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Abstract

In the latest years momentous advance has been made in understand-

ing the endogenous brain dynamics from resting state functional MRI

(rs-fMRI) signals. An rs-fMRI signal tends to have long memory in

time as well as the 1/f power spectrum at low frequencies. A few

statistical models of rs-fMRI time series, such as fractional Gaussian

noise (FGN), had been proposed to describe such properties called

the fractal behavior. Nonetheless, the long memory properties have

not been elucidated by the underlying physical mechanism. In ad-

dition, how such properties have an impact on large-scale functional

networks of the brain has been unclear. This thesis develops not only

a parsimonious model of long memory in rs-fMRI, which provides us

hypothetical ideas on these unresolved issues, but also advanced tech-

niques for estimating intrinsic functional connectivity among brain

regions hidden beyond the long memory phenomenon of rs-fMRI sig-

nals.

The long memory model of rs-fMRI was constructed by extending

the present models of cerebral hemodynamics which describe the as-

sociation between synaptic activities and fMRI signals. This model

empowers us to deduce a rigorous hemodynamic condition that brings

about long memory in rs-fMRI time series, and has essential implica-

tion on resting state brain dynamics. First, the impulse hemodynamic

response to resting state brain activity may have considerably different

shape from the typical hemodynamic response function corresponding

to evoked state. The variability of hemodynamic responses directs us

to hypothesize the history dependent excitability of hemodynamic re-

sponse such that the hemodynamic state is subordinate to the history



of brain activities. Second, the nonlinearity of hemodynamics has lit-

tle influence on long memory properties in rs-fMRI data. Third, a

fractionally integrated (FI) process can be taken into account as a

novel statistical model of rs-fMRI time series since it is suitable for

the long memory model of hemodynamic response. Lastly, the het-

erogeneity of fractal behavior among brain regions incurs significant

divergence in both functional connectivity and information flow be-

tween rs-fMRI signals and the corresponding spontaneous neuronal

activities.

To cope with the fractal-driven connectivity distortion in rs-fMRI,

nonfractal connectivity was proposed as a novel concept of resting

state functional connectivity. It is defined as the correlation of non-

fractal constituents of two rs-fMRI time series that are independent

of fractal behavior, and is comparable to the fractal connectivity de-

fined as the convergence of wavelet correlation. Although the non-

fractal connectivity is not akin to correlation of neuronal population

activities, it is capable of efficaciously mitigating the inaccuracy of

functional connectivity estimation attributed to fractal behavior. A

diversity of wavelet-based estimators for both nonfractal connectivity

and fractal connectivity were developed and verified through simu-

lation studies. Moreover, a multivariate method was suggested as a

robust estimator of memory parameter which is resilient to severe sig-

nal contamination. This fractal-based approach to resting state func-

tional connectivity has been effectively exploited for the analyses of

both human and animal brain. These applications demonstrate that

the fractal-based analysis is instrumental in revealing the between-

group difference in functional connectivity.

In consequence, all these results may give valuable insights on the

scientific implication of fractal behavior on functional connectivity,

and lead to further exploration of endogenous brain dynamics beyond

fractal behavior of rs-fMRI.



Zusammenfassung

In den letzten Jahren gab es wichtige Fortschritte im Verständis von

endogenen, dynamischen Vorgängen im Gehirn anhand von funktionellen

resting state MRT (rs-fMRT) Signalen. rs-fMRT Signale neigen zu

einem Langzeitgedächtnis in der Zeitdomäne sowie zu einem 1/f Sig-

nalverlauf bei niedrigen Frequenzen im Leistungsspektrum. Wenige

statistische Modelle von rs-FMRT Zeitsignalen, wie z.B. fractional

Gaussian noise (FGN) wurden vorgeschlagen um dieses sogenannte

fraktale Verhalten zu beschreiben. Diese Langezeitgedächtis Eigen-

schaften wurden bisher nicht durch physikalische Mechanismen erklärt.

Darüberhinaus ist der Einfluss dieser Eigenschaften auf die großen

funktionellen Netzwerke im Gehirn unklar. In dieser Doktorarbeit

wurde nicht nur ein einfaches Model des Langzeitgedächtnis von rs-

fMRT Signalen, welche hypothetische Ideen für die ungeklärten Fra-

gen liefern, entwickelt sondern darüberhinaus auch spezielle Metho-

den um intrisische funktionale Verbindungen zwischen Hirnregionen

abzuschätzen, die von dem Langzeitgedächtis der rs-fMRT Signale

verdeckt sein können.

Das Langzeitgedächtnismodel von rs-fMRT Daten wurde auf Basis

bestehender Modelle der cerebralen Haemodynamik, die Verbindung

zwischen synaptischer Aktivität und fMRI Signal beschreiben, en-

twickelt. Dieses Model ermöglicht einen präziesen haemodynamis-

chen Zustand zu beschreiben, der für das Langzeitgedächtnis ver-

antwortlich ist und einen essentiellen Einfluss auf die dynamischen

Vorgänge im Hirn im resting state hat. Erstens kann die spontale

haemodynamische Antwort auf Hirnaktivität im resting state eine

andere Form aufweisen als die haemodynamische Antwort für ein



evoziertes Signal. Die Variablität der haemodynamischen Antworten

führte zur Vermutung der vergangenheitsabhängigen Erregbarkeit der

haemodynamischen Antwort, so als sei der haemodynamische Zus-

tand abhängig von der Vergangenheit der Hirnaktivität. Zweitens

hat die Nichtlinearität der Haemodynamik nur einen geringen Ein-

fluss auf die Eigenschaften des Langzeitgedächtnisses von rs-fMRT

Daten. Drittens kann ein fractionally integrated (FI) process als neues

statistisches Modell fur rs-fMRT Zeitreihen herangezogen werden, da

es in der Lage ist die Vergangenheitsabhängigkeit der haemodynam-

sichen Antwort zu beschreiben. Zuletzt ist es die Heterogenität des

fraktalen Verhaltens zwischen Hirnregionen die einen signifikaten Un-

terschied bei der funktionalen Konnektivität und dem Informations-

fluss zwischen rs-fMRT Signalen und somit der dazugehörigen sponta-

nen neronalen aktivität hervoruft. Nichtfraktale Konnektivität wird

als neues Konzept zur Beschreibung von funktionaler Konnektivität

im resting state vorgestellt um den störenden Einfluss des fraktalen

Verhaltens in rs-fMRT zu beseitigen. Sie ist definiert als Korrela-

tion von nichtfraktalen Bestandteilen von zwei rs-fMRT Zeitreihen

die unabhängig von fraktalem Verhalten ist, ähnlich wie die fraktale

Konnektivität als Konvergenz der Wavelet Korrelation definiert ist.

Auch wenn die nichtfraktale Korrelation nicht sehr ähnlich der Kor-

relation von neuronaler Aktivität ist, ist sie dennoch in der Lage den

störenden Einfluss des fraktalen Verhaltens auf die Bestimmung der

funktionalen Konnektivität wirksam abzuschwächen. Für die Bestim-

mung von nichtfraktaler wie auch fraktaler Konnektivität wurden eine

Vielzahl von Wavelet basierter Methoden entwickelt und durch Sim-

ulationen überprüft. Darüber hinaus wird eine multivariate Methode

zur Bestimmung der Gedächtnis Parameter vorgeschlagen, die robust

gegenüber größeren Signalstörungen ist. Dieser fraktale Ansatz der

funktionellen Konnektivität von Hirnregionen im resting state wurde

erfolgreich bei der Analyse sowohl beim Menschen als auch beim Tier

angewendet. Die Anwendung zeigt, dass dieser fraktale Ansatz in der

Lage ist Gruppenunterschiede in der funktionalen Konnektivität zu



erkennen.

All diese Ergebnisse können eine neue nützliche Blickweise auf die

Auswirkungen von fraktalem Verhalten auf die funktionale Konnek-

tivität eröffnen und Untersuchungen von endogenen dynamischen Vorgängen

im Gehirn jenseits des fraktalen Verhaltens von rs-fMRT Signalen

ermöglichen.
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Chapter 1

Introduction

The brain is so dynamic that brain activities are ceaseless even at rest. Cognitive

processes such as dreaming or emotion follow one after another when someone

sleeps or takes rest. Just before falling asleep, his brain may become more active

due to either feeling anxiety about having a lot on his plate, or joyful news

about his success in an important examination. Moreover, the brain potentially

consumes a great deal of energy during rest while an external stimulation to

the brain brings about relatively small increase in neuronal activities (Shulman

et al., 2004). The ongoing brain activities arouse us curiosity about a huge

functional network of endogenous brain activities concealed behind resting state

neuroimaging signals. The great exploration of the resting brain goes way back

to the pioneering observation of low frequency fluctuation (LFF) in resting state

blood-oxygen-level-dependent (BOLD) signals of functional magnetic resonance

imaging (fMRI) that was performed by Biswal et al. (1995) (see Ogawa et al.

(1990) for the BOLD contrast). Since their monumental discovery, attention

on spontaneous brain dynamics has tremendously increased during a couple of

decades.

One typical approach to LFF is to identify the spatial pattern of coher-

ent brain activities in terms of functional connectivity which is defined as the

strength of correlation between neurophysiological processes in remote brain re-

gions (Auer, 2008; Fox & Raichle, 2007). A diversity of approaches to resting state

functional connectivity have been developed including cross-correlation (Greicius

et al., 2007), partial correlation (Marrelec et al., 2007; Salvador et al., 2005), hi-

1



1. Introduction

erarchical clustering (Cordes et al., 2002; Salvador et al., 2005), and independent

component analysis (ICA) (Beckmann et al., 2005; van de Ven et al., 2004).

The other growing approach to LFF is to analyze the long memory phe-

nomenon (also called the fractal behavior). A BOLD signal taken at rest tends

to exhibit long-range temporal dependence according to a special order of self-

similarity and its power spectrum follows an 1/f power-law scaling across low

frequencies (Cordes et al., 2001; Expert et al., 2011; Herman et al., 2011; Maxim

et al., 2005; Stam & de Bruin, 2004; Van de Ville et al., 2010; Wink et al., 2008;

Woolrich et al., 2001; Zarahn et al., 1997). These properties are crucial marks

of fractal behavior (Beran, 1994), and can be summarized as a single parame-

ter called the fractal dimension.1 The parameter can be effectively measured by

modeling the resting state BOLD signal as a long memory process; the most pop-

ular long memory model for resting state BOLD signals has been the fractional

Gaussian noise (FGN) (Maxim et al., 2005; Meyer, 2003; see section 2.7.2.1 for

its mathematical definition).

Two critical neuroscientific problems relevant to long memory remain un-

solved. First, the physical mechanism of long memory in resting state BOLD

signals has not been well understood. It is a complicated problem since the ori-

gin of the long memory phenomenon is not solitary; the long memory properties

may arise from various factors such as respiration (Birn et al., 2006; Cordes et al.,

2001; Fadel et al., 2004; Peng et al., 2002), cardiovascular activity (Cordes et al.,

2001; Peng et al., 1995; Schmitt & Ivanov, 2007; West et al., 1999; Yamamoto

et al., 1995), system noise from instruments as well as neuronal activities (Al-

legrini et al., 2009; Mazzoni et al., 2007; Teich, 1989; Teich et al., 1997). The

diversity of fractal origins makes it difficult to figure out the mechanism of long

memory. Second, the relationship between long memory and functional connec-

tivity has not been clarified either theoretically or empirically. Recent studies

have suggested indirect evidences supporting that the fractal behavior may be

associated with neurophysiological activities. As an example, it has been ob-

1The fractal parameter can be represented in terms of Hausdorf dimension, Hurst exponent,
and memory parameter. On the other hand, a single parameter is sometimes not enough to
represent the fractal behavior of a time series. In this case, the fractality can be described by a
spectrum of exponents called the singularity spectrum. Such a process is called the multifractal
process (Riedi, 1999).

2



1. Introduction

served that resting state BOLD signals have a tendency to have long memory in

gray matter composed of neuronal cell bodies rather than in either white matter

or cerebrospinal fluid (CSF) regions (Wink et al., 2008). However, this observa-

tion gives us no implication about functional interaction between remote brain

regions. Indeed, two approaches to LFF, the long memory analysis and the func-

tional connectivity analysis, have been separately developed so far.

The broad goals of this study are not only to provide theoretical solutions

for these problems by formulating a theoretical model of long memory in resting

state fMRI through a reasonable hypothesis of its physical mechanism, but also to

suggest advanced techniques for analyzing resting state functional connectivity

on the basis of the long memory model of resting state BOLD signals. The

model would allow figuring out not only the association between long memory

and its underlying physical mechanism but also the inherent implication of fractal

behavior on functional connectivity among endogenous brain activities.

The most robust clues for solving these problems can be found from the recent

studies on long memory in cerebral hemodynamic activities. It was found that the

spontaneous fluctuation pattern of cerebral blood volume and flow also tends to

exhibit long memory (Eke et al., 2006; Herman et al., 2009; Latka & Latka, 2003;

Latka et al., 2005; West et al., 2003; Zhang et al., 2000). A BOLD signal directly

reflects the temporal changes in cerebrovascular volume and flow activities, and

it has been admittedly supposed that the cerebrovascular activities are indirectly

correlated with neuronal activities (Buxton, 2002). In other words, in fMRI the

neuronal information is mediated by cerebral hemodynamics and transformed

into a BOLD signal. In this reason, a BOLD signal taken at evoked state has

been usually modeled as either the linear convolution of neuronal activities with

hemodynamic response function (HRF) or a set of nonlinear differential equations

describing the hemodynamic mechanism linking a BOLD signal to the underlying

neuronal activity (see section 2.1). Hence, it is natural to assume that the cerebral

hemodynamics has the strongest effect on long memory phenomenon of resting

state BOLD signals among all fractal sources. These collective empirical studies

lead us to consider ascribing the fractal behavior of resting state BOLD signals

to cerebral hemodynamics.

Motivated by these clues, a long memory model of hemodynamic response to

3



1. Introduction

spontaneous neuronal activity is proposed in Chapter 3 to describe the mecha-

nism of fractal behavior driven by hemodynamic activities as well as the influence

of fractal behavior on functional connectivity. The primary ideas of this hemody-

namic model include generalizing the conventional HRF which has been applied

to evoked state, and finding the hemodynamic condition that gives rise to frac-

tal behavior in resting state BOLD signals. One merit of building an extended

hemodynamic model to describe the long memory phenomenon is that it can act

as a theoretical basis to figure out the impacts of hemodynamic fractal behavior

on the relationship between neuronal activities and BOLD signals.

This extended model of hemodynamic response provides important inferences

on resting state fMRI that have been unknown so far. First, the shape of impulse

hemodynamic response is influenced by the history of past neuronal activities.

In other words, the shape of HRF may dynamically alter according to neuronal

states, which results in the considerable difference of HRF between resting state

and evoked state. This property of hemodynamic response is named the history

dependent excitability (HDE). Second, the impact of nonlinearity in BOLD sig-

nals on long memory properties is negligible. This property can be effectively

inferred through the nonlinear extension of the linear long memory model based

on Volterra series expansion. Third, the fractionally integrated (FI) process can

be considered as a novel statistical model of resting state BOLD signals since it

is more suited for the hemodynamic mechanism of long memory than the FGN

process. This idea is intuitively reasonable since the FI process model encom-

passes a wide range of brain activities while the FGN model is limited to specify

the complexity of neuronal activities controlled by numerous hidden parameters.

Lastly, the heterogeneous fractal behaviors between brain regions result in the

connectivity distortion - the discrepancy of both undirectional and directional

connectivity between resting state BOLD signals and the corresponding neuronal

activities. In this sense, the fractal behavior may be viewed as a non-neuronal

hindrance to functional connectivity analyses since it widens the gap of statisti-

cal properties in connectivity between resting state BOLD signals and neuronal

activities.

Based on the proposed model of hemodynamic response, a new class of fractal-

based techniques for analyzing resting state functional connectivity has been de-
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veloped (see Chapter 4). The techniques are summarized as the following three

terms. First, a novel notion of resting state functional connectivity, called the

nonfractal connectivity , was suggested to correct the fractal-driven connectivity

distortion expected by the proposed hemodynamic model. The basic idea under-

lying the nonfractal connectivity is to split a resting state BOLD signal into two

parts - fractal and nonfractal components on the basis of the FI process model.

The nonfractal connectivity is defined as the correlation of nonfractal components

whose statistical properties are independent from fractal behaviors. The nonfrac-

tal connectivity may still be interrupted by non-neuronal physiological factors,

but at least it is less affected by fractal behaviors than Pearson correlation is

affected. The concept of nonfractal connectivity is comparable to fractal connec-

tivity which is defined as the asymptotic value of wavelet correlations over low

frequency scales (Achard et al., 2008). The theoretical relevance of nonfractal

connectivity to fractal connectivity was studied. Second, a variety of wavelet-

based methods were developed as estimators of both nonfractal connectivity and

fractal connectivity; the wavelet transform is suitable to deal with long memory

since it effectively decomposes energy of a long memory process over frequency

ranges. Third, a multivariate wavelet-based estimator of memory parameters was

developed to reduce the deterioration of estimation performance in the presence

of additive noises. It was proved, through simulation studies, that the multivari-

ate estimator is more resilient to additive noises than other univariate estimators

are. This robust estimator of memory parameters is instrumental in obtaining

more precise estimates of nonfractal connectivity and fractal connectivity since

the connectivity estimator requires estimating memory parameters beforehand.

These fractal-based analysis techniques were tested for the analyses of both

human and animal fMRI data taken at rest in order to verify their usefulness

in neuroscientific and medical applications (see Chapter 5). The human brain

studies focused on the comparison of functional connectivity between depressive

patients and healthy subjects while the rat brain studies focused on observing

the temporal evolution in functional connectivity between pre-stimulation rest-

ing state and post-stimulation resting state. The experimental results show that

both nonfractal connectivity and fractal connectivity are useful to discover the

between-group difference and intrinsic patterns in statistical properties of a func-
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tional brain network.

This paper is organized as follows. Chapter 2 contains the background theo-

ries underlying this thesis. It includes hemodynamic models, neural field model,

functional connectivity and information flow, graph theoretical metrics, wavelet

theory, and long memory process models. Chapter 3 introduces the long mem-

ory model of hemodynamic response along with its theoretical inferences on the

relation of long memory on functional connectivity. In Chapter 4, wavelet-based

estimators of nonfractal connectivity and fractal connectivity are proposed, and

their performance is evaluated through simulation studies. Also, a multivariate

wavelet-based estimator of memory parameter is introduced. Chapter 5 intro-

duces the applications of fractal-based connectivity analyses on both human and

animal brains. In Chapter 6, all results are summarized and discussed with ad-

vanced issues and future works.
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Chapter 2

Background

2.1 Hemondynamic models

this section introduces two major hemodynamic models that describe the cou-

pling of neuronal activities with BOLD signals: one is a linear convolution model

called the hemodynamic response function (HRF), and the other is the Balloon-

Windkessel model that consists of hemodynamic state equations related to blood

flow, blood volume, and deoxyhemoglobin level.

2.1.1 Hemodynamic response function

A BOLD response to a single stimulation can be typically modeled as the linear

convolution of neuronal activity with the hemodynamic response function (HRF).

It has been shown that the impulse BOLD response has different shape according

to brain regions and subjects. This variability can be effectively expressed in

terms of the HRF. In the general linear model (GLM) of fMRI, a BOLD signal

x(t) is represented by

y(t) = X(t)β + ε(t) (2.1)

where β is a vector of parameters, X(t) is a design matrix which represents the

predicted BOLD response to neuronal activity u(t), and ε(t) is a white Gaussian

noise with variance σ2 (Friston et al., 1994). The predicted BOLD signal x(t) is

primarily regarded as an output of the nonlinear cerebral hemodynamic system.
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2. Background

One simplified assumption is that the hemodynamic system can be approximated

as a linear time-invariant (LTI) system. In this case, X(t) is described as the

linear convolution of neuronal activity u(t) with HRF g(t) by

x(t) =
∞∑
τ=0

g(τ)u(t− τ). (2.2)

In the classical HRF model, g(t) can be given as the combination of two Gamma

functions

g(e)(t) =

(
t

s1

)r1
e−(t−s1)/b1 − c

(
t

s2

)r2
e−(t−s2)/b2 (2.3)

where {s1, s2, r1, r2, b1, b2} is a set of constants that determines the form of HRF

curve (Henson & Friston, 2006). This HRF can be approximately viewed as a low

pass filter (LPF) as shown in Figure 3.3. One important consideration regarding

the HRF is that it does not reflect nonlinearity of hemodynamic system. The

HRF can be generalized to allow nonlinearity through the Volterra series expan-

sion. The nonlinear representation of hemodynamic response will be discussed in

Section 3.4.

2.1.2 Biophysical model

The hemodynamic response function has been widely used to regress a task-

activated BOLD signal with neuronal activity. On the other hand, the other

parsimonious model, called the Balloon-Windkessel model, can be considered

(Buxton et al., 1998; Mandeville et al., 1999). While the Volterra series rep-

resentation of nonlinear dynamics is model-independent, the model describes a

nonlinear hemodynamic system with intrinsic variables such as deoxyhemoglobin

content, blood flow (CBF), and blood volume (CBV). It describes the nonlinear

dynamics of blood oxygenation and volume which directly affect BOLD signals

in fMRI. In this model, the evolution of blood volume and deoxyhemoglobin con-

tent is dependent on blood flow. Suppose that the CBF is a linear transform of

neuronal activity even though its mechanism has not been perfectly understood.

Then, the Balloon model can be combined with neurovascular state equations

that represent the change in regional cerebral blood flow (rCBF) linearly coupled

8



2. Background

with neuronal activity (Buxton et al., 2004; Friston et al., 2000; Mechelli et al.,

2001). Finally, the hemodynamic model consists of the Balloon model and the

neurovascular state equation.

Let un be a discrete time function of neuronal activity u(t) measured at time

t = nτ where 0 ≤ n ≤ N and τ denotes the sampling period; that is, un = u(nτ).

The corresponding BOLD signal change relative to resting signal is taken by

yn ≈ V0

[
k1 (1− qn) + k2

(
1− qn

vn

)
+ k3 (1− vn)

]
(2.4)

where q(t) and v(t) denote venous blood volume and total deoxyhemoglobin con-

tent, V0 is the resting blood volume, and k1, k2, k3 are coefficients (Friston et al.,

2000). Let the discrete derivative of yn be denoted by Dτyn := (yn − yn−1)/τ .

Then, the hemodynamic state is fully described by the following nonlinear dif-

ferential equations with respect to vasodilatory signal (s), blood inflow (f) along

with v and q.

Dτsn+1 = εxn − κsn − γ (fn − 1) (2.5)

Dτfn+1 = sn (2.6)

τ0Dτvn+1 = fn − v1/α
n (2.7)

τ0Dτqn+1 = fn
1− (1− E0)1/fn

E0

− qnv1/α−1
n (2.8)

In these equations, ε, κ = 1/τs, γ = 1/τf , τ0, α, and E0 denote the neuronal effi-

cacy, signal decay rate, autoregulation rate, transit time, stiffness parameter, and

resting oxygen extraction respectively (Friston et al., 2000). The seven intrinsic

parameters p = {ε, τs, τf , τ0, α, E0, V0} determine the properties of hemodynamic

response. While the equations (2.7) and (2.8) constitute the classical Balloon

model, (2.5) and (2.6) compose of the neurovascular state equations that can be

reduced to

Dτsn+1 = −κsn − τγ
n−1∑
j=1

sn−j + (γ + εxn). (2.9)
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2. Background

2.2 Large-scale neuronal dynamics

It is instrumental to understand the dynamics of endogenous neuronal process-

ing underlying resting state BOLD signals. Since the fMRI is a macroscopic

noninvasive measurement of brain activity, the BOLD signals would reflect the

activity of neuronal population. However, it is difficult to figure out the dynam-

ics of neuronal population since its space is high dimensional. The complexity of

population activity can be reduced by considering the probabilistic evolution of

representative variables such as the mean firing rate. Modeling the neuronal pop-

ulation is beneficial to figure out the properties of functional interaction among

neuronal populations hidden behind the corresponding BOLD signals even though

the exact relationship between neural activity and BOLD signal is still unclear.

In this section, both a simple model for a single neuron and a neuronal population

model, called the stochastic neural field model, is briefly introduced.

Single neuron model

The most representative spiking model for a single neuron is the Hodgkin-Huxley

model (Hodgkin & Huxley, 1952). Since it is computationally too expensive to be

simulated, Izhikevich (2003) suggested a two-dimensional model of spiking neu-

rons based on the bifurcation theories. This model is described by two ordinary

differential equations

dv

dt
= 0.04v2 + 5v + 140− u + I (2.10)

du

dt
= a(bv − u) (2.11)

with the auxiliary after-spike resetting

if vi ≥ 30mV, then

{
vi ← c

ui ← ui + d
(2.12)

where v and u represent respectively the membrane potentials of neurons and

membrane recovery variables related to ionic currents. All variables are listed in

the table 2.1.
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2. Background

Table 2.1: Parameters of the Izhikevich’s neuronal model.

Parameter Description

vi Membrane potential of the ith neuron
ui Membrane recovery variable of the ith neuron
I Ion current
Iin Random thalamic input
Isync Sum of inputs from fired neighbors
g Maximum synaptic current
a Time scale of u
b Sensitivity of u to the subthreshold fluctuation of v
c After-spike reset value of v
d After-spike reset value of u

The synaptic current I is the combination of random thalamic input and

internal inputs from neighbors; i.e.,

I = Iin + Isync. (2.13)

The thalamic input Iin is activated in a randomly-chosen neuron at each time

point, and Isync of the i-th neuron is computed by

Isync(i) = g
n∑
j=1

si,j1vj≥30 (2.14)

where g is the maximum synaptic strength, and si,j is the binary connection

between neuron i and j which is defined in the structural connectivity matrix S.

An example of simulated neuronal spike trains are shown in Fig. 2.1.

The maximum synaptic strength g is related to the strength of influence of a

neuron on connected neighbor neurons; as g increases, a neuron is more affected

by other neurons from (2.14), and spike trains of a neuron are more synchronized

with connected neighbors. On the other hand, the thalamic input Iin is related to

the frequency of spikes. The increase in the thalamic input results in the increase

of frequency of spike trains.
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2. Background

Figure 2.1: The membrane potentials of five neurons simulated from the Izhikevich’s
model.

Dynamic causal modeling

A simple way of dealing with neuronal population activities is to exploit dynamic

causal modeling (DCM) (Friston et al., 2003; Stephan et al., 2008). The DCM

describes how neuronal populations dynamically interact with each other by using

a bilinear approximation. Let us consider a brain network consisting of N regions

where x(t) := [x1(t), · · · , xN(t)]T denote neuronal population activity states at a

time t. x(t) is primarily given based on dynamic causal modelling (DCM) by

ẋ(t) := F (x(t),u(t), θc) (2.15)

where F is a nonlinear function, u(t) := [u1(t), · · · , uM(t)]T is a set of M inputs,

and θc denotes the coupling parameters. This model can be approximated by a

bilinear form

ẋ(t) ≈

(
A +

M∑
j=1

uj(t)Bj

)
x(t) + Cu(t) (2.16)

where A describes the structural connectivity matrix, the matrix Bj represents

the indirect variation in coupling triggered by the jth input, and the matrix C

substantiates the direct impact of inputs on neuronal dynamics. The param-

eter θc = {A,B1, · · · ,BM ,C} fully describes functional dynamics of neuronal

population activities in a given network.

The model was primarily built to describe effective connectivity of neuronal
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activities in evoked state of the brain where external inputs lead to changes in

neuronal dynamics. On the other hand, the resting state neuronal activities

no longer depend on external stimulations; instead, they are governed by self-

imposed sources of the brain. Thus, u(t) is regarded as intrinsic inputs in resting

state. Notice that A is homogeneous both in evoked state and in resting state,

but Bj and C in resting state may not be identical with those of evoked state.

Even though the coupling parameters in resting state are unknown due to its

complexity, it is valuable to simplify the model of resting state neuronal activi-

ties since it will enable us to figure out the relationship between structural and

functional connectivity. First, it can be assumed that each region has its own

spontaneous input, and is not influenced by other intrinsic inputs; it results in

N = M , Bj = 0 and C = I. Second, the intrinsic input uj(t) in the jth region can

be modeled as a Gaussian process. As a result, we obtain a first-order differential

model of resting state neuronal activities as follows

ẋ(t) ≈ Ax(t) + u(t). (2.17)

This model produces a sequence of neuronal activities whose rate exhibits Gaus-

sian distribution. According to the Langevin equation (see Appendix A.1), the

increment process of x(t) is approximately a multivariate Brownian motion. The

spectral density of x(t) is given by

X(f) =
(
|A + ifI|2

)−1
U(f). (2.18)

Neural field theory

The neural field theory builds a mathematical model for populations of neurons

and describes the stochastic properties of their synaptic or firing rate activity

(Amari, 1975, 1977; Jirsa & Haken, 1996, 1997; Nunez, 1974; Wilson & Cowan,

1972, 1973). Therefore, it is more biophysically plaugible than the DCM (Dau-

nizeau et al., 2011). Here, the neural field model is reviewed by focusing on

studies by Bressloff (2009).

Let us consider a brain network consisting of N homogeneous populations

where all neurons in a population are synaptically connected each other. Let
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nj(t) denote the number of active neurons in population j at time t. The state

of population activities in the brain network is specified by x(t) = [xj(t)]
T
j=1,··· ,N

where xj(t) = nj(t)/Mj where Mj denotes the number of neurons in population

j. The neuronal activity of one population is influenced by other populations via

synaptic currents. Let Ij(t) denote total synaptic current flowing into the jth

population from other populations. Then, it satisfies

Ij(t) =
N∑
i=1

Wj,i

∫ ∞
0

ε(τ)xi(t− τ)dτ + Iextj (t) (2.19)

where Wj,i ∈ R denotes a (directional) connectivity coefficient from the ith neuron

to jth neuron, Iextj (t) is an external input to population j, and ε(t) denotes the

postsynaptic response function given by ε(t) = −τ−1
ε e−t/τε . We set Iextj (t) = 0

since the brain network is supposed to be in resting state which has no external

inputs. The brain network is said to have the (weighted) structural connectivity

W := [Wi,j]i,j=1,··· ,N .

Let f denote a gain function between population activity and synaptic current,

xj(t) = f(Ij(t)), and suppose that f is a positive and monotonically increasing

function. Provided that τε is large, the equation (2.19) is equivalent to the fol-

lowing equation (Refer the appendix A.1 for proofs.)

τc
dxj(t)

dt
= −xj(t) + f

(
N∑
i=1

Wj,ixi(t)

)
. (2.20)

Since this equation does not describe stochastic dynamics of population activity,

we consider the probability distribution of population activities. Let P (n, t) be

the time-dependent probability distribution of n(t) := [ni(t)]
T
i=1,··· ,N . nj(t) can be

regarded as a stochastic one-step process as a special type of Markov processes.

Hence, the probability distribution P (n, t) evolves according to the following

nonlinar master equation

τc
∂P (n, t)

∂t
=

N∑
i=1

[
(E+

i − 1)
(
T−i (n)P (n, t)

)
+(E−i − 1)

(
T+
i (n)P (n, t)

)]
(2.21)
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where E±f(ni) = f(ni±1), and T±i (n) denote the transition rates where T−i (n) =

αini and T+
i (n) = Mif

(∑N
j=1 Wi,jnj/Mj

)
. (Refer to Appendix A.2 for details.)

Let us define a fluctuation process ξi(t) of population i where ξ2
i (t)

.
= var(xi(t))/Mi.

In this case, P (x, t) can be described as a function of ξ, P (x, t) := Π (ξ, t).

Through Kramer-Moyal expansion of the master equation (2.21) and its linear

approximation, we obtain the linear multivariate Fokker-Planck equation given

by

τc
∂Π (ξ, t)

∂t
= −

N∑
i=1

N∑
k=1

Ai,k (x̄)
∂

∂ξi
[ξkΠ (ξ, t)]

+
1

2

N∑
i=1

Bi (x̄)
∂2

∂ξ2
i

Π (ξ, t) (2.22)

where x̄(t) := E [x(t)]. (Refer to the appendix A.3 for proofs.) The drift function

Ai,k and the diffusion function Bi are given by

Ai,k (x̄) :=
∂

∂x̄k
(Ωi,1 (x̄)− Ωi,−1 (x̄)) , (2.23)

Bi (x̄) := Ωi,1 (x̄) + Ωi,−1 (x̄) (2.24)

where Ωi,−1 (x̄) = αix̄i and Ωi,1 (x̄) = f
(∑N

j=1Wi,jx̄j

)
denote transition rates.

Let Ξi,j(t, τ) := cov (ξi(t), ξj(t+ τ)) be the cross-covariance function of ξi(t)

and ξj(t). The first-order differential equation for Ξ0(t) := Ξi,j(t, 0) is obtained

from the equation (2.22) as

τc
∂Ξ0(t)

∂t
= τc

∫ ∞
−∞

ξ(t)T ξ(t)
∂Π (ξ, t)

∂t
dξ

≈ A(x̄)Ξ0(t) + Ξ0(t)AT (x̄) + B(x̄) (2.25)

where A := [Ai,j]i,j=1,··· ,N and B = diag (B1, · · · , BN). Suppose that x(t) is in

steady state; in other words, x̄(t) is constant over time and ξ(t) is a stationary

process. In this case, Ξ0(t) is also invariable and satisfies the following condition

Ξ0(t) = Ξ0 = A−1(x̄)B(x̄)/2. (2.26)
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Fractal-rate neuronal activities

Previous studies have turned out that neuronal spike trains in some area of the

brain tend to exhibit long-range autocorrelation and self-similarity which results

in the 1/f -type power spectrum. Such a phenomenon can be represented by

fratals. A sequence of fractal-rate action potentials can be modelled as a fractal-

shot-noise-driven point process (FSNDP) which is a type of doubly stochastic

point process driven by fractal shot noise defined by φi(t; βi) := bt−βi with a

constant b (Lowen & Teich, 1991, 2005).

2.3 Connectivity and information flow

2.3.1 Functional connectivity

Pearson correlation Let x1(t) and x2(t) be stochastic processes where E[x1(t)] =

µ1 and E[x2(t)] = µ2. Then, cov[x1(t), x2(t)], the covariance of x1(t) and x2(t) is

given by (2.63). Then, the correlation of x1(t) and x2(t) is defined by

ρ1,2
.
=

cov[x1(t), x2(t)]

(var[x1(t)] · var[x1(t)])1/2
(2.27)

Partial correlation Pearson correlation provides information on similarity be-

tween two time series over scales, but these measures do not effectively eliminate

the influences from other time series. On the other hand, partial correlation mea-

sures the conditional relationship between two random variables while controlling

a set of other random variables; in other words, the conditional independence of

x1(t) and x2(t) given y(t) = [y1, ..., yp] (Baba et al., 2004). Let us define the

partial covariance matrix for X = (X1, X2) as follows

ΣXX·Y =

[
σ11·Y σ12·Y

σ21·Y σ22·Y

]
(2.28)
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such that ΣXX·Y = ΣXX − ΣXYΣ−1
YYΣYX where ΣXX is 2 × 2, ΣXY is 2 × p,

ΣYY is p× p covariance matrix. Then, the partial correlation is defined as

ρ12·Y =
σ12·Y√

σ11·Yσ22·Y
. (2.29)

2.3.2 Information flow

Remarkable advances have been made in the field of information theory, and also

applied to capture the information flow in the brain network (Hinrichs et al.,

2006, 2008). In this section, some useful information theoretical methodologies

such as mutual information and transfer entropy are introduced. Let xt and yt

be discrete random variable with probability distributions p(xt) = fX(xt) and

p(yt) = fY (yt). the Shannon entropy is defined as

H(xt) =
∑
xt∈A

p(xt) log
1

p(xt)
(2.30)

where A is the state space of xt (Shannon & Weaver, 1949). Let q(xt) be a prior

estimate of p(xt). then, the error of using q(xt) comparing with the true p(xt)

can be measured by the Kullback entropy

Kp|q(xt) =
∑
xt∈A

p(xt) log
p(xt)

q(xt)
(2.31)

(Jumarie, 1990; Kullback, 1968). Let us consider a bivariate process consisting

of xt and yt. Suppose that xt and yt are statistically independent, and q(xt, yt) =

p(xt)p(yt). Then, the mutual information between xt and yt can be defined from

(2.31) as follows

M(xt, yt) =
∑
xt∈A

∑
yt∈A

p(xt, yt) log
p(xt, yt)

p(xt)p(yt)
(2.32)

(Cover & Thomas, 2006; Jumarie, 1990). It can be re-expressed in terms of the

Shannon entropy in (2.30) by

M(xt, yt) = H(xt) +H(yt)−H(xt, yt). (2.33)
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In (2.33), the mutual information is symmetric and undirectional. Let x
(k)
t be

a set of k past variables such that x
(k)
t = {xt, · · · , xt−k+1}. Suppose that the

future state xt1+1 and yt2+1 is dependent on the k past states x
(k)
t1 and y

(l)
t2 . The

conditional mutual information can be given by(
xt1+1, yt2+1|x(k)

t1 ,y
(l)
t2

)
=

∑
xt+1∈A

∑
x
(k)
t1
∈Ak

∑
yt+1∈A

∑
y
(l)
t2
∈Ak

p(xt1+1,x
(k)
t1 , yt2+1,y

(l)
t2 )

log
p
(
xt1+1, yt2+1|x(k)

t1 ,y
(l)
t2

)
p
(
xt1+1|x(k)

t1

)
p
(
yt2+1|y(l)

t2

) (2.34)

(Cover & Thomas, 2006; Jumarie, 1990). Howver, it does not provide any

inference on directional information flow. Let x
(k)
t be a set of k past vari-

ables such that x
(k)
t = {xt, · · · , xt−k+1}. Suppose that the future state xt+1

is dependent just on the k past states x
(k)
t and independent of y

(l)
t . Then,

p(xt1+1|x(k)
t1 ,y

(l)
t2 ) = p(xt1+1|x(k)

t1 ). Then, the transfer entropy can be defined as

follows

T (Xt1+1|x(k)
t1 ,y

(l)
t2 ) =

∑
xt+1∈A

∑
x
(k)
t1
∈Ak

∑
y
(l)
t2
∈Ak

p(xt1+1,x
(k)
t1 ,y

(l)
t2 ) log

p
(
xt1+1, |x(k)

t1 ,y
(l)
t2

)
p
(
xt1+1|x(k)

t1

) .

(2.35)

The transfer entropy in (2.35) is not symmetric and describes the directionaly

transformation of information (Kaiser & Schreiber, 2002; Schreiber, 2000).

2.4 Graph theory

While the neuronal population model discussed in Section 2.2 is the best tool to

analyze temporal evolution of dynamic states, the graph theory is an effective

approach to understand the topology of complex brain networks. The functional

network of the brain can be modeled as directed or undirected graphs which

consist of nodes and edges. Note that a brain network tends to have small-

world properties, that is, high clustering with a short path length (Bullmore

et al., 2009; Bullmore & Sporns, 2009; Sporns, 2011). It has been shown that
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a resting state network also exhibits small-worldness (Achard et al., 2006). In

this section, a basic concept and metrics, which are necessary to analyze a brain

network, is introduced. For a generic overview of graph theoretical analysis, refer

to (Bullmore & Sporns, 2009).

Graph representation A network is defined by vertices and edges. In a net-

work G = (V,E) where V and E denote vertices and edges respectively, let

Ne be the number of all possible edges, and ne be the number of edges in the

network G. The density of connections in the random network is defined by

D(G) = nv/Nv. If D(G) = 1, the network is said to be fully connected while if

D(G) < 1 the network is said to be partly connected. A random network is sup-

posed to have spatially homogeneous density of connections. Unlike the random

network, a modular small-world network consists of in-module connections and

between-module connections (sometimes called shortcuts). Each module can be

fully or partly connected in a similar way with random networks.

Two types of network topology are illustrated in Figure 2.2; one is a random

network with the specified number of nodes and density of connections, and the

other is a modular small-world network that contains several partly-connected

(or fully-connected) modules with randomly distributed between-module connec-

tions. The network structure can be fully described by a structural connectivity

matrix.

Network measures The degree of node i is defined as the number of other

nodes connected to the node as follows

ki =
∑
j∈V

eij (2.36)

where eij ∈ {0, 1} denotes the binary edge connecting between node i and node

j. If eij ∈ R, ki is called the weighted degree of node i or the node strength. The

shortest path length between node i and node j is the minimum number of edges
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(a) (b)

(c) (d)

Figure 2.2: Illustrations of network topologies and structural connectivity matrices;
(a) a modular small-world network which consists of partly-connected modules, and
(b) a randomly distributed network. (c) and (d) are the visualizations of network
topology corresponding to these networks.

passing to travel from node i to node j.

dij =
∑

euv∈Ei↔j

euv (2.37)

where Ei↔j denotes the set of all edges included in the shortest path between

node i and node j. Especially, the characteristic path length of the network G

can be defined as a global metric:

L
.
=

1

nv

∑
i∈V

Li =
1

nv(nv − 1)

∑
i∈V

∑
j∈V,j 6=i

dij (2.38)
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where Li is the mean shortest path length between node i and other nodes (Watts

& Strogatz, 1998). The global efficiency of the network G is regarded as the

average of the inverse (shortest) path length matrix as follows:

E =
1

nv

∑
i∈V

Ei =
1

nv(nv − 1)

∑
i∈V

∑
j∈V,j 6=i

d−1
ij (2.39)

where Ei denotes the efficiency of the individual node i. A network with full

edges has the maximum of global efficiency while a network with no edge has

the minimum of global efficiency (Latora & Marchiori, 2001). Therefore, either

low characteristic path length or high efficiency can be interpreted that nodes

interact fast through short routes. The clustering coefficient of the network G

(Watts & Strogatz, 1998) is a metric to quantifies the density of edges connecting

neighbors normalized by the number of all possible connections as defined by

C =
1

nv

∑
i∈V

Ci =
1

nv

∑
i∈V

2ti
ki(ki − 1)

(2.40)

where Ci is the clustering coefficient of node i, and ti is the number of triangles

around the node i

ti
.
=

1

2

∑
j,h∈V

eijeihejh. (2.41)

Let ρhj be the number of all shortest paths between node h and node j, and ρhj(i)

be the number of shortest paths between node h and node j that go through node

i. Then, the betweenness centrality of node i is defined as follows

bi =
1

(nv − 1)(nv − 2)

∑
h,j∈V

ρhj(i)

ρhj
. (2.42)

Hence, the betweenness centrality of a node means the density of shortest paths

passing through the node (Freeman, 1978). A node with high betweenness cen-

trality is expected to act as a hub controlling information flow. The participation

coefficient of node i reflects the degree of contribution to interconnection between
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modules (Newman, 2004), and is given by

yi
.
= 1−

∑
m∈M

(
ki(m)

ki

)2

(2.43)

where M denotes the set of all modules, and ki(m) is the number of edges between

node i and all other nodes included in module m (Guimera & Amaral, 2005). A

node with low participation coefficient tends to facilitate modular segregation

while a node with high participation coefficient tends to promote interaction

between modules. Lastly, how these network metrics are helpful to assess the

topology of a network. For instance, a small-world network is defined as a network

with high clustering and short path length similar with a random network (Watts

& Strogatz, 1998). To measure how a network is close to the small-world topology,

the small-worldness of a network G can be defined as

S =
C/Crand

L/Lrand

(2.44)

where Crand and Lrand denote the clustering coefficient and characteristic path

length of a random network (Humphries & Gurney, 2008). Among the above

metrics, degree, shortest path length, betweenness centrality, and participation

coefficient can be classified as local metrics. On the other hand, the charac-

teristic path length, global efficiency, clustering coefficient, small-worldness can

be regarded as global metrics. For more network metrics, refer to (Rubinov &

Sporns, 2010; Sporns, 2011).

2.5 Wavelet-based analysis

The wavelet enables the variance of a time series to be decomposed over several

scales. Especially, the wavelet is the natural tool to analyze the fractal property of

a long memory process; in other words, it is appropriate to reveal scale-invariance

(Bullmore et al., 2004; Vidakovic, 2009; Wornell, 1996, 1993). Therefore, the

wavelets are useful to estimate the fractal parameter of a long memory process.

this section provides a basic description of wavelet theories.
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Definition 1 (Wavelet and scaling filters). Let a sequence {h(l) : l = 0, · · · , L− 1}
satisfy the following condition

a) h(l) 6= 0, h(L− 1) 6= 0

b)
L−1∑
l=0

h(l) = 0,
L−1∑
l=0

h(l)2 = 1

c)
L−1∑
l=0

h(l)h(l + 2n) =
∞∑

l=−∞

h(l)h(l + 2n) = 0, ∀n ∈ Z.

Also, {g(l)} is a sequence satisfying

g(l) = (−1)l+1h(L− 1− l). (2.45)

Then, {h(l)} is called the wavelet filter of length L, and {g(l)} the scaling filter

corresponding to {h(l)}.

Definition 2 (Wavelet and scaling coefficients). Let hj(l) and gj(l) be the dilated

filters of length 2j−1(L− 1) + 1 defined by

hj(l) =

h(l/2j−1) if l/2j−1 ∈ {0, · · · , L− 1}

0 otherwise
, ∀j ∈ N. (2.46)

For example, {h2(l)} = {h(0), 0, h(1), · · · , 0, h(L− 1)}. gj(l) is also defined in

the same manner. Let x(t) be a real-valued discrete time process. Then, the jth

level wavelet coefficients Wj(t) and scaling coefficients Vj(t) of x(t) are defined

by

Wj(t) =

Lj−1∑
l=0

hj(l)x
(
2j(t+ 1)− 1− l

)
, (2.47)

Vj(t) =

Lj−1∑
l=0

gj(l)x
(
2j(t+ 1)− 1− l

)
, (2.48)

where Lj = (2j − 1)(L− 1) + 1.

Remark 1. Let λN
.
= 1/ (2∆t) for the sample interval ∆t denotes the Nyquist

frequency. The wavelet filter hj(l) can be regarded as the approximate band-pass
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filter with pass band |λ| ≤ λN/2
j+1 while the scaling filter gj(l) can be regarded

as the low-pass filter with pass band λN/2
j+1 ≤ |λ| ≤ λN/2

j.

Definition 3 (Transfer function and squared gain function). Let H(λ) be given

by

H(λ)
.
=

∞∑
l=−∞

h(l)e−i2πλl. (2.49)

Then, H(λ) is called the transfer function of {h(l)}, and the squared gain function

of {h(l)} is defined by

H(λ)
.
= |H(λ)|2 . (2.50)

G(λ) and G(λ) also denote the transfer function and squared gain function of

{g(l)}.

Lemma 1 (Between-scale wavelet covariance). Let x
(L)
1 (t) and x

(L)
2 (t) be weakly

stationary stochastic processes. Let W
(1)
j (t) and W

(2)
j (t) be the jth level wavelet

coefficients for x
(L)
1 (t) and x

(L)
2 (t) respectively based on an wavelet filter {h(l)}

with transfer function H(λ). Then,

cov
{
W

(1)
j (t),W

(2)
j′ (t′)

}
=

∫ 1/2

−1/2

Hj(λ)H∗j′(λ)f1,2(λ)e
−i2πλ

(
2j(t+1)−2j

′
(t′+1)

)
dλ

(2.51)

where f1,2(λ) is the cross-spectral density of x
(L)
1 (t) and x

(L)
2 (t).
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Proof. From Definition 2 on wavelet coefficients,

cov
{
W

(1)
j (t),W

(2)
j′ (t′)

}
=

Lj−1∑
l=0

Lj′−1∑
l′=0

hj(l)hj′(l
′)cov

{
x

(L)
1

(
2j(t+ 1)− 1− l

)
, x

(L)
2

(
2j(t+ 1)− 1− l

)}

=

Lj−1∑
l=0

Lj′−1∑
l′=0

hj(l)hj′(l
′)

∫ 1/2

−1/2

f1,2(λ)ei2πλ(2j(t+1)−2j
′
(t′+1)+l′−l)dλ

=

∫ 1/2

−1/2

Lj−1∑
l=0

hj(l)e
−i2πλl

L′j−1∑
l′=0

h′j(l
′)e−i2πλl

′

∗

× f1,2(λ)ei2πλ(2j(t+1)−2j
′
(t′+1)+l′−l)dλ

=

∫ 1/2

−1/2

Hj(λ)Hj′(λ)f1,2(λ)ei2πλ(2j(t+1)−2j
′
(t′+1)+l′−l) (2.52)

Corollary 1 (Spectral representation of wavelet covariance). With the same con-

ditions as Lemma 1,

cov
{
W

(1)
j (t),W

(2)
j (t)

}
=

∫ 1/2

−1/2

Hj(λ)f1,2(λ)dλ, (2.53)

where Hj(λ) denotes the squared gain function of {hj(l)}.

Proof. From Lemma 1,

cov
{
W

(1)
j (t),W

(2)
j′ (t′)

}
=

∫ 1/2

−1/2

Hj(λ)H∗j (λ)f1,2(λ)dλ

=

∫ 1/2

−1/2

|Hj(λ)|2 f1,2(λ)dλ (2.54)

The wavelet covariance ν1,2(j)
.
= cov[W

(1)
j (t),W

(2)
j (t)] can be estimated from

wavelet coefficients. Suppose that E[Wj(t)] = 0. Then, the following unbiased
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Figure 2.3: An example of wavelet correlations. The graph shows scale-dependent
correlations between two time series. Dashed lines denote confidential intervals for
the estimated wavelet correlations.

estimator of wavelet variance ν1,2(j) is obtained:

ν̂1,2(j) =
1

nj2j

nj∑
k=1

W
(1)
j (k)W

(2)
j (k), (2.55)

where nj is the number of wavelet coefficients at the j-th scale. Likewise, the

wavelet correlation ρ1,2(j)
.
= cor[W

(1)
j (t),W

(2)
j (t)] between x1(t) and x2(t) at the

j-th scale can be estimated as follows

ρ1,2(j) =
ν1,2(j)

[ν1(j)ν2(j)]1/2
. (2.56)

Unlike Pearson correlation, the wavelet correlation enables us to observe the

distribution of cross-correlation over several octave frequency bands or scales as

illustrated in Figure 2.3. Figure 2.4 illustrates an example of wavelet correlation

matrices in a multivariate long memory process. A higher scale corresponds to a

lower frequency band as discussed in Remark 1.
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Figure 2.4: An example of wavelet correlation in a multivariate long memory process.

2.6 Stochastic processes

A time series can be regarded as a realization of a stochastic process {Xt} -

called a random variable. this section describes elementary theories on stochastic

processes as a preliminary step to study the long memory processes discussed in

Section 2.7.

2.6.1 Univariate random variables

Let X denote an random variable. If X is a discrete RV, the probability of

the event X being x can be expressed as P [X = x]. On the other hand, if X
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is a continuous RV, the probability can be expressed as P [x < X < x+ ∆] =

fX (x) ∆ where fX (·) is the probability density function (PDF) for X and ∆ is

an infinitesimal Percival & Walden (2006). The mean of X is defined as

E {X} =

∫ ∞
−∞

xfX (x) dx. (2.57)

Likewise, the mean of a function h (X) is

E {X} =

∫ ∞
−∞

h (x) fX (x) dx. (2.58)

The variance of X is

var {X} ≡ E
{

(X − E {X})2} =

∫ ∞
−∞

(x− E {X})2 fX (x) dx (2.59)

One of the typical PDF approximation is the Gaussian PDF where

fX (x;µ, σ) =
1√

2πσ2
e−(x−µ)2/(2σ2) (2.60)

where µ and σ are location and scale parameters which satisfy −∞ < x, µ <

∞, σ > 0. It is the same expression as X
d
= N (µ, σ2) which means that X has a

Gaussian PDF with mean µ and variance σ2.

2.6.2 Bivariate Random Variables

Let the joint PDF of random variables X1 and X2 be f1,2 (x1, x2). The marginal

PDFs f1 (·) and f2 (·) can be obtained from the join PDF as follows

f1 (x1) =

∫ ∞
−∞

f1,2 (x1, x2) dx2, f2 (x2) =

∫ ∞
−∞

f1,2 (x1, x2) dx1. (2.61)

Notice that X1 and X2 are independent if f1,2 (x1, x2) = f1 (x1) f2 (x2) for all x1

and x2. The expected value or mean of a function g (X1, X2) is

E {g (X1, X2)} =

∫ ∞
−∞

∫ ∞
−∞

g (x1, x2) f1,2 (x1, x2) dx1dx2. (2.62)
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The covariance of X1 and X2 is

cov {X1, X2} ≡ E {(X1 − µ1) (X2 − µ2)}

=

∫ ∞
−∞

∫ ∞
−∞

(x1 − µ1) (x2 − µ2) f1,2 (x1, x2) dx1dx2 (2.63)

where E {X1} = µ1 and E {X2} = µ2. The sum of two independent RVs X1 and

X2 is identical to the convolution of their PDFs. In other words, if Y1 = X1 and

Y2 = X1 +X2,

fY1 (y1) =

∫ ∞
−∞

fX0 (y0) fX1 (y1 − y0) dy0. (2.64)

Let a multivariate random vector X = [X1, X2, · · · , XN ]T satisfy Y = MX where

M is an M × N matrix. Then, the mean and covariance matrix of Y are given

by

µY = MµX, (2.65)

ΣY = MΣXMT (2.66)

If M is an orthonormal transform, the total variance is preserved as follows

N−1∑
t=0

E
{
Y 2
t

}
=

N−1∑
t=0

E
{
X2
t

}
. (2.67)

2.6.3 Stationary Stochastic Processes

Stationarity The stochastic processX(t) is said to be (second order) stationary

if

1. E [X(t)] = µX for ∀t ∈ Z and

2. cov [X(t), X(t+ τ)] = sτ for all integers ∀t, τ ∈ Z.

In this case, the variance of X(t) is constant over t. The sequence sτ is called

the autocovariance sequence (ACVS). The ACVS can be described as a spectral

density function f(·) (SDF) known as the power spectrum. Suppose that

∞∑
τ=−∞

s2
τ <∞. (2.68)
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Then, the spectral density function (SDF) of X(t) can be defined as the Fourier

transform of sτ as follows

f (λ) = ∆t
∞∑

τ=−∞

sτe
−i2πλτ∆t , |λ| ≤ λN, (2.69)

∫ λN

−λN
f (λ) e−i2πλτ∆tdλ = sτ , (2.70)

where λN = 1/(2∆t) is called the Nyquist frequency . Notice that both SDF and

ACVS are even functions, i.e., f (−λ) = f (λ) and s−τ = sτ . If τ = 0,∫ λN

−λN
f (λ) dλ = s0 = var {X(t)} . (2.71)

It implies that f(·) decomposes the variance with respect to frequency. The

requirements for stationarity are that f (λ) ≥ 0 for all λ, that f (λ) = f (−λ),

and that 0 ≤
∫ λN
−λN

f (λ) dλ <∞.

Linear filtering Consider a linear filter b(t) of width M . The transfer function

of b(t) is defined by

B (λ)
.
=

M−1∑
t=0

b(t)e−i2πλt. (2.72)

Let y(t) be a stochastic process such filtered linearly by b(t) such that

y(t)
.
=

M−1∑
t=0

b(l)X(t− l). (2.73)

Then its SDF is given by

fY (λ) = B (λ) f (λ) , (2.74)

where B (λ) ≡ |B (λ)|2 defines the squared gain function. Since the integral of

the SDF is always equal to the process variance,

var [y(t)] =

∫ 1/2

−1/2

fY (λ) dλ =

∫ 1/2

−1/2

B (λ) f (λ) dλ. (2.75)
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If the integral has a finite value, the filtered series y(t) is also a stationary process.

Autoregressive process A stochastic process x(t) is said to be autoregressive

(AR) of order p if it satisfies

p∑
n=0

anx(t− n) = ε(t) (2.76)

where ε(t is a white Gaussian noise process with mean zero and variance σ2
ε . It

can be re-expressed as

α(B)x(t) = ε(t) (2.77)

where B is the back-shift operator and α(B)
.
= 1 + a1B + · · · + apB

p. Let

α(B) =
∏p

n=1(1− µnB). If |µn| < 1, x(t) is asymptotically stationary (Priestley,

1989) whose SDF is given by

f (λ) =
σ2
ε

|1−
∑p

n=1 ane
−i2πλn|2

, |λ| ≤ 1/2. (2.78)

2.7 Long memory statistics

The long memory phenomenon is the structure of slowly decaying self-similarity.

It has been ubiquitously found in a variety of fields including stock market, hydrol-

ogy, transportation network, and neuroimaging (Ledesma & Liu, 2000; Maxim

et al., 2005; Molz et al., 1997; Willinger et al., 1999). A lot of mathematical

methodologies regarding long memory have been developed since Mandelbrot

suggested the concept of fractal (Cootner et al., 1997; Cox, 1984; Mandelbrot,

1977, 1983). In this section, a basic theory of long memory processes is sum-

marized especially focusing on such long memory models as fractional Brownian

motion (FBM) and fractionally integrated (FI) process. These models will be

exploited as a background theory to investigate the long memory dynamics of

hemodynamic response in Chapter 3. For detailed studies, refer to Beran (1992,

1994); Doukhan et al. (2010, 2002); Embrechts (2001); Lowen & Teich (2005);

Rangarajan & Ding (2003); Robinson (2003).
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2.7.1 Basic concepts

The definition of a stationary process with long memory is described according

to (Beran, 1994).

Definition 4 (Stationary long memory process). Suppose that x(t) is a stationary

process with an SDF f(λ). Then, x(t) is said to be a stationary long memory

process if there exist a real number β and a constant cf satisfying β ∈ (0, 1) and

cf > 0 such that

lim
λ→0

f(λ)

cf |λ|−β
= 1. (2.79)

In other words, a stationary long memory process has the SDF f(λ) such that

f(λ) ≈ cf |λ|−β as λ → 0. The above definition is equivalent to the description

such that there exist α ∈ (0, 1) and cs > 0 which satisfy

lim
τ→∞

sτ
csτ−α

= 1 (2.80)

where sτ is the ACVS of x(t). The equation (2.80) implies that a stationary long

memory process has slowly decaying autocorrelation.

Lots of robust methods have been proposed to estimate the fractal dimension

or memory parameter in a long memory process. These include the Whittle esti-

mator (Beran, 1994), periodogram (Robinson, 1995), Higuchi’s method (Higuchi,

1988), R/S method (Mandelbrot & Taqqu, 1979; Taqqu et al., 1995), detrended

fluctuation analysis (Peng et al., 1994, 1995), wavelet ML estimator Fadili &

Bullmore (2002), and so on.

2.7.2 Long memory models

In this section, two long memory models which have been widely used in neu-

roimaging studies, are introduced: fractional Brownian motion (FBM) and frac-

tionally integrated (FI) process. For example, the fractional Gaussian noise

(FGN), as the increment process of FBM, has been usually exploited as a long

memory model of resting state functional MRI time series which are positively au-

tocorrelated and whose spectral densities follow power-law scaling (Maxim et al.,

2005). The FI process has not been well introduced in the field of neuroscience,
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but it was adopted as a primary model to describe fractal connectivity (Achard

et al., 2008).

2.7.2.1 Fractional Brownian motion

Definition 5 (Vector fractional Brownian motion). Let BH(t) be a n-dimensional

vector Gaussian process that is continuous for all t and satisfies for c > 0

BH(ct) = cHBH(t) (2.81)

where H is a matrix with Hi,j ∈ (0, 1), ∀i, j and

cH =
∞∑
k=0

(log c)k
Hk

k!
, (2.82)

and its increments are stationary. Then, BH(t) is said to be operator self-similar

(o.s.s.) and is called the vector fractional Brownian motion (VFBM) with expo-

nent H.

Lemma 2 (Stochastic integral representation of VFBM). Let BH(t) be a VFBM

with exponent H whose eigenvalues hk satisfies 0 < < (hk) < 1 and < (hk) 6= 1/2

for k = 1, · · · , n. Then, there exist the square matrices A+ and A− such that

x(t) =

∫
R

((
(t− τ)

H−1/2
+ − (−τ)

H−1/2
+

)
A+

+
(

(t− τ)
H−1/2
− − (−τ)

H−1/2
−

)
A−

)
dB(τ) (2.83)

where B(t) is a vector process of independent Brownian motions.

For the proof of Lemma 2, refer to Theorem 3.2 in Didier & Pipiras (2011).

According to Lemma 2,a vector self-similar process can be represented by stochas-

tic integral. Especially, (2.83) implies that the vector fractional Brownian motion

can be regarded as a causal linear transform of a Brownian motion (or a Wiener

process) with a self-similarity kernel characterized by Hurst exponents (Coeur-

jolly et al., 2010). It is difficult to find out the solution of A+ and A−. Instead,

two specific cases have been mainly focused: the causal case (A− = 0) and the
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well-balanced case (A+ = A−). The causal case corresponds to the multivariate

extension of integral representation suggested in Mandelbrot & Van Ness (1968)

while the well-balanced case corresponds to the multifractional Brownian motion

introduced by Stoev & Taqqu (2006).

Lemma 3. Let A+At
+ = (A++

i,j ), A−At
− = (A−−i,j ), A+At

− = (A+−
i,j ), and A−At

+ =

(A−+
i,j ) where A+ =

(
A+
i,j

)
and A− =

(
A−i,j
)

are given in Lemma 2.

(i) The auto-covariance of Xi(t) is

E [Xi(s), Xi(t)] = ci,i |s|2Hi + ci,i |t|2Hi − ci,i |t− s|2Hi (2.84)

where

ci,i =
B(Hi + 1/2, Hi + 1/2)

2 sin(πHi)

(
A++
i,i + A−−i,i − 2 sin(πHi)A

+−
i,i

)
. (2.85)

(ii) If i 6= j and Hi +Hj 6= 1, the cross-covariance of Xi(s) and Xj(t) is

E [Xi(s), Xj(t)] = ci,js |s|Hi+Hj−1 + cj,it |t|Hi+Hj−1

− cj,i(t− s) |t− s|Hi+Hj−1 (2.86)

where

ci,j =
B(Hi + 1/2, Hj + 1/2)

sin(π(Hi +Hj))
×
(
A++
i,j cos(πHi)

+ A−−i,j cos(πHj)− A+−
i,j sin (π(Hi +Hj))

)
(2.87)

(iii) If i 6= j and Hi +Hj = 1, the cross-covariance of Xi(s) and Xj(t) is

E [Xi(s), Xj(t)] = di,j (|s|+ |t| − |s− t|)

+ fi,j (t log |t| − s log |s| − (t− s) log |t− s|) (2.88)
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where

di,j
.
=
B(Hi + 1/2, Hj + 1/2)

2

×
(

sin(πHi) + sin(πHj)

2
(A++

i,j + A−−i,j )− A+−
i,j − A−+

i,j

)
, (2.89)

fi,j
.
=
Hj −Hi

2

(
A++
i,j − A−−i,j

)
(2.90)

The proof of Lemma 3 is provided by Proposition 3.1 in (Lavancier et al.,

2009). The properties of vFBM can be exploited to figure out the theoretical

relationship of Hurst exponents with functional connectivity of the brain (see

Section 3.5).

Let ∆BH(t)
.
= BH(t + 1) − BH(t) be the increments of vector fractional

Brownian motion. In the well-balanced case (A+ = A−), the cross-covariance of

∆BH(t) becomes proportional to that of a fractional Gaussian noise from Lemma

3 as follows

E [∆BH(t)∆BH(t+ τ)] =
σ2
i,j

2

(
|τ − 1|Hi+Hj − 2 |τ |Hi+Hj + |τ + 1|Hi+Hj

)
.

(2.91)

Therefore, the fractional Gaussian noise is considered as a special case of the

increments of fractional Brownian motion.

2.7.2.2 Fractionally integrated process

The fractionally integrated (FI) process is a flexible long memory model which

encompass several classes of long memory such as fractionally integrated noise

(FIN) and ARFIMA(p, d, q) process Granger (1980); Hosking (1981); Moulines

et al. (2007). In this section, both univariate and multivariate FI process models

are introduced.

Univariate model A univariate FI process can be defined according to Shi-

motsu (2007) as follows.

Definition 6 (FI process). Let x(t) be a weakly stationary discrete process of
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length N given by

u(t) = (1−B)d x(t) (2.92)

where d ∈ (−1/2, 1/2), B denotes the back-shift operator, and u(t) (called short

memory) is a stationary process whose spectral density fu (λ) is a non-negative

symmetric function bounded on (−1/2, 1/2) and bounded away from zero at λ =

0. Then, x(t) is called a fractionally integrated process with memory parameter

d or an FI process.

Lemma 4 (Convolution representation of an FI process). Let x(t) be an FI pro-

cess with memory parameter d. Then, x(t) can be represented as the convolution

of u(t) with a long memory (LM) filter gL(t) as follows

x(t) =
∞∑
τ=0

gL(τ)u(t− τ) (2.93)

where

gL(t) :=
dΓ(d+ t)

Γ(d+ 1)Γ(t+ 1)
. (2.94)

Lemma 5 (Spectral density of an FI process). If −1/2 < d < 1/2, the spectral

density of x(t) is given by

S(λ) =
∣∣1− e−iλ∣∣−2d

Su(λ). (2.95)

The fractal behavior is controlled by the memory parameter d. If 0 < d < 1/2,

the process x(t) is said to be a stationary long memory process with memory

parameter d while x(t) is nonstationary if d > 0.5 (Moulines et al., 2007). If

d = 0, the process becomes a white noise.

Multivariate model Definition 6 of the univariate long memory model can be

extended to the multivariate case.

Definition 7 (Multivariate FI process). Consider a weakly stationary q-vector
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process x(t) given by
(1−B)d1 0

. . .

0 (1−B)dq




x1(t)
...

xq(t)

 =


u1(t)

...

uq(t)

 , (2.96)

where dk ∈ (−1/2, 1/2) f or ∀k = 1, · · · , q, u(t) = (u1(t), ..., uq(t)) is a multi-

variate stationary process whose spectral density S(f) = [Sm,n(f)] is bounded

on (−1/2, 1/2) and bounded away from zero at λ = 0. Then, x(t) is called a

multivariate fractionally integrated process with memory parameter d.

Lemma 6 (Spectral density of a multivariate FI process). Let x(t) be a multi-

variate FI process with memory parameter d. Then, the spectral density of x(t)

is given by

S (f) = Φ (f) Su (f) Φ∗ (f) (2.97)

where

Φ (f) =


(1− eif )−d1 0

. . .

0 (1− eif )−dq

 . (2.98)

In the case of 0 < dk < 1/2 for 1 ≤ k ≤ q, X(t) is said to be a stationary

long memory process with memory parameter d = (d1, · · · , dq). If u(t) is a white

noise, i.e., u(t)
i.i.d.∼ N (0,Σu), X(t) is called a multivariate fractionally integrated

noise (mFIN). In this case, the cross-spectral density of xm(t) and xn(t) is given

by

fm,n (λ) = γm,n
(
1− eiλ

)−dm (
1− e−iλ

)−dn
(2.99)

where γm,n is identical to the (m,n)-th element of Σu. If u(t) is a vector ARMA

process, x(t) becomes a multivariate ARFIMA process whose property is shown

in Corollary 2.

Corollary 2 (Spectral density of a vector ARFIMA process). Let εi(t) denote

an independent identically distributed normal variable with E[εi(t)] = 0 and

E[(εi(t))
2] = E[(εi(1))2]. Let u(t) be an ARMA process defined by ui(t) :=

Φi(B)−1Ψi(B)εi(t) where Φi(B) = −
∑r

j=0 φi(j)B
j, φi(0) = −1 and Ψi(B) =
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∑q
j=0 ψi(j)B

j, ψi(0) = 1. Then, the spectral density of u(t) is given by

f (u) (λ) =
1

2π
Φ−1(eiλ)Ψ(eiλ)ΣεΨ(e−iλ)Φ−1(e−iλ) (2.100)

where Φ(eiλ) := diag
(
Φ1(eiλ), · · · ,Φp(e

iλ)
)
, Ψ(eiλ) := diag

(
Ψ1(eiλ), · · · ,Ψp(e

iλ)
)
,

and Σε :=
[
σ2
ε,(m,n)

]
m,n

with σ2
ε,(m,n) = E [εm(t)εn(t)]. Hence,

f (u)
m,n (λ) =

σ2
ε,(m,n)

2π

ψ1(eiλ)ψ∗2(eiλ)

φm(eiλ)φ∗n(eiλ)
. (2.101)

In this case, the multivariate process x(t) is called a vector autoregressive

fractionally integrated moving average (VARFIMA) process.

38



Chapter 3

Long memory model of BOLD

signals

3.1 Introduction

A time series with long memory has slowly decaying autocorrelation (see Sec-

tion 2.7.1). Furthermore, the long-range dependence may be also found from

cross-correlation between two time series. In that the functional connectivity

among brain regions has been ordinarily defined as the cross-correlation coeffi-

cient of two time series, we are compelled to wonder the affinity of long memory

to functional connectivity in a multivariate time series. Does the slowly-decaying

cross-correlation of two BOLD signals taken at rest imply that the brain regions

are functionally connected? Does the difference of memory parameter between

two BOLD signals influence the functional connectivity? While the long mem-

ory phenomenon has been investigated independent of functional connectivity,

it is significantly important to answer these questions since it would enable the

theoretical interpretation of long memory in terms of functional connectivity.

The solution to these problems can be found by modeling the resting state

BOLD signal with long memory. A few statistical models, such as autoregressive

(AR) process and fractional Gaussian noise (FGN), have been widely used to

describe long memory in BOLD signals (Bullmore et al., 1996, 2004, 2001; Dale,

1999; Locascio et al., 1997; Maxim et al., 2005; Purdon & Weisskoff, 1998; Worsley
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et al., 2002; see Section 2.7.2 for the related theories). Since the theoretical

relation of long memory to functional connectivity hinges on the statistical model

of long memory (see Section 3.5.1), the choice of a long memory model for resting

state BOLD signals is a prerequisite. However, the classical hypotheses of long

memory based on either AR or FGN models have not been validated as the most

felicitous model. In what manner can the best long memory model of resting

state BOLD signals be determined? The criteria for the best long memory model

may be established of the physical mechanism of long memory in BOLD signals.

The long memory phenomenon in resting state BOLD signals ensues from

a diversity of physical and biological factors such as heart beat (Cordes et al.,

2001; Schmitt & Ivanov, 2007), respiration (Birn et al., 2006; Cordes et al., 2001),

cerebral hemodynamics, neuronal activity (Allegrini et al., 2009; Mazzoni et al.,

2007), and instrumental noise. The variety of long memory sources makes it

formidable for us to figure out the synthetic effect of intricate physical or biological

processes on long memory.

Nevertheless, it is rational to assume that the cerebral hemodynamics has the

most tremendous effect on long memory of resting state BOLD signals among

all sources. This assumption is grounded in the previous reports which demon-

strate not only that vasomotion and blood flow are the major sources of BOLD

fluctuation (Buxton, 2002), but also that the cerebral hemodynamics exhibits

fractal behavior at rest. The fractal behavior of cerebral blood volume (CBV)

fluctuation at rest was found in low frequencies through both near-infrared spec-

troscopy and laser Doppler flowmetry (Herman et al., 2009), and the fractal

properties of cerebral blood flow (CBF) was found through transcranial Doppler

ultrasonography (Latka et al., 2005; West et al., 2003; Zhang et al., 2000) (see

Figure 3.1). These observations jointly provide indirect evidence that the long

memory phenomenon of resting state BOLD signals is most influenced by cerebral

hemodynamics. Herman et al. (2009), hence, assumed that the fractal behavior

found in BOLD signals has the common origin with that of CBV. This hypothesis

indicates that the physical mechanism of long memory in BOLD signals can be

effectively described through modeling cerebral hemodynamics.

The cerebral hemodynamics has been modeled by either the Balloon-Windkessel

model or the hemodynamic response function (HRF) that describe the relation
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(a)

(b)

Figure 3.1: Power sepectrum of cerebral hemodynamic activities: (a) mean CBF
velocity and (b) CBV fluctuation. The scale-invariant pattern is found from low
frequencies of the power spectrum for both activities. Reproduced from Zhang et al.
(2000) and Herman et al. (2009) with permission.

of BOLD signals to neuronal activities via hemodynamics (see Section 2.1). The

equation (2.3), for instance, shows that a BOLD signal can be approximated as

the linear convolution of neuronal activity with HRF. Although these models fit

best into task-based BOLD signals which significantly correlate with neuronal

activities responding to external stimuli, they also have been applied to analyze

BOLD signals taken at rest as well. As an example, the typical HRF has been

used to estimate the correlation between spontaneous neuronal activities and rest-

ing state BOLD signals by convolving either an LFP or EEG signal with HRF

(Nir et al., 2007; Ramot et al., 2011; Rosa et al., 2010; see Figure 3.2), as well as

to analyze self-organized criticality (Tagliazucchi et al., 2012).

However, it is questionable whether the typical models of hemodynamics suc-
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Figure 3.2: An example of HRF applications for resting state fMRI. The BOLD signal
responded to spontaneous eye movements (SEM) was predicted through convolving
an EOG signal with HRF. Reproduced from Ramot et al. (2011) with permission.

cessfully describe the long-range dependence frequently found in resting state

BOLD signals. To verify whether these models underlies the assumption that the

long memory phenomenon in resting state BOLD signals can be caused by hemo-

dynamic activities, a simulation study based on these models was performed (see

Figure 3.3(a)). A BOLD signal was produced by convolving a Gaussian white

noise process with HRF, however it did not exhibit the scale-invariance in low fre-

quencies (see Figure 3.3(b)). The other BOLD signal along with its corresponding

CBF and CBV activities were generated based on the Balloon model whose input

is a Gaussian white noise process. Similar with the HRF-based simulation stud-

ies, no evidence for long memory phenomenon was found even at these signals

simulated more elaborately based on the physical mechanism of hemodynamic

activities (see Figure 3.3(c),(d),(e)). Such simulation results indicate that both

HRF and the Balloon model may not be appropriate to describe the long memory

effect caused by hemodynamic activities.

Along with these simulation studies, empirical observations have demonstrated

that the typical HRF model does not describe an 1/f noise found in task-based

BOLD signals. For example, it has been reported that the typical general linear

model (GLM) of BOLD signals based on HRF is restricted to explain the 1/f noise

(Fadili & Bullmore, 2002). To overcome this limitation of GLM, the noise compo-

nent ε ∼ N (0,Σ) in (2.1) was replaced by the 1/f noise ε ∼ N (0,Σ (H)) whose
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(a)

(b) (c)

(d) (e)

Figure 3.3: Power spectrums of BOLD signals simulated based on both HRF and the
Balloon model. (a) The diagram of simulation procedures, (b) the periodograms of
BOLD signal based on HRF, and (c-e) those of BOLD signal, CBV and CBF activities
based on the Balloon model. These power spectrums do not exhibit fractal properties
in low frequencies.

43



3. Long Memory Model

Figure 3.4: The performance of regression based on an 1/f noise model. BOLD signals
were simulated with a variety of type I errors, and the performance of fractal-based
regression methods such as WLS (Wavelet Least Squares) and OLS (Ordinary Least
Squares) was evaluated by comparing true type I error with observed type I error.
The WLS method has much better performance than the OLS method. Reproduced
from Fadili & Bullmore (2002) with permission.

covariance is characterized by Hurst exponents H; indeed, the regression perfor-

mance of task-related BOLD responses was improved by applying the 1/f noise

model such as fractional Gaussian noise (FGN) (see Figure 3.4). The 1/f noise

model provides the statistical explanation on long-range dependence in BOLD

signals, however it does not provide the explanation on how the phenomenon is

caused especially by hemodynamic activities. Since the 1/f noise ε in the GLM

framework is assumed to be generated regardless of hemodynamics characterized

by the design matrix X in (2.1), the 1/f noise component is not attributed to

the cerebral hemodynamics.

In synthetic consideration of these results, it can be concluded that the asso-

ciation between hemodynamic activity and long memory in resting state BOLD

signals is not well clarified by either HRF or the Balloon model. These models do

not predict the likelihood of long memory phenomenon induced by hemodynamic

activities. The weakness of these hemodynamic models may not be serious in

task-based BOLD signals since the long memory effect can be regressed out as an

1/f noise and the deterministic trend of BOLD responses correlated with stimu-

lation is mainly considered. On the other hand, the long memory effect becomes
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conspicuous in the resting state BOLD analyses since it is prominently observed

in low frequencies of resting state BOLD signals while the temporal pattern of

neuronal activities are unknown. Moreover, the strength of correlation between

neuronal activity and BOLD response is likely to be affected by hemodynamic

activities that intermediate between both of them and finally trigger the fractal

pattern in BOLD signals. In other words, the functional connectivity in BOLD

signals may not well reflect the original correlation of neuronal activities due to

the corruption by hemodynamic fractal behavior. In these reasons, it is impor-

tant to develop a novel model of hemodynamics that explains the long memory

phenomenon in resting state BOLD signals.

Motivated by the restriction of the conventional hemodynamic model, the long

memory model of hemodynamic response is proposed to describe the long memory

phenomenon in resting state BOLD signals. Based on this novel hemodynamic

model, it is shown that a stationary resting state BOLD signal with long memory

can be better modeled as the fractionally integrated (FI) process than either FGN

or AR processes. Furthermore, the effect of hemodynamic fractal behavior on

resting state functional connectivity is derived theoretically and verified through

simulation studies.

3.2 Linear long memory model of hemodynamic

response

In this section, a novel linear model of hemodynamic response function (HRF) is

proposed to describe long memory driven by hemodynamic activities in resting

state BOLD signals. The long memory condition of hemodynamic response can

be found from the generic HRF comprising lots of basis functions while the typical

HRF consists of two basis functions. The long memory model of HRF implies

that a resting state BOLD signal with long memory can be statistically modeled

as a fractionally integrated process.
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3.2.1 Generic hemodynamic response function

The conventional hemodynamic response function consists of two Gamma func-

tions as introduced in (2.3). Let u(t) be a neuronal activity and x(t) be the

hemodynamic response to u(t). In this case, the hemodynamic response x(t) has

been modeled as the convolution of u(t) with HRF which is a weighted combi-

nation of two Gamma functions (see Section 2.1). The HRF can be extended to

comprise more than two arbitrary basis functions; in other words, a BOLD signal

x(t) is described as the linear convolution of neuronal activity u(t) with HRF g(t)

by

x(t) = g(t) ∗ u(t)
.
=
∞∑
τ=0

g(τ)u(t− τ) (3.1)

where u(t) denotes a neuronal activity, and g(t) is represented as a linear sum of

M basis functions as follows

g(t)
.
=

M∑
j=1

κjvj(t). (3.2)

The HRF g(t) is called the generic hemodynamic response function with M basis

functions (see Figure 3.5(b)). If M = 2 and vj(t) is a Gamma function, it

becomes identical to the classical HRF model in (2.3) (see Figure 3.5(a)). This

generic HRF had been first suggested by Henson & Friston (2006) to describe the

variability of HRF shape either over brain regions or over individuals.

3.2.2 Long memory condition of HRF

The hemodynamic condition generating long memory in BOLD signals can be

found on the basis of the generic hemodynamic response function in (3.2). Let

us define the basis function vj(t) as the Poisson function as follows

vj(t) =
atje
−aj

Γ(t+ 1)
. (3.3)

Although the Gamma function has been widely used as the basis function, ap-

plying the Poisson function as a basis function may not be problematic since the
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(a) (b)

Figure 3.5: The structures of hemodynamic response functions: (a) typical HRF
and (b) extended HRF. The extended HRF consists of many basis functions while
the typical HRF comprises just two basis functions. The long memory condition of
extended HRF in theorem 7 states that the coefficients of each basis functions slowly
decrease.

Poisson function yields similar results with Gamma function when a BOLD signal

is fitted into stimulation (Rajapakse et al., 1998). The following theorem 7 states

the long memory condition of hemodynamic response.

Theorem 7 (Quasi long memory condition of HRF). Suppose that the impulse

function g(t) in (3.2) consists of Poisson functions defined in (3.3) as basis func-

tions. If the coefficient of each basis function satisfies for d ∈ R

κj =
d

Γ(d+ 1)
ad−1
j , (3.4)

and M is sufficiently large or M → ∞ and aj = j + α for 0 < α ≤ 1, g(t) in

(3.2) can be approximated by

g(t) ≈ d

Γ(d+ 1)Γ(t+ 1)

(
Γ(t+ d) +

∞∑
k=0

ζ (−t− d− k + 1, α)
(−1)k

k!

)
(3.5)
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where ζ denotes the Hurwitz zeta function defined as

ζ(s, q) =
∞∑
k=0

(k + q)−s (3.6)

Proof. g(t) is represented from (3.2), (3.3) and (3.4) by

g(t) =
M∑
j=1

(
d

Γ(d+ 1)
ad−1
j

)(
atje
−aj

Γ(t+ 1)

)

=
d

Γ(d+ 1)Γ(t+ 1)

M∑
j=1

at+d−1
j e−aj

=
de−α

Γ(d+ 1)Γ(t+ 1)

M∑
j=1

(j + α)t+d−1e−j. (3.7)

Let p(t) is defined as

p(t)
.
=
∞∑
j=1

(j + α)t+d−1e−j. (3.8)

Then, p(t) can be represented by

p(t) = Φ
(
e−1,−t− d+ 1, α

)
(3.9)

where Φ denotes the Lerch transcendent (Johnson, 1974) defined as

Φ(z, s, q)
.
=
∞∑
k=0

zk (k + q)−s . (3.10)

According to the Erdélyi’s formula (Erdélyi et al., 1953, vol.1, p. 29),

Φ(z, s, q) = Γ(1− s)z−α (− log z)s−1 + z−α
∞∑
k=0

ζ(s− k, α)
(log z)k

k!
(3.11)

for |log z| < 2π, 0 < α ≤ 1, and s 6= 1, 2, 3, · · · . Thus,

p(t) = eα

(
Γ(t+ d) +

∞∑
k=0

ζ(−t− d− k + 1, α)
(−1)k

k!

)
. (3.12)
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As M →∞, g(t) can be approximated from (3.7) and (3.12) by

g(t) ≈ deα

Γ(d+ 1)Γ(t+ 1)
× p(t). (3.13)

Hence, the claim follows from (3.12) and (3.13).

From theorem 7, the HRF can be split into two parts r(t) and q(t) as follows

g(t) ≈ r(t) + q(t) (3.14)

where

r(t)
.
=

dΓ(t+ d)

Γ(d+ 1)Γ(t+ 1)
, and (3.15)

q(t)
.
=

d

Γ(d+ 1)Γ(t+ 1)

∞∑
k=0

ζ (−t− d− k + 1, α)
(−1)k

k!
. (3.16)

Likewise, the output BOLD response x(t) can be regarded as the sum of two

components like

x(t) = g(t) ∗ u(t) = (r(t) + q(t)) ∗ u(t)

= r(t) ∗ u(t) + q(t) ∗ u(t)
.
= x(L)(t) + x(N)(t) (3.17)

Corollary 3. x(L)(t)
.
= r(t) ∗ u(t) given in (3.17) can be represented in terms of

fractional difference as follows

x(L)(t)
.
= r(t) ∗ u(t) = (1−B)−d u(t) (3.18)

where Bτx(t) = x(t− τ) and

(1−B)−d =
∞∑
τ=0

(
−d
τ

)
(−1)τBτ . (3.19)
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Proof. From (3.15),

r(t) =
dΓ(t+ d)

Γ(d+ 1)Γ(t+ 1)
=

(
−d
t

)
(−1)t (3.20)

since (
−d
t

)
= (−1)t

(
d+ t− 1

t

)
and

(
t+ d− 1

t

)
=

dΓ(t+ d)

Γ(t+ 1)Γ(d+ 1)
.

From (3.17),

x(L)(t) =
∞∑
τ=0

r(τ)u(t− τ)

=
∞∑
τ=0

(
−d
t

)
(−1)τu(t− τ) =

∞∑
τ=0

(
−d
t

)
(−1)τBτu(t). (3.21)

Hence, the claim follows from (3.19) and (3.21).

In Corollary 3, the fractional difference representation of x(L)(t) resembles the

definition of fractionally integrated (FI) process introduced in Section 2.7.2.2.

Indeed, x(L)(t) becomes identical to the FI process in the case that d ∈ (−0.5, 0.5)

and u(t) satisfies the short memory condition as defined below.

Definition 8 (Short memory process). Let u(t) be a real-valued discrete time

weakly stationary process with zero mean whose correlation function γu(τ) =

E [u(t)u(t+ τ)] satisfies for all t and τ

∞∑
τ=−∞

γu(τ) <∞. (3.22)

Then, u(t) is called the short memory process (Baillie, 1996). If the spectral

density of u(t) is nonzero, i.e. fu(λ) 6= 0, ∀λ ∈ (−1/2, 1/2), u(t) is called the

short memory process with nonzero spectral density.

Lemma 8 (Spectral density of short memory process). Let u(t) be a short mem-

ory process with nonzero spectral density. The spectral density of u(t) is bounded,

bounded away from zero and continuous at λ = 0.
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Proof. Let fu(λ) be a spectral density of u(t) defined by

fu(λ)
.
=

∫ ∞
−∞

γu(τ)e−iλτdτ (3.23)

where γu(τ) is the autocorrelation function of u(t). Then, fu(λ) is continuous at

λ = 0 because

lim
λ→0

fu(λ) =

∫ ∞
−∞

γu(τ)dτ <∞ (3.24)

from the definition 8 of short memory process. If there exists λ0 ∈ (−1/2, 1/2)

such that fu(λ0) =∞, it contradicts the assumption in (3.22) because

γ(τ) =
1

2π

∫ ∞
−∞

fu(λ)eiλτdλ→∞ (3.25)

from Parseval’s theorem. Hence, fu(λ0) < ∞ for all λ, and fu(λ) is bounded

away from zero according to the definition of u(t).

Remark 2. Let r(t) be a function given in (3.15) with d ∈ (−0.5, 0.5), and u(t) be

a short memory process with nonzero spectral density. Then, the filtered series

x(L)(t) of u(t) with r(t) in (3.18) is an FI process with memory parameter d.

Proof. From Lemma 8, the short memory process u(t) has the spectral density

which is bounded, bounded away from zero and continuous at λ = 0. Since

d ∈ (−0.5, 0.5), x(L)(t)
.
= r(t) ∗ u(t) satisfies the condition of being a FI process

from Definition 6.

Remark 2 implies that x(L)(t) is perfectly described as an FI process. In

particular, if d ∈ (0, 0.5), the autocovariance of x(L)(t) satisfies ρ(τ) ∝ |τ |2d−1 as

|τ | → ∞ and the spectral density of x(t) satisfies fx(λ) ∝ |λ|−2d at the vicinity

of origin. In this case, x(L)(t) is said to have long memory while u(t) is called the

short memory part. The long memory property is characterized by the memory

parameter d. For mathematical definition and properties of the FI process, refer

to Section 2.7.2.2.

Therefore, it is obvious that the long memory properties of the BOLD signal

x(t) driven by hemodynamics is attributed to the HRF component r(t) in (3.15).

However, the other component q(t) of HRF disturbs the fractal pattern in x(t)

51



3. Long Memory Model

(a) (b) (c)

(d) (e)

Figure 3.6: The split of memory and noise components in HRF: the power spectrums
(a) of memory part x(L)(t), (b) of noise part x(N)(t), and (c) of their sum x(t) when
the HRF g(t) was set with M = 100 and d = 0.3. The values of memory parameter

estimated by the periodogram method were acceptably similar: d̂ = 0.3166 and d̂(L) =
0.2812. (d) and (e) show the time series of x(L)(t) and x(t) respectively.

since it does not have fractal properties. Indeed, when u(t) is given as a Gaus-

sian white noise, the power spectral density (PSD) of x(N)(t) has the Lorentzian

pattern while that of x(L)(t) exhibits the scale-invariance over frequencies (see

Figure 3.6(a),(b)). The disturbance caused by x(N)(t) leads to the discrepancy

between x(L)(t) and x(t) in high frequencies; in other words, it distracts the out-

put BOLD response x(t) from fractal pattern (see Figure 3.6(c)). In this reason,

q(t) is called the noise component of HRF g(t) while r(t) is called the memory

component. When r(t) is dealt as an approximation of HRF, it is called the long

memory filter (LMF).
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(a) (b)

Figure 3.7: Effects of the number of basis functions on the curve of HRF with long
memory. HRFs g(t) with a variety of M were compared with LMF r(t) (a) in time
domain and (b) in log-scale.

In spite of this perturbation of fractal behavior, the scale-invariance is less

affected in low frequencies by the noise component q(t). In the simulation study,

the estimated memory parameter of x(t) was nearly equal to that of x(L)(t) (see

Figure 3.6). Therefore, the condition of HRF given in theorem 7 can be regarded

as the quasi long memory condition because the pure memory part is disturbed

in high frequencies by the additive noise component and the fractal pattern can

be detected just in low frequencies.

Figure 3.7 illustrates how the time curve of HRF g(t) is different from that

of LMF r(t). There exists a large gap in initial time points between HRF and

LMF; the gap is not made narrow even when the number of basis functions is

sufficiently larger, however it exerts an influence on high frequency activities of

BOLD responses (see Figure 3.6). The gap is propagated over longer time as the

number of basis functions decreases. Finally, the decrease in M deteriorates the

fractal function in HRF g(t).

The curve of HRF g(t) given in (3.2) is also dissimilar with the typical HRF in

(2.3) (see Figure 3.8(a)). The curve of HRF satisfying the long memory condition

in Theorem 7 has no undershoot but longer tail while the typical HRF has under-

shoot. How such a difference can be described by an unified theory is discussed in
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(a) (b)

Figure 3.8: Effects of long memory condition on HRF curves: (a) the comparison of
typical HRF and long memory HRF, and (b) variation of HRF curves controlled by
the memory parameter.

Section 3.3. The curve of HRF is also controlled by the memory parameter d. As

the absolute memory parameter |d| ∈ (0, 0.5) increases, the degree of dispersion

also increases, which strengthens the long memory effect in BOLD responses (see

Figure 3.8(b)).

3.3 History dependent excitability of HRF

In Section 3.2.2, it was inferred that the long memory condition of HRF given in

Theorem 7 is fairly different from that of typical HRF which has been broadly ex-

ploited for fMRI data analyses. It implies that the shape of impulse hemodynamic

response may alter depending upon the previous history of brain activities. In the

task-related hemodynamic response which is noticeably correlated with external

stimuli, just two basis functions in the extended HRF (3.2) are most considerable

and the others are negligible by suppressing their coefficients as shown in equa-

tion (2.3). On the other hand, more than two basis functions become relatively

important in resting state since the coefficients κj of basis function in (3.2) decay

slowly according to (3.4) so that the corresponding BOLD response exhibits long

memory.
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The assumption that the state of impulse hemodynamic response may be

subject to the history of neuronal activity indicates that the hemodynamic system

is no longer approximated as a linear time-invariant (LTI) system. Therefore, x(t)

in (3.1) can be rewritten as follows

x(t) = h(u(t), u(t− 1), · · · ) ≈
∞∑
τ=0

g(τ ;Ht)u(t− τ), (3.26)

where Ht denotes the history of u(t) since t = 0, and and g(τ ;Ht) is called the

dynamic hemodynamic response function (dHRF) whose shape is dynamically

determined depending on Ht. This hypothesis is called the history dependent

excitability (HDE) of hemodynamic response1, and states that a BOLD response

is produced through history-dependent hemodynamics. The HDE may be one

of causes of either between-session or between-subject variability in task-related

BOLD responses; in other words, BOLD responses to stimulation may differ in a

brain region over time according to the past resting state.

It is unclear how the dependence of hemodynamic response on history is quan-

tified and what attributes of neuronal history directly change the parameters of

HRF. A possible assumption is that the hemodynamic response is adapted to

the history of neuronal activities and always check the predictability of input at

the subsequent time. If the current input were predictable based on history, it

does not lead to the change of HRF. For example, when neuronal activity has

no significant deterministic trend but stationary random work (such as Poisson

point process), the state of HRF may approach to the quasi long memory con-

dition described in Theorem 7 (see Figure 3.9(a),(b),(c)). On the other hand,

an abrupt change in deterministic trend of neuronal activity u(t) deteriorates the

predictability of input, and may make the shape of HRF more similar with typical

HRF given in (2.3) (see Figure 3.9(d),(e),(f)).

In spite of the ambiguity of dependent relationship between neuronal activi-

ties and hemodynamics, a particular condition implying the strong dependence

1The terminology of history dependent excitability was originally coined by Baroni et al.
(2010) to describe the propensity to transient neuronal firing dependent on history. In this
thesis, this concept is adopted to describe the dependence of hemodynamic state on the history
of neuronal activities.
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(a) Poisson spike train (b) cs-HRF (c) Resting state BOLD

(d) Stimulation (e) es-HRF (f) Evoked state BOLD

Figure 3.9: Examples of history dependent excitability of hemodyamic response. (a-c)
Stationary spike trains discharged with Poisson rate induces the quasi long memory
condition of HRF (called the cs-HRF), and results in long memory in the correspond-
ing BOLD signal. (d-f) The 5 second stimulation changes the shape of HRF from
cs-HRF to the typical evoked state HRF.

between them can be inferred from the following proposition 9.

Proposition 9 (Inference of hemodynamic long memory state). Let u(t) be a

short memory function and x(t) be a filtered series of u(t) with a real-valued

function r(G)(t); that is, x(t) = r(G)(t) ∗ u(t). If there exist d ∈ (−0.5, 0.5) such

that the spectral density of x(t) satisfies

f(λ) ∝ λ−2d, λ→ 0+, (3.27)

the filter r(G)(t) can be represented in low frequencies by the convolution of a short

memory function β(t) with r(t) given in (3.15) as follows

r(G)(t) ∼ r(t) ∗ β(t). (3.28)
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Proof. The condition (3.27) can be rewritten by

f(λ) ≈ α(λ)λ−2d, λ→ 0+, (3.29)

where α(λ) is a positive continuous bounded function satisfying α(λ) → κ as

λ→ 0+ for κ ∈ R. Since
(
1− e−iλ

)α
= λαeiπα/2 (1 +O(λ)),

f(λ) ≈ α(λ)λ−2d =
(
λ−deiπd/2

)
α(λ)

(
λ−de−iπd/2

)
∼

(
1− e−iλ

)−d
α(λ)

(
1− eiλ

)−d
(3.30)

From the condition x(t) = r(G)(t) ∗ u(t), f(λ) satisfies

f(λ) = fg(λ)fu(λ) (3.31)

where fg(λ) and fu(λ) denote spectral densities for r(G)(t) and u(t) respectively.

From (3.30) and (3.31),

fg(λ) ∼
(
1− e−iλ

)−d
fβ(λ)

(
1− eiλ

)−d
=

(
∞∑
k=0

Γ(t+ d)

Γ(d)k!
e−iλk

)
fβ(λ)

(
∞∑
k=0

Γ(t+ d)

Γ(d)k!
eiλk

)
(3.32)

where fβ(λ) = α(λ)/fu(λ). Since fβ(λ) is continuous at λ = 0, bounded and

bounded away from zero, fβ(λ) can be regarded as the spectral density of a short

memory function β(t). Therefore, (3.28) follows because (3.32) is equivalent to

r(G)(t) =
∞∑
k=0

Γ(d+ k)

Γ(d)k!
β(t− k) =

∞∑
k=0

r(k)β(t− k) (3.33)

(Hannan, 1970).

Proposition 9 states that the the HRF r(G)(t) can be represented by a sequence

of short memory β(t) and long memory filters r(t) if the neuronal activity u(t) is a

short memory function and the corresponding BOLD response x(t) exhibits long

memory in low frequencies. Hence, r(G)(t) can be considered as the generalization

of the memory part r(t) of HRF in (3.15) since the HRF r(G)(t) includes short
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memory β(t) as well as long memory component r(t) while r(t) contains just long

memory component. The short memory component β(t) of HRF may hinder us

from estimating the short memory properties of neuronal activities from resting

state BOLD signals since the neuronal activity may be blended with short memory

induced by hemodynamics and cannot be easily separated as shown in

xL(t) = r(G)(t) ∗ u(t) = r(t) ∗ (β(t) ∗ u(t)) . (3.34)

Proposition 9 also has important implication such that the short memory condi-

tion of neuronal activities always leads to the long memory condition of hemo-

dynamics as long as the long memory phenomenon is observed in BOLD signals.

The long memory in BOLD signals does not always indicate that neuronal ac-

tivity consists of short memory attributes; indeed, it may comprise both short

memory and long memory components.

The dependence of hemodynamic response upon the history of neuronal ac-

tivities has been discussed so far. It is clear that the HDE makes it difficult to

simplify the hemodynamics as an LTI system. However, if the impulse response

g(τ ;Ht) is kept approximately constant over a time interval, in other words,

g(t;Ht) ≈ [g(t)]t=tA for t ∈ [tA, tB], the hemodynamic kernel can be regarded

as an LTI system for the given period. It is reasonable to assume that the im-

pulse response g(τ ;Ht) would be nearly constant during a normal fMRI-scanning

period unless an unpredictable change in neuronal activities happens due to sud-

den interference or irregular endogenous cognitive behavior. This assumption

allows us to regard the hemodynamic system as an LTI system during one fMRI

measurement.

Now let us go back to Theorem 7 on the long memory condition of cerebral

hemodynamics. If the dHRF in (3.26) satisfies the quasi long memory condition of

Theorem 7 and the input neuronal activity satisfies the short memory condition

given in Definition 8, the dHRF is said to be at the critical state where the

output BOLD signal exhibits fractal behavior in low frequencies, and is called the

critical-state hemodynamic response function (cs-HRF). As its contrary concept,

the typical HRF in (2.3) is called the evoked-state hemodynamic response function

(es-HRF). Hence, both es-HRF and cs-HRF are special cases of dHRF. At the
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(a)

(b) (c)

Figure 3.10: Properties of the resting state HRF. (a) the effect of the number of basis
functions, and (b) the plots of rs-HRF with different memory parameter.

critical state, the coefficients of basis functions is arranged according to (3.4) (see

Figure 3.10(a)). As a stimulation is assigned to the brain region, the coefficients

of some basis functions increase abruptly (see Figure 3.10(b)), and finally the

HRF can be approximated as the sum of two basis functions like the typical HRF

(see Figure 3.10(c)).

Let us remind a remark in Section 1 such that a resting state BOLD signal

tends to exhibit fractal behavior or scale invariance. Based on this remark and the

assumption that the fractal behavior is mainly caused by cerebral hemodynamics,
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it can be supposed that dHRF tends to approach to the critical state when the

output BOLD signal is taken at rest. However, it should be noticed that a resting

state BOLD signal does not necessarily exhibit such long memory phenomenon;

the long-range dependence is sometimes interfered by endogenous brain activities,

which makes the BOLD signal to be nonstationary and irregular. The state of

dHRF wanders usually in the vicinity of the critical point of hemodynamics.

Strictly speaking, a resting state BOLD signal is not always regarded as a fractal

process in the statistical view.

3.4 Nonlinear long memory model of hemody-

namic response

In Section 3.2, a special long memory condition of resting state BOLD signal has

been modeled as a linear convolution of short memory neuronal activity with cs-

HRF. In reality, the cerebral hemodynamics is not such a linear system, but can

be regarded as a dynamic system through which a BOLD signal is nonlinearly

correlated with neuronal population activities. From the statistical point of view,

any nonlinear physiological system can be nonparametrically represented by the

Volterra series (Marmarelis, 2004). Likewise, a BOLD signal can be described as a

nonlinear convolution of neuronal population activities with Volterra kernels. The

Volterra series representation of BOLD signals has been established by Friston

et al. (1998); Josephs & Henson (1999). The nonlinear model is independent

from the physical mechanism of hemodynamics while the Balloon/Windkessel

model consists of differential equations associated with blood volume, flow and

deoxyhemoglobin quantity (see Section 2.1.2). Nonetheless, it is useful to figure

out the influence of nonlinearity on long memory properties of resting state BOLD

signals.

Let x′(t) be a predicted BOLD signal corresponding to neuronal population

activity u(t) at a time t. If we assume that the output x(t) depends only on past

values of inputs, the output x′(t) can be written as a nonlinear convolution of
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input u(t) and the n-th order Volterra kernel hn (τ1, · · · , τn) as follows

x′(t) = h (u(t), u(t− 1), · · · )

=
∞∑
n=1

(
∞∑
τ1=0

· · ·
∞∑

τn=0

hn (τ1, · · · , τn)
n∏
j=1

u (t− τj)

)
(3.35)

The expansion of the Volterra kernels with M basis functions {v1(t), · · · , vM(t)}
produces

hn (τ1, · · · , τn) =
M∑
b1=1

· · ·
M∑
bn=1

κb1,··· ,bn

n∏
j=1

vbj (τj) (3.36)

where M is the number of basis functions, κb1,··· ,bn denotes an expansion coefficient

and vb(t) represents the bth basis function (Marmarelis, 2004).

Proposition 10 (Approximated Volterra series). If the expansion coefficients in

(3.36) satisfy the following condition

κb1,··· ,bn ≈ an

n∏
k=1

κbk , (3.37)

x′(t) can be approximated by

x′(t) ≈
∞∑
n=1

an (x(t))n

= a1x(t) + a2 (x(t))2 + a3 (x(t))3 + · · ·
.
= V [x(t)]a (3.38)

where x(t) is given in (3.1), and V [·]a is called the approximate Volterra operator

with order coefficients a = {a1, a2, · · · }.
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Proof.

x′(t) =
∞∑
n=1

∞∑
τ1=0

· · ·
∞∑

τn=0

(
M∑
b1=1

· · ·
M∑
bn=1

κb1,··· ,bn

n∏
j=1

vbj(τj)

)
n∏
j=1

u(t− τj)

=
∞∑
n=1

M∑
b1=1

· · ·
M∑
bn=1

κb1,··· ,bn

(
∞∑
τ1=0

· · ·
∞∑

τn=0

n∏
j=1

vbj(τj)u(t− τj)

)

=
∞∑
n=1

M∑
b1=1

· · ·
M∑
bn=1

κb1,··· ,bn

n∏
j=1

(
∞∑
τ=0

vbj(τ)u(t− τ)

)

From (3.37), x′(t) can be rearranged as follows

x′(t) =
∞∑
n=1

M∑
b1=1

· · ·
M∑
bn=1

(
an

n∏
k=1

κbk

)
n∏
j=1

(
∞∑
τ=0

vbj(τ)u(t− τ)

)

=
∞∑
n=1

an

M∑
b1=1

· · ·
M∑
bn=1

n∏
k=1

(
∞∑
τ=0

κbkvbk(τ)u(t− τ)

)

=
∞∑
n=1

an

n∏
k=1

M∑
bk=1

(
∞∑
τ=0

κbkvbk(τ)u(t− τ)

)

=
∞∑
n=1

an

n∏
k=1

∞∑
τ=0

(
M∑
bk=1

κbkvbk(τ)

)
u(t− τ)

=
∞∑
n=1

an

n∏
k=1

(
∞∑
τ=0

g(τ)u(t− τ)

)
=
∞∑
n=1

an

n∏
k=1

x(t) (3.39)

The equation (3.38) shows that x′(t) can be decomposed into powers of linear

component x(t) and can be reduced into a linear component x(t) if the higher-

order Volterra kernels are ignored. Now the following question can be settled:

does the nonlinearity in cerebral hemodynamics influence the fractal behavior in

resting state BOLD signals? Theorem 11 gives an answer for this question.

Theorem 11 (Long memory in nonlinear time series). Suppose that x(t) has

the spectral density where f(λ) ∝ |λ|−2d as λ → 0 where d ∈ (0, 1/2). Then,
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x′(t)
.
= V [x(t)]A also has the spectral density such that

f ′(λ) ∝ |λ|−2d , λ→ 0. (3.40)

Proof. The claim can be proved by showing that f ′(αλ) ∝ α−2df ′(λ). From the

assumption, the spectral density f(λ) can be rewritten by f(λ) ≈ af |λ|−2d , λ→
0. From (3.38),

f ′(λ) =
∞∑
n=1

an (f(λ) ∗ · · · ∗ f(λ))︸ ︷︷ ︸
n times

=
∞∑
n=1

anCn(λ) (3.41)

where Cn(λ)
.
= f(λ) ∗ · · · ∗ f(λ). Then,

Cn(λ) =

∫ 1/2

−1/2

· · ·
∫ 1/2

−1/2

f(λbn−1)
n−1∏
j=2

f(λbj−1
−λbj)f(λ−λb1)dλb1 · · · dλbn−1 . (3.42)

Likewise,

Cn(αλ) =

∫ 1/2

−1/2

· · ·
∫ 1/2

−1/2

f(λbn−1)
n−1∏
j=2

f(λbj−1
− λbj)f(αλ− λb1)dλb1 · · · dλbn−1

=

∫ 1/2

−1/2

f(αλ− λb1)Cn−1(λb1)dλb1 . (3.43)

Since f(αλ− λb1)→ af |αλ|−2d as λb1 → 0 while f(αλ− λb1)→ 0 as λb1 →∞,

Cn(αλ) ≈
∫ δ

−δ
af |αλ|−2dCn−1(λb1)dλb1

= cf |λ|−2d α−2d = κfα
−2dCn(λ) (3.44)

for a small positive number δ where cf
.
= af

∫ δ
−δ Cn−1(λb1)dλb1 . Hence,

f ′(αλ) =
∞∑
n=1

anCn(αλ)

≈ κfα
−2d

∞∑
n=1

anCn(λ) = κfα
−2df ′(λ) (3.45)
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(a) (b)

Figure 3.11: Effects of nonlinear hemodynamics on fractal behavior: the bias of
memory parameters (a) in the case of decreasing order coefficients a =

{
1, e−1, e−2

}
,

and (b) in the case of increasing coefficients a =
{

1, e, e2
}

.

Theorem 11 indicates that the nonlinearity in a physiological system has little

influence on the long memory phenomenon. Therefore, the sum x(t) of all non-

linear components in (3.38) is no longer an FI process, but still has long memory

with the memory parameter d ∈ (0, 1/2). A simulation study, as illustrated in

Figure 3.11, demonstrates that the memory parameter estimated from nonlin-

ear long memory processes given in (3.38) is less affected by the distribution of

order coefficients. Figure 3.11, however, shows that the nonlinearity can have

significant impacts on the fractal behavior of FI processes when d ∈ (−1/2, 0).

3.5 Long memory and functional connectivity

The long memory models of hemodynamic response, discussed in sections 3.2

to 3.4, enable us to figure out how the fractal behavior of cerebral hemodynamics

has an effect on resting state functional connectivity in fMRI. In this section,

the association between long memory and functional connectivity is theoretically

inferred based on the proposed statistical model of resting state hemodynamic

response. In special, the FI process model is compared with the FGN model fo-
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cusing on the relevance with functional connectivity. These theoretical inferences

are demonstrated through simulation studies.

3.5.1 Theoretical inference

Let x(t) = {x1(t), · · · , xN(t)} be a set of N resting state BOLD signals. In prac-

tice, its corresponding neuronal population activities are either a nonstationary

or stationary process, but cannot be simply modeled as an i.i.d. process.

In spite of the nonstationarity, let us consider a virtual case such that the

neuronal activities u(t) = {u1(t), · · · , uN(t)} can be approximated as a set of

Gaussian white noise processes so as to facilitate theoretical inference for the

impact of fractal behavior on functional connectivity. In this case, the memory

component x(L)(t) of a resting state BOLD signal, acquired by convolving u(t)

with HRF g(t) = {g(t; di); i = 1, · · · , p} in (3.2), can be modeled as a multivariate

fractionally integrated noise (FIN) (see Section 2.7.2.2).

Theorem 12 (Connectivity distortion in FI processes). Let u(t)
.
= {ui(t); i = 1, · · · , p}

be a vector white noise process, and x(L)(t)
.
=
{
x

(L)
i (t); i = 1, · · · , p

}
be a vector

weakly stationary process such that x
(L)
i (t) = r(t; di) ∗ ui(t) where r(t; di) is given

in (3.15) with |di| < 1/2. Then, x(L)(t) is a multivariate fractionally integrated

noise with memory parameter d = [di], and satisfies

γ
(x)
i,j

γ
(u)
i,j

≈ 2di+dj

1− di − dj
cos
(π

2
(di − dj)

)
, and (3.46)

ρ
(x)
i,j

ρ
(u)
i,j

≈
√

(1− 2di)(1− 2dj)

1− di − dj
cos
(π

2
(di − dj)

)
, (3.47)

where γ
(u)
i,j

.
= cov {ui(t), uj(t)}, ρ(u)

i,j
.
= cor {ui(t), uj(t)}, and γ

(x)
i,j and ρ

(x)
i,j are also

defined for x
(L)
i (t) and x

(L)
j (t) in the same manner.

Proof. From the definition, x(L)(t) is a vector fractionally integrated noise. Let

fi,j(λ) be the cross-spectral density for ui(t) and uj(t), and f ′i,j(λ) be the cross-

spectral density for x
(L)
i (t) and x

(L)
j (t). Since x

(L)
i (t) = r(t; di) ∗ ui(t),

f ′i,j(λ) = Ri(λ)R∗j (λ)fi,j(λ), (3.48)
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where Ri(λ) denotes the transfer function of ri(t). Since Ri(λ) =
(
1− e−iλ

)−di
from Proposition 5,

f ′i,j(λ) =
(
1− e−iλ

)−di (
1− eiλ

)−dj
fi,j(λ)

=

∣∣∣∣2 sin
λ

2

∣∣∣∣−d1−d2 ei(di−dj)(λ−π)/2fi,j(λ). (3.49)

From the assumption on u(t), fi,j(λ) = γ
(u)
i,j for |λ| ≤ 1/2. fi,j(λ) is bounded in

λ ∈ (−1/2, 1/2), bounded away from zero, and continuous at λ = 0. From (3.49),

x(L)(t) is a multivariate fractionally integrated noise with memory parameter d

according to Definition 6. We also obtain the following approximation of f ′i,j(λ)

through the Taylor expansions

<
[
f ′i,j(λ)

]
= γ

(u)
i,j

∣∣∣∣2 sin
λ

2

∣∣∣∣−di−dj cos

(
di − dj

2
(λ− π)

)
= γ

(u)
i,j

((
λ

2

)−Σd

+
Σd

6

(
λ

2

)2−Σd

+O(λ3)

)
×
(
cos(∆dπ) + ∆dλ sin(∆dπ) +O(λ2)

)
≈ γ

(u)
i,j

(
cos(∆dπ)λ−Σd + ∆d sin(∆dπ)λ1−Σd

+
Σd

24
cos(∆dπ)λ2−Σd +

Σd

6
∆d sin(∆dπ)λ3−Σd

)
, (3.50)

where Σd
.
= di + dj and ∆d

.
= (di − dj) /2. Hence, (3.46) follows from

γ
(x)
i,j =

∫ 1/2

−1/2

<
[
f ′i,j(λ)

]
dλ

≈ γ
(u)
i,j 2Σd

(
cos(∆dπ)

1− Σd

+
1

2

∆d sin(∆dπ)

2− Σd

+
Σd

96

cos(∆dπ)

3− Σd

+
Σd

48

∆d sin(∆dπ)

4− Σd

)
. (3.51)

Likewise, (3.47) also follows from ρ
(x)
i,j = γ

(x)
i,j /(γ

(x)
i,i γ

(x)
j,j )1/2.

Theorem 12 shows that the correlation of BOLD signals between two brain
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regions may differ from that of neuronal activities depending on the difference of

memory parameters. In (3.47), the correlation ρ
(x)
i,j of BOLD signals becomes zero

when the memory difference is equal to one, i.e. |di − dj| = 1. On the other hand,

the correlation of BOLD signals becomes identical to that of neuronal activities

in the case that the corresponding memory parameters are equal each other.

Therefore, Theorem 12 states that the heterogeneous fractal behavior among

brain regions causes the discrepancy in functional connectivity between BOLD

signals and neuronal activities. It also implies that the maximum correlation of

BOLD signals is limited depending on their memory parameters as shown in the

following inequality

ρ
(x)
i,j ≤

√
(1− 2di)(1− 2dj)

1− di − dj
. (3.52)

In other words, the heterogeneity of fractal behavior between two brain regions

brings about the decrease in correlation of BOLD signals. Even though the corre-

lation of neuronal activities is equal to one, the corresponding BOLD signals may

have the lower correlation. In results, Pearson correlation, as the traditional def-

inition of functional connectivity, may not well reflect the correlation of neuronal

population activities due to deflection by fractal behavior.

However, the relevance of long memory to functional connectivity may differ in

the other long memory models. Now let us consider the fractional Gaussian noise

(FGN) model that has been widely used in resting state neuroimaging analyses

but whose effects on connectivity distortion has not been well understood so far.

As introduced in Section 2.7.2.1, the FGN process can be considered as a special

case of the increment process of the fractional Brownian motion (FBM). Let

us remind that FBM can be regarded as a causal linear transform of a Wiener

process with a self-similarity kernel as shown in Lemma 2. It implies that an FGN

process can be viewed as the filtered time series of a Gaussian white noise via the

self-similarity kernel, which enables us to use the same framework as illustrated

in Figure 4.2(c). Lemma 13 shows that a vector fractional Brownian motion

can be viewed as a linear transform of a multivariate time series consisting of

correlated Brownian motions with the self-similarity kernel. However, the FGN-

based representation of resting state BOLD signals is less flexible than the FI

process model since neuronal activity is always assumed to be a Gaussian white
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noise process while the FI process model embraces more various types of neuronal

activities.

Lemma 13. Let x(t) be a vector fractional Brownian motion given in the equa-

tion, and u(t) = Bc(t) be a correlated Brownian motion with correlation matrix

Σu. Then, there exist the p× p matrices M+ and M− such that

x(t) =

∫
R

((
(t− τ)

H−1/2
+ − (−τ)

H−1/2
+

)
A′+

+
(

(t− τ)
H−1/2
− − (−τ)

H−1/2
−

)
A′−

)
du(τ) (3.53)

where H = diag (Hi) for Hi ∈ (0, 1).

Proof. Let M be a p × p matrix satisfying Σu = MMt. Then, u(t) = MB(t).

In Lemma 2, there exist A′+ and A′− such that A+ = A′+M and A− = A′−M.

Hence, (3.53) follows from (2.83).

Proposition 14 (Connectivity distortion in FGN). Let z(t)
.
= {zi(t); i = 1, · · · , p}

be the increments of a multivariate fractional Brownian motion with Hurst expo-

nents H = diag (Hi) for Hi ∈ (0, 1) as represented as stochastic integral in (3.53).

For the causal case (A− = 0),

γ
(x)
i,j

γ
(u)
i,j

=


B(Hi + 1/2, Hj + 1/2)(cos(πHi) + cos(πHj))

sin(πHi + πHj)
if Hi +Hj 6= 1

1

2
B(Hi + 1/2, Hj + 1/2) (sin(πHi) + sin(πHj)) if Hi +Hj = 1

,

(3.54)

ρ
(x)
i,j

ρ
(u)
i,j

=
Di,j√
Di,iDj,j

(3.55)

where B(·) denotes the beta function and

Di,j =


cos(πHi) + cos(πHj)

Γ(Hi +Hj + 1) sin (π(Hi +Hj))
if Hi +Hj 6= 1

sin(πHi) + sin(πHj)

Γ(Hi +Hj + 1)
if Hi +Hj = 1

. (3.56)
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Proof. In the case of Hi +Hj 6= 1, (2.86) in Lemma 3 can be represented by

γ
(x)
i,j =

B(Hi + 1/2, Hj + 1/2)

sin(π(Hi +Hj))
(Aij + Aji) (3.57)

where A = (Ai,j) is given by

A = cos(πH)A+At
+ + A−At

− cos(πH)

− sin(πH)A+At
− cos(πH)− cos(πH)A+At

− sin(πH), (3.58)

and cos(πH) = diag (cos(πHi)). Assume that A+ = M and A− = 0. Then,

A = cos(πH)MMt = cos(πH)Σu. (3.59)

where Σu = (γ
(u)
i,j ). In the case that Hi +Hj = 1, we have from (2.88) in Lemma

3

γ
(x)
i,j =

1

2
B(Hi + 1/2, Hj + 1/2) (sin(πHi) + sin(πHj))A

(0)
i,j , (3.60)

where

A(0) = A+At
+ = MMt = Σu. (3.61)

Hence, (3.54) follows from (3.57) and (3.60). Likewise, (3.55) follows from (3.54)

and B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

Proposition 14 states that the correlation of BOLD signals between two brain

regions may be distorted depending on the difference of Hurst exponents. How-

ever, the pattern of connectivity distortion in the FGN model is quite different

from that of the FI process. Figure 3.12 illustrates the comparison of connec-

tivity distortion between FGN and FI process models. It is common, in both

FGN and FI process, that the discrepancy between correlation of BOLD signals

and correlation of neuronal activities deteriorates as the difference of memory

parameters increases. This pattern is called the fractal-driven connectivity dis-

tortion. When 1/2 < Hi, Hj < 1, the FGN has similar pattern of connectivity

distortion over the bivariate distribution of Hurst exponents with the FI process.

In other words, the fractal behavior based on the FGN model has similar effects

on functional connectivity with the FI process model in the long memory area
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(a) FIN (b) FGN

Figure 3.12: The ratio of long memory correlation to short memory correlation in
both fractionally integrated noise (FIN) and fractional Gaussian noise (FGN).

(1/2 < Hi, Hj < 1). On the other hand, the connectivity distortion in the FI

processes is more alleviated than in the FGN model for other cases of memory

distribution -especially when 0 < Hi, Hj < 1/2. It means that, in the short mem-

ory area (0 < Hi, Hj < 1/2), the functional connectivity based on the FI process

model is less sensitive to heterogeneous fractal behavior than that based on the

FGN model. The area of Hurst exponents such that ρ
(x)
i,j /ρ

(u)
i,j > 0.9 is called the

nonfractal transmission area (NTA). In Figure 3.12, the size of NTA for the FIN

processes is more spacious and asymmetric while the NTA is symmetric in the

FGN processes.

3.5.2 Simulation studies

In Section 3.5.1, the relevance of long memory to functional connectivity has

been theoretically inferred on the basis of the multivariate FI process model. The

theories expect that the difference of memory parameters causes the discrepancy
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between correlation of BOLD signals and correlation of neuronal activities. On

the other hand, the theories do not provide any inference about the influence

of long memory on the brain network obtained by thresholding the correlation

matrix (see Section 2.4 for details on graph-theoretical analysis). The complexity

of the brain network makes it difficult to explain the impacts of long memory on

global network dynamics. Here an inductive method based on simulation studies

is suggested to figure out the association between long memory and network

properties.

The whole procedure of the simulation studies are summarized in Figure 3.14.

First, the structural network based on anatomical connections of the macaque

brain was adopted from Honey et al. (2007); the network consists of 47 regions

with 505 connections (see Figure 3.13). Then, the spontaneous neuronal pop-

ulation activities were simulated based on the neural field model (see Section

2.2 for the related theories, and see Figure 3.14(a)). Each brain region was set

to consist of 8 neurons, and each neuron was forced to burst random spikes

independently. The mutual population activity among regions is nonlinearly self-

organized through network connections. From the simulated neuronal population

activities, the corresponding BOLD signals with long memory are generated by

convolving them with the cs-HRF filter r(t) in (3.15) (see Figure 3.14(a)). The

memory parameters of the cs-HRF filters were randomly assigned with the Gaus-

sian distribution.

Afterwards, functional connectivity and information flow were computed from

both the neuronal population activities and the BOLD signals (see Figure 3.14(b)).

Functional connectivity was defined based on Pearson correlation (PC) while in-

formation flow was measured based on either mutual information (MI) or transfer

entropy (TE) (see Section 2.3). Both PC and MI are undirectional measures while

TE is related to directional information flow. Especially, it is known that TE is

more appropriate to specify the directional information flow in a coupled system

such as neuronal population (Kaiser & Schreiber, 2002). Finally, three types of

network were obtained: PC, MI, and TE networks.

One of network properties useful for the topological diagnosis is the node

centrality. In this study, the weighted betweenness centrality (abbreviated to

centrality in this section), quantifying the fraction of all shortest paths passing
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Figure 3.13: The structural connectivity of macaque neocortex. Reproduced from
Honey et al. (2007) with permission.

through the given node, was computed from the given connectivity matrices by

using the brain connectivity toolbox (BCT) (Brandes, 2001; Rubinov & Sporns,

2010). Any brain region (or node in graph terminology) with high centrality can

be regarded as a hub region connecting different communities of nodes.

Figure 3.15 illustrates how the centrality is affected by fractal behavior. The

first (Case A) and second columns (Case B) in the figure correspond to the sce-

narios such that memory parameters of cs-HRF filter are Gaussian distributed

with standard deviation 0.1 and 0.3 respectively. Therefore, The heterogeneity

of fractal behavior among brain regions is greater in Case B than in Case A.

In the PC network, there was a weak discrepancy in centrality between neu-

ronal activities and BOLD signals as the regression slopes were r2 = 0.85 and

r2 = 0.72 for Case A and Case B (see Figures 3.15(a) and 3.15(b)). Although

the discrepancy grows worse as the heterogeneity of fractal behavior increases,

the centrality in BOLD signals is acceptably correlated with that in neuronal

activities. However the correlation of centrality between neuronal activities and

BOLD signals becomes weaker in the MI network as the corresponding regression

slopes were r2 = 0.53 and r2 = 0.6 for Case A and Case B (see Figures 3.15(c)

and 3.15(d)). However, unlike the PC network, the correlation is enhanced as

the brain regions exhibit more heterogeneous fractal behaviors. The TE network

is excessively sensitive to fractal behaviors as r2 = 0.46 and r2 = −0.04 for Case
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(a)

(b)

Figure 3.14: Simulation process of resting state BOLD signals.

A and Case B (see Figures 3.15(e) and 3.15(f)). The correlation of centrality

between neuronal activities and BOLD signals is seriously destroyed by hetero-

geneous fractal behaviors in the TE network. All of these results suggest not

only that the information flow such as MI and TE is more sensitively perturbed

by fractal behaviors than functional connectivity, but also that the fractal-driven

perturbation is more serious in directional information flow than in undirectional

measures.

Unlike the PC, MI, and TE networks, the wavelet correlation (WC) enables
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us to observe the scale-dependent correlation over several frequency bands (see

Section 2.5 for the related theories). Figure 3.16 shows the impacts of fractal

behavior on the WC network over scales (where high scale corresponds to low

frequencies). In a node with low centrality in the structural network, the mean

relative difference in wavelet correlation between neuronal activities and BOLD

signals was greater in low frequencies while such a significant difference was allevi-

ated in a node with high centrality (see Figures 3.16(a) and 3.16(b)). In addition,

the degree of relative deviation in low frequency wavelet correlations was depen-

dent on the heterogeneity of fractal behaviors as well as the node centrality. The

discrepancy of node centrality in the WC network between neuronal activities and

BOLD signals was also prominent in low frequency scales for a node with small

centrality in the structural network (see Figures 3.16(c) and 3.16(d)). The degree

of discrepancy was reduced as the heterogeneity of fractal behaviors increases.

However, the reduced discrepancy should not be attributed to the heterogeneity

of fractal behaviors since it might be caused by the reduction of wavelet correla-

tions as shown in Figures 3.16(a) and 3.16(b). Consequently, these results overall

indicate that both the wavelet correlations and their node centralities correspond-

ing to low frequencies are more affected by heterogeneous fractal behaviors in a

node with small centrality in the structural network.

3.6 Summary and Discussion

It has been supposed, based on empirical observations, that the main source of

long memory in resting state BOLD signals is cerebral hemodynamic activities.

However, simulation studies suggest that the conventional hemodynamic models

such as HRF and Balloon model do not well predict long memory in resting state

BOLD signals.

In this chapter, a novel long memory model of hemodynamic response has

been suggested to effectively describe long memory in resting state BOLD signals

in terms of hemodynamic response function (HRF). The long memory may be

caused when the coefficients of several basis functions comprising the HRF are

arranged with slowly-decaying pattern. This theoretical inference can be an indi-

rect evidence that the fractal behavior is associated with physical mechanism of
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hemodynamic activities. The proposed model also implies that the FI process is

more appropriate model for resting state BOLD signals with long memory than

the FGN process. This linear long memory model of hemodynamic response

can be extended to the nonlinear case based on the Volterra series expansion.

Theories suggest that the long memory phenomenon is not almost influenced by

nonlinearity of the hemodynamic system. Note that the nonlinearity of hemody-

namics may have an effect on functional connectivity, and thus would increase the

difference of statistical properties between neuronal activities and BOLD signals.

This hemodynamic response model has an important implication such that

the HRF is not static over time and may be subject to the current and past states

of neuronal activity. The dependence of hemodynamic response on the history

of neuronal activities was named the history dependent excitability (HDE). The

physical and biological mechanism that links the dynamic change of HRF with

the history of neuronal activities has been unrevealed. Nevertheless, it can be

concluded that the hemodynamic activity is in the critical state generating its

fractal behavior when input neuronal activity satisfies the short memory condition

and the corresponding BOLD signal has long memory.

Finally, the relation of long memory with functional connectivity has been

revealed through theoretical inferences and simulation studies. In the case that

a resting state BOLD signal is modeled as an FI process, there exists a difference

between correlation of neuronal activity and correlation of BOLD signals, and

the gap becomes wider as the heterogeneity of fractal behaviors increases. The

different fractal behaviors between two brain regions result in the distortion of

functional connectivity. Such a connectivity distortion is inevitable even in the

FGN process model, but the distortion pattern is determined depending on what

type of long memory model is applied. Moreover, simulation studies indicate

not only that the long memory driven by hemodynamic activities gives rise to

the change in network properties especially in directional information flow such

as transfer entropy, but also that connectivity distortion is more serious in low

frequencies at a region with small centrality of the structural network.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: Scatter plots which illustrate the differences of centrality in three types
of functional networks -such as Pearson correlation (PC), transfer entropy (TE), and
mutual information (MI)- between neuronal activities and BOLD signals. Left and
right correspond to the cases when the standard deviation of fractal exponents is 0.1
and 0.3 respectively.

76



3. Long Memory Model

(a) (b)

(c) (d)

Figure 3.16: The spectrum of connectivity distortion based on wavelet correlation
across frequency scales. (a-b) The Euclidean distance of wavelet correlations over
scales (where high scale corresponds to low frequencies) between neuronal activities
and BOLD signals. (c-d) The Euclidean distance of centrality over scales. Left and
right correspond to SD(d) = 0.1 and 0.3 respectively.
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Chapter 4

Fractal-based analyses

4.1 Introduction

In the previous chapter the association between long memory and functional

connectivity in resting state BOLD signals was theoretically inferred on the basis

of the proposed long memory model of hemodynamic response (see Section 3.5).

The heterogeneity of hemodynamic fractal behaviors between brain regions incurs

the discrepancy between functional connectivity of neuronal activities and that

of the corresponding BOLD signals. The fractal-driven distortion of resting state

functional connectivity is depicted in Figure 4.1(b). The long memory may also

lead us to wrong observations on network properties of BOLD signals in low

frequencies. The connectivity distortion is commonly expected regardless of which

statistical model of long memory is applied. This fact indicates that Pearson

correlation, widely used as a definition of functional connectivity, may not well

reflect functional interactions among spontaneous neuronal populations implicit

in BOLD signals especially when the brain regions exhibit heterogeneous fractal

behaviors.

The stimulation to the brain facilitates the analysis of functional connectiv-

ity by reducing the gap of connectivity between neuronal activities and BOLD

signals. The change in the BOLD signal is supposed to reflect the change in synap-

tic activity activated by stimulation (Fox & Raichle, 2007; see Figure 4.1(a)). It

implies that the hemodynamics has little impacts on functional connectivity in
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(a) Evoked state

(b) Resting state

Figure 4.1: The comparison between evoked state connectivity and resting state con-
nectivity. (a) Evoked state connectivity well reflects functional connectivity of neu-
ronal activities while (b) resting state connectivity tends to be highly affected by the
hemodynamic kernel consisting of lots of basis functions.

evoked state (Honey et al., 2007). Notice that the difference of hemodynamic

condition between evoked state and resting state is associated with the number

of basis functions as well as the arrangement of these coefficients. The impulse

hemodynamic response in resting state is composed of a large number of ba-

sis functions whose coefficients are slowly decaying according to the quasi long
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memory condition of Theorem 7 while the evoked state hemodynamic response

function is approximated as a combination of just two basis functions (see Fig-

ure 4.1). These hemodynamic properties increase the complexity of resting state

hemodynamics, and promote the connectivity distortion as the heterogeneity of

fractal behaviors between brain regions increases. As a result, the resting state

hemodynamics characterized by long memory acts as an artifact which disturbs

estimating the functional dynamics of neuronal activities from resting state BOLD

signals.

In this chapter new methods for resting state functional connectivity analyses

are proposed to suppress the distortion of functional connectivity caused by frac-

tal behavior. The basic idea underlying these methods is to split a resting state

BOLD signal into long memory and short memory components by approximat-

ing the signal as a fractionally integrated (FI) process in low frequencies. The

long memory model of hemodynamic response proposed in Chapter 3 indicates

that a resting state BOLD signal can be approximated as the output of a long

memory (LM) filter whose nonfractal input is a neuronal activity; in other words,

a resting state BOLD signal x(t) is assumed to be x(t) ≈ x(L)(t)
.
= r(t; d) ∗ u(t)

from (3.17) where r(t; d) denotes a hemodynamic LM filter with memory param-

eter d defined in (3.15) and u(t) is a neuronal activity. A neuronal activity is

linearly transformed into a long memory process through long memory filtering

as depicted in Figure 4.2(a). This FI process model enables us to correct the

connectivity distortion caused by hemodynamic fractal behavior by estimating

the cross-correlation of neuronal activities u(t) as well as memory parameters.

In practice, both the nonfractal input and the LM filter do not exactly rep-

resent neuronal activity and hemodynamics respectively. A resting state BOLD

signal may be also interrupted by physiological processes (such as cardiac motion

and breathing) and instrumental noise as well as hemodynamic activity. Hence,

the LM filter may be a sequence of filters associated with several factors (see

Figure 4.2(b)). Moreover, neuronal activity may exhibit long memory properties

(Lowen & Teich, 1991, 2005; see Section 2.2). In general, all physical sources

influencing the BOLD contrast consist of short memory as well as long memory

components; for example, it was inferred in Proposition 9 that the hemodynamic

filter can be split into long memory and short memory elements. The complexity
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(a) Linear BOLD model

(b) Practical BOLD model

(c) Simplified practical BOLD model

Figure 4.2: The generalized long memory model of resting state BOLD signals. (a)
The long memory model of hemodynamic response, (b) the extended long memory
model of resting state BOLD signals, and (c) its simplified representation. Each
process or filter consists of short memory (SM) and long memory (LM) components.

of physical mechanism underlying the long memory phenomenon makes it diffi-

cult to estimate the endogenous functional dynamics among neuronal populations

from resting state BOLD signals.

In spite of these intricately entangled factors, the practical model can be

simplified by combining all long memory components as an unified LM filter as

shown in Figure 4.2(c). In this case, the combination of short memory com-

ponents is called the nonfractal signal (equivalently called the short memory

process). Therefore, a resting state BOLD signal can be represented as the linear

convolution of an unified nonfractal signal with the unified LM filter as given as
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follows

x(t) =

LM filters L(t)︷ ︸︸ ︷
[r(t; dr) ∗ pL(t; dp) ∗ eL(t; de) ∗ uL(t; du) ∗ · · · ]

∗ [β(t) ∗ pS(t) ∗ eS(t) ∗ es(t) ∗ uS(t) ∗ · · · ]︸ ︷︷ ︸
Short memory S(t)

= L(t) ∗ S(t) (4.1)

where r and β is given in (3.28), pL, eL, uL denote the LM filters modulated by

physiological noise, equipment, and neuronal processes respectively while pS, eS,

uS denote short memory components in these factors. L(t) and S(t) denotes the

unified LM filter and the unified nonfractal signal respectively. The equation (4.1)

indicates that a resting state BOLD signal with long memory can be split into

two independent components: a long memory filter and a short memory process.

The assumption that a resting state BOLD signal can be split into long mem-

ory and short memory leads us to take the correlation of nonfractal signals into

account as a novel concept of resting state functional connectivity. This particular

correlation independent of fractal behavior is called the nonfractal connectivity.

Its mathematical definition is described in Section 4.2.1. The notion of nonfrac-

tal connectivity is comparable to fractal connectivity which was first proposed

in Achard et al. (2008) as the asymptotic value of wavelet correlations over low

frequency scales. The wavelet correlations of two long memory processes con-

verge on a particular value which is determined by memory parameters as well as

short memory components. The theoretical relevance of nonfractal connectivity

to fractal connectivity is described in Section 4.2.2.

Note that the nonfractal signal S(t) in (4.1) is not exactly identical to neuronal

activity uS(t) because of influences from other factors. Likewise, the aggregated

LM filter L(t) represents not just an HRF filter but the combined long memory

effects of all possible sources. Strictly speaking, both the LM filter L(t) and the

nonfractal signal S(t) are abstract concepts that do not exist physically while the

long memory model of resting state BOLD signals has been deductively proposed

in Section 3.2 on the basis of the hypotheses on physical properties of hemody-

namic response and spontaneous neuronal activities. In these reasons, nonfractal
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connectivity does not directly reflect actual correlation of neuronal activities.

Nevertheless, the nonfractal connectivity may give us better information on func-

tional dynamics of spontaneous neuronal activities than the ordinary correlation

of BOLD signals since the it is independent from fractal behavior of cerebral

hemodynamics. In other words, the fractal-driven connectivity distortion can be

corrected by eliminating the effect of long memory components L(t).

The nonfractal connectivity can be effectively estimated by modeling a resting

state BOLD signal as an FI process (see Figure 4.3). According to the simplified

practical model, the effects of all factors on long memory can be easily summarized

in the spectral domain. Let us assume that a resting state BOLD signal can be

well approximated as an FI process. Then, the spectral density of x(t) is obtained

as follows

f ′(λ) =
∣∣1− e−iλ∣∣−2(dr+dp+de+du+··· )

fS(λ) (4.2)

where fS(λ) is the multiplication of short memory spectral densities from all

factors; fS(λ)
.
= fβ(λ)fp(λ)fe(λ)fu(λ). In (4.2), the joint contributions of lots of

factors to long memory are simply represented as a sum of memory parameters in

the spectral density. Therefore, although the remaining short memory component

is still corrupted by other noise factors, the unified effect of long memory on con-

nectivity distortion can be effectively compensated by estimating the summation

of memory parameters using one of the conventional estimators.

Notice that the fractional Gaussian noise (FGN) model could be adopted as

a long memory model of the resting state BOLD signal. However, this model is

not appropriate for complicated dynamic systems such as the brain because its

basic assumption is that the short memory input is just a white noise process;

indeed, neuronal activities are not just white noises but should be described by

more general time series model. On the other hand, the FI process model allows

a diversity of nonfractal signals as an input as discussed in Section 2.7.2.2. For

instance, the FI process becomes an ARFIMA process in the case that the short

memory process is given as an autoregressive (AR) process. Moreover, the model

is fit for the long memory model of hemodynamic response proposed in Chapter

3. In these reasons, the FI process model is used in this chapter to develop the

techniques for fractal-based connectivity analysis.
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Figure 4.3: The physical implication of nonfractal connectivity.

This chapter is organized as follows. In Section 4.2, the nonfractal connec-

tivity and fractal connectivity are theoretically defined, and their relationship is

described. Then, several wavelet-based methods for estimating both nonfractal

connectivity and fractal connectivity along with memory parameters are proposed

in Section 4.3. The performance of these estimators for fractal-based connectivity

was evaluated through simulation studies.

4.2 Fractal-based connectivities

It was stated in the previous section that a resting state BOLD signal with long

memory can be separated into long memory and short memory components on the

basis of the multivariate FI process model. In this section, nonfractal connectivity

and fractal connectivity are defined from this theoretical expectation as novel

measures of resting state functional connectivity. While fractal connectivity is

based on the asymptotic behavior of wavelet correlations, nonfractal connectivity

is associated with the covariance of short memory.
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4.2.1 Nonfractal connectivity

Let x(t) be a vector FI process with memory parameter d. Then, the process can

be represented as follows in terms of fractional difference as defined in Section

2.7.2.2

Dx(t) = u(t) (4.3)

where D = diag
[
(1−B)di

]
denotes a fractional difference operator matrix and

u(t) = [ui(t)] is a multivariate nonfractal signal which consists of weakly sta-

tionary short memory processes. The nonfractal connectivity of two FI processes

xm(t) and xn(t) is defined as

ξm,n =
γ

(u)
m,n√

γ
(u)
m,mγ

(u)
n,n

(4.4)

where γ
(u)
m,n = E [um(1)un(1)] denotes the covariance of um(t) and un(t). There-

fore, the nonfractal connectivity is equal to the correlation coefficient ρ
(u)
m,n =

cor [um(1)un(1)]. As mentioned in Section 4.1, the nonfractal connectivity does

not directly represent the correlation of neuronal activities but that of nonfractal

components split from resting state BOLD signals.

4.2.2 Fractal connectivity

The notion of fractal connectivity was first suggested by Achard et al. (2008), and

motivated from a study on wavelet correlation of a multivariate long memory

process. Theorem 15 states the scale-invariance of wavelet correlation in long

memory processes over low frequencies.

Theorem 15 (Asymptotic wavelet correlation). Let u(t)
.
= {ui(t); i = 1, · · · , p}

be a vector Gaussian white noise process with correlation matrix Σ(u) =
(
γ

(u)
m,n

)
,

and x(L)(t)
.
=
{
x

(L)
i (t); i = 1, · · · , p

}
be a vector weakly stationary process such

that x
(L)
i (t) = r(t; di) ∗ ui(t) where r(t; di) is given in (3.15) with memory pa-

rameter |di| < 1/2. Let W
(m)
j (t) and W

(n)
j (t) be the jth level wavelet coefficients

for x
(L)
m (t) and x

(L)
n (t) respectively based on an wavelet filter {h(l)} with transfer

function H(λ). Suppose that the squared gain function of hj(l) defined in (2.46)
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is approximated by

Hj(λ) ≈

{
2j if 1/2j+1 ≤ |λ| ≤ 1/2j,

0 otherwise.
(4.5)

Then, the jth level wavelet covariance νm,n(j)
.
= cov

{
W

(m)
j (t),W

(n)
j (t)

}
and the

jth level wavelet correlation ρ
(x)
m,n(j)

.
= cor

{
W

(m)
j (t),W

(n)
j (t)

}
can be approxi-

mated as j →∞ by

ν(x)
m,n(j) ≈ γ(u)

m,nB1 (dm, dn) cos
(π

2
(dm − dn)

)
2j(dm+dn), (4.6)

%m,n
.
= ρ(x)

m,n(∞) ≈ ρ(u)
m,n

B1(dm, dn)√
B1(dm, dm)B1(dn, dn)

cos
(π

2
(dm − dn)

)
(4.7)

where

Bk(dm, dn) =
2(1− 2dm+dn−k)

k − dm − dn
. (4.8)

Proof. Since =
[
f ′m,n(λ)

]
= −=

[
f ′m,n(−λ)

]
, we obtain from Corollary 1 and (4.5)

νm,n(j) = 2

∫ 1/2j

1/2j+1

Hj(λ)f ′m,n(λ)dλ

≈ 2j+1

∫ 1/2j

1/2j+1

f ′m,n(λ)dλ = 2j+1

∫ 1/2j

1/2j+1

<
[
f ′m,n(λ)

]
dλ. (4.9)

Let Σd
.
= dm + dn and ∆d

.
= (dm − dn) /2. Based on the assumption on u(t),

fi,j(λ) = γ
(u)
i,j for |λ| ≤ 1/2, we have the same approximation as (3.50) through

the Taylor expansions

<
[
f ′m,n(λ)

]
≈ γ

(u)
i,j

(
cos(∆dπ)λ−Σd + ∆d sin(∆dπ)λ1−Σd

+
Σd

24
cos(∆dπ)λ2−Σd +

Σd

6
∆d sin(∆dπ)λ3−Σd

)
. (4.10)
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Hence, we have the following approximation of νm,n(j) from (4.9) and (4.10)

νm,n(j) ≈ γ
(u)
i,j 2jΣd

[
cos(∆dπ)B1 + ∆d sin(∆dπ)B2

1

2j

+
Σd

24
cos(∆dπ)B3

1

22j
+

Σd

6
∆d sin(∆dπ)B4

1

23j

]
. (4.11)

Then, (4.6) follows from (4.11). If the first-order term in (4.11) is taken, (4.7)

follows from %
(x)
m,n = ν

(x)
m,n/(ν

(x)
m,mν

(x)
n,n)1/2.

The asymptotic wavelet correlation %m,n is called the fractal connectivity of

x
(L)
m (t) and x

(L)
n (t). Similar with nonfractal connectivity, the fractal connectivity

is dependent on the difference of memory parameters. Notice that the nonfractal

signal ui(t) in Theorem 15 is assumed to be a white noise process. The scale-

invariance of wavelet correlation in low frequencies was also proved by Achard

et al. (2008) based on the Taylor series expansion for more general case of non-

fractal signals, however the difference between long memory correlation and short

memory correlation has not been studied.

Theorem 15 can be interpreted in terms of how the fractal behavior has an

impact on functional connectivity. The ratio of fractal connectivity to nonfractal

connectivity is given from (4.7) in Theorem 15 by

%m,n
ξm,n

≈ B1(dm, dn)√
B1(dm, dm)B1(dn, dn)

cos
(π

2
(dm − dn)

)
. (4.12)

Likewise, the ratio of functional connectivity to fractal connectivity is given from

(4.12) and (3.47) in Theorem 12 as follows

ρ
(x)
m,n

%m,n
≈
√

(1− 22dm−1) (1− 22dn−1)

1− 2dm+dn−1

.
= ϑ (dm, dn) . (4.13)

It has an important implication on the upper bound of Pearson correlation ρ
(x)
m,n

given by

ρ(x)
m,n < ϑ (dm, dn) < 1. (4.14)

In other words, the heterogeneity of fractal behaviors leads to the reduction of

correlation between two BOLD signals. The ratios %m,n/ξm,n and ρ
(x)
m,n/%m,n are
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(a) %m,n/ξm,n (b) ρm,n/%m,n

Figure 4.4: The comparison of fractal connectivity with nonfractal connectivity and
Pearson correlation: (a) the ratio of fractal connectivity to nonfractal connectivity
over Hurst exponents, and (b) the ratio of Pearson correlation to fractal connectivity.

depicted in Figure 4.4. When the memory parameters are similar, the fractal con-

nectivity %m,n makes little difference with the nonfractal connectivity ξm,n and the

Pearson correlation ρ
(x)
m,n. As the heterogeneity of memory parameters increases,

the difference between fractal connectivity and nonfractal connectivity becomes

also larger. However, the difference of fractal connectivity with Pearson correla-

tion is negligible when two time series have memory parameters less than 1/2.

Moreover, the difference between fractal connectivity and Pearson correlation is

not significant even in the long memory area where Hm > 1/2 and Hn > 1/2.

The area of Hurst exponents such that ρi,j/%m,n > 0.9 is called the fractal trans-

mission area (FTA). When two resting state BOLD signals have fractal behaviors

inside the FTA, it can be interpreted as that their correlation is similar with the

correlation of nonfractal components. FTA in Figure 4.4 is broader than NTA in

Figure 3.12, which implies that nonfractal connectivity has larger difference with

Pearson correlation than fractal connectivity has.
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4.3 Wavelet-based estimation

In this section a diversity of wavelet-based methods for estimating both nonfractal

connectivity and fractal connectivity from resting state BOLD signals are pro-

posed. The wavelet transform can act as a natural tool to analyze long memory

processes (Bullmore et al., 2004; Percival & Walden, 2006; Wornell, 1993; Wor-

nell & Oppenheim, 1992). Especially, the transform is indispensable to estimate

fractal connectivity which is based on the asymptotic property of wavelet corre-

lation. The other benefit of wavelets is that it splits a time series over several

scales (where large scales correspond to low frequencies). It enables us to skip

some scales which are liable to be seriously corrupted by additive noises. For

instance, the nonfractal connectivity might be directly computed from (3.47) if

the covariance of resting state BOLD signals is known a priori. However, in the

case that the BOLD signal is perturbed by a white noise, the nonfractal connec-

tivity is greatly influenced by the noise since it changes the value of correlation

coefficients ρ̂
(x)
i,j as well as the estimate of memory parameters d̂i. Therefore, it is

instrumental to consider wavelet coefficients just in low frequencies by eliminating

wavelet scales corresponding to high frequencies relatively sensitive to additive

noise.

The wavelet-based estimation of nonfractal connectivity and fractal connec-

tivity is based on Theorem 15 on wavelet covariance and wavelet correlation in

(4.6) and (4.7). Notice that one basic assumption in the theorem is that the short

memory components of resting state BOLD signals are given as Gaussian white

noise processes. In reality, the short memory is not always represented as such a

white noise. To overcome this limitation, let us assume that a multivariate rest-

ing state BOLD signal x(t) can be modeled as a vector FI process with memory

parameter d whose dth order difference process u(t) = (1 − B)dx(t) is a short

memory process and its spectral density satisfies

fu(λ) ∼ Q, λ→ 0 (4.15)

where Q is a symmetric positive definite matrix. This assumption allows us to

exploit Theorem 15 for more various types of short memory components in low
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Figure 4.5: The process of estimating fractal connectivity and nonfractal connectivity.

frequencies. All estimators proposed in this section are based on this assumption.

The overall estimation procedure is depicted in Figure 4.5. It is organized as

two steps: (1) the estimation of memory parameters and (2) the estimation of

short memory covariance matrix. Based on these information, either nonfractal

connectivity or fractal connectivity can be computed. It should be noticed that

memory parameters should be estimated a priori as a prerequisite to estimat-

ing fractal-based connectivities. In Section 4.3.1, two wavelet-based univariate

estimators of memory parameter are introduced: the least-mean-squares (LMS)

method and the maximum likelihood (ML) method. Along with these univari-

ate method, a novel multivariate LMS method is proposed. The performance of

all estimators was evaluated through simulation studies. In Section 4.3.2, three

wavelet-based estimation methods for both nonfractal connectivity and fractal

connectivity are proposed: (1) the SDF(Spectral density function)-based method,

(2) the covariance-based method, and (3) the linearity-based method. These es-

timators are comparatively evaluated through simulation studies.
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4.3.1 Estimation of memory parameters

Several estimators of memory parameter have been introduced in Section 2.7.1.

Here a new class of long memory estimators based on the wavelet transform are

introduced. One is the parametric estimation based on maximum likelihood while

the other is the semi-parametric estimation based on least-mean-square (LMS)

residuals. In addition, the effect of multivariate extension of the wavelet-based

LMS estimator is verified by comparing it with the univariate estimators such as

ML and LMS methods.

4.3.1.1 Maximum likelihood estimation

Let x = [x1, · · · , xn]T be the realization of a Gaussian FI process with memory

parameter d where E[x(t)] = 0 and n = 2J for J ∈ Z, and whose dth order

difference process u(t) = (1 − B)dx(t) is a Gaussian white noise process with

variance γ. Then, the likelihood function for memory parameter d and short

memory variance γ is given by

L
(
d̂, γ̂ |x

)
.
=

1

(2π)n/2 |Σ|1/2
e−xTΣ−1x/2. (4.16)

where Σ is a n × n matrix whose (i, j)th element is E[x(i)x(i + j)] (Percival

& Walden, 2006). Then, the optimal values of d̂ and γ̂ can be obtained as

the values which maximize the likelihood function L
(
d̂, γ̂ |x

)
. It is called the

exact maximum likelihood (ML) estimator. However, this exact ML estimator

requires high computational complexity and becomes more unstable to compute

the likelihood function as d→ 1/2.

Let W be a wavelet transform matrix of x(t) (see Chapter 4.6 in Percival &

Walden (2006)) and Λ = diag[Λj] be a wavelet variance matrix with Λj = E[W 2
j,t]

for j = 1, ..., J . As an alternative to the exact ML estimator, the matrix Σ can

be approximated based on the wavelet transform as follows

xTΣ−1x ≈WTΛW =
1

γ

(
V 2
J

CJ+1(d)
+

J∑
j=1

1

Cj(d)

nj−1∑
t=0

W 2
j,t

)
(4.17)
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where Wj = [Wj,t] for t = 1, · · · , nj denotes the jth level wavelet coefficients of

x(t) and VJ+1 is the scaling coefficients at scale J + 1, and Cj(d) is given by

Cj(d)
.
=

∫ 1/2

−1/2

Hj(λ)
∣∣1− e−iλ∣∣−2d

dλ

= 2j+1

∫ 1/2j

1/2j+1

∣∣1− e−iλ∣∣−2d
dλ (4.18)

with the squared gain function Hj(λ) of the jth level wavelet filter given in (4.5).

Then, the log-likelihood function is given from (4.16) and (4.17) by

l (d, γ |x)
.
= −2 logL (d, γ|x)− n log(2π)

= N log γ + logCJ+1(d) +
J∑
j=1

Nj logCj(d) +
γ̂

γ
(4.19)

where γ̂ can be regarded as the estimate of γ as follows

γ̂
.
=

1

n

(
V 2
J

CJ+1(d)
+

J∑
j=1

1

Cj(d)

nj−1∑
t=0

W 2
j,t

)
. (4.20)

Therefore, d and γ can be estimated by minimizing the log-likelihood function

l (d, γ |x). It is called the wavelet-based maximum likelihood (WML) estimator.

The log-likelihood function in (4.19) can be simplified as the reduced log-likelihood

function from the Brockwell and Davis’ method (Brockwell & Davis, 2009) by

skipping the estimation of γ:

l̃(d|x)
.
= l̃ (d, γ̂ |x)− n

= N log γ̂(d) + logCJ+1(d) +
J∑
j=1

nj logCj(d). (4.21)

4.3.1.2 LMS estimation

The scale-dependent variance equation (4.6) indicates that the wavelet variance

ν(j) exhibits approximately linear trend in the log-log plot as j increases. In other

words, the following linear equation is obtained by taking logarithm to both sides
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of (4.6):

log2 [ν(j)] ≈ 2dj + c. (4.22)

It enables us to nonparametrically estimate the memory parameters d̂ by linear

regression over a given scale interval J = J1 → J2 on the basis of the biased

estimator of wavelet variance given by

ν̂m(j) =
1

nj2j

nj∑
t=1

W 2
j,t (4.23)

where nj = n/2j is the number of coefficients in scale j Percival & Walden (2006).

The optimal values of d and c can be selected to minimize the sum of squares of

residuals as follows

σ2
LS =

1

∆J

J2∑
j=J1

[
log2 ν̂(j)− 2d̂j − ĉ

]2

. (4.24)

for ∆J = J2 − J1 + 1. Therefore, d̂ and ĉ can be numerically calculated by

d̂ =
LT

2 ‖L‖2 [log ν(j)]j , (4.25)

ĉ = [log ν(j)]j −
d̂

2
(J2 − J1 + 1) (J1 + J2) (4.26)

where L = [Lj]j with Lj = log j −
∑J2

j=J1
log j/∆J . This method is called the

wavelet-based least-mean-squares (WLMS) estimator (Percival & Walden, 2006).

The scale interval J can be automatically determined in a similar manner with

Achard et al. (2008) by

Jopt = arg min
J⊂J

σ2
LS(J) (4.27)

where J is the space of all scale intervals. The scale interval which minimizes the

minimum LMS residual is selected as the optimum scale range. This strategy

is called the automatic scale selection for the LMS estimator. Specifying the

minimum scale interval (MSI) ∆Jmin or the lower scale bound (LSB) JL, such

that Jopt ≥ ∆Jmin and J1 ≥ JL, is sometimes useful. In the case of a multivariate

long memory process, the LMS residual criteria in (4.24) can be extended as
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follows

σ2
LS(J) =

1

∆J

J2∑
j=J1

q∑
m=1

{
log2 [ν̂m]− 2d̂mj − ĉm

}2

. (4.28)

In (4.28), all memory parameters are simultaneously determined but without con-

sidering either covariance or correlation among long memory processes. In this

reason this extended estimator is called the semi-multivariate WLMS estimator.

An extension of the semi-multivariate WLMS estimator is proposed in the sub-

sequent Section by considering the covariance and correlation between two time

series.

4.3.1.3 Multivariate WLMS estimation

In this section, an advanced multivariate least mean squares (LMS) estimator

for a vector FI process is proposed as a multivariate extension of the bivariate

estimator suggested by Achard et al. (2008). Let x(t) be a vector FI process with

memory parameter d. Then, the following linear system is obtained from (4.6)

and (4.7):

log2 (νm,n(j)) = (dm + dn)j + cm,n, (4.29)

log2 (ρm,n(j)) = cm,n −
1

2
(cm,m + cn,n) , (4.30)

The multivariate WLMS estimator can be made over a given scale interval J =

J1 → J2 by

σ2
LS(J) =

1

J2 − J1 + 1

J2∑
j=J1

[
p∑

m=1

p∑
n=m

(
log2 γ

(j)
m,n − (dm + dn)j − cm,n

)2

+

p−1∑
m=1

p∑
n=m+1

(
log2 ρ

(j)
m,n − cm,n +

1

2
(cm,m + cn,n)

)2
]
. (4.31)

The solution p := [d1, · · · , dp, c1, · · · , cp, c1,2, · · · , cm,n, · · · , cp−1,p]
T can be numer-

ically found from

p = A−1e (4.32)
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where

A =

 2S2L1 4S1Ip×p 2S1L2

4S1Ip×p (∆J/2)L1 −∆JL2

2S1L
T
2 −∆JL

T
2 4∆JIr×r

 , (4.33)

e(k) :=



J2∑
j=J1

4j log2 γ
(j)
k,k + 2j

∑
l∈K/k

log2 γ
(j)
k,l

 if 1 ≤ k ≤ p

J2∑
j=J1

2 log2 γ
(j)
k−p,k−p −

∑
l∈K/k−p

log2 ρ
(j)
k−p,l

 if p+ 1 ≤ k ≤ 2p

J2∑
j=J1

(
2 log2 γ

(j)
k−2p,k−2p + 2 log2 ρ

(j)
k−2p,k−2p

)
if 2p+ 1 ≤ k ≤ p(p+ 3)/2.

(4.34)

with S1 :=
∑J2

j=J1
j, S2 :=

∑J2
j=J1

j2, ∆J = J2 − J1 + 1. The p × p matrix

L1 := [L1(k, l)]k,l and the r × r matrix L2 := [L2(k, l)]k,l with r = p(p− 1)/2 are

defined by

L1(k, l) :=

p+ 3 if k = l,

1 otherwise.
(4.35)

L2(k, l) =

1 if α = k or α + β = k,

0 otherwise.
(4.36)

where α denotes the maximum integer satisfying bl/%(α)c = 1 and %(α) = (p −
α)(p+ α− 1)/2, and β = α + l − %(α).

4.3.2 Estimation of fractal-based connectivities

The theory on asymptotic wavelet covariance and wavelet correlation in (4.6)

and (4.7) suggests that both nonfractal connectivity and fractal connectivity

can be approximately estimated if memory parameters are known. Therefore,

it is a necessary step to estimate the memory parameters of resting state BOLD

signals by using one of estimators in Section 4.3.1 in advance before starting

fractal-based connectivity analyses. In this section, two univariate wavelet-based
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estimators of memory parameter are adopted: maximum-likelihood (ML) and

least-mean-squares (LMS) methods. Given the memory parameters, the short

memory covariance matrix is estimated by using one of three wavelet-based tech-

niques: SDF-based (SDF), covariance-based (COV), and linearity-based (LIN)

methods. In results, six pairs of estimation methods are made by combining a

memory parameter estimator with a short memory covariance estimator: LMS-

SDF, LMS-COV, LMS-LIN, ML-SDF, ML-COV, and ML-LIN. After both the

memory parameter d̂ and the short memory covariance Σ̂u = [γ̂m,n] are estimated,

the nonfractal connectivity ξ̂m,n between xm(t) and xn(t) can be calculated by

using (4.4) as follows

ξ̂m,n =
γ̂m,n√
γ̂m,mγ̂n,n

. (4.37)

Likewise, the fractal connectivity %̂m,n can be estimated from (4.7) as follows

%̂m,n = ξ̂m,nψ(d̂m, d̂n) (4.38)

where

ψ(d̂m, d̂n)
.
=

B1(d̂m, d̂n)√
B1(d̂m, d̂m)B1(d̂n, d̂n)

cos
(π

2
(d̂m − d̂n)

)
. (4.39)

In this section, three wavelet-based estimators of short memory covariance are

described minutely.

4.3.2.1 SDF-based method

The estimator γ̂m,n of short memory covariance can be parametrically computed

by (4.20). If E[x(t)] = 0, the scaling coefficients are eliminated; (V
(m)
J )TV

(n)
J = 0

since VJ,0 = x(t)
√
N where x(t) is the sample mean of x(t). In final, the following

estimator is obtained

γ̂m,n
.
=

1

N

J∑
j=1

1

Cj(d̂m, d̂n)

Nj−1∑
t=0

W
(m)
j,t W

(n)
j,t (4.40)
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where Cj(d̂m, d̂n) is given from (4.18) by

Cj(d̂m, d̂n)
.
= 2j+1

∫ 1/2j

1/2j+1

<
[(

1− e−iλ
)−d̂m (

1− eiλ
)−d̂n]

dλ. (4.41)

Since the short memory covariance γ̂m,n is parametically computed based on the

template of cross-spectral density function (SDF) for a vector FIN process, this

approach is called the SDF-based method.

4.3.2.2 Covariance-based method

The alternative approach to estimating the short memory covariance γ̂m,n is to

exploit the properties such that the sum of wavelet covariances over all scales is

identical to the covariance of a time series as follows

ν̂m,n =
E
(
V

(m)
J,0 V

(n)
J,0

)
N

+
J∑
j=1

E
(
W

(m)
j,t W

(n)
j,t

)
2j

(4.42)

where ν̂m,n is the sample covariance of xm(t) and xn(t) (see Chapter 9.2 in Percival

& Walden (2006)). If E[x(t)] = 0, the following approximation on the partial sum

of wavelet covariances over the scale range J = J1 → J2 is satisfied

ν̂m,n(J) ≈ γ̂m,nB1

(
d̂m, d̂n

)
cos
(π

2
(d̂m − d̂n)

) J2∑
j=J1

2j(d̂m+d̂n−1) (4.43)

where

ν̂m,n(J) =
1

N

J2∑
j=J1

2−j
Nj−1∑
t=0

W
(m)
j,t W

(n)
j,t . (4.44)

Hence, the following estimator of γ̂m,n can be obtained from (4.43):

γ̂m,n ≈
ν̂m,n(J)

B1

(
d̂m, d̂n

)
cos
(
π
2
(d̂m − d̂n)

)∑J2
j=J1

2j(d̂m+d̂n−1)
. (4.45)
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This approach is called the covariance-based method since it is based on the sum

of wavelet covariances. If J1 = 1, J2 →∞, and dm + dn < 1,

γ̂m,n ≈
ν̂m,n(1− 2d̂m+d̂n−1)

B1

(
d̂m, d̂n

)
cos
(
π
2
(d̂m − d̂n)

)
2d̂m+d̂n−1

(4.46)

since
J∑
j=1

2j(dm+dn−1) =
2dm+dn−1(1− 2J(dm+dn−1))

1− 2dm+dn−1
. (4.47)

Therefore, (4.46) corresponds to (3.46) in the case that dm + dn < 1.

4.3.2.3 Linearity-based method

The other wavelet-based estimator of short memory covariance γ̂m,n can be ob-

tained based on the linearity of wavelet covariance over scales. The equation

(4.6) in Theorem 15 can be extended to the multivariate case that implies the

approximate linearity in log scale as follows

log2 [νm,n(j)] ≈ (dm + dn) j + cm,n (4.48)

where

cm,n = log2

[
γm,nB1(dm, dn) cos

(π
2

(dm − dn)
)]
. (4.49)

Therefore, we have the following estimator of γm,n from (4.49)

γ̂m,n =
2ĉm,n

B1(d̂m, d̂n) cos
(
π
2
(d̂m − d̂n)

) (4.50)

where ĉm,n is determined from (4.26) as the sample mean of ĉm,n(j) over the scale

range J = J1 → J2 as follows

ĉm,n =
1

J2 − J1 + 1

J2∑
j=J1

[
log2 ν̂m,n(j)− (d̂m + d̂n)j

]
. (4.51)

This approach is called the linearity-based method, and classified as a semipara-

metric estimator because the short memory covariance γ̂m,n is determined based
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on the asymptotic property of wavelet covariance for a vector FI process as well

as the nonparametric estimation of ĉm,n as shown in (4.50).

4.4 Simulation studies

In this section the proposed wavelet-based estimators of memory parameter and

nonfractal connectivity are statistically evaluated through simulation studies.

First, the performance of the multivariate WLMS estimator of memory param-

eter proposed in Section 4.3.1.3 is compared with the univariate wavelet-based

estimators such as WML and WLMS methods especially in the case of serious

contamination due to additive noises. Next, three wavelet-based estimators of

nonfractal connectivity proposed in Section 4.3.2 are comparatively evaluated.

4.4.1 Estimation of memory parameters

To compare the performance of the multivariate WLMS estimator (abbreviated

as MS) with those of univariate WLMS estimator (US) and the maximum like-

lihood estimator (ML) (see Section 4.3.1), a special type of vector FI processes

were simulated through Monte Carlo method with 100 repetition as follows. Let

x(L)(t) = {x1, x2, x3, x4} be a vector FI process with memory parameter d whose

dth order difference process u(t) = (1 − B)dx(L)(t) is a vector Gaussian white

noise process is given by

u(t) = Aε(t) (4.52)

where εi(t) for i = 1, · · · , q is an i.i.d. random variable where

cov(εm(t), εn(t)) =

1 if m = n

0 if m 6= n, and
(4.53)
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A =



1 0 · · · · · · 0

0 1 a · · · a
... a

. . .
...

...
... 1 a

0 a · · · a 1


. (4.54)

for a = (1±
√

1− bρ)/b and b = ρ(q − 2)− (q − 3). In this case, u(t) has cross-

correlation cor[ui(t)uj(t)] = ρ for ∀i, j > 1 and i 6= j. Then, an FI process x
(L)
i (t)

can be simulated by convolving ui(t) with the LMF filter defined in (2.94). This

simplification of vector FI processes for simulation studies is without loss of gener-

ality although the estimators are available for more diverse types of long memory

processes. To test the performance of estimators in the presence of perturbation

with the predefined signal-to-noise ratio (SNR), x
(L)
i (t) was also perturbed by

a Gaussian white noise process with variance σ2
e = E

[
(x

(L)
i (t))2

]
10−SNR/10 as

follows

xi(t) = x
(L)
i (t) + σee(t). (4.55)

Figure 4.6 and 4.7 show the comparison of three wavelet-based estimators

when ρ = 0.2 and ρ = 0.8 respectively. In each figure, the first and second columns

correspond to SNR =∞ and SNR = 1 respectively. Also, Case A, Case B, and

Case C correspond to d = dA
.
= [0.1, 0.3, 0.7, 0.9], d = dB

.
= [−0.3,−0.1, 0.1, 0.3],

and d = dC
.
= [0.3, 0.3, 0.3, 0.3]. The simulation was performed with the param-

eters: the number of time points N = 215, and LSB = 1 or 3 (for SNR = ∞
and SNR = 1 respectively) (see Section 4.3.1.2).

When x(t) = x((L)(t) where SNR = ∞, the wavelet ML estimator showed

the least bias and consistency for all cases (see the first column of Figure 4.6 and

4.7). On the other hand, the univariate WLMS estimator was most biased expect

Case B while the multivariate WLMS estimator is less biased but less consistent.

It is manifest that the wavelet ML estimator can be regarded as the best choice

for a pure FI process.

When the FI process is contaminated by a Gaussian white noise, the wavelet

ML estimator was seriously biased for Case A and C while it was less biased for

Case B. By contrast, the multivariate WLMS estimator was less biased for Case

A and Case C although it still had low consistency. More detailed statistics are
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Table 4.1: The bias and consistency of the wavelet-based estimators for memory
parameter when ρ = 0.2.

Case A: d = [0.1, 0.3, 0.7, 0.9]

Bias Std
di 0.1 0.3 0.7 0.9 0.1 0.3 0.7 0.9

SNR=∞ MS 0.193 0.002 -0.071 -0.130 0.039 0.037 0.035 0.037
US -0.010 -0.030 -0.103 -0.170 0.015 0.018 0.020 0.021
ML -0.006 -0.007 0.003 0.005 0.005 0.005 0.005 0.006

SNR=1 MS 0.123 0.033 -0.077 -0.177 0.061 0.065 0.090 0.084
US -0.028 -0.040 -0.124 -0.259 0.014 0.016 0.013 0.011
ML -0.044 -0.116 -0.382 -0.578 0.005 0.004 0.004 0.004

Case B: d = [−0.3,−0.1, 0.1, 0.3]

Bias Std
di -0.3 -0.1 0.1 0.3 -0.3 -0.1 0.1 0.3

SNR=∞ MS 0.229 0.031 0.011 -0.005 0.041 0.035 0.037 0.036
US 0.010 0.002 -0.013 -0.037 0.017 0.017 0.018 0.017
ML 0.002 -0.002 -0.005 -0.007 0.005 0.005 0.004 0.005

SNR=1 MS 0.417 0.083 -0.005 -0.009 0.061 0.062 0.060 0.060
US 0.235 0.053 -0.028 -0.040 0.018 0.018 0.017 0.017
ML 0.181 0.046 -0.045 -0.116 0.005 0.004 0.004 0.004

Case C: d = [0.3, 0.3, 0.3, 0.3]

Bias Std
di 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

SNR=∞ MS 0.158 -0.026 -0.017 -0.026 0.049 0.43 0.040 0.055
US -0.072 -0.075 -0.072 -0.075 0.037 0.035 0.037 0.037
ML -0.009 -0.009 -0.009 -0.008 0.005 0.005 0.005 0.005

SNR=1 MS 0.104 -0.059 -0.049 -0.045 0.067 0.072 0.060 0.054
US -0.124 -0.131 -0.129 -0.130 0.054 0.046 0.053 0.055
ML -0.117 -0.117 -0.117 -0.116 0.004 0.004 0.004 0.004
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(a) Case A (b) Case A with SNR=1

(c) Case B (d) Case B with SNR=1

(e) Case C (f) Case C with SNR=1

Figure 4.6: Box plots of bias in estimation of memory parameters when the short
memory correlation is given as 0.2.
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(a) Case A (b) Case A with SNR=1

(c) Case B (d) Case B with SNR=1

(e) Case C (f) Case C with SNR=1

Figure 4.7: Box plots of bias in estimation of memory parameters when the short
memory correlation is given as 0.8.

103



4. Fractal-based analyses

introduced in Table 4.1. The multivariate WLMS estimator exhibited the best

performance when the FI process has long memory with d > 0 while its perfor-

mance had fallen when d < 0. All of these results suggest that the multivariate

WLMS estimator has the best performance among wavelet-based methods when

resting state BOLD signals are seriously corrupted by white noise.

4.4.2 Estimation of fractal-based connectivities

This section reports the evaluation of the wavelet-based estimators for nonfrac-

tal connectivity such as the SDF-based method, the covariance-based method,

and the linearity-based method (see Section 4.3.2). As suggested in Section 4.3,

these connectivity estimators should be combined with one of memory parameter

estimators. Here the univariate WLMS estimator and the wavelet ML estima-

tor were employed. Finally, six pairs of estimators are finally tested and named

the LMS-LIN, LMS-COV, LMS-SDF, ML-LIN, ML-COV, ML-SDF methods. In

particular, the effects of short memory condition, dimension, and length of time

series on the estimation of nonfractal connectivity are analyzed.

While the fractionally integrated noise (FIN) was simulated for the estimation

of memory parameters in the previous section, the multivariate ARFIMA(p,d, 0)

processes are simulated (see Section 2.7.2.2). Let x(t) = {xi(t); i = 1, · · · , p} be

a vector FI process with memory parameter d whose dth order difference process

u(t) = (1−B)dx(L)(t) is an ARMA(p, 0) process as follows

u(t) = Φ−1
p (L)Aε(t). (4.56)

where the innovation A and ε(t) are given in (4.53) and (4.54), and

Φp(L) =


∑p

i=1 ϕ1,iL
i 0

. . .

0
∑p

i=1 ϕq,iL
i

 , (4.57)

The memory parameters d were equally distributed over d ∈ (−1/2, 1/2), and

the simulation study was performed through Monte Carlo simulations with 100

repetition.
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Effects of short memory condition and dimension

To study the effects of short memory conditions on the performance of estimators,

four-dimensional ARFIMA(p, d, 0) processes were simulated with four different

types of short memory condition in (4.54) and (4.57):

(1A) A = I and ϕk,i = 0

(1B) A = I, ϕk,1 = 0.9 and ϕk,i = 0 for i > 1

(2A) A = A0 and ϕk,i = 0

(2B) A = A0, ϕk,1 = 0.9 and ϕk,i = 0 for i > 1

where d = {0.2, 0.4, 0.6, 0.8} and A0 was set with ρ = 0.3 in (4.54). In the con-

ditions (1A) and (1B), short memory processes u(t) is statistically independent

of each other while the conditions (2A) and (2B) force short memory processes

to be cross-correlated by the matrix A0. On the other hand, the conditions (1B)

and (2B) let each process be autocorrelated.

Figure 4.8 shows the performance of six estimators for the above four short

memory conditions. All estimators were less efficient for the conditions (1B) and

(2B) where short memory parts were more auto-correlated. This deterioration

in estimation efficiency is foreseeable because the short memory conditions in

(1B) and (2B) make the convergence of short memory spectral density in (4.15)

too precipitous over a short range of low frequencies. Hence, it should be noticed

that the proposed wavelet-based estimators are inefficient when the short memory

component u(t) does not strictly satisfy the assumption in (4.15). Nevertheless,

the ML-LIN and ML-COV estimators of nonfractal connectivity were less biased

than others even in the conditions (2A) and (2B) where short memory components

are cross-correlated.

However, these estimators were significantly biased as the dimension p in-

creases in the case that the true nonfractal connectivity ρ is large. Figure 4.9

and 4.10 show the performance of estimators with varying number of time series

(p = 21, 22, · · · , 27) when u(t) is given with the condition (2A) where ρ = 0.2

and ρ = 0.8 respectively. In this case, the short memory process u(t) can be re-

garded as a multivariate ARMA(0, 0) process with innovation in (4.54). When the

given correlation ρ of short memory components is small, the covariance-based

estimators (LMS-COV and ML-COV) maintained the least bias even in large
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(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Figure 4.8: Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(p, d, 0) processes with different short memory conditions.
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dimensions regardless of what estimator of memory parameter is applied (see

Figure 4.9(c) and 4.9(d)) while the SDF-based estimators (LMS-SDF and ML-

SDF) were greatly biased in large dimensions. However, the covariance-based

estimators also became more biased in the case of large short memory correlation

ρ = 0.8 (see Figure 4.10(c) and 4.10(d)). It indicates that high correlation of

short memory components as well as large dimension result in the deterioration

of consistency for most estimators except the LMS-LIN method. In other words,

the performance of nonfractal connectivity estimators is manifestly influenced by

both the number of time series and the correlation structure of short memory

components, and the influence is more significant in larger dimensions.

Effects of length of time series

Fig. 4.11 illustrates the performance of nonfractal connectivity estimation with

various numbers of time points. The multivariate FI processes, whose short mem-

ory u(t) was given with the condition (2A) where ρ = 0, were simulated with

length N = 29, 210, · · · , 215. Except the LMS-LIN method, most estimators be-

came more consistent as the time length N increases. Note that the LMS-LIN

method was unbiased even when the length of time series is very long. Indeed,

the LMS-LIN and ML-LIN method are in prominent contrast although they are

based on the linearity-based method in common. Hence, it suggests that the per-

formance of nonfractal connectivity estimators may be subject to what method

is exploited to estimate memory parameters.

Choice of estimators

Concluding the simulation studies, the covariance-based estimators (such as LMS-

COV and ML-COV) are recommended as the best estimator of nonfractal con-

nectivity in a high-dimensional brain network since they tend to be less biased

in large dimensions than other wavelet-based estimators. Although the LMS-

LIN estimator seems to be somewhat less biased even in large dimension than

the LMS-COV and ML-COV methods, however its efficiency is seriously lowered.

Fig 4.12 illustrates an example of nonfractal connectivity estimation based on the

wavelet ML method. The nonfractal connectivity matrix estimated by the ML-
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(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Figure 4.9: Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable dimensions when the short memory
correlation is ρ = 0.2.
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(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Figure 4.10: Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable dimensions when the short memory
correlation is ρ = 0.8.
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(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Figure 4.11: Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable length of time series when the short
memory correlation is ρ = 0.
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(a) Short memory correlation (b) ML-LIN

(c) ML-COV (d) ML-SDF

Figure 4.12: An example of nonfractal connectivity estimation in a simulated 8-
dimensional ARFIMA(0, d, 0) process.

COV method is more similar with the original short memory correlation matrix

than others. Note that the ML-COV method is less biased than the LMS-COV

method for a diversity of short memory conditions. However, the use of wavelet

ML estimator is not recommended when the signal-to-noise ratio is low since it

tends to be less consistent in the presence of noise contamination as discussed in

Section 4.4.1.
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4.5 Summary and discussion

In this chapter, a resting state BOLD signal have been modeled as an FI process

on the basis of the expectation from the previous chapter such that the FI process

is more appropriate for resting state BOLD signals. Although this model has been

suggested for fMRI time series, it could be extensively applied for a diversity of

neuroimaging data (including EEG and MEG) taken at rest. The FI process

model implies that a resting state neuroimaging signal with long memory can

be split into long memory and short memory components. The short memory

signal is a virtual concept which does not directly represent neuronal processes.

It would be valuable to empirically figure out the association between nonfractal

dynamics and endogenous neuronal activities since it might provide the physical

and biological basis to understand fractal behavior of brain dynamics. Based on

the FI process model, a novel concept of resting state functional connectivity,

called the nonfractal connectivity, has been proposed, and its properties have

been clarified theoretically including the relationship with fractal connectivity.

Various wavelet-based techniques for estimating nonfractal connectivity and

fractal connectivity along with memory parameter have been suggested. The es-

timator consists of memory parameter estimator and short memory covariance

estimator as depicted in Figure 4.5. The multivariate WLMS estimator was pro-

posed to estimate memory parameters in a multivariate manner as an extension

of the bivariate WLMS method first proposed in Achard et al. (2008). It is

concluded, from the simulation studies, that this advanced estimator can be cho-

sen as a best estimator of memory parameters as long as the BOLD signals are

greatly noisy. In the next step, several wavelet-based estimators has been evalu-

ated through simulation studies. The estimation of short memory covariance is

highly influenced by the short memory condition and the number of time series.

It suggests that the choice of estimators should be carefully determined according

to the individual properties of neuroimaging data.

112



Chapter 5

Applications

5.1 Introduction

The functional connectivity analysis of resting state neuroimaging signals is more

intricate than task-based analysis of the brain since a resting state signal tends to

be easily perturbed by physiological factors and noises while it has no reference

signal such as stimulation to be regressed. It has been proposed in Section 3.5

that the fractal behavior triggered by cerebral hemodynamic activities is one of

sources perturbing functional connectivity of resting state brain signals. The

novel concepts of nonfractal connectivity and fractal connectivity as well as the

wavelet-based estimation techniques have been proposed in Chapter 4 to overcome

the fractal-driven connectivity distortion. This chapter introduces examples of

fractal-based analysis for resting state functional connectivity in both human

brain and animal brain. In Section 5.2 depressed patients are compared with

normal persons in terms of network properties of the brain produced through

the fractal-based connectivity analysis. In Section 5.3 the rat brains are studied

by comparing the network properties before training the rat with those after

training. All experimental results demonstrate that the fractal-based analysis

provides detailed and extraordinary information on functional connectivity which

cannot be identified by Pearson correlation.
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5.2 Fractal-based analysis of the human brain

A possible application of fractal-based connectivity analysis is to provide informa-

tion instrumental for diagnosis of diseases. An an example, the major depressive

disorder (MDD) is one of complicated diseases on which doctors are hard to make

a correct diagnosis (Pérez-Stable et al., 1990). A number of psychiatric researches

have focused on analyzing resting state functional connectivity of neuroimaging

data taken from the MDD patients at rest (Bluhm et al., 2009; Greicius, 2008;

Greicius et al., 2007; Sheline et al., 2009). Recently, a study on network prop-

erties of resting state functional connectivity found a substantial difference in

community structure of the brain network between healthy subjects and MDD

patients (Lord et al., 2012). They computed the Pearson correlation, and then ap-

plied the distance penalization to the functional connectivity graphs to eliminate

the non-neuronal effect of distance between regions on reduction of correlation

(Salvador et al., 2005). A significant shift of the participation index (PI) (see

Section 2.4) from healthy subjects to MDD patients was found in 29 regions from

the distance-penalized network. Such a shift of PI, however, was not found in

the original networks where the distance penalization was not applied. More-

over, it is not clear whether such a trend of PI shift is consistent over a range

of thresholds for connectivity sparsity. In this section, it is shown that either

nonfractal connectivity or fractal connectivity are beneficial to reveal the change

in node strength from healthy subjects to MDD patients, and that this change is

consistently observed over a range of thresholds without distance penalization.

The resting state fMRI data of twenty-one MDD patients and twenty-two

healthy subjects were taken as an echo-planar imaging (EPI) sequence from a

3 Tesla scanner. The raw data with 488 time points were preprocessed, in-

cluding slice time correction, motion correction, detrending, band-pass filtering

(0.01 0.08Hz) and global mean removal, by using the statistical parametric map-

ping software (SPM5; http://www.fil.ion.ucl.ac.uk/spm) and the data pro-

cessing assistant for resting-state fMRI (DPARSF; http://www.restfmri.net/

forum/DPARSF) (Yan & Zang, 2010). The fMRI data was segmented into 95 ROIs

of cingulate cortex and insular cortex using a variation of the automatic anatomic

labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). For more specification on
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the fMRI data, refer to Lord et al. (2012) that used the same data.

Three connectivity measures, such as Pearson correlation (COR), nonfractal

connectivity (NFC), and fractal connectivity (FRC), were computed for each

subject. The LMS-LIN estimator, consisting of the univariate WLMS estimator of

memory parameter and the linearity-based estimator of short memory covariance,

was used as an estimator of nonfractal connectivity and fractal connectivity (see

Section 4.3.2). The minimum scale interval (MSI) and the lower scale bound

(LSB) for automatic scale selection were set to be 3 and 2 respectively (see Section

4.3.1.2).

Figure 5.1 illustrates the samples of connectivity matrix. The estimators of

fractal connectivity and nonfractal connectivity might be erroneous due to the

short length of BOLD signals as expected in Section 4.4.2. Notice that both

fractal connectivity and nonfractal connectivity have a fewer number of pairs

with negative correlation than Pearson correlation has. Such a phenomenon may

be caused by the pairs of regions with memory parameter higher than 1/2; indeed,

the fractal connectivity %m,n in (4.13) has different sign with Pearson correlation

ρm,n if dm > 1/2 and dn > 1/2. Likewise, the nonfractal connectivity ξm,n in

(3.47) also has different sign with Pearson correlation if dm > 1/2, dn > 1/2 and

|dm − dn| < 1. In Figure 5.1(a), 27 ROIs exhibit such a fractal behavior that

H = d + 1/2 > 1. In the nonfractal connectivity matrix in Figure 5.1(d), a few

regions exhibiting strong negative correlation with others are observed. Such an

abnormal strong negative correlation may happen if dm > 1/2, dn > 1/2 and

|dm − dn| → 1 from (3.47).

Effects of long memory on global network properties

After yielding the connectivity matrices, both global and local network metrics

were measured over a range of thresholds for connectivity sparsity (see Section

2.4 for definitions of graph theoretical metrics). Fig. 5.2 and 5.3 illustrate the

comparison of fractal connectivity with nonfractal connectivity in terms of global

graph metrics such as global efficiency (GE), small-worldness index (SWI), char-

acteristic path length (CP), and clustering coefficients (CC). The distance penal-

ization was applied before the global network metrics are produced. In Figure
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(a) Hurst exponents (b) Pearson correlation

(c) Fractal connectivity (d) Nonfractal connectivity

Figure 5.1: Fractal analyses of the human brain: (a) The historgram of Hurst expo-
nents over ROIs, (b) Pearson correlation, (c) fractal connectivity, and (d) nonfractal
connectivity.

5.2(a) and 5.2(b), the mean of global efficiency in both healthy subjects and MDD

patients has little difference between nonfractal connectivity and fractal connec-

tivity although GE tends to decrease in nonfractal connectivity as the threshold

increases. On the other hand, the subject variance of global efficiency was sig-

nificantly greater in nonfractal connectivity than fractal connectivity. In other

words, the nonfractal components have less between-subject consistency of GE

than the original BOLD signals have.

It is seen in Figure 5.2(c), 5.2(d), 5.3(c), 5.3(d), that both SWI and CC

have lower values in nonfractal connectivity than in fractal connectivity when

the threshold is small (< 20%). In spite of the reduction of SWI, the nonfractal
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(a) (b)

(c) (d)

Figure 5.2: Spectrum of global efficiency and small-worldness index across thresholds
for healthy subjects (red) and MDD patients (blue); (a) and (c) for fractal connec-
tivity, (b) and (d) for nonfractal connectivity.

connectivity networks still maintain small-worldness across most thresholds; the

mean SWI value is over 1 (Achard et al., 2006; Montoya & Sol, 2002; Watts &

Strogatz, 1998). In addition, the small-worldness is more consistent in nonfractal

connectivity over a range of thresholds than in fractal connectivity. The small-

worldness is also found from the characteristic path length (CP) of both fractal

connectivity and nonfractal connectivity as CP approaches to 1 as the threshold
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(a) (b)

(c) (d)

Figure 5.3: Spectrum of normalized characteristic path length and clustering coeffi-
cient across thresholds for healthy subjects (red) and MDD patients (blue); (a) and
(c) for fractal connectivity, (b) and (d) for nonfractal connectivity.

increases as shown in Figure 5.3(a) and 5.3(b). Unlike other global metrics, a

significant difference between healthy subjects and MDD patients is found from

the trend of the mean CP of nonfractal connectivity when the threshold is small

(< 20%) (see Figure 5.3(b)).

Figure 5.4 and 5.5 shows the comparison of healthy subjects with MDD pa-

tients in the global network metrics averaged over a range of thresholds. No
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(a) (b)

(c) (d)

Figure 5.4: Comparison of global efficiency and small-worldness index averaged over
thresholds between healthy subjects and MDD patients; (a) and (c) graph metrics in
fractal connectivity, (b) and (d) those in nonfractal connectivity.

significant between-group difference in global metrics was found from both frac-

tal connectivity and nonfractal connectivity even though the mean difference was

greater in nonfractal connectivity than in fractal connectivity. It should be also

noted that the subject variance was greater in nonfractal connectivity than in

fractal connectivity. As a concluding remark, all these results suggest that the

global network metrics are not useful to distinguish MDD patients from healthy

subjects.
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(a) (b)

(c) (d)

Figure 5.5: Comparison of normalized characteristic path length and clustering coef-
ficient averaged over thresholds between healthy subjects and MDD patients; (a) and
(c) graph metrics in fractal connectivity, (b) and (d) those in nonfractal connectivity.

Effects of long memory on local network properties

In addition to the global network metrics, the local network metrics were com-

puted from fractal connectivity and nonfractal connectivity matrices, and com-

pared with those of the Pearson correlation matrix. The two-sample t-tetst was

performed for the local metrics such as local efficiency (Eloc), LEGE (Eloc/Eglob),

participation index (PI), betweenness centrality (BCI), ranked betweenness cen-
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trality (BCR), degree, modularity, path length, and strength. The distance pe-

nalization was not applied before extracting local metrics. Most local metrics

except degree and strength did not exhibit a significant mean difference between

healthy subjects and MDD patients. In particular a noteworthy shift between

healthy subjects and MDD patients was not found even in PI of all connectivity

matrices while such a substantial difference was found by Lord et al. (2012) in

PI extracted from Pearson correlation of the same data. This discrepancy seems

to be caused by the effect of distance penalization since the local metrics in their

analysis were produced after the distance penalization, which implies that the PI

is highly sensitive to the distance penalization. Therefore, the group difference

in PI is disputable unless the exclusive influence of distance penalization on PI

shifts are well verified through additional experiments.

While the PI had negligible group difference in all regions, degree and node-

wise strength exhibited a substantial between-group difference in some regions.

Figure 5.6, 5.7, 5.8, and 5.9 show the statistical comparison of node strength in

three types of brain networks by depicting the distribution of mean group dif-

ference and p-values in node strength over a range of thresholds. Depicting the

statistics of degree was omitted since it is almost similar with node strength.

Ten brain regions, as listed in Table 5.1, were selected as the regions with the

most robust group difference since they have at least one connectivity measure

(among COR, NFC, and FRC) whose p-values for node strength are lower than

the significance level over the range of thresholds (∈ [0.1, 0.4]). For example, the

middle horizontal line at the second column of each figure indicates the signifi-

cance level p = 0.05; all p-values located above the line imply the rejection of the

hypothesis such that healthy subjects and MDD patients have different means of

node strength. In other words, the p-value can be exploited to justify a statistical

hypotheses on the mean between-group difference.

As shown in Fig. 5.6(b), 5.6(f), 5.7(d), 5.7(f), and 5.8(b), there were five

regions -such as ORBsupmed.R, PHG.L, CAU.R, THA.L, TPOsup.R- where node

strengths extracted from nonfractal connectivity exhibited a significant mean

difference between healthy subjects and MDD patients with p-values lower than

the significance level. In these regions, the mean shift of node strength was greater

in nonfractal connectivity than either fractal connectivity or Pearson correlation
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Table 5.1: The ROIs of the human brain with significant difference in node strength
between HC and MDD.

ROI name Abbreviation Robust Connectivity

Superior frontal gyrus, medial orbital ORBsupmed.R NFC
Gyrus rectus REC.L COR
Parahippocampal gyrus PHG.L NFC, FRC
Calcarine fissure and surrounding cortex CAL.L FRC
Caudate nucleus CAU.R NFC
Thalamus THA.L NFC
Temporal pole: superior temporal gyrus TPOsup.R NFC
Temporal pole: middle temporal gyrus TPOmid.R FRC
Anterior MCC anterior MCC COR
PCC-Spectro PCC-Spectro FRC

as shown in the first column of Figure 5.6(a), 5.6(e), 5.7(c), 5.7(e), and 5.8(a).

On the other hand, the other four regions -such as PHG.L, CAL.L, TPOmid.R,

and PCC-Spectro- showed significant group difference in node strength of fractal

connectivity as shown in Figure 5.6(f), 5.7(b), 5.8(d), and 5.9(b). In these reasons,

the node strengths of fractal connectivity may be more beneficial than those of

either nonfractal connectivity or Pearson correlation to reveal the group difference

between healthy subjects and MDD patients. There were two brain regions -such

as REC.L and anterior MCC- that exhibited significant between-group difference

in node strength of Pearson correlation as shown in Figure 5.6(d) and 5.8(f).

The mean group difference of node strength in the first columns of Figure 5.6,

5.7, 5.8, and 5.9 also have essential implication on neurodynamics; the gap of

group differences between nonfractal connectivity and fractal connectivity may

originate from the heterogeneity of fractal behaviors among the connected neigh-

bors. On the contrary, the small gap of group differences in node strength between

nonfractal connectivity and fractal connectivity can be interpreted as the implica-

tion such that the brain region has relatively homogeneous fractal properties over

connected neighbors. According to this interpretation, the five regions -such as

ORBsupmed.R, CAU.R, THA.L, TPOsup.R, PCC-Spectro- have relatively het-

erogeneous fractal behaviors with neighbors while the other five regions -such

as REC.L, PHG.L, CAL.L, TPOmid.R, anterior MCC- have more homogeneous
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(a) ORBsupmed.R (b) ORBsupmed.R

(c) REC.L (d) REC.L

(e) PHG.L (f) PHG.L

Figure 5.6: The t-test statistics of node strength in Pearson correlation (circle), non-
fractal connectivity (diamond), and fractal connectivity (rectangle) for such brain
regions as ORBsupmed.R, REC.L, and PHG.L.
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(a) CAL.L (b) CAL.L

(c) CAU.R (d) CAU.R

(e) THA.L (f) THA.L

Figure 5.7: The t-test statistics of node strength in Pearson correlation (circle), non-
fractal connectivity (diamond), and fractal connectivity (rectangle) for such brain
regions as CAL.L, CAU.R, and THA.L.
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(a) TPOsup.R (b) TPOsup.R

(c) TPOmid.R (d) TPOmid.R

(e) anterior MCC (f) anterior MCC

Figure 5.8: The t-test statistics of node strength in Pearson correlation (circle), non-
fractal connectivity (diamond), and fractal connectivity (rectangle) for such brain
regions as TPOsup.R, TPOmid.R, and anterior MCC.
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(a) PCC-Spectro (b) PCC-Spectro

Figure 5.9: The t-test statistics of node strength in Pearson correlation (circle),
nonfractal connectivity (diamond), and fractal connectivity (rectangle) for the PCC-
Spectro region.

fractal behaviors.

In conclusion, all of these experimental results for local network metrics

demonstrate that both fractal connectivity and nonfractal connectivity are useful

as the essential features of brain networks which reveal the between-group dif-

ference. Indeed, the nonfractal connectivity and fractal connectivity were more

frequently chosen as the featured measure of functional connectivity than Pearson

correlation as listed in Table 5.1.

5.3 Fractal-based analysis of the rat brain

The fractal-based connectivity analysis is instrumental for studies of animal brains

even though most fractal analyses have focused on the human brain (Herman

et al., 2011). This section introduces an application of the fractal-based connec-

tivity analysis techniques proposed in Chapter 4 to the rat brain. The aim of this

study is to figure out the effect of stimulation on resting state functional connec-

tivity by observing the change in functional connectivity triggered by external

stimulation as depicted in Figure 5.10(a).

Three 7-8 weeks old male Wistar rat were anesthetized with Nembutal (40 mg/kg

i.p.) and underwent a standard surgical procedure to implant a bipolar stimula-
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(a)

(b)

Figure 5.10: The experimental paradigm of resting state fMRI in the rat brain: (a)
the summarized experimental process and (b) the stimulus details.

tion electrode. To avoid motion artifacts during fMRI data acquisition, the rats

were initially anesthetized with 1.0-1.5% isoflurane (in 50:50 N2O:O2; v/v) and

after this the narcosis was sedated by medetomidine (100µg/kg body). The

fMRI data was taken on a Bruker Biospec 47/20 4.7T scanner by using an

echoplanar imaging (EPI) sequence with the environmental parameters: TR=1 s

(TR=2 s during stimulation), TE=24 ms, slice thickness=1 mm, FOV=40 × 40

mm, matrix=64 × 64, 8 slices. The stimulation was given with a general block

design; an fMRI data was first acquired during 600 s at rest, and then a 10 Hz

stimulus train of 8 s (whose intensity is set to be a half of the maximum amplitude

for evoked population spikes) was assigned every minute during 15 minutes (see

Figure 5.10(b)). After the 15 times stimulus, the subsequent resting state fMRI

data was acquired during 600 s. Eight horizontal T2-weighted spin-echo images

were taken as the anatomical image template by using a rapid acquisition relax-

ation enhanced (RARE) sequence with the parameters: repetition time (TR)=4 s,

echo time (TE)=15 ms, slice thickness=1 ms, field of view (FOV)=40 × 40 mm,

matrix=256× 256, RARE factor=8, number of averages=4 (Hennig et al., 1986).
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Table 5.2: The list of parcellated regions in the rat brain.

ROI name Abbreviation

Anterior cingulate cortex aCG
Caudate putamen (striatum), left CPu-L
Caudate putamen (striatum), right CPu-R
Medial entorhinal cortex, left MEnt+MEntV-L
Medial entorhinal cortex, right MEnt+MEntV-R
Hippocampus, left HIP-L
Hippocampus, right HIP-R
Primary somatosensory cortex, left S1-L
Primary somatosensory cortex, right S1-R
Secondary somatosensory cortex, left S2-L
Secondary somatosensory cortex, right S2-R
Septum: Lateral septal nucleus intermediate part, LSI+MS

Medial septal nucleus
Tectum, left TE-L
Tectum, right TE-R
Thalamus TH

As listed in Table 5.2, the ROIs were manually parcellated from the anatomical

images using the FMRIB Software Library (FSL) (Jenkinson et al., 2012), and

were co-registered with the fMRI volumes on the basis of the affine model of 12

degrees of freedom using the FMRIB linear image registration tool (FLIRT) (see

Figure 5.11; see Paxinos & Watson, 2007 for the anatomical structure of the rat

brain, and Jenkinson & Smith, 2001 for FLIRT).

The functional data in each ROI were averaged into a time series, and prepro-

cessed through removing linear trends; such additional steps as slice scan time

correction and band-pass filtering were not applied. From the averaged BOLD

sequences, three connectivity metrics, such as Pearson correlation, fractal connec-

tivity, and nonfractal connectivity, were calculated for all possible pairs of ROIs.

Both the LMS-LIN and ML-LIN estimators were exploited to estimate fractal

connectivity and nonfractal connectivity respectively (see Section 4.3.2). The

minimum scale interval (MSI) and the lower scale bound (LSB) for automatic

scale selection were assigned to be 4 and 1 respectively (see Section 4.3.1.2).

The scale-dependent correlation matrices were calculated based on the wavelet
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Figure 5.11: The location of fifteen ROIs in fMRI slices of the rat brain.
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transform, and were exploited to estimate the Hurst exponents by the WLMS

estimator. Figure 5.12(a) shows the distribution of wavelet-based LMS residuals

(4.24) over all possible scale intervals. In this case, the scale interval J = [4, 6] with

the smallest LMS residual are determined as the optimal scale interval according

to the criteria (4.27). Figure 5.12(b) illustrates the voxel-wise spatial distribution

of Hurst exponents in a slice. It seems that the Hurst exponents are higher in the

vicinity of hippocampus, and these area with high Hurst exponent have greater

long-range dependence or persistence over time.

Based on the estimated Hurst exponents, the fractal connectivity matrix for

voxel-wise pairs was computed for the fMRI data taken before stimulation (see

Section 4.3.2). Figure 5.12(c) shows a special Y-type pattern of voxels which have

strong fractal connectivity. The set of voxels exhibiting such a spatial pattern

of prominently fractal-connected neighbors tend to be located inside the Y-type

pathway connecting anterior cingulate cortex (aCG), hippocampus (HIP), and

medial entorhinal cortex (MEnt+MEntV) (see Figure 5.12(d)).

Along with fractal connectivity, nonfractal connectivity was also computed for

both pre-stimulation fMRI data and post-stimulation fMRI data, and compared

with Pearson correlation as shown in Figure 5.13. A significant rearrangement of

correlation pattern in Pearson correlation was driven by stimulation after stimu-

lation. On the other hand, there were no significant change in nonfractal connec-

tivity between pre-stimulation resting state and post-stimulation resting state.

This fact is also demonstrated in Figure 5.15 which shows the comparison of

Pearson correlation and nonfractal connectivity in the mean difference between

pre-stimulation and post-stimulation resting state over all pairs of ROIs. The

mean shift after stimulation was greater in Pearson correlation than in nonfractal

connectivity.

The difference between Pearson correlation and nonfractal connectivity is re-

vealed more saliently when the functional connectivity are represented as graphs

with threshold 0.2. In Figure 5.14, most functional connections formed before

stimulation were disconnected due to stimulation. On the other hand, the non-

fractal connectivity network has fewer connections than Pearson correlation, but

most connections were not entangled by stimulation. Reciprocal connections in

the Primary and secondary somatosensory cortices (including S1-L, S1-R, S2-

130



5. Applications

(a) (b)

(c) (d)

Figure 5.12: Fractal analyses of the rat brain: (a) Relative LMS residuals of the
estimator over all possible scale ranges, (b) the distribution of Hurst exponents, (c)
the Y-type pattern of voxels with high asymptotic wavelet correlation, and (d) the set
of voxels whose asymptotically correlated neighbors are distributed in such an Y-type
pattern.

L, and S2-R) were preserved in the nonfractal connectivity network regardless

of stimulation. The modularity seems to be more immune to external tasks in

nonfractal connectivity. Moreover, a strong interaction between left and right

hemispheres in these areas were found from the nonfractal connectivity networks.

This symmetric interaction was enhanced and activated after stimulation while

the symmetry vanished in Pearson correlation (see Figure 5.16). The symme-

try between left and right hemispheres was also found in tectum (TE-L, TE-R)
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(a) Pearson correlation

(b) Nonfractal connectivity

(c)

Figure 5.13: Comparison of Pearson correlation and nonfractal connectivity.

after stimulation. The other noticeable connection is the strong nonfractal con-

nectivity between anterior cingulate cortex (aCG) and medial entorhinal cortex

(MEnt+MEntV-L) since this connection has been frequently found through task-

based correlation studies (Schwarz et al., 2008).
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(a) Pearson correlation

(b) Nonfractal connectivity

Figure 5.14: Graph visualization of Pearson correlation and nonfractal connectivity.
The threshold was set to be 0.2.

5.4 Summary and discussion

In this chapter, two applications of fractal-based connectivity analysis techniques

on human and animal brains have been introduced. In these experiments, fractal

connectivity and nonfractal connectivity were exploited to reveal either difference

or consistency between two distinct groups of resting state BOLD signals. For

the analysis of human brain, both fractal connectivity and nonfractal connec-

tivity were effective to reveal the group difference between healthy persons and
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(a) Pearson correlation (b) Nonfractal connectivity

Figure 5.15: Histograms of mean differences in Pearson correlation and nonfractal
connectivity between prior-stimulation and post-stimulation.

Figure 5.16: Nonfractal connectivity analyses of the rat brain.

depressive patients in such local network metrics as degree and node strength.

Although the most robust connectivity metric differed according to brain regions,

there were more brain regions that exhibit a significant between-group difference
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in both fractal connectivity and nonfractal connectivity than in Pearson correla-

tion. These results indicate that the fractal-based connectivity analysis may be

instrumental to detect the changes in the local properties of brain networks. In

the rat brain analysis, it was found that a group of strongly fractal-connected vox-

els were spatially distributed with the Y-type pathway which has been frequently

observed in task-based fMRI data analyses. Furthermore, modularity and net-

work symmetry between left and right hemispheres were enhanced in nonfractal

connectivity than in fractal connectivity. From these results, it can be expected

that the endogenous functional interactions among neuronal processes tend to

be well revealed through fractal connectivity and nonfractal connectivity than

Pearson correlation.
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Chapter 6

Summary and Conclusion

Summary

In this thesis, a novel long memory model of resting state fMRI as well as fractal-

based approaches to resting state functional connectivity have been presented.

In Chapter 3, the long memory linear model of hemodynamic response has been

proposed to describe the physical mechanism of long memory phenomenon driven

by cerebral hemodynamic activity in terms of hemodynamic response function

(HRF). While the evoked state HRF is composed of just two basis functions, the

critical state HRF comprises a large number of basis functions whose coefficients

are slowly decaying with a special rate. It has been shown that the BOLD signal

exhibits long memory when the HRF is at the critical state. It was also argued,

through the Volterra series expansion, that the nonlinearity of hemodynamic

activities has little impacts on long memory property. The fact that different

states of the impulse hemodynamic response are present implies that the shape

of HRF may alter according to the history of neuronal activities. This property

was named the history dependence excitability (HDE) of hemodynamic response.

The long memory model of hemodynamic response provides important infer-

ence on the effect of fractal behavior on functional connectivity. First of all, it

suggests that the fractionally integrated (FI) process is a more suitable model for

resting state BOLD signals than the fractional Gaussian noise (FGN). According

to the theory of FI processes, the long memory property of hemodynamic ac-

tivities may induce the distortion of functional connectivity; in other words, the
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discrepancy of correlation of BOLD signals from correlation of neuronal activi-

ties increases as the difference of fractal behaviors between brain regions becomes

larger. In this reason, the hemodynamic fractal behavior may act as an artifact

disturbing functional connectivity analyses. In addition, it was demonstrated

that the influence of long memory on directional information flow is much signifi-

cant; the discrepancy of transfer entropy in BOLD signals and transfer entropy in

the underlying neuronal activities was considerably sensitive to the heterogeneity

of fractal behaviors.

The FI process model suggests that a resting state BOLD signal with long

memory can be divided into long memory and short memory components. In

Chapter 4, nonfractal connectivity has been defined as the correlation of nonfrac-

tal components. Although nonfractal connectivity between BOLD signals is not

identical to the correlation of the underlying neuronal activities, it may give better

information on functional dynamics of spontaneous neuronal activities than Pear-

son correlation since the fractal artifact is effectively suppressed. The nonfractal

connectivity can be regarded as a concept contrary to fractal connectivity which is

based on the asymptotic property of wavelet correlations. Various wavelet-based

estimators of both nonfractal connectivity and fractal connectivity have been de-

veloped and evaluated through simulation studies. In addition, a multivariate

wavelet-based LMS estimator has been proposed to improve the performance of

estimating the memory parameter in the presence of perturbation by additive

noise.

Chapter 5 showed how both nonfractal connectivity and fractal connectivity

can be applied for resting state fMRI analyses of human and animal brains. In

the human brain analysis, these fractal-based metrics were efficacious in empha-

sizing the group difference between healthy subjects and depressive patients. In

the rat brain analysis, these fractal-based metrics were used to reveal consistent

patterns (such as modularity) between pre-stimulation and post-stimulation. All

of experimental results suggest that the fractal-based metrics are efficacious in

emphasizing not only the group difference but also consistent patterns between

two distinct classes of subjects.
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Conclusion and future works

The long memory model of resting state fMRI introduced in Chapter 3 can be un-

derstood as an extension of the conventional linear hemodynamic model. Hence,

it enables us to figure out not only how the fractal behavior in BOLD signals can

be associated with the property of hemodynamic system, but also how the fractal

property of hemodynamics affects the correlation of statistical attributes between

neuronal activities and BOLD signals. In evoked states, the prominent determin-

istic change in neuronal activities induced by stimulation suppresses the effect of

1/f noise, and makes the correlation between BOLD signals more analogous with

that of the corresponding neuronal activities. On the other hand, the influence

of fractal property on resting state BOLD signals is relatively elevated and pro-

vokes a serious change in functional connectivity depending on the heterogeneity

of fractal behaviors among regions.

The long memory model leads us to hypothesize the history dependent ex-

citability (HDE) of hemodynamic response such that the shape of hemodynamic

response may be dependent on the history of past neuronal activities. In the

future work, this hypothesis needs to be verified through empirical studies; for

example, the HDE could be detected not only by observing the change in resting

state BOLD responses according to different neuronal activities through simul-

taneous measurement of BOLD signals and neuronal activities, but also by mea-

suring the Hurst exponents of hemodynamic activities through optical imaging.

This challenge would be instrumental to clarify whether the hemodynamics is the

most influential factor for fractal behavior of BOLD signals.

One of expectations regarding the HDE is that a hemodynamic system with

long memory properties is associated with self-organized criticality (SOC). In-

deed, it was shown that the power-law distribution of an 1/f noise reflects self-

organized criticality (Bak et al., 1987). Therefore, the frequent appearance of

long memory in resting state BOLD signals implies that a resting state BOLD

signal tends to be at the vicinity of critical state. One of the prospective future

works is to quantify the HDE and develop a method of measuring its tempo-

ral evolution in terms of SOC. In addition, the SOC can spatially appear in a

brain network while the critical state of the hemodynamic system is defined for
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a single process (Beggs & Plenz, 2003; Bullmore et al., 2009; Kitzbichler et al.,

2009; Tagliazucchi et al., 2012). Hence, it is necessary to identify the relationship

of temporal SOC and spatial SOC theoretically and empirically since it would

clarify the dependence of global SOC on fractal behavior of BOLD signals.

Note that this long memory model deals with the fractal behavior caused

by hemodynamic activities. On the other hand, the nonfractal connectivity in

Chapter 4 has been suggested in overall consideration of all fractal sources. To

be precise, the nonfractal component of a resting state BOLD signal is an ab-

stract signal which is not physically present and is not exactly identical to the

corresponding neuronal activity. Nevertheless, it is expected that the nonfractal

connectivity would be more similar to correlation of stationary neuronal activities

than Pearson correlation does since the fractal artifact is effectively eliminated

from original time series. Empirical studies on the difference between nonfractal

signals and neuronal activities would be valuable to clearly understand the im-

plication of nonfractal connectivity; one of ideas is to acquire both BOLD signals

and neuronal process data simultaneously and map together.

The multivariate WLMS estimator proposed in Chapter 4 was more resilient

to additive noises than univariate wavelet-based estimators. This estimator, how-

ever, is less efficient, and its efficiency becomes worse as the number of time series

is larger. Therefore, the future prospect includes developing an advanced noise-

resilient estimator which is efficient even in large dimensional networks.

Finally, the influence of fractal behavior on functional connectivity has been

verified on the basis of the proposed long memory model of hemodynamic re-

sponse. Additionally, its significant impacts on information flow also have been

verified through simulation studies. As nonfractal connectivity has been intro-

duced to correct the fractal-driven distortion of functional connectivity, it is nec-

essary to develop a novel metric of information flow immune to fractal behavior

in order to overcome the fractal artifact of resting state BOLD signals.

In conclusion, this study provides robust theoretical foundations linking long

memory and functional connectivity. The long memory model of hemodynamic

response enables to figure out not only the physical mechanism of long memory in

resting state BOLD signals, but also the association between long memory and

functional connectivity. In addition, the proposed fractal-based analysis tech-
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niques can be effectively exploited to study the dynamics of endogenous brain

activities and the intrinsic properties of functional brain networks from resting

state neuroimaging data.
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Appendix A

Basic concepts in dynamic

system theories

A.1 Langevin equation

Here the multivariate Langevin equation of neuronal population in (2.20) is

proved. Since ε(t) = −τ−1
ε e−t/τε , the Langevin equation of synaptic currents

can be obtained from (2.19) as follows

τc
dIj(t)

dt
= −

N∑
i=1

Wj,i
d

dt

∫ ∞
0

e−t/τcf (Ii(t− τ)) dτ

= −
N∑
i=1

Wj,i
d

dt

{[
e−t/τc

∫
f (Ii(t− τ)) dτ

]∞
τ=0

−
∫ ∞

0

τce
−t/τc

(∫
f (Ii(t− τ)) dτ

)
dτ

}
=

N∑
i=1

Wj,if (Ii(t))− Ij(t). (A.1)
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Suppose that the gain function f is a sigmoid function. Then, the approximate

Langevin equation for action potentials is given by

τc
dxj(t)

dt
= τc

df (Ij(t))

dIj

dIj(t)

dt

=
df (Ij(t))

dIj

(
−Ij(t) +

N∑
i=1

Wj,if (Ii(t))

)

≈ −f (Ij(t)) + f

(
N∑
i=1

Wj,if (Ii(t))

)

= −xj(t) + f

(
N∑
i=1

Wj,ixi(t)

)
. (A.2)

A.2 Master equation

The total population activity ni(t) can be regarded as a Markovian stochastic

process which is defined in the state space χ := {0, 1, · · · , s} and has the following

property of conditional probability

P (ni(tk) |ni(t), t < tk ) = P (ni(tk) |ni(tk−1)) . (A.3)

It results in for t1 < t2 < t3

P (ni(t1), ni(t2), ni(t3)) =

P (ni(t1))P (ni(t2) |ni(t1))P (ni(t3) |ni(t2)) . (A.4)

By integrating (A.4) over ni(t2), the Chapman-Komogorov equation is given as

follows

P (ni(t3) |ni(t1))

=

∫
χ

P (ni(t2) |ni(t1))P (ni(t3) |ni(t2)) dni(t2). (A.5)
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Define the transition probability as Pa,b(t) := P (ni(t) = b |ni(0) = a), and the

transition rate as q (b |a) := limτ→0 Pa,b(τ)/τ . Assume that for small τ

Pa,b(τ) ≈ (1− γ(a)τ) δ (b− a) + τq (b |a) (A.6)

where γ(a) =
∫
χ
q (b |a) db. If P (ni, t) := Pa,b(t), the following master equation is

obtained from (A.5) and (A.6)

∂P (ni, t)

∂t
=

∫
χ

{q(ni |y )P (y, t)− q(y |ni )P (ni, t)} dy. (A.7)

If ni(t) is an one-step process, the master equation can be written as

∂P (ni, t)

∂t
= (E− 1) q−(ni)P (ni, t)

+
(
E−1 − 1

)
q+(ni)P (ni, t) (A.8)

where Ef(ni) = f(ni + 1), E−1f(ni) = f(ni − 1), q−(ni) = q(ni − 1 |ni ), and

q+(ni) = q(ni + 1 |ni ). In the case of neuronal population activities, q−(ni) = ni

and q+(ni) = Mif (ni/Mi).

A.3 Fokker-Planck equation

Here the Fokker-Planck equation in (2.22) is proved. Since ni(t) = Mix̄i(t) +

M
1/2
i ξi(t) from the definition of ξi(t), the first and thirt term in the master equa-

tion (2.21) can be expanded into

E±i
(
T∓i (n)P (n, t)

)
=

(
Ω∓i (Mx̄) +

N∑
j=1

M
−1/2
j

∂Ω∓i (x̄)

∂x̄j
ξj(t) + · · ·

)

×
(

Π(ξ, t)±M−1/2
i

∂Π(ξ, t)

∂ξi
+
M−1

i

2

∂2Π(ξ, t)

∂ξ2
i

+ · · ·
)
. (A.9)
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Also, the derivative of probability is equivalent to

∂P (n, t)

∂t
=
∂Π(ξ, t)

∂t
−

N∑
j=1

M
1/2
j

∂x̄j(t)

∂t

∂Π(ξ, t)

∂ξj
. (A.10)

The left and right terms in (2.21) can be replaced with (A.9) and (A.10). Then,

the M
−1/2
j order terms is canceled due to (2.20), and the remaining parts can be

rewritten as

∂Π(ξ, t)

∂t
≈ −

N∑
i=1

∂

∂ξi

[
Ãi(x̄)Π (ξ, t)

]
+

1

2

N∑
i=1

∂2

∂ξ2
i

[
B̃i(x̄)Π (ξ, t)

]
(A.11)

where Ãi(x̄) = Ωi,1(x̄)−Ωi,−1(x̄) and B̃i(x̄) = Ωi,1(x̄)+Ωi,−1(x̄). Ãi(x̄) and B̃i(x̄)

can be expanded as

Ãi(x) =
N∑
k=1

∂Ãi
∂x̄k

ξk +
1

2

N∑
k=1

N∑
l=1

(MkMl)
−1/4 ∂

2Ãi
∂x̄kx̄l

+ · · · , (A.12)

B̃i(x) = B̃i(x̄) +
N∑
k=1

M
−1/2
k

∂B̃i

∂x̄k
ξk + · · · . (A.13)

From (A.11), (A.12) and (A.13), the equation (2.22) is finally obtained.
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cerebral blood volume, 40

dynamic causal modeling, 12

EEG, see electroencephalography

fractal connectivity, 5

fractal transmission area, 88

fractional Brownian motion, 67

fractional Gaussian noise, 2, 39, 44,
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fractionally integrated noise, 65

fractionally integrated process, 4,
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functional connectivity, 1

general linear model, 7, 42

hemodynamic response function, 40

history dependent excitability, 4, 55

LFP, see local field potential

long memory, 2

low frequency fluctuation, 1

lower scale bound, 93, 115, 128

LTI system, 8, 55
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nonfractal connectivity, 5

nonfractal transmission area, 70

Nyquist frequency, 30

probability density function, 28
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transfer function, 30
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