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Abstract

The optic nerve is an essential bridge between the eye and the brain, holding a crucial

position in the entire visual pathway. Damage to the optic nerve, such as that caused by

glaucoma and anterior ischaemic optic neuropathy, not only causes visual field deficits and

perceptual abnormalities, but also visual cognitive processing. Repetitive transorbital

alternating current stimulation (rtACS) shows promise in enhancing visual field function

and improving vision-related quality of life in patients with optic neuropathy. However,

it remains unclear how localized visual impairment and rtACS-induced neuromodulation

a↵ects upstream cognitive processing mechanisms in the brain.

Neuronal synchronization, the underlying mechanism of overall behaviour and thought,

must be well orchestrated in time and space to ascertain flawless interactions of di↵er-

ent functional domains such as sensorimotor and multisensory integration, attention or

cognition. Functional connectivity networks (FCN) are the physiological basis of brain

synchronization to integrating neural activity. They are not rigid but can reorganize

under pathological conditions or during mental or behavioral states, which provides an

avenue to better understand the mechanisms of visual cognition and to analyze visual

impairment and vision restoration. Tightly connected clusters of nodes, called commu-

nities, interact in a time-dependent manner in brain FCN to support complex cognitive

functions. However, little is known if and how di↵erent nodes synchronize their neural

interactions to form functional communities (“modules”) during visual processing and if

and how this modularity is a↵ected post-lesion (progression or recovery) by neuromodu-

lation.

Using the damaged optic nerve as a paradigm, I now studied brain FCN dynamics to

better understand dynamic reconfigurations and interactions before and after neuromod-

ulation with non-invasive rtACS. EEG-recordings were time-locked to visual stimulus

presentation and graph analysis of neurophysiological oscillations was used to charac-

terize millisecond FCN dynamics in healthy subjects and in patients with optic nerve

damage before and after treatment and were correlated with visual performance.

I found that rapid and transient FCN synchronization patterns in humans can evolve and

dissolve in millisecond speed during visual processing. This rapid reorganization is func-

tionally relevant because disruption and recovery after microcurrent treatment in optic

nerve patients correlated with impaired and recovered visual performance, respectively.

Because FCN hub and node interactions can evolve and dissolve in millisecond speed to

manage spatial and temporal neural synchronization during visual processing and recov-

ery, I propose “Brain Spacetime” as a fundamental principle of the human mind not only

in visual cognition but also in vision restoration.

In both patients and controls, local inter-module interactions correlated with visual per-

formance. However, patients’ recovery of vision after treatment with rtACS was associ-

ated with improved interaction strength of pathways linked to the attention module, and

it improved global modularity and increased stability of FCN. Temporal coordination

of multiple cortical modules and inter-module interaction are functionally relevant for

visual processing. This modularity can be neuromodulated with rtACS which induces a

more optimal balanced and stable multilayer modular structure for visual processing by

enhancing the interaction of neural pathways with the attention network module.

However, treatment e�cacy varies considerably between subjects and treatment outcome
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remains unpredictable. In order to identify individual vision recovery predictor (VRP),

existing trial data from optic nerve patients were analysed and trained using deep learning

algorithms. In this way, I developed a vision recovery prediction model for post-rtACS

e↵ects by training the node centralities of the functional brain networks during visual

cognition from optic nerve damage patients.

In addition, I analyzed the potential of a deep learning-based early warning model to

identify potential visual field damage in ”intact” visual fields. However, the generalization

ability of the model remains to be further investigated.

In conclusion, this study reveals that rapid and transient synchronization patterns in

functional brain networks play a crucial role in visual processing and recovery, propos-

ing ”Spacetime of the Brain” as a fundamental principle. Treatment with rtACS in

optic nerve patients enhances inter-module interactions, particularly with the attention

network module, improving global modularity and stability of functional brain networks.

Additionally, a deep learning-based vision recovery prediction model and an early warning

system for identifying visual field damage were developed, o↵ering insights into individ-

ualized treatment outcomes and timely interventions.

Keywords: Optic nerve damage; brain network; graph theory, cognition; alternating

current stimulation; brain stimulation; Multilayer modularity; Brain stimulation; EEG;

Deep Learning.
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Zusammenfassung

Der Sehnerv ist eine essentielle Verbindung zwischen dem Auge und dem Gehirn und

nimmt eine entscheidende Stellung im gesamten visuellen System ein. Schäden am Sehn-

erv, wie zum Beispiel bei Glaukom und anteriore ischämische Optikusneuropathie, führen

nicht nur zu Gesichtsfeldausfällen und Wahrnehmungsstörungen, sondern auch zu einer

Vielzahl kognitiver Beeinträchtigungen. Wiederholte transorbitale Wechselstromstimu-

lation (rtACS) zeigt vielversprechende Ergebnisse bei der Verbesserung des Gesichts-

felds und der Steigerung der lebensbezogenen Sehqualität bei Patienten mit Optikus-

neuropathie. Es ist jedoch noch unklar, wie die lokalisierte Sehbeeinträchtigung und die

durch rtACS ausgelöste Neuromodulation die höheren kognitiven Verarbeitungsmecha-

nismen im Gehirn beeinflusst.

Die neuronale Synchronisation, der zugrunde liegende Mechanismus von Verhalten und

Denken, muss zeitlich und räumlich gut orchestriert sein, um fehlerfreie Interaktionen

zwischen verschiedenen funktionellen Bereichen wie sensorimotorischer und multisen-

sorischer Integration, Aufmerksamkeit oder Kognition zu gewährleisten. Funktionelle

Konnektivitätsnetzwerke (FCN) bilden die physiologische Grundlage der Gehirnsynchro-

nisation zur Integration neuronaler Aktivität. Sie sind nicht starr, sondern können sich

unter pathologischen Bedingungen oder während mentaler oder Verhaltenszustände neu

organisieren, Dies bietet einen Ansatz, um die Mechanismen der visuellen Kognition und

die Analyse von Sehbeeinträchtigung und Sehwiederherstellung besser zu verstehen. Eng

miteinander verbundene Knotencluster, sogenannte “Gemeinschaften“, interagieren in

zeitabhängiger Weise im Gehirns des FCN, um komplexe kognitive Funktionen zu un-

terstützen. Es ist jedoch wenig bekannt, ob und wie verschiedene Knoten ihre neuronalen

Interaktionen synchronisieren, um funktionale Gemeinschaften (”Module”) während der

visuellen Verarbeitung zu bilden, und ob und wie diese Modularität nach einer Läsion

(Fortschreiten oder Wiederherstellung) durch Neuromodulation beeinflusst wird.

Unter Verwendung des geschädigten Sehnervs als Paradigma haben wir nun die Dy-

namik des Gehirn-FCN untersucht, um dynamische Neukonfigurationen und Interak-

tionen vor und nach der nicht-invasiven rtACS-Neuromodulation besser zu verstehen.

EEG-Aufzeichnungen wurden zeitlich auf die Präsentation visueller Reize abgestimmt,

und die graphische Analyse neurophysiologischer Schwingungen wurde verwendet, um

Millisekunden-FCN-Dynamik bei gesunden Probanden und bei Patienten mit Sehnervschäden

vor und nach der Behandlung zu charakterisieren und mit der visuellen Leistung zu kor-

relieren.

Wir fanden heraus, dass schnelle und vorübergehende Synchronisationsmuster in den

FCN des Gehirns beim Menschen in Millisekundenschnelle während der visuellen Ver-

arbeitung entstehen und wieder verschwinden können. Diese rasche Reorganisation ist

funktional relevant, da Störungen und Erholung nach der Behandlung mit Mikroströmen

bei Patienten mit Sehnervschäden mit beeinträchtigter bzw. wiederhergestellter visueller

Leistung korrelierten. Da die Wechselwirkungen von FCN-Hubs und Knoten in Mil-

lisekundenschnelle räumliche und zeitliche neuronale Synchronisation während der vi-

suellen Verarbeitung undWiederherstellung verwalten können, schlagen wir die ”Raumzeit

im Gehirn” als ein grundlegendes Prinzip des menschlichen Geistes vor, nicht nur in der

visuellen Kognition, sondern auch in der Sehwiederherstellung.

In beiden Patienten und Kontrollgruppen korrelierten lokale Intermodul-Interaktionen
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mit der visuellen Leistung. Allerdings war die Wiederherstellung der Sehkraft bei Patien-

ten nach der Behandlung mit rtACS mit einer verbesserten Interaktionsstärke der Pfade,

die mit dem Aufmerksamkeitsmodul verbunden sind, assoziiert, und sie verbesserte die

globale Modularität und erhöhte die Stabilität der FCN. Die zeitliche Koordination

mehrerer kortikaler Module und die Intermodul-Interaktion sind funktional relevant für

die visuelle Verarbeitung. Diese Modularität kann mit rtACS neuromoduliert werden,

was eine ausgewogenere und stabilere multischichtige modulare Struktur für die visuelle

Verarbeitung durch die Verbesserung der Interaktion neuronaler Pfade mit dem Aufmerk-

samkeitsnetzwerkmodul ermöglicht.

Die Behandlungse�zienz variiert jedoch erheblich zwischen den Probanden, und die Be-

handlungsergebnisse bleiben unvorhersehbar. Um individuelle Vorhersagen zur Wieder-

herstellung der Sehkraft zu identifizieren, wurden vorhandene Versuchsdaten von Patien-

ten mit Sehnervschäden analysiert und mithilfe von Deep-Learning-Algorithmen trainiert.

Auf diese Weise haben wir ein Vorhersagemodell zur Wiederherstellung der Sehkraft nach

rtACS-E↵ekten entwickelt, indem wir die Knotenzentralitäten der funktionellen Gehirn-

netzwerke während der visuellen Kognition von Patienten mit Sehnervschäden trainiert

haben.

Darüber hinaus habe ich das Potenzial eines auf Deep Learning basierenden Frühwarnmodells

analysiert, um potenzielle Sehfeldschäden in ’intakten’ Sehfeldern zu identifizieren. Die

Generalisierungsfähigkeit des Modells muss jedoch weiter untersucht werden.

Zusammenfassend zeigt diese Studie, dass schnelle und transiente Synchronisationsmuster

in funktionellen Gehirnnetzwerken eine entscheidende Rolle bei der visuellen Verarbeitung

und Genesung spielen, und schlägt ”Brain Spacetime” als grundlegendes Prinzip vor.

Die Behandlung mit rtACS bei Patienten mit Sehnervenschäden verbessert die Interak-

tionen zwischen den Modulen, insbesondere mit dem Aufmerksamkeitsnetzwerkmodul,

und steigert die globale Modularität und Stabilität der funktionellen Gehirnnetzwerke.

Darüber hinaus wurde ein auf Deep Learning basierendes Modell zur Vorhersage der

Erholung der Sehleistung. Dies liefert nicht nur bessere Einblicke in individualisierte

Behandlungsergebnisse sondern könnte potentiell von Vorteil sein frühzeitigere Interven-

tionen zu Therapie von Sehschädigungen anbieten zu können.

Schlüsselwörter: Sehnervschaden; Gehirnnetzwerk; Graphentheorie; Kognition; Wech-

selstromstimulation; Gehirnstimulation; Mehrschichtige Modularität; EEG; Deep Learn-

ing.
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1 Introduction

There are di↵erent diseases a↵ecting the optic nerve such as glaucoma, traumatic injury

or Anterior ischemic optic neuropathy (AION), and the clinical manifestations include

visual field defects, slowed reaction times, lower contrast, dyschromatopsia, foggy vision

and abnormal papillary response (Mart́ınez-Lapiscina et al., 2014; Medeiros et al., 2005).

Optic nerve damage is generally viewed as a purely sensory and not a cognitive problem.

However, some “optic nerve diseases” are also associated with damage to di↵erent brain

structures. For example, glaucomatous optic nerve damage is associated with degeneration

of retinafugal brain regions such as the lateral geniculate nucleus of the thalamus, visual

cortex and even non-visual structures like the amygdala (Frezzotti et al., 2014; Nuzzi

et al., 2018; Wang et al., 2016; Williams et al., 2013). Also Dominant Optic Atrophy

(DOA) has not only a significant atrophy of the optic nerves but also significantly lower

mean di↵usivity, axial and radial di↵usivity in the white matter of the cerebellum, brain-

stem, thalamus, fronto-occipital-temporal lobes, including the cingulum, corpus callosum,

corticospinal tract and optic radiation bilaterally (Rocca et al., 2015).

Given the wide spread central changes in a disease which is peripheral, the question

arises, how a local “sensory” problem impacts the upstream cognitive processing mecha-

nisms in the brain. In my search to better understand response fluctuations and to find

means to improve or restore vision, I wish to further explore the physiology of global

FCN changes in optic nerve patients. Here, areas of residual vision (ARV, also known as

“relative defects”) are of particular interest because these regions are not fully blind but

partially impaired, with some degree of residual vision. ARV are rather variable and there-

fore of particular clinical interest because activating them leads to vision recovery (Sabel

et al., 2011b) and this vision restoration can be achieved by behavioural vision training

(Kasten et al., 1998; Poggel et al., 2004; Veraart et al., 2003) or non-invasive brain current

stimulation. Because our recent findings that rtACS alters resting state FCN in patients

with vision loss, optic nerve damage is a preferred lesion paradigm to explore the role of

FCN in normal and abnormal vision.

Functional connectivity networks, the physiological basis of behaviour, and their alter-

ations have been studied recently in normal and diseased subjects (Bullmore and Sporns,

2012). In patients with optic nerve damage, for example, FCN changes are observed in

the resting state in the alpha and theta band (Bola et al., 2014). FCN during a cognitive

decision-making task show transient FCN alteration such as stronger clustering and lower

modularity (Bola and Sabel, 2015). Yet, it is not yet known, if the rapid and transient

network reorganization observed during cognitive processing in normal brains is altered

by optic nerve damage.

Graph modelling of the brain, as proposed by the graph theory (Bullmore and Sporns,

2009), is a valuable measure of topological properties of complex brain networks such

as clustering coe�cient, small-world attributes, and heterogeneous degree distributions

(Bassett and Bullmore, 2006; Bullmore and Sporns, 2009). Complex networks have been

studied in many cognitive emotional disorders which indicate abnormal connectivity syn-

dromes between brain regions (Catani and Ffytche, 2005) like Alzheimer’s disease (Pievani

et al., 2011), schizophrenia (Lynall et al., 2010; Yu et al., 2015), early blindness (Shu et al.,

2009) or optic nerve damage (Bola et al., 2014). Thus, the value of graph theory in cog-
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1.1 Damage and Plasticity of the Visual System

nitive and clinical neuroscience is now well recognized.

The EEG can measure neuronal oscillatory activity with a high temporal resolution

and it can e↵ectively estimate temporal processing of the highly dynamic functional brain

network with modern techniques (Mantini et al., 2007; Stam et al., 2006). There are

di↵erent imaging methods that can chart the complexity of the human brain networks

including the functional MRI (fMRI) (Fox et al., 2005) and EEG (van den Heuvel et al.,

2008). In contrast to MRI connectivity studies, the excellent time resolution of electroen-

cephalography (EEG) can reveal time-locked FCN changes in the msec.-range as revealed

by the evoked-response network (Bola and Sabel, 2015).

Transcranial alternating current stimulation (rtACS) has been proposed to modulate

the ongoing brain activity rhythm using oscillatory current stimulation on the human scalp.

rtACS can influence cortical excitability, motor function and higher order cognition. It

has been suggested that rtACS can influence motor function (Brignani et al., 2013; Feurra

et al., 2011), enhance individual EEG alpha activity (Zaehle et al., 2010), and have a long

lasting e↵ect on endogenous EEG power (Kasten et al., 2016; Neuling et al., 2013). But

the specific mechanism underlying these e↵ects is still unknown. Two main suggestions

are entrainment of brain oscillations by rtACS (Antal et al.; Herrmann et al., 2013) and

spike-timing dependent plasticity via synaptic changes (Vossen et al., 2015; Zaehle et al.,

2010). In the present study, rtACS was used as non-invasive brain stimulation to explore

its mechanism from a functional network reorganization perspective.

Therefore, using the method of “event related network analysis” (ERNA), I character-

ized how brain functional connectivity networks react to visual stimuli presented either

inside the intact visual field regions or in areas of residual vision in damaged visual fields.

My hypothesis is that optic nerve damage not only leads to local anatomical damage but

also to global and local alterations in the brain functional connectivity network during the

cognitive state. I then analysed the possibility of vision restoration by FCN comparison

in pre and post rtACS. Specifically, I tried to describe the brain modularity and their

community interaction structure, and to explore rtACS influences on local communities.

Finally, I wish to build a vision recovery prediction model to support the progress towards

improved clinical treatment of visual system disorders.

1.1 Damage and Plasticity of the Visual System

1.1.1 The Visual System

Vision has been studied extensively as the most important and basic sense. The visual

system, a prominent part of the central nervous system, has also been the focus of intense

research. It acts as a receiver of information and a processor of visual sensory input,

helping us to understand our environment and contributing to our successful navigation

in physical space and interaction with surroundings objects.

The human visual system is responsible for a series of visual information processing,

from the knowledge acquisition of the surroundings by the sensory organ to the extraction

and interpretation of information by the brain cortex. It comprises several major com-

ponents including the retina, optic nerve, optic chiasm, lateral geniculate nucleus (LGN)

and visual cortex of the occipital lobe.
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1.1 Damage and Plasticity of the Visual System

Figure 1.1: Schematic illustration of visual pathway and visual field deficits caused by lesions in the
visual pathway.

There are two types of photoreceptors in the retina, rods and cons, for the detection

of light. The optic nerve is responsible for sending the detected input from the retina

to the brain, which consists of more than a million nerve fibers. The optic nerves cross

the optic chiasm, allowing the visual cortex to receive information from both eyes. The

LGN organized all sensory information from the retina. Once inside the brain, the input

received from the retina begins to be processed within the brain by visual cortex, including

V1 as the primary visual cortex or striate cortex, as well as secondary visual areas such as

V2, V3, V4 and V5/MT, for further interpretation. Fig. 1.1 shows a schematic structure

of the human visual system.

During visual perception, light enters the eye and then hits photosensitive cells in the

retina, triggering electrical signals that are subsequently transmitted through the optic

nerve to the lateral geniculate nucleus and finally reach the visual cortex within the brain

for further processing. The brain can then build a representation of the surrounding

environmental stimuli based on these electrical impulses and take action to accomplish

complex tasks. The various types of visual processing include color vision, adaption,
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1.1 Damage and Plasticity of the Visual System

depth perception, form perception, illusions, motion perception and more.

The brain plays a crucial role in this visual process. There are more than 30 visual

areas in the brain that interact with each other tremendously. Studies of how the brain

is organized during visual processing can produce fundamental insights into higher-order

brain functions like cognition, behavior or learning. Generally, the visual information

passing through the cortex hierarchy may be processed into two streams, one going to the

ventral pathway to the temporal lobe and another to the dorsal pathway to the parietal lobe

(Mishkin and Ungerleider, 1982). The ventral pathway, also called the “what” pathway,

is usually involved in object discrimination, such as object identification and recognition.

While the dorsal pathway, on the other hand, is referred to as “where” pathway and deals

with spatial localization and how to interact with specific visual stimuli. However, there

is still much debate about the independence of these two streams, since dorsal-ventral

stream integration occurs (Budisavljevic et al., 2018; Farivar, 2009).

Although a great deal is known about the visual system in general, much remains to be

understood about how activity in di↵erent areas of the visual cortex – and visual related

attention areas – are e�ciently reorganized not only spatially but also at high temporal

resolution to accomplish higher-order cognition.

1.1.2 Damage to the Visual System

Ideally, the visual pathway is e�cient and smooth in its transmission of information,

from the optic nerve to the visual cortex in the brain. However, this visual processing can

be interrupted if damage appears along this pathway, such as damage to the eye, within

the visual pathways or in the visual cortex. These disruptions could cause multiple visual

impairments, including reduced visual acuity, diminished contrast and light brightness

sensitivity and visual field defect among others.

There are numerous abnormalities that can damage or compress the visual pathways,

resulting in vision loss or other symptoms. For example, eye diseases that a↵ect the retina

include age-related macular degeneration (AMD), a degenerative disease that a↵ects the

macula of the retina; diabetic retinopathy, defined as a complication of diabetes that

a↵ects the blood vessels of the retina; and retinitis pigmentosa, a genetic disorder that

can damage the retina and the LGN leading to progressive vision loss. Glaucoma is an eye

illness involving damage of the optic nerve and the LGN, including primary open-angle

glaucoma, angle-closure glaucoma, congenital glaucoma and secondary glaucoma, which

may lead to progressive loss of peripheral vision. Optic neuritis, an inflammation of the

optic nerve, can impair color vision and result in an abrupt loss of central or peripheral

vision. Additionally, gliomas, a type of brain tumor, can develop in the region of the optic

chiasm and cause blindness. Another significant contributor to blindness is impairment to

the visual cortex, such as cortical blindness, which is commonly brought on by stroke or

traumatic brain injury.

Di↵erent defects of the visual pathway may evoke various vision problems. But almost

all kinds of vision related diseases lead to impaired visual field. The visual field refers

to the entire area of space that can be perceived by the eye when looking straight ahead

in stationary state. It can be measured through perimetry testing. Additionally, the

pattern of visual field defects also varies with the type of disease. Visual field defects in

AMD often appear in central vision, leaving intact peripheral vision. Glaucoma typically
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causes an initial loss of peripheral vision, while central vision will also be involved as

the glaucoma progresses. However, diabetic retinopathy can result in blind patches, also

known as scotomas, that are often present in the peripheral visual field. And hemianopsia

is characterized by a loss of vision in half of the visual field. Fig. 1.1 is an illustration of

visual field scenarios of di↵erent eye and brain diseases.

1.1.3 Vision Restoration Therapy

Visual impairment, which can range from limited vision to blindness, describes a broad

loss of visual function. These complete or partial vision losses can significantly a↵ect a

person’s ability to maintain independence and quality of life. It also has substantial impact

to the economic and society. Therefore, it is crucial to develop a technology and vision

restoration therapies in order to advance our comprehension of the underlying causes of

visual impairment and ways to help patients. In addition, it o↵ers patients with visual

impairments the opportunity to accomplish some visual performance goals, enhancing

their quality of life.

Vision loss is usually considered irreversible, despite the availability of di↵erent medica-

tions and surgery treatment that aim to slow down or prevent further vision loss. However,

a variety of considerable vision restoration therapies, such as vision training, gene therapy,

brain stimulation and others have been proposed to improve or restore visual function that

has been lost.

Vision training refers to a type of therapy that aims to improve visual abilities and

performance through a series of exercises and activities. One of the approaches most com-

monly used in vision training is perceptual learning. There is increasing evidence showing

improvement of perceptive capacity in amblyopia (Rodán et al., 2022) and presbyopia

(Deveau and Seitz, 2014) through repetitive training of a visual task. And training is also

e↵ective in other diseases such as visual cortex stroke (Kasten et al., 1998) and glaucoma

(Sabel and Gudlin, 2014).

Depending on the underlying pathophysiology, the electrode-based visual prosthesis

can be implanted in the retina, optic nerve, LGN or cortex to restore visual perception by

targeting the most e�cient area along the visual pathway. It can interface directly with

the neural tissue. Although, the concerns of tissue and cell damage caused by invasive

implantation, the limited spatial resolution and data transmission still need further study;

Stem cell therapy attempts to transplant healthy stem cells into the eye to replace damaged

or diseased cells and restore vision. It allows the derivation of new photoreceptor cells,

which are subsequently integrated into existing retinal circuits; And finally, using viral

vectors, optogenetic approaches can precisely transfer genes encoding optic proteins into

targeted tissues and cell populations, allowing for excellent temporal and spatial resolution.

The cells are then stimulated and controlled by light through expressed proteins to restore

vision. However, the limitation is its restriction of depth through tissue and clinical trials

with patients are still underway.

Moreover, visual perception is not only a local activity of the brain, but also a coor-

dination of distributed brain regions that requires synchronization of di↵erent visual and

non-visual brain sub-networks. De-synchronization among di↵erent regions in brain net-

work may result in impaired visual function. Therefore, brain network modulation may

be a potential mechanism to activate any residual vision.
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Residual vision activation theory (Sabel et al., 2011b) focuses on areas of partial visual

functions to achieve vision reactivation. In general, patients’ responses to visual stimuli in

the residual visual field are uncertain and vary greatly on repeated testing due to impair-

ment. However, most patients retain residual structure and function after damage and

have hidden recovery potential, especially in these gray areas of the visual field that are

not completely blinded. The recovery potentials of residual visual field areas after therapy

can be easily quantified through perimetric vision testing. Beyond residual visual amplifi-

cation, whether and how neuronal networks change and how functional brain connections

are reorganized locally and globally to vision restoration therapies remains unclear, which

will be further explored in my study. In these vision restoration therapies that reactivate

residual vision, brain stimulation appears to o↵er a promising rehabilitation potential

(Sabel et al., 2018).

1.1.4 Brain Stimulation for the Treatment of Neurological Disorders

Brain stimulation techniques have become one of the most acceptable neuromodulation

tools for the treatment of various neurological or psychiatric disorders in recent years. By

modulating cognitive functions, brain stimulation methods have shown promising e↵ects

on Alzheimer’s disease (AD), obsessive-compulsive disorder, post-traumatic stress disor-

der, pain, epilepsy and movement disorders. Brain stimulation includes invasive brain

stimulation (IBS) and non-invasive brain stimulation (NIBS) (Fig. 1.2).

IBS involves deep brain stimulation (DBS) and invasive vagus nerve stimulation (iVNS).

Electrical stimulators are implanted directly over specific brain structures during DBS in

order to modulate dysregulated neural circuits. In addition to the continuous stimulation

applied to the target structure by conventional DBS, adaptive DBS allows real-time ad-

justment of stimulation parameters according to the patients’ functional status to achieve

symptom relief especially in common DBS indications for movement disorders, such as

Parkinson’s disease and essential tremor (Guidetti et al., 2021). However, continuous and

uninterrupted stimulators remain the dominant option of treatment, apart from techni-

cal drawbacks, the unrobust of adaptive DBS as an established treatment for movement

disorders needs to be overcome.

The vagus nerve as the longest cranial nerve, consists of a complex neuro-endocrine-

immune network that establishes a vital bridge between the brain and surrounding organs,

to maintain homeostasis. With a subcutaneously implanted device, iVNS can send elec-

trical impulses through the left vagus nerve to modulate the autonomic nerve. It has been

commonly used as an adjunctive treatment for seizures and chronic or recurrent depres-

sion in adults. There are also ongoing clinical trials using iVNS for the treatment of heart

failure. Yet iVNS may cause bradycardia and/or rarely contractions due to implantation.

The most prominent of currently used NIBS methods includes electroconvulsive ther-

apy (ECT), transcranial magnetic stimulation (TMS), and transcranial electrical stimula-

tion (tES). ECT is a controversial therapy that induces seizures through strong electrical

stimulation of the brain and can be used to treat psychotic disorders. It is e↵ective and

currently available for the treatment of patients with severe depression (Rhee et al., 2022),

or mania (Elias et al., 2021). TMS is a technology that can use magnetic pulses to pro-

duce neurological e↵ects in the brain (Hallett, 2007). The stimulation of nerve cells is

achieved by the electric currents induced from the electromagnetic device (magnetic coil).
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Figure 1.2: Diagrammatic representation of brain stimulation techniques.

Most TMS studies have been conducted on motor cortex. TMS that can generate rapid

succession of pulses, called repetitive TMS (rTMS), has been studied as a treatment for

interrupting migraine headaches or for rehabilitating of addicted brain (Diana et al., 2017)

and psychiatric disorders such as depression (Cappon et al., 2022; Ferrucci et al., 2021).

rTMS also contributes to brain plasticity in motor recovery after stroke (Agarwal et al.,

2019).

tES is considered to be well tolerated as a non-invasive method of neurostimulation.

It allows the use of low intensity direct or alternating currents to modulate spontaneous

central activity, producing reorganizations in neural networks. Several major methods of

delivering current to the brain have been intensively studied in recent years that di↵er

according to the pattern of the current, including transcranial direct current stimulation

(tDCS), transcranial alternating current stimulation (rtACS), and transcranial random

noise stimulation (tRNS). These methods use electrical currents that can pass through the

skull and reach the underlying brain tissue transcranially. Although the neurophysiological

mechanisms underlying the operation of tES are still not fully understood, studies have

identified stimulation e↵ects of tES that are related to the initial state and stimulation

location.

The administration of tDCS is quite simple. A low intensity constant direct current

(usually 0.5-2mA) is typically used to enter the brain from the anode, travel through the

tissue, and exit from the cathode. The current of tDCS activates not only the area of in-

terest under the electrodes, but also spans other cortical and subcortical areas. Combined
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with the poor electrical conductivity of the brain, the stimulation e�ciency of tDCS is

low, with at least 50% of the current lost to other surrounding tissues. In most studies,

anodal stimulation increased tissue excitability, whereas cathodal stimulation diminished

tissue excitability through depolarization and hyperpolarization of membrane potentials

(Nitsche and Paulus, 2000; Radman et al., 2009; Summers et al., 2016). For example,

motor skill learning can be enhanced by anodal stimulation on motor cortex (Fritsch

et al., 2010). However, there are also some exceptions with no e↵ect or opposite pattern

(Accornero et al., 2007; Dockery et al., 2009; Terhune et al., 2011). The e↵ectiveness

of tDCS has been tested in the reduction of pain (Luedtke et al., 2015), improvement

in dyskinesias and verbal fluency of parkinsonian patients (Ferrucci et al., 2016; Pereira

et al., 2013), facilitation of post-stroke motor learning (Kang et al., 2016), improvement

of speech and language performance (Campana et al., 2015; Marangolo et al., 2014) and

alleviation of negative symptoms in various neuropsychiatric disorders (Brunelin et al.,

2012; Brunoni et al., 2013; Hill et al., 2016), and also enhancement of working memory in

healthy populations.

Unlike tDCS, which regulates the excitability threshold of neuronal membrane poten-

tials through constant current, rtACS interacts directly with neural activity by a specific

frequency range of non-constant alternating current, such as sinusoidal or rectangular

waves, leading to intrinsic cortical oscillations (Antal and Paulus, 2013). Brain net-

work oscillates di↵erently in various ongoing cognitive processes (Herrmann et al., 2013).

Therefore, the application of frequency-specific stimulation may a↵ect the synchronization

patterns of those neural network oscillations, causing changes in behavior or cognition

(Fröhlich et al., 2015; Herrmann et al., 2016). The potential neuromodulation e↵ects of

rtACS have been studied in healthy subjects, including improvements in working memory

capacity (Jaušovec et al., 2014; Meiron and Lavidor, 2014), retrieval accuracy (Fresnoza

et al., 2018) and contrast detection (Laczó et al., 2012). Furthermore, rtACS facilitates in

several psychiatric disorders, such as reduction in the delusions (Sreeraj et al., 2020) and

improvement of auditory hallucinations (Ahn et al., 2019) in schizophrenia. In addition,

rtACS appears to be feasible in vision restoration after optic neuropathy with increased

defected visual field and vision related quality of life (Gall et al., 2011, 2016). To better

understand the exact mechanisms of rtACS, especially the potential roles of rtACS in neu-

ral network oscillations, here I investigated the pattern of visually evoked brain networks

before and after rtACS treatment.

tRNS applied alternate current with randomly assigned amplitude and frequency to

the scalp. Studies in healthy subjects have shown excitability on motor cortex (Chaieb

et al., 2011; Terney et al., 2008) and better accuracy on the perceptual task (Fertonani

et al., 2011) in high frequency tRNS. In addition, tRNS induces short and long-term

enhancement of learning and high level brain function with an e�cient neurovascular

coupling (Snowball et al., 2013). In addition to these traditional stimulation methods,

the potential of other technological applications, such as transcranial focused ultrasound

(Gorick et al., 2022; Krishna et al., 2018; Sarica et al., 2022) and photobiomodulation

(Caldieraro and Cassano, 2019; Mosilhy et al., 2022; Salehpour et al., 2018), have been

reported to modulate the inhibition or excitation of cellular activity.

Brain stimulation provides a distinctive opportunity to directly manipulate neural pro-

cesses, enabling us to gain a deeper understanding of the mechanisms underlying various

brain disorders from a cognitive and neurobiological basis. Moreover, with advances in
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high density localization and depth systems, it o↵ers novel techniques to intervene neural

networks in the neurogenesis and achieve neuromodulation to further unfold the plasticity

of the human brain.

1.2 Brain Networks and Cognition

It is generally known that vision, like other mental functions, are supported by brain

networks which have functional connectivity interacting in complex neuronal networks.

The functional brain network can be studied with di↵erent techniques that record the

brain�s hemodynamic, magnetic or electric signals using techniques such as like elec-

troencephalography (EEG), magnetoencephalography (MEG) and functional magnetic

resonance imaging (fMRI) which can uncover neuronal oscillatory activity of the nor-

mal or diseased brain. For example, functional connectivity analysis research was car-

ried out with chronic tinnitus patients using resting state MEG to estimated directed

functional connectivity of the resting brain to identify the structure of intrinsic cortical

networks which revealed a decrease in e�ciency and small-worldness of tinnitus patients

(Paraskevopoulos et al., 2019). Research on schizophrenia patients used fMRI to iden-

tify alterations in schizophrenia genetic risk on dynamic functional brain networks during

working memory (Braun et al., 2016). The functional connectivity analysis character-

ized by EEG–functional magnetic resonance imaging (fMRI) datasets in patients with

idiopathic generalized epilepsy found BOLD activation in the thalamus, the frontomesial

cortex, and the cerebellum and BOLD deactivation in default mode areas (Moeller et al.,

2011).

To analyze brain networks, graph theory has been developed and is now widely used

in cognitive and clinical neuroscience. It is an accepted and useful method to investigate

multiple fields of application in neuroscience to characterize network topological properties.

1.2.1 Neuroimaging of Brain Activity

Neuroimaging is able to image nervous system for live human by using radiological,

magnetic resonance and other technologies, such as computed tomography (CT), magnetic

resonance imaging (MRI), positron emission tomography (PET), magnetoencephalography

(MEG), and electroencephalography (EEG). There is a growing body of research demon-

strating that neuroimaging plays an important role not only in the diagnosis of disease,

but also in the assessment of brain activation. They have been commonly used to measure

structural morphometry and functional brain activities, especially in pathophysiological

conditions.

Computed tomography (CT) allows for structural and anatomical evaluation of tissues

from cross-sectional images. With its ease of acquisition and diagnostic capabilities, CT

remains the recommended imaging method for various surgical conditions, particularly in

skull (Stiell et al., 2001), bone (Pickhardt et al., 2013) and spinal evaluation (Dunham

et al., 2008). In addition, it is the modality of choice for the evaluation of acute intracranial

hemorrhage (Yuh et al., 2021).

Magnetic resonance imaging (MRI) is an alternative cross-sectional imaging modality

that has been widely utilized to evaluate tissues and their biomedical properties, including

volumetric and morphological MRI to assess anatomical structures, di↵usion MRI (dMRI)
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to assess white matter, MR spectroscopic imaging to assess metabolite concentrations, and

functional MRI to assess neuronal activation.

Volumetric and morphological MRI can quantify shape or structural changes within

the brain by evaluating relative regional volume changes using atlas-based segmentation

method, or by assessing changes in the alignment of the nuclei and sub-nuclei of a region,

providing fine-grained information on cortical patterns. For example, visualization of the

hippocampus by high resolution structural MRI not only identified changes in the mor-

phological features of the hippocampal dentition and demonstrated its association with

memory, but also allowed for clear visualization of its internal architecture (Beattie et al.,

2017; Ver Hoef et al., 2021). dMRI reveals detailed architecture of tissue by measurement

of the molecular di↵usion of water, particularly in the white matter and structural con-

nectivity. dMRI has been widely used in stroke recovery to understand the location and

severity of strokes (DiBella et al., 2022; Lampinen et al., 2021). It is also a promising

method for exploring connectomics as well as pathological changes in neurological studies

of the brain (Jeurissen et al., 2019; Harrison et al., 2020). In addition, MR spectroscopic

imaging has generally been used to quantify the metabolic alterations of human brain glu-

cose and neurotransmitter metabolism, providing metabolic impairment information which

was linked to several neurological disorders (Bednarik et al., 2023; Lipka et al., 2023; Niess

et al., 2023). fMRI depicts cortical activation by measuring the changes of blood oxygen

level dependent in the brain. It has become a powerful tool in neuroscience research, espe-

cially in the functional connectivity of cognitive networks. fMRI o↵ers several advantages

in brain analysis, being non-invasive, well tolerated, and providing millimeter-level spatial

resolution. The application of fMRI in mapping cognitive functions, such as attention,

language processing, memory (Shurtle↵ et al., 2022; Mekki et al., 2022; Itthipuripat et al.,

2019), and detecting brain alterations in neurological disorders (Johansson et al., 2022;

Yan et al., 2020) has been well established over the past decades. However, the temporal

resolution of fMRI is several seconds which has a significant limitation.

Compared to fMRI, MEG provides a more direct measure of neural activity by eval-

uating the oscillating magnetic field resulting from the electrical activity of neurons. It

has been commonly exploited to analyze large scale brain activities with a high tempo-

ral resolution as EEG and good spatial resolution combined with fMRI. More recently,

MEG has been used to identify complex dynamics of task and object processing to better

understand cognition in humans (Cichy et al., 2016; Hebart et al., 2018). MEG is also ap-

pealing to track spatiotemporal brain activity of word recognition during spoken language

interpretation (Klimovich-Gray et al., 2019). In addition, MEG can also provide reliable

localization for seizures (Alkawadri et al., 2018).

However, MEG has relatively high acquisition and maintenance costs compared to

EEG, which measures direct and real-time millisecond brain electric fields (postsynaptic

potentials) generated by current flow of neuron populations. The EEG could be measured

if neurons were activated simultaneously. With its long history and wide range of applica-

tions, EEG can not only provide solutions to find promising features for clinical diagnosis

(Slater et al., 2022)(Slater et al., 2022), but it can also be used as a neuroimaging method

to map brain activity to better understand the neural mechanisms underlying complex

brain functions (Fernandez and Lüthi, 2020; Vecchio et al., 2019).

With its excellent temporal resolution and in combination with underlying source ac-
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tivity estimation, the EEG becomes feasible to characterize various aspects of brain activi-

ties, including brain states, the spatial-temporal dynamics of brain connectivity, as well as

the extent to parallel or serial information processing of brain networks under cognition.

EEG is also a vital instrument for analyzing neurological disorders, such as Attention

Deficit/Hyperactivity Disorder (ADHD) (Slater et al., 2022), chronic neuropathic pain

(Mussigmann et al., 2022) or depression (de Aguiar Neto and Rosa, 2019).

In this project, I therefore use EEG signals and aim to provide a comprehensive and

complete connectome analysis by studying the spatial-temporal dynamic organization of

visually related brain networks.

1.2.2 Brain Connectome and Cognition

These sets of advances in neuroimaging methods enabled insights into the complete

connectivity mapping of the nervous system, from micrographs of synaptic or cells, and

axons connections, to the mesoscopic connectome at cellular level between neuronal types,

to macroscopic graphing of anatomical connections among cortical parcellations. These

diverse hierarchy of connections were described as connectome (Elam et al., 2021; Swanson

and Lichtman, 2016).

The microscale connectome provides a clear view of the connectivity between individual

neurons at the synaptic level and typically relies on electron microscopy (EM). Whole-

brain microscale connectivity mapping has been realized in some simple species such as C.

elegans (Varshney et al., 2011), Drosophila (Takemura et al., 2013), zebrafish (Hildebrand

et al., 2017), etc., but studies of the mammalian brain are still limited to circuits activity

in the cerebral cortex to analyze neuronal connections (Lee et al., 2016; Schmidt et al.,

2017). The mesoscopic connectome has also been widely used in neuronal circuit related

studies, through utilization of various tracing methods (Callaway and Luo, 2015; Schwarz

et al., 2015; Zeng, 2018). Imaging connectomes at macroscopic scale not only characterize

the interactions between anatomically distinct brain regions, but also reflect functional

connectivity. It is also widely employed in human brain due to its non-invasive approaches

such as DTI, dMRI, fMRI and M/EEG et al (Craddock et al., 2013; Glasser et al., 2016;

Herbet and Du↵au, 2020). In particular, connectome related studies using di↵usion MRI

have not only introduces the possibility of reconstruction of white matter fiber connections

and estimation of fiber orientation in the living human brain (Fan et al., 2014; Jones et al.,

2018; McNab et al., 2013), but also of assessment of tissue microstructure properties such

as axon diameter (Dyrby et al., 2013; Sepehrband et al., 2016).

These studies of multiscale connectomes have set the stage for understanding the or-

ganization principles of brain regions during cognition and emotions. Studies in the field

of developmental neuroscience have demonstrated the relationships between white mat-

ter microstructure development and high level cognitive processes, especially in executive

functions (Wang et al., 2018; Fiske and Holmboe, 2019; Goddings et al., 2021). And in

the analysis of human language connectome, scientists have explored direct, functional

and e↵ective connections between cortical regions, providing new insights into the brain

regions involved in language (Friederici et al., 2017; Milton et al., 2021; Rolls et al., 2022).

In addition, advances in the brain connectome are crucial to the study of cognitive dis-

orders. Impaired cognition, for example, has been found to be associated with increased

axon diameter and decreased axon density in the corpus callosum in patients with multiple
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sclerosis (Huang et al., 2019). Moreover, a range of brain connectome studies have been

conducted in disorders a↵ecting the brain such as epilepsy, Alzheimer’s Disease and low

vision (Chu et al., 2023; Kammen et al., 2016; Sun et al., 2020).

1.2.3 Graph Theory in Brain Networks

Based on the key concept of ”connectome”, how brain networks are constructed and

estimated across multiple spatial and temporal scales is critical for comprehensively map-

ping brain structure, function, and exploring brain-behavior relationships. Graph theory

provides an e↵ective solution for modeling and evaluating the brain network dynamics

from the perspective of complex network science, in which the entire brain network was

modeled as a graph with nodes and the links constituted between them (Bullmore and

Sporns, 2009).

Graph theory is a primary and generalized method in the analysis of complex net-

works. Complex networks often contain complex and elaborate interactions with each

other, making it di�cult to assess each individual connection. The core principle of graph

theory is focusing on the topology of graph, that is, how the links were organized. This

facilitates the extraction of key information from complex networks, while ignoring the

detailed connections among nodes. In graph theory, the key topological principles have

been shown to be universal for superficially di↵erent complex networks. They share com-

mon topological properties across systems such as hubs, communities and small-worlds.

These network topologies have been observed in several neuronal networks (Newman, 2003;

Bullmore and Sporns, 2009; Fornito et al., 2013). By analyzing these properties, graph

theory contributes to the exploration of cognitive processes and establishes links between

morphological structures and brain functions (Sporns et al., 2005; Gri↵a et al., 2013).

Advances of graph theory have made it a powerful tool for studying the structural

and functional organization of brain networks in depression, showing weakened functional

intra-modular connections in default and limbic networks, as well as altered structural local

centralities (Yun and Kim, 2021). The importance of graph theory in Alzheimer’s disease

has also been highlighted in tracking disease progression and making early diagnoses. In

fact, investigation on the topology of gray matter networks revealed that path lengths

decrease 13 years before the onset of Alzheimer’s symptoms (Stam et al., 2009; Vermunt

et al., 2020). More recently, the distinctive features of network in neurological disorders

such as epilepsy were explored applying graph theory to characterize network dynamics

including hub mapping (Royer et al., 2022) and predict epileptic seizure (Christiaen et al.,

2020; Vecchio et al., 2017). Furthermore, application of graph theory has also provided

new insights into the practice of neurosurgery with the goal to improve patient safety and

preserve functional brain regions (Tanglay et al., 2023).

In addition to measuring macroscopic connectivity between brain regions, graph theory

has also been used to characterize functional or structural networks at the microscopic neu-

ronal level, from functional calcium imaging or structural electron microscopy. Combining

graph theory with calcium imaging provides a better understanding of the spontaneous

activity of single cell or neural assemblies, such as the biological network of neurons in

mouse auditory cortex (Betzel et al., 2019), the developmental process in zebrafish (Avitan

et al., 2017), or the process of looming detection in Xenopus tadpoles (Khakhalin, 2019).

Overall, using graph theory to study structural or functional brain network opens up
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greater understanding of the topological organization of brain networks and their dynamics

during cognitive processes, as shown by common complex network features including small-

world topology, modularity and hub distributions. This knowledge can be useful not only

for developing, validating, and comparing computational models of specific neural networks

at multiple resolutions, but also for understanding the vulnerability of brain networks to

lesions. This could be applied, for example, in labeling or predicting the risk of disease

onset, or in measuring the therapeutic e↵ect of interventional treatments on functional

networks.

Therefore, this study also incorporates graph theoretic methods to systematically

model brain network lesions during visual processing in visually impaired patients and

to measure functional network recovery following non-invasive electrical stimulation treat-

ment (Bola et al., 2014, 2015). A variety of graph-theoretic properties were also utilized

to predict the treatment e↵ect of visual improvement in patients.

1.3 Artificial Intelligence (AI) in Medical Research

Artificial intelligence (AI), as a disruptive technology, has been widely used to solve

high level pattern recognition such as data mining, language processing and image/speech

recognition. The principle of AI aims to develop algorithms that mimic human intelligence

so that computers could be made to think and reason like humans. To achieve this goal,

various approaches have been developed, such as machine learning and deep learning. As

one of the most promising application areas of AI, biomedical applications have displayed

promising potentials from automated medical imaging analysis to clinical diagnosis and

prognosis (Rajkomar et al., 2019).

1.3.1 Artificial Intelligence in Medicine

In recent years, Artificial Intelligence has received increasing attention in the field of

medicine, especially in medical imaging analysis. Recent studies have demonstrated the

potential of AI in developing automated diagnostic and predictive tools for various dis-

eases. Significantly, convolutional neural networks (CNNs) (Krizhevsky et al., 2012)as a

subset technology of deep learning neural networks, have shown to be powerful in im-

age recognition, and segmentation, leading it to be an essential part of AI in medical

applications.

CNN is a promising tool in the area of radiology (Pianykh et al., 2020). Combined

with CT or MRI data, CNN models were also capable of detecting emergent neurological

disorders such as hemorrhage, mass e↵ect (Prevedello et al., 2017), or predicting isocitrate

dehydrogenase mutation status in gliomas which is the malignant primary brain tumor

in adults (Choi et al., 2021). CNN based lesion detection models, especially those that

utilize chest radiographs to classify tuberculosis or frontal chest abnormalities, were able

to achieve remarkably high levels of accuracy for clinical applications. In addition, CNN

models have also been trained in applications for pulmonology like lung cancer treatment

(Xu et al., 2019) or lung nodule detection and classification (Nasrullah et al., 2019), as

well as for liver diseases (Cheng et al., 2021) or colorectal cancer (Rompianesi et al., 2022).

There has also been a growing trend of AI neural networks being used in dermatology

for skin cancer detection and diagnosis. A prominent study using a clinical and dermo-
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scopic images demonstrated that the performance of CNN models was comparable or even

superior to that of all dermatologists when it came to classifying the most common and

deadliest skin cancer lesions (Esteva et al., 2017). Other recently published studies, par-

ticularly those utilizing CNNs for melanoma diagnosis, have also confirmed the practical

performance of AI algorithms for automated diagnosis of skin lesions (Tschandl et al.,

2018, 2019).

AI has as well played an significant role in the field of cardiology, with major achieve-

ments in almost all areas (Johnson et al., 2018; Lopez-Jimenez et al., 2020). For example,

AI platforms recently investigated in echocardiography appear to play an increasingly im-

portant role in recognizing pathological features such as cardiomyopathy (Zhang et al.,

2018), and regional wall motion abnormalities (Kusunose et al., 2020). In addition, the

popularity for AI techniques has especially risen in other disciplines of cardiology like

ECG analysis (Tison et al., 2018), nuclear cardiology (Betancur et al., 2018), coronary

angiography and interventional Cardiology (Cho et al., 2019).

In addition to the applications of AI in medicine described above, AI based various

models have also been developed during the diagnosis and evaluation of a wide range of

diseases and fields, such as oncology (Lu et al., 2021), and psychiatry (Fiske et al., 2019;

Monteith et al., 2022) and dentistry (Ahmed et al., 2021).

1.3.2 Artificial Intelligence in Ophthalmology

In the field of ophthalmology, the application of AI methods has begun to receive a lot

of attention given the widespread use of various images. In particular, the implementation

of teleophthalmology has already started to play a significant role in the field of digital

health, that rely and lend on AI and imaging big data (Ting et al., 2020; Li et al., 2021;

Han et al., 2022).

Research has been done to build novel deep learning architecture using optical co-

herence tomography (OCT) images of patients with retinal diseases. It can be used to

successfully detect more than 50 common diseases, with even better performance in partial

clinical diagnosis and referral (de Fauw et al., 2018).

Specifically, recent studies have demonstrated the potential of AI in developing diag-

nostic tools for diabetic retinopathy and diabetic macular edema diseases (Gulshan et al.,

2016; Abràmo↵ et al., 2018; Ruamviboonsuk et al., 2019; Grzybowski et al., 2020). The

autonomous AI diagnostic system for diabetic retinopathy detection has been authorized

by FDA for its exceedingly high sensitivity and specificity (Abràmo↵ et al., 2018).

In addition to diabetic retinopathy, automatic screening and diagnose system have

also been well established for other common vision-threatening diseases. For example, a

deep learning system was trained using fundus photographs for the diagnosis of glaucoma,

showing a sensitivity and specificity of greater than 90% (Liu et al., 2019; Li et al., 2022).

The use of OCT alone also demonstrated the potential of glaucoma detection in developing

AI tools (Hood et al., 2022). In age-related macular degeneration (AMD), deep learning-

based predictive model has been largely reported to be capable of classifying eye disease

severity scale (Grassmann et al., 2018; Venhuizen et al., 2017). Neural networks are also

promising tools for vision estimation of AMD (Aslam et al., 2018; Rohm et al., 2018).

Several studies have implemented AI for the diagnosis of plus disease that is dilation
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and tortuosity of retinal vessels with expert-level performance in retinopathy of prema-

turity (ROP) (Brown et al., 2018). And CNNs have been implemented to automatically

assess the quality of fundus images to make accurate ophthalmic diagnoses (Coyner et al.,

2018). AI models are also being expanded to the field of strabismus (Chen et al., 2018),

cataracts (Dong et al., 2017; Wu et al., 2019) and Keratoconus (Lavric and Valentin, 2019).

Thus, given the potential of AI advances in the field of ophthalmology, AI may not

only be able to substitute for specialized ophthalmologists in classifying and referring

ophthalmic images, but it has already proven to be a valuable and feasible diagnostic tool

in early recognition and proper management of eye diseases.

1.4 Research Objectives

Brain organization is an economic trade-o↵ between wiring cost and adaptively topo-

logical value. My project tried to explore brain reorganization pattern by characterizing

global and local FCN metrics. The aims of my study are to learn the following:

Q1: Whether and how a local (peripheral) lesion of the optic nerve a↵ects global FCN

dynamics?

H1: My hypothesis is optic nerve damage may a↵ect global FCN dynamical organi-

zation on patients with reduced e�ciency of information transfer or weaken of network

specialization.

Q2: How does the lesion a↵ect hub brain areas and modularity distribution during

visual processing?

H2: My hypothesis is that hub regions and module distribution are disrupted on FCN

after optic nerve damage, and their dynamic reorganization patterns are di↵erent from

those of normal subjects.

Q3: Does network metrics can be modified by rtACS, and how does this impact vision

restoration?

H3: My hypothesis is that after receiving rtACS treatment, patients’ FCN capabilities

of balancing wiring cost and functional specialization are enhanced.

Q4: How to develop a vision recovery prediction model using the analysis of baseline

EEG recordings and baseline visual field charts to predict post-rtACS EEG e↵ects and

vision recovery?

H4: My hypothesis is that vision recovery can be predicted at baseline using EEG

biomarkers, and visual field charts.

Q5: Is it possible to develop an early warning model based on deep learning for visual

field impairment?

H5: My hypothesis is that an EEG-based early warning system can recognize individ-

uals at risk for visual field disorders through deep learning models.

1.5 Thesis Outline

To facilitate the understanding of the goal of my thesis, a brief explanation of how

optic nerve deficits a↵ect brain networks and cognition is provided, and a focus is placed
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Figure 1.3: Research Framework of the study.

on how the brain connectome achieves vision recovery after receiving non-invasive brain

stimulation. I related di↵erent topological brain features to the visual performances and

then developed a predictive model for vision recovery using network topological metrics

based on deep learning algorithms (Fig. 1.3). The thesis is structured as follows: Chapter

1 already outlined the basic background required for visual system deficits, vision restora-

tion therapies, and technologies applied to brain connectome analysis and cognition. In

addition, I described the use of AI in various medical studies, particularly in the field of

ophthalmology.

Chapter 2 summarises the fundamental methods needed to understand and use through-

out my whole project, including data collection, and graph theory characteristics for quan-

tifying topological structures such as hubs and community modularity as well as also

describing various artificial neural network algorithms.

Chapter 3 focuses on the global alterations and adjustments in visually evoked brain

networks after optic nerve damage and demonstrates the spacetime causal e↵ects of rtACS

neuromodulation on global network properties. It demonstrates how localized lesions of

the optic nerve a↵ect global rapid and transient functional connectivity network (rFCN)

dynamics and presents how rtACS neuromodulation provokes visual recovery by a↵ecting
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the rFCN. The results of this section have been published in the Scientific Report.

Chapter 4 addresses the regulation of local core hubs and nodes of rFCN after optic

nerve damage and their changes and adjustments after receiving rtACS. It proved how

the lesion a↵ects the centrality of brain regions and how the local nodes are realigned

during visual processing as a result of the disruption of the hubs. I also presented how

the centrality of the hubs and nodes changed after patients received rtACS. The findings

of this segment have been published in the Scientific Report.

Chapter 5 illustrates the di↵erences in the architecture of the rFCN multilayer network

between normal subjects and patients with optic nerve damage before and after rtACS

treatment. I identified representative partitions of the dynamic multilayer networks and

explored the multilayer modular organization during visual processing and recovery. I also

assessed the interactions among modules and related them to visual performance. The

results presented in this section have been published in the Cerebral Cortex.

Chapter 6 describes a visual recovery prediction model for the post-treatment e↵ects of

rtACS. Several artificial neural networks were constructed to predict the treatment e↵ects

of noninvasive brain stimulation using baseline functional brain network responses from

EEG during visual cognition. The findings in this section are under review.

Chapter 7 explores the potential of deep learning models to serve as an early warning

system for visual field impairment by analyzing EEG-based functional brain networks.

The conclusions in this section are under review.

Finally, Chapter 8 summarizes all the results and contributions of this study and

informs future directions for possible research.
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2 Methods to Explore Spacetime of the Brain and Plasticity

The fundamentals of this study are rooted in the exploration of brain network dynamics

in patients with optic neuropathy and healthy controls, and to explore the functional re-

organization of brain networks induced by non-invasive brain stimulation. In this chapter,

I provided an overview of the data collection methods, including participant recruitment

and visual field assessment, as well as the recording of visual evoked potentials using

EEG. I also involved the repetitive transorbital alternating current stimulation (rtACS)

to modulate visual functions and functional connectivity.

Specifically, brain activity during visual processing was analyzed employing EEG pre-

processing and source reconstruction techniques. Network metrics were studied with graph

theory to assess the functional connectivity and topology of the brain. Insights into the

role of specific brain regions in visual function were gained through the study of hub and

node centrality and multilayer modules.

Machine learning and deep learning techniques are also an important part of this study,

focusing on artificial neural networks (ANN), including convolutional neural networks

(CNN) and recurrent neural networks (RNN). These methods are used to uncover patterns

and relationships in complex neural data, o↵ering a deeper understanding of brain network

dynamics in the context of optic neuropathy.

In summary, this study encompasses a variety of methodologies, from data collection

to advanced neural network modeling, aiming to reveal the complex dynamics of the brain

in patients with optic nerve damage, thereby elucidating fundamental issues in visual

processing and vision restoration.

2.1 Data Collection and Pre-processing

2.1.1 Participants

Following local ethics committee approval, 22 patients with optic neuropathy (8 fe-

males, 52.1 ± 15.7 years old) and 15 healthy controls (7 females, 42.8 ± 16.9 years old)

were recruited for this clinical trial. Patients were randomized, double-blinded, placebo-

controlled trial which were treated either with rtACS (n = 12, 52.3 ± 14.3 years old) or

placebo (n = 10, 51.9 ± 17.3 years old). Causes of optic nerve damage were anterior

ischaemic optic neuropathy/AION (N=6), post-inflammatory (N=4), and various other

causes. Inclusion criteria were residual (patients) or normal vision (controls). Exclu-

sion criteria were instable intraocular pressure (> 27mmHg) or history of epilepsy, heart

pacemakers, photosensitive epilepsy, psychiatric diseases (schizophrenia etc.), high blood

pressure or diabetes.

2.1.2 Visual Field Assessment

The visual field of patients was obtained using computer-based high-resolution perime-

try (HRP) (Gall et al., 2011). Subjects sat 42 cm in front of the monitor and responded to

475 consecutive white target stimuli appearing at random locations with a central fixation

point. Fixation was monitored using an infrared-based eye tracker (Tobii ET1750, Tobii
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Figure 2.1: Typical perimetric visual field chart of a patient with optic nerve damage, with the central
fixation (black cross) obtained, showing individual placement of the stimulus positions (*stars). Visual
field areas were categorized into intact (white spots), partially defect (grey spots), and blind regions (black
spots). Eight stimulus locations were then selected for visual evoked potentials (VEPs) testing. One was
located in the intact area, six in the gray area of the ”partial” visual field, and one in the black area.

Technology AB, Sweden), capturing the subject’s focal point on the computer screen. As

Fig. 2.1 shows, the visual field was divided into three functional areas as defined by de-

tection rate: the intact vision area (IVA), shown in white, where subjects detect correctly

3/3 stimuli at the same location; the partly defective regions (“areas of residual vision”),

where 1-2 of 3 stimuli were detected, and the blind visual field that showed no response.

Eight positions were then individually selected per patient for additional visual evoked

potential (VEPs) testing: one in IVA, six in the ARV, and one in the blind area.

2.1.3 EEG Recording of Visual Evoked pPotentials

Visual evoked potentials (VEPs) were collected with an EEG amplifier (Brain Prod-

ucts, Munich, Germany) with 32 sintered Ag/AgCl electrodes mounted in an Easycap

(Falk Minow Services, Munich, Germany) according to the 10-10 system, referenced to

nose-tip with ground electrode at Fz and Cz. The signal was sampled with 500 Hz fre-

quency. VEPs were recorded monocularly on patients’ damaged eye and the same eye

for matched normal subjects. The VEP stimulus (400ms) was either a circle (1° diame-

ter) or a square (1 ⇤ 1°) which had to be acknowledged by corresponding bar press. The

stimuli were presented at eight di↵erent locations on the basis of HRP for 400ms, and at

each location, 180 trials were performed for each subject (random inter-stimulus-interval

of 1, 300 � 1, 700ms). Two patients in the rtACS group dropped out without EEG after

HRP. One patient in rtACS group and one patient in placebo group had to be excluded

because of the limited number of detected trials (< 50), leaving 9 patients in rtACS group

and 9 patients in placebo group (Table A.1). On average 140 ± 2 (s.e.m.) trials were

analyzed for each subject/condition.
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2.1.4 Repetitive Transorbital Alternating Current Stimulation (rtACS)

Non-invasive brain current stimulation is now a well-established method to alter func-

tional connectivity networks (Rossini et al., 2019). rtACS is the preferred method to

modulate both normal and abnormal visual functions and functional connectivity (Sabel

et al., 2020a). The patients were treated with established protocols (Gall et al., 2016)

using four stimulation electrodes (sintered Ag/AgCl ring electrodes, Easycap, Germany)

placed near the eyeball. The current pulses were generated by a multichannel device (EBS

Technologies, Kleinmachnow, Germany).

The amplitude of the current pulses was < 2, 000 µA (peak-to-peak) and set at 125%

below the individual phosphene threshold, with individually set frequencies between alpha

and the flicker fusion frequency of phosphenes. The rtACS treatment was given daily for

10 days of for both eyes irrespective of which eye was damaged and the daily sessions lasted

from 30� 40 minutes per day. The placebo group used the same electrode montage setup

but with click sound instead of rtACS. rtACS is both e↵ective, safe, and well tolerated

(Sabel et al., 2020a).

The study was approved by the ethical standards committee for human subjects (in-

stitutional). All participates were treated in accordance with the Declaration of Helsinki

and written informed research consent was obtained for the study.

2.1.5 EEG Pre-processing and Source Reconstruction of Brain Activities

EEG epochs were filtered to 1-100Hz, notch 50Hz FIR filter, down sampled to 250Hz

and average re-referenced and time-locked -0.8s to 1.7s. Epochs with artifacts and noisy

channels were removed with independent component analysis (ICA). For each subject,

15±3 components were selected and projected back into sensor space.

Following EEG pre-processing, source-localized activities were obtained by applying

geometry and electrical conductivity of the tissues in the head using a forward model to

estimate how neuronal currents propagate from source regions within the brain to the EEG

sensors (electrodes). Here, the anatomical Colin27 head template was used as a common

geometric model. The forward model was calculated using the boundary element method

(BEM) (Gramfort et al., 2010) to describe electrical current properties of the head, and

source current distributions were applied to estimate the weighted minimum norm esti-

mate (wMNE) (Iwaki and Ueno, 1998). wMNE is a classical EEG inverse transformation

to overcome the limitations of preference in superficial sources, but it can also induce deep

generator activities with high accuracy. The dipole orientation was constrained perpendic-

ular to the cortex. The average of all dipoles belonging to the same region was calculated

representing the activity of each area. In this way, sensor signals were projected onto an

anatomical framework so that source-reconstructed neuronal activities could be obtained

for 68 cortical regions of interest (ROIs; 34 per hemisphere) and the mean voxel time series

for each ROI could be computed as defined by Desikan–Killiany (Desikan et al., 2006).
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2.2 Network Metrics of Graph Models

2.2.1 Defining of Brain Networks

Source data were then digitally filtered (band pass filter 3.9-30 Hz) using Morlet

wavelets. A sliding window fixed at 211 samples (844ms) irrespective of the frequency

was used to analyse the signal. The time-frequency representation of the data was thus

estimated from a minimum frequency of 3.9Hz with 3 cycles to a maximum frequency of

30Hz with 11.4 cycles. The data with 8ms and 0.7Hz resolution were then generated. In

this way, instantaneous measurements of EEG data were decomposed into temporal and

spectral bands. Frequency bands were identified as theta (3-7Hz), low alpha (7-10Hz),

high alpha (10-12Hz), and beta (13-30Hz).

Phase locking value (PLV) (Lachaux et al., 1999) were used to estimate the func-

tional connectivity between all pairwise ROI combinations. PLV represents synchronies,

commonly describing long-range synchronization patterns between widely separated brain

regions which was computed as:

PLV(f,t) =
1

N

���
PN

n=1 exp (i (4'n (f, t)))
��� (1)

Here, 4'n (f, t) denotes the phase di↵erence between ROIs for frequency f and time

point t. N is the number of trials, and || the absolute value. The PLV measures the

inter-trial variability of the phase di↵erence at t. It ranges between 0 and 1, where PLV

close to 1 shows that the phase di↵erence varies little across the trials (“phase locking”).

A threshold of 0.29 was applied to convert full PLV values into edges of weighted network.

2.2.2 Global Network Measures

To describe Brain Spacetime, I used graph theory to mathematically characterize brain

FCN (Stam et al., 2009). Variations of global strength of connections between pairs of

brain regions were firstly evaluated. This captures the sum of weights of connectivity

attached to all nodes. Furthermore, the global network parameters were extracted for the

comparison of network topology. Integration of global measures in the brain that evaluates

the ability of rapid combinations between distributed brain regions were calculated, like

characteristic path length (CPL). CPL, as one of the most commonly used integration

measures, shows e�ciency of information transfer between nodes in the network. The

functional segregation of the network, clustering coe�cient (CC) (Watts and Strogatz,

1998) were also investigated, capturing the presence of clusters within the network. This

was primarily used to quantify the local information processing capacity in topological

networks. In addition, the small-worldness (SW) index of the networks was measured

which characterize the simultaneous balance of specialization and segregation (Bullmore

and Sporns, 2009; Rubinov and Sporns, 2009; Power et al., 2011). It was identified by

assessing the clustering of networks and the topological distance between nodes, with high

clustering and short path length (Fig. 2.2A, B).

Both study groups were statistically comparable in age and gender. Statistical analyses

of network metrics were calculated with cluster mass permutation tests. Because the

EEG signal was sampled and analyzed multi-dimensionally (time and frequency bands), I
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Figure 2.2: Schematic representation of network parameters. A: Graphical properties of network segre-
gation, including modularity degree and local clustering coe�cients. There are four modules in the graph,
where the interaction within modules is more than the interaction between modules. The clustering coe�-
cient describes the tendency of nodes to form triangles in the network. B: The shortest path length shows
the integration of the network and evaluates the minimum number of steps between nodes. C: Hubs with
dense connectivity play a key role in the network by being densely connected to local nodes.

considered the multiple comparisons problem (MCP) (Maris and Oostenveld, 2007) with

appropriate alpha-adjustments. The cluster mass permutation test (Pernet et al., 2015)

was used to control family-wise error rate (FWER) at some critical alpha level which

solves the MCP. Here, a false alarm rate of p = 0.05 was chosen and the cluster inclusion

threshold was set at p = 0.025.

2.2.3 Hubs and Node Centralities

Hubs can be viewed as local topological “centers” of synchronization, and the “Hub

scores” represents their relevance for a given function (here: vision). The hub score varies

from 0-4, where the top score of 4 is reached when the following criteria of centrality are

fulfilled: high weighted node degree, node betweenness, and node closeness, but low node

clustering coe�cient (Sporns et al., 2007). This means that the higher the hub score, the

higher up is the node in the FCN hierarchy(van den Heuvel and Sporns, 2013). A node

receives a score of 1, if it ranks in the top 20% of nodes with highest degree in one of the

four node criteria. In my study, a node was identified as a “hub” only if the hub score

was 2 or higher and lasting > 50ms (Pöppel, 1997). Otherwise, the node was termed

“non-hub” (Fig. 2.2C).

2.2.4 Multilayer Module Detection and Qualification

To investigate the modularity structure of topological networks, I firstly decomposed

networks into modules with high intrinsic connections and weaker extrinsic connectivity.

The basic technique is to group individual data points into clusters to make sure the simi-

larity within clusters is high and the similarity between clusters is low, or find divisions for

a large set of observations into small subsets (Newman and Girvan, 2004). I quantified the

quality of modularity to determine the reliability of communities’ partition and calculated

the modularity index Q. The Louvain algorithm (Blondel et al., 2008) was then applied,

a fast and powerful method to agglomerate nodes into community with maximal Q. It is

applicable in large networks and multiple scale hierarchical analysis, and it was shown to

be more accurate than other community detection methods (Lancichinetti and Fortunato,
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2009).

Because the network of functional connectivities can fluctuate, dissolving and/or evolv-

ing rapidly, I expected the brain community structure also to change dynamically. A

straightforward approach to assess how modules evolve over time was single-level modular-

ity analysis, where static modularity analysis was performed at each time point. However,

the limitation of this approach was that the dependencies between time points, which were

important for the temporal evolution of brain network modules were ignored. Therefore,

to adequately explore these dynamics of modularity, I examined the multilayer modularity

of FCN as previously described by Mucha (Mucha et al., 2010) to find the optimal parti-

tioning across layers, where time points were considered as layers (Fig. 2.3). In this way,

both connection topology within each network layer/time point and the coupling between

layers/times were optimized. The multilayer modularity index Qml of weighted networks

was defined as follows:

Qml =
1

2µ

P
ijsr [(Aijs � �seijs) �sr + �ijCjsr] � (gis, gjr) (2)

, where Aijs specifies the weight of edges between node i and node j in layer s, and

�s is defined as the spatial resolution parameter that can be used to tune the influence of

the null model, to adjust the size or number of partitions. eijs is the weight of the edge

between nodes i and j in layer s in the null model. �sr equals one, when layer s = r, and

zero otherwise. It ensures that the coupling di↵erence between assessed network and null

network is only considered within the same layer.

�ij Cjsr considers the inte- layer coupling parameter. �ij equals one when node i=j,

which ensures that only the node links to itself is calculated between layers when estimating

inter-layer coupling parameters. Cjsr appraises the coupling between layer s and layer r for

node j. The value of Cjsr indicates the strength of coupling across layers as the temporal

resolution parameter. �gis, gjr equals one, when node i in layer s and node j in layer r

are in the same module, and zero otherwise. The optimization of Qml can be used to

identify communities on varies scales over di↵erent combinations of spatial and temporal

resolution. To avoid the deviation in multilayer modular analysis, I selected the common

default values in my study, by setting the resolution parameter �s and Cjsr to 1 (Bassett

et al., 2013; Wu et al., 2020). The network flexibility was calculated by computing the

frequency of a given node which changes its modular a�liation across consecutive time

steps.

To identify consensus-stable robust modules, consensus clustering was used when an-

alyzing community structure so that the nodes of modules can be assigned into the same

community across partition times. This representation of consensus community structure

can also be used to analyze di↵erences between the two populations. Firstly, I estimated

the consistency of community partitions across participants by constructing the modular

allegiance matrix Mij , and then the modules were identified over a set of partitions across

networks for each time point, frequency, subject and group. The modular allegiance matrix

Mij indicate the probability that nodes i and j are partitioned into the same community.

Thereafter, the representative modules that were consistently present could be identified

(Mucha et al., 2010).

To quantitatively measure the modular architecture of multilayer networks, the in-
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2.3 Machine Learning and Deep Learning

Figure 2.3: Schematic representation of a multilayer network. The colours refer to the community
a�liation of nodes at di↵erent time points (temporal layers). Some nodes alter their a�liation to di↵erent
modules across time (i.e., from orange to purple or from blue to orange). Nodes are coloured according to
their optimal community distribution with maximal multilayer modularity index in which both connection
topology within each layer and the coupling between neighbouring layers were detected.

teraction strength of modules in the brain were further evaluated based on the following

formula:

Ik1k2 =
⇣P

i2Pk1
j2Pk2

Mij

⌘
/ (|Pk1 | |Pk2 |) (3)

, where Ik1k2 is the interaction strength between module Pk1 and module Pk2 . |Pk1 | is
the number of nodes in module Pk1 . If k1 = k2, andIk1k2defines the intra model interac-

tion strength. If k1 6= k2, the normalized interaction strength of di↵erent modules was

calculated as the interaction strength of modules using the following computation:

I
0
k1k2 = Ik1k2/

p
Ik1k1Ik2k2 (4)

2.3 Machine Learning and Deep Learning

The goal of machine learning (ML) is to generate algorithms using the dataset, as-

sociated features and weights that might be useful for the prediction to map features to

the target. The generated algorithms can be used not only to represent the dataset, but

also to make inferences about future data sets. Typical learning methods used in ML

including supervised learning in regression and classification tasks, unsupervised learning

in clustering, association or anomaly detection, semi-supervised learning and reinforce-

ment learning. The commonly used classical machine learning algorithms consist of linear

regression, logistic regression, decision trees, and random forests, some of which are spe-

cialized for classification, and some techniques can also be used for regression tasks.

Traditional machine learning has developed in decades and has been used in many

aspects such as recommendations on websites and web searches. However, it is limited

in processing natural data such as image or speech. Typically, ML requires appropriate
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2.3 Machine Learning and Deep Learning

feature extractors through non-linear inspection that can be used to transform natural

data into suitable feature vectors for pattern recognition. However, deep learning (DL)

can directly process raw natural data from speech and audio files to image and video data

(Babaee et al., 2018; Dourado et al., 2021; Fayek et al., 2017; Hossain and Muhammad,

2019). DL has been found to perform better than classical machine learning methods in

large and diverse physiological signals (Faust et al., 2018).

DL is a subfield of machine learning, allows computational models with multiple levels

of layers to discover the representations of large data sets in each layer. In the abstraction

of multiple levels, DL learns how to change parameters to compute intricate structure of

the input data through successive non-linear transformations (LeCun et al., 2015). Deep

learning neural networks can act as approximators and represent a wide range of continuous

functions, so they o↵er a promising alternative for addressing the high dimensionality of

input data. For example, DL powers in aspects of genomics. It has been used to predict

the e↵ects of genetic variants on RNA splicing to analyze gene expression (Xiong et al.,

2015). In addition, DL have shown light in neuroscience and psychology research such as

enactive vision and mental representations (Perconti and Plebe, 2020).

2.3.1 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) have become the most frequently mentioned term

in deep learning. ANN are considered to be the most closely related to biological neural

networks of humans, where nodes, named as perceptron in ANN, are recognized as cells and

communication between cells, such as axons and dendrites, are perceived as connections

of nodes.

ANN typically contain multiple layers of connected perceptron. The perceptron is the

basis of ANN. It is proposed as an algorithm that can be utilized to separate space from

numerous features and targets into lines, planes, or hyperplanes. The activation function

can be applied for each perceptron to transform various inputs into output which can be use

in next layer. In ANN, the information from the previous layer is collected and fed to the

next layer, which is also known as feedforward neural network. The simplest ANN consist

of three layers, including an input nodes layer, a hidden layer, and an output nodes layer.

The ANN is deep learning neural networks if there exist hundreds of hidden layers (Fig.

2.4). There are sets of technologies for learning in DL neural networks. The computation

performed by these designed stacked neural networks in DL enable recognition of patterns

to generate the output.

Deep learning neural networks are composed of neurons and connections. Neurons act

as processing units of the network architecture, specifying the learning objectives based on

loss or optimization functions. The connections are trained by algorithms that optimize

the objective function by iteratively updating the parameters of the network. Here four

di↵erent architectures were tested in this thesis, feedforward neural network (FFNN),

convolutional neural networks (CNN), recurrent neural network (RNN).

2.3.2 Feedforward Neural Network (FFNN)

In this section, I introduce some di↵erent types of deep learning models. The most

basic model is a feed-forward neural network (FFNN). It is the simplest fully connected
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2.3 Machine Learning and Deep Learning

Figure 2.4: General schematic of an artificial neural network (ANN)- Feedforward Neural Network
(FFNN).

Figure 2.5: Architecture of a conventional convolutional neural network (CNN), which consists mainly
of convolutional layers, pooling layers, fully connected dense layers, and some activation functions.

neural network that can leverage context. Three types of layers were organized: input,

output and hidden layers. The input layer has the same number of neurons as the number

of features in the data. The output layer outputs the number of categories or the results

per neuron based on classification or regression. The hidden layer is located between the

input layer and the output layer. The information flow is strictly unidirectional from the

input layer up to the output layer, without feedback connections between layers. The

structure of FFNN was presented in Fig. 2.4.

2.3.3 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) extract local patterns by convolutional opera-

tors, which aim to exploit the structural information between adjacent pixels by performing

minimal preprocessing on the image. A typical CNN consists of three types of neural lay-

ers: a convolutional layer, a pooling layer, and a fully connected layer. The convolutional

layer learns features by convolving the local receptive field. The pooling layer is responsi-

ble for downsampling the spatial dimension of the input data. The fully connected layer

maps multidimensional features into a one-dimensional feature vector. The structure of

CNN is shown in Fig. 2.5. CNN has achieved considerable success in biomedical signal

and computer vision. It has been proposed for identifying patients with depression from

normal using 13 layers CNN (Acharya et al., 2018). In the early diagnosis of Alzheimer‘s

disease, a deep CNN model was developed using structural MRI data (Liu et al., 2020).
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2.3 Machine Learning and Deep Learning

Figure 2.6: Overview of the bidirectional long short-term memory (LSTM) model.

2.3.4 Recurrent Neural Network (RNNs)

Recurrent neural network (RNN) has feedback architecture within or between layers

that can dynamically learn long-term dependencies to improve the processing of individual

bits of data. Long-short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) is

the most popular RNN architecture. Unlike the basic RNN, LSTM adds three additional

controllers: an input gate, an output gate and a forget gate. These controllers are able

to decide which information needs to be retained or removed by controlling the activation

signals. In this way, LSTM learns important features and is able to maintain memory over

a long time. One popular variant is the Bidirectional LSTM (Bi-LSTM) which is capable of

using information about events in both directions, which can capture both backwards and

forwards information. There is a structure of Bi-LSTM as shown in Fig. 2.6. This memory

based deep neural network has been developed in automatically detection of arrhythmias

using electrocardiogram with an accuracy of over 99.0% (Yildirim et al., 2019). An LSTM

classifier were constructed to decode gait patterns from the EEG to deal with walking

activity during locomotion (Tortora et al., 2020). There was also a bidirectional LSTM to

classify cancer hallmark text to distinguish cancerous cells from normal cells (Jiang et al.,

2020).

In summary, this study used a variety of methods, ranging from data collection tech-

niques to neural network modeling, to investigate in depth the complex dynamics of brain

network function in patients with optic nerve damage and healthy controls, revealing the

complexity of the human brain in the context of visual neurological injury.

Dynamic functional brain network changes were comprehensively analyzed by collect-

ing visual field assessment results and electroencephalograms of visual evoked potentials

from optic neuropathy patients and healthy subjects. And using rtACS, the possibility

of visual recovery was investigated in terms of functional brain networks. Specifically,

I used a series of EEG analysis methods and constructed the functional brain networks

based on graph theory to fully analyze the role of FCN in visual function and visual re-
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2.3 Machine Learning and Deep Learning

covery. The study also attempted to utilize deep learning techniques to reveal patterns

and relationships in complex brain network data.

Overall, these approaches cover a wide range from data collection and preprocessing

to cutting-edge neural network modeling, with the ultimate goal of advancing our under-

standing of visual processing and the potential for vision restoration in patients with optic

nerve damage.
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3 Global Alteration and Adjustment in Visual Evoked Brain

Network

For centuries neuroscientists have explored how circumscribed brain centers support

mental functions such as vision, language or cognition. This “localizationist” approach

focused on how local neuronal cell assemblies or brain regions control specific sub-functions.

But this localization cannot fully explain di↵erent behavioral phenomena such as rapid

plasticity in normal learning (Mentis et al., 2003; Moll et al., 2005), transmodal plasticity

(Pascual-Leone et al., 2005), recovery of function (Laurence and Stein, 1978), or receptive

field plasticity following visual system damage which can happen even within minutes

(Gilbert and Wiesel, 1992). It is the new network science which paves the way for a more

global perspective of how neuronal information is integrated between regionally distributed

local brain centers.

3.1 Introduction

Functional connectivity network analyses have become popular in recent years to un-

ravel the spatial and temporal organization of local and global neural processing (Rossini

et al., 2019). Typically, FCN analyses use resting-state data (Farahani et al., 2019), but

rapid and transient changes of FCN (rFCN) were rarely studied in the human brain on a

millisecond scale. Yet, the maximum speed of FCN dynamics needs to be known, because

FCN provide the physiological support for top-down stimulus processing and synchro-

nization of sensory, motor and cognitive functions. The synchronous mode uses a gain

approach, weighting the anatomical connections to generate e↵ective interaction patterns,

where the phase relation supports interactions between neuronal assemblies as a function

of brain regions (space), time, and specific frequencies (Womelsdorf et al., 2007). Although

temporal dynamics of brain activities are often studied (Lankinen et al., 2018), little is

known how fast multiple brain regions are “bound” in time through phase synchronization

in the brain topological “workspace” (Singer, 2006).

Compared to 4-8 sec bolt response in magnetic resonance imaging (MRI), the EEG

allows us to explore if and how fast FCN can synchronize, including events that have no

(measurable) energy consumption (Rossini et al., 2019). For example, EEG recordings

show phase synchronized patterns and temporal brain dynamics during face perception

tasks (Jamal et al., 2015), and it can display unique, dynamic patterns of FCN changes,

for example in auditory and visual oddball tasks (Karamzadeh et al., 2013), or during face

and object matching tasks in autism spectrum conditions (Catarino et al., 2013).

While such studies confirm that individual brain regions can interact with each other

in millisecond speed, rapid dynamics of whole brain FCN plasticity has not been explored.

Yet, this is critical to fully understand how higher order “top down” cognitive influences

can actively support, or interfere with, “bottom-up”, a↵erent input (Gilbert and Li, 2013),

especially in fast mental acts or behavioral tasks which happen at a split of a second such

as temporal discrimination (20� 40ms) or fast visual detection (150� 200ms).

Also cognitive processing requires rapid and transient dynamic reorganization of brain

functional networks (Bola and Sabel, 2015), so that topological rearrangements can en-

able the synchronization and integration of neural processing during di↵erent cognitive
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3.2 rFCN Response to Visual Stimulus in Intact Vision Area (IVA)

modalities. But when neural synchronization is disturbed, they can lead to impairment

or loss of functions. For example, optic nerve patients with vision loss show FCN distur-

bances in the resting state (Bola et al., 2014), and with neuromodulation using repetitive

transorbital alternating current stimulation (rtACS) they can be partially restored which

induces vision recovery (Gall et al., 2016). But it is unknown if, and to what extent, fast

FCN reorganization exist and how they are a↵ected by damage.

To characterize FCN, graph metrics were time-locked to visual stimulus onset and

analyzed for each region of interest (ROI) on a time vector sub-divided in 8ms time-

windows (see methods). Our graph metrics included global network topology measures,

clustering coe�cient (CC), characteristic path length (CPL), and small-worldness (SW).

3.2 rFCN Response to Visual Stimulus in Intact Vision Area (IVA)

In the present study, I used the EEG to study the brain of patients with optic nerve

damage with high temporal resolution to estimate dynamic brain network reorganization

with millisecond resolution. The visual evoked EEG recordings from patients were col-

lected and analyzed to reconstruct the complex brain networks. My goal was to learn how

the functional connectivity network of the brain responds to visual stimuli in the intact

vision area.

The EEG analysis in this intact visual field region showed that patients had signifi-

cantly greater global strength than controls (tmass = 1028, p = 0.008) (Fig. 3.1A) and

their node strength were stronger starting from around 350ms specifically in the beta

band (Fig. 3.1B). In controls, in contrast, node strength showed much earlier activation

at around 150ms after onset of the visual stimuli and this was only transient. Furthermore,

while these nodes of control subjects were found mostly in the frontal lobe, in patients

these nodes were distributed throughout the brain.

To learn if global rFCN dynamics are functionally meaningful, I compared FCNnetwork

metrics between controls and patients. CC, CPL and SW increased at around 300ms

in the network in both groups which corresponds to the cognitive stage of the P300 in

VEP recordings (van Dinteren et al., 2014). In optic nerve damage patients, however,

FCN had higher CC, longer CPL, but weaker theta-band SW organization during the

di↵erent functional stages (Fig. 3.2). This indicates that neural processing during visual

performance requires more steps in patients’ theta network (lower processing e�ciency).

Of note, significant alterations in any other frequency networks were not observed.

3.3 rFCN Response to Visual Stimulus in Areas of Residual Vision
(ARV)

Optic nerve damage can be a result of glaucoma, inflammation, trauma, ischemic or

other pathologies which leads to optic neuropathy. Clinically, optic nerve damage is a

frequent cause of vision loss and it is normally characterized by visual field defects and

an abnormal papillary response (Mart́ınez-Lapiscina et al., 2014; Medeiros et al., 2005).

While some areas of the visual field are irreversibly blind, those regions which are partially

damaged show some residual vision which can be reactivated to improve or restore visual

functions (Maurer et al., 2005; Sabel et al., 2011b).
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Figure 3.1: Group average values for global and node strength distribution between healthy and optic
neuropathy patients. A: Global PLV strength as shown in time-frequency plot (left) and PLV strength
changes over time plot in the beta band (right). B: Node strength distribution (topography) as a function
of time after stimulus presentation. Baseline was defined as the average of the 200 ms epoch before
stimulation, and post-stimulus node strength values are shown as averages of the respective interval (e.g
the 150ms time point was the average node strength representing the interval of 150-200ms).

Figure 3.2: Transient dynamics of global rFCN parameters. Multiple global rFCN matrics change across
time during visual processing in control subjects (green line) and patients with optic nerve damage pre-
(blue) and post-rtACS treatment (red). The horizontal green-blue bars on the x-axis indicate time windows
with significant di↵erences between controls and patients; orange-blue bars mark significant di↵erences of
pre- vs. post- treatment (p < 0.05).
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3.4 Intact Area vs. Areas of Residual Vision

There are also other visual system diseases that a↵ect the brain such as traumatic

brain injury (McKenna et al., 2006), Dominant Optic Atrophy (DOA) and Leber Hered-

itary Optic Neuropathy (LHON). Here, the structural damage extends to the posterior

optic pathways whereas in DOA patients, a more di↵use white matter damage was found

(Messina et al., 2016). While, much is known about the primary pathology at the site of

injury, little is known how this damage influences global brain interaction during cognitive

processing especially in areas of residual vision.

I compared dynamic changes of network measures during visual processing in areas of

residual vision in optic nerve damage patients: hit reactions to stimuli vs. miss conditions.

The comparisons include multiple time and frequency dimensions. Time points from

pre-stimulation at -200ms to 1000ms and all frequency points from 3.9Hz to 30Hz were

involved (5760 total comparisons) to evaluate di↵erences between groups using cluster

mass permutation test. Further testing of specific frequency bands was also investigated

between groups.

In areas of residual vision (relative defects), I studied how the brain of patients with

optic nerve damage reacts to stimuli and how this relates to weighted brain network

topology characteristics during the visual related cognitive processing.

By analyzing the network during hits and misses, the functional connectivity network

showed stronger global PLV strength after a hit compared to misses (tmass = 2258, p

=0.0007) (Fig. 3.3A) specifically in the beta band from 170ms after stimuli onset (tmass

= 251, p =0.001). Node strength after stimuli onset revealed the following: activated

network nodes were initially located in temporal and frontal regions around 250ms and

then spread to occipital areas. Of note, at around 550ms, the node strength of motor

areas was increased. This is the time where the subjects showed motor reaction pressing

the response button (Fig. 3.3B).

In addition, when patients responded correctly to the visual stimuli (hits), the network

presented higher clustering (tmass = 625, p = 0.03) (Fig. 3.4A) and longer path length

(tmass = 1879, p = 0.002) (Fig. 3.4B) than when patient failed to respond (miss reactions).

Specifically, after hits patients FCN had a high CC weighted network in the beta band

at around 405ms (tmass = 64, p = 0.03) after stimulus onset and a long CPL weighted

network in both high alpha and beta band. But the di↵erence showed up earlier in the

beta band at around 198ms (tmass = 40, p = 0.02) after stimulation and lasted much

longer.

Furthermore, I observed a significant di↵erence of small-worldness between hit and

miss reaction (tmass = 731, p = 0.02) (Fig. 3.4C). There is an appreciable smallworld-ness

decrease after correct reaction to stimulation at around 630ms (tmass = 52, p = 0.03) in

high alpha band and 646ms (tmass = 95, p = 0.006) in beta band. In contrast, for miss

reaction, the SW value did not change significantly during whole visual related task.

3.4 Intact Area vs. Areas of Residual Vision

I then compared the network reorganization following hits in the intact visual field

sectors and in areas of residual vision of optic nerve damage patients and quantified their

network metrics. Global strength in hits was significantly greater in intact regions of

the visual field than in areas of residual vision (tmass = 570, p = 0.02) (Fig. 3.5A).
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Figure 3.3: Global and node PLV strength changes during visual related task in areas of residual vision
as a function of time for valid and missed reactions. A: Global strength distribution over baseline in time-
frequency plot and global strength diversity in beta network. B: Topography of node strength changes
over baseline in the beta band.

Figure 3.4: Global network parameters comparison between valid hit and miss response to stimulation in
areas of residual vision in time and time-frequency plots. (A) Global clustering coe�cient, (B) characteristic
path length and (C) small-worldness.
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3.4 Intact Area vs. Areas of Residual Vision

Figure 3.5: Global and node strength di↵erence between intact visual field areas (IVA) and areas of
residual vision (ARV) in the high alpha band as a function of time following stimulus presentation. A:
Global strength in time and time frequency plots. B: Node strength changes over time.

Node strength analysis of hits (Fig. 3.5B) also revealed a more synchronized network

during the cognition phase which included temporal and frontal areas, including motor

area activation.

Hits during the cognitive processing stage exhibit higher CC in intact areas (tmass =

2617, p = 0.001) (Fig. 3.6A) than in areas of residual vision in the theta, low alpha, high

alpha and beta band. And the di↵erence is apparent on both pre and post stimulation

time points in all these four frequencies. In the high alpha band, at around -170ms (tmass

= 145, p = 0.001), CC of the intact visual field sector was higher before visual stimulation.

Except for this pre-stimulation di↵erence, higher CC emerges post stimulation at around

290ms and lasted until 818ms (tmass = 223, p = 0.001). This was also noted in the theta,

low alpha and beta band weighted network. For the CPL, there is also a di↵erence in the

hit-trials between intact visual field areas and areas of residual vision in high alpha and

beta band (tmass = 735, p = 0.004) (Fig. 3.6B). Patient�s hits in the intact visual field are

associated with a larger CPL at around 550ms (tmass = 59, p = 0.01) in the high alpha

band and at about 500ms (tmass = 40, p = 0.03) in beta band.

In the IVA, the small-world-ness (SW) in the weighted evoked response network was

higher than in ARV (tmass = 405, p = 0.03) (Fig. 3.6C). In the beta band, higher SW

of IVA appeared in the pre-stimulus state at around -195ms (tmass = 38, p = 0.04) to

stimuli onset. After stimulation, the SW of IVA was also larger at 205-305ms (tmass = 37,

p = 0.04), and 786-942ms (tmass = 49, p = 0.03). Similar to ARV, a decrease of SW was

observed in the optic nerve damage patients’ intact visual field areas.
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Figure 3.6: The functional network measures di↵erence between intact visual areas and areas of residual
vision during cognition. (A) Clustering coe�cient distribution in time frequency plot (left) and changes
over time in frequency band (right). (B) Characteristic path length and (C) small-world-ness.

3.5 Probing Global Network Adjustments using rtACS Neuromodula-
tion in Patients

To test if the global network can be modulated in this structure, rFCN transients could

be identified, this showed that rtACS can normalize FCN dynamics (Fig. 3.2). Specifically,

rtACS led to significantly enhanced SW at baseline in patients (at the time just before

stimulus presentation), and in the cognition and execution stage. rtACS enhanced the

theta, low and high alpha networks, but it did not alter the beta network. There were

no such activation changes in the placebo group. I conclude that neuromodulation with

rtACS enhanced the balance between integration and segregation of global rFCN.

3.6 Discussion

Visual field loss is not only caused by damage to visual system structures, but also by

alterations of brain resting state cortical networks outside of the visual system. However,

not much is known about if and how local optic nerve damage a↵ects dynamically global

network reorganization on the time scale of milliseconds. To address this problem, I

employed an evoked response design using a discriminate task as that involves multiple

basic cognitive behaviors and cognitive processing to analyze dynamical cognitive topology

arrangement in patients of optic nerve damage.

I found that on a global level that rFCN in patients had a greater degree of local in-

tegration with higher functional specialization (high clustering coe�cient) than controls.

This suggests reduced flexibility (i.e., greater stability or rigidity), possibly as a conse-

quence of the loss of long-range interactions. My findings do not agree with resting-state

FCN studies in other brain disorders where decreased local integration was interpreted as

evidence of local clustering decreases in Parkinson patients (Olde Dubbelink et al., 2014)

and in alcohol dependency (Sjoerds et al., 2017). A possible explanation for this discrep-
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ancy is that optic nerve damage leads only to functional, not structural, dea↵erentation.

Increased clustering between the pairs of neighbors in patients’ rFCN also signifies

longer path length and poorer small-worldness in rFCN, a sign that neural information

transfer needs more steps (greater processing cost), reducing processing speed. This inter-

pretation fits my observation that longer reaction times correlate in patients with lower hub

scores in many (but not all) ROIs. Increased path length was also reported in Alzheimer�s
Disease (Cope et al., 2018) and Depression (Li et al., 2015). In sum, patients with optic

nerve damage su↵er a functional imbalance of specialization versus integration. These

“Spacetime” disturbances reduce neural processing e�ciency at both local and global lev-

els throughout the brain. Comparison between correct visual responses and misses in ARV

indicate that dynamic brain network changes are related to response fluctuations. Valid

responses to visual stimuli induced strong specialization among subgraphs and longer path

length in brain topological networks, demonstrating the vital role of functional brain net-

work synchronization. As a previous study of brain synchronization in vision loss has

found, I observed impaired brain synchronization which aggravates the consequences of

reduced visual input (Bola et al., 2015). This shows that brain desynchronization a↵ects

not only the function of visual input but also the cognitive processing of visual information.

Furthermore, FCN cognitive topology in ARV reflects decreased optimal processing

balance at around 200ms. This may present ine�cient network structure during the cog-

nition stage in patients. But during execution, when the response button is pressed at

around 550ms, an increase of the small-world structure was observed. These network dy-

namics during valid responses exhibited FCN models during visual task in areas of residual

vision. My FCN dynamics analysis provides a better understanding of the physiological

mechanism of response fluctuations in areas of residual vision. Therefore, FCN response

in areas of residual vision might be a target for measuring visual performance in patients

with low vision.

My functional network analysis is the first EEG source space network study reporting

the di↵erent topology remodeling during cognition between intact sectors of the visual

field and areas of residual vision area on time scale of milliseconds. Such results might

provide more information on restoration capacity of areas of residual vision (Poggel et al.,

2004; Sabel et al., 2011b).
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4 Modulate Local Core Hubs and Nodes After Optic Nerve

Damage

This study attempts to delve into the rFCN at a millisecond resolution using event-

related network analysis in both patients with optic nerve damage and healthy subjects.

The investigation aims to uncover disturbances during rapid visual processing in these

patients and to explore the modulatory e↵ects of rtACS on rFCN structures, with a focus

on the vision restoration potential. In addition to the dynamic aspects of the global FCN,

the core hubs, which occupies crucial positions in the information transmission, and the

functional alterations of each brain region after optic nerve damage were also a matter of

interest. Furthermore, it is not known whether rtACS may induce the modulation of core

hubs and node properties associated with vision recovery.

Therefore, in this section, I will focus on the variability of hub topology as characterized

by hub scores (HS) and di↵erent node centrality metrics during normal visual processing

and also in patients with optic nerve damage, as well as their plasticity induced by rtACS.

4.1 Introduction

To explored rapid FCN dynamics at millisecond resolution I now used “event related

network analysis” (ERNA) (Bola and Sabel, 2015) in patients with optic nerve damage.

Here, similar to visual evoked potentials, EEG recordings are time-locked to visual stim-

ulus onset, and subsequent FCN graph analysis can show how topological 3D-“Space”

(individual brain regions) is linked with the 4th dimension of “Time”.

My analysis of rapid FCN plasticity extends prior studies of resting-state networks,

which is the current standard to characterize the physiological basis of neurological func-

tion and behavior (Sporns, 2011). Using graph theory, I uncovered complex network fea-

tures such as global clustering and e�ciency, small-world attributes, and heterogeneous

degree distributions (Sporns). FCN alterations during resting state were reported in dif-

ferent neurological and psychiatric disorders, including depression (de la Cruz et al., 2019),

and partial optic nerve damage (Bola et al., 2014) which revealed lower FCN coherence,

less dense clustering, loss of small-worldness, and long-term reorganization. But unlike

such resting-state studies, rFCN analysis can inform us of topological centrality and node

activity changes as a function of time, indicating how fast the brain network can change

in response to visual stimulation and in which time range such FCN plasticity happens.

In the present study I hypothesized that patients with optic nerve damage su↵er dis-

turbances in rapid visual processing and that rtACS can modulate topological networks

structures and induce vision restoration. To this end, I first determined brain regions with

the highest level of synchrony (“hubs”) and functional connections between them before

and after stimulus onset, comparing network dynamics in normal subjects and patients

with vision loss at millisecond resolution. I next wished to learn if FCN metrics correlate

with normal and abnormal visual performance. Finally, I investigated the e↵ects of ”neu-

romodulation” with rtACS to explore the functional relevance of fast FCN changes for

”visual performance”. Specifically, I hypothesized that hubs and their connections (i) can

be monitored at millisecond resolution, (ii) they can vary systematically in their strength,

stability and dynamics, (iii) are disorganized in patients with low vision, and (iv) they can
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be modulated with rtACS which correlates with vision recovery.

4.2 Brain Spacetime in Normal Subjects

In control subjects with normal vision 20 FCN ‘hubs’ could be identified in the high

alpha band in the default mode network (DMN), attention network (AN), salience network

(SN) or execution control network (ECN) (Fig. 4.1). Surprisingly, primary visual cortex

and visual-association areas had no hubs. Hub distribution among individual rFCN (Fig.

4.1A) and the averaged rFCN (Fig. 4.1B, C) were similar, but hub strength was quite

di↵erent between individuals.

Although overall hub-topography was relatively stable, hub-strength and connections

between hubs were highly dynamic during the one-second time vector following stimulus

onset. Inter-hub connections changed their strength in tremendous (millisecond) speed.

As (Fig. 4.2) shows, how hubs� strength and connections can rapidly evolve and/or dis-

solve. After stimulus onset, the average rFCN had more connections compared to baseline.

Here, the phase synchronized strength increased at around 300ms. At around 600ms, when

the response button was pressed, the connections were densely connected. This pattern

suggests that rFCN dynamics are behaviorally meaningful. Yet, the fluctuations of total

hub scores show a typical oscillation pattern with peaks that are comparable to those

found in visual evoked potentials (VEPs) (such as N100 and P300) (Fig. 4.1D). To facili-

tate interpretation, FCN transients were divided into di↵erent functional stages of neural

processing that were known from visual evoked potentials: “baseline”, from -200ms to 0ms

([-200,0]ms), “sensation/perception” ([0,200]ms), “cognition” ([200,400]ms), “execution”

([400,700]ms) and post-execution ([700,1,000]ms).

Rebustness of hub selection threshold was demonstrated by comparing my results with

15% and 25% thresholds, both of which showed similar results.

4.3 Brain Spacetime in Patients - Realignment of Node Centralities

Node activity changes over time were found in node degree, node betweenness, node

closeness and node clustering coe�cient, with transient engagements of di↵erent brain

regions in space as a function of time. Compared to controls, patients had local disruptions

in both hub and non-hub regions: three hubs showed transiently lower betweenness during

visual processing in patients: left medial orbital frontal cortex at around 290 to 554ms

(tmass =88, p = 0.02), left superior temporal gyrus [478,686]ms (tmass =67, p = 0.01), and

left temporal pole in time ranges of [-94,97]ms (tmass = 63, p = 0.01), [246,470]ms (tmass

= 97, p = 0.004), and [514,738]ms (tmass = 77, p = 0.007) (Fig. 4.3A).

Regarding non-hubs, node activities of five regions were transiently lowered in pa-

tients, reflecting less synchronization compared to normal visual processing. Three re-

gions located in the visual network (VN), including left cuneus cortex (CC: [100,500]ms,

tmass =136, p = 0.01), left lateral occipital cortex (CC: [-195,5]ms, tmass = 68, p =

0.02) and left pericalcarine cortex (Degree:[82,345]ms, tmass =88, p = 0.02; Between-

ness:[361,486]ms, tmass =32, p = 0.03), two regions were located in attention network

(AN) and default mode network (DMN) respectively, including right supramarginal gyrus

(Degree:[-10,230]ms, tmass =82, p = 0.02), and left frontal pole (CC:[-163,-87]ms, tmass =

22, p = 0.04; [37,97]ms, tmass = 17, p = 0.05; [206,361]ms, tmass = 47, p = 0.02) (Fig.
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4.3 Brain Spacetime in Patients - Realignment of Node Centralities

Figure 4.1: Hub score distribution and changes across time in high alpha FCN.
A: Hub score distribution in networks of individual control subjects during visual processing. Each value
shows the sum hub score (0-4) during the recording epoch of -200 to 1000 ms for the respective brain areas.
The regions are sorted from small to large. Control subjects varied in their individual hub localization,
hub number and hub strength.
B: Transient hub score distribution of averaged healthy brain networks. Hub scores were computed for
each region of interest (ROI) at each time point. If a region had a hub score >= 2 and a duration of >= 50
ms without interruption throughout the visual process, this node was identified as a hub. ROIs were sorted
according to hub strength, di↵ering in their hub (synchronization) strength and stability across time (scale
shows averaged hub score 0 to 4 during visual processing).
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4.3 Brain Spacetime in Patients - Realignment of Node Centralities

Figure 4.1: C: In normal subjects I identified rFCN 20 ROIs which were hubs in the high alpha-band
during the visual task in cingulate (n=7), temporal (n=9) and frontal cortex (n=3); and in the insular
region (n=1).
D: Total hub score changes across time for all control subjects for the 20 hubs. It shows phases of hub score
strength fluctuations across time. To facilitate interpretation, FCN transients were divided into di↵erent
functional stages of visual processing: “baseline”, from -200ms to 0ms ([-200,0]ms), “sensation/perception”
([0,200]ms), “cognition” ([200,400]ms), “execution” ([400,700)ms) and “post-execution“ ([700,1,000]ms).
Of note, peaks of hub strengths correspond to those typically found in evoked potential recordings (e.g.,
N100, P300).

Figure 4.2: Imaging “Brain Spacetime” in visual processing. Transient network formations during visual
processing displayed in time-slices as a function of visual stimulus onset (white circle) in averaged normal
rFCN. Hubs (big red dots) represent ROIs with high synchronization (hub scores 2 to 4, displayed by hub
size). Links between the hubs were color-plotted as a function of their weight from 0 to 1. The top row
shows the averaged hub locations and their inter-hub connections in normal brains. The lower rows show
two representative subjects with di↵erent levels of network synchronization (high and low).

Figure 4.3: Significant node centralities as a function of the network state. Significant node centrality
dynamics for di↵erent brain regions as a function of time in reference to stimulus onset (0 ms) during the
visual detection task. The black line is the respective reference value for the control group (A) or the
pre-rtACS group (B). The colored horizontal bars display time windows of significant di↵erences between
groups (p < 0.05) (green: betweenness; yellow: clustering coe�cient; brown: degree). Whereas activation
increases are plotted above the respective reference line, activation decreases are plotted under the line.
A: shows the di↵erences of local hub properties between controls and patients which were mainly observable
for “betweenness centrality” which was higher in controls than in patients. But three non-hub regions in
patients (hub score< 2) show significantly stronger betweenness than controls. Other non-hubs of patients
showed significantly weaker local activation in multiple node centralities.
B: E↵ects of rtACS neuromodulation on rFCN dynamics. Brain regions showing significant di↵erences
of local FCN attributes after rtACS treatment (p < 0.05). While node centralities of some brain regions
increased following rtACS neuromodulation, others decreased.
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4.3A). But there were also three non-hub regions in patients which showed transiently

stronger betweenness in patients during visual processing in the right paracentral lobule

([222-385]ms, tmass = -50, p = 0.02; [550-730]ms, tmass =-68, p = 0.01), left inferior pari-

etal cortex ([738-878]ms, tmass = -48, p = 0.01) and left cuneus cortex ([818-894]ms, tmass

=-25, p = 0.05) which signifies ‘compensation’ (Fig. 4.3A).

4.4 Probing Spacetime Causality of rtACS Neuromodulation in Patients

More detailed FCN dynamics can be obtained when the time-vector is considered which

shows great variability. Two hubs were transiently strengthened in degree or betweenness

after rtACS in patients: the left superior temporal gyrus (Degree: [794,870]ms, tmass

=26, p = 0.03), which had a lower betweenness in the attention network than controls,

and the right temporal pole (Betweenness: [278,369]ms, tmass =36, p = 0.03), showing

a synchronous enhancement, while before rtACS, betweenness of the left temporal pole

was weaker. Another hub, the right entorhinal cortex, showed a significant decrease in

its clustering coe�cient (CC: [-195,113]ms, tmass =-137, p = 0.001). In sum, rtACS

modulated local connection patterns of hubs.

After rtACS, node centralities were also changed in several non-hub brain regions.

Specifically, four non-hub nodes in the attention network were more enhanced as revealed

by multiple node centrality metrics: left pars triangularis (Betweenness: [-195,-127]ms,

tmass =24, p = 0.04; [900,1000]ms, tmass =42, p = 0.004), right pars opercularis (Be-

tweenness: [-195,5]ms, tmass =78, p = 0.02), left rostral middle frontal gyrus (Degree:

[494,862]ms, tmass =145, p = 0.01) and right supramarginal gyrus (CC: [298,405]ms, tmass

=71, p = 0.005). In addition, CC was transiently increased after rtACS in the right per-

icalcarine cortex ([73,169]ms, tmass =43, p = 0.04) in visual network and left precentral

gyrus (Betweenness: [602,638]ms, tmass =16, p = 0.05) and in sensory-motor network (Fig.

4.3B).

But there were also 6 transient non-hub deactivations after rtACS treatment: two were

in the attention network, including right pars triangularis (Degree:[602,786]ms, tmass =

-65, p = 0.02; [838,942]ms, tmass = -42, p = 0.03) and the right superior parietal cor-

tex (CC:[-195,-102]ms, tmass = -45, p = 0.001; [237,297]ms, tmass = -21, p = 0.03), and

two in the default mode network, including left lateral orbital frontal cortex (Between-

ness:[522,554]ms, tmass =-17, p = 0.04), right lateral orbital frontal cortex (Between-

ness:[454,562]ms, tmass = -45, p = 0.02) and two in the sensory-motor network, including

right paracentral lobule (Degree:[221,345]ms, tmass = -52, p = 0.02), and left post-central

gyrus (CC: [462,546]ms, tmass = -34, p = 0.03)(Fig. 4.3B).

Thus, rtACS neuromodulation altered patients’ ability to transiently synchronize oscil-

latory activity throughout the brain, a↵ecting the reorganization of the attention network,

visual network, sensory-motor network and default mode network.

4.5 Correlation between FCN Parameters and Visual Performance

To explore if FCN attributes correlate with vision performance, I calculated the Pear-

son’s correlation of FCN metrics with age, reaction time and number of hit trials in both

healthy controls and patients with optic nerve damage. I found that better visual detec-

tion performance was associated with transiently elevated hub scores (synchronization)
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and increased SW (greater balance of integration and segregation). Specifically, the tran-

siently higher hub scores in patients at 250-350ms correlated with faster reaction times,

but this correlation was not present in normal subjects. After rtACS treatment, increased

SW during -100 to 100ms (baseline and early sensory processing) was also positively cor-

related with the increased number of visual detections (hits). In normal subjects, SW was

negatively correlated with age (Fig. 4.4A-D), but SW was not associated with reaction

time or number of hit trials. Follow-up visual field tests were conducted after 8 weeks

treatment and were found to be stable for at least 2-months. This result demonstrates the

stability of the visual field parameters and their correlation with rFCN metrics. In addi-

tion, it has been shown that metrics of human brain networks exhibit typical test-retest

reliability in the relevant graph-theoretic analysis of human brain networks and do not

interact with time, highlighting the stability and reliability of these measured indicators

(Vecchio et al., 2020).

I further analyzed the pre-task network status and found a significant correlation be-

tween pre- and post-task performance on multiple network parameters. It revealed that

the maximum of global parameters in the post-task network were positively correlated

with the pre-task network state in di↵erent frequency bands, including low alpha, high

alpha, and beta, for both the control and patient groups (Fig. 4.4E, F). Perception in

the brain can be viewed as a highly selective process, where top-down stimuli processing

can create dynamic predictions about forthcoming events in stimulus-evoked and ongoing

temporal activity (Engel et al., 2001).

This supports the notion that brain states at the time of visual stimulus onset influence

final task performance. It provides remarkable insights into brain state-dependent, yet

task-related, dynamics of rapid brain network reorganization.

4.6 Discussion

I visualized for the first time behaviorally meaningful brain FCN dynamics in the

millisecond resolution during visual processing and recovery as a function of 3D-topology

“Brain-Space” in the 4th dimension of “Time”, 4D- “Spacetime”. Rapid and transient

FCN hub and node interactions evolved and dissolved within milliseconds, and this rapid

FCN plasticity was associated with di↵erent phases of visual processing, co-varying in

patients before and after rtACS neuromodulation-induced recovery.

I plotted 8ms EEG epochs to quantify fast and transient FCN plasticity in normal

subjects and in patients with visual system damage. Using ERNA (Bola and Sabel,

2015), I now showed that “FCN transients” are associated with di↵erent phases of visual

processing in normal subjects and are altered in patients before and after vision recovery.

Apparently, rFCN reorganization in patients is not as flawless as in normal subjects,

especially in hub regions of the visual network. But rtACS induces rFCN recovery of hubs

and reorganization in the attention and vision network. However, patterns of neural FCN

phase synchronizations are rather complex, in (brain space) location, strength and timing.

I identified 20 hubs in control subjects, of which 10 belong to the default mode network

(DMN) (Raichle, 2015). These 10 hubs of a rather stable network of anatomical regions

are believed to support di↵erent functions such as internal modes of cognitive (Buckner

et al., 2008) or episodic memory processing (Greicius et al., 2004). Six hubs belong to the
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Figure 4.4: Visual detection performance in patients correlate with network metrics. Parts b-g: In
normal subjects, small worldness (SW) was negatively correlated with the subjects� age. Older subjects
had weaker SW attributes during 250-350ms following stimulus presentation in low alpha (A) and theta (B)
rFCN. In optic nerve damage patients, higher total hub-score at 250-350ms time window were correlated
with the shorter reaction time (C). In patients after rtACS treatment, the increased SW during -100 to
100ms was positively correlated with the increased number of hit trials in the intact visual field sector (D).
In addition, the maximum of clustering coe�cient (E) and characteristic path length (F) in the post-task
(250 to 650ms) network were both positively correlated with the pre-task (100ms before stimuli) network
state. This means that rtACS optimized the rFCN of patients, i.e., better vision was associated with a
higher hub score and increased small worldness. And brain states at the time of visual stimulus onset
influence final task performance.
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salience network (SN), which plays a key role in attention and the detection of behaviorally

relevant stimuli by way of coordinating neural resources (Uddin, 2015). My study confirms

that DMN hubs are rather stable in location, but I now unveiled that their strength, and

the connections between them, are highly dynamic, establishing and dissolving during

visual processing in the millisecond range. Such transient DMN hub activations possibly

provide a network-state reference frame for temporal binding of visual processing with

other, non-visual processes such as emotions, expectations, visual memories etc. Clearly,

the DMN is not a passive “internal” network, but it influences, or is influenced by, sensory,

cognitive or motor execution tasks. This is in line with the argument that the DMN plays

a role in task relevant processing (Vatansever et al., 2015).

The question arises why hub scores are stable even though their connections rapidly

change. As Fig. 4.2 shows, the inter-hub connections among hubs are highly dynamic as

shown with 8ms resolution. Thus, although the connection between two hubs may appear

to have disappeared, each hub quickly establishes connections with other hubs again. This

rapid presence and absence of connections can result in the hub-score, and this can, in

fact, remain relatively stable at a resolution of 8ms. Furthermore, I only analyzed stronger

connections of hubs, but hubs can also have many weaker-type connections as well; it is

the sum of all connections – stronger or weaker ones – that contribute to the hub score.

These 20 hubs play a key role not only in normal visual processing but also in patients

with visual system damage. Here, three hubs were disrupted in their betweenness central-

ity, and some ”non-hub” regions had weaker local activations in the visual and attention

network. In view of the special role of frontal-occipital network interactions in visual pro-

cessing (Bola et al., 2014), I believe that such network disturbances cause interruptions

during vision related cognition due to FCN reorganization in key hubs, even if these brain

regions are anatomically “intact”. This might help explain subtle visual disturbances or

pseudo-hallucinations in low vision patients (Poggel et al., 2007). Furthermore, two non-

hub regions that belong to the visual and attention network showed stronger betweenness

during visual processing in patients: the left inferior parietal cortex and left cuneus cortex

ROIs. On one hand, this illustrates the disruption of hub regions and peripheral visual

and attention networks in patients’ rFCN, but - on the other hand - it also documents

compensation in non-hub regions to adapt to the loss of interactions in patients during

visual processing.

To learn if changes on rFCN are associated with di↵erent behavioral states, I studied

the dynamics of rFCN following neuromodulation using rtACS treatment to study if this

impacts vision recovery. rtACS is a non-invasive method which can modulate ongoing

brain activity rhythms, it enhances alpha activity in normal subjects (Kasten et al., 2016),

and in patients with optic nerve damage (Sabel et al., 2011b), it induces “after-e↵ects”

that outlast the stimulation period (Sabel et al., 2020a). Repeated rtACS modulates

resting-state FCN re-synchronization, enabling more e↵ective information transfer both

in normal subjects (Ali et al., 2013) and in patients (Bola et al., 2014). My rFCN findings

confirm this conclusion and show that rtACS normalizes integration within subsystems

and improves small world organization at rest (baseline), early sensory and late cognition

stages in patients. The peripheral attention network and visual network also showed

significant enhancement after rtACS, and the default mode network and some regions of

visual network reorganize in their hub score dynamics during vision processing. In sum,

I observed rapid FCN plasticity both in normal subject and in patients as supported by
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many transient FCN patterns especially in the alpha-rhythm. In fact, visual performance

correlated significantly with greater alpha network synchronization, and both reaction time

and visual detection improved after alpha rtACS stimulation, which, in turn, significantly

correlated with alpha PLV networks. Therefore, I interpret visual improvement as a

sign that alpha frequency oscillating networks induce activation, not inhibition, of visual

processing.

The alpha rhythm has long known to be a fundamental mechanism of perception and

cognition, a↵ecting multiple top-down cognitive processes (Helfrich et al., 2014). There-

fore, I focused analysis on the alpha PLV networks. While alpha oscillations are function-

ally distinct, I cannot tell if they serve an inhibitory or active purpose. In some tasks alpha

oscillations may support inhibition of task-irrelevant neuronal processing on amplitude dy-

namics in several EEG and functional MRI studies, yet others suggest that alpha phase

dynamics support activation in task-relevant functions like attention (Lobier et al., 2018),

working memory process (Crespo-Garcia et al., 2013) and executive functions (Haegens

et al., 2011).

While my research focused upon alpha frequency network modulations, I recognize

that neural processing involves simultaneous oscillations in multiple frequencies, not just

alpha. For example, beta oscillations represent coordination and adaption between neurons

in the motor system (Buzsáki et al., 2013), and theta oscillations largely serve to structure

recurrent interactions of neurons during working memory (Lee et al., 2005).

Other types of phase synchronization across frequencies exist, like cross frequency

coupling (CFC) (Canolty and Knight, 2010) to integrate neuronal activity across di↵erent

spatial and temporal scales. The relation and statistical dependence across frequencies

awaits further experimental evidence due to the complexity of the di↵erent varieties of

CFCs, like phase-amplitude CFD, phase-phase CFC and amplitude-amplitude CFC.

Nevertheless, my observation of functionally relevant millisecond dynamics of FCN

has broad implications of how neural information is synchronized in the dimensions of

neural 3D-SPACE and the 4th dimension of TIME in visual processing and recovery.

I propose that “Brain Spacetime” as a fundamental principle of the human mind not

only in vision cognition, but also in vision restoration. Specifically, I showed that nodes

and their connections (i) can be monitored at millisecond resolution, (ii) they vary in

strength, stability and dynamics over time, (iii) they are disorganized in patients, and (iv)

neuromodulation with rtACS modulates temporal processing of rFCN which correlates

with vision recovery.
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5 Modularity Dynamics of Brain Networks Following Local

Damage

Using dynamic modular analysis, I studied several questions about multilayer modular-

ity of visual evoked functional networks in both normal controls and optic nerve patients:

(i) Are there any communities in visual processing which more preferably connect within

modules? (ii) If so, how do these communities modulate visual processing in optic nerve

damage patients? (iii) Does rtACS treatment (neuromodulation) a↵ect the multilayer

modular architecture? I addressed these questions by quantifying putative modules at the

multi-layer level as induced by visual stimulus presentation.

5.1 Introduction

Damage of the brain has not only local e↵ects at or near the lesion site, but it also

impacts distant regions in the brain functional connectivity networks (FCN) on a global

level. Indeed, vision loss and blindness after optic nerve damage is not just the result

of the primary cell loss in the retina, but it has also secondary and tertiary functional

dea↵erentation e↵ects on visual and non-visual brain regions (Bola et al., 2014; Wu and

Sabel, 2021). To better understand the nature of neurological deficits and post-lesion

dynamics (progression or recovery), I need to know if and how di↵erent nodes synchronize

their neural interactions to form functional communities (“modules”) and find out if this

modularity can be modified after treatment. This can be studied most elegantly using the

local lesion paradigm of partial optic nerve damage.

Modularity describes the modular organization of brain networks (Newman, 2012),

where communities of nodes preferentially interact with each other to form strongly con-

nected subgroups. Modules can engage in data analysis with high dynamic complexity,

and the principle of a “modular architecture” reduces the wiring cost in neural information

processing (Raj and Chen, 2011). Indeed, there is a correspondence between performance

of higher order processing and reconfiguration in topological community structure or inter-

modular communication (Kitzbichler et al., 2011).

There is evidence that brain FCN modularity is a functionally meaningful parameter

of “spacetime in the brain”. For example, modularity was recently proposed to be a

biomarker of plasticity associated with interventions that can drive cognitive plasticity

(Gallen and D’Esposito, 2019), and schizophrenia patients show alterations of network

flexibility in the dynamic reconfiguration of community structure during working memory

(Braun et al., 2016).

Especially “multilayer modularity” is an important principle for our understanding of

temporal dynamics of FCN reorganization during complex cognitive functions. A time-

resolved community analysis of functional networks requires the identification of modular

structures across multiple time slices, and especially the multilayer modular analysis is a

useful method to examine temporal dynamics of networks (Mucha et al., 2010). For exam-

ple, it was used for the study of learning-induced evolution of connectivity patterns over the

course of four training sessions (Bassett et al., 2015). Network architecture patterns where

also reported to change across the human life span, showing that ageing leads to reorga-

nization of modular structures and inter-hemispheres redistribution of neural processing
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(Puxeddu et al., 2020). Others studied the modular structure across di↵erent depths of

consciousness during anesthesia and found a hierarchical fragmentation of dynamic net-

work and disturbance of temporal interactions between cortical modules (Standage et al.,

2020). While it is known that dynamic reorganization of network patterns can rapidly

change, the dynamic multilayer modular topology changes on the time vector has not

been studied in optic nerve damage patients.

To achieve a more precise brain spacetime description of FCN modularity dynamics,

I now employed a simple visual detection task where, similar to visual evoked potential

(VEP) recordings, the precise onset-time is known. I used this approach to study normal

subjects and patient with optic nerve damage, where I could correlate visual detection

performance with alterations in modular dynamics. In addition, I used treatment of the

patients with transorbital alternating current stimulation (tACS) to study how visual

dynamics (here: vision recovery) and FCN modularity correlates.

The transcranial electrical stimulation induced primary and secondary vascular re-

sponse has been observed in various studies (Sabel et al., 2019). And there is a suggestion

that vascular parameters are modified to match the neural activity of the stimulated brain

networks (Bahr-Hosseini and Bikson, 2021). rtACS was previously shown to modulate

(improve) visual function and altered FCN reorganization (Schmidt et al., 2013; Bola

et al., 2014). In the current study, I used data collected earlier and published by Sabel

(Sabel et al., 2011a). In this earlier study, the improvement in visual function and the en-

hancement of alpha brain oscillation was identified (Gall et al., 2011; Sabel et al., 2011a).

I subsequently linked individual responses and vision recovery with rtACS-induced al-

teration in brain functional connectivity networks between individual brain regions (Wu

and Sabel, 2021). In the present study, I studied this brain network plasticity in greater

detail by exploring network nodes and their clustering of communities before and after

neuromodulation with rtACS.

Therefore, I set out to describe the community structure and multilayer brain network

changes to explore how modification of the modulation of strength of intra- and inter-

module interactions with rtACS brain stimulation impacts visual performance.

As I have shown, functionally separated modules of multilayer brain networks respond

to visual stimulation and inter-module interactions relate to visual performance. I found

that rtACS promotes both global optimization of modular organization and local activa-

tion of pathways associated with attention network, providing a new understanding of the

role of multilayer modular architecture in visual processing.

5.2 Multilayer Modularity Diagnostics

The examination of the null model in multiple layer networks is necessary, because it

helps defining the fundamental basis for the community detection, permitting the principle

identification with statistical significance in the diagnosis of network communities.

To determine whether the real network shows community topology, I firstly investi-

gated statistical di↵erences between real networks and surrogate null models which were

constrained by properties of the empirical network. Three appropriate null models were

generated including connectional null model, nodal null model and temporal null model as

proposed by Bassett (Bassett et al., 2013). The connectional null models were constructed
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Figure 5.1: Comparison of real networks versus connectional surrogate null networks using the optimized
module quality function for both normal (A) and patient (B) groups. The x-axis displays the frequency
bands, the y-axis shows the di↵erence between the null model and the real FCN modularity. The “Violin
plots” indicate interquartile range and kernel density at 95% confidence interval. Compared to the null
model, both controls and patients with optic nerve damage displayed heightened community topology in
all frequency bands.

by reshu✏ing the links between nodes in each layer while maintaining the weight, degree

and strength distribution as the empirical network. While the nodal null model scrambled

inter-layer links that connected a single node in one layer to another layer, the temporal

null model randomly permutated the order of the network layers. Then, for each subject,

I subtracted the optimized multilayer modularity for the surrogate networks from that of

the original networks in each frequency, and subsequently I tested di↵erence values against

0 with a one sample t-test.

The optimized multilayer modularity was characterized by the multilayer “modularity

index Q”. The maximization of Q allows partitions of optimization considering both

intra-layer connection and inter-layer coupling in a multilayer network.

I found that the dynamic networks of both controls and patients with optic nerve

damage showed a large di↵erence from the null model and displayed heightened community

topology in all frequency bands (Fig. 5.1). This verifies the existence of the modular

structure in the visual evoked functional networks. Comparison of the real network with

nodal and temporal null models showed similar results (Fig. 5.2).

5.3 Multilayer Modular Organization

Because the brain FCN can dissolve and evolve rapidly (Wu et al., 2020), I need to

characterize such dynamic fluctuations on the time vector. Specifically, I would expect that

the organization of the modular structure also displays apparent changes in the temporal

dimension which might be functionally meaningful.

To adequately explore this multilayer modular organization, in addition to the multi-

layer “modularity index Q”, the parameter of “flexibility” was characterized under multiple

conditions. “Flexibility” represents how often a given node changes its modular a�liation

across consecutive time steps. In dynamic multilayer networks, each layer corresponds to

one time point.

My results showed that in intact visual field regions, the modularity and flexibility of

patients’ FCN did not di↵er significantly from that of the normal controls (Fig. 5.3A).
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Figure 5.2: The presence of modular structure was statistically quantified by comparing the real and
surrogate null networks of controls and patients. Three appropriate null models were generated, including
connectional null model (random edges), nodal null model (random nodes) and temporal null model (ran-
dom slices). The connectional null models were constructed by reshu✏ing the links between nodes in each
layer while maintaining the weight, degree and strength distribution as the empirical network. While the
nodal null model scrambled inter-layer links that connected a single node in one layer to another layer, the
temporal null model randomly permutated the order of the network layers. Then, for each subject, I sub-
tracted the optimized multilayer modularity for the surrogate networks from that of the original networks
in each frequency, and subsequently I tested di↵erence values against 0 with a one sample t-test. The brain
FCN of both controls (A)and patients with optic nerve damage (B) exhibited the modular structure in all
frequency bands of visual cognition. Statistically significant di↵erences: *** p < 0.001.

Furthermore, there was no significant di↵erence between the rtACS and sham group before

treatment (Fig. 5.4A). However, after receiving rtACS, the modularity of the patients was

significantly increased in the high alpha FCN, while the flexibility of the beta network was

significantly decreased (Fig. 5.3B). The sham group, on the other hand, did not show any

di↵erence before and after treatment (Fig. 5.4B).

Thus, rtACS treatment induced changes in the multilayer community structure as

follows: after rtACS the multilayer modular topology shifted towards a more optimized

and stable modular structure, while the sham group showed no such di↵erences of the

multilayer modular structure.
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Figure 5.3: Modularity of multilayer networks for visually evoked brain networks. A: Before treatment,
the modularity and flexibility of patients’ FCN did not di↵er significantly from those of normal controls.
B: However, after treatment with rtACS, patients showed a significant increase in the modularity of the
high alpha FCN (left), and a significant decrease in the flexibility of the beta network (right). Statistically
significant di↵erences between conditions: ** p < 0.01, *** p < 0.001.

Figure 5.4: Comparison of FCN modularity and flexibility during visual processing in rtACS and sham
patients group. A: Before treatment, the modularity and flexibility of the FCN in the rtACS group were
not significantly di↵erent from those in the sham group in all frequencies. Modularity and flexibility
were calculated for the multilayer network formed throughout the visual processing. B: Characteristics of
modules were computed to compare the e↵ects of the sham treatment. In the sham group, modularity and
flexibility of the FCN in all frequency bands did not show significant changes before and after treatment.
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5.4 Representative Partitions in Dynamic Multilayer Networks

Multilayer module analysis can obtain a set of partitions by repeatedly applying mod-

ularity maximization algorithms. Considering the degeneracy of community detection

algorithms, the examination of consensus partitions that can reveal the consistency of

module a�liation of nodes in multiple partitions helps generate a common representative

partition of the community structure. Using these measures, I evaluated the consensus

architecture in visual processing.

One of my first question was the following: “Are consensus modules expressed during

visual processing?” To answer this question, I extracted the consensus brain network com-

munities that were consistently active during the whole visual process using the clustering

approach. A module allegiance matrix was estimated for each pair of brain regions, with

each element representing the probability of two nodes being classified into the same com-

munity in FCN over all time layers, frequencies, subjects and group conditions (Mucha

et al., 2010).

I observed that the brain networks of our subjects have four identifiable communities,

where di↵erent regions preferentially interact with each other during visual processing (Fig.

5.5A). The module allegiance reveals the extent to which these brain areas are consistently

grouped into the same module (or “community”). I refer to these four putative functional

modules as “motor”, “attention”, “visual” and “other” modules (Fig. 5.5B).

5.5 The Architecture of Multilayer Networks in Optic Nerve Patients

To further understand how consensus brain modules were distributed and reorganized

before and after treatment in patients with optic nerve damage, I constructed module

allegiance matrices for each group. I observed greater inter-regional allegiance within

modules of patients, which clustered more persistently than normal subjects throughout

visual processing especially in attention and other modules. However, allegiances were

stronger after rtACS treatment, whereas they did not change much in the sham group

(Fig. 5.6).

5.6 Interaction Strength Correlates with Performance

To further quantify the modular architecture of multilayer networks, I next evaluated

the interaction strength of modules in the brain. The interaction strength of both intra-

and inter-modules in motor, attention, visual and other modules were estimated at indi-

vidual subject level per group. Next, I investigated whether such interaction strength of

modules could explain the di↵erent behavioral performance in the visual detection task

among individuals. To this end, I calculated Spearman rank correlation coe�cients be-

tween the interaction strength of the modules and the number of trials detected during

visual processing and individual reaction time. The correlation coe�cients were not cor-

rected for multiple comparisons as my study was of exploratory nature. If I included the

total number of interaction strengths and the variable of visual behavior for multiple cor-

rections, I believe this to be too stringent for the statistics of a relatively small sample of

an exploratory study and miss findings that might be clinically relevant.

Normal subjects showed stronger interaction strength between motor and visual net-
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Figure 5.5: Representative partitions of multilayer networks during visual processing. A: Four consensus
brain network communities that were consistently active during the visual process were identified in the
brain networks using the clustering approach. Each element of the module allegiance matrix represents
the probability of two nodes belonging to the same module across all time layers, frequencies, subjects
and group conditions. Brain regions of each module are shown in descending order according to their
strength of module association. B: Visualization of representative partitions of the brain surface. Four
communities were putatively identified which are proposed to support di↵erent functional modalities:
“motor”, “attention”, “visual” and “other” modules.
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Figure 5.6: Modular allegiance between groups during visual processing. The communities were plotted
based on consensus representative partition. The order of brain region names is consistent with Figure 5.5.
A showed the strength of interregional allegiance in normal subjects. B-D represented the distribution of
module allegiance values for patients before and after rtACS (B, C) or sham (D, E) treatment. Patients
had greater interregional allegiance within modules and clustered more consistently than normal through-
out visual processing, especially in attention and other modules. Allegiances were stronger after rtACS
treatment, whereas they changed little in the sham group.

work and this correlated with the greater number of correct responses in the visual task (hit

trials). In addition, the attention-motor and attention-visual networks integration inten-

sities were associated with an increased number of hits (Fig. 5.7A), which was evidenced

that neural processing and task performance (visual detection) required the functional

coordination between visual-motor, attention-motor and attention-visual modules. While

this conclusion seems obvious, the result highlights the functional validity of our FCN

community approach which makes this interaction measurable. In optic nerve damage pa-

tients, faster reaction time was associated with greater interaction strength of motor-visual

modules, showing similar results to normal subjects. However, the strength of interactions

between motor-other and visual-other modules were negatively correlated with reaction

time, not the attention related connections (Fig. 5.7B). In optic nerve patients apparently,

“other networks” became more engaged in visual processing, leading to a strong integra-

tion of visual and motor module with other modules, i.e., a global brain FCN adaptation

or engagement.

The recruitment of intra-modules was not significantly correlated with individual visual

performance. This suggests that interaction strength between modules had a more pro-

nounced e↵ect on subjects’ behavioral performance than the integration within modules.

This implies that better or worse vision is supported by the global brain FCN synchro-

nization, and not just the strengthening of neural processing in local (visual) regions.

The di↵erences in interaction strength of modules between pre- and post- rtACS

showed that changes of the interaction strength between motor-attention and attention-
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other modules were positively correlated with changes in the number of correctly detected

stimuli (Fig. 5.7C). However, patients of the sham group did not show this association.

5.7 Discussion

Damage of the brain has both local e↵ects at or near the lesion site and it a↵ects

remote regions of the brain functional connectivities network (FCN). Using partial optic

nerve damage as a model, the present study explored how the multilayer network module

architecture responds to visual stimulus presentation in normal controls and in patients

with optic nerve damage, particularly with respect to the extent to which modules interact

within and between each other. In this way, I was able to highlight the modular archi-

tecture of dynamic multilayer network under di↵erent conditions and study the impact of

rtACS neuromodulation on the community structure of such dynamic networks.

I firstly confirmed the existence of a pronounced modular structure in the visually

evoked functional networks comparing our data with the modularity index of random net-

works. As I demonstrated, the brain operates as a modular system to control functional

separation and integration of the modular topology to ensure flexibility and reliability of

the brain FCN. This is because independence between subsystems helps neural connec-

tions reduce the risk of major dysfunction of the entire network system due to defects in

local areas. Consistent with previous findings (Variano et al., 2004; Sporns and Betzel,

2016), the hierarchy of modules added resilience and robustness of the network to random

perturbations. In particular, in both normal controls and visually impaired patients our

modular architecture analysis revealed visual, attention, motor and other communities

which formed functionally separate modules during the whole visual processing within

one second after stimulus presentation.

My findings of modular structure in the FCN of the brain are in line with other

studies on the brain’s structural and functional wiring network in cognition (Cohen and

D’Esposito, 2016; Sporns and Betzel, 2016). It is also in line – though on another level -

with other examples of modularity in other biological analyses. For example, modularity

is found in gene expression patterns and in cytoarchitecture. Specifically, a group of

genes with a similar expression profile is considered to be functionally related (Saelens

et al., 2018), and transcriptomes of co-express genes modules can be used to distinguish

major cell classes of the human brain (Oldham et al., 2008). And modular organization of

cellular networks has been identified for protein interaction and protein complexes (Rives

and Galitski, 2003).

My study shows that global modular properties were not statistically comparable be-

tween healthy subjects and patients in the “intact” sector of their visual fields. This

suggests that the overall multilayer modular structure for visual processing was not af-

fected. Furthermore, and in agreement with previous studies, the interaction strength of

intra-modules was not significantly correlated with individual parameters of behavioral

parameters, here visual performance. According to theoretical tenets concerning the hu-

man brain network architecture, activities within modules do not increase when processing

cognitive tasks that requires coordination of multiple brain functions. My observations are

in line with this argument that each module performs distinct cognitive function relatively

autonomously from other modules. Specifically, when processing cognitive tasks requiring

the coordination of multiple brain functions (functionally specific sub-networks), activities
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Figure 5.7: Schematic diagram of visual field distribution and correlations of interaction strength of
modules with behavioral performance. A: Scatter plot of the number of detected stimuli and their rela-
tionship with the interaction strength of the motor-visual, attention-motor and attention-visual modules
in normal subjects. B: In patients with optic nerve damage, the interaction strength between motor-visual,
other-motor and other-visual were shown as a function of individual reaction time in all patients before
and after the treatment together. C: After rtACS treatment, changes in the interaction strength between
the attention-motion and attention-other modules were positively correlated with changes in the number of
correctly detected stimuli. The number of trials practiced and response times shown here using logarithmic
scales.
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within modules do not increase, but the connector nodes between modules communicate

more with each other (Bertolero et al., 2015).

Indeed, in the absence of statistical di↵erences in overall multilayer network mod-

ules between healthy controls and optic nerve patients, I found that local interactions

between modules were correlated with their behavioral performance. Specifically, in nor-

mal subjects, better vision (processing speed/ reaction time) was associated with greater

visual-motor, motor-attention and visual-attention interactions. However, in patients the

stronger integration strength between visual-motor, motor-other and visual-other was asso-

ciated with superior behavior performance which suggests that the strength of interaction

between modules had a more pronounced e↵ect on subjects’ behavioral performance than

the integration within modules. This is a hint that in our patients, other modules assume

more responsibility for inter-modules connections in visual perception, especially taking

over some of the inter-modules connectivity functions that should have been performed

by the attention-motor and/or attention-visual modules.

I wish to point out that our naming of four representative communities is implicit

and does not properly reflect the structural-functional complexity of the network. Yet,

it is a first and useful step on approximation to help interpret the modular interactions

and dynamic reconfigurations before and after neuromodulation following rtACS treat-

ment. Future studies should explore in greater detail the more covert neuromodulatory

mechanisms within these modules.

But how does local optic nerve damage a↵ect global multilayer module structure and

interaction? Ever since the work of C.v. Monakow (Monakow, 1914) clinical neurologist

know that pathology in one region can cause impairments in functionally dea↵erented,

remote brain regions (Catani et al., 2012). These changes are well beyond the secondary

degeneration in the optic tract and the brain�s striate cortex following retina or optic nerve

damage (Beatty et al., 1982; You et al., 2012). This functional interaction with remote

brain areas, or the lack of it, can either be maladaptive, amplifying the functional problem,

or it can be an adaptive compensation of neural interactions between communities in

patients with optic nerve damage (Fornito et al., 2015). Indeed, modules of the multilayer

module architecture may become more (or less) engaged in optic nerve damage patients,

contributing to visual tasks through inter-module connections or disturbing vision.

The other key finding of the present study was that the modular structure could be neu-

romodulated with non-invasive brain stimulation. I observed that after rtACS treatment,

the global modularity index of the optimal network partition was significantly improved.

The modularity of multilayer brain networks quantifies how well a multilayer network is

organized into densely connected communities. Others have also observed modularity al-

terations in neurodevelopmental pathological conditions. For example, individuals with

the autism spectrum disorder have functional networks with reduced modularity and low-

ered local e�ciency (Rudie et al., 2013), and modularity is reduced in childhood-onset

schizophrenia (Alexander-Bloch et al., 2010).

The conclusions of my current findings are in agreement with our previous observations

that rtACS influences the organization of functional brain networks in promoting global

neural activation, strengthening both short- and long-range synchronization of brain net-

works (Bola et al., 2014). It is known that rtACS can manipulate human rhythmic brain

activity in a phase-specific fashion (Fiene et al., 2020). My result of a strengthened global
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modularity index after rtACS treatment suggests that neuromodulation can induce a more

optimal balanced multilayer modular structure that benefits visual processing. This is in

line with similar observations that obsessive compulsive disorder patients exhibit signifi-

cantly elevated modular organization after pharmacological treatment (Shin et al., 2014).

My observation in optic nerve patients that rtACS treatment decreases the flexibility

of the multilayer network in beta oscillations suggests that neuromodulation can induce a

more stable community structure. Network flexibility is a metric reflecting the tendency

of a given node to change its modular a�liation over time. Recent work on learning-

induced functional connectivity pattern shows an apparent flexibility in the early phases

of training, but less change of their module a�liation in later phases (Bassett et al., 2011).

It has also been noted that lower brain flexibility correlated with the stronger psychological

resilience, i.e., the ability to adapt to stress, adversity, and negative events (Paban et al.,

2019). When interpreted in the context of these studies, my results suggest that on

a global level of FCN analysis, rtACS induces more proficient and balanced multilayer

modular structure and prompts greater specialization of corresponding neurons within

the same module. Specifially, the strength of allegiance of all modules increased after

rtACS treatment. Of note, stress resilient optic nerve patients are more likely to benefit

from rtACS treatment (Sabel et al., 2020b), and when taken together with the current

finding, I speculate that their greater stability of FCN community structures might make

them less vulnerable to stress and adversities in daily life.

Importantly, in patients rtACS increased interaction strength in motor-attention, and

attention-other modules and this correlated positively with improved stimulus detection.

This indicates that rtACS is able to modulate the interaction of pathways which are asso-

ciated with the attention module during visual processing. According to a previous study,

rtACS appeared to exert a sustained stabilizing e↵ect on visual attention (Clayton et al.,

2019) and rtACS is known to induce neural oscillations related to selective endogenous and

exogenous attention (Hopfinger et al., 2017). Considering the vascular response associated

with neuronal activation (Phillips et al., 2015), I propose that rtACS may induce the neu-

rovascular coupling and immediate vasodilatory in attention related pathways. Further

studies are warranted to investigate the mechanisms underlying this modularity dynamics.

Also in stroke patients, increased attention has both an acute and a chronic influence

on visual performance: acute attention improves short-term residual vision (Poggel et al.,

2006) and when used in combination with vision restoration training, visual field recovery

is potentiated (Poggel et al., 2004). Thus, reorganization of the multilayer modular FCN

structures may be the neurophysiological contributor, or mechanism, of how attention can

activate residual vision in patients with visual system damage (Sabel et al., 2011b). I

propose that this mechanism of intra- and inter-module interactions has important impli-

cations not only for the visual domain but also for training, recovery and plasticity of other

functional modalities as well. Therefore, further exploration of the spacetime of multilayer

brain network reorganization is promising to better understand normal brain function and

the role of FCN plasticity in the pathology and recovery/restoration of neural functions

of di↵erent brain disorders, not just those a↵ecting the visual system.

Recent studies of electric brain oscillations during rtACS provided a possible option

to directly evaluate the e↵ects of rtACS on network modularity (Haslacher et al., 2021,

2022). By simultaneous collection of EEG during rtACS, msec. modularity assessment
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and msec. precise modulation of brain oscillations during rtACS became feasible. It allows

the investigation of msec. inter-modules interaction induced by rtACS and to tune rtACS

stimulation parameters to the target brain oscillations in real-time. It could be a basis to

further develop closed-loop adaptive brain stimulation protocols.

My study is the first to use multilayer modularity to analyze functional brain net-

works and network plasticity in neuromodulation using non-invasive brain stimulation in

patients with optic nerve damage. By exploring intra- and inter-module interactions and

their correlation with normal and abnormal vision, it is possible to identify representative

consensus partitions of complex brain networks in a multilayer modular manner and this

can be modulated by non-invasive brain current stimulation. I propose that modularity

diagnostics of dynamic multilayer organization may help us to better understand the neu-

ral basis of normal and abnormal brain functions, not only in visual processing but also in

other functional modalities. Multilayer modularity analyses thus provide a novel heuristic

and comprehensive framework for understanding – and modulating – the potential of the

human mind.
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6 Deep Learning of Brain Spacetime: Predicting Outcome

of Vision Restoration following Non-invasive Brain Stim-

ulation

Vision loss following optic nerve damage does not only impair visual field function

in patients. But it also alters “Brain Spacetime”, i.e., the dynamics of functional brain

connectivity networks that support cognitive processing. As I showed repeatedly, non-

invasive transcranial alternating current stimulation (rtACS) can enhance residual visual

capacity of the brain, opening a new window of opportunity through plasticity of the

brain. However, treatment e�cacy varies considerably between subjects and the treatment

outcomes remains unpredictable.

In order to identify vision recovery predictors (VRP), existing EEG data from optic

nerve patients were analysed and trained using deep learning. I tried to identify individual

brain network responses from EEG that signify “vision recovery” using deep learning

algorithms. To this end, I developed a vision recovery prediction model for post-rtACS

e↵ects by training the node centralities of the functional brain networks during visual

cognition of optic nerve damage patients.

6.1 Introduction

Visual impairments can significantly impact the quality of life and independence of in-

dividuals. Vision restoration has been a topic of much interest in the fields of neuroscience

and medicine (Quintero et al., 2022). This study was undertaken because early diagnosis

and prognosis of vision improvement plays a pivotal role in e↵ective clinical management

and patient care.

It has been shown that vision loss resulting from optic nerve damage not only disrupt

the conventional understanding of visual field function in a↵ected patients but also exerts

a profound influence on what can be referred to as ”Brain Spacetime” (Wu and Sabel,

2021). This term encompasses the intricate dynamics of functional brain connectivity net-

works that underlies various aspects of cognitive processing. Our research has consistently

demonstrated that non-invasive transcranial alternating current stimulation- rtACS holds

the potential to reactivate the residual visual capacity within the brain, e↵ectively opening

a novel gateway to harnessing the brain’s inherent plasticity.

In my previous study, I observed that the rtACS intervention optimizes brain network

reorganization during visual processing and facilitates interactions between distinct mod-

ules of the brain network, thereby promoting recovery of vision in patients with optic nerve

damage (Wu et al., 2022). Such findings not only highlight the extraordinary adaptive

capacity of the human brain, but they also exemplify the relevance of brain network char-

acteristics for vision recovery. However, a great challenge is that the e�cacy of the rtACS

treatment varies considerably between individuals and the outcomes of such intervention

remain unpredictable.

To refine treatment strategies, I need to understand the subtle interactions between

rtACS, brain network plasticity, and individual patient characteristics in order and only

then I can fully realize the potential of rtACS as a means of restoring visual function in
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patients. Therefore, I aimed to develop a predictive model for visual recovery after rtACS

using FCN features. Over the years, deep learning techniques have made significant ad-

vances in a number of areas such as computer vision and medical diagnostics, especially

using biological data (Eraslan et al., 2019; Høye et al., 2021). Biological data like pro-

tein structure, gene expression or medical imaging help to understand physiological and

functional details of the life sciences. For the last decades, the rapid advances in data sci-

ence and artificial intelligence provides powerful technical support for our understanding

of these biological data. In addition, analytics in medical applications have contributed to

the detection and classification of brain disorders (Burgos et al., 2021; Lin et al., 2021).

In addition to medical diagnosis and research, neuroimaging data can help solve real-

world problems in neuroscience. A range of new technologies and a significant increase in

computing power have made it possible to gain a deep understanding of biological data,

particularly brain activity. The brain activity can be acquired in several ways, such as

non-invasive neuroimaging data, or invasive brain computer interface (BCI)(Merk et al.,

2022), which requires the implantation of electrodes in visual or motor areas under the

scalp, or partially invasive electrocorticography (ECoG), which is placed on the surface

of the brain (Habets et al., 2018; Luo et al., 2022). Unlike the non-invasive recordings,

invasive BCI can capture the activity of single neurons. They can provide more accurate

readings of brain signals, including side e↵ects after surgery such as scar tissues or body

rejections (Abiri et al., 2019).

In most cases, the non-invasive neuroimaging data were recorded from electroen-

cephalogram (EEG), functional magnetic resonance imaging (fMRI), magnetoencephalog-

raphy (MEG), or functional near-infrared spectroscopy (fNIRS) (Simon et al., 2021). Var-

ious applications of these neuroimaging data have also been linked to deep learning inside

and outside of the clinical field. For example, brain disorder could be diagnosed using DL

based on fMRI images, such as Alzheimer’s disease, Parkinson’s disease and schizophrenia

(Li et al., 2020; Noor et al., 2020; Yin et al., 2022). In the field of EEG, an epilep-

tic discharge detector was proposed based on EEG-fMRI deep learning to delineate the

epileptogenic zone (Hao et al., 2017).

The EEG measures slight voltage changes through electrodes on the scalp of the brain.

Because of its flexibility and ease of use, EEG is commonly used to study a series of brain

processes. It has a high temporal resolution for real-time monitoring of brain activity, as

the timing of parallel/serial synaptic potentials is very fast, indirectly reflecting informa-

tion flow and signal propagation across the various neuronal assemblies (León et al., 2020).

However, this character also leads to the problem of poor signal-to-noise ratio in EEG.

Therefore, for decoding of EEG based brain signals, many machine learning algorithms

have been investigated, especially deep learning neural networks. For example, deep neu-

ral networks can build robust and high accurate BCI models for the classification of motor

imagery (MI) EEG signals, which have significant applications in neurorehabilitation (Al-

Saegh et al., 2021).

This paper introduces a novel deep learning-based vision recovery prediction model,

which leverages EEG-based node centrality of functional brain networks to predict visual

field improvement in patients.
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6.2 Datasets and Preprocessing

Data were obtained from our previous trial with 20 patients su↵ering optic nerve

damage. Two of the subjects did not receive tACS stimulation, making a total of 18

subjects with data included. Information about the subjects’ details was shown in Table

A.1. EEG data and visual field information were collected from each subject while they

performed a visual discrimination task before receiving rtACS treatment.

Perimetric visual field was diagnosed first with the computer-based high-resolution

perimetry (HRP). The subjects had to press the space bar once a light stimulus was

observed or when the color of the fixation point changed. In areas where all stimuli were

correctly detected in the same position was defined as intact area (plotted in white in Fig.

2.1) and three missed stimuli were taken as signs of absolutely impaired areas, plotted

as black. Other positions were marked as grey area. In this way, three visual field areas

were identified: intact vision area, partially damaged and absolutely impaired areas. The

partially damaged areas were identified as “areas of residual vision”.

For each subject, eight di↵erent positions were selected to present stimulation individu-

ally based on visual field diagnose result to collect visual evoked potentials EEG recording.

One position was always in the intact area and one position always in the completely im-

paired area. Six positions were placed in grey areas, i.e., at points with HRP detection

accuracy was between 33 to 66%.

Visual evoked EEG data were then collected during the visual processing in these

distinct areas. During VEP, Stimuli were presented for 400 ms followed by a variable

inter-stimulus interval ranging from 1300 ms to 1700 ms. Then the EEG data were pre-

processed and source reconstructed on the cortex using Desikan–Killiany atlas 68 regions

of interests (ROIs, 34 in each hemisphere). In this way, the source brain activities were

filtered and decomposed into five frequency bands using the Hilbert method. Functional

brain networks were then constructed by measuring oscillatory synchronization on each

trial in each frequency band.

Subsequently, the Hilbert transform was employed to obtain discrete time analytic

signals across five distinct frequency bands, encompassing theta, alpha, low alpha, high

alpha, and beta, as previously described (Le et al., 2001). The investigation then focused

on the evaluation of coherence and phase synchrony from Hilbert transformed signals,

both of which are fundamental mathematical approaches for quantifying the frequency

and phase correlations within brain activity recorded from two or more brain regions.

More precisely, four network construction metrics were examined, specifically the phase

locking value (PLV), coherence (COH), imaginary part of the phase locking value (iPLV),

and imaginary part of coherence (iCOH).

Node centralities, which were typically used to assess the di↵erent impacts of nodes on

network function, including degree, eigenvector centrality, betweenness centrality, closeness

centrality, and clustering coe�cient were extracted based on brain networks and then fed

into deep neural networks afterwards. After receiving rtACS treatment, the visual field was

evaluated again for each subject to calculate recovery of vision. Here, the characteristics

of node centralities during the visual discrimination task, of size 68*5 were considered

as inputs to the neural network. Among them, 2205 and 2507 trials were available for

IVA and ARV, respectively. The output is the percentage change over the baseline of the
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stimulation detection rate. The goal is to predict the percentage of vision recovery.

The node attributes are shown in Fig. 6.1. Vision improvement, i.e., stimulus detection

enhancement rate after rtACS treatment, was considered as the label of vision recovery.

The developed deep neural network algorithm processed the input data and optimized the

weights and bias by learning and adjusting them to continuously reduce the error or loss

to build the recovery prediction model for post-rtACS e↵ects.

6.3 Deep Learning Algorithms and Models

In this study, two deep neural network modals, FFNN and bidirectional LSTM, were

tested to accomplish the vision recovery prediction model for post-rtACS e↵ects.

The feedforward neural network is modeled with an input layer, two hidden layers

containing 68 and 34 neurons, respectively, and an output layer. The output is a prediction

of rtACS induced visual recovery outcome in optic nerve damage patients. Each neuron

in the FFNN model is connected to the neurons in the previous layer. Sigmoid were used

as an activation function. The FFNN structure in this study is shown in Fig. 6.1.

Bidirectional long short-term memory (Bi-LSTM) is a recurrent neural network, that

can deal with long term dependencies by memorizing useful information from the inputs

and is capable of being trained information from backward and forward directions simulta-

neously, thus providing better predictive performance. As shown in Fig. 6.2, the Bi-LSTM

prediction model consisted of two directional LSTM layers with 68 neurons. The final out-

put is a neuron representing the probability of visual field recovery in patients with optic

nerve damage.

The neuron count was determined based on prior experience with deep learning models

for EEG signal feature extraction, as demonstrated in studies such as (Khan et al., 2022)

for recognizing human emotions through EEG spectrogram images and (Das et al., 2019)

for EEG-based person identification. An initial kernel count of 34 was chosen to construct

a 3-layer CNN.

6.4 Training and Evaluation Metrics

The input data was split into 70% training data and 30% test dataset with 3-fold cross-

validation for the training data. If the training performance does not improve significantly

as the training epoch increases, there is a risk of overfitting, which can lead to negative

performance on the test data. This risk is especially high when there are only a small

number of training samples and a large number of parameters to be learned. Therefore, a

number of regularization methods have been proposed to optimize training of the model,

such as dropout and batch regularization. The parameters of all neurons are used in the

prediction stage, while only the parameters of the retained neurons are updated in the

training stage using dropout. Here, I also applied dropout method with a 0.5 ratio to

randomly ignore neurons and connections to avoid overfitting the data.

An Adaptive moment estimation algorithm (Adam) optimizer, which is an extension

of the stochastic gradient descent algorithm, was used to train the model. The batch size

is 50, the learning rate is 0.001. The prediction performance of each model was evaluated

based on the error. This error was quantified using the mean squared error (MSE). MSE
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Figure 6.1: Structure of the proposed feedforward neural network. The input is 5 node centrality features
from 68 brain regions, and comprises 2 hidden layers consisting of 68 and 34 neurons, respectively, as well
as an output layer.

Figure 6.2: Structure of the proposed bidirectional LSTM. The input are FCN node centralities of size
68*5, 2 hidden Bi-LSTM layers consisting of 68 neurons, and an output layer.
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COH
IVA ARV

Bi-LSTM FFNN Bi-LSTM FFNN
Theta 0.018 0.013 0.015 0.009
Alpha 0.012 0.012 0.006 0.006

Low Alpha 0.011 0.012 0.007 0.007
High alpha 0.012 0.014 0.005 0.006

Beta 0.011 0.010 0.008 0.005

Table 6.1: Prediction errors (MSE) of the models for rtACS induced vision recovery prediction model
using COH data after 3-fold cross-validation.

PLV
IVA ARV

Bi-LSTM FFNN Bi-LSTM FFNN
Theta 0.019 0.015 0.018 0.013
Alpha 0.012 0.014 0.009 0.006

Low Alpha 0.013 0.015 0.010 0.008
High alpha 0.013 0.013 0.009 0.007

Beta 0.012 0.010 0.010 0.007

Table 6.2: Prediction errors (MSE) of the models for rtACS-induced vision recovery prediction model
using PLV after 3-fold cross-validation.

measures how close the predicted value is to the target true value, by calculating the

average of the squared di↵erences. The optimization algorithm continuously minimizes

the error (cost) by constantly updating the weights and biases in the model.

In order to explore the generalization ability of the model, a Leave One Subject Out

(LOSO) cross-validation method was employed in this study to ensure that the training

model is person-independent. In this approach, observations associated with a specific

subject from the entire dataset were dropped out in each iteration and used as the test

data for evaluating the model, while data from the remaining subjects were employed to

train the model. This process was repeated until every subject has been used for testing,

finally generating an average loss. These tasks were performed using the Python language

and the Keras library on the Google Colab platform.

6.5 Results

According to di↵erent stimulus detection rate, the visual field of patients were subdi-

vided into the intact visual area, the areas of residual vision and the blind areas. Visual

evoked potential EEG recordings were then collected during a visual discrimination task in

all these visual areas. By evaluating functional brain networks that were used extensively

in neuroscience to assess the interrelationships among brain regions, I extracted and as-

sessed node centralities from four di↵erent network structures, including PLV, COH, iPLV,

and iCOH, as training data for predicting the vision recovery after rtACS treatment.

The MSE of the rtACS-induced vision recovery prediction model after 3-fold cross-

validation were summarized in Table 6.1 and 6.2. The results showed that FFNN and

bidirectional LSTM models perform slightly di↵erently in various frequency bands, but

both showed the ability to predict the outcome of rtACS-induced visual recovery, especially

in the ARV. Specifically, the prediction performance using the ARV dataset outperforms

the IVA dataset in all frequency bands. In particular, in the low alpha frequency, the

prediction error of Bi-LSTM was 36% lower than that of IVA when using the ARV dataset,

while that of FFNN from ARV is 42% lower than that of IVA. Also in the high alpha band,
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the MSE of Bi-LSTM constructed using ARV data is more than half of the MSE of Bi-

LSTM constructed using IVA data (Fig. 6.3 and 6.4).

Figure 6.3: Performance of rtACS induced visual recovery prediction models constructed on bidirectional
LSTM after 3-fold cross-validation using high alpha-band COH data from ARV and IVA, respectively.

In addition, the predictions with node centralities of COH structure were comparable

to those with the PLV structure (Table 6.2). In contrast, no more valid information could

be learned for predicting visual field recovery using the iPLV and iCOH training data.

In order to assess the generalization performance of the model independently of individ-

ual subjects, the results of the 3-fold cross-validation were compared with those obtained

using Leave-One-Subject-Out (LOSO) cross-validation. The MSE results of the FFNN

and Bi-LSTM models after LOSO cross-validation were shown in Table 6.3 and 6.4.

The results indicated that both Bi-LSTM and FFNN models showed similar perfor-

mance in all frequency bands, whether constructed using COH or PLV obtained from

IVA or ARV. For example, the MSE of Bi-LSTM and FFNN models constructed using

the COH node centralities from ARV after LOSO cross-validation were 0.025 and 0.021,

respectively. The MSE in IVA has a small but very slight increase.

However, as illustrated in Fig. 6.5 and 6.6, there were outliers in predicting extreme

visual field improvement. ID 6 and ID 5 exhibited high loss values during the training of

the model, exceeding the distribution of loss values for most subjects. In fact, ID 6 showed

the greatest visual field improvement after receiving rtACS treatment, as evidenced by the

high-resolution perimetry test, which showed a wide distribution of gray residual visual

fields. On the other hand, the visual field of ID5 not only did not improve after treatment

with rtACS, but became worse. By observing the HRP of ID5, it was found that its initial

visual field status was extremely poor.
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COH
IVA ARV

Bi-LSTM FFNN Bi-LSTM FFNN
Theta 0.034 0.025 0.030 0.026
Alpha 0.026 0.026 0.023 0.022

Low Alpha 0.029 0.024 0.027 0.023
High alpha 0.027 0.027 0.025 0.021

Beta 0.030 0.027 0.024 0.028

Table 6.3: MSE of FFNN and Bi-LSTM models using COH data after LOSO cross-validation.

In general, both proposed Bi-LSTM and FFNN models exhibited the capability of

predicting rtACS-induced visual recovery, and this capability was validated in various fre-

quency bands and with distinct network construction methods (Fig. 6.7). Those that

demonstrated a higher MSE across multiple frequencies and various networks were con-

centrated in the two subjects with the greatest visual field recovery, which is ID 6 and ID

14, and the one with the smallest visual field change on ID 5.

Importantly, the consistency of the results obtained by LOSO cross-validation with

3-fold cross-validation highlights the strong generalization ability of our proposed model

across di↵erent subject populations.

6.6 Discussion

The present study aims to analyze EEG-based brain network node attributes data with

deep learning algorithms to predict the treatment outcome of vision restoration using non-

invasive brain stimulation, specifically rtACS.

Figure 6.4: The performance of the FFNN and Bi-LSTM models after 3-fold cross-validation using PLV
data from ARV in high alpha band.
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PLV
IVA ARV

Bi-LSTM FFNN Bi-LSTM FFNN
Theta 0.031 0.025 0.027 0.026
Alpha 0.027 0.025 0.022 0.020

Low Alpha 0.028 0.023 0.028 0.025
High alpha 0.027 0.025 0.023 0.023

Beta 0.028 0.027 0.025 0.028

Table 6.4: MSE of FFNN and Bi-LSTM models using PLV data after LOSO cross-validation.

Figure 6.5: Individual performance of Bi-LSTM training on high alpha COH data of ARV using Leave-
One-Subject-Out cross-validation.

I emphasize the concept of FCN as an important factor in understanding the neural

basis of visual recovery. Loss of vision due to optic nerve damage not only a↵ects the visual

field, but also alters the functional brain connections supporting cognitive processes. This

highlights the intricate relationship between vision and broader brain cognitive functions.
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Figure 6.6: Individual performance of FFNN after training on high alpha COH data of ARV using
Leave-One-Subject-Out cross-validation.

Visual function has been shown to be enhanced to some extent by noninvasive brain

stimulation. However, A challenge to vision restoration therapy is the wide variation in

outcomes between patients. This variation highlights the need for a more personalized

and precise approach.

The application of deep learning is an important step toward developing more accurate

predictive models for vision recovery. This study seeks to develop a valid predictive model

of vision recovery treatment outcomes by investigating the potential of noninvasive rtACS

in vision recovery, providing a new reference for personalized treatment plans in terms of

e�cacy prediction.

Through deep learning techniques with FFNN and Bi-LSTM, the models were trained

on node centralities of functional brain networks extracted from EEG. The extraction
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Figure 6.7: Boxplot of MSE for FFNN and Bi-LSTM models using COH data in high alpha after Leave-
One-Subject-Out cross-validation.

of node centralities, which represent the influence of specific brain regions on network

function, provides crucial features for the deep learning models. The study provided a

detailed comparison of the FFNN and Bi-LSTM models after 3-fold and leave-one-subject-

out cross-validation, and the results indicated that both the proposed FFNN and Bi-LSTM

models provided promising prediction performance in predicting the treatment outcome

of rtACS-induced vision restoration.

Furthermore, I employed Leave-One-Subject-Out cross-validation to rigorously assess

the generalizability of findings. Remarkably, the outcomes after LOSO demonstrated

consistency with the results obtained from the 3-fold cross-validation method. While the

model performance showed di↵erences in the 3-fold cross-validation results for various

frequency bands and network construction methods, such di↵erences no longer existed

after the LOSO cross-validation. Although the performance of the models in some cases

of individual extreme vision recovery conditions was out of the prediction distribution,

especially in cases where the initial visual field conditions were extremely poor or the

gray residual visual field was widely distributed, our models still showed great potential

in predicting rtACS-induced vision recovery. In addition, the robustness across di↵erent

cross-validation strategies reinforces the reliability and stability of our observed patterns,

further supporting the validity of our study’s findings in vision restoration.

Regarding limitations, if more data could be included in the training and a more

powerful machine learning analytics platform could be used, it would be possible to expand

the range of parameters optimized for the proposed model and potentially improve the

overall performance of the model.

Furthermore, regarding possible limitations of the proposed model, the requirement for

the input data was node centralities data of the functional brain network generated based

on EEG. It can be seen that the input data must have been subjected to a series of data
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processing including EEG preprocessing, source reconstruction as well as the configuration

of the functional brain network, and the calculation of node centralities. This may take

some time. Therefore, the emphasis of future work could be placed on developing machine

learning models that directly use EEG as input data and comparing the results with

the models proposed in this article that used feature-extracted input data to expand the

application of the models.

6.7 Conclusions

I presented the bidirectional LSTM or FFNN-based deep learning architecture for

predicting the outcome of vision restoration therapy using non-invasive brain stimulation.

The proposed architectures are simple and e�cient. The method absorbed node-centrality

relationships hidden in the functional brain networks, predicting vision recovery for post-

rtACS e↵ects with a small error. The results showed that the level of vision restoration can

be predicted using individual visual field topography and EEG markers at baseline. Future

work includes analyzing deeper layers or more architectures for a better understanding of

EEG patterns to predict vision recovery.

AI-based deep neural networks may provide useful information for future therapy out-

comes to patients before rtACS treatment starts. Since in this study, only a limited dataset

of subjects was trained for the models, if larger sample datasets could be used to validate

our findings, the proposed models could help clinicians and patients to have more realistic

expectations of treatment outcomes.

However, patients and clinicians should view these results as a statistical prediction, not

a ground truth. The final outcome of the treatment needs to be judged by a professional

physician in conjunction with additional data. In addition, considering the fact that

EEG requires high-quality data and complex pre-processing, it would take some time

in practical clinical applications. Future work should explore EEG directly and larger

datasets to further validate the performance of these prediction models.

In summary, my study is an important step forward in exploring the potential of deep

learning to predict the outcome of vision recovery treatments for patients with optic nerve

damage. By exploring the relationship between the properties of functional brain network

nodes and the e↵ects of rtACS, an understanding of the intricate neural mechanisms behind

vision recovery has been deepened. Deep learning techniques may o↵er new solutions to

overcome the variability and unpredictability of treatment outcomes and might provide

better patient care and management in ophthalmology and neurorehabilitation.
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7 Towards an Early Warning Model for Vision Loss Based

on Deep Learning

Traditional assessment of visual field damage relies on ocular imaging and perimetric

visual field tests. They work well to diagnose already-existing visual field loss, but they

are unable to predict vision loss in slowly developing visual impairments such as glaucoma.

In other words, the current state of the visual field test cannot predict future vision loss

before it actually happens. However, in recent years, the development of deep learning

techniques has made impressive advances in the fields of medical image processing and

brain science, providing new opportunities for early warning systems.

With the study described in the present chapter, I explored electroencephalography

(EEG)-based functional brain networks with deep learning modeling aimed at automati-

cally detecting early signs of visual field damage. The fundamental idea was to study brain

physiological changes as a new biomarker of visual field impairment. Though my aim was

not to test normal subjects and wait to see if they later experience vision problem. Rather,

I studied to what extent EEG biomarkers based on deep learning can be correlated with

the extent of visual field loss and if abnormalities can be found even in sectors of the visual

field considered to be “normal”.

7.1 Introduction

Visual field impairment is a critical problem that a↵ects the visual health for millions

of people, including glaucoma, hemianopsia, macular degeneration, optic neuritis, as well

as a variety of retinal and other ocular diseases that can cause visual field impairment.

The assessment of visual field impairment is usually accomplished by visual field testing.

Visual field test results are typically displayed as visual detection sensitivity producing

charts based on the mean deviation from normal sensory (visual) sensitivity. However, as

I we have previously demonstrated, even visual fields regions identified to be normal in

visual field assessment showed remarkable di↵erences from normal brain network responses

during visual processing, especially during dynamic functional network reorganization (Wu

and Sabel, 2021). This suggests that it might be possible to predict visual field damage

even before deficits become apparent in visual field testing of other means used by clinical

ophthalmologists.

This “hidden” visual field impairment is not accompanied by obvious symptoms in the

early stages. To prevent vision loss as early as possible, the development of early warning

systems based on ”intact” visual field testing is needed for the early detection of visual

field damage and prompt intervention.

In recent years, significant advances in deep learning techniques in medical image

processing and brain science have provided new opportunities to identify key features

from functional brain networks and to establish early warning systems. In my present

study, EEG-based functional brain networks were investigated by deep learning modeling

in order to detect brain physiological abnormalities in “intact” regions of patients that

have known visual field damage.

Being a safe and non-invasive technique that can record real-time brain activity, EEG

has a very high temporal resolution and can be used to capture subtle information transfer
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between di↵erent brain regions. By analyzing the EEG associated with neurological dys-

function, some progress has also been made in developing detection models for di↵erent

disorders such as seizure detection (Nhu et al., 2022; O’Shea et al., 2021), depression (Ay

et al., 2019), schizophrenia (Barros et al., 2021), Autism Disorder (Ardakani et al., 2022)

and Mild cognitive impairment (Huggins et al., 2021; Kim et al., 2023).

In this chapter, I investigated deep learning-based early warning models that hope

to identify potential visual field damage in the ”intact” visual field by analyzing EEG

data from normal subjects and patients with optic nerve damage. Specifically, I analyzed

the architecture and implementation of deep learning models, as well as the methods for

evaluating EEG datasets, with the hope of developing a tool for the early detection of

visual impairment that would allow for intervention in the very early stages to minimize

visual field damage and improve the patient’s quality of life.

7.2 Dataset Preparation

I analysed the EEG of 20 patients with optic nerve damage and 15 healthy controls

during visual processing in areas diagnosed as intact vision by visual field (perimetry)

assessment (Table A.1).

For all of the patients, visual field assessment was initially conducted using high-

resolution perimetry (HRP), a computer-based method. During the test, subjects were

instructed to press the space bar upon perceiving light stimuli presented on a computer

screen or when the color of the fixation point changed. Depending on the subjects’ re-

sponses, the visual field was categorized into three distinct areas: intact visual area where

all stimuli were consistently detected at the same location, the area representing absolute

impairment in which all stimuli were missed (described as black), and the area in which

only some stimuli were missed (referred to as the “grey area” as shown in Fig. 2.1). The

latter are partially impaired areas, denoted as ”areas of residual vision”.

To collect visual evoked potentials (VEPs), EEG recordings were analysed as a function

of distinct visual field positions the respective stimulus was presented in each patient. Per

patient eight di↵erent positions were selected based on the visual field diagnosis results.

One position was located within the intact area, while another was always within the

completely impaired area. The remaining six positions were chosen from areas where the

HRP detection accuracy ranged from 33% to 66%. VEP stimuli consisted of circles (1°
diameter) or squares (1x1°) presented at distinct vision areas based on HRP results for

400ms, with 180 trials per location per subject. Visual evoked potentials (VEPs) were then

recorded with EEG amplifiers using 32 sintered Ag/AgCl electrodes placed according to

the 10-10 system, referenced to the nose-tip with a ground electrode at Fz and Cz.

Afterwards, the EEG data were pre-processed, and Independent Component Analysis

(ICA) was applied to remove the epochs with artifacts and noisy channels. To derive source

neuronal activities from EEG recordings, the head forward model was constructed using

the boundary element method (BEM) (Hallez et al., 2007). And the reverse model was

constructed using the weighted minimum-norm estimation (WMNE) method (Iwaki and

Ueno, 1998). The recorded EEG signals were then transformed from the sensor electrodes

to the brain cortex. The Desikan–Killiany atlas (Desikan et al., 2006) was utilized to

delineate 68 regions of interest (ROIs), 34 for each hemisphere afterwards. For each ROI,
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the average of the voxel time series was calculated to represent that specific area of interest.

After obtaining source neuronal activities, I transformed the EEG signals recorded by the

sensor electrodes into the brain cortex. I utilized the Desikan–Killiany atlas (Desikan

et al., 2006) to delineate 68 regions of interest (ROIs), with 34 in each hemisphere. For

each ROI, I computed the mean of the voxel time series to represent that particular region

of interest.

The Hilbert transform was then applied to estimate the discrete-time analytic signals

in five frequency bands, including theta, alpha, low alpha, high alpha, and beta (Le et al.,

2001). This study assessed coherence and phase synchronization between two or more

brain regions, which were two general mathematical methods for quantifying the frequency

and phase correlation of measured brain activity. Specifically, four network construction

metrics were assessed as the input dataset for deep learning, namely the phase locking

value (PLV), coherence (COH), the imaginary part of the phase locking value (iPLV), and

the imaginary part of coherence (iCOH).

7.3 Deep Learning Algorithms and Models

Taking into account the insidious nature of early ”normal” visual field impairment and

its relevance to the progression of visual impairment, the early warning for visual field

impairment becomes an essential issue for visually impaired patients. Considering the

spatial relevance of brain regions, this work implemented a convolutional neural network,

which can be e↵ective in the spatial dimension. The data used for the analysis were brain

functional connectivity network (FCN) data during visual processing. The label assessed

was the accuracy with which the algorithm correctly classified functional brain networks

into two categories: patients with hidden visual field impairments and healthy subjects.

Convolutional Neural Network (CNN) is a representative feed-forward neural network

for deep learning with convolutional computation. CNN usually consists of an input

layer, convolutional layer, pooling layer, fully connected layer, and an output layer. The

convolution layer of CNN learns characteristics through scanning filters to extract features,

following which the dimension is reduced through a pooling layer, and finally using a fully

connected layer to accomplish the classification task. In my present analysis, functional

network responses in the intact visual field in visual processing were identified as the

input data from 4,620 trials of 20 patients with optic nerve damage and 15 controls, size

of 68 ⇤ 68, to classify controls and patients.

In my analysis, the algorithm decomposed the brain networks into channelized images

that have a size of 68⇤68⇤1, and applied the resulting matrices to the inputs of the CNN.

The input data was considered an image for extracting information about the relationships

between neighboring nodes of the brain network. All data were then passed through a

series of kernel convolutional filters with a size of 5 ⇤ 5 that scanned across the training

dataset, followed by dropout batch normalization and max pooling layers. Based on the

experience gained in employing CNN models for EEG signal feature extraction, including

tasks such as recognizing human emotions through EEG spectrogram images Khan et al.

(2022) and EEG-based person identification Das et al. (2019), an initial kernel count of

34 was selected to build a 3-layer CNN. The quantity of kernels was doubled following

each max-pooling layer. Thereafter, a flattening layer was applied to convert the training

data into one-dimensional data for the fully connected layer with no trainable parameters.
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Figure 7.1: Schematic of the structure of the CNN model used in the study. Brain functional network
parameters were used as input data.

The subsequent 3 fully connected (FC) layers were added in the end to build the visual

field damage early warning model, where the last layer is the prediction layer with 2

output values. Rectified Linear Unit (ReLU) activation function was applied following

each convolutional layer, with the exception of the final layers, where sigmoid activation

was utilized to scale the output within the range of zero to one. Fig. 7.1 presents the

CNN modal structure implemented in my research.

I further evaluate the proposed CNN model by comparing it to a FFNN, in which each

neuron is connected with neurons in the preceding layer. The FFNN was composed of an

input layer, two hidden layers containing 68 and 34 neurons, and an output layer. The

output is the classification of patients with optic nerve damage and controls. Likewise, a

ReLU activation function was used after each fully connected layer, but a sigmoid activa-

tion function was applied to the last layer to scale the output over a range from 0 to 1.

The architecture is illustrated in Fig. 7.2.

By studying the dynamic responses of functional brain networks to visual stimuli during

visual cognition in “intact” vision area, I tested two types of neural architectures and

developed a discriminative system that can categorize patients with optic nerve damage

from healthy controls, thus modeling the early warning of visual field impairment.

7.4 Training and Evaluation Metrics

The selection of parameters also matters during the training of the network architec-

ture. The input data of 4,620 trials was partitioned, with 70% allocated to the training

dataset and the remaining 30% reserved for the test dataset, which accounts for the 1386

trials used for testing, utilizing a 3-fold cross-validation strategy.

The model was trained using the Adam optimizer, known for its robustness and ability
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Figure 7.2: Schematic of the structure of the FFNN model using functional brain networks as input
data.

to rapidly reduce training costs. It employed a batch size of 50, ran for 100 training

epochs, utilized a learning rate of 0.001, and incorporated a momentum term of 0.99. The

early stopping was used to stop training when there was no improvement after 10 epochs.

Furthermore, to prevent overfitting, a dropout technique with a rate of 0.5 was applied.

It randomly excludes neurons and connections during training. Binary cross-entropy was

employed as the loss function. Accuracy and loss were used as evaluation metrics in order

to assess the performance of proposed classification model.

To further assess the model’s generalization capability, this study adopted a Leave-One-

Subject-Out (LOSO) cross-validation method to guarantee a person-independent training

model. In this strategy, data corresponding to a specific subject was systematically kept

aside from the overall dataset during each iteration and utilized as the test set for model

evaluation. The remaining subjects’ data were used for model training. This iterative

process continued until every subject had been tested, culminating in an average accuracy.

The python language on the Google Colab platform and the Keras library were employed

to execute these tasks.

7.5 Results

The performance of two models, CNN and FFNN, was firstly compared under 3-Fold

cross-validation by training the brain network states of the ”intact” visual field during

visual processing in normal subjects and patients, as shown in Table 7.1. Fig. 7.3 and

7.4 display the performance of CNN and FFNN models in terms of classification accuracy,

loss and confusion matrix in beta band using COH and PLV network data, respectively.

The findings demonstrate that among the models constructed from PLV and COH

networks, FFNN performs slightly better than CNN in certain frequency bands. Especially
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Figure 7.3: Performance of CNN and FFNN models in beta band using COH networks data after 3-
Fold cross validation. The prediction results as the confusion matrix revealed the average classification
confounding after 3-fold cross-validation. The diagonal line indicates the number of correctly classified
samples. The shade of color represents the number of correct or incorrect classifications. The higher the
number of correct classifications, the darker the color. In this context, ’0’ denotes ’patient’, while ’1’
signifies ’control’.
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Figure 7.4: The performance comparison of CNN with FFNN model in beta band when using PLV net-
work data to classify control and patient brain responses in intact vision area after 3-fold cross-validation.
The confusion matrix-derived prediction results reflected the average classification accuracy following 3-
fold cross-validation. Here, ’0’ denotes ’patient’, while ’1’ signifies ’control’.

Accuracy
FFNN CNN

COH PLV COH PLV
Theta 0.876 0.842 0.682 0.564
Alpha 0.944 0.929 0.940 0.779

Low Alpha 0.803 0.910 0.862 0.691
High alpha 0.941 0.804 0.787 0.669

Beta 0.991 0.978 0.985 0.979

Table 7.1: Comparison of classification accuracy results across frequency bands using CNN and FFNN
to build deep learning models after 3-fold cross-validation.

in the high alpha frequency band, the FFNN model built using the data from COH and

PLV networks outperforms CNN by 15.4% and 13.5%, respectively.

In addition, in the model constructed using PLV, the FFNN exhibits even higher accu-

racy in almost each frequency band compared to CNN. Specifically, the FFNN constructed

with PLV has a decoding accuracy of 92.9% at alpha frequency. This is closely followed

by the low alpha frequency FFNN with 91.0% accuracy, and the theta FFNN with 84.2%

decoding accuracy. The CNN models constructed based on PLV showed poor classification

performance except for the use of beta data (Table 7.1). However, as shown in Figures

7.3 and 7.4, in the beta band, the accuracy of both CNN and FFNN were higher than

97%, and there was not much di↵erences between the accuracy of these two models. In

contrast, there was no more valid information learned for predicting visual field recovery

using the iPLV and iCOH training data.

To ascertain the model’s independence from individual subjects and assess its gen-

eralization performance, I conducted a comparative analysis between the results of 3-
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Figure 7.5: Performance comparison of the CNN and FFNN models using Leave-One-Subject-Out cross-
validation in the beta frequency band. The prediction accuracies of the models were shown schematically
for the four subjects.

Figure 7.6: Boxplot of accuracy for FFNN and CNN models after LOSO cross-validation in the beta
band.
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fold cross-validation and Leave-One-Subject-Out (LOSO) cross-validation. Focusing on

the beta frequency band, which exhibited superior model performance after 3-fold cross-

validation, I validated the CNN and FFNN models using a dataset comprising network

response data from both healthy individuals and patients with optic nerve damage during

visual processing. The results revealed that despite training on the beta-band network

data, which performs optimally in the 3-fold cross-validation results, neither the CNN

model nor the FFNN model was e↵ective in LOSO cross-validation. As shown in Fig. 7.5,

the accuracy curves learned by the FFNN and CNN models were significantly di↵erent

from the results obtained from the 3-fold cross-validation, both of which indicated that

the models were not generalizable to individual subjects. The accuracy distribution after

LOSO indicated the similar result (Fig. 7.6). Neither model exhibited robust general-

ization to unseen subjects, indicating potential overfitting issues. The constrained ability

to generalize suggests that the models may overpredict the training subjects, leading to

a lack of adaptability when faced with new and diverse subjects. The observed subject

dependencies underscore the risk of overfitting, as the models seem overly specialized and

less capable of handling variations beyond the training set.

To further evaluate the generalization capabilities of the models, I employed smaller

frameworks designed to extract meaningful and realistic features while reducing the risk of

overfitting. The goal was to simplify the models, reducing complexity and ensuring a more

focused extraction of relevant features and characteristics without overfitting issues. Vari-

ous configurations were tested, including a single-layer FFNN with 8, 16, and 32 neurons,

a two-layer CNN with neuron counts of 8, 16, and 16, 32 in their respective layers, and a

one-layer CNN with neuron counts of 8 and 34. Despite these variations, the average clas-

sification accuracy after LOSO cross-validation remained below 50%. Additionally, e↵orts

were made to optimize hyperparameters using Optuna, including tuning the number of

layers and neurons per layer for FFNN and CNN models, respectively. However, even with

the newly obtained best models of FFNN and CNN, the highest achieved accuracy after

LOSO validation was only 52.8%. In addition, other experiments were conducted using

node centralities as input data to further test the generalization ability of the proposed

models. However, the experimental results were similar to those using networks as input

data.

In summary, despite exploring various model configurations and conducting hyper-

parameter optimization, the models, including both FFNN and CNN, exhibited limited

generalization ability, with an average accuracy below 50% after LOSO cross-validation.

7.6 Discussion

In this study, I explored the potential of deep learning models to serve as an early

warning system to detect visual field impairment by analyzing EEG-based functional brain

networks.

My study compared the performance of CNN and FFNN in classifying functional

brain network data derived from EEG recordings during visual processing in intact vision

areas. As I showed, FFNN outperformed CNN in most frequency bands after 3-fold cross-

validation, particularly for PLV and COH networks. In addition, variations in performance

across di↵erent frequency bands were observed. Specifically, in the theta and high alpha

bands, FFNN models consistently demonstrated superior accuracy compared to CNN.
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However, both FFNN and CNN achieved high accuracies over 97.0% in the beta frequency

band. These variations in performance highlight the importance of considering the specific

frequency characteristics of EEG data when developing early warning models for visual

field impairment.

However, a comparative analysis between 3-fold cross-validation and Leave-One-Subject-

Out cross-validation, especially for the beta band, revealed di↵erent findings in terms of

validating the independence of the models from individual subjects and assessing their gen-

eralization performances. Using network response data from both healthy individuals and

patients with optic nerve damage during visual processing, I conducted model validations

for both the CNN and FFNN. The results demonstrated that neither the FFNN nor the

CNN models were e↵ective in predicting accuracy during LOSO cross-validation. The pre-

diction accuracies of both CNN and FFNN models were a↵ected by individual di↵erences

in subjects. Importantly, in the model validation of individual subjects, both models were

shown to deviate significantly from the accuracy obtained through 3-fold cross-validation.

This inconsistency shown in di↵erent cross-validation techniques suggests that our pro-

posed models may have a strong subject dependency without generalization ability. This

may be strongly related to the limited number of trials for individual subjects as well as

the severe individual variations in the original visual condition among subjects as well.

Despite experimenting with diverse model configurations and optimizing hyperparame-

ters, both FFNN and CNN models demonstrated constrained generalization, reflected in

an average accuracy below 50% during LOSO cross-validation.

There are some limitations to this study. Limitations regarding the fact that the

training data in this study is relatively small. Further studies with larger and more

diverse samples to the training and more powerful machine learning analytics platforms

are necessary to expand the range of optimization parameters of the proposed model

to validate the overall performance of the model as far as possible. In addition, ways

to generalize the findings to a wider population and di↵erent clinical settings should be

explored. Finally, another limitation was that our visual field test (HRP) was an easier

task than the perimetric tests which were conducted in clinical ophthalmology. Therefore,

visual field regions that are presumably “intact” cannot be certain, in fact, damage when

using a more di�cult perimetric test where the stimuli are smaller or less bright, i.e., closer

to the perceptual threshold.

In terms of the limitations of the proposed model, neither the FFNN nor the CNN

models demonstrated generalization capabilities. Therefore, other machine learning mod-

els that would be more suitable for brain network characterization, such as graph neural

networks, should also be explored in the future.

Other aspects that could be considered for future work include the following: exploring

models with higher generalization capabilities and integrating other datasets to apply the

model to di↵erent ophthalmic diseases, not just optic nerve damage; and directly extracting

EEG data features for modeling. Future studies could also explore the integration of

EEG-based early warning models with other diagnostic techniques (e.g., ocular imaging)

to improve the accuracy and reliability of visual field impairment diagnosis.
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7.7 Conclusion

In conclusion, this study is an important step in the development of a visual field

impairment early warning model using deep learning techniques and EEG-based functional

brain networks. Although the proposed CNN and FFNN models in both did not show

classification performance and accuracy with generalization ability. However, considering

the small sample size and the large inter-individual variation in visual impairment, the

model after the inclusion of covariates may hold promise for early warning of visual field

impairment.

Early detection and intervention are essential to protect visual health and improve

patients’ quality of life. However, further exploration in the field of visual processing

research is also needed to improve the generalization capabilities of these models, to make

them be promising tools for further exploration in the field of visual processing research,

and to improve their potential applicability to assessing and understanding the neural

responses of patients with optic nerve injuries in a clinical setting.

While this study provides promising insights, further research on larger data sets and

clinical validation is needed to determine the applicability of these models in the real

world of clinical neuro-ophthalmology. The development of accurate and reliable early

warning systems for visual field impairment has the potential to have a significant impact

on patient care and visual health management.
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8 Summary and Outlook

The thesis explored the role of brain network plasticity in vision loss and recovery of

vision. It describes changes and adjustments (recovery) of visually evoked brain networks

in patients with optic nerve damage and control subjects, relating visual performance to

global network reorganization, properties of local central hubs and nodes, and the com-

plex dynamic intra- and inter-module interactions. Specifically, I described the dynamic

responses of brain networks to visual stimulation and neuromodulation after non-invasive

brain stimulation. Subsequently, I investigated and tested a prediction model for rtACS-

induced visual recovery and an early warning model for visual field damage using deep

learning tools to characterize the complex dynamic brain network features under di↵erent

function conditions: normal vision vs. abnormal vision and vision recovery vs. no recovery.

In a nutshell, I used the EEG to described, developed and validated brain physiological

network features as a new biomarker of low vision.

8.1 Network Science in Understanding Spacetime of the Brain

The exploration of the brain’s functional connectivity networks and their rapid dy-

namics in response to visual stimuli has revealed the complexity of neural processing and

cognitive function, especially in the context of optic nerve damage. This study introduces

the concept of FCN plasticity at the millisecond scale, providing a framework for under-

standing how fast and accurate di↵erent brain regions interact during conditions of normal

and abnormal vision, and their role in vision restoration.

I used high-temporal-resolution EEG recordings to investigate how FCN respond to

visual stimuli in IVA and ARV in patients with optic nerve damage in Chapter 3. The

findings reveal significant di↵erences in FCN dynamics between healthy controls and pa-

tients. Notably, patients exhibit higher clustering coe�cients, longer characteristic path

lengths, and weaker small-world organization in the theta band, indicating that neural

processing during visual performance is less e�cient in patients. This confirms early stud-

ies by the Sabel group (Bola and Sabel, 2015), but it extends their results in terms of

hubs connections and modularity by considering the domain of TIME at the msec-scale.

Thus, my studies combined information of brain regions (3D-brain-SPACE) with that of

the TIME domain, which we termed “Spacetime of the Brain”.

Specifically, regarding areas of partial vision loss (“areas of residual vision”), I delve

into how patients with optic nerve damage react to stimuli and how this relates to weighted

brain network topology characteristics. The analysis shows that when patients respond

correctly to visual stimuli (hits), the FCN exhibits larger global strength, higher clustering

and longer path lengths. Furthermore, the study compares FCN reorganization between

intact visual field and areas of residual vision in patients. I found that IVA had stronger

global strength, greater clustering coe�cient, longer characteristic path length, and higher

small-worldness compared to ARV.

These findings suggest that network dynamics play a vital role in the cognitive process-

ing of visual information in patients with optic nerve damage, emphasizing the importance

of studying FCN in various parts of the visual field. In addition, when compared to nor-

mal subjects, patients with optic nerve damage showed stronger global strength, higher
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clustering aggregation and used longer path lengths to complete visual processing.

In addition, in control subjects with normal vision, I identified 20 key FCN hubs dis-

tributed across di↵erent brain networks as described in Chapter 4. These hubs played

crucial roles in the processing of visual information and exhibited dynamic interactions

during di↵erent phases of visual processing. In patients with optic nerve damage, disrup-

tions were observed in both hub and non-hub regions, highlighting the impact of vision

impairment on FCN dynamics.

Furthermore, the dynamics of brain network modularity were explored in Chapter 5.

I confirmed the presence of a modular organization in visual processing, revealing four

distinct functional modules: motor, attention, visual, and other. These modules played

a crucial role in the coordination of brain functions during visual processing. I found

that optic nerve damage patients displayed di↵erences in module interactions compared

to healthy controls, suggesting that the brain adapted to the damage by engaging other

modules more extensively.

In summary, my research underscores the significance of FCN in understanding brain

function, especially in the context of optic nerve damage and visual impairment. It pro-

vides valuable insights into the dynamic nature of neural processing. Clearly, understand-

ing the intricate interaction of FCN in di↵erent brain regions holds promise for improving

the cognitive and visual functions of patients with optic nerve damage, ultimately enhanc-

ing their quality of life.

8.2 Non-invasive Brain Stimulation for Vision Restoration

In the context of neuromodulation using rtACS, the study demonstrates that rtACS

can normalize FCN dynamics and enhance the balance between integration and segregation

of global rFCN. This confirms and extends earlier studies by Bola et al (Bola et al., 2015).

I extended their findings showing that application of rtACS neuromodulation also shows

promise in inducing positive changes in patients’ local properties of FCN. Specific hubs and

non-hub regions exhibited altered connectivity patterns after treatment, suggesting that

the more detailed hub-structure is relevant to understand the neurophysiological basis of

vision recovery. I also found correlations between FCN attributes and visual performance,

indicating that enhanced network synchronization is associated with improved vision. In

addition, visual improvements were stable for at least 2-months. This suggests a potential

avenue for therapeutic interventions to improve FCN function in patients with optic nerve

damage.

Using also a dynamic modular analysis approach, I found that rtACS treatment in-

duced changes in the multilayer community structure, promoting a more optimized and

stable modular organization. In patients who received rtACS, global modularity increased

and the flexibility of the multilayer network decreased. This is a sign that rtACS leads to

a more stable community structure and greater specialization of neurons within modules.

These findings have important implications for understanding the functional reorgani-

zation of brain networks in response to local damage and the potential of neuromodula-

tion techniques like rtACS. The modulation of intra- and inter-module interactions plays

a crucial role in visual performance and other cognitive functions. My research provides

valuable insights into the underlying neural mechanisms and o↵ers promising prospects
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for the development of therapeutic interventions in various brain disorders.

8.3 Deep Learning Models for Vision Restoration and Early Warning

I also explored the potential of deep learning to solve problems in practical ophthal-

mology and neurorehabilitation using data from dynamic brain network responses. I built

a model for predicting treatment outcomes for vision recovery in patients with optic nerve

damage in Chapter 6, and in Chapter 7, I explored the possibilities of an early warning

system for visual field impairment.

To address the unpredictability and varying e�cacy of non-invasive brain stimulation

therapy, particularly rtACS in patients with optic nerve damage, I built two deep learning

models, including FFNN and Bi-LSTM. They proved useful to analyze the node central-

ities of functional brain networks based on patients’ EEG data during visual tasks to

predict vision recovery outcomes after rtACS. My analyses demonstrate the potential of

deep learning models to predict visual field recovery, with the FFNN exhibiting superior

performance over the Bi-LSTM in various frequency bands.

The traditional diagnostic methods for visual field impairment rely on eye imaging and

visual field testing. However, they may fail to detect early signs of visual field damage, i.e.,

long before the visual (functional) loss is apparent. Here, deep learning models based on

EEG recordings may be useful. By applying CNNs and FFNNs to EEG-based functional

brain networks, I investigated the possibility of using these proposed models to detect in-

dicators of visual field impairment in ”intact” visual fields. However, the results indicated

that neither the FFNN nor the CNN models exhibited subject-independent generalization

capabilities in the classification of brain functional network data from patients and con-

trols, which remains to be further explored considering the potential of early diagnostic

models for early, pre-symptomatic diagnosis and intervention in visual health.

8.4 Outlook

My study provides a deep insight into the dynamic changes that occur in the brain’s

FCN during visual processing, and how these networks adapt to vision loss and vision

restoration. The research raises several important points and avenues for future investi-

gation:

Applications Beyond Visual Processing: This study represents a significant step

in unraveling the complexity of brain network and its response to local damage and neu-

romodulation. While my work focused on visual processing and optic nerve damage, the

principles of FCN dynamics and neuromodulation could apply to various cognitive func-

tions, neurological and psychiatric conditions. Further research can explore how these

findings translate to other brain disorders and functional modalities.

Network Plasticity and Neuromodulation: Future research can further explore

the mechanisms of neuromodulation and develop targeted interventions to optimize FCN

dynamics in patients with visual impairments. In addition, understanding the plasticity

of FCN and their ability to adapt to di↵erent cognitive processes and sensory inputs could

have broader implications for various brain-related conditions, not just vision impairment.

Further studies can delve into the optimization of neuromodulation techniques for vision
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restoration and potentially other neurological conditions.

Closed-Loop Adaptive Brain Stimulation: Recent advances in the simultaneous

collection of EEG during rtACS open up new possibilities for closed-loop adaptive brain

stimulation protocols. This approach allows real-time monitoring of brain oscillations and

the modulation of stimulation parameters to target specific brain networks and functions

more e↵ectively.

Clinical Implications and Individualized Treatment: As I showed, FCN metrics

can serve as potential biomarkers for assessing and monitoring the e↵ects of vision restora-

tion interventions. Future research can delve into the development of clinical applications

for such metrics for patients with vision damage and neurological disorders. In addition,

understanding the relationship between FCN and cognitive performance suggests the po-

tential for individualized treatment approaches. Tailoring neuromodulation techniques to

an individual’s specific network architecture could optimize therapeutic outcomes.

Optimization of Deep Learning Models: Further validation with larger and more

diverse samples is essential to ensure the generalizability of the models. And the integra-

tion of these EEG-based deep learning models with other diagnostic techniques, such as

ocular imaging, represents a promising avenue for improving accuracy and reliability in

visual field impairment diagnosis and vision recovery prediction. Furthermore, the explo-

ration of more sophisticated machine learning models could yield even more robust results

when correlating brain network features with normal human behavior or neuropsychiatric

dysfunctions.

In conclusion, the research presented in this study provides a solid foundation for un-

derstanding the dynamic nature of FCN on the millisecond scale, its role in cognitive

functions, and the potential for neuromodulation to enhance brain plasticity and adap-

tation. Further investigations using “Spacetime of the Brain” hold promise not only for

vision restoration but also for gaining deeper insights into the functioning of the human

brain in health and disease. As research in this field continues to evolve, the Concept of

Spacetime in the Brain promises to inspire and enrich the development of innovative diag-

nostics and interventions for a wide range of neuro-ophthalmological and neuropsychiatric

conditions.
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T. Merk, V. Peterson, R. Köhler, S. Haufe, R. M. Richardson, and W.-J. Neumann.

Machine learning based brain signal decoding for intelligent adaptive deep brain stim-

ulation. Experimental Neurology, 351:113993, 2022.

R. Messina, M. Rocca, S. B. Marzoli, M. Petrolini, I. Milesi, F. Darvizeh, F. Bandello,

G. Comi, A. Falini, and M. Filippi. Regional patterns of brain gray and white matter

abnormalities in patients with hereditary optic neuropathies: Dominant optic atrophy

vs leber hereditary optic neuropathy (s48. 006), 2016.

106



REFERENCES

C. K. Milton, V. Dhanaraj, I. M. Young, H. M. Taylor, P. J. Nicholas, R. G. Briggs,

M. Y. Bai, R. D. Fonseka, J. Hormovas, Y.-H. Lin, O. Tanglay, A. K. Conner, C. A.

Glenn, C. Teo, S. Doyen, and M. E. Sughrue. Parcellation-based anatomic model of the

semantic network. Brain and Behavior, 11(4):e02065, 2021.

M. Mishkin and L. G. Ungerleider. Contribution of striate inputs to the visuospatial

functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research, 6(1):

57–77, 1982.

F. Moeller, M. Maneshi, F. Pittau, T. Gholipour, P. Bellec, F. Dubeau, C. Grova, and

J. Gotman. Functional connectivity in patients with idiopathic generalized epilepsy.

Epilepsia, 52(3):515–522, 2011.

J. Moll, R. Zahn, R. de Oliveira-Souza, F. Krueger, and J. Grafman. The neural basis of

human moral cognition. Nature Reviews Neuroscience, 6(10):799–809, 2005.

C. Monakow. Die lokalisation im grosshirn und der abbau der funktion durch kortikale

herde. 1914.

S. Monteith, T. Glenn, J. Geddes, P. C. Whybrow, E. Achtyes, and M. Bauer. Expectations

for artificial intelligence (ai) in psychiatry. Current Psychiatry Reports, 24(11):709–721,

2022.

E. A. Mosilhy, E. E. Alshial, M. M. Eltaras, M. M. A. Rahman, H. I. Helmy, A. H.

Elazoul, O. Hamdy, and H. S. Mohammed. Non-invasive transcranial brain modulation

for neurological disorders treatment: A narrative review. Life Sciences, 307:120869,

2022.

P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. P. Onnela. Community

structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980):

876–878, 2010.

T. Mussigmann, B. Bardel, and J.-P. Lefaucheur. Resting-state electroencephalography

(eeg) biomarkers of chronic neuropathic pain. a systematic review. NeuroImage, 258:

119351, 2022.

N. Nasrullah, J. Sang, M. S. Alam, M. Mateen, B. Cai, and H. Hu. Automated lung nod-

ule detection and classification using deep learning combined with multiple strategies.

Sensors (Basel, Switzerland), 19(17):3722, 2019.

T. Neuling, S. Rach, and C. S. Herrmann. Orchestrating neuronal networks: Sustained

after-e↵ects of transcranial alternating current stimulation depend upon brain states.

Frontiers in Human Neuroscience, 7:161, 2013.

M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):

167–256, 2003.

M. E. J. Newman. Communities, modules and large-scale structure in networks. Nature

Physics, 8(1):25–31, 2012.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in net-

works. Physical Review E, 69(2):026113, 2004.

107



REFERENCES

D. Nhu, M. Janmohamed, A. Antonic-Baker, P. Perucca, T. J. O’Brien, A. K. Gilligan,

P. Kwan, C. W. Tan, and L. Kuhlmann. Deep learning for automated epileptiform

discharge detection from scalp eeg: A systematic review. Journal of Neural Engineering,

19(5), 2022.

F. Niess, L. Hingerl, B. Strasser, P. Bednarik, D. Goranovic, E. Niess, G. Hangel,
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A Appendix

Subject ID Group Gender Age Treatment Group
Percentage of improved vision

after real rtACS
1 Patient M 53 Placebo 0.029
2 Patient M 55 Placebo 0.071
3 Patient M 60 Placebo 0.082
4 Patient F 74 Placebo /
5 Patient M 20 Placebo -0.112
6 Patient M 58 Placebo 0.505
7 Patient F 24 Placebo -0.066
8 Patient F 47 Placebo /
9 Patient M 66 Placebo 0.018
10 Patient M 47 rtACS 0.012
11 Patient M 33 rtACS -0.052
12 Patient M 61 rtACS 0.128
13 Patient F 65 rtACS 0.065
14 Patient F 49 rtACS 0.299
15 Patient M 67 rtACS 0.165
16 Patient M 68 rtACS 0.08
17 Patient F 44 rtACS 0.067
18 Patient F 62 rtACS 0.001
19 Patient F 41 rtACS 0.014
20 Patient M 62 Placebo 0.199
21 Control F 25 / /
22 Control F 19 / /
23 Control F 42 / /
24 Control M 20 / /
25 Control M 47 / /
26 Control F 74 / /
27 Control M 25 / /
28 Control M 51 / /
29 Control M 66 / /
30 Control M 58 / /
31 Control F 28 / /
32 Control F 55 / /
33 Control M 38 / /
34 Control M 50 / /
35 Control F 44 / /

Table A.1: Basic information of 20 patients with optic nerve damage and 15 controls.
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