorem in Lemma [27](), one can obtain one more equivalent norm. Especially, by [Kuf80, p. 94
Theorem 9.7] the norm (101) is equivalent to

1/p
W;na 9 U +— ( Z HDa Lp (Qd(a— m+a)p))

|| <m

on W, *“(€2). Moreover, the same Theorem [Kuf80, p. 94 Theorem 9.7] states that one can charac-
terize W, (Q) not only as closure of C°(Q2) but also as

W;n,a(g) = {u e Wb (Q) Z | D%u( Qsdla—mlalp) < oo} .

|a|<m

Regarding the trace theory of the weighted Sobolev spaces in Lipschitz domains, we use the
well-developed results in [MMS10, p. 208 Chapter 7]. In fact, we will first define spaces for traces
Tr[D%u] and then define spaces for Dirichlet data ng}j =D lal=k 5 v® Tr[D“u] in the sense of
for higher-order boundary value problems. Initially, we need to recall a definition of the Besov
space on boundary B,(0€2) with p € (1,00) and s € (0,1) depending on a

1
(S) si=l—a—-€(0.1)

consisting of functions f € L?(99Q) satisfying the following condition

1
p P
11l B30y = IlfllLr(a0) (/ /an o — y’n 1+Jp dSs dSy) < o0

where by dS we denote the surface element on 9. In fact, by [MS11, Lemma 1 p.39] B,(99?) is
a trace space of W1%(Q) in the sense that for a satisfying and s defined by (S) the operator
Tr : I/V1 Q) — BS(GQ) is well-defined, bounded, onto, linear, and has the homogeneous space

W,y () as its null space. Moreover, there exists an extension operator E : B, (99Q) — Wy (),
which is also linear and continuous and satisfies Tro E = Id.
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Now, we want to introduce higher-order Besov spaces on the boundary of a Lipschitz domain. Let
p€ (1,0),s € (0,1) and m € N then

BIT—HS((?Q) := closure of {(D%v|90)|a|<m—1 |ve CP(R™} in B,(09).

The trace and extension theorem for B;;HH(aQ) and W;"*(Q) is proven in [MMSI0, Proposi-
tion 7.3]. It states for parameters a, s like in (pa)), (S) and Tr : Wy (Q) — B3(09) above, that there
ist a higher-order trace operator tr,,_1 : W,"*(Q) — B;T*HS(@Q) which is a well-defined, linear,
bounded operator, onto setting try,—1 u := {Tr[Dul},/<,,_;- Moreover, W,»*(€) is its null-space,
and there exists a linear continuous extension operator E : B;”_HS((?Q) — Wp"*(Q) such that
try,,—1 0o E =1Id.

Next, we have to discuss the space for the Dirichlet data, which differs from trace spaces like
B=145(90). So we understand the boundary data {g}o<k<m—1 in (89) in the following sense
[MMSI10, p.229 Theorem 7.8 (7.107)]: there exists an array (vector-valued function)

: e A
f=A{fa}ja)<m-1 € By 1+5(9Q) suchthat g = Z i foforeach0 <k <m —1.
la|=k

Then by W;%—lﬂ(ag) we denote the set of families {gx }o<r<m—1. We also set the corresponding
norm [MMSI10, p.223 Theorem 7.8 (7.78)] by

||9||ng—1+5(ag) = Z HfaHB;,'(aQ)-

o] <m—1

There are corresponding trace and extension results for this space shown in [MMS10, p.223 The-
orem 7.8]. Therefore, there is a well-defined, bounded Tr,,—1 : W,"*(Q) > u — {%}0 <hem_1 €
Wm=1+5(0Q) with right-inverse Ext,,—1 : W 175(9Q) — W,;"*(Q) that is also well-defined and
bounded linear operator that Tr,,—; o Ext,,—1 = Id. In this context, the most important fact for us
is that the null-space of Tr,,_; consists precisely of functions in W (). Hence

ok

(105) Wi (Q) = {u € W (Q) ‘ o

:()oanorng:gml}.

By [MMS10, corollary 7.11] the space WI}“((?Q), which we only need to in our case m = 2, has
actually a rather simple form. For its description, we introduce the tangential derivative

o _,9 9
aTjk T J&xk kal'j

Then the tangential gradient on the surface 0<2 is given by

- 0 0
(106) Vian := Zujajjk V-
J=1 1<k<n
This enables us to define Sobolev spaces of order one on 02 that is important for the case m = 2,
which we will use later. Let p: I — 0 parametrization by arclength, then for 1 < p < oo we

define

Ly(09) == {fopeW"P(I)] 1 llzyo0) = [1f | zr0) + | Vianf |l r o) < o0}
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Finally, by [MMSI10, p. 232 Corollary 7.11] the space WI}“’@Q) takes the shape
(107) W, *(09) = {(90,91) € Ly(09) & LP(99) [ vg1 + Viango € By (09) }
with the corresponding norm
lgllviz1+2 o) = l9ollBz00) + V91 + Viangoll 3 (90
where p € (1,00) and s € (0,1).
Since we have defined weighted Sobolev spaces and spaces for Dirichlet data, let us revisit the

inhomogeneous Dirichlet problem (39) for an elliptic operator A

> DY(Aup(z)Du) =F forz e Q,

(inD) |oe|=|B]=m
oFu
781/’“:9’6 ond), 0<k<m-—1.

with right-hand side 7 € W, ™%(Q), and boundary data g = {g}o<k<m—q € W7 1+5(09).
Solvability and uniqueness for in the weighted Sobolev-Besov setting has been shown in
[MMSI10, p. 169 Theorem 1.1] under some further assumptions on the Lipschitz bounded 2 and
the elliptic bounded coefficients A,3. It can be found in Proposition 28| In order to formulate the
last condition, we have to define the BMO modulo VMO character of a function f € L'(2) by the
quantity

o= (izgf o el = 1] dy)

where B (t) stands for n-dimensional open ball with the center ¢ and radius ¢. Similarly, we define

{f}x00 == lim (Sup ]Z ][ |f(a:) — f(y)‘ dsS; dSy> .
=0 \ted0 J Br(t)noQJ Br(t)non

Now, we can state the existence and regularity result in the weighted Sobolev setting.

28 Proposition

Let @ C R"™ be a bounded Lipschitz domain with the exterior normal vector v and Aqg,|a| = |B] = m
bounded measurable coefficients of an elliptic operator L in the sense (36). Further, suppose p € (1, 00) and
s € (0,1) with a := 1 — s — 1/p according to as well as F € W, "™*(Q), and Dirichlet boundary data
9 = {grYo<k<m—q € W) 15(0RQ). Then there exist a constant C111 > 0 depending only on Q and the
ellipticity constant of L such that if

(nuA) {V}eo0 + Z {Aapten < Crns(l —s) (pz(p —1) s (1 - 5)_1)_1

la]=[8|=m

then there exists a unique solution u € Wy "*(Q) to the inhomogeneous Dirichlet problem (inD)). Moreover,
there exists a constant Ct12 = C112(02, Ang, p, s) such that

lullwey < Curz (lglhigre=omy + 1 F oy ) -

Proof: Theorem 8.1. on page 233 in [MMS10]. O
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It is possible to replace the technical condition with some directly involving BMO and
VMO spaces. Which stand, respectively, for the space of functions of bounded mean oscillations and
its subspace of functions of vanishing mean oscillations considered either on 0f2 for v or on 2 for A,g.
More precisely, we call f € L (Q)a BMO(f)-function if

loc
(108) 1]l o= sup ][ f(x) - ][ F(y) dy
te22J Br(hna Br(1)nQ

which becomes a norm on this space after dividing out constant functions. We define the space
VMO(€?) consisting of functions f € BMO(f) satisfying
da:) =0.

lim <sup oo l@-f o fwa
=0\ teQ J Br(t)nQ Br(£)NQ

This space is discussed in detail by [Sar75]. The spaces BMO(0f2) and VMO(912) are defined in the
same way by replacing in the formula above 2 with 9. One of the basic properties of VMO(£2) or
VMO(01?) is that it includes uniformly continuous functions that are bounded in €2 or 0f2.

If we now denote by dist (f, VMO(Q2)) for an arbitrary function f € BMO(?) its distance to
VMO(€2) measured in the BMO norm || .||, then it follows the equivalence dist (f, VMO(Q2)) ~
{f}«,0. With the same results for 92 we can reformulate the condition as

dr < >0

dist (v, VMO (9) + >_  dist (Aap, VMO (2)) < Cs(1 = 5) (p*(p — 1) +571(1 = s)_l)_l,

la|=[8]=m

Consequently, if v € VMO(02) and A,3 € VMO(?) for |a| = |3] = m the condition (nuA)
is fulfilled for all values p € (1,00), s € (0,1). This is especially the case when 952 € C! and
Ao‘ﬁ € C%Q) for |a| = |B| = m. The same inequality isalso Vaﬁd if |||« +Z|a[:|6|:m | Aag|l
is small enough. Regarding the regularity of the boundary, we notice that depending on p, s one
can achieve ||v||, small enough by allowing only a sufficiently small Lipschitz constant for the
boundary. As noticed in [MS11), p.43], some examples with ||| small enough are Lipschitz graph
polyhedral domains with dihedral angles chosen sufficiently close to 7, depending on p and s. It
means that the Lipschitz boundary makes only small kinks.

In the case of the Lipschitz class boundary, there is also a generalization of Miranda’s maximum
modulus Theorem proved by Pipher and Verchota in [PV93].

29 Proposition (Pipher, Verchota)

Suppose Q) C R", n = 2, 3isa bounded Lipschitz graph domain. Moreover, let u be the unique L*-solution of
(B5) for A%u = 0 with the given Dirichlet boundary data go € L3(00), g1 € L*(99Q) and |Vu| € L>®(9).
Then

sug [Vu(z)| < C113| Vull o (a0)
pAS

with C113 depending only on the Lipschitz structure of 0S.

Proof: [PV93, p. 387 Theorem 1.2]. O

Like in the unweighted Sobolev setting, we need some preliminary estimates. The following
one concerns a general biharmonic problem with a divergence right-hand side. Furthermore, in
order to be able to use weighted embedding result Wﬁ Q) —— CHQ) by Lemma@, we have
to restrain the distance weight powers toa < 1 — ]%.
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30 Proposition
Let Q C R? be a bounded Lipschitz domain with exterior normal vector v satisfying (nuA). Furthermore,
assume thatp > 2, p > t > 2+p a0 <a<l—2 zmd hy € LY(Q;d*™), hy € LP(Q;dP) as well as

9= {90, g1} € W}5(09) such that go,vg1 + Vtango € L>®(0N) withs :=1—a— %. Then the following
Dirichlet problem
A%u=Dihi + D%hy  in Q,
(109) b
W:gk OHOQ, ng/’gl,

admits a unique weak solutionu € Wp2 UQ)NCH(Q). Moreover, there exist constants C114 = Ch14(p, t, a, 052,
Cii5 = 0115((1, 89) such that
ullyyzaiy < Crrzllglhiptes oa) + Caa (I1halle(iazary + 1hall Lo(@iaer)) -
1D%ul| 110,40y < Crisllvgr + Viangoll (o) + Ciaa (1Pl pesazery + I hall Lo (saar))
IV ul| Loyt < Crisllvgr + Viangoll e @) + Cria ([hall e uazery + [[h2ll o (ider ) -

Proof: Here, we want to incorporate the embedding lemma 27/ and Proposition 28| where we set
n = 2. In order to prove the C'(2) estimate, we split (I09) in two parts

Alw=0 in &, A%y =D;hi + D}y in Q,
k k
g;::gk ondQ, 0<k<I1, gyzzo ondf), 0<k<I,

@ We begin with considering v. In this situation, by definition (102) we have to check D;h} +
D}ihy e W, 2%(Q) = (W;,_G(Q))* Therefore, let ¢ € C2°(Q) and t' = t/(t — 1) the dual exponent
of ¢ then we obtain

‘/ wDhy dz| = ‘/ Dyhy dx
Q Q

by Hélder inequality. Now, what we have to show is the following estimate

g/ﬂ|D<p\d2“d2“!h1|d93 < IDell v (9200 1h ]| L (sa20)

(110) 1Dl @020y < Crtell Dl o -

Hence we have to check that the assumptions of Lemma @ are satisfied. First, we observe by
putting ¢’ — g and p’ — p in Lemma 27|() (here one hast to check ¢ > p, i.e. ' > p') that we get
the first assumption

2 2 2 2 2 2
I T IS
P PP

since t > HZ%GP > 2 . The second condition follows by additionally setting v — —2at’ in Lemma
®

—2at’  —ap’ 2 2 2 2
S T N T N )
t p p t p t

Therefore, we obtain the compact embedding W1 ~4(Q) > L (Q; d~2%") and the estimate (T10)
follows. Next, we consider the hs part. Again w1th some ¢ € C°(12) we conclude

= ‘/ D?*¢hy dz
Q

©D?*hy dz
Q

< /Q |D2pld=d ol dar < | D%l 1t gy gty 12 o aton).
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Combining two results, we get

(111) '/ng(Dihﬁ—kD?jhéj)dx

< H@lle;—a(g) - Cir ([l peiazary + 1R2l Le(csaary) -
. 0o . . < 27_(1 .
Since C2°(R2) is dense in W% (€2) the mapping

W;,’fa(Q) Su— /Qu(DZ-hil + D?jhéj) dz

lies in W, »*(2) with its norm bounded by a multiple of (||h1 || ¢ (quq2aty + | 2| Lo(0dar)) - Finally, we
use Proposition and obtain existence, uniqueness of a solution v € Wy"*(Q) to the homogeneous

Dirichlet problem as well as the W,*(2)-a-priori estimate. Moreover, since g ¢ = 0 on 02 for

0 < k < 1it follows by (105) that v € VVp2 “(Q) and we get the following estimate
lWllyize () < Cr12Cuas (I1hallLe(yazary + 1hall Lo(osaer)) -

By Holder’s inequality and boundedness of €2, we also get
ID*0]| 11(saey < Crag ([|Pall peqazery + [[h2ll o (qsaer)) -

Further on, sincep > 2anda < 1 — % we have the weighted embedding W2 Q) —— C1(Q) by
Lemma |2__7]@ Thus, we conclude

[vller @y < Cizo (171l £t (azaty + 1P2ll Lo (:d09)) -

@ Now, let us turn to the biharmonic Dirichlet problem corresponding to w with inhomogeneous
boundary data. Here, we again are making use of Proposition[28/and get existence and uniqueness
in W2“(Q) as well as

Hw”wgwa(g) < OHQHQHWZ}+S(8Q)'

The following L*-gradient estimate involves Proposition[29](the Agmon-Miranda maximum mod-
ulus estimate) proved by Pipher and Verchota for Lipschitz domains. To be able to use this result,
we have to relate Dirichlet boundary data g € WZ}“(BQ) to the space W AL>(99Q) (for notation
see [PV93]]). First, we observe, that by [MMS10, p.230 Corollary 7.10] there exists an array in
non-Dirichlet trace space f € B;*S@Q) such that

go=fo, g1=vfi and fi =vgi + Viago

and by trace Theorems Tr(u) = go, Tr(Vu) = fi = vg1 + Viango. Now since gy € Li(09), g1 €
L1 (99) then Proposition 29| yields

[Vwl| oo (@) < Cr13llvg1 + Viangoll Lo (90 -

@ Next, we use the result that the maximal function dominates square functions in L? [DKPV97,
p.1455 Theorem 2] and get

[ 1D ds < Crar [N (V0 ds < ol T oy

Q Gle!

where N (Vu) is the non-tangential maximal function of a function Vu on boundary.
[ 1D @i @) ) da

since due to a > 0 we have 2a — 1 > —1. Finally by combining the above results, the proof is
complete. O

< 0123||Vw”Loo 09) * / d**1dr < o
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Similar to the unweighted case, in the following Lemma, we take some preparatory steps
needed to applying a fixed point argument.

31 Lemma
Let p € (2,00),a € (— 11— f) and i,j,0,k € No,i > 1,k > 2 then there exists a constant Cyoy =

C124(Q, p, a) such that zfu € W,? *() with ||Vu| ooy < 1 then it follows
[D*ux D*ux Q77 Pi(Vu)|| oo ouory < Craall D*ull Lo guaem IVt £ 0

(112) 5 7 e 5
[D?ux Q77 (1+ Q)" Pe(Vu) HLP (dory < Cr2a][ D7l Lo(auaer) | Vul| oo o)

Furthermore suppose w € Wp2 Q) with || Vw|| o) < 1 then it follows
HDQU* D*ux Q79 (u)P(Vu) — D*wx D?w Q7 (w)Pi(Vw)‘

(113) o o L2/2(E)
< Craafju — wHWvaa(Q) (”D u”LP(Q;daP) + D wHLP(Q;daP)))

as well as

| D*ux Q77 (14 Q) (w)P(Vu) — D*wx Q7 (1 + Q) (w)P(Vw)|| ., (dar)

(114)
< Ciaullu — wlhyyz gy (190l e + IVl ey (Illyzagy + ol ) -
Proof: In the same way as in Lemma O

We are now equipped to prove the existence of the weighted Wz (€2) solution for the rewritten
Willmore equation

(115) k
gﬂ:gk ondf), 0<k<I1,

with the right-hand side given by and some boundary conditions g := {go, g1} lying in the
Dirichlet boundary space W, "*(99) characterized by (107)

{A% = Dibi[u] + DZby[u] forz € Q,

W, T5(09) = {(g0,91) € L,(09) & LP(09) | vg1 + Viango € B(09)}
with boundary functions space

Ly(09) :={fopeW"P(I)| 1fllzyo0) = 1 fllzra0) + I Vianfll Lran) < oo}

and tangent gradient (106) Vian = V — -2. Moreover the term vg; + Viango will play the role of
Vu at the boundary. Subsequently, in Corollary B3} it will be shown that boundary condition data
belonging to the C1*“ class can be accommodated within the more general space WHS (0Q).

32 Theorem
Let Q C R? be a bounded Lipschitz domain with exterior normal vector v satisfying (@uA). Furthermore,

assume thatp € (2,0),a € (O, 1 —]%), aswellas g := {go,91} € WI}J“S(@Q) such that go, vg1 + Viango €

L>*(09Q) withs :==1—a — %. Additionally, we suppose that \|g\|WZ}+S(3Q) < K for some K > 0.
Then there exists a constant § = 6(§2, K, p, a) > 0 such that if

Hl/gl + VtanQO”[po(g) <46

then there exists a weak solution u € Wg"(Q) to the Willmore-type Dirichlet problem, thus u solves (T15)
with the right-hand side (60).
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Proof: We use the usual steps to apply a fixed point argument.
@ Definition of the iteration map & set

We define the iteration map G by setting Go for each v € W;7*(Q2) as the solution w € Wy"*(Q) to
the boundary problem

A%w = Dibi[v] + D3bJ[v] in Q,
(116) O

m:gk OH@Q, 0§k§1

Existence, regularity, and uniqueness are provided by Proposition
Sincea < 1— 2, wesetq € (12;,p) by ¢ := 3(12; +p) Then we observe thatby ¢ > 25 > 2it
followsa < 1 — % and thus the space qu () (with the same a as in Wp2 “(Q)!) is also well-defined.

Moreover, since 2 is bounded Wy (Q) << W2*(Q) by Hélder’s inequality. Further on, we define
the iteration set

Vul|peoioy < 2C1130, ||D%*ul| 11 q.gay < 2C115(a, Q)8,
= e[S <20 [ <0

S 20112(p7 a, Q)K

HUHWI?*G(Q)

with 6 > 0 some constant, which will be specified by several conditions that we will state in the
following.
First we observe, that there exists a power v := %% € (0,1) such that we can interpolate

117) 1Dl ageraen < 1025 T D2l oy
We formulate the first condition by
(WC1) 2C11301 < 1,

hence for all § < §; we get [ Vu| 1q) < 1forall u € M thus we can use the results in Lemma

@ G is a self-map
Suppose w € MXE. In order to prepare us for the application of Proposition we need to discuss
the possible ¢ values for the b; term. Actually, we want to justify that we can put ¢t = £. Therefore,

while0<a<1-— % it follows 1 < @. We deduce

2p B P
<2—ap+p_1 p(1—a)
+ B

(118) 1 <§:t

By Proposition 30|and ||w|| () < 1 as well as the condition (WCT) for Lemma 31| we conclude

[Gwll 2.0y < Crizllgllypres ga) + Craa ([101[w]ll o/2(qqer) + [[b2w] | Lo (0;d00)
» () p(09)

< Cha(p,a, Q) K + Cias (HDQMHiZ)(Q;dap)HVU)HLOO(Q) + HD2wHLP(Q;dap)HV'UJHLOO(Q)>
< Ciia(p, a, Q) K + Cu26(2 p, a) (K5 + K0).

Thus, we impose the second constraint on § by choosing d2 such that
(WCZ) 0126(Q7p)(52K2 + K(52) < 0112(]77 a, Q)Ka

and from here on consider only ¢ € (0, d2). It follows that |]Gw||W§,a(Q) < 2Cn2(p,a, D)K.

The corresponding W, *(Q)-estimate is similar. Hence, we conclude

ID*Guwll 1 () < Chas(a, Q)3 + Crar (HDQU}Hiq(Q;daq)“Vw“L”(Q) + HDQwHLq(Q;daq)HVU}HL""(Q))
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< C115(a, Q)0 + Cras(Q, a) (677 K7)? 4 6177 K)6.
We now state the third constraint by choosing d3 by
(WC3) Cias(,a) (037K + 65TK") < Cria(g, 0, Q).
It remains to consider the gradient estimate. Again, by Proposition[30|and Lemma [31]it follows
IV(Gw)||lL= @) < Cuislvgr + Viangoll L= (a0) + Cr1a (Hb1 [w]ll ar2(0yqeay + 102 [w]HL‘I(Q;daq))
< C1130 + C1a8(Q, ¢, a) ((6177KY)? + 617V K7)4.
Therefore, we set the fourth condition by
(WC4) Chas(, q,a)((6; TK")? + 0, TK") < Cs.

Combining the above results yields that the map G: MY — MZE is a self map for all § smaller
than 51, 52, 53 and (54.

G is a contraction
The last property we want to verify is the contraction property, thus forall u, w € Mg( the difference
between Gw and Gu has to be bounded. First, we notice that Gu — Gw is a solution to the following
problem

A*(Gu — Gw) = D; (b[u] — bi[w]) + DF (b5 [u] — b5 [w]) in Q,

in the class W, (). In the same way as in the previous step, we want to use again the Proposition
BOjand [|w]| oo () < 1 with Lemman 31} In preparation, we observe that by (118) we are able to choose

some t > 0 such that max

} <t < §. Especially, we put t := %max{ 2p } + L as

2— ap+p’ 2 2—ap+p’ 2

the arithmetic mean. Therefore
IGu = Gullyy2e gy < Craalp,t, Q) (lbru] — br[w]ll Leoiazer) + [Ib2[u] = ba[w]l|o(0iaer)) -
At this point, it makes sense to estimate each part separately. We begin with the b; terms

Hbl[ — bi[w HLt Q;d2at)
2,12 2 2
< Cratllu = wlyzeiq) (D220 gy + D200 )
< Crog|lu — w||W2 a <HD2u||Lq(Q :d9a) ”DQUHLp Q;dpa) + HDQUHLq Q;dae) HDQUHLP(Q dpa))

with a > 0 by Lp—mterpolatlon since we have chosen 2t = ag + (1 — a)p to lie strlctly between ¢
and p. While (u — w) € Wp*(€2) << C(Q) and for Q bounded W;"*(€2) < W2*(2) we get

|b1[u] — b1 [w]HLt Quazaty < Cusollu — wlly2a )(51_71(7)2‘1}(2(1_&)-
We continue with the by-term
B[] — bafw] HLP(Q;dap)

< Ciaallu — wHWE’a(Q) (HVUHLOO(Q) + ||Vw||L°O(Q)) (HUHWE’“(Q) + ||w||wgﬁa(9)>
< Cisi|lu — wHsz,a(Q)éK.
We combine the both estimates and obtain for some constant C32 = Ci32(p, a, )
1Gu — Gul|yy2.0 () < Cra2((8' TR0 K29 L 5K ||u —

wHWI?,a(Q) .
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Hence, by setting 05 = 05(p, ¢, K, 2) such that

(WC5) C32((65 VK2 K207 + 65 K) |lu — wllyen(q) <

N =

we get the final condition on §. For each § < 05 satisfying all the previous constraints (WCI),
(WC2), (WC3), (WC4) we obtain for all v, w € /\/lg(

1
|Gu — Gw||W§,a(Q) < §Hu - wHWE’C‘(Q)'

Therefore if we put § < min{d, d2, d3, 64, 65} then G is a contraction on ./\/lg{ .
@ Making use of the fixed point theorem
Finally, we combine all conditions (WCT),(WC2),(WC3),(WC4) and (WC5) on §

(119) 0 < & < dy := min {51,52,53,54,55}

and use Banach fixed point theorem to get the existence of a unique fixed pointu* € ME C W (Q)
such that v* = Gu*. Therefore u* € VVp2 “(£2) is a solution of the Willmore equation in W,? ().
O

33 Corollary
Assume that @ C R, a € (0,1),8 € (0,a),00 € C'*2 gy € CH(0Q) and g, € C¥(09). Addition-
ally, we suppose that ||go||c1+ea0) + [|g1llce@o) < K for some K > 0.

Then there exists a constant § = 6(«v, 3, K, ) > 0such that if || go|| 1 (a0) + 1|91l coan) < 0, then there

exists a weak solution u € CA(Q) N W,if/ (=5)(Q0) to the Willmore-type Dirichlet problem, therefore u
solves with the right-hand side (60).

Proof: Let s € (3,a) that will be specified later. At the beginning, we want to prove that
C(02) —— B;(09) for each p > 2. Let f € C*(9Q) then we make a use of Besov norm
definition

1
|fx) = f)|” r
1 Bso) = I1flLr(a0) + (/[m /39 Wd& ds,

1
swamufucom)+(/ / rx—yr-lﬂa-@pdsxdsy) | Flleom < 00
o0 J O

since a — s > 0 and 9 € C'T*. Furthermore, v € C*(99Q) yields Viango € C*(9€2) and moreover
go € L}(09). Hence, with g; € C*(99) it follows vg1 + Viango € Bj(9Q) with

[v91 + Viangoll Lo 90) < C133(0Q) (llgollcra0) + lg1llcooay)

and we conclude that g := {g0,91} € WI}“(&Q).
In order to use Theorem 32{we recall the possible valuesof p > 2and 0 < a:=1—-s5— % <1-
Thus we have to choose p later in the range of

2
>

(120) E < min (s,1—5).
p

Under this condition and boundary data constraints, we obtain u € Wg “(€2), the unique solution to
the Willmore problem (74) with the right-hand side (60). It follows in particular that u € W2?(9).
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Now, let w € W;*(£2) be solution to the biharmonic equation with Dirichlet boundary data

A2w =0, in Q,
w=gg, Oyu=gy on .

then by [GGS10, Theorem 2.19 p. 45 | we have the following Schauder estimate
[wlcr+e@o) < Cizallgollcr+a(an) + Cissllgollcaan)-

Furthermore, by Lemma ()withA=1—-a— % =5— % we can use the compact embedding

W29(Q) o O3 (Q),
For the purpose of the right Holder power, we set the parameters

1 2
S_

5= %(OZJFB) and p:=

@™
Q
|
@

Then we check that the condition for p in (120) is fulfilled
1 1 1
-—=s5s—f<s and -=_—-(a—-f)=a—s<1-—s.
p p 2
Therefore, with w — u € W*(92) we obtain w — u € C**#(Q) and
[Jw — “Hcﬂ%@) < Chgellw — UHWE*‘L(Q)’

Consequently, we get u € C1+8(Q) N Wg/%;fﬂ)(ﬁ) Therefore u € VVli’CQ/ @=8)(q).

5.5 HiIGHER REGULARITY

Due to some structural properties of the Willmore-type equation (57), via bootstrapping it is actu-

ally possible to show that, despite using lower regularity spaces C*2(Q), W2?(Q) and'Wg “(Q),
the solution u is smooth in 2. Moreover, if the Dirichlet data has more regularity than I/VlerS (092)

then the solution u has as much regularity as allowed by trace theorems, thus up to the boundary.

At this point, let us recall the Willmore equation (57) described in Lemma(18|as
1 |Vul? Vu(D?*uVu) ViuV u
AgH + -H? —2HK = A>u— A | ———A — | -D? o H
T o= gnigtt i\
H? H AuH
= A%y — Db [u] — D%b;ﬂ [u]

with @ = /1 + |Vu|? and the divergence structure

3
bifu] = D*ux D*ux Y Q> Py_1(Vu),
k=1

2
bo[u] = D*ux > Q2 1Py (Vu) + D?ux Py(Vu) x (Q(1+ Q).
k=1
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The basic idea of how to gain more regularity is to combine the biharmonic operator with the b,
terms to a new elliptic operator L y,) depending only on Vu defined later such that we deal with
an equation of the form

Ligyw =V - P.

where for some miltiindex oo we will mostly put D®u in the place of w and P corresponds to some
right-hand side in divergence form. Moreover, in the case of w with vanishing trace, the wap
norm of w can be bounded by the L?(Q2)-norm of P, as observed in Proposition 23| for ¢;. This will
improve interior regularity from W?2? to W37, the idea that we can successively use for derivatives
of any order.

Now let us define

YVul? Vu(D2wV V,uV; A Vu(D?wV
L(V“)w:Azw_A<Q’<1fQ>A“ U(Q;U U))_D’Zj( szu(c;‘ . o U))>
= Y D*(Aap(Vu)D’u)

laf,|8]=2

Especially, in case w = u we get Liy,yu = A%u — D?jbéj [u]. Moreover, let N By, be the non-
biharmonical part of Ly, such that Ly,w — A?w = D2N B(vuw]. In particular, it has the
form

9 ij _ Vul? Vu(D?*wVu)
D (NBR,,lw]) =-A (Q(l - Q)A w5
_p2 (Viuvju (Aw B VU(D2wvu)>> .
Q? Q Q3
Again in the case w = u we get N B(y,,)[u] = —bz[u].
Next, let us discuss ellipticity. For each ¢ = (£, &) € R? it follows

Vul? 2(Vu-€)?  (Vu-&)*
Y e (Aap(Vu)elel?) =(I—Q‘(li'@)<11512>2—2”§” Ttk Bt

|, |81=2
Q =
thus for each u € C*(Q2) the operator Ly, is strongly elliptic.

In more detail, the main idea is to formally rewrite the Willmore-type equation such that for
each multi-index vy with |y| € N order derivative

(121) LivuyD"u = D;(P.[u])

with P,[u] = P,(D"*2y, DN*1y, ... Vu) a polynomial consisting of derivatives of order up to
17| + 2. Especially, Pi[u] = b%[u]. Hence for each 7, the structure of such polynomial has to be
described more precisely. Such P, involves higher derivatives of b; and by, where we have to
subtract some terms associated with L(y,).

We can reconstruct the structure of P, [u] in the following way. We formally m-times differen-
tiate the both sides of the Willmore-type equation A%u = D;b[u] + D%bY [u] and obtain

(122) A*DVu = D; Db} [u] + D} D76 [u].

Therefore, we conclude by definition of Ly

1l i
LigwDu = A*D"u+ D}, (NB(V (D)) = D;Db[u] + D2 (Db [u] + NB(V \[D7u])
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_ D, (D"/bi [u] + D; (D05 [u] + NB,,, [DM])).

Thus we set

(123) Pi[u] := Db} [u] + D; (D65 [u] + NB{

('W) [D7u]).

In the following lemma, we will observe that in D bgj [u] + N BZ'J'Vu) [D7u] all terms that include
D? D7y cancel out. The reason is that by product rule the only possibility to get the D7 D?u-terms
by differentiating bs [u] |v|-times is to differentiate all D?u-terms in bg [u] |y|-times (all other terms

have lower order). This is equivalent to replacing all D?y-terms in bé] [u] by DY D?u-terms. In fact,

the resulting term is by definition equal to —V szvu) [DYu]. This is important because otherwise,

we would have to move these terms from the right-hand side to the operator Ly,). The remaining
terms give us P, [u] for which we derive some preparatory estimates.

34 Lemma
Let Q C R" be a bounded domain with C™ 4! boundary, m € N,m > 2,p > 2,u € W,"*(Q) and vy a
multiindex with |y| = m — 2.

Then there exits a constant Cy37 = C37(m) depending only on the algebraic structure of by and by and
m such that

form=3: |Py[u]| < Ci37(3) (|D3u| .| D%u| + |D2u\3) ,
form=4: ’P,Y[UH < Ci37(4) (|D*u| - |D*u| + | Du|?* + | D3ul - |D?ul* + |D2u]4) .

If m > 5 then it follows with some constant C'3g depending on a, p, m, ) and the algebraic structure of
b1 and bQ

1Pyl o ey < Crss (liBygrngy + gy ) -

Proof: @ We begin with m = 3. Thus, we have to describe P, corresponding to Vu. Then for
7| = 1 weuse VQ ! = Q3D?u* Vu and get.

3 3
Vbi[u] = D3ux D?ux > Q 1Py 1(Vu) + D*ux D*ux D?ux ¥ Q2 Py_(Vu)
k=1 k=1

3
+ D*ux D?ux D*ux Y Q3 Py (Vu)
k=1
4

3
= D*uxD*ux Y _ Q' Py_1(Vu) + P3(D%u) » 3 Q2 Py_s(Vu).
k=1 k=1

Furthermore, we have to differentiate the corresponding bs[u] twice. First, since ||Vul|Q~! < 1 and
Q! < 1it follows

‘Vbl[u” < C139 (\Dgu\ . ’DQU‘ + \D2u]3) .
In a similar way, for ba[u| we first calculate
- 2 3
Vb3 [u] = D*Vux Y QP Py(Vu) + D?ux Dux » Q> Py_1(Vu)

k=1 k=1
+ D?Vux Py(Vu) % (Q(1 + Q) ™! + D*ux D*ux Vux (Q(1 + Q))*

81



+ D%ux D2ux Ps(Vu) « (Q 3+ (1+ Q) + Q2% (1+Q)2).

At this point, we observe that the terms corresponding to N By, [Vu] are those with D*Vu-term.
Thus we conclude

3
VB lu] + VB, (Vul = Dhue Duw’ 3 Q% P (V)

(124) "
+ D?ux D*ux Vu* (Q(1+ Q))_l

+ D*ux D*ux P3(Vu) x (@ > (14+ Q) ' + Q2 (1 +Q)?).
Similar to by [u] we get

|V (V03 [u) + NBE,, [Vu])| < Ciao (|D*ul - [D?u] + [D%ul?).

@ For the case m > 3, we observe that |[VQ™!| = |Q73D?u x Vu| < |D?u|Q~2. Since in each
term of D7b; there are always more Q)'s than Vu's, by applying the absolute value later on, we can
skip the parts involving Vu and @). Furthermore, since all terms we want to derive have structure
given by a x-chain of derivatives

DNMH2y 4« DMLy w - % D2y Vux Q71

only by deriving Q! the chain gets an additional link D?u. Thus after applying the absolute value,
we get at most m-product of derivatives of order greater than 1. Hence, by skipping all Vu and Q
we get schematically,

D?by[u] ~ DYux D*u+ D3ux D3u+ D? « Py(D?u) + Py(D?u),
DYby[u] ~ D™ux D*u+ D™ ux Q1(D™ 2u,...,D*u) + Qa(D™ ?u, ..., D%u)

form = |y| +2 > 4 and Q;(Du, ..., D*u) stands for some polynomial consisting of derivatives
up to order 7. Moreover, ()2 has a polynomial degree of m and that of (), is lower than m — 1.

Furthermore, by embedding results in Lemma@ and especially for p > nand C™ 11
boundary of €, it follows

m,a m—1, m—2/0)
W4 (Q) == WTHP(Q) —— C™75(Q).

Hence, we can estimate ||u|| ~m—257 < Cra1l||w|lyyma0y. By combing the results we get
cm=2(Q) Wy (). BY & &

(125) 10761 [l oqaery < C (lalpgme oy + luligney) -

For the ba[u] estimate we first observe that DVbéj [u] + NB(yy)[Vu] ~ DV_lbij [u] again by skipping
Vu and Q. It follows

V(D765 [u] + NB(3,,, [Vul)

~ D™ux D*u + D™ tux P/(D™ %u,...,D*u) + Py(D™ ?u,...,D?u)

and we can conclude

(126) Hv(mb’; ) + NBE,, [Dvu])’ ey <€ (||uyy§m,a(m + Huug’;pm,a(m) .
We finish the proof by combining (125) and (126). O
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5.5.1 INTERIOR REGULARITY

In this subsection, we want to show that each solution of the Willmore-type equation is smooth
in the interior of Q. Our strategy is to demonstrate that if u € I/Vllécp(ﬂ) then u € W12 (Q) by

loc

using a bootstrap argument for the formulation with (123). We consider for each point in
a sequence of shrinking open balls in which we step-wise gain one order of regularity. One of the
main tools is the next lemma, where we show more regularity in a smaller inner open ball for the
operator L y,)w with divergence right-hand side. Especially, the assumption u € C! is important.

35 Lemma
Lett,s > 1, 29 € R", u € CY(Bar(z0)),h € L'(Bag(xo)). Furthermore suppose w € W**(Bag(w0))
with w - |D?u| € LY(Bag(wo)) satisfying

(127) L(Vu)w =Dh in BQR(l'Q)

then w € W3 (Bg(z0)) and the following local estimate holds

(128) HwHW&t(BR(a:o)) < 0142(Hh”Lt(B2R($O)) + Hw ) |D2U|HU(32R(IO)) + Hw”Lt(BQR(LBO)))'
with Clas = 0142(Vu, t, R)

Proof: Here we want to use the result in [ADNS59, Theorem 15.1” p. 707] for ¢ = 3 in order to
obtain inner W3 regularity. Thus we have to rewrite the operator L and (127)

Lgww =Y D™(Aas(Vu)D*?Dw) + > D™ (D (Aqs(Vu)) D’w) = Dh.
e, |8]=2 lo,|8]1=2
with |a;| = 1 = 4 — £. Next we observe that the estimate |VAO¢5(Vu) < 0143’D2u| holds. Since

the coefficients A,3(Vu) are continuous, by [ADN59, Theorem 15.1” p. 707] we conclude that
w € W3H(Bg(zo)) with

wlws.e(Br(ae)) < Cl42<||h||Lt(BgR(mo)) + H|D2U|WHU(32R($0)) + ||wHLt(B2R(:B0)))
so that the proof is finished. O

36 Theorem B
Assumep > 2,0 < a <1—2Landu e CY Q)N Wg’a(Q) is a solution to the Willmore-type Dirichlet

problem (115) with the right—haz;ld side (60).
Then u € C*(Q).

Proof: Here, we want to use Lemma 35|locally in €2 to show more internal regularity iterativly. We
begin by choosing an open ball in 2. More precisely, let z( € €2 then there exists d(xp) > 0 and we
can consider B ,,)(zo) C €.

@ Our first goal is to show that
Vs>23p>0: ue W (By(wg)) N W/2(B,s(x0))

by considering an elliptic equation for u, thus (121) with |«| = 0. We begin by observing that since
u € CHQ) N Wy*(Q) solves ([15) with the right-hand side (60), it follows u € CH(By(zp)(0)) N
W29 (Bysy)(0)) with

Liguwu = Dibi[u] in By (xo).
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In order to use Lemmafor this equation we chose 2R = d(z),t = p/2 then b, € LP/? (Bi(z) (0))
with

1011l 2o/2(By g (0)) < HDZUHLP(Bd(IO)(xo)) < o0.
Then, by u € C'*'(Byy,)(z0)) it follows u € W?”p/Q(Bd(QEO)ﬂ(:EO)) with

(129) lullwssrzs,,, o) < Cras(lbrlloz(s,e,, @) + ID%ul| Lo(By (o)) + ull o2 (B, 0g (20))

< 0145(HuHWZ’p(Bd(xO)(zU))) <0

where (45 and most of the following constants are also depending on Vu.

@ In this step, we want to discuss how to raise the integrability power to arbitrary powers. First,
we observe that by Sobolev’s embedding theorem it follows

forp>4: wue W3’p/2(Bd(x0)/2(m0)) — WQ’S(Bd(a;O)/Q(:I:O)) forall s > 1,
forp<d: uwe W3 A(By,) a(wo)) = W2H/APN(B 0 (20)).

where we observe that ; p > p for p > 2. Especially in case ;2 17-5P = 4 we can again apply the
arguments in step (1) w1th radius d(zp)/2 and get

u € W5 (By(ay) a(w0)) = WQ’S(Bd(xo)M(:”O)) foralls > 1.

Hence, we only have to discuss the case p < 4 and ; p < 4 where we can again use Lemma
like in step (1) with radius d(z¢)/2, t = 15 and obtam

2 2 2 \?
2,00(B — P
u € W=( d(xo)/4(x0)) for £ : 4_ prp 4—p > <4 _p> p

3
since 421” > p > 2. In case ¢y < 4 we repeat the same procedure and get ¢; > (ﬁ) p with

u € Wh (Bi(z)/8(0))- Thus, by applying Lemmaawfch on By(gy)/2i+1 (7o)

2

b=

fjfl, fOI'jZl,Q,...

at most In ( ) /In ( ) times one obtains ¢; > 4 for some k = k(p) € N. Hence
Vs >2:u€ W2’S(Bd($0)/2k+3 (Io)) N W3’S/2(Bd(m0)/2k+4 (xo))

@ In the following, we want to show that u is C' 2_smooth in some small ball, so that the estimates
in Lemma 34| for P,[u] involving D?u in some nonlinear manner become much easier to handle.
We set s = 2p and get with some p = p(s) < d(x)

u € W*?(B,(x0)) N W3’p(Bp/2(:c0)).

Therefore, by Sobolev’s embedding it follows u € C?(B,(z¢)) and we conclude for the results of
Lemma [34]in the case m = 3

Vb1 [u] + V (V65 [u] + NB(vu) [Vu)) HLP(BP(:J:O)))
< Cugr (ID*ull o s, o)) 10l o sy, + 1Dl a8, o)

< Cl46(||u||%/[/3,p(3p(xo)) + ||UH?§V3,p(Bp(xO)))-
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Actually, in the next step (4) we will also show that u € W*P(B,,5(x¢)) by iteration argument. For
preparation, we assume only for the next estimate u € W*P(B,, 5(x0)) << WP (B, 5(x0)) since
p > 2 and show by Lemma 4] for m = 4

1D%b1[u] + D(V85 [u] + NBRy Vu]) [ 1o ooy

(uww%ﬂoﬁum3%+uWh/mw)
> 147

s, ey 12020y, + D%l 5,

< Cuas (Iullivss, o)) + 16, ateop + [6llivancs, owon ) -

@ By induction on m > 3, we want to establish v € W™P(B,, 5m-2(x0)) by using step (3) and
Lemma (34 for the unweighted case a = 0 on B, /ym-2(7) and Lemma From now on, for any
fixed m > 3 assume that u € W (B, 5(x¢)) for m = 3and u € W"P(B,, om-2 (o)) for m > 4 and
let v be any multiindex with

[yl =m—2.

Our goal s to prove that DYu € WP (B, ym—2 (o)) satisfy the corresponding elliptic equation (121)
with (123). Therefore we can choose any test function © € C2°(B,/om-2(z0)) and set

v:=(-1)"D7%

and use it for the Willmore-type equation Lig,yu = D;bi[u]. Since by Lemma 34| D7b1[u] €
LP(B,jom—2(x0)) we get with A, as coefficients of Ly, and integration by parts

> /Aaﬁ (Vu)D*uD? (1) D7%) dz = —/ bi[u] - V(=)' D76 dz
Q
|, |8]=2
= / VDb [u]0 dz
Q
For the part with elliptic coefficients it follows

> /Aaﬁ (Vu)D*uD? (-1)"D%) do = /D’y Ans(Vu) D) DPo da
o, 81=2 lal,|8=2

= > / of Vu)DaDWu)Dﬁvdx+Z / (D63 [u] + NBY(Vu)[DVu)) D6 d
lal,|8]=2 1,j=1

Z /Aag (Vu)(D*DYu)DP5 dz — Z/V Dvb”[ ]—{—NBEJ )[Dvu])v 0 dx
lal,|Bl=2 i,j=1

where N By, represents the non-biharmonical elements of Ly, like defined in Lemma 35/and
V(DVba[u] + N By [Du]) € LP(B,j9m—2(x0)). Therefore, DYu € W)"~%(B,,j9m—2(z0)) solves

LgwD"u = D; (DV(bﬁ [u]) + V; (Db [u] + N B

L D7u)) = DiPifu)) - in Bypnes (o).

Then again by Lemmaand step (3) we get Py [u] € LP(B,,jom-2(10)) with
2 m
1Palulll o5, s oy < Cra0 (”“”Wm«p(Bp/Qm-zuo)) + H“||Wmvp<B,J/2m-z<zo>>)
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and by Lemmawe obtain that D7u € W3P(B,, (gm-1)(0)) with

2 m
HuHWztn’a(Bp/Qm&(ﬂCo)) + HUHWIT’G(B,,/szz(JCO)) )

| D7 ullwsr (5, s o)) < Cuaz
(B, m 1 (z0)) + 1Dl 1Dl

2 (20)) + ||D7u||Lp(BP/2m,2(;,;0))

Hence u € W)"(B,/om-1(x0)). By applying the same scheme to all m = 3,4,... we deduce
infinite differentiability in xq since W,™(B,,jom—2(x0)) << C™ (B, jam-1(x0)). O

5.5.2 BoOUNDARY REGULARITY

With a slightly different technique, we can also obtain higher boundary regularity in the case
Dirichlet data provides enough regularity.

37 Theorem
Letm € N, m > 2,and 92 € C™. Furthermore, assumep,q > 2,0 < a < 1—%andu € Cl(ﬁ)ﬂwg’a(Q)

is a solution to the Willmore-type Dirichlet problem (T15) with the right-hand side (60) and u—p € Wp*(Q)
with some o € W™4(2) N W% ().
Then u € W™1(Q).

Proof: @ At the beginning, we observe that by interior regularity Theorem 36{u € C*°(£2) and
moreover for all multi-index v we get

LgwyD"u = D;(P[u]) in €.

Subsequently, consider a biharmonical problem with boundary data given by ¢. Thus, let ug €
W™4(2) be the solution of the following problem

Livayuo =0 in
such that ug — ¢ € W"4(Q). Then we get the estimate
[uollwm.ai) < Cisollellwma)-
@ Consider first the case |y| = 1. Especially, since in €2:
(130) A*Vug + D*V(N By, [uo]) = VL (u) =0
it follows that
Livu) (Vo) = A’Vug + D*NB(yy)[Vug] = D?NB(yy)[Vug] — D*V (N Byy)[uo)),
where in the right side the terms with D>V, cancel out
Livwy (V) = Di(V(Oi[u]) + V5 (V6 [u] + NBE, [Vu]) ),
where on the right-hand side the terms with D?Vu cancel out. Thus we get
Liwuy(V(u = ) = Dy (V(bi[u]) + V; (V05 [u] + NBEL,) [Vu)))

- D? (NB(VU) [VU()] — V(NB(Vu) [UO])>

86



By (111)) from Proposition 30 and general weighted Sobolev estimate 28, as well as (124) we get
similar to the arguments given in interior regularity Theorem step (1) that V(u —ug) € sz/; (Q)
with

Hbl [U]HLP/2(Q;daP/2) + H|D2u|2HLp/2(Q,dup/2)>
< 0.

IV (u = o)l 20y < Cis <
P/Z( ) + H|D2’LL‘ . |D2UO|HLP/2(Q;d”‘P/2)

Then by weighted embedding Lemma 27|(4) we obtain

Vs <p: W, 5(Q) < L*(Q),

Hence it follows V(u — ug) € W25(Q).

@ In case g < p then we have it follows u € W?4(Q). Let us now assume that ¢ > p. Then we can
choose any s = 1(2+ p) € (2,p). Let us assume that s > 4, then it follows s/2 > 2 > 2/q2+1 = 22qu

and we can use unweighted Proposition 23| from Sobolev theory with ¢ = s and p = ¢ and get for

Liguy(u—ug) = Dibi[u] in Q
with u — up € W24(Q) the Li-estimate

lu — uollw2agq) < Csallbrlulllperzy < Ciss([lullwzs@) + [lu — uollw2s))

< Cusa([[ullyzaq + lullyza gy + lellwaa)-

That means u € W24(Q).
In case s < 4 by using the same iteration technique as in interior regularity Theorem 36| step
(1) to get with some k € N

: 2 .
[ = wollyze; ) < Cllu —uolly2ei1(q) withlo = s, £i = m&'*la i=1,....k
and either ¢, > 4 or £ > q. In both cases, we obtain u € W24(Q). In the case m > 2, we can
conclude like in Theorem [36|steps @ and @ iterative for each 2, ..., m. O

38 Theorem
Let m € N,m > 2, { = max{4,m} and 9Q € C*+*. Further, assume v € C*(Q) N W*(2) is a solution
to the Willmore-type Dirichlet problem with the right-hand side and Dirichlet data g = {go, g1}
such that go € C™ (99Q) and g € C™~1+2(0Q) for some o € (0, 1).

Then u € C™T(Q).

Proof: First, we observe that by Theorem 37|u € C>(Q2) N W™P(Q) for all p > 2. This means
u € C1IHB(Q) forall B € (0,1).

We continue with a biharmonical problem with g boundary data. Thus, let ug € C"™"%(Q) be
the solution of the following problem

L(VU)UO =0 in Q
up=go, 92 =g ond.

Then since u € C1T*(Q) by [ADN59, p. 680 Theorem 9.3] we get existence and Holder-estimate

[0l cm+a ey < Ciss (l90llam+aan) + lg1llom-1+a(aq)) -
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To obtain C™* regularity, with each multiindex v such that |y| = m — 2 we get

LigwD"u = D; (DV(bﬁ ) + V(D05 [u] + NBE,,, [DM])) in Q.

Let us first consider the case m = 2. Then, with the same calculation as in Theorem@ we get
for all p > 2 by Proposition 23] from Sobolev theory

IV (uo — w22y < Cusellbr[ulll o2

+ it || V(05[] — ¥ wol) + N B [Vl = NBE, (V|

< Ciss (lullw2r(e) + llgollc2+aa0) + 91l cr+ea0))
with Ci53 depending on Vu, €2, p. Thus for some s = 2p > 2 big enough we get

IV (uo — )l cr+agmy < CrsollV(uo — u)llwzsq) < Croo(l[ullwzsrzi) + llgollcz+aian) + [191llcr+aon))

< Q.

This means u € C*(Q).
Next, assume m > 2 and u € C™~172(Q)). Therefore using results from the proof in Lemma
we get for each multiindex v with |y| = m — 2

ID7u — Dol ooy < Cro1 D101 [0l gy

+ Craa [ DI (T OF [l — 6 [uo]) + N B, [Vu] = NBEL, [Vug])|

C*(Q)
< Cres (||ull gm-1+a@my + 90llomtaan) + lg1llem-1+a(a0))

hence u € C"™(Q). O
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6 ParaBoLiC THEORY

In this chapter, we study the Willmore flow initial boundary value problem with irregular initial
data by using time-weighted and unweighted parabolic Holder spaces (see [Bel79]). For graphs
on R?, it was already done in [KL12], where initial data was merely Lipschitz. Since we have
prescribed boundary values, to get continuity for ¢ \, 0 we have to make sure that the initial and
boundary values are consistent with each other. With C**“-regularity of initial data uo, only if ug
satisfies the condition

(uCC) 0= AF(UQ)H(UO) + 2H<31H2 — K) (up), on O

the solution of the Willmore flow will stay C*"*-bounded for ¢ \, 0. In fact, it is preferable
to avoid CQ), since the compatibility condition cannot be realized well numerically, and is also
not physically relevant, since like for biharmonic heat flow, irregularities are expected to smooth
out. First, we have to formulate the Willmore flow equation for the graphical case such that the
divergence structure is usable. Then, we linearize the parabolic problem by freezing coefficients.
Thus, one can use weighted and unweighted parabolic Hélder spaces estimates of the linear theory.
Then, one moves to the spaces with smaller Holder power and formulates a fixed point problem to
obtain local existence. The case of this C3T smooth initial data was already handled in [Gull7].
In this work, we want to use the same methods for C™% m = 1, 2 class ug.

6.1 WiLLMORE FLow

Like in the elliptic case, we again use the work of Dziuk and Deckelnick [DDO06, (1.5)-(1.9)] and Koch
and Lamm [KL12] for the Willmore flow of graphs. There, they have written the Willmore-flow
equation (3) for the graphical case as

(131) —% — AH+ %H?’ _2HK = div (é <<I - V“S;“) V(QH)) - %VU) ,

with the mean curvature in the form

. (V A Vu - (D*uV
Hoa(G) -G T

In this chapter, we are searching for the maximal existence time of the Willmore flow problem:

8tu+Q{Ap(u)H+2H<iH2—IC>} = in Q x (O,T],
(WF) u(z,t) = go(x), (x,t) € 9Q x [0,T],
%(ac,t):gl(x), (x,t) € 9 x [0, T,
{ u(z,0) = up(z), req

where we have to mention the corresponding compatibility conditions (CC)

0
€ g0 =uo(a), gi(a) = F(@), z €00

89



and for ug € C*(Q) and u(t,.) € C4*(Q) for t \, 0. Further, we want to split the
right-hand side of the Willmore flow equation in two different ways. To present these parts more
clearly, we again use % notation from [KS01] and [KL12]. These denote a linear combination of
tensor contractions for derivatives of u. With the results out of [KL12, Lemma 3.2 p.215] we denote

(132) Pi(u) =VuxVux---xVu.

i-times

Especially in this notation, the Willmore flow equation takes the shape
(133) Oru+ A% = folu] + Vi filu] + D% £ [u] =: flu]
with right-hand side terms
4
folu] = D*ux D*ux D*ux Y~ Q > Py_5(Vu)
k=1

4
(134) filu] = D*ux D?ux > Q * Py,_1(Vu)
k=1

2
fa [u] = D?%u * Z Q‘Qkng(Vu).
k=1

Next, we want to split the Willmore flow equation in another way into two parts. One is linear
in the fourth-order derivatives, and the other is a polynomial of derivatives up to the third order.
For the linear part, we have to prove uniform ellipticity. It can be shown that

(A) QArwH +2QH (11{2 — IC) = L(Vu)D* + R(Vu, D*u, D3u).

with the operator

L(Vu)D*u= Y Lp(Vu)dy, 0%, u

T “x2
k+0=4
where the coefficients are
Lio(Vu)\ © (1+u2,)? !
L3 (Vu) 1 —4(1 + U2z U Uy
(L) Lkg(VU) = LQQ(VU) = @ 2(1 + U§2)(1 + Uil) + 4u§1u52
Li3(Vu) —4(1+ uilz)uglurz
LO4(Vu) (1 + ’U,zl)

With this explicit representation, it can be proven that L(Vu) is uniformly elliptic provided its
gradient is bounded.

39 Lemma (Ellipticity)
Let u € CY(Q), then with ¢ = (&1,&2) € R2:
1
alélt < D Lre(Vu)eres < 4lel.
(1 + ||VUHCO(§)) k+0=4
Proof: [Gull7, Lemma 6.6] O
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The polynomial term R contains monomes of derivatives and 1/Q?. If these contain D3u, then
only linearly and in combination with up to one D?u. If a monom does not contain any D3u, then
it includes up to three D?u. With ([34) and D(Q %) = D?ux Vux Q2+ it results

R(V u, D*u, D3u)
= — folu] = Vifilu] — D2 £ [u] + A*u — L(Vu)D*u

4
= D?ux D*ux D*ux Y Q> Py_»(Vu)

k=1
4
+ D | D?>ux D%*ux Z Q% Pyy,_1 (V)
k=1
2
+D? | D*ux > Q% Py (Vu)| + A%u— L(Vu)D'u
k=1

4
= D?ux D*ux D*ux Z Q% Pyj,_o(Vu)
k=1

4 4
(R) + D3u* D?*u % Z Q % Py,_1(Vu) + D*ux D*ux D*ux Z Q2K+ Py (V)
k=1 k=1

2 3
+D | DPux > Q *Py(Vu) + D*ux D*ux Y Q *Py_1(Vu) | + A’u — L(Vu)D*u

k=1 k=1

5 4
= D?ux D?ux D*ux Y Q > Po_5(Vu) + DPux D*ux > Q * Py_1(Vu)
k=1 k=1

2 3
+ D¥ux D?ux y QM Py s (Vu) + D¥ux D*ux Y Q FPy_1(Vu)
k=1 k=1

3
+ D%*u* D*ux D*u Z Q_Q(Hl)sz(vu)
k=1

4 4
= D%uxD*ux » _ Q% Py_1(Vu) + D*ux D*ux D?ux »_ Q*FT Py (Vu).
k=1 k=0

We collect the above results to the following lemma.

40 Lemma
The Willmore flow equation (131)) can be rewritten as
1 Vu® Vu H?
—up =Qdiv (= ( (I- =2 ) V(QH) ) — ==V
(135) = Qdiv <Q (( Q2 > @ )> 2Q u)

= L(Vu)D% + R(Vu, D*u, D3u) in Q x (0,7

where L and R are given by (L) and (R).

6.2 ParaBorLic HOLDER SPACES

In this chapter, we treat the theory of classical solutions of parabolic differential equations of fourth
order. For this purpose, we will deal with parabolic Holder spaces. Therefore, for these spaces,
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we recall the existence and uniqueness theorem for fourth-order parabolic differential equations
with the Schauder estimates.

Just as in the case of the elliptic differential equations, we have to switch to the Holder spaces
for optimal regularity. There, however, one should treat the time and place components separately
because the problem behaves asymmetrically with respect to the components. The definition of
parabolic Holder spaces for higher orders with their properties can be found in works [Sol65] and
[LSvW92]. Instead of working in Q we work in the parabolic case in the closed time cylinder over
Q

Qr :=Qx[0,T].

Since the Willmore equation, with which we will deal later, is a fourth-order parabolic differential
equation, we will always stick to the fourth order in the following discussion (in Belonosov’s
notation in [Bel79|] that means m = 2).

Let Q C R" be bounded with C**®-smooth boundary Q2 , T' > 0. We define for any positive
¢ ¢ NN the parabolic Holder norm

il g, = O sw [DEDRuG o+ 3 swp [DEDIC0] o
(@) sk+1p< ] (@HEQr sk-+1B]<|¢) EOT] )

+ Z sup [Dngu(a:, . )} etk ;
(—4<dk+|B|< TEQ ¢ ([O’T]>

and for ¢ € N we set

Il otig, = 2 sw |DEDRu(et)|+ 3 sup[DEDu@,.)] ccun

(QT) 4k+|8|< 4] (z,1)€Qr (—4<Ak+|B|<¢t zeQ [07T])

as well as for s < ¢ the norm:

ak+[B|—s
Q’ + E sup pr Dngu(m,t)‘ +
s<dk+|8|<t (x,1)€Qx(0,T] 0, s <0,

ul| s _ s>0
Il e g,y # 2 0

lull .

where Q) = Q x [t/2,t] and:

[u]gg = Z sup | DFDPu(. ,t’)}

DFDPu(x,. Can
4k+|B|=£] telt/2,t] sup[ ! xu(x, )}C[ 412 IB'(

_ +
— L juil
cei@ (—4<dk+|B| <t TEL

it/2.4])

In fact, this notation is from [SK80]. In Lemma[91|in Appendix, we show that it is equivalent to the
definitions of norms by Belonosov in [Bel79]. Next we define the weighted parabolic Holder spaces for
{>s5¢NonQr=Qx(0,T)

for 0 <4k+ |8 < |s): 3DEDSuin Qr,

4 _ .
s>0: OV (Qr) = {ue @) |fors] <4k+[8| < [¢]: 3DfDJuin Qr,

and ||ul| , ¢ < 00
0574(QT

)

for |0] < 4k + |8 < |¢): 3 DFDPuin Qr,

and |lu|l , ¢ < 00
057—4( T

Q)

s<0:  CYNQp) = due Q)

£
In case s € N we define C’E’4 (Qr) to be the the closure of the C (QT) -functions with respect to

the C (QT)—norm Additionally, we define C (QT) the unwezghted parabolic Holder spaces on Qp
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¢
by setting s = ¢ in the definition of C (QT) In the same way we can define Cf"‘ (092 x (0,T) for
¢ ¢ N with s < £ on the weighted parabolic Hilder space on boundary 02 x (0, T] by replacing Q with
00 in the upper deﬁnition

Forawu e C 5 (Qr) its derivatives DkDﬁu in QT are continuous for k € N, 6 € INg, 4k + 18] <

|s]. By results presented in [Bel79, p.154] () Cy, ’4 (Qr) is a Banach space,@C ’4 (Qr) c Cy i (Qr)
and C3'4 (QT) = x,t 1(Qr) and by for 4k + 8] < ¢

k
(136) |DF DPu ity SR )5 lellgeer g,

r—4k-+|B| T

and by (v) with C164(T") bounded for 7" — 0
(137) el ere gy < Croa (Tl 0l grs g

where r = min(ry, 79,71 + r2).

One of the fundamental theorems we use excessively for the linearization method is Schauder
existence and estimates results for weighted parabolic Holder spaces. In the following, we will
assume that the Dirichlet boundary data is in C**%-regularity class with a € (0, 1). Therefore we
set{ =4+ a.

41 Theorem (Weighted Existence)
Let Q C R™ bounded, C*+*-smooth domain, 0 < a < 1, s € [0,4+«), v(x) the exterior normal in x € 09,

fe ng(QT),for all B € N™ such that || < 4: ag € Ci’;/{% 574}(QT). Moreover, we assume, that the
uniform ellipticity condition is fulfilled

NET< Y ap(a, )6 <A, VEER”, (2,1) € Qr
|8]=4

with constants 0 < XA < A Consider the following initial value problem with ug € C*(), ¢ €
crrelt g0 s (0,7)), h e ¢ (90 x (0,T]):

%(m,t)—l— Z ag(z,t)Dlu(z,t) = f(z,t), (z,t) € Qx (0,7,

|B]<4
u(,0) = up(z), =0,
ou

u(z, t) = (x,t), a(x,t) = h(z,t), (x,t) € 0N x[0,T],

with the compatibility conditions

P(r,0) = wo(x). h(,0) = 20a) 5 e o0,
only for s > 4: g—f(m,O) = — Z ag(z,0)D2ug(z) + f(2,0) z € 9Q.

|8]<4

Then there is a unique solution u € catettel Q) for the initial value problem.

Proof: Combined results from [Bel79, S. 185] theorem 4 with Dirichlet boundary values and
[LSvW92]. O
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42 Theorem (Weighted Schauder Estimate)
For the initial value problem above, the following Schauder estimate holds:

H || <c (T) ||f||Cf,’i/4(QT)+ ||<'OHC;1+D"1+D‘/4(BQ><(07T])

U|| ~4+o,1+a/4 > U165

Cs (@r) + ||k 3+a + |luolles (g
P e

where Cg5: Ry — R is a monotone function that depends on X\, A, Q and ¢ > 0 such that for all | 5| < 4:

llag|l foa/a (@) <c

max{0,s—4

Proof: [Bel79, p. 184] Corollary, (4.10) for m = 2,r = s,s = 4 + « with Dirichlet boundary
conditions. O

6.3 TiME-WEIGHTED C™1t2-C4t2_casE

In this subsection, we consider the case where the initial dataisug € C" ™, m = 1,2, 3, 4. Therefore,
we set s = m+«a, f = R and (ag) = L(Vu) with time-constant Dirichlet boundary values ¢ = g
and h = g;. Let us first recall the weighted norm for our case. We begin with the unweighted term

||uH 7n+a,£}f—a —_— = Z Sull ‘Dngu($7 t)‘ + Z Sup [Dngu( * 7t)i| CO‘ ﬁ
Cx,t T) 4k+|ﬂ\§m ($7t)6QT 4k)+‘6|:mt€[0’T] ( )
+ Z sup [Dngu(ﬂj‘, . )} m+ta—4ak—|B| .
m—d-+a<dk+|f|<m T€Q o (f0.71)

Then, we continue with the weighted norm

4—m 4k+|B|—-m—a
ey =supt TS Y sup £
t

[l
Cm+a (QT) t<T m<4k+|5\§4 (I,t)EQT

DkDBu:U,t‘—i— U mta
ED2uw, )|+l g e

T
with Q} = Q x [t/2,t] and

[u]bre = sup DfDﬁu(.,t')} _+ sup [DfDBu(w,.)} Ata—dk—|B] )
@ 4,6%:415'6[1&/2@ * Co(Q) 1<41;/3|<4x69 * 1 (lt/2.4)

. . . dta,1+< T
To show the short-time existence in the Cmt:; i (Qr)-space via a linerization method, we have
to verify various technical properties, which for better readability are moved to Appendix. One

of the tricks is to change the Holder power to v < a so that for vanishing initial values we have

control via 7“7 . This will allow us to choose a time small enough for us to apply a fixed-point
argument.

43 Lemma o
Letm =1,2,3,4. Ifue C, 21

m4a

(Qr) and Vx € Q
Vak + 8] < m: DEDPu(z,0) =0
then there is a constant Ce6 = Ches(v, ) such that forall 0 < v < aand T < 1

a—y
(| 4+7,1+%(Q )S Cre61 = HU||C4+a,1+% )

C7n+'y T m+a (Q )

Proof: The proof is presented in Appendix Lemma O
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. . . . Ata,1+<
Also we have to estimate the right hand side term R in the Cmtcél“ (Qr)-norm by the

Ay, 142 . . o :
C’mTﬂ; i (Qr)-norm of u. Since R consists of products of derivatives u, we need the following

fundamental product estimates.

44 Lemma (Product Rule) !
Let m =1,2,3,4and 0 < v < o, a/2 < 7. Ifu,v,w € CfnT,y’l_ZZ(QT) and T < 1, then there is a
constant Cg7 = Cie7(av, v, ) depending on algebraic structure of R and L such that

(138) [Vl oe < Cre7]| Vu| 3+
Cmajlc{o,m+(y—4}( T) i-:_’y-\;_jil T’
(139) D3wD?u|| a.a < Cie7||D3w 1y || D*u 244
| HCmfa_A ) D" w]| o | HCf,LT;,f N
| D*uD? wDQUHCa% O
(140 < Dl % D%
> U167 U 24~ : w 24~ . v 2y .
e (@Qr ol E (@Qr ol E (@Qr)
Proof: See Appendix Lemma 93] O

45 Lemma (Holder Estimates I)
Letm =1,2,3,4and 0 < v,a < 1, T < 1 then there exist constants C1gs = C163(2, v, y) and kg € N
depending on algebraic structure of R and L, so that:

HR(VU, D, Dgu) Hca,a/4

kg
3
< Cuos (14 IVl o2 ) 1902 e

m+a—4(QT) ity —1 (QT 1 T)
Lt (Vt2) | ./ < 0168(1 FValt, a )
k§4 Cmax{O,m+a74}(QT) C:i:w’?’l (QT)
Proof: We refer to Appendix Lemma O

For applying the fixed point theorem, we also have to verify the contraction property. Hence,
we need to estimate the differences of the right-hand sides and also the differences of the elliptic
components.

46 Lemma (Holder Estimates II)
Let m =1,2,3,4and 0 < y,ae < 1, T < 1 then there exist constants Cg9g = Cieg(cv,y,2) and kfy € N

depending on algebraic structure of R and L so that for u,w € C’f;:jy’l_zw Y(Qr) it holds

|R(Vu, D*u, D*u) = R(Vw, D*w, D*w)|| a.a/4

m4ta—4 (QT)

+ Lioy(Vu) — Liy(Vw .
k;HII w(Ve) = Lee( V)l gaors (o)

Ky
< Cpo (1 -+ max {Jull g rsa g 0l g )

2
sax {”””c:‘nt”;“”“@ﬂ’ ”w||c,4,f+”;“”“<QT>} vl - w)“cfn*ﬁ;i?@ﬂ'

Proof: The proofis similar to[94, where additionally we need to consider how to rewrite a difference
of polynomials as in Lemma O

47 Theorem (Existence of a Unique Solution for Small Times)
Let Q C R? bounded with a C**“-smooth boundary and the exterior normal v as well as m = 1,2, 3, 4.
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Then there exists T € (0, 1), so that there is a unique solution u € cretrel 4(QT) of the Willmore flow

m—+o

problem where ug € C™(Q), go € CH(00) and g1 € C3+(0Q) with

go(x) = uo(z), gi(z) = %:0(3:) z € 0N

and additionally, in the case m = 4 we need the compatibility condition
1
0= AF(uo)H(UO) + 2H<4H2 — IC) (UO), T € 89

Proof: The main idea of this proof is to modify the quasilinear problem to a linear problem by
freezing all derivatives of order smaller than four. To do this, we define a fixed point problem for
an iterative solution of a linear parabolic differential equation whose fixed point then coincides
with the desired solution of the Willmore flow equation. To ensure the validity of this approach,
we need to check that the assumptions of the Banach fixed point theorem (see Theorem [§) are
satisfied. The proof structure can be outlined as follows:

(1) Adaptation of the time-independent boundary values to the parabolic Holder spaces by the con-
stant continuation in time to apply Schauder existence theorem and estimates,

(2) Definition of the iteration mapping G as well as the iteration set M for the fixed point problem,
(3) The iteration mapping is a self-mapping: G: M — M,

(4) The iteration mapping is a contraction: u,w € M : ||G(u) — G(w)| < ¢llu — wl,q € (0,1),

(5) Application of the fixed point theorem to infer the existence of the fixed point,

(6) Uniqueness of solution in the parabolic Holder space chtentral Q).

m+ao
In the first two steps T' € (0,1) is not chosen, then in (3) and (4) we choose the time small
enough for using the Banach fixed point Theorem.

@ Boundary Values Discussion
Since the boundary values u|apq( ., t) = go(.), dvulaa(.,t) = g1(.) are fixed for all ¢ € [0, 1], we can
extend these on Q x (0, T]. Thus we set ¢ € (0, 1]:

Jo(z,t) := go(x), Gy(z,t):=gi1(x), Voco

Then all time derivatives of g, vanish, in particular for all time Holder seminorms are zero

HgoHC;‘ij;”“/‘*(an(o,l]) = llgollca+a(an) Hgl”cfnt"l’szg(aﬂx(o,l]) = llg1llcs+o)-

Additionally, we have to extend uy € C™(§), but not in the trivial constant way, because in

the case m < 4 the extension would not be C*t%(Q) for ¢ > 0, and thus also not in C’fntf;pra/ Q).
We extend by solving the following biharmonic heat equation

o = — A%v = —0tv — 207030 — d3v, inQ x (0,1],

v(z,0) = up(z), req,
(A) N
v(z,t) =Go(z,t), (x,t) € 9Q x [0,1],
%(m,t) =7, (z,1), (z,t) € 09 x [0,1].
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It is an easy matter to check that fulfills the requirements of Theorem So there exists
Uy € Cﬁiﬁl’Ha/ *(Q1) that solves (A). Also we get the Schauder estimate in Theorem (42| with a

constant C65(1) depending only on 2, m, « and the structure of

u a «a < 1 [ g, a a g a m+a 7:|
(141) [ollarerrerngy < CrosM | Wollcarereroan o T 191 jave s52 o 0 Fllollomse)

< C170(2, |90/l ca+a a0y, |91 les+aaay, 1uoll gmea ) -

The compatibility conditions are satisfied, since v(.,0) = uo:
_ _ Guo
o(2,0) = go(x) = uo(z), 71(2,0) = gi(2) = E(m) x € 08

In case m = 4, we simply take extend ug(z,t) := up(z),z € Q,t € [0,1]. Then 7w € Cﬁi&;HaM(Ql)
and (141) is also fulfilled.

@ Definition of the Iteration Map and Set

C4+a,1+a/4 (QT) = C4+a,1+a/4

We define iteration map Gr: (Q1) by freezing the coefficients of L

m+ao m+ao
and R. For each w € C’ﬁ:f;;HaM(QT) we set v = Gw as a solution of
v = — L(Vw)D' — R(Vw, D*w, D*w), inQ x (0,77,

U(.I‘,O) :Uo(l'), .I‘EQ,
(G) _

v(z,t) =golz,t),  (x,t) € 92 x[0,T],

@(x,t) =7, (z,1), (x,t) € 002 x [0,T].
\ Ov

Sincew € Cﬁ;chaM(QT)thendueto LemmaL(Vw) € Cig(/{thra_“(QT),R(Vw, D?*w, D3w) €
C’%ié{ 4(Qr). Additionally, by Lemma one obtains uniform ellipticity, and by Theoremthere
exists v = Grw € Cﬁﬁ’;”“/ *(Qr). Therefore, this mapping is well defined.

For the case m = 4, we also need the existence of G7u with the estimates to get later the same
derivatives in ¢ = 0 as for the fixed point solution, see (146). For G7ug by Theorem [45|it holds for
|B| = 4 that

_ — (|4
| Lg, 3, (VUQ)HCQ,QM @) < 0168(1 + Hu0||03$ra0;1+a/4(Q1))’

max{0,m+a—4}

and one also has the uniform ellipticity by (141) with

4
F‘ S ) Lu(Vw)ge < gl
(1 + IV 2, @)) el

Using the Schauder estimate in Theorem {42| for the boundary problem with constant C'¢5 it
results

B Thm. @2 IR(Vao, D*to, D*o) || o4 (ot lgo0llca+e(aq)
HGTU[)”C4+O¢,1+0¢/4(QT) S 0165(1) mta— 7
(142) e + "91"C3+a(8§2) + HUOHCm-m(ﬁ)
Lem. 3]
< Ci71 (2, || 9ol cata a9y s 1|91 || c3+a a0 |wo || gmta ey ) s
( lgollc (09) lg1llc (09) [[uol| g+ (Q))

97



We choose 7 € (0, a) and define the closed subset of C77:1 /4

by (Qr) as the iteration-set

— G <1, ,0) = 7 cqQ,
M) Mg :={ we CH4 Q) " TUO”CfnTw’HW‘L(QT) = v(z,0) = uo(z), =
T m+y
v(z,t) = go(z), Oyv(x,t)=gi(x), (x,t) €I x[0,T]

which is non-trivial since Grug € M. For all w € M7 we also obtain an useful estimate

(142)
(143) HwHCi:Z;HA’M(QT) < lw — GTHO||Cfnt_’Y,Y’1+V/4(QT) + HGTHOHC?,:.’YW’L‘—’Y/AL(QT) < 1+Cint.

@ G is a self-map
Here we want to show that Gp: M7 — My by using the Schauder estimates in Theorem Let
w € Mr, then by Theorem [45| we obtain for |3| = 4

(143)

1263 (V)lgmors o < Cras (14 0l ) = Cros(14 (14 Cin)?)),

max{0,m+a—4} m4y (Ql))
which is bounded by a constant non depending on 7.
Also by (143) we have an uniform ellipticity on M with constants A and A for all w € M7,
T € (0,1) depending only on €, |[go[|ca+a(an), |91l c3+e(an) and [Juo|l cmra @)

1 .
(144) A= o A=, B et < Y Lu(Vw)ehes < Algl
(1 + (1 +C171) ) k+6=4

By the Schauder estimate in Theorem 42| for the boundary problem with constant Cyg5 for
all w € M it follows that for v = Grw

2 3 —
||R(va D w7D w)”o;ﬁ(/f_zl(QT) + Hgo||C;1n'/:a&1+a/4(89><(07T])

o] B )
v A+a,14a/4 >~ 165 _ )
Cm «@ (QT) + [e] + U m+ta ()
(145) + H91||Ciia:5 (©9x(0.7) I OHC +o(Q)
(@ ol gl o )
>~ 172 5 1190 4+a s 1191 3+ta s [0 m+a(Q) )
R C4+(99Q) C3+2(9Q) cmte(Q)

where by Theorem previous work in @ and the T-independent constant C'i65(1) depends
only on C'171 and 2.

Further, we have to show that by choosing 7" small enough, we obtain v € M. First, we
consider the difference v — Gy

- U @ «@ «@ U @ @ <
||lv GTUOHCﬁij;H 4(Qr) < HUHCfr:-&H (Qr) + HGTuO”Cfnt-oZH Mo S Cire + Cim1

=: C173(2, 9o/l or+a(an)s 91 los+e @y [[wollgma ) )-

So the difference is Cfniif“‘/ *(Qr)-bounded, because Gy and v are C’s:f;;pra/ *(Qr)-bounded.

The v — Grug derivatives of the order smaller than three vanish at time ¢ = 0. The reason is that
v(z,0) = u(x) = Grig(z,0) for all z € Q fulfill the same initial conditions
VB < m V€ Q: DPu(z,0) — D?Grug(z,0) = DPug(z) — DPug(z) = 0.

In the case m = 4, one can use the Willmore flow equation and derive

(146) Vz e Q: Dyv(z,0) — D:Grup(x,0) =0
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where only for this step we need G7%g. For m < 4 we could take 7 instead.

. —_ . . Ay, 14 /4
Next, we consider the parabolic Holder space with a smaller Holder power Cme +/ (Qr)

and apply Lemma 3| for v — G7p. In this case, the initial conditions vanish (see also (146), so that
— — o min } fomin d
Hv — GTUOHC’?,;T{HWM(QT) < ClGGHU — GTUOHCfnJSra&HaM(QT) T < Cie6Crrs -T2

By choosing T' < 1/((3’1660173)6%7, we get v € My and thus Gr: M7 — M, because:

v — GTﬂOHcﬁjjfﬂ/‘*(QT) <L

@ G is a contraction
In this paragraph, we want to show that for 7" small enough, G7: My — My is a contraction. Let
u,w € My, then because Grw and Gru have the same initial values it holds

Gru(z,0) — Grw(x,0) = up(z) — up(x) =0, T €Q,
Gru(z,t) — Gpw(x,t) = go(x,t) — go(x,t) =0, (z,t) € 09 x [0,T],
8(GTU8; GTw) (‘T}? t) - gl(x7 t) - gl(x7 t) =0, (.%', t) € 00 x [07 T]

Thus Gru — Grw solves the following linear initial value problem (Z). Let v = Gru — Grw be the
solution of the following problem

oo = — %(L(Vu) + L(Vw)) (D") — %(L(Vu) — L(Vw)) (D*(Gru + Grw))
— R(Vu, D*u, D*u) + R(Vw, D*w, D*0w)  in Q x (0,77,
(2) v(z,0) =0, reqQ,
o(z,t) =0,  (x,t) € 9 x [0,T],
dyv(x,t) =0, (x,t) € 02 x [0,T7.

\

The operator 1 (L(Vu) + L(Vw)) € Cr?lg(/{%),m e 4}(QT) is again uniformly elliptic, with the same
time-independent constants A and A as in (144) for L(Vu) and L(Vw). Moreover, by the Schauder

estimates for G(u) and G(w) as solutions of (G it follows that

(147) ||D4(GTU—|— GTZU)H aa/4 Q) = HGTUH 47:_04 1+a/4(Q ) + ||GT’(U” 4«:_& 1+a/4(Q )
< 2C172( [lgoll e a0): 91l cs+a a0y 1uoll cmea ) -

Again, by Theorem §42| one obtains a Schauder estimate for Gru — Grw as solution of (£) with a
constant C'65(1) depending only on ||gol|ca+e(a0) |91l ca+e@0), [[wollcm+a (2) and Q

”GTU GTU)H 4+D‘ 1+04/4(Q )

- _ 4
<o) | 2 L (L(Vu) = L(Vw)) (DY (Gru + Grw))
— R(Vu, D*u, D*u) + R(Vw, D*w, D*w)||, ool )
- C
G N - LT o NP Gt Grel e
+ 0165 ) |IR( Vu,DQU, D3u) — R(Vw, D*w, D3w) \\02%44(%.
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Further, let us estimate byand (147) for D*(Gru + Grw)
IGTu = Grwlgarantarsq,y < Crra-llu = wllgainasar g,

for all u,w € Mr with a new constant C174 depending only on ©, |gollca+a(aq), [l91llcs+ean),
[[to]| cm+a i)~ Once again we apply Lemma 43] Hto estimate Gru — Grw with vanishing initial data

HGTU — GT'UJH 4+'y 1+v/4

(on = Cleo CrraT™ 5 - flu— wll Ot Qr)

4
Finally, we obtain G a contraction on My by choosing 7' < 1/ (0166 0174) a=7,

@ Applying the Fixed Point Theorem
For a time 7" small enough, we can use the fixed point theorem and get a fixed point v* € My C

CHIY Q) with v = Gro*. This v* solves the original Willmore-flow problem (WE). Actually,

m-—+y
we obtain even stronger regularity v* € C.t%! /4 (Qr)

by using the Schauder estimate in Theorem

”v*”Ci,‘ffD;”“/‘*(QT) < Cir2(2 llgollorva(anys 191 llos+a oy [[wollgma @) -

@ Uniqueness

Until now, we only obtained the uniqueness in M. To show that there exists only one solution in

C’;‘)‘;O;;Ha/ 4 (Qr), we have to define a new initial value problem. Like in the step (4) one has to choose

time small enough and use Lemma {43|to relate the norms Cﬁlﬁ;ua/ 4(Qr) and Cﬁ;jvlﬂ/ Q).

With T time as in the step (4) and u € M the solution in the step (5) and w € C;‘;:_O;HO‘/ YQr)

another solution, we consider only 7" < T without loss of generality. Additionally, let 0 < Ty < 1"
then v — w is a solution of the following initial value problem

;

O = — %(L(Vu) + L(Vw)) (D) — %(L(Vu) — L(Vw)) (D*(u + w))
— R(Vu, D*u, D*u) + R(Vw, D*w, D*w) in Q x (0, Ty,

(Ew) v(z,0) =0, x €,
v(z,t) =0, (x,t) € 9Q x [0, Tp],
dyv(z,t) =0, (x,t) € 90 x [0, Tp.
It follows that § (L(Vu) + L(Vw)) € C%! / {% mta—ay(@1) is again an uniform elliptic operator with

time-independent ellipticity constants

A= A* =4,

2(1—1— ull? i + [|w i )7
s sorsigy N0 s

Moreover, we obtain the estimates

4
1Dt wllgners (gry < Wllgprapromgpy +IWllesiarerq,,)

kg
14 j|u alta )
| L(Vu) +L(Vw)|] - 'l Cies ( H HC::;QH M@

(Qry) — ky
max{O m+4a—4} 0
+(1+ Hw\|cfn++ao;1+a/4@w))
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Once again, by Theorem[d2]there exists a Schauder estimate with a constant C165(1) for the problem
(E.,) which depends only on HuHCﬁjﬁj*‘*/“(QT,)’ Hw”CfnTCQHQM(QT/) and €. Like in step (4):

Hu— wH 44;@4,1+a/4(QTO)

0165

D (2090~ D) | g @ny 1P w0 oo

max{0,m+a—4} +a 4(QT0)

+0165 HR VU,DQU, Dgu) —R(VM,DQUJ,DS HC”Y o/4

m+ta—4 (QTO )
< : -
< Cira - u w”cfnf;i”“(QTo)’

where C74 depends only on HU||C;1n—i:|—ao;1+a/4(QT/)’ ||wHC;in-:_aa,1+a/4(QT/) and 2. By Lemmait holds

e = Wl roig, ) < Cros CrmaTy - = wlgr g, -

4
In the following, we choose Ty < 1/(Chg6 Ci74) °~ so that

||'LL - wiicﬁ;:l;l-i-’v/‘l(QTo) =0.
Therefore, u and w are identical in C’f;;vw’lﬂ/ 4(QT0)- To show the equality in t € (Tp,1"] we
first consider the unweighted case m = 4 and use the fact, that the time 7, depends only on 2

and the bounds on C4+a /% (Qr)-norm of u and w. Namely, since Vz € Q : Diu(x,Ty) =

Diw (x,Tp) and by choosing the same uniqueness time 7j, we obtain uniqueness on the time
interval [0, min{27}, 7"}]. In the same way, we can repeat this procedure until we reach 7".

By the definition of the weighted norms, in the cases m = 1,2,3 for all times greater than
Tp > 0, the solution of the initial problem is actually in the unweighted Holder space for times
between Ty and 7"

/

HUH 4+a’l+a/4(§><[To,T’]) < C(T()a T )Huiicfntraa’l*aﬂ(QT/)’
/

||U)H 4+a 1+a/4(QX[TO ) < C(TOa T )Hwiicit_&‘;l‘Fa/‘l(QT,)'

Furthermore, the compatibility condition (CC) is fulfilled for all times in [Ty, 7”]. Thus one can
take u(z,T") = w(z,T") as the new initial value for the corresponding initial value problem on

cirelte/Y@ x [Ty, T')). Hence, it results u = w in C4+a @ x [Ty, ")) and thus u = w in

x,t
C4+a,1+a/4

o (Q1). Finally, we extend w with u up to 7" and get the uniqueness in chrettal 4(QT).

m-+to
]

In the next part of the chapter, we want to investigate global existence of the graphical Willmore
flow solutions. Especially, we will need a lower bound on short existence time in order to be able
to extend the local solution by this fixed time. In this way, we will prevent blow-ups. In what
follows we always assume the compatibility condition for ug, go and g.

48 Lemma
Suppose m = 1,2,3, 4, then these exist constants C75 = Ci75(m, a, Q), Ci76 = Cr76(m, o, ) and a time
0 < T1(m, o, Q) < 1 such that if

(148) [uollgmtam) + [190llcataan) + lg1llc+eaa) < Crrs

then there exists a unique solution u € crte 1+O‘/ YQn) of the Willmore flow problem and

m4a

149) Nl grsarcarn g, < Crr (loollcsaon + lotllcaraon + luollomsom)) -

101



Proof: Let us begin by assuming that Ci75 < 1. Then the short time existence Theorem 47| states

that there exists the time Ty = T(m, a, Q) and the solution u € Coi ' /4 (Qy,) of and
especially there is an estimate

Hu\lcfnta&wa/zx(QTo) < Ci2 (2, llgollc1+a a0y, 1911l ca+a(aq): w0l cm+a )

< Cirr

where Ci77 = Ci77(m, o, Q) since Ci75 < 1. Let T € (0,7p), then u solves the following problem

(G)
Ou = — L(Vu)D*u — R(Vu, D*u, D*u), inQ x (0,7,
u(z,0) = up(x), T €Q,
G)
u(z,t) = go(x),  (w,t) € 02 x[0,T],
)=o), (0000 x0,T]

m—+to

Combining this result with Lemma [39| we infer by Theorem 42| that there is a Schauder estimate
for T € (0, Tp]

Sinceu € CHE 1% Q1 ) it follows that according to LemmaR (Vu, D*u, D3u) € C j‘_(/f 4(Qr).

D*u, D3u)|| o0 o
o IR (Vu, Du, u)||cm,+é§4(QTO)+H90HC4+ (09)
HuHC4+a’l+a/4(QT) = 165( )
e + lg1lles+e(an) + lluollom+a )

where Cig5: R4+ — R is a monotone function depending only on (G), ©2 and the Cg;o;pra/ 4 (Qny)-

norm of u since we can bound the ellipticity condition constant and the leading coefficients by
Lemma 45

1
)\S 5 LV’U/ a,o/4 <Cl68 1_|_ u wlta
(1+ Hu||24+a 1+a/4 )2 H ( )H max{0m+°‘ 4}(QT) ( H H fn—:aH /4(QT0)
Cm-l»o; (QT())

).

It should be particularly noticed that as in the proof of Theorem[47} we can select y = a/2 < avand
obtain

kp
0168(1+ U|| Aty 14+7/4 ) ul? ,
”'U/HC4+OA,1+Q/4(QT) S 0165(T ” HC7nT'yl+’y (QT) || ||Ci:_’y,yl+7/4(QT)
m + llgollgaseqon) + llgillcsrean) + luollgmsay

Evidently, since [|ul| ja+a,1+a/4 < Ci77(m, o, Q1) we emphasize that there is an estimate on the
m+ta

(Qry)
Schauder constants

(150) VT <Tp: Ci65(T) < Ci65(Tp) := Crrs(m, a, ).

Furthermore, there exists a constant C79(«, v, m, 2) such that V1" < Tj :

1
(151) Hu”cfntr’vﬂ;lJr’Y/‘l(Q ) < Cirg = CirsCues (1 + lull o+, 1+w/4(QT)> HuH eI < ST

where constant C'i¢¢ is from Lemma 43|and depends on « and ~
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Next, we consider the proof of the short-time existence Theorem 47| and modify the set M
defined in (M) by

lw — Grg|| jasritv/a oy < Cr79/2,  v(2,0) = up(x), = €Q,
m (Qr)
Mp:={we Cfn—r{'yl—i—v/él(QT) + T

v(z,t) = go(z), Ov(z,t)=agi(z), (x,t) €0 x][0,T]

Similar to the Theorem 47| we find a fixed point u of Gr: My — My whenever T' = T1(< Tp)

is small enough. If we set v = «/2, then with the help of Ci75 < 1 we see that T} depends only

on m,a and Q. Furthermore we notice that u € Cﬁ:fo;pra/ *(Qr,) and w is the solution of (G) for

T = Ti. According to the above definition of M7 we conclude

Cirg

(152) lull g gy < =5 + 1GTToll gasrnsars gy, -

In this step we choose Ci75 = Ci75(Cir9,m,§2) small enough for the first time to achieve the

Cf)‘;‘zHa/ 4(QT ) norm of Gy smaller than Cy79/2:

HGTEOHCijfoZHaM(QTﬂ
_ ke 2
Cuos (1 + [Tl g sag, ) N0l ass i,

< Cie5(T1) 4y 7 opt Qr,
+ llgollca+a(aq) + llg1llcs+aan) + Hu()”chra(ﬁ)

HU()” 4n+a 1+a/4(Q D)

< Cir9/2

where Ci65(71) is a constant depending on [[do | a++.14+/4 in a similar way to Ci65(7}) of
m+ry

(Qry)

depending on ||ul| jat+,14+/ Finally, combining this result with (152) we infer
my

(Qry)’

HU\|031+$1+W4(QT1) < Ciro.

We can therefore apply the above statement (151). Namely, by using the chtetta/t (Q1,)-Schauder

m—+o

estimate for the solution v of (G) in Theorem #7]and T1 < T, we then get

lullcareivors g

ki
Cl68<1+||u||cil-drw,1+~//4(QT1)) ulf? O Q)

< Cie5(T1)
+ llgollca+a(an) + llg1llos+aan) + HUOHCera(ﬁ)
(T50) C (1 + ||lu i > U C T U alta
2 168 | HCfanﬂM(QTl) I || Crili g ) C100 H P e/, )
+ llgollcata(an) + lg1llca+aaq) + l[uollomtam)
1
< Cirs (20178 H“ch;f&lw/él(QTl) + llgoll ca+a(aq) + lg1llcs+aan) + !!uO\ICm+a(Q)> .

Collecting terms, we conclude

HuHC4++a,1+a/4(QT ) S 2C78 (HQOHC4+a(aQ) + llg1llca+a(a0) + \\UoHchra(ﬁ))

<Ch76(Q2,m,a) (||90Hc4+a(an) + llg1llcsaan) + \|U0||cm+a(§)> :
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49 Theorem (Global Existence)
Suppose Q2 is a domain in R? with C*t*-smooth boundary then there exists C1g9 = Cigo(cv, €2) > 0 such
that if

[uollgr+a@) + llgollcate(an) + [191llos+eaa) < Ciso
then the solution for the Willmore-flow (WE) exists for all times t € (0, c0)

Proof: We first assume, that Cig0 < Ci75(1, a, ) /2 with Cy75 introduced in the previous Lemma.

In fact, by Lemmathere is Ty = Ty (1,0, Q) such that u € C; T4 (Qr, ) solves uniquely.
Notice that we can estimate the space Holder norm by its parabolic Hélder norm

Hu||C4+a,1+%(Q )2 Z sup ‘Dfu(:v,t)‘—l— Z sup [Dgfu(.,t)}caﬁ
(153) e TR B (eeRx 0T = 0Tl “

= sup |lu(t) Hcl+a(§)-
tel0,Th]
Moreover we choose Cigy < Ci75/(2C176), where especially C176(1, o, ©2) does not depend on Cigp.
Then by Lemma 48| we get

(154)
tGS[E’IT)l] lu(®llcrva@ < ”“”cfiz’l*%m < Cre <||U0||cl+a(§) + llgoll ca+e a0y + ”91||C3+°(BQ))
< Ci75/2.

Due to the C17*(Q)-bound in the previous equation, we can continue the Willmore flow for ¢ > T}
but for a short time.

Suppose, contrary to our claim, that there is a finite maximal existence time 75> > 0 such that
VT € (11, T5) for the following boundary value problem

O = — L(Vv)D' — R(Vv,D?v, D*v), inQ x [T1,T],

U($,0) = U(ZC,Tl), T e ﬁa
(155)
v(x,t) = go(x), (x,t) € 0Q x [T1,T],
ZZ(x,t):gl(a:), (x,t) € 0Q x [T1,T].

there exists a unique Cf;a’Ha/ 4(ﬁx [T7,T)])-solution. Therefore, we cansetVt € [17,T3) : u(z,t) :=
v(x,t). Further, we will consider the maximal time 73 € [T}, T%) such that

(156) vt € [0, T5]: Hu(t)||cl+a(§) < Ci7s/2.
Obviously, by (154) we obtain 73 > T7. Combining C'g9 < C175/2 with the bound (156)) we have
(157) vt e [0,T3]: [u@)llora + llgollcare o) + [l91llcs+ean) < Cirs/2 + Cir5/2 = Chrs.

By virtue of the previous Lemma @8 with the same time 7' (1, o, Q) it follows that V¢ € [T}, T5] :

@)
”“”cﬁg*“”‘/“(ﬁx(t—Tl,t]) < Cire <||U( St =Tl crvam) + llgollca+aian) + |!91||03+a(asz)>

(157)
< Ci76Chrs.
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The definition of the weighted Holder spaces leads to the estimate V¢ € [T7, T3] :

lull arerre > sup ‘Dﬁu(x, t')
Ciia 1 (Qx(t—T1,t]) |ﬁz<l () EQUX (t—T1 1] v
+ sup t —t+T1) Su(z,t)
(x,t)EQX (t—T1,1]
+ sup (' —t+T1) 1 |D2u(z,t)

(@,t)EQX (t—T1,t]

2—a
> supT) *

1—a
Diu(x,t)‘ +sup7; ? D?Eu(x,t)‘ + Z sup ‘Dfu(m,t)’.
e Q

FISY) 18|<1 zeQ

Since the minimal existence time 7 depends only on a and 2 we conclude
—2+a -1+«
el Tl uOlog < (147 47 ) CineCirs < Cas

where (g1 depends only on o and (2. By the interpolation Theoremthere exists 0 < 8 < 1such
that

VeI B: Ju® e < Crsala, D)oz < Casalen Q)2 - u(t) |52 g
17
< Cuss[u(t)||7 g (Casa (e, D)|u®) oo my)
< 0183||U(t)H§2(Q) (01820181)1_

with Cig1, Cig2 and Cig3 constants depending only on 2 and «, and especially independent of
Cis0. Let us suppose for the moment that we could bound |[|u(t)||2(q) for all times ¢ € [T1, T3]
small enough so that

Cirs
4

which would be a contradiction to (156). Thus, we could conclude T3 = T3 so especially in the
maximal time 75 one still would have C 1+a-regulalrity for u(.,T%). Then, it would be possible to
continue the solution, which contradicts the maximality of 75. This would complete the proof of
T2 = 0

So our goal is to show, that with smaller C1gp we can achieve |u(t)||z2(q) small enough. We
first observe, that from (153)

vt € [T1, Ty): (@)l grra @ <

supT1 2u(x, Tl)‘ Z sup)D u(z Tl)’ < ||ul] orettg
xeQ 18]<1 e 1+o< (QTl)

CK

= (Tl ez @) (1+T Ol
B2
<

4+, 1+ <
C1+a 1 (QTl)

CussCrrs ([luollrsa + I90lloseacon) + Ig1llossaon)

< C183C176C180

where C1g3 depends on 77 and 77 still depends only on « and 2. By choosing C'gg small enough we
can get ||u(T1)|| -2 () even smaller. Moreover, u(T" ) has finite Willmore energy and it is decreasing
for all ¢t > Tj.

ve>Ti: o W(u(t) < W(u(Th)) < [[u(T1)]¢n g0

By choosing C'gp small enough with Theorem@ we achieve [|u(t)|| 12(q) so small enough. [
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50 Corollary
Suppose ) is a domain in R? with C** boundary, || gollcataan), |91 lcs+aaq) = O then there exists
Cisa = Cisa(a, Q) > 0 such that if

HU’UHCH—a(ﬁ) < Clasa

then the solution for the Willmore-flow (W) exists for all times t € (0, 00).

6.4 TiMeE-WEIGHTED C1-C*t-cAsE

In this subsection, we weaken the regularity assumptions on the initial data to ug € C*(Q ) on
the cost of also imposing a smallness condition on the data. That means we set s = 1, f =

and (ag) = L(Vu) with time-constant Dirichlet boundary values ¢ = gg and h = g;. Like in the

4+a,1 .
previous case, for proving the short-time existence in the C, toltd (Qr)-space, we have to establish

some auxiliary results. Let 2 C R" be bounded with C’4+°‘-boundary 0f2and T' > 0. We consider
the norm

[ sup | DZu(e,t)| +sup [u(a, )] ,
1 Z(QT) ﬁz|<:1 (.’E,t)eéT CEEﬁ [ :|C4 ([O,T])

and for parameter s < ¢ the norm:

4k \BI 1
HUHC4+a,1+a/4(Q ) = Suptgz [u ]gfa + E sup -
1 U 2<ak+|p|<a (@DEQT

DkDfB act‘—i—u 1
(. t)] + | HIZ(Q)

where Q} = Q x [t/2,t] and:

[u] 4o = Z sup |DFDBu(. ¢

+ sup [DfDBu(x,.)} dta—ak—|8|
o wlare 2 ' e

/
) e
O cakrpi<anen

[t/2.4])

Let us compare this norm with that of ijgj’l*“/ *(Qr). The term [u] 4QJ,ra remained the same, but gets
t

more weight t*/4 more weight as well as the |Dk’Dg u(z,t)|-terms. Moreover, in comparison to the
Ciia’(Ha)/ 4(Qr)-case the Cry L1/ 4(QT)-norrn is missing the spatial Holder seminorm [Vu( ., )] ca(q)
and the temporal Holder seminorm [Vu(z,.)]ceasaqo,m)- Also, it is not clear how to use the trick
with changing the Holder power to v < «a. Thus, we will also have to choose the parabolic
boundary norms small enough for us to apply a fixed point argument. Therefore, we drop 7 in the
following lemmas.

51 Lemma ol

Let 0 < o < 1. If u,v,w € C} foltd (Qr) and T < 1. Then there exists a constant C1g5 = C1g5(€2) such
that

158 D*wD?u|| aa < Cigs||DPw o D*u o

(158) I HC,’34 O = 185]| ||C$a,%(QT) | || gt iR o

159) ||D*uD?*wD?v]|| ..« < Cis5||D?u o D2w || D?v o
160 v o, & < C V - a

Hen IVelloy 2 g = 0l “”cgm%(QT

Proof: See Appendix Lemma O

Further, we again show preliminary results.
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52 Lemma (Holder Estimates I)
Let 0 < « < 1, T < 1. Then there exist constants Cigs = C1s6(€2, ) and ky € IN depending on algebraic

structure of R and L, so that it holds for all uw € C T /4(Q)

ki
R(V 2 3 \V4 3
H ( U, D u, D ’U,)‘ Ci,sa/4(QT) < C1186 (1 + ” CuHCi1+a,1+a/4(QT)> H u‘|Cf+a’l+a/4(QT)7

Z \|Lkg(Vu)||Og,a/4(QT) < Cis6 (1 + ||VUHLéf+a,1+a/4

k++0=4 (QT)) ’

Proof: The proof is similar to Appendix Lemma O

53 Lemma (Holder Estimates II)
Let 0 < v < 1, T < 1. Then there exist constants Cig7 = C1g7(Q2, ) and kl; € N depending on algebraic

structure of R and L, so that it holds for all u,w € C T /4(Qp)

|R(Vu, D?u, D*u) — R(Vw, D*w, D*w)|| C*/ )
-3

K
< Chgr (1 + maX{”UHCf‘W’H“/“(QT)’ Hw”Cera«H“/‘l(QT)})

' max{llﬂllcf“‘*””‘/‘*(czﬂ’ ”w”cf*“’”“/“(@ﬂ} = wllggrantars gy,

Z ”Lk@(VU) - Lk@(vw)Hng,aM(QT)
k+0=4

K

- 0187<1 + maX{”“”Cf*“’““/‘%QTV ”w”Cf“"l*a/‘%QT)}) e = wllgraitarsg,y-

Proof: The proofis similar to[94, where additionally we need to consider how to rewrite a difference
of polynomials as in Lemma O

54 Theorem (Short Time Existence) B
LetO < o < 1, T = 1. Then thereisa constant Cigs = Chs(£2, ) such that ifug € C*(Q2), go € C*(9Q)
and g1 € C3T%(09) as well as

luollor @y + lgollcave o) + l91llcs+e(an) < Ciss

then there exists a solution u € Cf tenlta/ 4(Q1) of the initial Willmore flow problem (WE).

Proof: As in the proof of Theorem 47} we split the proof into several steps.

@ Definition of the iteration map and set
In the same manner as in (1) in the proof of Theorem (47| we extend the boundary data and get

Uy € Cf taslta/ 4(Q1) that solves . Also, we obtain with the Schauder estimate in Theorem
that

(161) o]l catasrara g,y < Crso (2 llgollosreany lgrllcare@oay, uollor@))-

For the Banach fixed point theorem we have to define iteration map G : Cf Fanlte/ Q1) —
clFelte/4(Q)) by setting v = Gyw as a solution of (G) Then since w € C}**/4(Q,), by to
Lemma 52| L(Vw) € Cg’a/4(Q1), R(Vw, D*w,D3w) € Cf’:))a/4(Q1). The uniform ellipticity is
obtained by Lemma and by Theorem (41| there exists v = Giw € C’f tolda/ 4(Ql). Hence, the
mapping is well-defined.
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Since we assume that 7' = 1, we also have the Schauder estimate

o Thm. [42] ”R(v’w,DQU},DS'LU)HCQ,Q/AL(Ql) + HgOHCALJFO‘(QQ)
(162) HleHC4+a,1+a/4(Ql) < Cies(1) -
1 + [lg1llca+aon) + lluoller @

Let us define a non-trivial set which is characterized by boundary conditions and the smallness of
the Cf+a’1+a/4(Q1)—norm a

HwHC4+a’1+a/4 S éa ’LU( B 0) = Uo,
« o (Ql)
(163) My = we citett/igy | B
w(z,t) = go(x), 5 (z,t) =q1(x), (z,t) € 02 x[0,1].

where C'is a constant that we specify in the following. The set M is non-empty because it contains
in @ constructed % for C'igg small enough.

@ G is a self-map
Now we observe that for w € M; it holds

126162 (V)| s, < Crs (14 C),

and we also obtain a uniform ellipticity by (141) with

4
R o S LV < 4t
(1 + C2> k+0=4

So by (162) and 7' = 1 we conclude by Lemma 52| that it holds

Ciso(1 antari i) wll? )
|Grw]| ~ata,1tasa < Cigs(1 186(1 + Hw”ci“r A4 /4(Q1)) Hw”ci‘*"’H“/‘l(Ql) + llgollc+ (o)
cyre e -
4 (Q1) + ||91H03+a(89) + ||u0||01(§)

Cise(1 + O C3 + || go|| cara o
< Ci90 )

+ [lg1llca+aan) + lluollor @

From now on, we always assume that C satisfies the following condition
(C1) C190Cis6(1 + C)F1C? < %

We also have to set a condition on the parabolic boundary values

C
(C2) HQOHC4+a(3Q) + HQIHCHQ(BQ) + HUOHG@ < 20190

Consequently, by and |G1wl| chtaralig < C it follows that G; is a self-map.
1

@ G is a contraction

Let u,w € Mj, then as in Theorem G1u — Ghiw solves the linear initial value problem .
The operator 3 (L(Vu) + L(Vw)) € Cg o 4(Q1) is again uniformly elliptic, with the same time-
independent constants A and A as for L(Vu) and L(Vw). Furthermore, it follows that

4
(164) ||D (GIU+ le)||C§’a/4(Q1) < ||G1u||cg+a,l+a/4(Q1) + ”Gl'LUHCal+a,1+a/4(Ql)
<2C.
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Once again, by Theorem 41| we get the Schauder estimate Giu — G 1w as solution of (]Z]) with a
constant C165(1) depending only on ||go||cata a0y |91l cs+«(aq), [[uollcr (2) and € such that

HGlu— G1w||cix+a,1+a/4(Ql)

- L0 - L) (P Guu + Guw)

< Cres5(1) -
— R(Vu, D?u, D3u) + R(Vw, D*w, Dgw) col(@Qy)
-C
G e - 1) legoraguy - (D (Gru+ Grw)) || goora g,
+ 0165 ) |R(Vu, D2u, D*u) — R(Vw, D*w, Dsw)Hcff/“(Ql)
(164) i

H

2010k (s (Il Wl )

u— w||cf+a,1+a/4(Ql)
K
N A H O

-max{uun grrntars gy I0llggeonsargy - =0l gararsars g,

< 0165( )0187(1+C) (C+C’2)||u—w\| 4+a 1+a/4(Q )

Therefore, we add another condition on C'

(C3) Cie5(1)Crsr(1 + C)Fu (C + C?) <

l\D\H

It follows that by conditions (CI), (C2), we have

1
HGlu - le”0f+a,1+a/4(Q1) < 5 : Hu - w"ci}+a,1+a/4(Q1).

That means that (G; is a contraction on Mj.
@ Applying the fixed point Theorem

In this step for ||ugl| @t lgollcat+a(an) +191llcs+e(an) < 20190 =: (33 (see (C2)) small enough one

uses the fixed point theorem and obtains a fixed point v* € M; C C4+a At/ 4(Q1) with v* = Hyv*.
This v* solves the original Willmore-flow problem in the space Mj. O

6.5 TiMeE-UNWEIGHTED C?1T2-C2t2_casE

Until now, unlike in the elliptic case, we did not use the divergence structure of the Willmore-flow
equation derived in [KL12]. In this section, we want to use this structure and incorporate
the results from [DZ15] for Schauder’s estimate and solvability for divergence-type higher-order
systems in cylindrical domains. Here, we will deal with weaker parabolic Holder spaces in
C?*T%-initial value and C?*®-boundary values framework, which will allow us to work with the
Willmore-flow without weighted derivatives.

In this case we consider the norm from Subsection [6.2] from with / = 2 + «

Jl spezse = > sup [Diu(et)|+ > sup [Diu(..)]
Cx,t T( T) |5\<2($t)€QT m‘:zte[o,T] Co(

Q)

+ sup [Dfu(w,)} 2+a|3] )
OS%SQ z€Q ¢ ([O’T})
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Next, we want to recall some notation used in from [DZ15] for the parabolic Holder spaces (there
they used reversed order of space and time). For a function u we define semi norms

” . " L ‘U(I7 t) - u(y7 S)‘ a)
pambolzc [u]a,b,QT ‘= Sup { |t . S|a + |.CU . y|b ($, t)v (y7 S) € QT7 (ta II,') 7& (87 y) )
” ” . o ‘u(x7 t) - U(LU,S)‘ J—
temporal (u>a’QT = sup { s (z,t),(x,8) € Qp,t #£ s,
o . u(z,t) —uly,t —
”Splltllll [u]b,@T ‘= sup { ‘ ( |$)— y|1()y )‘ ‘ (.’E,t), (yvt) € QT?w ?é y}

and the spatial norm

[ul? 5. = lullpe@, + g = sup  |u(z,t)|+ sup |[u(.,t)] o)
o,Qr L>(Qr) a,Qr (x,t)EaT’ ’ tG[O,T][ ]C Q)

where a € (0,1). By C**(Qr) we denote the space corresponding to || . ||* O, Dong and Zhang
o, Jr
also defined an equivalent norm of Cif;o"(ﬂa)/ YQr)

ol arazge 2 lullzse gy = llullpooig,y + D [P ul2zaciol 5 -
Cj,t ’T(QT 4 +a (QT) |B|§2 1 7Oé,QT

Their fourth-order operators are of the form

Lu= > DFAMD'w)
|kl,|¢]<2
where for each k < 2 and ¢ < 2, A* is an real-valued measurable function with

Ykl [0 <2: |AM| <K

for some K > 0. They also impose the ellipticity condition on the leading coefficients

(165) > AMRet > e

Ik|=lel=2
with some constant A > 0. Their main result was the following Schauder estimate.

55 Theorem (Schauder Estimate and Existence)

Let « € (0,1) and T € (0,00]. Assume fz € C**(Qr) for |8] = 2 and fz € Loo(Qr) for |8] < 2.
Suppose that the the operator L satisfy the Legendre-Hadamard condition (165), and A** € C**(Qr). Let
g be a smooth function in R3 and Q € C***. Then

&gu—i-ﬁu:z‘mSQDﬂf in Qx(0,7),
u=g,Du=Dg on 00Qx][0,T),
u=g on Qx{0}

a2t .
has a unique variational solution u such that u € C’it "4 (Q x [0,min(T, k))) for any k > 0, and it

satisfies the Schauder estimate

(166) el oo 22 5 < Cron(llull 2 @xiomy + F + ),

Cac,t T
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where

F= 3 1fslig, + > Ifsllie,)

|B|=2 18l<2
G= Y10l g + 3 1D%gl gy + ot ey
|B]=2 1B1<2

and Chg1 > 0 is a constant depending only on \, K,Q, o and a bound on || A**||%.. Moreover, for any
constant k > 0, we have

[ull oia 2ta < Crg2e“3% (Fy + Gy),

1 (Qx [0,min(T}k)))

x,t

where

Fr = Z [fﬁ]z,ﬁx[o,min(T,k)) + Z 1781l oo (@2x [0,min(7 1))
18]=2 |8]<2

Gy = Z HDﬁgHZ’QX[O,min(T’k)) + Z HDﬁg”LOO (2x [0,min(Tk))) + HatgHLoo (2x[0,min(Tk)))>
1B]=2 18]<2

Clig2 > 0 is a constant depending only on \, K, Q, o and a bound on | A*||%, as well as Cig3 > 0 is a
constant depending only on X\, and K.

Proof: [DZ15] Theorem 2.1 p. 5. O

Let us now recall the Willmore flow graphical representation by Koch and Lamm (133) with
(134)

Oru+ A%u = folu] + Vifilu] + D f3 [u]
with the right-hand side (see [KL12, Lemma 3.2 p. 215])

4
folul = D*ux D*ux D*ux Y Q ** Py,_o(Vu),
k=1

4
(167) filu] = D*ux D*ux > Q Py 1(Vu),
k=1

2
falu] = D*ux > Q% Py (V).
k=1
Now, if we combine A%u with fo[u] to an Ly, u then we obtain
Lyuu = A%u — ij ;][u] = A%u— A <VQVU> - ng (WH> .
Q Q
Therefore, for each u € C'(Q) we can define the elliptical operator Ly, acting on w € I/Vlif(Q)
with

T, D2 ) . T . 2
(168) Eva:A2wA((vu) Donu)D?j(VluV]u(Aw (Vu) Donu))

Q?[u] Qul \Qu Q?[u]
where Q[u] = /1 + |Vu|? depends only on w. For this operator, we have the ellipticity condition

(169) Z Louret™e = | 16> - <§' ! Vu>2 2 > |t (1 - |Vu\2>2
’ Q[u] - Q*[u]

|kl [¢]=2

€1
Q*[u]

v
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It follows that we have the Willmore flow equation in the form
Oyu+ Lyyu = folu] + Vifi[u].
With these preparatory results, we can prove the short-time existence.

56 Theorem (Short Time Existence)
Let a € (0,1), Q € C?T® and ug € C**t%(RQ), then there exists time T depending only on «, the bound on

HuoHcg+a( q) < C and € such that there exists a unique variational solution u € 02+a (2+°‘)/ (@) r) of the
initial Willmore flow problem

Opu+ APu = folu] + Vifilu] + D% f[u] in Qx(0,T),
u = ug, Du= Dug on 02 x1[0,7T),
u=ug on Qx{0}

with the right-hand side (167).

Proof: We split the proof into six steps.

Definition of the iteration map and set
Let0 < v = a/2 < o. Asin the proof of Theorem[#7|we extend ug to U in time by setting o (x t) =

up(z) for all z € Q. Then, we define the iteration map Hy: C’2+a (2+a)/4(QT) — C2+a (2+a)/ ( 7)

2+a, (2+a)/4(QT)

in the following way. For each w € C, ; we set v = Hpw as a solution of

v = — Lyywv + folw] + Vifi[w], inQx (0,T),

(170) v(z,0) = up(z), z € Q,

v(z,t) = uo(x), (x,t) € 02 x [0,T),
Dv(x,t) = Dug(x), (x,t) € 02 x [0,T).

Sincew € Cz+a (210)/4 @) it follows the coefficients of Ly, are in C* (Qr), fi[w] € Loo(Qr), folw] €

Loo(Qr) and by Theorem [55| there exists Hrw € C2+a (2F)/4(@1). Thus, this mapping is well
defined. Also, we assume that 7' < 1, then we have the Schauder estimate

(171) [Hrwl|, 2taCra)/dg ) S Cig2e1% (Z 1f8lw]ll oo @,y + w0l g2ta ))
181<2

with Cig2, C193 depending only on a bound on HwHCa*@T)-

@ H is a self-map
Let us define a non-trivial set

2+a _
172 M we Cy w—T <1:.
( ) T: { (QT H OHCj’t’YvZ‘JAIFl(QT) - }

For T < 1itholds for allw € M

||the coefficients of £Vcha*@T) + ||Vw\|cm@ ) < C'194\|Vw||cm ) < Chos||wl|

o Ho

Y (@)
weM

T
S 0196(a7 v, Q: HHOHCQ-HI(E))
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where Ci9s depends only on «,v, Q2 and the C**7(Q)-norm of ug since ¥ < a. That also means
that there is an ellipticity constant A = A(«, v, Q, ||@o HCQM@)). Now we observe that for w € Mp
by (171) and 7' < 1 with Cg2, C193 depending on Cigg it holds

Cios _ 2,13 2,12
[Hrw] oy 20 < Crone (|U0||cz+a(g) + s (102w g + ID w||com))>

x,t T

< Ch99e”™ sup | |Juollporacg + 1wl ., 2r +w||? . ot
+(0,T) o) I @) I @)

x,t z,t

< 0197(Oé, v Qa

|U0||02+a(§))
by the definition of Mr. Then we have for w € M, the estimate
1w =Tl ceracrern gy < HH1wl c2terarsg ) + [Uollcare@ < Crom + lluollcovem)
< 0198(a> s Qa ||u0||c’2+a(§))
and with the same technique as in Lemma we conclude
a—y a—y
| Hrw — | 24y < CigoT 7 ||[Hrw —g|| 5., 240 < CiggCrogT 7 .
T @) T (@)

By choosing T' small enough we can achieve || Hrw|| 2+a.2+0/4 @) S 1 and Hr is a self-map.
x,t T

@ Hr is a contraction
Let u, w € Mr, then because Hrw and Hru have the same initial values

Hru(z,0) — Hrw(z,0) = up(x) — ug(x) =0, x €
Hru(x,t) — Hrw(x,t) = ug(x) — up(z) =0, x,t

Q?
) € 002 x 0,77,
D(Hpu — Hyw)(x,t) = Dug(z) — Dug(z) =0, (x,t

) € 09 x [0,T].

This means that v := Hyu — Hpw solves the following linear initial value problem

1 1
8t1) = — i(ﬁvu + va)(v) — E(ﬁvu — ﬁvw)(HTU + HT’LU)

(Ya) + folul = folw] + Vi(filu] = filw]), in € x (0,71,
v(z,0) =0, x €,
v(xz,t) =0, Duv(z)=0, (x,t) € 002 x [0, 7.

Analogously by Theorem 55 one obtains the Schauder estimate Hru — Hrw as solution of
with the same \ and constant C'96

”HTU— HT’LUH 24a
T @)

< Clgpe1es . I olu] = fo[w]HL"O@T) + Hfl[u] - f1 [w]HLoo@T)
+ oo [V = Yl gr gy - (ID* o gy + ID*Hrwl e g,)

eMr o
< Caor(, 7,2, ||U0ch+a(§)) = wl| 244,247
C;ﬁ T)

Therefore, we conclude

a—7y
[Hrw — Hrul 202 5 < CrgoT 7+ || Hrw — HTUHCHw“T‘*@
x,t

x,t T T)
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a—y
< Cig9ConT * - flu—w| ,, . 2y
C:L‘t T)

Next, by choosing time small enough, we can achieve

e~ Hpwl e S wl e

T @)
with ¢ < 1 for all u,w € Mr. Thus, the mapping Hr is a contraction.

@ Applying the fixed point theorem

In this step for a time 7" small enough one uses the fixed point Theoremin 05?2%(2+V)/ 4 (Qr) and

gets a fixed point v* € ./\/lT CcCuy r) with v* = Hpv*. This v* solves the original Will-

more flow problem (WE) in the space Mr. There is still uniqueness in the space Cija’(ﬂa)/ @)

to show.

@ Uniqueness

Here, we will use the same initial value problem (Y,)). Let v* € M7y be the fixed point solution in
(4). Furthermore we assume there is an another solution w € C’zj{a’(%a)/ 4(@T,) where we consider
only 77 < T without loss of generality. Additionally, let the time 0 < Ty < 7" < 1, which we will
take like in (3) small enough. Then v* — w is a solution of the and we have a similar Schauder

estimate

[0* = wl| 5,260 _
T @ny)

Ifold = folwll gy + 11l = fill] gy,

< Cgpet1os . )
+ Ca2 |V = Vil ) (ID*Hrtll e gy ) + 1D Bl e g, )

< Cops|[v* — w| 24y
Ci,t% ‘ To)

with constant Cyp3 depending only on o, v, 2and C ; 2, (2+7)/ 4(QT )-norms of v* and u. Since these

norms are fixed we can choose Ty and || Vug| 0@ small enough so that

mmmu#%fshwuwwﬁf
@r,) ~ 2 (@)
Thus we get:
0" —wl .. 24a =0.
T @)

This means that v* and w are identical in 02+a (2Fa)/a (Qr,)- To end the proof, we also have to show
the equality in ¢t € (Ty, T']. Here we observe, that the tlme Ty depends only on €2 and the bounds
of C’ij{a’(ﬂa)ﬂ(@%)-norms of v* and w. Since [[v*(.,Tp) — w(.,Tp)||p2+a @) = 0 by choosing the
same uniqueness time 7, one obtains uniqueness on [0, min{27y,7"}]. Finally, we repeat this
procedure until one reaches 7”. We emphasize that v = «/2 depends only on . ]

In order to show global existence similar to Theorem [49} we need an a-priori estimate for the
following problem

O = —A% + folw] + Vifilw] + D3 fy [w], inQx (0,T),
(173) v=0,Dv=0 on 0Qx][0,T),
v=0 on Q x {0}.
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In the next Lemma, for the global existence we will need to replace in the Schauder estimate (166)
the norm ||u/| ;2 (@x(0,7)) I Theorem by ||z 1. (@x(0,7)) In contrast to the former, the latter can
be controlled by the diameter estimate (a) in Theorem [16]by Grunau, Deckelnick, and Roger.

57 Lemma
Let v,w € CQ+

«

xS (Qr) such that v is a solution of (173) then

2
Wzt g, +[D"]a 07,

< Cana Hw”Loo (@r) + Z [ falw HLoo )+ sup || fa[w ](wt)Hca(ﬁ)
18l<2 e

where Coy depends on Q and «.

Proof: See the proof of Proposition 5.2 in [DZ15]]. dJ

58 Theorem (Global Existence)
There exist a constant Caos = Caos (v, ) such that if

(174) ||UO||C2+a(§) < Ca05

then there exists a solution u of the Willmore flow problem

O+ A%u = folu] + Vifilu] + D f' ] in Qx (0,T),
u=ug, Du= Duy on 0Qx[0,T),
u=wuy on Qx{0}

with the right-hand side (167)) for all times, such that VT € (0,00) : u € 02+a (QT) Furthermore
there exists a constant Copg = Caos (v, 2) such that

(175) Vit € (0, OO)I Hu( . ,t)‘|02+a(§) < Cyg.

Proof: First, we take |luo||c2+o(m) < C20s and specify Chos later. By the short time existence in

2+a (2+a)/4(QT)

Theorem .we obtain a solution u € C} with some T depending only on «, 2 and

C05. We can local extend the solution in tlme, if u(.,T) € C?>T%(Q), so that we can work with the
maximum existence time Tiax > 0.
We assume Trax < oo and consider constant C' that we specify later. We also consider the

maximal time TC that

Vt € [O’ Trgax) : HU( . 7t)||02+a(§) < é
Especially in this case ||uo| c2ra(@) < C. By Lemma |57|we know that for all ' € (0, Tinax) it holds

(u—uo)2tagy, + [D*(u—wuo)la o,

< Coa (Nl = w0l e,y + 0l gorag@y + D Ifalulll g, + e I£20(- - Bllonmy
|B]<2

First, since Q > |Vu| it follows \Q*ZPg(Vu)] < (o7 with some constant Cy7 depending only on
algebraic structure of P,(Vu). We conclude (where all constants are algebraic)

1 folulll (g < CoosllD*ull} o Z |Q™* Pae—2(V)| oo g,y < Co00ll D*ull} e 5,
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1Aalull g,y < CaollD?ull} g, ZHQ # Poge-1 (V)| poo g,y < Co1tl D*ullf e 5, [ Vel oy

2

2
[feldllca@ < IID*ullog D (@7 Por(V)] gy + [D*ulcag@my D 1@ Por (V)| cogmy
k=1 k=1

= ||D2U||co(ﬁ) [VU]CQ(Q)HVUH()O@) + [D2U]Ca(ﬁ)”vu||éo@)

where we used Q! < 1 and the Hélder seminorm product estimate as well as [Q 7] ca @ =
[Vulge @) We deduce

sup Jlu(., Ollcava@) < lullgzeacrarg

{z3)
< Caiz (HU‘Loo(QT) + [luoll o) + tes(léPT) [Ju( .- J)H%zw(m) :

The solution of the Willmore flow « has a L*>°(2)-bound [DGR17] (or TheoremF (a))- By this
bound, we can not choose the L*>(€2)-norm small enough in contrast to the L*({2)-norm. For
preparing a L?(Q2)-bound in Theorem [16/(b) we use a interpolation inequality in Theorem for
all T € (0, Tmax)

(-, 8) ey < el D2 Dl oy + CE -, 8)l 120
Consequently, we obtain for all 7' € (0, Tinax)

sup (.. 2)llz2(0) + uollcave ey

te(0,7)
sup Hu(‘7t)H02+a(§) < Co3 3
te(0,T) + sup Hu( : 7t)‘|02+a(§)
te(0,7)

By choosing C' small enough and from now on fixed: Cy13(C?) < 3 we get

(176) vt € (O,Tgax) f fuC D)l gzragm) < 2C213 ( sup [lu(.,t)|lr2) + HUOHCZJra(Q))
te(0,T)
Since the Willmore energy stays bounded for all t > 0 we get
W(u) + [l L1aa) < W(uo) + [[¢ll1@ea) < Clluollgzram)-

Next by choosing by Cyo5 (depending on €' and Cy;3) smaller we get ||ug| o2+ () Smaller, therefore
we can also achieve [|u(.,t)||;2(q) small enough by Theorem . @ so that

vt € (OﬂTrgax) : Hu( . 7t)||()2+a(§) <

I\J‘ Q>

which gives a contradiction to the maximality property of 7.S, .. Therefore, the existence is global
in time. .

6.6 SUBCONVERGENCE/CONVERGENCE TO A CrITICAL POINT

59 Theorem (Subconvergence)
Let go € C*T(09), g1 € C¥T*(0), up € C1(Q) and (u(t))ier., a global solution of the Willmore flow
equation with u(0) = uy.

116



Let us assume that maxier,, [[u(..?)||c1q) < Ciss, where Ciss is a constant from the short time
existence Theorem[54} or w is the global solution in Theorem {9 then there exists a timesequence (ty,)ren C
R4+ with limy_, o t, = 400 and a critical point of the Willmore enerqy uno such that V3 € (0, «) :

u(ty) — us in CHAQ).
k—ro0
Proof: In this proof, we want to discuss the subconvergence.

First, let us consider the case maxier,, [[u(.,?)[|c1q) < Ciss. Even though ug is allowed to be
merely C', here we are assuming C4F regularity on the Dirichlet boundary data. Hence it is pos-
sible to show a global C**%(Q)-bound for u in case t > 1. Since forall t > 0: ||u(.,?) ||Cl(§) < Clgs,

by the short time existence result Theorem there exists short existence time T' = 1 independent
of ¢ so that

Vvt > 0: < 0214(9,04).

H“||cf+“*1+a/4(§x(t,t+1])

In other case when u is the global solution in Theorem 9] we can use (156)

with some 77 € (0,1) from Lemma Thus in both cases Vt > 0 : u( ., t) € C**(Q2) and moreover
Vit > 1 fju(.,t) ||O4+a(§) < Cs16. Furthermore, since the Dirichlet boundary data is constant with
respect to time, one can show that

2
de‘

dt t=to 2 t=tg

d 1
Vtg > 0: —W(u)‘ = —/
Q

ApyH +2H <;H2 - /c)

1
:_/ |atu\2de’ <0,
2 Ja t=t

=to

hence the Willmore energy decreases monotonically. It follows V¢;,t2 € (0, 00)

1 [t
W(u(.,tg)) — W(u(.,tl)) = —2/ / ‘6tu|2dedt.
t1 Q
We lett; — 0 and t5 — oo. In fact, since W > 0 and () > 1 we obtain the estimate
[0sullr2oxr, ) < V2W(uo)

concluding (¢t — ||0su( ., ,t)H%Q(Q)) € L'Y(R4). Thus there exists {t;}ren C R a time-sequence
with limy,_, ot = +00 and

k—o0

We can assume, that ¢; > 1, then the sequence {u(ty) }, . is uniformly bounded in C***(Q). Thus,

there exists a subsequence {t, }ren and uoo € C*H4(Q) foreach 0 < B < 1 such that u(ty,) — U in
any C*+#(Q)). Moreover by the equation (I77) and uniform C**%(Q)-bounds on the subsequence
it follows

A

k—o0

r(ua0) 2 @HQ —’C) (u( ) =20 in CO@).

Thus, we conclude that u, is indeed a critical point satisfying the graphical Willmore equation:

1
AruH +2H <2H2 - IC) (too) = 0.
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In the subsequent theorem, we establish that as ¢ — oo, there is convergence towards a unique
critical point. This critical point is derived from the elliptic solution to the Willmore equation, as
detailed in Theorem21]in Section5| At that point, it was necessary to impose a smallness condition
on the C*™*-boundary data, which we also assume for the temporal limit for the Willmore flow
solution.

60 Theorem (Convergence)
In the case ug € C*+(Q) there exists a constant Ca17 = Ca17(S2, o) such that if [uollgz+a(m) < Corr then

there exists a unique un, € C*T*(Q), which is also a critical point of the Willmore energy, such that

u(t) — use in CFAQ)

t—00
forall 5 € (0,a).

Proof: In this proof, we want to show the convergence to the critical limit for a small C**%(Q)
norm. To begin, let us recall the results from Lemma [57and the proof of Theorem There in
we could show that we can make the global C**%(Q) bound of u as small as desired, if we
choose ||u||c2+a (g) small enough

(178)

vVt e Ry <U>2J§Ta’g><(oyoo) + [lu(., )ch+a( Q) < 20913 (t S(gp ) [Ju(. 7t)HL2(Q) + ”UOHC’2+a(Q)> :
€(0,00

The Willmore energy stays bounded for all times, therefore, we get
W(u) + [l o) < Clluollgeram)-

Hence by Theorem 16| [|u( ., t)||z2(q) can be achieved small enough by choosing |[u||z2+a g, small
enough.

For [Jugl| 2+ @) < ¢ small enough we obtain the solution of the Willmore equation us, with
the same boundary values as 1 by Theorem 21} We emphasize that in (I78) we also obtained a
temporal Holder estimate on u. Thus, if we can bound a L” norm over 2 x [T, c0) of the difference
between solution v and the limit u+,, the convergence of u( . ,t) to u( . ) for all £ — +oo follows.

For this purpose, we write u — u, as the solution to the following problem

(1 — o) + A% (u = o) = folu] = folueo] + Vi(fi[u] = filuce]) + D (f5'[u] = f' [uac]) in €2,
U—Uo =0, Du—Dus =0 onf.

By multiplying with u — u, and integrating by parts as well as using the Poincare and the Cauchy-
Schwarz inequality, we obtain for all t > 0

1
/ 8t]u—uoo\2dx+/ |D?(u — uso)|? da
2 Ja Q

< Cous (/Q|f0[u]—fo[uoo]|2dx—|—/g|f1[u}—fl[uoo]|2dx—|—/g\f2[u]—f2[uoo]\2d$>

2
< Corg max {Jufl gy luse ez } - 1V = Vool 220

2
+ Ca20 max{||u|]02 Nusslloz@ } | D?u - DQUOOH%?(Q)

2 2
SCQQI?g%Hu("t)H(ﬂ(ﬂ)/Q’D (4 — Uoo)|“ duz.
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For sup;> ||u(.,t) HéQ @ small enough it follows by integrating over time and Poincare inequality

|lu — u00||2L2(QxR+) < CQQQ(Q)/ / |D?(u — uso)[* dzdt < 20222/ Uy — Uoo|? dz:
0 Q Q

thus we conclude

t—o00

t+1
lim / |u — oo |* dzz dt = 0.
t Q

Since we could show that (u) 2+ g, and lu(., )|l c2+a (@) are bounded, we use interpolation result
4 b
to obtain the following

tliglo lu— Uoo||00(§x[t,t+1]) -0

In remains to show that lim; o u = us in C*7#(Q) which follows by interpolation and global
C?t(Q)) bounds. The uniqueness of uy, follows from the uniqueness of the C°(Q)-limit for
lim;_, o u convergence. ]

119



7 VARIFOLDS, MEASURES & BV

This section will recall basic definitions and theorems considering measures, varifolds, and BV-
functions. These results are needed for the next Section |8 in which compactness results for the
Willmore functional for graphs in the framework of varifolds, measure-functions pairs, and BV-
functions are presented.

Notation: Whenever 0 < p < oo and = € R", we define an open ball and a sphere:

By(zr)={yeR"||ly—z|<p} and S"'={yeR"||y| =1}

Let B(X) be the set of all Borel subsets of a space X. Let C?(X) be the space of continuous functions
on X with compact support.

7.1 RADON MEASURES

To obtain compactness results we will work with Radon measures. They form the backbone
of the definition of varifolds and measure-function pairs and help to characterize the different
contributions of the gradient of a BV-function. This subsection follows the presentation from
[All72, 2.3 Measures p.424]. We call p : X — R>q U {400} a Borel regular measure on a locally
compact Hausdorff space X if

VACX: p(A) =inf{u(B)|AC Band BisaBorel set },

and whenever By, By, ... is a disjoint sequence of Borel sets of X
VACcX: p <Am U Bk> = u(ANBy).
k=1 k=1

The support of a Borel regular measure y is

suppp = X \ U {G| Gis openand u(G) = 0}.
For each subset B of X, we set the restriction of measure

(179) VAC X:  (uLB)(A) = u(BnA).

Next, we want to recall the p-measurability of sets and functions. We say aset E C X pu-measurable
if there exist a set Z with (Z) = 0 and a Borel set B that E = B U Z. Whenever Y is a topological
space and f : X — Y we say a function f with values in Y is y-measurable if the domain of f is
p-almost equal X and for all open U C Y the set f~1(U) N X is u-measurable.

The push-forward of a measure by mapping 7 : X — Y is defined by

VK € B(Y): Tuu(K) = p(r 1 (K)).

We call 1 a Radon measure on X if 1 is a Borel regular measure on X and finite on each compact
subset of X which means

VK C X: K compact = u(K) < oc.
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Subsequently, we define integration by introducing simple functions g: X — R = R U {#o0}
which are defined by having just a countable image. It is called p-integrable simple if one of the
following terms is finite

/g+du = > y-u(lghH W), /g‘du = > yu(le) W)

0<y<oo 0<y<co

with gt = max(g,0) and g~ = (—g¢)". For a function f: X — R, we define its upper and lower
integral by

/ fdp :=inf { /gd,u ’ g simple, p-integrable and g > f ,u—a.e}
/fd,u = sup {/gdu ’ g simple, p-integrable and g < f ,u—a.e} .

Further, we call a y-measurable function f: X — R p-integrable if

[ ran=[raw= [ rau= [ i

Next, we recall the restriction of a Borel regular measure . for a nonnegative extended real-
valued function f that domain is X up to p-null set

(180) VAC X : (ule f)(A /fd,u /fXAdu

Whenever X is a locally compact space, due to Riesz representation theorem, each linear
functional in the form F: C%(X) — R that is nonnegative on the nonnegative members of C?(X)
can be uniquely represented by a Radon measure. In this sense, we write

VieCUX):  u(f) = /X fdp.

Then we can rewrite y as a variation measure for every open A C X

u(A) = sup{/Afdu‘ F e COUX), If] < 1,supp(f) € v}.

The convergence for the Radon measures is defined in the dual sense. For the sequence {1 }icn and p
the Radon measures in X and Y C X we denote

(181) pi = pinY, if Vo € CAY): u(p) = ulp).

Further, we recall the definition of LP-spaces. Let y be a Radon measureon X and f: X — R
a p-measurable function. Like in [AFP00, Definition 1.16 p.9], we set for each p € [1, c0)

1l = ( /. \flpdu>

£l oo (uy = inf{C € [0, o] ’ |f| < Cp-aein X}.

and for p = co we define

By LP(p) or LP(X, 1) we denote the real vector space of functions f: X — R satisfying || f|| .»(,) <
co. The semi-norm || . | z»(,) becomes a norm if one considers functions that are equal p-a.e. as
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identical. By LP(u; R™) we denote the space of R"-valued functions with finite LP(u; R™)-norm,
which is defined in the same way as the LP(u)-norm where the absolute value is replaced by
euclidean length of a vector in R™.

The next convergence theorems for integrals with respect to a Radon measure are among the
most used tools in the framework of L (y)-spaces.

61 Theorem (Convergence Theorems)
Assume { fi}22 is a sequence of functions in L' ().

(1) (Fatou’s Lemma) Then / hkm inf fr dp < liminf / fr dp, provided that all f, > 0.
X —oo Jx

—00 k

@ (Monotone Convergence Theorem) Let f1 < fo <--- < fi, < fxq1 < .... Then

lim / fkd,u:/ lim fr dp.
k—o00 X Xk*)OO

(3) (Dominated Convergence Theorem) Assume g > 0, g, f € LY (w), fu — f,k — oo p-a.e. and
Vk € N :|fi| <g. Then

i [ 1fe~ fldi =0,
k—oo X

(4) (Ae. convergent subsequence) Assume f € L'(u) with / |fx — fldp = 0. Then there exists a
X

subsequence { fy, }7° such that

Jr, = [, forl — o0 p-ae.

Proof: [EG15| Theorems 1.17-1.21] O

In the following, we always consider X C R". Further, we want to recall how to derive one
Radon measure with respect to another, which is provided in the next theorem for X = @ C R".

62 Theorem (Besicovitch Derivation Theorem)
Let 1 be a positive Radon measure in an open set Q@ C R™ and n a R™-valued Radon measure. Then, for
p-a.e. x in the support of p the limit

exists in R™ and moreover the unique Radon-Nykodym decomposition of n is given by n = fu + n°, where
n® =nl E and E is the u-negligible set

limw(Bp(x))—oo}.

E = (Q\ supp ) U {37 € suppp | 1(By(x))
p

Proof: By [AFP00, Theorem 2.22 (Besicovitch derivation Theorem) p.54]. O

We will also need the following result, which allows identifying functions p-a.e..
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63 Theorem (Fundamental Lemma of Calculus of Variations for Radon measures)
Let p be a positive Radon measure on an open set Q C R"™, f € L'(u; R™). Suppose that

Vg € C%Q): / gfdu=0
Q
then for p-a.e. x in the support of p:

f(x)=0.

Proof: Here, we want to use the Besicovitch derivation theorem. So we define a Radon measure
v := fuwhichis v(4) = [ 4 f du for any measurable set A C Q. This means v < p. From the
assumption we get with [EG15, Theorem 1.8 p.13]

ACQopen — V(A):sup{/ufd,u
Q

we o), ful < XA} o
Then by Theorem [62]it follows that for  a.e. « in the support of y:

f(z) = lim V(Bp(x))

2 u(B,w)

O

One important class of outer measures, which defines k-dimensional analogies of the area
without using parametrizations are Hausdorff measures. This intrinsic approach is helpful in
geometric measure theory. For £ > 0 and A C R" we define the k—dimensional Hausdorff measure
of A by

. Wk . k
HE(A) = %1{{% 2—]; inf {Z [ diam(A;)]
i€l

diam(4;) < 5,Ac | J Ai}

i€l

where wy, is the £¥ measure of k-dimensional unit ball. For all £ € [0, 00) HF is a Borel regular
measure, see [EG15, Theorem 2.1 p.82].

Consequently, we can define the notion of a rectifiable set [ABG98], Definition 2.1 p.6]. Let
E C R", then we call A countably H*-rectifiable if A can be covered with the sequence of C!-
hypersurfaces T'; up to a H¥-null set. This means

H* <A\Gn> =0.
=1

Furthermore, we call A H*-rectifiable if A is countably H*-rectifiable and it holds H*(A) < +oo.
By Besicovitch-Marstrand-Mattila Theorem in [AFP00, Theorem 2.63 p. 83] we know that every
A € B(R™) with H¥(A) < oo is HF-rectifiable if and only if the upper and lower k-dimensional densities
of H* L A are equal 1:

K(ANnB k(ANnB
O (HF L A, z) = limsup ( k”(x)) _1 zlimiglfH ( k’)@)) — O, (H*L A, 1)
Wip

p\0 WE P [N

for H*-a.e. z € A.

One can also study the density properties of k-rectifiable measures and show that they are
asymptotically concentrated near to = on an affine k-plane for H#*-a.e. . This k-plane generalizes
the classical tangent space in differential geometry. In the same way as in [ABG98], we define
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the approximate tangent space Tan*(H* L A, x) of a H*-rectifiable set A at 2 by the k-plane P C R
(the set of all k-planes will be defined later in Subsection[7.4|such that, by using the dilations of A
around z denoted by A, = p~1(A4 — z), we have with multiplicity 6 € R

VoeCl®Y):  lim /A o) ) = /P 06(y) dH"(y).

Then, by [Fed69, 3.2.25] the mapping z + Tan®(H* L A, z) is defined H*-a.e. on A and is H*-
measurable. Also, by [Sim83| Remark 11.5] we have the locality result

Tan*(H* L A, z) = Tan®*(H* L B,z) for H"-ae. 2 € ANB

for any H*-rectifiable sets A, B. By [AFP00, Theorem 2.83 (Rectifiability criterion for measures)
p.93] the multiplicity is given for H*-a.e. = by

0(z) = On(H" L A, x) := lim AN f"(x)) .

PN\O Wip

Next, we want to present the area and coarea formula. The first describes how to compute #*-
measure of image f(B) of a Lipschitzmap f: R¥ — RY, N > k generalizing parameterized surface
area formula. The second generalizes Fubini’s Theorem in the following way. For a Lipschitz map
f: RM — R* and a HV-rectifiable E ¢ RM we canslice E into level sets { f = ¢t} N E such that the
HN-integral over E is given by L*-integral over slices-volume HV~*(E N {f = t}).

Further, M C R"**is supposed to be H"-measurable, so that we can express M = UjZo M; with
H"(Mp) = 0 and disjoint M; is H"-measurable, H"(M;) < oo, moreover M; C Nj;,j < 1, where N;
are embedded n-dimensional C'!-submanifolds of R"**. Let f: U — R™ be locally Lipschitz with
U C R""* an open subset, then by definitions presented in Subsectionthe gradient of f is given
H"-a.e locally by VM f(y) = Vi f(y),y € M;. Corresponding, the differential d f,: T,M — R™
is dM f.(1) = D, f(x) = (1, VM f(z)),7 € T.M and the adjoint of d™ f, by (AM f,)*: R™ — T, M
which is characterized by

(182) Vo e RTVu e T,M: (A £,)"(0), uyraar = (v, d £ (u)hmon.
64 Theorem (Area Formula for Rectifiable Sets)
Let U C R™* an open subset, M C U a H"-measurable, n-rectifiable set and f: U — R™ locally

Lipschitz, m = n + ¢ > n,{ > 0 and h is any non-negative H"-measurable function on M and in the case
flaris 1 : 1. Then it holds

/ hJJMdH”:/ ho f~tdH"
M F(M)

with the Jacobian J ]ch (x) for H™-a.e. x € M given by

(183) TM () = \/det J(x) = \[det ((dM f,)* o (4 £,))

where J(x) is the matrix with D, f(z) - D, f(x) in the p-th row and q-th column for T1,...,7, any
orthonormal basis of T,,M.

Proof: [Sim83, 2.6 p. 77). 0
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65 Theorem (Co-Area Formula for Rectifiable Sets)

Let U C R™* an open subset, M C U a H"-measurable, n-rectifiable set and f: U — R™ locally
Lipschitz, m < n = m + k,k > 0, g is a given non-negative H"-measurable function and A C M any
‘H"-measurable. Then it holds

/ gJ AN = / ( / gd?—[k> dLm™(y)
A m \Jf1(y)nA

where J J]c‘/[ * is the adjoint Jacobian

(184) M () = \Jdet (M £,) o (dM f,)7).
Proof: [Sim83] 2.9 p. 77]. O

For, in our case the most important, case 7: R? > (2!, 22, 2%) — (2!, 2%) € R? the orthogonal
projection in the first two components we want to calculate the adjoint Jacobian. For that let ¢
be a local representation of surface M at p. We represent the tangential space by T,M > w =

w'dp + w2da. In local representation we have

M _ (1 00 1 2 _ (O1p1 Oagpn w!
(d 7r¢)w—<0 1 O>o(w O1p+w 62(,0)—(81@2 Doy o {2

So we can locally rewrite (182)

M_ 50 (o _ O1p1 D21 M_ \* _ (i O1p1 O1p2
(4% v,(gm)w>R2—<v, (31902 32<P2)Ow>132 > (d0m) = (")e op1 Dop2)

Finally, we can deduce

2
O 32<P1) ij (31<P1 31@2)) <<a1801 32@1)) 1
det K = det — .
¢ ((31902 daps ) © (g7) Oap1 D22 ¢ O1p2 D202 det ((gs5))
Next, we want to compare these terms with the last component of the normal. By Lagrange’s
identity, we get

1 20203 — 019030202
N = 5 (O1p X Do) = ———— | 01302001 — D11 0203
\/det (g&% <8ng’ ({)ﬁ;m) det ((gi5)) \O1p102002 — B1p20aip1

2@, 01¢ 2

Therefore, the adjoint Jacobian is equal to the absolute value of the third component of the normal

(185) TM(p) = \Jdet ((dMm,) o (dMmy)*) = |Nsl(p)-

7.2 FunNcTtioNs OF BOUNDED VARIATION AND FINE PROPERTIES OF FUNCTIONS

In this subsection, we want to recall the definition of spaces of bounded variation and some of
their fine properties. Since we want to consider Willmore bounded graph sequences in Subsection
by Theorem (16 the L'(Q)-norm of Vu, also called variation, will stay bounded. Especially
the W!-Sobolev functions have bounded variation [, [Vu|dz, which plays a role in variational
problems like least area problems. The justification for the inclusion of BV-spaces instead of W!:!-
spaces in the field of calculus of variations is that the W 1-!-spaces do not exhibit useful compactness
property, like Theorem |66 for BV-functions.
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Let  C R™ be an open and bounded set, u € L'(£2). We say that u belongs to the space of
functions of bounded variation if its distributional derivatives V;u for i = 1,...,n are given by finite
signed Radon measures on € in the following sense

Vg € CHO;RM) : /(Vu,g)an dzr = / udiv gdz.
Q Q

The total variation of Vu of a function u € L!(Q) is given by

/|Vu:sup{/udivgda:
Q Q

Then, the space of L!-functions with bounded variation is denoted by

g€ CHQR™) and |lg = () < 1} .

BV (Q) := {u c LY(Q) ’ /Q\vu| < oo}

For each u € BV (Q) the Vu and |Vu| are vector valued and scalar Radon-measures respectively
on R" and R. These can be decomposed in a absolutely continuous part of Vu with respect to L"
and a singular part V*u which consists out of a jump part V7w and a Cantor part Veu

Vu = VL™ + Véu = VuL” + VVu + Veu.

Furthermore, it is possible to characterize the singular part more precisely as restrictions on the
following sets with the help of the following sets

Eu::{:z:EQ limpr(x)):oo}, @u::{xEQ

pN\O o
Then we have the restrictions of Vu as Radon measures [AFP00, Prop. 3.92 p. 184]

limwép(:v))p>0}.

PN\O p

Voul™ =Vul_ (Q\ 2,), Vv =Vul©,, Vu=Vul (Z,\O0,)

where by Besicovitch derivation theorem [AFP00, Theorem 2.22 p.54] the absolutely continuous
part is computed for all z € Q \ £, by

Vu(B,(0
V%u(x) = lim 7u( (0))
PNO Wy p”

with V% € Lj(©2; R™) and moreover £"(3,,) = 0.
It is also possible to describe the jump part more directly. To do so, we define the approximate
jump points [AFP00, p.163 Def. 3.67]. Let u € L. (€ R™) and = € . We say that z is an

loc
approximate jump point of u if there exist a,b € R™ and v € SV ~! such that a # b and

(186) lim u(y) —aldy =0, lim u(y) — b|dy = 0.
PO Bm,u)‘ W)=l PO B;(w)’ ) =¥

with the convenient notation
B;r(a:,l/) = {y € By(z) | (y —z,v) > O}, B, (x,v) = {y € By(z) | (y —z,v) < O}.

Up to a permutation a <> b and a change of sign of v the triplet (a, b, v) is uniquely determined by
(186) and is denoted by (u™(z),u™ (z), 1, (x)). We also denote J, as the set of approximate jump
points. Moreover, by [AFP00, Definition 3.67] J,, C ©,, is H" !-rectifiable and H"~1(©, \ J,) =0
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[AFP00, Proposition 3.92]. Also, by [AFP00, Thm 3.78 p. 173] we know that with v,,, which denotes
a Borel unit normal vector field to J,, it follows

Viu=(u"—u )@ " 1LJ,

where uT and v~ are the traces of v on J,,.
The main justification for the usage of the BV-spaces is the following compactness theorem.
We again emphasize that the Sobolev space W1(Q) does not have such a Theorem.

66 Theorem (Compactness for BV functions)
Let 2 C R™ be open and bounded, with Lipschitz boundary 0Q2. Assume {uy}32, is a sequence in BV (§2)

satisfying

sup {[|ull11(0) + [Vur|(Q)} < oc.
keN
Then there exists a subsequence {uy; }32, and a function u € BV (Q) such that

ug; —uin LY(Q) and lim ; eVuy = /ng)Vu, forall p € C2(Q).

k—o0

We call the last property the weak* convergence of Vuy, to V.

Proof: [AFP00, Theorem 3.23 Definition 3.11] O

We want also to consider the sublevelsets of graphs. Then, such a set E has a finite perimeter,
meaning that the indicator function x g lies in BV-space. Hence, theoretically, its boundary has a
bounded surface area and an inner normal measure. We recall a £L"-measurable set E C R" to be
a set of finite perimeter if the characteristic functions x g have a finite perimeter of £ relative to open
UcCR"

P(E,U) ::/ Vys| < oo
U

so that xg lies in BV (U). We use here the notation U to avoid confusion with € because later
we will set U = Bg(0) x R where Q C Bg(0) C R2. This total variation of Vyz measures the
(n — 1)-dimensional Hausdorff area of 0F N U. Like in [AFP00, Definition 3.54 p.154] we further
call the reduced boundary F E the collection of all points « € supp |Vxg| N U such that the limit

ve(z) = 1mw
- N0 [Vxg|(By(z))

exists in RY and satisfies |vg(x)| = 1. The function vg: FE — S" ! is called generalized inner
normal to E. The motivation for introducing the reduced boundary is to have a set of boundary
points where we can define an inner normal in a measure-theoretical sense. From [AFP00, p.154]
we know that FFE is a countably H" !-rectifiable. Also by the Besicovitch derivation Theorem
[AFPOO, Theorem 2.22, p.54] |V x| is concentrated on F E and furthermore [AFP00, Theorem 3.59
(De Giorgi) p.157] yields

(187) \Vxe|=HN L FE.

Moreover, the polar decomposition Vx g = vg|Vxg| holds. Like in [AFP00, Definition 3.60 p.158],
for every ¢ € [0, 1] and every L"-measurable set E C R" we denote:

hmwp@mff\:t}'

Et:={zeR"
{ N0 |By(z))|
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While one can consider E? and E! a the measure theoretic exterior and interior of the set E, the
essential boundary of E is defined as:

(188) O*E :=R"\ (E°UEY).

By [AFP00, Theorem 3.61. (Federer) p.158] we know that for E a set of finite perimeter in U and it
holds

(189) FENUCEY?Cc9E and H"'(U\(FEUE'UE") =0.
Hence, it follows that up to H"~Lnull set the essential and reduced boundaries are the same
(190) H"YO*E\ FE) = 0.

The rather abstract measure theoretical notion of sets of finite perimeter still allows the usual
Gauss-Green Theorem provided the usage of the measure-theoretic boundary FE.

67 Theorem (Gauss-Green Theorem)
For any set E of finite perimeter in U the distributional derivative V x g is a R"™-valued finite Radon measure
in U and it holds

(191) Vo € CHU;R™): / divdz = —/ (vg, ) dH" L
E FE
Proof: [AFP00] thm. 3.36 p.143 and equation (3.47) p. 154 and (189). O

Not only that, but it is also possible to introduce the notion of the mean curvature of FE in
the sense of Luckhaus-Sturzenhecker [LS95]. They introduced it for a parabolic mean curvature
problem in a time cylinder Q x (0,7"),7 > 0. In contrast, we define the mean curvature for the
reduced boundary of sets in U C R".

68 Definition (Mean Curvature of the Reduced Boundary, [LS95] (0.4))
Let U C R™ be open and bounded, and let E be a set of finite perimeter in U. Then we say that a reduced
boundary F E has mean curvature, if there exists such a function H € L'(|Vxg|; R) that satisfies

T
V¢ e C(U;R™): / divgs ¢ — < VXng ) oD(Co VXE Vx| = / H({VxE,
U IVxE| IVxE| U

It can be checked that this definition is consistent with the classical notion of mean curvature
for graphs. Namely, in case 9E N U is a C'-class two-dimensional submanifold M of R? then
IVxe| = H?L (OE NU). Furthermore, one can check that N := —Vxg/|Vxg| is a normal vector
field to M by the classical Gaussian theorem (see step (4) in proof of Theorem . Then, by the
tangential divergence theorem, it follows with test functions ¢ € C2°(U; R?) that

. Vxe \© VXxE
divps ¢ — ( > oD(o Vx
/U ( " IVXE| IVxE| Vel

= / (divﬁg ¢(—NToDC¢o N) dH? = / divy, v () dH? tang. Div _/ . ¢ dH2
M M Thm. M

:—/MHC-Nd”HQZ/UHCVXE-

Next, we want to introduce some fine properties of functions. Let u € L{_(€2; R™), by Lebesgue

set of u, denoted by L,,, we call the set of all points = € €2 such that [AFP00, Definition 3.63 p.160]

(192) Jz = z,(xz) e R™:  lim lu(y) — z|dy = 0.
PO B, ()
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Like in [GMS92, p. 54] by Giaquinta, Modica and Soucek, we call for each = € L,
u(x) = zy(x)

the Lebesgue value of w at z € L,, (Ambrosio, Fusco and Pallara [AFP00, Defintion 3.63 p. 160] call
it the approximate limit of u at ). The complement of the Lebesgue set is denoted by S, := Q\ L,,.
It is known that S, is H"!-rectifiable [Fed69, 4.5.9(16)]. Furthermore, by Lebesgue point, we call
each point such that

(193) lim u(y) —u(z)|dy = 0.
i f ) o)

Furthermore, the limit function u* € L{, _(R"™)

(@) i {limr\o fi,(wyudy, if limit exists
0, otherwise
is called the precise representative on v in x € €. It is possible [EG15, Theorem 5.19 p. 241] that
the above limit exists even if x is not a Lebesgue point, if f has a "measure theoretic jump" across
some hyperplane, thus approximate jump points. Next, we say that a function u: 0 — R™ has an
approximate limit at x € R™ if there exists z € R such that

' E"(Br(x) N {ju—z> s})
Ve >0: }1{‘% on (Br(:n)) =0

Then z is uniquely determined and we set the approximate limit of v at x € 2 by

aplimu(y) := z.

Yy—x

Moreover, we call u approximately continuous at = € R™ if the condition aplimu(y) = u(x) is satisfied.
Yy—x

If u € L'(Q), then the Lebesgue set is also the set of approximate continuity since, like in [EG15,
Remark p. 59], it holds

L(Be@)nflu-z2¢})
L (B, (x)) =z ][Br(w) = 2l dy.

Therefore, for all z € £,, it holds u*(x) = aplimu(y) = @(x) (see [GMS92, Proposition 4 p. 62]) .
Yy—x

Now like in [EG15, Definition 6.1 p. 262], we can define a general notion of differentiability.
Letu € L{ _(Q;R™)and x € Q\ S,. We say u is approximately differentiable at x if there exists a m x n

loc
matrix L such that

194) aplim [uly) — @) - Ly - o) _
Yy ly — x|

If u is approximately differentiable at  the matrix L, uniquely determined by (194), is called the
approximate differential of v at x and denoted by ap Du. We also denote the set of points where
u is approximately differentiable by Ap(u) C 2\ S,. Actually, in [GMS92, Definition 5 p. 63]
we can find a slightly weaker definition which uses aplimsup instead of aplim. Since we will use
BV-functions, which have stronger differentiability properties, we better stick to (194).
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69 Theorem (Differentiability for BV functions)
Any function u € BV (Q2; R™) is approximately differentiable at L"-almost every point of Q. Moreover, if
z € Q\ (Sy U Svay UX,) then it follows

o B0~ 8@) — (V. (g — )]
PO B, (x) p

dy=0 and apDu(x)=Vu(x)

Therefore, the approximate differential ap Du is the density of the absolutely continuous part of Vu with
respect to L™ almost L™-everywhere. Also it follows that

Q \ (Su U Svyay, U Eu) C AD(U)
Proof: [EG15, Proof of Theorem 6.1 p.258, conditions (a),(b) and (c)] and JAFP00, 3.83 p.176]. [

Moreover, by the theorem of Federer-Vol'pert [AFP00, Thm. 3.78 p. 173] it follows for u €
BV (Q; R™) that the discontinuity set S, is countably #"~!-rectifiable and H"~1(S, \ J,) = 0 with
the jump set J,,. This means that H" "' (Ap(u) N J,) = 0.

Following the results from [ABG98|] and [GMS92]], we want to connect the approximate dif-
ferentiability and the set Ap(u) to the rectifiability properties of its graph. We especially want to
describe the H"-integration on a graph over the set Ap(u). First, we need the following approxi-
mation theorem.

70 Theorem (Federer)

Let A be a measurable set in R™ and let w: A — R be a measurable L™-a.e. approximately differentiable
function. Then there exists a non decreasing sequence {C;} jen of measurable sets and a sequence {u;}jen
of Lipschitz functions in R™ such that

u=u;onCj, L" (A\ U Cj) =0 and Viu(x) = Vu;(z) L"-aex € Cj.
j=1

Proof: [GMS92, Theorem 7 of part 1]. O

The next theorem is an analogy to Theorem 2.11 from [ABG98||, where one uses the classical
area formula for Lipschitz functions and the exhaustion from Theorem

71 Theorem
Let M C R™ of dimension n with L™(M) < +oo, let u: M — R be L"-differentiable at every point in M,
and let Ty := {z,u(z) | x € M} C R" x R be the graph of u on M and H"(T'p) < +oo. Then

(D Trmnap () is H"-measurable and

Hn(FMﬂAD(u)) = / Qq d,
MﬂAD(u)

where Qg := /1 + |Veul?

(ié) Furthermore, then we have for any bounded Borel function 1

(195) [ wemaen = [ peu)Que) de
MNAp(u)

MNAp(u)
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Proof: For the first part (i), we define the function
®: M — R @(2) = (z,u(2)),

Then @ is L£"-a.e. approximately differentiable in M. By Theorem [70] we can exhaust Ap(u)
by a non decreasing sequence of measurable sets {F}};°, and find Lipschitz functions ®; €
Lip(R"), k € N such that

{Cbk(x) = (z,up(z)) = ®(z), onF,, DP,=Ddae. onFy, Ap(u)cC Uz Fr

With the area formula in Theorem 64| for Lipschitz graphs we get for each k£ € N the Jacobian
[GMS92, Section 3 Theorem 2 (Area Formula) p. 79]

JE = \Jdet (D D),y = VTF [Vl

With these results, we conclude

/ \/1+|V‘1u|2dm:/ V14 |Vou|?de
MNAp (w)NFy,

MNAp (u)NFy,

_ /RW HO (M N Ap(u) N F,n @ 1 (y)) dH"(y)

= / Xo(MApwnFy) AH" (y)-
Rn+1

Now we observe that the characteristic functions x¢(arnap(u)nF,) are non-negative and H"-
measurable [SIm83, Thm 1.8]. Moreover the sequence {Xa(1/n4p (u)nF,) }keN increases pointwise
to Xao(MnAp(u)), SO that Xe(anap(w)) 18 also H"-measurable. By monotone convergence Theorem
we obtain

w dH" — dH"(y).
/]Rn+1 X®(MNAp (u)NFy) (v) ko0 Jo(unap () (v)

Analogously, since we have by Theorem|[69|(Calderon Zygmund) £"(M \ Ap(u)) = 0and Ap(u)N

Fy, / Ap(u)aswell as /1 + [Vua|*x 4, (u)nF, is positive and increasing pointwise to /1 4 [V, |2
it follows

V1+|Veu]2dz I / V14 |Veu]2 da.
—00 J M

/MQAD('U,)(_]F;C ﬂAD(u)

The second part @ follows by an analogous calculation by approximation with simple functions.
O

7.3 MEASURE-FUNCTION PAIRS & DISINTEGRATION THEOREM

In this subsection, we recall the definition of measure-function pairs and corresponding theorems
from [Mos01] and [Hut86]. This approach allows us to investigate the subconvergence of a sequence
of Radon measures combined with a sequence of L _-functions. Later, in the case of graphs, we
will take a sequence of two-dimensional Lebesgue measures with area elements () and as functions
the mean curvature or the normal vector field.

Let £ C R" be an open subset or some manifold embedded in R". Suppose ;1 is a Radon
measure on F and f: E — R™ is well defined p-almost everywhere, f € Llloc(u;IRm) where
Ll (p;R™) is the space of locally p-integrable functions on E with values in R™. Then we say
(w, f) is a measure-function pair over E with values in R"™.
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72 Definition (Measure-Function Pair Weak Convergence)

Suppose { (1, fi)} 7oy and (u, f) are measure-function pairs over E with values in R™. Additionally,
suppose py, — pin Eas k — oo (see (181)). Then we say (g, fr.) converges to (p, f) in the weak sense in
E and write

(s fo) = ()i e fro =l f

in the sense of vector-valued measures. In other words, if

Vg € CZ(B;R™): /<fk,so> dpe = /<f, ) dps.
—00
In the same way as in [MosO01] we say that (juy, fi.) converge in the weak LP-sense to (u, f), denoted as

(s fo) 2 (s )y i (s fi) = (i, f) - A 1 fill Lo () uniformly bounded.

Mostly, we want to study measure-function pair convergence with respect to some functional,
which will stay bounded. In our case, the Willmore energy or the area functional can play such a
role.

73 Assumption (Hutchinson [Hut86] 4.1.2)
Suppose F': E x R™ — R. We denote variables in E x R™ by (y, q). F shall always satisfy the following
conditions:

(1) F is continuous.
(2) F is non-negative: ¥(y,q) € E x R™ : F(y,q) > 0.
@ I is convex in the q variables:
VAe (0,1),ye E;peR™,geR™: F(y,A\p+ (1 —=X)q) < AF(y,p) + (1 — AN F(y,q).
If the above equation holds strictly, then we call F strictly convex.

(4) F has non-linear growth in the q variables, i.e. there exists a continuous function ¢: E x [0,00) —
[0,00), 0 < (y,s) < p(y,t), for 0 < s < tandy € E, p(y,t) — oo locally uniformly in y as
t — oo, and

Y(y,q) € ExXR™: oy, lq)la| < F(y,q).

74 Definition (F'-strong Convergence, Hutchinson [Hut86] 4.2.2 p.54)
Suppose {(1k, fr) trenw and (u, f) are measure-function pairs over E with values in R™. We write

wheF. i [ F.fw)dutw) <,
E
(kks fr) € F uniformly, if /EF(y,fk(y))duk(y)SCo-

for some Cy > 0. Furthermore, suppose p, — p in E, we say (g, fi) converges to (i, f) in the F-strong
sense (in E), and we write

(ks fi) 5 (s f),

if the following holds:
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(i) Vk € N: (p, fr) € F,

@ By = {y e Byl 2 V| fuly)] 2}, then:

lim F(y, fr(y)) du, = 0, uniformly in k,

j*)OO Ekj

Vo € CJ(E x R™): klggo/Ew(y,fk(y))duk(y) = /Ew(y,f(y))du(y)-

Next, we need to know how a product of two sequences of function-products acts if the
sequences of measures are the same. This will allow us to combine the limits of normal vector
fields and mean curvatures.

75 Theorem (Product Rule)
Let p,r € (1,00), such that % + % = 1. Suppose that py, p are Radon measures on E and that fi, €
LP(u; R™), f € LP(us R™), g € L™ (ui; R™), g € L™ (3 R™). It follows

(196) o F) 5 ) A (o) 2 (g) = (o Fr-9) = (1, f - 9)

where by (pug, fr & 1, ) we mean the F-strong convergence with F(y, q) = |q|P.
Y 8 8

Proof: Proposition 3.2 p 6. in [Mos01]]. O
The next theorem provides further convergence properties.

76 Theorem (Convergence Theorem)
Suppose {(k, fr)}72, is a sequence of measure-function pairs over E C R™ with values in R™. Further,
suppose (v is a Radon measure on E and pu, — pin E as k — oco. Then the following is true:

() If (g, fr) € F uniformly then some subsequence of { (. fi)}52, converges in the weak sense to a
measure-function pair (p, f) for some f.

Gi) If (ks fr) € F uniformly and (g, frr) — (u, f) then:

/F(y,f(y))duﬁligninf/ F(y, fr(y)) dp.
FE —00 E

If F is strictly convex (see Assumption|73) and {(ug, fr)}72, C F then the following are equivalent:
Y p k=1 g q

@ (s fr) = (1 ),
®) (s> fr) = (u, f) and
/ F(y, fe(y)) duk — / F(y, f(y)) du.
E E
Proof: [Hut86, Theorem 4.4.2 p. 58] 0

Since we will work with graphs, we will work with Radon measures on some domain 2 C R?
with a limit y from area measure sequence. Also, we will obtain a Hausdorff measure from a
varifold limit. Hence, it makes sense to split an integral over the Hausdorff measure into an
integration over 1 and some other auxiliary measure. This splitting will be called disintegration.
In preparing for the disintegration theorem, we need a definition for measurable measure-valued
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maps from [AFP00, Definition 2.25 p.56]. Let £ C R" and G C R™ be open sets, 1 a positive
Radon measure on E as well as z — v, a function which assigns to each x € F'a R™-valued Radon
measure v, on G. We say that this map is p-measurable if

VB € B(G): x> vy(B)is u-measurable

where p-measurability was defined in the beginning of Subsection [7.]]
77 Theorem (Disintegration Theorem)

Letm > 1,E C R"and G C R™ open sets, v an R™-valued Radon measureon E x G,m: Ex G — E
the projection on the first factor and i = mwy|v| is a push-forward, which means VK € B(E) : p(K) =

-1
p(rH(EK)).
Let us assume that ;1 us a Radon measure, i.e. that |v|(K x G) < oo for any compact set K C E.
Then there exist R"™-valued finite Radon measures v, on G such that x — v, is y-measurable,

lvg|(F) =1, p-ae in B
and for any f € L' (E x G, |v|) it holds
(197) f(z,.) € L*(G,|vy|) prae z€E,

198) oo [ fepanm '@, [ senwen = [ ([ fenan) e

Moreover, if V), is any other pu-measurable map satisfying (198) for every bounded Borel function with
compact support and such that V,(G) € L} (E, p), then v, = v/, for p-a.e. x € E.

Proof: [AFP00, Theorem 2.28, p.57] O

7.4 VARIFOLDS

In this subsection, we introduce varifolds, their curvature properties, and compactness results. Like
in [Hut86, Chapter 3], assume N be a smooth p-dimensional Riemannian manifold isometrically
imbedded in R™ (n > p). Further, let G, »(G9,,,) be the Grassmannian manifold of all unoriented
(oriented) m-dimensional subspaces of R". We can consider each given unoriented m-subspace
P C R™ as the projection matrix

of the orthogonal projection over P = B o BT with B = (by, b, ..., by,) filled with an orthonormal
basis of P. Hence, as noted in [Man96] we can consider G, ,, as a compact subset of R"*" endowed

~

with relative metric. For example, one can show that in the oriented case G§ 3 = S? and in the
unoriented case Go 3 = RP? = §?/{1d, — 1d}.
If we denote by ¢ the standard 2-fold covering map q : G}, ,, — G, then we can set

Gan(N) = (N % Gnn) N {(2, P)| P C TuNY,  Go(N) = (N x G%,.) N {(z, P) [ a(P) € TuN}

An unoriented (oriented) m-varifold V on N is a Radon measure on G,,(N) (GS,(N)). The sets of
such varifolds are denoted by

V., (N)and V7, (N).

By wvarifold convergence, we understand the convergence in the sense of Radon measures. For
{Vitken C Vi (N)(V(N)) and V€ Vi (N) (V7 (N)) we write

Vi >V if Yeoe CUAGYRM): Vi(p) = V(g).
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For each oriented varifold V' € V2, (N) we define
q#V c Vm (N )

the corresponding unoriented varifold associated to V by projection onto G, ().
Next we define the associated Radon measure on N obtained by projection w: N X G,y — N:

Suppose E C R" is a countably m-rectifiable, #""-measurable and ¢,6; > 0 are locally H"-
measurable functions on E. Additionally, let us assume that an orientation function §: £ — G7, ,
is H™-measurable and suppose that £(z) is one of the two oriented approximate tangent planes
T, E = Tan™(H™LE, z) to E at x for H"L_E. Then we define rectifiable varifolds, Vo € C2(G,,(R™))
or ¢ € C2(GY,(R™)) respectively:

%1 ZU(E,Q), VQ:v(E,f,Hl)+v(E, —5,92),
Vi) = [ Ola)ola, ToB) d™ ),
E
Vo) = [ 0(@)e(o. 60 + bale)ele. €@ 4" 2).
We denote the corresponding sets of such rectifiable varifolds by
RV,,(R") and RV, (R").

In the case the functions ¢, 01, 6 are integer-valued, we call V1, V5 integral varifolds which belong to
the corresponding classes

IV,,(R") and IV, (R").

Let us shortly discuss how to reformulate a regular and oriented surface S in R3 with normal
vector field N(.) to the rectifiable varifold setting. First, we set the surface measure p := H?L S.
Then for each p € S we set Radon measures by delta-distributions on G§ 3 = S? or G3 = RP?
respectively

{yp = 0Ny () in oriented varifold case,

Vp i=0(N(pyL(-) inunoriented varifold case.

and v, = 0 for p € S. In oriented varifold case, we can set for all B € B(R? x S?)

Viswon® = [ ([ xo)an@) duto

For the unoriented varifold case, we simply replace S* with R P? in the above formula and consider
B € B(R? x RP?). Additionally, we get for all A C R3

Wi plI(4) = Vs p(Ax 8 = [ xap) dFELS)() = (4N S) = HA(ANS)

We continue on with the first variation of m-varifold V, that we define as the linear functional on
CH(R™;R"™) vector fields:

VX € CHR™R™) : §V(X) ;:/ divp X (z)dV (z, P),
Gm(R")
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where we define

n n
VP € Gmpn:  diveX =) VIX'=Y" P;D;X’'

i=1 ij=1

with VP = P(V) is the projection on P and for {e;}"*_; the orthonormal basis of R" V¥ := ¢;- V.
For V € V,,,(R") we recall the total variation of 6V to be the largest Borel regular measure on R"
such that

[6V[[(G) = sup{sV(g) | g € C2(R™;R"), sptg C G and |g| < 1}

whenever G is an open subset of R", see [All72, p. 435 with M = R"].

In [Men13, Thm. 1] Menne has shown that if V' € IV,,(U) and ||§V]| is a Radon measure or
V is a curvature varifold then V is countable C2-rectifiable. That means there exists a countable
collection {C } ke of m-dimensional submanifolds of R"™ of class 2 such that |V |[(U \ UxenCi) = 0
and each member CY, of the collection has ||V ||-a.e. the same mean curvature vector as V in U N M.

78 Definition (Weak Mean Curvature, [Mon14] Def 2.10)
Let V' be an unoriented m-varifold on R" and H : G,,(R™) — R"a L}

loc

(V)-function, then we say that V'
has weak curvature H if one has

(200) VX € CHR™R"): 6V (X) ::/ divp X (x)dV(z, P) = —/ H-XaV(z, P).

For V =u(E,0) € RV,,(R") with weak mean curvature we write H(z) = H(z, T, E), so we get:

(201) /divEXd,uV = —/ H(z)- X dpy,
E E

where divg X (x) := divy, g X (x) is the tangential divergence, and T, E is the j1y-a.e. existing approximate
tangent vector space to E at x. From [All72} 4.1] it follows that 6V |_ E = —pu, L H. For the oriented case,
we define

oV = (5((]#‘/).

Suppose that the first variation of V' is locally bounded, then according to [Men17] there exists
a ||V||-almost unique locally ||V'||-summable, R"-valued function mean curvature H(") satisfying
the equation (200). Moreover [Hut86, Remark 5.2.3.]

VBCR": |§V|(B)= /B || dpry.

Next we introduce the notation: for a given ¢ = p(z, P) € CY(R" x R"™*") we denote the
partial derivatives with respect to the variables x; and P;; respectively by:

Dijp and Djo for i,jke{l,...,n}.

79 Definition (Curvature Varifold)

Suppose U is an open subset of R". We say a integral varifold V' € IV,,,(R"™) has generalized curvature
and generalized second fundamental form in U if there exist R-valued functions By, for 1 < i,j,k < n,
defined V | U-almost everywhere in G, (R™) such that the following is true :
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(i) (V,[Bijk]) is a measure-function pair on G,,(R™) with values in R"*"*"

(i) One has Vi = 1,...,nwith [Py] € Gy the following
Yo = p(z, P) € CHR" x R™"): 0= / (PijDjp + Bijk D + Bjijp) dV,
Gm(N)

where we sum over all the values of the index if the index variable appears twice in a single term.

We call the function B generalized curvature and write
SyV or SyV(x,P)=[Bijik(z, P)].

In this case, we say V' € IV,,,(R") is a curvature varifold on U. Furthermore we call an oriented varifold
V € IV}, (R"™) an oriented curvature varifold on U if g4V € CV,,(R") and denote the corresponding
unoriented and oriented classes by

CV,,(R") and CVZ (R").

Let us return to more a general case were V' € IV,,(R") isa m-varifoldon N — R",m < p < n,
(m = dimV,p = dim N) we can define an orthogonal projection matrix () onto the tangent space
of N:

T,N = Q(z) == [Qy] € R™*".

80 Definition (Generalized Second Fundamental Form)
Let V € CV,,(R"™) NV, (N). We define the generalized second fundamental form of V in N as Lj, (V)
function:

nXnXn anZ
(202) A: Gp(N) = R AF(x,P) = PZjBikE_PZjPiqT%(x)

where we sum over all the values of the index if the index variable appears twice in a single term.

In the Appendix, in Lemma it is shown that this definition is consistent with that of the
classical second fundamental form introduced in Definition At this point, it is important to
notice that here we follow the notation of Mondino in [Monl4, p.7 bottom], instead of that of
Hutchinson, who calls A the curvature and B the second fundamental form. The Hutchinson also
showed that B can be expressed in terms of A:

0Qur,

1 Oz,

0Qu;

(203) Biji = AY, + Al + PP 15, ()
Lq

(:L’) + P P;

Furthermore according to [Hut86| 5.2.3 p. 62] we have P = Tan™ (uy, z) for V a.e. (x, P) and
(204) H;(V,z) = Bjij(x, Tan™ (uy, )) for py ae. x € U.

The weak curvature vector can also be described with A-terms by (203).

OQy; Qv

(205) H; = A%+ A% + Py Py, Oy anq(fc)

(x) + PjeP;
In the case where the varifold is considered directly on R" (N = R"), we obtain T,,R" = R", so
that () is in this case a unit matrix, those derivatives vanish.

As shown by Brakke, if V' is an integral varifold and ||§V'|| is a Radon measure, then the mean
curvature vector is perpendicular to the varifold at V-almost everywhere.
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81 Theorem (Perpendicularity Theorem, Brakke)
IfV =v(E,1) € IVL(R") and ||6V'|| is a Radon measure then V-a.e.:

H1T,E.
Proof: [Bra78|] Brakke Thm 5.8 p.157. O

Now, we can use the fact that by Theorem 81| the tangential projection of H is zero. Therefore,
we obtain

(206) ﬁzAﬁz + A;‘jPZiBjje + AL = PyH, + Al & Al

by the symmetry B;;, = Bjj, see [Hut86, 5.2.4. (i)].
We want to finish the subsection by presenting varifold compactness results. These strong

theorems are the justification for using the (curvature) varifold framework. They provide existence,
thus the remaining difficulty is showing higher regularity.

82 Theorem (Allard Compactness Theorem, Not-Oriented)
Let (V;)ren C IV, (R™) be a sequence of m-rectifiable varifolds with locally bounded first variation on an
open set 2 C R™. If

sup { || Vi (W) + 1V (W)} < (W) < o
kEN
for every open set W CC €, then there exists a subsequence {Vy, }ren converging weakly-x to a m-rectifiable
varifold V € IV, (R"™) with locally bounded first variation on ) and:
|0V ][(W) < liminf ||6V4, |(W), VIV CC Q.
£—r00

Proof: [All72, Thm. 5.6. p. 452] O

83 Theorem (Compactness Theorem for Oriented Integral Varifolds, Hutchinson)
Let R" = |J;2, Ai where A; are open. Then for any sequence {M;}5°, of positive constants the following
is sequentially compact w.r.t. oriented varifold convergence:

{V eIV, (R") | Vi e N: (uy + [|6V[)(A;) < M;}.
Proof: [Hut86, Thm. 3.1 p. 49] O

84 Assumption (Notation Hutchinson [Hut86] 5.2.8. p. 65)
Suppose F': G, (N) x R™*™*™ — R. We denote variables in G,,(N) x R"*"*" by ((z, P), B). F shall
always satisfy the following conditions:

(1) F is continuous.
(2) F is non-negative: ¥((x, P), B) € Gp(N) x R™™" : F((z, P),B) > 0.
(3) F is convex in the B variables: VA € (0,1), (z, P) € Gp(N), B, B € R"™™*"
F((z,P),AB+ (1 —\)B) < AF((z,P),B) + (1 = \)F((z, P), B).
If the above equation holds strictly, then we call F strictly convex.

(4) F has non-linear growth in the B variables, i.e. there exists a continuous function p: Gm(N) X
[0,00) — [0,00), 0 < ¢((z,P),s) < ¢((z,P),t), for 0 < s < tand (x,P) € Gn(N),
o((x, P),t) — oo locally uniformly in (z, P) as t — oo, and

V((z, P),B) € Gpn(N) x R™™":  o((z, P),|B|)|B| < F((x, P), B).
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Let F' satisfy Assumption 84| then for each V € CV,,(E), we define
(207) Fe[V] = / F((z,P),SgV(z,P))dV(z, P).
Gm(E)

Suppose {V;}72, C CV,,(E)and V € CV,,(E). Then we say V}, converges to V in the weak sense
in F/, and write

Vi v it (ViLE,SgVi) — (VLE,SgV)
in G,,(F) in the sense of measure-function pair weak convergence
85 Theorem (Compactness, Lower Semicontinuity)

Let Fg be like in the above Definition Suppose {Vi.}32, C CV,,(E),V € IV, (N), Vi, — V in
Gm(FE) and Fg[Vy] is bounded uniformly in k. Then

VeCVu(E), Vi ¥V, and Fp[Vv]< lim inf Fp[Vi).
—00

Proof: [Hut86, Thm 5.3.2. p.66] O
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8 CompracTNESS REsuLTS

This chapter provides additional results to the work done in [DGR17] by Deckelnick, Grunau,
and Roger. In their work, they demonstrated several key results. First, in [DGR17, Theorem
2] they proved the L*° and area bounds like in Theorem @ for the surfaces as graphs on
a bounded smooth domain with sufficiently regular Dirichlet or Navier boundary data which
allows working in the L> N BV-setting. Then, they introduced the L!-lower semicontinuous
relaxation of the Willmore functional and showed lower-bound and compactness estimates for
Willmore energy-bounded sequences, which allowed them to show the existence of a minimizer
in the L*° N BV -space for the relaxed energy. Also importantly, since the graph is described by a
BV -function they were able to characterize the lower bound for a suitable subset of BV by a term
originating from the mean curvature of the absolutely continuous part of the gradient as Radon
measure.

In this chapter in Subsection the results from [DGR17], based on which we will construct
new contributions, are presented. Then, in Subsection we will add terms to the lower-bound
mentioned above. Namely, by rewriting a W?2- sequence as a sequence of measure-function pairs
or varifolds, we can recover an until now missing irregular term for the lower-bound. For example,
it can represent the curvature supported on the vertical jump part. This work is strongly based
on unpublished notes of Deckelnick, Grunau, and Réger done subsequently to [DGR17]. Finally,
in Subsection based on unpublished notes of Grunau, we will construct a one-dimensional
example of a BV -function with Cantor part and finite relaxed Willmore energy.

8.1 PRELIMINARIES

As mentioned above, considering sequences with uniformly bounded Willmore energy subject to
appropriate boundary conditions, by Theorem[16]the L>°(€2)N BV (Q)-space forms a natural frame-
work to work with. The reason is that such L>(€2) N BV (§2)-bounded sequences are precompact
in L1(Q). Additionally, as shown by counterexamples in [DGR17, Examples 1 and 2], no a-priori
bounds in W!P(£2), 1 < p < co can be achieved in terms of the Willmore energy. In general, the
subsequence limit point of a Willmore energy bounded sequence in W?22(£2) will instead lie not
better than in L>°(2) N BV (£2). Consequently, as discussed in Subsection [7.2 the limit point may
have jump discontinuities and a highly irregular Cantor part. Also, it is not absolutely clear how
to characterize the Willmore energy for BV (Q2)-functions.

Furthermore, we have to define the boundary conditions. In what follows, let us always
assume that Q@ C R? is a bounded C?-smooth domain with exterior normal vector v: 99 — S!.
The boundary data is then represented by a given function ¢ € C?(R?). Furthermore, we can
define the set of functions satisfying the Dirichlet boundary conditions represented by ¢ by

M = {U e W22(Q) | v — ¢ € W22(Q) } .
In [DGR17] it was showed that uniformly Willmore energy bounded sequences {uj}, .y C M
have L!(Q)-convergent subsequences. Therefore, it makes sense to investigate the behavior of the

Willmore energy under L!({2)-convergence, whereby the limit point may not lie in M. Deckelnick,
Grunau and Rdger has chosen the L!-lower semicontinuous relaxation of the Willmore functional:

W : LYQ) = [0,00], W(u) := inf {likn_l)ilng (ug)

M > —>uinL1(Q)},
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which they showed is the lower-semicontinuous extension of the classical Willmore functional
on M [DGR17, Theorem 4]. One of the main difficulties is that a more explicit characterization
of the relaxation has not been obtained, yet. For the one-dimensional case, this was achieved in
[DMFELMOQ9] (also see Subsection. However, Deckelnick, Grunau, and Réger were able to show
some (mild) regularity properties for the limit point and also give a lower bound of the relaxed
Willmore energy given by the absolutely continuous part of Vu. It is defined as an absolutely
continuous contribution to the Willmore energy in the following.

Let u € BV(Q2) with the R%-valued measure Vu and its the absolutely continuous part Véu €
LY(9). Furthermore, we define Q® := /1 + |V®u|? and the absolutely continuous contribution to the
Willmore enerqy as

1 veu\? . Viu . . e
W (1) = 4/Q<V- Qa> Q"dz  if —— € H(div, Q) and the integral is finite

00 else ,
where H(div, ) := {u € L*(Q)| divu € L*(Q)} is a Hilbert space [Tem01} Chapter 1, Section 1.2].

The main results in [DGR17] are presented in the next theorem. It states that each energy-
bounded sequence has a L!-convergent subsequence, such that the BV () N L>(Q2) limit point
has some regularity VQZ“ € H(div, Q) and has finite the absolutely continuous contribution to the
Willmore energy ¥V with some estimate from above.

86 Theorem (Theorem 3 in [DGR17]) ]
Let {uy}ycp be a given sequence in W22(Q) that satisfies u, — ¢ € W2(Q) for all k € N and

liminf W (ug) < oo.
k—o0

Then there exists a function w € BV (£2) N L>(Q2) with VQaa“ € H(div, Q) such that after passing to a
subsequence

up — uwin LNQ) (k= o0) and  Wu) < liminf W (uy,) .

k—o00
. . 1,1 _ . Vu 2 : ;
If in addition uw € W' () then the mean curvature H = V Vv € L*(Q) exists in the weak sense
and it holds
1
(208) W(u) = 4/ H?\/1 + |Vu|2dz < lignian(uk).
(9] —00
Proof: [DGR17, Theorem 3] O

This means W(u) = W(u) for v € M. Regarding boundary data for the limit point u, in
[DGR17] it was also proved that the trace on 952 of u satisfies he boundary condition u = ¢ H!-
almost everywhere on {(Q%)™! > 0} N 99 [DGR17, Proposition 2] and Vu - v = Vo - v H'-almost
everywhere on 02.

At this point, it should be noticed that can also be deduced from the corresponding
lower semicontinuity theorem in the framework of integral currents proved by Schitzle in [Sch09,
Theorem 5.1] with some additional work.

Next, we want to list some convergence results which were also proved [DGR17] and will be
used in the next subsection. These are some auxiliary sequences with some compactness properties
provided by Theorem [16|in the proof of Theorem |86} It was shown that [DGR17, (35)]

—5/4
qr = (1 + |Vuk]2) / — q € WH(Q)in LP(Q), p € (1,00), and almost everywhere in (.

141



Moreover, by [DGR17, (39)] ¢ > 0 L£2-almost everywhere in . Additionally, the set {¢ = 0}
represents the points where the graph of v may become vertical. Furthermore, by [DGR17,
(47),(48)] with some set E C ) such that H!(E) = 0 it follows

(209) Vup — Vou in {g > 0}\E,

(210) Qr = \/1+|Vur|* = /1 +|Vaul> = Q° in {g > 0}\E

therefore Vu, — V% and Q) — Q° almost everywhere in €.
There are also convergence properties of the mean curvatures so that after passing to a subse-
quence

(211) Hj, = div (V(;:f) — div (Z;“) = H%in L*(9).

By [DGR17, (53)] it even holds

Hi/Qx — H*/Q in L*(Q).

In the next theorem, which is a corollary to Theorem [86|we want to recall the existence result
of the extended functional W. There, a minimizing sequence for the Willmore functional was
considered. Then it followed that the regularity property stated in Theorem 86]is satisfied, and the
minimizer attains the boundary conditions in a sense explained above. Also, we want to emphasize
that the Dirichlet boundary conditions encoded by ¢ are assumed by restricting approximating
sequences to be in M, thus to the set of functions that satisfy in W22(Q) the boundary conditions
fixed by ¢.

87 Theorem (Theorem 5 in [DGR17])
There exists a function uw € BV (Q) N L*(2) such that

Voe LYQ) : W(u) < W(v).
Proof: [DGR17, Theorem 5]. O

8.2 AppIiTiONAL COMPACTNESS RESULTS

In this subsection, we want to present additional compactness results based on unpublished notices
of Deckelnick, Grunau, and Roger. They extend the statements of Theorem 86| such that the lower
bound W*(u) gets an additional term not originating from V“u.

Especially, we want to investigate the convergence of area measures and normal vectors. Hence,
we make some new definitions. For each graph I'(uy), we call Qj, the area element and

e = QpL*LQ

the graph area measure. Furthermore, we define the unit upwards pointing normal fields N, :
['(ug) — S? and associate functions on Q2 N, : Q — §? by

Ny, (:U,uk(x)) = Qlk <—V1uk> , Nk(:z:) =N, (:U,uk(x)) .

We also define the unit upward pointing normal fields of the absolutely continuous part V*u by

o 1 (V%
e (V)
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Since we also want to incorporate the boundary into our discussion, we have to extend the
sequence of functions and measures from  to a bigger open ball Bg(0) C R?. Otherwise, the
test functions in Definition [72)introducing the measure-function pair weak convergence would be
merely in C2(Q).

Furthermore, to be able to work with varifolds (without boundary), we also want to extend the
surfaces with boundary I'(uy), k € N to closed C! N W22 surfaces I'(uy) U ¥ with some auxiliary
surface ¥ with boundary depending only on ¢ Dirichlet boundary data. ¥ in some sense "closes"
I'(uy) geometrically while still having a uniformly bound on the Willmore energy. In detail, the
additional parts in  x R will consist of constant graphs over (2 that are strictly separated from all
I'(uy), which is possible by L*°-bound on uy, by the Willmore energy (Theorem. The closing of
graphs will be done similarly to the technique presented by Miura in [Miu22].

88 Lemma (Extensions)
For given ¢ € C?(R?%) and M > 0, let {uy }ren e a given sequence in W22(Q) that satisfies

VEeN: u—@eW??(Q) and VkeN: W(u,) < M.
Then there is a radius R = R(diam(supp ¢), [[¢[lw1.1(a0), 2, M) such that:
(a) For each k € N there is an extension uy, € W22(Bg(0))
Vo € BR(0)\ Q:  up(z) =p(x) and VreQ: up(z) = u(z).

We also extend the values of the limit u to w, as well as normal vector fields N, Ny, the mean curvature
Hy, and the surface measure py, by the values corresponding to the graph of ¢ outside of 0 without
changing the notation.

@ There is a constant Ca3 > 0 and a surface ¥ with boundary 0X, constructed only based on
diam(supp @), [[¢llw22(Bx(0)) l©llwi1 @), 2, M such that T'(uy) U X is a closed embedded ctn
W22 surface with

F(Hk) UuXx C BQR(O) x R, 'H2(F(ﬂk) U E) + diam(F(ﬂk) U E) < Cyo3.

We also extend the values of the normal vector fields Ny, Ny, and the mean curvature Hy, outside of
I'(uy) by choosing the values of that on the surface ¥ without changing the notation.

Proof: @ First, let assume, that R > diam(supp(¢)). We extend each function uy by ¢ on Br(0)\ €.
Let R > 0 such that Q C supp(p) C Bg(0). For each k € N we define

Vz € BR(0)\ Q: Tp(z) :=¢(z) and Ve Q: up(z):=ug(x)

then @), € W22(Bg(0)) with supp(@g) C (supp(p) UQ) C Bg(0).
@ Here in addition to the condition on R in (a) we assume that R > ||| 1o (5, (0)) + H*(T'(u))
and
) ) 162
Then by Theorem|[16](a) we get [|u| = (o) < R.
In order to construct X, we observe that we can glue I'(uj) on top of the convex hull of a horn
torus which has the radius of the tube R and distance R from the center of the tube to the axis of

revolution. Hence, the parametrization of the horn torus is given by
(R+ Rcosf)cos g
(6, ¢)

= | (R+ Rcosf)sinp
R(sinf —1)

ISEENSI
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for 6, € [0,27). We denote this horn torus as ’]I% - Then we remove the upper flat circle
Bpr(0) x {0} from the convex hull of ’]I% r denoted by conv(’]l‘% r) and glue it to I'(7y,). It follows
that for each k € N

Sy, i= D(u) U (conv(Tg ) \ (Br(0) x {0}))
is a C! N W22 surface without boundary. We can estimate its Willmore energy
W(Ek) < W(ur) + W(g) + Wleonv(Th g)) < M +W(p) + W(Th ).
H2 (D) < H(D(ur)) + HA(C(Pl o)) + H (T g) + H*(Br(0)))
< R+ H (T(0lpa0)) + H (Thp) + 7R,
diam(%y,) < diam(I(uz)) + diam(I(¢|p,(0))) + diam(TF )

< 4R + diam(T% p).
R=ul |

Therefore, all quantities on the right-hand sides can estimated by R, diam(supp ), [|¢|[w22(B(0)),
lellwri(any, 2 and M independent of £ € N. We finish the proof by defining

£ 1= conv(T% 2) \ (Br(0) x {0})

with the property ¥ U I'(uy) = Xj for all & € N. The embedding property is due to R >
2l oo (B (0)): 1wl oo (02) - O

Now, we are ready to state the main result of this subsection.

89 Theorem (Additional Compactness Results)
For given ¢ € C?(R?) and M > 0, let {uy }xen be a given sequence in W22(Q)) that satisfies

VkeN: u—peW?XQ) and VkeN: W) < M.
Then there exists a subsequence {uy, }¢en and u € BV () N L*>°(Q2) with
u, —»u in L'Q) (£ — o).

Moreover, the following holds:

(@) There exist functions N: @ — S?, H: @ — R and a Radon measure yu on Q such that for all
p € (1, 00) it follows

~ P ~ L2 ~ Ll ~ ~
(e, Ni) = (1, N), - (e, Hy) = (p, H), (p, HeNy) = (p, HN).

Additionally, we have
W“(u)+/ ]ﬁ|2du:/ |f[|2du§hminf/H,3dea:.
O\Ap (u) Q k—oo Jo

(v) Let {ux}ren,u, R and ¥ as in Lemma Then the sequence of oriented varifolds {V°[I'(uy) U
Y, Ni, 1,0]}ken converges in varifold sense to the curvature varifold VO[I' U X, N, 1, 0] with mean
curvature vector in varifold sense H = HIN and I the reduced boundary of the sublevel set of ©

VO (T) U, Ni, 1,0] = V[T UX, N,1,0] € CV%(Byz(0) x R)

and furthermore
wa(u)+/ ARV —/ ARV ghminf/H,kadx.
(Q\Ap (u)) xR QxR k—=oo Jo
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(o) Also, we can relate the different mean curvature to each other
H%z) = H(z,u(z)) and H%(z)= H(z) L*ae.

There exist R-valued finite Radon measures v, on R with v,(R) = 1 p-a.e. such that x — v, is
u-measurable and

ﬁ(az):/]RH(av,r)dyx praeinQ and vy = Gy L2ae..

Proof: We split this proof into six parts. In (1) we investigate the measure-function pair conver-
gence of the normal field or mean curvature with the area measure and combine its limits. Then, in
(2) we reformulate the graphs as varifolds and compare the normal vector field limit with a normal
field of the varifold sequence limit. Next, in @ we look at mean curvature vector convergence. In
(4) we again rewrite graphs as characteristic functions of sublevelsets in BV-framework and show
that the mean curvature of the varifold limit coincides with the generalized mean curvature of 7 E
in the sense of Luckhaus-Sturzenbecker. In Step @, we, via disintegration theorem, relate the H“
to that of the varifold limit. Finally, in the last step @ we look at lower semicontinuites of the cur-
vature varifold convergence and measure-pair convergence and separate the part corresponding
to the absolutely continuous part of Vu.

@ Due to Theorem [86|it follows after passing to a subsequence there exists u € BV (2) N L>(Q2)
with Vc;f‘ € H(div, ) such that

Ju € BV () Vp € [1,00): up — win LP(2) and a.e. in Q.

Moreover, due to Theorem @, we possess uniform bounds on the area measures defined on
Q C R Since we have Vuy, — V%u as well as Qx — Q®in {q¢ > 0} \ E,H'(E) =0 and in
particular ¢ > 0 almost everywhere [DGR17, (39)], we obtain that NV, — N almost everywhere in
Q.

From now on, we use the extension results from Lemma @ Henceforth, it follows that after

passing to a subsequence the measures /15, converge to a Radon measure p with spt(pu—pu,) C Br(0),
since p1 = iy, for arbitrary k outside of . We observe that Vp € [1, 00) :

(212)

sup [ (ISP 4 L) i =sup [ (14 )
k JBR(0) k JR2

§Sup</ dex—l—W(uk)) +/ JTE VP dz + W(e)
k Q Br(0)

< C < 0.
Thm[i6]

Now we consider the measure-function pairs (s, Ny) and (i, Hy) over Br(0) with the func-
tions Fy,: RZx R?® = Rforp € (I,00)and Fy: R?>x R — R:

(213) Fnp(z,N):=|N|P, Fy(z, H):=|H>

These functions are @ nonnegative, @ continuous convex, and @ have nonlinear growth

in the variable N or H. The measure-function pair {(,uk,Nk)}k@N is then F,-bounded and
{(pr, Hi) }ren Fr-bounded by (212).
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Since py, — 1 (see definition (181)) we obtain by Theorem@ subsequences of {(u, Ni)} keN
and {(uk, Hi) }ken that converge in the weak sense to a measure-function pair (u, N) and (p, H):

(214) (1es ) 22 (2, N,

(215) (pows Hye) 2 (s, H).

This means that especially for any ¢ € CO(Bg(0); R?) and v € C?(Bg(0)) it holds

@o [ Wgdno [ WO [ vidwo [ v
Br(0) BRr(0) Br(0)

Br(0)

Next, we use a special calculation to control the L?-differences in the sequence of the normal
fields:

dx

1 1 —Vuk 1 VUg
/ (0>2HN1€_N£” Qv @ode= BR<0>2HQ1€< L > Qe( 1 ) ’ (@tQods
B [ (Vuy, V) + 1
B /BR(O) _1 QRrQy Qi +Qe)dz
:/ [(@QuQ)(Qr+ Q) (Vur, Vug) +1  (Vuy, Vug) + 1 da
Br(0) | QrQe Qk Qe
_ / [(IVurl® + DQe + (IVuel® + D@k (Vuur, Vug) + 1 (Vug, Vug) + 1
Br(0) | QrQy Qk Qe
:/ || Vg N IVue|*  (Vup, Vur)  (Vug, Vi) |
Br0) | Qk Qe Qk Qe

V’U,k VUg>
- Vg — Vg, 2k _ YU\
/BR(O) < PO T @

_ B . Vuy
= /BR(O)(Uk ug) (le o —div 0 >d

(217) - —/B o (g, — ) (ﬁk - ﬁg) de =0 (k- o),

because we have L?(Bg(0))-bounds on Hj and uj, — u in L?*(Br(0)). Especially, since Q; > 1 this
implies that {Ni.}ren is a Cauchy sequence in L?, hence N}, — N in L? and up to a subsequence
Nj — N a.e.. Furthermore, it follows by (217), the weak convergence (216) with N € C%(Br(0))
and Lebesgue dominated convergence heorem that

| (AP
0= lim 1Nk = Noll*(Qr + Qo) d
k,{—o00 Br(0) 2

=2 lim (1 — <Nk,Ng>)QZ dx
kf— o0 Br(0)
k‘,f*)OO BR(O)

1., -~ ~ -
~2 1Iim SI% = NilPQude = lim [N, - N*|PQuds
2 k—oo BR(O)

k—o0

1 1 - 1
—2/ (—N2>du+2lim (—N, N2>
o) \2 2H I e Sy \2 (Ni, N) + S |IV]|
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~ ~ ~ 12
:/ (1—|IN|?) dy + lim HNk—NH dp.
Bg(0) k=00 J BR(0)

There is a way to see that fBR(o)(l — |N|[?)dp > 0 due to Theorem@ because (fx, Ni) is Fivp
bounded for p = 2:

/ | V|2 dp < lim inf/ | N3 |12 Ay = liminf/ 1dug = / 1du.
Br(0) koo JBR(0) oo JBr(0) Br(0)

As a result we have that N, — N in L?(x) in Bg(0) and up to a subsequence N (z) — N(x) for
p-a.e. x € Br(0). Also, we get

(218) lim

~ ~ |12
HNkaH dp = 0.
k—00 Br(0)

Moreover, we observe that due to | Ni| = 1
- . - - . 112
0< (1= [N =1 =2V + |N]? < 1= 2N, ) + | V]2 = | ¥ - &

With (218) it follows that || N|| = 1 u-almost everywhere.
Therefore, it follows by the measure convergence j;, — 1 in Br(0) for each p € (1, 00):

lim | N|[P dpzye = lim 1dug = lim 1du:/ |V ||P dye.
k—o0 Br(0) k—oo Br(0) k—o0 Br(0) R2

By Theorem we obtain (u, N i (1, N), written as
~ P, ~
(219) (1, Ni) = (1, N).

From that it follows with the weak convergence (., Hy,) N (11, H) and the product-rule Theorem

that:

(220) (s HicNg) 5 (1, HN).

Now, we translate the situation into a varifold setting. Here, we use the extensions from

Lemma @ So we associate to each uy, k € IN the unoriented and oriented integral 2-varifolds
V2 = VOl () U, Ni, 1,0] € IV§(R?), V;, = V[[(u;) UX, 1] € IV (R?) defined by:

V) € C2(Bap(0) x R x Ga3):  Vi(y) = ) Ew(z,Nk(z)L)ld#(z),
u )UJ

¥ € C2(Bar(0) x R x §%): V2(v) = /F s [1-0(2, Nu(2) + 0w (2, = Nu(2) | aB2(2).

It follows that || Vi || = H2L (T'(uy) U ¥) is the mass measure of V.

The compactness theorems by Allard[82Jand Hutchinson[83]yield after passing to a subsequence
nonoriented V[I' U X, 0] and oriented V°[I' U X, N, 6%, 6] limit integer 2-varifolds. Here T UX C
Bor(0) x R is a 2-rectifiable set without boundary, N: T U X — S? (we choose an orientation
arbitrarily) is an H2-measurable unit normal field and 6,607,6~: T UYX — N are H2-integrable
functions, such that

(221) Ve Lo in CO((B2r(0) x R) x §?)",
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(222) Vi 2V in G ((B2r(0) x R) x Ga3)",
(223) Vil = IVl in CO(Bar(0) x R)*.

The set I" should be glued on the boundary of ¥ in a sense ' N ¥ C 9%. Additionally, § = 61 + 6~
and ||V = 6H2L (I' UX) so that:
Vi € C2 (Bagr(0) x R x Gaj3): V() = / ¥ (2, N(2))0 dH?(2),
rus
¥ € C2(Bar(0) x R x §%): V°(y) = / (07 6(2, N (2) + 07 - (2, - N ()| a3 (2),
rus

where only the part concentrated on I' should attract our attention.

Furthermore, the compactness Theorem by Allard [82]implies that V' has locally bounded first
variation on Byr(0) x R and also generalized mean curvature H.

By the weakly-+ convergence of oriented varifolds, we conclude

Vg S CS(BQR(O) x R x S2)2

Ve(g) = lim Vi’(g) = lim 9(2, Nig(2)) dH?(2) + / 9(z, Nip(2)) dH?(2)
ko0 k=00 J1 (@) S\[(@g)

= lim g((m,uk(m)),Nk(m))Qk(x) d:1:+/ g(z,Nk(z)) d’HQ(z).

k=00 ) BR(0) S\ (@)

Then, we can conclude
Vg € C%(Byr(0) x R x §%): AH+(z)g(z, N(2)) 4+ 607 (2)g(z, —N(2)) dH?(2)

= lim 9(z, Ni(z)) dH?(z)

k—o0 I(uy,)

= lim g((w,uk(x)),ﬁk(x)>Qk(x) dz.

k—o0 Br(0)

Next, we want to relate the varifold measure ||V || to the Radon measure x from step (1). By (219)

we know that (p, Ny) LN (1, N) for which we choose the test function §(z,v) = g((z,7),v) €
C9%(Bgr(0) x S?) independent of the u-variable . Then, by the strong convergence Definition
we obtain

224) [ 0%(2)3((21,22)", N(2)) + 607 (2)3((21, 22)7, = N(2)) dH?(z) = / (=, N(2)) du().
r Br(0)

If we insert the test function g((z,7),v) = g(z) € C2(Bg(0)), then we get with the same arguments
as above that it holds

[ @+ 07 @i ) = [ (o) duta),
I

Br(0)

By uniqueness result in the Riesz representation theorem, this means that the projected measure
of |V and p are the same:

T (IVILT) =

while 7 : R? — R? denotes the orthogonal projection onto R? 2 R2? x {0} and w#RZ(HVH LT)
denotes the corresponding push-forward.
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By the disintegration theorem (Theorem[77) there exist R-valued finite Radon measures = — v,
on Bg(0) that are 7T§2 (JIV|[LT) = p-measurable and for any f € L'(Br(0) x R, ||V||) we conclude

o z x,r)drg(r - T
[ o d@aiLne @ [ (] s nane))aeEavien)e

:/BR(O) </]Rf(m,r)dux(r)> du(z).

Since ||[V||LT = 0H2LT,0 = 6 + 6~ it follows that

(225)

/ gz, N(z)) dp
BRr(0)

:/ 0% (2)g((21,22)", N(2)) + 07 (2)3((21, 22)", —N(2))
Br(0)xR 0(2)

o Lo (9102000 50 0] v

If we now again take the test functions §(z,v) = n(z)v;,i € {1,2,3},n € C2(Br(0)), then we can
deduce that

/BR(O) () </]R 9+(x7;)(;, f) ) N o) dux(r)) du(z) = /B R(O)n(m)N(x) dpu(z).

Since we can choose any 1 € C%(Bg(0)) it follows by the fundamental lemma of calculus of
variations for Radon measures (Theorem |63|that for p-almost all x € Br(0)

d([VILT)(=)

(226) /]R 9+($7;)(x_ f)_ (w’T)N(x,r) dv,(r) = N(z).

Due to | N|| = 1 u-almost everywhere and || N|| = 1 by the existence statement from the Hutchinson
compactness Theorem and by the disintegration theorem v, is a probability measure
vz(R)=1 p-a.e. we obtain p-a.e.

(x,7) x,r)
= <
1=||N(z)| /' ‘Nl’?“ | dva(r) /‘ Qx o dvy(r)
9+( _9 (.’L’,T)
< 1<1.
%%ieﬂ,)w(,) -

It follows that for p-almost all z € Bg(0) : |0%(z,r) — 0~ (z,7)| = |67 (2,7) + 0 (2, 7)| vy-almost
everywhere. Thus, for u-almost all z for v,-almost all r either 6 (x,7) = 0 or 6~ (2, 7) = 0. Further,
we can multiply (226) by N (x) then p-a.e. it follows

L= () N = [ T 9)(; P N ), N ) doslr)

< [ NG @) dvatr) = 1.
0t (z,r)—0 (z,r

Since W)’)Q\/(m, r), N(z)) < 1 which means for p-almost all z € Bg(0) :

Ot (x,7) — 0~ (x,7)

(N(z,r),N(z)) =1 v,-almost everywhere.
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In the case 0~ = 0, we have v,-almost everywhere (N (z, 1), V(x)) = 1 so that by |N||,||N| = 1
we obtain N(z,r) = N(z). Analogously in the case " = 0, we have v,-almost everywhere

N(z,r) = —N(x). This shows that for p-almost all x for v,-almost all » € R one of the following
two properties holds

(227) 0~ =0, and N(z,r)= N(Nx),
6t =0, and N(z,r)=—N(z).
So we can redefine N in such a way that #~ = 0, # = §* and moreover N(z,7) = N(zx) holds

|V]| L T'-almost everywhere.

@ Next, we want to show that V has a generalized second fundamental form A € L?*(V). From
and (I7) it follows || A||2 = H? — 2K [DGR17, (11) p. 6]. Hence, by [DGR17, Lemma 2 (17)] and
extension Lemma 88(») we know that

(228) / II(A) Hf] d||Vk]| is uniformly bounded
Bor(0)xR

since the topology of I'(u;) U X is fixed and we can use the Gauss-Bonnet theorem. Further. we
define a functional in the sense of the compactness Theorem [85]

VV’ S CVQ(BQR(O) X R)Z ngR(O)XR[V/] = /G &) ‘SBQR(O)XRV/(ZE,P)‘2dvl(£v,P).
2

Relative to the generalized curvature Sp, (o)« r the integrand is continuous, convex, non-negative,
and has non-linear growth. Thus it follows with (228) and Theorem[85|that V € CV3(Bag(0) X R)
and:

C,BQR 0) xR

v Def. aftgr> Thm[’4] (

Vi Vi L Bagr(0) x R, Sp,,0)xm Vi) = (VL B2r(0) X R, Sp,,0)xrV)-

Here, we use generalized curvature instead of generalized second fundamental form in order to
use compactness Theorem [85, which is formulated for generalized curvature. By the definition of
the weak measure-function pair convergence Definition [72|this means

Vi) € CY(Bap(0) x R x R3¥*3R3*3x3);

/G2(IR3)<SB2R(O)><RVk7¢> dVi k:joo (;2(133)<SBQR(O)XRV’ V) dV.

Moreover, from we know that the generalized mean curvature vector is

3 3

i=1 j=1

So we can choose the test function v, so that:
@) e xREY): [ @Al o [ dodv)
Bor(0)xR k—oo JByr(0)xR

Now, the mean curvature vector H is V-a.e. orthogonal to corresponding tangential space by
the Brakke perpendicularity Theorem Hence, being in R? implies H ||N V-a.e. we can define

(230) H:= (H, N)
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and write H = HN for the oriented limit varifold V.

@ Let us define the sublevel set of u and the sublevel set of uy

E :={(z,h) € Bg(0) x R ‘ h <u(z)}
Ey = {(x,h) € BR(O) x R ‘ h < ﬂk(l‘)}

Since I'(ug) is a W?2-graph one obtains OF) = I'(u;). There exist the characteristic functions
XE,, XE: Br(0) x R — 0,1 of the sublevelsets of functions @, and u:

. [z _ 1L if h < ug(z), . () _ 1L if h <a(z),
Xe=XB =) = 0, else, XZXE=A\R) 0, else.

Since 7, — u in L'(Br(0)) we obtain
X - X
Xk h X h

R
/ - xat = [ (/
BR(O)X[—R,R] BR(O) —R
R
= / ( / (X{uk<x><h<u<x>}+X{uk(x>>h>u(x>})dh) dz
Br(0) \J-R

:/ lup — u|dx — 0, for k — oo.
Br(0)

dh> dzx

Therefore, it follows x, — x in L'(Bg(0) x (=R, R)). The uniform area bound in terms of
the Willmore energy in Theorem [16/implies that the sequence of perimeters of the sublevel sets
P(Ey, Br(0) x (=R, R)) = H?*(I'(ay)) is uniformly bounded. Especially, by BV-definition this
means that x; € BV (Bg(0) x (=R, R)). By compactness Theorem[66|for BV -functions there exist
a subsequence and a function Y € BV (Bg(0) x (=R, R)) such that x; — Y in L'(Bg(0) x (—R, R)).
With x; — x in L'(Bg(0) x (—R, R)) we then deduce that y € BV (Bg(0) x (—R, R)).

Furthermore, it follows by and that|Vy| = H?’LFEisaRadon measure on Br(0) xR
with the support on the reduced boundary of F in the sense of definition in ([AFP00, Thm
3.36 (3.62) p. 159]). Moreover, FE may not be contained in the graph over u in the Lebesgue
points. The former can also contain additional vertical parts.

We define

Vx

——(z) :=vg(x) = lim VX(BP@»

0 [Vx|(By(a))

Next, we use the Gauss-Green Theorem [67]for BV characteristic functions. Again by the oriented
varifold convergence (221) we obtain Vi) € C}(Bg(0) x R;R3):

W o VX qg2 — —/ (4, i) dH2 / div e dz
FE Vx| FE (Br(0)xR)NE

- / ydivepde = lim i div oo dz 924 iy / (), Nj,) dH2
Br(0)xR Tk

k—o0 BR(O)XR Gauss k—oo
/ (v, NYO dH2.
r

We conclude that up to an H2-null set

Vx

FE=T, =1 N=_- 2>
Vx|
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holds. Especially, the varifold V has unit density, ||V|| = |Vx| and the support supp(V') coincides
in Br(0) x R with the reduced boundary FE of E the sublevel set of v up to a #2-null set. Since
N is normal to T,,I" H?-a.e. it follows Y Py, N ¢ — (). Therefore, since the situation in embedded in
R3 we get 6y = Py + N*N* which means Px = x — (z, N)N. We conclude V1) € C°(Bg(0); R?) :

. Vxe \" Vx
d 3P — oDYo— ||V
Sy ( N v R |V><|> VX
= / (divgs ¥ — NT o Dipo N) dH? = / (Z Dyt — ZN’“D MN‘f) dH?
I
/ (Z Pngkﬂ}g) dH2 /leTTI‘ﬂ) )d,u - / d,uv

!—/FH@/;,N) d?-l2:/ HyVy.

BR(O)XR

Thus H coincides with the generalized mean curvature of 7 E in the sense of Luckhaus-Sturzenbecker
[LS95] written in Definition

Qa
since (&3, Ni)Qr, = 1 by (229) we get for any n € C9(Bg(0))

@ By (211) the weak convergence H, — H® = div (Va“> in L?(Bgr(0)) follows. Additionally,

nH*dx = lim nHpdx = lim nHy 53,Nk Qy dx
/BR<0> @1 k—oo JBr(0) k=00 /By (0) < /
. - 29 —
@31) = lim G Vil B [ i@y
k—o0 Br(0O)xR Br(0)xR

- / HyNs ||V,
BR(O)XR

In the next step, we want to relate different limits of mean curvature H, H* and H of the
sequence of graphs {I'(ux)}ren. To use the co-area formula Theorem |65, we first obtain for the
projection 78" : Br(0) x R — Bg(0), 7%’ (z, z) — z that by its Jacobian is JY = N3 H?-a.e..
We conclude

/ HnNgdHVH:/ HnNgdHQZ/ / HndH dL?(z)
Bgr(0)xR. FE R2 J («R?)~1(z)NFE

(232)
= / H (z,u(z))n(z)dz
Br(0)

because ||V||LT = H2L FE. Because of the varifold convergence, we get

/ ndx = lim <€3,Nk>de -/
Br(0)

k=00 JBR(0) Br(0)x

:/ / ndH® dL?(z)
R2 J (7)1 ()

so that v, = 8,(,;) £*-almost everywhere. Furthermore it follows that the set («B)~"Yz) N FE
contains £2-a.e. exactly one element (z, u(x)). Since (232) and (231) are valid forany n € C(Bg(0))
we get

N, &) d|[V] = / DNy dH2
FE

(233) H(z) = H(z,u(z)) L*-ae.
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Also, it holds

(234) H%z) = H(z) L*-ae.

Next, we want to relate H to H. By the measure-function pair convergence (220) of the (z, H,N k)
and again using the disintegration result (225) we get V¢ € C?(Br(0); R?) and some n € C5°(R)
with 77| [-R,R] =1

S\ 1 20) . T . = _
/ €N Hd® tm [ (¢ N dpy = lim (Hy, Qnd([Vill L T(wy)
Br(0) k=00 BR(0) k=00 JBR(0)XR
229) =
@ EOnaVILD) = [ (¢ NpnHd(V|LT)
Br(0)xR Br(0)xR

(¢(x),N(x)) (/R H(z,r) dl/gg(r)) du(z).

Br(0)
By Theorem the fundamental lemma of calculus of variations for Radon measures, we obtain
(235) H(z) = /}R H(x,r)dv,(r) for p-almost all z € Br(0).
In contrast to the case the formula (235) also contains information about vertical parts.
@ Let Ap(u) be the set of points where u is approximately differentiable. We observe that u is
approximately differentiable by Calderon-Zygmund Theorem |69|on the Borel set Ap(u) C Q with

L2(2\ Ap(u)) = 0. By using the general area formula in Theorem and disintegration Theorem
[77/we have for alln € C2°(2 x R)

/A 1)@ as Thn 0 n(z) AH2(2) = / n(=) d([VI[LT)(2)

I'N(Ap(u)xR) Ap(u)xR

= [ nEavIL o (o x R))(E)
Th. 77 / n(z,r) dv, du(x).
AD (u) R
This implies that L Ap(u) = Q*L? L Ap(u) and v, = 8,(,) for £?-almost all 2 € Ap(u).
Finally, we characterize some parts of the missing contribution in the semicontinuity estimate

by Grunau-Deckelnick-Réger. To do so, we again redefine the Willmore-functional in the sense of
the compactness Theorem [85

3 3 2
VYV’ € CV5(Q x R): FE RV ::/ ( 3)2 (Z(ngv’){i> v’ (z, P).
Ga(R7) j—1 \ i=1

Relative to the generalized curvature So«r the integrand is continuous, convex, non-negative, and
has non-linear growth. While the Willmore energy of the sequence is uniformly bounded, by
Theorem 85 we also get the lower semicontinuity

= 9 Thm I[85 = 9 9
/ H2d|V| < liminf/ |Hp|* d|| V]| =liminf/ HiQy dx.
QxR k—oo  Jo k—oo  Jo
So, we obtain the missing Willmore varifold part:

/\H“\QQ“der/ ARV —/ ARV giminf/Hszdx.
Q (\Ap (u) xR QxR k=oo Jo
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Furthermore, by the Fy functional from (213)), we also have the lower semicontinuity

/H“\QQ“dx—i—/ Iﬁ\zdu:/ IFIPduﬁliminf/Hz?dem-
0 O\ Ap (u) Q k—o00 Q

8.3 FINITENESS OF THE RELAXED WiLLMORE ENERGY DoOEs Not ImprLY SBV

The Cantor part of a BV-function is difficult to handle. Therefore, it would be important to
characterize the situations when the singular part of the gradient consists only of a jump part.
In the context of the Willmore functional, one would expect that a non-vanishing Cantor part
would cause the relaxed Willmore energy to blow up since it is highly irregular. Surprisingly,
finite relaxed energy does not completely exclude a Cantor part in the derivative as shown in the
following example. It is based on unpublished notes of H.-Ch. Grunau and concerns the one-
dimensional Willmore functional. This, in turn, heavily relies upon [DMFLMO09, Prop. 2.3 & Thm
3.4. pp. 2356 ff and 2373].

First, we shortly recall the one-dimensional Willmore energy, also called elastic energy, defined
in (6). If we consider a regular and sufficiently smooth curve y: I — R",n > 2 it is given by the
total squared curvature functional

£ = [ 17 (s)as
with s the arclength and &, = 92 the curvature vector of 7. Actually, here we are only interested
in projectable curves. Therefore, in the same way as in [DG07] we consider curves as graphs over
the unit interval [0, 1] instead of arclength parametrization. For each function u: [0,1] — R we
define the arclength curve v : I — R? obtained by reparametrizing the curve [0,1] > x — (z,u(z))
to the arclenght. Then according to [DGO07] for graph[u] = () the Willmore functional takes the
shape

1
(236) W(u) = / . K% (x) ds(x) = /0 K2 (x) /1 4+ (7)2 dz
graph[u

with the curvature &

Y (G CON W
e \\TTu@?) T u@rE

If u: [0,1] — R has finite one-dimensional Willmore energy as a graph, then we can extend it to
a function u: [0,1]> — R with finite two-dimensional Willmore energy as a graph. We simple set
forall z,y € [0,1]?: u(z,y) = u(x). Then it follows

1

W(u) = ZW(U) and /[ . |Va||? de dy = / |u/|* dz

(0,1]

)

Next, we want to recall the space of BV functions with one variable as in [DMFLM09, Subsection
2.1]. As in Subsection a function u € L'((a,b)) belongs to BV ((a,b)) if and only if its total
variation V(u, (a,b)) is finite

V(u, (a,b)) == sup { /ab w da

o € Cl((a,0)) and ]l < 1} < +oo.
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Then, v/, called the distributional derivative of u, is a bounded scalar Radon-measure on (a,b)
with the total variation measure |u/|. Especially, by [AFP00, Proposition 3.6] it holds |u/| ((a, b)) =
V(u, (a,b)). Further, due to Lebesgue decomposition, we can split the distributional derivative
into its absolutely continuous part (u')* and singular part (u')* with respect to £! on (a, b)

u = (u')aﬁl + (u/)s = (u’)a/ll + (u')j + (u')C

where (u/)7 is its jump part and (/)¢ is its Cantor part characterized later. It can be shown that
every function u in BV ((a,b)) is £L'-a.e. differentiable in (a,b) and for L'-a.e. x in (a,b) the
derivative is given by (u)* (z). Also, for every function v € BV ((a,b)) there are left and right
approximate limits

’ 1 [v 1 [yte
u (y) == il\r}(l) - /yE u(x)de and u'(y) = ;i{‘rg)g/y u(x)dz

which are well defined at every point y € (a, b) and left and right continuous, respectively. In fact,
the functions u" and u* coincide a.e with respect to £!. The complementary null set where the
functions u_ and u differ is called the set of essential discontinuities or jump points of u

Sui={y e (@b)|u'l) £ ')}

This set is at most countable. Considering the singular part (uv’)® in more detail, we can rewrite
the jump part sum with the counting measure H" concentrated on S, so that

(W) = (u" —u")YHOL S, + ()¢

The jump part is often referred to as an atomic measure and the Cantor part as a singular diffuse
measure. There is also a notion of the total variation for a function defined everywhere. We recall
that u : (a,b) — R has bounded pointwise variation pV(u, (¢, d)) over the interval (¢, d) C (a,b) if

k
PV (u, (¢,d)) :=sup Y _ Ju(ys) = u(yi-1)| < +oo,
i=1

where we take the supremum over all finite families of points (yo, y1, - . ., yx) such thate < yo < y1 <
-+ < yr < dand k € N. The above-defined left and right approximate limits are in fact precise
and good representatives of u € BV ((a,b)). This means for every interval (¢, d) C (a,b)

|'LL/} ((Ca d)) = pV(uga (Ca d)) = pV(UT, (Ca d))
If we now consider a general function u € L!((a, b)) that has bounded pointwise total variation in
(a,b), then it belongs to BV ((a, b)), with |«/| ((¢,d)) < pV(u, (¢, d)) for every interval (¢, d) C (a,b).

Finally, we want to recall Theorem|[66|stating a compactness result for BV spaces. If {u,}72 | is
a sequence in BV ((a, b)) satisfying the bounds

sup {llurll L1 ((apy) + lugl((a,0))} < oo

then there is a subsequence {uy;}32; and a limit function u € BV/((a,b)) with the following
convergence properties

b b
up, —u in L'((a,b))asj — oo and lim oVu; = / ¢Vu, forall ¢ € Cy((a,b)).

J]—00 a
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Now, let us focus on some results presented in [DMFLMO09]. There the authors consider the
following functional for a total variation-based model for image restoration involving a second-
order derivative term that eliminates the staircase effect. For a exponent p € (1,+00) let 7, :
L*((a,b)) — [0, +0o0] be defined by

b b
Fylu) = {/ of| o+ / () [u"" dz ifu € W2P((a,b),
—+00

otherwise,

where ¢ : R — (0,400) is a bounded Borel function to be specified, jet. In this definiton, we
extend F, to L!((a,b)) by setting F,(u) := +o0 if u € L*((a,b)) \ W?P((a,b)). Then one uses the
theory of relaxation and identifies its lower semicontinuous envelope with respect to the strong
L!-convergence. For every u € L'((a,b)) we set

(237) Fp(u) :=inf { likm inf F, (ug)
—00

up — u € L'((a, b))} :

where we take the infimum over all sequences {uy }ren in L!((a, b)) with uy, — u € L'((a,b)). At
this point, let us very briefly compare F, with the Willmore energy. We take p = 2 and get

b
. 1
(238) JT"Q(U) = W(U) + /a ’Uzll d-r7 Wlth w(T) = W for all T E IR,

It means that we can apply arguments from [DMFLM09] on the one-dimensional Willmore func-
tional. But first, let us present two additional necessary conditions on a bounded Borel function
Y : R — (0, +00). It must satisfy

+oo
(239) M = / ()P dt < +o0  and tié1;£¢(t) > 0 for every compact set K C R.

If we now define ¥,, : R — [0, M] as the antiderivative of 1)'/? by

W, (1) = / ((5) /7 ds,

—0o0

and the function ¥, 1. [0, M] — R as the inverse function of ¥,, then for every u € WP ((a,b)) we
obtain

b b d p
(240) Fplu) = / |u| dz +/ — (¥, 0 u'(:n)) dz.
a o |dx

In [DMFLMQ9, Theorem 3.4] the authors also identify the relaxation of the functional 7, with
respect to strong convergence in L!((a, b)). In detail, they define the subspace of L!-functions that
can be approximated by F,-bounded sequences, that they call X}/((a,b)) [DMFLMO09, Definition
3.1 and Remark 3.2] which we will recall in a moment. With regard to (240), one of the properties
of a functions u € Xf;}((a, b)) has to be v := ¥, o (v')* € WP((a,b)). Since ‘If;1 is continuous and
v € C°([a,b]) by Sobolev embedding it follows that (u)* = ¥ (v) is continuous on [a,b] with
values in R. Next, we denote the sets where the absolutely continuous part (u')® blows up by

Zt ()] ={z € (a,b) |(W)* =400}, Z7 [(«)"] :={z € (a,b) |(W)* = -0} .

Then, we can define the set

Xy ((a,0)) := {u € BV ((a,b)) ’\I!p o (u)* € WHP((a,b)), ((u’)s)jE is concentrated on Z* [(u')"] } :
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With the set X fZ the authors in [DMFLMQ9, Theorem 3.4] were able to identify the relaxation
of F, with respect to strong convergence in L!((a, b)) defined in (237) by

b
(1) = ‘u/‘ ((a,b)) —i—/a ’v"p de ifuce Xf;((a,b)),

+oo otherwise
where v := ¥, o (u/)” in the the higher-order term depends only on (u/)".

Here we want to discuss some properties of functions u € Xy ((a, b)). Namely, for every jump
point zo with u” () — ue (z¢) > 0 it holds lim,_,,, (v/)" (z) = +o0 and for every jump point z
with u” (xg) — u’ (x0) < 0 we have lim,_,, (u)* (z) = —oc. Furthermore, if v’ has a non-vanishing
Cantor or jump part, then v’ cannot have a bounded absolutely continuous part. This means that
piece-wise constant functions with jumps and the Cantor function are excluded from X f;((a, b))
since Z* [(v/)*] = @. The same applies to polygons. For the case p = 2, this means that the Cantor
function (for definition, see the proof of Theorem[90) or piece-wise smooth graph with corners has
infinite relaxed one-dimensional Willmore energy.

Figure 1: a Cantor function.

From the above Cantor function example, one may expect that all functions with Cantor part
can be excluded from X i((a, b)). Surprisingly, in [DMFLM09, Remark 3.2 (iv)] Maso, Fonseca,
Leoni, and Morini constructed functions with nontrivial Cantor part in X Z((a, b)) for the case
2 > p > 1 near 1 provided 1 satisfies 1(t) < ct~* for all t > 1 and for some ¢ > 0, > 1. The
Willmore functional as a part in 3 defined in satisfy this condition with o = 5 and condition
like shown in [DGO07, Lemma 1.]. In the next theorem, we want to extend this result to p = 2,
hence the relaxed Willmore energy

k—o00

W(u) := inf { lim inf W (ug,)

up — u € LY((a, b))}

by constructing a function with W(u) < +oc and nonvanishing Cantor part. This is in fact a
surprising result since p = 2 is not near p = 1 and therefore is not covered by [DMFLM09, Remark
3.2 (iv)].

90 Theorem
There exists a function u € BV ((0,1)) with W(u) < +oo so that |(v/)¢|((0,1)) > 0 and especially
u ¢ SBV((0,1)).
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Proof: By the results presented in [DMFLMO09], we know that Cantor function f5: — [0, 1] defined
below in the step (2) has W(f5) = +oo. Therefore, it is not a suitable example. One of the main
problems is that the measure ((/)®)" is concentrated on a Cantor-set and not on Z* [(«/)%] = @.
We can correct this if we add to the Cantor function a continuous function U: [0, 1] — (—o0, 00)
((3) (o)) that obeys (v/)* = +oo on the Cantor-set Ds. Additionally, U is supposed to have finite
one-dimensional Willmore energy. The added-up function f5 + U then has finite relaxed Willmore
energy, and interestingly f5 does contribute the Cantor part but not any Willmore energy. To show
the finite value of the Willmore energy, in step (7) we will approximate f5 + U by a Willmore
equibounded sequence of functions uj, € W22 for k € N. These are constructed by locally replac-
ing the Cantor part with the same-length jump part and then replacing a jump part with a linear
non-vertical slope.

@ First, for clarity we define the functions

t —p (3
(241) Uy(t) = /00(1:72)2017, M = %(OO):/RQ +172)id72 \Ci(n‘

by [DGO07, Lemma 1.] with I" the gamma function and
Uy: R — [0,M],  U;':[0,M] - R.
Further, we denote by v the following function for all 7 € R

1

(1) = W

For in u € W22((0,1)), by slightly abusing the notation in [DMFLM09], we define the Willmore
functional

1 1 u (x 2 1
Fa(u) ::/0 w(u’)|u”|2dx:/0 ():/0 K(x)? /1 4/ (z)2 da

(1+w/(x)2)"?

_ /g () = /0 1 (ip\l@(u’(w)))de.

Here we abandon the term fol |t/| dz. In this context, we want to emphasize that by Lemma
only small values of W (u) (along with the boundary condition) imply a ||u/||11(( 1))-bound and
thus also a length bound for the graph of u. Conversely, in cases where the smallness criteria
are not fulfilled, the graph could potentially feature arbitrarily long vertical parts that are not
penalized by W(u) at all.

@ In the next step following [DMFLMO09, pp.2356 ff] we construct the generalized Cantor set D;
and function f5. With

(C1) 5 € (0,1/2)

which will be specified later. We cut out the open interval of length (1 — 26)
Iy == (4,1 —9)

from the closed interval [0, 1] so that two intervals remain, each of length ¢ :

[O, 1] \ I = [0,(5] U [1 — 9, 1].
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We again cut out of [0, 6] U [1 — §, 1] the open intervals each of the length (1 — 20)
L= (6% 6(1=96)), Inp:=(1-6)+6 (1—-68)+d(1—20))=(1-5+d 1—5°).

We repeat the procedure on [0, 1] \ (111 U I12 U I22) and remove four open intervals I3, I23, I33, 144,
and repeat it successively of the resulting closed set. After (j — 1) steps, only 2/~! intervals remain,
each of them of length §7~!. Then, in the current j-th step we cut out from each of these 271
intervals the open central part of length §771(1 — 26)

Iy, k=1,...,271

so that in particular I;; = (67,67~!(1 — 6)). The length of all I, for fixed j is 6/~ *(1 — 24). Further,
we define the generalized closed Cantor set by

0o 20-1)

(242) D;:=[0,1\J U I

j=1 k=1

with the corresponding approximative Cantor function

1 ¢ @
9= gy 1—2 dolp@) |, fe 22/0 g¢(§) d¢&.

In fact, by Lemma (a) the generalized Cantor set has zero Lebesgue measure. For each
step ¢ the the function f, takes constant value (2k — 1)/2/ on Iy;, j = 1,...,6, k = 1,...277%,
On the intermediate 2 intervals of length ¢/ the function f; increases linearly with slope 1/(26)°,
which is the value of g,. As mentioned above, there are only 2¢ intervals of length §¢ where gy is
non-vanishing. Then

fe(1) = (215)42%( = 1.

Since g; > 0, each function f; is monotonically increasing. It follows f,: [0, 1] — [0, 1].
By Lemma @ for ¢ — oo we have uniform convergence f; — f =: f5 to the continuous

Cantor function with (f5)%(z) = 0 and (f§)°(z) is supported on the Cantor set Ds. The function fs
is monotonically increasing but also constant on [0, 1] \ Ds. Moreover fs(0) = 0 and f5(1) = 1.

Ly

Figure 2: f5 for § = 0.2

159



@ In the next step, we construct the derivative of the function U we want to add to the Cantor
function fs so that the derivative of f5 + U has a Cantor part and finite relaxed Willmore energy.
We call the derivative w := ws € L'((0,1)) and want it to map [0, 1] continuously on [0, oo] and
to obey ¥y o w € W12((0,1)) which means that the desired forthcoming example should have
integrable mean curvature and w(z) = 400 < = € Ds. In comparison to [DMFLMOQ9] the choice
of the singular function ® below is a new contribution of H-Ch. Grunau. We choose

2
© se(31).
3
that will later guarantee finite Willmore energy in each interval I;,. Also, we define

:[0,1] = [0,00], P(x) = Cp <M - 46) |

with normalization constant C's such that

/01 O(x)dr = 1.

We can calculate the normalization constant by

! 1 s\ . s _TA-=8)7 5
C; _/O <M—4>dm—B(l—ﬂ,1—B)—4 _m—4

where B is the Euler’s Beta function [DLMEF, (5.12.1)]. Up to some scaling and shift ® will play
the role as a port of the absolutely continuous part. Thus we consider for = € [0, 1] with [DLMF,
(8.17.7)]

1-p

cﬁl/o D(s)ds = Bo(1 = f,1 = ) = 4w = ZpFi(1 = §,8,2— fia) — 4

where B, is the incomplete Beta function and 2 F} is the hypergeometric function.

Yy
Yy 1
5 ] 1
L P i
1 0

Figure 3: left: ®(z) for 8 = 2; right: Jo ®(s)ds for 3 = 3.

The term —4” in the definition of ® is chosen so that ® stays positive, thus later we have
monotonicity for its primitive function. It follows that ®(1/2) = 0 and moreover ® is convex since
the second derivative is strictly positive.

/() -3 s Bl—(1—z)+a] B2z — 1]

Cs T ZPHI(1 —z)f + oP(1 — )P+t gPHL(1 — )+ g+l — g)B+L”
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" (z) 2 (22 — 1)(1 — 2x)

22(1 — ) + (1 —22)2 + B(1 — 27)?
Cs ﬁxﬁﬂ(l — )t AB+1) 2B+2(1 — 1)B+2 =B aB2(1 — z)B+2

(1—x)2+ 22+ B(1 — 2x)?
=8 2BP+2(1 — 1)B+2

> 0.

Next, we choose a parameter s > 4 such that

(C3) g=s=1 5 gl=3s

so that later we can find a number & between 251 and 21-35/2

Lﬁ,i&

. Let ay; be the centre of the interval

1. 1 .
ij = [—25]_1(1 — 25) + agj, ar; + 55]_1(1 — 25):| .

Consequently, in each I;;, we put a scaled-down version ® such that the resulting function stays
integrable. We set x € I,;:

(I)kj(.%'), ifx e ij

0, if z € Dy.

(243) By =2 + & (0:(;;?]_1 + ;) o w(z) = ws(w) == {

The term 2% in ®;,; is an extra added constant slope since ®;; will be a derivative. It will play
an important role in achieving finite Willmore energy because it will appear in the denominator.
Now we integrate w; on Iy;. Since |I1;| = 6771(1 — 20) we get

1
/] ws(z) de = /I ®pj(z) do = 29(1 — 28)67 1 4+ (1 — 25)5]'—1/ ®(z) dx
kj kj 0

= (1-26)871(2% + 1),
! S i—1 i—1768j 1—20 i 168]
= [ ws(x)de =) 2711 -20)6 (27 +1) = —— ) (26)/(2¥ +1).
0 ’ 20 4
7j=1 7j=1
With an extra condition

(C4) § <25 e ostly <

it follows by using results for geometric series that

/1w(x)dx_1—25 25+1§ L2 N\ e 12
0 0 T 25 \1-28t ' 1-25) T 1-2st1;5 '

@ The function W5 o ws is continuous and therefore in L>°((0,1)) C L?((0,1)). Moreover, we can
calculate the classical derivative on each interval I;;

(W3 0ws) (z) = (P2 0 Byy) (x) = Th(Dj()) - P;(x)

_ 1 Y T — g n 1 ‘ 1
T (1 + Bpy()2)5/1 (1—20)0i1 " 2) (1—20)0 1

On the boundaries of the intervals I} it follows that ws = oo thus we extend Wy ow;s by M = Wy(00)
so that we get a pointwise absolutely continuous function that has a.e. a derivative whose primitive
function equals W5 o wy; itself as will be shown in the following (also see [Nat61, Chapter 7]).
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By definition, the function W9 o ws is continuously differentiable in the interior of each interval
I1,;. Moreover, in the next step (5) we prove that (U9 o ws)’ € L?((0,1)) therefore also (U5 o ws) €
LY((0,1)). We want to show that

(244) Vo € [0,1]: (U9 0ws)(z) = /Ox(\Ilg ows)'(€) d€ + \]\é
=(W20uws)(0)

where M was defined in (241). For this purpose, consider

VieNk=1,...,2771: / (Ug 0 ws)'(£)dé = M — M = 0.

For each x € Dg, we then check (244)

JRCATOICEER TS /ij(‘llzowd)'(ﬁ)derM

ij left of =

=0+ M = (Vy0ows)(x). v

In case z ¢ D, thus © € I, for some j € N, jk € {1,...,277!}, there exists the left boundary point
of I, which we denote by z¢ € Djs. It follows

T

/x(%ow(;)’(g)d&M: /xo(%owg)’(ﬁ)dH/ (T2 0 ws)' (&) dE + M
0 0 x

0

=0+ (Vyows)(x) — M+ M = (Vy0ws)(z). v

Therefore we proved (244).

@ Our next aim is to show that

Apj = / (Ty0 wg)'(x))zdx < 0.

Iy;

In what follows, we use the notation < meaning an inequality up to a constant which is then not
written. It is important to observe that the following estimates are uniform with respect to k£ and
j. Below, in the second inequality in the third line, the same singular behavior of the function ®
close to 0 and close to 1 is important.

T—ag; 2
o 52 / {Cb/ <(1725)§§'—1 + %)} q
kj = (1 — 26)26% I, ‘ ey, NE 5/2 T
<1+ 299+ @ (igmi= + 3] )
L9 ' (@' (v)]* Wi e [F W
= (1 — 26)00 . 52 & 5 5%
0 (1 +[2% + @ (y)]Q) (4 0 (299 +®(y))

- 2B (] — y)-2B4D) s L ) |
<6 : =<6 :
- /0 (297 + Cay P(1—y) P)p ¥ = /0 (27 + Cay Py Y

ol y—2(5+1) ol y—2
< 5_]/ - - dy < (5_9/ - - d
0 (25J + ng_ﬁ)Q (251 + Cﬁy—ﬁ)ii y 0 (283 + Cﬁy—ﬁ)i%/? (281 + C’By_ﬁ)?’/z Y
—_— 4 ~~
tnyB ty73ﬁ/2 t23sj/2

1
= 1, / yiﬂ%ﬁdy.
(622¢)” Jo
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12 .
W—structure the term 2%/ in the definition of ®

appears here in the denominator resulting in 23//2 in the last line. Since we have chosen 3 € (3,1)
the last integral is finite, hence we get

It is also important to notice, that due to the

1l e
(622%)7

Observe that this estimate does not depend on k. Now, we add the integrals A;; over all the
intervals I;,; and obtain

Apj =2

oo 291 00 2j71 0o
/ (g 0 ws)'(z)] *do = Z Z Apj = Z 12—78 j Z 121—73 < o
[0,1]\Ds j=1 k=1 j=1 :1 =

in the case that ¢ and s satisfy an extra condition
(C5) sl <1 & §>2lse

which is compatible with the first condition (C4) because by (C3) one can choose s > 4 with
27571 > § > 21735/2, For example, one admissible choice is s = 5 and § = 1/80.

@ For this step, we choose some fixed ¢ and s according to (C4), (C5), (C3), and (CI). Finally,
we can define the actual function v € BV ((0, 1)) as counterexample

u@y:AZM@@+ﬁ@y

where f; is the Cantor function defined in step (2) and u is continuous on [0, 1]. Furthermore, we
can decompose the derivative of v into absolutely continuous and a Cantor part

(W) =ws, (W)= (f5)"
Additionally, we define the absolutely differentiable part U of u by

ve) = [usrac= [T

without the Cantor part of u. It can be shown that U has a weak curvature (similar to bowler
example [DGR17, Example 2]) but no integrable second derivative. In detail, in [0,1] \ D; the
function U has the classical second derivative in each x € Ij;

AC T L " EEREE ) [P S—
ws (@) ((1 o551 T2) (T —20y5

Thus U has a locally integrable weak second derivative in [0, 1]\ Ds. In order to investigate whether
the weak second derivative of U is also L!-integrable, we consider

) T — Qg 1
h de = ———— o[ —% 4+~ |d
/ij ‘wE(‘r)‘ ’ (1 - 25)5J /ij <(1 - 26)5]71 " 2)‘ !
L B2y -1

— d
_/0 Y1 — s Y
>/11d>/11d—
= Jo yFHI(1 = y)BH vz o y53(1 — )5/ y=o0
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since 3 € (2,1). Therefore, the last integral diverges independently of k and j, and therefore
wi ¢ L'((0,1)) and U ¢ W21((0,1)). Despite that U has integrable curvature (also its geodesic
curvature in R?), especially xy is integrable since by step (5)

/1 ky(2)2/1+U'(2)2dae = /raph[U] ky(x)? dsy(z) = /01 ((fx\llg(g:(/ac-)/)fdx < 0.

0
& =ws ()

@ Our next claim is

- L/d P (@)t .
.Fz(u)g/o <dx(\I120w5)> d;v—/o (1+w5(x)2)5/2 de = F(U) = F5(u).

Here, we want to successively improve the regularity of the above constructed u, simultaneously
controlling the increase of the Willmore energy.

First, we replace the total variation of the Cantor part with a jump part.
Claim: There is a sequence {uy}ren C BV((0,1)) with (u})¢ = 0 such that uy — u in
L*((0,1)) and it holds

k—o0

1
lim inf 75 (ug) := lim inf/
k—o00 0 1

Proof: In fact, the generalized Cantor set

D5 = {x € [0,1] ‘ ‘(u')“(aj)‘ - oo} - {:1: € [0,1]

()" (0) = o0

is closed and, especially, of measure zero. For each k¥ € N we define the open 1/k-
neighborhoods of D;

1
A = {x € [0,1] ‘ dist(z,Ds) < — }, Apr1 C Ag, ﬂ A =Ds, lim |Ag| = 0.
k k—o0

keN

Furthermore, for each £ € IN we denote the family of the connected components of A, having
non-empty intersection with D5 by { I¥ }j ¢, With Ji a suitable index set. Since by definition

the helenght of each of the connected components of Ay, is greater than 1, then each of the
indexes sets Jj, contain less than k& elements. Moreover, we choose for each j € J; a point
x;“ el jk NDsN (0, 1) lying in the generalized Cantor set. It follows that (u’)® (xf) = 400, which
is one of the main points of the whole construction, and lim,\ o u(z) = 0. Additionally, we
choose

b i= (W) (1))

and define

ui(x) = /j(a’)“(@du Yk

{jeJx |ac;‘§a:}

Hence, we replaced the total variation of the Cantor part with a jump part. Next, observe
that

()" = ()" = F3(up) = F3(u).
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According to the definition of uy, for x € [0,1] \ A we have ug(z) = u(z), thus point-wise

Vo € [0,1]\ (] Ax = [0,1] \ Ds: u(z) = lim up(z).

k—o0
keN

Since u(x) and ug(z) are monotonically increasing and Vk € N Vz € [0, 1]: 0 < ug(z) < u(l),
the Lebesgue’s theorem yields that

up —u  inL'((0,1)) for k — oo.

O]

@ Here we use the replacement technique like in [DMFLMO09, Theorem 3.4]. Namely, the

vertical jump part will be replaced by a linear non-vertical linear slope, such that the curve
remains C'. For the next calculations, we keep a sufficiently large k € N fixed and consider

ﬁ::uk

For each k there is only a finite number |.J;| of intervals I ]’-“, and so only a finite number

of jump points xf Therefore we assume w.l.o.g. that (¢')® consists of a single jump point
(x0) € (0,1). Because of the way we constructed @, we can find sequences of points {z,}7°,
and {y,}7°, such that z; ,/* zg and y, \, zp and

' (xg) = 4 (ye) / +oo, a(xe) i (z0) = lim a(z), a(ye) \¢ s (z0) = lim a(z).

x 'xo '\ T0

Since the function = — 4(zy) + (4')(z¢)(z — x¢) is affine, there exists for every sufficiently
large ¢ a zy € (z0, 1) such that

iy (w0) = lae) + (@) () (20 — 20).

Furthermore, the sequence {z,}7°, is such that z, \, xo because (v')* 400 as z; / xg
which is also an important fact. Then we define for / € N large enough the function

i(z), if 0 <z <y,
(ze) 4 (0") (2¢) (x — 20), if ) <z < 2,
W(x +ye — z0) + @y (x0) — Uye), iz <z <1

=

Up(x) :=

It follows that between z,; and z, the function is affine with the constant slope (@')(z,), and
thus does now carry any curvature because of (i")|(, .,) = 0. Moreover,

5%%@p4muw=wmm=gg%u>

thus 4, € WH1((0,1)), @ — @ in L'((0,1)). Since by the construction, we in general replace
a curved part with a straight line, we can only reduce the Willmore energy

©)

Fa(tg) = Fy(tg) < F(a).

Notice that until now, we replaced one jump with one finite slope in each component 1 ]’“ of
Ay. Since U ¢ W22((0, 1)) we may still not be in W22((0,1)).
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@ In this step, we keep fixed ¢ sufficiently large and consider

u = ﬁg.
Claim. We can find a sequence {a;}jen € W22((0,1)) such that @; — @ in L'((0,1)) and
Falug) = Fy(uy) < Fy(u) = Fa(a).

Proof: What we want to do now is to bound the second derivative by cutting off the first
derivative, especially near the points where still (v/)* = +o0.

We have 0 < @' = (a')?, thus for each j € N we define @;(z) := min{j, @' (z)} so that |w;| < j.
In points where we did any replacing in this or the previous step () (by linear slope), we have

w); = 0. For the other points, we want to show that for each j the derivative @} is bounded.
Thus, for each interval Iy,,, k = 1,...,2™"! from the generalized Cantor set construction we

only consider the points

(245) z € I, with

T — Qpm 1 .
gsm L@ (L Wm 1)
+ <(1 “2g)om1 T 2)’ =J

Since ® > 0 we only have to work with intervals such that 2°™ < j. Hence for each j € N
we have only finite many intervals Iy, with k = 1,...,j1/5/2 and m < log(j)/(slog(2)). We
want to show that there is a constant C; independent of k£ and m so that for x in (245)

1 T — Qpm 1
o4 <O,
(246) ‘(1 ~55)0tn 1) ((1 — 5501 T 2)‘ <G

Namely, from (245) and ¢ > 0 we conclude

T — Qkm 1 )
<Ol ——rn———+-) <3
0= ((1 “og)em 1 2> =7
Since ® € C?((0,1)), there exists € = () also depending on ® such that for y € (0, 1) it holds

Py)<j = yele()l-cl)] = [2W)| < Caulc(y) = L |/ ()| -

For z in (245)) we get the estimate

1 o (= wm  LY] Ch24(2(4))
(12550 ° \T—20)0m 1 "2 )| = (1= 25)50080)/(slog@) 1)

=: C}.

Thus, for each j the absolute value of the derivative |@’| is bounded by C;.

Next, it follows that w; € W1>((0,1)) = C%!((0,1)) and

aj(x) == /01 w;i(§)d¢ = u(x) ae.,

monotonically, hence in L' and since @ is continuous. Now, we obtain

7Y (2 2
Fo(iy) _fg(ﬁj)_/ol ( (((u]) ! )> 5/2 dx_/ol (

L+ ((@)7)* (@)

1+ (@(2))°)
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Finally, we combine the steps (a), @, (o) and find that:

Fao(u) < F3(u).
O

It is essential to notice that the Cantor part of the function is due to special projection. If
one rotates the Cantor function, that is monotonically increasing, clockwise, then it immediately
becomes a Lipschitz function, which by [AFP00, Theorem 3.16 p 127] lacks a singular part. Thus,
the Cantor part vanishes by rotation. The relaxed one-dimensional Willmore energy of the Cantor
function stays infinite, reflecting its geometric nature. The reason is that (v/)* is non-continuous.

Similar arguments apply likewise to the example function constructed in Theorem [90| above.
Since it is monotonically increasing, a clockwise rotation instantly lets the Cantor part vanish.
Interestingly, in the same example, the Cantor part does not contribute any Willmore energy.
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9 APPENDIX

91 Lemma
For 4u + |v| < s, we have (see notation in [Bel79])

v s—r
[u },Q;ft = sup (9 T |ALDY DYl - it— 7| =i >%suptT sup [DfD{ju(x,.)}cS,@,‘

vl
ax(0.1] <T sen — (1240)
where @ = min(t, 7). Also for 4u + |v| = |s]| it holds
Qr _ = © v —osl—s Y ~ =T [Ty, /
ulgr, = sup DyD u|-|xr—y =supt 4 sup |D;Du(.,t .
s QX(O,T]( vDiDzu] | ) t<T  teft/2) [ t e )}C‘*‘“J@)

Proof: Here, we prove only the first equivalence. W.l.o.g. let us assume that w € C*>°(Qr), then
we have to show

Atwl- [t — 7| =5 2 sup T ,
o (65 Al =) 2 oupt 5 s )] s

For the sake of simplicity, we define A = 3" and B = w Let 7 < ¢ then there exists m € Ny
such that ¢ = 27 + v with v < 2"7. Also, W.l.o.g. let m > 0, since otherwise all sums in the
following estimates vanish. We conclude that

jw(t) —w(r)| < Z lw(2°7) — w2 )|+ [w(t) — w(2mT)|
= Z Coasw] o (ppe17er)) - [27 = 2677 % + Cossluwl oy - |t — 277
v[”

< Caas Z W] B ([2t-17.207]) ° 2(=VB| 7 B Cans[wlor (1724 - |7

< O Z?E? (#*1wlenqeaa ) - (@1r) 4205 r|?

+ Ca5 sup (tA[w]cB([t/2,t])> : ’t’_AMB

t<T
<C . —A|.|B < —A9(t-1)B| B
225 §1<1P 4w W e ([t /2,4) 1t y|” + Z 7| 7|
=1
since 2¢ > 1. Next, we multiply it with some term and get
B
a4 lw(t) —w(7)] < A T (-nB| T
e < Camsp (o) - (|77 E ZQ P
< Cagssup (t [wlen ()2 t])) 1+ 73 ZQB_M
t<T ’ (2m—1) —
since, by definition, it holds
T vy ¥ T T 1
_ 1 = = < .
)t‘< ’ ’t—T ‘(2 1)7‘—|—’y‘ ’ ‘t—T ‘(2m—1)7+7‘_2m—1




Further, we use the geometric series and derive

w(t) — w(T)| 1 |1 —2Bm|
L0 = i) )

< A .
| < Cozup (Vleleoann) (1+ iy =

Finally, we can estimate |1 — 25™|/(2™ — 1)” by a constant which is independent of m. Hence we
obtain

A }w(t) — w(T)’ A
A < o (' rloserza)

with some constant Cyg6 that depends only on A and B. O

92 Lemma
Letm = 1,2,3,4. Ifu € CEL Y (Qr) and Vo € Q

m4a
Vak + || < m - DEDPu(z,0) =0

then there is a constant Cle6 = Cie6(cv,y) such that for all 0 < v < aand T < 1 it holds

a—y
HUH 4+v,1+%(QT) < Creel = ||U||0311021+a/4(QT)

Cm+'v

Proof: The case m = 4 was already considered in [Gull7]. For the following proof we write

Cor 1= [lullgtransars g, -
. 44,147 . .
Then, we split the C,,, ;' * (Qr)-norm into different parts.

H H t4k+lﬁ\—m—w
Ul atvy1+7 = Z sup 1
an+’Y (QT) m<4k+\,8\§4 (J?,t)EQX(O,T]

~~

@
A+

4—m
+lull g min 4 sup EE [ul
T @) te(o.1) t

DEDPu(x,t)

where we also separate the last two terms into and use o > 0

ol g = sup [DFDRu(e, )] memgicin
ol T @) m3<§rﬂl<mxeﬂ v T (o.)

@

+ Z sup ’Dfou(x,t)‘ + Z sup | DFDPu(. ,t)} .
Q te[0,7] 7 (Q)
4k-+|g|<m (@HERT 4k-+]8|=m €10
[u]4QJ77 = Z sup Dngu(x,.)] 4-ak— |84~y sup Dfou(.,t)} .
¢ 1<4k+|B|<4 z€Q c 4 ([t/27t}) Ak+|8]=4 te(t/2,t] C7(Q)

® ©
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@Sincet < T < 1we estimate for m < 4k + || < 4

4h+1Bl—m=y
sup t
(2,t)€Q2x (0,T)

| m—a a— a—
Dfou(:E,t)‘ < sup s DFDPu(z, t)|t77 < Cogr T 7.
(2,) €0 (0,T]

(2) This term is the first part of the unweighted parabolic Hélder norm 7™ (mIN/@ ). For all
m — 3 < 4k + || < m and for all x € Q we conclude

m—4k—|B|+a—(m—4k—|B|+v)
4

[Dfou(va : )}Cmﬂ—%—lﬁl < [DfoU(% : )]Cm+a—4k—lﬁl

(10.17) ((0,17) 17

< CoyyT°7.

@ Since the temporal Holder seminorms are bounded, we obtain for all m — 3 < 4k + 3] < m
and forall z € Q

[Dfou(% -) } e theg < Car

(o)) ~

= sup ‘Dt DPu(z, t)‘ < CoorT
t€(0,7)

mta— 4k 18]
+ sup | DF D2u(x,0)| .
=)

=0

@ As the last part of the C, 1 (m0/4 (3 ,,)-norm we estimate the spatial Hélder seminorm for
4k + |B] = m. Thus we consider z,y € Q and ¢ € [0, T then it holds

‘Dfou(x, t) — DEDSu(y, t)\

[z —y[?
ol
’Dngu(x,t)—Dfou(y,t)) “ ks ks 1-2
ok
® ‘D — Du(y,t )‘ ’ 1-3
< = ‘20227T°‘/4+28up’D5 u(w O)‘
‘x_y‘ €N

Therefore, due to initial values, we conclude

_ a—y
21 D‘CQQ?T 4,

sup [Dfou( . ,t)} @

te[0,7
@ With the temporal seminorm estimate and 1 < 4k + 8] <4,z € Qand ¢ € (0,7 like in (2) we
get

"

<T o
£ < Coy T T

4-m 4—m
t 4 [DngU(l’, * ):| CL““;M t 4 [DfoU(ZL‘, . )] C%M

(it/201) = (t/211)

@ Next, we estimate the spacial Holder seminorm of the time derivative, 4k + |3| = 4:

4d—m—o —4

sup t
(2,t)€Qx(0,T)

Dfou(a:,t)‘ < Chr = Y(a,t) € Qx(0,T]: ‘Dfou(a:,t)‘ < Coort ™ F

So we see that for z,y € Qand ¢’ € [t/2,1], 4k + |8] = 4 like in (2):

o [DEDRu(, ) — DDy, )
T4

|z —y|7
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ol
a

2 | DEDu(, #) - DfDluly,t)

~
,a+m 4 4—m 1_5

t 4

<

- 1209271
|z —y|* ’

Hence, we conclude for 4k + || = 4

sup e sup [Dfou(.,t’)} 21*%(722715(14;W < 217%0227T%.

t€(0,T) t'elt/2,] ()

93 Lemma P
Letm =1,2,3,4and 0 < v < a, a/2 < . Ifu,v,w € C ij’ 42 (Qr) and T < 1, then there is a
constant Cg7 = Cie7(av, v, ) depending on algebraic structure of R and L such that

(133) V|| < Cie7||Vu
IVelle Cond{0,m -} (@) | ”cj’;;7 T (Qr)
(139) | D3 wD?ul| /4 < Cie7]| D w| o D%l 2
Cmtlt (@) o o) @)
2. M2 . 12
- |D*uD” wD|| wald (o)
<0167||D UH 24+, 292 ||D2w|| 24,292 ||D2 || 24,242
m+y—2 T m+y—2 T m4y—2 T

Proof: For m = 4, we refer to [Gull7]. By definition, it follows

4—m
hl o = supt 4 su h(, .t _ +sup |h(z, .
| H Ot 4(@Qr) t<IT) (t,e[t};’t][ ( )}ca(g) xeg[ ( )}cam([t/zt]))

+ sup
(z,t)€Qx(0,T]

First, in preparation for the later estimates, we omit the weights and conclude for ¢’ € [t/2, ]

D3w - D?u(.,t) 5 = Sup ‘DSw(x, ] [DQu( . ,t’)} Ca(§)+ {D‘gw( . ,t’)} - sup ‘Dzu(x, t]

Cc(Q)

zeQ zeQ
< sup ’Dgw(x, t')] - sup ‘D3u(x, t')|a - sup ‘DQU(I‘, t')‘l_a
z€Q zeQ z€Q
+ sup |D4w($, t")|" - sup ’D3u(aj, t/)‘l_a - sup |D2u(x, t]
) T€Q )

and for the temporal seminorm, it holds

3, P2
[D w - D u(m">}ca/4([t/2 t])

_ D3w(s.t D2ul(z, . + D?u(z,t)| - | D3w(z, .
< S[ltl/%t]’ (2,t)] - [ u(x )}Oa/él([t/zvﬂ) t,:[ltl/%’tH u(z,t'))| [ w(x )}C"‘/‘l([t/?,t])
247-a
5 t 4 2
<, fup Dt <2> [P i )
e
2 / 3
+ s [Doulet)] (5) [P
247-a
<t Dw(x,t)] - | D*u(x,.)|
<t o Dl ) [P%ule)] 2
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b sup ‘D2u($,t')| . [D3w(ac,.)]
t'elt/2,t]

5 (it/2.4)”

Then we estimate each part by itself. The first case is m = 1 here it holds

sup 1 }D?’w- D?u(z, t)| < sup 7T ‘D?’w - D*u(x, t)|
(2,t)€Qx(0,T) (2,t)€Qx(0,T)
< 7o sup 4 ‘D?’w(x, t)’ . sup e |D2u(x, t)‘
(2,6)e2x (0,7 (z,t)€Qx (0,7

Furthermore, for the spatial seminorm, we derive for ¢’ € [t/2, ]

t1 [D3w' D?u(. ,t’)} _
C ()
2y—a 3—2v+a

<T 7t 1 [D?’w-DQu(.,t’)}

Cx(Q)
<75 sup |tZTTvD3w(:U, t')] - sup |t2?TvD3u(:r, t)|" - sup |tITTWD2“(xa t,)|1ia

€N € e
+ 7o sup ‘tg%DA‘w(x, t’)‘a - sup ‘tQjTWD?’w(x, t')|17a - sup ‘tletzu(x, t’)‘.
zeQ z€Q zeQ

Analogously, we conclude

3[ 3 2
t1|D*w - D?u(z, )} Ca/4([t/27t])
o 2—y 1
<T t7a D w(w,t)|-t1|D?u(a,.
s t/:&l/g,t]‘ T D3w(z,t')| 4[ u(xw )}cz’fﬁ([t/z,ﬂ)
2

L 7 D2u(z, )| - t1 | D3w(z,. .
! t/:&l/%ﬂ‘ T D*u(z, )| 4{ w(z )}CT([t/Zt])

The proof for || D*uD?*wD?v|| o/ is similar. For the case m = 2, it results
a—3

Q1)

sup e ’D3w : D2u(:c,t)’ < T sup o ‘D?’w(az,t)’ . sup ’D2u(az,t)’.
(2,t)€Qx(0,T) (2,t)€Qx(0,T) (x,t)€Qx(0,T)

Next, for the spacial seminorm with weight, we get for t’ € [t/2, ]

t1 [D3w - D%u(. ,t’)}

Cx(Q)
~(1-v)a = - -
S sup ‘tlTngw(a:,t’ﬂ . |t¥D3u(x,t/)|a-sup!DQu(x,t')‘l ¢
z€Q z€Q
+ T sup |tijwD4w(:U, t')‘a - sup ‘t%D3w(x, t’)‘lfa - sup ‘DQu(x, t’)|
zeQ z€Q z€Q

and for the temporal seminorm, we derive

2 142y—« 1—7 2
ta [D‘Q’w - D?u(z, . } <T 1 sup [t77 D3w(x,t)]-t3 [DQU x,. }
(@) ca/a((t/2.4)) velt/2.4) | (2,6)] @] 2 (1t/2.47)
1ty—«a 2

4+ T 4 sup |D%*u(z,t)|-ti [D?’w x,. } .

teft/2.4] [Dutz t)] (@] (1t/2.17)

For the case m = 3, we compute
sup g ‘D3w . D2u(x,t)‘ < sup |D3w(:c,t)‘ : sup ‘DQU(:c,t)‘
(2,t)€Qx(0,T) (2,t)€Qx(0,T) (2,t)€Qx(0,T)
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as well as the following estimate for ¢’ € [t/2, ]

t1 [D?’w - D?%u(. ,t’)}

ca(@)
<Ti sup ‘D?’w(a:, t/)‘ . ‘DSU(J?, t/)‘a - sup }DZU(% t/)‘l_a
) zeQ
+ Tl_(lzx_wa sup }tlTTﬂ{Dzlw(x, t')‘a - sup ‘Dgw(wv t/)‘l_a - sup |D2u(:r, t/)“

z€Q zeQ z€eN

Further, we work with the temporal seminorm on [t/2, t] and conclude

LH3, P2
ta [D w - D*u(z, '>:|C""/4([t/2,t])
<7 sup !D?’w(x,t’)’ -t [D%L(m,.)} 24
telt)2.1] o ([t/2,1)
14y

+T 5 sup ‘D2u(:c,t/)| St {D?’w(x,.)} 14y
t'eft/2,t]

At last, we consider the gradient estimate

||Vu||cg,a/4 = supt®* | sup {Vu(, ,t')} + sup [Vu(x, )}

@Qr)  op <t’e[t/2,t] co@  Len ' ca/4([t/2,t1)>

+ sup }Vu(x, t) }
(2,1) 0% (0,T)

In preparation, we derive

sup |Vu(z,.)| mia— <C = sup Vu(z,t)| <CT 4 +Sup Vu(z,0)|.
zeQ [ ]C = ([O’T]) (z,6)eQx (0,7 ‘ ‘ zeQ ‘ ‘
Therefore, now we can estimate
t 3+17a
a/d a/d [ 2
! i:g [VU(:E’ ' )] co/a([t/2,0)) =t (2) [Vu(:c, ' )} o (1t/2.4))

t 7 [Vu(x, : )]

o (1t/2.41)"

For m = 2, 3 it follows

-«
t** sup [Vu(, ,t’)} o<t sup ’DQ u(x t)‘ sup ‘2Vu (z t)‘
t'et/2,4] Cc(Q) (2,£)€00% (0,T] (,£)€92% (0,
For m = 1 we conclude
@ 11—«
/% sup [Vu(, ,t')} _<TT sup ‘t T D2u(z, t) sup ‘ZVu(x,t)’
velt/2.1] (Y (2,t) €% (0,T) (2,) €% (0,T)

94 Lemma (Holder Estimates I)
Letm =1,2,3,4and 0 < v,a < 1, T < 1 then there exist constants C1gs = C16s(2, v, v) and kyy € N
depending on algebraic structure of R and L, so that:

HR (Vu, D2u D3 Hca /4

m+4a—4

(Qr) < 0168 (1 + ||vu”03+7 %(Q )> ||v ||03+'y 2T ’

m+y—1 T m—4y—1 T

Z HLk@ V’u H a,a/4

<C (1 4 IVl )
k+0=4 nmx{o mta— 4}(QT) = 168 H HC?’JVY’%TW( :

m4y—1 T
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Proof: Here, we use the formula @ Then, we can estimate

2 3
HR Vu, D*u,Du Hcafc/f Q1)

@7
= Ciea HD3“*D2“||cag/4 Z HQ " Por— 1(VU)‘

o, /4
max/{Om a— 4}(QT)

+0164HD2u*D2u*D2uHCa a/4 (@) ZHQ (k+1) ng(Vu)‘

rl:)aojc{;(l)m a— 4}(QT)

By Lemma [44] we conclude that for all £,b € Ny

Q'Py(Vu ) » <Cig HQ—f Vu ‘ i Py (V)| e/
H V) Cro{om— a1y (@T) V) Ol m =y (@1) 1B ezt i@
(T60)
0164(1 + CIG7HVUH 34~ )E(Cmﬂlqu 34y )b.
— 3+, =+ 3+, =
Crnty—1 (@) Cnay—1 T)
Again by Lemma (139) and (140) we obtain
2 3
HR(VujD u, D U)HCZ‘%:(QT)
4
< Coss|DPull (1 - ID%u| 50 240 A+ IVl gy a0 )Vl
e Fion 1 e o0 50 T ez 00 IV e o
4
+ Caz| Dl , | A+ IVull g5 PED [Vl oy
Cm+’y 2 T ;) Cfr;::y';—‘zlli(QT) i:jy l’y T)
ki
< s D%, ( IVl i )
m+’y 2 "H”Y 1 T)
O
95 Lemma
Let0 < a < 1. Ifu,v,w € C4+a 1+ (Qr) and T < 1. Then there exists a constant C1g5 = C135(2) such
that
(247) | D*wD?u|| jo0ra iy < CrssIDPwl| 1yrsa - [[D%] T
_3 (QT) 072 T4 (QT) ,1 (QT
(248)
|D*uD*w D], a0/d <Ciss|D%ull y02t0 D0 520 - [ID%0 5, 240
(@) 1T @) T (@r) T (@)
o, < o
(249) IVull goers gy < 0185||VUHC§+Q,3%(QT) +i‘ég‘vu(%0)‘

Proof: By definition, it holds

3+a
bl e = supt 4 su h(,,t _ +sup |h(z, .
| HCfS @) t<$ (t’e[t/%,t][ ( )]C“(Q) x€£|: ( )]Ca/4([t/2,t])>
+  sup tﬂh(x,t)‘.
(,£)€00% (0,T]

First, we prepare for the later estimation for ¢’ € [t/2, ]

D3w - D?u(. ¢
w-Dul., >]Ga(m

= sup [D3w(z,t')|- [DQU( : ,t’)]

+cq C(Q)

174



+ [D?’w(.,t’)} _-sup | D*u(x,t)]

() €S
< Ca30(£2) sup ‘D?’w(m, t’)‘ - sup ’D?’u(x, t/)‘a - sup ‘DQU(.CU, t’)|1_a
z€Q z€N z€Q
+ C231(Q) sup ‘D4w(x, t’)‘a - sup ‘Dgu(m, t/)}lfa - sup ‘DQU(.%', t')‘
zeQ ) z€Q
and also we conclude
D3w - D*u x,. } < sup D3w z, )] - {DQU z,. }
[ () cora(t/24]) ~ peft/a | (1) (@, oo/t ([t/2,1])
+ sup |D%u(zx,t)]- {D?’w(:c, . )}
telt/2,4] | | oo/t ([t/2,1])
2
<tz sup D3y z, )] - [D2u z,. } o
telt)2.4] [DPu(a,?) (@,-) e (X))
1
+ti sup |D%*u(z,t)|- [Dgw x, . ] o .
veft/2.] [Du(.?) (=,-) c (1t/24])
Furthermore, we can estimate
sup t1 ‘D?’w . D2u(m,t)‘ < sup t1 ‘D?’w(sv,t)’ . sup ¢ ’DQU(QJ,L‘)}.
(x,t)€Q2x(0,T) (x,6)€Q2x (0,7 (x,t)€Qx(0,T)
Moreover, we get for ¢’ € [t/2,t] that it holds
£ [D?’w - D?u(. ,t')] _
C(Q)
< C32(92) sup ’t%D?’w(:v, |- |t%D3u(x, t")|" - sup ’t%DQU(x, t')’l_a
zeQ zeQ
+ Ca33(Q2) sup }t%D‘lw(:U, t')‘a - sup ‘t%D?’w(:U, t')‘lfa - sup }t%Dzu(l‘, ]
z€Q z€Q z€Q
and in the same way, it follows
3+« 2 3+«
t 1 |D3w - D*u(x,. } < sup |tiD3w(z,t)|-t7T% [DQu z, . } a
(@) cor/a([t/24) = pet/a | (2,6)] @] 24 (1t/2.17)
1 3+a
+ sup |tiD2u(z, )] t55 [D3w z,. } . .
tet/2,4] | (@) () i (1t/24))

The proof for || D?uD?*wD?v|| ez is similar. At last, we consider
-3

(Qr)
Vul| oo = supt™* | su Vu(, ,t _ +sup |Vu(z, .
| HCo "(@r) t<¥ (tfe[t/%t] [ ( )}ca(g) xeg[ ( )}Ca/4([t/2,t])>

+ sup |Vu(z,t)|.
(2,£)€0x (0,T)

as well as temporal Holder seminorm term

/4 /4 E
77 sup [Vu(x, )} Ca/4([t/2,t]) =t <2)

z€Q

3
1 3ta
{Vu(x,.)}cs%a (1t/2.1) =t {VU(%.)}C% (ft/24)

and the spatial Holder seminorm term

1—-a
tiDgu(J:,t) ‘

t/* sup [VU(Ht/)} _ < C934(2)  sup
teft/2,t] oy (2,£)€Q% (0,T]

‘a sup ‘ Vu(z,t)
(2,6)€Q% (0,T]
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96 Lemma
Let B; € N2 foreachi = 1,...,m then

| Dfiu | Daﬁ:iw (Vw + VU) G —k—1 ¢ B8;
- = Q (w)Q ™" (u)) Dyu(Vw — Vu)
QF(u) QF(w) (Q(w) + Q(u)) ; £[1 )

( Dﬂe w — Dﬁe u)

Proof: It is the same proof as in [GullZ, step 2 in the proof of Lemma 6.8 p. 73] First, consider
[ Df"u _ | ) Dfiw _ I Dﬁiqu(w) | A DB wQ" (u)
QF(u) QF (w) QF (u)QF(w)
(Q*(w) — Q*(w) T, D — () (TT, D'w — T, D¥u)

QF (u) Q¥ (w)
Next, we work with the second part and derive

m

HD/Bw HDBu— HDBw HDﬂu—i—ZHwa H Dﬁu—ZHDﬁw H DPiy
/=0 i=1 i=0+1 /=0 i=1 i=0+1
m—1 ¢

)4
[[D5w H Diiu— > []Piw H DBy

=1 i=0+1 /=0 i=1 i=0+1

HDﬁw H Dﬁu—HwaHDﬁ ]

i=0+1

HDB w H DBy (D;ffw —Df‘u)].

i=0+1

Ms IM:

)
I

I
Ms

Y
Il
—

The difference terms can be calculated in the same way

k

Q" (w) — Q*u) =Y [@“m)@”(u) (Q(w) - Q(U)>]

(=1
(e -Qw) (@ +Qw) &,
_ (2w + o) >0 Q)
(V)2 = (Va)?) &

Q' ()@ (w)
(Quw) + Q) 2

Vw — Vu) (Vw + Vu)
— ( ) Z Qé 1 Qk l )
(Qu)+Qw) =
By combining the results, we obtain
1", D¥u I, DEw (Vw+ Vu) <~
i=1 _ 1= _ Z H Qe k— 1 u))Dgiu(vw — Vu)

Qw) QW) QM)+ QM) Fi
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m £-1 m Bi Bi
ST I D' wDs'u (s, ey,
QF(w) ’ v
(=1 i=11i=0+1
O

The next Lemma explains how with embedding, one can get better weight powers for lower
derivatives.

97 Lemma
Let1 < q,p<oo,afB,y€ R, QCR"isquasibounded, o« —~v > pand ¢ > pand p > nor p < n and

p<q< -2 and
+a<n n)
b \Pp q

n—p
WhP(Q;d7,d*) < LUQ;d°)

/3>7<1+n_n>
qQ p

Then, the following embedding is compact

Proof: [Bro98, p.338 corollary 3.1]. O

98 Lemma (Poincare’s Inequality)
Let @ C R™ be a bounded Lipschitz domain and w # & an open subset of Q2. Further, assume 1 < p < oo.
Then there exists a constant Ca35 = Cass(n,w, Q, p, a) such that

Hu—|w1|/wu(x)dx

for each function u € Wy ().

< Cass|| Dul| o (02:dar)
Lp(dop)

Proof: We will use the basic idea of proving unweighted Poincare inequality from [Eval0, p.290
Chapter 5.8.1 Theorem 1], namely arguing by contradiction. First of all, we recall the notation

(u)w = ‘wl’/wu(:c) dx

for the average of u over w. By contradiction, we assume there exists for each k£ € N a function
1,a .
up € Wy (Q) with

[k — (Uk:)wHLp(Q;dap) > k| Dugl| Lo (;q0r) = 0.
If we now renormalize by defining

o = ug — (Ug)w ,

ok — (uk)wHLP(Q;daP)

therefore, we obtain the following properties

(250) (Vk)w =0, |Jvkllze(uaery =1, Yk € Nt || Dug|Lo(0saery <

| =

Especially, the sequence {v; }zen is bounded in W,*(Q). Since by (T03) we have compact embed-
ding W,*(Q) << LP(; dP*), there exist a subsequence {vy, }sen and a function v € LP(£; d*P)
such that

(251) vk, v in LP(Q;dP),  thus  (v), =0, |[|v|pr(Qaer) = 1.
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It follows that for each ¢ € C2°(Q) and each component j € {1,...,n} the condition in (250)
implies

/ngxyvda: = lim Da; Uk, dzr = — lim PUky dz = 0.

{—o0 Jq l—oco Jq

Then we get Dv = 0 a.e. and thus v € W; “(Q). Since Q is connected, we conclude that v is
constant. Consequently, by (v),, we obtain v = 0 a.e., since w is a open set. Hence ||v|| 1»(;qer) = 0,
a contradiction to (251). O

99 Lemma (Equivalence of Weighted Norms)
Let Q C R™ a bounded Lipschitz domain, 1 < p < oo and w # & is an open subset of Q2. Then

W Q) 3 ur Y D%l ooy + llull o)

|a|=m
is equivalent to (I01)) on W5"*(92).

Proof: Since by (103) the embedding W, (Q) —— W," "*(Q) is compact, we can use the
Ehrling’s Lemma and Young’s inequality to show that for all ¢ > 0 there exists a constant C.
such that

Julf” < el + Cellulp gy

Wm 1, (L(Q)

< el D™ ullp 0, g0my + Ellullyym-r.a ) + Celltll Lo gor)-

Consequently, we set £ = 3 and use again Young's inequality to derive
HUHW;”’“(Q) < Case (HDmuHLP(Q;dap) + HUHLP(Q;daP)) .

Next, we observe that by weighted Poincare’s inequality formulated in Lemma 98|it follows

1
HWM@wqSQ%wammmy%M/Wmmmwwm&WQ
< Casr (|| Dul| Loigery + Ul Lr(w))
since w is also bounded. O

100 Lemma
Let D5 and f5 be the Cantor set and function defined in Theorem [90| Furthermore, let f; the functions
defined in step (2) of Theorem[90| Then

(@) L1(Ds) =0,

(v) Moreover, there exists a function f5 € C°([0,1]) with f; — f5in C°([0, 1]) for £ — oo with f5(0) = 0
and f5(1) = 1. Also it follows that f5 = (f5)¢, which is supported on 5.

Proof: Since the intervals Ij; are non-overlapping, we conclude by countable additivity and
26 < 1 that it holds

0o 20—1)

L'Ds) =1=Y > LIy) =1->_ > (1-28)5"
=1 k=1 j=1 k=1
=1-> (26)U V(1 -20)=1—(1-26)) (20 1:;2:0
j=1 Jj=0
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@ First, we want to observe the self-similarity property of the construction of f,. Foremost, let

m > /{ then it follows that f, = f,, in sets where f; is constant: U§:1 z(i;l) Ii,; which we will show

in the following.
The complementary set [0,1] \ U’ i1 U=
5¢. We want to prove thatboth f,and f,, rise to the same level in each J;,. By the construction of f,,,

there are intervals where f,, is constant, which are cut out of in each interval J;;. The remaining
2m={ intervals in J;; are of length 6t | Jy| = 6™. Here g,, is non-vanishing. We conclude

1 1 s
1! dx:/ gm dz = —— 2™~ fam:::/ ggdx:/ fhdz.
/Juz " Jie (26) 2¢ (25)Z Jie Jie ¢

2(1 1)

2<] U %; consists of 2l intervals Jy,i = 1,...2¢ of length

Since f; and f,, are both constant on [ J i1 UQO I}, it follows that f, = f,, on U 21 U=

Furthermore, with the same arguments, we observe that for all x € Jis,7 = 1,. .28 (in comple—
ment the situation is trivial f; = f,,)

= q ¢ 20-1) m 201
[fe = fml(2) é/ @7 (12 > ﬂf,w(x)) ( =D I, ) dz
0 i j=1 k=1

k
1 1 m 20—-1)

=1 k=1

2m7£5m + (5Z _ mefém)

)4
< 2T 3 N 0=

_ m—/
=[(26)" " = 1| 5 <3
thus Vm > £ : || fo — fullcoqoa)) < 237 The sequence {f/}sen is a Cauchy sequence in C([0, 1]).
Therefore there exists a function f5 € C°([0, 1]) with f, — f5 in C°([0,1]) for £ — occ. Also since
V¢ e N: fi(0) =0and fy(1) = 1 we have f5(0) = 0and f5(1) =

On the open set |J;2, U2 "V 1; the function f5 is constant and hence f§ = 0 there. Since
LY(Ds) = 0 then (f§)* = 0. Moreover, since fs is continuous, there are not any jump parts.
Furthermore since |Df\((0, 1)) = f5(1) — fs(0) = 1 > 0, it follows that

5= (15",

where the later is supported on Ds.

101 Lemma
Let u: [0,1] — R be sufficiently smooth, with associated curvature . We assume that

u(0
Il 0y () <1 - ©__ |
%1 u(0))

Then we have the following L°°-estimate for the derivative u’

%1 + <u<1> —(0))2[ll 2 (0,19 () + (1) — ()]
V1 (1) = u(0)> (1 = [#llp1o1 ()) = [u(1) = u(0)

[l <
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Proof: This proof is based on unpublished notes of Grunau and Deckelnick. There exists £ € (0,1)
such that (u(1) — u(0))/1 = «/(&). Then

w@) | _| [ u'(§)
' EoH Jy e+ TP
It follows
o (2)] < (nmnp((o,l)) + % ) (14 |w'@))
which finishes the proof. O

102 Lemma (Generalized and Classical Second Fundamental Form)

Let M and N be the isometrical embedded Riemannian submanifolds of R™ such that M with m = dim M
is embedded in N. Then, the classical second fundamental form of M with respect to N is also the generalized
second fundamental form defined in Definition |80, That means for 1 < i,j,k <n

(252) (A(e;,€j), er) = Pij(PiDyPre) — Poj P DiQre = PijBige — Pij PigDgQpe
Proof: We recall the classical second fundamental form with respect to N atz € M
A:T,M x T,M — N, M,  A(v,w) = (Dyw)*,
where z is the projection component into N, M and the covariant differentiation in R" is denoted
by D,w. Next we extend the situation into R" by projections of T, R" into T, M denoted by
T,R"3v =" € T,M
A: T,R" x T,R" — T,R",  A(v,w) = A(vT,w?).
Now let {e;}!_; be the canonical orthonormal basis of R". We define the components of A by

Afj = <A(ei,ej),ek>, 1<4,5,k<n.
In the case of codimy M = 1 (codimension relative to V), the space N, M is one-dimensional and
let N be a locally defined normal vector field. Then we can compare with the more convenient
definition

A(r,n):=—(n,D;N)N, 1,neT,R".
Also, in the codimy M = 1 case, we have the scalar second fundamental form

A(r,n) .= —(n,D.N) = <A(T, 17),N>. ,n e T, R"

Let x € M and ¢ a local parametrization of M near z so that ¢(0) = z. In the local formulation,
we then have the coordinates

Aij = A(Dip, Djp) = —(Dip, Dp,;,N) = (N, Dije),  1<d,j <m.
Itis important to notice that Afj are coordinates relative to the orthogonal base of R" defined extrin-

sically, unlike the local coordinates A;; defined with respect to local parametrization. Nevertheless,
we can relate each form to each other over the relation between the Riemannian metric on 7, M and
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the Euclidian metric on T, R". Let W,V € T, M with W = 3. W'D;(0) and V = > VID;p(0),
since M is isometrically embedded in R" then

(V. Wik = Y VIWlgy| = Z Vi Z gikg g@\ = Z ’“ZVngZWJg@\
i,j=1 ij=1 k=1 k=1 i=1
(253) => gke<ZViDi80y Dk@><ZWij%D€<P>‘O
k=1 i=1 j=1

I
NE

gV, Opp) (W, Dé@)‘o‘
1

X
~
Il

»

From which one can directly deduce £ = 1,...,n : e} = > iie g"{es, Dip) D;p. Next, we refor-

mulate A;; in terms of A%, and Dy¢. For 1 < i,k < m we get

n

Aik = A(D’L(PkaSO) Z <Di§0,€t><Dk(P, €S>A(et’es)
t,s=1

= Z (Dip, et> (Drep, es) <A(€t, €s), N€€Z>
t,s,0=1

= Z <Di¢7et><DkQ07es>AfsN€
t,s,0=1

since one can define locally N = Dip A -+ A Dpo/||D1i A -+ - A Dipipl|, where wedge product is
intrinsically in 7 N. Analogously, we obtain for 1 <s,¢,/ <n

Aﬁt = < (es,er) N > = A(eT etT)Nf

m
= 2. 97t Dip)A(Dsp, Dip)g™ (es, Drg) N

= Z g €t7 <65yDr90>AjkNZ-

We can also compare the mean curvature definitions with the norm of the second fundamental
form. Let {7;}]" ; a orthonormal basis of 7, R" such that {7;}", a orthonormal basis of T;, M then

m m m m m
> g7A = Z 97 A(Djp, Di) = Z QZJA<Z<DJ‘%TI¢ Th Y (Ditp, 7o Tz)
Z A(Ti, 7e) Z 97 (Dj, 1) (Disp, 70)
k=1 i,j=1
753) = -
(
= Z ATy, m70) Tk, ) = ZA(Tk,Tk) = ATk, k)
k=1 k=1 k=1
n n n n n
=Y Alere) > (thre) Y (Thoe) = Y Aler,er) > (T, eo) (T, 1)
k=1 =1 =1 =1 k=1
n
= 6[76[ Z Aesz )
=1 0 k=1
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Moreover, we check the absolute value ||Al|;. We use again {7;}}; orthonormal basis of T, R"
such that {7;};", a orthonormal basis of T, M

m m
> g7g" AwAje= Y g7g" A(Digp, Drp)A(Djg, Dyp)

ik, 0=1 ',jkE—I
m
= Z g7 g™ Z Dio, 7 )(Diip, ) AT, 7)Y (Do, 7 (Disp, i) A(7a, 72)
,]k@ 1 r,q=1 s,t=1
m B m
= Z ATy, 1) Al7s,m) D §79(Dio, 1) (Do, ) > " (Dip, 74) (Do, 1)
'rq,st 1 ,j=1 k,t=1
= Z A(TT’7TQ)A(TSaTt)<TTaTS><TQ7Tt>
r,q,s,t=1
m n
= Z A(rr, 7q) ATy, 7q) = Z Alry, 79) AlTr, 74)
r,qg=1 r,q=1
n n n
= Z A(ei,ej)A(eg,ek)Z(ez,rrﬂn,eg Z (€j, Tq)(Tq: €x)
1,7,4,k=1 r=1 q=1
n n n
=D Aleiej)Aleie) = Y (AGNY)? = (45)* = [|All3 (x)
i,j=1 i,,6=1 i,5,0=1

since A is parallel to V.
Hutchinson defined the generalized curvature as weak [P;,D;P;;|, which in classical case is
related to A by [Hut86, 5.1.1. Proposition p.60]

(i) Al = PZjPitDt(Pk:E — Qre)
(i) Py D, P; A + A PPy Dy Qi + PrePi DiQy;
As motivation for his Definition[79]of curvature varifold, Hitchinson used the tangential divergence

theorem. We want to recall his calculations [Hut86, p. 61]. First, suppose U C R" open and
OMNU =@and i€ {1,...,n}. Additionally, we need a test function

o=, P)c Cl(UxR™) and VP ecR™": ¢(.,P)ecCiU).
Finally, we define the test vector field
X(2) = (. P(a))e;
By the tangential divergence theorem and OM N U = @ it follows
0= / divy, p(XT) dH? (z) = / PrsDy(XT) dH? = / PrsDy(Pyp) dH?
M M M
:/ [Prs Ds(Pir )¢ + PrsPiyDsp + Prg Py DippDy P dH?
M
— [ [PuDuo+ (PuD.Pp)Djig + (PuD.P)e] di2
M

thus with some relabehng 1nd1ces we notice that [P, D P;;] is fulfilling the equation for generalized
curvature in Definition 79| (ii) since P = Tan™(uy,x) for a.e. (z, P). So that we can set B;j;, =
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P,y Dy Pj;, which by [Hut86), 5.2.2. Proposition, p. 62] is V-a.e. unique generalized curvature. Then
the classical second fundamental form

)
A5 @ b (PyDyPry) — Py PyDyQue = Py Bire — Prj Pig D@t

which by Definition [80|is equal to the generalized second fundamental form. O
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GLOSSARY
I/l (@ norm on space Cck(Q)
[flce (@) Holder coefficient on

flloksam Holder norm on space C*+*(Q)[33
Ckte(Q) P

{f}+«.o BMO modulo VMO character of a function f € L'()
|| f]l«+ BMO(£2) norm of f € BMO(R)

{f}+00 BMO modulo VMO character of a function f € L(1)
[u], 5, "parabolic’ semi—norm

(u),5, "temporal’semi-norm
* " Tl i

[u]b@T spatial” semi norm

||u||a@T spatial norm

1
1oy = (S [P dp)7 [123
(ul B) restriction of measure p on a set B m

(Lo f) restriction of i on a function f

—<— compact embedding

< inequality up to a constant which is then not written [164]

(-)" projection onto df, (T%)

(+)* projection onto (dfz (T,2))*+

* arbitrary linear combination of indices contractions for derivatives of u[49)

(.,.)ge+x inner Euclidean product on R2**

A, second fundamental form of M in p[26]

|All; amount of the second fundamental form 26|

Ap(u) set of points where u is approximately differentiable
ap lim,_,, u(y) approximate limit[131]

A, scalar second fundamental form in p

A;; local representation of the scalar second fundamental form

B! (t) n-dimensional open ball with the center ¢ and radius ¢

)
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B,(99) Besov space on boundary

B;”_HS (092) higher-order Besov space on boundary
BMO(2) space of functions of bounded mean oscillations
B(X) set of all Borel subsets of a space X

BV () space of functions of bounded variation [128]

C8(08) Holder space on boundary
C*(Q2) space of k-fold differentiable functions on 2 C R"

C*(92) space of functions f € C*(Q) with compact support in Q2
(

k

Q

)
)
Q) functions from C*(Q): all derivatives are continuous continuable on ﬁ
C*+(Q) space of k + a-Holder functions on Q ¢ R"”

CY(X) space of continuous functions on X with compact support

coy conormal on f(0%)

conv(A) convex hull of a set A[46]

CV,,(R") set of unoriented curvature varifolds[139

CVY,(R™) set of oriented curvature varifolds[139]

NN

C’é’ (Qr) weighted parabolic Holder space of order £ and 3 on Q7

L —
Cﬁ;‘ (Qr) parabolic Holder space of order ¢ on Q7

= () () B

D3 partial derivatives of ¢ with respect to the variables F;
Vian tangential gradient[72]

Ajsyh Laplace-Beltrami operator of

Ar()H Laplace-Beltrami operator of H on the graph 3]]
Amf Laplace-Beltrami operator from f to M

V@u absolutely continuous part of Vu with respect to £ (128
Veu Cantor part of Vu with respect to £ 128

Viu jump part of Vu with respect to £"

V*#u singular part of Vu with respect to £

9% boundary of ¥

VM Levi-Civita connection on M
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A™ polyharmonic operator

df, differential of f in z € ¥24]

d(z) = dist(z, Q) distance function to the boundary [6§]
divp X divergence from X to M

00 sufficiently smooth boundary of (2

D, derivation in direction 7

DBf = - f, multi-index notation

[“)a:fl 81’2"
9*E essential boundary of E[I30]
FE reduced boundary

(gij) coordinate representation of metric tensor
(g¥) inverse of (gi;)
det (gi;) area element factor
Gm,» manifold of unoriented m-dimensional subspaces of R" m
G, manifold of oriented m-dimensional subspaces of R" m
['(u) graphof u: Q — ]R
H(div,Q) = {u € L*(Q)| divu € L*(Q)}[143]
H scalar mean curvature 26

H(u) scalar mean curvature on graph I'(u)

H*(A) k—dimensional Hausdorff measure of A

IV,,(R"™) set of unoriented integral varifolds
IV? (R") set of oriented integral varifolds

J }VI Jacobian
J ]])4 * adjoint Jacobian

Ju set of approximate jump points[12§]

kg signed geodesic curvature
K Gaussian curvature of M

Ly(09) = {fopeW"r(I)| 12y @0 = 1fllLro0) + [ Veanf [l Lro0) < 00}
LP(Q;d%) weighted Lebesgue space[68]

L" n—dimensional Lebesgue measure
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LP(€)) Lebesgue space
LP(09)) Lebesgue space on boundary [35]

LP

loc

() space of locally integrable functions

LP(X, ) real vector space of functions f: X — R satisfying || f||zr(,) < co[123
LP(p) real vector space of functions f: X — R satisfying || f|| 1»(,,) < co[123
LP(pu;R™) space of R™-valued functions with finite L”(x; R™)-norm

L, Lebesgue set of u

N unit upward pointing normal fields of the absolutely continuous part V%u[145]
vp generalized inner normal to £[129]

v : 0Q — S? exterior boundary normal

Q C R? abounded domain (open, nonempty, and connected subset)
wir LF measure of k-dimensional unit ball[125]

P(E, Q) perimeter of E relative to 2{129
mupu(K) push-forward of a measure[122]
Py(Vu) =Vu*---+Vu (-times[49]

P’ =p/(p — 1) the dual exponent of p[69|

Q = /1+ [Vul?, Jacobian of the area formula for graphs
Q" = I+ Va2

Qp =Q x (0,7, closed time cylinder

Qr =Qx(0,T]

¢4V unoriented varifold associated to V' by projection onto G, (V)

R =RU {£0}

RP? =§?/{1d, — 1d} real projective plane
RV,,,(R") set of unoriented rectifiable varifolds
RV? (R") set of oriented rectifiable varifolds

SBV ((a,b)) subspace af all BV ((a, b)) functions with vanishing Cantor part

¥ smooth surface with or without boundary 0%
Su = {z € Q| limy o [Vu|(B,())/p" = co}[128]
s = {y e R" ||yl = 1}[22
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supp p support of a Borel regular measure
Su =Q\ L, the complement of the Lebesgue set[13]]
SuV generalized curvature of varifolds

T% r horn torus m

Tan®(HF L A, x) approximate tangent space of a H*-rectifiable set A at =
©%(H* L A, z) upper k-dimensional density of H¥ L A

O.x(H¥ L A, x) lower k-dimensional density of H* L A

O, = {z € Q| lim,\ o |Vu|(B,(2))/p" " > O}

0(z) = limynoH* (AN B,y(z))/wip® multiplicity

Tr boundary trace operator [36]

|V|| = pv = 74V associated Radon measure on N obtained by projection 7: N x Gy, , = N
VMO(£?) space of functions of vanishing mean oscillations

vol ¥ volume enclosed by f(X)

V(u, (a,b)) total variation of u € BV ((a, b)) (156

W, H,,~ Helfrich functional

W¢(u) absolutely continuous contribution to the Willmore energy

W(u) Willmore energy of a graph 31]

W : LY(Q) L'-lower semicontinuous relaxation of the Willmore functional
Wm™P(Q) Sobolev space

W™ () homogeneous Sobolev space

Wis(09Q) = {(g0,g1) € LL(0Q) & LP(0Q) | vg1 + Viango € B5(00)}
W;”_Hs(é)ﬁ) Dirichlet data space in weighted Sobolev case

W, () weighted Sobolev space

Wy*(Q) = { closure of C2°(2) in W,*(€2)} homogeneous weighted space

W, Q) = <WZ§”“(Q))* weighted dual space

X(X) space of tangent vector fields on X
x(¥) Euler characteristic of X [27]

xEe characteristic function of £
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INDEX

L*-lower semicontinuous relaxation of the Will- Cantor part,

more functional, characteristic functions, {129
HPF-rectifiable closed support of f,
countably, co-area formula,
HF-rectifiable, codimension,
p-measurability of sets and functions, {122 compatibility condition,
k-dimensional density of H¥ L A complement of the Lebesgue set,
lower, [125 conormal,
upper, @] contraction mapping, [37]
convergence
absolutely continuous contribution to the Will- F-strong measure-function pair, [134]
more energy, [143] varifold,
absolutely continuous part, varifold in the weak sense, [141
adjoint, convergence for the Radon measures, [123
adjoint Jacobian, countably H*-rectifiable,
approximate covariant derivative, B0]
differential, curvature
limit, curve, [156]
approximate jump point, [12§| mean, 26]
approximate limit, signed geodesic,
left, spontaneous mean, 29
right, vector, [156]
approximate tangent space, @ weak mean, [138
approximately Gaussian, [27]
continuous, [I31] curvature varifold,
differentiable, [131 L
arclength parametrizations derivations,
: ’ diameter estimate,
area estimate, [A2] [44] : } .
area formula. 176 differentiable functions,
’ differential,

associated Radon measure on N obtained by
projection 7: N X Gy, — N, [137]
atomic measure, [157]

disintegration theorem,
divergence of a vectorfield,
divergence structure,

Banach fixed point theorem, dominated convergence theorem,

Besicovitch derivation Theorem, dual exponent,
Besov space on boundary;, elastic energy,
Besov spaces on the boundary elliptic operator,

. higher—order, ellipticity constant,
b}harmc?mc operator, essential boundary, [130
bilaplacian, essential discontinuities,
BMO modulo VMO character of a function, extension operator,
Borel regular measure, [122] exterior boundary normal,
boundary

smoothness, Fatou’s lemma, {124
bounded domain, finite perimeter, m
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first fundamental form,
first variation of m-varifold,
first variation of the Willmore functional,
functions of bounded mean oscillations,
functions of vanishing mean oscillations,
fundamental form

second,

second generalized,

first,

fundamental lemma of calculus of variations,

[124]

Gauss map, [46]

Gauss-Bonnet Theorem,
Gauss-Green Theorem,

Gaussian curvature, 27]

generalized curvature of varifolds, [139
generalized inner normal to F., @
generalized second fundamental form,
graph,

Grassmannian manifold,

Hausdorff measure, [125
Helfrich equation,
Helfrich functional,
Helfrich surface, 29

higher-order Besov spaces on the boundary,

higher-order trace operator,
homogeneous Sobolev space,
homogeneous weighted space,
horn torus, (145

Holder
boundary interpolation,
coefficient,
interpolation,
Lebesgue interpolation,
norm, 33|
parabolic norm,
parabolic space,

parabolic space on the boundary,
space, [33]

weighted parabolic space,

space on boundary,

immersed curves,

immersion, 24]
isometric, 24]

integrable,

integral varifold,

interpolation,
L»,[3§

boundary,

Holder,

Holder-L?,
interpolation inequalities,
isometric immersion, [24]

Jacobian, 126
adjoint,
jump part, [128]

Laplace-Beltrami operator,
Lebesgue

point, [13]

set, [130]

value, 131

Lebesgue space,
boundary,
Legendre-Hadamard ellipticity condition,
Levi-Civita connections, 25]
linerization,
Lipschitz boundary,
Lipschitz bounded domain,
Lipschitz condition,

manifold,
maximum modulus theorem,
mean curvature, 26|

scalar,

vector, [26]
mean curvature of the reduced boundary, m
measurable measure-valued maps,
measure

atomic, [157]

Borel regular, [122]

Hausdorff,

restriction, 122

singular diffuse,
measure-function pair, m

weak convergence, (133

weak convergence LP-sense, [134]

F-strong convergence, [134]
metric, 24]
minimal surfaces,
Miranda-Agmon maximum modulus priciple,
monotone convergence theorem,
monotonicity formula, [40]
multi-index notation,
multiplicity,
multiplicity of immersion,

non-linear growth,
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non-tangential divergence theorem,
normal derivatives,

one-dimensional Willmore energy,
orientation function, 137
oriented immersion,

parabolic Hélder norm,
parabolic Holder space,
perimeter,
perpendicularity theorem,
pointwise variation, [157]
polyharmonic operators,
positive oriented parametrization,
precise representative,
principal curvatures,
projection matrix, [136]
push-forward,

of a measure, [122

Radon measure, (122
rectifiable varifold,
reduced boundary,
relaxed Willmore energy, 159
restriction of measure y, {122
right-hand side functions,

scalar mean curvature,
Schauder estimates,
second fundamental form,
scalar,
trace free,
amount, 26]
signed geodesic curvature, 27]
singular diffuse measure,
singular part, [12§
smoothness of boundary,
Sobolev space,
homogeneous,

space of functions of bounded variation,

space of locally integrable functions,
star x notion, [49]

strictly convex, [134]

sublevelset of a graph,

surface,

tangential derivative,
tangential divergence theorem,
tangential gradient,

time cylinder,

total variation,

trace free second fundamental form, [46]

trace operator, [71]

uniform ellipticity condition,

unoriented varifold associated to V' by projec-
tion onto G,,,(N),

unweighted parabolic Holder spaces,

variational solution,
varifold,
convergence, [136]
integral,
oriented,
rectifiable,
curvature, 139
vector of mean curvature,

weak mean curvature, [138

weak* convergence,

weight,

weighted Lebesgue space,
weighted parabolic Holder space,
weighted Schauder estimate,
weighted Sobolev space,
Weingarten-mapping, @

Willmore
energy, 9]
energy one-dimensional,
energy relaxed,
equation, @
flow problem,
functional, [9]

functional L!-lower semicontinuous relax-

ation, [T42]
functional for a graph,

191



[ABGI8]

[ADN59]

[AFPO0]

[Agm60]

[All72]

[Bel79]

[BGS86]

[BGN12]

[BGN17]

[BKO3]

[BL76]

[Bla24]

REFERENCES

L. Ambrosio, A. Braides, and A. Garroni. Special functions with bounded variation
and with weakly differentiable traces on the jump set. NoDEA Nonlinear Differential
Equations and Applications, 5(2):219-243, 1998. DOI:|10.1007/s000300050044.

S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions
of elliptic partial differential equations satisfying general boundary conditions. I.
Communications on Pure and Applied Mathematics, 12(4):623-727,1959. DOI: 10.1002/
cpa.3160120405.

L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Dis-
continuity Problems, volume 1 of Oxford Mathematical Monographs. Oxford University
Press, Oxford, UK, 1st edition, 2000. DOI:|10.1093/0s0/9780198502456.001.0001,

S. Agmon. Maximum theorems for solutions of higher order elliptic equations.
Bulletin of the American Mathematical Society, 66(2):77-80, 03 1960. DOI: 10.1090/
s0002-9904-1960-10402-8.

W. K. Allard. On the first variation of a varifold. Annals of Mathematics, 95(3):417-491,
1972. DOI:|10.2307,/1970868.

V. S. Belonosov. Estimates of solutions of parabolic systems in weighted Holder
classes and some of their applications. Matematicheskii Sbornik, 152(2):163-188, 1979.
DOI:10.1070/sm1981v038n02abeh001225.

R. Bryant and P. Griffiths. Reduction for Constrained Variational Problems and
f k?/2ds. American Journal of Mathematics, 108(3):525-570, 1986. DOI: |10.2307/
2374654.

J. W. Barrett, H. Garcke, and R. Niirnberg. Elastic flow with junctions: variational ap-
proximation and applications to nonlinear splines. Mathematical Models and Methods
in Applied Sciences, 22(11):1250037, 2012. DOI:'10.1142/s0218202512500376.

J. W. Barrett, H. Garcke, and R. Niirnberg. Stable variational approximations of
boundary value problems for Willmore flow with Gaussian curvature. IMA Journal
of Numerical Analysis, 37(4):1657-1709, 03 2017. DOI: 10.1093/imanum/drx006.

M. Bauer and E. Kuwert. Existence of minimizing Willmore surfaces of prescribed
genus. International Mathematics Research Notices, 2003(10):553-576, 2003. DOI: 10.
1155/51073792803208072.

J. Bergh and J. Lofstrom. Interpolation Spaces. An Introduction, volume 223 of
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg,
New York, 1976. DOI: 10.1007/978-3-642-66451-9.

W. Blaschke. Vorlesungen tiber Differentialgeometrie und geometrische Grundlagen von Ein-
steins Relativititstheorie, volume 1 of Die Grundlehren der Mathematischen Wissenschaften
in Einzeldarstellung mit Besonderer Beriicksichtigung der Anwendungsgebiete. Springer-
Verlag, Berlin, Heidelberg, 1924. DOI: 10.1007/978-3-642-49666-0.

192


http://dx.doi.org/10.1007/s000300050044
http://dx.doi.org/10.1002/cpa.3160120405
http://dx.doi.org/10.1002/cpa.3160120405
http://dx.doi.org/10.1093/oso/9780198502456.001.0001
http://dx.doi.org/10.1090/s0002-9904-1960-10402-8
http://dx.doi.org/10.1090/s0002-9904-1960-10402-8
http://dx.doi.org/10.2307/1970868
http://dx.doi.org/10.1070/sm1981v038n02abeh001225
http://dx.doi.org/10.2307/2374654
http://dx.doi.org/10.2307/2374654
http://dx.doi.org/10.1142/s0218202512500376
http://dx.doi.org/10.1093/imanum/drx006
http://dx.doi.org/10.1155/S1073792803208072
http://dx.doi.org/10.1155/S1073792803208072
http://dx.doi.org/10.1007/978-3-642-66451-9
http://dx.doi.org/10.1007/978-3-642-49666-0

[Bla09]

[BM16]

[BO92]

[Bog05]

[Bra78]

[Bra06]

[Bro98]

[Can70]

[CDD*04]

[CFS09]

[Dal12]

[DASO04]

[DC16]

[DDO06]

S. Blatt. A singular example for the Willmore flow. Analysis (Munich), 29(4):407-430,
2009. DOI:10.1524/anly.2009.1017.

A. Barton and S. Mayboroda. Higher-order elliptic equations in non-smooth do-
mains: a partial survey. In M. C. Pereyra, S. Marcantognini, A. M. Stokolos, and
W. Urbina, editors, Harmonic Analysis, Partial Differential Equations, Banach Spaces,
and Operator Theory (Volume 1), volume 4 of Association for Women in Mathematics
Series, pages 55-121. Springer International Publishing Switzerland, 2016. DOL:
10.1007/978-3-319-30961-3_4.

R. Brown and B. Opic. Embeddings of weighted Sobolev spaces into spaces of
continuous functions. Proceedings of the Royal Society of London. Series A: Mathematical
and Physical Sciences, 439(1906):279-296, 1992. DOI: 10.1098/rspa.1992.0150.

T. Boggio. Sulle funzioni di green d’ordine m. Rendiconti del Circolo Matematico di
Palermo (1884-1940), 20(1):97-135, 1905. DOI: 10.1007/b£03014033.

K. A. Brakke. The Motion of a Surface by its Mean Curvature. Mathematical Notes.
Princeton University Press and University of Tokyo Press, Princeton, NJ, 1978. DOL:
10.1515/9781400867431.

A. Braides. A handbook of I'-convergence. In Handbook of Differential Equations:
Stationary Partial Differential Equations, volume 3, pages 101-213. Elsevier, 2006. DOI:
10.1016/s1874-5733(06)80006-9.

R. Brown. Some embeddings of weighted Sobolev spaces on finite measure and quasi-
bounded domains. Journal of Inequalities and Applications [electronic only], 2(4):325-356,
1998. DOI:110.1155/51025583498000216.

P. B. Canham. The minimum energy of bending as a possible explanation of the
biconcave shape of the human red blood cell. Journal of Theoretical Biology, 26(1):61—-
81,1970. DOI:/10.1016/s0022-5193(70)80032-7.

U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu. A finite element method
for surface restoration with smooth boundary conditions. Computer Aided Geometric
Design, 21(5):427-445, 2004. DOI: 10.1016/j.cagd.2004.02.004.

R. Chill, E. Fasangové, and R. Schétzle. Willmore blowups are never compact. Duke
Math. ], 147(2):345-376, 2009. DOI:10.1215/00127094-2009-014.

A. Dall’Acqua. Uniqueness for the homogeneous Dirichlet Willmore boundary value
problem. Annals of Global Analysis and Geometry, 42(3):411-420, 2012. DOI:|10. 1007/
s10455-012-9320-6.

A. Dall’ Acqua and G. Sweers. Estimates for Green function and Poisson kernels
of higher-order Dirichlet boundary value problems. Journal of Differential Equations,
205(2):466-487,2004. DOI:|10.1016/] . jde.2004.06.004.

M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Dover Publications,
Mineola, New York, 2nd edition, 2016.

G. Dziuk and K. Deckelnick. Error analysis of a finite element method for the
Willmore flow of graphs. Interfaces and Free Boundaries, 8(1):21-46, 2006. DOI: |10.
4171/1FB/134.

193


http://dx.doi.org/10.1524/anly.2009.1017
http://dx.doi.org/10.1007/978-3-319-30961-3_4
http://dx.doi.org/10.1098/rspa.1992.0150
http://dx.doi.org/10.1007/bf03014033
http://dx.doi.org/10.1515/9781400867431
http://dx.doi.org/10.1016/s1874-5733(06)80006-9
http://dx.doi.org/10.1155/s1025583498000216
http://dx.doi.org/10.1016/s0022-5193(70)80032-7
http://dx.doi.org/10.1016/j.cagd.2004.02.004
http://dx.doi.org/10.1215/00127094-2009-014
http://dx.doi.org/10.1007/s10455-012-9320-6
http://dx.doi.org/10.1007/s10455-012-9320-6
http://dx.doi.org/10.1016/j.jde.2004.06.004
http://dx.doi.org/10.4171/IFB/134
http://dx.doi.org/10.4171/IFB/134

[DD18]

[DDGO8]

[DDW13]

[Deil0]

[DFGS11]

[DG91]

[DGO07]

[DG09]

[DGR17]

[DHS10]

[DK11]

[DKPV97]

[DKS15]

[DLMF]

A. Dall’Acqua and K. Deckelnick. An obstacle problem for elastic graphs. SIAM
Journal on Mathematical Analysis, 50(1):119-137, 2018. DOI:10.1137/17m111701x.

A. Dall’Acqua, K. Deckelnick, and H.-C. Grunau. Classical solutions to the Dirich-
let problem for Willmore surfaces of revolution. Advances in Calculus of Variations,
1(4):379-397, 2008. DOI:|10.1515/ACV.2008.016.

A. Dall’Acqua, K. Deckelnick, and G. Wheeler. Unstable Willmore surfaces of rev-
olution subject to natural boundary conditions. Calculus of Variations and Partial
Differential Equations, 48:293-313, 2013. DOI: 10.1007/s00526-012-0551-y.

K. Deimling. Nonlinear Functional Analysis. Dover Publications, Mineola, New York,
2010. DOI: 10.1007/978-3-662-00547-7.

A. Dall’Acqua, S. Frohlich, H.-C. Grunau, and F. Schieweck. Symmetric Willmore
surfaces of revolution satisfying arbitrary Dirichlet boundary data. Advances in
Calculus of Variations, 1(4):1-81, 2011. DOI: 10.1515/acv.2010.022.

E. De Giorgi. Some remarks on I'-convergence and least squares method. In
Composite Media and Homogenization Theory: An International Centre for Theoretical
Physics Workshop Trieste, Italy, January 1990, pages 135-142. Springer, 1991. DOL
10.1007/978-1-4684-6787-1_8.

K. Deckelnick and H.-C. Grunau. Boundary value problems for the one-dimensional
Willmore equation. Calculus of Variations and Partial Differential Equations, 30(3):293—
314, 2007. DOI: 10.1007/s00526-007-0089-6.

K. Deckelnick and H.-C. Grunau. Stability and symmetry in the Navier problem
for the one-dimensional Willmore equation. SIAM Journal on Mathematical Analysis,
40(5):2055-2076, 2009. DOI:|10.1137/07069033x.

K. Deckelnick, H.-C. Grunau, and M. Roger. Minimising a relaxed Willmore func-
tional for graphs subject to boundary conditions. Interfaces and Free Boundaries,
19(1):109-140, 2017. DOL: [18.4171/IFB/378.

U. Dierkes, S. Hildebrandt, and F. Sauvigny. Minimal Surfaces, volume 339 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg,
2010. DOI: 10.1007/978-3-642-11698-8_2.

H. Dong and D. Kim. On the LP-solvability of higher order parabolic and elliptic
systems with BMO coefficients. Archive for Rational Mechanics and Analysis, 199(3):889—
941,2011. DOI:|10.1007/s00205-010-0345-3.

B. E. Dahlberg, C. E. Kenig, J. Pipher, and G. C. Verchota. Area integral estimates for
higher order elliptic equations and systems. Annales de l'institut Fourier, 47(5):1425-
1461, 1997. DOI:|10.5802/aif.1605.

K. Deckelnick, J. Katz, and F. Schieweck. A C!'—finite element method for the Willmore
flow of two-dimensional graphs. Mathematics of Computation, 84(296):2617-2643,2015.
DOI: 10. 1090 /mcom/2973.

NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release
1.1.11 of 2023-09-15. E. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider,
R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain,
eds.

194


http://dx.doi.org/10.1137/17m111701x
http://dx.doi.org/10.1515/ACV.2008.016
http://dx.doi.org/10.1007/s00526-012-0551-y
http://dx.doi.org/10.1007/978-3-662-00547-7
http://dx.doi.org/10.1515/acv.2010.022
http://dx.doi.org/10.1007/978-1-4684-6787-1_8
http://dx.doi.org/10.1007/s00526-007-0089-6
http://dx.doi.org/10.1137/07069033x
http://dx.doi.org/10.4171/IFB/378
http://dx.doi.org/10.1007/978-3-642-11698-8_2
http://dx.doi.org/10.1007/s00205-010-0345-3
http://dx.doi.org/10.5802/aif.1605
http://dx.doi.org/10.1090/mcom/2973
https://dlmf.nist.gov/

[DLPR20]

[DLW17]

[DMFLMO09]

[DNP20]

[DP14]

[DPS16]

[DZ15]

[EG15]

[Eicl6]

[Eic17]

[Eul52]

[EvalO]

[Fed69]

[Gerl3]

F. Da Lio, F. Palmurella, and T. Riviére. A resolution of the Poisson problem for
elastic plates. Archive for Rational Mechanics and Analysis, 236(3):1593-1676, 2020.
DOI:10.1007/s00205-020-01499-2.

P. W. Dondl, A. Lemenant, and S. Wojtowytsch. Phase field models for thin elastic
structures with topological constraint. Archive for Rational Mechanics and Analysis,
223(2):693-736, 2017. DOI: 10.1007/s00205-016-1043-6.

G. Dal Maso, I. Fonseca, G. Leoni, and M. Morini. A higher order model for im-
age restoration: the one-dimensional case. SIAM Journal on Mathematical Analysis,
40(6):2351-2391, 2009. DOI: 10.1137/070697823.

A.Dall’Acqua, M. Novaga, and A. Pluda. Minimal elastic networks. Indiana University
Mathematics Journal, 69(6):1909-1932, 2020. DOI:|10.1512/iumj.2020.69.8036.

A. Dall’Acqua and P. Pozzi. A Willmore-Helfrich L2-flow of curves with natural
boundary conditions. Communications in Analysis and Geometry, 22(4):617-669, 2014.
DOI:10.4310/cag.2014.v22.n4.a2,

A. Dall’Acqua, P. Pozzi, and A. Spener. The Lojasiewicz-Simon gradient inequality
for open elastic curves. Journal of Differential Equations, 261(3):2168-2209, 2016. DOI:
10.1016/7.jde.2016.04.027.

H. Dong and H. Zhang. Schauder estimates for higher-order parabolic systems with
time irregular coefficients. Calculus of Variations and Partial Differential Equations,
54(1):47-74,2015. DOI: 10.1007/s00526-014-0777-y.

L.C.Evansand R. F. Gariepy. Measure Theory and Fine Properties of Functions. Textbooks
in Mathematics. CRC Press, Boca Raton, FL, revised edition edition, 2015. DOI:
10.1201/9780203747940-1.

S. Eichmann. Nonuniqueness for Willmore surfaces of revolution satisfying Dirichlet
boundary data. The Journal of Geometric Analysis, 26:2563-2590, 2016. DOI: 10.1007/
$12220-015-9639-%.

S. Eichmann. Willmore surfaces of revolution satisfying Dirichlet data. PhD the-
sis, University Magdeburg, 2017. DOI: 10.25673/4573. https://www-ian.math.
uni-magdeburg.de/home/grunau/papers/Eichmann_phd_Thesis.pdf.

L. Euler. Opera Omnia, Ser. 1, volume 24. Orell Fiissli, Ziirich, 1952.

L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Soc., Providence, Rhode Island, 2nd edition, 2010. DOI:
10.1090/gsm/019.

H. Federer. Geometric Measure Theory, volume 153 of Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag Berlin, Heidelberg, New York, 1969. DOI: 10.1007/
978-3-642-62010-2.

S. Germain. Recherches sur la théorie des surfaces élastiques. Cambridge Library

Collection - Mathematics. Cambridge University Press, Cambridge, 2013. DOL
10.1017/CB09781139237307

195


http://dx.doi.org/10.1007/s00205-020-01499-2
http://dx.doi.org/10.1007/s00205-016-1043-6
http://dx.doi.org/10.1137/070697823
http://dx.doi.org/10.1512/iumj.2020.69.8036
http://dx.doi.org/10.4310/cag.2014.v22.n4.a2
http://dx.doi.org/10.1016/j.jde.2016.04.027
http://dx.doi.org/10.1007/s00526-014-0777-y
http://dx.doi.org/10.1201/9780203747940-1
http://dx.doi.org/10.1007/s12220-015-9639-x
http://dx.doi.org/10.1007/s12220-015-9639-x
http://dx.doi.org/10.25673/4573
https://www-ian.math.uni-magdeburg.de/home/grunau/papers/Eichmann_phd_Thesis.pdf
https://www-ian.math.uni-magdeburg.de/home/grunau/papers/Eichmann_phd_Thesis.pdf
http://dx.doi.org/10.1090/gsm/019
http://dx.doi.org/10.1007/978-3-642-62010-2
http://dx.doi.org/10.1007/978-3-642-62010-2
http://dx.doi.org/10.1017/CBO9781139237307

[GGS10]

[GMP19]

[GMS92]

[GNR20]

[GO23]

[GRS11]

[Grul8]

[GS97]

[GTO1]

[Gul14]

[Gull7]

[Hel73]

[H]P92]

[Hut86]

F. Gazzola, H.-C. Grunau, and G. Sweers. Polyharmonic Boundary Value Problems:
Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains,
volume 1991 of Lecture Notes in Mathematics. Springer, Heidelberg Dordrecht London
New York, 2010. DOI: 10.1007/978-3-642-12245-3.

H. Garcke, J. Menzel, and A. Pluda. Willmore flow of planar networks. Journal of
Differential Equations, 266(4), 2019. DOI: 10.1016/j.jde.2018.08.019.

M. Giaquinta, G. Modica, and J. Soucek. Area and the area formula. Rendiconti del
Seminario Matematico e Fisico di Milano, 62(1):53-87,1992. DOI: |10. 1007 /b£02925436.

M. Goldman, M. Novaga, and M. Roger. Quantitative estimates for bending energies
and applications to non-local variational problems. Proceedings of the Royal Society of
Edinburgh Section A: Mathematics, 150(1):131-169, 2020. DOI: 10.1017/prm.2018. 149.

H.-C. Grunau and S. Okabe. Willmore obstacle problems under Dirichlet boundary
conditions. Amnn. Sc. Norm. Super. Pisa, Cl. Sci. (5), 24(3):1415-1462, 2023. DOI:
10.2422/2036-2145.202105_064.

H.-C. Grunau, F. Robert, and G. Sweers. Optimal estimates from below for bihar-
monic Green functions. Proceedings of the American Mathematical Society, 139(6):2151—
2161, 2011. DOI:|10.1090/s0002-9939-2010-10740-2

H.-C. Grunau. Boundary Value Problems for the Willmore Functional.
2018. https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/
255010/1/2146-07.pdf.

H.-C. Grunau and G. Sweers. Positivity for equations involving polyharmonic oper-
ators with Dirichlet boundary conditions. Mathematische Annalen, 307:589-626, 1997.
DOI:10.1007/s002080050052.

D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order,
volume 224 of Grundlehren der Mathematischen Wissenschaften. Springer Science &
Business Media, Berlin, Heidelberg, New York, reprint of the 1998 ed. edition, 2001.
DOI:/10.1007/978-3-642-61798-0.

B. Gulyak. Erste a-priori-Abschédtzungen fiir Willmore-graphen {iiber allgemeinen
Gebieten. reseach document, University Magdeburg, 2014. http://www.math.
uni-magdeburg.de/home/grunau/papers/GulyakStudienarbeit.pdf.

B. Gulyak. A-priori-Abschdtzungen und die klassische Kurzzeitexistenz der
Willmore-gleichung fiir graphen. Master’s thesis, University Magdeburg, 2017.

W. Helfrich. Elastic properties of lipid bilayers: theory and possible experi-
ments. Zeitschrift fiir Naturforschung C, 28(11-12):693-703, 1973. DOI: |10.1515/
znc-1973-11-1209.

U. Hertrich-Jeromin and U. Pinkall. Ein Beweis der Willmoreschen Vermutung fiir
Kanaltori. Journal fiir die Reine und Angewandte Mathematik, 426:21-34, 1992. DOIL
10.1515/crl11.1992.430.21.

J. E. Hutchinson. Second fundamental form for varifolds and the existence of surfaces
minimising curvature. Indiana University Mathematics Journal, 35(1):45-71, 1986. DOI:
10.1512/iumj.1986.35.35003.

196


http://dx.doi.org/10.1007/978-3-642-12245-3
http://dx.doi.org/10.1016/j.jde.2018.08.019
http://dx.doi.org/10.1007/bf02925436
http://dx.doi.org/10.1017/prm.2018.149
http://dx.doi.org/10.2422/2036-2145.202105_064
http://dx.doi.org/10.1090/s0002-9939-2010-10740-2
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/255010/1/2146-07.pdf
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/255010/1/2146-07.pdf
http://dx.doi.org/10.1007/s002080050052
http://dx.doi.org/10.1007/978-3-642-61798-0
http://www.math.uni-magdeburg.de/home/grunau/papers/GulyakStudienarbeit.pdf
http://www.math.uni-magdeburg.de/home/grunau/papers/GulyakStudienarbeit.pdf
http://dx.doi.org/10.1515/znc-1973-11-1209
http://dx.doi.org/10.1515/znc-1973-11-1209
http://dx.doi.org/10.1515/crll.1992.430.21
http://dx.doi.org/10.1512/iumj.1986.35.35003

[H676]

[KL12]

[KMR14]

[Kra67a]

[Kra67b]

[KSO01]

[KS02]

[KS04]

[KS12]

[Kuf80]

[Lee97]

[Leel2]

[Lin12]

[LS84]

[LS95]

[LSU68]

L. Hormander. The boundary problems of physical geodesy. Archive for Rational
Mechanics and Analysis, 62(1):1-52, 1976. DOI: 10.1007 /BF00251855.

H. Koch and T. Lamm. Geometric flows with rough initial data. Asian Journal of
Mathematics, 16(2):209-235, 2012. DOI:|10.4310/ajm.2012.v16.n2.a3.

L. G. A. Keller, A. Mondino, and T. Riviére. Embedded surfaces of arbitrary genus
minimizing the Willmore energy under isoperimetric constraint. Archive for Rational
Mechanics and Analysis, 212(2):645-682, 2014. DOI: 10.1007/s00205-013-0694-9.

J. P. Krasovskil. Investigation of potentials associated with boundary problems for
elliptic equations. Mathematics of the USSR-Izvestiya, 1(3):569, 1967. DOI: 10.1070/
im1967v001n®3abeh000572.

J. P. Krasovskii. Isolation of singularities of the Green’s function. Mathematics of the
USSR-Izvestiya, 1(5):935, 1967. DOI:|10.1070/im1967v001n05abeh®00594.

E. Kuwert and R. Schiétzle. The Willmore flow with small initial energy. Journal of
Differential Geometry, 57(3):409-441, 2001. DOI:|10.4310/jdg/1090348128.

E. Kuwert and R. Schitzle. Gradient flow for the Willmore functional. Communications
in Analysis and Geometry, 10(2):307-339, 2002. DOI: 10.4310/cag.2002.v10.n2.a4.

E. Kuwert and R. Schitzle. Removability of point singularities of Willmore surfaces.
Annals of Mathematics, pages 315-357, 2004. DOI: 10.4007/annals.2004.160.315.

E. Kuwert and R. Schitzle. The Willmore functional. In Topics in Modern
Regularity Theory, pages 1-115. Edizioni della Normale, 2012. DOI: |10.1007/
978-88-7642-427-4_1.

A. Kufner. Weighted Sobolev Spaces, volume 31 of Teubner-Texte zur Mathematik. Teub-
ner, Leipzig, 1980.

J. M. Lee. Riemannian Manifolds: An Introduction to Curvature, volume 176 of Graduate
Texts in Mathematics. Springer Science & Business Media, New York, 1997. DOI:
10.1007/b98852.

J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts in
Mathematics.  Springer Science+Busines, New York, 2nd edition, 2012. DOL
10.1007/978-1-4419-9982-5_1.

C.-C. Lin. L?-flow of elastic curves with clamped boundary conditions. Journal of
Differential Equations, 252(12):6414-6428, 2012. DOI: 10.1016/j.jde.2012.03.010.

J. Langer and D. A. Singer. The total squared curvature of closed curves. Journal of
Differential Geometry, 20(1):1-22, 1984. DOI:|10.4310/jdg/1214438990.

S. Luckhaus and T. Sturzenhecker. Implicit time discretization for the mean curvature
tflow equation. Calculus of variations and partial differential equations, 3(2):253-271, 1995.
DOI:/10.1007/b£01205007.

O. A. Ladyzhenskaia, V. A. Solonnikov, and N. N. Ural’tseva. Linear and Quasi-Linear
Equations of Parabolic Type, volume 23 of Translations of Mathematical Monographs.
American Mathematical Society, Providence, Rhode Island, 1968. DOI: |10.1090/
mmono/023.

197


http://dx.doi.org/10.1007/BF00251855
http://dx.doi.org/10.4310/ajm.2012.v16.n2.a3
http://dx.doi.org/10.1007/s00205-013-0694-9
http://dx.doi.org/10.1070/im1967v001n03abeh000572
http://dx.doi.org/10.1070/im1967v001n03abeh000572
http://dx.doi.org/10.1070/im1967v001n05abeh000594
http://dx.doi.org/10.4310/jdg/1090348128
http://dx.doi.org/10.4310/cag.2002.v10.n2.a4
http://dx.doi.org/10.4007/annals.2004.160.315
http://dx.doi.org/10.1007/978-88-7642-427-4_1
http://dx.doi.org/10.1007/978-88-7642-427-4_1
http://dx.doi.org/10.1007/b98852
http://dx.doi.org/10.1007/978-1-4419-9982-5_1
http://dx.doi.org/10.1016/j.jde.2012.03.010
http://dx.doi.org/10.4310/jdg/1214438990
http://dx.doi.org/10.1007/bf01205007
http://dx.doi.org/10.1090/mmono/023
http://dx.doi.org/10.1090/mmono/023

[LSvW92]

[LYS2]

[Man96]

[Man15]

[Men13]

[Menl7]

[Men21]

[Miu22]

[MMO09]

[MMS10]

[MN14a]

[MN14b]

[MNP19]

[Mon14]

A. Lunardi, E. Sinestrari, and W. von Wahl. A semigroup approach to the time de-
pendent parabolic initial-boundary value problem. Differential and Integral Equations,
5(6):1275-1306, 1992. DOI:|10.57262/die/1370875548.

P. Li and S.-T. Yau. A new conformal invariant and its applications to the Willmore
conjecture and the first eigenvalue of compact surfaces. Inventiones Mathematicae,
69(2):269-291, 1982. DOI: 10.1007/b£01399507.

C. Mantegazza. Curvature varifolds with boundary. Journal of Differential Geometry,
43(4):807-843, 1996. DOI: 10.4310/jdg/1214458533.

R. Mandel. Boundary value problems for Willmore curves in R?. Calculus of
Variations and Partial Differential Equations, 54:3905-3925, 2015. DOI: 10.1007/
s00526-015-0925-z.

U. Menne. Second order rectifiability of integral varifolds of locally bounded
first variation. Journal of Geometric Analysis, 23(2):709-763, 2013. DOI: |10.1007/
s12220-011-9261-5.

U. Menne. The concept of varifold. Notices of the American Mathematical Society,
64(10):1148-1152, 2017. DOI: 10.1090/noti1589.

J. Menzel. Boundary Value Problems for Evolutions of Willmore Type. PhD thesis, Univer-
sity Regensburg, 2021. https://epub.uni-regensburg.de/44584/1/PhD_Thesis_
Julia_Menzel.pdf.

T. Miura. A diameter bound for compact surfaces and the Plateau-Douglas problem.
Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, 23(4):1707-1721,
2022. DOI: 10.2422/2036-2145.202011_006.

S. Mayboroda and V. Maz’ya. Pointwise estimates for the polyharmonic Green func-
tion in general domains. In A. Cialdea, F. Lanzara, and P. E. Ricci, editors, Analysis,
Partial Differential Equations and Applications, volume 193 of Operator Theory Advances
and Applications, pages 143-158, Basel/Switzerland, 2009. Birkhduser Verlag. DOI:
10.1007/978-3-7643-9898-9_12.

V. Maz’ya, M. Mitrea, and T. Shaposhnikova. The Dirichlet problem in Lipschitz
domains for higher order elliptic systems with rough coefficients. Journal d’Analyse
Mathématique, 110(1):167-239, 2010. DOI: 10.1007/511854-010-0005-4.

F. C. Marques and A. Neves. Min-max theory and the Willmore conjecture. Annals of
Mathematics. Second Series, 179(2):683-782, 2014. DOI: |10.4007/annals.2014.179.
2.6.

F. C. Marques and A. Neves. The Willmore conjecture. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 116(4):201-222, 2014. DOI: 10.1365/5s13291-014-0104-8.

C. Mantegazza, M. Novaga, and A. Pluda. Lectures on curvature flow of networks.
In S. Dipierro, editor, Contemporary Research in Elliptic PDEs and Related Topics, pages
369—417, Cham, Switzerland, 2019. Springer International Publishing. DOI:|10. 1007/
978-3-030-18921-1_09.

A.Mondino. Existence of integral m-varifolds minimizing [ ||A||? and [ | H|[?,p > m,
in Riemannian manifolds. Calculus of Variations and Partial Differential Equations,
49(1):431-470, 2014. DOI: 10.1007/s00526-012-0588-y.

198


http://dx.doi.org/10.57262/die/1370875548
http://dx.doi.org/10.1007/bf01399507
http://dx.doi.org/10.4310/jdg/1214458533
http://dx.doi.org/10.1007/s00526-015-0925-z
http://dx.doi.org/10.1007/s00526-015-0925-z
http://dx.doi.org/10.1007/s12220-011-9261-5
http://dx.doi.org/10.1007/s12220-011-9261-5
http://dx.doi.org/10.1090/noti1589
https://epub.uni-regensburg.de/44584/1/PhD_Thesis_Julia_Menzel.pdf
https://epub.uni-regensburg.de/44584/1/PhD_Thesis_Julia_Menzel.pdf
http://dx.doi.org/10.2422/2036-2145.202011_006
http://dx.doi.org/10.1007/978-3-7643-9898-9_12
http://dx.doi.org/10.1007/s11854-010-0005-4
http://dx.doi.org/10.4007/annals.2014.179.2.6
http://dx.doi.org/10.4007/annals.2014.179.2.6
http://dx.doi.org/10.1365/s13291-014-0104-8
http://dx.doi.org/10.1007/978-3-030-18921-1_9
http://dx.doi.org/10.1007/978-3-030-18921-1_9
http://dx.doi.org/10.1007/s00526-012-0588-y

[Mos01]

[MPP21]

[MR14]

[MS68]

[MS02]

[MS11]

[MS17]

[MS23]

[Miil19]

[Ml20]

[Miil21]

[MW13]

[Nat61]

[NDLO06]

[Nit93]

[NP20a]

R. Moser. A generalization of Rellich’s theorem and regularity of varifolds min-
imizing curvature. Leipzig Preprint, 72:1-26, 2001. https://www.mis.mpg.de/
publications/preprint-repository/article/2001/issue-72.

C. Mantegazza, A. Pluda, and M. Pozzetta. A survey of the elastic flow of curves
and networks. Milan Journal of Mathematics, 89(1):59-121, 2021. DOI: |10.1007/
s00032-021-00327-w.

S. Miiller and M. Roger. Confined structures of least bending energy. Journal of
Differential Geometry, 97(1):109 — 139, 2014. DOI:|10.4310/jdg/1404912105.

M. Murthy and G. Stampacchia. Boundary value problems for some degenerate-
elliptic operators. Annali di Matematica Pura ed Applicata, 80(1):1-122, 1968. DOI:
10.1007/bf02413623.

U. F. Mayer and G. Simonett. A numerical scheme for axisymmetric solutions of
curvature-driven free boundary problems, with applications to the Willmore flow.
Interfaces and Free Boundaries, 4(1):89-109, 2002. DOI:|10.4171/ifb/54.

V.Maz’ya and T. Shaposhnikova. Recent progress in elliptic equations and systems of
arbitrary order with rough coefficients in Lipschitz domains. Bulletin of Mathematical
Sciences, 1(1):33-77,2011. DOI:|10.1007/s13373-011-0003-6.

U. Menne and C. Scharrer. A novel type of Sobolev-Poincaré inequality for subman-
ifolds of Euclidean space, 2017. https://arxiv.org/abs/1709.05504.

A. Mondino and C. Scharrer. A strict inequality for the minimization of the Will-
more functional under isoperimetric constraint. Advances in Calculus of Variations,
16(3):529-540, 2023. DOI: 10.1515/acv-2021-0002.

M. Miiller. An obstacle problem for elastic curves: existence results. Interfaces and
Free Boundaries, 21(1):87-129, 2019. DOI: 10.4171/ifb/418.

M. Miiller. On gradient flows with obstacles and Euler’s elastica. Nonlinear Analysis,
192:111676, 2020. DOI:|10.1016/j.na.2019.111676.

M. Miiller. The elastic flow with obstacles: small obstacle results. Applied Mathematics
& Optimization, 84(Suppl 1):355-402, 2021. DOL:|10. 1007/500245-021-09773-9.

J. McCoy and G. Wheeler. A classification theorem for Helfrich surfaces. Mathema-
tische Annalen, 357:1485-1508, 2013. DOI: 10.1007/s00208-013-0944-z

I. P. Natanson. Theory of Functions of a Real Variable, volume 1. Frederick Ungar
Publishing Co, New York, 1961.

M. Novaga, N. Dirr, and M. Lucia. I'-convergence of the Allen-Cahn energy with an
oscillating forcing term. Interfaces and free boundaries: Mathematical Analysis, Compu-
tation and Applications, 8(1):47-78, 2006. DOI: 10.4171/ifb/135.

J. C. C. Nitsche. Boundary value problems for variational integrals involving surface
curvatures. Quarterly of Applied Mathematics, 51(2):363-387,1993. DOI: 10. 1090/qam/
1218374.

M. Novaga and M. Pozzetta. Connected surfaces with boundary minimizing the
Willmore energy. Mathematics in Engineering, 2(3):527—-556, 2020. DOI: |10.3934/
mine.2020024.

199


https://www.mis.mpg.de/publications/preprint-repository/article/2001/issue-72
https://www.mis.mpg.de/publications/preprint-repository/article/2001/issue-72
http://dx.doi.org/10.1007/s00032-021-00327-w
http://dx.doi.org/10.1007/s00032-021-00327-w
http://dx.doi.org/10.4310/jdg/1404912105
http://dx.doi.org/10.1007/bf02413623
http://dx.doi.org/10.4171/ifb/54
http://dx.doi.org/10.1007/s13373-011-0003-6
https://arxiv.org/abs/1709.05504
http://dx.doi.org/10.1515/acv-2021-0002
http://dx.doi.org/10.4171/ifb/418
http://dx.doi.org/10.1016/j.na.2019.111676
http://dx.doi.org/10.1007/s00245-021-09773-9
http://dx.doi.org/10.1007/s00208-013-0944-z
http://dx.doi.org/10.4171/ifb/135
http://dx.doi.org/10.1090/qam/1218374
http://dx.doi.org/10.1090/qam/1218374
http://dx.doi.org/10.3934/mine.2020024
http://dx.doi.org/10.3934/mine.2020024

[NP20b]

[OK90]

[Poz21]

[PV93]

[Riv13]

[RS06]

[RS12]

[Rup24]

[Sar75]

[Sch09]

[Sch10]

[Sch12]

[Sim83]

[Sim93]

[Sim01]

[SK80]

M. Novaga and P. Pozzi. A second order gradient flow of p-elastic planar net-
works. SIAM Journal on Mathematical Analysis, 52(1):682-708, 2020. DOI: 10.1137/
19m1262292.

B. Opic and A. Kufner. Hardy-Type Inequalities, volume 219 of Pitman research notes in
mathematics series. Longman Scientific and Technical, Burnt Mill, Harlow, 1990.

M. Pozzetta. On the Plateau-Douglas problem for the Willmore energy of surfaces
with planar boundary curves. ESAIM: Control, Optimisation and Calculus of Variations,
27(S2),2021. DOI: 10.1051/cocv/2020049.

J. Pipher and G. Verchota. A maximum principle for biharmonic functions in Lips-
chitz and C' domains. Commentarii Mathematici Helvetici, 68(3):385-414, 1993. DOI:
10.1007/b£02565827.

T. Riviére. Lipschitz conformal immersions from degenerating Riemann surfaces
with L2-bounded second fundamental forms. Advances in Calculus of Variations,
6(1):1-31, 2013. DOI: 10.1515/acv-2012-0108.

M. Roger and R. Schitzle. On a modified conjecture of De Giorgi. Mathematische
Zeitschrift, 254:675-714, 2006. DOI:|10.1007/s00209-006-0002-6.

M. Roger and R. Schitzle. Control of the isoperimetric deficit by the Willmore deficit.
Analysis, 32(1):1-8,2012. DOI:|10.1524/anly.2012.1140.

F. Rupp. The Willmore flow with prescribed isoperimetric ratio. Communications in
Partial Differential Equations, 2024. DOI: 10.1080/03605302.2024.2302377.

D. Sarason. Functions of vanishing mean oscillation. Transactions of the American
Mathematical Society, 207:391-405, 1975. DOI:|10.2307,/1997184.

R. Schétzle. Lower semicontinuity of the Willmore functional for currents. Journal of
Differential Geometry, 81(2):437-456, 2009. DOI:|10.4310/jdg/1231856266.

R. Schitzle. The Willmore boundary problem. Calculus of Variations and Partial
Differential Equations, 37(3):275-302, 2010. DOI: 10. 1007 /s00526-009-0244- 3.

J. Schygulla. Willmore minimizers with prescribed isoperimetric ratio. Archive for
Rational Mechanics & Analysis, 203(3), 2012. DOI: 10.1007/s00205-011-0465-4.

L. Simon. Lectures on Geometric Measure Theory, volume 3 of Proceedings of the
Centre for Mathematical Analysis, Australian National University. The Australian
National University, Mathematical Sciences Institute, Centre for Mathematics & its
Applications, Australia, 1 1983. https://projecteuclid.org/proceedings/
proceedings-of-the-centre-for-mathematics-and-its-applications/
Lectures-on-Geometric-Measure-Theory/toc/pcma/1416406261.

L. Simon. Existence of surfaces minimizing the Willmore functional. Communications
in Analysis and Geometry, 1(2):281-326, 1993. DOI: 10.4310/cag.1993.v1.n2.a4.

G. Simonett. The Willmore flow near spheres. Differential and Integral Equations,
14(8):1005-1014, 2001. DOI:10.57262/die/1356123177.

V. A. Solonnikov and A. G. Khachatryan. Estimates for solutions of parabolic initial-
boundary value problems in weighted Holder norms. Trudy Matematicheskogo Insti-
tuta imeni VA Steklova, 147:147-155, 1980. https://www.mathnet.ru/eng/tm2526.

200


http://dx.doi.org/10.1137/19m1262292
http://dx.doi.org/10.1137/19m1262292
http://dx.doi.org/10.1051/cocv/2020049
http://dx.doi.org/10.1007/bf02565827
http://dx.doi.org/10.1515/acv-2012-0108
http://dx.doi.org/10.1007/s00209-006-0002-6
http://dx.doi.org/10.1524/anly.2012.1140
http://dx.doi.org/10.1080/03605302.2024.2302377
http://dx.doi.org/10.2307/1997184
http://dx.doi.org/10.4310/jdg/1231856266
http://dx.doi.org/10.1007/s00526-009-0244-3
http://dx.doi.org/10.1007/s00205-011-0465-4
https://projecteuclid.org/proceedings/proceedings-of-the-centre-for-mathematics-and-its-applications/Lectures-on-Geometric-Measure-Theory/toc/pcma/1416406261
https://projecteuclid.org/proceedings/proceedings-of-the-centre-for-mathematics-and-its-applications/Lectures-on-Geometric-Measure-Theory/toc/pcma/1416406261
https://projecteuclid.org/proceedings/proceedings-of-the-centre-for-mathematics-and-its-applications/Lectures-on-Geometric-Measure-Theory/toc/pcma/1416406261
http://dx.doi.org/10.4310/cag.1993.v1.n2.a4
http://dx.doi.org/10.57262/die/1356123177
https://www.mathnet.ru/eng/tm2526

[Sol65]

[Ste70]

[TemO1]

[Tho23]

[Top98]

[Top08]

[Tri78]

[Tri10]

[Whel5]

[Wil96]

V. A. Solonnikov. On boundary value problems for linear parabolic systems of
differential equations of general form. Trudy Matematicheskogo Instituta Imeni VA
Steklova, 83:3-163, 1965. https://www.mathnet.ru/eng/tm2755.

E. M. Stein. Singular Integrals and Differentiability Properties of Functions, volume 30 of
Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1970. DOI:
10.1515/9781400883882.

R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis. American Math-
ematical Society, Providence, Rhode Island, Reprint with corrections edition, 2001.
DOI:/10.1016/s0168-2024(09)x7004-9.

G. Thomsen. Uber konforme Geometrie I: Grundlagen der konformen Flichentheo-
rie. Abhandlungen aus dem Mathematischen Seminar der Universitit Hamburg, 3:31-56,
1923. DOI:/10.1007/BF02954615.

P. Topping. Mean curvature flow and geometric inequalities. Journal fiir die reine und
angewandte Mathematik, 503:47-61, 1998. DOI: 10.1515/cr11.1998.099.

P. Topping. Relating diameter and mean curvature for submanifolds of Euclidean
space. Commentarii Mathematici Helvetici, 83(3):539-546, 2008. DOI:|10.4171/cmh/135.

H. Triebel. Interpolation Theory, Function Spaces, Differential Operators, volume 18 of
North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, New
York, 1978.

H. Triebel. Theory of Function Spaces II. Modern Birkhduser Classics. Birkhduser,
Basel, reprint of the 1992 edition edition, 2010. DOI: 10.1007/978-3-0346-0419-2.

G. Wheeler. Gap phenomena for a class of fourth-order geometric differential op-
erators on surfaces with boundary. Proceedings of the American Mathematical Society,
143(4):1719-1737,2015. DOI: 10.1090/s0002-9939-2014-12351-3.

T. Willmore. Riemannian Geometry. Oxford University Press, Oxford, New York, 1996.

201


https://www.mathnet.ru/eng/tm2755
http://dx.doi.org/10.1515/9781400883882
http://dx.doi.org/10.1016/s0168-2024(09)x7004-9
http://dx.doi.org/10.1007/BF02954615
http://dx.doi.org/10.1515/crll.1998.099
http://dx.doi.org/10.4171/cmh/135
http://dx.doi.org/10.1007/978-3-0346-0419-2
http://dx.doi.org/10.1090/s0002-9939-2014-12351-3

	Introduction
	State of the Art
	Closed Surfaces
	Surfaces with Boundary
	Direct Methods of the Calculus of Variations
	Higher-order Equations
	Further Research

	New Contributions
	Willmore Equation
	Willmore Flow
	Compactness Results
	Finite Relaxed Willmore Energy and Nonzero Cantor Part

	Outline

	Geometric Preliminaries
	Geometry of Immersions
	Geometry of Graphs

	Analytic Preliminaries
	Higher-Order Elliptic Operators & Fixed Point Methods
	Fixed Point Methods
	Interpolation Spaces

	Estimates Involving the Willmore-Energy
	Immersions
	Graphs

	Elliptic Theory
	Willmore Equation
	Hölder Case
	Sobolev Case
	Weighted Sobolev Case
	Higher Regularity
	Interior Regularity
	Boundary Regularity


	Parabolic Theory
	Willmore Flow
	Parabolic Hölder Spaces
	Time-Weighted Cm+-C4+-case
	Time-Weighted C1-C4+-case
	Time-Unweighted C2+-C2+-case
	Subconvergence/Convergence to a Critical Point

	Varifolds, Measures & BV
	Radon Measures
	Functions of Bounded Variation and Fine Properties of Functions
	Measure-Function Pairs & Disintegration Theorem
	Varifolds

	Compactness Results
	Preliminaries
	Additional Compactness Results
	Finiteness of the Relaxed Willmore Energy Does Not Imply SBV

	Appendix
	Glossary
	Indexlist
	References

