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Abstract

Objectives. Infection with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019
(COVID-19). Although an acute SARS-CoV-2 infection mainly presents
with respiratory illness, neurologic symptoms and sequelae are
increasingly recognised in the long-term treatment of COVID-19
patients. The pathophysiology and the neuropathogenesis behind
neurologic complications of COVID-19 remain poorly understood, but
mounting evidence points to endothelial dysfunction either directly
caused by viral infection or indirectly by inflammatory cytokines,
followed by a local immune response that may include virus-specific
T cells. However, the type and role of central nervous system-
infiltrating T cells in COVID-19 are complex and not fully understood.
Methods. We analysed distinct anatomical brain regions of patients
who had deceased as a result of COVID-19-associated pneumonia or
complications thereof and performed T cell receptor Vb repertoire
sequencing. Clonotypes were analysed for SARS-CoV-2 association
using public TCR repertoire data. Results. Our descriptive study
demonstrates that SARS-CoV-2-associated T cells are found in almost
all brain areas of patients with fatal COVID-19 courses. The olfactory
bulb, medulla and cerebellum were brain regions showing the most
SARS-CoV-2 specific sequence patterns. Neuropathological workup
demonstrated primary CD8+ T-cell infiltration with a perivascular
infiltration pattern. Conclusion. Future research is needed to better
define the relationship between T-cell infiltration and neurological
symptoms and its long-term impact on patients’ cognitive and
mental health.
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INTRODUCTION

During the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) pandemic, it has become
increasingly evident that coronavirus disease 2019
(COVID-19) can have neurological implications
beyond respiratory symptoms. Many critically ill
patients show signs of an acute encephalopathy
that is clinically and neuropathologically similar to
septic encephalopathy in patients without
COVID-19 and that is probably triggered by
SARS-CoV-2 infection. COVID-19 characteristically
leads to anosmia and ageusia, which may
persist long after the initial infection has
resolved.1,2 The high incidence of ischemic stroke
or cerebral haemorrhage reported in early large
observational studies lacking adequate controls
has been questioned in recent times.
Neuroimmunological complications in COVID-19
include encephalomyelitis or neuromuscular
complications. More prevalent is the occurrence of
long-term COVID-19, a syndrome primarily
characterised by fatigue, sleep disturbances and
other symptoms, such as arthralgia and
breathlessness. The degree of neuroinflammation
and the role of the central nervous system
(CNS) inflammation in the complex sequelae
summarised as long-term COVID-19 is not
well understood.2–4 Evidence suggests that
immune-mediated mechanisms in the CNS play a
critical role in post-infectious sequelae observed in
COVID-19 patients.5,6 Although, SARS-CoV-2 is not
frequently detected in the cerebrospinal fluid
(CSF) of patients with neurological manifestations,
CSF abnormalities such as lymphocytic pleocytosis
and increased antibody production, consistent
with encephalitis, are observed.4 Interestingly, in a
non-human primate model, SARS-CoV-2-mediated
CNS neuroinflammation was observed although the
animals did not develop severe respiratory
symptoms, indicating an independent pathobiology
for neuro-invasion during COVID-19.7

As SARS-CoV-2 infection initiates an adaptive
immune response, including virus-specific T-cell
activation with subsequent CD8+ mediated viral
clearance of infected cells,8,9 we aimed to
investigate whether SARS-CoV-2-associated T cells
can be detected in distinct regions of the brain.
We therefore performed histopathological
evaluation as well as T-cell receptor Vb
sequencing (TRBV) of brain biopsies from patients
who deceased after severe COVID-19 disease.

RESULTS

Infiltration patterns of SARS-CoV-2
associated T cells in distinct brain regions

The aim of our study was to assess the
SARS-CoV-2-specificity and infiltration pattern of
brain-infiltrating T cells in different regions of the
brain of patients who deceased from COVID-19.
To this end, we performed the neuropathological
autopsy of the brains of patients after severe
SARS-CoV-2 infection (Supplementary table 1).
The brains underwent standard neuropathological
workup as described in another previous study.10

Specifically, the superior frontal cortex, the
hippocampus, the basal ganglia, the corpus
callosum with adjacent cingulum, the upper
and lower medulla oblongata, the cerebellar
hemisphere and the olfactory bulb were studied
in detail (Figure 1a and b). Brain tissue from two
individuals who deceased from non-neurological
diseases were assessed accordingly as controls.
Subsequent TRBV demonstrated oligoclonal
infiltration of T cells throughout all analysed
brain regions without any hotspot infiltration but
a trend towards higher infiltration rates in
COVID-19 patients as compared to the control
samples where T cells were only detected in 4 of 8
analysed brain regions (Figure 1c). The most
frequently infiltrated areas were the frontal
cortex, the olfactory bulb and the corpus callosum
with adjacent cingulum (Figure 1c). In total, we
detected 103 unique clonotypes in the COVID-19
specimen and 15 in the control. Patient 8
displayed the highest number of infiltrating
clonotypes, especially in the medulla and
cerebellum (Figure 1c). From these, four
clonotypes were found in multiple brain regions
(Figure 1d). In addition, we detected three
clonotypes that each were shared between two
patient samples or a patient sample and one
control individual (Figure 1e). Notably, these
shared clonotypes were found in differing brain
regions (Figure 1e). All clonotype information
including CDR3 amino acid sequence, TRBV(D)J
usage and tissue site is summarised in
Supplementary tables 2 and 3. Comparing the
pan-tissue TRBV gene usage of brain-infiltrating
clones showed a trend towards preferential usage
of TRBV29-1 and TRBV19 compared to control
tissue of non-SARS-CoV-2 infected patients,
indicating a skewed T-cell repertoire, comparable
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Figure 1. TCR Vb sequencing of distinct anatomic brain regions in patients deceased from COVID-19. (a) Schematic overview of brain biopsy

regions of patients who died from severe SARS-CoV-2 virus infections (COVID-19). (b) T-cell receptor Vb (TRB) sequencing from gDNA was

performed on eight locations. (c) Number of brain-infiltrating T-cell receptor (TCR) clonotypes per sample of COVID-19 patients and uninfected

controls. One TCR clonotype is defined by a unique CDR3 nucleotide sequence of the rearranged TRB chain. (d) Total counts of indicated

clonotypes in different brain regions of patient 8. (e) Total counts and location of clonotypes shared between individuals. (f) TRBV gene usage of

brain-infiltrating TCR clones of COVID-19 patients and uninfected controls as a bar plot.

ª 2024 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.
2024 | Vol. 13 | e1487

Page 3

M Mohme et al. SARS-CoV-2-associated T-cell CNS infiltration

 20500068, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cti2.1487 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [19/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



to findings in the peripheral blood of COVID-19
patients (Figure 1f).8

Although minor T-cell infiltrates in the brain
contribute to the maintenance of CNS
homeostasis,11 generally brain-infiltrating T cells
are predominantly associated with inflammation
and pathology. We postulated that the 103
clonotypes identified in all specified brain regions
of the 10 deceased COVID-19 patients may exhibit a
higher abundance of SARS-CoV-2-associated T cells.
To validate our hypothesis, we examined the
presence of these clonotypes in the blood
repertoires of unrelated COVID-19 patients with
active infection (n = 140; median age 49 years,
range 8–85 years, 46% female, 54% male, 740 000
unique TCR clonotypes) and blood samples from
healthy individuals (n = 140; median age 42 years,
range 10–87 years, 49% female, 51% male, 650 000
unique TCR clonotypes) from our previously
published repository.8 We found that the relative
number of exact hits per blood repertoire as well as
the total amount of blood repertoires with an
exact hit was substantially higher for COVID-19
patients when the tested clonotypes were derived
from the olfactory bulb, medulla, cerebellum and
corpus callosum including gyrus cinguli (Figure 2a
and b). Notably, more than half of the clonotypes
derived from these brain regions showed exact hits
in the peripheral repertoires of COVID-19 patients
suggesting that these SARS-CoV-2-associated T cells
have a tissue tropism towards these brain areas
(Figure 2c). To further assess and illustrate these
T-cell clonality patterns, we plotted all
brain-infiltrating T-cell clones according to their
size, TRBV gene usage and brain area (Figure 2d).
These data clearly demonstrate the skewed
distribution of TRBV gene usage among these
clones (Figure 1d). Next, we mined 5609
SARS-CoV-2-reactive TRBV clonotypes deposited in
the VDJdb database for matches to our
brain-derived dataset. While there were no exact
CDR3 matches, we detected a total of 192 similarity
matches when applying Levensthein distance 1 (for
3/192, all brain-derived) or 2 (for 189/192;
Supplementary table 4). Also, in 16/192 cases, the
TRBV gene assignments matched. Most hits in our
COVID-19 cohort were generated from clonotypes
with similarity towards validated SARS-CoV-2 spike
(44%), ORF1ab (21%), NCP (17%) and NSP3 (10%)
reactive T-cell clones (Supplementary table 4).
Notably, sequences related to anti-spike reactivity
were dominant in the medulla and cerebellum
(Supplementary table 4). From the total of 192

matches, 170 matches were generated from 38
unique brain-derived sequences to 156 unique
VDJdb-derived sequences (Supplementary table 4).
From these 38 sequences, eight generated single
matches to verified clonotypes from the database
(Figure 2e). Half of these matches map to
sequences targeting the HLA-A*02:01-restricted
YLQPRTFLL epitope of the spike protein (Figure 2e).
Interestingly, the CATSDLRAGNTGELFF and
CSVEDGAGEKLFF derived from patient 8 also map
to the identical TRBV gene as the verified sequence
(TRBV24-1 and TRBV29-1, respectively; Figure 2e).
In addition, the medulla 2-derived clonotype
CASRPANTGELFF (TRBV27) generates similarity
matches with 20 different clonotypes that target
the YLQPRTFLL epitope of the spike protein in the
HLA-A*02:01 context. Using Levenshtein distance 2,
we also detected 22 hits generated by six unique
clonotypes from the control samples. From these 22
hits, one clonotype accounts for 14 hits with
clonotypes that target five different SARS-CoV-2
epitopes arguing for the non-specificity of the
findings.

Morphological assessment of distinct brain
regions for reactive and inflammatory
changes

To better understand the phenotype of
COVID-19-related T-cell infiltration and to analyse
whether different T-cell subsets (i.e. CD4+ or CD8+)
distinctively infiltrate in different brain regions, we
performed immunohistochemical analysis
for the most prevalent immune cell populations,
including, CD4+, CD8+ T cells and CD68+

microglia/macrophages (Figure 3). As a whole, CD4+

T lymphocytes were only very scarce, while both
CD8+ T lymphocytes and activated microglia could
be found mostly in the white matter of the lower
brainstem, a finding we have described
previously10 (Figure 3a and b). Both CD4+ and CD8+

T lymphocytes were more frequently situated in
the perivascular spaces (Figure 3). The more
prevalent CD8+ T-cell infiltration is in line with a
virus-specific immune response with CD8+ cytotoxic
T cells. Microglia nodules, which indicate an
inflammatory response and microglia activation,
were mainly seen in the analysed regions of the
brainstem (Figure 3a and b). The degree of reactive
astrogliosis as reflected by immunohistochemistry
for glial fibrillary acidic protein (GFAP) tended to
be more pronounced in the white matter when
compared with the grey matter – a finding which

2024 | Vol. 13 | e1487

Page 4

ª 2024 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

SARS-CoV-2-associated T-cell CNS infiltration M Mohme et al.

 20500068, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cti2.1487 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [19/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(d)

(e)

TRBV19
TRBV29−1
TRBV12−3
TRBV27
TRBV11−1

TRBV4−3
TRBV15

TRBV5−5

TRBV6−2

other

TRBV6−6

TRBV6−3

TRBV18
TRBV30
TRBV7−9

TRBV10−3
TRBV20−1
TRBV28

Frontal cortex Olfactory bulb Hippocampus

Basal ganglia Medulla 1 Medulla 2

Cerebellum Corpus callosum + gyrus cinguli

Control brain 1

Unique similiarty matches of brain-derived TCR sequences to TCR sequences with verified SARS-CoV-2 specificity

Control brain 2

(a)

0.0

0.2

0.4

0.6

m
ea

n 
no

. o
f h

its
pe

r r
ep

er
to

ire

CDR3 hits of brain-derived clonotypes
per blood repertoire

COVID-19
Control

Fron
tal

 co
rte

x

Olfa
cto

ry 
bu

lb

Hipp
oc

am
pu

s

Bas
al 

ga
ng

lia

Med
ull

a 1

Med
ull

a 2

Cere
be

llu
m

Corp
us

 ca
llo

su
m

+ g
yru

s c
ing

uli

(b)

0

10

20

30

40

Number of blood repertoires with
brain-derived clonotypes

N
o 

of
 re

pe
rto

ire
s 

w
ith

 h
its

COVID-19
Control

Fron
tal

 co
rte

x

Olfa
cto

ry 
bu

lb

Hipp
oc

am
pu

s

Bas
al 

ga
ng

lia

Med
ull

a 1

Med
ull

a 2

Cere
be

llu
m

Corp
us

 ca
llo

su
m

+ g
yru

s c
ing

uli

(c)

Fron
tal

 co
rte

x

Olfa
cto

ry 
bu

lb

Hipp
oc

am
pu

s

Bas
al 

ga
ng

lia

Med
ull

a 1

Med
ull

a 2

Cere
be

llu
m

Corp
us

 ca
llo

su
m

+ g
yru

s c
ing

uli

0

20

40

60

80

%
 o

f b
ra

in
 c

lo
ne

s

COVID-19
Control

Fraction of brain-infiltrating clonotypes with
hits in blood repertoires

****
****

****
****

*

Chi2

p = 0.0007
V19

V27

V27

V27

V27

V27

V12-3

V12-3

V29-1

V29-1

V10-3 V10-3

V18

V20-1 V20-1 V28

V30

V28

V10-3
V10-3

V10-3

V10-3

V29-1

V29-1

V29-1V6-2

V6-2

V29-1
V6-6

V6-3 V6-6V4-3

V29-1

V19

V19

V19

V19 V19
V15

V19

V19

V19

V19

V19

V29-1

V29-1

V10-3

Figure 2. Representation of brain T-cell clones from deceased COVID-19 patients across different brain regions. (a–c) Search of brain-infiltrating

clones (n = 103 clones in total) derived from deceased COVID-19 patients (n = 10 patients) in blood repertoires of unrelated COVID-19 patients

with acute infection (n = 140) or in blood of healthy controls (n = 140).8 The set of 103 brain-infiltrating clones derived from deceased

COVID-19 patients was divided into eight sets of clones according to the brain area where the clone was detected: Frontal cortex (n = 9),

olfactory bulb (n = 18), hippocampus (n = 6), basal ganglia (n = 11), medulla 1 (n = 17), medulla 2 (n = 18), cerebellum (n = 14), corpus

callosum and gyrus cinguli (n = 10). A hit is considered a TCR clone with an identical CDR3 amino acid sequence of the rearranged TRB chain.

(a) Mean hits per repertoire. Error bars represent SEM. * and **** indicate P-values < 0.05 and < 0.0001, two-way ANOVA. (b) Number of

blood TCR repertoires which contained at least one of the brain-infiltrating clones of the corresponding set. (c) Percentage of brain-infiltrating

clones derived from deceased COVID-19 patients which were found in at least one blood TCR repertoire of unrelated COVID-19 patients or

healthy controls. (d) Bubble plots of brain-infiltrating TRB clones derived from 10 deceased COVID-19 patients grouped by brain area of origin.

Brain repertoires of two uninfected control patients are shown as a comparison. One bubble represents one clone, which is defined by a unique

CDR3 nucleotide sequence of the TRB chain. The area size of the bubbles corresponds to the clonal fraction within the repertoires. TRBV genes

are coded by fill colour. (e) Listing of brain-derived clonotypes that showed unique similarity matches (based on indicated Levenshtein distance)

to CDR3 sequences derived from the VDJdb database with verified SARS-CoV-2-reactive TCRs (n = 5609).
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Figure 3. Histopathological and immunohistochemical analysis of different brain regions from COVID-19 deceased patients. (a) Haematoxylin &

eosin- (HE) and Kluever stainings to assess general morphology and myelination status (first two columns). The remaining 5 columns show the

results of the immunohistochemistry for GFAP, CD4+ and CD8+ T cells, MHC class II expression (HLA-DR) and microglia/macrophage infiltration

(CD68) to assess the degree of immune infiltration and local neuroinflammation. In comparison with the hindbrain, reactive astrogliosis was more

pronounced in the forebrain. Generally, perivascular CD4+ cells were very sparse, while both perivascular and parenchymal CD8+ cells were seen

more frequently, especially in the medulla oblongata. The degree of microgliosis varied both between patients and regions, changing between

diffuse patterns and microglial nodules (see HLA-DR of upper medulla and corpus callosum, as well as CD68 of lower medulla). (b) Subsequent

semiquantitative analysis of immune cell infiltration and astrogliosis in grey and white matter. For statistical testing, ANOVA was used.
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parallels the experience from daily
neuropathological diagnostic work and which we
have demonstrated to be present in COVID-19
patients and controls (Figure 3 and Supplementary
figure 1).10 When looking only at grey matter, the
allo- and isocortex as well as the central grey
matter appeared to be more gliotic compared to
the hindbrain. Small foci of demyelinisation
were rare.

DISCUSSION

SARS-CoV-2, the virus responsible for the COVID-19
pandemic, primarily affects the respiratory system.
However, there is increasing evidence that the
virus also leads to neuroinflammation causing
neurological symptoms such as headache, cognitive
disturbances and even more severe symptoms such
as seizures, encephalitis and stroke.4,12

Several high-quality autopsy-based studies of
patients who succumbed to severe SARS-CoV-2
infections led to the concept of vascular damage
and subsequent perivascular inflammation with
disruption of the blood–brain barrier as the
favoured explanation for the neurologic symptoms
associated with SARS-CoV-2 infection.13,14 Two
studies so far reported conflicting results with
potential evidence of direct neuronal infection of
the virus.15,16 However, overt signs of diffuse
encephalitis were missing highlighted by the
absence of deeper brain parenchyma infiltrating
T- and other inflammatory cells, questioning the
validity of these findings.17–19 The latest research
rather points towards an infection of non-neuronal
cells.20

In concordance with the finding of endothelial
damage found in other organs,21 most studies
support endothelitis with subsequent microglial
activation and T-cell infiltration caused either
directly by endothelial SARS-CoV-2 infection or
indirectly by paracrine effects of inflammatory
cytokines on the endothelium as a uniform sign of
neuroinflammation in COVID-19.19,22,23 However, it
is important to note that the role of these CNS
infiltrating T cells is not yet fully understood and so
far, no SARS-CoV-2-specific T cells were confirmed
in the CNS of COVID-19 patients.

Although an adaptive T-cell response is essential
to control and clear viral infections, it can also
initiate and maintain chronic inflammation.24

Therefore, it is currently unclear whether the
infiltration of SARS-CoV-2-specific T cells in
the perivascular compartment of the brain is a

cause or a consequence of a severe SARS-CoV-2
infection leading to the observed associated
neurological symptoms. Another aspect that needs
to be considered in the future is the potential
cross-reactivity of virus-specific T-cell activation. In
autoimmune diseases, such as multiple sclerosis, a
transient increase of Epstein–Barr virus (EBV)
antibody titres was associated with a higher risk
for a disease onset, indicating that misguided
T-cell reactivity could be initiated as a result of
temporary viral infections. This concept was
initially described as ‘molecular mimicry’.25 Our
detection of SARS-CoV-2-associated T-cell
clonotypes in the brain of severely infected
patients therefore points to either ongoing
SARS-CoV-2 antigen presentation, persistent
infiltration of formerly activated virus-specific
T cells or, in rare circumstances, the recognition
of a potential molecular mimicry antigen. It
should be noted that the here reported
enrichment patterns of shared TCR sequences
originating from different COVID-19 patients as
well as detected sequence similarity matches
with experimentally validated T-cell clonotypes
from public repository not unambiguously
indicate specificity for SARS-CoV-2 antigens.
While TCR sequences can converge to different
CDR3 motifs when targeting the same antigen,
single amino acid variations in otherwise
identical CDR3 sequences often alter – also
dependent on the topological position –
binding specificities completely.26 These TCRs
require further functional validation. In
addition, our study is limited by the scarcity of
‘healthy’ controls because of the
heterogeneous nature of autopsy patients and
by the concurrent neurological diseases in
available post-mortem donors.

In conclusion, given the tremendous number of
people infected with SARS-CoV-2 worldwide, with
potential long-term sequelae of concomitant
neuroinflammation, the role of CNS-infiltrating
and bona-fide virus-specific T cells represents an
important area for future research. With the
application of a not yet employed methodology,
our study provides strong evidence for
SARS-CoV-2-specific T-cell infiltration into the
brain in response to infection with the virus.
Nevertheless, the small cohort size and thus a
relatively small number of recovered clonotypes
together with a lack of HLA typing requires
confirmation of SARS-CoV-2 specificity in future
studies. Although the precise role of T cells in
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COVID-19-associated neurological symptoms is
not fully understood, future studies should aim
to elucidate the mechanisms of reactive
neuroinflammation in relation to virus-specific
T-cell infiltration during viral infections, the risk of
CNS autoimmunity and the relationship between
T-cell infiltration and neurological symptoms in
patients with COVID-19. This will help to better
define the neuropathological consequences of
COVID-19 and their potential long-term impacts
on patients’ cognitive and mental health.

METHODS

Study population

We analysed 10 patients who died from direct sequelae of a
SARS-CoV-2 infection from 03/2020 to 09/2020 using TCR
sequencing. An additional eight patients were analysed
immunohistochemically. Patients were presumably infected
with the SARS-CoV-2 D614G variant, which was the most
prevalent strain in the first wave in Germany.27 All patients
had confirmed SARS-CoV-2 infection by throat swab
followed by immediate quantitative RT-PCR analysis
prior to autopsy. Autopsies were performed according to
§ 25 of the German Infection Protection Law (IfSchG).
Two non-COVID-19 patients who died from other,
non-neurological diseases were used as controls. The use of
human tissue for post-mortem studies has been approved by
the institutional review board of the independent ethics
committee of the Hamburg Chamber of Physicians (PV7311
and 2020-10 353-BO-ff). The study complied with the tenets
of the Declaration of Helsinki.

Tissue sampling and histopathological
evaluation

In the federal state of Hamburg, Germany, all persons who died
as a result of or with an infection of SARS-CoV-2 during the
period from 03/2020 to 12/2020 underwent full autopsy at the
Institute of Legal Medicine of the University Medical Centre of
Hamburg-Eppendorf (UKE). After removal during autopsy,
brains were fixed in buffered 4% formaldehyde, examined
macroscopically and subsequently underwent extensive
neuropathological workup at the Institute of Neuropathology
of the UKE. Formalin-fixed paraffin-embedded tissue samples
from the superior frontal gyrus, hippocampus, basal ganglia,
corpus callosum with adjacent cingulum, upper and lower
medulla oblongata and cerebellar hemisphere (Figure 1a) were
processed and stained with haematoxylin and eosin following
standard laboratory procedures. For the integrity assessment of
the myelin sheaths, Kluever’s stain was performed.
Furthermore, immunohistochemistry with antibodies to human
glial fibrillary acidic protein (GFAP; 1:200, clone 6F2; Agilent,
Santa Clara, USA), human leukocyte antigen DR, (HLA-DP, DQ
and DR; 1:200, mouse clone CR3/43; Agilent), cluster of
differentiation 68 (CD68; 1:100, clone PG-M1, Agilent) and
human cluster of differentiation 8 (CD8; 1:100, clone SP239,
Spring Bioscience, Pleasanton, USA) was performed on a

Ventana benchmark XT autostainer following the
manufacturer’s recommendations. The quality of the
immunohistochemical stains was assessed by on-slide positive
controls for all antibodies. The degree of astrogliosis and
microgliosis was quantified using a four-tiered semiquantitative
approach for GFAP and HLA DR (none, slight, moderate and
severe). For quantitative assessment of infiltration with CD8+

and CD4+ lymphocytes, positively stained cells were counted
per 0.5 mm2 (HPF). Infiltration was categorised as none, mild
(1–9 cells per HPF), moderate (10–49 cells per HPF), or severe
(≥ 50 cells per HPF). In addition, genomic DNA was isolated for
TCR Vb sequencing using standard protocols.

TCR Vb sequencing

The T-cell receptor (TCR) repertoire of brain-infiltrating
T cells was assessed using next-generation sequencing (NGS)
of the TRB genetic locus. In brief, genetic loci were amplified
together in a multiplex PCR using TRB-A/B primer pools and
500 ng of genomic DNA.28 The primers were purchased from
Metabion International AG (Martinsried, Germany). Two
consecutive PCRs were performed to generate fragments
tagged with illumina-compatible adapters for hybridisation
to the flow cell and 7 nucleotide barcodes for sample
identification. All PCRs were performed using Phusion HS II
(Thermo Fisher Scientific Inc., Darmstadt, Germany). After gel
electrophoretic separation, amplicons were purified using
the ‘NucleoSpin’ Gel and PCR Clean-up kit (Macherey-Nagel,
D€uren, Germany), quantified on the Qubit platform
(QIAGEN, Hilden, Germany) and pooled to a final
concentration of 4 nM. The quality of the amplicon pools
was controlled on an Agilent 2100 Bioanalyzer (Agilent
Technologies, B€oblingen, Germany) before undergoing NGS
on an Illumina MiSeq (paired-end, 2 9301-cycles). Samples
were sequenced at an average sequencing depth of 56 000
reads. Annotation of TRB loci rearrangements was computed
with the MiXCR framework (3.0.8).29 As a reference for
sequence alignment, the default MiXCR library was used.
Non-productive reads and sequences with fewer than 2 read
counts were not considered for further analysis. Each unique
complementarity-determining region 3 (CDR3) nucleotide
sequence was defined as one clone.

Brain-derived clones were searched based on exact CDR3
amino acid sequence identity in 140 blood T-cell repertoires
from uninfected controls or 140 repertoires from patients
with active COVID-19 using R version 3.6.3. Bubble plots
were computed using R packages packcircles and ggplot2.

Statistical analysis

Data were analysed using R version 3.6.3 and the packages tcR,
ade4 and tidyverse (tidyverse.org).30,31 Graphs were plotted
using Adobe Illustrator 2023 and GraphPad Prism 9.5.1.
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