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Abstract: Agricultural residues are produced in large quantities and their management is an issue
all over the world. Many of these residues consist of plant materials in different degrees of trans-
formation, so returning them back to soil is a management option that closes loops in a circular
economy context. The objective of this paper is to summarize current knowledge on the options
and effects of reusing agricultural residues as organic soil amendments. The reuse of these residues
in soil is a good solution for minimizing the problems associated with their management, while
improving soil health and ecosystem functions. While some agricultural residues can be applied
directly to soil, others will need previous transformations such as composting to improve their
properties. This allows the recovery of plant nutrients and increase in soil organic matter contents,
with many positive effects on the soil’s physical, chemical and biological properties, and ultimately,
crop production, although potential risks derived from some materials must also be considered. The
concept of regenerative agriculture and soil management using organic soil amendments contribute
to the significant enhancement of soil biodiversity, the protection of the environment and climate
goal achievement.

Keywords: soil health; organic residue management; composting; soil management; soil organic
carbon sequestration

1. Introduction

The production and processing of food are essential activities in all societies. Agricul-
ture, animal husbandry and the agro-industry, which conserves, transforms and processes
agricultural products, are among the largest economic sectors, and are basic for the devel-
opment of agriculture-based economy and are strategic for all countries [1]. These sectors
are also the source of environmental impacts and a large amount and diversity of related
organic residues. Agricultural residues are defined as unwanted waste produced in various
agricultural operations. They comprise manure and similar waste from farms, slaughter-
houses and poultry houses; harvest waste; fertilizer run-off; salt and silt drained from fields;
or pesticides. Most of these materials are made up of organic matter: plant residues from
crops, pruning waste, cattle droppings, fruits and vegetables, soilless substrates, wood
and pallets, etc. Organic agricultural residues represent an important fraction of all waste
produced by human activities. In addition, approximately one-third of all food produced
for human consumption in the world is lost or wasted [2].
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Regulations in many countries, in particular in the European Union, establish that these
organic residues need to be managed and/or treated in a convenient way [3]. However,
moving one step further is necessary, as the current food production economic models are
predominantly linear and unsustainable and rely heavily on scarce and/or finite resources.
Increasing the food demand of growing populations calls for sustainable intensification to
reduce the environmental impact of food production. The waste hierarchy promotes pre-
vention of waste production, followed by reuse and recycling pathways. Therefore, finding
options for recycling these organic residues at a large scale without harmful environmental
effects and with low technology are needed.

A basic principle of circular economy is that organic residues should be re-used
or upcycled to materials, and only if this is not possible, should they be considered for
energy generation. A further important aspect is that the nutrients and organic matter
contained in organic residues should be valorized and used as soil amendments, instead
of being wasted, thus contributing to material circularity, soil fertility and improved soil
health [4]. The concept of organic recycling and closing nutrients loops in sustainable
organic agriculture and waste processing is summarized in Figure 1. The conversion of
agro-industrial organic residues to organic amendments for resource utilization and to
recover nutrients is key for eco-friendly and sustainable agricultural and food production.
Such a solution contributes to closing C, N, and P cycles in organic agricultural residue
management and agricultural practices.
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Figure 1. Organic recycling and closing nutrients loops in sustainable organic agriculture and
waste processing.

The key components of the system are represented by rectangles: organic materials,
agriculture practices, waste processing, and nutrient cycles. The arrows indicate the flow
of materials and processes within the system. The organic materials supply is directed
towards agriculture practices to provide nutrients for the crops. Additionally, the organic
waste generated from the organic materials is sent to waste processing to be converted
into nutrient-rich compost. The agriculture practices and waste processing components
are connected to nutrient cycles to ensure the recycling of nutrients. Nutrients from the
agriculture practices are recycled back to the system through the nutrient cycles, while
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the waste processing component receives nutrient-rich compost from the nutrient cycles.
This diagram visualizes how organic recycling and nutrient loops operate in sustainable
agriculture and waste processing.

By using biotechnological interventions, numerous value-added and by-products can
be obtained from agro-industrial organic residues (Figure 2), including organic fertilizers
in the form of manure, compost, biodegradable plastics, biofuel and bioproducts [5].
The application of advanced biological and thermochemical methods, such as anaerobic
digestion, composting and biocharring, in organic residue treatment can be a proper
solution to obtain safe and stable soil amendments. Such processing reduces nutrients
leaching and odors and results in the prolonged release of micro and macronutrients. The
whole system functions using sustainable organic agriculture and green residue processing
strategies. Thus, putting extra effort on recycling organic residues as soil amendments with
the double objective of improving soil health and closing matter circles can only be positive.
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Figure 2. Biotechnological interventions for waste processing as soil amendments.

This manuscript explores the potential and constraints associated with the use of
organic amendments derived from agricultural residues to enhance soil properties, focusing
on some types of agroindustrial waste: animal manure, crop residue or pruning waste. The
authors emphasize the global issue of managing large quantities of agricultural residues. In
order to provide a comprehensive summary of their use as soil amendments for minimizing
the problems associated with their management while improving soil health and ecosystem
functions, the manuscript presents a summary of the techniques currently used for their
transformation, as well as the benefits and risks of this practice, from the point of view of
physical, chemical and biological soil properties and the carbon cycle.

2. Reuse as Soil Amendments
2.1. Direct Application to Soil

Some organic waste can be used directly as amendments in agricultural soils, especially
animal manure; crop residue, such as cereal straw; and pruning residue, among others. For
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instance, vines are traditionally incorporated into vineyard soils in Spain. Manure, which
is a collective term for excretions of different animal species in combination with straw and
other plant materials but also livestock feed residues, improves soil properties through
increased organic carbon and nutrients in soils. However, organic matter in manure may be
quickly degraded because of its low carbon-to-nitrogen ratio [6]. Similarly, returning straw
to the soil takes advantage of the large contents of organic carbon to improve soil physical
and chemical properties, for instance porosity and bulk density [7], benefitting the growth
of crops, but it may also have negative effects caused by organic acids production during
decomposition [8]. In addition, the high C/N ratio hinders soil organic matter formation
due to the lack of adequate nutrient supply. The same reason might lead to limited nutrient
supply to plants when straw is applied alone to soils.

2.2. Previous Transformations

While the benefits of direct application of organic waste are many, not all should
be applied directly to soil. In some cases, there are potential risks associated with their
composition and transformation processes in soils, such as the leaching of readily available
nutrients, especially nitrogen in form of nitrate, into the groundwater [9]. Other materials
such as manure can also benefit from previous transformation processes to be converted
into amendments better suited for soil application, even if their direct application is feasible.

2.2.1. Compost

Composting is a process of biological decomposition and the stabilization of organic
matter under aerobic conditions through the action of diverse microorganisms. Although
composting is a method that has been used since ancient times for waste transformation
and soil fertilization, scientific studies about its fundamentals have only begun to be
published in the past four decades. Several methods and systems for composting have
been developed, varying in scale and purpose from home-made systems in individual
households, over medium-sized, on-site reactors operated by farmers, to large, high-
tech systems used by professional producers. The fundamental physical, chemical and
biological and aspects of composting are always the same despite different techniques,
and knowledge about the interactions and dependence of factors and competing forces
within a composting matrix have recently been investigated. These include the suitability
of different feedstocks and amendments as well as their adequate composition, porosity
and free air space, moisture control, energy balance as well as substrate degradability,
decomposition and stabilization [10,11]. This process has three typical phases. The first one
is a moderate-temperature (mesophilic) phase and after a few days, a high temperature
of over 60 ◦C is reached (thermophilic phase). This phase is very important to eliminate
pathogenic bacteria and seeds. Finally, the last phase is the maturation stage, leading to the
final stabilized organic matter.

Composting allows us to stabilize organic residues before application to soil avoiding
crop damage that can come from highly biodegradable fresh residues, but it also allows
to blend materials that are not easily composted alone. Animal manure is typically com-
posted to improve its properties [12], as well as plant-derived materials such as pruning
residues [13], cereal crop residue [14], grape marc and other winery waste [15,16], olive
pomace [17] or fruit and vegetable waste [18]. These organic residues are also commonly
treated by co-composting processes using more than one feedstock (Table 1). The final
product of this biological process is compost, a stabilized substrate rich in organic matter,
free of pathogens and plant seeds, which is suitable to be added to the soil as an organic
fertilizer. Composted organic residues are typically used in agriculture and horticulture,
as well as to produce topsoil for landscaping or land restoration activities, including
phytoremediation [19].

A similar technique is vermicomposting, which is a decomposition process involving
microorganisms and earthworms. A disadvantage of vermicomposting is that it does
not reach high temperatures [20], lacking the proper elimination of pathogens and seeds.



Sustainability 2024, 16, 158 5 of 18

Therefore, vermicomposting should not be used alone. Instead, vermicomposting and
traditional composting should be combined, beginning with a partial pre-composting
followed by a finishing stage of vermicomposting [21].

Table 1. Examples of co-composting processes of commonly used agro-industrial organic residues.

Main Feedstock
Category

Composting
Process

Feedstock Used for
Composting Process Ratio (v/v) Effects Reference

Manure Aerobic reactors Chicken manure +
peanut straw + biochar 2.5:1:0.1

Increased temperature of
the process after biochar
application

[22]

Piles Cattle manure + maize
straw 5:1

Amino acid and
carbohydrate metabolism
were key metabolism
pathways

[23]

Aerobic reactors
Pig manure + wheat
straw (+ bean dregs and
biochar)

2:1

Bean dregs and biochar
promote the decomposition
and humification of
compost

[24]

Piles

Straw, draff, horse
manure, maize silage,
loam, and stone powder
+ biochar co-composting

1:5:1:5:0.02:1
Biochar compost performed
better than compost alone
or synthetic fertilizer

[25]

Aerobic reactors
+ preheating

Swine manure + food
waste + corn stalk
co-composting

2:2:0.5

Initially elevated
temperature restricted the
rebounding of pathogenic
bacteria

[26]

Piles Cow manure + sawdust 1:1
Cow manure
co-composting reduced
pathogenic microbes

[27]

Aerobic reactors Kitchen waste + pig
manure + cornstalks 2.5:2.5:1

Germination index of the
inoculated thermophilic
compost was higher

[28]

Sewage sludge Aerobic reactors
Rural sewage sludge
and food waste
co-composting

2:0.5

Agricultural value of
sewage sludge can be
enhanced through
co-composting

[29]

Aerobic reactors Sewage sludge +
centrate

Improves yield and rice
protein and mineral
content; high nutrient
content

[30]

Aerobic reactors
Sewage sludge from
food industry + biochar
vermiremediation

1:0.1

In vermicomposting of
sewage sludge bulking
materials can be replaced
with biochar

[25]

Aerobic reactor

Sewage sludge + straw
(1 cm) + aerobic
microorganism agent +
biochar

4:1
Reduction of gas emissions
after bacteria and biochar
application

[31]

Green waste/Food
waste/other
organic waste or
biomass

Windrow
composting Vegetable biomass -

Compost based on “heavy”
materials the most
sustainable

[32]

Windrow
composting

Green waste + food
waste 1:1 Compost designed for

tropical horticultural crops [33]

In-vessel Food waste -
Can reduce GHG emissions
and eutrophication when
compared to

[34]

Open-air static
pile Food waste + leaves 4:1

Substituting chemical
fertilizers with organic
compost is a viable option

[35]

2.2.2. Biochar

Charred organic material has been added to soil in ancient agricultural systems all
over the world [36], in addition to the Terra Preta phenomenon [37], precedents of the
current use of biochar as soil amendment. Agro-industrial residues employed preferentially
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for biochar production are wood, sawdust and crop residues, including straw and woody
materials such as pruning residues. Biochar is produced by the thermal treatment (>400 ◦C)
of organic materials, e.g., by pyrolysis or gasification under oxygen-deficient conditions.
Different technologies are available for biochar production: these include charcoal stacks,
the traditional way of converting wood to charcoal [38]; rotary kilns, which are cylindrical-
shaped pyrolizers, externally heated, where biomass is moving continually via rotating
spirals. The Pyreg process is a patented pyrolysis characterized by biomass allothermic
gasification. Wood gasifiers produce biochar in a fixed-bed, downdraft, open core, compact
gasifier with the main purpose of electricity production; they are normally fed with pure
and clean wood rather than on agricultural organic residues. Preferred technologies are
pyrolisis systems and gasification because of emissions free of toxic compounds and the
beneficial use of released energy, e.g., for electricity production or heating purposes [38].

Biochar has been proven to increase soil organic carbon, nutrient availability, and water
holding capacity over a long time period and to sequester carbon [39,40]. Biochar affects
crops and soils differently [38], and its addition to soil should be additionally considered as
a strategy to mitigate the negative effects of climate change [40,41].

2.2.3. Anaerobic Digestion

Anaerobic digestion is a biological process in which organic matter is decomposed
and stabilized in the absence of oxygen. As a result of the decomposition under anerobic
conditions, a gas mixture known as biogas is produced, containing essentially methane
(50–75%) and carbon dioxide (30–40%), which can be used to generate heat or electricity as
a substitute for fossil fuels [42]. Therefore, anaerobic digestion allows the conversion of
organic waste into a renewable source of energy. This technology is very useful for those
agricultural waste with high moisture, and in particular for liquid manure.

In addition to biogas, the anaerobic digestion of agricultural waste also products di-
gestate, a by-product that can be used as a soil amendment [43]. However, digestate should
undergo a composting/stabilization stage before application to soil for easier management
and an efficient agronomic use as fertilizer [44], in order to reduce odors, ammonia emission
and risk of nutrient leaching. Digestate has been applied to soil proving good fertilizer
value, increasing soil organic carbon and stimulating soil biological activity [45,46].

Finally, advantages and disadvantages of the options presented for organic waste use
on soil are summarized in Table 2.

Table 2. Summary of advantages and advantages of options for the utilization of agro-industrial
organic residues.

Advantages Disadvantages

Direct application
- Low cost
- Low technology

- Not suitable for all
waste

- Nuisances for
application

- Pollution risk

Composting

- Waste volume reduction
- Low cost
- Hygienization
- Easy to manipulate
- Applicable to a wide

range of waste

- Need of space and time
for treatment

- Gas emissions

Biocharring
- Fast process
- Waste volume reduction
- Hygienization
- Easy to manipulate

- High level of technology
- High cost
- Gas emissions

Anaerobic digestion
- Obtention of energy

from biogas
- High level of technology
- Odors, ammonia

emissions
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3. Benefits of Organic Soil Amendments

Besides the management and circularity of agricultural activities, one of the main
objectives of organic residue recycling is increasing the contents of soil organic matter,
which is known to improve soil properties, both physical and chemical, and reversing the
ongoing processes of the degradation of agricultural soils. In this section, we will briefly
summarize the benefits from the point of view of physical, chemical and biological soil
properties and the carbon cycle.

3.1. The Carbon Cycle

Although soils play an essential role in the C cycle, being the major terrestrial global
carbon sink [47], agricultural activities contribute significantly to the release of greenhouse
gases into the atmosphere. In this context, the promotion of soil C storage and sequestration
has a high value in remediating climate change [40,48,49]. Soil C sequestration is a process of
C capturing from the atmosphere by living organisms and later, storing it stabilized in soils
for a long time, even for centuries [50]. Soil organic amendment increases the possibilities
of soil C storage directly [51] and indirectly through plant growth improvement and the
activation of the microbial transformations of C [52]. The incorporation of CO2 into plant
biomass represents a major bottleneck of soil C sequestration [53]: as plants are the main
source of organic inputs for soils, C storage is ultimately dependent on photosynthesis [54].
In this sense, the application of organic amendments has been found to highly promote
plant growth and thus intensify photosynthesis [55], due to the improvement of root’s
environment and influence on nitrogen and other nutritive elements necessary for plant
development [56]. Moreover, higher soil biodiversity and the population of plant-growth
promoting bacteria under organic fertilization also contributes to higher photosynthesis [57].
Thus, the improvement of crop production level has been reported to promote soil C
sequestration and contribute to carbon neutrality [58].

Many organic amendments have been studied for their influence on soil C storage
and benefits in C sequestration by plants, among them sewage sludge [59], composted
materials [60], cattle manure [61] or horse manure [62]. Although the addition of organic
matter, fresh or composted, is also a source of CO2 due to soil respiration, we should
consider the positive benefits derived from the transformation process of the organic matter
in the soils, giving stabilized organic compounds (humus) that can be present for decades.
A recent global meta-analysis covering 101 studies, including 592 cases showed that manure
application increases the SOC stocks of agricultural soils by 35%, corresponding to 11 Mg
ha−1 [40]. Surprisingly, the applications of manure in conventional tillage systems led to
2 Mg ha−1 higher SOC stocks compared to reduced tillage, and it was 3 Mg ha−1 higher in
soils under temperate climate compared to tropical climates [40].

Soil properties also play a role in SOC storage, soil texture in particular has a great
importance, as many studies have demonstrated [63]. For instance, following the meta-
analysis by Gross et al. [40], clay soils showed 3 Mg ha−1 higher SOC increase rates
compared to sandy soils. With respect to soil pH, acidic soils showed a 5 Mg ha−1 higher
stock than neutral and alkaline soils. Different materials also present different performances:
farmyard, cattle and pig manure showed higher SOC increases than green manure or straw.
The beneficial role of organic soil amendments for the improvement of C storage has also
been observed in degraded soils [64,65].

The overall beneficial influence of organic amendments on SOC is summarized in
Figure 3. Only in China, the total SOC accumulation in cropland topsoils has been estimated
as 85 Tg C per year under compost supplementation: such sequestration contributes by
4.4% to carbon neutrality [66].
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3.2. Soil Physical Properties

Many agricultural soils in the world present poor physical properties, as a result of
degradation processes derived from long periods of cultivation, the use of heavy machinery
and SOM decline. These processes negatively affect soil structure, reduce porosity, increase
compaction, produce surface crusts and sealing and, as a result, create poor conditions for
plant growth and increased erosion [7]. The addition of organic amendments shows positive
effects on soil physical conditions, caused by increased SOM contents [67]. The reduction
in bulk density, increase in porosity and amelioration of structure and aggregate stability
are highly associated with SOM contents. Other properties, such as water holding capacity,
compaction, runoff, infiltration and protection against erosion are frequently improved.

Bulk density decreases in agricultural soils with the application of many organic
amendments, for example, manure [68,69], composted crop residues [70], green waste
composts [68,69] and biochar [71]. This is a direct effect of the higher porosity and low
density of organic amendments compared to soil and an indirect effect of soil structure
amelioration. The improvement of soil structure induced by organic matter has been
observed in many studies that report increase in aggregate stability after the addition
of manure [72], rice straw [73], fresh or composted crop residues [70,72], green cutting
composts [68] or biochar [71].

The highly porous structure of organic matter allows the reorganization of soil pore
size distribution, increasing soil water retention as observed after the addition of farmyard
manure or crop residues [72] and compost [69,74]. Many research articles reported how
biochar amendment also improves soil water retention and reduces plant hydric stress
during prolonged dry periods [75–77]. However, the results obtained are variable, also
showing cases with no increase in water retention [69,78]. Jeffery et al. [79], for example,
applied herbaceous plant cuttings biochar to a sandy soil at 1–50 Mg ha−1 and found no
increases in water retention capacity despite soil porosity increase. Liu et al. [80] found a
doubling of water retention after the addition of 20 Mg ha−1 biochar in combination with
compost, compared to compost alone, in a sandy soil in Northern Germany. Moreover,
Aluko and Oyedele [81] and Paradelo et al. [69] reported improved soil workability after
the application of composted green cuttings and farmyard manure.
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3.3. Soil Chemical Properties

Maintaining soil fertility and the absence of soil/water pollutants are essential aspects
for sustainable agriculture. The objective is an adequate supply of nutrients to crops,
avoiding the pollution of soils and waters that results from the excess of nutrient and
fertilizers. By modifying chemical properties including pH, cation exchange capacity or
nutrient contents and availability, the addition of organic residues also contributes to
this aspect.

The addition of organic amendments may lead to increased buffering capacity and
soil pH. This can be very important in acid soils. These changes have been shown to
increase nutrient availability, especially P and N. The long-term application of compost and
manure was found to increase [82] or decrease [83] soil pH, depending on their initial value.
Butler and Muir [82] observed an average increase in soil pH by 0.5 units with increasing
rates of dairy manure compost from 11.2 to 179.2 Mg ha−1. Biochar application was also
found to increase soil pH buffering capacity and pH values, leading to the higher retention
of basic cations in acid soils and thus improving crop nutrition by increasing P and K
availability [76,84]. The opposite effect was observed when soils were alkaline, where the
addition of compost can favor the acidification and, thus, the availability of nutrients for
plants [85,86].

Cation exchange capacity is essential for the retention of nutrients and reducing leach-
ing and thus making them available to plants [67,87,88]. Long-term fertility experiments
have shown increased soil cation exchange capacity after the application of organic amend-
ments such as manure [89], composts [90] and biochar [76]. In this sense, organic waste
also provide nutrients in different forms. Studies proved that compost supplementation
provides macro- and micronutrients to soil and enhances crop yield [91–93].

In this sense, Blanchet et al. [94] found in a 50-year long-term study that manure
application improves soil chemical properties providing significant amounts of P and K.
Also, Scotti et al. [95] found that total nitrogen was increased by 60 and 40%, respectively,
in soils treated with municipal solid waste compost and manure, after one year of study,
compared to untreated soils. Increases in available P content, which was a 36% higher than
in the untreated soil, were also observed, which can be explained by a higher activity of
phosphatases. Nest et al. [96] reported that manure application increased soil pH as well as
extractable P by two to four times, as compared to a mineral P fertilizer application, after a
long-term (40–50 years) experiment, proving that the application of manure can be more
effective than mineral fertilizer. Schmidt et al. [97] summarized available meta-analyses on
biochar effects on soil chemical properties. They showed that all investigated soil chemical
properties significantly improved when biochar was added to soils.

Finally, a very important aspect is the potential positive effect of organic amendments
produced from agricultural residues in reducing pollutant mobility. The application of
organic amendments contribute to the immobilization of potentially toxic elements in soil,
reducing their bioavailability to plants [98]. This is due to the presence in organic matter of
acidic groups that can bind a wide range of metal(loid)s such as cadmium, lead, copper or
chromium [98] and is considered as an important absorbent and complexer for soil metal
ions, with a 4–50 times higher cation exchange capacity than clay [99,100]. This effect of
organic amendments is also important for their potential use to remediate degraded and
polluted soils [19,101].

3.4. Soil Biological Properties

Biological activity is essential for biogeochemical cycles, residue degradation and,
of course, for biodiversity, all of which is important to sustain agro-ecosystems function-
ing [102]. Soil microbial populations play a key role in nitrogen fixation, in the decomposi-
tion of organic substances and in nutrient cycling. Organic residues can modify biological
properties of soils in positive ways via several mechanisms. First, increasing organic matter
contents, including sources of energy for microorganisms. Second, most organic waste is
already colonized by microbial communities, which are then transferred to the soil. In addi-
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tion, organic residues provide space for colonization and form habitats for microorganisms,
potentially protecting them from predation and desiccation.

The application of organic amendments to soil has been widely acknowledged to pro-
mote microbial population levels, which are driven by physicochemical soil alterations [103].
Studies demonstrated that compost stimulates microbial activity and its biodiversity [104]
and suppresses soil-borne pathogens [105,106]. Some studies observed that soil microor-
ganisms respond to compost addition in a dose-dependent way [107,108], reporting that
compost may have either positive [109], neutral [110] or negative effects on soil biological
activity and biodiversity [111]. In other investigations, the application of biochar to soil has
also been proven to increase microbial biomass and enzymatic activities [76].

The application of organic amendments also affects the composition and structure of
microbial populations [112]. Throughout the limitation of bioavailability of soil pollutants,
soil organic matter allows for increased soil microbial diversity and enhance the dynamic
of soil processes [113]. Soil enzymes are highly sensitive to soil nutritional changes and the
increase in SOM is considered to influence their activity [114]. Tang et al. [115] showed an
activation of soil enzymes induced via the application of compost from agricultural waste,
whereas biochar showed its inhibition. Similar interactions between organic amendments
and soil enzymes were noticed by Hazrati et al. [116]. They observed the positive effects
on β-glucosidase and acid phosphatase activity, which increased by 246%, and 223%,
respectively after 60 days from the agricultural residue application. This effect has been
attributed to a decreased bioavailability of heavy metals. It has been also reported that
organic materials contain a high biodiverse microbial population and are the main reason
for improved soil activity and biodiversity [117].

Organic waste also produces modifications in the use of carbon sources that can
lead to substantial changes in microbial functional activity and diversity, as well as in
the taxonomical composition of microbial communities. The long-term study of repeated
organic amendment showed the promotion of microbiome diversity [118]. Manure has
been proved to highly promote soil biodiversity, whereas the bacterial community has been
found to be more sensitive to disturbances in comparison to fungi [119]. Zhang et al. [120]
reported that application of manure to tea plantations improves bacterial biodiversity and
stabilizes the structure of soil bacterial communities. Li et al. [121] reported an increase in
bacterial abundance by about 161% when straw- and wood-derived biochar was applied
to soil, whereas Liao et al. [122] observed that biochar addition made plant-derived C
assimilable to a larger number of microbial species, affecting the bacterial community
structure and rhizosphere diversity.

Another positive aspect is the suppressive effects on diseases and pathogens observed
in relation to compost and biochar. The long-term application of compost for five consecu-
tive years decreases the abundance of plant pathogens in soil [106,123,124]. The capacity
of compost to suppress plant diseases, as well as its efficacy, risks and benefits, have been
widely recognized, studied and critically reviewed by many authors [118,125,126], and
compost amendment has been proposed for the biocontrol of several species, including
Pythium irregulare and Pythium ultimum [127,128], Phytophthora nicotianae [129], Rhi-
zoctonia solani [130], Fusarium oxysporum [131] and Verticillium dahlia [132]. The ability
of biochar to suppress soil pathogens and diseases has also been proved [76], including the
disease caused by foliar fungal pathogens in tomato, pepper [133] and strawberries [134];
the suppression of Fusarium crown and tomato root-rot [135]; or the sensitivity of rice
plants to root knot nematode infection [136].

3.5. Soil Health

Soil health is defined as the continued capacity of soil to function as a vital living
ecosystem that sustains plants, animals and humans, providing essential ecological func-
tions for all forms of life [137]. The increase in soil organic matter plus the simultaneous
improvement of soil chemical, physical and biological properties due to organic amend-
ments results in the amelioration of soil functions such as regulation of nutrient cycles,
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the water cycle or biodiversity and, consequently, the improvement of agricultural soil
health [4,138,139].

4. Constraints of Organic Soil Amendments

Although the benefits associated with the agricultural utilization of these residues
are many, in some cases they can also create adverse impacts on the environment and,
therefore, some risks must be considered for a successful recycling and recovery without
environmental harm or hampering soil health (Table 3).

Table 3. Summary of risks and benefits of utilization of agro-industrial organic residues.

Benefit Risk

C cycle

- Increase in SOM content Processes related to decomposition:
(production of toxic substances, organic acids,
O2 consumption)

- Immature compost
- Fresh residue

Physical properties

- Increased porosity
- Improvement of structure
- Increased water retention
Chemical properties

- pH buffering
- Increased fertility
- Reduction of pollutant mobility

N immobilization

- Fresh residues
- Immature compost
- Biochar

Biological properties

- Increased biological activity
- Increased microbial biomass
- Disease suppressiveness

Potentially toxic trace elements

- Animal manure

Antibiotics and similar

- Animal manure

Some observed negative effects are related to the decomposition and application of
fresh materials. The direct application of some untreated agricultural residues or immature
composts may have negative impacts on plant growth due to relatively the high contents
of soluble organic compounds. Straw incorporation can also have negative effects due to
the organic acids produced during decomposition, which are harmful to crop root systems.
Moreover, an unbalanced C/N ratio can increase organic matter decomposition rates with
the higher production of dissolved organic carbon compounds when it is low, or decrease
the mineralization and increase demand soil N for decomposition when it is high, depleting
available N for plants and soil microorganisms [140]. Unbalanced C/N ratios can be
overcome by avoiding the direct application of these residues and by composting mixtures
of materials with high and low C/N values.

Other residues can contain toxic elements in higher concentrations than the normal
concentrations in soil, so the possibility exists of buildup in soil when they are repeatedly
applied, and they might enter the food chain if taken up by plants, causing concern for
human health and food security. The accumulation of toxic metals in soils depends on the
amounts of organic amendments applied, as well as of their source and soil properties.
Although this is a not an extended problem in agricultural waste, some materials such as
animal manure from intensive production can present high concentrations of certain metals
due to their presence as feed additives [141,142]. In this sense, metal contents increase in
soils treated with animal manure have been reported in the literature, especially in the
long term. For example, increases in soil Cd, Pb and As have been observed after three
years of the continuous application of chicken and swine manure; six-year consecutive
applications of a swine compost also resulted in significantly higher concentrations of Cu
and Zn compared to the control [143]. Zhen et al. [144] reported increases in soil Cd, Cu and
Zn after 15 years of application of chicken and cattle manure, whereas in a longer study, van
Oort et al. [145] observed the progressive accumulation of Zn in a soil affected by manure
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for 90 consecutive years. In turn, in another long-term experiment, Erhart et al. [146]
observed no variation in either total heavy metal concentrations or available fractions after
10 years of application of high-quality biowaste compost. In any case, the mobility of
metals and their concentration in the soil solution rather than their total concentrations are
determinant factors for their environmental impacts.

Finally, care should be taken with potentially pathogenic microorganisms in some
cases, as well as antibiotic resistance transferred from animal manure. Veterinary phar-
maceutical products and hormone-linked compounds as well as (micro)plastic residues
might accumulate in soils with slurry or manure applied. In a global meta-analysis about
antibiotic residues in manure, slurry, soils, plants and water, Frey et al. [147] reported that
fluoroquinolones, sulfonamides and tetracyclines used in animal husbandry contaminate
the environment, exceeding the EU threshold values for veterinary antibiotics in soil in
many countries [147]. Therefore, it is urgent to significantly reduce the use of veterinary
antibiotics in order to diminish their contents in manure and other waste and, thus, their
environmental pollution potential.

5. Future Challenges and Conclusions

One of the most important challenges in the nearest future will be the transformation
of the agriculture sector from synthetic based fertilizers agri-model into regenerative
agriculture with the integrated use of manure and organic residues combined with smaller
amounts of fertilizer. The reuse of residues as soil amendments, either directly or after
transformation, must be kept as the first option for most agricultural and agro-industrial
organic waste. Following the logic of the waste hierarchy, burning or disposal can only be
considered the final option. Thus, recycling in soil is an obvious choice for these organic
residues that will allow us to reverse the trends of soil degradation and unsustainability
and provide opportunities to transform residues into valuable resources.

However, to achieve this objective, large transformations are necessary: this will
require not only changes in soil, waste and crop knowledge but also social and economic
revolution. In recent decades, we have observed a significant increase in synthetic fertilizers
utilization and stagnant soil application of manure as a source of nitrogen, resulting in
stagnant crop productivity and deteriorating soil health in many parts of the world. Future
research needs to focus on closing N, P, K and C loops, providing balanced fertilization
for nutrient rich food for animal and human health. One of the reasons is economic: the
high-energy demanding sector of synthetic fertilizers needs total revolution. The limited
availability of fertilizer raw materials for political reasons also forces the search for new
sources of fertilizers, mainly of organic origin. Future research will also focus on safe food
production, without any emerging contaminants like pesticides or even microplastics.

Another potential problem is that many farms do not have enough land available to
reuse the organic waste they produce or the technology necessary for biological or thermal
transformations. Therefore, full process systems must be implemented for the manage-
ment of these wastes at a larger scale, including collection, treatment and/or distribution
from areas of excess production to areas where they are needed. The implementation of
farmers’ cooperatives for waste transformation could be a good solution for the large-
scale processing of waste. These residues and derived amendments could also be used
in non-agricultural soils, although it would be more interesting to close circles within the
agricultural system based on a circular economy. Appropriate planning in this sense will
probably need a new regulatory context in many countries.

To achieve regenerative agriculture, a better understanding of the interaction of soil
additives such as composts, manure or other additives such as biochar is needed, and the
identification of soil parameters that will determine whether the additives used will have
a positive and sustainable impact on the soil environment in agricultural practices and
different environmental conditions. The study of such interactions and the dissemination
of knowledge concerning them should be included in the management of agro-ecosystems,
which will help to mitigate climate change and in the necessary adaptation to it.
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