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Abstract: A new strain of Leptospirillum sp. Ksh-L was isolated from a dump-bioleaching system of
the Kashen copper-molybdenum mine (South Caucasus). Ksh-L is an obligate chemolithoautotroph,
capable of oxidizing ferrous iron (Fe2+). Cells are Gram-negative and vibrio- or spirillum-shaped of a
0.5–3 µm size. The optimal conditions for the growth are 35 ◦C and pH 1.6–1.8. Cu2+ and Zn2+ have
different effects on the oxidizing ability of the Leptospirillum sp. Ksh-L culture depending on the phase
of growth and concentration of Fe2+. Under the conditions of gradually increasing the concentration
of copper in the medium, during 4–5 successive subculturing experiments, it was possible to obtain
an adapted culture of Leptospirillum sp. Ksh-L, capable of growing in the medium in the presence
of up to 400 mM Cu2+. A bioleaching experiment indicates that Ksh-L can efficiently oxidize
chalcopyrite. However, the bioleaching of copper from chalcopyrite by Leptospirillum ferrodiazotropum
Ksh-L increased about 1.8 times in association with At. thiooxidans ATCC 19377. Phylogenetic analysis
based on 16S rRNA gene sequences (GenBank ID ON226845) shows that strain Ksh-L forms a single
cluster into Group III. The strain possesses 99.59%, 99.52%, and 96.60% sequence similarity with the
strains YTW-96-06, YTW-66-06, and Leptospirillum ferrodiazotrophum 5C in Group III, respectively.

Keywords: Leptospirillum ferrodiazotrophum; isolation; characterization; phylogenetic analysis;
bioleaching of sulfide minerals

1. Introduction

Bioleaching is a technique that uses microorganisms to remove metals from ore where
traditional extraction methods are not economically viable. This method is frequently
applied to sulfide mineral ores, which are the source of many valuable and precious
metals, including copper, gold, and silver. Traditional methods of metal extraction from
sulfide minerals, such as pyrometallurgy, are costly, energy-intensive, and environmentally
damaging [1,2]. Bioleaching, using microbial metabolisms to break down metal ores,
provides a low-cost solution to this issue. Microbes produce energy during the bioleaching
process by oxidizing iron and sulfur from sulfide minerals.

Sulfide ores can be dissolved by ferrous-oxidizing acidophiles to create ferric iron,
which then attacks minerals to form sulfur or polysulfide on the ore surface [3,4]. The target
metals are released as a result of the oxidants’ attack on the sulfide minerals [2]. Due to the
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intimate connections between functional oxidizers, environmental conditions, and bioleach-
ing performances, many researchers have recently focused on microbial communities [5,6].

Approximately 70% of the copper reserves in the world come from chalcopyrite [7,8].
It is one of the most resistant ores in hydrometallurgical processing and the most common
copper ore. Modern research on the possibility of increasing total recoveries of metal
values from such mineral resources plays a significant role in the bio-hydrometallurgical
processing of complex low-grade non-ferrous metal concentrates [9–13].

Mesoacidophiles are the most frequently used microorganisms in industrial low-grade
chalcopyrite heap-bioleaching operations because of their ambient temperature optimum
and ranges, which have been shown to have a significant impact on the rate of copper
extraction from chalcopyrite [14–16].

Leptospirilla was discovered to be the predominant iron-oxidizing bacteria in gold-
arsenopyrite and pyrite bio-oxidation reactors working at 40 ◦C, although Acidithiobacillus
ferrooxidans had long been thought to be the most significant microorganism in the bioleach-
ing of metals [17–22].

Leptospirillum spp. bacteria are vibrio- and spiral-shaped chemolithotrophic organisms.
They have been formally recognized as coherent bacteria since they fix carbon utilizing the
Benson–Calvin cycle, employing oxygen as their only electron acceptor and ferrous iron as
their sole electron donor [20,23–26]. The genus Leptospirillum has been classified into three
groups, I, II, and III based on the 16S rRNA gene phylogeny [27]. Leptospirillum ferrooxidans
is a representative of group I [28], Leptospirillum ferriphilum and Leptospirillum rubrum are
representatives of group II, and Leptospirillum ferrodiazotrophum is a representative of group
III [29–31]. In addition, microbial community genomics has identified further species,
“Leptospirillum sp. group IV UBA BS” [30,31].

Notably, proteomics research has revealed that L. ferrodiazotrophum (group III) carbohy-
drate metabolism is significantly better than that of Leptospirillum group II and Ferroplasma
type II [25]. Also, because the nif genes were only found in this bacterium’s genome
sequence, it is thought to be a minor member of the genus and the only one that is capable
of fixing nitrogen [30–33]. Based on this, one representative was isolated in a nitrogen-free
liquid medium from AMD biofilm in which Leptospirillum group III was abundant [31].
This Fe(II)-oxidizing, free-living diazotroph was tentatively named “L. ferrodiazotrophum”.
Hence, despite its low quantity in the microbial community, L. ferrodiazotrophum played a
central role in biofilm formation and nitrogen fixation.

Gene complement variations highlight significant physiological variances that may
have played a crucial role in the Leptospirillum groups’ likely sympatric separation. Lep-
tospirillum group II is more capable of producing potentially important polymers for the
establishment of floating biofilms, such as cellulose, cellobiose, and starch/amylose, than
Leptospirillum group III in dealing with the osmotic challenges brought on by the near-molar
FeSO4 solutions. With the potential completion of the glycolysis and TCA pathways, Lep-
tospirillum group III appears to be more suited for energy production and nitrogen fixation.
These results are in line with the descriptions of Leptospirillum group II as an early colonist
and Leptospirillum group III as a component of late-stage biofilms [34,35]. Interestingly, the
complements of signal transduction and chemotaxis genes in Leptospirillum groups II and
III are quite different, as are many regulatory genes, pointing to adaptation to various
microenvironments (such as those with particular levels of oxygen, redox potential, and
availability of fixed nitrogen). Signal transduction, motility, and chemotaxis appear to
be more crucial in Leptospirillum group III than in group II, according to genomic and
proteomic evidence [33,35]. Leptospirillum group III is identified by biofilm characterization
investigations as distributed cells and microcolonies in interior biofilm zones [34], where
geochemical gradients are predicted to be prominent. Combining this distribution with the
presumed metabolic traits may suggest that Leptospirillum group III is a microaerophile that
prefers to grow in nutrient-poor areas of biofilms, where its capacity to fix nitrogen may be
essential. Where oxygen availability is certainly low and Leptospirillum group II is present, a
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few studies on anaerobic metabolism (for example, making use of a within-biofilm nitrogen
cycle) are available [33].

Most metals are soluble in acidic pH, and extremely acidophilic microorganisms
should be tolerant to high concentrations of metals. Acidophiles are metal-tolerant by both
active and passive mechanisms. The passive metal tolerance mechanism is based on the
internal positive membrane potential by creating a chemiosmotic gradient that the cations
should travel against to enter the cytoplasm [36,37]. Active systems include the efflux of
metals from the cytoplasm to the periplasmic space, carried out by ATPases located in the
internal membrane of the bacteria [38]. Some microorganisms may pump metal from the
cytoplasm directly to the extracellular space by systems of the RND (resistance nodulation
cell division) family of carriers, the Cus system of Escherichia coli being the best known of
this kind of detoxification organization [39]. The capacity of some species to bind the metal
in the periplasmic space using metal chaperones has also been reported for copper [40].

It should be noted that bacterial growth in the form of biofilms significantly increases
the resistance of bacteria to metals [41–43]. Acidophiles attached to surfaces, such as sulfide
minerals, form biofilms that usually include extracellular polymeric substances (EPSs) that
can sorb metals to provide a further degree of metal tolerance [44,45].

Several mechanisms of resistance to Mo (VI) have been identified in acidophiles,
including the putative Mo (V) resistance mechanism in At. ferrooxidans strain Funis 2–1 [46].
Mo (VI) is chemically reduced by Fe(II), and Mo(V) forms binds to the plasma membrane,
probably to the cytochrome-c oxidase (lowering its activity), inhibiting Fe(II) oxidation and
consequently growth. Resistance is based on a combination of a cytochrome-c oxidase that
is tolerant to higher concentrations of Mo (V) and on Mo (V)-oxidizing activity six-fold
greater than that detected in the sensitive At. ferrooxidans strain AP19-3 [46].

With the development of sequencing technology, many genomic-analysis-based stud-
ies have investigated the mechanisms underlying heavy metal resistance under extremely
acidic conditions [47–50]. Several genes associated with EPS formation have been identified
thus far [51]. Genome/transcriptome analyses showed the presence of genes involved in
biofilm formation in Leptospirillum spp. [51,52]. In Acidithiobacillus and Leptospirillum spp.
a membrane efflux pump encoded by the czcCBA cluster is responsible for resistance to
cadmium, zinc, and cobalt [48,52–54]. The resistance of bacteria to copper is very impor-
tant from the point of view of their application in biotechnological processes, where the
concentration of copper ions can vary in the range from 15 to 100 mM CuSO4 [55]. Copper
resistance systems in some acidophiles include a copper P-Type transporter identified in L.
ferriphilum ML-04 [48]. In addition, earlier descriptions of acidophile copper resistance and
the potential role of inorganic polyphosphates in metal resistance are also available [56,57].

This study addressed the characterization and identification of Leptospirillum Ksh-L,
isolated from an acid mining drainage of copper ore in Armenia, its ability to degrade
sulfide minerals, and its tolerance to metal ions.

2. Materials and Methods
2.1. Culture Conditions and Isolation

To obtain an enrichment culture of iron-oxidizing bacteria, 9K medium [58] with
ferrous iron as a source of energy was inoculated with a sample of ore material from a
dump-bioleaching system of Kashen copper-molybdenum mine (South Caucasus) and
incubated at 35 ◦C and 150 rpm. The serial dilution method was used to obtain a pure
culture of Leptospirillum spp.

2.2. Morphology Studies

Gram staining was performed using the Huker method [59]. The morphology of cells
was studied with Motic BA310 trinocular (×1000) microscope supplied by Moticam A16
Camera (Barcelona, Spain, MoticIncorporation Ltd.).
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2.3. Optimal pH and Temperature for Growth

Studies of the influence of temperature and pH on the growth of strain Ksh-L were
carried out in 100 mL flasks containing 50 mL of 9K medium with ferrous iron (Fe2+) and
10% inoculum. Cultivation was performed on the orbital shaker-incubator ES-20/60 (Biosan,
Riga, Latvia) at 150 rpm. The growth ranges for temperature and pH were set as 25–50 ◦C
and 1.6 to 3.0, respectively.

2.4. Influence of Copper and Zinc

The influence of copper and zinc ions on oxidation of Fe2+ by Leptospirillum sp. Ksh-L
was studied in Mackintosh (MAC) medium [60] in the concentration range from 10 to
300 mM and at different concentrations of the source of energy (Fe2+). The data presented
in the text are formed on the average from repeated experiments with ±2% variation of
Fe2+.

2.5. EPS Analysis, Extraction, and Determination
2.5.1. EPS Extraction

For EPS extraction experiments, culture Leptospirillum Ksh-L was grown in 10 L MAC
medium supplemented with FeSO4 × 7H2O as a source of energy at 35 ◦C with shaking at
160 rpm. In the stationary growth phase, cells were collected by centrifugation (10,000 rpm,
10 min) at 4 ◦C. To get rid of any remaining bacteria, the supernatant was collected and
filtered through 0.2 m pore size filters under sterile conditions. Colloidal EPS was present
in the fraction obtained. The pellet was re-suspended in 10 mL of 20 mM EDTA at pH
7 and centrifuged for 10 min at 7500 rpm (9900× g) and 4 ◦C to release the bound EPS. The
washed fraction was applied to the supernatant. The fresh pellet was re-dissolved in 10 mL
of 20 mM EDTA at pH 7, and the suspension was incubated at 4 ◦C for 1 h while being
shaken. The remaining cells were then removed by centrifuging the bacterial suspension
and extracting agent mixtures for 10 min at 7500 rpm (9900× g) and 4 ◦C [61].

2.5.2. Determination of EPS Composition

Total carbohydrate values were determined by spectrophotometry using the phenol-
sulfuric acid method with D-glucose as the standard, as described by [62]. Total protein
quantification was conducted by spectrophotometry using the Bradford procedure [63]. A
calibration curve was developed using a series of bovine serum albumin (BSA) standards.
Uronic acids were quantified using the protocol of Blumenkrantz and Asboe-Hansen [64].
Meta-hydroxydiphenyl solution in 0.5% NaOH, ortho-hydroxydiphenyl, H2SO4/sodium
tetraborate solutions, and cetyltrimethylammonium bromide solution were used as a
reaction mixture. Absorbance measurements were performed at 520 nm. The content of
proteins, carbohydrates, and uronic acids in EPS was expressed in µg/mL culture medium.

2.6. DNA Extraction, PCR of 16s rRNA, Sequencing, and Phylogenetic Analysis
2.6.1. DNA Extraction

The identification of isolated strain Ksh-L was performed based on 16S rRNA gene
nucleotide sequence analysis. DNA extraction was carried out according to the Macherey-
NagelTM (NucleoSpinTM) protocol. Bacterial cultures in the logarithmic phase were cen-
trifuged to obtain the bacterial biomass and frozen for DNA purification and taxonomic
classification of the strain based on 16S rRNA gene sequences. For DNA extraction, the
following reagents were used: BE buffer (Tris-HCl pH-8.0), proteinase K, MG-lysozyme
solution, BS salt buffer, 96% ethanol, and distilled water.

2.6.2. Extraction and Purification of PCR Product

A 1.5% agarose gel Tris-HCl buffer solution was prepared. The agarose aqueous
solution was heated in a microwave oven for 1–2 min before boiling and then cooled to
45–60 ◦C. A 1% 10 mM Tris-HCl, 1 mM EDTA aqueous solution (1 µL per 10 mL agarose
solution) was added to the cooled agarose solution. A total of 5 µL of the test DNA solution
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was mixed with a 3 µL 6 µL 6X Thermo Scientific TriTrack DNA Loading Dye and 5 µL
Thermo Scientific GeneRuler buffer containing 1 kb DNA Ladder markers. Electrophoresis
was performed on GE Healthcare/Amersham Pharmacia EPS-601 Electrophoresis Power
Supply for 25 min at a voltage of 104 V at 100 mA. The electropherograms and images
were obtained using the GeneMarkerHID® Spectrum GeneMarkerHID® and Spectrum
ProView™ Sequencing Software TM625 package (Promega Corporation 2800, Fitchburg,
MA, USA).

The PCR amplification was carried out according to the Macherey-NagelTM (NucleoSpinTM)
Extract II protocol. PCR amplification was carried out in 50 µL reaction mixture, which contained
10 mg of DNA sample, 1 µL universal bacterial PCR primers a-fD1 (27F) (AGAGTTTGATC-
CTGGCTCAG) and rP2 (ACGGCTACCTTGTTACGAG), b- 908 fwd and 796 rev, 5 µL Taq-DNA
polymerase, 1 µL dNTPs, and 40 µL double distilled water. PCR temperature–time process is
as follows: 1st cycle 95 ◦C × 5 min, further 30 cycles of denaturation −94 ◦C × 40 s, connection
50/53 ◦C × 55–60 s, synthesis 72 ◦C × 1.5 min, final cycle −72 ◦C × 3 min, and then standby at
8–10 ◦C. PCR products were tested by 1.5% agarose gel electrophoresis and sequenced with primers
908fwd (16Sfwd) (GTGCCAGCAGCCGCG) and 796rev (16Srev) (GGGTTGCGCTCGTTG) by Mi-
crosynth AG (Balgach, Switzerland). PCR product purification was performed using the QIAquick
PCR purification kit following the manufacturer’s instructions. PCR fragments were sequenced by
a 454 GS-FLX Titanium sequencer, using the Sanger method [65].

2.6.3. Construction of Phylogenetic Tree

Close relative and phylogenetic affiliation of the obtained 16S rRNA sequences were
determined by submitting to the NCBI 16S ribosomal RNA GenBank database using NCBI
blastn search analyses (www.ncbi.nlm.nih.gov) performed with Geneious prime 2022.0.2.
(https://www.geneious.com) and the 16S Biodiversity tool (RDP tool version 2.12) [66,67].
The construction of phylogenetic trees was performed with MEGA 11 software using the
neighbor-joining method [68,69].

2.7. Leaching Experiments

Chalcopyrite (CuFeS2) from Shamlugh ore deposit (Armenia) was tested in the bi-
oleaching experiments. The chemical composition of minerals is presented in Table 1. Feed
minerals were ground to a particle size ≤ 63 µm.

Table 1. Chemical composition of the analyzed chalcopyrite (wt%).

Sample Fe Cu S

Chalcopyrite 29.7 30.2 33.8

Bioleaching of chalcopyrite was performed using a pure culture of L. ferrodiazotropum
Ksh-L as well as its associations with At. thiooxidans ATCC 19377 obtained from DSMZ.
Bioleaching experiments were carried out in 250 mL Erlenmeyer flasks containing 100 mL of
MAC medium without iron at 30 ◦C. Pulp density (PD) was 4% and pH 1.8. The inoculum
of used cultures was 10%, and all experiments were carried out in triplicate. Chemical
control with the same conditions and without inoculum was included. Copper, total iron,
ferric (Fe(III)), and ferrous (Fe(II)) ions in leachate were analyzed for 30 days. pH was
measured using Hi2211-01 Benchtop pH/mV Meter (Hanna Instruments, Vöhringen, Ger-
many). The value of oxidation/reduction potential (ORP) was measured using a standard
hydrogen electrode (SHE) in relation to an Ag/AgCl reference electrode (mV vs. Ag/AgCl).
Copper and total iron were determined using atomic absorption spectrophotometer AAS
SP-IAA1800H (Bioevopeak, Qingdao, China). Concentrations of ferric (Fe(III)) and ferrous
(Fe(II)) ions were determined using the complexometric method with EDTA [70].

www.ncbi.nlm.nih.gov
https://www.geneious.com
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Consumption of Fe(II) was calculated as a difference between initial Fe(II) and concen-
tration of Fe(II) determined at certain times of experiment (Equation (1)). Consumption is
expressed by g/L and %.

[Fe(II)]c = [Fe(II)i−[Fe(II)]t/[Fe(II)]i × 100% (1)

where [Fe(II)]c is the consumption of Fe(II); [Fe(II)i– is initial concentration of Fe(II) in the
medium; and [Fe(II)]t—concentration of Fe(II) determined at certain point of time.

Inhibition of iron oxidation in the presence of metal ions was determined according to
Equation (2).

Inhibition (%) = Fe(II)cm/Fe(II)c × 100 (2)

where Fe(II)cm is consumption of Fe in the presence of metal ions (g/L), and Fe(II)c is
consumption of Fe in the absence of metal ions (g/L).

3. Results
3.1. Isolation of Strain Ksh-L

The selected sample from a dump-bioleaching system of the Kashen copper-molybdenum
mine was transferred in a 9K liquid medium and incubated at 35 ◦C at 150 rpm for 5–7 days.
As a result of the active growth of bacterial cells, the medium color changes from pale green
to orange-red due to iron oxidation.

3.2. Morphology

Cells of Leptospirillum sp. Ksh-L are Gram-negative, motile, and vibrio- or spiral-shaped.
Cells have a diameter of 0.5 µm and a length of 1.0–3.0 µm (Supplementary Figure S1). This is
typical for the genus of Leptospirillum. The morphology results show that strain Ksh-L seems
to be consistent with previously described Leptospirillum species [71].

3.3. Optimal pH and Temperature for Growth

The growth of the newly isolated Khs-L strain was evaluated according to the increase in
the number of cells and the results of their biological activity, increasing the amounts of Fe3+

in the medium. As shown in Figure 1, the growth curves of the Leptospirillum sp. Ksh-L strain
in the initial pH range of 1.6–2.0 are S-shaped. The duration of the lag phase was about 48 h,
but the growth of bacteria was more active at pH values of 1.6 and 1.8 (Figure 1).
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The most intensive oxidation of Fe2+ was observed at pH values of 1.6 and 1.8. As
can be seen from the presented data, at the initial pH values of 2.8 and 3.0, Fe2+ oxidation
was sharply suppressed, and the duration of the lag phase was increased to 20 and 48 h,
respectively (Figure 1). It can be explained that the pH variation affects enzyme activity
because changes in ionization affect the system components. This indicates that the Ksh-L
strain is sensitive to pH, and a much higher pH value will inhibit the activity of bacteria.

As can be seen from Figure 2, the optimum growth temperature of the Ksh-L strain was
observed at 35 ◦C. Thus, optimal conditions for the growth of isolated strain Leptospirillum
sp. were observed at 35 ◦C and a pH range from pH 1.6 to pH 2.0.
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3.4. Influence of Copper and Zinc

Like most bioleaching microorganisms, strain Leptospirillum sp. Ksh-L has been iso-
lated from an environment (dump-bioleaching system) that has unusually high concen-
trations of potentially toxic metals (e.g., copper and iron) as well as high concentrations
of heavy metals (e.g., arsenic and silver). These metals can exert harmful effects on mi-
croorganisms. Their toxic effects include the blocking of biologically important functional
groups and the denaturation of enzymes [72].

Cu (II) inhibition of growth and Fe(II) oxidation have also been demonstrated in
Sulfobacillus thermosulfidooxidans subsp. asporogenes via competitive inhibition of Fe(II)
oxidation [73]. The influence of Cu2+ and Zn2+ ions on the oxidation of Fe2+ by strain
Ksh-L was studied in a concentration range from 25 to 200–300 mM. As can be seen from
Figure 3a, copper in all tested concentrations inhibits the oxidation of Fe2+.

Furthermore, the higher the copper concentration, the higher the extent of inhibition
of iron oxidation. Thus, iron oxidation by Leptospirillum sp. Ksh-L for 24 h was suppressed
by 36.7, 65.3, and 89.8% at copper concentrations of 50, 100, and 150 mM, respectively, with
a content of 3.2 g/L Fe2+ in the medium. Cu2+ in the concentration of 200–300 mM almost
completely (90%–96%) inhibits iron oxidation by Leptospirillum sp. Ksh-L (Figure 3b). It can
be noted that the extent of inhibition of iron oxidation by Cu2+ ion reduces for 48 h along
with bacterial growth and is 17.4, 44.9, and 71.5%, respectively (Figure 3b).

The effect of copper on oxidation of Fe2+ Leptospirillum sp. Ksh-L was studied depend-
ing on substrate concentrations in the medium (Figure 4a,b). As shown in Figure 4, the
degree of oxidation of Fe2+ by Leptospirillum sp. Ksh-L in the presence of tested copper
concentrations was slightly higher when the content of Fe2+ in the medium increased from
4.0 g/L (71.4 mM) to 7.0 g/L (125 mM). Thus, the increase in the concentration of substrate
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from 4.0 to 7.0 g/L leads to the enhancement of the amount of oxidized iron by bacteria in
the presence of the tested concentration of copper.
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From the data presented, it can be seen that the oxidation of Fe2+ by Leptospirillum
sp. Ksh-L is suppressed by about 25% at 25 mM of Zn2+ and is sharply inhibited (up to
65–77%) at zinc concentrations in the range from 50 to 200 mM (Figure 5a,b).
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As shown in Figure 6, an increase in the substrate concentration led to the enhancement
of the amount of oxidized iron by Ksh-L in the presence of 25 mM Zn2+, while it did not
facilitate iron oxidation by bacteria in concentrations of Zn above 100 mM. Moreover, no
decrease in the inhibitory effect of zinc ions was observed along with the growth of bacteria,
as shown in the case of copper (Figure 5).
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Along with the growth of Leptospirillum sp. Ksh-L, the amount of oxidized iron in
the presence of 50 mM Cu2+ increased. It is assumed that with the growth of bacteria, the
cells form EPSs and create accordingly a less toxic and more favorable environment for the
growth of cells in the presence of copper.
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3.5. Adaptation of L. ferrodiazotrophum Ksh-L

Although bacteria do not react well to sudden and significant changes in heavy metal
ion concentrations, they can be adapted to gradually increased concentrations over a while,
to increase their tolerance to such metals. In the next series of the experiment under
conditions of gradually increasing the concentration of copper in the medium, during
4–5 successive subculturing experiments, it was possible to obtain an adapted culture of
Leptospirillum sp. Ksh-L capable of growing in the medium in the presence of up to 400 mM
Cu2+ (Figure 7).
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3.6. EPS Analysis

EPSs play an essential role in the formation of a biofilm, which mediates the adhesion
of cells to the mineral surface and forms a cohesive three-dimensional polymer, intercon-
necting and immobilizing cells in the process of bioleaching by iron- and sulfur-oxidizing
bacteria [74–76]. An important role of capsular polysaccharides as a fundamental structural
element of the EPS, determining the mechanical stability of biofilm was disclosed. One
of the objectives of the present study was to investigate the chemical composition of a
colloidal polysaccharide of the newly isolated iron-oxidizing chemolithotrophic bacteria L.
ferrodiazotrophum Ksh-L. The studies carried out showed that the total amounts of colloidal
and capsular EPSs are 474.4 and 208.58 µg/mL, respectively.

As shown in Table 2, the amount of carbohydrates in the capsular EPS is considerably
higher than that in the colloidal EPS. The amounts of protein in colloidal and capsular
EPSs are approximately the same, 24.41 µg/mL and 27.33 µg/mL, respectively. Uronic
acids were not detected in both EPSs. The obtained data are comparable and agree with
the corresponding data of other species of the genus Leptospirillum, L. ferriphilum CC and L.
ferrooxidans ZC studied by us previously [77,78].

Table 2. EPS composition of L.ferrodiazotrophum Ksh-L grown on ferrous iron (Fe (II)) as a source of
energy (pH 1.95, temperature 35 ◦C, 180 rpm, cultivation 72 h).

EPS Composition Protein (µg/L) Carbohydrates (µg/L) Uronic Acids

Capsular 16.3 6.0 BDL *
Colloidal 8.3 3.9 BDL *

* BDL: below the detection limit.
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3.7. Phylogenetic Analysis of 16S rRNA

A PCR-amplified 16S rRNA product was detected by 1% agarose gel electrophoresis
(Supplementary Figure S2). The length of the 16S rRNA of Leptospirillum sp. Ksh-L is about
1.5 kb and is sequenced sequentially. The sequence of the 16S rRNA of Leptospirillum sp.
Ksh-L was submitted to GenBank, and the accession number ON226845 was obtained. The
length of sequenced fragments of the gene encoding 16S rRNA is 1469 bp. The nucleotide
sequence of the strain Leptospirillum sp. Ksh-L was phylogenetically compared with the
Leptospirillum species (Figure 8).

Figure 8. Phylogenetic position of strain Leptospirillum sp. Ksh-L. The evolutionary history was
inferred using the neighbor-joining method [79]. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test (10,000 replicates) are shown next to the
branches [80]. New isolate highlighted in red.

Preliminary screening of the GenBank database was performed using BLAST (http:www.
ncbi.nlm.nih.gov/blast). Based on the homology of 16S rRNA, the phylogenetic development
tree was built as shown in Figure 8. The sequence was divided into three groups: Group
I—L. ferrooxidans; Group II—L. ferriphilum; and Group III—Leptospirillum ferrodiazotrophum
and uncultured clones. The isolated Leptospirillum sp. Ksh-L strain formed a single cluster
into Group III and possessed 99.66% sequence similarity with uncultured bacterium clone
SLS-53-06 (Table 3). As shown in Figure 8, the isolate Ksh-L compared to other strains in
Group III with strains YTW-96-06, YTW-66-06, and Leptospirillum ferrodiazotrophum 5C and
possessed 99.59%, 99.52%, and 96.60% sequence similarity, respectively (Table 3).

In Figure 8, the Lactobacillus acidophilus JCM 1132 strain is used as an out-group to
root the tree, and the database accession numbers of the gene sequences used are given in
parentheses.

Thus, the newly iron-oxidizing strain Ksh-L obtained from a dump-bioleaching system
of the Kashen copper-molybdenum mine was identified as Leptospirillum ferroodiazotrophum.
Type strain: Leptospirillum ferroodiazotrophum Ksh-L.

http:www.ncbi.nlm.nih.gov/blast
http:www.ncbi.nlm.nih.gov/blast
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Table 3. Identity of 16S rRNA gene of isolated Leptospirillum sp. Ksh-L with other strains.

Isolated Strain Strain Name, GenBank (Accession Number) Identity, % Reference

L. ferrodiazotrophum Ksh-L

Uncultured bacterium clone YTW-66-06 (EF409823.1) 99.52 [81]
Uncultured bacterium clone SLS-53-06 (EF409827.1) 99.66 [81]
Uncultured bacterium clone YTW-96-06 (EF409843.1) 99.59 [81]

Leptospirillum ferrodiazotrophum 5C (JN007036.1) 96.60 [82]
Leptospirillum ferriphilum ATCC 49,881 (AF356829.1) 91.02 [20]

Leptospirillum ferrooxidans WJ71 (AY495960.1) 89.60 [83]
Nitrospira moscoviensis (X82558.1) 81.22 [84]

3.8. Bioleaching of Chalcopyrite

A comparative study was carried out on the bioleaching of chalcopyrite by a pure
culture L. ferrodiazotrophum Ksh-L and its association with sulfur-oxidizing bacteria At.
thiooxidans ATCC 19377 at 30 ◦C.

The data presented in Figure 9a,b show that compared to uninoculated control, isolated
bacterium L. ferrodiazotropum Ksh-L stimulated the extraction of copper and iron by 1.7 and
2.3 times, respectively. However, in association with sulfur-oxidizing At. thiooxidans, L.
ferrodiazotropum Ksh-L oxidizes chalcopyrite much more actively than in pure culture.
This finding corresponds with the literature data from similar studies conducted using
Leptospirillum ferooxidans with the association of At. thiooxidnas or At. caldus. According
to some researchers, mixed cultures of mesophiles have been reported to oxidize sulfide
minerals more efficiently than pure cultures [85–87].

Figure 9. Bioleaching of copper (a) and iron (b) from chalcopyrite by pure-culture L. ferrodiazotrophum
Ksh-L and association with At. thiooxidans ATCC 19377 (CuFeS2—4%, pH 1.8, temperature 30 ◦C, 180 rpm).

Thus, in the presence of At. thiooxidans, the extraction of copper and iron from
chalcopyrite by L. ferrodiazotropum Ksh-L for 30 days increases approximately 1.8 and
1.9 times, respectively (Figure 9a,b, Table 4).
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Table 4. Leaching of iron and copper from chalcopyrite by L. ferrodiazotropum Ksh-L and association
with sulfur-oxidizing bacteria At. thiooxidans ATCC 19377.

Bacteria
Extraction of Fe 30 Days Extraction of Cu Final

g/L % g/L % pH ORP,
mVFe3+ Fe2+ Fe Total Fe Total

Control (uninoculated) 0 0.672 0.672 5.6 0.52 4.1 1.8 520
L. ferrodiazotropum Ksh-L 1.096 0.448 1.544 12.8 0.884 6.9 1.7 600

L. ferrodiazotropum Ksh-L + At. thiooxidans 2.016 0.616 2.744 23.0 1.67 13.4 1.5 720

The data presented in Table 1 show that chalcopyrite leaching is correlated with the
pH and ORP of the solution. When L. ferrodiazotropum Ksh-L was used in monoculture, the
final pH was 1.7, and the ORP was 600 mV, while in the L. ferrodiazotropum Ksh-L variant
with At. thiooxidans ATCC 19377, the pH value was comparatively lower (1.5), and the ORP
was significantly higher (720 mV) (Table 4).

Chalcopyrite is an acid-soluble sulfide mineral and is therefore subject to attack by
both ferric iron (Fe3+) and protons (H+) (Equations (3) and (4)) [55,88].

CuFeS2+2Fe2(SO4)3 → CuSO4+5FeSO4+2S0 (3)

CuFeS2+4H+ → Fe2++Cu2++2H2S (4)

0.125S8+1.5 O2+H2O At.thiooxidans ATCC 19377→ SO4
2−+2H+ (5)

At. thiooxidans ATCC 19377 in a mixed culture oxidizes sulfide and sulfur to sulfuric
acid and contributes to the decrease in pH (pH 1.5), thereby preventing the formation
of jarosite and a hydrophobic layer of sulfur on the surface of chalcopyrite (Equation
(5)), removes the effect of passivation of the mineral, and promotes intense oxidation of
chalcopyrite. According to Christel and Dopson, 2016, sulfur-oxidizing A. caldus seemed to
have a supporting role in the early stages of mineral dissolution [89]. The attached sulfur-
oxidizing bacteria on the mineral surface utilized the reduced inorganic sulfur compounds
(RISCs) released from the mineral by a direct mechanism [90]. In a study conducted by
Tao et al. (2021), six artificial communities with varying functions or biodiversity were
recreated using six common bioleaching species for chalcopyrite leaching. Communities
with low diversity also performed somewhat poorly in bioleaching, and the absence of
sulfur oxidizers greatly decreased copper extraction rates in those communities [91].

4. Conclusions

A new strain of iron-oxidizing strain Leptospirillum sp. Ksh-L was isolated from a
dump-bioleaching system of the Kashen copper-molybdenum mine. The cells of the strain
Ksh-L are Gram-negative, motile, and vibrio- or spiral-shaped, with a 0.5 µm width and a
1.0–3.0 µm length.

The optimal temperature for the growth of Leptospirillum sp. Ksh-L is 35 ◦C, and
the optimal pH is 1.6–1.8. The current study showed how different concentrations of
commercially important metals (Cu2+, Zn2+) have various effects on the oxidizing ability of
the strain Leptospirillum sp. Ksh-L, depending on the phase of growth and concentration of
ferrous iron as a source of energy.

Based on the homology of 16S rRNA, the isolated strain Leptospirillum sp. Ksh-L
formed a single cluster into Group III and, compared to other strains in Group III, possessed
99.59%, 99.52%, and 96.60% sequence similarity with strains YTW-96-06, YTW-66-06, and
Leptospirillum ferrodiazotrophum 5C, respectively. Thus, the newly iron-oxidizing strain Ksh-
L obtained from a dump-bioleaching system of the Kashen copper-molybdenum mine was
identified as Leptospirillum ferroodiazotrophum. Type strain: Leptospirillum ferroodiazotrophum
Ksh-L.

It was also shown that the bioleaching of copper and iron from chalcopyrite by the
association of L. ferrodiazotropum Ksh-L and At. thiooxidans ATCC 19377 in comparison
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with pure-culture L. ferrodiazotropum Ksh-L for 30 days increases about 1.8 and 1.9 times,
respectively. Thus, it is supposed that the association of isolated L. ferrodiazotropum Ksh-L
with sulfur-oxidizing At. thiooxidans ATCC 19377 can be successfully used to enhance the
efficiency of copper extraction from chalcopyrite.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/min14010026/s1, Figure S1: Microphotography of iron-oxidized
bacteria (Motic BA 310 trinocular (×1000) microscope with Digital Camera Moticam A16 (×0.5)).
Figure S2: Gel electrophoresis of PCR amplification of 16S rRNA amplified product of 16S rDNA for
bacterial isolate Leptospirillum sp. Ksh-L.
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