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Zusammenfassung

D IE Erkennung von Dispositionen ist aktuell ein wichtiger Untersu-
chungsgegenstand in der Analyse von Mensch-Maschine-Interaktionen.

Die vorliegende Arbeit untersucht den Aspekt der Dispositionserkennung und
-klassifikation aus dem Blickwinkel der Sprachverarbeitung.

Zunächst wird der Begriff Disposition als solcher definiert. Hierbei ist eine klare
Abgrenzung zur Verwendung des gleichen Begriffs in der Psychologie notwendig;
vielmehr wird das Augenmerk auf eine Definition unter technischem Blickwin-
kel gelegt. Disposition in einem systemisch inspirierten Sinn ist eine universelle
Beschreibung der Situiertheit und der Eigenschaften eines Nutzers. Darin sind
weiterhin Informationen über die aktuelle Interaktion enthalten; diese gehen in
der Beschreibung der Situiertheit auf. Ausgehend von der allgemeinen Definition
der Disposition lassen sich weitere Begrifflichkeiten wie Emotion, Stimmung, In-
tention, Situiertheit, etc. in den Gesamtkontext einordnen. Neben der Einführung
von Begrifflichkeiten werden auch Annotations- beziehungsweise Labellingverfah-
ren, die im Zusammenhang mit Klassifikationsexperimenten Verwendung finden,
diskutiert. Auf deren Grundlage werden Disposition, wie positiv oder negativ
verlaufende Interaktionen, eingeführt.

Basierend auf den in der Arbeit vorgestellten Konzepten werden Klassifikations-
experimente zur Dispositionserkennung aus gesprochener Sprache durchgeführt.
Hierfür werden zunächst Datensätze vorgestellt, die ich in dieser Arbeit nach
gespielten und nicht-gespielten Daten unterscheide. Zur ersten Kategorie zäh-
len unter anderem die Korpora EmoDB und eNTERFACE, auf deren Grundlage
Parametersätze für Klassifikatoren und mögliche Experimentalgestaltungen er-
mittelt wurden. Ausgehend von diesen Betrachtungen konnten die gewonnenen
Parameter auf natürliche Datensätze, das heißt nicht-gespieltes Material über-
tragen werden. Explorative Untersuchungen haben diesen Sachverhalt bestätigt.
Insbesondere wurden zwei Datensätze, nämlich Last Minute und EmoRec, un-
tersucht, die beide im SFB/TRR 62 aufgenommen wurden. Für Untersuchungen
wurde verstärkt der EmoRec-Datensatz herangezogen.

In den Experimenten zeigen besonders Gaussian Mixture Models signifikant gute
Erkennungsleistungen für die Klassifikation von Dispositionen. Da diese in den
erweiterten Kontext von Hidden Markov Models eingebettet sind, ist es möglich
Gaussian Mixture Models mit dem Hidden Markov Toolkit der Universität Cam-
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bridge zu trainieren und zu evaluieren.
Bei der audiobasierten Analyse der beiden natürlichen Datensätze wurden gute
Erkennungsleistungen erzielt. Für Last Minute erreichten die Klassifikatoren
eine gewichtete mittlere Genauigkeit von 32.0% bei vier Klassen (baseline, chal-
lenge, listing und waiuku). Für die Untersuchung des EmoRec-Korpus wurden
zwei Validierungsansätze verfolgt: die interindividuelle und die intraindividuelle
Validierung. Bei der interindividuellen Validierung wird das Datenmaterial al-
ler Sprecher, mit Ausnahme eines Sprechers, für das Training verwendet. Dessen
Daten werden ausschließlich für den Test benutzt. Im Gegensatz dazu wird bei
der intraindividuellen Validierung nur das Datenmaterial jeweils eines Sprecher
verwendet, welches in ein Trainings- und ein Testset unterteilt wird. Neben der
Unterscheidung der Validierungsansätze kann auch der EmoRec-Datensatz selbst
in zwei Sub-Korpora unterteilt werden, die jeweils einen Durchlauf des Szenarios
enthalten. Für EmoRec I wurden gewichtete mittlere Genauigkeiten von 55.1%

beziehungsweise 70.0% für inter- und intraindividuelle Validierung erzielt. Hierbei
wurde nach positiver und negativer Disposition unterschieden. Im Hinblick auf
EmoRec II sind aktuell nur acht Teilnehmer für automatische Analysen verfüg-
bar, die mittels interindividueller Validierung untersucht wurden. Hierbei wurde
eine gewichtete mittlere Genauigkeit von 52.9% erreicht.
Auf der Grundlage der Arbeiten am EmoRec I, wird im Rahmen meiner For-
schung eine Arbeitsumgebung für die semi-automatische Annotation vorgestellt.
Eine semi-automatische Annotation eines Datensatzes ist sinnvoll, da die Anno-
tation im Normalfall ein zeit- und kostenintensiver, manueller Prozess ist, der sich
so effizienter gestalten lässt. Das Vorgehen wird exemplarisch anhand des Daten-
satzes EmoRec veranschaulicht und es werden die erzielten Ergebnisse diskutiert.
In dieser Arbeitsumgebung werden relevante, affektbehaftete Videosequenzen auf
Grundlage von Audioanalysen detektiert und einem menschlichen Annotator vor-
geschlagen. Dieser annotiert die entsprechenden Sequenzen nach Vorgaben des
Facial Action Coding Systems. Durch eine semi-automatische Annotation ist es
möglich, die zu betrachtenden Sequenzen zahlenmäßig zu reduzieren, was den
zeitlichen Aufwand erheblich senkt. Mit der aktuellen Konfiguration der inte-
grierten Klassifikatoren wird eine falsch positive Rate von 18.8% und eine falsch
negative Rate von 38.1% erreicht. Diese Zahlen bieten Ansatzpunkte für weitere
Optimierung, die in darauf aufbauenden Arbeiten durchgeführt werden können.
Die Arbeitsumgebung an sich ist flexibel gestaltet, so dass eine Übertragung auf
andere Modalitäten möglich ist.



Ausgehend von den bisherigen Überlegungen zur Disposition in der Mensch-
Maschine-Interaktion wird das Konzept des Involvements eingeführt. Nach mei-
nem Verständnis kann das Involvement komplementär zur Disposition verstanden
werden, da dies einen bestimmten Zustand eines Nutzers und dessen Situiertheit
widerspiegelt, insbesondere, ob der Nutzer an einer Interaktion partizipiert oder
nicht. Dabei ist die Sichtweise eher durch technische Einflüsse getrieben und kann
daher von den Betrachtungen, wie sie zum Beispiel Psychologen treffen würden,
abweichen. Die Untersuchung von Involvement aus gesprochener Sprache ist ein
relativ neues Feld, besonders unter dem Blickwinkel der Dispositionserkennung.
Für die Analysen in dieser Arbeit wurde der TableTalk -Datensatz herangezogen.
Da die audiobasierten Analysen noch am Anfang stehen, liegt in dieser Arbeit das
Augenmerk auf der Annotation des Datensatzes nach Aspekten des Involvements.
Hierbei wird auch die Reliabilität der Annotation betrachtet. Krippendorff’s α
(ordinal) liegt für diese Annotation bei αo = 0.1562. Dieser Wert wird mit Er-
gebnissen auf Datensätzen, die ähnliche Grundmerkmale aufweisen, verglichen.
Basierend auf den Grundlagenbetrachtungen dieser Arbeit wird ein Arbeitspro-
gramm für weiterführende Untersuchungen auf dem Gebiet des Involvements ent-
wickelt und in den Kontext der Kontrolle von Interaktionen eingebettet.
Besonders die systemische Kontrolle von Interaktionen wird in den Fokus der
Wissenschaft rücken. Aus meiner Sicht wird es nur so langfristig möglich sein,
geeignete und gezielte Aktionen und Reaktionen des Systems in einer Mensch-
Maschine-Interaktion zu realisieren. Dazu ist es notwendig, dass ein technisches
System in geeigneter Form in die Interaktion eingreift, sich assistiv auf den Nutzer
einstellt und ihn damit zielführender unterstützen kann. Somit kann es gelingen,
aus omnipräsenten technischen Systemen eine Technologie im Sinne eines Com-
panion – eines Begleiters – zu generieren.





Abstract

THE recognition of dispositions from speech is an important issue in the
analyses of Human-Machine Interactions. This thesis examines the classi-

fication of disposition under various aspects.

At first, the term disposition is defined and thus, differentiated from the meaning
in the sense of psychology. A disposition in a technologically inspired sense is a
universal description of the user’s situatedness and his characteristics. Further, it
includes information on the particular interaction. From this definition, several
user information like his emotion and mood, his intention, etc. are subsumed by
disposition. For a general overview, the terms emotion, mood, and situatedness
are defined as well since they are highly connected to dispositions. Furthermore,
a brief introduction in labelling methods is given which are used as concepts for
classification in the experiments of this thesis. From these concepts, high-level
dispositions like positive or negative interactions are derived.

Based on the mentioned concepts I designed, arranged, and conducted several
disposition classification experiments. Considering data sets, I distinguish i) ac-
ted and ii) non-acted material. Utilising the first kind of materials, namely the
EmoDB and eNTERFACE corpora, I investigated parameter sets and derived a
system setup for further analyses. Transferring the conclusions to acted material,
a switch towards naturalistic, that means, non-acted data sets was possible which
is shown by exploratory investigations. In particular, these data sets are: Last
Minute and EmoRec, whereas I mainly used the latter, recorded in the context
of the SFB/TRR 62.

Especially, Gaussian Mixture Models showed a remarkable good performance in
classification of dispositions from speech. They are embedded into the framework
of Hidden Markov Models and trained as well as tested applying the Hidden
Markov Toolkit by the Cambridge University.
Both naturalistic corpora are investigated in terms of dispositions by audio ana-
lyses where I achieved recognition results of 32.0% Weighted Average accuracy
on Last Minute (four classes) and more than 55.1% on EmoRec (two classes,
interindividual validation). In particular, EmoRec results are distinguished
according to interindividual and intraindividual validation. Interindividual
validation considers the speaker independently from each other and thus, trains
the classifier on all samples of all users, excluding the material of one speaker
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which is used for testing. In contrast, intraindividual validation utilises only
samples of a certain speaker, splitting the material in training and test sets.
Thus, intraindividual validation reflects the characteristics of a certain speaker
in different dispositions. Applying Gaussian Mixture Models, I gain Weighted
Average accuracies on EmoRec, to be specific on EmoRec I, of 55.1% for
interindividual validation and 70.0% for intraindividual validation, respectively.
For EmoRec II, so far, just a subset of eight participants could be analysed
whereas 52.9% Weighted Average accuracy for interindividual validation was
achieved.
Highly related to the audio analyses of EmoRec is the semi-automatic annotation
because it was tested on this material. In the annotation framework, relevant
video sequences are preclassified based on audio analyses. Those sequences are
afterwards manually annotated by trained coders according to the Facial Action
Coding System. As this is quite time consuming the semi-automatic annotation
helps since the total amount of sequences to be annotated is reduced drastically.
In the current setting of the framework, false acceptance and false rejection rates
of 18.8% and 38.1%, respectively, for the identification of relevant sequences,
were achieved.

Based on the considerations on basic dispositions I further, introduced the
concept of involvement in conversation. Moreover, the involvement is comple-
mentary to disposition, reflecting whether the participant is in an interaction or
not. Such type of analysis is a quite novel approach in the automatic analyses
of speech, especially, in the context of disposition recognition. Therefore, the
way of annotating a corpus, in particular, the TableTalk data set, according to
involvement is discussed regarding also the reliability of the labelling. As this
is an upcoming field of research, open issues are identified and also discussed in
relation to the controlling of an interaction, from a system’s point of view. For
this, the focus is on proper reactions and on how to influence the interaction to
support the system’s user in a companion-like manner.
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Notation and Conventions

Personal pronoun: I want to point out that the work presented in this thesis
evolved with the help and collaboration of my colleagues in Magdeburg, Ulm,
and Dublin. As I am the author, the term “I” is used throughout my thesis.
Nevertheless, I do not claim that this work could be done all by myself or that I am
the first author of all publications reflected in the thesis. The list of publications
at the end of the thesis names all the authors and co-authors that contributed
to my research and I am contributing the other way around. Using the term
“I” reflects further my part of the work when I am not first authored. Referring
to colleagues’ contributions I will use “they” (or similar terms), even if I am
co-author.

Gender: Throughout this thesis I will use the male gender to specify persons,
for instance actor, user, etc. Further, male personal pronouns like he and his
will appear. I point out that is no discrimination but it is for reason of a better
readability.
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THE way of human’s interactions with systems has changed in the past years
and will be changed in the future. What does it mean, the characteristic

of interaction has changed? It was quite usual that an artificial system received
inputs in an artificial way in the sense of human interaction. The inputs were
either sensor data or commands given by keyboard and mouse. In the last years,
the human way of interacting and communicating was introduced in Human-
Machine Interaction (HMI). Thus, a more natural way of communication found
its way into HMI, especially in the design of interfaces (cf. [Müller 2011; Carroll
2013]).

This chapter introduces the way of communication briefly and provides the
reader with the basic ideas of advanced communication paradigms; in particular,
emotion and disposition recognition from speech. Further, definitions which are
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used in this thesis are specified, especially to clarify those terms in the way they
are utilised in this thesis.

1.1 Motivation

Communication and interaction are basic needs of humans. They are a general
characteristics of our civilisation and do not depend on age, gender, or cultural
imprint, whereas the characteristic is indeed preassigned by the cultural back-
ground. Hence, it is obvious that communication is always present in our life.
Here, I do not narrow the communication towards an interaction of (multiple)
humans, but include also technical devices like smartphones, computers, or even
navigation devices, for instance.

The way of communication changed over the past years that means even in
Human-Human Interaction (HHI) the style of interaction evolved. In the past,
usually letters were written or in more advanced land-line phone calls were done.
With the introduction of the first kinds of computers and networks this changed.
Nowadays, it is common to use E-Mail, smartphones with different kinds of ser-
vices, telephones, and video conferences. The world gets smaller in the sense that
almost everybody can be reached by communication almost everywhere.

On the other hand, the technologies applied in communication remained the
same over a long period, especially in the interaction with technical systems. It
is quite common to use mouse and keyboard to control technical devices (cf. Sec-
tion 1.5). However, in the last years, the interfaces of technical systems also
have switched to a more natural handling (cf. e.g. [Karray et al. 2008; Elsholz
et al. 2009; Kameas et al. 2009; Carroll 2013]). This means, touch screens and
speech control have been introduced in the controlling and therefore, from my
point of view, the human is more involved in the interactions. From this, it can
be assumed that it is for a human much more easy to communicate or interact
with a system. In general, the aspect of involvement is a quite important issue,
in particular in a multi-party interaction, where the parties are either humans or
technical systems. This issue is introduced in Section 1.4 and discussed in detail
in Chapter 6.

Especially, speech controlling is a quite natural way of interacting with a tech-
nical system as humans are used to communicate via voice. So far, it is usual
that the pure content of the message, which is further usually related to a specific
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domain, is analysed and the corresponding system reacts on specific commands or
phrases. On the other hand, speech contains much more information as only the
pure message. As Schulz von Thun already discussed in [Schulz von Thun 1981]
communication has four aspects, summarised in the four-sides model: appeal, fac-
tual information, relationship, and self-revelation. In the following, I focus on the
latter since this is heading to the issue of disposition recognition. Everybody ex-
periences that, while speaking, further information, which are not directly related
to the content of the utterance, are transmitted. Especially, the meta-information
of self-revelation, or to be more precise the emotional and dispositional parts of
this information are essential in the HHI because this provides the possibility to
appraise the content. Further, the whole situation can be assessed to classify
what is said; that means, the content is assessed by the additional information.

The aspects of Schulz von Thun are not only valid for HHI; this can be seen
in HMI as well. Of course, the aforementioned parts are distinctly different, for
instance, the factual information is in the focus. Nevertheless, the user creates a
relationship with the system (cf. [Dennett 1987; Lange & Frommer 2011; Rösner
et al. 2011]) and hence, it can be assumed that the four-sides model can be ap-
plied, too. From this, it is obvious that besides speech recognition the automatic
interpretation of the way how something is said has to be considered. Thus, this
field of research started with the analyses of emotions and corresponding states
as those can be distinguished in the voice more easily. Moreover, I argue for a
more general view of self-revelation (cf. [Batliner et al. 2001] where a roadmap
is presented). This means that several information like the user’s intention, the
environment and situation, the user’s emotion, etc. have to be captured by a
system and hence, it has to be equipped with the possibility to react in a proper
way.

In Section 1.5 I will describe the controlling of a system and in addition, a
sketch of a proper system’s reaction in more details. However, the question
arises: what is the purpose of recognising dispositions? As mentioned before,
dispositions are an essential part of the communication. Further, assessing the
user’s reactions in a precise way, improves overall recognition results and this leads
to more robust communication at large. This includes also avoiding abortion of
the dialogue. In general, the main goal is to establish a natural communication
in the HMI. This thesis can only present some aspects of the ongoing research in
the automatic disposition recognition from speech due to the complexity of the
field. It is focused on the analyses of near real-life scenarios comparing inter- and
intraindividual recognition experiments.
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1.2 From Emotion to Disposition Recognition
from Speech

As I already motivated (cf. Section 1.1) it is necessary to incorporate feelings,
moods, and, from my point of view very important, dispositions of a user in an
HMI. So far, those terms are quite vague and therefore, I introduce and arrange
them from an engineer’s point of view. I am aware that the usage of these term
are quite different in psychology and computer sciences. However, in this thesis
they will be used as specified in the following.

Further, I will discuss why emotion recognition evolved towards a disposition
recognition from speech. This leads also towards different ways of categorising
human behaviour, especially in an emotional or dispositional way (cf. Section 1.3).

1.2.1 Emotions and Moods

First of all, to get the meaning of the term emotion I concentrate on the common
definition given by the Shorter Oxford English Dictionary [Shorter Oxford English
Dictionary 2002] (cf. Definition 1.1 a)) which I will prefer here, and an extended
version by Merriam-Webster [Merriam-Webster 1998] (cf. Definition 1.1 b)). Both
definitions represent the common meaning of the term and are influenced by
interpretations of psychologists. Therefore, they differ from a definition which is
technically inspired.

Definition 1.1 a) An emotion is a strong feeling deriving from one’s circum-
stances, moods, or relationships with others.
b) An emotion is a psychic and physical reaction (as anger or fear) subjectively
experienced as strong feeling and physiologically involving changes that prepare
the body for immediate vigorous action.

As it can be seen, an emotion is a strong reaction of a human related to sev-
eral circumstances. Especially, the adjective “strong” indicates that emotions are
quite expressive. Therefore, they can be recognised and distinguished relatively
easy, in particular, by humans. According to the discussion in Chapter 2 express-
ive emotions can be classified by several types of classifiers (cf. e.g. [Schuller et al.
2009a]).
From this, I define the term emotion in a rather classifier oriented and thus, tech-
nically oriented way indicating the shortness of such an event. It means that an
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emotional expression is usually confined to single utterances or a few succeeding
sentences. Furthermore, by this shortness I can apply methods (cf. Section 4.3)
as they were utilised in speech recognition which assume stability in short periods
of an audio signal. Moreover, my definition extends the term emotion towards a
description that covers also reactions which occur in HMI.

Definition 1.2 An emotion is a short occurrence of a strong feeling wheras a
mood represents the background of the emotion. Emotions are direct reactions on
recent actions and events. Their verbal expression is connected to single or short
sequences of utterances and it can be expressed either in HHI or HMI.

As Batliner et al. [Batliner et al. 2001] discussed (cf. also Section 3.2) expressive
reactions are quite rare in an HMI which resembles to a natural way of interacting.
Therefore, the evolvement of emotions has to be considered in each interaction.
This is what humans are doing in each HHI. Otherwise, conversations have the
danger of breakdown and the dialogue situation ends, for instance in call centres
(cf. [Vlasenko & Wendemuth 2009]).

This leads to a more general term which describes the human’s behaviour on
longer time periods. Furthermore, moods are the basis of emotions (cf. Defini-
tion 1.2). As it is given in Bertelsmann Universal Lexicon [Bertelsmann 1993]
mood is defined as follows.

Definition 1.3 Mood is a longer lasting feeling connected to all experiences. Fur-
ther, it is a state depending on the human’s body and therefore, can be influenced
either by humans or artificial systems.

In contrast to my definition of emotions (cf. Definition 1.2) the mood is longer
lasting, that means it stays stable for at least a longer sequence of utterances or,
which holds in general, for the conversation in total. It is obvious that this is
related to the duration of a conversation. Without restrictions, I assume that a
conversation lasts from a few minutes up to some hours. With today’s way of
communication shorter conversations can be assumed. Therefore, a stability of a
mood can be assumed. Due to that, concepts of speech recognition such as stabil-
ity assumption can be transferred to a novel mood recognition in a broader sense.
Hence, the term mood and the corresponding concept extends the pure classific-
ation of single emotional events towards more general aspects. Furthermore, it
incorporates the personality of a user (cf. Section 1.3.3) in the conversation and
by classification of such events in the HMI.

In addition to the given definition (cf. Definition 1.3) I state that each mood is
also part of an HMI and hence, can influence it. Therefore, I argue for an analysis
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and classification of moods in advance in order to modify in the classification
of emotions. As said in Definition 1.2 on the preceding page moods are the
basis of every emotional expression. A better understanding will improve the
classification of emotions because their occurrence is dependent on moods. Thus,
even equal emotions differ in their characteristic by underlying different moods.
This aspect will be discussed in Section 1.2.2.

1.2.2 Disposition Recognition

As I already introduced in Section 1.2.1 the handling of user characteristics can be
ordered hierarchically. This means that one can find an order in the generalisation
of user’s states related to his mental situation. The hierarchy is as follows, ordered
upwards: emotion, mood, and disposition.

Before I will discuss dispositions and the classification in a technical sense I
consider the term disposition from psychological point of view, that means, give
a corresponding definition which is according to [Bertelsmann 1993].

Definition 1.4 Disposition is a natural arrangement or an acquired character-
istic to practise certain characteristical occurrences or to carry out certain exper-
iences. Further, it is the receptiveness for certain influences.

From my point of view, this definition is too narrow. I will explain this point in
the following and thus, derive a definition of disposition in a more technical sense
which also gives reference to HMI.

As it will be shown in Chapter 3 in the past years one can see an evolution in the
field of emotion recognition from speech. It started with the speech recognition in
the 1960s where the basics towards such a technology were laid. Further based on
psychologists’ knowledge the methods were improved and utilised for classification
of basic emotions (cf. Ekman’s basic emotions [Ekman 1992]). As mentioned in
Section 1.2.1, those are derived and influenced by the speaker’s moods which
leads to the necessity of mood recognition. However, each interaction - it does
not matter if either HHI or HMI - is influenced by the situation and from this,
each speaker and his corresponding behaviour is also affected by the environment
and his mental state. The latter is reflected by the psychologists’ definition of
disposition (cf. Definition 1.4). Nevertheless, the situation of the environment
and the speaker itself is quite important to understand his reactions, especially
in the context of HMI (cf. Section 1.5).
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This leads us to the concept of situatedness. In particular, it reflects the con-
text of learning or in other words, every knowledge and feature depends on a
certain context (definition and interpretation are inspired by [Simpson 2002]).
Consequently, I derive the definition in a more technical way.

Definition 1.5 Situatedness describes the entire context of an interaction and
conversation including information of how many persons are in the surrounding,
what is the interpersonal relationship of the interactors, the given abilities and
limitations of the interactors or a technical system, the general conditions of an
interaction, etc.

In the classical emotion and mood recognition and classification the situated-
ness is not reflected in a proper way. In fact, it is neglected and hence, a source
of information to interpret a reaction in a broader sense is not considered. As
I will discuss in detail in Section 1.5 disposition recognition in general has to
be considered in a natural HMI, and in particular, disposition recognition from
speech, as speech is on the one hand, a natural way of interaction and on the
other hand, related to the interactor’s mental state, that is emotions, moods, and
behaviour (cf. e.g. [Wendt & Scheich 2002; Gnjatovic & Rösner 2008]).

With these preliminary considerations and based on Definition 1.4 on the pre-
ceding page and Definition 1.5, I define the term disposition as follows.

Definition 1.6 Disposition is the universal description of the user’s situatedness
and further, of his certain characteristics, including emotions and moods, that are
given in a particular interaction. Furthermore, it is influenced by the knowledge
and contextual information of the certain interaction that is the background of
the interactor.

From this definition, it is obvious that the disposition is influenced by the user’s
mental state as well as his personality and intentions. Furthermore, it shows the
complexity of the task which indicates the necessity for multimodal analyses. Just
by the consequent use of several modalities a handling of this issue is possible.
In this thesis, I concentrate on a part of the investigation, namely the disposition
from speech. Combing different modalities a universal view on the disposition
can be achieved. This provides a technical system, especially as it is intended by
companion systems (cf. [Wendemuth & Biundo 2012]), with a detailed view and
idea of its counterpart, namely the system’s user.
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1.2.3 Categorical and Continuous Labelling Systems

As the terms of emotion, mood, and disposition are defined now, I introduce the
systems which are used to indicate corresponding classes or values to evaluate
and measure characteristics of those terms. This is usually done by applying so
called labelling systems. Such a paradigm defines categories or values which are
related to a state of the user. The process of annotation, which is also called
labelling, will be described in Section 4.1.

It is common to distinguish three kinds of labelling systems: i) categorical, ii)
quasi-continuous, and iii) continuous labelling paradigms. The order represents
also the historical evolution of these systems and moreover, the complexity for
the annotators in the assessment process.

Categorical Labels

Categorical labels which represent emotional states of humans have been observed
for a long time. Even Greek philosophers (e.g. Aristotle and Galen of Pergamon)
ordered emotional characteristics according to the behaviour of humans. They
combined emotions and moods and established terms like melancholic, phleg-
matic, etc. This indicates that such combination includes the origin of emotions
in moods (cf. Definition 1.1 on page 4). This classification paradigm was pre-
served till the 19th century. At this time, a more biologically inspired analysis of
emotions was introduced. For instance, Darwin started systematic observations
and evaluations of emotional expressions [Darwin 1872]. For this, he applied pro-
totypical photos to classify emotions in humans. Further, in [Darwin 1872] he
also investigated emotional behaviour of animals and compared this to human’s
reactions. To get clear decisions he concentrated on facial expressions which
were mimed by actors. By the structure of the book, Darwin distinguished two
main categories, namely low and high spirits [Darwin 1872]. Further, a more fine
granulated classification has been discussed, for instance, anxiety, grief, joy, love,
shame, shyness, modesty, guilt, surprise, fear, etc.

In the context of such observations psychologists analysed also the behaviour
and reactions of apes and humans and found so called Basic Emotions [Ekman
1992; Plutchik 2001]. The term defines sets of emotions which are generally shown.
They are derived from numerous observations by psychologists. Unfortunately,
the composition of the sets differs according to the authors of the corresponding
studies. Two sets are widely used in psychology as well as in the automatic
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classification of emotions (cf. Section 3.1) which were defined by Ekman and
Plutchik.

In the following, I concentrate only on findings that are related to humans,
even if they are valid for apes, too. For instance in [Ekman 1992], the most
famous and largest set of Basic Emotions is mentioned. For his observations,
Ekman asked actors to play the corresponding emotions. Afterwards, these facial
expressions were presented to test persons who are no actors. So, he derived
the following emotions: anger, boredom, disgust, fear, joy, neutral, and sadness.
Based on observations of Ekman on facial expressions Ekman & Friesen estab-
lished a coding system called Facial Action Coding System (FACS) [Ekman &
Friesen 1978] which describes emotional reactions in the face in a standardised
way referring to Action Units (AUs). Those AUs can be used to classify emotions
as it is quite hard to mentally influence the muscles’ activities generating the in-
dicating AUs (cf. Section 3.2.2). The introduction of Basic Emotions according
to Ekman is presented because I mainly used these categories in my experiments
(cf. e.g. Section 4.3.2).

In contrast to Ekman, Plutchik defined the following set: acceptance, anger,
anticipation, disgust, fear, joy, sadness, and surprise [Plutchik 2001; Hiroshige
et al. 2009]. An advanced set is given in Figure 1.1 on the next page. Neverthe-
less, he also relies on material generated with the aid of actors, especially, facial
expressions.

As I pointed out, Basic Emotions are derived from facial expressions. Are
they valid to be used in emotion recognition from speech? As several studies, for
instance, [Burkhardt et al. 2005; Martin et al. 2006; Schuller et al. 2009a], show,
it is possible to transfer these concepts of Basic Emotions to speech recognition.
The studies applied listening tests where the participants as well as speakers were
either actors or no actors. However, in both conditions Basic Emotions could be
distinguished by the listeners. Inspired by these results, I concentrated in my
experiments at first also on Basic Emotions and for this, I could get parameters
for classifiers (cf. Section 4.3.2). These can be used in a much broader sense and
on different materials, respectively, as it is shown in Section 5.1, for instance.

Quasi-Continuous Labels

Based on categorical labels a natural improvement of an annotation is the la-
belling with a bunch of classes. That means that still predefined classes are
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given, but a higher number of those. Especially, a weighting or grading of emo-
tional classes can be established which introduces a granularity to the so-called
Basic Emotions.

In [Plutchik 2001] the Basic Emotions are extended in such a way that an
intensity value is assigned to each emotion. So far, such intensity holds for each
emotion in total. However, it defines an order because Plutchik symbolised the
intensity value in a cone (cf. [Plutchik 2001; Hiroshige et al. 2009] and Figure 1.1).

Figure 1.1: Plutchik’s cone of emotions where single emotions are ordered by their
quality (as the segments of a circle) and intensity (depth of the cone). The figure
is take from [Siegert et al. 2012b]. Credits to Kim Hartmann and Ingo Siegert for
permission to use it.

A more continuous way of interpreting emotions was introduced by Scherer as
he ordered the emotions according to several dimensions, for instance in [Scherer
2005]. Furthermore, he extended the set of emotions which are either not as ex-
pressive or are more related to a natural behaviour of interactors. That means,
they are more difficult to observe and to recognise. This paradigm is reflected in
the Geneva Emotion Wheel (GEW) as introduced in [Scherer 2005]. A realisa-
tion of this model is given in Figure 1.2 on the facing page and was also used in
the annotation tool called interdisciplinary knowledge-based annotation tool for
aided transcription of emotions (ikannotate) (cf. [Böck et al. 2011b]). According
to [Scherer 2005] the dimensions are Pleasure and Control. However, other exper-
imental measures can be used to quantise emotions. Further well known sets are
combinations of Pleasure, Arousal, and Dominance (cf. [Bradley & Lang 1994;
Mehrabian 1996; Grimm et al. 2007]). Usually, two of these labels are posed in a
two dimensional map like in the GEW.
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Figure 1.2: Geneva Emotion Wheel related to this introduced in [Scherer 2005] and
used in ikannotate (cf. Section 4.1) [Böck et al. 2011b]. The granularity of the
intermediate levels for each emotional expression is defined by the designer of the
labelling process. In [Böck et al. 2011b] two additional labels are introduced, namely
neutral and other (cf. Section 4.1).

Whether Plutchik’s or Scherer’s way of labelling, both can be applied by using,
for instance, ikannotate to do the annotation on utterance level (cf. Section 4.1).

As I explained, such labelling paradigms are in between a full categorical and
a continuous annotation, I call them quasi continuous labels because for each
emotional expression like ‘in high spirits’ (cf. [Scherer 2005]) a mapping to a
numerical value can be found. For instance, Hartmann et al. are working on
a mathematical transformation and mapping in this paradigm [Hartmann et al.
2012]. In contrast, an empirical approach towards a suitable mapping is given in
[Hoffmann et al. 2012].

Continuous Labels

The most abstract form of annotation is the continuous labelling. In this, no
expressions like anger, shame, etc. or predefined classes are given. Rather full
continuous numerical values in all dimensions will be assigned to any kind of
human behaviour reflecting the emotional state. Therefore, not only a time con-
tinuous annotation, as it is used in categorical and quasi-continuous labelling,
but also a continuous labelling in human’s reactions is conducted. Nevertheless,
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usually a predefined range of the values is given which reflect the maxima. Such
labelling can be done using, for instance, the tool feeltrace [Cowie et al. 2000].

A schema for continuous labelling is Self-Assessment Manikin (SAM) [Bradley
& Lang 1994] which is based on the Pleasure-Arousal-Dominance (PAD) space
introduced in [Mehrabian 1996]. According to this, reactions are arranged within
a three-dimensional space. Along each dimension the influence of a situation to-
wards the user is measured. Therefore, eight interesting clusters can be generated
representing the different kinds of situations, for instance, low dominance, low
arousal, and high pleasure. I mention that sometime the Pleasure dimension is
substituted by Valence which is more or less due to the customs of some authors.
In this thesis, I use the PAD space as introduced by Mehrabian.

Of course, the PAD is not the only way of measuring emotional states in a
continuous manner – it depends more on the matter of observation–, however it
is the most popular one. In my experiments I also applied the PAD space, to be
more specific a subset (cf. Chapter 5), as they are related to the EmoRec I+II
(EmoRec) corpus [Walter et al. 2011] (cf. Section 3.2.2). Further, this space is
utilised in ikannotate applying the SAM rating given by [Bradley & Lang 1994;
Grimm et al. 2007].

In general, continuous labels have the capability to reflect dispositions
(cf. Definition 1.6 on page 7) as, on the one hand, they have no fixed classi-
fication. On the other hand, which is more important, they directly incorporate
the situation and environment of an interactor by dimensions which reflect char-
acteristics influencing the user. Especially, in the dimension of Dominance the
surrounding of the person is part of the measure as the user is either controlling,
or controlled by the situation. As Batliner et al. argue for more natural corpora,
I argue heavily for continuous labels to handle disposition in a proper way. For
the purpose of usage in HMI control I refer to Section 1.5 and also for further
development to Section 7.2.5).

1.3 Inter- vs. Intraindividual Validation

From the general reflections of emotions and disposition as well as the different
labelling paradigms, I will consider the types of recognition validations which are
of interest in HHI, but rather, in HMI. Namely, I distinguish inter- and intraindi-
vidual validation approaches which are connected with the well-known concepts
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of cross-validation and Leave-One-Speaker-Group-Out (LOSGO) or Leave-One-
Speaker-Out (LOSO). I will use the former names of the methods, because they
represent a more general intention of the validation concept. This means, the
more technical term cross-validation and LOSGO/LOSO are, from my point of
view, too focused on the engineer’s view. But, disposition as such (cf. Defini-
tion 1.6 on page 7) which comes from situatedness (cf. Definition 1.5 on page 7)
is broader, especially, considering the surrounding of an interaction. Therefore,
I introduce the corresponding terms (cf. Section 1.3.2 and 1.3.3) interpreted in a
technical sense. Further, to evaluate the findings, suitable measures of accuracy
have to be defined.

1.3.1 Measures

At first, I declare the measures which will be used throughout this thesis to
evaluate the performance of the experiments. This is related to the validation
method as well as the structure of the material itself. I concentrate on common
performance measures as known from speech recognition, hence, the focus is on
the material. As discussed in more detail in Chapter 3, data sets are either
balanced or unbalanced in the number of samples per class1. This is reflected by
the following two measures.

The Weighted Average accuracy (WA) is the measure which reflects the class-
wise accuracy. Therefore, the accuracy is calculated for each class separately and
afterwards averaged over all classes. Moreover, this is the reason why WA is more
accurate and furthermore, applied in the context of unbalanced data sets.

Let xi be the number of correctly classified samples, yi be the number of all
samples in class i , and c be the number of all classes, then WA is calculated by

WA =

∑c
i=1

xi
yi

c
(1.1)

In contrast, Unweighted Average accuracy (UA) is based only on the samples
correctly classified without regarding the classes. This means, it is the ratio of
correctly classified samples and the number of all available samples. UA is thus
computed by

UA =

∑c
i=1 xi∑c
j=1 yj

(1.2)

1The term class has to be considered more generally, not only in the sense of Section 1.2.3.
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where xi is the number of correctly classified samples per class i and yj is the
number of all samples in the class j . Therefore,

∑
j yj is the total number of

samples in the material summed over all classes and
∑

i xi is the total amount of
correctly classified samples over all classes. It is usually applied if the data set is
balanced in the number of samples per class which also means that WA and UA
are more or less equal.
A roughly similar definition of the measures is, for instance, given in [Olson &
Delen 2008].

In the following I will discuss characteristics of these two accuracy measures
with respect to their relationship. In general, both measures are linked with each
other: will be one increased (e.g. UA), the other one is decreased (e.g. WA) and
the other way around. In fact, if a given data set is balanced in the sense of
sample distribution; that means, the number of samples per class ci is almost
equally distributed over all classes, UA and WA are roughly equal in the absolute
value. Usually, corpora are unbalanced with respect to the samples’ distribu-
tion (cf. e.g. description of data sets in Chapter 3) and thus, both measures are
different in their values. In the case of unbalanced data sets a high UA value
can be achieved if the class with the most samples is classified in a good way.
On the other hand, classifying the class with the fewest samples results in a
high WA. This effect can also be seen in the experimental results presented in
Section 5.1.2. Both described characteristics can be derived directly from the
corresponding equations (cf. Equation 1.1 and 1.2). Given these considerations,
especially two case in the measures’ relation are important and hence, will be
further discussed.

• UA > WA which is the preferable situation. In this case, WA ranks the
performance of the classifier better because the effect of a well recognised
class with a large amount of samples is decreased. Thus, the influence of
all classes is reflected properly.

• UA <WA and thus, the class with the fewest number of samples dominates
the classification performance. In general, this should be avoided for a
proper ranking of the corresponding classification results.

To overcome this problem in statistics and other research communities like in-
formation retrieval and artificial learning several other measures were introduced
(for instance in [Dietterich 1998; Makhoul et al. 1999]). Especially in speech re-
cognition, accuracy measures like F-Measures, Precision, Recall, Likelihood Ratio
etc. are known for the evaluation of results (cf. [Jiang 2005]). These were also
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transferred to the evaluation of classifiers dealing with emotion recognition from
speech (cf. [Grimm et al. 2007; Grimm et al. 2008; Vlasenko & Wendemuth 2009;
Schuller et al. 2010a]) providing also their own characteristics. As I do not use
such additional confidence measures in the my experiments, I do not introduce
these.

1.3.2 Interindividual Validation

Every person generates a model of his counterpart to react on the other’s be-
haviour, hopefully proper. Unfortunately, in the beginning of each interaction,
usually no information of the counterpart is given. Therefore, at first, each par-
ticipant has to rely on a model and hypothesis derived from it which reflects a
general behaviour in a particular situation. That means, from several previous
interactions a prototypical model is established to indicate a possible course of
interaction. This holds for HHI as well as for HMI and further, it should be true
for technical systems like described in [Wendemuth & Biundo 2012] that react
like companions with a user.

Based on these considerations, a validation method has to be defined which
deals with the requirements of unseen users. It means that any kind of system
in an HMI can only rely on material which was previously ‘processed’ dependent
on previous interactions. This is the technical complement to an universal model
or strategy used by a human.

In speech recognition such validation method is call LOSO which means that
material of one user is not used in the training process and only presented to the
system in the test. An extension of LOSO is LOSGO applying the procedure to
a group of speakers.
I redefine this validation strategy to an interindividual validation method. As
in the standard approach the material of one user is left out for the training
and is used in the test, only. But, while usually the average of the speakers’
characteristics is learned, in the advanced HMI (cf. e.g. [Wendemuth & Biundo
2012; Böck et al. 2012b]) personality is an additional and important feature.
Therefore, I will use this term which is inspired and based on psychology. The
difference in the LOSO and interindividual validation will be more clear in the
context of intraindividual validation (cf. Section 1.3.3).
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1.3.3 Intraindividual Validation

In HHI it is common that after a small period of introduction the interactors
adapted to each other. This is related to a switch from an universal model
(cf. Section 1.3.2) of the counterpart towards an individual model reflecting the
significant characteristics of the partner. Hence, while interacting the validation
of the partner’s behaviour is adapted, thus narrowed, and consequently improved
as it is based on the observations of a single person.

This can be transferred to a technical system as well by using only material
which was collected from one user. Therefore, the training as well as the testing
is based on this specific person and reflects his characteristics, especially, the
personality. Thus, I will use the term intraindividual validation to indicate the
particular validation method. Especially, in long term interactions as intended
in [Wendemuth & Biundo 2012], an intraindividual validation is to favour.

Intraindividual validation is carried out as follows: the collected material of
a speaker is arbitrarily split into two sets. The training set, mainly 90% of the
material, is used to train or adapt a classifier. The remaining data is afterwards
presented in the test of the system. With Artificial Neural Networks (ANNs), for
instance, the method slightly changes as an additional validation set is needed,
used for parameter tuning of the ANNs. Hence, the splitting is normally 80%

training, 10% validation, and 10% test. To get statistical significant results the
splitting is repeated ten times and afterwards the results of each run are averaged.
An extension of this procedure is the stratified intraindividual validation trans-
ferred from the principles of stratified cross-validation. For this the splitting is
done in such a way that in the test set the overall distribution of samples to the
classes given in the data set are represented (cf. e.g. [Diamantidis et al. 2000]).
This means that an equal portion of samples from each class are added to the
test set. Especially in unbalanced corpora in terms of samples’ number per class,
this approach provides a better ratio between training and test sets. Usually, in
my experiments I applied the stratified intraindividual validation; referring to it
only as intraindividual validation.

Another approach which is related to intraindividual validation is the so-called
cross-validation usually applied in speech recognition. In contrast to intraindi-
vidual validation the material of all speakers is used to generate training and test
sets. The procedure to get these sets is the same as for intraindividual validation
and further, the stratified cross-validation (cf. e.g. [Diamantidis et al. 2000]) can
be applied as introduced before. The advantage of this method is that certain
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side-effects like age and gender can be reduced or even eliminated and a result
which is based on a general observation is achieved. Especially in explorative
experiments this can help to get indications for suitable feature sets and classifier
parameters. Indeed, in some cases where only a small amount of material per
speaker is available, this method might be better to assess a technical system as
the result is therefore based on more material.

1.3.4 Connection of Both Validation Systems

Both methods, as introduced in Section 1.3.2 and 1.3.3, are based on the valida-
tion approach commonly used in speech recognition. The main difference is that
I concentrate on the personality or the individual behaviour as a criterion in the
validation of classification results. Moreover, intraindividual validation narrows
the assessment to a single speaker reflecting the idea of a technical system which
is adapted to one user and for this, can be seen as a step towards companion
systems (cf. [Wendemuth & Biundo 2012]).

Especially systems having a long term interaction with a specific user should
switch the validation methods. As discussed in [Böck et al. 2012b], in the be-
ginning of an interaction the system should rely on a general model of any kind
of user. To assess its performance the interindividual validation is applied while
interacting data material is recorded and can be used to adapt the system (a
framework to do so is proposed in [Böck et al. 2012a]). Therefore, a switch in the
validation approach towards intraindividual validation has to be done. Hence,
the methods are on the one hand complementary but in case of technical com-
panion systems they are successors in the process of evaluation of classification
results. Nevertheless, in this thesis I will usually compare the classification results
according to both validation methods.

1.4 Involvement in Conversation

So far, I introduced emotions and more importantly, disposition in Section 1.2
and further discussed the differences in the validation methods (cf. Section 1.3)
which are influenced by the personality of a user as an additional perspective.
In this Section I give a description of an aspect which directly evolves from the
disposition; namely involvement. As Oertel et al. state important characterist-
ics that make “a conversation a naturally interactive dialogue are the dynamic
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changes involved in spoken interaction.” [Oertel et al. 2011b]. In contrast, in [An-
til 1984] the involvement is discussed in a much broader sense which influences
the behaviour of human begins. Therefore, I consider the involvement under
the focus of being a disposition and derive a definition (cf. Definition 1.7) that
is more general as, for instance, in [Oertel et al. 2011a] which is more fixed on
task-oriented conversations.

Definition 1.7 Involvement reflects that somebody is generally participating in
something. In particular, in the context of speech, this means, a user is particip-
ating in a conversation or interaction.

As in Definition 1.7, in particular, I understand by involvement that a speaker
is participating in a conversation or interaction whereupon it does not matter
whether this is an HHI or an HMI. In the definition of disposition (cf. Defini-
tion 1.6 on page 7) the situatedness and further information like the background
are mentioned. Being involved in an interaction is a crucial point in the analysis
of the user’s behaviour. Otherwise, a misinterpretation of actions is most likely.

Before discussing the influence of the involvement as a characteristic of com-
munication, I will consider the issue: what are the characteristics of involvement?
Being involved or participating in something represents a large variation of be-
haviour. Usually this is investigated by psychologists who can interpret small
differences in human behaviour to derive conclusions for the course of an in-
teraction. In general, it reflects the behaviour of a person interacting with a
communication partner. It does not matter whether this is another person or a
technical system. Participating is manifested in gestures, facial expressions, and
speech. For example, a person gets more involved in a conversation if he leans
forward and starts talking. As from this example, it is obvious that the question
of involvement is an issue which can be faced only with multiple modalities, that
is, using not only speech but also video features, etc. to detect and classify parti-
cipation. The methods for this and how to perform involvement recognition will
be discussed in Section 4.4 and Chapter 6.

As I said in Section 1.1 it is important to detect involvement, especially in
multi-party conversations. Multi-party means that at least three subjects are
participating in an interaction where each subject is either a human or a technical
system. In such scenarios (cf. Section 3.3), the detection of involvement indicates
which participants have to be considered as being part of the interaction. From
the point of view of a technical system, that means to distinguish which subjects
have to be considered. As in the HHI the attention is focused on subjects who
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are of interest and then their reactions are analysed. Further, information on
how to react on disturbances, for example, are retrieved from it [Novick et al.
2012]. In this way, a technical system can derive information to react to specific
situations properly, for instance, who is talking to whom. To be specific, even
in a dyadic (only two subjects interact) conversation one party can be out of
the interaction and therefore is no longer involved. However, in this thesis I
just consider multi-party interactions and hence, assume that in two-subjects
conversation both partners are participating.

Multi-party or group interactions are usually analysed by psychologists
(cf. e.g. [Wageman 1995; Keyton & Beck 2009]) observing the dynamics, which
is the behaviour, of the group and the conversation itself. From this, several
sets of conversations, like meetings or teaching scenarios, can be derived. A brief
overview is given in [Böck et al. 2013b]. From the technical system’s perspective
it is more important to distinguish different constellations of an interaction and
involvement. As discussed in [Kühn & Koschel 2010] these are: i) involvement of
each participant, ii) dyadic or sub-group interactions, and iii) involvement of the
group in total. Again, I will concentrate in this thesis on the latter case, only.
The way such observations can influence the HMI is discussed in Section 1.5 and
Chapter 6.

1.5 Control of Human-Machine Interaction

In Section 1.1 I already mentioned the overall goal of automatic disposition clas-
sification, namely improving the system’s capabilities to recognise the user’s dis-
position to react in a proper way. This is essential to avoid any kind of breakdown
in the course of the interaction or, in particular, the dialogue. As I am not in-
terested in the global design of interfaces or systems, I will discuss the way of
controlling a system not in detail.

In the beginning of HMI, it was common to submit commands by mouse and
keyboard to a system and the interfaces were designed in a minimalistic manner
(cf. [Carroll 2013]). As it is known, especially the design of interfaces has changed
dramatically towards more fancy styles and appearances (cf. [Rogers et al. 2011;
Carroll 2013]). Nevertheless, the way of how to give instructions did not change
as much. I do not believe that this style of interaction will be detached totally by
new technologies, but nowadays the way of interaction is much more manifold.
New technologies were developed, for instance, touch screens, and methods were
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implemented like speech and gesture recognition, so that the controlling of a
technical system is not only manifold but also multimodal (for the purpose of
controlling cf. [Panning et al. 2012; Krell et al. 2013]; for the purpose of gestures
cf. [Appenrodt et al. 2010]). This is also due to the development of the technical
capabilities like small cameras, high quality but small microphones, improvement
of the computational power in small devices, etc.

On the other hand, controlling a system means that the user needs a concept
how to control it. Even with speech, gesture, or facial expression recognition,
control is mostly not as intuitive and natural as it should be. This is due to the
predefined signs and gestures to get a reaction of the system or the vocabulary of
the speech recognition which is reduced to a specific domain. All in all, the user is
asked to adapt to the system. The goal is to change this which means the system
is adapting to the user (cf. [Wendemuth & Biundo 2012]) and not the other way
around. As in Chapter 2, especially in speech recognition universal models and
several adaptation methods are applied to obtain systems which are more general
in their reactions. This is also reflected in the output of technical devices which
becomes multimodal, too, (cf. [Jaimes & Sebe 2007]). An outlook concerning
the power of multimodal recognition which also leads to an appropriate system’s
reaction that further could influences the user’s way of interaction is presented
in Section 7.2.5.

So far, the process of controlling is a task which assumes several conditions
of the user. First of all, willingness and good will to interact. Further, an idea
how the system works in general, that is, what is the purpose and what can the
user get from it. And finally, the user adapts to the capabilities of the technical
system. To overcome the latter case, I will present results and approaches in
this thesis to enable systems which interact more natural and human-like as it is
discussed in [Wendemuth & Biundo 2012] and which finally are integrated into
human life as companions.
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SO far, I introduced the general idea of this thesis, namely the automatic
detection of dispositions from speech. For this, the main concepts and defin-

itions were given and discussed, especially, in a technical sense. I stated that
the term disposition subsumes various aspects of a user as well as his behaviour
in an interaction. In particular, it reflects the emotions, moods, and situations
of a certain user. Furthermore, from these considerations I discussed the detec-
tion of involvement and its changes in a conversation. Using these information a
user-centred HMI and further, a system influenced HMI could be established.

In the following, the state of the art in disposition recognition from speech will
be presented which is used to position my research in the community. It is obvious
that this can only be a spotlight of the research activities over the past due to
the enormous amount of publications. Further, a few communities like speech
recognition or classifier development are already established for a long time; that
means, for 40 years or even longer. Thus, I mainly concentrate on issues that are
in the context of my research and present only particular highlights, being aware
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that covering the overall aspects of the community is not possible in this thesis
due to the multitude of related topics. Furthermore, a brief introduction on HMI
will be given as my research is integrated in the context of it.

2.1 Human-Machine Interaction

In Section 1.5, I discussed and motivated the importance of HMI and further,
described roughly how this can influence a conversation. In Section 2.1 and
Section 6.3.2, the influencing as well as the controlling of conversation from a
system’s point of view will be considered. Therefore, a brief overview of HMI and
its state of the art is necessary to position the discussed aspects properly. The
automatic emotion recognition and further, the automatic disposition recognition
can be seen as an important part of a proper HMI. Therefore, I review the
developments in HMI focusing on the main aspects which are related to automatic
disposition recognition.

Carroll presents in [Carroll 2013] a historical overview on HMI. The community
gained importance mainly in the late 1970s when the Personal Computer (PC)
became popular. Before, the usage of computers was focused to researchers and
enthusiastic hobbyists who were interested in the functionality and the calcula-
tion power of these machines. But with the PC the focus shifted to productivity
applications and interactive games (cf. [Carroll 2013]). The research community
on HMI developed in this context. In the following decades, the style of soft-
ware and thus, interfaces of PCs, which are an integral part of HMI, changed
from an “Unix-like” appearance – which is command based – to an “Apple Macin-
tosh style” – being mainly graphical based – [Carroll 2013]. In the mid 1980s
E-Mail and network services were introduced which started novel communication
possibilities; “people were not interacting with computers, they were interacting
with other people through computers” [Carroll 2013]. Hence, new communica-
tion paradigms and mechanisms arose. This was and is linked with a continuous
development of interfaces and devices (cf. [Shneiderman & Plaisant 2010; Ro-
gers et al. 2011; Carroll 2013]). Moreover, this is also set in relation to affective
computing (cf. [Picard 2000; Höök 2013]). As it is stated in [Carroll 2013] the
HMI community is indeed a community which is connected to various other re-
search disciplines (cf. [Carroll 2013]). Mainly, it is linked with computer sciences,
but also with information technology, psychology, design, cognitive sciences, etc.
From these, studies on HMI are greatly influenced (cf. [Shneiderman & Plaisant
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2010; Carroll 2013]). Nevertheless, most of these studies deal with the aspects of
the functionality of a system and its usability (for detailed information of these
terms cf. [Shneiderman & Plaisant 2010]). These issues were widely investigated
over the past decades.

A more technically inspired review on the state of the art in HMI is given
in [Karray et al. 2008]. The authors distinguish the approaches according to
the characteristics of the interfaces used in the controlling of systems. They
mention i) switch based devices using buttons and keyboard, ii) pointing devices
applying touch screens, trackballs, graphic tablets, etc., iii) audio based systems
utilising speech recognition, and iv) haptic devices used for motion detection in
virtual reality, disability assistive tools, etc. Moreover, the HMI systems can be
distinguished according to the modalities applied in the approach, namely visual,
audio, sensor, and multimodal HMI (cf. [Karray et al. 2008]). In [Karray et al.
2008] furthermore, methods to equip devices with several kinds of functionality
are discussed.

Especially, the multimodal based HMI shows promising approaches as stated
in [Jaimes & Sebe 2007].

Multimodal interfaces have been shown to have many advantages [...]:
they prevent errors, bring robustness to the interface, help the user to
correct errors or recover from them more easily, bring more bandwidth
to the communication, and add alternative communication methods
to different situations and environments. [Jaimes & Sebe 2007]

This quotation reflects the potency of multimodal oriented interfaces and further,
of multimodal based HMI. By doing so, both the user and the system react on
multiple modalities like vision, audio, etc. Moreover, for the observation of the
user also biophysiological measurements as heart rate, skin conductance, etc. are
introduced as an additional modality. For this, the authors state that the HMI
will become more human-centred since the way of interaction is getting more
natural. Such multimodal observations provide the opportunity to investigate
also affective states of a user (cf. [Jaimes & Sebe 2007; Höök 2013]). From my
point of view, it is thus just a small step towards a dispositional observation of
the user in the HMI.

In general, the community of HMI was and is an emerging field of research.
This is also reflected by the numerous survey and review articles cited in [Jaimes
& Sebe 2007; Lew et al. 2007; Karray et al. 2008; Ratzka 2010; Shneiderman &
Plaisant 2010; Rogers et al. 2011]. Furthermore, this can be derived from the
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historical evolution as well, which was already discussed and is described in more
detail in [Carroll 2013]. Moreover, the various kinds of applications which are
highly linked to HMI indicate the importance of this research. In the following
a brief collection of topics and applications is given, referring to [Jaimes & Sebe
2007; Karray et al. 2008]:

• portable and wearable devices like smartphones, navigation devices, brace-
lets recording biophysiological features (cf. [Höök 2013]), or glasses provid-
ing information (cf. [Carroll 2013])

• virtual environments
• virtual agents (e.g. cf. [Traum et al. 2012]) and robots (e.g. cf. [Merten

et al. 2012])
• ubiquitous computing and ambient spaces including ambient information

(additionally cf. [Elsholz et al. 2009]) and intelligent homes and offices
(additionally cf. [Kameas et al. 2009])

• support of elderly people (e.g. cf. [Merten et al. 2012]) or disabled users
• medical support
• education, games, entertainment, and arts.

Especially in the context of virtual agents and ubiquitous computing, the goal
is an intelligent HMI. In [Lew et al. 2007] a research perspective is drawn, stating
that the community should be “interested in intelligent interaction where the
computer understands the meaning of the message of the user and also the context
of the message” (cf. [Lew et al. 2007]). For this, the HMI have to evolve from
a “good old HMI” [Müller 2011] towards a novel approach integrating cognitive
aspects. Therefore, in [Müller 2011] three statements towards such intelligent
HMI are discussed, namely

1. “[HMI] research is a special case of cognitive systems research.”
2. “Successful interaction requires resistance to the other agent.”
3. “Resistance is essential even for non-cognitive [HMI] systems.”

This can be seen as a kind of roadmap to investigate HMI systems under novel
aspects. Such analyses are also part of the research community dealing with com-
panions (cf. [Wilks 2005; Wilks 2006]) and companion technologies (cf. [Wende-
muth & Biundo 2012]). The aim is to consider an HMI incorporating aspects of
affective computing (cf. [Picard 2000]) and also emotion as well as disposition re-
cognition to enable systems with companion-like characteristics. This is amongst
others the goal of the Transregional Collaborative Research Centre SFB/TRR 62
“Companion-Technology for Cognitive Technical Systems” (SFB/TRR 62). The
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ideas are described in [Wendemuth & Biundo 2012]. In this thesis, I deal with
one specific aspect, namely the disposition recognition from speech, that can be
integrated in the context of HMI to enable systems to assess their user more prop-
erly. As this is the main idea of the thesis, I will consider the current approaches
in the disposition recognition from speech in the following.

2.2 Reviewing Disposition Recognition from
Speech

The disposition recognition from speech is based on the ideas and methods from
speech recognition and emotion recognition from speech. In this Section, I briefly
sketch the evolution of the research communities culminating in disposition recog-
nition. The developments in the community are also described in several survey
papers which will be referenced in the following.

In [Anusuya & Katti 2009] a detailed review of the developments in speech re-
cognition is given. The authors state that the starting point of automatic analyses
of speech is in the early 1920s with a toy called ‘Radio Rex’. This commercial
system reacted on a spring released by a frequency of 500Hz which is roughly
related to the first formant of the vowel [e] in ‘Rex’ (cf. Table 4.1 on page 75).
During the following years and decades, automatic speech recognition systems
were improved and thus, quite significant results could be achieved (cf. Section 6

in [Anusuya & Katti 2009]).

Inspired by speech recognition and its methods, in the 1990s emotion recogni-
tion from speech was developed (cf. [Dellaert et al. 1996; Schuller et al. 2011c]).
This is also related to the foundation of the affective computing (cf. [Picard 2000])
and its research community (an overview is given in [Höök 2013]). The very first
beginning of the computational emotional speech analysis is marked by the work
discussed in [Bezooijen 1984; Tolkmitt & Scherer 1986] where certain acoustic
features were investigated using statistical methods. The authors of [Ververidis
& Kotropoulos 2006] and [Iliou & Anagnostopoulos 2010] give an overview of the
developments in the field of emotion recognition from speech. The psychological
tradition of technical emotion recognition is reviewed in [Fragopanagos & Taylor
2005] relating the research in automatic emotion recognition also to theories of
emotions as established in psychology. Moreover, in [Schuller et al. 2011c] basic
ideas of the community which were pursued over the years in emotion recogni-
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tion from speech are presented. Additionally, [Schuller et al. 2011c] reflects the
work related to investigations of more naturalistic HMI in the sense of speech
recognition, for example, analysing realistic emotions, utilising naturalistic data
sets, etc. These ideas are based on position papers of, for instance, Batliner
(cf. [Batliner et al. 2000; Batliner et al. 2001]). And indeed, while reviewing the
literature, a shift in the analyses from acted emotions towards naturalistic emo-
tions and dispositions can be seen (cf. [He et al. 2009; Zeng et al. 2009; Schuller
et al. 2010a; Vlasenko et al. 2011a; Schuller et al. 2011c; Planet & Iriondo 2012]).

The issue of investigating more naturalistic emotions is also reflected by the
emotion recognition challenges arranged since 2009. Moreover, these challenges
show the development which was conducted in the community to improve the
recognition of emotions and dispositions from speech. In 2009, the first emotion
challenge was organised in conjunction with the Interspeech-2009 (cf. [Schuller
et al. 2009c]). As a start, categorical emotion recognition was implemented as
the challenge’s task using the AIBO corpus (cf. [Batliner et al. 2008]) as data set.
General issues that could be learnt from this challenge are presented in [Schuller
et al. 2011c]. Three main aspects were seen as a kind of conclusion (cf. Section
3.6 in [Schuller et al. 2011c]): i) most of the participants used Mel-Frequency
Cepstral Coefficients (MFCC) as the main features for their recognisers, ii) the
investigation of other features might be worthwhile, and iii) the recognition of
emotions from speech is a complex task and thus, the community might benefit
from cooperations with other disciplines like video processing, psychology, etc.
From these considerations two approaches were pursued, namely conducting emo-
tion recognition challenges with broader senses of investigations and generating
the Audio/Visual Emotion Challenge (AVEC). In terms of emotion recognition
challenges these are: the “Interspeech paralinguistic challenge” analysing age,
gender, and affect at Interspeech-2010 (cf. [Schuller et al. 2010b]), the “In-
terspeech speaker state challenge” at Interspeech-2011 where the speaker
states under different situations like fatigue, alcoholic influence, etc. are con-
sidered (cf. [Schuller et al. 2011d]), the “Interspeech speaker trait challenge”
at Interspeech-2012 focusing on the personality of a speaker as well as like-
ability (cf. [Schuller et al. 2012]), and finally, the “Interspeech computational
paralinguistic challenge” at Interspeech-2013 with its subtitle ‘Social Signals,
Conflict, Emotion, Autism’ (cf. [Schuller et al. 2013]). Regarding the topics of
these challenges, it is to notice that there is a continuous evolution in emotion
recognition from speech towards research which analyses issues related to more
naturalistic situations, culminating in aspects of social signals and diseases like



2.2. Reviewing Disposition Recognition from Speech 27

autism. Therefore, the topics of the challenges reflect also the cutting edges of
the research community.

The other important lesson learnt from the first emotion recognition challenge is
that the recognition of emotions is a complex task, in general. Thus, the emotion
of a human or, more specifically, a user should be observed with more modalities
as this provides the possibility of a comprehensive user observation. Since this
thesis deals mainly with emotion and disposition from speech, I describe the state
of the art in multimodal analyses just briefly. A survey of recognition methods
and findings according to audio-visual emotion analyses is given in [Zeng et al.
2009]. Additionally, [Bousmalis et al. 2013] reflects the importance of gestures and
head movements in nonverbal behaviour. To establish a kind of benchmarking
of audio-visual feature based classifiers the AVEC corpus was founded in 2011

(cf. [Schuller et al. 2011a]). This challenge provides sub-challenges for audio,
video, and audio-visual analyses of naturalistic emotional material since the SE-
MAINE corpus (cf. [McKeown et al. 2012]) was used. In 2012, the challenge’s
task was amongst others extended to a continuous emotion recognition and in
2013 additionally, the detection of depression levels is a sub-challenge.
On the other hand, biophysiological features, and classifiers based on those, sup-
port a comprehensive observation of a user (cf. [Nasoz et al. 2003; Kim & André
2008; Walter et al. 2013]). Especially, in the context of establishing a kind of
ground truth in the identification of emotional behaviour, biophysiological fea-
tures supply evidences since those signals are hard to control consciously. There-
fore, they are called ‘honest signals’ in biophysiology. This issue will be also
discussed in this thesis in Section 5.2.3.

In general, it can be seen that emotion recognition is an emerging domain of
research. It is the same with disposition recognition as it is based on emotion
recognition. Since disposition recognition and, in particular, the disposition re-
cognition from speech is a quite novel approach, to the best of my knowledge,
the literature is not as detailed as for emotion recognition. From the definition
of disposition (cf. Definition 1.6 on page 7), the work done in emotion recogni-
tion can be included in the disposition recognition. On the other hand, the PhD
thesis of Stefan Scherer laid foundations towards a conversational disposition re-
cognition (cf. [Scherer 2011]). In this context, my thesis is aiming to incorporate
the disposition recognition from speech in a naturalistic HMI. Currently, various
approaches are pursued in this direction; for instance, the modelling of user’s
moods (cf. [Siegert et al. 2012a]) or describing human’s emotions mathematically
(cf. [Hartmann et al. 2012]). In general, the issue of disposition recognition is a
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comprehensive topic of future research that will influence the HMI strongly in
next years, especially, in the sense of generating automatic systems that can be
seen as companions (cf. [Wendemuth & Biundo 2012]).

2.3 Data Sets

Usually, systems for speech recognition as well as disposition recognition from
speech are based on classifiers. These have to be trained to recognise or classify
given utterances in a proper way. The training is based on data sets which are
suitable to cover the characteristics that should be recognised. In the following,
I briefly review the corpora that can be used for the generation of disposition
recognition systems. Furthermore, in Section 2.3.2 data sets in the context of
conversation analyses are considered.

2.3.1 Dispositional Data Sets

In general, I distinguish two types of data sets: i) corpora which are only suitable
to train speech recognition systems and ii) data sets that also supply dispositional
information. The second category’s corpora could be used for training of more
naturalistic speech recognition systems as well. They provide, for instance in
Last Minute or EmoRec, speech, recorded under naturalistic conditions; that
means, afflicted with accents, slurring of words, etc.

Speech Recognition

Corpora that are only used in speech recognition were mainly recorded or gen-
erated in the 1990s, for instance, Resource Management and TIMIT in 1993,
Polycost 250 in 1996, etc. Such data sets were usually recorded under controlled
conditions; that means, in most cases laboratory conditions with almost no noise
or even anechoic chambers were used to obtain clear speech samples. In [Anusuya
& Katti 2009] the authors present a list of data sets which are commonly used
in the speech recognition community. Related to speech recognition is the re-
search field of speaker identification and verification from speech. For this, speech
samples are applied to extract information that are connected to characteristics
of a certain user. For classification purposes speech recognition data sets can be
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utilised as well. Moreover, it is also possible to apply corpora generated in the
context of speaker recognition in speech recognition. For this purpose, in [Melin
1999] an extensive list of corpora is given.

In this thesis, the recognition and classification of dispositions from speech is
in the focus. Therefore, the pure speech recognition data sets were considered
here briefly and emotional or dispositional corpora are investigated more deeply.

Disposition Recognition

Table 2.1: Overview of data sets which provide dispositional characteristics. Besides
the name of the corpus and the reference where to find a description, the type of
collection is given. For this, I distinguish acted (act) and non-acted (n-act) corpora
(cf. Chapter 3). Furthermore, for each corpus it is marked if it can be used for
disposition recognition as well (Disp. rec.). This listing is adopted from [Vlasenko
2011] and actualised.

Corpus Reference Type Disp. rec.
DES [Engbert & Hansen 1996] act –
SUSAS [Hansen & Bou-Ghazale 1997] act/n-act x
EmoDB [Burkhardt et al. 2005] act –
eNTERFACE [Martin et al. 2006] act/n-act –
SmartKom [Wahlster 2006] n-act x
ABC [Schuller et al. 2007a] n-act x
AVIC [Schuller et al. 2007b] n-act x
AIBO [Batliner et al. 2008] n-act x
VAM [Grimm et al. 2008] n-act x
EmoRec [Walter et al. 2011] n-act x
SAL [McKeown et al. 2012] n-act x
Last Minute [Frommer et al. 2012b] n-act x

Based on the methods and data sets of speech recognition, corpora which con-
tain emotional and dispositional characteristics were generated. In the late 1990s
this started with, for example, the Danish Emotional Speech database (DES)
(cf. [Engbert & Hansen 1996]). In [Ververidis & Kotropoulos 2006], in particular
in Table 1, an exhaustive listing of available data sets related to emotion recog-
nition is given. In addition, [Schuller et al. 2009b; Schuller et al. 2010a; Vlasenko
2011] review the existing emotional speech data sets. Anagnostopoulos et al.
present also an estimation of emotion’s distribution in various data sets, stating
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that the most appearing emotion in corpora is anger, within approximately 85%

of the data sets (cf. [Anagnostopoulos et al. 2012]). In Table 2.1 on the previous
page, I present a collection of the mainly used corpora in the community. This
selection contains also data sets which are up-to-date in the sense of disposition
recognition, namely EmoRec (cf. [Walter et al. 2011]), Last Minute (cf. [From-
mer et al. 2012b]), and Sensitive Artificial Listener (SAL) (cf. [McKeown et al.
2012]). The mentioned corpora also reflect the aspect that currently most data
sets were generated using multiple modalities to cover the speakers’ overall re-
actions. This aspect is also introduced in [Zeng et al. 2009] where the authors
furthermore present data sets which can be analysed in audio-visual investiga-
tions. Moreover, they describe why a multimodal user observation is reasonable.
Mainly, it is due to the different occurrences of dispositions in various modalities.
From the selection of data sets (cf. Table 2.1 on the preceding page) I used
four corpora in my experiments, namely the Berlin Emotional Speech Data-
base (EmoDB), eNTERFACE’05 (eNTERFACE), Last Minute, and EmoRec.
Those will be presented in Chapter 3 in more details.

Highly related to the issue of data sets is the aspect of naturalistic dispositions
included in these. As discussed in [Batliner et al. 2000; Batliner et al. 2001]
and Section 3.2, naturalistic corpora should be in the focus of analyses and thus,
such kind of material should be generated with priority. Naturalistic means
that the dispositions are not played by an actor but are obtained in a kind
of a non-acted scenario. The community considered the remarks of Batliner
et al. in [Batliner et al. 2001] and reacted properly by recording naturalistic
corpora. As it can be seen from Table 2.1 on the previous page, especially, after
2006 naturalistic data sets have been generated. Usually, the corpora applied in
disposition recognition reflect HMIs where just one user is participating in this
interaction. In contrast, for investigations of involvement (cf. Section 1.4) multi-
party corpora are necessary. An overview of those will be given in the following
Section.

2.3.2 Data Sets of Conversations

In the previous Section, I considered the data sets which are commonly used
in disposition recognition from speech. Therefore, I gave only a brief overview.
In contrast, corpora which are suitable to investigate aspects of conversations,
especially, group conversations are not as widespread, yet. Hence, such data
sets are described in more detail. In this context, two kinds of corpora can
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be distinguished: i) data sets recorded for a certain purpose and ii) data sets
supplied for the whole community. As this thesis is focused on technical aspects of
conversations, in particular, of involvement, I neglect corpora which are analysed
in psychological studies and concentrate on those that are already applied for
technically inspired issues.

Individually Generated Data Sets

In several cases, the generation of a data set is linked to a certain task or a current
issue of investigation. Therefore, corpora are recorded that are not widespread
in the sense of being given to a distributor like ELRA or LDC, but available
from the collector on request. I will call these data sets individually generated
corpora because they were collected for a certain, individual purpose. Besides
task depended reasons, such data sets are not commonly distributed since they
reflect only a limited aspect of research or highly depend on a language, for
instance, and thus, are not in the scope for many researchers.

Dillon recorded three participants who listened to music of Johann Sebastian
Bach (cf. [Dillon 2005]). The issue was to evoke an emotional engagement while
listening to the music. For this, the participant’s reaction is related to the char-
acteristics of the music pieces like its tempo, articulation, sound level, etc. The
whole setup is highly related to musical analyses.

In relation to the engagement, in [Gustafson & Neiberg 2010] a data set is
presented that covers dyadic conversations between an entertainer of a radio
show and his listeners. Both partners discuss via telephone about various topics
linked to the show. During the interaction, the entertainer attempts to keep the
caller engaged in the conversation. As this is a telephone-based setting only audio
recordings are available. The corpus contains 73 calls of Swedish conversation.
The main issue which was analysed on the data set is, how humans prosodically
align each other during a telephone call tracking also the engagement of the
partners.

Analysing engagement and involvement – for this, the community is working on
distributed data sets (cf. next Section) – culminates in providing socio-feedback
(cf. [Rasheed et al. 2013]). For this purpose, in [Rasheed et al. 2013] a real-time
system is developed that investigates acoustic cues in dyadic HHIs. To train the
classifiers, a corpus of 42 face-to-face conversations is recorded which focuses on
issues of team building. The data is collected with a lapel microphone for each
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participant and the recording is afterwards automatically classified according to
levels of involvement, dominance, and impedance.

The aspects of engagement and socio-feedback are indeed related to involve-
ment but are not in the focus of this thesis. Therefore, I will guide the attention
towards data sets which reflect involvement. These are introduced in the following
Section.

Distributed Data Sets

So far, I considered data sets which were recorded by the authors of the corres-
ponding papers reflecting their research needs and interests. Furthermore, the
corpora are mainly focused on engagement that is not in the focus of this thesis.
Hence, I will introduce in the following, corpora which can additionally be util-
ised to study aspects of involvement. Furthermore, they are also distributed by
the collectors either via organisations like ELRA and LDC or available as free
download via internet. To the best of my knowledge, the following list of data
sets reflects all corpora which are available for the community, yet. As I am
dealing mainly with speech processing, I grouped the data sets according to the
modalities, namely audio-only and multimodal recordings; that means, besides
audio samples, material of further modalities is provided. For each data set its
main characteristics are briefly introduced; for detailed descriptions I refer to the
corresponding papers.

Audio-only Data Sets In the collection of conversational data sets, to the
best of my knowledge, only one distributed corpus can be found that relies on an
unimodal setting, namely audio recordings.

ISCI Meeting Corpus In [Janin et al. 2003] the ISCI Meeting Corpus is
introduced, providing English spoken material of speakers from all over the world
gathered in a meeting room. Most of the participants are native English speaker
(28 participants) whereas 25 participants are from non-English speaking coun-
tries. All of them have an academic background and are in the age of 20-62 years.
In each session ten speakers interact with each other talking about one of four
topics. The four categories are: i) understanding of academic problems, ii) data
set recorder meetings, iii) issues of robustness in signal handling, and iv) network
services. In total, 75 meetings are included in the corpus.
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The equipment of the recording is as follows: Each participant wore a headset
microphone which recorded the signal close to the speaker. Further, four omni-
directional microphones are posed on a table recording the whole situation. In
addition to the audio samples, for each session a transcript is provided by the
distributor.

Multimodal Data Sets In contrast to the ISCI Meeting Corpus, the following
data sets supply at least two modalities. In all of the corpora participants used
English to communicate with each other. Providing an overview, I concentrate
on the main characteristics of the data sets and refer to the corresponding papers
for further details.

ISL Meeting Corpus In [Burger et al. 2002] the ISL Meeting Corpus is
introduced that contains 104 meetings with eight participants each. The parti-
cipants – 18-70 years old – are mainly native American English speakers, but also
a few of them are from different non-English speaking countries. However, the
recordings are in English. The data sets consists of 103 hours of discussions on
different topics related to various scenarios. The topics are prearranged to keep
the recordings under controlled conditions, dealing with i) planning issues, ii)
military topics, iii) games, iv) topic discussion in general, and v) chatting. There
are no information about the distributions of the topics available.
The audio-visual recordings were done in a laboratory environment using eight
table-mounted microphones and in addition, one lavaliere microphone for each
participant. Furthermore, three standard cameras were used to observe the group
in total. Additionally to the audio-visual material, meta-information like scen-
ario type, participants’ information, etc. are collected which allows a grouping of
the session. Besides the transcription of the material, the data set was processed
according to the formalities of Verbmobil.

M4 Corpus Another corpus that deals with prearranged or scripted scen-
arios is the M4 Corpus presented in [McCowan et al. 2003]. The recorded group
meetings have a talk-like style; that means, one participant gives a monologue
and thus, is mainly in action. In contrast, the group is reacting on the talk by
taking notes, showing agreement or disagreement, etc. In total, eight participants
are involved in each meeting where the constellations vary for each session. There
are no detailed information about the participants themselves or the topics of the
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meetings available.
The M4 Corpus provides also audio-visual recordings which are fully synchron-
ised. For the audio data collection a table-mounted microphone array as well as
24 lapel microphones were used. The video streams were recorded with three TV
cameras. In total, 60 meetings with five hours of data were collected. Besides the
audio-visual information, the content of a whiteboard and a projection is in the
view of one camera. Though, these are not provided as additional modalities.

AMI Meeting Corpus Linked to the M4 Corpus is the AMI Meeting Cor-
pus (cf. [Carletta et al. 2005]). Both data sets provide audio-visual recordings of
meetings that incorporate additional modalities. In contrast to the M4 Corpus,
in the current corpus the whiteboard and the projector contents are separately
recorded and thus, can be seen as further modalities. The audio recordings’
setting is as follows: Besides headset microphones for each participant, omni-
directional table-mounted microphones were used. Furthermore, microphone ar-
rays with four and eight omni-directional units and a binaural manikin collect
audio samples. The whole group is monitored by two to three cameras that are
either placed in the corner of the meeting room or in an overhead position. Addi-
tionally, for each participant close-up cameras are utilised. The material in total
is transcribed and aligned with the audio streams. Moreover, annotation and
labelling according to aspects like what is named, topics, activity of the group
– what is done –, gestures, emotions using Feeltrace (cf. [Cowie et al. 2000]),
etc. is available. So far, no labelling regarding involvement is provided.
The scenario of the data set is related to investigations of group behaviour. There-
fore, the four participants play a role over several sessions, namely i) project
manager, ii) marketing expert, iii) interface designer, and iv) industrial designer.
The goal is: designing a TV remote control whereas none of the participants is a
professional designer. As this is a development task several meetings in different
phases of the project take place. Hence, this data set provides possibilities for
comparative studies.

VACE Multimodal Meeting Corpus Military meetings and thus, milit-
ary topics are in the focus of the VACE Multimedia Meeting Corpus introduced
in [Chen et al. 2005]. The scenario mainly concentrates on wargames and military
activity planning like planning of rocket launches. The total number of meeting
participants is not specified. The only information is that at maximum eight
participants can sit around the provided table.
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The fully time synchronous recordings were collected with two to six table-
mounted microphones, one earset microphone for each participant, and ten cam-
corders mounted on an overhead rail system. Additionally, nine infrared cameras
are utilised to collect the motion of the participants. Due to the enormous amount
of cameras, which are configured in a way that each participant is in the focus
of at least two cameras, and the time synchrony in the recordings a 3D tracking
of the motions and gestures is possible. This is a distinguishing characteristic of
this corpus.

Multimedia Database The Multimedia Database by [Campbell et al. 2006]
is a collection of meetings recorded over 12 months. Finally, 12 sessions were
selected to be included in the current collection. Each session presents scripted
business-like scenarios which deal mainly with planning and progress of business
activities. The meetings were recorded in various locations and thus, different re-
cording environments are provided. Besides the varying number of participants,
which is in the range of 4 to 12, also the length of each session is different.
The technical setup of the recording was kept fixed over all sessions. For visual
data collection a table-mounted camcorder with a 360-degree lens was used. Fur-
ther, for audio recordings four microphones in a windmill configuration were
mounted on a table centred between the participants. Additionally, in some ses-
sions a stereo microphone was used.

TableTalk The TableTalk corpus is introduced in [Campbell 2009] and fur-
ther information will be given in Section 3.3.

D64 The latest corpus, the D64 (cf. [Oertel et al. 2010]), is, besides Tab-
leTalk, the corpus which is most related to the investigations of this thesis re-
garding the involvement in a group conversation. Further, it is linked to the
TableTalk corpus (cf. [Campbell 2009] and Section 3.3) as both have a similar
setting. Both data sets provide material which contains non-scripted interactions
in a colloquial style. In particular, in D64 the participants chat about topics of
culture and politics. The data set is split in two sessions recorded on two different
days where each session lasts 4 hours. Four and five participants (mainly the au-
thors of the paper [Oertel et al. 2010]), respectively, sit together in an apartment,
that means, in a naturalistic environment.
The apartment was just slightly modified to fit the recording equipment, but
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keeping the naturalistic conditions of an informal environment. Two 360-degree
cameras mounted on a table in the centre of the room as well as seven addi-
tional video cameras recorded the group and the participants’ behaviour. For the
purpose of a better movement detection reflection markers were adjusted on the
participant which do not restrict the mobility. Further, headset and lapel micro-
phones for each participant were applied to collect audio samples. In general, the
data set was processed according to [Campbell 2009] in terms of video feature
extraction. Additionally, the material is labelled with levels of involvement as
described in [Oertel et al. 2011b].

2.4 Methods of Disposition Recognition from
Speech

Up to now, the general idea of emotion recognition from speech and its evol-
ution (cf. Section 2.2) was briefly discussed. Furthermore, data sets which are
suitable to train classifiers for various kinds of dispositions were introduced. To
establish proper recognition systems for dispositions, feature sets which can be
automatically extracted from speech and which contain meaningful information
are necessary. These will be discussed in the following Section. Moreover, the
classifier itself that represents the core of each recogniser will be considered. A de-
tailed description of the methods applied in my experiments is given in Chapter 4
and thus, the following collection is intended to be an overview, only.

2.4.1 Feature Sets for Disposition Recognition

It is common in the community to distinguish prosodic and spectral features.
Prosodic features are mainly reflecting the characteristics of a voice and speaking
style. On the other hand, spectral features represent the characteristics of the
speech signal itself.

In the beginning of speech recognition the focus with respect to features was
mainly on the spectral ones. In Table 4 in [Anusuya & Katti 2009] an overview of
widely used features is given including wavelets, Linear Predictive Coding (LPC),
and MFCC. LPC and MFCC are also commonly used in emotion recognition
from speech. This was shown by various researchers, for instance, [Vogt & André
2005; Ververidis & Kotropoulos 2006; Vlasenko et al. 2008; Schuller et al. 2010a;
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Schuller et al. 2011c; Sapra et al. 2013]. In [Ververidis & Kotropoulos 2006] as
well as in [Schuller et al. 2011c] spectral feature sets are introduced and related
to the usability in emotion recognition from speech. Especially as an result of
the first Interspeech emotion recognition challenge, it is shown that most of
the systems are relying on MFCC based feature sets (cf. [Schuller et al. 2011c]).
In my studies, I usually rely also on MFCCs (cf. [Rabiner & Juang 1993]) and
Perceptual Linear Predictive Coefficients (PLP) (cf. [Hermansky et al. 1991])
features representing the spectral characteristics of the signal (cf. Section 4.2.1).

On the other hand, prosodic features are also used to evaluate the voice’s char-
acteristics of a speaker. These are mainly duration, pitch, intensity, speaking
rate, and voice quality features. The term voice quality features includes features
like noise-to-harmonics ratio, jitter, shimmer, etc. These methods are reviewed
in [Ververidis & Kotropoulos 2006] and [Schuller et al. 2011c]. A quite exhaustive
overview of applied features and the corresponding feature selection process is
given in [Anagnostopoulos et al. 2012] where also the extraction methods for fea-
tures are briefly described. In [Ververidis & Kotropoulos 2006] additionally vocal
tract features like formants and bandwidth, speech energy, and the Teager En-
ergy Operator are introduced. In my experiments on semi-automatic annotation
(cf. Section 5.2.2) formants, their bandwidths, intensity, pitch, and jitter are used
as additional prosodic features as introduced in Section 4.2.2. In [Fragopanagos
& Taylor 2005] the authors report about empirical studies on prosodic features
considering several emotions. These studies are limited to anger, boredom, hap-
piness, and sadness, whereas a more extensive examination of prosodic features
and emotions is given in [Cowie et al. 2001]. It was found that, especially, pitch is
a discriminative feature for these emotions. Nevertheless, Fragopanagos & Taylor
concluded:

In fact due to their empirical nature, these observations tend to have
a certain degree of variance or even disparity depending on the re-
searchers and the material used for the studies. [Fragopanagos &
Taylor 2005]

In addition to the aforementioned features, functionals applied to these are
widely used (cf. [Vogt & André 2005; Schuller et al. 2010a; Schuller et al. 2011c]).
Usually, mean, minimum and maximum of a feature, and various quantiles are
applied as functionals to the values of the considered features. In particular, an
overview is shown in [Schuller et al. 2010a; Schuller et al. 2011c].
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Considering the presented features, [Zeng et al. 2009] discussed these in the
context of audio-visual analyses and further, in a sense that detaches from emo-
tions towards broader investigations. For this, features are more related to dis-
positions. Such issue is also reflected in publications like [Bencherif et al. 2012]
regarding gender effects in the recognition of traits and [Scherer et al. 2012] where
multimodal recognitions of user states are investigated. These aspects are fur-
ther regarded in [Scherer 2011] leading towards disposition recognition in HMI.
The presented works support the assumption that the established features from
speech recognition and emotion recognition from speech can be transferred to the
disposition recognition from speech.

Finally, as a kind of conclusion about the features which are used in emotion
and disposition recognition from speech, it can be stated that:

[The features’] relative contribution can also vary greatly, depending
on the database being analysed: For instance, for data based on scrip-
ted speech, [prosodic] features are normally of no value, apart from
some specific applications such as data mining in movie archives. On
the other hand, as the register comes closer to spontaneous/real-life
speech, these features can gain considerably in importance. [Schuller
et al. 2011c]

2.4.2 Classification Methods for Disposition Recognition

Based on the corpora and extracted features which were introduced in the pre-
vious Sections, classifiers can be trained and afterwards evaluated. Usually, the
training process and thus, the performance of a classifier was linked to the utilised
data set. In [Schuller et al. 2009a; Schuller et al. 2010a] the authors showed that
this limitation could be overcome by cross-corpus training and evaluation. For
this, a data set with a certain characteristic but less training material is just used
to adapt a classifier which was already pretrained on another corpus providing a
suitable amount of samples. Investigations by Schuller et al. support the assump-
tion that such a cross-corpus handling seems to be independent of several kinds
of classification methods. Of course, this is related to the individual classifier and
thus, the currently applied methods in emotion and disposition recognition from
speech will be reviewed.

In the beginning of speech processing and recognition simple comparison op-
erations were applied (cf. [Anusuya & Katti 2009]), using analogue filter banks
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and logic circuits. Further developments in the community led to more complex
systems which are able to recognise words. An advanced kind of classifier, which
fits the conditions for speech recognition quite well, was introduced by the Hid-
den Markov Model (HMM) (cf. [Cave & Neuwirth 1980; Rabiner & Juang 1993]).
Nowadays, HMMs are a quite popular classifier method.

As it is stated in [Schuller et al. 2011c] various other methods, for instance
Support Vector Machines (SVMs), ANNs, etc., were transferred from speech re-
cognition to emotion recognition from speech. The most commonly used classi-
fication approaches are collected in [Schuller et al. 2011c] and also reflected in
[Vlasenko 2011]. Additionally, in [Zeng et al. 2009] and [Bousmalis et al. 2013]
they are related to multimodal investigations of emotions and further, to first
ideas of disposition recognition.

In the following, the methods are sketched briefly, providing also a rough idea
of the classifier’s performance.
In [Anagnostopoulos et al. 2012] a marvellous overview of commonly used clas-
sification methods is given and additionally, a collection of emotion recognition
results is presented. This paper also provides a selection of references for each
approach that is quite suitable for further reading. The following considerations
are based on [Schuller et al. 2011c] and [Anagnostopoulos et al. 2012] to which I
refer for corresponding references. Additionally presented methods are referenced
at the specific point.
Common classification approaches can be divided into two classes; namely single
classifiers and hybrid classifiers including ensemble as well as voting methods. So
far, it is quite common in the community to apply single classifier architectures
to recognise emotions from speech. The most popular classifier is the HMM using
HMMs as internal models. A Gaussian Mixture Model (GMM) is a probabilistic
model that applies convex combinations of multi-variate normal distributions to
model the characteristics of a given probabilistic density function and thus, they
are a special type of a production model. In contrast, HMMs are characterised
by a twofold production process. HMMs model the temporal evolution and fi-
nally, produce a corresponding output. Another common statistical method is
the SVM which aims to find a separation in a transformed feature space by ap-
plying a kernel function. Special cases of SVMs are Twins SVMs and Fuzzy-Input
Fuzzy-Output SVMs (cf. [Borasca et al. 2006; Thiel et al. 2007]). Inspired by the
computational intelligence’s community several classifiers are used in emotion
recognition from speech, learning relations between presented inputs and cor-
responding emotional classes. Most of them are based on ANNs (as additional
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Table 2.2: Performance of selected classifiers achieved on EmoDB. The classifiers
are as follows: Gaussian Mixture Model (GMM), Hidden Markov Model (HMM),
Support Vector Machine (SVM), Artificial Neural Network (ANN), C4.5 algorithm
(C4.5), and Random Forest (RF). The list is adapted from [Anagnostopoulos et al.
2012] representing only values obtained by speaker-independent experiments. It is
to notice that the values itself are hard to compare amongst the different classifiers
since the evaluation lack uniformity in the validation measures (cf. [Anagnostopoulos
et al. 2012]).

Classifier Classification performance
GMM 81.0%
HMM 78.4%
SVM 88.6%
ANN 55.0%
C4.5 61.5%
RF 48.0%

reference cf. [Fragopanagos & Taylor 2005]) and Fuzzy Sets. Furthermore, Evol-
utionary and Genetic Algorithms are applied to tune parameter sets of the clas-
sification approaches. In the ANN approach various architectures are considered,
mainly, Multi-Layer Perceptrons (MLPs), Probabilistic Neural Network, Deep
Neural Networks (DNNs), and Simple Recurrent Networks (SRNs), more spe-
cifically Segmented-Memory Recurrent Neural Networks (SMRNNs) (cf. [Chen &
Chaudhari 2009]). Furthermore, Echo State Networks (ESNs) (cf. [Jaeger 2001])
provide a powerful approximation of dynamic processes like emotion recognition.
Based on ideas of artificial intelligence, decision tree approaches classify given
samples according to predefined criteria. A well-known algorithm in this context
is the C4.5 algorithm which is used within the decision trees’ method. Linking
several decision trees results in a Random Forest which is an Ensemble Clas-
sifier. Further modelling techniques – inspired by linguistic observations – are
Bag-of-Words (BoW) and n-gram models. BoW is a numerical representation
of a text given in a vector space modelling. It is widely used in the automatic
categorisation of documents and natural language processing. Therefore, it is
also suitable for emotion classification from text and speech. The n-gram models
are probabilistically based predictors which estimate the next item in a given
sequence. Again, this can be applied to text and speech. To get an impression
of the classifiers’ performance, Table 2.2 presents classification results by differ-
ent architectures. The Table is adapted from [Anagnostopoulos et al. 2012] –
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presenting also the references to the corresponding recognition results – and con-
centrates on results achieved on EmoDB. It is to notice that the values are just
an overview and no direct comparison is possible since the way the classifiers were
evaluated lack uniformity. Nevertheless, the classification performance indicates
the potency of each method.

The second category of classification methods are hybrid classifiers that also
incorporate ensemble and voting approaches. Therefore, these are also related
to aspects of fusion. The way of combining different kind of classifiers is man-
ifold. In [Zeng et al. 2009; Schuller et al. 2011c; Anagnostopoulos et al. 2012;
Schels et al. 2012] various approaches for fusion architectures and combinations
of different classifiers are presented. The proper approach is highly depending
on the classification task and the material which is to be handled. In [Kuncheva
2004] the levels where fusion could be applied are discussed, namely on i) fea-
ture level – combining different kinds of features –, ii) mid level where the final
decision is learned, and iii) decision level applying a predefined combination rule
to the output of several classifiers. On the other hand, ensemble techniques like
Boosting, Bagging, and Stacking help to improve the performance of classifiers,
especially, in combination with voting methods like maximum accuracy methods.
In [Anagnostopoulos et al. 2012] a collection of results is presented, achieved with
hybrid and ensemble methods. From this, it can be concluded that fused archi-
tectures usually perform better than single classifiers as the former combine the
advantages of each method.

Finally, as the different classification methods are on hand, it is necessary
to train such recognisers. For this, several frameworks and toolkits are available
(cf. [Nguyen 2009]). The most common toolkits for HMMs are the Hidden Markov
Toolkit (HTK) (cf. [Young et al. 2009]) developed at the Cambridge University
and openEAR (cf. [Eyben et al. 2009]) designed at the Technical University Mu-
nich. In my experiments, I usually applied the HTK (cf. [Young et al. 2009]). For
other classifiers, a powerful tool is WEKA (cf. [Witten & Frank 2005]) providing
statistic and artificial intelligence methods.

The presented approaches and architectures are widely used in the community
of emotion recognition from speech. As it is denoted in [Scherer 2011] most of the
methods can be also applied in the context of disposition recognition and thus,
be transferred to the disposition recognition from speech. As already stated in
Section 1.4 the disposition of a user can also be a relevant information for the
assessment of a conversation and the other way around. Therefore, it is interesting
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to investigate this aspect. In Chapter 6 this is done on a specific topic – namely
a group conversation – and in general, in the following Section, focusing on the
involvement of a user participating in a conversation.

2.5 Automatic Analysis of Involvement

As already discussed in Section 1.4, involvement in a conversation is an import-
ant source of information and thus, worthwhile to be analysed. Moreover, such
analysis is an issue related to dispositions since aspects of situatedness (cf. Defin-
ition 1.5 on page 7 and [Simpson 2002]) and personal behaviour are reflected by
the involvement. In the sense of psychological investigations, the involvement has
already been regarded for a longer period (cf. [Krugman 1965]). In this context
usually the group’s reaction as well as the interactions of the group’s participants
are under investigation by psychologists which is subsumed by the term group
dynamic (cf. [Wageman 1995]). The research on group discussions (cf. e.g. [Lam-
nek 2005; Keyton & Beck 2009; Kühn & Koschel 2010]) fits in the group dynamic
analyses. By the community various sets of conversations are defined that in-
clude also different kinds of constellations between the communication partners.
For instance, the most obvious grouping is i) a monologue by one participant,
ii) a dyadic interaction, iii) a sub-group interaction, or iv) a conversation of the
group in total. This assignment is directly reflecting the number of participants
who are interacting in such a conversation that is significant for an evaluation of
the group discussion. Furthermore, different hierarchical constellations influence
the conversation and interaction (cf. [Goodwin & Goodwin 2000; Keyton & Beck
2009]). On the other hand, several setups are under investigation representing
different types of situations in daily life. These are, for example, evaluations in
office environments (cf. [Veitch & Kaye 1988]), medical or health care environ-
ments (cf. e.g. [Banister & Begoray 2004]), group meetings (cf. [Carletta et al.
2005]), and teaching situations (cf. [Kang 2012]). Usually, the analyses are mainly
done manually and the automatic part is low. Even with the upcoming technical
analyses, the psychological investigations are relevant – even if they are manually
driven – to establish fundamental theories and ground the automatically derived
results.

In [Krugman 1965] the analysis of involvement with dispositional characteristic
was introduced, namely the influence of TV commercials on the involvement of the
audience. For this, Krugman started furthermore the observation of involvement
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also in a technical related manner, from my point of view. In [Antil 1984] the
focus is linked to commercials and certain products as well whereas the approaches
are still founded in manual analyses. Besides an updated state of the art, Antil
opts for an operationalisation of the involvement’s analyses. Nevertheless, the
considerations are still grounded in psychology.

With [Hartwig et al. 2002] the focus of analysis slightly changed from psycho-
logy towards a technically inspired research. Furthermore, the authors reviewed
the observations on involvement up to that point and concurrently used decep-
tion detection as a test case for involvement. For this, manual investigations
are accompanied by statistical analyses. A technical investigation of involvement
was started in [Wrede & Shriberg 2003] where four classes of user behaviour in
an interaction were examined, namely being amused, disagreeing, being involved,
and other (cf. [Wrede & Shriberg 2003]). They discuss the involvement in the
context of emotions located in “Hot Spots” [Wrede & Shriberg 2003] that mark a
situation which is relevant for the interaction. This is also investigated in [Oertel
2010]. Related to the work of Wrede & Shriberg is the research presented in [Yu
et al. 2004] that also utilises the recognition of emotions to establish a detection
of engagement in remote conversations. In both publications feature sets are ex-
amined which are suitable to fit the particular issues whereas it is, so far, unclear
if those features are universal and thus can be transferred to other data sets or
situations. Especially in [Yu et al. 2004], first classification results on utterance-
level – to the best of my knowledge – based on their feature set are presented
using HMMs, achieving 75% and 51% performance results on acted and spontan-
eous speech, respectively, having five discrete classes representing the numerical
level of arousal, valence, and engagement (cf. Table 1 in [Yu et al. 2004]). For
detection of engagement in continuous speech an accuracy of 63% was obtained
(cf. Table 2 in [Yu et al. 2004]).
In relation to remote conversations, in [Gustafson & Neiberg 2010] the engage-
ment in a radio broadcast show is considered while the entertainer is talking
to listeners linked-in via telephone. They found that in such an interaction the
behaviour and speaking style is aligned to each other during the conversation.
Furthermore, prosodic cues and backchanneling is investigated as well.
Considering the presented research activities, the involvement is so far not integ-
rated in a broader framework. Moreover, it is ‘assumed’ to be somewhat separate.
In my research, I handle the involvement more generally, being integrated in the
framework of dispositions. On the other hand, I do not distinguish between en-
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gagement and involvement as from my point of view, both terms reflect similar
research issues and thus, can be used synonymously.

Like in [Yu et al. 2004] I argue that for a general analysis of involvement, a
multimodal observation of the user and the group is necessary. As discussed in
[McCowan et al. 2005], in addition to psychology, the analysis of a group conver-
sation including the involvement is an emerging domain. It is highly related to
various research communities like speech processing, image, or video processing,
and information fusion (cf. [McCowan et al. 2005]). Furthermore, such kind of
analyses combines several levels of perspectives, namely social, psychological,
synchronous, and individual perspectives (cf. [McCowan et al. 2005; Schuller et
al. 2007b; Campbell 2009]. On the other hand, the issue will be more complex if
interactions with multiple users and a technical system are observed (cf. e.g. [Har-
ris & Rudnicky 2007; Kumar et al. 2007]). Thus, an automatic analysis of group
conversations is, up to now, focused on the group in an HHI setup. Nevertheless,
from such information and findings advanced technical systems (cf. [Wendemuth
& Biundo 2012]) might benefit.

Consequently, involvement in a multimodal setup is considered in [Oertel et
al. 2011a] and [Oertel et al. 2011b] using audio and video recordings of a group
interaction. The analyses are done based on the D64 corpus (cf. [Oertel et al. 2010]
and Section 2.3.2). The whole scenario as well as the observation is inspired by
[Campbell 2009]. In [Oertel et al. 2011a] results on D64 are presented according
to the modalities and further, by combination of these. The authors achieved
74.4% mean accuracy at its best at which the involvement is grouped in ten
grades. This is comparable to the findings on TableTalk (cf. Section 6.3). So
far, the most capable system is shown in [Rasheed et al. 2013] which allows a
real-time analysis in terms of behaviour detection “with respect to involvement,
dominance, and impedance” by classifying levels of involvement.
My work is related to the context of involvement detection; to be specific, it is the
detection and classification of changes in the involvement. For this, the TableTalk
corpus (cf. [Campbell 2009]) is used where results are given in Section 6.3.

To conduct reasonable classification and detection experiments, a proper pre-
processing in the sense of labelling has to be applied to the corpora which is also
the case with involvement. Reviewing the literature regarding the labelling of in-
volvement, so far, no common classes or categories are established. For instance,
in [Krugman 1965; Antil 1984] the observed categories are mainly related to the
involvement towards a product. The engagement in a conversation in a tech-
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nical sense is labelled in [Yu et al. 2004; Gustafson & Neiberg 2010]. Moreover,
[Wrede & Shriberg 2003; McCowan et al. 2005; Oertel et al. 2011a] give labels
for involvement in various granularities. The most detailed labelling approach is
presented in [Oertel et al. 2011a] classifying levels of involvement. They discuss
the processes and describe a kind of user’s manual which is given to the labellers.
Further, in [Oertel et al. 2011b] the reliability of the labelling, based on the afore-
mentioned ten grades, is shown with κ = 0.56 for 30 labellers. The labelling for
TableTalk which is presented in Section 6.2 is connected to the procedure in [Oer-
tel et al. 2011a]; though, in my work changes on involvement are regarded. The
most abstract categories, namely interest, dominance, and impedance, are given
in [Rasheed et al. 2013] which aim on socio-feedback of a system. This kind of
research is linked to the idea of companion-like systems (cf. [Wendemuth & Bi-
undo 2012]) for which this thesis provides parts of analyses that will be discussed
in the following Chapters.

2.6 Summary

In the current Chapter the developments in the HMI as well as in fundamental
evolutions in disposition recognition from speech have been reviewed. For these,
also remarkable achievements have been introduced and discussed. Furthermore,
a general overview of the automatic analysis of involvement has been given. This
user characteristic shown in conversations and interactions was integrated in the
user’s disposition recognition and further, linked to the context of HMI. In ad-
dition to the methods used in feature extraction and classification, data sets for
both disposition recognition from speech and involvement analyses have been
introduced. As stated in Section 2.4.2, the performance of classifiers is highly
depending on the applied corpora. Thus, in the following Chapter the data sets
used in my investigations will be introduced in greater detail.
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IN this chapter I introduce the data sets which were used in the experiments of
this thesis. As it is common in the research community on emotion recognition

from speech, I distinguish two types of data sets: i) acted and ii) non-acted
corpora. It is obvious that this is just a small selection of data sets which are
used for emotion and disposition recognition from speech. A more advanced
collection of material can be found, for instance, in [Campbell & Reynolds 1999;
Anusuya & Katti 2009; Zeng et al. 2009; Schuller et al. 2010a; Schuller et al.
2011c; Anagnostopoulos et al. 2012]. Further details are also given in Section 2.3.

3.1 Acted Data Sets

In the beginning of speech recognition and, especially, emotion or disposition
recognition from speech data sets with acted material were used to train and
test any kind of recognition and classification systems since such corpora supply
controlled conditions in the recording and further, provide a kind of ground truth
in the emotions label that is necessary for the validation of recognition systems.
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Acted material means that the participants of the recording were either actors
or naïve speakers who were asked to react in a specific manner, this is acting
the favoured emotion. Therefore, a controlled situation was created where the
output, that is the intended classification result, was predefined and hence, the
evaluation could be done in an easy way. Further, it can be assumed that in acted
data sets the expressiveness in the emotions is high (cf. [Batliner et al. 2000]).
In particular, as it was yet unclear which method and features are useful in the
recognition process, such acted material was a suitable starting point to evaluate
those research issues. In this thesis, I also started with observations which were
based on data sets recorded under predefined situations. Nevertheless, according
to [Batliner et al. 2001] who heavily argued for non-acted data sets, I switched
towards corpora that are more natural (cf. Section 3.2) applied to the methods
presented in Chapter 4.

3.1.1 EmoDB

The EmoDB [Burkhardt et al. 2005] is widely used in emotion recognition from
speech (cf. [Schuller et al. 2010a]). However, it was intended to get suitable ma-
terial to investigate the speech synthesis process afflicted with emotional charac-
teristics (i.e. the set of Ekman’s Basic Emotions [Ekman 1992] is realised, namely,
anger, boredom, disgust, fear, joy, neutral, and sadness). Due to the high quality
of the recordings it became a kind of benchmark data set to test methods and
classifiers, for instance [Schuller et al. 2009a; Xiao et al. 2009; Albornoz et al.
2010; Iliou & Anagnostopoulos 2010; Schuller et al. 2010a; Böck et al. 2010].

According to [Burkhardt et al. 2005] the recoding conditions are as follows:
the recordings were done in an anechoic cabin using a Sennheiser MKH 40 P 48
microphone and a Tascam DA-P1 portable DAT recorder. The sampling rate was
48kHz which was afterwards down-sampled to 16kHz. A special characteristic of
the data set is that the content of the utterances is not related to the emotional
expression and, further, due to the acted situation, the data does not represent
the speaker’s disposition. The ten sentences which are spoken in German can be
found in [Burkhardt et al. 2005].

Further, the authors applied listening evaluations to the material to assure
high quality. They selected only samples with at least 80% recognition rate and
60% naturalness. For this a subset of approximately 493 samples from totally
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800 was collected. The total number of utilised samples varies from publication
to publication as some authors reselected the material for their studies.

For my studies I relied on the subset given by Burkhardt et al. and therefore,
used 493 samples. Due to the selection process the distribution of the samples
according to emotions is unbalanced (cf. Table 3.1). For this both measurements,
WA (Equation 1.1) and UA (Equation 1.2) (cf. Section 1.3.1), have to be applied
to assess the results of any classification done on EmoDB.

Table 3.1: Emotion’s distribution in the EmoDB.

Emotion Number of samples Overall time
anger 127 05:34.77
boredom 79 03:39.97
disgust 38 02:08.73
fear 55 02:03.70
joy 64 02:43.89
neutral 78 03:04.32
sadness 52 03:27.43
total 493 22:42.81

3.1.2 eNTERFACE

The data set eNTERFACE was recorded during a summer school in 2005, which
had the same name, held at the University Louvain, Belgium. The participants of
this school served as the actors in the recordings. Besides audio, video recodings
were done to generate a data set of facial expressions simultaneously. For this
thesis, I concentrate on the audio part and hence, present only information which
are related to this material. Video settings and analyses can be found in [Martin
et al. 2006]. In eNTERFACE, 42 participants (34 male and 8 female) from all over
the world (cf. [Martin et al. 2006]) were recorded, thus, most of the speakers were
non-native, nevertheless, the language is English. As the authors were interested
in Basic Emotions they applied the ideas of Ekman & Friesen [Ekman & Friesen
1978] that led to the following emotional categories used in eNTERFACE derived
from facial expressions: anger, disgust, fear, happiness, sadness, and surprise.
Similar to EmoDB participants were asked to act the emotions. In contrast, by
the setup of the recordings, the speakers were introduced to a specific emotion by
listening to a short story which describes an emotional situation, and afterwards
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they were asked to react on it with any kind of utterance. This means, the
emotion was induced but with the participant’s knowledge. The reaction was
assessed by two experts according to the expressiveness, especially, whether this
is an unambiguous emotion regarding the predefined sets.

The data set was recorded with a standard mini-DV digital video camera and
a “high-quality microphone” [Martin et al. 2006] which is not further specified.
In total, each participant provided several recordings for each emotion and there-
fore, 1170 samples are available. Only the audio material is used throughout
the experiments which leads to a slightly different number of available samples
(cf. Table 3.2) in comparison to [Martin et al. 2006] as their counting is based on
the video samples.

For the experiments in this thesis the full set of samples was used. As the
distribution of the material (cf. Table 3.2) is much more balanced as in EmoDB
it is expected that WA and UA are not significantly different.

Table 3.2: Sample’s distribution per emotion in eNTERFACE.

Emotion Number of samples Overall time
anger 200 10:51.56
disgust 189 08:44.16
fear 189 08:47.28
happiness 205 08:36.32
sadness 195 09:56.20
surprise 192 08:22.00
total 1170 46:30.24

3.2 Non-Acted Data Sets

As introduced in Section 3.1 I applied the methods which are used in this thesis
to non-acted material as well. Why should such naïve data sets be considered?
Batliner et al. [Batliner et al. 2000; Batliner et al. 2001] discussed the importance
of real-life material in detail. Especially, the fact that dispositions in general,
but emotions in particular, are expressed in a subtle manner in real-life interac-
tions pushes the research community towards non-acted data sets. Especially, in
[Batliner et al. 2000] a comparison of three sets, namely acted, read, and real-life
emotions, is given. Further, some emotions identified by Ekman [Ekman 1992]
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are not represented in naïve HMIs, for instance disgust (cf. e.g. [Siegert et al.
2011]).

When switching from acted to non-acted corpora several aspects have to be
considered. Of course, the methods and the parameters of the classifiers have to
be adapted to the data sets and thus, for the usage in real-life applications. This
needs some effort and research. But, an important aspect is to get a feeling for the
recognition results. That means, in acted material depending on the classification
methods accuracy values of more than 75% are reached (cf. e.g. [Schuller et al.
2009a; Böck et al. 2010; Glüge et al. 2011]) with tuned classifiers quite easily.
In contrast, as, for instance, discussed in [Batliner et al. 2000; Schuller et al.
2009a; Schuller et al. 2010a] such high accuracy values cannot be achieved using
material which is not as expressive. Especially, Batliner et al. compares the
different conditions and found a decreasing in the recognition results [Batliner
et al. 2000]. From this, lower accuracy values are expected for real-life, non-
acted data sets. On the other hand, the results have to be set in correlation to
either the chance level, which is a pure probabilistic decision, or the ‘ultimate
system’: human assessment. Considering the performance of humans in the
classification of dispositions, even those cannot get an accuracy of 100%; that
means, all dispositions given in a corpus can be recognised correctly. I encourage
the reader to perform an experiment: listen to near real-life data as presented
in Section 3.2.1 and 3.2.2 and do the classification job by yourself. Then the
complexity of such task will be obvious and the achieved classification results can
be ranked accordingly. Therefore, I argue that any classification result have to
be related to the performance of the human and in fact, applying this point of
view, the classification methods achieve significant results.

3.2.1 Last Minute

A scenario which represents naïve HMI is the Last Minute corpus [Rösner et al.
2012]. Whereas in [Rösner et al. 2012] information of the data set itself is given,
[Frommer et al. 2012b] describes the technical equipment and realisation of the
recordings and further, first analyses done on this material. This data set was
recorded in the context of the SFB/TRR 62 at the Otto von Guericke University
Magdeburg in a Wizard-of-Oz (WoZ) setting. This means, the system’s actions
are simulated by an operator which is usually called wizard. The data was re-
corded with six cameras (different types and manufacturers) and two Sennheiser
ME 66 shot-gun microphones as well as a Sennheiser headset. For a subset of
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users also biophysiological signals like heart rate, skin conductance level, etc. were
taped using the NEXUS-32 amplifier and the Biobserve software.

The story of the Last Minute scenario is a follows: the participants were
asked to evaluate a novel HMI system which is highly adaptable to its user and
hence, a kind of a companion (for the purpose of the systems setup cf. [Rösner
et al. 2012] and for the ideas related to companion technologies cf. [Wendemuth &
Biundo 2012]). To perform a system’s adaptation towards a user the interactions
reflecting the personality and the personal reaction of a user in different situations
are necessary. Therefore, in the beginning several personal information like name,
age, gender, etc. are enquired. Afterwards, the participant has to be engaged in
a computer-based virtual task, preparing his luggage for a journey which he has
won. To get different emotions and dispositions the user is faced with several
barriers (cf. [Rösner et al. 2012]) that are implemented in the scenario called
baseline, challenge, listing, and waiuku. The barriers are followed by a specific
situation that I also refer to by the barrier’s name. Further, the material of these
situations are utilised in my experiments. A detailed description of the situations
which are also representatives of class labels can be found, for instance, in [Siegert
et al. 2012c] and thus, are introduced briefly at this point.
Baseline is the first part of the scenario and follows the collection of user data. It
is assumed that the participant is at this moment relaxed and the first excitement
has gone. As the name suggests, it is the baseline to calibrate the methods and
classifiers to the specific user.
Challenge is the label for the first task occurring in the scenario. The predefined
limit of the luggage is reached and hence, the user has to rearrange the baggage.
This includes unpacking and selecting of other items.
Listing describes the itemising part of the scenario. Here, the participant is
mainly engaged listening to the description of items which are already packed
into the luggage. Hence, this situation is mainly driven by the system.
Waiuku reflects the last section of the scenario. The participant comes to know
the destination of the journey. So far, he believes that this will be a summer
trip, as the recordings were made in summer, but the final destination is in
New Zealand which means it is winter there. The participant has to re-pack his
luggage accordingly. This puts the participant under pressure as also the time
limit expires which was set since the trip should start almost immediately after
the experiment.

As mentioned before, the Last Minute is a kind of naïve HMI where in total
data of 130 participants was recorded and accordingly, 56 hours of material are
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available. To keep this near real-life characteristic, the pushing of the wizard
is kept minimal. Nevertheless, its influence can be recognised according to the
user’s reactions. For the sake of a proper experimental design, psychologists were
involved in the planning of the scenarios. Moreover, the single recordings were
done in a predefined structure to highly ensure the same conditions for each
participant (for specifications cf. [Frommer et al. 2012a]). Finally, questionnaires
filled by each participant reflect the user’s personality traits and their ideas about
this particular HMI.

For the experiments in this thesis I used a subset of twelve participants for
which at that moment full transcriptions and annotations were available. Further,
for those users the full set of modalities are on hand (namely audio, video, and bio-
physiological signals) which is important for multimodal aspects (cf. Section 5.2
and 5.3). Altogether, I ended up with 219 audio samples given in Table 3.3 where
the distribution according to the single participants is approximately equal. In
total they indeed differ for the single scenarios.

Table 3.3: Sample’s distribution per scenario part in Last Minute.

Scenario Number of samples Overall time
baseline 69 01:39.14
challenge 47 01:30.49
listing 39 00:59.49
waiuku 64 02:15.93
total 219 06:25.05

3.2.2 EmoRec I+II

In [Walter et al. 2011] another data set with near real-life HMI is introduced
containing induced dispositions (cf. also Section 3.2.1). For the experiments in
inter- vs. intraindividual disposition classification I mainly used this material,
called EmoRec. As in Last Minute (cf. Section 3.2.1) this data set is recoded in
a WoZ manner and was collected in the SFB/TRR 62 by the Medical Psychology
Group at the Ulm University. The focus of this material is on multimodal data
collected with enriched biophysiological signals, namely skin conductance level,
respiration, blood volume pulse, heart rate, and electromyogram (cf. [Walter et
al. 2011; Böck et al. 2012b]). The equipment was a Canon MD215 camcorder
for the video recordings and a Sennheiser ME66 shotgun microphone with a
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sampling frequency of 44.1kHz collecting audio samples. The audio material is
divided into two parts according to the recording conditions as in the first one the
internal microphone of the camcorder was used only. Nevertheless, the sampling
frequency is equal in both cases. The collection of the biophysiological signals was
done with the Biobserve software applying the Nexus-32 amplifier. The signals
of all modalities were postprocessed to ensure synchronicity on the material.
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(b) Workflow of the EmoRec I subpart.

Figure 3.1: Workflows of the EmoRec data set. EmoRec I is the subpart of the full
set (cf. Figure 3.1(a)) which is just one pass of the scenario. The green and red
frame indicate the Experimental Sequences with positive and negative dispositions,
respectively.

According to [Walter et al. 2011] the scenario of the data set is as follows which
is also visualised in Figure 3.1. The full scenario consists of two runs repeating
the same steps in the experimental setup where the first run represents a stand-
alone data set, called EmoRec I (cf. Figure 3.1(b)). Further, the both runs as
well as the subsequences were recorded in a predefined structure to highly ensure
the same conditions for each participant (for specifications cf. Table 1 in [Walter
et al. 2011]). The whole story is to interact with a mental trainer simulated by
the popular game ‘Concentration’. The idea of the game is to find corresponding
pairs of cards given on a deck. In correlation to the disposition which should be
induced the level of difficulty of the deck varies. Furthermore, other types of re-
active elements in an HMI are varied to push the participant towards dispositions,
namely misunderstandings, time delays, etc. which are controlled by a wizard.
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As introduced in [Walter et al. 2011] the participant is routed through several
parts of the PAD space [Mehrabian 1996] (cf. Section 1.2.3). This is indicated by
the + and − symbols in Figure 3.1 on the preceding page where a + means high
and − low values in the corresponding dimension. Each change of the position
in the PAD space is linked to a new deck and therefore, a new Experimental Se-
quence (ES). In Figure 3.1(a) on the facing page as well as in Figure 3.1(b) on the
preceding page two ESs are marked that represent prototypical characteristics of
positive (ES-2) and negative (ES-5) dispositions. This is the reason why most of
the results presented in this thesis are based in these two ESs.

In total, data of 125 participants were recorded and postprocessed. Unfortu-
nately, due to the high effort of manual annotation just a subset of the data is
so far coded with FACS. This is done by a trained coder according to guidelines
given by [Ekman & Friesen 1978]. As such manual annotation is a limitation for
data sets I proposed in [Böck et al. 2013a] a framework to reduce such effort and
hence, get the annotation of facial expressions faster. However, to be consistent
in the analyses, especially, for fusion aspects, so far, I have to consider the par-
ticular subset which is already annotated. I ended up with 20 participants (ten
women and ten men) who are all native Germans and to the best of my know-
ledge no actors. The recorded material has a total length of 20 · 7 = 140 minutes
(cf. times of ES-2 and ES-5 in Figure 3.1(b) on the facing page). Eliminating all
non speaking parts, this results in a speech lenght of round 24:03 minutes in total.
As psychologists accompanied the data recordings and set up the scenario it can
be assumed that the participants react in an emotional way and thus, show the
intended dispositions. Nevertheless, besides the recordings each participant has
to indicate his personal disposition in the PAD space utilising the SAM rating
[Bradley & Lang 1994]. The results are quite significant, this means, show that
the induction of the disposition worked. They are presented in Table 3.4 on the
next page according to [Böck et al. 2012b], whereas analysis of SAM ratings are
provided by psychologists who co-authored the publication.

Since EmoRec as well as Last Minute (cf. Section 3.2.1) are generated in the
same project (SFB/TRR 62) the set of participants was not disjunct. A subset
of 8 participants was recorded in both scenarios. This was intended to collect
material as a kind of test samples to validate findings from one scenario in the
other. Therefore, both data sets are linked and can be used to examine naïve
HMI with different settings but similar participants. The samples of theses 8

participants is included in the material used for the experiments done on the two
data sets.
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Table 3.4: Self-ratings of the participants during the ES’ in PAD space according to
SAM (cf. [Böck et al. 2012b]).

ES-2 ES-5
Participant P A D P A D

112 7 3 7 4 7 4
114 8 3 8 3 7 3
118 7 5 7 4 7 6
125 7 7 8 1 1 9
127 8 3 8 2 7 3
129 8 4 7 4 7 4
208 7 3 7 1 9 1
212 9 9 4 3 6 4
215 9 2 9 7 3 9
219 9 1 9 2 7 2
225 8 5 9 8 5 9
226 7 6 7 2 7 4
308 7 4 7 3 6 4
423 7 3 7 7 1 5
427 8 5 2 3 3 2
506 7 7 6 3 7 7
510 7 4 8 5 6 5
511 7 3 7 3 6 2
518 9 5 7 1 7 2
602 7 3 7 2 8 2
mean 7.2 4.3 7.1 3.4 5.9 4.4

3.3 TableTalk

[Campbell 2009] introduces a corpus called TableTalk which supplies a naïve
group conversation. In contrast to the other data sets (cf. Section 3.1 and 3.2),
the corpus is an HHI providing near real-life conversations with a non-fixed do-
main. This multimodal, multi-party corpus contains recordings with at least four
participants on three different days. On one day, an additional participant joined
the constellation. She is an native English speaking Australian woman. Since
she is not occurring in the two other days I suggest to skip this recording for
analyses as thus, comparisons between recordings of the same persons on two
different days can be done. One advantage of TableTalk is that any discussion
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is not prescripted and further, on a non-fixed topic. Most of the time it is a
colloquial chat including slurring of words, backchannels, and filler words.

Independent of the day, the conversations are recorded with one shotgun mi-
crophone and one 360-degree camera which were both positioned centred on a
table. It is important that due to the single microphone, only one channel for
all participant’s voice activities is available. Therefore, it is not directly possible
to investigate a single speaker in the audio recording as the voice activities are
several times mixed and thus, highly overlapping. This is the main disadvantage
of the TableTalk data set. On the other hand, the video signal provides good
material for analyses. Moreover, the data set is already postprocessed accord-
ing to participant’s movements, especially, in terms of face and body detection
(cf. [Campbell & Douxchamps 2007; Campbell 2009]).

For experimental results presented in this thesis, I concentrated on the first part
of TableTalk which is called day1 lasting 34:34 minutes in total. In this HHI four
participants (two female, two male) are chatting about youth culture in Japan,
movies in general, and plans for evening events. The conversation is in English,
however, only one participant is a native English speaker; the participants are
citizens of the following countries: Belgium, Finland, Great Britain, and Japan.

Due to the postprocessing according to [Campbell 2009] a general framework for
analyses was given. To utilise the advantage of given video features I decided to
apply the given frame rate of 100ms and adapt this also for audio investigations.
Doing so resulted in a set of 20541 samples which are to be processed. Each
sample is extracted with a sample rate of 100ms and neither overlap between
samples nor a windowing is given. Given the 20541 samples after smoothing this
results in a total time of 34:24 minutes.
In contrast to video material, the audio was not preprocessed to be applied in
a classifier. This was part of my experiments. Further, the data set in total
had no annotation with respect to involvement which I understand as a kind
of disposition. In Section 6.2 the process of preparing the data set is presented
as well as reliability analyses of the annotation are mentioned. These are also
compared to data sets with similar conditions in the sense of the annotation
process and labels.
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3.4 Summary

The data sets which were presented in this Chapter are prototypical representat-
ives of acted and non-acted corpora.
Especially, the acted material, namely EmoDB, supplies expressive emotions
which can be clearly identified by human beings and also by automatic systems.
With eNTERFACE a switch towards realistic corpora is started as no actors are
playing emotions like they might occur in interactions. On the other hand, these
data sets are still with the HMI context. Considering Last Minute and EmoRec
(cf. Section 3.2), these corpora supply naturalistic participant’s behaviour that
is related to his disposition. Furthermore, they are recorded directly in an HMI
context. Therefore, they are suitable for my further investigations. Moreover,
with TableTalk a HHI is on hand that provides dispositions and involvement
cues which influence the conversation.

As the data sets are presented and their characteristics are introduced they
can be applied to develop automatic systems, which are part of technical devices,
to recognise emotions and dispositions from speech in HMI. To achieve this aim
suitable classification methods and feature sets have to be investigated, adapted,
and improved. These aspects are discussed in Chapter 4.
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THE process of disposition recognition is based on classifiers and on valid-
ation methods (cf. Section 1.3) applied to it. Validation is an important

issue to assess the quality of recogniser systems that are founded on classifiers.
As motivated in Chapter 1 and discussed in Chapter 3, the system’s performance
is highly related to the material which was used for training. In particular, the
training material’s quality further depends on the preparation process. Hence, I
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will present methods for the annotation of data sets and especially a tool called
ikannotate [Böck et al. 2011b] developed by Ingo Siegert and me.

As mentioned, based on annotated data sets suitable classifiers can be trained.
In particular, I will concentrate on HMMs and a certain kind of ANNs. Espe-
cially, for the HMMs I investigated feature and parameter sets. The development
was done on acted material, but as discussed in Section 3.2 the focus of research
is on non-acted data material. However, I found that both parameter sets can
be transferred from acted to non-acted corpora. Moreover, as a special type of
production models µ an additional kind of classifier, namely GMMs, are invest-
igated.

Finally, the fusion of different methods will be discussed since the process of
disposition recognition is in fact multimodal. It is assumed that with multimodal
approaches the variety of dispositional behaviour could be handled better. Nev-
ertheless, even in a single modality fusion of different kinds of classifiers, for
instance, might improve recognition results. As this is not the main focus of this
thesis, fusion is introduced only briefly. Corresponding results will be discussed
in Section 5.3.

4.1 From the Acoustic to Training Material

4.1.1 The Annotation Process

The annotation of a data set is both a quite challenging issue and quite time
consuming. So far, it is done most of the time fully manually by well-trained
annotators or experienced non-professionals, this means persons who are familiar
with assessing human behaviour like psychologist but are not labellers by profes-
sion. Therefore, in the latter case, a larger number of annotators are asked to
judge the material and afterwards, the reliability - also called interrater reliability
- is computed to evaluate the labelling quality.

To preprocess a given data set for emotion recognition from speech, usually
three steps are necessary; namely transcription, annotation, and labelling.
In transcription the spoken utterances are transferred to a textual notation. This
is purely done by writing down what is said with mispronunciations, elliptic ut-
terances, etc. The second step is the annotation. In general, the term annotation
is used to define the process of adding prosodic and paralinguistic signs to a text
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like in the Gesprächsanalytisches Transkriptionssystem (dialogue analytic tran-
scription system) (GAT) [Selting et al. 2011]. Sometimes timing information are
added as well. Finally, further information like emotions and dispositions are
appended during labelling.
In the speech community usually annotation and labelling are used synonymously.

No matter whether the corpus is labelled by a professional or non-professional
annotator, both need a tool for doing this. So far, usually text editors are
used or systems which are adapted to professionals, for instance, the tool Folker
(cf. [Schmidt & Schütte 2010]). Nevertheless, an emotional, multimodal labelling
cannot be done with it; just a transcription and annotation. The formerly can
be done with, for instance, Atlas [Meudt et al. 2012], but it does not provide
support for neither transcription nor annotation. Hence, we developed a tool
which allows non-professionals to transcribe, annotate, and label all in one, given
data sets using audio recordings (cf. Section 4.1.2).

Furthermore, labelling is still a time consuming issue. One solution, which is
pursued especially in psychology, is to establish a data set where the class labels,
for instance, are fixed by experimental design (cf. Last Minute in Section 3.2.1
and EmoRec in Section 3.2.2) or posed by an actor (cf. Section 3.1). Nevertheless,
even with given classes the necessity to mark interesting parts of the material is
still on hand. This means that, for example, the part where a dispositional
behaviour occurs has to be assigned manually. Further, annotating features, in
particular, facial ones like AUs in FACS, is so far mainly hand-crafted. For this
case, I proposed a framework which is related to a semi-automatic annotation of
features to reduce the manual effort (cf. [Böck et al. 2012a; Böck et al. 2013a]).
This is discussed in Section 4.1.3.

4.1.2 ikannotate

As I introduced, several tools like Folker [Schmidt & Schütte 2010] and Atlas
[Meudt et al. 2012] provide different capabilities in the preprocessing of data
material. Unfortunately, to handle material in a continuous way, that is, having
the same output formats etc., none of those systems is appropriate. Based on the
idea of such an continuous handling Ingo Siegert and I developed a tool called
ikannotate. It is released, published at the ACII 2011 in [Böck et al. 2011b], and
also demonstrated at the ICME 2011 [Böck et al. 2011a]. As this thesis not mainly
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deals with annotation as such, I will introduce the tool briefly, only. Nevertheless,
it was used to prepare several experiments which are referred to.

The main advantage of ikannotate is that for each processing step the same
data structure, namely XML, is used to store the relevant information. This is
done on utterance level which provides the opportunity to extract any information
according to a certain utterance by parsing only one document and getting those
in a compact form as they are handled en bloc. Therefore, sorting functions and
statistical analyses can be performed easily. Technical details can be found in
[Böck et al. 2011b].

Transcription

The transcription is done on utterance level based on the audio material of the
data set. This is reasonable because dispositions usually change slowly (cf. Defin-
ition 1.5 on page 7 and Definition 1.6 on page 7), that means, one utterance is
long enough to be covered by one disposition. Each sentence is therefore the base
unit for the next steps in the process of data preparation, namely annotation.

To do the transcription the operator enters the spoken utterance which will
be automatically stored. Further, the sentence is assigned to a speaker which
provides the possibility to extract separate information for each participant of
the interaction. Moreover, this assignment is utilised in the annotation process
to cover and visualise the course of the interaction, or more specifically, of the
dialogue.

Annotation

The more important aspect in the preprocessing of a corpus, especially, for the
purpose of speech recognition and disposition recognition from speech, is the
annotation of the material with prosodic features. Furthermore, paralinguistic
characteristics are also added to the transcribed utterances. At the end, an
enriched document is generated by the annotator.

To mark paralinguistic and prosodic characteristics various systems are de-
veloped by linguists like GAT [Selting et al. 2011], codes for the human analysis
of transcripts (CHAT) [MacWhinney 2000], or semi-interpretative working tran-
script (HIAT) [Ehlich & Rehbein 1979]. In ikannotate the first system is realised
which provides a comprehensive covering of the features which occur in HHI, but
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more importantly, in HMI. Furthermore, the system can be divided by design in
three subsets covering different degrees of granularity in the number of features.
Those are i) minimal (smallest information), ii) medium (enhanced information),
and iii) full (containing all information) (cf. details in [Selting et al. 2011]). Due
to this concept the annotation process can either be focused or, after full annota-
tion, the content be reduced towards specialised analyses which need only a few
entities.

The main advantage of ikannotate is that the annotator has not to care about
the specialised signs which are used and defined to mark the corresponding pros-
odic and paralinguistic features. These are inserted by selecting the characterist-
ics by clear words. For this, even untrained annotators, or those experienced in
other annotation systems, can do the marking.

Labelling

Similar to the annotation process the user is supported while labelling; that means
he can select the (sub)classes by clicking at the corresponding item.

According to the labelling systems which are discussed in Section 1.2.3, ikan-
notate comes with an implementation for each of these systems. For the categor-
ical approach the Basic Emotions according to [Ekman 1992] are realised. As
mentioned in Section 1.2.3 the GEW proposed by Scherer (cf. [Scherer 2005]) as
a good example for quasi-continuous labelling. Thus, in ikannotate it is imple-
mented, as also displayed in Figure 1.2 on page 11. Finally, SAM is used for
continuous labelling. For this, the method according to [Bradley & Lang 1994]
gives the possibility to label in PAD space. This is also discussed in [Grimm et al.
2007]. Of course, the self-rating is just a part of the system’s power. Moreover,
it can be used to assign external ratings as well. Details of the implementation
are given in [Böck et al. 2011b].

Additional Features

So far, I introduced the main components of ikannotate. Further, the tool
provides additional features which are helpful to get a meta-analysis of the cor-
pora.

As discussed in [Stefan et al. 2010] the distribution of an emotional state or a
disposition over the utterance is an additional source of information. To reflect
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this fact, the labeller can mark the maximum of the (emotional) reaction. This is
done on word level. Nevertheless, the range of the maximum can be extended to
several words. According to [Stefan et al. 2010] only one maximum per utterance
is reasonable.

The second add-on is the self-rating of the labeller according to his certainty
about the labelling. In every labelling step the user is asked to assign a degree
of uncertainty to the label given in this step. This has two advantages: First of
all, the assessments can be evaluated and finally, ranked taking into account the
uncertainty. Further, especially, in the fusion of those decisions (cf. Section 4.4)
the degree of uncertainty is an important element the process. It influences the
way a result, for instance, in the combination with Dempster-Schafer Theory
(DST), is achieved. To the best of my knowledge, ikannotate is the only tool
which provides this feature, yet.

Additional sub-tools are integrate in ikannotate; but due to the focus of this
thesis I will skip the explanation here and refer to [Böck et al. 2011b] for further
information.

4.1.3 Semi-automatic Annotation

As I introduced, the process of annotation as well as labelling is a quite time
consuming task that is therefore also quite expensive. To get a feeling for it
I will give a brief example: the TableTalk corpus (cf. Section 3.3) was already
preprocessed with a Face Tracker but neither with prosodic and paralinguistic
nor dispositional markings. As I was interested in the involvement this has to
be labelled to explore the data set accordingly. Several labellers – in general,
more than two – are necessary for valid markings. They have to be recouped for
their effort. Moreover, the process as such took roughly 80 man-hours for 34:34

minutes of recordings. This examples shows the importance of a support in the
procedure of data preparation to reduce the manual effort.

The ultimate goal would be to get a system which provides a fully automatic
preprocessing as discussed in Section 4.1.2 of a corpus, for instance, the EmoRec
data set. So far, such a system has not been implemented. In [Böck et al.
2012a] and [Böck et al. 2013a] I introduced a framework for a semi-automatic
annotation of AUs in FACS. For this, relevant video sequences are automatically
marked based on acoustic classification. The framework will be introduced in
this Section and results are presented in Section 5.2.2.
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Figure 4.1: Workflow of the framework for a semi-automatic annotation (cf. [Böck
et al. 2013a]). It is based on audio, especially, prosodic features to identify relevant
sequences in a video stream.

The idea was inspired by forced alignment which is a common technology in
speech recognition and the work by Looze et al. who used prosodic features for
dynamic analyses of mimicry [Looze et al. 2011]. The main workflow is visualised
in Figure 4.1 where each block is a successive step towards AU preselection or
if possible a preclassification of facial expressions. The preselection is the goal
I aimed on, however in the future a preclassification might be possible, though
it strongly depends on the processed data set. A more pessimistic estimation is
that the preselection is more likely.
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Figure 4.2: Flow of features in the framework for a semi-automatic annotation of
EmoRec (cf. [Böck et al. 2013a]). Based on audio features a categorisation from
speech’s point of view can be given. At time t this decision is given to the facial part.
Using this information a hierarchical structure to get classes can be established. In
the speech analysis a preclassification of the utterances is possible, marking these if
they are related to facial expressions (FACS) in an experimental sequence (ES).
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Based on the features (cf. Section 4.2.2) which were determined on non-acted
material (cf. Section 3.2), in particular, on the data set EmoRec (cf. Section 3.2.2),
the audio material of a corpus is evaluated. If the speech sample is identified as
related to a dispositional event the audio time is logged. At this point, I do not
distinguish between emotional and real dispositional events. Since I assume syn-
chrony in time throughout the different recorded modalities, in particular, audio
and video, the time stamp of an audio event is equal to this in the video channel.
Especially, in Last Minute (cf. Section 3.2.1) and EmoRec (cf. Section 3.2.2)
the assumption is true (cf. [Frommer et al. 2012b; Walter et al. 2011]). The so
extracted time information can be used to indicate ranges in the video sequence
where emotionally/dispositionally relevant AUs might occur. The annotator has
just to assess a short sequence instead of the whole video which reduces the time
effort. In Figure 4.2 on the previous page details of the framework in the sense
of features can be found. Based on audio features a classification and further, a
final decision is generated. This information is used to indicate sequences which
are relevant for analyses of facial expressions. From AUs facial expressions can
be constructed and finally, classes can be derived. Optionally, the annotator can
be informed with a preclassification based on audio analysis.

In the setup GMM (cf. Section 4.3.1) are used as classifiers. For their training
only those speech samples are used which are less than two seconds before an
AU (cf. Figure 4.3 on the facing page). The audio material is grouped whether it
belongs to an ES or not (cf. Figure 4.2) and from this corresponding GMMs are
trained. As discussed in Section 1.2.1 and from Definition 1.2 on page 5 emotions
are short events and therefore, I selected this threshold (cf. [Koelstra et al. 2009]
as there is also a correlation between emotional reactions and the measurement
of those in electroencephalogram (EEG)). Indeed, doing such semi-automatic
annotation for dispositions an appropriate threshold has to be determined.

Common systems which provide support for FACS coding are based on the
analysis of faces in video. So, why do we have to switch to another source of
information? In several cases these systems fail because of non-perfect recording
conditions like glasses, fringes, or sensors. Further, they are also influenced by
the lighting conditions. All of these disadvantages can either be considered while
collecting the data, or they will never change. As discussed in [Böck et al. 2013a]
a feature is selected which is independent from such factors; namely speech.

Pure video-based FACS coding yields a hit rate, which is a measure for correctly
annotated AUs, of roughly 76% by manual marking [Limbrecht-Ecklundt et al.
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Figure 4.3: Course of a speech sample marking the occurrence of two facial expres-
sions (FE). Only those samples are used in training that are less than two seconds
before the event; in this figure exemplary visualised with ES-5. In case of no facial
expression the material is used to train a GMM for the class belonging neither to
ES-2 nor ES-5 (cf. [Böck et al. 2013a]).

2013]. Additional indicators help to guide the annotator through the process as
they focus his attention to relevant sequences. In manual annotation, a lot of
concentration is spent on material and sequences not containing any significant
information. For this, reducing the manual, boring effort might improve the hit
rate. So far, this is a matter of research and has to be proven in larger contexts
with several independent annotators (cf. Section 7.2.1).

4.2 Features

In this Section only features applied for recognition tasks and semi-automatic an-
notation are introduced. An overview of extracted features is given, for instance,
in [Vlasenko et al. 2008; Schuller et al. 2009a] and I am aware of the multitude of
features which can be used in the processing of speech. Nevertheless, it was one
of my research interests to show the potency of small feature sets to obtain re-
cognition systems which are based on low level computational complexity. With
several features like global means (cf. e.g. [Schuller et al. 2009a]), movement in
contours (cf. [Vlasenko et al. 2012]), or more general, statistical features, this is
not easily feasible as statistical information has to be gathered over time. Of
course, if small periods are used those characteristics can be applied as well. As
discussed in Section 4.3.2 and shown in [Böck et al. 2010] even small subsets can
lead to respectable results.
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I will explain and characterise the extracted features as it is necessary for
my work. Cited references will give information in more details. Further, in Sec-
tion 4.2.1 mainly the acoustic features are introduced whereas in Section 4.2.2 ad-
ditionally prosodic methods are discussed which were only used in semi-automatic
framework.

4.2.1 Emotion and Disposition Recognition from Speech

Relying on measurements based on the speech signal, acoustic features are those
which mostly describe the characteristics of a voice. In contrast, prosodic (cf. Sec-
tion 4.2.2) and statistical features are high-level features (cf. [Schuller et al.
2010a]) derived from expressions and functionals. Acoustic features are also called
Low-Level Descriptors (LLD) (cf. [Schuller et al. 2010a]) evolving and changing
over time. To incorporate the features’ development in time usually derivatives,
especially the first and second derivatives, are added. These are known by Delta
(D) – first derivative – and Acceleration (A) – second derivative – representing
the differences between two successive speech samples’ characteristics. This trick
has to be used for classification methods like HMMs (cf. Section 4.3.1) that work
on a short-time context. In contrast, advanced ANNs, namely SRNs, can do this
by design (cf. Section 4.3.3).

In the context of acoustic feature extraction, usually, windowing techniques are
applied that allow to handle the speech signal in a short-time context. In speech
recognition typically a Hamming window (cf. Equation 4.1) is used. Let n be
the input’s index and N is the window size, a Hamming window is calculated as
follows

w(n) = 0.54− 0.46 cos

(
2πn
N − 1

)
, 0 ≤ n ≤ N − 1 (4.1)

Furthermore, an adaptation towards an equal loudness is done for the speech
samples to avoid classification side-effects based on different levels of loudness.
For this usually a log function is applied to the signal.

In the following, I introduce in detail three acoustic feature sets related to my
experiments. The LPC and PLP were investigated amongst others in [Böck et al.
2010] and Section 4.3.2. There I found that those are not as predictive for general
aspects of emotion and further, disposition recognition, as MFCC. Therefore, I
concentrated on the latter in further experiments. This is also motivated by the
general use of MFCC in speech and emotion recognition, for instance, shown by
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[Vlasenko & Wendemuth 2009; Hübner et al. 2010; Muda et al. 2010; Schuller
et al. 2011c].

For the purpose of introduction, I refer to the following books [Rabiner &
Juang 1993; Gold & Morgan 2000; Wendemuth 2004] that are mainly used as
foundation. If I differ from these, I will give the appropriate reference at the
corresponding position.

Linear Predictive Coding

Well-known in communication technology, the LPC is an approach reducing the
amount of data which has to be transmitted via any kind of channel. Especially,
in mobile telephony only the necessary characteristics of a voice are sent to the
receiver where the corresponding acoustic is finally generated again. LPC is
a simple modelling technique relying on the source-filter model by Fant [Fant
1960]. The important feature is the vocal tract’s characteristic which varies for
each human and each spoken item. This is predicted and afterwards, only the so
estimated coefficients are transmitted.

Impulse

Generator

White Noise

Vocal Tract

Model T(n)

Vocal Tract

Parameters

s(n)u(n)

Unvoiced

Part σu

Voiced

Part σv

Figure 4.4: Standard linear model of speech production (cf. [Wendemuth 2004]) which
is divided into a voiced and an unvoiced part of speech. The vocal tract parameters
are estimated by LPC. In addition, the model holds in parts for speech recognition,
too; namely the modelling of the vocal tract.

The functionality of the source-filter model as well as its components is given
in Figure 4.4 according to [Wendemuth 2004]. The system in Figure 4.4 is used
to model the speech production process. The important part is the vocal tract
model representing the characteristics of human’s speech apparatus neglecting
glottis, nasal tract, and lip’s radiation. Vocal tract characteristics can be used to
describe the voice and further, the content of the utterances themselves.
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The speech signal s(n) is computed by an excitement u(n) and the transfer
function T (n). Furthermore, u(n) is amplified with σ according to the voiced
part (cf. Figure 4.4 on the preceding page). For this, the speech signal can be
written as

s(n) = σu(n) +

p∑
i=1

ais(n − 1) (4.2)

In Equation 4.2, the coefficients ai are included which are the vocal tract para-
meters; in the LPC they are called predictor coefficients. After Z-Transformation
the transfer function can be written as

T (n) =
S (z )

σU (z )
=

1

A(z )
(4.3)

with A(z ) = 1 −
∑p

i=1 aiz−i . As in both Equations ai ’s are utilised, they are
estimated by minimising the error function solving ∂E

∂ai
= 0 with

E =
N−1∑
n=0

(
s(n) +

p∑
i=1

ais(n − i)

)2

(4.4)

where N is the length of the sample in time. This results in a covariance matrix
based system of equations. For this, the coefficients ai can be estimated by either
a covariance or an autocorrelation approach.

To obtain the LPC spectrum, the coefficients ai are concatenated in a vector
and a Discrete Fourier Transform (DFT) is applied with a length of N . If the
number of coefficients is smaller than N , zero padding is necessary. After this
procedure the formants of the certain voice can be observed. Formants are an
important and characterising feature of the speech signal.

Perceptual Linear Predictive Coefficients

The main idea of this feature extraction approach is to model the human audit-
ive perception. Therefore, a mel scaled spectrum is applied. From this, the
coefficients can be calculated from the error which occurs between both series.

The main steps in calculation of the PLP features are as follows:

1. compute the Fast Fourier Transform (FFT) of the speech signal
2. do a critical-band integration and resampling
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3. preemphasise the spectrum according to an equal-loudness curve
4. apply the power law of hearing
5. compute the Inverse Discrete Fourier Transform (IDFT)
6. apply Levinson-Durbin Recursion to solve the linear equations’ system

To calculate the power spectrum usually the FFT is computed on the speech
signal. Before doing so, the signal is preprocessed with a window, for instance,
a Hamming window (cf. Equation 4.1). Such spectrum is integrated in band
filters based on a frequency scale that is called the mel scale which has a twofold
characteristic: below 1kHz it is roughly linear and otherwise, logarithmic. In
contrast to LPC, this analysis is oriented on the human’s way of perceiving sounds
and speech. The integration is done with triangular or, in case of PLP, trapezoidal
windows applying the warping function of Schroeder (cf. Equation 4.5) where the
frequency ω is given in radians per second.

Ω(ω) = 6ln

{
ω

1200π
+

[( ω

1200π

)2
+ 1

] 1
2

}
(4.5)

After adapting the signal to an equal loudness the spectral amplitudes are com-
pressed. In PLP the cube root is used to handle this aspect. This is also known
as the power law of hearing. By doing so, on the one hand, the human’s sense of
hearing is reproduced, and on the other hand, amplitude variations are reduced.
For PLP, the IDFT leads to coefficients which are similar to autocorrelation ones
as an autoregressive modelling is applied to the signal. It should be noticed that
the values of the power spectrum are all real and even. Therefore, it is only ne-
cessary to consider the cosine components. To smoothen the resulting signal, in
PLP an autoregressive model is deployed to the compressed spectrum whereas no
additional filtering is applied. In this context, this model is derived from linear
equations which are constructed on the basis of autocorrelations of the previous
time step. This leads to a better noise robustness as it can be achieved by the
method of cepstral transformation.

In addition to this standard PLP approach, Hermansky et al. invented RASTA-
PLP [Hermansky et al. 1991] which has a more robust characteristic against
convolutive disturbance and further, can be applied online. As I did not used
RASTA-PLP in any experiments I do not introduce this method, and just refer
to, for instance, [Hermansky et al. 1991].
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Mel-Frequency Cepstral Coefficients

The main aspect in the computation of MFCC is the separation of the excitation
and the resonance frequencies.

Like in the description of PLPs I sketch the method to compute MFCC first.

1. window the input signal
2. apply any kind of Fourier Transformation
3. compute the absolute spectrum and do a mel frequency warping
4. apply a logarithmic function to this spectrum
5. reduce the wave band by mel scale and utilise rectangular filter banks
6. compute the Cosine Transformation to obtain the cepstrum

As in PLP the speech signal is first windowed by, usually, a Hamming window
(cf. Equation 4.1). To compute the spectrum a Fourier Transformation is applied.
It is to be noticed that for further computation only the absolute amplitude
spectrum is used. Before the logarithmic function is applied a mel frequency
warping is done to adapt the signal to the auditory perception of humans. For
this, the signal is warped by Equation 4.6, where f is the current frequency.

mel(f ) = 2595 lg

(
1 +

f
700

)
(4.6)

With the mel scale the abscissa is, on the one hand, transformed from a fre-
quency in Hz to the mel scale in mel and, on the other hand, compressed in its
range (cf. [Wendemuth 2004]). Afterwards, an additional filtering with triangular
filters is carried out; each one according to a fixed band structure. Finally, as
proposed in [Davis & Mermelstein 1980] the cepstrum of a speech signal – that
is log(FFT(f )) which is called cepstrum – is computed by applying the Cosine
Transformation on the mel scaled logarithmic spectrum. This is done according
to the following equation (cf. Equation 4.7)

c(q) =
M∑

m=1

mel(k) cos

(
(2m + 1)πq

2M

)
, q = 1, . . . ,

M
2
, (4.7)

where M is the sequence length and mel(k) is calculated as in Equation 4.6.

Usually, after computing the standard MFCC the parameters can be adapted
to the characteristics of a speaker. Especially, the Vocal Tract Normalisation
(VTN) is a common procedure to eliminate the differences in the vocal tracts of
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various speakers. This can be also done for a group of speakers which means that
an adaption towards a group’s vocal tract characteristic is arranged.

Skipping VTN, mel frequency warping, and filtering Molau et al. are presenting
an approach to compute MFCC directly on the power spectrum [Molau et al.
2001]. In my experiments I am usually using the HTK developed at the Cambridge
University (cf. [Young et al. 2009]) to extract the MFCC.

4.2.2 Semi-automatic Annotation

The framework of semi-automatic annotation is presented in Section 4.1.1 where
the idea of reducing the manual effort to assign FACS units is discussed. So far,
this framework is universal; that means it can be used independent of a corpus.
The features I present in the current Section are suitable to achieve the aim to be
applicable universally. However, the optimisation of the framework’s features is
still a matter of research. Nevertheless, respectable results were already achieved
(cf. Section 5.2.2). Up to now, the experiments are based on the EmoRec corpus
introduced in Section 3.2.2.

In the framework, I concentrated my research on the usability of prosodic
features, where those used for the training of the classifiers applied in the frame-
work will be introduced in the following, to give indicators for sequences which
are worth to look at from an annotator’s point of view. In Section 5.2.2 I will
discuss the results of this approach, but let me mention some general findings.
With these prosodic features I got quite respectable results for sequences in the
EmoRec data set [Böck et al. 2013a]. Especially, in the ES-5 facial expressions
could be identified. With the counterpart, namely ES-2, the recognition was more
difficult due to the small amount of training and test material.

In contrast to, for instance, Björn Schuller who is heavily arguing for large
feature sets (cf. [Schuller et al. 2009b; Schuller et al. 2009a; Schuller et al. 2010a;
Schuller et al. 2011b]), I argue the other way around. From my point of view,
it is more important to find meaningful, prosodic features that give a key of
understanding how dispositions are perceived. This is more or less a bottom
up process. Fortunately, the engineering community is not alone in analysing
features. Psychologists like Klaus Scherer are investigating conversations and
interactions under various aspects (cf. also Section 1.2.2). Influenced by [Scherer
2005; Schuller et al. 2008b] I selected a subset of prosodic features which were
found to be meaningful in linguists’ analyses; namely formants, bandwidth, pitch,
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intensity, and jitter. Usually, speaking rate and number of pauses are suitable
paralinguistic features, too. But, due to the data set that has a command style
those are to be neglected as the speakers are too focused on the task.

In the following, I introduce these prosodic features that are applied in the
current framework and further, used in the experiments (cf. Section 5.2.2).

Formant and Bandwidth
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Figure 4.5: Vowel triangle in F1-F2 space (in Hz) for male (top) and female (bottom)
speakers adapted from [Vlasenko et al. 2011b].

Formants are defined as “the spectral peaks of the sound spectrum” by Fant
(cf. [Fant 1960]) and therefore, are computed based on LPC (cf. Section 4.2.1).
With this method the characteristic features of the vocal tract can be evaluated
by calculating the coefficients ai of the s(n) (cf. Equation 4.2) where the formants
can be estimated by finding the peaks in the LPC filtered signal. The spectral
peaks can be extracted after the DFT was applied. A common method to extract
formants from a speech signal is the Burg algorithm [Burg 1975]. Burg relies
heavily on the stationarity of the current input signal. And indeed, one can
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assume that for short time intervals the speech signal is stationary. The analysis
of formants is usually applied on vowels as due to the voiced characteristic they
are proper to investigate the vocal tracts characteristic. In fact, formants are
heavily related to the vocal tract (cf. [Gold & Morgan 2000]) as they represent
the harmonics of the vocal tract, which are the resonance frequencies given in
certain frequency ranges (cf. [Gold & Morgan 2000]).

Analysing the formants whose typical values for vowels, namely for English
speaker, are given in Table 4.1, F1 and F2 are related to the identification and
hence, understanding of a vowel. Therefore, they are important to carry an
information. In contrast, F3 and higher formants describe the sound of a voice,
mainly its timbre (cf. [Bross 2010]). Besides this, formants reflect the gender
and age of a speaker and further, they are also influenced by the emotional and
dispositional speaker’s state [Vlasenko et al. 2012]. Due to the wide range of
variabilities in formants they are usually visualised in a vowel triangle in the
F1-F2 space (cf. Figure 4.5 on the preceding page). Especially, when observing
emotional reactions of a speaker a shift of formants can be seen (shown by [Scherer
2005; Goudbeek et al. 2009] for HHI) even in HMI (cf. e.g. [Vlasenko 2011]).

Table 4.1: Mean frequency values in Hz of the first (F1) and second (F2) formant of
English vowels according to [Fry 1992].

Vowel F1 F2
i: 300 2300
i 360 2100
e 570 1970
a 750 1750
a: 680 1100
o 600 900
o: 450 740
u 380 950
u: 300 940
2 720 1240
@: 580 1380

The bandwidth of a formant is also known as frequency range. It is defined
as the range which is in the frequency interval of a formant with −3dB of the
formant’s power. A graphical interpretation is given in Figure 4.6.
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Figure 4.6: Graphical representation of the formant’s bandwidth.

Intensity

The intensity is measured by using the amplitude of the sound wave. The higher
the amplitude, the louder the sound; that is, the higher the intensity. In other
words, the intensity value is the ratio of the signal’s power, which can be seen as
the energy E in a given time interval, and the area effected by the wave. Hence,
the intensity I is calculated as

I =
E

Area
. (4.8)

In Equation 4.8 Area is the variable referring to any kind of area and thus, the
particular equation of area calculation has to be filled in. Usually, the area is
defined by the system which is used to measure the intensity. In a biological sense,
this is the system of the internal ear, whereas technically it is the membrane of
the microphone. Further, from Equation 4.8 the unit of I can be given which is
W
m2 .

With the standard way of extracting intensity, small values are obtained and
no relation to the human’s sense of hearing is given. To overcome this effect the
intensity level IL is defined as follows

IL = 10 log
I
I0
. (4.9)
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With the logarithmic function the connection to the hearing behaviour of humans
is introduced. Further, the intensity level is normalised to the threshold of hearing
which can be realised with human ears; that is I0 = 10−12 W

m2 . The unit of IL is
defined as dB.

The main disadvantage of the intensity is that the acoustic pressure is reduced
quadratically with the distance. From this, I ∼ 1

r2 highly depends on the distance
r between the speaker and the microphone recording the signal. Thus, the value
of the intensity is not equal all the time since in naturalistic environments the
distance between a moving speaker and the microphone could not be fixed. Hence,
in naturalistic recordings intensity usually varies much since the distance cannot
be controlled satisfactorily as it is possible in acted recordings.

Pitch

The detection of pitch is indeed the estimation of the fundamental frequency F0.
It has been seen as a difficult topic in audio signal processing for several years,
but can be considered as solved (cf. [Rabiner et al. 1976]). In particular, there are
fortunately different methods for pitch detection in speech analysis available. As
there is a large community which is dealing with F0 estimation several methods
are on hand. Therefore, I introduce those briefly and refer to [Gerhard 2003] for
details, which provides a basic overview.

Since pitch is a perceptual quantity related to F0 of a periodic or
pseudo-periodic waveform, it should suffice to determine the period
of such oscillation, the inverse of which is the frequency of oscillation.
[Gerhard 2003]

The previous statement is a description of pitch as well as a kind of definition.
From it, the way of computing the pitch value can also derived. The methods
of pitch detection can be divided into three main classes: i) time domain, ii)
frequency domain, and iii) statistical methods.

The time domain methods are further subdivided in event rate detection,
correlation, and phase space approaches.

The theory behind [event rate detection] methods is that if a waveform
is periodic, then there are extractable time-repeating events that can
be counted, and the number of these events that happen in a second
is inversely related to the frequency. [Gerhard 2003]
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Each method is looking for specific kinds of events in the time domain, such as
the following ones:

• Zero crossing rate. The main idea is that the information of pitch is
based on the specific spectral content of a waveform. Especially, the number
of zero crossing events of the waveform itself – that is, counting how often
the waveform is crossing the zero per time unit – is an indicator for the
characteristic of the waveform and thus, for the fundamental frequency.

• Peak rate. It counts the number of peaks per second given in the wave-
form. In fact, only the positive peaks are considered and from these, the
frequency of the waveform is estimated. Otherwise, the method is similar
to zero crossing.

• Slope event rate. Assuming that the waveform is periodic, the corres-
ponding slope will be periodic, too. Hence, the information can be extrac-
ted analogous to zero crossing or peak rate. Using the waveform’s slope
instead of the original waveform can be more informative or may lead to
more robust detection of the events.

The correlation in the time domain approach is implemented, for instance, in
Praat (cf. [Boersma 2001]). There are three main methods which use the time
delay of the signal given by succeeding frames of the waveform whereas the cor-
relation is a measure of similarity between two waveforms.

• Autocorrelation. The autocorrelation sXX uses the same waveform and
computes the similarity between two frames shifted in time. In Equa-
tion 4.10 sXX is computed as defined in [Wendemuth 2004]. For this, the
x [n] is the input sequence and ergocity is assume.

sXX(κ) = lim
N→∞

1

2N + 1

+N∑
k=−N

x [n]x [n + κ]. (4.10)

• Cross-correlation. In contrast to the autocorrelation, cross-correlation
measures the similarity between two different sequences or waveforms, re-
spectively. In general, it is computed similar to Equation 4.10 as follows
(cf. [Gerhard 2003])

sXY(κ) = lim
N→∞

1

2N + 1

+N∑
k=−N

x [n]y [n + κ]. (4.11)
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where x [n] and y [n] are two correlated sequences. By this, the first peak
of sXY refers to the period of the waveform.

• Yin estimator. This approach is looking for a balance between autocor-
relation and cancellations. Therefore, it introduces a difference function
(cf. Equation 4.12 and [Gerhard 2003]) to minimise the differences between
waveforms. The method was developed by de Cheveigné and Kawahara
(cf. [Cheveigné & Kawahara 2002]).

d(τ) =
N∑

i=1

(x [j ]− y [j + τ ])2 . (4.12)

With the phase space a short-time history of a given waveform can be investigated.
From this, cycles which are repetitive can be observed where the phase space is
a plot of the waveform against its slope at time t .

Another approach to extract F0 is to use the frequency domain instead of time
domain. It is divided as well in three subcategories describing how to handle
the task: i) filter-based methods, ii) cepstrum analysis, and iii) multi-resolution
methods.
The filter-based methods apply different filters to the signal having different
centre frequencies. The result is the comparison of all filters where the one that
has the best match of a spectral peak and the centre frequency gains the highest
value. Two well-known realisations of the approach are the optimum comb filter,
applying “many equally spaced passbands” [Gerhard 2003], and the tunable filter
where the user influences the centre frequency to narrow it.
The cepstrum analysis investigates the Fourier transform of the logarithm by the
magnitude spectrum of the waveform. Thus, the number of relevant peaks with
a corresponding quefrency; that is the logarithmic frequency, is reduced. The
highest peak is assumed to be the fundamental frequency.
Finally, the multi-resolution method combines outputs of an algorithm on higher
and lower resolutions or larger and smaller time windows to improve the estima-
tion of F0.

Statistical methods as Neural Networks and Maximum Likelihood Estimators
are used but are not as widely spreaded as the others. Therefore, I just refer to
the literature, for instance, [Gold & Morgan 2000; Gerhard 2003].
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Jitter

Jitter and shimmer are acoustic characteristics of the voice which are given in
the signal (cf. [Farrús et al. 2007]). Temporal fluctuations in a signal are called
jitter, whereas shimmer is related to the variation of the amplitude; namely the
vibration of the voice. Both features are connected to the dispositional state of
a user since they were seen as an indicator for negative emotions, in particular,
fear and sadness (cf. [Scherer 2001; Schuller et al. 2009a; Looze et al. 2011]).
Especially, jitter is related to fear, mainly. Since I found only jitter relevant in
my experiments (cf. Section 5.2.2 and [Böck et al. 2012a]) I just introduce this
feature.

To compute the jitter value the fundamental frequency F0 has to be extracted,
first. This can be done with LPC as it is described in Section 4.2.1. In general,
there are several methods to calculate jitter: i) computing it in an absolute or
relative manner, ii) as relative average perturbation, or iii) as a five-point period
perturbation.

As I used only the absolute method for feature extraction in my experiments
I just introduce this. Again, the computation is based on F0 and from that its
period length is extracted. Since jitter is the cycle-wise variation of the funda-
mental frequency it is computed as follows (cf. [Farrús et al. 2007])

Jitterabsolute =
1

N − 1

N−1∑
i=1

|Ti − Ti+1|, (4.13)

where Ti is the corresponding F0 periods’ length and N is the total number of
extracted F0 periods. Given Equation 4.13 jitter can be interpreted as the average
of the absolute differences between two consecutive periods. In the calculation of
jitter only the differences – no variances – are considered (cf. [Farrús et al. 2007]).
In the same way jitter’s extraction is realised in Praat [Boersma 2001].

4.3 Classifiers

In emotion recognition from speech several classifiers are established (cf. Sec-
tion 2.4.2). In the community the transferring of existing methods to the re-
cognition of disposition from speech is increasingly considered. This thesis will
supply approaches which lead in this direction. For my research, I concentrated
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on the two methods: i) a Hidden Markov Model (HMM) (cf. Section 4.3.1) and ii)
a Simple Recurrent Network (SRN) (cf. Section 4.3.3); in particular, a Segmented-
Memory Recurrent Neural Network (SMRNN). Both methods are introduced in
the corresponding Sections. As mentioned before (cf. Section 2.4.2) other ap-
proaches are available, for instance, types of SVMs, ESNs, or DNNs. Since those
are not used in any experiments presented in this thesis, I do not introduce these
methods.

In addition to the description of classifiers, I present results of experiments to
evaluate parameter sets for HMMs (cf. Section 4.3.2). Further, in Section 4.3.4
Recurrent Neural Networks are compared against Hidden Markov Models in terms
of performance in emotion recognition from speech which indicates also the us-
ability in disposition recognition from speech.

4.3.1 Hidden Markov Models

An HMM is characterised by a twofold production process where a temporal
evaluation takes place and finally, an output is produced. Therefore, any HMM is
a finite state automata which can be described by a five tuple H = (S ,K ,s0,A,B)

where S= {s1, . . . , sn} is the set of states, K= {k1, . . . , km} is the output alphabet,
s0 is the initial state of the HMM, A= {aij}, i , j ∈ S is the transition probability
and B= {bi(oi)(ol)}, i ∈ S , l ∈ K is the production probability of the model,
respectively (cf. [Manning & Schütze 1999]). If every state si is also generating
an observation, then i = l and the probability of an observation oi can be written
as bi(oi). Further, any state may produce a collection of Gaussian mixtures. A
visualisation of an HMM is given in Figure 4.7 on this page.
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Figure 4.7: Workflow of a left-to-right Hidden Markov Model (cf. [Glüge et al. 2011]).

As HMMs are known in the community of speech recognition and are also
investigated to be feasible for emotion recognition, I do not consider all details
of the model but refer to the corresponding literature (cf. [Manning & Schütze
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1999; Nwe et al. 2003; Wendemuth 2004; Schuller et al. 2009b; Böck et al. 2010;
Schuller et al. 2010a; Vlasenko et al. 2012]). Briefly, the training of an HMM
is related to two issues: i) finding the probability of a given observation and ii)
finding the best state sequence matching an observation.
Assuming that an observation sequence O and a model µ = (A,B ,Π) are given,
where Π is the set of initial probabilities, the probability P(O | µ) can be com-
puted. Given a state sequence S the observation probability can be written as
(cf. [Manning & Schütze 1999])

P(O | S , µ) =
N∏

i=1

P(oi | si , si+1, µ) (4.14)

Using Bayes’ Rule and incorporating the initial, transition, and production prob-
abilities Equation 4.14 can reformulated to Equation 4.15 which will be used in
classifiers. In fact, by utilising the forward-backward algorithm this probability
can be calculated quite efficiently.

P(O | µ) =
∑
S

πsi

N∏
i=1

ai ,i+1bi(oi) (4.15)

The second issue is related to the question, how to find a proper sequence of
states that fit the presented observation. In other words, it is the probability of
a state si given a sequence of observations O and a model µ; that is P(si | O , µ).
As it is intended to estimate the best match of states Equation 4.16 has to be
solved (cf. [Wendemuth 2004]) where qmax is the most likely state sequence.

qmax = arg max
si∈S

P(q = sj | o1 . . . ot , µ). (4.16)

This estimation is done with the Viterbi algorithm (cf. [Viterbi 1967]) which
evaluates Equation 4.16 efficiently.

Beside the mathematical foundations of HMMs, it is of interest how the para-
meters of the model can be interpreted in the context of emotion and disposition
recognition. The input sequence results from speech; to be precise, the input is
a sequence of features (cf. Section 4.2) extracted from speech samples. For each
emotion or disposition which should be recognised a model is generated; that is,
each model is representing exactly one user’s state of emotion/disposition. From
this, the observation sequence O is mapped to a sequence of such states. This
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can be realised by concatenating several observations while an utterance, usually
consisting of several words, is processed; this is called word-level recognition. Of
course, the recognition can also be done on phoneme-level or utterance-level. In
most of my experiments, I did the recognition on utterance-level assigning the
output of an HMM to the utterance in total. Hence, P(O | µ) (cf. Equation 4.15)
can also be interpreted as P(D | M ) where D is the sequence of either disposi-
tions or emotions – it is obvious that in the current case D = O – and M = {µi}
is a set of models where i is the index of models representing the dispositional
states of a user. Thus, the probability to observe a disposition given a model is
computed. In emotion recognition from speech usually the sequence of states is
used to model the characteristics of the emotional speech and hence, each emo-
tion is represented as a single model reflecting the certain temporal characteristics
of the specific emotion (cf. e.g. [Vlasenko et al. 2007]). Finally, the model with
maximum log-likelihood (related to Equation 4.16) is selected to be the result of
the recognition.

Furthermore, three types of HMMs can be distinguished. Firstly, the standard
model has a sequence of states and is handled as described above. The second
kind of HMM is an one state model. To deal with flexibility Gaussian mixtures are
used as model for the single state. This kind of model is called Gaussian Mixture
Model (GMM) whereas each Gaussian mixture approximates the characteristics
as a Gaussian distribution according to Equation 4.17 with K is the number
of components, c is the weight, and g is the density function. An examples of
Gaussian mixtures is given in Figure 4.3 on page 67.

bj (x) =
K∑

k=1

cjkgjkx (4.17)

The third kind of architecture is a combination of an HMM and a GMM where
in each HMM’s state Gaussian mixtures are applied as models. Comparing the
first two approaches, both are suitable to handle disposition recognition from
speech. On the other hand, the multiple states HMM can handle dynamics bet-
ter than the single one which is focused on the characteristics given by the data
and modelled by the mixtures. Details on parameter sets will be discussed in
Section 4.3.2 giving remarks and recommendations for training as well as con-
struction of HMMs/GMMs.
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4.3.2 Evaluating Parameter Sets for Hidden Markov Mod-
els on Acted Material

The experiments as well as the results which are discussed in details are published
in [Böck et al. 2010] and further, used through several experiments presented in
Chapter 5 which are also published at particular conferences.

I conducted the experiments presented in the following on two data sets; namely
EmoDB (cf. Section 3.1.1 and [Burkhardt et al. 2005]) and eNTERFACE (cf. Sec-
tion 3.1.2 and [Martin et al. 2006]). In [Böck et al. 2010] an additional data set
is used; namely the SmartKom Database (SmartKom) [Wahlster 2006]. The ex-
periments on this data set were work of David Philippou-Hübner and hence, I
do not in detail report on it in this thesis. The findings will only be used for
comparison (cf. [Böck et al. 2010]).

As already discussed in Section 3.1, to evaluate feature sets and recognition
methods the community concentrated in the beginning on acted material. For
this, a ground truth in the sense of emotional expressions is given. In both
corpora, namely EmoDB and eNTERFACE, the utterances are quite expressive
and thus, the allocation to several classes is easy. Further, the material is well
selected and preprocessed by the distributors. Hence, I could rely on the provided
material and investigate the parameters of the HMMs without any influences of
possible interference of side-effects caused by realistic material. Both data sets
have distinct classes based on Basic Emotions (cf. Section 1.2.3).

Number of Hidden States

In the experiments, the classification labels are given for the whole utterance.
Therefore, the temporal evolution of the emotion has to be modelled by the
classifier. As discussed in Section 4.3.1 this can be done by using an HMM incor-
porating several states. They reflect the temporal characteristics of the utterance
as well as the emotion. As it is common from speech recognition (cf. [Kwon et al.
2003; Schuller et al. 2008a; Wöllmer et al. 2009]) for each emotion one model
µi is applied and the final decision is according to the maximum log-likelihood
(cf. Section 4.3.1). At first, I investigated the number of hidden states for each
HMM. The training and testing of all subexperiments are done utilising HTK
developed at the University of Cambridge [Young et al. 2009].
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Figure 4.8: Mean Unweighted Average accuracy in percent dependent on the number
of hidden states for eNTERFACE having the MFCC_0_D_A feature combina-
tion [Böck et al. 2010]. As with more than four hidden states the accuracy is still
decreasing, I did not display further values.

As given in Figure 4.8 I inspected the accuracy, to be precise the Unweighted
Average accuracy, depending on the number of states. From my point of view,
it does not matter whether Unweighted Average accuracy or Weighted Average
accuracy is used since I am not interested in an absolute accuracy in sense of
comparing results but getting parameters which are suitable to solve the task,
Unweighted Average accuracy is feasible for evaluation. The best performance
on eNTERFACE is achieved with three internal hidden states. Applying more
states, the performance decreased. Using only one or two states did not cover
the complexity of the characteristics necessary to classify utterances in total.
From this finding, I conclude that reflecting emotional characteristics in whole
utterances of near real-life recordings is covered best by three internal states. I
did the same survey with the EmoDB. Due to the expressiveness of the emotions
no difference was found varying the number of hidden states. The performance
kept constantly at 70.9%. For this, I recommend to use a simple classifier setup
with acted material; that means, using models with one internal state.

In contrast, having only short statements like ‘C 2’ (cf. EmoRec in Sec-
tion 3.2.2) the influence of the temporal evolvement is marginal. Due to the
shortness of the utterances effects like lexical and semantic influences are sup-
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pressed which leads to a focused emotion and disposition characteristic. Thus,
HMMs have to be constructed in a different way; usually, they are ‘reduced’ to
GMMs. This is investigated in Section 5.1 using non-acted material.

Number of Iterations

Another parameter which influences the performance of HMMs is the number
of iterations; that is, how often the training material is presented to a model.
One iteration accords one run of the training set in total. In [Böck et al. 2010]
I reported that the performance increases if the number of iterations increases.
For the training of HMMs a number of iterations is necessary so that the models
can converge towards an optimum since HMMs are trained with the Baum-Welch
algorithm – a kind of an Expectation-Maximisation (EM) algorithm. If the op-
timum is achieved, an increase of the iteration’s number results in a decrease of
performance since the models lose the capabilities to generalise. This effect is
related to the overfitting which might occur in the training of ANNs. These con-
siderations can be seen in experiments (cf. [Böck et al. 2010] and Figure 4.9 on
the facing page). As reported in [Böck et al. 2010], for instance, the best results
were obtained with five iterations on SmartKom by 50% Unweighted Average
accuracy.

I did the same analysis for EmoDB and eNTERFACE (cf. Figure 4.9 on the
next page). In comparison to the results of SmartKom I extended the range of
iterations up to 100. A subset of the results can be found in Figure 4.9(a) on the
facing page for EmoDB. All experiments are done using a three state model and
MFCC_0_D_A features (MFCC with derivatives and 0th cepstral coefficient).
The decrease in the performance is not as significant as in SmartKom but the
maximum is reached with three iterations.

In contrast to this, with eNTERFACE the best performance is obtained with
five iterations (cf. Figure 4.9(b) on the next page). Thus I conclude that the
more realistic the material is, the more iterations are necessary. In fact, since the
characteristics of the emotions are not as expressive, the model needs to process
the training material more often to adapt the model’s parameters, especially the
transition probabilities A and the production probabilities B . On the other hand,
using too many iterations leads to a kind of overfitting. As discussed before, after
several training iterations the model converges towards an optimum which results
from the EM algorithm. If the HMM is further trained, the model is adapted
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Figure 4.9: Mean Unweighted Average accuracy in percent dependent on the num-
ber of iterations of presentations of training material for EmoDB having the
MFCC_0_D_A feature combination (cf. Figure 4.9(a) on the current page). In
contrast, the results for eNTERFACE (cf. Figure 4.9(b) on this page) are grouped
according to three different feature sets, reflecting the same characteristic as with
EmoDB (cf. [Böck et al. 2010]).

too much to the training material. This results in a decreased capability in
generalisation and hence, in a worse performance.

From Figure 4.9(b) it can be seen that the influence of the iteration’s number is
given with any kind of spectral features. Due to the characteristics of the different
feature sets (cf. Section 4.2.1) the influence is not equal which can be seen in the
absolute performance. Further, it is affected by the so-called additional term,
which is either the Energy term E or the zeroth cepstral coefficient. Both are
investigated in the following Subsection.

I summarise for the number of iterations: For realistic material five iterations
should be used to train HMMs. If the material is acted, less number of itera-
tions – in the case of EmoDB, three iterations (cf. Figure 4.9(a)) are suitable to
cover the emotion’s characteristics. These conclusions can be drawn since the
training process and thus, the number of iterations are independent from further
characteristics of the material like noise, etc.
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Comparing Feature Sets

As most of my experiments are dealing with spectral features (cf. Chapter 5) I
concentrate in this Subsection on those feature sets and compare their perform-
ance. As stated in Section 4.2.1, usually the standard features are enriched with
the first, called Delta, and second, called Acceleration, derivatives. These cover
the temporal evolvement of the speech signal. Furthermore, two kinds of addi-
tional parameters are assessory to the aforementioned sets: i) the Energy term E
and ii) the zeroth cepstral coefficient 0th.
Extracting the Energy term from a speech signal means computing the logarithm
of the signal energy (cf. Equation 4.18 according to [Young et al. 2009]).

E = log
N∑

n=1

s2n , (4.18)

where N is the number of speech samples sn . It indicates the energy given in
the utterance. As already discussed in the introduction of the intensity feature,
the energy is depending on the distance between the speaker and the recording
microphone. Thus, the energy value varies with the distance and therefore, gives
reliable indications for disposition only under controlled conditions.
The zeroth cepstral coefficient is the first cepstral coefficient which can be com-
puted from an audio signal and thus, is representing the basic characteristics of
a voice and the speaking style, respectively. For details of the extraction process
I refer to Section 4.2.1.

Table 4.2: Feature sets which are compared to be suitable in emotion recognition.
The two feature sets are grouped by the additional term which is either Energy (E)
or zeroth cepstral coefficient (0). MFCC are the Mel-Frequency Cepstral Coeffi-
cients, PLP the Perceptual Linear Predictive Coefficients, and LPC are the Linear
Predictive Coding coefficients. D and A are the first and second derivatives of the
features, respectively (cf. [Böck et al. 2010]).

Feature sets 1 Feature sets 2
MFCC_E_D_A MFCC_0_D_A
PLP_E_D_A PLP_0_D_A
LPC_E_D_A - - -

In Table 4.2 on this page all combinations of features and additional terms,
which I analysed, are listed. The 0th cepstral coefficient reflects the excitation
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frequency. In LPC the filter coefficients of the transfer function are estimated and
thus, these coefficients cannot be directly attributed to the excitation frequency.
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Figure 4.10: Mean Unweighted Average accuracy in percent depending on the feature
set grouped by the additional term which is either Energy (E) or zeroth cepstral
coefficient (0). In all experiments Delta and Acceleration are used which is neglected
in the legend (cf. [Böck et al. 2010]).

As it can be seen from Figure 4.10 on the current page, the performance of
the feature sets according to the additional term is quite similar, in general.
However, the total number varies between the two data sets. Generally, in acted
material (cf. Figure 4.10(a) on this page) LPC is working quite good with both
terms and has almost the same performance as MFCC. In non-acted material
(cf. Figure 4.10(b) on the current page) the 0th cepstral coefficient is the best
choice as additional term. Usually, such kind of data sets are not as expressive
and again, the distance dependency of the speaker and the microphone influences
the energy values. Thus, the energy gives no further information to the classifier
to distinguish a specific emotion or disposition. From this, the performance of
MFCC are due to their discriminative power itself. On the other hand, the
0th cepstral coefficient provides additional information of the speaker and his
disposition which lead to a better performance.

I further investigated the choice of the feature extraction method. Whereas in
acted material LPC has comparable performance to MFCC, in non-acted material
MFCC cope better with the characteristics. From my point of view, this is due to
the cepstral components of MFCC. These characteristics in combination with the
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mel scale handle emotional and dispositional speech better and help the classifier
discriminating those. In contrast, LPC features lack of these cepstral components
(cf. Section 4.2.1) and show a lower recognition performance as, for instance,
MFCCs (cf. Figure 4.10 on the preceding page). The same observations can be
made having realistic data sets as described in Section 3.2.1 and Section 3.2.2
achieving results presented in Section 5.1.

[Vogt & André 2005] presents also a comparison of feature sets for acted and
non-acted data sets, namely EmoDB and SmartKom. Though they end up with
a larger feature set, having about 90-160 spectral and prosodic features includ-
ing also functionals like minimum, maximum, etc. They do not achieve better
performance because they got 77.4% accuracy on EmoDB which is similar to
my results of 77.6% (cf. MFCC in Figure 4.10(a) on the previous page) using
only 39 features. Further, from [Vogt & André 2005] I conclude that the experi-
mental results on SmartKom and eNTERFACE can be reasonable compared: As
reported in [Böck et al. 2010] with the aforementioned features and parameter
settings a recognition performance of 50.0% was obtained on SmartKom. Vogt
& André achieved 40.6% (cf. [Vogt & André 2005] Table 3) utilising their feature
set given four emotional classes. Their performance is influenced by the feature
selection process which was done with WEKA (cf. [Vogt & André 2005]). In my
experiments, I used also eNTERFACE which is a near real-life data set in its
characteristics related to SmartKom. Hence, a comparison with the achieved res-
ults of Vogt & André is possible. I obtained a recognition performance of 44.8%

given the six emotional classes defined by eNTERFACE (cf. Section 3.1.2). Con-
sidering these results, a respectable improvement in the performance with less
number of features was achieved.

Conclusion

From the experiments presented in this Section to evaluate parameter sets for
HMMs I conclude and further, suggested the following setup as also published in
[Böck et al. 2010].

For features the best choice are MFCC with 0th cepstral coefficient as additional
term. Further, to include the feature’s temporal characteristics it is reasonable
to add the Delta and Acceleration.
In terms of iteration numbers, it is optimal to train HMMs for five iterations.
Having more iterations lead to a kind of overfitting and hence, a loss of general-
isation.
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Finally, to handle the temporal behaviour within an utterance and therefore, the
temporal evolvement of the disposition over the corresponding utterance a three
state HMM is the best choice. In contrast, if the utterance is quite short (e.g. as
in EmoRec in Section 3.2.2) and thus, no temporal change are on hand that is, it
is just one dispositional characteristic observed, a one state HMM can cope with
it. In this case, as only Gaussian Mixtures are used, the model is called GMM.

4.3.3 Recurrent Neural Networks

In this Section I introduce a specific kind of ANN which is called SMRNN
(cf. [Chen & Chaudhari 2009]). As I did the experiments together with Stefan
Glüge I refer to his publications for a deeper look into SMRNN, for instance,
[Glüge et al. 2011; Glüge et al. 2012]. These references hold also for the detailed
mathematical description of SMRNN. An SMRNN is visualised in Figure 4.11.
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Hidden Layer 2

Context Layer 1

Context Layer 2

Input Layer

Output Layer

Segment Level

(SRN 2)
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(SRN 1)
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Figure 4.11: SMRNN structure representing a stacked set of SRNs group by the level
of process.

The SMRNN consists of two Simple Recurrent Networks which are stacked in
a hierarchical way. Each of the subnetworks represents a level of processing. The
first SRN is responsible for handling symbols. It gets the input directly from
the input layer of the SMRNN. The output of the first SRN is transferred to the
second subnetwork and furthermore, to a context layer of the same network. The
additional context layer in each subnetwork results from the characteristics of an
SRN. The second subnetwork is processing the segment level and is constructed
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similar to the first SRN. The segment level’s output is finally transferred to the
output layer where a overall result is generated.

From Figure 4.11 on the preceding page it can be seen that an SMRNN is
quite similar to a cascade of several SRNs. The input u(t) and the output z(t)
are obvious and usually coded by 1-of-N. Further, several weight matrices W are
used to connect the different layers. As it is common, receiver-sender-notation is
applied. The matrices towards the context layers are not shown in Figure 4.11 on
the previous page since the are equal to the identity matrix E. This means that
the output of the hidden layer is directly forwarded to the context layer without
any weighting. Furthermore, the content of the context layer is an additional,
weighted input to the corresponding hidden layer.

On symbol level the processing of the network is as any standard SRN. The
current input is processed with the time-shifted input from the context layer. In
contrast, on segment level the context layer’s influence is shifted by the parameter
d . That means, according to the value of d the context layer sends its content
to the hidden layer 2. So, d represents the segment length which is handled on
segment level. For this, the output of the segment level is updated only after
d time steps. This procedure as well as the additional parameter are the main
differences between stacked SRNs and an SMRNN.

SMRNNs can be trained with two training algorithms: i) as proposed in [Chen
& Chaudhari 2009] extended Real-Time Recurrent Learning (eRTRL) and ii)
extended Backpropagation Through Time (eBTT) by [Glüge et al. 2012]. Both
approaches can tackle tasks given to an SMRNN but differ significantly in the
computational complexity. According to [Williams & Zipser 1995] the complexity
of eRTRL is O(n4) in terms of number of adaptable weights in the network. In
comparison, eBTT’s computational complexity is still O(n2) (cf. [Glüge 2013])
which is equal to the original Backpropagation Through Time algorithm (cf. [Wil-
liams & Zipser 1995]). Further, as discussed in [Glüge et al. 2013] eBTT benefits
from a pre-training of the hidden layers and finally, has a better generalisation
performance.

4.3.4 Comparing Hidden Markov Models and Neural Net-
works

As already introduced, the work on SMRNNs was a collaboration with Stefan
Glüge. The following comparison was also done in cooperation with him and is
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published in [Glüge et al. 2011]. In there, the potential of SMRNNs in emotion
and disposition recognition from speech are investigated. The workload for the
experiment was distributed as follows: Stefan Glüge did the training and test
as well as the tuning of the SMRNN, whereas I did the HMM part and the
feature extraction for both classifiers. In this Section I concentrate mainly on the
Markov models and not on the SMRNN. Nevertheless, for the sake of comparison
the results of both classifiers are given.

Data Set and Feature Sets

From literature, it was so far known that SMRNNs are not used in emotion or
disposition recognition from speech. To investigate the capability of SMRNNs
in this field, it was decided to look at first on a data set of high quality in the
recordings providing significantly distinguishable emotions. Hence, in [Glüge et
al. 2011] EmoDB with its clear and expressive emotional utterances was utilised.
As introduced in Section 3.1.1 seven emotions are uttered by different actors.
The subset of 493 samples was used for the experiments whereas the set was split
in training and test sets. For HMMs 90% of the material was randomly selected
for training and 10% for testing. In case of SMRNNs the procedure is slightly
different. Due to the training algorithm a validation set is necessary defining the
end of training. Therefore, the splitting in randomly selected sets is as follows:
80% for training, 10% for validation, and the remaining 10% of the material were
used for testing.

As shown in Section 4.3.2, MFCC are extracted as features for the classifiers.
Since SMRNNs can handle temporal evolution by design, the temporal compon-
ents as usually used in speech processing were neglected. Hence, the feature set
for SMRNNs is a 13 dimensional feature vector consisting of 12 MFCCs and the
0th cepstral coefficient. To analyse the temporal influence, for the networks the
frame rate of feature extraction was varied equally for all samples between 10ms
and 25ms applying a Hamming window (cf. Equation 4.1) with 25ms window
size. Thus, different numbers of supporting points were generated which directly
lead to investigation on the capabilities of SMRNNs to cover temporal character-
istics (cf. also [Glüge et al. 2010] for a general discussion of temporal influences
in SRNs). The experiments were done on the available material in total. No
significant difference in the SMRNNs’ performance was recognised. Hence, to re-
duce the computational effort the feature extraction was done with a frame rate
of 25ms. Assuming a mean utterance length of 2.74s, 1430 features per utterance
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were extracted; roughly 7.5 times less as for HMMs.
In the experiments with HMMs the 12 MFCCs were extracted and the 0th cep-
stral coefficient is utilised as additional term. Further, to cover the temporal
characteristics of the emotional speech Delta and Acceleration were computed
for each feature and thus, 39 features in total were used as HMMs’ input. For
feature extraction the frame rate was set to 10ms and the window size to 25ms
as common in the emotion processing from speech. Having these values and as-
suming a mean utterance length of 2.74s in total 10686 features per utterance
were extracted. To compare HMMs with the neural networks the dynamic fea-
tures were neglected as well and thus, two feature sets were analysed: i) MFCC
and 0th cepstral coefficient only and ii) MFCC and 0th cepstral coefficient with
additional Delta. Additionally, to provide the HMMs with full dynamics MFCC
with Delta and Acceleration are extracted as a third feature set.

Classifiers

For each emotion a single SMRNN was trained and tuned. Due to the optimisa-
tion, each SMRNN has its own configuration as given in Table 4.3 on this page.
In common is that all neural networks have two hidden layers with sigmoidal
transfer functions (cf. Equation 4.19).

Table 4.3: SMRNN configuration grouped by emotional class in EmoDB (cf. [Glüge
et al. 2011]). The differences in the SMRNN settings are due to an optimisation for
each emotion.

Emotion Number of units Segment length d
hidden 1 hidden 2

anger 28 8 17
boredom 19 8 14
disgust 22 14 8
fear 17 17 7
joy 19 29 2
neutral 8 26 19
sadness 13 13 11

f (x ) =
1

1 + exp(−x )
(4.19)
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Furthermore, all networks were trained for 100 epochs. For the details of the
training procedure I refer to [Glüge et al. 2011].

The HMMs are constructed as left-to-right models with three internal states
since the task is to model the emotion over a full utterance. The structure as well
as the training procedure was according to [Böck et al. 2010]. The training and
testing was done using HTK [Young et al. 2009] where a final decision was made
on the basis of the log-likelihood; that is, favour the model with the highest log-
likelihood which is nearly the winner-take-all principle usually applied in neural
networks. As in case of SMRNNs for each emotion a single HMM was generated
though with the same configuration.

Results

The performance of both classifiers was evaluated with WA (cf. Section 1.3.1)
because the EmoDB is unbalanced in the number of utterances according to
each emotion (cf. Section 3.1.1). Further, UA is computed as well to visualise
the influence of unbalancing which is given in both classifiers but to a different
degree.

As it is given in Table 4.4 on the current page the recognition rates of SMRNNs
and HMMs are compared. The Table represents further the results for the HMMs
having an enlarged feature set, that is the temporal features of MFCC and 0th

cepstral coefficient, namely Delta and Acceleration, are added to the basic fea-
tures.

Table 4.4: Recognition rates in percent of HMM and SMRNN classifiers during train-
ing and testing applying Unweighted Average accuracy (UA) and Weighted Average
accuracy (WA) (cf. [Glüge et al. 2011]). For HMMs the two additional sets with
temporal features, Delta (∆) and Acceleration (∆∆), are given as well.

Emotion Training Testing
UA WA UA WA

SMRNN 91.6 91.1 73.5 71.0
HMM∆∆ 81.8 79.7 77.6 73.8
HMM∆ 81.1 81.2 63.3 60.0
HMM 70.7 71.2 55.1 51.7

The performance of the full set HMM with 39 features is comparable to the
results achieved on EmoDB in other experiments, for instance, [Schuller et al.
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2009a; Böck et al. 2010]. Further, the differences in the performance between
training and testing testify that the models are able to generalise and therefore,
cope with unseen material quite well. Reducing the feature set, on the other
hand, results in a decrease of the classification performance. Between the full
and the minimal set an absolute decrease of ≈ 22% in WA is observed on the test
set.

In contrast to the HMMs trained with 13 features only, SMRNNs can handle
the task quite well. Their performance is in the range of full set HMMs with 71.0%

WA. These results were achieved with 7.5 times less features as used for HMMs.
The performance is astonishing considering the HMM with the minimal feature
set which is related to the SMRNN’s. They have almost the same behaviour
regarding the relative difference between training and testing in the accuracies.

Investigating the ability to handle each emotion separately (cf. Table 4.5) it
can be noticed that the variation in the results for HMMs is narrower than for
SMRNNs. In some cases, for instance, fear and sadness, both classifiers perform
equally or at least comparably. On the other hand, for the remaining emotions
they provide results which are complementary to each other. This gives indication
that both methods can be complementary combined (cf. Section 4.4) to improve
the classification of single emotions.

Table 4.5: Correctness in percent grouped by the emotion comparing SMRNNs and
HMM∆∆ on the test set. Particular values are taken from [Glüge et al. 2011]

Emotion SMRNN HMM∆∆
anger 100.0 84.6
boredom 62.5 87.5
disgust 75.0 50.0
fear 60.0 60.0
joy 57.0 66.7
neutral 62.5 87.5
sadness 80.0 80.0

Discussion

Both methods handle the emotion recognition task quite well. Although, for
HMMs this was expected. In contrast, SMRNNs can cope with the issues as
well. The main advantage of the neural networks is that they need less features
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to be trained. This results from the design of the networks itself which provides
an ability to learn temporal relations, both short- and long-term dependencies.
HMMs lack this ability and thus, dynamic features have to be added. This leads
to a feature set per utterance which is 7.5 times larger than for SMRNNs.

On the other hand, the training procedure of HMMs is totally different from
SMRNNs. Therefore, the computational complexity of HMMs is in the magnitude
of O(S 2T ) where S is the number of states of an HMM and T is the observed
sequence length (cf. [Binder et al. 1997]). For a given setup as in the experiment
the complexity reduces to O(9T ) since three state HMMs were used. In contrast,
for SMRNNs the computational effort is much higher as discussed in [Glüge et
al. 2012], resulting in O(4n3Nd) for the eBTT and O(4n6(Nd)2) for the eRTRL
algorithm as in [Glüge 2013] where n is the number of neurons in each layer – to be
assume as equal in all layers –, N is the number of segments, and d is the segment’s
length. Hence, the reduction of the feature set’s advantage is compensated by
the computational costs in training. Hence, for fast generation of recognisers
HMMs are a better choice. Nevertheless, both methods have the potential to be
combined to improve the recognition of emotion as well as disposition from speech
classifiers, especially, due to their different ways of handling temporal relations
(cf. Section 7.2.3).

4.4 Fusion Aspects

Although the main focus of this thesis is not on fusion of classifiers the topic is
important to the issue of recognising dispositions and of interest in the context of
multimodal classification of non-acted data sets like EmoRec (cf. Section 5.3). In
my case, I mainly participated in work which was done by collegues at the Otto
von Guericke University Magdeburg (cf. [Siegert et al. 2012d; Siegert et al. 2012c])
and the Ulm University (cf. [Walter et al. 2011; Schels et al. 2012]). Moreover,
according to the semi-automatic annotation of data sets (cf. Section 4.1.3), I also
proposed and discussed a framework which combines two modalities (cf. [Böck
et al. 2012a; Böck et al. 2013a]). The proposed framework is indeed combining
modalities but not in the sense of fusion. As introduced in Section 4.1.3 the clas-
sification of audio and speech signals provides information for an annotation and
further, classification of facial expressions. Therefore, the combination is rather
an advanced information flow. Nevertheless, the advantages of one modality are
used for another one.
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Figure 4.12: Overview of a decision level fusion architecture. For each classifier a
single set of features is extracted. The final decision is generated by any kind of
combination rule previously defined by the system’s designer. Just the classifiers
are trained from the feature sets (illustrated by solid lined arrows).

Taking into account this small collection of publications, the importance of
fusion approaches in disposition recognition can be seen. Again, this thesis is
looking at handling non-acted data, but also provides fundamental results which
can be used in fusion, especially, in multimodal analyses. As the number of mod-
alities is huge, there are several ways of combining information, too. In general,
two points of action can be found where fusion should take place (cf. [Wagner
et al. 2011]): i) feature level or ii) decision and classifier level (cf. also [Kuncheva
2004]). The first approach combines extracted features directly by applying tech-
niques like concatenation of vectors or linear combination of feature values. Util-
ising this approach for Last Minute, results are given in [Panning et al. 2012].
The other method uses the decision of single classifiers which operate on features
extracted for their own purpose only. It is called decision level fusion visualised in
Figure 4.12. The results of the classifiers are fused, for instance, by using combin-
ation rules like Bayes’ Rule or Dempster’s Rule of Combination (cf. Figure 4.12).
In decision level fusion the designer of the system generates and influences the
final decision by constructing the combination function/method. In [Schels et al.
2012] this method is applied to EmoRec.
A third kind of fusion techniques, visualised in Figure 4.13, can be called mid
level fusion. It is related to the decision level fusion approach but the output
of the classifiers is fed to another classifier and thus, is the input for the new
classifier (cf. in general [Kuncheva 2004]). In fact, this architecture is a cascade
of classifiers. The advantage of that approach is that the final decision can be
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Figure 4.13: Overview of a mid level fusion architecture. For each classifier a single
set of features is extracted. The final decision is generated by a classifier which uses
the outputs of the previous classifiers as input features. In contrast to the decision
level fusion (cf. Figure 4.12 on the preceding page) the connections between the two
levels of classifiers are trained as well.

derived by training from an input which is already classified. Furthermore, this
approach overcomes the problem of different sampling times in the input which
usually occurs in other kind of fusion techniques, especially, in the feature level
fusion. As the classifier outputs are finally fused, differences in time scales for
each feature can be neglected. Hence, one could argue that a kind of temporal
scale’s alignment is established by mid level fusion. The mid level fusion approach
was, for instance, used by [Glodek et al. 2011] in the Audi-Visual Emotion Chal-
lenge 2011.
These introduced fusion techniques are related to the classification purposes which
are discussed in Section 5.3.

4.5 Summary

The development of classifiers for the purpose of emotion and disposition recogni-
tion from speech needs several steps and also has requirements. In the beginning,
training and test material have to be preprocessed according to the three steps: i)
transcription, ii) annotation, and iii) labelling. This was discussed in Section 4.1
where also a framework for semi-automatic annotation was introduced. After
this preprocessing features can be extracted from the speech signal. Meaningful
features for disposition recognition were presented (cf. Section 4.2).
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In general, several kind of classifiers are possible to recognise dispositions from
speech. In my thesis I concentrated on two, namely HMMs/GMMs and SMRNNs.
The focus was on HMMs/GMMs which were introduced in detail and further-
more, parameters were investigated. From these considerations, I concluded a
parameter setting as well as a classifier setup which is used in the experiments
presented in Chapter 5. Thereby, audio only, bimodal, and multimodal setups
are regarded where also fusion ideas are analysed.
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IN Chapter 4 methods and suitable parameter sets were introduced and invest-
igated. Using these, training of classifiers and therefore, related experiments

can be done. In the following, I discuss the results of three experiments which
are all published – conducted by me as first author. The related references are
given at the particular point.

In the first setup, only audio material is used to evaluate the classifier’s res-
ults. These investigations were also used to refine the parameter sets which were
introduced in Section 4.3.2. Based on those results, classifiers were applied in
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connection with two modalities, namely audio recordings and facial expressions.
To cope with the new kind of ground truth and modalities (cf. Section 1.2.3
and 3.2) enhanced feature sets (cf. Section 4.2.2) were investigated, especially,
in connection with semi-automatic annotation. Finally, a multimodal setup was
investigated which used audio, video, and biophysiological features. For this, my
part was the audio classification only that could further be incorporated in a
fusion architecture combining all three modalities (cf. [Walter et al. 2011; Schels
et al. 2012]).

5.1 Audio Setup Only

For experiments on non-acted material both data sets which were generated in
the SFB/TRR 62 were used. In both sets the utterances are quite short (cf. Sec-
tion 3.2.1 and 3.2.2) whereas the analysis on turn-level means that a dispositional
label is given to the whole utterance. Further, no temporal evolution has to be
modelled and thus, GMMs can be used for classification (cf. Section 4.3.2). In
particular, for each dispositional category a single GMM is generated. In the
beginning, HMMs with three internal hidden states were also tested to verify
the parameter set on naturalistic corpora suggested in Section 4.3.2, since the
internal structure of the classifiers was derived from this, commonly applied in
speech recognition. This issue was already discussed in Section 4.3.2. Further,
as both data sets are novel material those studies have to be done to explore the
material.

5.1.1 Results on Last Minute

I introduced the Last Minute data set (cf. [Frommer et al. 2012b]) in Sec-
tion 3.2.1. Four barriers (cf. [Rösner et al. 2012]) are included in the experimental
setup, namely baseline, challenge, listing, and waiuku where the detailed descrip-
tion is given in Section 3.2.1. The sample’s distribution according to each class
is presented in Table 3.3 on page 53. Given this Table, it is advisable to apply
WA as a reference for validation since the number of samples is unbalanced. In
contrast to the expectations, almost no difference can be see comparing UA and
WA values for Last Minute.

Comparing EmoRec and Last Minute, it is noticeable that both data sets
contain quite short utterances with most of the time elliptical characteristic. This
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means, especially, in Last Minute short sentences are included whereas EmoRec
comprises of commands necessary for the game ‘Concentration’. Having this in
mind, I investigated the differences in handling dispositional characteristics. As
mentioned in Section 4.3.2, HMMs reflect the temporal behaviour or evolution
of dispositions where, in contrast, GMMs model the ‘pure’ dispositional charac-
teristic. From this, I compared both modelling approaches to explore the given
data set.

Experimental Setup

The experimental setup for the classification of dispositions on Last Minute
is twofold concerning the classifier. Nevertheless, the features which I applied
for training and testing are the same in both cases. Again, since the corpus and
its characteristic are novel it was not clear which features are suitable to cover
the dispositions. For this, I concentrated on features that are feasible from the
eNTERFACE’s point of view. As eNTERFACE (cf. [Martin et al. 2006]) can
be seen as related to a near real-life, naturalistic interaction although it is acted
material (cf. Section 3.1), the features can be transferred to non-acted material
as well. Can this be done without concerns? Especially, eNTERFACE is on the
one hand an acted corpus, but it is a data set where non-actors were recorded.
That means, the participants had to be set into a certain dispositional situation
which was done with dispositionally coloured texts. From this, I assumed that
the disposition was not acted and thus, a near real-life situation is generated.
This gives an indication that the same features can be applied for naturalistic
material as well where the disposition was induced by a WoZ scenario as in Last
Minute (cf. Section 3.2.1). Furthermore, this assumption holds for EmoRec
(cf. Section 3.2.2), too.
Taking into account the results from Section 4.3.2, especially Figure 4.10(b) on
page 89, I considered MFCC and PLP only, since the LPC shows a significantly
low performance on eNTERFACE. Nevertheless, MFCC had only a slightly better
performance, particularly with the 0th cepstral coefficient.

At first, I give the setup of the HMMs. Their internal structure is as described
in Section 4.3.1 and visualised in Figure 4.7 on page 81. I used models with one
Gaussian Mixture in each state and three hidden states. The HMMs are organised
as left-to-right models containing self-loops in each state. The transition and
production probabilities, aij and oi , respectively, are initialised equally at the
beginning of the training. The mean µi and variance σi values of each mixture i
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where estimated as a flatstart model (cf. HTK [Young et al. 2009]). That means,
the mean and variance are computed as an average of the corresponding values
analysing the training material in total. Since I applied only models with one
mixture the estimations of µi and σi are generalised to each state of the HMM.
Like in speech recognition, for instance, with phonemes I utilised one HMM per
dispositional state. This leads to four HMMs with three internal states modelling
the classes baseline, challenge, listing, and waiuku. As proposed in [Böck et al.
2010] each model is trained for five iterations.

Concerning the GMMs, I applied HTK for training and testing as well. This
is possible because a GMM can be interpreted as an HMM with one state and
multiple Gaussian Mixtures. From this the internal structure of my models is
defined as an one state model with an internal self-loop coping with the temporal
sequence of a sample. The internal values of µi and σi are set as flatstart as well.

To show the potential of the GMM approach I trained also HMMs with Gaus-
sian mixtures in the hidden states. Therefore, I varied the number of mixtures in
the range of [1, 10], stopping the search when no further gain in performance was
determined. In fact, the performance decreased with higher numbers of mixtures
(cf. Table 5.1 on the next page).

Results of Hidden Markov Models

From Figure 4.10(b) on page 89, it is to be expected that in the case of non-acted
material the 0th cepstral coefficient would work better than the Energy term as
additional parameter. To prove this issue both terms were compared on Last
Minute in both cases with HMMs and GMMs and keeping MFCC fixed. Using
HMMs the Energy terms show a better performance in terms of accuracy, namely
21% WA with Energy in contrast to 17% applying 0th cepstral coefficient. Both
experiments were conducted on specifications given in the experimental setup
applying a cross-validation.
From a general point of view, both additional terms behave quite different in
my experiments. With the 0th cepstral coefficient the HMMs show a worse per-
formance than with the Energy term. Inspecting the trained HMMs, it can be
stated that in the particular cases, the partitioning of the 0th cepstral coefficient’s
characteristics is quite difficult. For these models, it was not possible to estimate
an optimal distribution which might be due to the complexity of the course of
this coefficient. In contrast, for the Energy term a proper partitioning of the
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characteristics to the different states in the HMM could be established as for this
term a temporal evolution can be noticed. Therefore, those models had a better
recognition performance, namely 21% WA.

Based on these considerations the observation of the mixture’s influence was
done utilising the Energy term, only. In Table 5.1 the values of UA and WA for
several number of mixtures are given. Increasing the mixtures’ number improves
the performance of the models significantly.

Table 5.1: Comparison of HMMs with different numbers of Gaussian mixtures meas-
uring Unweighted Average accuracy (UA) and Weighted Average accuracy (WA) in
percent.

Number of mixtures UA WA
1 21.0 21.0
2 27.5 27.5
4 33.0 32.0
6 33.5 32.0
8 33.5 32.0
10 28.5 28.5

Utilising more Gaussian mixtures yielded a boost in the performance of the HMM
up to a certain threshold. Exceeding this, the advantage is exhausted by the
number of internal states. This is related to the phenomenon of overfitting which
occurs also in ANNs and means that the model is too specialised or adapted to
the given training material. It leads to the loss of generalisation’s ability and
hence, the performance decreases although the classifiers show a good perform-
ance while testing on the training set. Such an effect can be seen with the HMMs
in the experiment as well. The internal structure and the number of mixtures
are important parameters. With HMMs it is possible that due to the learning
of the temporal characteristics of the disposition, the performance gain of the
Gaussian mixtures is compensated by the number of hidden states which results
in a worse performance. The internal probabilities and the mixtures’ parameters
reproduce the characteristics of the training samples. Unfortunately, exceeding a
certain number of mixtures to more than eight (cf. Table 5.1) this results in the
performance loss.
In contrast, using only GMMs this temporal effect does not occur which is related
to the design of the model. However, even with GMMs a loss in performance can
be see because of the overfitting effect already discussed in Section 4.3.2; that is,
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using to many mixtures results also in a worse performance since the classifier
is highly adapted to the training material. Hence, the number of mixtures is a
parameter which has to be investigated. These experiments are discussed in the
following Section.

Before I present the results applying GMMs a few more general words consider-
ing the results of HMMs have to be said. Regarding the numbers in Table 5.1 on
the previous page it can be seen that they are low compared to common results
in emotion recognition. From my point of view, there are two main reasons why
the results look so bad. First of all, disposition recognition is examined. This is
a kind of analysis which is novel in the community. So far, just a few experiences
are at hand realising a classification of such an aspect. On the one hand, the
topic is somehow ‘weak’ and hard to capture, especially, in a sense that a com-
monly excepted definition of disposition is still lacking. On the other hand, the
material, which is analysed, is quite naturalistic and up to now, the community
just starts to get involved in such studies.
These issues will be partly discussed in Section 5.1.3 in a broader sense.
On the other hand, the values in Table 5.1 on the preceding page show a devel-
opment to increase the performance of the classifiers as it was discussed already.
Improving the parameters yielded a gain in the performance. Of course, 32%

WA and 33.5% UA (cf. Table 5.1 on the previous page) appear to be bad results.
However, I encourage the reader to an experiment as it is described in Section 3.2
taking into account the performance of a human begin classifying dispositions.
Again, with naturalistic, non-acted data sets and more general classes like chal-
lenge or waiuku recognition results are lower than having optimal, acted material
(cf. Figure 4.10(a) on page 89). Even in case of eNTERFACE which can be seen
as a more realistic corpus recognition accuracies are in the range of 40% (cf. Fig-
ure 4.10(b) on page 89) while having a seven classes task. Considering these
aspects, an absolute improvement of 7% WA compared to chance level was yiel-
ded by the HMMs. With a slight switch in the type of classifier towards GMMs
an additional improvement can be achieved.

Results of Gaussian Mixture Models

As I already explained, the utterances contained in Last Minute are quite short
compared to other corpora, for instance, the SAL [McKeown et al. 2012] where
HMIs are recorded containing also kinds of monologues. From this and based on
findings given in Section 4.3.2, I argue that the dispositional information is mainly



5.1. Audio Setup Only 107

enclosed in the style of speaking than in the temporal evolution. This means,
due to the shortness of the expression no evolution is seen in the disposition since
the analyses are on utterance-level. Indeed, considering longer time periods the
temporal effect will be observable (cf. Section 1.2.2). But, for such short time
spans the temporal characteristic is masked by style effects. Hence, GMMs as
classifiers become of interest and will be considered in the following.

Guided by the results of the HMMs’ experiments I analysed the performance of
MFCC first. As already discussed the eNTERFACE is a good indicator to derive
suitable experiment’s parameters. Hence, I trained the GMMs also for five iter-
ations (cf. Section 4.3.2). Based on the findings of Schuller et al. the number of
Gaussian mixtures was set to 81. In [Schuller et al. 2009a], the authors report on
their experiment using 80 additional mixtures and thus, due to the specifications
of HTK [Young et al. 2009] the total number of mixtures is 81 as at least one
mixture has to be used in each state. Testing other numbers of mixtures in the
neighbourhood of 81 showed no significant changes in the average performance,
however, in the single runs the accuracies varied. To avoid side-effects of single
speakers all experiments were done in a cross-validation manner.
In Table 5.2 the first row shows the results of mean UA and WA for MFCC.

Table 5.2: Results of the cross-validation presenting the Unweighted Average accuracy
(UA) and the Weighted Average accuracy (WA) in percent for GMMs comparing
MFCC and PLP features. For both experiments the number of mixtures in the
GMMs were fixed to 81.

Feature set UA WA
MFCC_0_D_A_Z 43.97 43.97
PLP_0_D_A_Z 43.96 43.96

To handle the variances in the cepstral coefficients’ mean values a cepstral mean
normalisation was applied to the MFCC which is indicated by _Z. This normal-
isation is done by estimating the mean “by computing the average of each cepstral
parameter across each input speech file” [Young et al. 2009]. From this, long term
effects, for instance, from different microphones or channels are compensated. It
is not the normalisation of differences in the speakers’ characteristics. Hence, it
is advisable to do a cepstral mean normalisation as it is not guaranteed – and
this is valid for almost all corpora – that the recording conditions kept absolutely
stable for the total data collection process.
With GMMs a boost in the performance of more than 10% absolute accuracy
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(cf. Table 5.1 on page 105) compared to HMM was achieved. It is conspicu-
ous that there is no difference between UA and WA results. From Table 3.3 on
page 53 it is known that the number of samples is not equally distributed as
one could assume by regarding those values. In any case, the differences are not
as significant, especially, for baseline and waiuku. Considering each run, as the
mean values are estimated over 10 runs with an arbitrary selection of the mater-
ial to training and test set, separately even so, the two validation measures are
equal. Therefore, the values for UA and WA are equal since for each class the
same recognition accuracies were achieved by the classifiers. From this, it can be
stated that no class was preferably learned by the classifiers even in this case of
a not equally distributed data set (cf. Table 3.3 on page 53). Hence, the trained
classifiers show a performance that can be assumed to general – not optimal –
since the recognition is spread over all classes which is a characteristic of a general
recogniser, from my point of view.
Further, as motivated by Figure 4.10(b) on page 89 PLP features were also tested.
There are no significant changes in the performance in comparison to MFCC
(cf. Table 5.2 on the preceding page). Hence, the same conclusions can be drawn
as in the case of MFCC. In contrast, for cross-validation PLP features have a sig-
nificant better performance in the sense of interindividual validation recognition
of dispositions.

The interindividual validation approach, as introduced in Section 1.3.2, reflects
the generalisation ability of classifiers to handle material which was not seen in
training. This provides the opportunity to generalise dispositional characteristics
since the training material is independent from those used in testing.
Again, a cepstral mean normalisation was applied to both MFCC and PLP
whereas the feature sets are motivated by Figure 4.10(b) on page 89. The norm-
alisation is already introduced in a previous paragraph.

Table 5.3: Interindividual recognition results of dispositions on the Last Minute
corpus measuring the mean Unweighted Average accuracy (UA) and mean Weighted
Average accuracy (WA) in percent.

Feature set UA WA
MFCC_0_D_A_Z 40.65 43.33
PLP_0_D_A_Z 43.59 44.96

In Table 5.3 the recognition results of dispositions are presented. Regarding the
performance of PLP coefficients an improvement of the recognition accuracy of
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≈ 1% absolute WA was achieved compared to MFCC. Usually, interindividual
validation results in a worse performance in pure speech recognition. In contrast,
for disposition recognition from speech the results show a gain in the perform-
ance. This was also seen in the experiment on EmoRec I (cf. Section 5.1.2). The
underlying concepts are matter of further interdisciplinary research.
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Figure 5.1: Mean values of Unweighted Average accuracies (UA) and Weighted Aver-
age accuracies (WA) in percent with corresponding standard deviations on the Last
Minute corpus for MFCC and PLP features grouped by cross-validation (Cross)
and interindividual validation.

Regarding the values in Table 5.2 on page 107 and Table 5.3 on the preced-
ing page, it seems that the interindividual validation has a better performance
compared to cross-validation. Therefore, I computed the standard deviation for
each experiment. For the cross-validation it is for both measures equal and thus,
resulted in 5.15% for MFCC and 4.22% for PLP. In contrast, for interindividual
validation I obtained for MFCC 14.92% in UA and 12.76% in WA, respectively.
On the other hand, for PLP the standard deviations are computed to 13.04% in
UA and 13.62% in WA. From this, it can be concluded that the cross-validation
still works better than the interindividual validation as the standard deviations
are smaller. The mentioned values are also visualised in Figure 5.1 on this page.
Comparing the feature sets an improvement of accuracy was achieved. Note that
the performance is comparable to the findings in eNTERFACE (cf. Figure 4.10(b)
on page 89). However, in eNTERFACE MFCC features performed better than
PLP features. The analysis of the way how both features are extracted from
the speech signal (cf. Section 4.2.1) show two differences that might result in the
gain of performance. From my point of view, the scaling which is applying the
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power law of hearing in PLPs or the mel-scale in MFCC, is relevant and influ-
ences the final results significantly. For this corpus, PLP coefficients are more
adaptable and seem to be more sensitive to the way dispositions are uttered by
the participants of the WoZ scenario.

On the other hand, from Table 5.3 on page 108 it can be observed that the
values differ only marginally for both feature sets. Therefore, no general remark
for a certain feature set used on non-acted corpora can be derived although, an
indicator for both methods is given. In the following the other corpus, namely
EmoRec I is analysed with respect to audio features only.

5.1.2 Results on EmoRec I

For the analyses in this thesis I concentrated on the so-called EmoRec I (cf. Fig-
ure 3.1(b) on page 54) data set which is a subset of the corpus EmoRec I+II
introduced in Section 3.2.2. So far, only the first part of the corpus, namely
EmoRec I, is (almost) fully prepared by the colleagues at the Ulm University to
be investigated in experiments. Further, it is the set which is also used in mul-
timodal investigations and hence, observed by other groups which are involved in
the SFB/TRR 62 (cf. [Walter et al. 2011; Schels et al. 2012; Tan et al. 2012]). In
detail, two sequences were distinguished in the whole experiment called ES-2 and
ES-5 which are related to positive and negative disposition characteristics of the
speaker, respectively, as discussed in Section 3.2.2. The results of audio analyses
are mainly published in [Böck et al. 2012b].

Furthermore, I participated on analyses related to two or more modalities and
contributed the audio results. The dispositions are induced according to the oct-
ants in the PAD space (cf. [Mehrabian 1996] and Figure 5.2 on the facing page).
Each octant represents a certain user state and thus, is related to a disposition.
For the following experiments I concentrated on ES-2 and ES-5 (cf. Figure 3.1(b)
on page 54) with the following coding in PAD space: i) ES-2 with positive pleas-
ure, low arousal, high dominance reflecting a positive disposition and ii) ES-5
located at negative pleasure, high arousal, low dominance reflecting a negative
one.
In addition, in multimodal experiments (cf. Section 5.3) two other sequences were
observed which have the following characteristics: ES-4 and ES-6 are based on
EmoRec II (cf. Figure 3.1 on page 54). They are connected to negative valence,
high arousal, low dominance and positive valence, low arousal, high dominance,
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respectively, in the PAD space. For this, they represent similar characteristics of
the speaker and thus, are investigated under the same considerations.

Pleasure

Arousal

Dominance
ES-2

ES-5

Figure 5.2: Schematic visualisation of the two experimental sequences ES-2 and ES-5
in the PAD space. ES-4 is related to the position of ES-5 whereas ES-6 is in the
surrounding of ES-2. Both ESs are neglected for the sake of clarity in presentation.

The results on the experimental sequences are also presented in [Walter et al.
2011; Schels et al. 2012; Böck et al. 2012a; Böck et al. 2013a]. Though, the findings
will be discussed in the corresponding Sections (cf. Section 5.2 and 5.3).

Experimental Setup

Since both corpora, namely Last Minute and EmoRec are generated in a WoZ
setup, I transferred the experimental setup applied on Last Minute also for
the classifiers on EmoRec. This means, GMMs were applied, modelling each dis-
positional category with a single GMM. In the case of EmoRec this leads to two
models tagged with positive and negative. As GMMs are applied in the classific-
ation the speakers’ characteristics have to be modelled by using a set of Gaussian
mixtures within each classifier. From the results of Last Minute I developed
the classifiers with 81 mixtures since both data sets are similar to each other.
To achieve comparable results for the inter- as well as intraindividual experi-
ments MFCC are extracted from speech samples using a common setting from
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speech recognition, that means, a frame rate of 10ms and a Hamming window
(cf. Equation 4.1) with a window size of 25ms having an overlap of 15ms. MFCC
with 0th cepstral coefficient are selected as in Last Minute they showed sig-
nificant stable results both in cross-validation and in interindividual validation
which both indicate a good performance for EmoRec. In addition to the Delta
and Acceleration values, the cepstral mean normalisation indicated by _Z was
applied.

The already mentioned two classes, namely positive and negative, were derived
from the experimental design given by the involved psychologists. As already
introduced in Section 3.2.2 the dispositions are induced by controlled influence
of the system’s reactions of the game ‘Concentration’ played by the participants.
In terms of the psychologists they call them still emotions, but from considera-
tions in Section 1.2.2 the states of the participants different from pure emotions.
Namely dependent on the different situations which are generated by the wizard
and the game itself, more complex interconnections have to be regarded. These
are heavily related to situatedness and hence, from my point of view, the term
disposition is justified.
All audio samples from the corresponding sequences were cut from the audio
stream and manually assigned. The aforementioned features were extracted util-
ising HTK (cf. [Young et al. 2009]).

Interindividual Results

The two class issue mentioned in the experimental setup of EmoRec was ana-
lysed using an interindividual validation approach. The averaged results for
each speaker while combining ES-2 and ES-5 are presented in Table 5.4 on
page 114. Comparing the UA and WA values, the difference between both is
small. Especially, the mean values are not as different since UA is 52.3% and
WA 55.1%. Again, the EmoRec corpus is a data set which provides naturalistic
speech samples with non-acted dispositions. As already discussed in Section 3.2,
this leads to accuracy values that are respectable but not as high as those achieved
on acted corpora. Even for human listeners and annotators the classification task
is quite difficult. From this, the automatic classification based on GMMs shows
respectable results. Moreover, the results can be ranked in more detail if they are
compared to other modalities as it will be done in Section 5.2 and Section 5.3.
Further, in Table 5.9 on page 129 the classification accuracies on EmoRec II which
is the second cycle in the scenario (cf. Figure 3.1(a) on page 54), are presented.
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Regarding these values, two aspects can be stated: i) the inducing of the dispos-
itions worked on both cycles similarly well and ii) the results of EmoRec I can
be reproduced. This mean, the methods show similar recognition accuracies on
both subsets of EmoRec, for instance 52.3% UA on EmoRec I and 52.2% UA
on EmoRec II (cf. Table 5.4 on the following page and Table 5.9 on page 129).
However, the improvement of the classification performance on such naturalistic
material is the matter of current research and thus, aspects of how to deal with
this issue are discussed in several Subsections of Section 7.2.

Investigating the single results for each participant in most cases they are
narrow and concentrated between 51% and 57% for WA. For an interindividual
classification this is quite noticeable even as the variation is small. Furthermore,
regarding the single results in Table 5.4 on the following page, it can be seen that
for some participants UA has a greater value as WA. This aspect derives from
the characteristics of the confidence measures and is discussed in Section 1.3.1.
Nevertheless, two conclusions can be emphasised from the experiment as follows.
At first, the features which are derived from the Last Minute corpus are trans-
ferable to EmoRec. One step further, they seem therefore also generally applic-
able for i) disposition recognition as such and ii) for the handling of non-acted
material. Even more, MFCC_0_D_A_Z features cope with both aspects in
combination, that means, they can be used for a disposition recognition from
non-acted speech. This is reflected by the performance of the classifiers, namely
GMMs, given the feature set. Thus, it is shown – as in emotion recognition from
speech – that MFCC enriched with the zeroth cepstral coefficient are suitable for
disposition recognition from speech.
On the other hand, and this is more a kind of a meta-interpretation, the hypo-
thesis arises that the dispositional characteristics for ES-2 and ES-5 are speaker
independent. Of course, this issue is an aspect which is more to psychologists to
discuss but it is also of interest from a technical and classification point’s of view.
As the disposition was induced (cf. Section 3.2.2) the experimental conditions can
be assumed as being fixed. Therefore, the personal characteristics of each parti-
cipant are in the focus. From the results in Table 5.4 on the next page the small
variations in the classification give hint that the hypothesis is true and especially,
the distinction between positive and negative dispositions is independent from a
speaker. For emotion recognition from speech the question was also observed in,
for instance, in [Kostoulas et al. 2008; Kotti et al. 2010]. The investigation for
dispositions is so far just done on as technical issue. It lacks the verification under
the focus of psychological analysis related and combined with technical aspects
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(cf. Section 7.2.3). According to emotions such a combination was investigated,
for instance, by [Lugger & Yang 2008].

Table 5.4: Classification results of dispositions for EmoRec I based on ES-2 and
ES-5 measuring Unweighted Average accuracy (UA) and Weighted Average accur-
acy (WA) in percent for each participant of the experiment. Further, the mean
accuracies are given. In the Table the accuracy values are grouped according to
interindividual and intraindividual validation.

Participant Interindividual Intraindividual
UA WA UA WA

112 65.0 58.7 55.6 57.5
114 47.6 51.6 62.5 63.5
118 32.1 46.2 65.3 56.5
125 49.4 54.1 62.5 60.5
127 43.2 52.4 71.4 70.0
129 51.5 55.3 68.0 67.0
208 41.8 49.8 79.7 75.0
212 81.1 79.6 86.7 90.0
215 39.7 52.4 100.0 100.0
219 57.1 56.6 68.5 68.5
225 56.9 52.6 96.0 95.5
226 59.7 56.6 84.3 86.5
308 59.7 57.8 65.8 67.5
423 60.3 56.0 49.2 58.5
427 60.7 61.0 68.8 69.0
506 56.8 51.3 70.5 72.5
510 42.5 53.2 52.5 52.5
511 38.6 48.0 62.9 63.5
518 69.2 67.3 68.6 66.0
602 39.2 42.3 60.0 60.0
mean 52.3 55.1 69.9 70.0

Intraindividual Results

In Table 5.4 on this page the classification results for the intraindividual validation
experiments are given, grouped by UA and WA. As introduced in Section 1.3.3,
for this kind of validation I utilised only material from one speaker participating
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in the WoZ scenario EmoRec I. To get significant results each experiment was
repeated ten times splitting the material arbitrarily and averaging the accuracies
afterwards. From this, it is possible to show the classification results compared
to the accuracies achieved in interindividual experiments.

In general, the behaviour of the results is similar to those achieved in interindi-
vidual validation, whereas the differences between UA and WA are not as large.
As supported by the values in Table 5.4 on the preceding page an improvement of
the recognition power is attained by observing each participant separately. This
aspect is also known in speech recognition and is, for instance, used in several
dictation systems (cf. [Nguyen 2009]). As it can be seen, such approach is suitable
for disposition recognition from speech as well (cf. Section 5.1.3). Doing so, a gain
of 14.9% absolute was achieved for mean WA. Considering the single speakers the
improvement is different. Except three participants, the switch in the validation
method results in an increase of performance. As the same features were ap-
plied for all experiments and also the same setup was used, it was first unclear
why the performance for these three speakers decreased (cf. in Table 5.4 on the
facing page these are participants 112, 510, and 518). Watching the video and
listening to the audio material of those users, I realised that they are ‘switching’
between the two dispositional states quite often even in the same ES. From this,
it was challenging for the classifier to generalise. In contrast, having different
user characteristics in the training helped to extract a common characteristic in
the behaviour. This is the case for the three participants.
Another aspect of detailed observations is that the described effect (cf. inter-
individual analyses) of larger WA values than UA ones occurs only with nine
users whereas 11 are effected in interindividual validation. This is due to the
more balanced distribution of the samples, that means, the total number of au-
dio samples which are assigned to the two classes is more similar. Nevertheless,
even in intraindividual validation the counterbalancing effect is given. These
characteristics of the confidence measures are already discussed in Section 1.3.1.
Further, the classifiers were able to learn both classes which indicates that also
the utilised features, namely MFCC_0_D_A_Z, reflected the characteristics of
both classes in a better way. Moreover, the difference of the means is almost
negligible (cf. Table 5.4 on the preceding page with 69.9% UA and 70.0% WA).

In Section 5.2.3 as well as [Böck et al. 2012b] the intraindividual results are
compared to these achieved with classifiers trained and tested on biophysiological
features. As mentioned in Section 3.2.2, EmoRec provides the possibility to
compare user reactions on audio as well as on biophysiological characteristics. Of
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course, internal features like heart rate, blood volume pulse, etc. are more user
specific and therefore, are able to deal with his characteristics, nevertheless, in
comparison also with audio features significant results were achieved. For detailed
analyses I refer to Section 5.2.3.

5.1.3 Discussion

Disposition recognition from speech is so far a novel kind of analysis. From this,
the community has just few experiences how to handle such a complex task, es-
pecially, in the sense of classification. In Section 5.1.1 I started the analysis of
a non-acted data set which can be regarded as material enriched with disposi-
tional features. In contrast to SAL [McKeown et al. 2012], for instance, which is
still dealing with emotions, Last Minute and EmoRec are designed to provide
material related to dispositions; in case of Last Minute even dispositions are
assigned. As I already said, I started the analyses and from my point of view
both corpora are rich in aspects worth investigating, in the sense of disposition
recognition. Therefore, this thesis could only provide an incubator for several
aspects of research.

Especially, when regarding the values given in Table 5.1 on page 105 as well
as Table 5.2 on page 107 and Table 5.3 on page 108 it can be seen that they are
low compared to common results in emotion recognition. In this case, common
emotion research means applying acted material. As I already discussed in Sec-
tion 3.2, I encourage the reader trying to classify dispositions by himself. From
this, it will be more obvious that this is a challenging task. This is even more
true, as the community at all is still lacking a common definition of disposition
combining psychological and technical aspects. The interdisciplinary character
of this research field entails potency for discussions, whereas several ideas are
already published covering details of each involved discipline. In this thesis I
provide a definition which is influenced by the psychological view, but is related
to a technical sense, see Definition 1.6 on page 7 in Section 1.2.2.

Aiming on the exploration of the two non-acted data sets, I compared the fea-
tures, which are well-known from speech recognition and already proved to be
suitable for emotion recognition from speech, under the issue of availability for
disposition recognition from speech samples. Shown in the corresponding Sec-
tions (cf. Section 5.1.1 and 5.1.2) it has been figured out that especially, MFCCs
are suitable and provide a significantly good opportunity for generalisation. This
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is also valid for different kinds of validation methods. In particular, a gain in
performance was achieved by an intraindividual validation.
This aspect is also discussed in [Böck et al. 2012b] were I suggest to provide
a technical system with the opportunity to switch between interindividual and
intraindividual validation if necessary. Such procedure is just important if the
technical system is intended to be a companion (cf. [Wendemuth & Biundo 2012]).
Therefore, the system has the possibility to adapt towards a certain user. In the
beginning, a common model for disposition recognition is necessary which can
be derived by an interindividual approach. While interacting with a certain user
the system is collecting data and uses the classification result to refine the in-
ternal models, namely GMMs. After a while the switch to an intraindividual
validation can happen. So far, it is still an open question when to switch between
the strategies. A sketch proposal is to use a decrease of WA as an indicator as
inspired by the work with ANNs.
Furthermore, the investigated validation approaches helped to rank the classific-
ation results incorporating other modalities than the audio channel. This will
be discussed in more details in Section 5.2. In Section 5.3 I present further con-
siderations of multimodal investigations that lead directly to fusion aspects. As
fusion in general is not in the focus of this thesis, I refer also to open issues that
are given in Section 7.2.3.

5.2 Bimodal Setups

The following settings provide another view of results gained in disposition re-
cognition from speech. They are linked with other modalities, especially, facial
expression derived and annotated with FACS as well as biophysiological para-
meters of the speaker. Since just EmoRec provides such an enriched and detailed
feature set all experiments of this Section are done on this corpus only. Further,
the material is analysed under several aspects and the corresponding results are
published. However, I concentrate on those findings I achieved by myself or par-
ticipated on; that means, for the purpose of publication I was the first author or
a co-author. The references are mentioned at the corresponding point.
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5.2.1 Comparison of Audio & Facial Expressions

As presented in [Böck et al. 2012a] a connection between facial expressions
and spoken utterances can be built. Especially, disposition recognition from
speech provides the possibility to analyse parts of the experimental sequences
in EmoRec where facial expressions are not evaluable since the participant is
speaking. Moreover, the current Section and Section 5.2.2 are linked as both
are working on the same data set, namely EmoRec. The difference of the Sec-
tions is that the current one is presenting the basic results used afterwards in the
semi-automatic annotation.

Using the aforementioned methods and features for disposition recognition from
speech, I achieved the results already discussed in Section 5.1.2. They are entirely
based on the audio material without any relation to other modalities. This means,
the audio samples were processed and classified as they appear in the data set
and no link to information from other modalities is established.

In addition to MFCC features I also investigated prosodic features as intro-
duced in Section 4.2.2, namely formants and their bandwidth, intensity, pitch,
and jitter. According to [Scherer 2005], for instance, those are meaningful in emo-
tion recognition from speech. Evaluating this in the context of disposition recog-
nition and especially, aiming for a semi-automatic annotation (cf. Section 4.1.3
and 5.2.2) I analysed the features on EmoRec I. To derive an additional feature set
the analyses (published in [Böck et al. 2012a]) were done manually, extracting the
features by applying Praat (cf. [Boersma 2001]). Finally, with these additional
feature set classifiers were trained. The results are presented in Section 5.2.2.

In addition to the results presented in [Böck et al. 2012b], the full set of par-
ticipants was analysed. In Figure 5.3 on the facing page the three formants
with their corresponding bandwidths are given. The plot shows the mean values
averaged over all 20 participants who are selected as a common set having all
modalities in both data sets – EmoRec and Last Minute – as discussed in Sec-
tion 3.2.1 and Section 3.2.2. For this, the features are extracted from the speech
of each participant using Praat (cf. [Boersma 2001]) and are averaged over all
speakers afterwards. Hence, all audio samples of all speakers are used to calcu-
late the mean values. As it is known from literature, for instance [Scherer 2001;
Vlasenko et al. 2011b; Vlasenko 2011], formants are discriminative for emotions.
Figure 5.3(a) on the next page and Figure 5.3(c) on the facing page support the
hypothesis that this is also valid for disposition recognition from speech. Espe-
cially, formant 2 is highly discriminative for the two dispositions – namely ES-2
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(b) Formant 1 Bandwidth.
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(c) Formant 2.
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(d) Formant 2 Bandwidth.
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(e) Formant 3.
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(f) Formant 3 Bandwidth.

Figure 5.3: Global mean values in Hz for the formants 1 to 3 (cf. Figure 5.3(a), Fig-
ure 5.3(c), and Figure 5.3(e)) and their corresponding bandwidths (cf. Figure 5.3(b),
Figure 5.3(d), and Figure 5.3(f)).
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and ES-5 – as the average frequencies of both are a long way apart from each
other; approximately 1000Hz (cf. Figure 5.3(c) on the previous page). It is of
interest that in such naturalistic HMI the shift of frequencies is contrary to the
expectations derived in [Scherer 2001], for example. From my point of view, this
characteristic is due to the non-acted material. Scherer achieves the findings by
regarding HHIs which usually supply slightly different characteristics. Investigat-
ing formant 3 (cf. Figure 5.3(e) on the preceding page) the course is as expected.
However, especially, in several parts of the diagram overlaps are given. Therefore,
this formant is not as discriminative as the others.
The formants’ bandwidths (cf. Figure 5.3(b) on the previous page, Figure 5.3(d)
on the preceding page, and Figure 5.3(f) on the previous page) show the char-
acteristic as predicted by Scherer. Moreover, all three are significant features to
distinguish ES-2 and ES-5; the two dispositions which are investigated.
The mean values of the features presented in Figure 5.3 on the preceding page and
Figure 5.4 on the next page are extracted from each participant’s audio samples
and afterwards averaged over all speaker; this means, that for all speakers also all
samples were used to get these mean values. From this, the results can be seen as
a kind of interindividual observations. For classification purpose they work quite
good for interindividual experiments but also for intraindividual ones.

In contrast to the formants and their bandwidths, intensity, pitch, and jitter
are not as discriminative. In general, these features show the same characteristic
in the course either in ES-2 or ES-5. The differences are marginal (cf. Figure 5.4
on the facing page). Nevertheless, for the issue of semi-automatic annotation
(cf. Section 4.1) they give a slight improvement, unfortunately, it is not signi-
ficantly high. Considering jitter, for example, this is related to fear, anger, and
anxiety (cf. Section 4.2.2), but in case of ES-5 it is not significantly discriminative
compared to the course of ES-2 because none of the aforementioned dispositions
is observed. Again, the naturalistic, naïve HMI shows different characteristics as
an acted one. This circumstance is already discussed in [Batliner et al. 2000] and
can be visualised in the results of jitter.

The analysed features are applied in the semi-automatic annotation experi-
ments where the process as such was introduced in Section 4.1. They were used
to improve the classifiers’ performance that was achieved with MFCC.
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Figure 5.4: Global mean values for the intensity (cf. Figure 5.4(a)), pitch (cf. Fig-
ure 5.4(b)), and jitter (cf. Figure 5.4(c)). Frequency values are given in Hz. The
plots visualise ES-2 and ES-5 results.
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5.2.2 Results of Semi-automatic Annotation

The experimental setup of the semi-automatic annotation, this is the framework,
is already discussed in Section 4.1. Especially, Figure 4.1 on page 65 explains
the main idea of using audio classification to select relevant sequences in video
material for facial expression annotation. As given in Figure 4.3 on page 67,
only speech samples which ended not more than two seconds before the facial
expression are used as training and test material. For the experiment the in-
terindividual validation method (cf. Section 1.3.2) was applied since the aim is
to annotate material that was not processed so far. Hence, the classifier has to
be trained on given material which is usually not from the participant processed
at the moment. Again, GMMs are the method of classification on hand as the
characteristics of the speaker is modelled (cf. Section 4.3.2). In general, I dis-
tinguished three classes: i) FACS in ES-2, ii) FACS in ES-5, and iii) no-FACS.
The latter class represents the circumstance that no relevant facial expression was
shown by the participant. In this study only facial expressions are considered that
are related to negative dispositions; in terms of emotions that means anger, fear,
sadness, etc. This restriction is reasonable due to the small number of samples
representing positive dispositions. In fact, for most of the participants no samples
for positive facial expressions are at hand which can be used for training.

Table 5.5: Classification results according to the number of mixtures used in a GMM
in percent (cf. [Böck et al. 2013a]). As validation methods Unweighted Average
accuracy (UA) and Weighted Average accuracy (WA) are applied.

Number of mixtures UA WA
6 69.9 72.6
9 75.6 73.9
12 84.2 73.4
15 84.2 70.4

In the first step, I determined the number of mixtures to model the speakers’
characteristics by utilising MFCCs and prosodic features as introduced in Sec-
tion 4.2.2. The results are presented in Table 5.5. From this, the increase of
performance with higher number of mixtures can be seen. On the other hand,
having more than nine mixtures results in a loss of performance. In fact, the UA
is still gaining from it, but as the data set is unbalanced in the common sense
WA is the measure to be observed. With WA the effect of overfitting (cf. Sec-
tion 5.1.1) is given. Furthermore, as in semi-automatic annotation the aim is to
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extract as many relevant sequences as possible a high performance is necessary.
Taking the values of Table 5.5 on the preceding page into consideration semi-
automatic annotation experiments were done with the following parameters: for
each class label a single GMM with 9 mixture models was trained for five itera-
tions (cf. Section 4.3.2) on extracted spectral and prosodic features.

Table 5.6: Classification results (cf. [Böck et al. 2013a]) in percent as Weighted Average
accuracy over all interindividual experiments combining ES-2 and ES-5 (FACS in
ES). The other class, no-FACS, represents the sequences where no facial expressions
are shown by the participant. The secondary diagonal (lightgray cells) represent the
false acceptance and false rejection rates.

Classifier output
FACS in ES no-FACS

Target FACS in ES 61.9 38.1
no-FACS 18.8 81.2

As I said, for the purpose of annotation, on the one hand, the performance
of the classifiers is of interest; this is given in Table 5.5 on the facing page. On
the other hand, the rates of acceptance are also important. In fact, both values
are linked as misclassifications are influencing the accuracies and therefore, the
performance. To rank a given system false acceptance and false rejection rates
are calculated for a certain task. In the current issue this means, whether a
relevant sequence was classified as no-FACS (false reject) or the other way around
(false accept). Both values are shown in Table 5.6 and in addition, the average
performance of the classifier itself. I merged the FACS in ES-2 and FACS in
ES-5 classes as in the first step of semi-automatic annotation only the relevant
sequence is presented to the annotator without any influence given by an optional
preclassification (cf. Figure 4.2 on page 65).
The rate of false acceptance with 18.8% (cf. Table 5.6) is relatively high but in
this case, a more conservative classification can be accepted. Of course, roughly
20% of the sequences are marked as relevant which increases the annotation
time. Further, the loss of important sequences is measured by the false rejection
rate. Due to the restricted setup where only the successive seconds of an event
(i.e. FACS in ES-2 or FACS in ES-5 ) have to be watched the additional effort
is limited. However, the false rejection rate of 38.1% (cf. Table 5.6 on this page)
is even worse. This means, a relatively high number of relevant sequences is
discarded by the classifier. Especially, this number has to be reduced in the
further research (cf. Section 7.2.1). A reduction of the false rejected sequences
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resulted in a even higher number of false accepted snippets. The hope is that
with more material which will be available as soon as the EmoRec II data set
is started to be analysed in total, the performance increases and thus, the ‘false
rates ’ are reduced.

5.2.3 Comparison of Audio & Biophysiological Features

The data set EmoRec provides three modalities: audio, video, and biophysiolo-
gical recordings which are synchronised in time. Analyses of the audio material
were introduced in Section 5.1.2 and further, audio and video material was com-
pared in Section 5.2.1. Finally, I investigated also the links between audio and
biophysiological features.

As introduced in Section 3.2.2 the following biophysiological features were re-
corded by applying a Nexus-32 and the Biobserve software: skin conductance
level, respiration, blood volume pulse, heart rate, and electromyogram. Tech-
nical details of the recording conditions are given in [Walter et al. 2011]. The
sampling rate of the features was 20ms. For the purpose of classification ANNs
are utilised, mainly MLPs where the parameters are adapted to each feature sep-
arately. I participated on such kind of bimodal analyses in the case of audio
processing. The work on biophysiological material was done by colleagues at the
Ulm University. However, the results of the cooperations are published in [Walter
et al. 2011; Böck et al. 2012b].

The classification results for the audio material are given in Table 5.4 on
page 114. I refer to this Table and give in this Section only the results of bio-
physiological characteristics.
Also, for biophysiological classification the samples of ES-2 and ES-5 are investig-
ated. Since these are the same sequences as used in audio analyses a comparison
between audio and biophysiological results is directly possible. In Table 5.7 on
the facing page the recognition results of the MLPs are given. Both kinds of val-
idation measures, namely inter- and intraindividual validation (cf. Section 1.3)
are utilised. It is to be noticed that only UA is calculated for the experiments by
the colleagues.
Taking into account the audio results (cf. Table 5.4 on page 114), it can be stated
that in intraindividual experiments the biophysiological features outperform the
classification based on audio features. For 65% of the participants the MLPs
achieved recognition rates of more than 80%. This is not reached by the GMMs
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Table 5.7: Recognition rates for intraindividual (intra) and interindividual (inter)
classification of ES-2 vs. ES-5 in percent utilising biophysiological features applying
ANNs (cf. [Böck et al. 2012b]). The results are grouped by each participant. The
classification was done by colleagues at the Ulm University.

Participant 112 114 118 125 127 129 208 212 215 219
ES-2 (intra) 99.5 86.7 96.8 63.9 81.3 93.9 90.5 59.8 61.4 84.8
ES-5 (intra) 98.8 94.7 98.6 81.1 95.6 98.5 95.6 75.5 77.1 83.7
ES-2 (inter) 3.7 0.0 6.5 6.0 0.0 2.6 3.6 92.21 0.0 0.0
ES-5 (inter) 6.1 1.8 34.7 30.0 17.4 20.1 2.9 18.0 6.4 12.6
Participant 225 226 308 423 427 506 510 511 518 602
ES-2 (intra) 95.5 77.5 80.9 63.4 76.4 81.9 91.6 99.1 50.2 77.0
ES-5 (intra) 92.1 79.1 87.4 65.5 68.0 90.3 96.9 98.4 67.2 84.0
ES-2 (inter) 0.0 27.5 0.0 34.6 0.0 25.4 1.8 13.9 1.0 7.9
ES-5 (inter) 51.4 9.7 4.3 1.7 15.8 3.4 4.4 54.8 36.7 7.0

based on audio samples. In contrast, interindividual validation has a quite bad
performance. In particular, for ES-2 where the disposition is expressed quite
weakly, the MLPs lose performance. With ES-5 the situation is slightly bet-
ter. In this case of interindividual validation, audio feature based classifiers are
able to generalise from the given training material. Especially, biophysiological
parameters and thus, biophysiological characteristics are significantly participant
dependent. Any speaker reacts differently in several dispositions in terms of body
characteristics. From this, it can be seen that audio features are in such a way
more universal. This issue is further considered in Section 5.2.4.

5.2.4 Discussion

The bimodal investigation of the EmoRec data set introduced the facial expres-
sions derived from video material and further, the biophysiological features. Both
sets have their own advantages which can improve the understanding of the user
in HMI. So far, the two modalities are only analysed and compared. In fact, no
fusion in the true sense is established, yet. Nevertheless, important information
can be concluded.

1The participant has shown quite high reactions on the induced dispositions. This effect is
also reflected by his SAM selfrating (cf. Table 3.4 on page 56). Due to this extreme expressive-
ness of the dispositions in the biophysiological features, a high performance in the classification
could be achieved (cf. [Walter et al. 2013]).
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Comparing facial expressions and audio features, a significant improvement in
the annotation could be achieved, in the sense of time effort reduction. Audio
analysis of the given material identified relevant sequences which only have to
be considered in manual annotation. Hence, audio classification overcame disad-
vantages of other tools which provide labelling of AUs (cf. Section 4.1). These
are based on video analysis only and thus, utilising another modality helped to
free from restrictions like no fringes, no sensors in the face, etc. Of course, in
cases where the user shows facial expression but no acoustic samples are given,
my framework is not able to find relevant sequences. To cover such events bio-
physiological methods have to be considered. This is not in the focus of my
research and consequently not discussed here.

In relation of facial expressions I also regarded prosodic features and especially,
the formants and their bandwidths (cf. Figure 5.3 on page 119) demonstrated a
significant potency to distinguish positive and negative dispositions. As it is
known from literature (cf. e.g. [Vlasenko et al. 2011b]), in acted as well as in
scripted non-acted material, for instance, eNTERFACE (cf. [Martin et al. 2006])
or Vera am Mittag (VAM) (cf. [Grimm et al. 2008]) the discriminating ability of
these features is shown. With the analyses in Section 5.2.1 I demonstrated their
discriminating ability for non-acted, naturalistic data sets as well. From my point
of view: that the intensity is not as discriminative, results from the low express-
iveness in naturalistic material. While listening to the samples the assumption
is strengthened and investigating the spectrogram which can be extracted with
Praat (cf. [Boersma 2001]) this is affirmed. Such considerations are also valid
for pitch. On the other hand, jitter lacks on performance since the users are not
induced to be afraid. In the case of real-life scenarios, it is hypothesised that
jitter might become an indicator (cf. Section 7.2.2).
Moreover, using these features in the classification results in an improvement as it
can be seen in comparing WA values for interindividual classification in Table 5.4
on page 114 and Table 5.6 on page 123. Especially, in semi-automatic annota-
tion the mean WA is 71.6% whereas without this additional features 55.1% were
achieved.

On the other hand, comparing audio classification results to these gained with
biophysiological features, the already discussed advantage of audio analyses in
interindividual validation is obvious (cf. Section 5.2.3). Though in intraindi-
vidual validation biophysiological analysis show its high potential. From this, I
argue to utilise such analyses to collect user-dependent material automatically
marked with a kind of ground truth. Such samples can be used to adapt user-
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independent classifiers towards a certain participant. In the mean time, classifiers
based on interindividual validation can handle the HMI. Afterwards the system
like a companion (cf. [Wendemuth & Biundo 2012]) switches to an intraindi-
vidual and user-dependent classification. The idea was also discussed in [Böck
et al. 2012b]. Finally, an overall view on the participant can be just achieved
while using all supplied modalities.

5.3 Multimodal Setup

As I already mentioned the analyses of the two data sets, Last Minute (cf. Sec-
tion 3.2.1) and EmoRec (cf. Section 3.2.2), are still ongoing or are recently started.
Therefore, the results which are presented in this Section are first experimental
findings while exploring the data sets, though these reflect noticeable results in
the domain of multimodal disposition recognition. The multimodal analysis is a
subproject of the SFB/TRR 62 in which I am participating. The main work is
done at the University Ulm and this results in publications where I just co-author
(cf. [Walter et al. 2011; Schels et al. 2012]) because I concentrated only on the
audio investigations. Therefore, I present in this Section results which are so
far not published in a greater context but intended to be combined with other
modalities or even with the full set of modalities which are on hand supplied by
the corpora.

5.3.1 Experimental Setup

As EmoRec in total supplies several modalities, namely audio, video, and bio-
physiological features, this data set is selected to be analysed considering the
aforementioned modalities. In addition, Last Minute also has full recordings
of all modalities but just for 20 participants.

Considering the two multimodal publications two different setups can be dis-
tinguished according to the material applied in sense of utilised ESs.
In [Walter et al. 2011] the already well-known ES-2 and ES-5 were analysed re-
garding all modalities. For this, bimodal investigations were already presented.
In Section 5.2, audio based classifiers are compared against facial expression based
analyses where it was shown that classifiers on audio material can support the
annotation and further, the alignment of AUs to corresponding classes. Further-
more, comparing audio based classifiers against biophysiological based classifiers



128 Chapter 5. Non-Acted, Multimodal Experiments

showed that both can support each other in different phases of the classification
process.
More interesting are the ESs as utilised in [Schels et al. 2012]. In addition to
ES-2 and ES-5 two further ESs, namely ES-4 and ES-6, are investigated. As
it can be seen from Figure 3.1 on page 54, for instance, both ESs reflect other
sections of the experimental scenario but can be again regarded as complement-
ary in the case of dispositions. In this setting ES-4, low pleasure, high arousal,
low dominance, is considered as the user is in a ‘negative’ disposition, and on
the other hand, ES-6, high pleasure, low arousal, high dominance, represents the
‘positive’ one (cf. Figure 5.2 on page 111). Both reflect crucial sequences in the
scenario. ES-4 is the breakpoint in the scenario where the participant is influ-
enced to switch from positive to negative disposition (cf. Figure 3.1 on page 54).
It is essential because the user should get the feeling that he looses the control of
the system and hence, a negative disposition is induced. In contrast, ES-6 tries
to evoke a positive disposition to leave the user with a kind of satisfaction from
the experiment. Furthermore, the material is taken from the EmoRec II which is
the second round in the scenario (cf. Figure 3.1 on page 54). So far, just a subset
of participants’ material is prepared to be multimodally analysed, that means,
annotated and labelled. Hence, the results are based on the samples of eight
participants only. The distribution of the samples in total is given in Table 5.8.

Table 5.8: Sample’s distribution in EmoRec II.

Disposition Number of samples
positive 373
negative 320

As features I applied the already well examined MFCCs with the 0th cepstral
coefficient as additional parameter by using HTK to extract these. The extraction
of parameters is as follows: the frame rate is 10ms and a Hamming window
(cf. Equation 4.1) with a window size of 25ms having an overlap of 15ms is
applied. Further, since the characteristic of speech is to be analysed GMMs are
acting as classifiers (cf. Section 4.3.2). The setup was an interindividual validation
by decision of the colleagues from the Ulm University.
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5.3.2 Audio Classification Results

As in the bimodal analyses (cf. Section 5.2), I cooperated with colleagues from
the Ulm University. Therefore, I concentrate on the results I achieved and shared
with the other colleagues.

To explore the data set, I run at first cross-validation experiments as the num-
ber of provided samples is relatively high and also almost equally distributed
(cf. Table 5.8 on the facing page). Applying GMMs, I achieved 64.7% in UA and
64.1% in WA accuracy. Comparing these results to equivalent experiments on
EmoRec I an improvement of approximately 10% was gained. The underlying
concepts why this improvement was achieved are so far matter of further invest-
igations of psychologists and are, from my point of view, related to the design of
the WoZ scenario. For this, it can be concluded that up to now the validation
method does not matter.

Table 5.9: Interindividual classification results on EmoRec II in terms of Unweighted
Average accuracy (UA) and Weighted Average accuracy (WA) in percent.

Participant UA WA
1201 51.2 50.2
0112 45.1 43.7
0131 48.8 49.3
0202 53.4 51.9
0207 55.3 53.5
0211 61.3 61.3
0221 56.1 57.8
0224 46.4 55.2
mean 52.2 52.9

Of interest is the interindividual validation which was also investigated in
[Schels et al. 2012]. The results are given in Table 5.9. The distribution of samples
is again unbalanced in the common sense as it is already the case in EmoRec I. In
general, the results on EmoRec II are comparable to these achieved on EmoRec I.
From my point of view, this shows three aspects. At first, even in a second cycle
of the scenario (cf. Figure 3.1(a) on page 54) the dispositions can be steadily
induced which is also shown with biophysiological features that directly reflect
the dispositional characteristics of the participants (cf. [Schels et al. 2012; Walter
et al. 2013]). Further, the features which were extracted from the data are robust
to reflect the dispositions. The results on EmoRec I are presented in Section 5.1.2
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and Table 5.4 on page 114. For the mean values of accuracies no huge differences
in the two cycles are present, for instance 52.3% UA on EmoRec I and 52.2%

UA on EmoRec II (cf. Table 5.4 on page 114 and Table 5.9 on the preceding
page). Finally, the values which are achieved in the analyses sound reasonable as
they can be reproduced not only on different data sets (e.g. EmoRec I and Last
Minute) but also within one setup or scenario (e.g. EmoRec I+II). Especially
the effect of reproducibility underlines the universal characteristics of the utilised
features and applied classifiers for the handling of naturalistic data sets.

5.3.3 Discussion in the Context of Multimodality

As I already stated, the achieved values are reasonable and represent a significant
foundation for the purpose of fusion. In [Schels et al. 2012] a mid-level fusion
architecture (cf. Section 4.4) is introduced that can cope with the three modalities
on hand.

In contrast to the results in Table 5.9 on the previous page, the accuracy val-
ues in [Schels et al. 2012] are reached with a slightly different setting. The main
difference is the sample time; I used for my results 25ms whereas in the paper
40ms and even 200ms are applied. This is due to the sampling rates of the other
modalities but it is arguable. I argue for a smaller sampling rate as otherwise, in
my opinion, the stability assumption from speech recognition is violated consid-
ering emotions. For a disposition recognition from speech larger time scales need
to be investigated. Therefore, in the first step of exploring such naturalistic data
sets the sampling with a higher sampling rate might be possible. Doing so, a
recognition accuracy of ≈ 58% was achieved for audio classifiers (cf. [Schels et al.
2012]). Fusing audio and video or audio, video, and biophysiological classifica-
tions for a final decision the recognition could be improved to ≈ 61% (cf. [Schels
et al. 2012]). This means, the multimodal recognition obtained a roughly 10%

better performance as the classifier which is based on audio only (cf. Table 5.9
on the preceding page).

From these results the importance of a multimodal observation of the user
becomes apparent. Of course, this causes that more multimodal data sets have
to be generated but also that in HMIs the investigation of the user has to be
driven multimodally. On the other hand, such multimodal observations create
also problems. The main aspect is the synchrony of the data collection. The more
modalities are involved the more complex is this issue. Furthermore, every fusion
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architecture provides advantages and disadvantages which have to be traded for
each classification task. In particular, even in one modality several classifiers can
be fused as already discussed in Section 4.3.4. In general, the issue of multimodal
fusion is a task for further research and especially, with the focus on disposition
in HMI (cf. Section 7.2.3).

5.4 Summary

Starting with an audio only setup I analysed the two corpora recorded in the
SFB/TRR 62, namely Last Minute and EmoRec. Since both data sets are
naturalistic HMI generated in a WoZ setting the accuracy values are not as high
as achieved with acted material. Nevertheless, they are comparable to those
gained on other naturalistic data sets (cf. [Schuller et al. 2011a]).

In the bi- and multimodal parts I related the audio based recognition to the
other modalities of the data sets, in particular, facial expressions and biophysiolo-
gical features. With these additional features a more general analysis of the par-
ticipant could be realised. Particularly, in the multimodal Section I presented
novel results on the EmoRec II data set which are so far not published. In gen-
eral, multimodality increases the ability to recognise the user’s dispositions and
further, to react on these in a proper way. An additional aspect of disposition is
the involvement which is an integral part of an interaction (cf. Section 1.4). So
far, this has not been considered but will be discussed in the following Chapter.
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SO far, in this thesis I considered the process of disposition recognition from
speech in the context of near real-life, which is, for instance, dispositional

speech by non-actors in a laboratory environment (cf. eNTERFACE), and nat-
uralistic speech (cf. Last Minute and EmoRec). For this, the focus was on
the classification and recognition of dispositions which usually occur in HMI, for
example, positive or negative reactions towards the system, emotional behaviour
of the user, etc. On the other hand, dispositions can be seen much broader, in
the sense of user behaviour, situation, and intention (cf. also Definition 1.6 on
page 7). Such an aspect is further the involvement in a conversation whereas this
is either an HHI or an HMI. As already introduced in Section 1.4, a conversa-
tion is usually a multi-party interaction. Therefore, a data set that supplies an
interaction of several parties is to be used, which is the case with the TableTalk
corpus (cf. Section 3.3).

In this Chapter, I further motivate the detection of involvement as this is,
from my point of view, complementary to disposition and yet another source of
information to interpret the user’s characteristics. As this topic is quite novel
the preprocessing of the TableTalk data set, in the sense of group involvement
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annotation, is introduced and the labelling results are given. Furthermore, the
reliability of the annotation is discussed. Finally, first results in the detection of
changes in group involvement are presented. In connection with those the focus
shifts from the recognition of the user’s disposition towards a system-centred
view in a sense how such information can be used to control a technical system
(cf. Section 1.5).

6.1 Why Consider Involvement in Group Conver-
sations?

As stated in Definition 1.7 on page 18, there is a narrowed and at once a more
general meaning of involvement in the case of speech processing; namely that a
user is participating in a conversation. I already discussed (cf. Section 1.4) that
involvement reflects a kind of situation and thus, is also subsumed by situatedness
(cf. Definition 1.5 on page 7). Therefore, it can be seen as a part of the user’s
behaviour which is influenced by his disposition. Involvement in a conversation
is something I called meta-information or meta-analysis. There is not a direct
connection from a signal to a reaction like in emotions, for instance. Of course,
sensors can measure movements or voice activity, but the more interesting effect
is when a user is not involved. In this case, the interaction might be in a crucial
situation focused on a certain participant. Especially, in a dyadic conversation or
in an HMI this effect can indicate a breakdown in the dialogue. So far, it is not
under research as it should. Hence, I argue for a deeper investigation of situations
related to the absence of involvement. For this, meta-analyses by psychologists
and linguists are necessary and thus, cannot be accomplished in this thesis.

So far, usually, a kind of dyadic situation in the HMI is considered, namely one
user interacts with one system. For such an interaction the aforementioned state-
ments and the following ones are valid. Additionally, communicative situations,
especially, in group conversations are more complex. This leads to constellations
like a group of users and one system. Hence, the detection and classification of
changes in involvement culminates in a multi-party HMI. Up to now, I conducted
my analyses regarding only one user, however, I will go further considering also
multiple user settings. For this, in the following several aspects of the involve-
ment and its detection are mentioned – keeping in mind that these are relevant
for single user and multi-party HMIs.
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In a purely technical sense, detecting that a member of the group starts getting
involved should be recognised by the system, for instance, by controlling a certain
microphone or focussing a camera to this participant as it is done (manually) by
conference equipment. Moreover, the other way around means detecting whether
some kind of technical equipment should be shut-off because the user is not
interacting with the system any more but with another person or device.

These ideas and considerations indicate the necessity to detect involvement in
a group conversation. And again, I do not distinguish between a multi-party
HHI or a multi-party HMI. The only assumption so far is that only one technical
system or companion-like system (cf. [Wendemuth & Biundo 2012]) is comprised.
In general, the remarks I gave in this Section are valid in the analysis of HMI
but further in HHI, too. In the TableTalk data set as introduced in Section 3.3
the interaction is between humans in total. Nevertheless, investigating those
conversations may help to improve real-life HMI. Furthermore, these kind of
analyses may provide insights towards Machine-Machine Interactions (MMIs)
(cf. Section 6.3), which is also covered by the ideas of technical companion-like
systems (cf. [Wendemuth & Biundo 2012]). However, data sets with reliable
annotations considering involvement and its change are necessary. In Section 6.2
I present the effort that was taken to preprocess TableTalk to fit conditions for
detection of involvement. By its nature such an analysis is technically more
difficult and is thus, matter of future research (cf. Section 2.5), too.

6.2 Annotating Changes in Group Involvement

As stated in Section 6.1, involvement is an important additional information to
assess the behaviour of a user. Especially, in a multi-party interaction the fact of
being involved is influencing further analyses of a participant. Before any kind
of automatic system can at all detect changes in the involvement a preprocessing
for training and thus, a preparation of the data set is necessary. Foremost the
data has to be collected and afterwards be annotated (for an annotation process
as such cf. Section 4.1.1). The TableTalk corpus was collected by Nick Campbell
[Campbell 2009] and in the case of video analyses postprocessed (cf. [Campbell
2009]) according to [Campbell & Douxchamps 2007]. No preparations of the cor-
pus with respect to audio processing and involvement detection are available. In
the following, I present and discuss the results of the data preparation, especially,
with the focus on the annotation of changes in involvement. Besides the data
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set was not collected by myself, the annotation and the analyses according to
reliability are my work done with co-authors listed in the references of [Bonin
et al. 2012] and [Böck et al. 2013b]1.

6.2.1 Annotation of Day1 - Group

As mentioned in Section 3.3, day1 is already postprocessed as described in [Camp-
bell 2009], namely providing features like head and body movement, head activity,
etc. in the case of video material and further, a literal transcription exists. Un-
fortunately, the whole data set lacked of an annotation according to dispositions
as well as involvement. To characterise the group, especially in detecting changes
(cf. Section 6.3), the latter is the interesting parameter. Annotation for the issue
of disposition is not considered, yet.

In [Oertel et al. 2011b] a scaled annotation scheme is presented which handles
the involvement according to a fixed scaling in the range of [0, 10]. From this
annotation procedure, changes in the involvement result in a switching between
the levels given by the scaling. Thus, changes are only realised in the sense of
discrete, rather large level differences. In the following, I introduce the annotation
process which I adopted and which is focused on the changes of involvement in
an interaction.

In cooperation with the Trinity College Dublin I headed the annotation pro-
cess for group involvement. As published in [Bonin et al. 2012; Böck et al. 2013b]
six advanced psychology students2 of the Otto von Guericke University Magde-
burg annotated changes in the involvement for both, group in total and each
participant separately, watching the audio-visual material. Thus, an increase of
involvement is marked with +, whereas a decrease is annotated with−. Moreover,
I assumed that the intervals without any label are considered as stable (i.e. no
change) represented by 0 (cf. [Böck et al. 2013b]). This assumption is suitable
as the annotation task was to mark only changes. Hence, non labelled parts of
day1 includes no changes, otherwise those were marked. Based on these consid-
erations the implicit label 0 can be seen as meaningful. To evaluate and visualise

1The remaining part of this Chapter is based on the paper [Böck et al. 2013b] and thus,
parts of the text are rephrased or taken verbatim from the article.

2It has to be noticed that in the context of annotation the students got credit points which
are necessary for their study. This was the reward for annotating the material. Beyond that,
no further reward or payment was given.
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the annotation I applied the following assignment: +1 increasing involvement,
−1 decreasing, and 0 no change.

While annotating a corpus the question of reliability arises. To ensure qualit-
ative labels, as aforementioned, this aspect has to be discussed as well. To handle
the enormous amount of data (cf. Table 6.2 on page 141) and, which is more im-
portant, the labelling of the six annotators, I decided to apply Krippendorff’s α
[Krippendorff 2012] assessing the quality of annotation. For this, the ratio of the
observed and expected disagreement between annotators is calculated as stated
in Equation 6.6. With most of the other reliability measures no distance measure
can be applied which leads to less comparability of different label paradigms. A
common implementation of α is given by [Hayes & Krippendorff 2007]. Further,
I implemented the computation of the observed agreement Ao and the expected
agreement Ae in Matlab. Ae represents the expected value of an agreement if
all annotators would guess based on the distribution given by the data itself.
According to [Artstein & Poesio 2008] Ae is computed as

Ae =
∑

k

(
1

ic

∑
i

n(i)
k

)2

(6.1)

where k is the number of categories or labels, i is the total number of samples,
c is the number of raters, nk is the number of ratings according to a category,
and ic represents the total number of assignments. From this, Ae is the weighted
absolute frequency of the labels given by the annotators.

In contrast, Ao is the agreement which is given by inspecting the annotations;
that is the percentage of pairwise agreements over all annotators and all samples.
Given the variables as aforementioned in Equation 6.1, the observed agreement
is calculated as follows

Ao =
1

ic(c − 1)
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∑
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)
, (6.2)

where the normalisation is done by 1
ic(c−1) which is the total number of assign-

ments grouping the number of coders pairwise.

Given the values of Ao and Ae the most general reliability κg is computed as a
ratio of both

κg =
Ao − Ae

1− Ae

(6.3)
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Using Equation 6.3 and taking into account that the disagreement values which
are substantial for the computation of Krippendorff’s α are defined as

Do = 1− Ao (6.4)
De = 1− Ae, (6.5)

where Do is the observed disagreement and De is the expected one, α is generally
calculated as

α = 1− Do

De

(6.6)

As I introduced the equations to compute the reliability values, I give the
current values for the group annotation on day1. The observed agreement
Ao = 0.4348 and the expected agreement Ae = 0.4107. The expected agree-
ment is in the context of reliability considered as the lower bound of agreement
which could be achieved if the annotators guess the labelling. Therefore, the
observed agreement Ao has to be larger than Ae because, in general, the annot-
ators do not perform a pure guessing but provide labels which are related to the
given material. Hence, they annotate the material in a similar way that leads to
a larger observed agreement. Taking the six annotators and the 20541 samples
(cf. Table 6.2 on page 141) into account αn = 0.0408 which is the nominal version
of Krippendorff’s α. Krippendorff’s α, in detail, applies a distance measure to
weight the differences in the ratings. The nominal version αn does not distin-
guish between different labels; that is, uses an equal distance measure and thus
is computed as in Equation 6.6.
As discussed in [Artstein & Poesio 2008] this is not feasible because it is quite
a difference whether two annotators label, for instance, either −1 and 0 or −1

and +1. For this, a distance measure which do not assume equal distances is
introduced. Therefore, according to [Artstein & Poesio 2008] the expected dis-
agreement De and observed disagreement Do can be written as follows:

De =
1

ic(ic − 1)

∑
i

∑
l

n(i)
k n(l)

k d (k)
il (6.7)
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k d (k)
il (6.8)

where d (k)
il is the distance measure which weights the differences in the labels. The

other symbols are defined as already mentioned in the agreements. Using the dis-
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agreements as given in Equation 6.7 and Equation 6.8 the ordinal Krippendorff’s
αo is calculated according to Equation 6.6. Considering this, I concentrated on
αo, again with all annotators and all samples. Thus, I obtained αo = 0.1562.

Table 6.1: Values of the observed agreement Ao, the expected agreement Ae, and
Krippendorff’s α (nominal αn and ordinal αo) on the TableTalk corpus.

Ao Ae αn αo

0.4348 0.4107 0.0408 0.1562

Let us consider the reliability values (cf. Table 6.1) in more detail as also partly
done in [Böck et al. 2013b]. In fact, there are two ways to analyse and to assess
annotation quality, namely i) based in the classes and ii) based on the annotators’
agreement. For class level, the chance level can be estimated under consideration
of the given distribution of labels. In the current annotation task three labels can
be assigned by the annotator, namely +, −, and 0 . For each class the probability
to get an assignment for it can be estimated as follows (the calculation is done
exemplarily for the class 0):
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Taking into account all three classes the chance level is calculated as

Pr(all classes) =
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)]
= 0.3004. (6.10)

Thus, the chance level based on the distribution of classes is 30%. From Table 6.2
on page 141 it can seen that the percentage of labels assigned to the three classes
is 67.7% which is more than twice the change level. On the other hand, the class
based chance level estimation do not consider any weighting of the assignments.
Hence, in the agreement or more specific the disagreement this kind of weight-
ing is incorporated, especially since the assignments are assessed pairwise. This
means, if two annotators just slightly differ in their assessments the expected
disagreement (cf. 6.7) is lower than in cases of larger differences. Consequently
the agreement between the annotators is increasing. From these considerations,
the expected agreement as well as the observed agreement provide a more exper-
ienced ranking of the annotation’s reliability.
On the one hand, there is no huge difference between Ao and Ae. On the other



140 Chapter 6. Group Involvement

hand, the main disadvantage of the reliability measures is that they assume usu-
ally a bias within the annotators, only. But in case of TableTalk, it is also a bias
in the material itself as there is a trend to an increase of involvement over time.
This aspect is neither reflected by Krippendorff’s α nor other reliability measures
as shown in [Devillers et al. 2005], where an HHI is observed as in the particular
case. However, as it can be seen from Table 6.2 on the next page, a large amount
of samples is positively assigned to the three classes; namely 67.7% of all samples
are assigned to a distinct class applying a majority vote to get class labels; that
is, at least four annotators assigned a sample to the same class.

For the sake of comparison, I rank the reliability also to those given in [Oertel
et al. 2011a] reflecting the reliability on the D64 data set (cf. [Oertel et al. 2010]).
Unfortunately, the authors give only a κ value. Nevertheless, κ and Krippen-
dorff’s α are slightly comparable. Oertel et al. obtained κ = 0.56. This result
is better than the reliability on TableTalk, but the annotation process of [Oertel
et al. 2011a] is much more restricted and thus, the raters are more guided as in
my study. Hence, this is reflected by a larger κ value.

Based on these considerations, I set up a classification task using MLPs (cf. Sec-
tion 6.3). Therefore, the labels of the six annotators had to be combined. The
merging is done due to an 1-of-N coding of the three classes. To get the combin-
ation I summarised all assessments of all annotators and divided the sum by the
number of raters for weighting purpose. Hence, I got ratings for three distinct
classes (i.e. −1, 0, and +1; cf. Figure 6.1 on page 142), but also ratings which
are undecidable (there is no majority for any label by the annotators). This es-
pecially occurs because a majority vote (more than four annotators has to agree
to a certain class) is applied to get the classification labels. To handle the cases
where no majority vote could be established, the additional class undecidable ‘?’
was introduced. Thus, in total the classification task is a four class problem –
three classes provided by the annotators and the additional class handling the
undecided samples.

In Table 6.2 on the next page the distribution of the annotator’s labels in day1
is given. Details of the experiment can be found in Section 6.3.

Furthermore, the labelling provides also statements which I will call meta-
analyses. In Figure 6.1 on page 142 the distribution of the samples for each
weighting value is given. The ordinate values are crisp in {0, 1

6
, 2
6
, 3
6
, 4
6
, 5
6
, 6
6
} rep-

resenting the values of weighted assignments to each class. Each bar in Figure 6.1
on page 142 shows the distribution of those assignments to a class where the num-
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Table 6.2: Distribution of samples per label in total numbers and percent, whereas
−1 represents decreasing and +1 increasing involvement, respectively. Further, 0
indicates no changes and ‘?’ denotes of the undecided class. Moreover, the total
time for all samples per label is given.

Label Number of samples Percentage Overall time
−1 1999 9.7 03:20.21
0 28 0.13 00:02.68

+1 11879 57.8 19:52.99
? 6635 32.3 11:06.67

total 20541 100.0 34:24.00

ber of samples in a certain distribution sums up to the total number of samples
(cf. Table 6.2). Thus, the following remarks can be given from the plot: i) the
bars on 3

6
– which reflects that in each case two annotators vote for −1, 0, and

+1 – are always related to the undecidable class because no majority vote can
be done. Fortunately, the amount of samples which are given there is quite small
and further, the disagreement originates from the distinct classes + and −; that
is, either one of these classes was selected by the annotators. On the other hand,
the amount of 0 samples is negligible. ii) Moreover, the plot has two further
areas corresponding to the certainty of the annotator: a) being certain that a
current class cannot be assigned to a sample (these are the values {0, 1

6
, 2
6
}), and

b) being certain that an assignment is applicable (these are the values {4
6
, 5
6
, 6
6
}).

From this, one can see that especially for class − and class 0 the annotators tend
to be certain that this is not the correct class for a sample. But, it cannot be
instantly said which class is favourably selected for a sample. iii) The other way
around, a high number of samples are certainly assigned to +, however, with a
much broader distribution. It varies over the full range of {4

6
, 5
6
, 6
6
}. Additionally,

by the design of the annotation task the following can also be seen from Fig-
ure 6.1 on the following page: To achieve an assignment on 4

6
for class + three

assignments to the two remaining classes are possible, namely a) 0 annotations
for −, 2 annotations for 0, b) 1 annotation for −, 1 annotation for 0, and c)
2 annotations for −, 0 annotations for 0. Similar analyses can done for {5

6
, 6
6
}.

These considerations explain the high number of labels in {0, 1
6
, 2
6
} for class −

and 0 (cf. Figure 6.1 on the next page).

Another meta-analysis considers the combinations of assignments reflecting the
‘degree of non-agreement’. In fact, the two investigations (cf. the distribution of
labels) are related to each other. In Figure 6.2 on page 143, the combinations
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Figure 6.1: Distribution of the labels for the annotator’s voting for the group in total.

of numbers of assignments to each of the three classes – class +, class −, and
class 0 – are visualised. In addition to Figure 6.1, this representation provides
the possibility to distinguish the assignments that generated the fractions shown
in Figure 6.1, especially for {3

6
, 4
6
}. The consideration of combinations starting

with 1 or 0 is not necessary since these are counted for the other classes in the
specific combination. Both analyses are similar in their results. But, especially
the combination (2 2 2) indicates if the annotators do not tend to a clear decision.
Because this particular combination represents the case where no majority vote
could be established. The number of assignments resulting in (2 2 2) is relatively
low; namely just 525 samples were rated according to this combination. The
number of samples is equal for all three classes since to obtain this combina-
tion the assignments have to be equal for the three classes. In contrast to {2

6
}

(cf. Figure 6.1), the combination (2 2 2) does not count any side effects which
might are given by the annotation task (cf. discussion above) but only reflects
that the annotators could not tend to or decide for any class in total. For the
other combinations the results are comparable to those already discussed in the
context of Figure 6.1. In general, as both analyses are similar and moreover, also
complement each other, I would suggest to consider the distribution of labels as
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well as the combinations of assignments to assess the quality of an annotation
and the corresponding class assignments.
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Figure 6.2: Combinations of numbers of assignments for each class. The first num-
ber represents the number of assignments to the corresponding class whereas the
remaining two numbers determine the assignments’ number to the other classes,
for instance, (4 1 1) means 4 assignments for class +1 and 1 assignment for class
−1 and class 0, respectively. For four combinations the the two alternatives in the
combinations have been considered as equal and thus, are counted together.

It is obvious that such meta-analyses are specific to the corpus and the an-
notation method of the material. Nevertheless, given the data the interpretation
is feasible. However, it is a matter of future research (cf. Section 7.2.4) to derive
clear indications and detailed analyses of involvement changes in group interac-
tion, whereas it does not matter whether they are related to HHI or HMI.

6.2.2 Annotation of Day1 - Each Participant

As one part of this thesis deals with the detection of changes in the group’s
involvement in multi-party interactions I discussed the annotation of TableTalk
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according to this purpose in detail. On the other hand, the data set was also
labelled for each participant separately, in particular, his involvement in the con-
versation.

The annotation setup was the same as for the group’s labelling whereas in each
annotation iteration only one participant was regarded. I asked the annotators
insistently to ignore the group’s behaviour and the reactions of the other parti-
cipants. As the single involvement is not issue of this thesis I will just briefly
introduce the outcome of the labelling as it is related to the group annotation
and also supports the interpretation of this labelling.

The reliability values as introduced in Equation 6.1, Equation 6.2, and Equa-
tion 6.6 are given in Table 6.3. As it can be seen they are in the same range as
for the group in total. On the other hand, except for the Belgian participant,
the annotation task seems to be harder observing only one participant since the
group has to be neglected. Therefore, the estimation of involvement has to rely
on individual characteristics of the participant. Hence, the annotators are much
more discordant than in the group labelling. In contrast, the Belgian group mem-
ber is, by watching the material, a quite relaxed and predictable participant in
terms of his behaviour. This results in a better agreement of the annotators.

Table 6.3: Reliability values according to Krippendorff’s α (nominal and ordinal), the
expected agreement Ae, and the observed agreement Ao for each participant in the
group conversation of TableTalk.

Participant αn αo Ae Ao

Belgium 0.0542 0.2241 0.4232 0.4545
Finland 0.0301 0.1631 0.3956 0.4138
Great Britain 0.0364 0.2005 0.3850 0.4075
Japan 0.0309 0.1822 0.3788 0.3980

As for the group (cf. Figure 6.1 on page 142) I also present the distribution
of the samples according to a 1-of-N coding. For that purpose, I grouped the
distributions regarding the gender of the participants which leads to Figure 6.3
on the facing page with male participants and Figure 6.4 on page 146 showing the
female participants. The distributions are quite similar to each other and to the
group’s one (cf. Figure 6.1 on page 142). Nevertheless, slight differences are on
hand, especially, in the distribution of the + labels. For the female participants
it tends towards an equal distribution whereas the male ones are more fixed to
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(a) Belgium.
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(b) Great Britain.

Figure 6.3: Distribution of the labels for the annotators’ voting for each participant
separately. The two diagrams show the results for the male participants.
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(a) Finland.
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(b) Japan.

Figure 6.4: Distribution of the labels for the annotators’ voting for each participant
separately. The two diagrams show the results for the female participants.
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the classes {4
6
} and {5

6
}. For the labels − and 0 similar characteristics as in the

group rating can be found.

Again, from these analyses no general remarks can be given, so far. This is
just a starting point for such kind of analyses. Therefore, it needs more natur-
alistic multi-party corpora and thus, further research to extract general rules or
conditions to assess changes in the involvement. Here, I laid the basics and I will
discuss open issues and further questions in Section 7.2.4. From this, a kind of
roadmap for future research can be established.

6.3 Detecting Changes in Group Involvement

Analysing and detecting changes of involvement is so far an upcoming part of
research and thus, to the best of my knowledge, just a few investigations were
done in this field, yet (cf. Section 2.5). Especially, considering involvement as
complementary to disposition is a quite novel approach and the circumstances
as well as the conditions to retrieve it were discussed in Section 6.1. From this,
in the current Section a first study on automatic detection of changes in group
involvement is presented and finally, discussed. My investigations are based on
the TableTalk corpus. Furthermore, a roadmap towards detailed investigations
of involvement is given in Section 7.2.4.

On the other hand, automatic detection of involvement is effecting the way
a system is influencing its user. In particular, in companion-like technologies as
intended by [Wendemuth & Biundo 2012] the system’s reactions are an important
part of the interaction. Of course, this is influenced by the user’s involvement as
discussed in Section 6.3.2. However, before a system might interact in such an
intended way it is necessary to detect changes in the involvement properly. First
experiences are presented in the following.

6.3.1 Automatic Detection of Changes

Up to my knowledge, as also discussed in Section 2.5, an automatic detection
of changes in involvement is a novel approach. Hence, no comparable results
and already appraised methods are available. Only a general remark from other
corpora like D64 (cf. [Oertel et al. 2010]) can be given, namely that involvement
can be grouped by levels, and thus, transferred to TableTalk. However, the
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involvement as such was not considered as complementary to disposition, yet,
and further, no changes of involvement. For this, in the current Section novel
and therefore, first results on automatic detection of involvement changes are
presented. The work as done in cooperation with Stefan Glüge and published in
[Böck et al. 2013b].

Experimental Setup

As introduced in Section 3.3 the TableTalk corpus is already postprocessed ac-
cording to seven different video features (cf. [Campbell 2009]), in particular, these
are (x,y)-coordinates of head’s position, head’s area, (x,y)-coordinates of head’s
motion considering only the changes of the head’s coordinates in the two di-
mensional picture, body activity, and head activity applying a Viola-Jones face
tracker (cf. [Campbell & Douxchamps 2007]). The output and thus, the features
are provided by the distributor of TableTalk. For the current experiments the
features for each participant of the conversation were individually handled, that
means, from the given data which framewise contains the full information of all
participants I extracted the relevant values and compiled those for each speaker
separately. It results in 4 · 7 = 28 video features as four participants are inter-
acting in day1 of TableTalk. As the video features are extracted every 100ms
(cf. [Campbell 2009]) a total number of 20541 samples is achieved. So far, only
day1 can be analysed since this is the part which is labelled according to involve-
ment (cf. Section 6.2), yet. The classes are +1, −1, 0, and ‘?’ which represent
the labels +, −, 0 , and ?, respectively, (cf. Section 6.2.1) and the distribution of
samples to each class is given in Table 6.2 on page 141.
Remarks according to the usage of audio features for the detection are given in
the discussion part of this Section.

For the task, detecting changes in involvement, so far MLPs are utilised. The
setting of the ANN is as follows: The MLP had 28 input units which refer to the
28 features extracted from the video signal. Further, there is one hidden layer
whose number of units was varied in the range of [5, 55] with a step size of 5.
An optimum was achieved on the test set with 30 hidden units. For each class a
single output unit is provided.
In the hidden layer the hyperbolic tangent function tanh was applied as the
transfer function. In contrast to the input units which had a linear transfer
function, the output units’ transfer function was the logistic sigmoid (cf. Equa-
tion 4.19). The whole network was trained with the Levenberg-Marquard al-
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gorithm (cf. [Marquardt 1963]) which is an optimisation approach for non-linear
problems utilising the least-squares method. In the experiments the correspond-
ing implementation of this method in Matlab was applied. For training an in-
traindividual validation strategy was applied according to Section 1.3.3. Though,
not the intraindividual material of one speaker was used, but the material of the
whole group as such. This is possible since the detection of involvement changes
for the group in total was intended. The training and optimisation was done
mainly by Stefan Glüge whereas I provided the annotation and feature handling.

Results

In Table 6.4 on the following page the accuracies (WA and UA) of the detection
task using an MLP are shown. With 67.8% WA a result was achieved which is
high above chance level assuming an equally distributed decision; that is, 25% in
a four class task. Unfortunately, so far the result has to be compared to chance
level as, to my knowledge, no other values for this issue, especially, on TableTalk,
are available. Of course, multimodal analyses of meetings were done but usu-
ally in the sense of group actions like pointing gestures, presentation styles, etc.
(cf. [Carletta et al. 2005]), especially, on the AMI meeting corpus (cf. [McCowan
et al. 2005]). On the other hand, such results are not feasible for a comparison
as the classification and detection task is quite different and thus, results given
in [Carletta et al. 2005], for example, cannot be used to rank the achievements
related to involvement.
On the other hand, the D64 corpus (cf. [Oertel et al. 2010]) deals with involve-
ment. In [Oertel et al. 2011a] the authors present prediction results for involve-
ment and achieved a mean accuracy of 66.4% on a two class task and 60.6% for
a three class application (cf. Table 3 in [Oertel et al. 2011a]) using video features
only. As given in Table 6.4 on the next page, on TableTalk an accuracy of 84.2%

UA was achieved considering all four classes. To be specific, Oertel et al. utilised
less features, namely gaze and blinking rate, to detect involvement. Further, in
the current experiment the changing of involvement was regarded. Therefore,
both tasks are slightly comparable and due to the differences in the settings
both results are somehow equal in ranking. However, the change detection task
is slightly harder since no fixed levels as in [Oertel et al. 2011a] are applied in
annotation.

For a detailed investigation, in Table 6.5, the average confusion matrix of the
ten folds is given. This shows that, in particular, the classes are not as confused
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Table 6.4: Classification results in percent applying a 10-fold cross validation. As
measures the Weighted Average accuracy (WA) and Unweighted Average accuracy
(UA) on the test set is presented according to [Böck et al. 2013b].

Feature UA WA
Video 84.2 67.8

with the 0 one, but on the other hand, ‘?’ is proned to be confused with +1.
Furthermore, it is quite obvious that classes with a small number of samples
resulted in smaller accuracy; namely 62.4% for −1 and 50.0% for 0. Again, as
this kind of research is still starting, an improvement of accuracy in detection of
involvement changes is to be expected.

Table 6.5: Average confusion matrix and class-wise accuracy (acc.) in percent on the
test set for the 10 folds of the experiment. It is to be noticed that the values of the
matrix are rounded to the corresponding nearest integer value. Thus, the average
overall accuracy (WA) slightly differs from the one given in Table 6.4 on the current
page. The Table is taken from [Böck et al. 2013b].

MLP output
+1 −1 0 ? acc.

Target

+1 1068 10 0 104 90.4
−1 43 132 0 30 64.5
0 1 0 1 1 33.3
? 126 12 0 529 79.4

Discussion

The presented experiment of detecting changes of involvement in group interac-
tion is a first presentation of such analysis done on the TableTalk corpus. The
classification is based on the annotation provided by myself (cf. Section 6.2.1)
and the video features prepared by the TableTalk’s distributor (cf. [Campbell
2009]). A postprocessing of the features was done by myself.

Up to now, only video features are working well on the data sets though au-
dio samples were also utilised for a detection. Due to several reasons, which I
discuss in the following, the detection performance was less than 30% WA. First
of all, by design of TableTalk only recordings of one microphone are available
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covering the speech of all four participants simultaneously (cf. Section 3.3) which
will be called in the following ‘combined audio signal’. In the processing of the
group in total this should not influence the performance, however, for each par-
ticipant separately no high quality audio samples are on hand. As the speech is
highly mixed from all participants it results in a scenario where changes in the
group’s involvement are depending on single participants. Unfortunately, due to
the combined audio signal it is not possible to handle these slight differences;
that means, they are hidden in the overall discussion. On the other hand, the
features, namely MFCC, are not able to cope with the nuances of involvement
changes that are hidden in the mixed signal. From this, alternative feature sets
or enhancements of existing features for speech processing have to be found or
developed. Better speech features may also be used in combination with video
features in a multimodal involvement classification which is expected to reach
better results since it is able to make use of the best available features at each
point in time, overcoming less meaningful features in one modality by extracting
information from the other. These issues are also reflected in the roadmap for
future research on detection of changes in involvement in group conversations
(cf. Section 7.2.4).

Furthermore, a robust involvement detection for single participants in an HHI
might be helpful, but this issue is more important in HMI, especially, if multiple
users are interacting with a system. Moreover, this information can be used by a
technical system in the sense of a companion (cf. [Wendemuth & Biundo 2012])
to react in a proper way to its user and further, influence him. Both aspects are
discussed in Section 6.3.2.

6.3.2 Systems Reaction towards a User

In the systems reaction towards a certain user two aspects have to be considered:
i) the systems proper reaction itself and ii) the influence of the system towards
the user.

The first aspect is quite on hand because an HMI as such is oriented towards a
reaction on a user. For this, detection of involvement can be utilised as an addi-
tional information, especially, to evaluate if a user is interacting with the system
or not. The latter is important if the participant is situated in an environment
which allows multiple interactions, for instance, the user is part of a group or
handles several devices, etc. As it can be seen, the environment contributes an
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influence to an interaction even if it is passive; that means, no interaction of
the environment is headed to the technical system. This is also reflected in the
definition of situatedness (cf. Definition 1.5 on page 7) and thus, is included in
the term disposition (cf. Definition 1.6 on page 7). Incorporating information re-
trieved from the involvement enables the system to decide whether a user’s action
requires system reaction or can be ignored. Moreover, it can adapt its response
to the situation, for instance, selecting a proper output modality.

On the other hand – and this is the second aspect –, a companion-like tech-
nical system (cf. [Wendemuth & Biundo 2012]) should be able to influence its
user. This means, guiding the intention and involvement of the user towards a
certain task and issue, for instance. It is not that the system patronises the user
but keep him tracked on the interaction, usually to complete a task. For this,
it is important to find a well-defined balance between guiding system’s reactions
and annoying system outputs. In general, such part of HMI switches the sys-
tem’s part from a passive analyser and task solver to a pro-active partner in an
interaction, including the opportunity to affect the user as well as keep him in-
volved and on track in an interaction and conversation. This issue is definitely an
interdisciplinary research task incorporating computer scientists, engineers, and
psychologists which will be in the focus in the future. Open issues regarding this
aspect are presented in Section 7.2.5.

6.4 Summary

In this Chapter I discussed the issue of involvement in both senses: i) annotation
of it (cf. Section 6.2) and ii) detecting changes of involvement in group conver-
sations (cf. Section 6.3). As I pointed out, involvement is complementary to
disposition which has also a meaning in a meta-analysis of given material and
thus, given interactions. From my point of view, meta means that this is not an
analysis which influences an utterance but reflects the course of a conversation
or an interaction.

The group involvement was studied on the TableTalk corpus (cf. [Campbell
2009]) that supplies an HHI of four participants. The annotation process as
such was presented and the reliability of the labelling was discussed whereas the
focus was on the group’s annotation (cf. Section 6.2.1). Comparing the values
of Krippendorff’s α to another data set, namely VAM, it can be seen that these
are in a similar range. From this, even if the numbers themselves are low, the
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annotation can be regarded as reliable.
Based on this annotation, three classes reflecting the changes in involvement
were defined and afterwards, applied to detect and classify changes of group
involvement. For this, video based features were utilised so far to train an MLP.
In this context, I also discussed the disadvantages of centrally recorded audio data
and hence, audio features for the purpose of involvement detection, especially on
TableTalk.

Finally, the aspect of systems reactions on user involvement were elaborated.
From both issues, namely detection of involvement and proper reaction on it, I
derive a roadmap for further research which will be presented in the outlook, in
particular, in Section 7.2.4.
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IN the preceding Chapters of this thesis I presented the utilised methods and
results which were achieved in disposition recognition from speech. In this

Chapter overall conclusions are given in Section 7.1 and finally, open issues are
presented. Especially, in Section 7.2.4 I discuss a kind of roadmap for the analyses
of involvement in conversations.

7.1 Conclusion

This thesis regarded the aspect of disposition recognition from speech. Therefore,
the methods which are known from speech recognition are at first investigated
for the purpose of emotion recognition from speech and afterwards, transferred
to the issue of disposition recognition.

In the context of disposition recognition, the community is faced with the
problem that so far no general valid definitions or interpretations of dispositions
are available, especially in the sense of technical perception. In Section 1.2.2,
in particular, in Definition 1.6 on page 7 I presented a definition focusing on a
technical interpretation. In fact, this is influenced by a psychological point of view
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but goes beyond that because the suitability to technically detect and classify
dispositions is incorporated. In addition, in Section 1.2.1 the terms emotion and
mood are defined as well. Moreover, the connections between the three terms,
emotion, mood, and disposition, are discussed. From my point of view, disposition
is the most general one. As it covers besides aspects of emotions and moods also
the issue of the situation and intention of a user. My definitions of the terms
are technically inspired and I am aware that these are differently understood in
other disciplines like psychology, linguistics, etc. However, I argued to regard
dispositions in HMI to achieve a global analysis of a system’s user, especially, if
the system is considered to be companion-like (cf. [Wendemuth & Biundo 2012]).

Beside the definitions for the terms emotion, mood, and disposition, in
Chapter 1 the main idea of the disposition recognition from speech was intro-
duced. For this, I presented the labelling methods and the derived systems
(cf. Section 1.2.3) which are usually applied in emotion and disposition recog-
nition and further, are based on psychological foundations. In my terms they are
orded as follows: i) categorical labelling systems like Basic Emotions according to
Ekman (cf. [Ekman 1992]) or Plutchik (cf. [Plutchik 2001]), ii) quasi-continuous
labelling as proposed in GEW (cf. [Scherer 2005]), and iii) continuous labelling
systems, for instance, SAM (cf. [Bradley & Lang 1994]) which is based on the
PAD space by Mehrabian. Furthermore, in Section 1.3 the inter- and intraindi-
vidual validation approach for the validation of classification are introduced and
also put into the context of disposition recognition. Both methods are compared
in Section 1.3.4 and the usage in companion-like technical systems is discussed.
For this, I proposed the following workflow: In the beginning of an HMI the sys-
tem is usually not adapted towards classifying the disposition of a certain user
properly. Therefore, a general validation approach has to be chosen (cf. interin-
dividual validation) and simultaneously material from the current speaker has to
be collected to adapt the system. After the adaptation of the recogniser an in-
traindividual validation can be performed. Usually, this leads to an improvement
of the recognition performance (cf. Table 5.4 on page 114). This issue affects
also the way how a system is influenced by the conversation, in particular, the
course of the interaction. However, it is connected to two aspect of controlling an
HMI. On the one hand, the user controls and influences the conversation by his
actions. Moreover, the interaction is influenced by the modalities utilised by the
user, for example, gestures, touch actions, or speech, are affecting the interaction
(cf. Section 1.5 and Section 4.4). Further, the system can influence its user and
thus, the interaction in total (cf. Section 6.3 and Section 7.2.5).
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In Chapter 2 the current state of the art in emotion and disposition recognition
from speech as well as in the detection of changes in involvement is presented.
Therefore, I reviewed the results and approaches which are used in emotion recog-
nition from speech (cf. Section 2.2) and further, presented the ongoing research
in this field. In Section 2.2 the achievements and methods for disposition recog-
nition from speech are listed. The obtained results in both kinds of recognition
are highly related to the classification methods applied on certain data sets. An
overview of classification approaches is given and further, the classifiers used in
my experiments are filed accordingly. Finally, in Section 2.5 the state of the art
in automatic analysis of involvement in a conversation is considered. So far, such
kind of research is not as widespread in a technical sense. Thus, it indicated the
necessity to foster the work in this direction.

As already stated, the classification results depend on the material which is
used to train and validate the recogniser. Hence, the corpora that are used in
the experiments have to be described. This is done in Chapter 3 distinguishing
two types of data sets, namely acted and non-acted ones. Furthermore, a data
set supplying an HHI, namely TableTalk (cf. Section 3.3) was introduced which
was applied in the analyses regarding involvement in conversations.
In the acted material, usually actors are asked to produce the expected emotion
or disposition (cf. Section 3.1.1). For some corpora, for instance, eNTERFACE
(cf. Section 3.1.2), the experimental setup supplies emotion induction to provoke
or strengthen the emotional reaction. Therefore, also informed non-actors are
suitable to generate an appropriate data set.
In contrast, non-acted corpora rely on subjects who are mostly not informed
about the main concept of the experiment; namely, recording emotional or dis-
positional actions. Both kinds of those data sets introduced in Section 3.2 were
recorded as WoZ scenarios in the SFB/TRR 62 either at the Otto von Guer-
icke University Magdeburg or at the Ulm University. They represent data sets
which are naturalistic HMIs since the participants are no actors and further, not
informed about the underlying concepts of the experiments. Moreover, the in-
teractions reflect tasks that occur in daily life, namely gaming (cf. EmoRec in
Section 3.2.2) and planning (cf. Last Minute in Section 3.2.1). In both corpora
more abstract events that can be seen as dispositions are supplied, for instance,
the barriers baseline, challenge, listing, and waiuku in Last Minute (cf. [Rösner
et al. 2012]) and, for example, positive valence, low arousal, and high dominance
in EmoRec. Besides the induced dispositions, it can be assured that the process
of evoking is working. Especially, for EmoRec the participants gave a self-rating
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in terms of SAM. As it can be seen from Table 3.4 on page 56 the values reflect
the expected disposition. However, such analysis is depending on the data set and
the participant. Hence, it has to be evaluated for each recording separately since
no generally valid method as for emotion recognition is established for disposition
recognition, yet.

With the corpora described in Chapter 3 experiments were done to detect and
classify dispositions from speech. Therefore, in Section 4.1 the preprocessing of a
corpus is described; that is, transcribing, annotating, and labelling. Preprocessing
also includes aspects of signal handling, for example, which is not considered in
the context of this thesis. To focus the preprocessing – that means, to handle the
process in total by just one tool – ikannotate (cf. Section 4.1.2) was developed.
Ingo Siegert and I realised the three preprocessing steps based on utterance-level.
In the tool, the utterances can be transcribed and afterwards, annotated accord-
ing to GAT (cf. [Selting et al. 2011]). One important advantage of the tool is
that the annotator does not have to care about the symbols of annotation because
those are inserted by the system automatically while selecting the corresponding
characteristics. This enables also non-trained annotators to generate a properly
annotated document. Further, for the purpose of labelling the common schemes,
namely Basic Emotions (similar to [Ekman 1992]), GEW (cf. [Scherer 2005]),
and SAM (cf. [Bradley & Lang 1994]) are implemented. Hence, it is possible to
process a corpus according to these schemes with one tool and therefore, com-
parisons are quite easy. The tool was presented at the conferences ICME 2011
(cf. [Böck et al. 2011a]) and ACII 2011 (cf. [Böck et al. 2011b]). Furthermore,
it was used for several other experiments which were published, for instance, in
[Siegert et al. 2012d; Siegert et al. 2012c].
Because the process of annotation and labelling is quite time consuming as dis-
cussed in Section 4.1.3, I introduced a framework which allows a semi-automatic
annotation. So far, it is used to ease the annotation of facial expressions. In this
framework, audio analyses based on spectral and prosodic features identify rel-
evant sequences that afterwards, have to be rated by a FACS coder. Significant
classification results (cf. Table 5.6 on page 123) were achieved which reduce the
manual effort.

Based on the processed data sets and utilising the features introduced in Sec-
tion 4.2, I investigated classifiers that are known from speech recognition. For
my work, I mainly concentrated on HMMs (cf. Section 4.3.1) and GMMs. As
discussed, HMMs can model and thus, handle a temporal evolution in a speech
utterance. In contrast, GMMs are applicable to cope with the characteristics of a
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sentence; that means in my context, with disposition. Furthermore, in short ut-
terances as occurring in EmoRec almost no evolution of a disposition is observed.
Thus, in most of the experiments I applied GMMs as classifiers.
On EmoDB I derived a parameter set for HMMs/GMMs (cf. [Böck et al. 2010])
that was also tested on eNTERFACE, which is a data set in the borderland of
acted and non-acted material. The parameter setting which was further used in
the experiments reported in Chapter 5 is as follows: For the number of hidden
states in an HMM three states achieved the best performance with roughly 43%

accuracy on eNTERFACE (cf. Figure 4.8 on page 85) whereas for GMMs by
design one hidden state is used. As can be derived from Figure 4.9 on page 87
five iterations are sufficient to train an HMM as well as a GMM. More iterations
result in a kind of overfitting, that means, the classifier is highly adapted to the
training material and hence, the generalisation performance is decreasing. This
is also valid for all kinds of feature sets. MFCC_D_A_0 which is MFCC with
Delta, Acceleration, and 0th cepstral coefficient achieved the best performance on
eNTERFACE with 44.8% accuracy (cf. Figure 4.10(b) on page 89). The achieved
results were also reflected taking results of [Vogt & André 2005] into considera-
tion. They obtained similar achievements on comparable data sets, but utilising
more features (90-160 features). On the other hand, Vogt & André do not discuss
how to transfer the features to naturalistic corpora and disposition recognition
from speech. This is done in my work.

In terms of classifiers, additionally SRNs, more specific SMRNNs, are observed.
This work was done in cooperation with Stefan Glüge. Compared with HMMs
they achieved roughly the same performance. The advantage is that by design
the networks learn temporal characteristics which results in a reduced feature set
of 13 features. For HMMs 39 features are necessary to obtain the same perform-
ance (cf. Table 4.5 on page 96). Unfortunately, SMRNNs are time consuming in
the training and thus, are outperformed by HMMs/GMMs in this sense (cf. Sec-
tion 4.3.4).

In Section 4.4 I also introduced the main aspects of fusion architectures. Since
this issue is not a main topic of my thesis I kept it short. Nevertheless, my
results can be utilised in the architectures which benefit from fusion. Especially,
in the sense of multimodality the aspects are important and thus, I contributed to
corresponding experiments (cf. Section 5.3) and also respond to it in Section 7.2.3
focusing on the audio analysis part, only.
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Relying on the features and classifiers which the corresponding parameter sets
from Chapter 4, I investigated the two data sets, Last Minute and EmoRec
under three setups: i) a setting which uses only audio features, ii) a bimodal
setup, and iii) a multimodal setting. My experiments which are presented in this
thesis are the first audio analyses conducted on these corpora.
Analysing disposition on Last Minute means that the four situations which
occur after a barrier (cf. [Rösner et al. 2012] and Section 3.2.1) have to be con-
sidered. As the material supplies full sentences I decided to validate and compare
both types of classifiers: i) HMMs and ii) GMMs. The experimental setup was
kept fixed for both classifiers and therefore, comparable results could be achieved.
Though full sentences were observed the GMMs outperformed the HMMs. With
HMMs 32.0% WA (cf. Table 5.1 on page 105) were obtained where several para-
meter sets were tested even if the system would benefit from more than one
Gaussian mixtures in each state of the HMM. In contrast, GMMs yielded 43.97%

WA for a cross-validation (cf. Table 5.2 on page 107) and 43.96% WA in an in-
terindividual validation (cf. Table 5.3 on page 108). Regarding various feature
sets the differences in the performance are not significant.
As the EmoRec data set is similar to Last Minute and further, only elliptical
utterances – utterance in command style as it is necessary for the ‘Concentration’
game – occur I decided to use just GMMs for further investigations. It was also
investigated whether a combination of HMMs and higher numbers of Gaussian
mixtures per HMM’ state boost the performance which was not the case. In par-
ticular, with the EmoRec corpus inter- and intraindividual validation experiments
are possible because the corpus is designed to be suitable for those investigations,
especially, in the sense of biophysiological analyses. In Table 5.4 on page 114 the
recognition results for a subset of participants are listed. Utilising the complete
set of participants is still under investigation since not all participants’ material
has been preprocessed, yet. The results on EmoRec were achieved while classify-
ing the two ESs, namely ES-2 and ES-5 which are assumed to be representative
for positive and negative dispositions, respectively. Comparing the achievements,
it can be seen that for interindividual validation 55.1% WA, and for intraindi-
vidual validation 70.0% WA were obtained. Given these results I derived the
aforementioned validation approach that a system starts with an interindividual
validation and adapts itself towards a user. After this, the validation method is
switched to an intraindividual analysis (cf. Section 5.1.3).

The classification results which were gained in the audio-only setup were also
considered in a bimodal context, incorporating facial expressions and biophysiolo-
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gical features.
Comparing recognition results for audio and biophysiological features
(cf. Table 5.4 on page 114, Table 5.7 on page 125, and [Böck et al. 2012b]) it
can be seen that in an intraindividual validation, classifiers based on biophysiolo-
gical features outperform those trained on audio features. In contrast, for inter-
individual validation it is the other way around. Hence, both kinds of features
and thus, classifiers can support each other. Especially, in the idea of switch-
ing validation methods, biophysiologically trained classifiers provide a kind of
ground truth which is necessary to adapt audio-based classifiers towards a user
(cf. Section 5.2.4). In the meantime interindividual audio-based recognisers are
applied in a system, in particular, in a system with companion-like characteristics
(cf. [Wendemuth & Biundo 2012]).
The system setup can also be used in semi-automatic annotation. Here, I con-
centrated on facial expressions as features. A pure comparison of both audio and
facial modalities has already been published in [Böck et al. 2012b]. As described
in Section 4.1.3 audio-based classifiers, specifically GMMs, that apply spectral
and prosodic features, identify relevant affective sequences which afterwards are
annotated manually by FACS coders. With this approach the manual effort in
annotation of facial expressions is reduced significantly. As stated in [Böck et al.
2013a], to annotate the two sequences ES-2 and ES-5 for 20 participants, that
means, 20 · 7min = 140min of video material, roughly 13-19 hours are neces-
sary. Moreover, the 140 minutes contain only a few minutes of relevant facial
expressions. If this relevant material can be preselected the effort can be reduced
drastically. Of course, therefore, the classification process has to be robust in the
sense of marking relevant sequences. With GMMs I achieved recognition results
of 61.9% for FACS in ES and 81.2% for no-FACS sequences – the two classes
that mark relevant information – which corresponds to a false acceptance rate
of 18.8% and a false rejection rate of 38.1%. Especially, the results for FACS in
ES sequences have to be improved which is the issue of further research (cf. Sec-
tion 7.2.1). Furthermore, the idea of semi-automatic annotation could be also
transferred to other modalities like biophysiological measures or gestures, which
culminates in a multimodal support of annotation.

In Chapter 5, I also presented first results of disposition recognition on the
EmoRec II corpus. Unfortunately, so far, the material of only eight participants
is prepared to be used for analyses. The whole experiment was included in the
multimodal analyses which were conducted in cooperation with the colleagues
at the Ulm University. Since this thesis is not dealing mainly with aspects of
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fusion I concentrated on the audio results. Nevertheless, I compared those to the
results achieved by a system applying fusion techniques (cf. [Schels et al. 2012]).
With GMMs an recognition performance of 52.9% WA based on an interindividual
validation (cf. Table 5.9 on page 129) was achieved where the fused system yielded
62.0% at its best. This is comparable to the values in EmoRec I (cf. Table 5.4
on page 114).

In particular, investigating the results on the EmoRec I+II data sets
(cf. Table 5.4 on page 114 and Table 5.9 on page 129) it is noticeable that in
several cases the WA results contain higher values than UA. For this, I deeply
analysed the settings in terms of the samples’ distribution. For these cases, I
found that the samples’ distribution is unbalanced in the frequency of occurrence
of the disposition classes. Usually, it is expected that the classifier tends towards
the class which occurs most frequently in the material to optimise its perform-
ance where the UA values are then too optimistic. Therefore, WA was invented
to rank the results properly. In the particular cases, it is the other way around
and the class having the fewest samples is recognised almost perfectly, resulting
in a too optimistic WA > UA. I phrased this phenomenon ‘counterbalanced’.
Therefore, both UA and WA measures have been given in this thesis whenever
counterbalanced effects occur.

Finally, a more abstract concept is introduced, namely the involvement in a
conversation. From my point of view, which is supported by the definition of
disposition (cf. Definition 1.6 on page 7), involvement is complimentary to dis-
position. Therefore, it is worthwhile to study involvement. The results are given
in Chapter 6. Since this type of analysis is quite novel, at first a corpus which
is suitable has to be identified. This was attained with the TableTalk data set
(cf. Section 3.3 and [Campbell 2009]) where this kind of analysis was triggered by
discussions with Nick Campbell which I had during my internship at the Trinity
College Dublin.
TableTalk has, so far, not been annotated according to either involvement as
such or changes of involvement. Hence, I conducted the annotation of changes
in involvement and derived three classes which are of interest: + (increase of
involvement), − (decrease of involvement), 0 (no change), and additionally ?
which represents the undecided cases. The whole process is explained in Sec-
tion 6.2 and [Böck et al. 2013b], relating the method also to other approaches in
the community. As it is usual in annotation the reliability of the assignments is
analysed. For this, Krippendorff’s α is calculated. The ordinal Krippendorff’s α
on the data set, in particular day1, is αo = 0.1562. In contrast, the reliability
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on the D64 interaction corpus (cf. [Oertel et al. 2011a]) is higher which results
from a more fixed and restricted annotation process. Furthermore, first results
of automatic detection of changes in involvement are presented in Section 6.3.1.
In comparison to classification of involvement on the D64 data set (cf. [Oertel
et al. 2011a]) remarkable results were achieved. On the TableTalk corpus for the
classification of changes in involvement a WA of 67.8% were obtained, considering
the four class classification task discussed in 6.3. Lines for further improvements
are discussed in (cf. Section 7.2.4).

From the observation of involvement in conversations, finally, I discussed the
way a system can guide and influence its user (cf. Section 6.3.2). This aspect is
quite important. Especially, if a technical system reacts companion-like (cf. [Wen-
demuth & Biundo 2012]), it can be assumed that it is rather treated as a partner
in the conversation. By investigating this issue one gets aware of the open ques-
tions that will be discussed in the following Sections.

7.2 Open Issues for Future Work

In this thesis, I considered the automatic recognition of dispositions from speech
regarding suitable features sets and classifiers in relation to non-acted, naturalistic
corpora. Since the work on this topic is still not finished and this thesis is not able
to cover all aspects, open issues are outstanding and have to be investigated in
future research. In the current Section, I will sketch open issues that are building
a bridge between the semi-automatic annotation and preprocessing of corpora,
the disposition recognition under various aspects, and the influence of disposition
recognition on interaction control.

7.2.1 Advanced Semi-automatic Annotation

Concerning the semi-automatic annotation of facial expressions, so far, only the
EmoRec I data set was considered (cf. Section 5.2.2). Therefore, obviously the
approach should be used for the preprocessing of EmoRec II to reduce the effort
of annotation for this corpus, too. In this context, the classifiers which select the
relevant sequences can be trained on more samples which leads to an expected
improvement in the classification accuracy. Moreover, the framework should be
tested on other corpora that supply also multimodal recordings. For this, the
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method should be integrated in an annotation tool like ikannotate to support the
labellers in their work.

The aspect of the framework’s dissemination affects the performance of the
system itself. Up to now, the recognition performance is reasonable good, but
the false rejection rate has to be decreased. On the one hand, it is assumed
that this can be achieved by training with more data samples. Having more
material provides the possibility to further tune the classifiers’ parameters, and
so usually, an improvement can be achieved. On the other hand, the more disjoint
the classes are, the better is the classification and thus, the false rejection rate is
decreasing. Hence, an investigation of the given classes according to their disjoint
characteristics result in gain an improvement in the framework’s performance
as well. Though, this is a matter of psychologists since they introduced the
categories and this is far beyond my expertise.

Generally, the idea of the annotation framework can be carried to other char-
acteristics of the user. So far, I suggested to use this setting to find relevant video
sequences for facial expression. This approach can also be applied to sequences
containing dispositional gestures occurring in video recordings. In general, audio-
based preselection of video sequences that contain relevant affective characterist-
ics is possible with the framework. In future investigations this approach should
be considered.
Moreover, it is to be checked whether this idea can support the labelling of bio-
physiological characteristics, too. Up to now, it is unclear how both modalities,
namely acoustic utterances and biophysiological measures, are influencing each
other. From my point of view, biophysiological reactions of the user will occur
before acoustic ones. However, to fit the framework, these aspects have to be
analysed, first.

In general, semi-automatic annotation of corpora, especially, with the aid of
various modalities is an important issue in the future. By this way, the annotation
of corpora which have to be generated to cover dispositional reactions of users
in HMI can be handled and the manual effort can be reduced. This holds even
more if naturalistic multiparty disposition recognition from speech is analysed
as therefore, the given material has to be prepared for i) all participants and ii)
all combinations of possible interactions; that is, dyadic and group interactions.
This will result in a faster availability of novel labelled data sets because semi-
automatic preprocessing is applied.
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7.2.2 Naïve, Multiparty Disposition Recognition

Based on annotated material the recognition of dispositions is, so far, analysed
in a sense of naturalistic ‘dyadic’ HMI. In connection with the term naïve not
only a naturalistic characteristic of the data set is meant, further, it includes
that the participant behaves naturally and is not concerned that the whole in-
teraction might be a mock-up in any sense. The HMI becomes more and more a
conversation between equal partners due to the system’s capabilities. Therefore,
the participant can behave as a naïve user. Such HMIs are challenging tasks for
classifiers which should assess the user’s dispositions. Hence, at first, corpora
reflecting such naïve interactions are to be generated and afterwards, processed
to be suitable for classification purposes. With data sets like Last Minute,
EmoRec, or SAL (cf. [McKeown et al. 2012]) foundations are laid that have to
be extended.

Furthermore, it is not exhaustively analysed, yet, if the dispositional ‘categor-
ies’ which are used today to describe the characteristics of a person are covering
the whole set of dispositions. In close interdisciplinary cooperation with psy-
chologists this aspect has to be evaluated and if necessary further dispositions
should be defined. Especially in HMI, it is to be expected that certain disposi-
tions do not occur or, the other way around, are only realised in such interactions.
Such aspects are even more important if the context of an HMI is extended to a
multiparty interaction.

There are two ways of multiparty interactions: i) multiple users interact with
one system or ii) multiple technical systems interact with one user. The case
where just systems are interacting is not in the scope of this thesis and is not
considered as well as the most complex task where multiple users interact with
multiple systems. The interesting issue is the interaction of multiple users with
one system. For this, the system has to distinguish between reactions of the par-
ticipants related to the system or to the group. Therefore, additional aspects like
group dynamics, group structures, etc. are on hand which are briefly introduced
in Section 7.2.4. Nevertheless, suitable data sets are needed which allow any kind
of investigation regarding those multiparty interactions.
In a more technical sense, a system has to differentiate between various user re-
actions according to their meaning. In addition, it has to track the dispositions
of several users, too. Both issues are complex by themselves, especially, under
the circumstances of robustness and ubiquitous availability. Still, systems are
highly influenced by the surrounding that means, the environment in total in-
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cluding noise, echo, lighting conditions, etc. For this, the classifiers and thus, the
system in total have to be improved and thus, they are still under the process of
optimisation.

Another important issue which is still under research is the question whether
dispositions are independent of a user. The other way around, it has to be ana-
lysed what are the dependencies of a disposition. From a technical point of view,
engineers can contribute to this discussion, but it is mainly the psychologists’ task
to come up with ideas which afterwards can be validated by applying technical
approaches and methods.

From these general considerations I will, finally, introduce some open issues
which are more technically inspired.
At first, the data recording needs to be tuned to handle multiple users, in par-
ticular, for audio processing. As known from approaches like beamforming and
blind source separation, methods to locate and distinguish several sources, that
means, different users, are available. So far, they are usually not used in HMI
due to the handling of such equipment – it is typically not handy due to the
microphone array and the necessary distances between microphones. With Kin-
ect™a system is on hand that provides a microphone array which is adequate for
limited multiparty scenarios. Unfortunately, even this system is still improper for
distributed systems or companion-like technologies as intended by [Wendemuth
& Biundo 2012]. Therefore, the technical equipment is an issue for multiparty
recognitions – it does not matter if this is a disposition recognition –, especially,
in the sense of mobile, distributed systems.
Furthermore, up to now, single user HMIs are considered. For these, feature
sets have been adapted and optimised. On the other hand, it is an open issues
whether the features are suitable for a multiparty interaction. In the analyses,
for instance, the number of participants have to be considered which is usually
not done, yet. Thus, non-affected overlapping or cross-talk of several users might
have the same appearance as affected speech uttered by just one user. Thus, I
encourage the research community to look at upcoming multiparty corpora and
derive or develop proper features that with cope dispositional characteristics.
Of course, this does not solve the problem of regarding several participants but
multiparty corpora at least provide the option to conduct suitable analyses. Fur-
ther, they have to be suitable for recognisers which handle and incorporate fusion
methods.
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7.2.3 Fusion Methods in Naïve Disposition Recognition

Related to aspects discussed in Section 7.2.2 the recognition of dispositions is
an issue of multimodality. A general view on the user’s behaviour can be only
achieved if several modalities are considered simultaneously. Related to naïve dis-
position recognition first results could be presented on, for instance, the EmoRec
data set. Unfortunately, actually a multimodal observation of a user in total
cannot be generally supplied. This is due to the analysis of multimodal settings
for which the time alignment of all modalities is necessary. Usually, this can
only be guaranteed during the recording using a universal clock which assures
synchrony in the collection process. The problems are more due to the alignment
of results; that means, for different modalities the user’s reaction can be detected
on different time scales only. For example, biophysiological signals visualise reac-
tions on longer periods while audio classifications reacts on utterance-level; that
is, in milliseconds. Another problem is manifested since the technical standard
of recording in many cases does not support real-time ability. For example, data
may be recorded at a rate as it is piped into a communication channel which
frequently results in small data losses which cumulate to large latencies of up to
tenths of a second. Further, internal nonlinear data compression is often applied
in recording devices which is not retractable or invertible from the output data,
for instance, if stored in mpeg file format. Hence, specialised real-time recording
equipment and corresponding data formats have to be employed.
In Section 4.4 approaches for fusion techniques are presented. Nevertheless, the
proper handling of multiple modalities is still a matter of research, especially, to
incorporate the time alignment of different classifier results. From my point of
view, hybrid architectures that combine classifier results and additional features
extracted from the data are worthwhile to look at.
In the future, for example, the combination of HMMs and SMRNNs should be in-
vestigated, especially, regarding how both architectures can support each other in
terms of temporal relations. Both classifiers are able to handle temporal relations,
but on different levels. HMMs represent a straightforward time evolution whereas
SMRNNs by design distinguish different temporal layers, namely symbol-level
and segment-level. Coupling both methods could improve the straightforward
handling of context.

The considered temporal alignment is already a complex issue in a naturalistic
HMI. It will be even more difficult in a naïve one. Furthermore, the alignment
depends also on the disposition itself. The more complex and thus, longer lasting
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it is, the more the extracted features or classifier results are apart from each other
in a temporal sense. For this problem appropriate fusion techniques have to be
developed which can be utilised in detection of changes in involvement as well,
since this is complementary to disposition as I already explained.

7.2.4 Involvement in Conversations

As I previously discussed, involvement can be seen as complementary to disposi-
tion und thus, can be analysed by methods analogous to disposition recognition
from speech. So far, the analysis of changes in involvement as well as the de-
tection of involvement as such are quite novel issues in the context of speech
recognition and especially, disposition recognition. Therefore, I briefly sketch a
kind of roadmap for future research on this issue.

In Section 6.2 I presented the annotation process for the day1 subset of the
TableTalk corpus related to changes in involvement. Based on this procedure
other data sets, which provide options to detect involvement, can be processed
and thus, a reliable labelling can be achieved. Of course, for each annotation task
the reliability of the labelling has to be investigated separately. Three classes as
introduced in Section 6.2, namely increase of involvement, decrease of involve-
ment, and no change in involvement reflect the characteristic of involvement
quite well. However, a more fine scaled granularity in the annotation can be es-
tablished. Though, enough material in terms of training and testing is necessary
and thus, it highly depends on the analysed data set. The preprocessing of the
data is quite important. I encourage the researchers to do the annotation for
both, the group in total as well as each participant, providing possibilities for
various comprehensive analyses.

I suggest that at first the involvement of the group is analysed, if possible.
This founds the basics for the whole conversation. In musical term this would
be the beat of the conversation. The participants are embedded into this beat
and add the rhythm and notes to it. For this, each event can be related to
the overall structure of the conversation. Furthermore, it is necessary to derive
the organisational structure of the group. In psychology several concepts can be
found which reflect the constellation within a group. From these considerations
three basics steps in the analysis can be derived: i) the group’s constellation,
ii) the involvement of the group in total, and iii) the role of each participant
including his involvement.
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As I pointed out in Section 6.3, the detection of changes in involvement is a
complex task. From my point of view, this issue can be handled only if the ana-
lyses are based on multiple modalities and further, also on specialised classifiers.
So far, only limited technical studies are available whereas in psychology the is-
sue of involvement and its change is already being discussed for a longer period.
Hence, from a technological point of view, suitable classifiers have to be found. It
is an open issue which architectures are feasible at all. In medium time range, a
decision level fusion approach (cf. Section 4.4 and Figure 4.12 on page 98) might
be worthwhile to investigate.
On the other hand, even in terms of features the community lacks of suitable
sets. In video analysis promising features have already been found (discussed in
Section 6.2 and further cf. [Wrede & Shriberg 2003; Yu et al. 2004; Campbell
& Douxchamps 2007]), but for audio processing the investigation is still at the
beginning in terms of detecting changes in involvement. Especially, during cross-
talk of several participants the common spectral and prosodic features seem to
be inapplicable. For this, other features or feature sets – inspired by the handling
of music – have to be developed that cope with such complex interactions.

In general, assuming that the technical issues for involvement detection are
handled, the question arises how to exploit this information. For technical sys-
tems at least two ‘applications’ are possible.
Analysing an HHI, the technical system could provide support in handling the
equipment. That means, for instance, which microphone has to be switched on
or which camera should focus on a certain participant. Such ideas are in parts
already realised in conference tools but usually, the automatic handling is quite
basic. Most of the time, an operator or even the conference’s participant is con-
trolling the equipment.
On the other hand, analysing HMIs is the more interesting issue. For this, the
system interacts with a group and thus, has to analyse the whole group as well as
each participant. Several aspects have to be highlighted: Who is, in particular,
interacting with the system? Is the interaction focused on the members of the
group or towards the system? Who is getting to start an interaction with the
system or is joining into an existing interaction? Who is no longer involved? Be-
sides these questions it is also necessary to develop strategies how to react to the
information supplied by detecting changes in involvement. This leads directly to
aspects of interaction control which will be considered in the following Section.
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7.2.5 Disposition Recognition for Interaction Control

In the previous Sections I discussed open issues that are related to the classifica-
tion process of dispositions or are dealing with the system’s reaction to the user’s
disposition. Now, I consider the interaction the other way around; that means,
how the system could use the recognised dispositions to control the interaction.
Of course, this can be just a brief sketch of ideas.

From the detected changes in involvement the system can conclude whether
the user is still active in an interaction. Otherwise, the further system’s reactions
have to be aimed at keeping the user in the interaction or at getting him back to
it. For this, the current situation has to be analysed and proper actions have to be
provided. For example, an explanation of the current task should be given to the
user, the output modality may have to be changed, or even the general interaction
strategy may have to be evaluated. Moreover, the same aspects are valid for any
reaction on another disposition like being in a positive/negative attitude, being
stressed, etc. On the other hand, if the user could not be motivated and left the
interaction, the course should be analysed and rules for a proper reaction in the
future need to be derived.

Besides a robust recognition of disposition and involvement, these considera-
tions require also a model of the user including interaction patterns and back-
ground knowledge and a world model containing information about the current
situation, plans, and goals. In the sense of a technical realisation, various discip-
lines like artificial intelligence, interface design, computer science, and engineering
science have to work together to generate systems that are enabled with the cor-
responding characteristics. On the other hand, psychologists have to analyse
the human strategies of communication with technical cognitive systems and fur-
thermore, the human’s way of presenting dispositions towards such a system. All
these information culminate in a system which is adapted to a certain user and
reflects as well as knows his needs. Therefore, it can support its counterpart and
further, influence the user’s situated interactions.

I am confident that in the future almost everybody has its own companion-
like system that supports its user in daily life and is recognised as a kind of
‘companion’.



Glossary

Basic Emotions
Set of emotional categories which is seen as universal; that means,
expressions are shown by humans and animals.

cross-validation
The recorded material of all speakers, contained in a corpus, is split
into two sets, namely a training and test set. The material of the test
set is not used in the training, but in testing only. This method is
related to intraindividual validation.

Human-Human Interaction
Human-Human Interaction describes the communication and interac-
tion of multiple human beings with each other.

Human-Machine Interaction
Human-Machine Interaction describes the communication and inter-
action of single or multiple human users with any kind of technical
system.

interindividual validation
For the training of a classifier the material in total is used except for
one speaker or a speaker group. This remaining data is applied in the
testing only.

intraindividual validation
The recorded material of one speaker is split into two sets, namely a
training and test set. The material of the test set is not used in the
training, but in testing only.

Leave-One-Speaker-Group-Out
For the training of a classifier the material of all speakers grouped by
a certain characteristic is used except for one particular group. The
remaining data of this group is applied in the testing only.

Leave-One-Speaker-Out
For the training of a classifier the material of all speakers contained
in a data set is used except for one particular speaker. The remaining
data of this speaker is applied in the testing only.
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Machine-Machine Interaction
Machine-Machine Interaction considers the communication and inter-
action of multiple technical systems whereas the type of the system and
the way of interaction does not matter for this thesis.

phoneme-level
Any kind of recognition or processing which is based on phonemes as
the unit of interest.

Unweighted Average accuracy
The accuracy is calculated based on all samples whereas this is the ratio
of correctly classified samples over all samples in the data set. Hence,
the distribution of the samples is not considered.

utterance-level
Any kind of recognition or processing which is based on utterances as
the unit of interest.

Weighted Average accuracy
This measure reflects the class-wise accuracy. Therefore, the accuracy
is calculated for each class separately and afterwards averaged over all
classes.

Wizard-of-Oz scenario
Such a scenario simulates a system in a way that the system’s function-
ality is substituted by an operator. The participants of the scenario are
not informed about the simulation.

word-level
Any kind of recognition or processing which is based on words as the
unit of interest.



Abbreviations

ANN Artificial Neural Network
AU Action Unit
AVEC Audio/Visual Emotion Challenge

BoW Bag-of-Words

DES Danish Emotional Speech database
DFT Discrete Fourier Transform
DNN Deep Neural Network
DST Dempster-Schafer Theory

eBTT extended Backpropagation Through Time
EEG electroencephalogram
EM Expectation-Maximisation
EmoDB Berlin Emotional Speech Database
EmoRec EmoRec I+II
eNTERFACE eNTERFACE’05
eRTRL extended Real-Time Recurrent Learning
ES Experimental Sequence
ESN Echo State Network

FACS Facial Action Coding System
FFT Fast Fourier Transform

GAT Gesprächsanalytisches Transkriptionssystem
(dialogue analytic transcription system)

GEW Geneva Emotion Wheel
GMM Gaussian Mixture Model

HHI Human-Human Interaction
HMI Human-Machine Interaction
HMM Hidden Markov Model
HTK Hidden Markov Toolkit
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IDFT Inverse Discrete Fourier Transform
ikannotate interdisciplinary knowledge-based annotation

tool for aided transcription of emotions

LLD Low-Level Descriptors
LOSGO Leave-One-Speaker-Group-Out
LOSO Leave-One-Speaker-Out
LPC Linear Predictive Coding

MFCC Mel-Frequency Cepstral Coefficients
MLP Multi-Layer Perceptron
MMI Machine-Machine Interaction

PAD Pleasure-Arousal-Dominance
PC Personal Computer
PLP Perceptual Linear Predictive Coefficients

SAL Sensitive Artificial Listener
SAM Self-Assessment Manikin
SFB/TRR 62 Transregional Collaborative Research Centre

SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems”

SmartKom SmartKom Database
SMRNN Segmented-Memory Recurrent Neural Net-

work
SRN Simple Recurrent Network
SVM Support Vector Machine

UA Unweighted Average accuracy

VAM Vera am Mittag
VTN Vocal Tract Normalisation

WA Weighted Average accuracy
WoZ Wizard-of-Oz



Symbols

0th Zeroth cepstral coefficient

A Set of state transition probabilities
aij State transition probability
α Krippendorff’s α

B Set of production probabilities
bi(oi) Production probability

E Identity matrix
E Energy term

F0 Fundamental frequency

K Output alphabet of a Hidden Markov Model
κg General reliability

O Observation sequence
oi Observation of a state in a Hidden Markov

Model

S State sequence
si State of a Hidden Markov Model
s(n) Speech signal
sXX Autocorrelation
sXY Cross-correlation

T (n) Transfer function

u(n) Excitement
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