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Kurzfassung

Trotz großer wissenschaftlicher Anstrengungen auf dem Gebiet der Kohlenstoff

freien Wasserstofferzeugung werden Kohlenwasserstoffe auch mittelfristig ein wich-

tiger Rohstoff für die industrielle Wasserstofferzeugung bleiben. Um den energetis-

chen und umwelttechnischen Herausforderungen des 21. Jahrhunderts erfolgreich

zu begegnen, ist es notwendig die Prozesskette der Kohlenwasserstoff basierten H2-

Herstellung so effektiv wie möglich zu gestalten.

Wasserstoff reiches Gas, hergestellt durch Reformierung oder Biomassevergasung,

enthält eine signifikante Menge an CO. Es findet Verwendung in chemischen Synthe-

seprozessen und in der Energieerzeugung. In aller Regel wird dieses Reformatgas in

mehreren Reinigungs- und Separationsschritten aufbereitet, bevor es in dem jeweili-

gen finalen Prozess eingesetzt wird. Jede technisch sinnvolle Vereinfachung dieser

Gasaufbereitung erhöht die Effizienz, reduziert die Komplexität und verringert die

Zahl der benötigten Prozesseinheiten der gesamten Prozesskette.

In der hier vorgestellten Arbeit werden zwei Ansätze verfolgt um die oben erwäh-

nte Kohlenwasserstoff basierte H2-Prozesskette zu verbessern. Zum einen wurde

ein finaler H2 konsumierender Prozess adressiert, indem die CO-Verträglichkeit

eines autonom arbeitenden Reaktors zur Erzeugung von elektrischem Strom erhöht

wurde. Zum anderen wurde ein neues Reaktorkonzept, welches die Wassergas-

Shift-Reaktion und die Wasserstoffseparation in einem Prozessschritt vereint, für

die Aufbereitung von Reformatgas entwickelt und charakterisiert. Beide Ansätze

wurden mit Hilfe eines elektrochemischen Membranreaktors realisiert, welcher in

einem Temperaturbereich zwischen 383K und 473K betrieben werden kann.

Während des autonomen Betriebs als Energieerzeuger wurde der Reaktor als Hoch-

temperatur - Polymerelektrolytmembran - Brennstoffzelle (HT-PEMFC) betrieben.

Hierbei wurde in der HT-PEMFC eine Platin-Ruthenium Legierung als Anoden-

katalysator eingesetzt, anstelle des gewöhnlich verwendeten reinen Platins. Die

CO-Verträglichkeitserhöhung der HT-PEMFC als Folge des veränderten Anoden-

katalysators wurde untersucht. Die Experimente wurden im Temperaturbereich

zwischen 403K und 443K mit CO Konzentrationen von 0 bis 6.5% im H2 Edukt-

gas durchgeführt. Die eingesetzte Anodenkatalysatorlegierung reduzierte deutlich

den negativen Einfluss von CO auf die Zellspannung, wobei die bekannte temper-
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aturabhängige Verringerung des CO-Einflusses in HT-PEMFCs übertroffen wurde.

Es wurde gezeigt, das der Spannungsverlust auf Grund von CO in HT-PEMFCs

mit PtRu als Anodenkatalysator kleiner ausfiel als bei gleichartig angefertigten

HT-PEMFCs mit Pt als Anodenkatalysator. Weiterhin führte die PtRu Anode,

im Vergleich zur konventionellen Pt Anode, zu einem geringeren Spannungsüber-

schwingen nach einer Lasterhöhung.

Das neuartige Reaktorkonzept, welches elektrische Energie für die Reformatauf-

bereitung benötigt, kann, bezugnehmend auf die ablaufende Reaktion, als elektro-

chemischer Wassergas-Shift-Reaktor (EWGSR) bezeichnet werden. Im EWGSR

wird die Wassergas-Shift-Reaktion und die Abtrennung von Wasserstoff auf elektro-

chemischen Weg mit Hilfe von elektrischer Energie in einem Prozessschritt vereint.

Der EWGSR verwendet die gleiche Membran - Elektroden - Anordnung wie die

HT-PEMFC. Der Reaktor wurde bei 403K und 423K mit befeuchtetem CO und

N2, und bei 393K und 403K mit befeuchteten Gasgemischen aus H2, CO und N2

betrieben. Die experimentellen Ergebnisse zeigen, dass die H2-Erzeugung an der

Kathode nach dem Faradayschen Gesetz abläuft und bewiesen die Anwendbarkeit

des EWGSR - Konzeptes. Anodisches PtRu führte zu einem geringeren elektrischen

Leistungsbedarf als Pt. Der H2 freie Betrieb bei tieferen Temperaturen führte zu

einer Verringerung des elektrischen Leistungsbedarfs, während die Menge an kath-

odenseitig generiertem H2 nicht beeinflusst wurde. Die experimentellen Ergebnisse

zeigen den Einfluss von verschiedenen Betriebsparametern auf die EWGSR Charak-

teristika, wie Zellspannung, elektrochemische CO Oxidation, oder den elektrischen

Energieverbrauch des Reaktors.

Mit Hilfe einer Exergieanalyse wurde die Anwendbarkeit des EWGSRs bewertet

und das Konzept mit Alternativprozessen verglichen. Die gesammelten Ergebnisse

weisen darauf hin, dass die Betriebsbedingungen des EWGSRs sorgfältig gewählt

werden müssen, um seinen Wirkungsgrad über den der ausgewählten, den Stand

der Technik repräsentierenden, Prozessrouten zu heben. Zusätzlich zeigte die Ex-

ergieanalyse vielversprechende Verbesserungspotentiale des EWGSRs auf und iden-

tifizierte Ansätze für eine Optimierung des Reaktorbetriebs, um hohe Wirkungs-

grade zu erzielen.



Abstract

Despite the enormous research efforts concerning the generation of hydrogen outside

the carbon cycle, hydrocarbons will remain to be most likely a major feedstock for

hydrogen generation processes in our midterm future. In order tackle the energetic

and environmental challenges of the 21st century, the improvement potential within

this process chain, from the generation to the utilisation of this hydrocarbon based

hydrogen, needs to be utilised effectively.

Hydrogen rich gas, originating from reforming processes or biomass gasification

contains a significant amount of CO and is used within chemical synthesis processes

and electrical energy generation processes. Generally, this reformat gas undergoes

several purification and cleaning steps before it is used within the aimed for final

processes. Every technical feasible simplification of this gas processing increases

the efficiency, decreases the complexity and lowers the process unit count of the

whole process chain.

Two basic principles were followed within the here presented thesis to improve the

above mentioned hydrocarbon based process chain. On the one hand, the final

hydrogen rich gas utilisation step was addressed by improving the CO tolerance

of an autonomous operating electrical power generating reactor. On the other

hand, a novel reformat gas processing reactor concept, combining the water gas

shift reaction & hydrogen separation step into one process unit, was developed and

characterised. Both approaches were realised with one electrochemical membrane

reactor, able to operate in a temperature range between 383K and 473K .

While operating autonomously as electrical power generating unit, the reactor func-

tioned as a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC).

Here, the HT-PEMFC was equipped with a carbon supported platinum-ruthenium

alloy as anode catalyst, instead of the generally used pure platinum on carbon cat-

alysts. The CO tolerance improvement of the HT-PEMFC due to different anode

catalysts was investigated. The experiments were carried out at temperatures bet-

ween 403K and 443K with a CO concentration in the H2 feed gas between 0 and

6.5 vol%. The alloy anode catalyst lowered significantly the negative influence of

CO upon the cell voltage, exceeding the known temperature dependent CO influ-

ence reduction in HT-PEMFCs. It was found that the CO induced voltage loss
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of the HT-PEMFC with PtRu anode catalyst was lower than similarly prepared

HT-PEMFCs equipped with Pt anode. Furthermore, the PtRu bimetallic anode

electrode was found to lower the voltage overshoot after a load increase, if com-

pared to conventional Pt anode.

The novel reformat gas processing reactor was operated in driven mode and was

called, according to the occurring reaction, electrochemical water gas shift reactor

(EWGSR). Within the EWGSR, the water gas shift reaction and the separation

of hydrogen is realised electrochemically in one process step by using electrical en-

ergy. The EWGSR utilises the similar membrane electrode assembly as was used

for the HT-PEMFC operation. The reactor was operated at 403K and 423K with

humidified CO and N2 and at 393K and 403K with humidified H2,CO and N2 gas

mixtures. The experimental results show that H2 was generated at the cathode

according to Faraday’s Law and proved the concept’s feasibility. Anodic PtRu led

to lower electrical power demands than Pt. The H2 free operation at a lower tem-

perature resulted in a lower electrical power demand, while an equal amount of

cathodic H2 was generated. The experimental results show the influence of several

operation parameters upon the EWGSR characteristics, like the cell voltage, the

electrochemical CO oxidation, or the electrical energy demand of the reactor.

The feasibility of the EWGSR was assessed and compared to alternative processes

using exergy efficiency analysis. The collected results indicate that the operation

conditions of the EWGSR need to be carefully selected to realise higher efficiencies

than the selected state - of - the - art process routes. The exergy analysis revealed,

additionally, a promising improvement potential of the EWGSR and pointed to

optimisation pathways of its operation to reach the strived for high efficiencies.



Chapter 1

Introduction

In the 21st century, humanity awaits major challenges concerning the preservation

and improvement of living conditions. Keywords like climate change, peak oil,

water shortage and Fukoshima/Tschernobyl stand for some of the major tasks of

humankind, and illustrate the necessity of determined research and development in

every field of science and technology.

The presence of the global warming was generally accepted in the 1970s [1–3].

However, not until 2010 a first international consents to limit the global temperature

increase to 2K (with respect to the pre-industrial level) was negotiated at the UN

climate conference in Cancum [4]. In order to succeed, significant reductions of

the green house gas CO2 emissions in the industrial and energy sectors world wide

are necessary. Furthermore, the main precursors of CO2 and simultaneously major

feed-stocks of current energetic and industrial processes, the fossil resources, are

limited [5], which dictates a highly efficient and sustainable consumption of these

substances.

In the course of these enormous challenges and the Fukoshima catastrophe, the

federal government of Germany defined in the summer of 2011 a strategy roadmap

for the transition of the energy generation sector from carbon and nuclear based

power generation to power generation from renewable sources [6]. However, the

realisation of this ambitious goal requires an energy carrier and energy storage al-

ternative to fossil fuels, which can be generated from renewable sources.

Hydrogen is up to date the most promising candidate to enable this energy transi-

tion, as it can be generated from renewable sources [7–9], as well as from fossil fuels

[10–12]. The possibility of hydrogen generation from fossil fuels is, with respect to

the required flexible transition to the carbon neutral energy economy, highly im-

portant. It enables the temporary compensation of missing sustainable hydrogen

generation facilities and, thus, supports the marked introduction of hydrogen based

energy systems, independent from the respective hydrogen generation technology.

The European Hydrogen Roadmap follows this flexible transition approach, as it
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defines time related milestones for a stepwise reduction of fossil fuels within the

hydrogen generation until 2050 [13].

Within the framework of the upcoming industrial and energetic transition pro-

cess, the here presented project aims to contribute to the development of highly

efficient technologies for the utilisation and generation of hydrogen from carbohy-

drates. Such technologies reduce the environmental footprint of the current fossil

fuel based hydrogen generation processes and enable the utilisation of carbon neu-

tral hydrogen from biomass in the future.

The project examined a dual electrochemical reactor concept which allows for ei-

ther (i) the electrical power generation from highly carbon monoxide contaminated

hydrogen gas, or for (ii) the generation of pure hydrogen from hydrogen and car-

bon monoxide containing gas mixtures within one process step. The goal was (i) to

demonstrate the reactor concept feasibility, (ii) to characterise the processes domi-

nating the reactor operation behaviour, and (iii) to identify possibilities to enhance

the operation efficiency. This was realised (i) by the development of a feasible

reactor design, (ii) by alternating design- and operation parameter of the reactor

within various experiments, and (iii) by the application of an exergy based analysis

using experimentally obtained data and literature resources.

The following chapters introduce briefly the fundamentals and related processes

of this project, the reactors concept and its operation characteristics during both

operation modes. Furthermore, the reactor operation is experimentally evaluated

and compared to alternative processes.

”The fact remains that, if the supply of energy failed, mod-

ern civilization would come to an end as abruptly as does the

music of an organ deprived of wind. [But] ... the still unrec-

ognized ’energy problem’ ... awaits the future.”

Frederick Soddy - Matter and Energy (1912), p 251.



Chapter 2

Hydrogen and Electrochemical Membrane

Reactors

Within the ongoing debate about the future of sustainable energy generation (So-

lar, Wind, Biomass etc.), large scale storage of energy constitutes a major issue

which needs to be solved. In this context, H2 is the most prominent substance to

enable the renunciation from the CO2 generating energy conversion process chains.

Furthermore, H2 is an important feedstock for the chemical industries. It is re-

quired among others in high purity for hydrogenation reactions or for the ammonia

synthesis [14, 15]. On the other hand, as part of synthesis gas (H2 + CO) H2 is

required for the production of organic compounds like methanol, methane or long-

chain hydrocarbons via the Fischer-Tropsch process [16–19].

The generation of H2 and its conversion into electrical energy requires highly ef-

ficient processes to allow for a feasible chain of technical and economical value

within the prospect of a future H2 economy. New reactor concepts, which inte-

grate two or more process steps into one process, are sought after with the goal to

increase the efficiency of processes and possibly to reduce the capital investment

costs. In comparison to common tubular or batch reactors with fixed of fluidised

beds, electrochemical membrane reactors provide different reaction conditions and

properties, which might have the potential to enhance the efficiency of the H2 gen-

eration and utilisation process chain.

In the following chapters, state of the art H2 generation processes are briefly in-

troduced (chapter 2.1), followed by an overview about the basic properties of elec-

trochemical membrane reactors (chapter 2.2). Furthermore, a brief overview about

the application concepts of electrochemical membrane reactors for the processing

and utilisation of H2 + CO gas mixtures is presented (chapter 2.3).
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2.1 State of the Art H2 Generation

Many different pathways are available today to obtain molecular H2 [7]. All H2

generation methods can be classified based upon the utilised H2 source into two

groups. Conventional technologies are based on reforming processes which convert

hydrocarbons (methane, biomass, oil, coal, etc.) into gas mixtures of H2, CO, CO2,

and others [10, 20, 21]. Subsequent to the reforming process, H2 is extracted and

purified from these reformat gas mixtures by means of several downstream process

units.

On the other hand, H2 can be generated by splitting H2O, without generating CO

or CO2 as side products. The electrolysis is technically well developed and utilises

electrical energy to split H2O in an electrochemical reaction [22]. Here, systems with

different electrolytes are available, employing alkaline electrolytes [23], polymer

membrane electrolytes [24], or solid oxide electrolytes [25]. Depending upon the

type of electrolyte, different catalysts and operation temperatures are required,

which make the systems suitable for different applications.

Technically feasible alternatives to H2O splitting via electrolysis are thermochemical

cycles, which enable the splitting of H2O by utilising cyclic reaction pathways driven

by heat energy [26–28]. Here, solar heat sources as well as nuclear heat sources are

under investigation.

Figure 2.1.: Main H2 sources with respect to their share of the worlds H2 pro-
duction [29].

As shown in figure 2.1, the major H2 fraction produced world wide originates from

carbohydrate reforming processes. The steam reforming of natural gas contributes

the largest share of about 46% to the world’s hydrogen production. On the other

hand, the electrolysis of H2O provides only about 4% of the annual generated H2.

The main reactions of the hydrocarbon steam reforming are presented in the equa-

tions 2.1-2.3 [10]. Here, equation 2.1 represents the steam reforming reaction of
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methane, which is highly endothermic and is carried out at temperatures of about

970-1100K [29]. The reforming reaction of long-chain hydrocarbons is also highly

endothermic (equation 2.2), whereas the conversion of CO to CO2 (water gas shift

reaction), shown in equation 2.3, is slightly exothermic.

CH4 + H2O −→ CO + 3 H2 ∆RH ≫ 0 (2.1)

CnHm + n H2O −→ n CO + (m+2n)/2 H2 ∆RH ≫ 0 (2.2)

CO + H2O −→ CO2 + H2 ∆RH < 0 (2.3)

Carbon monoxide is only partially converted into CO2 within a steam reforming re-

actor (equation 2.3), as, according to the thermodynamics of the reaction (principle

of Le Chatelier), its high operation temperatures only allow for a partial turnover

within this exothermic reaction. The product gas of methane steam reforming con-

tains about 10-13mol% CO [15].

Consequently, several downstream process units (e.g. water gas shift reactors,

PrOx reactors, membrane separators, etc.) are required after the reforming reac-

tor to generate pure H2 from the reformat gas [30]. The water gas shift reaction

(equation 2.3) is usually conducted subsequently at two temperature levels, the high

temperature (HT) shift reaction and low temperature (LT) shift reaction. The HT

shift reaction is typically conducted within the temperature range of 623-773K and

the exit gas contains about 3-4% CO. Subsequently, the gas is cooled down and

fed to the LT shift reactor, which operates at about 473K and enables effluent CO

concentrations of about 0.2-0.5% [31]. More information about the characteristics

of the water gas shift reaction, the applied catalysts and reactor setup can be found

within the available literature, e.g. [32–36].

In order to achieve a high purity level, H2 is separated from the remaining gas

components (e.g. CO2, CO, etc.) after the water gas shift units. Here, pressure

swing adsorption (PSA) and membrane separation (MemSep) are the most promi-

nent separation methods [15, 37].

The PSA is currently the state of the art process to separate large quantities of H2

from process gas [14]. The separation method is based on the adsorption behaviour

deviations of species on specific substrates. Substances with a high volatility and

low polarity (e.g. H2) exhibit, in dependence upon the applied adsorbent, a lower

adsorption tendency than polar molecules (e.g. hydrocarbons, CO, CO2, H2O)

[38]. The adsorption step is carried out at pressures of several bars, to support

the species adsorption. The process is conducted within several columns (mini-

mal 4 columns) which are filled with the respective adsorbent. These columns are

operated in an alternating manner, where the single operation steps are (i) ad-
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sorption, (ii) pressure release, (iii) regeneration and (iv) pressurisation. Pure H2

is gained during the adsorption step as it flows through the separation unit with-

out adsorbent interaction. The whole process is operated auto-thermally, since the

exothermic adsorption balances the endothermic desorption [14, 38, 39].

A further well established separation method for gas mixtures is the MemSep

[14, 40]. Here, a gas mixture is fed under high pressure into a gas compart-

ment, which is separated from a low pressure compartment by a membrane. This

membrane possesses a permselectivity for one of the gas components (e.g. H2).

Consequently, the respective gas component, driven by the pressure difference,

penetrates the membrane to the low pressure side of the separation unit. Possi-

ble transport mechanism through the membranes are Knudsen diffusion, molecular

sieving, solution-diffusion, and surface diffusion. Four types of membrane mate-

rials are employed within H2 separation units, being metallic, polymer, carbon,

and ceramic based materials [40–42]. Metallic thin film Pd based membranes are

mostly employed for H2 MemSep. Here, H2 is transported via the solution-diffusion

mechanism (atomic H diffusion) through the membrane.

Independent from the H2 purification pathway, all introduced options based on

hydrocarbons require several downstream process units after the reforming step.

This is accompanied by significant complexity of the H2 plant. This influences not

only the process efficiency, but also the investment and maintenance costs of the

process.

Consequently, new reactor concepts are required to decrease the system’s com-

plexity and increase the system’s flexibility, while at best improving the product

quality.

2.2 Electrochemical Membrane Reactors

Electrochemical membrane reactors (EMR) possess an ion conducting membrane,

which is usually conductive for only one ionic specie. This electrolyte membrane is

most of the times impermeable for non-charged species and separates the reactor

into two compartments. Electrodes, attached to both sides of the membrane enable

locally separated oxidation and reduction reactions. These electrodes are, in most

of the cases, connected to an external electrical circuit, which enables an electron

transfer from the reactor anode to the reactor cathode. Consequently, EMRs are

electrochemical cells with immobilised electrolytes. The two compartment setup

of the EMR results in non-mixed educt feed streams, as anode and cathode are

supplied with educts separately. The principle setup of a EMR is shown in figure 2.2,

where AB and C2 represent educt species. The exchangeable charged specie An∗
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is displayed with a universal charge, where ”n” accounts for charge number and

”*” is a wildcard symbol for the either positive or negative charge. The electrical

circuit is the pathway for the electron transfer between the electrodes, whereas the

transfer direction depends upon the charge nature of An∗.

Figure 2.2.: Principle setup of an electrochemical membrane reactor.

The operation of EMRs is always connected with an electron flow between the anode

and cathode electrodes and a characteristic polarisation curve (i.e. current-voltage

dependence). Electrons are generated and consumed by the desired electrochemical

reactions at the respective electrodes. The driving force of the desired electrochem-

ical reactions within EMRs are electrochemical potential differences between the

anode and cathode electrode. These can occur autonomously if the system is not

in electrochemical equilibrium. This appears if the surface species/electrolyte po-

tential difference (electrochemical double layer potential) at both electrodes differ

from each other. This difference can either be caused by the redox potential of the

anodic and cathodic species (i.e. galvanic cell) or by different surface concentra-

tions of the same specie at the anode and cathode (i.e. concentration cell).

In the case that the desired electrochemical reaction exhibits a negative free Gibbs

enthalpy and the resulting potential difference between the electrodes is not high

enough to overcome its activation losses, an external power source can be used to

polarise the electrodes beyond the equilibrium between the electrodes. This drives

the respective reactions by ”pumping” the participating species from the anode to

the cathode. Reactions which exhibit a positive Gibbs free energy (e.g. H2O split-

ting), i.e. reactions which are driven contrary to the spontaneous reaction direction

of the involved species, are named electrolysis reactions and require the imposition

of the required electrode potential difference with the help of an external electri-

cal power source. Generally, the autonomous EMR operation generates electrical

power (e.g. fuel cell), whereas the driven EMR operation consumes electrical power.
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The current voltage behaviour during all three operation modes (electrolysis, ion

pump, autonomous) is shown in figure 2.3. It shows the qualitative polarisation

curve of an electrochemical cell, separated into sections which characterise the

three discussed operation modes.

The majority of electrolytes of EMRs, applied in the area of hydrogen processing,

Figure 2.3.: Exemplary current-voltage dependence of a electrochemical cell
with indicated operation modes.

conduct either H+, O2− or OH− ions. These charge carrier often define the ap-

plication field of the EMRs, if used for the production of chemicals. For instance,

electrochemically controlled oxidation reactions are conducted with O2− conduc-

tors, i.e. solid oxide electrolytes [43, 44], whereas hydrogenations are carried out

with H+ conducting electrolytes [45, 46].

Electrochemical H2O splitting, an electrolysis process, is carried out mainly in alka-

line environment to avoid expensive Pt catalysts [23, 47], as well as the conversion

of CO2 to formate [48]. However, H2O electrolysis development activities are also

conducted with H+ [22, 24] and O2− conducting electrolytes [22, 25, 49].

All three discussed charge carriers can be also found within the field of fuel cells,

i.e. autonomous operating EMRs for power generation. Alkaline fuel cells utilise

OH− conducting membranes or gels [50–52], polymer electrolyte membrane fuel

cells (PEMFC) apply H+ conducting membranes [53–55], and solid oxide fuel cells

utilise O2− conducting ceramic solid electrolytes [56–58].

Further details regarding the characteristics and technical applications of different

types of EMRs are available in several review articles [59–61]. Concepts for the

processing of H2 rich gas using EMRs are introduced in the following chapter.
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2.3 H2-CO Gas Mixtures in Electrochemical
Membrane Reactors

The following paragraphs summarize the operation of EMRs with H2 and CO con-

taining gas mixtures. The content resembles the introductory comments of journal

contributions by Oettel et al. [62, 63].

Electrical Power Generation

Electrochemical membrane reactors generating electrical power (i.e. fuel cells)

utilise mainly H2 rich feed gas as fuel. As discussed in chapter 2.1, CO is an impor-

tant by-product of the state of the art H2 generation process. Carbon monoxide

contaminations of H2 gas lead, even in low concentrations as 100 ppm, to severe

power losses during the operation of PEMFCs [64–66].

The performance loss in PEMFCs results from the adsorption of CO on the active

surface sites of the anode catalyst [67, 68]. Thereby, the number of active sites

available for the dissociative electro-sorption of hydrogen is reduced. This results,

at a constant hydrogen oxidation rate, in an increase of the anodic overvoltage and

thus in a lower electrical power output [66, 69]. Three different approaches pre-

vailed within the numerous efforts to minimize the CO contamination problems: (i)

the utilization of metal alloys such as Pt-Ru, Pt-Mo, Pt-Sn as the anode catalyst

material to promote the electrochemical oxidation of CO by H2O [66, 70–75] and

to lower the equilibrium surface coverage of CO by lowering the CO adsorption en-

ergy of CO on Pt [76–78], (ii) the operation at elevated temperatures [66, 79–84] to

lower the CO adsorption onto the catalyst, and (iii) the injection of small amounts

of O2 into the anode feed stream, known as air or O2 bleeding, decreasing the CO

poisoning effect, resulting from a direct CO oxidation by O2 [64, 85, 86].

The decrease of the CO poisoning of PEMFCs with increasing operation tempera-

ture is related to the temperature dependency of the standard free Gibbs adsorption

energy of CO for its adsorption on Pt (∆G◦
COadPt). At low temperatures, ∆G◦

COadPt

is highly negative, and its absolute value is decreasing with increasing temperature

[87]. Consequently, efforts are being undertaken to increase the operation temper-

ature of PEMFCs by overcoming temperature limitations of the electrolyte mem-

branes [82, 83, 88, 89]. Savinell et al. developed a phosphoric acid (H3PO4) doped

polymer electrolyte, which allows operation temperatures of up to 200◦C [89, 90].

At these elevated temperature, the high temperature PEMFC (HT-PEMFC) can

operate with CO concentrations up to 3%, while exhibiting no significant perfor-

mance losses [91].
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Gas Processing

The potential of electrochemical membrane reactors in the field of syngas processing

was in the focus of several research activities. Various concepts were investigated

and developed. Generally, these concepts can be classified into two main applica-

tions, being (i) the extraction of H2 from a H2 containing feed gas mixture and

(ii) the removal of contaminants, like CO, from H2 containing gas mixture by con-

verting them into inert compounds. In the following, selected examples of research

projects related to syngas processing with EMRs are briefly introduced. Details of

this works reactor concept are presented in chapter 3.

The electrochemical H2 pumping, where H2 is extracted selectively from the other

gas components, is a classical application of EMRs in syngas processing. This

process is carried out at operation temperatures ranging from 80 ◦C up to 900 ◦C,

using different electrode/electrolyte systems [92–95]. Gardner and Ternan inves-

tigated the performance of a classical electrochemical proton exchange membrane

(PEM) cell for the separation of hydrogen from a H2-CO2 and H2-CO2-CO gas

mixture at room temperature. For binary H2-CO2 gas mixtures the H2 extraction

efficiency was found to be high. Including CO into the feed gas mixture led to

a clear efficiency decrease of the H2 extraction. This result was attributed to a

significant reduction of the free electrode active surface sites, being the result of

CO surface adsorption [92]. Lee et al. investigated the influence of the current

density, temperature and pressure upon the required voltage and H2 product pu-

rity of the H2 pumping process with a conventional Nafion-115 PEM electrolyte

at temperatures below 70 ◦C [93]. Matsumoto et al. applied a high temperature

proton conductor for the H2 pumping at the considerable higher temperature of

900 ◦C [95]. Comparable to this work, a polybenzimidazole (PBI) based H3PO4-

doped high temperature proton conducting membrane was used as electrolyte in

an electrochemical H2 pump by Perry et al. [94]. Furthermore, a process operating

at 200 ◦C, utilising two single reactors, one for the non-electrochemical WGSR and

one for subsequent electrochemical H2 pumping, was presented by Muroyama et al.

[96].

Carbon monoxide is one of the most critical contaminants in H2 gas, as it leads to

significant performance losses in PEMFCs [64–66, 91]. The removal of CO from

H2 rich gas is therefore of high interest and can be conducted with EMR concepts.

Similarly to the non-electrochemical PrOx reactor, the electrochemical preferential

oxidation reactor (ECPrOx) removes CO in low concentrations by converting it to

CO2 via electrochemical CO oxidation [97–100]. The EMR is based on the LT-

PEMFC design and operates in the fuel cell mode when removing CO from H2 rich

gas. The ECPrOx generates electrical energy, as a fraction of the fed H2 is oxidised
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and reacts with cathodic O2 to H2O, while maintaining the driving force of the CO

oxidation from the anode gas.





Chapter 3

The Electrochemical High Temperature

Membrane Reactor

This chapter introduces the setup, properties and the application concepts of the

developed electrochemical membrane reactor. At first, the reactor setup is pre-

sented in chapter 3.1, including technical parameters and geometrical details. Fur-

thermore, the preparation procedure of the membrane electrode assembly (MEA)

and the membrane doping is explained.

Chapter 3.2 introduces the utilisation of the reactor as high temperature polymer

electrolyte fuel cell (HT-PEMFC), i.e as reactor which converts the chemical en-

ergy of educts into desired electrical energy. This includes the presentation of the

operation regime along with the proceeding reactions.

The concept to apply the reactor as a H2 generation and purification unit, the

electrochemical water gas shift reactor (EWGSR), is described in chapter 3.3. The

EWGSR allows for H2 generation and separation from reformat gas via electro-

chemical processes. The operation regimes as well as the proceeding reactions are

presented.

3.1 Reactor Setup

The basic design of the employed electrochemical membrane reactor is similar to

PEMFC single cell designs. A schematic illustration of the reactor is shown in

figure 3.1. In general, it involves two gas compartments, which are separated from

each other by the membrane electrode assembly (MEA). The MEA is a compos-

ite element, which consists of a proton conducting polymer electrolyte membrane

(PEM) embedded in-between two gas diffusion electrodes (GDE). The GDEs are

composed of two layers. The first layer is the gas diffusion layer (GDL), which is

in contact with the gas phase present in the gas compartment. The second layer

is the reaction active layer of the electrode. It consists of catalyst particles (e.g.

noble metal alloy) which are usually intermixed with carbon particles to increase
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their active surface area. Furthermore, other functional additives are used within

the active electrode layer, which for example, form necessary proton conductive

pathways from the active catalyst particles to the proton conductive membrane.

Figure 3.1.: Schematic setup of the electrochemical membrane reactor, with
indicated inlet and outlet streams, gas diffusion electrodes and the
proton conducting polymer electrolyte membrane.

Flow Field and MEA Frame

The two gas compartments of the reactor were constructed using two similar flow

field plates (anode and cathode plate), which possessed parallel gas flow channels.

The technical design of the flow field plates is shown in figure 3.2. They were manu-

factured from carbon composite plates (Sigracet - BBP 4, Eisenhuth, Germany),

and served as electrical contact between the MEA and the outer electrical circuit.

In contrast to conventional designs, the here employed plate design involved flow

field bars which were higher than the outer plate sealing surface (see sectional view

in figure 3.2). This arrangement allowed a MEA incorporation by using a custom

designed frame structure, along with a gas compartment hight of 1.5 mm.

The employed MEA frame, shown in figure 3.3, was designed to fulfil two func-

tions: (i) to enable a reproducible, repeatable, and easy assembly of the MEA

without hot-pressing, and (ii) to serve as sealing between the two gas compart-

ments and the environment. It is designed as a ”frame in frame” structure, whereas

the inner frame, fastening the PEM, is placed within the outer frame, which an-

chors the GDEs on both sides of the PEM. A close contact between the GDEs

and the PEM was achieved by pressing the flow field plates and the MEA tightly

together during the final assembly of the reactor. The MEA frame was made from

a poly(tetrafluoroethylene) PTFE composite material (NU 1036, PTFE Nünchritz,

Germany), containing additives which increased the deformation resistance at ele-

vated temperatures ≤473K without lowering the required high chemical stability

of the frame material.
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Figure 3.2.: Detailed drawing of the reactor flow field plate, with size labels and
sectional views.

Figure 3.3.: MEA frame in open and in assembled state with inserted MEA.

MEA Components and Preparation

The reactor was designed to operate at temperatures of about 373K<T≤ 453K.

The motivation for this temperature range is discussed in chapter 3.2 and 3.3, re-

spectively. The operation temperature of an electrochemical PEM reactor depends

mainly upon the employed membrane material, which needs to exhibit a high pro-

ton conductivity throughout the operational temperature range.

Phosphoric acid doped PEMs were found to exhibit a technical applicable pro-

ton conductivity at temperatures above 373K [88–90, 101, 102]. The developed

electrochemical high temperature membrane reactor utilises H3PO4 doped proton

conducting PEMs, which are based on the poly(2,5-benzimidazole)(ABPBI) poly-

mer [103–105]. This polymer has a shorter monomer unit than the more commonly

used poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole] (PBI) [101, 106–112]. It was

supplied as undoped membrane sheets by Fumatech (Germany). The chemical

structure of both polymers is shown in figure 3.4.

The doping level of an electrolyte membrane describes the number of H3PO4
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molecules per repeating monomer unit of the polymer. The proton conductiv-

ity of H3PO4 doped PEMs depends highly upon the doping level, as H3PO4 is the

main proton conducting species within these electrolytes [101, 104, 113, 114]. Gen-

erally, higher doping levels increase the proton conductivity of the membrane. The

control of the membrane doping level during the MEA preparation is therefore of

high importance to achieve a reproducible behaviour of the reactor.

Figure 3.4.: Structural formulas of non acid doped poly[2,2’-(m-phenylene)-5,5’-
bibenzimidazole] (PBI) and poly(2,5-benzimidazole) (ABPBI).
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Figure 3.5.: a) ABPBI doping level as a function of doping time at two differ-
ent H3PO4 doping concentrations (doping temperature: 298 K). b)
Membrane doping level as a function of H3PO4 doping concentra-
tion (doping temperature: 298K, doping time: 72 h).

The ABPBI doping level is a function of the doping time and H3PO4 doping con-

centration, as shown in figure 3.5 a and b. It is visible that the doping level is highly

dependent upon acid concentration and acid exposure time. Doping levels of up

to 4mol/mol were achieved at ambient temperatures. The doping level converges to

a maximal value with increasing doping time (figure 3.5 a), whereas the maximal

doping level of the polymer increases with increasing acid doping concentrations.

Figure 3.5 b displays the doping level as a function of the acid bath concentration,

at otherwise unchanged conditions. As visible, the curve exhibits low doping levels

at H3PO4 doping concentrations below 10M, and a section of high doping levels at

H3PO4 doping concentrations above 10M. The low doping level section does not

significantly exceed the doping level of 1mol/mol, which is equivalent to the proto-

nation of the one nitrogen present within the imino group of each ABPBI repeating
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unit [101, 115].

Higher doping levels are achieved when additional H3PO4 is incorporated in-between

the polymer chains without possessing a chemical bond to the polymer backbone.

The data shown in figure 3.5 b suggest that a rather small concentration interval of

H3PO4 separates the low and high doping level sections of ABPBI, as the doping

level increases strongly from 1.4 to 3.2mol/mol by increasing the H3PO4 concentra-

tion from 9M to 11M. The uptake of H3PO4 in-between the polymer chains leads

to a swelling of the membrane and to a lower mechanical membrane stability [116].

The ABPBI membranes used within the final application were doped with either

13M (fuel cell application) or 12M (EWGSR application) of H3PO4 at 353K for

24 h. The temperature increase allowed to shorten the doping time, while doping

levels of about 4.6 and 4mol/mol were achieved, respectively. During the EWGSR

application of the membrane (chapter 3.3), the membrane was exposed to a sig-

nificant amount of water. The hydrophilic H3PO4, present within the membrane,

caused a water uptake of the electrolyte membrane, which lowered the mechanical

stability of the membrane (higher risk of membrane failure). Therefore, a lower

doping level (4 instead of 4.6 mol/mol) was selected for the EWGSR application,

which resulted in a good compromise between reactor durability and reactor per-

formance.

The gas diffusion electrodes, constituting the outer layer of the MEA, were pre-

pared with commercially available gas diffusion layers (HT2500W, E-Tek, Ger-

many). These carbon cloth based GDLs were coated with the respective catalyst

to form the electrodes by using the airbrush method. Table 3.1 lists the composi-

tion of the prepared catalyst layers with respect to the electrodes. Two types of

metal based catalysts, Pt and PtRu, on carbon support were used for the anode.

Furthermore, PTFE was incorporated into the catalyst layer to serve as a catalyst

binder and as component protecting against H3PO4 flooding. The active geometric

surface area of the electrodes applied in the prepared EMR was 26 cm2.

After the deposition of the catalyst, the electrodes were sintered at 453K for 2 h

and, subsequently, immersed in a 6M H3PO4 bath for 24 h at 353K. The acid bath

led to a partial penetration of H3PO4 into the catalyst layer, which was necessary to

ensure a good proton conductive contact between the GDE and the H3PO4 doped

electrolyte membrane.
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property
anode cathode

PtPt PtRu

catalyst
50wt%Pt,
50wt% C

40wt%Pt,

20wt%Ru,
40wt%C

50wt%Pt,
50wt%C

metal loading 1 mg cm2 1 mg cm2 1 mg cm2

PTFE loading 0.8 mg cm2 0.8 mg cm2 0.8 mg cm2

Table 3.1.: The catalyst composition, total metal loading, and the PTFE con-
tent of the prepared gas diffusion electrodes.

3.2 The Reactor as High Temperature PEMFC

This section describes the application of the developed electrochemical high tem-

perature membrane reactor as high temperature polymer electrolyte fuel cell (HT-

PEMFC), which was introduced already in chapter 2.3. Information about material

durability issues [117, 118] and operation characteristics at various temperatures

and CO feed concentrations [82, 91, 108] of the HT-PEMFC technology can be

found within literature [53, 88, 102, 119].

Figure 3.6 illustrates the application of the reactor as HT-PEMFC. Similar to

Figure 3.6.: Schematic setup of the electrochemical membrane reactor in fuel
cell operation mode. All employed inlet and outlet species are indi-
cated, as well as the reactions at anode and cathode, respectively.

the LT-PEMFC operation, H2 is oxidised at the anode to protons and electrons.

The protons are transported through the electrolyte membrane to the cathode,

where they recombine with oxygen and electrons to H2O. The operation of the HT-

PEMFC with CO containing H2 rich gas (product gas of reformat gas processing)

was simulated in this study by using different compositions of the H2, CO and N2

containing anode feed gas. The inert N2 balanced different CO inlet concentrations

in order to realise a constant molar inlet flow rate during all experiments (see chap-
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ter 4.1).

At high operation temperatures (453K≤T≤473K), it is generally agreed that the

HT-PEMFC performance is unaffected, no severe performance loss due to CO cata-

lyst poisoning, by a anode feed gas CO content of up to 3mol-% [91]. However,

an increase of the temperature above 473K is not feasible to improve the CO tol-

erance further. At temperatures above about 403K, intermolecular condensation

starts to influence the stability of H3PO4, where it is partially converted to diphos-

phoric acid (H4P2O7). The equilibrium of the dehydration is completely shifted

to H4P2O7 above 473 K [120]. This significantly decreases the number molecules

participating in the proton conduction within the membrane and, consequently,

lowers the membrane conductivity significantly [117]. Furthermore, the elevated

temperature accelerates the degradation of the catalyst layer [118].

Nevertheless, an increased CO tolerance of the HT-PEMFC beyond 3% CO in the

feed gas would be highly advantageous. The necessary feed gas processing (i.e. CO

removal) in reformat based processes could be significantly simplified [121]. Fig-

ure 3.7 displays the influence of the HT-PEMFC CO tolerance upon the complexity

of a fuel cell power plant operated with biomass, as proposed by Heidebrecht et

al. [122]. It visualises different plant configurations with different CO concentra-

tions at the HT-PEMFC inlet. As shown, a reduction of the feed gas processing

steps (e.g. elimination of the PrOx unit) increases the HT-PEMFC CO feed gas

concentration, which in turn requires an improved tolerance of the HT-PEMFC

against CO poisoning. The possibility to operate the HT-PEMFC with CO feed

gas concentrations above 3mol-% would open further options to e.g. reduce the

effort and complexity of the high temperature water gas shift reaction step.

Figure 3.7.: HT-PEMFC based fuel cell power plant scheme at different com-
plexity levels in dependence upon the HT-PEMFC CO tolerance
(MBR: moving bed reactor, HT-/LTSR: high temperature & low
temperature water gas shift reactor, PrOx: preferential oxidation).

As discussed in chapter 2.3, Pt-Ru has been largely applied within LT-PEMFCs

to increase the CO tolerance. However, to the author’s best knowledge, only the

research group of Modestov et al. investigated the application of the Pt-Ru cata-
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lyst in HT-PEMFCs [123, 124]. In this study, the possibility to increase the CO

tolerance of HT-PEMFCs above the stated limit of about 3mol-% at T≤453K was

investigated by using a Pt/Ru anode catalyst. Therefore, the HT-PEMFC was

equipped with either a Ru free or Ru containing anode electrode (see table 3.1).

The results of these investigations are presented in chapter 4.1.
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3.3 The Reactor as Electrochemical Water Gas Shift
Reactor

This chapter introduces the concept of the electrochemical water gas shift reactor

(EWGSR). It summarises descriptions, which were published in advance in two

peer reviewed journal articles by Oettel et al. [63, 125].

As discussed in chapter 2.1, state - of - the - art H2 generation routes consist of

many different subsequent process units, which are required to conduct the H2 for-

mation reactions and to separate H2 from the remaining components.

Currently, many approaches are investigated which quest to reduce the system

complexity of H2 plants. The combination of the non-electrochemical WGSR and a

subsequent electrochemical H2 pumping showed to be conceivable option for com-

plexity reduction [96]. Furthermore, the integration of the WGSR and H2 sep-

aration into one process unit by refining the stream iron process was shown by

Heidebrecht et al. [126, 127]. Electrochemical membrane reactors are applied to

conduct electrochemical H2 pumping as H2 separation method [92–95] (see chap-

ter 2.3).

Here, the EWGSR concept is a contribution to these efforts, which aim to improve

the H2 production. It aims to simplify the rather complex process routes of state

of the art H2 generation processes by merging the secondary H2 forming step (i.e.

water gas shift reaction) and the H2 separation step into one process unit.

A possible application of the EWGSR within a H2 plant is illustrated in figure 3.8. It

shows two conceptional process charts. The upper one constitutes a state - of - the

- art process utilising a pressure swing adsorption unit [14, 38], whereas the lower

one visualises the incorporation of the EWGSR into the process. As visible, the

EWGSR application makes the water gas shift reactor unit obsolete, as it operates

with the high CO concentrations of the reformer effluent. Furthermore, the process

charts indicate downstream utilisation options of the process products. The tail

gas of the EWGSR is expected to contain besides CO2 still significant amounts of

CO and H2 (see chapter 4.3), which can be used in subsequent processes.

The EWGSR generates pure H2 from reformat type gas mixtures. Its operation

regime has similarities with the electrochemical H2 pump (ECHP), which has been

extensively investigated [92–95]. Similar to the ECHP, the EWGSR is operated

with an external electrical power source and during its operation protons are contin-

uously generated at the anode, transported through the electrolyte to the cathode,

and reduced at the cathode to gaseous H2.

In contrast to the ECHP operation, the EWGSR is designed to operate with a

feed gas containing H2, CO, H2O, and others (a typical steam reformer effluent
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Figure 3.8.: Conceptual designs of two H2 plants. a) PSA based (state - of
- the - art), b) EWGSR based. (HT-/LTSR: high temperature
& low temperature water gas shift reactor, PSA: pressure swing
adsorption, HTFC: high temperature fuel cell).

Figure 3.9.: Schematic setup of the electrochemical membrane reactor in
EWGSR operation mode. All employed inlet and outlet species
are indicated, as well as the netto reactions at anode and cathode,
respectively.

composition) to generate pure H2 at the cathode side. Thereby, pure H2 is not only

extracted from the H2 containing feed gas (see ECHP), but also generated within

the reactor via the electrochemical CO oxidation. As indicated in figure 3.9, two re-

actions proceed during the EWGSR operation: (i) the electrochemical H2 pumping

of the H2 feed to the cathode and (ii) the electrochemical water gas shift reaction.

Furthermore, figure 3.9 displays the schematic setup of the electrochemical water

gas shift reactor (EWGSR) and the inlet and outlet gas components. Details about

the single EWGSR components are presented in chapter 3.1.

The EWGSR was equipped with Pt/Ru containing anodes to enhance the CO

electro-oxidation (see table 3.1), except for one comparative experiment. The elec-

trochemical oxidation of CO with H2O on PtRu in electrochemical cells has been

the focus of numerous studies and is generally understood [69–72, 98, 128, 129].

Bimetallic anodes play an important role to increase the CO tolerance of LT-

PEMFCs [66, 70–72, 128, 130]. However, the electrochemical CO oxidation is only
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a minor side reaction in LT-PEMFCs and does not contribute significantly to the

cell current. It takes place if the cell is operated in galvanostatic mode and the

anode overpotential rises beyond a threshold due to a lack of required active surface

sites for the H2 oxidation [69, 129].

In contrast to the fuel cell operation mode, the electrochemical CO oxidation (i.e.

electrochemical water gas shift reaction) is within the EWGSR not a side reaction,

but one of two main reactions. It is essential for the reactor concept as it unlocks,

in the presence of H2O, the CO within the feed gas as source for the generation of

pure H2.

In order to generate H2 by electrochemical CO oxidation in a EWGSR, two main

conditions have to be fulfilled. Both reactants, CO and H2O, have to be supplied to

the electrode surface. However, H2O should not block the gas distribution channels

and the anodic gas diffusion layer for other species. Therefore, operation temper-

atures above 373K are advantageous to avoid any blockage of gas transport paths

due to condensed H2O. Additionally, the driving force of the reaction needs to be

sustained. The driving force is the imposed potential difference between anode

and cathode, and can be realised in potentiostatic or galvanostatic operation mode

using an external power source. The galvanostatic mode enables a direct control

of the cathodic H2 generation rate.

All considered reactions steps, proceeding during the EWGSR operation, are de-

scribed by the equations 3.1-3.6. They can be summarised into two main reac-

tions. The first reaction is the electrochemical hydrogen pump reaction (ECHPR),

which consists of an anodic H2 oxidation to protons and electrons (Eq. 3.1-3.2) and

a cathodic H2 evolution where electrons and protons recombine to molecular H2

(Eq. 3.6). The second proceeding reaction is the electrochemical water gas shift

reaction (electrochemical WGSR), i.e. electrochemical CO oxidation, where CO is

oxidized with H2O to CO2 at the anode (Eq. 3.3-3.5) [63, 123, 124]. The generated

anodic protons and electrons recombine as well at the cathode to molecular H2

(Eq. 3.6), similar to the cathodic reaction of the ECHPR. Within Eq. 3.1-3.6, the ∗

symbol represents a free active surface site on the electrode.

Anode: H2 + 2 ∗ −→ 2 Had (3.1)

2 Had −→ 2 H+ + 2 e− + 2 ∗ (3.2)

CO + ∗ −→ COad (3.3)

H2O + ∗ −→ OHad + H+ + e− (3.4)

COad + OHad −→ CO2 + H+ + e− + 2∗ (3.5)

Cathode: 4 H+ + 4 e− −→ 2 H2 (3.6)
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During the EWGSR operation, both reactions (ECHPR and electrochemical WGSR)

proceed simultaneously at the anode. However, the rate of the reactions can differ

significantly under constant operation conditions. In the following, the term anode

overvoltage is used to address the total voltage loss in the anode, with respect to

open circuit conditions. The electrochemical WGSR requires a higher anode over-

voltage than the electrochemical H2 pumping (ECHPR). This is expected to lead

to different reaction ratios at different cell voltages. The strong adsorption of CO

on Pt influences the ECHPR, as it lowers the number of available active surface

sites for H2 adsorption when both CO and H2 are present [69–72, 92, 98, 128, 129].

The study of the EWGSR focused on the experimental characterisation of the re-

actor, whereas the influence of temperature, feed concentration and cathodic H2

evolution rate (i.e. current density) was investigated. The experimental study is

partitioned into two parts. Part one addresses the individual characterisation of

the electrochemical WGSR (see chapter 4.2). The results of this study aim at im-

proving the understanding of the interplay of the ECHPR and the electrochemical

WGSR, which proceed simultaneously during the EWGSR operation with reformat

gas.

In the second part the EWGSR operation with reformat type feed gas was investi-

gated (chapter 4.3). Here, the interdependencies of both proceeding reactions and

their influence upon the operation behaviour were analysed. Furthermore, the effi-

ciency of the EWGSR concept was determined based on experimental results, and

compared to alternative H2 process routes in chapter 5.
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3.4 Experimental Test Stand

The EMR was operated within an in-house designed test stand. Figure 3.10 shows

its schematic design including important single components. The feed gas control

was realised with mass flow controllers (Bronkhorst Mättig GmbH, Germany) for

H2, CO, N2, O2, and Air. The required feed gas streams with different composition

were achieved by mixing the pure gas streams with the respective flow rates and

using N2 as balancing component within the mixture.

Both inlet gas streams (anode and cathode side) were heated to the respective

EMR operation temperature before entering the reactor. The reactor temperature

was adjusted with the help of a temperature controlled heating sleeve, whereas the

temperature sensor was placed within the graphite flow field plates of the reactor.

Figure 3.10.: Schematic experimental test stand design including main devices,
sensors (TI - temperature, TdewI - dew point temperature) and
gas flow piping.

The experimental test stand was equipped with two serially connected tempered

and insulated bubbler flasks to conduct the addition of gaseous H2O to the anode

feed stream (EWGSR operation). This water addition section could be bypassed,

which was required if the experiments demanded H2O-free anode feed gas (HT-

PEMFC operation).

All gas pipes leading from the bubbler flasks to the reactor, were heated and insu-

lated to prevent condensation and to adjust the temperature of the feed gas to the

reactor temperature. The test stand included no back pressure valve control for

the anode and cathode gas stream and the effluents left the test stand at ambient

pressure. The gas overpressure at the anode and cathode inlet was about 2 kPa

and 5 kPa, respectively.
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The HT-PEMFC was operated with an electronic load (ZS506-4NV, H&H GmbH,

Germany), while the EWGSR experiments were conducted with a potentiostat /

galvanostat (AMEL – 7060/7061).

Feed Gas Humidification

The molar water flow rate (GH2O) within the anode feed stream was controlled with

the dew point temperature Tdew. The dew point temperature Tdew in the anode feed

stream was continuously measured after the tempered bubbler flask cascade in a

separate flow-through gas chamber, being placed in the anode gas supply piping.

The gas temperature at the dew point sensor was with approx. 368K always higher

than the respective dew point temperature Tdew of the gas stream.

Assuming a negligible pressure difference between the gas (Tdew measurement) and

the ambient pressure, the continuously monitored anode gas dew point temperature

was used to calculate the numerical values of GH2O for all applied experimental

conditions according to equation 3.7.

GH2O =
pH2O(Tdew)

pgas − pH2O(Tdew)
· Gdry,in (3.7)

This equation was derived from the mass balance around the bubbler flask cascade,

assuming ideal gas behaviour and a constant gas pressure pgas (see appendix C).

The term pH2O(Tdew) represents the vapour pressure within the anode feed gas,

being calculated with the Antoine equation using Tdew.

Figure 3.11 represents a summary of data, which are required for the design of

EWGSR experiments. The displayed data were calculated based on equation 3.7,

Faraday’s law, and the assumption of a stoichiometric turnover during the electro-

chemical WGSR. The diagram gives a prompt overview on the interdependencies

between the volume feed flow rate, the CO content, the dew point temperature and

the stoichiometric limit of the CO oxidation current.

Five curves, associated to dry anode volume flow rates (solid grey lines), and sev-

eral horizontal lines representing CO concentration levels (dashed black lines) are

plotted in figure 3.11. The interception points of the flow rate curves and the hori-

zontal CO concentration lines mark the minimal dew point temperatures (readable

at the y-axis) which are required within the anode feed gas to reach the stoichio-

metric limit of the CO oxidation current (readable at the x-axis). In other words,

figure 3.11 links the minimal required dew point temperature of the EWGSR feed

gas to the maximal possible CO oxidation current (complete CO conversion), in

dependence on the volume flow rate (solid lines) and the CO content (dashed lines)

of the EWGSR feed gas.
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Gas Analysis

The test stand was equipped with a gas chromatograph (GC) from Agilent (type

5890), using an automated gas sample valve. It was used to determine the reactor

effluent gas composition (CO, CO2, H2). Here, He was applied as carrier gas, and

two columns (HP-Plot/Q and HP-Molesieve) were applied for compound separa-

tion. A TCD detector was used for compound detection/quantification and the

peaks of the chromatogram were integrated with the Chemstation software from

Agilent (version B.04.02 SP1).

The TCD detector signal was calibrated with a series of gas mixtures with known

CO, CO2 and H2 concentrations. Water vapour present within the anode effluent

was removed before the GC analysis with a cooling trap and a silica gel filled gas

dryer. The average of three consecutive GC measurements was used to determine

the effluent gas concentrations under steady state conditions. Prior to three associ-

ated GC measurements, the reactor was stabilised for 10 minutes. To enable three

GC measurements of the anode effluent, the respective current value was applied

for 40 minutes. A constant current flow duration of 80 minutes was required to

allow for the consecutive GC analysis of the anode and cathode effluent. In this

case, six GC measurements in total were required at every applied current value.





Chapter 4

Experimental Investigations

This chapter summarises the experimental studies which were conducted with the

developed electrochemical high temperature membrane reactor. At first, the col-

lected results during the operation of the reactor as high temperature polymer elec-

trolyte membrane fuel cell (HT-PEMFC) are presented (chapter 4.1). Furthermore,

the investigations of the EWGSR operation mode are described and evaluated in

chapter 4.2 and chapter 4.3.

4.1 CO Tolerance Improvement Study of the
HT-PEMFC

This chapter focuses upon investigations which were carried out to characterise the

improvement potential of high temperature proton exchange membrane fuel cells

(HT-PEMFC) by introducing a platinum-ruthenium alloy as anode catalyst. The

electrolyte was a H3PO4 doped poly(2,5-benzimidazole) polymer (ABPBI).

Steady state operation experiments were carried out in a temperature range bet-

ween 403K and 443K with CO concentrations in the H2 feed gas between 0 and

6.5mol% CO. Furthermore, the dynamic cell voltage response to a current step was

analysed under CO influence. There here presented investigations and results have

been published in a peer reviewed journal article by Oettel et al. [62].

4.1.1. Motivation

Currently, the on-site hydrogen generation by means of catalytic reforming using

hydrocarbon or alcohol feed is considered to overcome the current obstacles of the

PEMFC technology, which are related to an insufficient H2 infrastructure [131, 132].

An important by-product of the reforming process is carbon monoxide (CO), which

leads, even in such low concentrations as 10 ppm, to severe power losses during the

operation of LT-PEMFC [64, 65]. The removal of CO from hydrogen-rich gas to



30 Chapter 4. Experimental Investigations

a very low level requires a series of gas cleaning steps, which increases the system

complexity and costs, while decreasing its flexibility.

Therefore, the increase of the CO tolerance of the PEMFC is a important field of

research, where two strategies prevail to be highly promising. The first feasible

option is the alloying of the Pt catalyst with other metals such as Ru. This showed

to reduce the required anode potential to enable the electro-oxidation of adsorbed

CO with H2O (see equation 4.1– 4.3). This reaction removes CO from the catalyst

surface and, thus, reduces the influence of CO upon the cell performance [71, 72, 74].

CO + ∗ −→ COad (4.1)

H2O + ∗ −→ OHad + H+ + e− (4.2)

COad + OHad −→ CO2 + H+ + e− + 2∗ (4.3)

For Pt-Ru catalyst alloys, it has been proposed that the CO adsorption and CO

oxidation reaction follows the so-called bi-functional mechanism, where CO is ex-

clusively adsorbed onto the Pt sites (equation 4.1) and water exclusively undergoes

a dissociative chemisorption (equation 4.2) at the Ru sites [128, 133]. However,

more recent studies have shown that CO adsorbs also onto Ru, resulting in an ex-

tension of the pure bi-functional mechanism to the pseudo bi-functional mechanism

[73, 134].

The second promising concept to lower the influence of CO in PEMFCs is the

increase of the operation temperature [66, 79, 80, 83, 91]. This led to the develop-

ment of the HT-PEMFC, which tolerates a CO feed gas concentration of 3mol%

at about 473K [91].

However, an even higher CO tolerance would be advantageous to lower necessary

fuel purification efforts and, thus, the fuel cell system complexity. This is espe-

cially important if hydrogen-rich gas is generated from e.g. biomass, and simplified

overall processes are required for to optimise the conversion of biomass to electric-

ity [121, 122]. Therefore, the electrochemical membrane reactor in fuel cell mode

(HT-PEMFC) was systematically investigated to evaluate its operation behaviour

under CO influence with either Pt or Pt-Ru anode catalysts.

4.1.2. Experimental

The HT-PEMFC was operated within the test stand, which is introduced in chap-

ter 3.4. During all experiments, the HT-PEMFCs were supplied with 320 mlN min−1

O2 and 470 mlN min−1 H2 at the cathode and anode, respectively. The flow rates

are related to standard conditions (273.15 K and 101.3 kPa). The required CO con-

centration at the anode was realised by introducing a CO gas stream to the anode
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feed stream. This anode feed stream was mixed with N2 in order to achieve dur-

ing all experiments a constant total anode gas input flow rate of 550 mlN min−1.

The gases were not humidified, and the water in the system came entirely from

the cell reaction. The experiments were carried out at the temperatures of 403

K, 423 K, and 443 K. If not stated otherwise, the anode gas CO concentration

was 2.2mol%, 3.6mol%, 5.1mol% or 6.5mol%, whereas the H2 concentration was

always 85.5mol%.

The HT-PEMFC was operated in galvanostatic mode, applying, if possible, conse-

cutive current density steps (0.01; 0.11; 0.21; 0.31; 0.41; 0.51; 0.61 A cm−2), where

each current density value was maintained for a dwell time of 10 minutes to ensure

stable experimental conditions.

Due to the constant inlet flow rates, the stoichiometry ratios λH2
and λO2

, de-

scribing the ratio of the amount of supplied educts to consumed educts (H2, O2),

changed with every current step. The λ values can be determined from the species

inlet flow rate and the respective operation current density. For the current den-

sities of 0.01, 0.41, and 0.51 A cm−2 and the stated inlet flow rates, λH2
values of

260, 6.33, and 5.1 were achieved, respectively.

4.1.3. Results and Discussion

Influence of CO Feed Concentration

The performance of a Ru-free HT-PEMFC was used as reference within this study

to evaluate the impact of Ru on the cell performance.

First, the Ru containing HT-PEMFC (RuHTPEMFC in the following) and the Ru-

free HT-PEMFC were operated with CO-free anode feed gas. Figure 4.1 shows the

current voltage dependence of both HT-PEMFC types at a temperature of 423K.

The cell voltage decreased expectedly as a function of the applied current density for

both investigated cells. Qualitatively, both cells delivered closely similar cell voltage

- current density characteristics. Numerically, the current-voltage dependence with

the Ru-free HT-PEMFC cell was slightly better than that of the RuHT-PEMFC,

e.g. at a current density of 0.51 A cm−2, the cell voltage was 0.510V (Ru-free

HT-PEMFC) vs. 0.470V (RuHT-PEMFC).

If CO was introduced to the feed, the cell behaviour changed significantly. Fig-

ure 4.2 illustrates the influence of anodic CO (3.6mol%) upon the polarisation curve

at a temperature of 423K. At a low current density, both the cells behaved prac-

tically similar. The cell voltage decreased expectedly with the applied current and

the measured cell voltages were close to each other at the current density of 0.11

A cm−2 (see figure 4.2). At this current density the cell voltage of the Ru-free HT-
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Figure 4.1.: Polarisation curves of the Ru free and Ru containing HT-PEMFCs,
recorded with 85mol% H2 and no CO within the anode feed gas at
a temperature of 423 K.

PEMFC (0.626V) constituted 96.3% of the RuHT-PEMFC cell voltage (0.650V).

However, the operational voltage output of the two cells differed strongly when

the applied current density was increased above 0.11 A cm−2. The cell containing

the Pt-Ru anode exhibited a clearly higher cell voltage, and the deviation bet-

ween the two cell types is most pronounced at the highest current densities. As

example, at a current density of 0.51 A cm−2 the measured cell voltage with the

Ru-free HT-PEMFC was 0.162V, being only 39.2% of the corresponding RuHT-

PEMFC voltage (0.413V). The highest possible current density with the Ru-free

HT-PEMFC was 0.61 A cm−2 which resulted in a voltage of 0.072V, whereas the

RuHT-PEMFC obtained a cell voltage of 0.346V at the same current density and

temperature.

The dependency of the cell voltage upon CO concentration has been investigated in

detail for Ru-free HT-PEMFCs [91]. The present study expands upon these results

by comparing between two different anodic catalysts.

It is well known that CO causes poisoning of the anode catalyst, which strongly

lowers the performance of PEM type fuel cells. The strong CO adsorption reduces

the amount of active catalyst sites available for H2 oxidation. This either results

in the decrease of the H2 oxidation rate (i.e. current density) during potentiostatic

operation or an increase of the anode polarisation (i.e. anodic overvoltage) during

galvanostatic operation. The latter operation mode was used in this study.

Generally, the electrode overvoltage which drives the electrochemical reactions, e.g.
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Figure 4.2.: Polarisation curves of the Ru free and Ru containing HT-PEMFCs,
recorded with 85mol% H2 and 3.6mol% CO in the anode feed gas
at a temperature of 423 K.

the anode overvoltage ηA(i), is linked to the overall cell voltage Ucell(i), which can

be expressed according to equation 4.4:

Ucell(i) = Ei=0 − ηA(i) + ηC(i)− iRcell (4.4)

where Ei=0 is the open circuit voltage, ηC(i) is the cathodic overpotential, and iRcell

summarises the ohmic voltage losses within the cell.

The experimental determination of the cell voltage is rather simple. However, as

seen in equation 4.4, the cell voltage comprises of several contributions resulting

from thermodynamics (Ei=0), from the anode and cathode performance (ηA(i) and

ηC(i)), as well as from the electrolyte conductivity (iR).

In order to separate the CO catalyst poisoning effect from other processes influenc-

ing the cell voltage, the difference in the cell voltage resulting from the influence

of CO was calculated using equation 4.5. Here, the recorded cell voltage mea-

sured under CO influence (CO in feed gas), Ucell,H2/CO(i), was subtracted from the

cell voltage recorded without CO influence (no CO in feed gas), Ucell,H2
(i), under

otherwise equal operation conditions (temperature, cell current density, catalyst).

Assuming that all other contributions of Ucell(i) (equation 4.4), besides ηA(i), are

not influenced by the anodic feed CO content, the calculated voltage difference,

∆Ucell,CO(i) in equation 4.5 is directly related to the influence of CO on the an-

ode and represents the anode overvoltage caused by CO. The voltage difference

∆Ucell,CO(i) is called CO voltage loss in the following.

∆Ucell,CO(i) = Ucell,H2
(i)− Ucell,H2/CO(i) = ηA,H2

(i)− ηA,H2/CO(i) (4.5)
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Figure 4.3 a illustrates the measured CO voltage loss ∆Ucell,CO(i) as a function of

the CO feed concentration, calculated according to equation 4.5, with the Ru-free

HT-PEMFC at the current density of 0.51 A cm−2. The CO concentration was

varied from zero up to 5.1mol%.

The CO voltage loss was strongly dependent on the CO concentration. At the

temperature of 423K, a CO voltage loss of 0.440V was measured with the CO feed

concentration of 3.6mol%. Higher temperatures lowered the CO influence. The

corresponding voltage loss at a temperature of 443K and the same CO feed con-

centration was 0.233V. It was not possible to carry out a measurement with the

Ru-free HT-PEMFC cell at 404K and i =0.51 A cm−2, as the overall cell voltage

collapsed already at a lower current density due to CO poisoning.

If the CO voltage losses observed with the Ru-free HT-PEMFC cell (figure 4.3 a)
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Figure 4.3.: The CO voltage loss as a function of the CO feed gas concentration:
a) Ru-free HT-PEMFC, at a current density of i =0.51 A cm−2 and
an operation temperature of 423 K and 443 K; b) RuHT-PEMFC, at
a current density of i =0.51 A cm−2 and an operation temperature
of 423 K and 443 K; c) Ru-free HT-PEMFC and RuHT-PEMFC, at
a current density of i =0.51 A cm−2 and an operation temperature
of 443K.

are compared to those measured with the RuHT-PEMFC (figure 4.3 b), a clear

difference can be observed.
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For the RuHT-PEMFC the CO voltage loss was clearly lower than the correspond-

ing values of the Ru-free HT-PEMFC measurements. The cell equipped with the

Pt-Ru anode could be operated at i =0.51 A cm−2 with CO concentrations up to

3.6mol% at the temperature of 404K. The CO voltage loss at 404K increased with

the CO concentration, whereas a steep increase was present in the low CO concen-

tration range (0-0.7mol% CO). At the anode feed gas concentration of 3.6mol%

CO and 404K, a CO voltage loss of 0.430V was reached, being close to the value

obtained with the Ru-free HT-PEMFC operated at 423K.

The CO voltage loss increased also as a function of CO concentration at the tem-

peratures of 423K and 443K, as clearly seen in figure 4.3 b. However, the influence

of the CO feed gas concentration on the CO voltage loss was less pronounced than

at the lower temperature 403K.

The rise of the CO voltage loss was more gradual at 423K and 443K than at

404K. The experimental data show, that the voltage loss values were slightly lower

for 443K, if compared to the values obtained at 423K. Here, a maximal CO voltage

loss of 0.160V was measured at i=0.51 A cm−2, 6.5mol% CO and 443K, whereas

the CO voltage loss increased to 0.214V at 423K and otherwise equal operation

conditions (Figure 4.3 b).

By comparing the results in the figures 4.3 a and b it is clearly visible, how the

application of a Pt/Ru alloy as anode catalyst improves the CO tolerance of a HT-

PEMFC significantly. To further highlight this point, figure 4.3 c directly compares

the CO voltage loss of both applied cells for the temperature of 443K and i=0.51

A cm−2. The difference in the CO tolerance between the two applied catalyst types

is obvious, and more pronounced at high CO feed concentrations. For example, the

CO voltage loss decreased from 0.370V to 0.113V with 5.1mol% CO in the feed

by replacing the Pt anode catalyst with the Pt-Ru bimetallic alloy.

Influence of Temperature

The CO voltages loss as a function of the operation temperature is illustrated in

figure 4.4 for both types of applied HT-PEMFCs and two differed CO feed gas con-

centrations. It was not possible to apply a current density of 0.51 A cm−2 to the

Ru-free HT-PEMFC at 404K. Figure 4.4 illustrates the CO voltage loss for this

cell only at temperatures of 423K and 443K. For the Ru containing HT-PEMFC,

experimental results determined at the temperatures of 404K, 423K and 443K are

shown.

As illustrated in figure 4.4, a significant influence of the operation temperature

upon the measured CO voltage loss was observed. The CO voltage loss of the

RuHT-PEMFC decreased sharply when the temperature was increased from 404K

to 423K. This phenomenon can be seen for the CO concentrations of 2.2mol% and
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3.6mol%.

It might be concluded, that two factors positively influence the operation at a higher

temperature. First, the CO adsorption is weaker, which lowers the anode overvolt-

age as more unoccupied active sites are available for the hydrogen electro-oxidation.

Secondly, a direct CO electro-oxidation with H2O, produced in the cathode reaction

and possibly transported through the electrolyte membrane, might also occur to

a larger extent at a higher temperature, especially when a Ru containing catalyst

is applied. This agrees well with the observations made by Modestov et al. [123],

who operated with humidified feed gas.

In summary, the RuHT-PEMFC exhibited higher cell voltages, i.e. it shows a
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Figure 4.4.: The CO voltage loss as a function of the operation temperature,
shown for the Ru-free HT-PEMFC and RuHT-PEMFC operated
with 2.2 and 3.6mol% CO in the anode feed gas.

clearly higher CO tolerance, than the Ru-free HT-PEMFC at every investigated

temperature, CO concentration and current density during steady state operation.

Consequently, anodic Pt-Ru catalysts in ABPBI based HT-PEMFCs enhances the

CO tolerance, exceeding the well known beneficial effect of elevated operation tem-

peratures. The obtained results coincide well with the known CO tolerance en-

hancing effect of the Pt-Ru catalyst in conventional low temperature PEMFCs

[66, 71–76, 78, 134, 135]. The presented results clearly show that a CO tolerance

enhancement of the HT-PEMFC can not only be reached by increasing its operation

temperatures, but also by an optimal catalyst adjustment.

Voltage Transient Behaviour

The second part of the HT-PEMFC experimental study focused upon the transient

behaviour of the cell voltage after a load change.
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At first, the cell voltage transient was determined after a small current step of 0.01

A cm−2 from open circuit conditions (i =0.0 A cm−2) to 0.01 A cm−2 with the Ru

containing and Ru free HT-PEMFC. The voltage transients at 443K are shown in

figure 4.5 exemplary for the anode feed gas without CO and with 5.1mol% CO.

The applied load change at t= 0 resulted in an expected immediate cell voltage

drop under all conditions. The relaxation of the cell voltage, corresponding to the

applied current density, occurred rapidly without a visible overshoot for both the

tested Ru free and Ru containing HT-PEMFCs. This holds for the operation with

and without CO in the anode feed gas. It was experimentally observed that the

voltage transients of the RuHT-PEMFC were practical identical for 0mol% up to

5.1mol% CO. The phenomenon can be clearly seen in the magnification (figure 4.5),

which enlarges the first 100 seconds after the current step.

Figure 4.5.: The voltage response as a function of time, recorded with the Ru-
free HT-PEMFC and the RuHT-PEMFC at T=443 K with 0.0 and
5.1mol% CO in the anode feed gas, after a load change from open
circuit conditions to i =0.01 A cm−2.

The transient behaviour of the CO voltage loss after the low current step (0 A cm−2

to 0.01 A cm−2) is shown in figure 4.6 for the Ru-free HT-PEMFC. As can be seen,

a small CO voltage loss was recorded for the Ru-free HT-PEMFC. No CO voltage

loss could not be detected for the RuHT-PEMFC (∆Ucell,CO(i) =0) during the low

current step. This phenomenon is seen also in figure 4.5 by the overlapping of the

cell voltages recorded with the Ru containing catalyst.

Nevertheless, one should note here that even with Ru-free catalyst, the CO voltage

loss was very small, and the overall difference between the two investigated cells

(Ru-free and RuHT-PEMFC) is minor under the conditions shown in figure 4.5 and

4.6. Hence, in this current density range, no conclusions can be made with respect

to the CO tolerance of the two catalyst types.
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Figure 4.6.: The CO voltages loss response function of the Ru-free HT-PEMFC,
operated at T=443K with 5.1mol% CO in the anode feed gas after
a load change from open circuit conditions to i =0.01 A cm−2.

A sharp, peak-like overshoot of the CO voltage loss can be observed in figure 4.6

for the Ru-free HT-PEMFC. This overshoot can be attributed to a slightly faster

voltage response of the cell if operated under CO influence. The deviation was,

however, observed only for a very short time and it disappeared after two seconds.

It might be suggested, that this effect is related to a possibly lower capacity of

the anodic electrochemical double layer, caused by a higher CO surface coverage if

compared to the CO free operation.

Besides this very sharp initial overshoot at t= 0, the temporal course of the CO

voltage loss (figure 4.6) was unchanged throughout the experiment and the voltage

loss was approximately 0.01V with the Ru-free HT-PEMFC.

Cell voltage transients of the RuHT-PEMFC and Ru-free HT-PEMFC after a

current step of 0.1 A cm−2, from 0.41 A cm−2 to 0.51 A cm−2, are exemplary depicted

in figure 4.7 for the anode feed CO concentrations of 0.0 and 5.1mol%.

Focusing first on the CO free operation, it can be stated that the cell voltage

responses were practically instantaneous for both catalysts applied, and followed

directly the current change by exhibiting a fast step without any distortion or

overshoot. However, under CO influence (5.1mol%) the cell voltage transients

exhibit a significant voltage overshoot after the load change. Here, the observed

overshoot was clearly more pronounced for the Ru-free HT-PEMFC.

The relaxation course of the voltage transients after the initial overshoot showed

for both used catalysts similarities to a first-order system known from the systems

theory [136]. Such systems approach a stable operation in an asymptotic man-

ner. The difference of the cell voltage loss caused by CO, after a current step of



4.1. CO Tolerance Improvement Study of the HT-PEMFC 39

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time / s

V
o
lt
a
g
e
 /
 V

 

 

T=443 K

step: 0.41 to 0.51 A cm
−2

 0.0% CO PtRu

 0.0% CO Pt

 5.1% CO PtRu

 5.1% CO Pt

Figure 4.7.: The voltage response function of the Ru-free HT-PEMFC and the
RuHT-PEMFC operated at T=443K with 0.0 and 5.1mol% CO
in the anode feed gas, after a current step from i =0.41 A cm−2 to
i =0.51 A cm−2.

0.1 A cm−2 was calculated for both applied HT-PEMFCs according to equation 4.5,

and is shown as a function of time in figure 4.8 for the CO concentration of 5.1mol%

at 443K.

This illustration shows clearly the overshoot of the CO voltage loss after the load

change for both catalysts used. The peak overshoot intensity, i.e. difference bet-

ween the steady state value and the overshoot peak, for the Pt catalyst was with

82mV much higher than that of the respective value for the Pt-Ru catalyst opera-

tion (24mV). The time span necessary to reach the steady state after a current step

did not differ significantly between the Ru-free HT-PEMFC and RuHT-PEMFC.

However, the absolute difference between the initial, maximal CO voltage loss and

its steady state value was always smaller for the RuHT-PEMFC.

The described findings indicate that the dynamic behaviour of HT-PEMFCs uti-

lizing a mono-metallic Pt anode catalyst is more severely influenced by CO, than

the HT-PEMFCs utilizing a Pt-Ru alloy anode catalyst. In particular, the lower

overshoot peak values of the voltage transient, exhibited by the RuHT-PEMFCs,

indicate a significantly shorter overall response time of the electrode processes and

faster dynamics of the electrode reactions, as less electrode polarisation was neces-

sary to enable the increased electrical current flow.

Influencing factors of the lower electrode polarisation could be a larger fraction of

available anodic active surface sites with adsorbed hydrogen, a larger capacity of

the anodic electrochemical double layer, or a higher hydrogen concentration in the

gas phase of the anodic catalyst layer. As the hydrogen concentration was constant

during all conducted experiments, the last factor might be excluded.
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Figure 4.8.: The CO voltage loss response function of the Ru-free HT-PEMFC
and the RuHT-PEMFC, operated at T=443 K with 0.0 and
5.1mol% CO in the anode feed gas, after a load change from
i =0.41 A cm−2 to i =0.51 A cm−2.

However, a larger fraction of available anodic active surface sites for the Ru-

containing catalyst might be a reason for the observed lower overshoot of the CO

voltage loss compared to the Ru-free catalyst. It was reported that Ru influences

the CO adsorption behaviour onto Pt as it leads to weaker CO adsorption energies

[76–79]. This in turn could lead to a lower CO surface coverage and a larger frac-

tion of available active surface sites for hydrogen oxidation at the anode.

If a higher amount of active surface sites is available in the Ru containing cata-

lyst for the hydrogen reaction, the intrinsic hydrogen oxidation rate at each active

surface site is lower under equal galvanostatic conditions. Consequently, a lower

electrode polarisation is needed to drive the lower surface site related reaction rate.

The possible dependency of the anodic electrochemical double layer capacity upon

the CO surface coverage was already briefly discussed for the low current step (fig-

ure 4.6). Unlike adsorbed hydrogen, CO is not able to release an electron and form

an ion under the investigated operation conditions. This would be necessary for the

build-up of an electrochemical double layer. Hence, it might be suggested that a

lowering of the hydrogen surfaces coverage by a higher CO adsorption, likely leads

to a lower capacity of the anodic electrochemical double layer.

In summary, the presence of Ru within the anode catalyst reduces the influence

of CO upon the voltage transient behaviour of HT-PEMFC, if compared to Ru

free anode catalysts. This finding directly influences the optimisation of control

strategies for HT-PEMFC systems.
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Carbon Monoxide Tolerance

It was shown in figure 4.4 that the Ru-free HT-PEMFC exhibited an increasing

CO tolerance with increasing temperatures. This dependency, a result of a lower

CO poisoning of the Pt catalyst at higher temperatures due to a lower total CO

catalyst surface adsorption, is in good agreement with the results of Li et al. [91].

Furthermore, the here presented results showed very clearly that the Ru containing

HT-PEMFC exhibits a similar dependency of the CO tolerance upon temperature,

which is most likely caused by a decreased CO coverage of the active surface at

elevated temperatures.

But, when the performance of the Ru containing and Ru-free HT-PEMFC are com-

pared directly to each other, a clearly improved CO tolerance of the Ru containing

HT-PEMFC is observed. In the following, the CO voltage loss transients after a

high current step (see figure 4.8) are used to discuss the nature of the CO tolerance

increase of HT-PEMFCs due to the presence of Ru at the anode.

Within the low temperature PEMFC literature it has been reported that the pres-

ence of Ru in Pt based catalyst promotes the electrochemical CO oxidation with

H2O [66, 70–75], and leads to the weakening of the bond between CO and Pt and

thus lowers the equilibrium surface coverage of CO on Pt [76–78].

The low initial CO voltage loss overshoot after the current step ∆ i =0.1 A cm−2,

at t=0 for the Pt-Ru catalyst (see figure 4.8) indicates that only a slight polarisa-

tion increase of the Pt-Ru anode is needed to enable the higher current controlled

hydrogen oxidation rate. On the contrary, the immediate CO voltage loss of the

Ru-free HT-PEMFC after the equal current step is significantly larger. This can

be interpreted as a more intensive polarisation of the Pt anode, which is necessary

to drive the increased H2 oxidation rate.

The necessity of the initially stronger anode polarization could result from a smaller

amount of free active surface sites available at the Pt anode for the H2 oxidation,

compared to the Pt-Ru anode. Following this argumentation, Ru might lower the

CO adsorption coverage on the anodic active catalyst sites of the RuHT-PEMFC,

according to similar findings in low temperature PEMFCs [76–78].

A second well known effect of Ru in low temperature PEMFCs, is the reduced

overpotential of the electrochemical oxidation of CO with H2O (equation 4.1–4.3).

During the operation of HT-PEMFCs with dry feed gases, anodic H2O can only be

provided by back-diffusion of H2O formed at the cathode [137], or by an undesirable

O2 crossover and a consecutive chemical H2 oxidation at the anode.

Focusing upon the relaxation of the CO voltage loss after the initial overshoot in

figure 4.8 (i.e. a recovery of the overall cell voltage), it could be suggested that this

time-dependent decrease results from a gradual removal of CO from the catalyst
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surface by electrochemical oxidation with H2O, which is transported by diffusion

from the cathode to the anode. The H2O diffusion would strongly depend upon the

electrolyte membrane conditions. However, indications of the presence of a certain

anode onset overvoltage, needed for the electrochemical CO oxidation, were not

found during the experiments.

Independent of the current density step and the corresponding initial anode po-

larisation, the qualitative behaviour of the CO voltage loss transients was similar

during all current density steps between 0.11 A cm−2 and 0.61 A cm−2 for both

catalysts.

Therefore, it might be concluded that the Ru promoted electrochemical CO oxi-

dation contributes, if present, only weakly to the observed enhanced CO tolerance

of the RuHT-PEMFC.

Conclusions

The results of the investigation about the influence of Ru upon the CO tolerance

of HT-PEMFCs summarise as follows::

1. It was possible to show that Pt-Ru alloys improve the CO tolerance of

ABPBI based HT-PEMFCs in a similar manner as it is well known for low

temperature PEMFCs.

2. The anode catalyst based on Pt-Ru alloys improved the CO tolerance of

HT-PEMFCs beyond the known improved temperature dependent CO tol-

erance. Under all investigated conditions with anodic CO, the performance

of the Ru containing HT-PEMFC was superior to HT-PEMFCs with Pt

catalysts.

3. The reported data suggests that the CO tolerance increase of Ru contain-

ing HT-PEMFCs might result from a reduced adsorption of CO onto the

catalyst surface, additional to the temperature dependent CO poisoning

mitigation in this fuel cell type.

4. The investigation of the voltage transient after a load change under CO

influence showed an instantaneous overshoot after the current increase,

followed by a relaxation period which exhibited similarities to a classical

first-order system. This characteristic was dampened by the utilization

of the Pt-Ru anodic catalyst, as the CO voltage loss overshoot peak was

lowered, compared to the Pt anodic catalyst.
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4.2 EWGSR Study with CO Containing Feed Gas

This chapter describes the first part of the experimental EWGSR study, which

focused upon the generation of H2 from CO and H2O via the electrochemical CO

oxidation.

The reactor operation was investigated at 403K and 423K with a H2 free anode

feed stream of humidified CO and N2. The described experiments and results were

published as individual peer reviewed journal article by Oettel et al. [63].

4.2.1. Motivation

The EWGSR reactor concept and its advantages over state-of-the-art processes (see

chapter 2.1) was discussed in chapter 3.3.

It was shown in figure 3.9, that two reactions proceed simultaneously during the

intended operation of the EWGSR. In order to understand the reactor operation

behaviour under different conditions, it is important to investigate first the EWGSR

characteristics under single reaction conditions. In the case that the feed gas con-

tains only H2 and no CO, H2 is oxidised and reduced within the EWGSR (see

equation 3.1, 3.2, 3.6). This electrochemical H2 pump mode was in the focus of sev-

eral research studies and is well understood [92–95]. However, the intended driven

electrochemical CO oxidation within a electrochemical membrane reactor has been,

to the authors best knowledge, hardly investigated [124], let alone in context of the

EWGSR concept.

The driven electrochemical CO oxidation was experimentally investigated as option

to generate H2 from CO and H2O. The occurring reaction steps of the electrochem-

ical water gas shift reaction (i.e. electrochemical CO oxidation) can be described

with the equations 3.3-3.5. An externally applied potential gradient between anode

and cathode drives the H+ through the electrolyte membrane to the cathode where

they recombine with electrons, supplied from the electrical circuit, to H2 (equa-

tion 3.6).

The experiments which are presented in the following were conducted to determine

the influence of operation conditions upon the CO electro-oxidation during the

EWGSR operation. The obtained results contribute strongly to the understand-

ing of the EWGSR operation with reformat type feed gas, which is the topic of

chapter 4.3.
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4.2.2. Experimental

During all experiments, the inlet flow rate of the bubbler flask cascade was 200

mlN min−1, i.e. a total dry molar flow rate Gtot
dry,in of 1.49·10−4 mol s−1 at the

bubbler inlet. The bubbler inlet gas stream was a mixed stream of CO and N2 with

varied concentrations of CO. The molar water flow rate within the wet reactor inlet

stream was calculated to be about GH2O =1.12·10−4 mol s−1 during all experiments.

The influence of the temperature on the operation of the EWGSR was investigated

at 403K and 423K. The influence of the CO concentration on the operation was

determined with three different anodic CO concentrations, being listed in table 4.1.

In the following presentation and discussion of the experimental results, the dry

anode inlet CO gas concentrations will be used to refer to the respective experiment.

The dew point temperature of the anode feed gas was set to 351K, resulting in wet

anode inlet streams with approx. 43mol% water and altered CO concentrations in

the wet inlet gas (see table 4.1). The resulting molar ratios of H2O to CO within

the anode feed gas at the reactor inlet are listed in table 4.1 as well.

Tdew / K
dry gas /mol% wet gas /mol% molar ratio / -

CO CO H2O
∗

GH2O
GCO

351 12.5 7 43.0 6.1

351 25.0 14 43.0 3.1

351 50.0 28 43.0 1.5

Table 4.1.: Applied anode feed gas compositions (assuming ideal gas conditions)
during the experiments with CO containing feed gas. Species frac-
tions are listed for the dry and wet anode feed gas (∗ calculated from
the dew point).

The EWGSR was operated in galvanostatic mode with current densities varying

from 0 to 0.11 A cm−2. Each experiment consisted of a voltage measurement at

open circuit conditions and five consecutively applied constant current densities.

At every investigated CO concentration the applied current densities were set to

reach CO conversions of 0%, 5%, 10%, 15%, and 20%. Finally, one measurement

point (10% CO conversion) was always repeated and the obtained EWGSR voltage

was compared to the previous one to assure a degradation free operation. The re-

producibility of the results was excellent, so the repeated measurement points are

not shown in the illustrations.

The composition (CO, CO2, H2) of the reactor anode and cathode effluents was

analysed during the experiments with the Agilent gas chromatograph (GC) (type

5890).
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The ohmic resistance of the EWGSR, constituting of the membrane resistance and

all other electric resistances, was estimated based upon results of preliminary elec-

trochemical H2 pump experiments in the current density range of 0.1-0.2 A cm−2.

During these experiments, the anode and cathode gas compartments were flushed

with H2, using high flow rates to avoid transport limitations. The electrochemical

cell was operated under steady state conditions at several current densities (dwell

time 2 min) and the voltage response was measured using a potentiostat. The an-

ode overpotential of the H2 oxidation, as well as the cathode overpotential of the

H2 evolution was assumed to be negligible.

4.2.3. Results and Discussion

Feasibility of the EWGSR Concept

At first, the postulated EWGSR operation principle, see chapter 3.3, was verified.

Furthermore, Pt and PtRu were compared to each other with respect to their ap-

plicability as anode catalysts in the EWGSR.

Two different types of EWGSR reactors were prepared. One was equipped with a

Pt containing anode and one with a PtRu containing anode. Their electrochemi-

cal operation behaviour can be compared in figure 4.9, which depicts the measured

EWGSR voltage as a function of the applied current density. Under open circuit

conditions, the measured open circuit voltage (OCV) was negative for both the

Pt and PtRu anode electrode. However, the Pt containing EWGSR (Pt-EWGSR)

exhibited an open circuit voltage (OCV) of -0.160V, which was clearly lower than

the OCV of PtRu containing EWGSR (PtRu-EWGSR, -0.012V).

In general, the OCV of an electrochemical cell is the result of different electrochem-

ical double layer (ECDL) potentials at its electrodes. Different chemical species on

the electrode surface or different surface concentrations of one chemical compound

lead to different ECDLs and different ECDL potentials. It is most likely that two

different catalysts exhibit a different surface species composition in an otherwise

unchanged setup. As the EWGSR cathodes were identical in both reactors, it can

be assumed that the observed OCV deviation results from different ECDLs (i.e.

surface species compositions) at the utilized anode catalysts (Pt and PtRu).

Both Pt and Ru catalyse the WGSR [30, 130]. The non-electrochemical WGSR is

probably taking place in minor extent at the anode catalyst surface, as traces of

CO2, a product of the WGSR, were detected in the anode effluents under OCV

conditions with CO2 free inlet gases. However, the kinetics of the WGSR on Pt at

423K is slow and the H2 concentration in the anode effluent stayed below the GC
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detection limit.

Nevertheless, small amounts of H2 are probably present in the anodic catalyst

layer. This would enable the CO hydrogenation at the Ru containing catalyst sur-

face, which would result in CH4 via a multi-step reaction mechanism [138–140].

The possibility of CO hydrogenation by H2 (originating from the WGSR) under

OCV conditions, increases the variety of possible surface species at the catalyst

highly. Hence, the strongly deviating OCV value, measured with the two different

catalysts, might be influenced by two different surface species compositions, leading

to the OCV deviation between the Pt-EWGSR and the PtRu-EWGSR.
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Figure 4.9.: Current voltage curve of the electrochemical water gas shift reactor
with a Pt or a PtRu anode, operated at 423 K with 50mol% CO
(related to the dry feed stream).

At the lowest applied current density (0.0281 A cm−2), the obtained EWGSR volt-

ages were 0.637V and 0.548V for the Pt-EWGSR and PtRu-EWGSR, respectively

(see figure 4.9). These voltage values, measured under galvanostatic operation, were

caused by an increase of the anode potential. This potential increase was required

for the activation of the electron supplying electrochemical oxidation of CO by H2O

(equation 3.3-3.5).

Furthermore, it is clearly visible that the Pt-EWGSR required higher voltages than

the PtRu-EWGSR at all applied current densities. The voltage difference between

the two polarisation curves under current flow is relatively stable, ranging between

75mV and 90mV.

This observation agrees well with published results, which describe the behaviour

of Pt and PtRu as anode material below 373K. PtRu alloy catalysts are widely

applied in LT-PEMFCs, if operated with a CO containing anode feed gases [66, 69,

98, 129, 130]. Ruthenium within a Pt based catalyst lowers the necessary overpo-

tential for the dissociative chemisorption of H2O (equation 3.4), which is considered
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to be the initial step of the CO oxidation [66, 70–72, 128, 130].

Qualitatively, the dependence of the voltage on the current density is closely similar

for both applied anode catalysts. Both polarisation curves exhibit a nearly linear

dependence upon the current density above the current density i =0.056 A cm−2

(see figure 4.9). The ratio of the voltage change to the current change in the in-

terval from 0.056 A cm−2 to 0.112 A cm−2 correlates well with an estimated total

ohmic cell resistance (Rcell) of approx. 50mΩ. This cell resistance value was ob-

tained from voltage-current measurements during separate ECHP experiments (not

shown here). These experiments were conducted with the EWGSR cell setup at

low current densities to avoid any mass transport limitation influences upon the

measured voltage.
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Figure 4.10.: Molar flow rates of CO, CO2 and H2 within the anode and cathode
effluent as a function of the applied current density, recorded at
423 K with 50mol% CO (related to the dry feed stream).

The molar flow rates of CO and CO2 in the anode effluent, as well as the H2 molar

flow rate in the cathode effluent are shown in figure 4.10a and 4.10b, respectively.

The flow rate data are average values, determined from three GC analysis at the

respective operation point. These flow rates directly correspond to the polarisation

curves shown in figure 4.9.

The measured CO, CO2 and H2 concentrations from both the Pt-EWGSR and

PtRu-EWGSR, obtained at equal current densities, were closely equal. Thus, only

the molar flow rates of the PtRu-EWGSR experiment are presented in figure 4.10.

The circle symbols mark the experimentally determined values, and the dashed line

represents the values calculated from the applied current with Faraday’s law.

The experimental values in figure 4.10a and 4.10b coincide with the respective
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dashed line, showing that the EWGSR operation follows quantitatively Faraday’s

law within the range of applied current densities. The molar flow rate of CO (GCO)

in the anode effluent (figure 4.10a) decreases with increasing current density and

the molar flow rate of CO2 (GCO2
) increases accordingly, confirming the electro-

chemical CO oxidation (equation 3.3-3.5).

The H2 generation in the cathode compartment, which expectedly is proportional

to the current density, is shown in figure 4.10 b. Here, the molar flow rate of H2

(GH2
) within the cathode effluent increases as a function of the current, starting

with GH2
=0 mol s−1 at i=0 A cm−2 and rising up to GH2

=1.46·10−5 mol s−1 at

i=0.112 A cm−2.

The CO2 flow (GCO2
) in the anode effluent corresponds very well with the gen-

erated hydrogen GH2
. The maximal observed mass balance deviation was about

5%, measured at the highest current density. This deviation might be assigned to

inaccuracy and reduced sensitivity of the TCD detector for gas chromatographic

hydrogen analysis.

Due to the excellent correlation between the measured GH2
and GCO2

flow rates, the

analysis of the cathode effluent was omitted in the further EWGSR experiments.

As seen clearly in figure 4.10a and 4.10b, GH2
can be directly deduced based upon

the respective GCO2
flow rate by considering Faraday’s law.

In summary, the results in figure 4.9 and figure 4.10 clearly show that both utilized

anode catalysts (Pt and PtRu) enable EWGSR operation which follows strictly

Faraday’s law. As the PtRu-EWGSR exhibited lower voltages than the Pt-EWGSR

catalyst, all further experiments were carried out only with the anodic PtRu cata-

lyst.

The electrical power demand of the EWGSR is directly correlated to the operation

voltage. Therefore, the lower voltages obtained with the PtRu anode catalyst are

especially advantageous for the optimisation of the EWGSR operation.

Influence of Temperature and CO Concentration

Figure 4.11 displays the EWGSR voltage as a function of the current density at

three different CO concentrations (12.5mol%, 25.0mol% and 50.0mol%) and two

different operation temperatures (403K and 423K). During each measurement the

applied current densities were chosen to achieve five defined CO conversions, which

were equal for all applied CO feed gas concentrations. The selected CO conversions

were 0%, 5%, 10%, 15% and 20%.

The resulting current density intervals for different CO concentrations partially

overlap, as seen in figure 4.11. All polarisation curves, recorded for the different
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CO concentrations, contain a voltage value measured at the current density of

i=0.028 A cm−2.
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Figure 4.11.: Current voltage curves of the electrochemical water gas shift re-
actor with a PtRu anode, recorded with various different CO feed
gas concentrations at 403K and 423K.

As can be seen in figure 4.11, the recorded polarisation curves are grouped within

the diagram according to the operation temperature of the EWGSR. Furthermore,

the polarisation curves recorded at one temperature were found to be nearly inde-

pendent from the CO feed gas concentration.

At the current density of i=0.028 A cm−2, the cell voltages of 0.43V, 0.43V and

0.41V were measured at 403K for 12.5mol%, 25.0mol% and 50.0mol% CO, re-

spectively. At the same current density, the cell voltages of 0.55V, 0.52V and

0.53V were measured at 423K for the same feed gas compositions. The obtained

results suggest that the electrochemical CO oxidation exhibits a reaction order of

zero, with regards to the CO feed gas concentration and the investigated operation

conditions, as the CO concentration changes did not influence the EWGSR opera-

tion behaviour.

However, it is generally accepted that the reaction kinetics of the electrochemical

CO oxidation depends mainly upon the catalyst surface coverage of the participat-

ing species. The anode CO surface coverage was not investigated in detail within

this study and more in-depth investigations would be required for a final statement

regarding the reaction order of the CO oxidation.

Figure 4.11 shows that the temperature influences clearly the EWGSR operation.

For the current density of i=0.028 A cm−2, the measured voltage was about 100mV

lower at 403K than the voltage obtained at 423K. This behaviour of the EWGSR

voltage holds for all applied CO feed gas concentrations and current densities.

Such a reverse temperature dependency is not typical for chemical and electro-
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chemical reactions, as normally higher temperatures increase the rate of reaction

or lowers the required overpotential at a constant reaction rate, according to the

Arrhenius equation. Therefore, it can be assumed that a process or mechanism,

differing from the intrinsic surface reaction, dominates the EWGSR voltage tem-

perature dependence.

The conductivity of the applied electrolyte membrane is a function of the temper-

ature and the relative feed gas humidity (RH) [101, 104]. The RH value is defined

as the ratio of the partial water pressure in the feed gas to the saturation pressure

of water vapour at the respective temperature. Asensio et al. reported for H3PO4

doped ABPBI electrolyte membranes that the membrane conductivity increases

with temperature and RH [104]. The water flow rate GH2O was constant during

all EWGSR experiments. Consequently, when the temperature was increased from

403K to 423K, the RH value decreased. When the temperature increases and the

RH decreases, they lead, if considered separately, to a conductivity increase and

conductivity decrease, respectively.

Considering the results of Asensio et al., it is a reasonable assumption that the

influence of the temperature change and the RH change upon the membrane con-

ductivity counterbalanced each other under the used experimental conditions. Con-

sequently, the observed strong influence of the temperature upon the EWGSR op-

eration is likely not resulting from an alternating membrane resistance. However,

the temperature significantly influences the CO adsorption behaviour and, thus, it

might influence the electrochemical CO oxidation.

The electrochemical CO oxidation is a multi step reaction, as CO first adsorbs on

the electrode surface and is subsequently oxidised (see Equations 3.3-3.5). Conse-

quently, the reaction rate might depend rather on the CO surface concentration

than on the CO gas concentration, which was similar at both operation tempera-

tures.

In the following, a kinetic model equation, describing the electrochemical CO oxi-

dation rate among others in dependence on the CO surface coverage, is used to

elucidate the observed temperature dependence of the EWGSR voltage. For this

purpose the kinetic equation (equation 4.6) from Baschuk et al. [141] is chosen. The

equation describes the CO electro-oxidation rate rox
CO, using a reaction constant kox

CO,

the CO surface coverage ΘCO of the catalyst and the anode overpotential ηA within

a sinus hyperbolicus function, derived from the Butler-Volmer equation.

rox
CO = kox

CO · ΘCO · sinh

(

ηA · z · F

R · T

)

(4.6)
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The terms R, T and z represent the universal gas constant, the operation temper-

ature and the number of transferred electrons, respectively. The inserted number

of transferred electrons is two, as two electrons are generated during the oxidation

of one CO molecule.

Equation 4.6 does not contain in particular the OH surface coverage. This im-

plies the assumption that an alternation of the OH formation rate (equation 3.4)

or changes of OH surface coverage have no significant influence upon the CO oxi-

dation rate. The influence of OH upon rox
CO is embedded into the reaction con-

stant kox
CO. This applies if the anode potential is high enough to facilitate the

dissociative chemisorption of H2O (generation of adsorbed OH) according to equa-

tion 3.4 [71, 72, 98], and the influence of the H2O concentration and mass transport

can be neglected.

The onset potential of the OH formation was reached in every experiment already

at the lowest measured current density. This can be deduced from figure 4.10, as the

measured effluent flow rates of CO (GCO) and CO2 (GCO2
) correlate well with the

stoichiometry of the electrochemical CO oxidation equation 3.3-3.5 at every current

density. The H2O concentration within the anode feed gas exceeded with appox.

43mol% clearly the CO concentrations and was constant during all experiments.

It is assumed that the H2O concentration within the catalyst layer was similar at

equal current densities throughout the experiments. Possible changes of the H2O

mass transport due to the temperature difference of 20K were neglected. There-

fore, the possible influence of the H2O transport upon the OH formation (and the

EWGSR voltage) at identical current densities is assumed to be similar at both

temperatures.

Measured iR corrected overvoltages, recorded at one current density and one op-

eration temperature can be applied to equation 4.6 as ηA. For this purpose the

iR corrected EWGSR voltages, recorded with i =0.028 A cm−2 and CO feed gas

concentration of 25.0mol% at 403K and 423K, were used (figure 4.11). This was

motivated by assuming that the influences of the cathode overpotential (necessary

for the H2 evolution by reducing H+), of the equilibrium potential, and of the anode

concentration overpotential upon the EWGSR voltages are negligible. The respec-

tive iR corrected EWGSR voltages are U403 K
EWGSR=0.388V and U423 K

EWGSR=0.494V.

The previously obtained cell resistance of approx. 50mΩ was used for the iR cor-

rection. Due to the identical current density (i =0.028 A cm−2), the CO oxidation

rates, rox,403 K
CO and rox,423 K

CO , are considered to be equal. Hence, a relation can be

deduced from equation 4.6, which includes the voltages and temperatures of both

operation points. All other terms, except of the respective reaction constants kox
CO

and CO surface coverages ΘCO are known. Consequently, equation 4.6 leads to the

ratio (kox,403 K
CO · Θ

403 K
CO )/(kox,423 K

CO · Θ
423 K
CO ) ≈ 116.

The CO oxidation rate constant (equation 4.6) can be assumed to follow the Ar-
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rhenius relation [141], leading to kox,403 K
CO < kox,423 K

CO . Consequently, if equation 4.6

applies, the surface coverage of CO must be significantly higher at 403K than at

423K (Θ403 K
CO ≫ Θ423 K

CO ), regardless of the exact kox
CO values.

The CO electro-oxidation activation energy was estimated by Modestov et al. to be

in the range of 110 kJ mol−1 [124]. If this value is applied numerically to obtain the

kox,403 K
CO /kox,423 K

CO ratio, a value for Θ403 K
CO /Θ423 K

CO larger than 500 can be calculated.

However, one should notice here that the anode feed gas water concentration was

not constant during the experiments of Modestov et al., which precludes a direct

application of their findings to our analysis.

The concluded increase of the CO surface coverage at lower temperatures coincides

well with the known temperature dependency of the CO adsorption on Pt. Carbon

monoxide adsorbs stronger on Pt surfaces at lower temperatures, due to its negative

free Gibbs adsorption energy, which decreases with decreasing temperatures [87].

This dependency was shown experimentally for Pt and PtRu containing PEMFC

electrodes by Pitois et al. and Davies et al., respectively [142, 143].

Therefore, it is concluded that the observed lower cell voltage at 403K probably re-

sults from a higher catalyst CO surface coverage, if compared to 423K. The higher

CO surface coverage supports the CO electro-oxidation as more catalyst sites are

occupied by CO, which increases the probability of the reaction between CO and

adsorbed OH.

The above described temperature dependence, however, disagrees with the findings

of Modestov et al. who observed a decrease of the operation voltage with increasing

temperatures during a driven CO electro-oxidation, using cyclic voltametry [124].

In principle, their reactor setup was comparable to this study. However, the op-

eration conditions are not comparable to the experimental conditions of the here

presented study. The anode feed gas concentration was significantly lower (approx.

7mol%) and the measurements were not conducted under steady state conditions.

Furthermore, it should be pointed out that Modestov et al. increased the H2O con-

centration in the anode feed gas along with the temperature to keep the relative

humidity of the feed gas constant throughout the investigated temperature range.

This might have resulted in the lower voltages at higher temperatures as reported

by Modestov et al.. The increased H2O feed gas content at higher temperatures

significantly increased the stoichiometric ratio of H2O to CO at the catalyst surface.

The higher H2O feed gas content likely overbalanced the inhibiting effect of a lower

temperature dependent CO surface coverage during the experiments of Modestov

et al., as it increases the CO oxidation rate at low CO concentrations.

Additionally, the kinetics of the non electrochemical WGSR is faster at higher tem-

peratures, generating H2 which can be pumped to the cathode side at a lower anode

overpotential than necessary for the electrochemical CO oxidation.
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Power Demand

In contrary to the conventional water gas shift reactor, which optimally does not

require additional energy supply due to the exothermic reactions, the EWGSR is

operated with electrical energy.

However, the utilization of electrical power enables a simultaneously hydrogen pu-

rification, which is the unique feature of the EWGSR. Figure 4.12 shows the gen-

erated H2 as a function of the applied electrical power density (Pel) with Pt and

PtRu anodic catalyst, carried out with a CO feed gas concentration of 50mol%.

The values in figure 4.12 are related to the geometrical surface area of the EWGSR

electrode.

Figure 4.12 shows clearly that the PtRu-EWGSR, operated at 403K, generates the
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Figure 4.12.: Hydrogen generation rate as a function of the required electrical
power density, obtained with a Pt and a PtRu anode at 403K or
423 K, 50mol% CO (related to the dry feed stream), balanced by
N2.

highest amount of H2 at a power of 0.06Wcm−2, followed by the PtRu-EWGSR

operation at 423K. The lowest H2 generation was obtained with the Pt-EWGSR

at 423K.

This dependency of the H2 generation rate upon the applied anode catalyst and op-

eration temperature was valid for the whole range of applied electrical power. The

generation of approx. 5.3 · 10−7 mol s−1 cm−2 H2 with the PtRu-EWGSR at 403K

required only 69% of the electrical power which was necessary with the Pt-EWGSR

at 423K. At the temperature of 423K, only 90% of the Pt-EWGSR electrical power

demand was necessary with PtRu-EWGSR to obtain the same hydrogen generation

rate.

The results in figure 4.12 show that the electrical power demand of the EWGSR
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was significantly lowered by lowering the temperature and using PtRu as catalyst.

It is likely that the electrical power demand could be further lowered by optimising

the electrodes and further adjustment of operation conditions.

Conclusions

The results of the study, which was dedicated to electrochemical CO oxidation

within the EWGSR can be summarised in the following points:

1. The feasibility of the concept to simultaneously generate and separate H2

via a driven electrochemical water gas shift reaction was demonstrated.

2. It was experimentally verified that the CO oxidation and H2 evolution

follows Faraday’s law and take place in one process step.

3. The application of PtRu as anode catalyst, instead of Pt, leads to signifi-

cant lower EWGSR voltages at the same H2 generation rate, and, thus, to

a lower electrical power demand.

4. The experiments at constant temperatures with 12.5mol% to 50mol% CO

showed that under H2 free conditions the EWGSR voltage was only slightly

dependent upon the CO concentration.

5. Low operation temperatures were found to be favourable for the EWGSR

operation with only CO in the feed gas. This is probably a result of the

CO adsorption behaviour on Pt, as the CO adsorption is more pronounced

at lower temperatures, and this, presumably enhances the CO oxidation

kinetics.
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4.3 EWGSR Study with H2 and CO Containing Feed
Gas

This chapter introduces the results of the experimental EWGSR study, where the

reactor was operated with H2 and CO as active species within the feed gas. The

study focuses upon the interplay of the simultaneously proceeding electrochemi-

cal reactions, electrochemical pumping and the electrochemical CO oxidation (see

equation 3.1-3.5), and their influence upon the EWGSR operation characteristics.

Several operation parameters were varied and their influence upon the EWGSR op-

eration characteristics (e.g. cell voltage, electrochemical CO oxidation, the energy

demand etc.) was investigated.

The described experiments and results were published as a individual peer reviewed

journal article by Oettel et al. [125].

4.3.1. Motivation

The EWGSR reactor concept and its advantages in comparison to state-of-the-art

processes (see chapter 2.1) was discussed earlier.

In contrast to chapter 4.2, the EWGSR was operated here with anode feed gas

containing H2 and CO as active species. It was shown in figure 3.9, that these

two species likely simultaneously participate in two different reactions during the

intended operation mode of the EWGSR.

The rates of the single reactions are expected to vary in dependence upon the op-

eration conditions. For example, the electrochemical WGSR (see equation 3.3-3.5)

requires a higher anode overvoltage than the electrochemical H2 pumping (ECHPR)

(see equation 3.1, 3.2). This is expected to lead to varying reaction ratios at differ-

ent cell voltages. Furthermore, temperature and other operation conditions most

likely influence the single reactions rates and, consequently, the utilisation degree

of each species.

In order to evaluate the feasibility of the EWGSR concept, the influence of tem-

perature, voltage and concentration need to be understood to identify optimised

operation conditions. Additionally, the simultaneously proceeding of the ECHPR

and the electrochemical WGSR need to be characterised to allow for adjustments

of the EWGSR operation with respect to the desired anodic product gas.
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4.3.2. Experimental

Two sets of experiments were carried out. Initially, the influence of temperature,

CO and H2 concentration, and cathode purge flow rate on the cell voltage was in-

vestigated without gas analysis. Here, the EWGSR was operated in galvanostatic

mode by consecutively increasing the current density in steps of 0.01 A cm−2 up

to a maximal current density of 0.39 A cm−2, while applying a dwell time of two

minutes at each current density.

The second set of experiments was carried out with the analysis of the reactor efflu-

ent gas. Here, open circuit conditions and five current densities (0.06 A cm−2, 0.17

A cm−2, 0.28 A cm−2, 0.39 A cm−2, 0.17 A cm−2) were applied to the EWGSR. The

operation at the current density of 0.17 A cm−2 was repeated in order to detect

possible reactor degradations during the experiment. The reproducibility of the

results was excellent so that the performed repeated measurements are omitted in

the illustrations.

Three different temperatures (393K, 403K, 413K) were used during the experi-

ments. The employed concentrations of H2, CO and H2O in the anode feed gas as

well as the molar feed ratio of H2O to CO (GH2O/GCO) are summarised in Table 4.2.

Please note that in the following discussion, CO and H2 concentrations related to

the dry anode feed stream (before the addition of H2O) are used to refer to the

respective experimental data.

Two different dew point temperatures (Tdew), 351±1K and 345±1K, were used

Tdew / K
dry gas /mol% wet gas /mol% molar ratio / -

H2 CO H2 CO H2O
∗

GH2O
GCO

351 50 10.0 28.5 5.7 43.0 7.54

351 50 12.5 28.5 7.1 43.0 6.06

351 50 25.0 28.5 14.3 43.0 3.01

351 50 50.0 28.5 28.5 43.0 1.51

345 50 12.5 33.2 8.3 33.5 4.01

351 60 12.5 34.2 7.1 43.0 6.06

351 70 12.5 40.0 7.1 43.0 6.06

Table 4.2.: Applied anode feed gas compositions (assuming ideal gas conditions)
during the experiments with CO and H2 containing feed gas. Species
fractions are listed for the dry and wet anode feed gas (∗ calculated
from the dew point).

during the experiments for the addition of H2O into the anode feed stream. This

led to an added molar water flow rate GH2O of 1.12·10−4 mol s−1 and 0.75·10−4

mol s−1, respectively. The determination of the molar water flow rate using the
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dew point temperature is described in chapter 4.2.2.

During all experiments, the total volume flow rate of the dry anode feed gas stream

was set to 200 mlN min−1. As illustrated in figure 3.9, the cathode compartment

was purged with N2 in most of the EWGSR experiments. If not stated otherwise,

the cathode was purged with N2 at a flow rate of 200 mlN min−1.

The reactor effluent was monitored using the gas chromatography, as introduced in

chapter 3.4. Using the GC, H2, CO and CO2 were not detected within the EWGSR

cathode effluent under open circuit conditions. Furthermore, the components CO

and CO2 were not detected within the cathode effluent during the EWGSR oper-

ation. Thus, the crossover of these species through the electrolyte membrane is

negligible.

4.3.3. Results and Discussion

Polarisation Curve

In contrast to the previous EWGSR study (no H2 in the feed gas, chapter 4.2),

the EWGSR was operated here with an anode feed gas mixture of CO and H2.

This leads to two possible current driven anodic reactions, namely (i) the electro-

chemical H2 oxidation (equation 3.1-3.2) and (ii) the electrochemical CO oxidation

(equation 3.3-3.5).

Figure 4.13 shows a polarisation curve, recorded with an anode feed gas composi-

tion of 12.5mol% CO and 50mol% H2 at 393K. The recording started at i=0.01

A cm−2 where a cell voltage of -0.057V was measured. The cell voltage is the sum

of the Nernst voltage and the voltage losses under current flow (e.g. ohmic losses,

activation losses, etc.). As long as the cell voltage is negative, the EWGSR oper-

ates as galvanic cell, i.e. spontaneous electric current flow. When the cell voltage

is positive, the electric current is driven by the external power source.

Within the current range of 0.01 - 0.07 A cm−2 the observed cell voltage increased

linearly with the applied current. Here, the observed behaviour is suggested to re-

sult mainly from the ohmic resistance of the EWGSR and the proportional increase

of the cathodic H2 concentration with increasing current (equation 3.6). The H2

concentration increase at the cathode reduces the concentration gradient between

anode and cathode, thus, it lowers the concentration dependent potential difference

between the electrodes.

In the current range of 0.08-0.17 A cm−2 the cell voltage increases more intensely

at every current density step. Within this current range, the cell voltage exhibits

an increase from 0.079V to 0.411V. This part of the polarisation curve indicates a



58 Chapter 4. Experimental Investigations

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T=393 K, 12.5 mol% CO, 50 mol% H
2

Current density /  A cm
−2

V
o
lt
a
g
e
 /
  
V

0.00

0.00

0.00

0.09
1.09

high current regimetransition regimelow current
regime

el.chem. H
2
 pumping el.chem. CO oxidation + H

2
 pumping

Figure 4.13.: A typical EWGSR polarisation curve with indicated operation
regimes, recorded at T=393K with an anode feed gas containing
12.5mol% CO and 50mol% H2 (related to the dry feed stream).
The anode effluent CO2 concentration, determined using GC ana-
lysis, is displayed for five selected operation points.

transition in the cell operation, wherefore it is addressed in the following as tran-

sition regime.

A second linear part of the polarisation curve is observable in figure 4.13 in the cur-

rent density range of 0.17-0.39 A cm−2. However, the voltage increases to a lesser

extent with increasing current than observed first linear part of the polarisation

curve (low current regime). The linearity within this third regime might result

from the superposition of several influencing factors, being a Tafel-type depen-

dence of the H2 and CO electro-oxidation, ohmic voltage losses of the EWGSR, the

current-dependent cathode potential and the alternation of the potential-dependent

anode catalyst CO coverage.

At selected current densities, the anode effluent CO2 concentration was measured

as indicated in figure 4.13. Considering the applied operation temperature and the

anode feed gas components, the only possible CO2 source within the process is the

water supported electrochemical oxidation of CO to CO2 (equation 3.3-3.5). As

seen in figure 4.13, no CO2 was detected at low currents up to a current density of

0.15 A cm−2 (0.358V). The first indication of a CO electro-oxidation was found at

a current density of 0.18 A cm−2 (0.423V), where an anode effluent CO2 concen-

tration of 0.09mol% was measured. The CO2 concentration increases further with

the current density. At 0.21 A cm−2 (0.455V), a concentration of 1.09mol% CO2

was measured in the anode effluent.

Consequently, based on the gas analysis of the effluent it is obvious that the elec-

trochemical oxidation of CO takes place only if the EWGSR is operated within
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the third regime of the polarisation curve. At low current densities only the direct

electrochemical H2 oxidation takes place.

The shape of the polarisation curve (figure 4.13) and the start of the CO oxidation

in the third regime (i > 0.17 A cm−2) is related to the CO adsorption and CO

electro-oxidation characteristics. Carbon monoxide is a known Pt catalyst poison,

as it strongly adsorbs on the active surface sites of the catalyst and, thus, reduces

the amount of available active sites for the H2 oxidation [67, 68]. The electrochem-

ical oxidation of CO with H2O depends upon the respective anode overpotential.

The dissociative chemisorption of H2O (equation 3.4) requires a certain electrode

overpotential to occur [71, 72, 130, 134].

The observed intense increase of the polarisation curve slope in the transition regime

(i =0.08 - 0.17 A cm−2) is most likely caused by the absence of a sufficient amount of

free anodic active surface sites for the faradaically controlled H2 oxidation reaction,

as CO occupies a large portion of catalyst sites by adsorption.

Consequently, the anode overvoltage rises significantly with increasing cell current

as the available anodic active surface sites become the limiting factor for H2 oxi-

dation. This occurred likely approx. at i =0.08 A cm−2 (figure 4.13), being the

start of a more pronounced anode polarisation.

The beginning of the electrochemical CO oxidation can be identified in figure 4.13

not only by the gas analysis, but also by the more moderate cell voltage increase

during the current density step from 0.16 to 0.17 A cm−2.

In the high current regime (i > 0.16 A cm−2), no indications of significant mass

transport limitations of the occurring reactions are visible in figure 4.13.

Influence of the CO and H2 gas concentration

The influence of the anode feed gas CO concentration on the EWGSR voltage is

shown in figure 4.14a. Polarisation curves, recorded at 393K for three different CO

concentrations (12.5, 25 and 50mol%) and 50mol% H2, are shown.

All three curves exhibit the above described three characteristic regimes. However,

it is clearly visible that a higher CO feed gas concentration shifts the transition

regime to lower current densities. For a CO concentration of 50mol%, a pronounced

anode polarisation is observed already at about i =0.05 A cm−2, compared to a

value of i=0.09 A cm−2 with 25mol% CO and 12.5mol% CO. However, the volt-

age increase was observed to be flatter at 12.5mol% CO than at 25mol% CO and

50mol% CO.

For all three applied CO concentrations, the end of the transition regime was

observed at a cell voltage of about 0.410V. Here, the operation points at i=0.09

A cm−2 (0.427V), i =0.12 A cm−2 (0.405V) and i =0.17 A cm−2 (0.411V) for an



60 Chapter 4. Experimental Investigations

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 T=393 K, 50 mol% H
2

a)

Current density /  A cm
−2

V
o
lt
a
g
e
 /
  
V

 

 

mol% CO

12.5

25.0

50.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 T=393 K, 12.5 mol% CO
b)

Current density /  A cm
−2

V
o
lt
a
g
e
 /
  
V

 

 

mol% H
2

50.0

60.0

70.0

Figure 4.14.: Polarisation curve dependency upon selected operation parameters
and otherwise unchanged operation conditions: a) influence of
the anode feed gas CO concentration, recorded at T=393K with
50mol% H2 (related to the dry anode feed stream), b) influence
of the anode feed gas H2 concentration, recorded at T=393K
with 12.5mol% CO (related to the dry anode feed stream).

operation with 50mol% CO, 25mol% CO and 12.5mol% CO, respectively, can be

identified as starting points of the electrochemical CO oxidation by examining the

first derivative of the polarisation curve. Hence, the value of the anode overvoltage

at the start of the electrochemical CO oxidation seems to be nearly independent

on the CO concentration of the anode feed gas.

However, the electrochemical CO oxidation shifts with respect to the current den-

sity, as the transition regime of the EWGSR polarisation curve is shifted to lower

current densities at increasing CO feed gas concentrations. At current densities

with proceeding CO electro-oxidation, all three polarisation curves in figure 4.14a

have a similar slope of about 0.075V per 0.1 A cm−2.

The influence of the H2 feed gas concentration upon the EWGSR operation is shown

in figure 4.14b. The experiments were conducted for 12.5mol% CO and H2 feed

gas concentrations of 50, 60 and 70mol% at 393K.

In the low current density range (i =0.01 - 0.08 A cm−2), the H2 feed gas concen-

tration was found to influence the voltage to some extent. A lower H2 feed gas

concentration led to a stronger voltage rise. The concentration gradient dependent

voltage between the electrodes (see Nernst equation) is directly influenced by a

change of the anode H2 feed gas concentration. During the recording of the po-

larisation curves in figure 4.14b, the cathodic H2 concentration was equal at equal

currents. The H2 concentration gradient between the anode and cathode compart-
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ments increased with the increase of the anode H2 feed gas concentration, and

therefore increases the nominal value of the concentration dependent potential dif-

ference between the electrodes. Thus, the polarisation curves recorded with higher

H2 concentrations exhibit lower cell voltages within the low current density range.

The polarisation curve slope changed at approx i =0.08 A cm−2, i=0.10 A cm−2

and i =0.12 A cm−2 for the curves recorded with 50mol%, 60mol% and 70mol%

H2, respectively. Consequently, the beginning of the transition regime is shifted to

higher current densities with higher H2 anode feed gas concentrations. A higher

H2 feed gas concentration results in a CO oxidation starting at higher current den-

sities.

However, the cell voltage at which the CO oxidation starts was found to be ap-

prox. 0.411V - 0.420V for all three H2 concentrations. This coincides well with

the values found during the experiments with different CO feed gas concentrations

(see figure 4.14a. All three polarisation curves depicted in figure 4.14b show, for

Ucell > 0.420V, the same characteristic linear dependency of the cell voltage upon

the applied current density as the curves in figure 4.13 and 4.14a.

Influence of Temperature

The influence of the operation temperature upon the EWGSR current-voltage char-

acteristics is shown in figure 4.15a. The anode feed gas composition was 50mol%

H2, 12.5mol% CO balanced by N2.

Under these conditions, lower cell voltages were generally observed at higher tem-

perature. At low current densities, the temperature did not influence the polar-

isation curve significantly (see figure 4.15a). However, the position of the transi-

tion regime changed remarkably with changing temperature. For the polarisation

curve recorded at 393K, the strong anode polarisation started already below i =0.1

A cm−2, whereas 403K and 413K led to transition regimes with lower voltage slopes

at i > 0.1 A cm−2.

At 403K and 413K, no clear beginning of the transition regime is visible. The tem-

perature dependency of the EWGSR polarisation curve is likely connected to the

CO surface coverage of the anode catalyst, which increases the anode polarisation

by limiting the amount of surface sites active for the H2 oxidation.

In this context one should remember, that the fraction of Pt catalyst active sites

covered by CO, therefore being unavailable for the H2 oxidation, increases with

decreasing operation temperature. This is caused by the negative free Gibbs ad-

sorption energy of CO, which decreases with decreasing temperatures [87].

An experimental validation of this dependency was carried out by e.g. Pitois et al.

and Davies et al. for Pt and PtRu containing LT-PEMFC electrodes, respectively
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Figure 4.15.: Polarisation curve dependency upon selected operation parameters
and otherwise unchanged operation conditions: a) influence of the
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[142, 143]. Furthermore, the results of the H2 free EWGSR study (chapter 4.2) sup-

port the findings of this CO adsorption temperature dependency under EWGSR

conditions, where lower cell voltages for the CO oxidation at lower temperatures

were observed.

Consequently, it can be stated that an increased operation temperature lowers the

amount of CO adsorbed on the catalyst surface and, hence, increases the catalyst

surface available for the H2 oxidation. Therefore, at 413K the transition regime

was shifted to a higher current densities, compared to the curves recorded at 393K

and 404K (figure 4.15a).

Based on the results presented in figure 4.13, the CO oxidation at 393K, 403K

and 413K (figure 4.15a) is assumed to start at approx i =0.17 A cm−2, i =0.24

A cm−2 and i =0.28 A cm−2, respectively. The corresponding cell voltages of 0.411V

(393K), 0.425V (403K) and 0.398V (413K) are in the same range as observed un-

der variation of the CO feed concentration, which indicates that the onset of the

CO oxidation does not significantly change with respect to the voltage within the

applied temperature and educt concentration range.
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Influence of Cathodic Purging

A cathodic purge flow rate of 200 ml min−1 N2 was applied during most of the

experiments. However, a purge flow is not desired when one aims to generate pure,

concentrated H2. Therefore, experiments without the cathodic purge flow were con-

ducted to observe the influence of the cathodic N2 flow upon the EWGSR voltage.

A comparison of two EWGSR polarisation curves, recorded with (200 ml min−1)

and without (0 ml min−1) cathode purging, is shown in figure 4.15b. These polarisa-

tion curves were recorded at 393K with an anode feed gas composition of 70mol%

H2 and 12.5mol% CO.

The curves are closely identical, deviating only at low current densities. Here, the

curve recorded with cathode purging exhibits negative cell voltages and a stronger

voltage increase in the current density interval from 0.01 A cm−2 to 0.12 A cm−2

than the curve recorded without cathode purging.

The positive cell voltages at low current densities during the EWGSR operation

without cathode purging originate from the reversed concentration gradient bet-

ween anode and cathode, as the cathode compartment is completely flooded with

H2.

The comparison of the two polarisation curves in figure 4.15b shows that the cath-

ode purging only influences the EWGSR voltage at i < 0.12 A cm−2.

CO Conversion

Figure 4.16 displays current-voltage values obtained at 393K and 403K with an

anode feed gas containing 10mol% CO and 50mol% H2, as well as the determined

corresponding CO2 flow rates in the anode effluent. A proceeding CO oxidation

(CO2 within the effluent) was proven at 393K and 403K for the current range

i ≥0.28 A cm−2 and i ≥0.39 A cm−2, respectively.

Similar to the results shown in figure 4.15a, higher voltages were measured at 393K

than at 403K for i>0.1 A cm−2. The CO2 molar flow rate in the effluent was zero for

both temperatures at current densities below i =0.17 A cm−2. At a current density

of 0.28 A cm−2 and a temperature of 393K, the CO2 molar flow rate (GCO2
) was

8.5·10−8 mol s−1 cm−2, whereas at 403K no CO2 was detected. The increase of the

current density to 0.39 A cm−2 led to GCO2
=1.76·10−7 mol s−1 cm−2 at 393K and

GCO2
=1.25·10−7 mol s−1 cm−2 at 403K.

It is visible, that the lowest current density, where the generation of CO2 was

experimentally observed, was temperature dependent (figure 4.16). This finding

agrees well with the previous conclusion regarding the shift of the transition regime.

For example, at 403K and i =0.28 A cm−2, the obtained voltage (0.373V) did not
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Figure 4.16.: Anodic CO2 evolution rates in combination with the corresponding
EWGSR voltages, obtained at T=393K, T=403K and different
current densities with 50mol% H2 and 12.5mol% CO (related to
the dry anode feed stream).

exceed 0.4V and no CO2 was detected, whereas at 393K a voltage of about 0.471V

was measured and a significant CO2 generation in the anode was detected.

The obtained CO2 molar flow rate can be directly correlated to the reaction rate

of the proceeding electrochemical CO oxidation. The CO2 flow rate is lower at the

higher temperature. Therefore, at i =0.39 A cm−2 the fraction of H2 being oxidised,

and thus contributing to the current, is larger at 403K than at 393K.

The rate of chemical reactions is typically a function of the concentration of the

participating species and their molar ratio. Therefore, the amount of water, added

to the dry anode feed gas, likely influences the EWGSR operation. The influence

of water was investigated by changing the H2O/CO ratio from 4.01 to 6.06 (see

table 4.2).

Figure 4.17 shows that the lowest current density with CO2 detection, as well as

the determined CO2 effluent flow rate values, was not significantly influenced by

the H2O/CO ratio. The current voltage curve recorded at a H2O/CO ratio of 4.01

exhibits only slightly higher voltages than that recorded at a H2O/CO ratio of 6.06.

The EWGSR voltage was 0.536V and 0.514V at i =0.28 A cm−2 with the H2O/CO

ratios of 4.01 and 6.06, respectively.

During the operation at i =0.28 A cm−2, CO2 flow rates of GCO2
=9.40·10−8 and

GCO2
=9.84·10−8 in mol s−1 cm−2 were obtained with H2O/CO ratios of 4.01 and

6.06, respectively. The minor deviation of these values indicates that the CO oxi-

dation rate did not change significantly as a function of the H2O/CO ratio. To
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understand the voltage change due to different feed gas water content, the follow-

ing considerations can be made.
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Figure 4.17.: Anodic CO2 evolution rates combined with the corresponding
EWGSR voltages, obtained two different anode feed gas H2O/CO
ratios, versus the current density.

First, the higher EWGSR voltage with a H2O/CO ratio of 4.01 might indicate an

increase of the anode overvoltage, resulting from an influence of the lower H2O con-

tent upon the reaction kinetics. A change of the anode overvoltage would influence

both the H2 oxidation and the CO oxidation.

As the H2 oxidation does not depend upon H2O as educt, the assumed higher anode

overvoltage with the H2O/CO ratio of 4.01 would result in a higher H2 oxidation

rate. This in turn implies that the actual CO oxidation rate decreases, as the total

number of transferred electrons is constant at a constant current. The experimental

results in figure 4.17 show a lower GCO2
at i =0.28 A cm−2 and i =0.39 A cm−2 when

the feed gas water content was lower. This observation supports the assumption

of a higher anode overvoltage at lower H2O/CO ratios. But, the deviation of GCO2

due to the different anode feed gas water content is negligible when considering the

accuracy of GC measurements.

Secondly, the deviating EWGSR voltage with different anode feed gas water con-

tent might be related to changes in the membrane conductivity. Asensio et al.

[104] showed that a higher water content in the feed gas influences the conductivity

of ABPBI based polymer electrolytes positively. Consequently, the here observed

higher voltages with the lower H2O/CO ratio could also be caused by a slightly

decreased membrane conductivity.

The dependence of the CO oxidation rate on the CO feed gas concentration and

the corresponding current voltage dependency is shown in figure 4.18.
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Figure 4.18.: Anodic CO2 evolution rates combined with the corresponding
EWGSR voltages, obtained at two different CO feed concentra-
tions, versus the current density.

The obtained current voltage dependencies coincide well with the results shown in

figure 4.14a. The CO feed gas concentration of 50mol% led to a more pronounced

increase of the EWGSR voltage (anode polarisation) until the first CO2 detection in

the anode effluent, if compared to 10mol% CO. Furthermore, for all applied current

densities the recorded voltages were higher for 50mol% CO than for 10mol% CO.

With 50mol% CO, the current voltage curve exceeded 0.4V at i=0.17 A cm−2,

which was found previously to be approximately the starting voltage of the CO

oxidation within the used EWGSR setup.

The flow rate of CO2, GCO2
=1.59·10−7 mol s−1 cm−2, was determined for i =0.17

A cm−2 and 50mol% CO, whereas no CO2 was detected with 10mol% CO at this

current, likely due to the relatively low voltage of 0.29V. The higher current density

of i =0.28 A cm−2 led to a CO2 detection also for the 10mol% CO operation.

The difference of the CO2 flow rate ∆GCO2
between two current densities, indicated

in figure 4.18, reveals that the CO oxidation rate increased stronger for 50mol%

CO (∆GCO2
=2.83·10−7 mol s−1 cm−2) than for 10mol% CO (∆GCO2

=0.93·10−7

mol s−1 cm−2). The respective ∆GCO2
values were calculated for the current range

of i =0.28 - 0.38 A cm−2.

Using the Faraday law, the determined ∆GCO2
values can be compared directly to

the imposed increase of the total current density (∆i =0.11 A cm−2). Calculated

from the amount of CO2, it can be seen that the CO oxidation (∆iCO,ox =0.055

A cm−2) contributed about 50% to the overall current increase, whereas the rest can

be assigned to the hydrogen oxidation. On the other hand, at 10mol% CO the CO

oxidation rate rise contributed only about 16.4% (∆iCO,ox =0.018 A cm−2) to the
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current rise, whereas the H2 oxidation provided the major fraction (∆iH2,ox =0.092

A cm−2).

In the considered current density interval (i =0.28-0.38 A cm−2), the current voltage

curves for both CO concentrations exhibit a closely similar voltage slope. Hence,

the current density increase from 0.28 A cm−2 to 0.38 A cm−2 most likely did not

cause a higher anode polarisation for 50mol% CO than for 10mol% CO, which

therefore might be excluded as reason for the observed stronger CO oxidation rate

increase.

For this reason, one might conclude that a higher CO coverage of the anode catalyst

surface, being a function of the CO gas concentration, caused the more pronounced

increase of the CO oxidation rate at the higher CO concentration.

Anode Effluent H2/CO ratio

As many electrochemical processes, the proceeding reactions within the EWGSR

might be subject to transport limitations. Diffusion resistances can limit the maxi-

mal employable current density, as a current density overload leads under such

conditions to critical electrode overvoltages which could damage the MEA compo-

nents irreversible. Therefore, preferably the anode effluent should contain always a

certain amount of the educt compounds H2 and CO, which are at best utilised in

a subsequent process.

Many chemical processes utilise syngas (CO and H2 mixtures) for the synthesis of

organic compounds [14, 18, 19, 144]. Here, the H2/CO ratio is of crucial impor-

tance, depending upon the respective process. For instance, the process units of

large scale processes such as ammonia synthesis, methanol synthesis or Fischer-

Tropsch synthesis are designed to operate with hydrogen rich reformat gas streams

with molar H2/CO ratios of about 4.5, 2.1 and 2.0, respectively [144].

The CO oxidation rate dependence on the operation conditions of the EWGSR (as

seen in figures 4.16-4.18) grants an option to control the anode effluent composi-

tion, while extracting simultaneously neat H2 as the cathode effluent. The precise

adjustment of the molar H2/CO ratio in the anode effluent could be highly advan-

tageous for an efficient and sustainable application of the EWGSR process in large

scale processes.

Figure 4.19 displays the molar H2/CO ratio in the anode effluent as a function of

the applied current density for the anode feed gas CO concentrations of 10.0mol%,

12.5mol%, 25.0mol% and 50.0mol%. The anode feed gas contained furthermore

50mol% H2 and the measurements were conducted at 393K or 403K.

Focusing first on the operation at 393K, the molar H2/CO ratios were found to

decrease for all investigated CO concentrations up to the current density of i=0.17

A cm−2. At this current, H2/CO ratios of 3.65, 2.93, 1.53 and 0.85 were deter-
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Figure 4.19.: Variation of the anode effluent H2/CO ratio in dependence upon
anode feed gas CO concentration and current density, obtained at
T=393K or T=403K.

mined for the CO anode feed gas concentrations of 10.0mol%, 12.5mol%, 25.0mol%

and 50.0mol%, respectively. At higher current densities the decrease of the molar

H2/CO ratio, associated to the anode feed gas CO concentrations of 10.0mol% and

12.5mol%, is moderate, and the molar H2/CO ratio associated to 25.0mol% CO

and 50.0mol% CO remains practically constant at i > 0.17 A cm−2.

This implies that for a higher CO content, the ratio of the H2 oxidation to the

CO oxidation is almost constant in this current range. The observed molar H2/CO

ratio decrease in the low current interval (i =0-0.17 A cm−2) is suggested to result

from the consumption of hydrogen via H2 oxidation, while no CO oxidation occurs.

At i > 0.17 A cm−2, the EWGSR voltage exceeded 0.4V, and the CO oxidation

proceeded in parallel to the H2 oxidation. This holds for the operation at 393K.

Figure 4.19 contains also the obtained anode effluent molar H2/CO ratios of the ex-

periment with 12.5mol% CO at 403K. As shown in figure 4.16, the CO oxidation

was detected only at the current density of i =0.39 A cm−2. This is reflected by

the dependency of the H2/CO ratio upon the current density, as the mole ratio

decreases linearly until i =0.28 A cm−2 to a value of 2.15. At i =0.39 A cm−2, only

a minor further decrease of the molar H2/CO ratio to 2.09 was determined.

CO Current Fraction

The interdependency of the electrochemical CO and H2 oxidation influences the

EWGSR voltage and the anode effluent molar H2/CO ratio.

In order to describe these changes in a coherent manner, the ratio of the current

density, generated by CO oxidation (iCO,ox), to the total current density (itot) was
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defined as CO current fraction (βCO) of the EWGSR process. The definition of βCO

is described by equation 4.7.

βCO =
iCO,ox

itot
=

GCO2
· z · F

itot
(4.7)

Here, GCO2
represents the molar CO2 effluent flow rate, z stands for the number of

exchanged electrons per generated CO2 molecule, an F is the Faraday constant.

The dependency of βCO upon the applied current density and the CO feed gas

concentration is displayed for two temperatures (393K and 403K) as a three-

dimensional surface plot in figure 4.20. The numeric values of all labelled data

points in figure 4.20 are summarised in Table 4.3 and the points are linearly con-

nected.

Figure 4.20.: The CO current fraction of the EWGSR process βCO as function
of current density and anode CO feed gas concentration, obtained
at T=393K and T=403K with 50mol% H2 (related to the dry
anode feed stream). The surface areas and lines in-between the
labelled data points originate from linear interpolation.

The influence of the operation temperature upon the CO current fraction at differ-

ent CO concentrations is visible at best at a current density of 0.17 A cm−2. Here,
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βCO is zero for 10.0 and 12.5mol% CO at both temperatures. A further increase

of the CO concentration to 25.0mol% initiated the CO oxidation at 393K, result-

ing in βCO =0.001 (point F), whereas βCO remained zero at 403K (point F’). At

T=393K and 50.0mol% CO (point C), the CO oxidation contributed 18.5% of

the total current, whereas at 403K (point C’) only 7.0% of the total current were

generated by CO oxidation.

It is clearly visible that the maximal CO current fractions of 0.376 and 0.343 were

achieved at the highest CO concentration (50mol%) and the highest current den-

sity (0.39 A cm−2), at 393K and 403K, respectively. The contribution of the CO

oxidation to the total current decreased along with the CO concentration and the

current density for both temperatures.

The observed dependency of βCO upon the CO concentration can be evaluated by

introducing the maximal possible faradaic current density (imax
tot ) into equation 4.7.

The overall maximal current density imax
tot is now defined as the maximal current

available from the complete conversion of CO along with the complete transfer of

all anodic H2 to the cathode.

Consequently, βimax

CO is now theoretically calculated from the anode feed gas compo-

sition according to equation 4.8.

βimax

CO =
imax
CO,ox

imax
tot

=
GCO · 2 · F

(GH2
+ GCO) · 2 · F

(4.8)

The values of βimax

CO at all applied CO concentrations are listed in Table 4.3. The

experimentally obtained βCO values did not exceed the βimax

CO of the respective CO

concentration.

However, CO current fractions larger than βimax

CO could be theoretically possible with

anode feed gases containing H2 and CO, if the operation conditions lead to a pre-

ferred CO oxidation compared to the H2 oxidation.

This case might appear for a EWGSR operation at temperatures significantly be-

low 393K, as this supports the preferential CO adsorption at the anode catalyst,

and, thus, minimises the adsorption of H2 onto the active catalyst surface sites.

Furthermore, a low molar H2/CO ratio in the anode feed gas is assumed to favour

a preferred CO adsorption. The required overall current density highly depends

upon the respective inlet H2 and CO molar flow rates, whereas low current densi-

ties are assumed to be beneficial to achieve βCO > βimax

CO .

During the experiments, the measured βCO was higher for 393K than for 403K at

every current density and CO concentration. This supports the above suggested
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data point cCO,dry / mol% i / A cm−2 β393 K
CO

/ - β403 K
CO

/ - βimax

CO
/ -

A 50.0 0.39 0.376 0.343 0.50

B 50.0 0.28 0.322 0.268 0.50

C 50.0 0.17 0.185 0.070 0.50

D 25.0 0.39 0.221 0.120 0.33̄

E 25.0 0.28 0.166 0.114 0.33̄

F 25.0 0.17 0.001 0 0.33̄

G 12.5 0.39 0.121 0.085 0.20

H 12.5 0.28 0.069 0.002 0.20

K 10.0 0.39 0.089 0.062 0.16̄

L 10.0 0.28 0.059 0 0.16̄

Table 4.3.: Summary of experimentally obtained and theoretically calculated CO
current fractions, β393 K

CO ,β403 K
CO and βimax

CO , respectively, related to the
respective CO concentrations and current densities (see figure 4.20).

possibility to reach βCO > βimax

CO , as it demonstrates that lower temperatures shift the

balance between CO oxidation and H2 oxidation into the direction of CO oxidation.

As a summary, it may be concluded that the current fraction βCO obtained from

CO oxidation is controllable via the current density, the feed gas composition or

the operation temperature.

Power Demand

The energy expenses of chemical processes are an important measure regarding

the evaluation of operation costs and process sustainability. As the EWGSR is

operated with electrical energy, the electrical power consumption is an important

evaluation criterion.

Therefore, the molar energy consumption ΦH2
is defined here as characteristic ener-

getic parameter describing the ratio of the electrical power consumption per amount

of generated cathodic hydrogen (see equation 4.9).

ΦH2
=

U · i

GH2,cath
=

Pel

GH2,cath
(4.9)

The molar energy consumption ΦH2
as a function of the current density is shown

in figure 4.21 for the operation with 10.0 and 50.0mol% CO at 393K and 403K.

Figure 4.21 displays clearly that the energy consumption of the EWGSR decreases

if operated with low CO feed gas concentration.

For instance, at i =0.17 A cm−2 and 393K, ΦH2
was determined for the anode CO
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feed gas concentration of 10.0 and 50.0mol% to be 56.6 kJmol−1 and 98.5 kJmol−1,

respectively. This energy consumption decrease due to lower CO concentrations

is also visible at higher current densities. With i =0.39 A cm−2 at 393K, ΦH2

values of 109.9 kJmol−1 and 127.7 kJmol−1 were obtained for 10 and 50mol% CO,

respectively.
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Figure 4.21.: The EWGSR energy consumption per mol cathodic H2 as a func-
tion of the current density, obtained at T=393K or T=403K
with 50mol% H2 and 10mol% CO or 50mol% CO (related to the
dry anode feed stream).

The increase of the operation temperature to 403K resulted at higher current den-

sities in a reversed behaviour of ΦH2
. Due to the temperature increase of 10K,

ΦH2
increased for 50.0mol% CO by ∆ΦH2

=4.3 kJmol−1 and ∆ΦH2
=6.6 kJmol−1,

at current densities of 0.28 A cm−2 and 0.39 A cm−2, respectively. In contrast, the

same temperature increase resulted with 10.0mol% CO in a decrease of ΦH2
by

∆ΦH2
=-18.8 kJmol−1 and ∆ΦH2

=-10.9 kJmol−1, respectively.

The temperature dependence of ΦH2
at 10.0mol% CO might be explained by a re-

duction of the CO surface coverage due to the temperature increase [87, 142, 143].

A lower anode overvoltage directly lowers the electrical energy consumption of the

EWGSR, as can be seen in figure 4.21.

On the other hand, the observed temperature dependence of ΦH2
at 50.0mol% CO

does not follow this rule. The higher specific energy consumption at the higher

temperature originates from higher voltages at the considered operation points.

This type of temperature dependence of the EWGSR voltage was already observed

in the H2 free EWGSR study (chapter 4.2). In this previously discussed study the

higher voltages at higher temperatures were suggested to result from the lower CO
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surface coverage, which directly influence the anode reaction kinetics of the CO

oxidation.

Conclusions

The results of the just presented EWGSR study with H2 and CO containing feed

gas can be summarised in the following points:

1. In the EWGSR process two driven anodic electrochemical reactions, be-

ing (i) the electrochemical H2 oxidation and (ii) the electrochemical CO

oxidation occur.

2. It was shown that the occurrence of the electrochemical CO oxidation de-

pends strongly on the cell voltage. The influence of various operation pa-

rameters (e.g. temperature, CO and H2 feed concentration, cathode purge

flow rate) was investigated in detail.

3. It was clearly seen that the transition regime within the EWGSR polari-

sation curve and the CO oxidation shift along the current density axis in

dependence on temperature, CO and H2 feed concentration .

4. The EWGSR concept enables the precise adjustment of H2/CO ratio in the

anode effluent gas according to requirements of subsequent processes (e.g.

methanol synthesis), by using the temperature and the current density as

control parameters.

5. The ratio of the electrical current driving the CO oxidation to the total

flowing electrical current was analysed. It was shown that low tempera-

tures, high CO feed gas concentrations and high current densities increase

the contribution of the CO oxidation to the EWGSRs total electrical cur-

rent consumption.





Chapter 5

Exergy-based Comparison of the EWGSR

to Alternative Processes

Within this chapter the EWGSR concept is evaluated with respect to other refor-

mate based H2 generation process routes. The development state of the EWGSR

concept differs significantly from the established process routes. Therefore, a mean-

ingful comparison requires the employment of a common reference measure which

can be applied regardless of technical maturity. The concept of exergy was selected

within this work to provide this required reference (see chapter 5.1). The compara-

tive process evaluation of the EWGSR to state-of-the-art and novel H2 generation

processes aims to identify the concept’s potential to evolve into a technically feasi-

ble and economically attractive alternative.

In the following, the applied process evaluation methodology is introduced (chap-

ter 5.1) and applied to selected H2 generation processes. Here, the pressure swing

adsorption process (PSA, chapter 5.2.1) and the membrane separation process (Mem-

Sep, chapter 5.2.2) were selected to represent state-of-the-art H2 generation routes.

On the other hand, the cyclic water gas shift reactor (CWGSR, chapter 5.2.3) and

the electrochemical water gas shift reactor (EWGSR, chapter 5.3) represent novel

reformate based H2 generation processes, which are still in the research and devel-

opment state. The exergy analysis of the PSA, MemSep, and CWGSR processes

was based on data available from literature, whereas the exergy analysis of the

EWGSR was carried out with experimental data (chapter 4.3). The results of the

exergy analysis are discussed and compared in chapter 5.4.

5.1 Exergy Analysis Methodology

Every comparative evaluation of technical processes requires a defined reference

measure, which enables a reliable comparison between different technological ap-

proaches. Commonly, either an energy efficiency evaluation is carried out or cost

per product factors are determined to elucidate the feasibility of a process in com-
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parison to alternatives.

The selection of a suitable reference measure which is applicable for the compari-

son of the EWGSR process with established processes is not straightforward. The

process delivers two product gas streams, neat H2 at the cathode and a conditioned

synthesis gas mixtures at the anode, which both can be utilised chemically or ener-

getically. Neat hydrogen is an important chemical feed stock of various processes

(e.g. ammonia synthesis, hydrogenations) [14, 144], as well as a promising future

energy carrier [121, 131, 132]. Synthesis gas (H2 + CO) is utilised to synthesise

hydrocarbons and oxygenates (e.g. Fischer-Tropsch synthesis, methanol synthesis)

[17–19], or used as fuel in e.g. molten carbonate fuel cells and solid oxide fuel cells

[56, 58, 145].

The composition of the conditioned synthesis gas, the amount of generated neat H2

and the energy demand of the EWGSR process highly depend upon the operation

conditions, and hence, upon the overall process design in which the EWGSR might

be integrated. Consequently, the definition of an overall reference measure, which

refers to both energetic and product-related properties of the EWGSR, would be

very specific and difficult to apply to other H2 generating processes.

Therefore, the concept of exergy, originating from thermodynamics and being often

applied in energy engineering, was selected as a tool to evaluate the feasibility of the

EWGSR process in comparison to established neat H2 generating process routes.

The exergy of a substance or mixture expresses its work potential or the quality of

energy with respect to a reference state. The circumstance, that the exergy concept

captures the influence of a species concentration upon the total exergy of a mixture

is advantageous for the evaluation of separation and purification processes.

In general, the exergy of a system comprises four contributions which are the po-

tential, kinetic, physical, and chemical exergy. Systems without potential, kinetic

and physical exergy are considered to be in the state of the defined environment,

and systems which do not even exhibit chemical exergy are referred to be in dead

state. Both the potential and kinetic exergy of a system, defined by its position

and velocity within a fixed reference frame, respectively, have only minor relevance

within the steady state operation of a process system. Therefore, these two exergy

contributions were neglected within the here conducted exergy analysis. Hence, the

total exergy of a species or mixture comprises of the physical and chemical exergy

according to equation 5.1,

ǫi = ǫi,phys + ǫi,chem (5.1)

where ǫi, ǫi,phys and ǫi,chem constitute the total exergy, the physical exergy, and

the chemical exergy of the species or mixture i. A detailed presentation of the

principles and application of the exergy analysis can be found in the literature [146–
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148]. The calculation approach of the physical and chemical exergy is introduced

in the chapters 5.1.1 and 5.1.2, along with illustrative examples in chapter 5.1.3.

Furthermore, the exergy efficiency definition, as applied within this work, is given in

chapter 5.1.4. Finally, numerical values of parameters (e.g. temperature, pressure,

gas compositions, etc.) used within the executed exergy analysis are presented in

chapter 5.1.5.

5.1.1. Physical Exergy

The physical exergy of a system represents the maximum obtainable work during

the transition of the system from its initial state to a defined environmental state.

The environmental state is constant and equal for every system included into the

exergy analysis. It is usually defined by the real environmental conditions of the

considered processes and described by the reference temperature T◦ and reference

pressure p◦. Within this work the environmental state was defined to be T◦ =298.15

K and p◦ =101325 Pa.

In order to calculate the physical exergy of a system, the system borders are con-

sidered to be open for the transfer of energy and work, but impermeable for matter

(closed system). Furthermore, all occurring transfer processes are considered to

be ideally reversible and ideal gas conditions are assumed. An energy balance of

the considered system leads to equation 5.2, which expresses the reversible work

wrev performed by, or performed with, the system as a function of the transferred

reversible heat qrev and the enthalpy change ∆h in the system. The second law

of thermodynamics delivers the relation of the transferred reversible heat to the

entropy change ∆s in the system as function of the temperature T (equation 5.3).

wre f = ∆h − qrev (5.2)

qre f = T · ∆s (5.3)

∆ǫphys = wre f = ∆h − T · ∆s (5.4)

ǫphys,1 = (h1 − h0)− T◦ · (s1 − s0) (5.5)

Consequently, the physical exergy of a system, being the maximal obtainable re-

versible work during the system equilibration with the environmental state, is ob-

tained with equation 5.5. Here, ǫphys,1, h1 and s1 refer to the physical exergy, the

enthalpy and the entropy under initial state conditions, respectively, while h0 and

s0 represent the enthalpy and entropy under environmental conditions.

The exergy analysis of a process requires usually the calculation of the exergy dif-

ference between two states aside the defined environmental state. This physical
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exergy difference ∆ǫphys,12 between state one and state two is calculated according

to equation 5.6.

∆ǫphys,12 = ǫphys,1 − ǫphys,2 = ∆h|12 − T◦ · ∆s|12

∆ǫphys,12 = (h1 − h2)− T◦ · (s1 − s2) (5.6)

Here, ∆h|12 and ∆s|12 represent the change of the enthalpy and entropy between

state 1 and state 2, respectively. Please note that the enthalpy and entropy of the

environmental state are eliminated by the subtraction, when calculating ∆ǫphys,12.

The H2 generation process routes (see chapter 5.2.1-5.2.3), as well as the EWGSR

process proposed in this work, operate with gas mixtures. The enthalpy and en-

tropy changes of gas mixtures can be obtained by calculating the specific change

of the molar enthalpy, ∆h̃mix,12(T), and the molar entropy, ∆s̃mix,12(T, p), of the gas

mixture. In the following, all mol specific quantities are identified with the sym-

bol ”̃”. The enthalpy and entropy of ideal gas mixtures comprise of the entropy and

enthalpy sum of all gas components, weighted by the mol fractions xi, respectively.

Consequently, the changes of molar enthalpy ∆h̃i,12(T) and molar entropy ∆s̃i,12(T)

of each single gas component i are used to calculate the change of the molar entropy

and molar enthalpy of a considered gas mixture (equation 5.7 and 5.8).

∆h̃mix,12(T) =
∑

i

xi · ∆h̃i,12(T) (5.7)

∆s̃mix,12(T, p) =
∑

i

xi · ∆s̃i,12(T, p) (5.8)

The mole-fractions of gas mixtures are assumed to be constant during the change

of the physical exergy. The calculation of ∆h̃i,12(T) and ∆s̃i,12(T) was carried out in

this work with the help of empirical equations distributed by the National Institute

of Standards and Technology, USA (NIST), and will be briefly presented in the

following.

At first, the equations to calculate the change of the molar enthalpy ∆h̃mix,12(T)

between the states 1 and 2 are introduced. As given in equation 5.9, ∆h̃i,12(T) is ob-

tained by determining the enthalpy differences of the two states to the environmen-

tal state and a subsequent subtraction of both differences from each other. The en-

thalpy difference of a compound, due to a temperature different from T◦=298.15K,

can be calculated with equation 5.10:

∆h̃i,12(T) = ∆h̃i,1(T1)− ∆h̃i,2(T2) = (h̃i,T1
− h̃i,298.15K)− (h̃i,T2

− h̃i,298.15K) (5.9)

h̃T − h̃298.15 K = A · t + B ·
t2

2
+ C ·

t3

3
+ D ·

t4

4
−

E

t
+ F − H, (5.10)
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where, t is the temperature parameter (t = T/1000 K). The coefficients A − H were

taken from the NIST Chemistry Webbook [149], and are called NIST coefficients

within this work. The NIST coefficients are compound specific, differ in different

temperature ranges, and are listed in tableA.1(appendix chapter A) for the consid-

ered conditions in this work.

Unlike the enthalpy change of a species, which depends under ideal gas conditions

upon the change of temperature only, entropy change is a function of temperature

and pressure change. The differential species entropy ds̃i(T, p) is in equation 5.11

and originates from the second law of thermodynamics. Here, c̃p,i and ṽi represent

the molar heat capacity and the molar volume of the species i, whereas ds̃i|p=const.

and ds̃i|p 6=const. illustrate the proportions of ds̃i(T, p) which are unaffected and af-

fected by pressure variation, respectively.

ds̃i =
c̃p,i

T
dT −

ṽi

T
dp = ds̃i|p=const. − ds̃i|p 6=const. (5.11)

∆s̃i = ∆s̃i|p=const. − ∆s̃i|p 6=const. (5.12)

∆s̃i|p=const. =

T
∫

0K

c̃p,i

T
dT = A · ln(t) + B · t + C ·

t2

2
+ D ·

t3

3
−

E

2 · t2
+ G (5.13)

∆s̃i|p 6=const. =

p
∫

p◦

ṽi

T
dp = R · ln

(

p

p◦

)

(5.14)

The total change of a species entropy ∆s̃i is calculated from equation 5.12, whereas

the determination of ∆s̃i|p=const. and ∆s̃i|p 6=const. is done via the equations 5.13 and

5.14. Here, equation 5.13 is supplied by [149], as well as the values of the NIST coef-

ficients A − G (see table A.1). It is valid for the standard pressure (p◦ =101325 Pa)

and the temperature parameter t = T/1000 K. Equation 5.14 was derived by applying

the ideal gas law and contains the universal gas constant R.

5.1.2. Chemical Exergy

In accordance to the theory of physical exergy, chemical exergy denotes the maxi-

mum obtainable work during a state transition. In contrast to the physical exergy,

the considered initial and end state of the transition necessary for the determi-

nation of the chemical exergy are well defined and do not depend upon process

conditions. Both states depend upon the nature of the considered chemical com-

pound or species.

The temperature and pressure of the initial state are defined to be similar to the

environmental state conditions (T◦ =298.15 K and p◦ =101325 Pa) and equal for ev-
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ery chemical compound. However, the initial state concentration of the considered

compounds remains a variable. The end state of the chemical transition is called

ground state, and is defined separately for every chemical element. This ground

state definition is based upon the element’s state in the natural environment and

represents its most probable form of appearance within the natural environment.

Furthermore, an element’s ground state is mostly characterised by a high chemical

stability of the respective element. For example, atmospheric CO2 is the defined

reference ground state of carbon, as it constitutes complete oxidised carbon (i.e.

high chemical stability). Additionally, the ground state of an element involves the

thermodynamic activity (activity coefficient times concentration measure) of the

element under ground state conditions. For instance, the atmospheric concentra-

tion of CO2 is considered to be the reference concentration within the ground state

definition of CO2, as atmospheric CO2 is thermodynamically equilibrated with the

environment. Consequently, a compound concentration deviating from its ground

state value contributes to the total chemical exergy of the compound, as it repre-

sents a driving force for an equilibration process.

The molar chemical exergy of a single compound is a constant value and its cal-

culation is well documented [146, 148]. The standard chemical exergies employed

within this work are presented for all required compounds in table 5.1.

compound i standard chem. exergy ǫ̃◦chem

/ J mol−1

CH4 (g) 836510

CO (g) 275430

H2 (g) 238490

CO2 (g) 20140

H2O (g) 11710

H2O (l) 3120

N2 (g) 720

Table 5.1.: Standard chemical exergies ǫ̃◦chem at T◦=298K, p◦=101325 Pa,
[146].

The chemical exergy of a mixture of compounds comprises of the standard chemical

exergies of the present compounds ǫ̃◦i,chem, weighted by the respective concentration

measure. Various gas mixtures were considered within this work and their respec-

tive chemical exergies were calculated according to equation 5.15.

ǫ̃mix,chem =
∑

i

xi · ǫ̃◦i,chem + R · T◦ ·
∑

i

xi · lnxi (5.15)
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Here, the mole fractions xi of the compounds i within the respective gas mixture

were employed in the calculation of a gas mixture chemical exergy ǫ̃mix,chem, along

with the universal gas constant R and the environmental reference temperature T◦.

5.1.3. Implementation of the Exergy Concept

This section introduces the practical application of the exergy concept as conducted

in this work. At first, the exergy balancing approach for a default separation unit

is introduced, followed by heat exchanger balancing. Finally, the determination of

the reaction heat based exergy is briefly introduced.

Balancing of a Separation Unit

The exergetic evaluation of the respective processes is carried out with respect to the

generated pure H2 stream (see chapter 5.1.4). Therefore, mass balances are applied

to characterise the amount of produced neat H2 stream (desired product). Besides

the primary H2 containing effluent stream, each separation process possesses a

tail gas effluent stream (undesired product). The exergy within the tail gas is

considered to be unusable as exergy source for subsequent process steps within a

respective reference process chain. A more detailed discussion as to why the tail

gas exergy was not considered (i.e. neglected) as usable exergy gain of the process

can be found in chapter 5.1.4. The molar tail gas stream is indicated in the balance

Figure 5.1.: Mass balance envelope of a default separation unit, with Gin - molar
inlet stream, Gprod - desired product outlet stream, and Gtail gas -
tail gas outlet stream.

envelope schemes. Figure 5.1 shows a default separation process unit, including the

exergy balance envelope and the molar effluent streams. Here, Gtail gas represents

the tail gas stream of the default separation unit.

The general steady state mass balance of the separation unit, shown in figure 5.1,

can be expressed according to equation 5.16. Absolute numerical values of the

indicated molar flow rates depend highly upon the scale of the respective separation

unit. Therefore, the product to feed gas ratio χ (see equation 5.17) is often listed
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within the literature to enable qualitative comparison between different sizes of

separation units. The introduction of χ enables the determination of the product

stream exergy with respect to the molar stream of employed educt gas.

dn

dt
= 0 = Gin − Gprod − Gtail gas (5.16)

χ =
Gprod

Gin
(5.17)

Eprod =
Gprod · (ǫ̃

prod
mix,chem

+ ǫ̃
prod
phys

)

Gin
= χ · (ǫ̃

prod
mix,chem + ǫ̃

prod
phys) (5.18)

This leads to the exergetic process parameter Eprod with the unit J/mol, which de-

scribes the amount of exergy within the product with respect to the amount of

employed educt gas (equation 5.18). In the case that the product gas comprises

only H2 and reference conditions are assumed, ǫ̃
prod
mix,chem = ǫ̃◦H2

.

Exergy Balance of a Standard Heat Exchanger

Figure 5.2 shows a default heat exchanger unit. The exergy exchange through a

heat exchanger can be calculated based upon the physical exergies of the inlet

and outlet streams, while assuming no material changes within the stream. The

associated steady state exergy balance is presented in equation 5.19, where Gin,

Gout, ǫ̃in, ǫ̃out, ǫ̃q, and I represent the molar inlet stream, molar outlet stream,

molar inlet exergy, molar outlet exergy, the transferred exergy via heat exchange,

and the exergy transfer irreversibility losses, respectively.

Figure 5.2.: Exergy balance envelope of a default heat exchanger, with Gin, ǫ̃in

- molar inlet stream and molar inlet exergy, Gout, ǫ̃in - molar outlet
stream and molar outlet exergy, and ǫ̃q - molar exergy of transferred
heat.
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dǫ

dt
= 0 = Gin · ǫ̃in + Gin · ǫ̃q − Gout · ǫ̃out + I with Gin = Gout, I = 0 (5.19)

ǫ̃q = ǫ̃out − ǫ̃in → ǫ̃q = ǫ̃phys,out − ǫ̃phys,in as ǫ̃chem,in = ǫ̃chem,out (5.20)

The exergy irreversibility losses I are assumed to be zero within this work, i.e. ideal

reversible exergy transfer. This leads to equation 5.20, which defines the transferred

heat exergy within a default heat exchanger. In the case that a heat exchanger is

combined with a water separation (condensation unit), the recoverable heat exergy

comprised of two components: (i) the fluid exergy transfer due to cooling to a

temperature below the condensation temperature, and (ii) the fluid exergy transfer

due to the release of the condensation enthalpy. The latter refers to the water

content of the considered fluid.

Exergy from Reaction Enthalpy Release

The exergy content of heat q depends upon the temperature level at which the

considered heat is released. It is determined with the help of the Carnot efficiency,

which describes the upper efficiency boundary of a thermodynamical cyclic process

(e.g. Carnot cycle) converting heat into work. The Carnot efficiency depends upon

the temperature of the heat transfer Tq and the temperature of the material or en-

vironment assigned to uptake the heat. Within the framework of exergy, the latter

temperature is the earlier introduced environmental temperature T◦. Consequently,

the exergy of a given heat can be calculated according to equation 5.21.

ǫ̃q = q̃ · ηCarnot = q̃ · (1 −
T◦

Tq
) (5.21)

ǫ̃
∆R h̃ = ∆Rh̃ · ηCarnot = ∆Rh̃ · (1 −

T◦

TR
) (5.22)

Equation 5.21 can be applied to released reaction enthalpy within chemical reactors

as shown in equation 5.22. Here, ǫ̃
∆Rh̃ represents the exergy of the reaction enthalpy

and the molar reaction enthalpy ∆Rh̃ and the reaction temperature TR constitute

the given heat q and the heat transfer temperature Tq, respectively. The exergy

related to the reaction enthalpy can be considered within the exergy analysis as

option to replace necessary exergy inputs for fluid heating and thus lowers the

overall process exergy demands.

5.1.4. Exergy Efficiency

In general, the efficiency of a process is defined as the ratio of the desired process

gain to the necessary process effort and is often used to evaluate and compare pro-
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cesses. Many different efficiency definitions, e. g. based upon energetic or economic

process parameter, might be applied for process evaluation. An economic process

assessment requires process data like operation costs, product market value or pro-

cess build up costs. These information are hardly available for specific processes as

a complete reliable data set, let alone for a group of processes. On the contrary,

the exergy efficiency determination of a process requires energetic and material

flow data, which are available via experiments or literature. An energetic process

assessment based upon the exergy efficiency permits conclusions as to whether a

process is energetically feasible and it enables conclusions about the energetic cost

distributions, which influence the economic process assessment.

A sound efficiency definition requires the selection of a desired product, which is

similar (i.e. comparable) for all included processes. In this work heat H2 constitutes

this desired product, whereas the side products vary depending upon the respec-

tive process characteristics. In principle, side products (e.g. tail gas of a separation

unit) might represent a valuable energetic or material resource for subsequent pro-

cesses. However, their actual value depends upon their actual utilisation within

the overall process, which depends on the energetic and material integration level

of the respective process.

As the energetic and material integration level is diverse for different process instal-

lations and respective data is rare; the here conducted theoretical process assess-

ment employs the exergy efficiency definition, which relates the exergy of the gen-

erated neat H2 (shared desired product) EH2,prod (equation 5.24) to the educt-work

exergy efforts Eed.+w (equation 5.25) and the net heat exergy efforts Eq,net (equa-

tion 5.26). Here, Eed.+w is the sum of the educt exergy content and the required

technical work. The definition of the exergy efficiency is given in equation 5.23.

ηH2
=

EH2,prod

Eed.+w + Eq

heat integr.
−−−−−−−→ Eq,net < 0 ⇒ η1

H2
=

EH2,prod

Eed.+w

Eq,net > 0 ⇒ η2
H2

=
EH2,prod

Eed.+w + Eq,net

(5.23)

In order to account for a possible heat integration which utilises generated heat

within the process, the net heat exergy Eq,net of the process can be calculated

(equation 5.26) and incorporated into the exergy efficiency definition. If Eq,net ≤ 0

(i.e. excess of process heat exergy) no heat exergy was added to exergy process ef-

forts, whereas positive Eq,net values (i.e. additional demand of process heat exergy)

were added to the exergy efforts instead of Eq (see equation 5.23). The respective

status of Eq,net is represented in the exergy efficiency symbol ηH2
by adding 1 or 2

as superscript, indicating a surplus or a need of heat exergy in the overall process,

respectively.
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The experimental investigations of the EWGSR operation (chapter 4.2, 4.3) allowed

for the calculation of the total exergy efficiency ηtot, which considers both reactor

effluent streams (H2 stream and tail gas) as desired process products (see equa-

tion 5.42, chapter 5.3). The total exergy efficiency definition does not account for

heat integration. It is used within this work to rate the summarised energetic value

of all process products and will be employed in the comparative process assessment

(chapter 5.4) similar to the generally known energy efficiency.

Similar to EH2,prod (equation 5.24), the exergy demand contributions Eed.+w and Eq,net

are defined with respect to the molar educt inlet stream Gin. The reformate gas

inlet stream (H2, CO containing gas mixture) constitutes this molar educt stream

(Gin(re f ormate) = Gin) for all considered processes.

EH2,prod = (ǫ̃◦H2
+ ǫ̃H2,phys) ·

GH2,prod

Gin(re f ormate)
,

if T = T◦ and p = p◦ ⇒ EH2,prod = ǫ̃◦H2
·

GH2,prod

Gin(re f ormate)

(5.24)

Eed.+w =
∑

i

ǫ̃i ·
Gi,in

Gin(re f ormate)
+

∑

k

w̃comp ·
Gk

Gin(re f ormate)
+

Pel

Gin(re f ormate)
(5.25)

Eq,net =
∑

n

Gn

Gin(re f ormate)
· ǫ̃q,n +

∆GWGSR
CO

Gin(re f ormate)
· ǫ̃

∆R h̃ (5.26)

Consequently, Eed.+w represents the ratio of the educt-work exergy effort to the

reformate inlet stream and Eq,net is defined as the ratio of the net heat exergy of

the process to the reformate inlet stream (equation 5.25 and 5.26). Within these

equations, i, k, n are the running variables for the considered species, compression-

and heat exchange units, respectively. The above definitions ensure a consistent

determination of the exergy efficiency, as EH2
is related to the molar reformate inlet

stream (as discussed together with the separation unit balancing, chapter 5.1).

All process efforts, except of fluid heating, are summarised within Eed.+w, which in-

cludes the necessary technical work for compression w̃comp and additional electrical

power demand Pel. Within equation 5.26, Gn, Gin(re f ormate) and ∆GWGSR
CO represent

the molar fluid flow through heat exchanger n, the molar reformate gas inlet flow

rate of the process and the amount of consumed CO within the water gas shift

reactor in mol s−1, respectively.
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5.1.5. Parameters used for Exergy Analysis

This section briefly introduces process conditions and parameters, which were the

basis for the conducted exergy analyses of H2 generation processes. All param-

eters originate from literature and are listed for the PSA process, the MemSep

process, and the CWGSR process, being discussed in the chapter 5.2.1, 5.2.2, and

5.2.3, respectively. The employed conditions and parameters of the EWGSR exergy

analysis are listed in chapter 5.3.

species mole inlet gas composition
fraction A B C

xH2
0.52 0.42 0.51

xCO 0.11 0.18 0.44

xCO2
0.05 0.11 0.02

xH2O 0.28 0.29 0.03

xCH4
0.04 0 0

xN2
0 0 0

Table 5.2.: Reformat gas compositions: A - steam reforming of natural gas, [14];
B - biomass gasification optimised for PSA process, [122]; biomass
gasification optimised for CWGSR process, [122].

Table 5.2 presents three different reformate gas compositions. Composition A repre-

sents a common gas composition, obtainable from methane steam reforming, which

is not explicitly optimised for a specific downstream purification method. In con-

trast to composition A, composition B and C are optimised compositions for subse-

quent H2 purification processes and originate from a rigorous biomass gasification

process model by Heidebrecht et al. [122]. That work proposed gas compositions

B and C to be optimal for the utilisation in a PSA process and CWGSR process,

respectively.

operation operation conditions
parameter HT-WGSR PSA MemSep. CWGSR

T / K 723 298 723 1073

p / Pa 20·105 16·105
prod. tail

1.01·105| 6·105 1.01·105

Table 5.3.: Employed reactor operation conditions: HT-WGSR - high temper-
ature water gas shift reactor, [14]; PSA - pressure swing adsorp-
tion unit,[14]; MemSep - membrane separation unit,[150]; CWGSR
- cyclic water gas shift reactor, [122].
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The HT-WGSR unit within the analysed PSA and MemSep process increases the

H2 yield via the water gas shift reaction. The operation conditions of the HT-

WGSR unit, as well as of the PSA unit, the MemSep unit, and the CWGSR unit,

are listed in table 5.3, as used in the exergy analysis. The employed reactor effluent

compositions are summarised in table 5.4. Here, for the PSA and MemSep process

only the compositions of the H2 containing effluents are listed.

outlet gas composition

species mole HT-WGSR PSA MemSep. CWGSR
fraction wet dry product tail

xH2
0.58 0.75 0.9990 1 0.57 0.17

xCO 0.04 0.05 0 0 0 0.13

xCO2
0.12 0.15 0 0 0 0.32

xH2O 0.22 0 0 0 0.43 0.37

xCH4
0.04 0.05 0.0001 0 0 0.01

xN2
0 0 0.0009 0 0 0

Table 5.4.: Product gas compositions: HT-WGSR - high temperature water
gas shift reactor, [14]; PSA - pressure swing adsorption unit,[14];
MemSep - membrane separation unit, [150]; CWGSR - cyclic water
gas shift reactor, [122].
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5.2 Exergy Analysis of Alternative Processes

This chapter discusses the conducted exergy analysis of H2 generation processes,

being alternatives to the EWGSR concept. Each process is introduced with the help

of the applied process flow scheme and process conditions. Furthermore, process

specific equations and made assumptions are discussed. The results of the analysis

are summarised and discussed in combination with the EWGSR exergy analysis

results in chapter 5.4.

5.2.1. Pressure Swing Adsorption Process

The pressure swing adsorption (PSA) technology represents the state-of-the-art to

separate large amounts of H2 from gas mixtures. Plant capacities of 100000m3·h−1

H2 are technically feasible and realised [14]. The separation principle is based upon

the different adsorption characteristics of species in dependence upon the respective

substrate. The PSA often utilises active carbon and 5A zeolite as adsorption agents,

where highly volatile substances with a low polarity (e.g. H2) show low adsorption

affinities compared to polar species like H2O, CO, CO2, or hydrocarbons [14, 38].

A PSA process consists of minimal four adsorption columns which are operated in

a cyclic manner by switching between the adsorption regime and the regeneration

regime.

Figure 5.3.: Exergy balance envelope of the PSA process; 1 - educt inlet, 8 -
final product outlet, ǫ̃q,12 - exergy of heat transfer, w̃t,23 - technical
compression work, ǫ̃q,23 - exergy of heat transfer, ǫ̃∆Rh - exergy
of reaction enthalpy, ǫ̃q,56 - exergy of heat transfer. The dotted
expansion units are neglected within the exergy analysis.

Figure 5.3 shows the process flow scheme which was selected to describe a PSA-

based H2 plant. All considered exergy efforts are indicated, as well as numbered

intermediate process stages required for the exergy analysis. The calculations were

carried out for the feed compositions A and B (table 5.2). Composition C was ex-

cluded as it is optimised for the CWGSR process. The exergy of the molar flux
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entering the process at stage 1 was calculated using equations 5.1, 5.5 and 5.15. At

stage 1 the temperature and pressure were defined to be similar to the environmen-

tal conditions (T◦ =298.15 K, p◦ =101325 Pa, chapter 5.1.1). Table 5.5 summarises

the assumed temperature and pressure conditions at all labelled process stages in

figure 5.3. These values constitute an approximation of the real conditions. Nec-

essary fluid decompression steps within the process, as indicated with dotted unit

symbols in figure 5.3, were neglected within the performed exergy analysis.

operation process stage number
parameter 1, 8 2 3 4 5 6 7

T / K 298 723 723 723 723 298 298

p / Pa 1.01·105 1.01·105 20·105 20·105 16·105 16·105 16·105

Table 5.5.: Fluid conditions at intermediate stages of the PSA process scheme.

The molar exergy of heat transfer ǫ̃q,12, required to increase the fluid temperature

from T1 to T2 was determined for feed compositions A and B to be 20.17 kJ mol−1

and 20.27 kJ mol−1, respectively (equation 5.20). The technical work w̃t,23, required

to compress the fluid from ambient pressure to the pressure of the HT-WGSR unit,

was calculated with equation 5.27, assuming an isothermal compression of the fluid.

The subscripts 2 and 3 indicate the process stage assigned to the respective tem-

perature and pressure variable. The isothermic compression work, determined to

be w̃t,23 =17.93 kJ mol−1, is released as heat energy during the compression (ideal

cooling) and considered within the analysis as ǫ̃q,23 according to equation 5.28.

w̃t,23 = R · T2 · ln

(

p2

p1

)

, with T2 = T3 (5.27)

ǫ̃q,23 = −w̃t,23 ·

(

1 −
T◦

T2

)

(5.28)

The reaction enthalpy of the water gas shift reaction at 723 K was determined to be

∆Rh̃723 K
wgsr =-40.47 kJ mol−1. By considering the gas composition at the HT-WGSR

inlet and outlet (table 5.2 and 5.4), the molar exergy of the reaction enthalpy ǫ̃
∆R h̃

was determined for the gas composition A and B to be -1.57 kJ mol−1 and -3.21

kJ mol−1, respectively. Gas composition B results, due to its higher CO content, in

a higher molar exergy of the reaction enthalpy.

The temperature of the HT-WGSR effluent is with 723 K significantly higher than

the operation temperature of the subsequent PSA unit (298 K). Furthermore, it

contains a significant amount of H2O. The cooling of the gas stream down to the

PSA temperature, as well as the H2O removal, was assumed to take place in a com-
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bined heat exchange/condensation unit. Here, the wet and dry effluent gas mixture

of the HT-WGSR (see table 5.4) was considered to constitute the inlet (stage 5)

and outlet (stage 6) composition, respectively. The respective molar exergy of heat

transfer, resulting from the fluid cooling and H2O condensation, was calculated to

be ǫ̃q,56 = −16.84 kJ mol−1.

The product to feed ratio parameter χPSA
65 was applied to describe the reduction of

the process fluid due to the H2O separation between stage 5 and 6 (equation 5.29).

Under ideal gas conditions, volume flow rate data valid for standard conditions

(p=101325 Pa, T =273 K) [14] can be used to determine χPSA
65 as indicated in equa-

tion 5.29. Here, the process inlet fluid flow rate (stage 1) is considered to be equal

to the fluid flow rate at stage 5, due to the equimolar conversion within the HT-

WGSR. Alternatively, χPSA
65 can be determined from the species mole fractions of

the wet HT-WGSR effluent (table 5.4), which leads to the similar value.

χPSA
65 =

G6

G5
, if G1 = G5 ⇒ χPSA

65 =
G6

G1
=

8180

10450
= 0.78 (5.29)

χPSA
76 =

G7

G6
=

45

100
= 0.45 (5.30)

The separation of H2 within the PSA unit (see figure 5.3) was described by the

product to feed ratio χPSA
76 , which is defined by equation 5.30. Similar to χPSA

65 , vol-

ume flow rate data valid for standard conditions was employed to calculate the PSA

product to feed ratio χPSA
76 . Here, the used volume flow rates differ in magnitude

from the values employed to determine χPSA
65 , as both data sets refer to different H2

plants [14].

η
(1)
ǫ̃,H2

=
ǫ̃◦H2

·
GH2,prod

Gin(re f ormate)

ǫ̃in ·
G1

Gin(re f ormate)
+ w̃t,12 ·

G1
Gin(re f ormate)

, if Gin(re f ormate) = G1

η
(1)
ǫ̃,H2

=
ǫ̃◦H2

· xH2,7 ·
G7
G6

· G6
G1

ǫ̃in + w̃t,12
=

ǫ̃◦H2
· xH2,out · χPSA

76 · χPSA
65

ǫ̃in + w̃t,12

(5.31)

The exergy efficiency ηH2
of the PSA-based H2 production process (figure 5.3),

was determined based upon the approach introduced in chapter 5.1.4. Follow-

ing equation 5.23, the ratio of the net heat exergy to the molar inlet stream of

the process was determined with equation 5.26 to be Eq,net = −8.78 kJ mol−1 and

Eq,net = −10.23 kJ mol−1 for gas compositions A and B, respectively. When ideal

heat integration is assumed, the PSA process possesses clearly a surplus of heat

exergy and no additional heat exergy input is required. According to equation 5.23,

this led to the PSA process exergy efficiency η
(1)
H2

(equation 5.31).
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The obtained exergy efficiency value of the PSA-based H2 plant is listed in table 5.10

and compared in chapter 5.4 with the other process routes.

5.2.2. Membrane Separation Process

The membrane separation is an efficient and economical method to separate gaseous

compounds from each other. Its most common application is the separation of N2

from air [150]. However, it is also successfully applied as purification method to

generate neat H2 from H2 containing gas mixtures [151]. The process employs H2

selective thin membranes and a pressure gradient as driving force of the separa-

tion [150]. The process temperature depends upon the applied membrane material.

Polymer membranes are operated at about 523K [151], whereas the more common

Pd based membranes operate at about 773K [151–153]. Current membrane separa-

tion processes achieve H2 recovery degrees of 70% to 95% for feed gases containing

H2 in the range of 70% to 99%, respectively [152, 154].

Figure 5.4.: Exergy balance envelope of the MemSep process; 1 - educt inlet, 8 -
final product outlet, ǫ̃q,12 - exergy of heat transfer, w̃t,23 - technical
compression work, ǫ̃q,23 - exergy of heat transfer, ǫ̃∆Rh - exergy
of reaction enthalpy, ǫ̃q,67 - exergy of heat transfer. The dotted
expansion units are neglected within the exergy analysis.

Figure 5.4 shows the considered arrangement of process units to describe a H2 plant

with a membrane separation (MemSep) unit. All considered exergy streams are in-

dicated, as well as numbered intermediate process stages required for the exergy

analysis. The calculations were carried out for the feed compositions A and B (ta-

ble 5.2, composition C was excluded as it is optimised for the CWGSR process).

Based upon the equations 5.1, 5.5 and 5.15, the exergy of the molar flux entering

the process at stage 1 was calculated. Temperature and pressure at stage 1 were

defined to be similar to the environmental conditions (T◦ =298.15 K, p◦ =101325

Pa, chapter 5.1.1).

Table 5.6 summarises the assumed temperature and pressure conditions at all la-

belled process stages (see figure 5.4). These values represent an approximation of

the real conditions. The necessary fluid decompression step (stage 4 to stage 5),
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along with the involved temperature decrease, was neglected within the exergy

analysis.

operation process stage number
parameter 1, 7 2 3 4 5 6

T / K 298 723 723 723 723 723

p / Pa 1.01·105 1.01·105 20·105 20·105 6·105 1.01·105

Table 5.6.: Fluid conditions at intermediate stages of the MemSep process
scheme.

The molar exergy of heat transfer ǫ̃q,12, required to increase the fluid temperature

from T1 to T2 was determined for feed compositions A and B to be 20.17 kJ mol−1

and 20.27 kJ mol−1, respectively (equation 5.20). The technical work w̃t,23, required

to compress the fluid from ambient pressure to the pressure of the HT-WGSR unit,

was calculated with equation 5.27, assuming an isothermal compression of the fluid.

The subscripts 2 and 3 indicate the process stage assigned to the respective temper-

ature and pressure variable. The compression work, determined to be w̃t,23 =17.93

kJ mol−1, is released as heat energy during the compression (ideal cooling) and con-

sidered within the analysis as ǫ̃q,23 according to equation 5.28. The calculations

regarding the process stages 1 to 3 are similar to the PSA process.

The temperature of the HT-WGSR effluent is with 723 K similar to the assumed

operation temperature of the subsequent MemSep unit. The operation of a Mem-

Sep unit is commonly characterised by the product related recovery index (RI).

Here, RI is defined as the ratio of H2 within the product stream GH2,product to the

H2 in the feed stream GH2, f eed (see equation 5.32).

RI =
GH2,product

GH2, f eed
=

xH2,6 · G6

xH2,5 · G5
(5.32)

The H2 recovery index of the MemSep unit was approximated based upon the re-

sults of Brunetti et al. [152]. Here, RI was determined experimentally for the

H2 concentrations of 44mol% and 80mol% to be RI=0.6 and RI=0.9, respec-

tively. The employed outlet concentration of the HT-WGSR unit within this work

is 58mol% (wet outlet stream, table 5.4). The respective RI value was estimated

with the help of a linear interpolation approach, using the experimental data of

Brunetti et al, which resulted in equation 5.33:

RI(xH2,in) = 0.83 · xH2,in + 0.23. (5.33)



5.2. Exergy Analysis of Alternative Processes 93

Considering the MemSep unit product stream, the molar exergy of heat transfer

achievable between the stages 6 and 7 was determined to be ǫ̃q,67 = -1.98 kJ mol−1

(equation 5.20).

The resulting exergy efficiency ηH2
of the MemSep unit employing H2 plant (see

figure 5.4) was calculated as shown in chapter 5.1.4. According to equation 5.23, the

ratio of the net heat exergy to the molar inlet stream of the MemSep process was

determined with equation 5.26 to be Eq,net =6.07 kJ mol−1 and 4.45 kJ mol−1 for gas

compositions A and B, respectively. Consequently, following equation 5.23, exter-

nal heat exergy input was considered in the determination of the MemSep process

exergy efficiency η
(2)
H2

(equation 5.34). Here, the MemSep process differs from the

PSA process, for which a surplus of heat exergy was determined. This difference

results from the missing H2O condensation unit in the MemSep process.

η
(2)
ǫ̃,H2

=
ǫ̃◦H2

·
GH2,prod

Gin(re f ormate)

ǫ̃in ·
G1

Gin(re f ormate)
+ w̃t,12 ·

G1
Gin(re f ormate)

+ Eq,net ·
Gin(re f ormate)

Gin(re f ormate)

,

if Gin(re f ormate) = G1 = G5 y

η
(2)
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 ·
G6
G5

ǫ̃in + w̃t,12 + Eq,net
, with

G6

G5
= RI ·

xH2,5

xH2,6
y

η
(2)
ǫ̃,H2

=
ǫ̃◦H2

· xH2,5 · RI

ǫ̃in + w̃t,12 + Eq,net

(5.34)

The determined exergy efficiency value of the MemSep H2 plant is listed in table 5.10

and discussed in a comparative manner in chapter 5.4, along with all selected pro-

cess routes.

5.2.3. Cyclic Water Gas Shift Reactor

The cyclic water gas shift reactor (CWGSR) is a novel reactor concept which is

based on a fixed multi-bed system and represents a further development stage of the

classical steam iron process [155]. Hydrogen and CO-rich reformate gas is utilised

as educt to generate neat H2 via reduction and re-oxidation cycles of iron oxide

based materials. The net reaction is the water gas shift reaction. Due to its cyclic

alternating operation, the generated H2 is separated directly from the other gaseous

reaction products within the reactor unit. The CWGSR operation conditions are

listed in table 5.3 and further information are available within literature [126, 127,

156].
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Figure 5.5.: Exergy balance envelope of the CWGSR process; 1 - reformate gas
inlet, 3 - liquid water inlet, 8 - final product outlet, ǫ̃q,12 - exergy of
heat transfer, ǫ̃q,34 - exergy of heat transfer (H2O steam generation),
ǫ̃∆Rh - exergy of reaction enthalpy, ǫ̃q,67 - exergy of heat transfer.

A H2 plant, based on the CWGSR concept, is shown in figure 5.5. All considered ex-

ergy efforts are indicated, as well as numbered intermediate process stages required

for the exergy analysis. The calculations were carried out for feed composition C

(see table 5.2), which represents an optimised feed composition for the CWGSR

process [122]. Based upon equations 5.1, 5.5 and 5.15, the exergy of the molar flux

entering the process at stage 1 was calculated. Temperature and pressure at stages

1 and 3 were defined to be similar to the environmental conditions (T◦ =298.15 K,

p◦ =101325 Pa, chapter 5.1.1). The educt mixture at stage 1 was considered to be

in gaseous state, whereas at stage 3 liquid water was assumed.

Table 5.7 summarises the assumed temperature and pressure conditions at the la-

belled process stages (see figure 5.5). These values represent an approximation of

the real conditions.

operation process stage number
parameters 1, 7 2 3 4 5 6

T / K 298 1073 298 1073 1073 1073

p / Pa 1.01·105 1.01·105 1.01·105 1.01·105 1.01·105 1.01·105

Table 5.7.: Fluid conditions at intermediate stages of the CWGSR process
scheme.

The required heat transfer exergy at stage 1-2 was determined to be ǫ̃q,12 =12.52

kJ mol−1. The selected CWGSR process arrangement contains a second process feed

stream: the addition of liquid H2O. As introduced earlier, all process exergy efforts

included into the process exergy efficiency calculation relate to the molar reformate

feed stream (stage 1). Therefore, the exergy of heat transfer for the H2O stream

production (stage 3-4) ǫ̃q,34 was first calculated (equation 5.35), and subsequently

converted into the desired ”exergy effort per mol reformatee feed gas” formulation
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(ǫ̃q,34) according to equation 5.36.

ǫ̃q,34 = ǫ̃phys,4 − ǫ̃phys,3 (5.35)

ǫ̃q,34 = ǫ̃q,34 · χCWGSR
31 , with χCWGSR

31 =
G3(H2O)

G1
(5.36)

The numerical value of the water feed to reformate gas feed ratio χCWGSR
31 =1.1335

was received from results of the model-based CWGSR operation optimisation pub-

lished by Heidebrecht et al. [122].

The molar exergy of reaction enthalpy ǫ̃∆Rh, obtainable from the chemical reaction

within the CWGSR, was calculated with the help of the reaction enthalpy of the wa-

ter gas shift reaction at 1073K (∆R h̃1073 K
wgsr = -36.88 kJ mol−1). Using equation 5.22,

the CO2 concentration of the CWGSR tail gas (table 5.4) and the assumption of

equimolar reaction conditions during the reduction and re-oxidation phase during

the CWGSR operation, ǫ̃∆Rh was determined to be -8.59 kJ mol−1, according to

equation 5.37.

ǫ̃∆Rh = ∆Rh̃1073 K
wgsr · (1 −

T◦

TCWGSR
) · xCO2,8 ·

G8

G1
, where G8 = G1 (5.37)

Equation 5.37 assumes the equality of G8 = G1, which can be deduced from the

equimolar reaction conditions and the cyclic operation regime of the reactor, as

described in detail by Heidebrecht et al. [126, 127, 156].

The exergy efficiency ηH2
of the CWGSR process (see figure 5.5) was determined ac-

cording to chapter 5.1.4. The net heat exergy, with respect to the molar inlet stream

G1 (reformate gas), of the CWGSR process was calculated to be Eq,net =40.23

kJ mol−1 for gas composition C (equation 5.26). This significant net heat exergy

demand of the CWGSR process originates mainly from the required educt temper-

ature increase up to 1073K. Consequently, the CWGSR exergy efficiency η
(2)
H2

was
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obtained according to equation 5.38.

η
(2)
ǫ̃,H2

=
ǫ̃◦H2

·
GH2,prod

Gin(re f ormate)

ǫ̃in,1 ·
G1

Gin(re f ormate)
+ ǫ̃◦H2O ·

G3(H2O)

Gin(re f ormate)
+ Eq,net ·

Gin(re f ormate)

Gin(re f ormate)

,

with Gin(re f ormate) = G1, G5 = G1 + G3(H2O), G7 = G6,

χCWGSR
65 =

G6

G5
y

η
(2)
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 · χCWGSR
65 · (1+ χCWGSR

31 )

ǫ̃in,1 + ǫ̃◦H2O · χCWGSR
31 + Eq,net

(5.38)

The product stream to feed stream ratio χCWGSR
65 of the CWGSR relates the H2

containing effluent stream to the sum of both CWGSR educt streams. Its numerical

value χCWGSR
65 =0.5313 was also received from results of the model-based CWGSR

operation optimisation published by Heidebrecht et al. [122]. A detailed derivation

of equation 5.38 is presented within the Appendix B of this work.

The obtained exergy efficiency of the CWGSR process is listed in table 5.10 and

evaluated in chapter 5.4, along with all selected process routes.

5.3 Exergy Analysis of the EWGSR Process

This section addresses the exergy analysis of the EWGSR process. In contrast to

the PSA, MemSep, and CWGSR processes, the EWGSR exergy analysis was con-

ducted using experimental data, being collected in the framework of the EWGSR

investigations of this work. Unlike the above introduced definition of the exergy

efficiency (see equation 5.23), the exergy efficiency of the EWGSR was determined

without considering possible exergy gains from intermediate process heat sources

(e.g. fluid cooling, reaction heat, etc.), as heat integration was not implemented

into the experiment (see chapter 3). The process scheme of the considered EWGSR

process is shown in figure 5.6. All included exergy efforts are indicated, as well as

numbered intermediate process stages required for the exergy analysis.

Based upon figure 5.6, the exergy efficiency of the EWGSR ηexp

H2
was defined as the

ratio of the exergy of the product H2, EH2,prod (stage 3, equation 5.40), to the exergy

effort Eed + Eq,12 + Pel (equation 5.39). Here, Eed is the sum of the chemical exergy

and physical exergy content of the educts at stage 1 (equation 5.41). The exergy

demands for the feed gas heat-up and H2O evaporation are summarised in ǫ̃q,12,

which is multiplied with the molar inlet stream to determine Eq,12. All feed gas

components and effluent components were considered to be in gaseous state at the
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Figure 5.6.: Exergy balance envelope of the EWGSR process; 1 - reformate gas
inlet, 2 - reactor inlet, 3 - reactor product outlet, 4 - H2 product
gas outlet, 5 - tail gas outlet, Pel - electrical power input ǫ̃q,12 -
exergy of heat transfer, ǫ̃q,34 - exergy of heat transfer, ǫ̃∆Rh - exergy
of reaction enthalpy.

operation process stage number
parameters 1 2 3 4 5

T / K 298 393/403 393/403 298 298

p / Pa 1.01·105 1.01·105 1.01·105 1.01·105 1.01·105

Table 5.8.: Fluid conditions at intermediate stages of the EWGSR process
scheme.

EWGSR inlet (stage 2). The electrical power demand Pel of the EWGSR process

is considered as exergy effort (equation 5.39).

ηexp

H2
=

EH2,prod

Eed + (G f eed · ǫ̃q,12) + Pel
with (5.39)

EH2,prod = ǫ̃◦H2
· GH2,prod (5.40)

Eed =
∑

i

(

(ǫ̃◦i + ǫ̃i,phys(T◦, p◦)) · Gi,in

)

(5.41)

ηexp

tot =
EH2,prod + Etail

Eed + Pel
with (5.42)

Etail =
∑

i

(ǫ̃◦i · Gi,tail) (5.43)

It was noted above, that the tail gas of a separation unit can contain a significant

amount of usable exergy. A sustainable operation of the EWGSR within an overall

process most likely necessitates the utilisation of the tail gas exergy. Therefore, the

total exergy efficiency of the EWGSR process ηtot is introduced. In contrast to ηexp

H2
,

the total exergy efficiency ηexp

tot considers also the tail gas exergy content Etail under
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reference conditions (stage 4) as process gain (see equation 5.42). Consequently,

ηexp

tot reaches significantly higher values than ηexp

H2
, but does not include any infor-

mation about the utilisation degree of the tail gas exergy content. Therefore, ηexp

tot

represents rather the upper boundary of the achievable total exergy efficiency un-

der the applied conditions, than being a realistic value of the EWGSR application

in an overall technical process. Hence, ηH2
is better suited for process comparison

purposes, as it is related to the desired process product H2, only.

In chapter 5.3, the exergy efficiency results for the EWGSR operation with CO and

H2 containing anode feed gas are presented. These results were partly published

by Oettel et al. [125].

Experimentally obtained exergy efficiencies of the EWGSR are listed in table 5.10

for selected operation conditions. The exergy efficiencies of all considered process

variants are discussed in chapter 5.4.

Operation with CO and H2 Containing Anode Feed Gas

The exergy efficiency ηexp

H2
of the EWGSR, operated with CO and H2 containing

feed gas (see table 4.2, chapter 3.3), was determined for steady state operation con-

ditions. Within figure 5.7, all ηexp

H2
values are summarised, which were calculated

for the EWGSR operation at 393 K and i > 0 A cm−2 with an anode feed gas H2

content of 50mol%. The respective ηexp

H2
values, obtained at 403K, were omitted

in the diagram as they were found to be almost identical to the values obtained

at 393K. The temperature dependent change of the specific energy consumption

ΦH2
(see figure 4.21, chapter 4.3) was found to be not large enough to influence ηexp

H2

significantly. The numerical values of the exergy efficiencies marked with letters in

figure 5.7 are summarised in table 5.9.

Figure 5.7 displays ηexp

H2
as a function of the applied current density and the CO

feed gas concentration. It is clearly visible that ηexp

H2
increases along the current

density axis, but decreases along the CO feed gas concentration axis. For instance,

at i =0.06 A cm−2 the exergy efficiency decreases from 0.063 at 10mol% CO (point

R) to 0.039 at 50mol% CO (point D). These values constitute the lower end of the

obtained ηexp

H2
, whereas the maximal values are found at i =0.39 A cm−2. Here, the

overall ηexp

H2
maximum was determined to be 0.368 at 10mol% CO (point O), and

ηexp

H2
=0.244 (point A) was calculated at the same current density for 50mol% CO.

The low efficiency at high CO concentrations results from two reasons: (i) a higher

CO feed gas concentration leads at given electric currents to a higher voltage, and

thus to a higher electrical energy demand of the EWGSR (see figure 4.14a), and

(ii) at constant electrical currents higher CO feed gas concentrations results in a

larger amount of CO within the anode effluent, not being used as reduction agent
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Figure 5.7.: The EWGSR exergy efficiency ηexp

H2
as function of current density

and anode CO feed gas concentration, obtained at T=393K with
50mol% H2 (related to the dry anode feed stream). The surface
areas and lines in-between the labelled data points originate from
linear interpolation.

for the H2 generating electrochemical WGSR.

The anode effluent contains still a significant amount of exergy. In a technical

application of the EWGSR concept, the anode effluent exergy content (H2,CO)

should be utilised further in consecutive processes as synthesis educt gas or at least

in terms of its heating value (see chapter 4.3). If the complete exergy of the anode

effluent is included into the exergy efficiency of the EWGSR process as benefit,

a total exergy efficiency of ηexp

tot =0.665 was calculated for the operation at the

maximal value of ηexp

H2
=0.368 (at i =0.39 A cm−2, 10mol% CO).

The highest ηexp

H2
values were obtained at 10.0mol% CO and 12.5mol% CO, which

are close to the CO concentration of reformate gas generated from methane steam

reforming (≈12.5mol% CO) [144].
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data point ηǫ,H2
/ - cCO,dry / mol% i / A cm−2

A 0.244 50.0 0.39

B 0.182 50.0 0.28

C 0.114 50.0 0.17

D 0.039 50.0 0.06

E 0.310 25.0 0.39

F 0.233 25.0 0.28

G 0.148 25.0 0.17

H 0.052 25.0 0.06

K 0.358 12.5 0.39

L 0.272 12.5 0.28

M 0.177 12.5 0.17

N 0.061 12.5 0.06

O 0.368 10.0 0.39

P 0.283 10.0 0.28

Q 0.182 10.0 0.17

R 0.063 50.0 0.06

Table 5.9.: Summary of experimentally attained hydrogen exergy efficiencies
ηexp

H2
, related to the respective CO concentrations and current den-

sities (see figure 5.7).

The feed gas utilisation degree is defined as the ratio between the H2 generation

rate GH2,out and the maximal possible H2 generation rate Gmax
H2,out (see equation 5.44).

Z f eed =
GH2,out

Gmax
H2,out

=
I

2 · F · (GH2,in + GCO,in)
=

I

Imax
(5.44)

At low CO concentrations, ηexp

H2
was higher due to a higher feed gas utilisation

degree Z f eed. The H2 generation rate is proportional to the operation current I and

Gmax
H2,out is defined by the molar feed flow rates of CO (GCO,in) and H2 (GH2,in). A

lower CO concentration leads under the considered experimental conditions, con-

stant total inlet flow rate and constant inlet H2 concentration, to a lower Gmax
H2,out.

As the applied current values were constant during the experiments, Z f eed was

maximal for the CO feed gas concentration of 10mol%. With this CO concentra-

tion, Z f eed =0.58 and ηexp

H2
=0.368 were achieved at i =0.39 A cm−2. In contrast,

at 50mol% CO and i=0.39 A cm−2 only a feed gas utilisation of Z f eed =0.35 was

achieved, which resulted in the lower exergy efficiency of ηexp

H2
=0.244.

Consequently, ηexp

H2
values of 0.37 or larger are generally possible at high feed gas

utilisation degrees. The achievement of a feed gas utilisation degree Z f eed =1 is

practically not possible, because mass transport limitations at the anode will pro-
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hibit total H2 and CO utilisation within the EWGSR process. Therefore, high

feed gas utilisation degrees and operation conditions, which are only marginally

or not at all influenced by mass transport limitations, are required to reach high

EWGSR exergy efficiency values. Consequently, the optimisation of the EWGSR

components (e.g. flow field, gas diffusion layer, catalyst layer, etc.) in terms of

mass transport would be beneficial to improve the EWGSR potential to reach high

ηexp

H2
values. Furthermore, a reduction of H2O, added to the dry feed gas, would

lower the required heat exergy efforts. As shown in table 4.2, the experiments were

carried out with a surplus of H2O within the anode inlet stream, always exceeding

the stoichiometric requirements of the proceeding electrochemical CO oxidation. A

reduction of the H2O content, without significant changes of the cell voltage, would

increase the efficiency of the process even further.

5.4 Comparison of Investigated H2 Generation
Processes

This chapter aims to compare the EWGSR process to alternative reformate based

H2 generation processes with regards to the exergy efficiency, related to the gener-

ated neat H2. Theoretical exergy efficiencies were calculated in the chapters 5.2.1-

5.2.3 for the PSA, MemSep and CWGSR processes using literature data. The

exergy efficiency of the EWGSR was determined based on experimental data in

chapter 5.3.

Table 5.10 summarises the calculated theoretical exergy efficiencies along with ex-

perimentally obtained exergy efficiency values of the EWGSR. Please note that

only the highest ηexp

H2
value, obtained with feed gas utilisation degrees of 0.58 (equa-

tion 5.44) for the operation with H2 containing feed gas (10.0mol% CO, 50.0mol%

H2) is listed here.

First, the exergy efficiencies of the selected EWGSR alternative processes are dis-

cussed. As can be seen from table 5.10, both the PSA and the MemSep exergy

efficiency show a significant increase, when the inlet feed composition is changed

from A to B (refer to table 5.2 for gas composition details). This difference of η
(1)
H2

can be assigned in both cases to a difference in the overall molar exergy ǫ̃◦mix,in of

the feed compositions A and B. Composition A exhibits a ǫ̃◦mix,in-value of 186.34

kJ mol−1, whereas composition B possesses a ǫ̃◦mix,in value of 152.24 kJ mol−1. The

lower ǫ̃◦mix,in value of composition B originates mainly from the difference of its H2

and CO fractions, as these species possess high chemical exergies (table 5.1).

Furthermore, table 5.10 shows that for both gas compositions the PSA exergy effi-
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exergy efficiencies
inlet PSA MemSep CWGSR EWGSR

gas comp. η
(1)
H2

η
(2)
H2

η
(2)
H2

η
(exp)
H2

η
(exp)
tot

A 0.411 0.493 - - -

B 0.477 0.574 - - -

C - - 0.536 - -

Exp(CO,H2) - - - 0.368 0.665

Table 5.10.: Exergy efficiencies of theoretically evaluated H2 generating pro-
cesses: pressure swing adsorption (PSA), membrane separation
(MemSep), cyclic water gas shift reactor (CWGSR), and the ex-
perimentally investigated EWGSR (10mol%CO, 50mol%H2, Z f eed

= 0.58).

ciency is significantly lower than of the MemSep process. This difference is assumed

to result from a lower H2 separation performance of the PSA process. The H2 sep-

aration performance can be defined as the amount of separated H2 to the total

amount of available H2. This parameter was defined for the MemSep process as

recovery index RI (equation 5.32), and was estimated to be about RI=0.72 for

the employed feed composition (equation 5.33). The H2 separation performance

of the PSA process can be determined with the help of its product-to-feed ratio

χPSA
76 =0.45 and the dry HT-WGSR outlet gas H2 content (xH2

=0.75, table 5.4).

This leads to a H2 separation performance of 0.6, which is significantly lower than

0.72, the H2 separation performance (i.e. recovery index) of the MemSep process.

Thus, the PSA process supplies, with respect to parameters used in this work, a

lower amount of pure H2 from the given feed gas than the MemSep process. This

directly leads to a lower η
(1)
H2

value of the PSA process.

The exergy efficiency of the CWGSR process is placed with 0.536 in-between the

PSA and MemSep process. The CWGSR process efficiency is mainly dominated

by the high process temperatures. The employed inlet feed composition C of the

CWGSR process contains however a high amount of CO, if compared to compo-

sition A and B (table 5.4). This prohibits a direct comparison to the PSA and

MemSep process, as composition C is no typical reformate composition. Generally,

the CWGSR can reach similar exergy efficiencies as the established processes, if

operated under optimised conditions.

The highest exergy efficiency η
(exp)
H2

=0.368 of the EWGSR was determined at a feed

gas utilisation of Z f eed =0.58 for the operation with 10.0mol% CO and 50.0mol%

H2 in the dry feed gas. This efficiency value is about 0.04 lower than the calculated

PSA exergy efficiency using feed gas A.
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In order to estimate the EWGSR exergy efficiency at feed gas utilisation degrees

exceeding the experimental conditions (Z f eed > 0.58), the obtained experimental re-

sults were extrapolated to Z f eed =0.9. This feed gas utilisation degree was selected

as a target maximal value of a technically well developed and optimised EWGSR.

Figure 5.8 shows the exergy efficiency extrapolation, as a continuation of the exper-

imentally determined values, in the range of 0.58< Z f eed ≤ 0.9. The extrapolation

does not include effects triggered by educt gas composition changes (e.g. educt

starvation, etc.) within the catalyst layer, which might appear especially close to

the outlet of the reactor at high feed gas utilisation degrees. These effects might

cause a strong increase of the anode overvoltage (i.e. concentration overvoltage),

which increases the electrical power demand and, consequently, results in a sharp

decrease of the exergy efficiency.
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Figure 5.8.: Hydrogen exergy efficiency as a function of the feed gas utilisation
at 393 K, and 10% CO + 50% H2 within the feed gas.

As shown, at Z f eed = 0.9 an exergy efficiency of ηε,H2
=0.49 was estimated. This

value is higher than the calculated PSA exergy efficiencies and similar to the Mem-

Sep exergy calculated for feed composition A (see table 5.10).

Figure 5.8 shows also a dotted line of η
(exp)
H2

vs. Z f eed for the theoretical case that no

electrical power Pel is required for the EWGSR operation (U(i) = 0, ∀ i). The dif-

ference between the dotted line and the extrapolated experimental data represents

the maximal improvement potential of η
(exp)
H2

with respect to the electrical power

consumption.
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Obviously, Pel will never be zero, but it can be minimised by the reducing the ohmic

losses within the reactor, by reducing the reaction overvoltage (i.e. application of

more active catalysts), and by improving the mass transport properties within the

reactor. Besides the minimisation of Pel , ηexp

H2
can be improved by the optimisation

of the molar H2O to CO ratio at the reactor inlet. During the displayed experi-

ment, the molar H2O/CO feed gas ratio was 7.54 (see table 4.2). The majority of

the gaseous H2O exited the reactor without participating in the reaction. There-

fore, a significant efficiency increase might be achievable by reducing the amount

of H2O added to the feed stream, i.e by reducing the heat exergy demand of the

process. This would result in an increase of the slope of both plotted η
(exp)
H2

curves

(with and without Pel consideration) in figure 5.8, and thus to higher efficiencies at

similar feed gas utilisation degrees. Consequently, an optimisation of the EWGSR

operation regarding feed gas utilisation, H2O/CO inlet ratio, and heat integration

seems to be promising with regards to a significant efficiency increase.

The comparison of the theoretic exergy calculation results in table 5.10 with the

results presented in figure 5.8 identifies a significant potential of the EWGSR to op-

erate in the similar efficiency range as established processes. But, besides efficiency

the durability of a process is another important aspect which needs to be addressed

in future studies for a complete feasibility evaluation of the here proposed EWGSR

concept.
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Conclusions

The here presented work was dedicated to the development and investigation of a

novel electrochemical membrane reactor (EMR) for the processing of CO/H2 gas

mixtures. During autonomous operation, the EMR operated as high temperature

PEM type fuel cell (HT-PEMFC). Here, the influence of the CO feed gas concen-

tration upon its steady state performance was investigated. Furthermore, the load

change characteristics of the electrical power generating reactor were studied in

dependence upon the feed gas and anode catalyst composition.

Under driven operation, the EMR generated pure H2 from reformat type feed gas.

This was realised by a dual reaction regime, where H2 was separated from the feed

gas, as well as ”freshly” generated in the electrical power driven electrochemical

water gas shift reactor (EWGSR). The feasibility of the EWGSR concept was in-

vestigated and the interdependencies between both the electrochemical CO and H2

oxidation were studied. Finally, the concept was compared to alternative processes,

using an exergy efficiency parameter.

The developed EMR exhibited in both investigated operation regimes, i.e. HT-

PEMFC and EWGSR, an improvement potential compared to state-of-the-art ap-

proaches. The application of a PtRu instead of Pt as anode catalyst significantly

improved its CO tolerance in HT-PEMFC mode. Furthermore, the HT-PEMFC

equipped with an anodic PtRu catalyst showed an improved current step response

of its voltage signal, e.g. lower overshoots.

The EWGSR operation was shown to be feasible and controllable via the applied

electrical current and the operation temperature. The current efficiency of the

EWGSR process was found to be about 100%, as the H2 evolution rate at the

cathode obeyed Faraday’s law. Lower temperatures were identified to be benefi-

cial to increase the CO turnover within the reactor. Additionally, it was shown

that the required electrical power input during the operation of the EWGSR with

CO and H2O containing feed gas (H2 free) decreases with decreasing temperatures.

The increased CO adsorption on the anode catalyst Pt at lower temperatures is

most likely responsible for this rather non-intuitive dependency. With CO and
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H2 containing feed gas, temperature, inlet concentrations, and current significantly

influence the balance between the electrochemical WGSR and the electrochemical

H2 oxidation reaction. Furthermore, the H2/CO ratio in the anode effluent gas,

an important parameter for subsequent downstream processes, was found to de-

pend upon the EWGSR temperature and the electrical current. This opens up

the possibility to operate the EWGSR not only as pure H2 generator, but also as

controllable synthesis gas conditioning unit, which simultaneously generates a neat

H2 stream. Such a combined gas separation/conditioning unit might be of interest

for integrated chemical processes where pure H2, as well as synthesis gas with a

defined H2/CO ratio, is required.

Exergy analysis of selected reformat based H2 generation routes was used to provide

a basis for the evaluation of the EWGSR concept in comparison to state-of-the-art

processes. Here, literature based exergy efficiencies of the process examples and the

experimentally determined exergy efficiency of the EWGSR were discussed. It was

shown that the EWGSR operation conditions need to be selected carefully in or-

der to achieve similar efficiencies as the selected state-of-the-art process examples.

Nevertheless, the analysis revealed optimisation directions and promising improve-

ment potentials of the EWGSR operation. The results indicate that a reduction

of the H2O/CO ratio in the reactor feed gas (H2O/CO→ 1) and a reduction of

the operation temperature (i.e. support of CO adsorption) might substantially im-

prove the EWGSR process. For the latter, it might be beneficial to investigate the

utilisation of alternatives to H3PO4 doped polybenzimidazole as proton conducting

membrane material. These alternative materials should enable an operation tem-

perature range between 363K and 383K. This will lead to a significant increase of

the CO turnover during the EWGSR operation with H2/CO containing feed gases

and, consequently, enable a higher feed gas utilisation degrees of the overall process.

Next-to experimental activities, the development of mathematical models for the

simulation of selected processes within the EWGSR, of the EWGSR as a whole or

as part of an integrated chemical process, is a promising continuation option of the

here presented work. A model, which addresses the observed operation parameter

dependency of the electrochemical CO oxidation, will increase the understanding of

the processes at the anode of the EWGSR. This will be most likely beneficial for the

required optimisation of the EWGSR operation (e.g. H2O/CO ratio, temperature,

etc.). A model which describes the EWGSR as a reactor could be used to expand

upon the efficiency considerations of this work at high feed gas utilisation degrees

and might be the basis of a integrated chemical process model where the EWGSR

is only one reactor within a chain of process units.

The here presented project and its results can be positioned into the long line of

the continuous research projects within the highly interdisciplinary field of process
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and energy engineering. As in all research fields, every project which finds an-

swers generates simultaneously new challenges. Newly raised challenges of the here

presented HT-PEMFC /EWGSR project address topics like reactor and process

design, material optimisation, reactor durability and also economic feasibility. The

handling of these challenges will decide about the chances of the HT-PEMFC and

EWGSR to contribute to the ambitious goals which were discussed at the very

beginning of this thesis.
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Appendix A

NIST Coefficients

The following table summarises coefficients, supplied from the National Institute

of Standards and Technology [149]. This data was used within the calculation of

enthalpy and entropy according to the equations 5.10 and 5.13, respectively.

Coefficient H2 CO CO2 H2O CH4 N2

A 33.066178 25.56759 24.99735 -203.6060 -0703029 28.98641

B -11.363417 6.096130 55.18696 1523.290 108.4773 1.853978

C 11.432816 4.054656 -33.69137 -3196.413 -42.52157 -9.647459

D -2.772874 -2.671301 7.948387 2474.455 5.862788 16.63537

E -0.158558 0.131021 -0.136638 3.855326 0.678565 0.000117

F -9.980797 -118.0089 -403.6075 -256.5478 -76.84376 -8.671914

G 172.707974 227.3665 228.2431 -488.7163 158.7163 226.4168

H 0.0 -110.5271 -393.5224 -285.8304 -74.87310 0.0

Tvalid, [K] 298...1000 298...1300 298...1200 298...500 298...1300 100...500

A 18.563083 30.09200 19.50583

B 12.257357 6.832514 19.88705

C -2.859786 6.793435 -8.598535

D 0.268238 -2.534480 1.369784

E 1.977990 0.082139 0.527601

F -1.147438 -250.8810 -4.935202

G 156.288133 223.3967 212.3900

H 0.0 -241.8264 0.0

Tvalid, [K] 1000...2500 500...1700 500...2000

Table A.1.: NIST coefficients of the considered substances



Appendix B

CWGSR H2 Exergy Efficiency

In the following, the derivation of the CWGSR hydrogen exergy efficiency (ηǫ̃,H2
)

is presented. The used variables and indication numbers refer to the CWGSR pro-

cess scheme shown in figure 5.5. Please note, that all exergy efficiency derivations

within this work employ molar flow rates which are related to the reformate feed

gas stream (i.e.G1) of the reactor.

η2
ǫ̃,H2

=
ǫ̃◦H2

·
GH2,prod

Gin(re f omat)

ǫ̃in,1 ·
G1

Gin(re f omat)
+ ǫ̃◦H2O ·

G3(H2O)

Gin(re f omat)
+ Eq,netto ·

Gin(re f omat)

Gin(re f omat)

(B.1)

η2
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 ·
G6
G1

ǫ̃in,1 ·
G1
G1

+ ǫ̃◦H2O ·
G3(H2O)

G1
+ Eq,netto ·

G1
G1

(B.2)

η2
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 ·
G6
G5

· G5
G1

ǫ̃in,1 + ǫ̃◦H2O · XCWGSR
31 + Eq,netto

(B.3)

η2
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 · XCWGSR
65 · G5

G3(H2O)
·

G3(H2O)

G1

ǫ̃in,1 + ǫ̃◦H2O · XCWGSR
31 + Eq,netto

(B.4)

η2
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 · XCWGSR
65 · (

G1+G3(H2O)

G3(H2O)
· XCWGSR

31 )

ǫ̃in,1 + ǫ̃◦H2O · XCWGSR
31 + Eq,netto

(B.5)

η2
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 · XCWGSR
65 · (( G1

G3(H2O)
+ 1) · XCWGSR

31 )

ǫ̃in,1 + ǫ̃◦H2O · XCWGSR
31 + Eq,netto

(B.6)

η2
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 · XCWGSR
65 · (( 1

XCWGSR
31

+ 1) · XCWGSR
31 )

ǫ̃in,1 + ǫ̃◦H2O · XCWGSR
31 + Eq,netto

(B.7)

η2
ǫ̃,H2

=
ǫ̃◦H2

· xH2,6 · XCWGSR
65 (1 + XCWGSR

31 )

ǫ̃in,1 + ǫ̃◦H2O · XCWGSR
31 + Eq,netto

(B.8)



Appendix C

Determination of the Water Addition Rate

The dew point temperature Tdew in the anode feed stream of the EWGSR (i.e.

Gin,EWGSR) was continuously measured after the tempered bubbler flask cascade.

Assuming the applicability of the ideal gas law and a negligible pressure difference

between the gas (Tdew measurement) and the ambient pressure, equation 3.7 is

derived in the following. It was used for the calculation of the added H2O flow rate

(GH2O) to the EWGSR anode feed gas.

Figure C.1.: The mass balance boundaries of the bubbler flask cascade with
indicated inlet and outlet streams.

The basis is a mass balance which encloses the applied bubbler flask cascade as

shown in figure C.1. EquationC.1 represents the steady state mass balance of the

bubbler flask cascade and equationC.2 is a simple expression of the partial pressure

relations within Gout,wet. The combination of both equations leads to the expression

of the H2O addition rate (GH2O).

Gin,dry + GH2O = Gout,wet (C.1)

GH2O

Gout,wet
=

pH2O

pgas
(C.2)

GH2O =
pH2O

pgas − p,H2O
· Gin,dry (C.3)

The Antoine equation (equation C.4) allows for the calculation of the water vapour

saturation pressure ps,H2O at the temperature T. If the gas temperature is equal to

the gas dew point temperature (T=Tdew), the calculated water vapour saturation
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pressure is equal to the partial water vapour pressure within the gas (pH2O = ps,H2O).

Thus, using the dew point temperature of a gas within the Antoine equation (equa-

tionC.4), rearranged to ps,H2O, leads to the partial water vapour pressure within

the gas at the gas temperature T, under the conditions T>Tdew and Vgas 6= const..

log10 [ps,H2O(T).10−5] = 4, 65430 −
1435, 264

T + (−64, 848)
(C.4)

Consequently, the water vapour pressure within the wet bubbler cascade outlet

stream Gout,wet was calculated with the measured gas dew point temperature and

the Antoine equation. This leads in combination with equation C.3 to the final

equation for the determination of the water addition rate by using the dew point

temperature of Gout,wet and the set dry feed gas rate Gin,dry (equation C.5 or 3.7).

Within this work, the Antonie equation parameter of Stull were applied [157].

GH2O =
pH2O(Tdew)

pgas − pH2O(Tdew)
· Gin,dry (C.5)



Appendix D

Experimental Preparation Methods

Details about the practical preparation methods, employed in this work, are doc-

umented in the following. At first, the preparation of the gas diffusion elec-

trode (GDE) is adressed, followed by the acid doping of the applied poly(2,5-

benzimidazole) (ABPBI) polymer. Finally, description of the membrane electrode

assembly preparation, as well its installation into the reactor flow field plates, is

provided.

D.1 Gas Diffusion Electrode Preparation

The here described preparation method of the gas diffusion electrodes (GDE) is

conducted prior to the preparation of the membrane electrode assembly (MEA).

The GDE is prepared by applying the catalyst ink with an air brush method on top

of the micro-porous layer of a carbon cloth gas diffusion layer sheet. The catalyst

composition, as well as the catalyst loading used in this work, are listed in table 3.1.

Required Materials� carbon cloth material & catalyst powder (e.g. Pt on carbon)� H3PO4 solution (e.g. 6M) PTFE solution� dimethylacetamid (DMAC, be aware carcinogenic!!)� ultra sonic bath� glass flask & pipettes� air brush gun with compressor� temperature controlled heating table (Tmax>443K), incl. air removal on its surface

via vacuum pump� carbon cloth fixture frame and spay template, fitting to the vacuum-heating table� precision balance & oven (Tmax)>453K)



116 Appendix D. Experimental Preparation Methods� fume hood and gas mask equipped with organic component filter� 1 x scalpel knife� 2 x medium Petri dish (for H3PO4 bath)� DMAC resistant gloves

Preparation Steps� Prepare the catalyst ink according to the anticipated metal and PTFE loadings:

a) weighing of the respective catalyst powder amount within the glass flask, b)

addition of the carrier liquid DMAC, c) addition of the respective amount of PTFE

solution.� Dissipate the catalyst particles within the carrier liquid by placing the catalyst

ink in an closed glass flask into an ultra sonic bath for 2 hours.� Place the carbon cloth material into the carbon cloth fixture frame, followed by

placing the frame onto the heating table.� Set the heating table temperature to 445K, which allows for the evaporation of

the used catalyst carrier liquid DMAC. Do not breath in the DMAC fumes! Wear

a gas mask equipped with the respective filter!� Apply the catalyst ink on the GDL surface using the air brush gun. Use the

glass pipettes to refill the air brush ink compartment with the catalyst ink. The

applied catalyst surface loading can be determined after complete evaporation of

the carrier liquid. Here, use the precision balance and the catalyst to PTFE weight

ratio within the applied catalyst ink to determine the surface loading.� Keep the finished catalyst layer coated carbon cloth enclosed by the fixture frame

and sinter the catalyst layer for 2 hours at 453K.� Remove the prepared GDE from the frame fixture and cut it into the required size

with the scalpel knife.� Fill one medium size Petri dish with the prepared H3PO4 solution, place the GDE

with the catalyst layer facing down into the acid solution and place the second

Petri Dish as a cover on top. The GDE within the acid bath is placed, along with

the HT-PEM (see appendixD.2), for 24 h at 353K into the oven.� Remove the GDE from the acid solution and put it, with the catalyst layer facing

up, together with the HT-PEM, for 6h at 393K into the oven.� After the drying step, the GDE can be used for the MEA preparation (see ap-

pendixD.3).
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D.2 High Temperature Proton Conducting Membrane
Preparation

The here described preparation method of the high temperature proton conducting

membrane (HT-PEM) is conducted prior to the preparation of the membrane elec-

trode assembly (MEA). The base, acid free, polymer used for the preparation of

the HT-PEM was poly(2,5-benzimidazole) (ABPBI). The polymer was purchased

as membrane sheets from FumaTech.

Required Materials� ABPBI membrane material� H3PO4 solution (e.g. 12M)� PTFE foil roll (thickness 0.25mm)� 1 x scalpel knife� 1 x large Petri dish (for H3PO4 bath)� 2 x medium Petri dish� 1 x glass plate for cutting with smooth surface� membrane cutting shape template� gloves & oven (Tmax>453K)

Preparation Steps� Pre-size the ABPBI Membrane with the scalpel knife and the cutting shape tem-

plate. Be aware, the cut lines must be free of any cracks, uneven surfaces, edges,

etc.! Otherwise the acid doped membrane will start to rip from these points. The

membrane will expand during the acid uptake and needs to be cut into the required

dimensions after the acid doping with the help of the shape template.� Place the pre-sized membrane in-between two PTFE foils (larger than the mem-

brane piece).� Fill the large Petri dish with H3PO4 acid of the respective concentration (HT-

PEMFC: 13M , EWGSR: 12M). Please refer to Fig. 3.5 to select the respective

acid concentration based upon the anticipated acid doping level.� Place the package ”PTFE - ABPBI - PTFE” into the acid solution. Please ensure

a complete wetting of the membrane with H3PO4. Place the medium size Petri

dish on top of the package ”PTFE - ABPBI - PTFE”, to avoid any rolling of the

ABPBI membrane. Close the large Petri dish with the appropriate glass cover.� The membrane remains now for the anticipated time under the anticipated temper-

ature within the H3PO4 solution (see Fig. 3.5). For the HT-PEMFC and EWGSR
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application, the membrane was doped for 24 h at 353K to achieve a doping level

of 4.6mol/mol and 4.0mol/mol, respectively.� Subsequent the doping step, remove the package ”PTFE - ABPBI - PTFE” from

the H3PO4 solution bath and remaining H3PO4 solution is removed from the sur-

face of the package.� After the acid removal, dry the package ”PTFE - ABPBI - PTFE” for 6h at 393K

to lower the H2O content within the membrane.� Subsequent to the drying, remove the membrane carefully from the PTFE package

and placed on the priorly cleaned glass plate (be aware, the membrane tends to

roll). If necessary, apply some H3PO4 on the glass surface to realise good adhesion

of the membrane on the glass plate (use gloves!).� The flat membrane can now be dimensioned with the shape template and the

scalpel knife.� Once the acid doped membrane is cut into the required dimensions, it can be used

for the MEA preparation (see appendixD.3).
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D.3 Membrane Electrode Assembly Preparation

The here described preparation method of the membrane electrode assembly com-

bines the acid doped HT-PEM (see appendixD.2) with the GDE (see appendixD.1).

The total, 2 days were required for the preparation the MEA’s used in this work,

including the preparation of the HT-PEM and the GDE. The ready prepared MEA,

enclosed in the two graphite flow field plates, was installed within the reactor with-

out additional delays.

Required Materials� prepared & dimensioned H3PO4 doped ABPBI Membrane� prepared & dimensioned H3PO4 doped GDEs for anode and cathode� PTFE based MEA frame structure, incl. inner (2 pieces) & outer frame (2 pieces)� plastic tweezers� 2 x graphite flow field plates, fitting to the MEA frame structure� 1 x PTFE foil (0.25mm thick)

Preparation Steps� Place the acid doped HT-PEM within the larger piece of the inner frame structure.

Close the frame on top of the HT-PEM using the smaller part of the inner frame

structure, which encloses the HT-PEM in-between the larger and the smaller piece

of the inner frame structure.� Place the GDE with the tweezers upon the exposed HT-PEM, which is held by

the inner frame structure. If cut properly, the GDE covers the complete remaining

inner surface of the HT-PEM, which is not covered by the inner frame structure.� Position one part of the outer frame structure on top of the GDE, which keeps the

GDE in the right position.� Place the PTFE foil on top of the assembly and use it as a fixation, while turning

the assembly and, subsequently, placing it on one of the prepared graphite flow

field plates. Here, the side, where the outer frame structure is already positioned,

faces down to the flow field plate. The shape of the outer frame structure should

align with the shape of the flow field plate.� Place the second GDE upon the now exposed surface of the HT-PEM (opposite

side than the first GDE) and, subsequently, place the second part of the outer

frame structure on top of the GDE. Here, the shape of the outer frame aligns with

the shape of the inner frame.� Finally, place the second flow field plate upon the ready assembled MEA. The

complete assembly (flow field plate - MEA in frame structure - flow field plate)
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is, subsequently, enclosed by the respective current collectors and steel plates to

form the single cell reactor.
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