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Abstract
Comparative extinction risk analysis—which predicts species extinction risk from 
correlation with traits or geographical characteristics—has gained research attention 
as	 a	 promising	 tool	 to	 support	 extinction	 risk	 assessment	 in	 the	 IUCN	Red	 List	 of	
Threatened Species. However, its uptake has been very limited so far, possibly because 
existing models only predict a species' Red List category, without indicating which 
Red List criteria may be triggered. This prevents such approaches to be integrated 
into Red List assessments. We overcome this implementation gap by developing mod-
els that predict the probability of species meeting individual Red List criteria. Using 
data	on	the	world's	birds,	we	evaluated	the	predictive	performance	of	our	criterion-	
specific	models	and	compared	it	with	the	typical	criterion-	blind	modelling	approach.	
We compiled data on biological traits (e.g. range size, clutch size) and external drivers 
(e.g. change in canopy cover) often associated with extinction risk. For each specific 
criterion, we modelled the relationship between extinction risk predictors and spe-
cies' Red List category under that criterion using ordinal regression models. We found 
criterion-	specific	models	were	better	at	identifying	threatened	species	compared	to	
a	 criterion-	blind	model	 (higher	 sensitivity),	 but	 less	 good	 at	 identifying	 not	 threat-
ened	species	(lower	specificity).	As	expected,	different	covariates	were	important	for	
predicting extinction risk under different criteria. Change in annual temperature was 
important for criteria related to population trends, while high forest dependency was 
important for criteria related to restricted area of occupancy or small population size. 
Our	 criteria-	specific	method	 can	 support	 Red	 List	 assessors	 by	 producing	 outputs	
that identify species likely to meet specific criteria, and which are the most important 
predictors.	These	species	can	 then	be	prioritised	 for	 re-	evaluation.	We	expect	 this	
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1  |  INTRODUC TION

Over	 recent	 decades,	 the	 IUCN	 Red	 List	 of	 Threatened	 species	
(henceforth ‘Red List’) has become the global standard for species' 
extinction risk assessments (Betts et al., 2020; Mace et al., 2008; 
Rodrigues et al., 2006).	A	Red	List	assessment	 is	based	on	at	 least	
one	of	five	complementary	criteria	with	quantitative	thresholds	re-
lating to population and distribution size, structure and trends to 
assign	 species	 to	 categories	 of	 extinction	 risk	 (IUCN,	2012; Mace 
et al., 2008). The Red List now includes assessments for over 
150,000	species	of	animals,	fungi	and	plants	(IUCN,	2022), but, de-
spite its great importance for conservation action and policy (Betts 
et al., 2020; Hoffmann et al., 2010; Williams et al., 2021), it is insuf-
ficiently	 funded	 (Juffe-	Bignoli	et	al.,	2016).	As	a	consequence,	 the	
Red List faces important challenges in keeping assessments up to 
date (i.e. <10 years	old)	and	reducing	the	proportion	of	data	deficient	
species (Cazalis et al., 2022; Rondinini et al., 2014).

Different	 methods	 have	 been	 developed	 to	 support	 Red	 List	
assessments and address the above challenges (e.g. Bachman 
et al., 2019; Buchanan et al., 2008; Cazalis et al., 2023; Santini 
et al., 2019; see Cazalis et al., 2022	for	an	overview).	Among	them,	
comparative extinction risk models link extinction risk (i.e. Red List 
categories) with species' biological traits (e.g. body mass, habitat 
specialisation, range size) and external drivers of risk (e.g. human 
density,	 land-	use	 change,	 climate	 change;	 Chichorro	 et	 al.,	 2019, 
2022; Purvis et al., 2000). The models are then used to predict the 
Red List categories of species that have not yet been assessed for 
the	Red	List	 (Darrah	et	al.,	2017;	Zizka	et	al.,	2021),	 that	are	Data	
Deficient	(Bland	&	Böhm,	2016; Luiz et al., 2016) or that need updat-
ing	(Di	Marco	et	al.,	2014; Lucas et al., 2023), with the objective of 
accelerating and helping to prioritise the work of Red List assessors 
by providing additional information on species' extinction risk.

These comparative extinction risk models predict that Red List 
categories met under any of the five possible criteria (based on e.g. 
distribution, abundance, population trends), thus ignoring potential 
differences	in	their	driving	forces.	This	‘criterion-	blind’	approach	as-
sumes all criteria can be predicted from the same covariates, while in 
reality, the criteria address different sources of risk that are spatially 
structured (Figure S1), and some are likely easier to predict than 
others. For instance, predicting species threatened under criterion 
B1 (restricted extent of occurrence combined with some subcrite-
ria) is relatively easy using range size, while it may be harder to find 
relevant covariates to predict species threatened under criterion 
A3	(future	population	decline).	This	suggests	that	species	classified	

under different criteria might have different risk correlates and face 
different prediction uncertainties, which might have contributed to 
the	low	performance	of	some	criterion-	blind	models	when	tested	on	
independent	samples	of	species	(Di	Marco,	2022).	In	some	cases,	a	
covariate could even have opposite effects on different criteria. For 
instance, species with large body mass tend to have low population 
density (Santini et al., 2022;	Silva	&	Downing,	1995) and might be 
more likely to trigger criterion C1 (small population size and decline), 
but	such	species	tend	to	have	large	ranges	(Newsome	et	al.,	2020) 
hence	are	less	likely	to	trigger	criterion	B.	Importantly,	ignoring	the	
diversity of criteria limits the uptake of comparative extinction risk 
models	by	assessors,	who	need	criteria-	specific	information	(Cardillo	
& Meijaard, 2012; Cazalis et al., 2022).

Here,	we	aim	to	overcome	this	research-	implementation	gap	by	
developing	criterion-	specific	extinction	risk	models	and	comparing	
their	performance	and	applicability	to	a	classic	criterion-	blind	model.	
While the latter estimates the probability of a species to be threat-
ened	under	any	criterion,	our	criterion-	specific	model	estimates	such	
a	probability	independently	for	each	individual	criterion	(A1,	A2,	A3,	
etc).	While	benefiting	from	the	power	of	the	multi-	species	compari-
sons, this approach better encompasses the diversity of reasons that 
may	qualify	 a	 species	 as	 threatened	on	 the	Red	List	 and	provides	
assessors with an output that is directly related to the information 
needed for assessments. We use birds as a study group to test our 
approach as they are the most consistently assessed group across 
Red List criteria (Cazalis et al., 2022), with very few data deficient 
species (0.4%), they have been used in many previous comparative 
extinction	risk	analyses	(e.g.	Olah	et	al.,	2018; Richards et al., 2021; 
White & Bennett, 2015), and they present great variation in their 
response to human pressure (Cazalis, 2022; Lees et al., 2022).

2  |  METHODS

We compiled data on avian biological traits associated with extinc-
tion risk (e.g. range size, clutch size) as well as external risk drivers 
operating within species ranges (e.g. change in forest canopy cover, 
distance to cities). We modelled the relationship between extinction 
risk predictors and each species' Red List category met under each 
specific criterion, using ordinal regression models that best match 
the ordinal structure of the Red List categories (Lucas et al., 2019, 
2023; Luiz et al., 2016), and combined these models into a single 
final prediction. We then compared the performance of these 
criterion-	specific	models	with	a	criterion-	blind	approach,	as	well	as	

new approach to increase the uptake of extinction risk models in Red List assess-
ments,	bridging	a	long-	standing	research-	implementation	gap.

K E Y W O R D S
assessment,	Aves,	biodiversity	conservation,	birds,	comparative	analysis,	extinction	risk,	
functional traits
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the importance of different predictors in each approach. Finally, we 
evaluated	 the	potential	 conservation	applications	of	 the	 criterion-	
specific	approach.	All	analyses	were	conducted	in	R	version	4.0.2	(R	
Core Team, 2020).

2.1  |  Extinction risk predictors

For each of the 11,162 bird species included in the Red List version 
2021-	3	 (BirdLife	 International,	2022), we gathered information on 
species biological traits that are associated with extinction risk (e.g. 
Olah	et	al.,	2018; Ripple et al., 2017; Tobias & Pigot, 2019), consider-
ing five types (see details and rationale in Table S1): morphological 
(body	mass,	beak	length,	hand-	wing	index),	behavioural	(nocturnality,	
migratory status), life history traits (clutch size, generation length), 
ecological (trophic niche, forest dependency, habitat breadth) and 
geographical (insularity, range size). However, species' intrinsic 
traits alone cannot predict extinction risk (Chichorro et al., 2022; 
González-	Suárez	et	al.,	2013), and it is key to include measurements 
of	the	impact	of	human	activities	within	the	species'	range	(Di	Marco	
et al., 2014; Murray et al., 2014). We thus also included proxies for 
habitat alteration and degradation (extent and change of cropland 
and forest cover), human encroachment (human density and trends, 
proportion of rural population, travel time to the nearest city) and 
past and contemporary climate change (difference in precipitation 
and temperature) within each species range (see details in Table S1).

2.1.1  |  Species	traits	and	characteristics

We	used	 the	 distribution	maps	 published	 in	BirdLife	 International	
and Handbook of the Birds of the World (2021), filtering polygons 
with a high probability of presence (‘extant’) and of ‘native’ origin 
during the breeding season (‘resident’ and ‘breeding season’), while 
removing polygons coded with other presence (e.g. extinct), origin 
(e.g.	 introduced,	 vagrant)	 and	 season	 (e.g.	 non-	breeding,	 passage)	
attributes.	 As	most	 of	 the	 available	 data	 on	 predictors	 of	 extinc-
tion risk are terrestrial, we removed marine species from our study 
(N = 365,	as	defined	by	BirdLife	International).

We calculated range size as the area of the filtered distribution 
map	transformed	into	a	Mollweide	equal-	area	projection.	In	addition,	
four	predictors	were	extracted	 from	BirdLife	 International	 (2022): 
generation length, migratory status, forest dependency and habitat 
breadth (calculated as the number of major habitat types that are 
coded as suitable for each species).

Morphological traits relating to beak length (from tip to nares), 
body	 mass	 and	 hand-	wing	 index	 were	 extracted	 from	 AVONET	
(Tobias et al., 2022), alongside ecological information on trophic 
niches (aggregated into four classes: herbivore, omnivore, inver-
tivore and carnivore; Table S1).	 Insularity	and	clutch	size	were	ob-
tained from Tobias and Pigot (2019), and information on the diurnal/
nocturnal activity of birds was obtained from Wilman et al. (2014). 
To address taxonomic mismatches, we matched all taxa to the 

taxonomy	used	by	BirdLife	 International,	using	 the	synonym	table	
from Tobias et al. (2022). The remaining 200 taxonomic mismatches 
were then corrected manually using the synonyms documented in 
BirdLife	International	(2022).	A	table	of	these	matches	is	included	in	
the	Extended	Data	S1 provided with this article.

2.1.2  |  Extrinsic	factors

Similarly to the range size calculation, we only considered breeding 
range when measuring extrinsic variables for consistency among 
migratory and resident species. We used a raster layer of percent-
age	tree	canopy	cover	in	2018	and	changes	in	cover	during	2000–
2018	at	300-	m	resolution	from	Remelgado	and	Meyer	(2023; using 
Landsat data to correct some biases in global forest cover maps). 
We extracted the median value of these predictors within the range 
of	each	species.	Similarly,	we	calculated	the	median	value	of	range-	
wide cropland coverage (in 2019) and cropland changes from 2003 
to 2019 obtained from Potapov et al. (2022).

We also calculated the median human population density within 
each species' range, and the difference between median density 
in 2015 versus 2000 (Global Human Settlement [GHS]; Schiavina 
et al., 2019), used as a proxy for human direct pressure, although 
some species are well adapted to it (Cazalis et al., 2021). To account 
for the direct pressures that species can face in the rural environment 
(as defined by the GHS product), we also calculated the proportion 
of the human population living in rural areas within each species' 
range (Schiavina et al., 2019).	 As	 human	 accessibility	 can	 also	 de-
termine the level of disturbance to which species are exposed, we 
extracted data from the global map of travel time to cities (Weiss 
et al., 2018) and calculated the median value of pixels contained 
within each species' distribution. Finally, we extracted the countries 
of	 occurrence	 of	 each	 species	 from	 BirdLife	 International	 (2022) 
and	calculated	the	resulting	median	gross	domestic	product	 (GDP)	
per capita from WorldBank data (Worldbank, 2021) as an index of 
human population development.

In	order	to	account	for	climatic	correlates	of	risk,	we	extracted	
the current value and difference between past and current val-
ues	 for	 two	variables	 from	the	CHELSAcruts	database	version	1.0	
(Karger et al., 2017;	Karger	&	Zimmermann,	2018), choosing mean 
annual temperature and annual precipitation for their relevance in 
influencing species' distributions and their ease of interpretation 
(Supplementary Methods S1). Using data from another study pre-
dicting Red List categories (Lucas et al., 2023), we calculated the 
average value of both bioclimatic variables over two periods based 
on	CHELSA	data	(Karger	et	al.,	2017):	1965–1995,	to	represent	the	
past	climate,	and	2005–2014,	to	represent	the	current	climate.	We	
then extracted the median value of each variable within the species' 
range at both periods. We finally calculated the difference between 
both time periods as a proxy of recent climate change experienced 
by the species within their geographic range.

We extracted raster values within species' distribution polygons 
using	the	R	package	‘exactextractr’	(Baston	&	ISciences,	LLC,	2022). 
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Polygons were reprojected according to each raster's original co-
ordinate system before extraction in order to minimise raster re-
projection. Variables that followed a skewed distribution were 
log-	transformed,	and	all	numeric	variables	were	scaled	(Table S1).

We	removed	1864	species	for	which	we	could	not	extract	and	
calculate all predictors (mainly due to gaps for clutch size, insular-
ity	[1400	species	missing	data]	and	diurnality	[1183	species	missing	
data]),	leaving	a	final	dataset	composed	of	8695	species.	We	ensured	
that the absence of 20% of the data did not introduce any bias into 
the distribution of species within the Red List categories (Figure S3).

2.2  |  IUCN Red List framework

We	extracted	from	BirdLife	International	(2022) the Red List category 
assigned to each species under each criterion (see below), as well as 
the final listed category (Figure 1; see Figure S1 for spatial distribution 
of these criteria). For birds, generally all Red List criteria have been 
evaluated for all species (with the exception of criterion E, which is 
excluded	from	our	study).	For	threatened	bird	species	(i.e.	those	quali-
fying as Critically Endangered, Endangered and Vulnerable), all criteria 
that	qualify	 a	 species	 as	 threatened	 should	be	 reported	 in	BirdLife	
International	(2022), not just the one resulting in the highest risk cat-
egory, although this may be omitted in some specific cases. However, 
this	is	not	the	case	for	species	qualifying	as	Near	Threatened	(e.g.	data	
are not available on whether a species classified as Endangered under 
B1	qualifies	as	Near	Threatened	under	B2).	To	account	for	this,	we	fol-
lowed	two	approaches.	In	the	first,	we	classified	a	criterion	as	‘miss-
ing data’ if not explicitly listed; the results presented in the main text, 
Figure 1 and Table S2	correspond	to	that	assumption.	In	the	second,	
we assumed that the species was Least Concern under a criterion un-
less	it	was	explicitly	listed.	As	a	consequence,	all	models	were	run	on	
the	same	set	of	species.	These	results	were	qualitatively	equivalent	
with those obtained from our original model (the performances of in-
dividual	criterion-	specific	models	were	even	slightly	poorer;	Table S4). 
This sensitivity analysis demonstrates the limited impact of sample 
size differences on our model outcomes.

Only	three	species	qualified	as	threatened	under	A1,	hence	the	
criterion has been excluded from the analysis.

2.3  |  Extinction risk modelling

We	developed	a	‘criterion-	specific’	modelling	approach	in	which	we	
fitted a separate model for each Red List criterion. Each criterion is 
thus considered independently, and the Red List category met under 
that criterion is contrasted with the same set of extinction predic-
tors.	For	comparison,	we	also	fitted	a	‘criterion-	blind’	model,	as	typi-
cally done in comparative extinction risk analyses, using the single 
listed species' Red List category as the response variable.

To investigate the relationship between species traits, extrinsic 
factors and extinction risk, we used cumulative link models (CLM, 
also known as ordinal regression models) from the R package ‘or-
dinal’ (Christensen, 2019), which allow preservation of the ordinal 
structure of the Red List categories (Lucas et al., 2019, 2023; Luiz 
et al., 2016). Moreover, CLMs have been demonstrated to be the 
best algorithms to deal with the ordinal structure of Red List cat-
egories when compared to other algorithms traditionally used in 
comparative models of extinction risk, such as Random Forest, 
Neural	 networks	 or	 Phylogenetic	 Generalised	 Linear	 Models	
(PGLS) (Lucas et al., 2023). CLM does not allow to include phylo-
genetic information in a way as PGLS does to account for poten-
tial	non-	independence	 in	species	extinction	risk,	but	overall	CLM	
has demonstrated to predict significantly better than PGLS, pos-
sibly due to the necessity of PGLS to transform Red List catego-
ries into a binary or discrete variable, losing important information 
from the original ordinal variable (Lucas et al., 2023). We therefore 
considered the Red List category as an ordered categorical factor 
(LC < NT < VU < EN < CR;	excluding	all	 species	with	categories	EX,	
EW	and	DD),	used	it	as	the	response	variable	and	contrasted	this	
with the predictors.

Models varied from n = 7060	 for	 criterion	B2	 to	n = 7702	 for	
criterion	C2,	with	a	total	of	8695	species	included	in	the	analysis.	
We checked that predictors were not highly correlated (Pearson 

F I G U R E  1 Proportion	of	the	8695	bird	
species included in our analysis currently 
qualifying	in	each	Red	List	category	for	
each criterion. CR, Critically Endangered; 
EN,	Endangered;	VU,	Vulnerable;	NT,	Near	
Threatened; LC, Least Concern. ‘Missing’ 
applies	to	species	qualifying	as	threatened	
for which the given criterion is not 
explicitly listed. The number of species 
per criterion is given in Table S2.
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    |  5 of 13HENRY et al.

correlation	or	Kruskal-	gamma	coefficients > |0.70|;	Figure S2). To 
adjust for unbalanced data (Figure 1), we calculated the propor-
tion of threatened and not threatened species under each cri-
terion and weighted our models by the proportion of species in 
the	opposite	category	 (i.e.	 species	with	categories	VU,	EN	or	CR	
were weighted by the proportion of not threatened species, and 
species	with	 categories	 LC	 or	NT	were	weighted	 by	 the	 propor-
tion	of	threatened	species).	A	backward	stepwise	model	selection	
was performed using the step function from the R package ‘stats’ 
(R Core Team, 2020) in order to find the subset of variables that 
minimise	the	Akaike	Information	Criterion	for	each	criterion.	The	
proportional odds assumption of a linear relationship was not al-
ways met, but this should not impact our results substantially (see 
Supplementary Methods S2).

As	the	number	of	species	listed	in	EN	and	CR	categories	was	very	
small for some criteria (Figure 1), we anticipated predicting specific 
categories could be challenging (Table S5); thus, for validation, we fo-
cused on a simplified prediction: whether a species was classified as 
threatened or not. We used a method of taxonomic block validation 
in which we iteratively excluded one taxonomic family from the data 
used to train the model and then used the model to predict the Red 
List	binary	threat	level	of	the	species	in	the	left-	out	family.	A	species	
was predicted as threatened under a given criterion if the sum of the 
probabilities	 to	be	CR,	EN	and	VU	was	>0.5 and predicted as not 
threatened otherwise. We then compared the predictions with the 
actual Red List categorisation under that specific criterion (assuming 
that the current Red List category of each species is correct for each 
criterion). Specificity and sensitivity were defined, respectively, as 
the	 percentage	 of	 not	 threatened	 species	 (LC,	NT)	 correctly	 clas-
sified	 as	 such	 and	 the	 percentage	 of	 threatened	 species	 (VU,	 EN,	
CR)	correctly	classified	as	such.	Following	Red	List	guidelines	(IUCN	
Standards and Petitions Committee, 2022), we assigned a ‘combined’ 
category	to	each	species	based	on	the	nine	criterion-	specific	models	
as	 the	 highest	 category	 predicted	 among	models;	 consequently,	 a	
species was classified as not threatened only because it was not pre-
dicted	as	threatened	in	any	of	the	criterion-	specific	models.	We	also	
report the models' performance in predicting the specific Red List 
category for each species (assigning to each species the category 
with the highest probability; Table S5).

To measure and compare the overall performance of both mod-
elling approaches, we used the True Skill Statistic (TSS), defined as: 
sensitivity + specificity − 1.	TSS	takes	into	account	both	omission	and	
commission	 errors	 and	 ranges	 from	 −1	 to	+1, where +1 indicates 
perfect agreement, values greater than 0.5 indicate a good perfor-
mance and values of 0 (or less) indicate a performance no better (or 
worse)	than	random	(Allouche	et	al.,	2006).

Finally, our models were employed to predict the most probable 
Red List category for all species, which was then transformed into a 
binary prediction (threatened/not threatened) and compared with 
the actual Red List category. The mismatches thus identified serve 
as flags for prioritising reassessments of a specific list of species, as 
classically	 done	 in	 comparative	 extinction	 risk	 analyses	 (Di	Marco	
et al., 2014; Lucas et al., 2023).

3  |  RESULTS

3.1  |  Model performance

Models' performance in predicting extinction risk greatly varies 
among criteria (Figure 2).	The	model	predicting	criterion	D2,	related	
to population structure, had the highest TSS score (0.91), followed 
by	criteria	B1,	D1,	B2,	C2	and	C1	(0.88–0.69).	All	these	models	had	
TSS	scores	higher	than	the	criterion-	blind	approach	(0.61),	meaning	
that models are better at predicting extinction risk for single crite-
ria than for the overall categories. For most criteria, these high TSS 
scores were the result of both higher specificity and higher sensitiv-
ity (Figure 2).	Conversely,	models	predicting	criteria	A2–A4,	related	
to population declines, showed the lowest TSS scores among all 
criteria	(0.52–0.59),	and	they	were	slightly	lower	than	the	criterion-	
blind model.

Following Red List guidelines, we assigned a ‘combined’ category 
to each species as the highest extinction risk category from any of 
the	nine	individual	criterion-	specific	models	and	found	that	this	sub-
stantially reduced the TSS (0.52) compared with applying the models 
individually	for	each	criterion	(average	model	TSS = 0.72;	Figure 2a). 
This	 is	 largely	 due	 to	 lower	 specificity	 compared	 to	 the	 criterion-	
blind	approach	 (0.68	vs.	0.83	probability	of	 correctly	 classifying	a	
not threatened species. Figure 2c; Table S2), this is partly explained 
because a species had to be classified as not threatened under each 
of	 the	nine	applied	criterion-	explicit	models	 in	order	 to	 fall	 in	 this	
group	 overall.	 In	 contrast,	 using	 a	 criterion-	specific	 approach	 re-
sulted	in	a	0.84	probability	of	correctly	classifying	threatened	spe-
cies,	compared	with	0.79	for	the	criterion-	blind	approach	(Figure 2b; 
Table S2).

Considering	 ‘missing’	 criterion-	specific	 categories	 as	 LC	
(Table S4) or predicting at the category level rather than binarily 
contrasting threatened versus not threatened (Table S5) resulted in 
respectively	equivalent	or	lower	performances.

3.2  |  Drivers of extinction risk

The	criterion-	blind	approach	showed	positive	relationships	between	
extinction risk and body mass, carnivore trophic niche, high forest de-
pendency and cropland cover, while showing negative relationships 
with insularity, range size or percentage canopy cover (Figure 3). 
Some	of	these	relationships	were	also	detected	by	criteria-	specific	
models. For instance, carnivorous species were generally associated 
with higher levels of extinction risk, while species with a larger range 
size or with distributions that had a high tree canopy coverage were 
less at risk on average.

In	contrast,	the	importance	and	significance	of	other	predictors	
were idiosyncratic between criteria. For instance, body mass gener-
ally correlated positively with extinction risk for criteria related to 
rapid	population	declines	or	small	population	size	 (A2,	A3,	A4,	C1,	
C2,	D1),	while	 it	 had	no	 influence	on	 criteria	 related	 to	 restricted	
geographic	 range	 (criteria	 B1,	 B2,	 D2).	 Conversely,	 high	 forest	
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dependency was associated with increased extinction risk for cri-
teria B1, B2 and C2, all relating to small population size, restricted 
area of occupancy and subpopulation structure, but did not, or 
slightly negatively, influence criteria based on rates of decline alone. 
Extrinsic factors were mainly important to predict criteria related 
to	population	 reductions	 (A2,	A3	 and	A4);	 for	 instance,	 change	 in	
annual temperature correlating positively with extinction risk for cri-
teria	A2–A4	and	C2,	and	GDP	per	capita	correlating	positively	with	
criteria	A2–A4,	B2	and	C1.

3.3  |  Criterion- specific approach to prioritise 
reassessments

The	 criterion-	blind	 model	 predicts	 that	 15%	 of	 species	 currently	
classified as not threatened (N = 1337)	may	be	threatened	(Table 1), 
but	 this	 percentage	 almost	 doubled	 (to	 28%,	N = 2467)	 under	 the	
criterion-	specific	model.	Conversely,	we	predicted	104	threatened	
species	 as	 not	 threatened	 (199	 with	 the	 criterion-	blind	 model).	

Predictions for all models and all species are provided in Extended 
Data	S2.

4  |  DISCUSSION

In	this	study,	we	developed	a	modelling	approach	that	partitions	ex-
tinction risk according to individual Red List criteria and compared 
it	with	a	criterion-	blind	approach.	On	average,	modelling	individual	
criteria	 performed	 better	 than	 the	 criterion-	blind	 approach,	 with	
higher	 performance	 for	 six	 criteria	 (especially	 criteria	B1	 and	D2),	
while three provided similar or marginally lower performance (cri-
teria	 A2–A4).	 This	 result	 highlights	 that	 predicting	 extinction	 risk	
under some criteria may be intrinsically difficult, at least using the 
predictors	considered	here.	In	particular,	criteria	related	to	popula-
tion	trends	(especially	A3	related	to	future	trends)	are	more	difficult	
to predict. With these models, we can enhance our understanding 
of the mechanisms underlying observed correlations and, ultimately, 
point to distinct drivers of risk.

F I G U R E  2 Comparison	of	model	performances.	The	left-	hand	side	of	each	plot	compares	the	performance	of	the	combined	criterion-	
specific	models	(referred	to	as	‘CS’)	with	that	of	the	criterion-	blind	approach	to	comparative	extinction	risk	modelling	(referred	to	as	
‘CB’),	while	the	right-	hand	side	presents	the	performance	of	each	criterion-	specific	model.	(a)	True	Skill	Statistic	[−1,1];	(b)	sensitivity	[0,1],	
proportion	of	threatened	species	correctly	classified;	(c)	specificity	[0,1],	proportion	of	not	threatened	species	correctly	classified.	Dotted	
lines	represent	the	mean	value	obtained	from	the	nine	independent	criteria-	specific	models.

F I G U R E  3 Heatmap	of	predictor	importance	associated	with	extinction	risk	under	each	criterion.	Rows	indicate	predictors	of	extinction	
risk,	and	columns	relate	to	criterion-	specific	models.	The	‘CB’	model	describes	the	criterion-	blind	approach	to	extinction	risk	modelling.	
Colour indicates the sign (blue for negative and orange for positive), with darker tones indicating stronger relationships. Both positive and 
negative	values	were	divided	into	five	equal	groups	according	to	the	intervals:	−3.71,	−0.97,	−0.46,	−0.27,	−0.15	and	0	for	negative	estimates	
and	0,	0.16,	0.24,	0.42,	0.89	and	1.76	for	positive	estimates	(blanks	indicate	that	the	predictor	has	not	been	retained	in	the	optimal	model	
after predictor selection; see Section 2.3; estimates are detailed in Table S3).	CLM,	cumulative	link	models;	GDP,	gross	domestic	product.
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    |  7 of 13HENRY et al.

Combining	 the	 nine	 criteria-	specific	 models	 to	 obtain	 a	 sin-
gle prediction per species led to substantially greater sensitivity 
(i.e. more likely identification of threatened species as threatened, 

Figure 2b)	but	lower	specificity	than	the	classical	criterion-	blind	ap-
proach	(see,	for	example,	Orange-	fronted	Parakeet	Eupsittula canicu-
laris in Figure 4a). Because one of the primary goals of automated 
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extinction risk methods is to identify species likely to be at risk of 
extinction (but not currently recognised as such) to prioritise their 
reassessment (Cardillo & Meijaard, 2012), a model with high sensi-
tivity will be more valuable than a model with similar TSS and higher 
specificity (Cazalis et al., 2022). Previous extinction risk models 
have typically predicted threatened species less accurately than not 
threatened	species	(Di	Marco,	2022; Murray et al., 2014).	Our	results	
show that a reason behind this observation may be the omission of 
the diversity of reasons why a species is considered threatened on 
the Red List, which is represented by the multiple Red List criteria. 
However,	 combining	 nine	 criterion-	specific	 models	 decreased	 the	
overall specificity of the prediction (see, for example, Gray's Lark 
Ammomanopsis grayi in Figure 4b), resulting in an overestimation 
of the proportion of threatened species and a slightly lower TSS in 
comparison	with	the	criterion-	blind	approach	(Figure 2a). This result 
is explained by the fact that, following Red List guidelines, a spe-
cies was classified as not threatened only if predicted as such by all 
nine	criterion-	specific	models.	This	is	well	aligned	with	the	Red	List	
process and a precautionary approach, but it makes our approach 
sensitive to misclassification. Hence, increasing the specificity of 
criterion-	specific	models	is	a	priority	for	the	future.	Possible	ways	of	
achieving this include improving the performance of the individual 
models with additional covariates (for example, relating to hunting/
trapping	pressure	for	criteria	A2–A4),	accounting	for	shared	evolu-
tionary history using phylogenetic models (Purvis, 2008) or devel-
oping an approach to combine individual models that accumulates 
fewer errors from individual models that misclassify a species as 
threatened under a given criterion.

In	accordance	with	previous	studies,	our	criterion-	blind	model	
identified extinction risk as correlating positively with for exam-
ple, body mass, carnivorous niche, high forest dependency and 
lower tree canopy cover, and negatively with for example, clutch 
size, range size and distance to cities (Gaston & Blackburn, 1995; 
Olah	et	al.,	2018; Richards et al., 2021; Ripple et al., 2017; Tobias 
& Pigot, 2019; White & Bennett, 2015).	Our	findings	highlight	the	
importance of considering separately the multiple processes un-
derlying patterns of extinction (Figure 3; Figure S1). They reveal 
that increases in annual temperature across species' ranges are 
of particular importance for criteria related to population decline 
(A2–A4,	 and	 to	 some	extent	C2),	 consistently	with	 the	predicted	
role of climate change in driving declines in abundance and in-
creases	in	species'	extinction	risk	(Şekercioğlu	et	al.,	2012; Mancini 
et al., 2023).	 Additionally,	 body	mass	 is	 of	 particular	 importance	
for criteria related to population trends and population sizes 

(A1–A4,	C1–C2,	D1),	suggesting	that	species	with	high	body	mass	
are more likely to be declining and to have small population sizes 
(Carvajal-	Quintero	et	al.,	2023). The diversity of relationships be-
tween predictors and criteria, along with their ecological meaning, 
emphasises the importance of accounting for heterogeneity in the 
predictability of Red List criteria, rather than considering them as 
equally	predictable	as	assumed	 in	criterion-	blind	comparative	ex-
tinction	risk	analyses.	They	also	highlight	that	our	criterion-	specific	
approach can help better understand the diverse mechanisms as-
sociated with extinction risk. Further, a better approximation of the 
causal relationships underlying species classification under differ-
ent Red List categories can improve our ability to forecast status 
change based on changes in the drivers.

By modelling criteria separately, we increase the applicabil-
ity of comparative extinction risk models (Cazalis et al., 2022; 
Owens	&	Bennett,	2000; Ripple et al., 2017). Red List assessors 
are	required	to	assess	each	species	against	all	criteria	for	which	
there	 is	 sufficient	 information	 (IUCN	 Standards	 and	 Petitions	
Committee, 2022). Therefore, while our models' outputs do not 
fundamentally	change	the	red-	listing	process,	they	allow	for	var-
ious	 sources	 of	 information	 to	 be	 considered	 by	 assessors.	 As	
these models are contingent on the availability of life history and 
distributional data, their use for helping reassess data deficient 
species—for which these are often unavailable—is likely to be lim-
ited. We contend them to be most suited to help prioritise efforts 
to	 reassess	 threatened	 and	 non-	threatened	 species	 for	 which	
underlying data are available and to identify knowledge gaps 
and opportunities for future research. For instance, the Least 
Concern	Rufous-	bellied	Chachalaca	Ortalis wagleri (Figure 4c) is 
predicted	to	be	threatened	 (VU)	by	both	the	criterion-	blind	and	
the	criterion-	specific	 approaches.	However,	while	 the	criterion-	
blind	 model	 offers	 no	 additional	 insight,	 our	 criterion-	specific	
approach provides assessors with relevant information about 
why this species might be VU—namely, that it might meet criteria 
A2,	A3,	A4,	C1	and	C2.	Assessors	could	use	 this	 information	 to	
focus efforts on investigating past and future population trends 
to	 assess	 criteria	 A2–A4	 and	 population	 size	 and	 structure	 to	
assess criteria C1 and C2, which could be complemented with 
the specific contributions of different covariates that led to this 
prediction.	If	these	data	are	not	available,	determining	values	for	
these parameters may be considered a priority for fieldwork and 
research.

Comparative extinction risk models have often been promoted 
as useful tools to provide a first prediction of extinction risk for 

IUCN Red List

Prediction criterion- blind Prediction criterion- specific

Not 
threatened Threatened

Not 
threatened Threatened

Not	threatened 6380	(73%) 1337 (15%) 5250 (60%) 2467	(28%)

Threatened 199 (2%) 779 (9%) 104 (1%) 874	(10%)

Note:	The	prediction	for	the	criterion-	specific	method	corresponds	to	the	prediction	after	
combining results from the nine individual criterion models.

TA B L E  1 Red	List	category	prediction	
of	criterion-	blind	and	criterion-	specific	
models compared with the current 
binarised category (Threatened for 
Vulnerable, Endangered and Critically 
Endangered;	Not	threatened	for	Least	
Concern;	and	Near	Threatened).
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    |  9 of 13HENRY et al.

species	not	yet	included	in	the	Red	List	(Darrah	et	al.,	2017;	Zizka,	
Andermann,	 et	 al.,	2022;	 Zizka,	Barratt,	 et	 al.,	2022), for data de-
ficient	 species	 (Bland	&	Böhm,	2016; Borgelt et al., 2022; Cazalis 
et al., 2023; He et al., 2021; Luiz et al., 2016) or to prioritise reas-
sessments	(Di	Marco	et	al.,	2014; Lucas et al., 2023). But so far, these 
have remained largely unmet promises, with hardly any uptake of 

these modelling approaches in the Red List (Cazalis et al., 2022). By 
focusing on reassessments and informing the assessors about the 
specific	criteria	under	which	a	species	is	likely	to	qualify,	criterion-	
specific models could help accelerate the rate of Red List assess-
ments, guide data collection efforts and facilitate the growth and 
update of the Red List so that it can best inform conservation 

F I G U R E  4 Comparison	of	outputs	
for	selected	species	from	a	criterion-	
blind	approach	and	a	criterion-	specific	
approach to comparative extinction risk 
analysis. The three panels show different 
species, with their current categories in 
the Red List, the categories predicted by 
the models and the criteria triggered for 
the	criterion-	specific	approach.	Panel	(a)	
shows a threatened species predicted as 
such	by	the	criterion-	specific	approach	
only;	panel	(b)	shows	a	non-	threatened	
species	predicted	as	such	by	the	criterion-	
blind approach only; and panel (c) shows 
a	non-	threatened	species	predicted	
as threatened by both approaches. 
Illustration	by	À.	Jutglar,	T.	Worfolk.	
Source: © 2022 Cornell University.
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10 of 13  |     HENRY et al.

policies.	 Although	 it	 may	 need	 further	 developments	 and	 be	 cur-
rently	too	data-	demanding	for	some	taxa,	we	believe	this	is	a	prom-
ising	avenue	to	 reduce	 the	historical	 research-	implementation	gap	
between the comparative extinction risk model and the Red List 
assessment process.
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