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TOPOLOGIES FOR FINITE WORDS: COMPATIBILITY WITH THE

CANTOR TOPOLOGY

Ludwig Staiger *

Abstract. Infinite words are often considered as limits of finite words. As topological methods have
been proved to be useful in the theory of ω-languages it seems to be providing to include finite and
infinite words into one (topological) space. In most cases this results in a poor topological structure
induced on the subspace of finite words. In the present paper we investigate the possibility to link
topologies in the space of finite words with a topology in the space of infinite words via a natural
mapping. A requirement in this linking of topologies consists in the compatibility of the topological
properties (openness, closedness etc.) of images with preimages and vice versa. Here, we show that
choosing for infinite words the natural topology of the Cantor space and the δ-limit as linking mapping
there are several natural topologies on the space of finite words compatible with the topology of the
Cantor space. It is interesting to observe that besides the well-known prefix topology there are at
least two more whose origin is from language theory – centers and supercenters of languages. We show
that several of these topologies on the space of finite words fit into a class of L-topologies and exhibit
their special properties w.r.t. to the compatibility with the Cantor topology.
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1. Introduction

Topological methods are useful in the theory of ω-languages in connection with proving hierarchy results (e.g.
[6, 15, 18]). To this end one considers, for a finite alphabet X, the set of all infinite words (ω-words) over X as
the infinite product space of the discrete space X. This topology is also known as the Cantor topology. Infinite
words may also be viewed as limits of (infinite) increasing families of finite words w.r.t. the prefix ordering.
Thus it seems to be providing to include both into the same space. One attempt into this direction was done
by Boasson and Nivat [1]. Redziejowski [11] observed that the limit considered in [1] is different from that one
used in the theory of ω-automata. Therefore he proposed another topology including finite and infinite words
into one space. Recently, in [3] possibilities to extend right topologies generated by partial orders on X∗ to
topologies on Xω or X∗ ∪Xω were investigated.

Each of these concepts seems to have several drawbacks when considering topology in connection with
acceptance of ω-words; the first approach yields a trivial topological structure for finite words whereas the other
ones for infinite words give topologies others than the topology of the Cantor space:
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The topology considered by Boasson and Nivat is closely related to the product or Cantor topology of Xω;
on the one hand its restriction to Xω is the Cantor topology and, on the other hand the whole space X∗ ∪Xω

is homeomorphic to a closed subset of the Cantor space (X ∪ {⊥})ω where ⊥ /∈ X is a new letter. However,
all finite word languages are open in this topology, in particular, each finite word is an isolated point in this
topology.

Redziejowski’s topology has all sets consisting of only infinite words (ω-languages) as closed sets, thus
providing no information on the complexity of acceptance by topological means.

Finally, the results of [3] show that unless one uses the prefix order ⊑ the limit process extending the
topology on X∗ yields ambiguous results, more precisely, the limit set may contain more than one element and
the topology induced on the space of infinite words may not coincide with the Cantor topology.

In this paper we investigate the possibility to link topologies on the countable set X∗ to the standard topology
[6, 15, 18] of the Cantor space Xω via a mapping preserving closedness and openness of sets.

As a mapping we use the δ-limit introduced in [4]. Because of the countability of X∗ we cannot expect to
obtain a full topological correspondence between the spaces X∗ and Xω via any mapping. The δ-limit does not
go beyond the class Gδ of the Borel hierarchy. For the prefix topology, it provides a correspondence between
the open and closed sets in X∗ and the Cantor space, respectively, and furthermore, of the (σ, δ)-subsets of
X∗ as introduced in [14] and subsets of Xω being simultaneously of type Fσ and Gδ (see [15], Sect. 2.4).

Among the topologies on X∗ we consider here are the topologies induced by the AnfL-operators introduced
in [7–9]. Particular cases of these topologies are the topologies induced by the centers [1, 2, 9] and supercenters
[17] of languages. It turns out that both topologies play a special rôle: the center-topology being the coarsest one
having all finite sets closed, and the supercenter-topology being the finest one for which the prefix set pref(F )
of every closed subset F ⊆ Xω is the smallest closed set in X∗ corresponding to F via the δ-limit.

The paper is organised as follows. After the notation used we introduce some topological background empha-
sising properties of the derived set operator. Then we deal with several topologies for finite and infinite words.
Section 4 describes the linking of topologies for finite words with the Cantor topology for ω-words. A funda-
mental property for a topology of finite words is the compatibility with the topology of infinite words. The class
of L-topologies introduced by Prodinger and Urbanek [7, 9] is the topic of Section 5. In the subsequent part we
deal with topologies fulfilling a strengthened compatibility condition. Some of these results were announced in
[16]. Finally we show some limitations of L-topologies in respect to compatibility with the Cantor topology.

2. Preliminaries

2.1. Notation

We introduce the notation used throughout the paper. By N = {0, 1, 2, . . .} we denote the set of natural
numbers. Let X be an alphabet of cardinality |X| ≥ 2, a, b ∈ X, a ̸= b. By X∗ we denote the set (monoid) of
words on X, including the empty word e, and Xω is the set of infinite sequences (ω-words) over X. For w ∈ X∗

and η ∈ X∗ ∪Xω let w · η be their concatenation. This concatenation product extends in an obvious way to
subsets W ⊆ X∗ and B ⊆ X∗ ∪Xω. For a language W let W ∗ :=

⋃
i∈N W i be the submonoid of X∗ generated

by W , and by Wω := {w1 · · ·wi · · · : wi ∈ W \ {e}} we denote the set of infinite strings formed by concatenating
words in W . Furthermore |w| is the length of the word w ∈ X∗ and pref(B) is the set of all finite prefixes of
strings in B ⊆ X∗ ∪Xω. We shall abbreviate w ∈ pref(η) (η ∈ X∗ ∪Xω) by w ⊑ η.

Further we denote by B/w := {η : w · η ∈ B} the left derivative (left quotient) of the set B ⊆ X∗ ∪ Xω

generated by the word w.
In the theory of ω-automata, ω-words are introduced as upper bounds of infinite chains of words ordered by

the prefix relation “⊏”; this is reflected by the following limit operation (see [3, 4, 11, 14, 15]).
The δ-limit of a language W ⊆ X∗ is defined as

W δ := {ξ : ξ ∈ Xω ∧ |pref(ξ) ∩W | = ℵ0} . (2.1)
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2.2. General topology

Usually, a topology T = (X ,O) on a set (space) X is given by a family of open sets O ⊆ 2X . Here O is a
family of subsets of X containing X and closed under arbitrary (including empty) union and finite intersection.

Following Kuratowski (cf. [5, 10]) one can also define a topology via a closure operator. A mapping α : 2X →
2X is called a topological closure operator provided it satisfies the following conditions.

α(∅) = ∅ (2.2)

α(M) ⊇ M (2.3)

α(M1 ∪M2) = α(M1) ∪ α(M2) , and (2.4)

α(α(M)) = α(M) (2.5)

In view of equation (2.3) the identity in equation (2.5) can be replaced by α(α(M)) ⊆ α(M).
By Tα we denote the topology Tα = (X ,Oα) where Oα := {X \ α(M) : M ⊆ X}.
A topology T1 = (X ,O1) is finer1 than a topology T2 = (X ,O2) if O2 ⊆ O1, that is, if every T2-open set is

also T1-open. This is equivalent to the fact that it holds

α1(M) ⊆ α2(M) for all M ∈ X (2.6)

where αi, i = 1, 2 is the closure generating the topology Ti.
A closure operator may also be obtained via the Cantor-Bendixson derived set (set of accumulation points)

Md of M ⊆ X [5], Chapter 1, Section 9, III.
The derived set operator d has to satisfy the following conditions.

∅d = ∅ (2.7)

(M1 ∪M2)
d = Md

1 ∪Md
2 , and (2.8)

(Md)d ⊆ Md (2.9)

In particular, every closure α is also a derived set operator.
It is readily seen that αd(M) := M ∪Md is a topological closure operator. In view of equation (2.9) Md is

closed in Tαd , and more generally, a set M is closed in Tαd if and only if Md ⊆ M . Via αd, a derived set operator
d defines a topology on X .

The following properties hold (cf. also [5], Ch. 1, Sect. 7, IV and Sect. 9, III).

Property 2.1. Every M ′, where Md ⊆ M ′ ⊆ M ∪Md, is closed in Tαd .

Property 2.2. Let γ : 2X → 2X be a derived set or closure operator. Then

G ∩ γ(M) = G ∩ γ(G ∩M)

if G is open in the topology defined by γ.

For the sake of completeness we add a proof.

Proof. The inclusion ⊇ is obvious.
From equation (2.8) we have γ(M) = γ(M ∩G) ∪ γ(M \G) ⊆ γ(M ∩G) ∪ γ(X \G). Since X \G is closed,

γ(X \G) ⊆ X \G, and we have γ(M) ⊆ γ(M ∩G)∪ (X \G) whence the reverse inclusion follows via intersection
with the set G.

As usual countable unions of closed sets are called Fσ-sets and countable intersections of open sets are called
Gδ-sets.

1This includes the case that T1 and T2 coincide.
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3. Topologies for Words and ω-words

In this section we present some known topologies for finite and infinite words.

3.1. The Cantor topology on Xω

The first one is the widely investigated Cantor topology.
We consider the set Xω as a metric space (Cantor space) (Xω, ρ) of all ω-words over the alphabet X where

the metric ρ is defined as follows.

ρ(ξ, η) := inf{|X|−|w| : w ⊏ ξ ∧ w ⊏ η} (3.1)

SinceX is finite, this space is compact, and C(F ) := {ξ : pref(ξ) ⊆ pref(F )} is the closure of the set F (smallest
closed subset containing F ) in (Xω, ρ), that is, a subset F ⊆ Xω is closed if and only if pref(ξ) ⊆ pref(F )
implies ξ ∈ F . Thus

pref(C(F )) = pref(F ) and C(F ) = pref(F )δ . (3.2)

The topology can be defined by the metric ρ as in equation (3.1) or, alternatively, by letting OC := {W ·Xω :
W ⊆ X∗} be the set of open subsets of Xω.

As (Xω, ρ) is a metric space the Cantor-Bendixson derived set F d of a subset F ⊆ Xω can be described
as

F d =
{
ξ : pref(ξ) ⊆ {w : w ·Xω ∩ F is infinite}

}
(3.3)

It holds C(F ) = F ∪ F d.
We conclude this part with a relation between the δ-limit and Gδ-sets in Cantor space.

Proposition 3.1 ([4]). A subset F ⊆ Xω is a Gδ-set if and only if there is a language W ⊆ X∗ such that
F = W δ.

3.2. The prefix topology Tp on X∗

A well-known topology on X∗ which resembles the product or Cantor topology is the prefix topology Tp
on X∗, that is, the right topology on X∗ derived from the prefix order ⊑ on X∗.

The open subsets in Tp are of the form W ·X∗ where W ⊆ X∗. As it is easily verified the closure operator
defining this topology is the initial word operator pref assigning to each language W ⊆ X∗ its set of prefixes
pref(W ) := {w : ∃v(v ∈ W ∧ w ⊑ v)}.

It has the following property.

Lemma 3.2. The prefix topology Tp is the coarsest topology having all subsets pref(F ) ⊆ X∗, F ⊆ Xω, closed.

Proof. This follows from the identity pref(W ) = pref(W · aω) ∩ pref(W · bω) where a, b ∈ X, a ̸= b.

In this topology, however, not every finite set W ⊆ X∗ is closed. It holds only the so-called T0-condition: For
every pair w, v ∈ X∗, w ̸= v, there is an open set W ⊆ X∗ which contains exactly one of the words w or v.

3.3. Topologies on X∗ ∪ Xω

In this section we consider several topologies on the space of finite and infinite words X∗ ∪ Xω and its
restrictions to the sets Xω and X∗, respectively.

The first one resembles the Scott topology on X∗ ∪Xω (cf. [13]). Its open sets are of the form W · (X∗ ∪Xω).
The restriction to Xω is the Cantor topology and the restriction to X∗ is the prefix topology Tp.
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The topology considered by Boasson and Nivat [1] is closely related to the product or Cantor topology of
Xω; on the one hand its restriction to Xω is the Cantor topology and, on the other hand the whole space
X∗ ∪Xω is a homeomorphic to a closed subset of the Cantor space (X ∪ {⊥})ω where ⊥ /∈ X is a new letter.
However, all finite word languages are open in this topology, in particular, each finite word is an isolated point
in this topology. Thus its restriction to X∗ is the (trivial) discrete topology.

Redziejowski [11] observed that the limit considered in [1] is different from the one used in the theory of
ω-automata. Therefore he proposed another topology on the space of finite and infinite words. Here the closure
of a subset W ∪ F ⊆ X∗ ∪Xω,W ⊆ X∗, F ⊆ Xω, can be described via the δ-limit as (cf. [11], Property 4.4 (1))

cl(W ∪ F ) = W ∪W δ ∪ F .

Then subsets of the form F ⊆ Xω and W ∪Xω,W ⊆ X∗, are closed, and, consequently, the restrictions to
Xω and X∗, respectively, are the (trivial) discrete topologies.

4. Linking topologies on X∗ to Cantor topology

The open sets in Tp resemble those inCantor space. One easily observes, that due to the identity (W ·X∗)δ =
W ·Xω, equation (3.2) and Lemma 3.2 there is a close correspondence between open (closed) subsets in the
prefix topology on X∗ and Cantor topology, respectively.

4.1. Compatibility of topologies

The connection between the prefix topology on X∗ and the Cantor topology on Xω via the δ-limit is shown
in [15], Section 2.4. This connection fulfils the following property.

Definition 4.1 (Compatibility). A topology T = (X∗,O) is compatible with the Cantor topology of Xω

provided

1. W δ is closed (open) if W ⊆ X∗ is closed (open, respectively) in (X∗,O).
2. If F ⊆ Xω is closed (open) in Cantor space then F = W δ for some W ⊆ X∗ closed (open, respectively)

in (X∗,O).

Therefore we consider topologies onX∗ which are linked via our δ-limit to the Cantor topology onXω. Then
every language W ⊆ X∗ has as its image the Gδ-set W δ ⊆ Xω. (In fact, because of the different cardinalities
of the spaces X∗ and Xω, we cannot expect to obtain every subset of Xω as an image.)

Definition 4.1 requires that the image of every open (closed) language W ⊆ X∗ is also open (closed), and
every open (closed) ω-language F ⊆ Xω is the image of an appropriately chosen open (closed) language.

Lemma 4.2. Let a topology Tα be compatible with the Cantor topology. Then the closure α : 2X
∗ → 2X

∗

satisfies the following inclusions

pref(W δ) ⊆ pref(α(W )δ) ⊆ pref(α(W )) and (4.1)

C(W δ) ⊆ α(W )δ, for all W ⊆ X∗ . (4.2)

Proof. In view of pref(V δ) ⊆ pref(V ) the first inclusion holds for all α : 2X
∗ → 2X

∗
satisfying W ⊆ α(W ).

The second one follows from the fact that α(W )δ is a closed set containing W δ.

Moreover, Conditions 1 and 2 of Definition 4.1 are inherited in the following way.

Lemma 4.3. Let T̂ = (X∗, Ô) be a topology compatible with the Cantor topology.

1. If the topology T1 = (X∗,O1) is coarser than T̂ then the δ-image W δ of every open (closed) subset W ⊆ X∗

is open (closed, respectively) in Xω.
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2. If the topology T2 = (X∗,O2) is finer than T̂ then every open (closed) subset F ⊆ Xω has an open (closed,
respectively) δ-preimage W ⊆ X∗.

Thus, if the topologies T1, T2 are compatible with the Cantor topology then every topology T which is finer
than T1 and coarser than T2 is also compatible with the Cantor topology.

Lemma 4.3.2 has the following special instance.

Corollary 4.4. If a topology T on X∗ is finer than the prefix topology Tp then every closed subset F ⊆ Xω has
the closed δ-preimage pref(F ), and every open subset W ·Xω has the open δ-preimage W ·X∗.

This is due to the identity (W ·X∗)δ = W ·Xω, equation (3.2) and Lemma 3.2 as it was mentioned above.

4.2. (σ, δ)-subsets of X∗

As Proposition 3.1 shows, the δ-limit can map languages only to ω-languages in the Borel-class Gδ, it is
interesting to observe that we can also characterise those Gδ-sets which are simultaneously Fσ-sets via their
δ-preimages (see [14]). These subsets of X∗ show also some special properties w.r.t. topologies on X∗.

We start with some easily verified properties of the δ-limit defined in equation (2.1).

(W ∪ V )δ = W δ ∪ V δ (4.3)

pref(pref(W δ)δ) = pref(W δ) ⊆ pref(W ) (4.4)

The identity in equation (4.4) follows from applying equation (3.2) to F = W δ.

Definition 4.5. A subset W ⊆ X∗ is referred to as a (σ, δ)-subset of X∗ provided for every ξ ∈ Xω one of the
sets pref(ξ) ∩W or pref(ξ) \W is finite.2

Then we have the announced connection to Fσ-sets in Cantor space.

Lemma 4.6 ([14], Lem. 12). A subset F ⊆ Xω is simultaneously an Fσ- and a Gδ-set in (Xω, ρ) if and only
if there is a (σ, δ)-subset W ⊆ X∗ such that F = W δ.

Examples of (σ, δ)-subsets of X∗ are languages of the form pref(W ), W ·X∗, and W ⊆ X∗ such that W δ = ∅.
Definition 4.5 is equivalent to the following one

W is a (σ, δ)-subset of X∗ if and only if (X∗ \W )δ = Xω \W δ . (4.5)

We have also the following equivalent property.

Lemma 4.7. Let W ⊆ X∗. Then the following conditions are equivalent.

1. A subset W ⊆ X∗ is a (σ, δ)-subset of X∗.
2. For every V ⊆ X∗ the identity (V ∩W )δ = V δ ∩W δ is fulfilled.
3. For every V ⊆ X∗ the identity (V \W )δ = V δ \W δ is fulfilled.

Proof. We show first that 1. is equivalent to 2.
The inclusion (V ∩W )δ ⊆ V δ ∩W δ is obvious.
If W is not a (σ, δ)-subset of X∗ then there is a ξ ∈ W δ such that V := pref(ξ) \W is infinite. Then V δ = {ξ}

and, consequently, V δ ∩W δ = {ξ} whereas (V ∩W )δ = ∅.
Let W be a (σ, δ)-subset of X∗, and let ξ ∈ W δ ∩ V δ. Then ξ ∈ W δ implies that pref(ξ) \W is finite. Since

pref(ξ) ∩ V is infinite, pref(ξ) ∩ V ∩W is infinite, too, whence ξ ∈ (V ∩W )δ.
As, by definition, the complement of a (σ, δ)-subset is also a (σ, δ)-subset, replacing W by X∗ \W shows the

equivalence of Items 1 and 3.

2There are languages W ⊆ X∗ such that both sets pref(ξ) ∩W and pref(ξ) \W are infinite.
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From equation (3.2) we have W δ ⊆ C(W δ) = pref(W δ)δ. Since pref(W δ) is a (σ, δ)-subset, Lemma 4.7
implies the following. (

W ∩ pref(W δ)
)δ

= W δ and
(
W \ pref(W δ)

)δ
= ∅ . (4.6)

Moreover, the following is true.

Proposition 4.8 ([14], Prop. 14). The class of all (σ, δ)-subsets of X∗ is a Boolean algebra.

We finish this section with a sufficient condition for the compatibility of topologies T = (X∗,O) which is
immediate from equation (4.5).

Lemma 4.9. Let T = (X∗,O) be a topology on X∗ such that every open set W ∈ O is a (σ, δ)-subset of X∗.
Then T is compatible with the Cantor topology if W δ is open for every W ∈ O and every open subset E ⊆ Xω

has an open δ-preimage V ∈ O.

5. L-topologies
In this section we investigate a method for defining a class of topologies on X∗ which are finer that the prefix

topology Tp. These so-called L-topologies were introduced by Prodinger [7, 8] using the AnfL-operator (see also
[9]). Under several conditions this AnfL-operator is a derived set operator on X∗, thus defines a topology –
the L-topology on X∗. The corresponding closure will be denoted by αL, that is, αL(W ) := W ∪ AnfL(W ) for
W ⊆ X∗.

5.1. The operator Anf

In [7, 9] Prodinger and Urbanek defined a generalisation of the initial word operator pref as follows. Let
L ⊆ 2X

∗
be a family of languages, W ⊆ X∗, and define

AnfL(W ) := {w : w ∈ X∗ ∧W/w ∈ L} (5.1)

The operator AnfL has the following properties (see [7, 9, 12]):

AnfL(W ) ⊆ AnfM(W ) if and only if L ⊆ M (5.2)

Property 5.1. 1. AnfL(W/w) = AnfL(W )/w
2. AnfL is monotone if and only if W ∈ L and W ⊆ V imply V ∈ L.
3. AnfL(W ∪ V ) = AnfLW ∪ AnfLV if and only if AnfL is monotone and W ∪ V ∈ L implies W ∈ L or

V ∈ L.

Property 5.2. The following conditions are equivalent.

1. ∅ /∈ L
2. AnfL(∅) = ∅, and
3. ∀W (AnfL(W ) ⊆ pref(W ))

Proof. 1 → 3. Let ∅ /∈ L and v /∈ pref(W ). Then W/v = ∅ /∈ L whence v /∈ AnfL(W ).
3 → 2. is obvious
2 → 1. We have e ∈ AnfL(W ) if and only if W ∈ L. Thus e /∈ AnfL(∅) = ∅ implies ∅ /∈ L.

Next we give some relations to the prefix-operator pref .

Proposition 5.3. Let L ⊆ 2X
∗
. The following conditions are equivalent.

1. ∀W
(
AnfL(W ) ̸= ∅ → W ∈ L

)
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2. ∀W∀v
(
W/v ∈ L → W ∈ L

)
3. ∀W

(
pref(AnfL(W )) = AnfL(W )

)
Proof. 1 ↔ 2. is Theorem 4.18 of [9].

3 → 1. If W/v ∈ L then v ∈ AnfL(W ). Now 3. implies e ∈ pref(AnfL(W )) ⊆ AnfL(W ) which in turn shows
W ∈ L.

2 → 3. Let w ∈ pref(AnfL(W )). Then there is a v ∈ X∗ such that w · v ∈ AnfL(W ), that is, W/w · v =
(W/w)/v ∈ L. Now 2. yields W/w ∈ L which in turn shows w ∈ AnfL(W ).

We continue with the requirement under which the operator AnfL satisfies the condition of equation (2.9) of
a derived set operator.

Lemma 5.4. It holds ∀W (AnfL(AnfL(W )) ⊆ AnfL(W )) if and only if
∀W (AnfL(W ) ∈ L → W ∈ L).

Proof. Let AnfL(W ) ∈ L. Consequently, e ∈ AnfL(AnfL(W )). Then AnfL(AnfL(W )) ⊆ AnfL(W ) implies e ∈
AnfL(W ). Thus W ∈ L.

Conversely, let AnfL(W ) ∈ L imply W ∈ L, and let v ∈ AnfL(AnfL(W )). Then AnfL(W )/v ∈ L. Since
AnfL(W )/v = AnfL(W/v), we have AnfL(W/v) ∈ L and, consequently, W/v ∈ L, that is v ∈ AnfL(W ).

5.2. L-topologies

Here we investigate under which conditions an AnfL-operator has the properties of a derived set operator on
X∗ (cf. Prop. 5.1, 5.2 and Lem. 5.4). The following theorem is an analogue to Theorem 2.3 of [7] for derived set
operators.

Theorem 5.5. A mapping AnfL is a derived set operator on X∗ if and only if the following conditions are
satisfied.

1. ∅ /∈ L,
2. W ∈ L and W ⊆ V imply V ∈ L, and W ∪ V ∈ L implies W ∈ L or V ∈ L, and
3. AnfL(W ) ∈ L implies W ∈ L.

Proof. 1. First ∅ ∈ L if and only if AnfL(∅) = ∅. Thus equation (2.7) holds.
2. Theorem 4.13 of [9] shows that this is equivalent to AnfL(V ∪W ) = AnfL(V ) ∪ AnfL(W ) which in turn is

equation (2.8).
3. Lemma 5.4 shows that Item 3 is equivalent to equation (2.9).

Simple examples of L-topologies are the prefix topology Tp and the discrete topology D = (X∗, 2X
∗
). Here

one can choose Lp = {W : W ̸= ∅}, and LD = ∅, respectively. This yields AnfLp
= pref and AnfLD (W ) = ∅,

for all W ⊆ X∗.
The following shows a sufficient condition for Item 3 of Theorem 5.5.

Proposition 5.6. If ∅ ≠ L and ∀W∀w(W/w ∈ L → W ∈ L) then ∀W (AnfL(W ) ∈ L → W ∈ L).

Proof. Let AnfL(W ) ∈ L. Then AnfL(W ) ̸= ∅. Now in view of the equivalence 1 ↔ 2 of Proposition 5.3 we
obtain W ∈ L.

Next, we give an example that the condition ∀W∀w(W/w ∈ L → W ∈ L) is not necessary.

Example 5.7. Define L := {V : V ∩ (X2)∗ ̸= ⊘}. Then a · (X2)∗ /∈ L. Conditions 1 and 2 of Theorem 5.5 are
trivially satisfied. To verify Condition 3 we observe that, if AnfLW ∈ L it contains a word v of even length.
Then W/v ∈ L. Thus W/v contains also a word w of even length, whence wv ∈ W , that is, W ∈ L.

Since every L-topology is finer than the prefix topology Tp, Lemma 4.3.2 and Corollary 4.4 yield the following.
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Proposition 5.8. An L-topology is compatible with the Cantor topology on Xω if and only if for every
W ⊆ X∗, the set αL(W )δ is closed and the set (X∗ \ αL(W ))δ is open in Cantor space.

Finally, we mention that L-spaces can be characterised also via their open sets.

Theorem 5.9 ([7], Thm. 2.16). A topological space T = (X∗,O) is an L-space if and only if W ∈ O implies
w ·W,W/w ∈ O for w ∈ X∗.

6. Strongly compatible topologies on X∗

In this section we consider topologies on X∗ compatible with the Cantor topology. Several of them can be
defined using the apparatus introduced in the preceding section.

6.1. Center and supercenter topologies

Special AnfL-operators were considered in connection with language-theoretic questions. These were referred
to as centers [2] or supercenters [17], respectively, of languages.

Definition 6.1 (Center).

center(W ) := AnfLc
(W ) , where Lc = {V : V ⊆ X∗ is infinite }

Definition 6.2 (Supercenter).

sctr(W ) := AnfLsc(W ) , where Lsc = {V : V ⊆ X∗ ∧ V δ ̸= ∅}

Definition 6.2 is equivalent to sctr(W ) = pref(W δ) = pref(C(W δ)).
Since the alphabet X is finite, König’s infinity lemma shows that W ⊆ X∗ is infinite if and only if pref(W )

is infinite which is equivalent to pref(W )δ ̸= ∅. Thus we have

center(W ) = sctr(pref(W )) = pref(pref(W )δ) . (6.1)

Both families Lc and Lsc satisfy the conditions of Theorem 5.5 and Proposition 5.6. So center and sctr are derived
set operators and define topologies Tc and Tsc, respectively, on X∗. As L-topologies the center or supercenter
topologies are finer than the prefix topology Tp. Moreover, equation (5.2) shows that Tsc is finer than Tc.

In Tsc every W with W δ = ∅ is closed. The language a∗ · b is infinite, (a∗ · b)δ = ∅ and center(a∗ · b) = a∗ ̸⊆
a∗ · b. Therefore it is not closed in Tc. This shows that Tsc does not coincide with Tc.

The prefix topology has the property that not every finite subset of X∗ is closed. The center topology proves
to be the coarsest topology refining Tp and having all finite sets closed. To this end we show the following.

Theorem 6.3. If α : 2X
∗ → 2X

∗
is a topological closure such that all pref(F ), F ⊆ Xω, and all finite sets are

closed then

α(W ) ⊆ W ∪ center(W ) .

Proof. If all pref(F ), F ⊆ Xω, are α-closed, then according to Lemma 3.2 all pref(W ),W ⊆ X∗, are α-closed,
whence α(W ) ⊆ pref(W ); moreover, all u ·X∗ are α-open.

We show α(W ) \ center(W ) ⊆ W .
Let u ∈ α(W ) \ center(W ) ⊆ pref(W ) \ center(W ). Then W ∩ u ·X∗ is finite. Consequently, α(W ∩ u ·X∗) =

W ∩ u ·X∗. Since u ·X∗ is α-open, Property 2.2 shows α(W ) ∩ u ·X∗ = α(W ∩ u ·X∗) ∩ u ·X∗ = W ∩ u ·X∗

whence u ∈ W . Thus, α(W ) \ center(W ) ⊆ W .
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Corollary 6.4. The topology Tc is the coarsest topology having all subsets pref(F ) ⊆ X∗ and all finite subsets
closed.

Proof. This follows from equation (2.6) and Theorem 6.3.

The next lemma shows a connection between the supercenter topology and (σ, δ)-subsets of X∗.

Lemma 6.5. If a topology T on X∗ is coarser than the supercenter topology Tsc then every open or closed set
is a (σ, δ)-subset X∗.

Proof. If T is coarser than Tsc, then every V ⊆ X∗ closed in T is also closed in Tsc, that is, is of the form
V = W ∪ pref(W δ) = (W \ pref(W δ)) ∪ pref(W δ). Along with all prefix-closed languages, all languages W
with sctr(W ) = pref(W δ) = ∅ are (σ, δ)-subsets of X∗. Now the assertion follows with equation (4.6) and
Proposition 4.8.

The proof of Lemma 6.5 shows also that every set open in the supercenter topology has the form W ·X∗ \ V
where V δ = ∅.

Then the identity (W · X∗ \ V )δ = W · Xω, for V δ = ∅, in connection with Lemma 4.9 shows that Tsc is
compatible with the Cantor topology.

6.2. Strong compatibility - characterisation

In every topology finer than the prefix topology Tp all languages pref(F ) where F ⊆ Xω are closed. Moreover,
pref(F )δ = C(F ). In this section we are investigating which topologies have the languages pref(F ) as smallest
closed sets V yielding V δ = C(F ). It turns out that supercenters of languages play a crucial rôle in this respect.

Definition 6.6 (Strong compatibility). A topology T = (X∗,O) is strongly compatible provided T satisfies

pref(F ) = min⊆
{
αT (W ) : F ⊆ W δ

}
for all F ⊆ Xω . (6.2)

In particular, every pref(F ), F ⊆ Xω, is closed in T .

Theorem 6.7. A topology T on X∗ is strongly compatible if and only if the corresponding closure operator αT
satisfies

pref(W δ) ⊆ αT (W ) ⊆ pref(W ) for all W ⊆ X∗. (6.3)

Proof. If T is strongly compatible then Lemma 3.2 shows that T refines the prefix topology Tp. Hence αT (W ) ⊆
pref(W ); and equation (6.2), for F = W δ, yields pref(W δ) ⊆ αT (W ).

To prove the converse, we refer to equations (3.2) and (6.3). This shows pref(pref(F )δ) ⊆ αT (pref(F )) ⊆
pref(pref(F )) = pref(F ), that is, αT (pref(F )) is prefix closed. Then F ⊆ W δ yields pref(F ) ⊆ pref(W δ) ⊆
αT (W ). Consequently, pref(F ) is the minimum w.r.t. ⊆ of the set {αT (W ) : F ⊆ W δ}.

In view of equation (2.6) the inequality of Theorem 6.7 shows that a topology T on X∗ is strongly compatible
if and only if T is finer than Tp and coarser than Tsc. Then, since both topologies Tp and Tsc are compatible
with the Cantor topology, Lemma 4.3 yields the following.

Corollary 6.8. Every strongly compatible topology on X∗ is compatible with the Cantor topology.

6.3. Strong compatibility and L-topologies

The so far considered strongly compatible topologies Tp, Tc and Tsc are L-topologies. It arises the question
whether all strongly compatible topologies are L-topologies. In view of Theorem 6.7 this is equivalent to whether
all topologies between the prefix and the supercenter topology are L-topologies.
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A further observation is that as a consequence of Lemma 6.5 and Theorem 6.7, the closed and the open
sets in every topology strongly compatible with the Cantor topology are always (σ, δ)-subsets of X∗. We also
address the question whether all compatible L-topologies having as open sets (σ, δ)-subsets of X∗ are strongly
compatible.

In this section we will show that for both instances we find counter-examples. To this end we use the
well-known possibility to define topologies via their bases (e.g. [10], Ch. I, Sects. 2, 2.1):

Property 6.9. Let X be a set and B ⊆ X be closed under intersection. Then for O := {
⋃

M∈A M : A ⊆ B} the
pair T = (X ,O) is a topological space with open sets O.

Remark 6.10. The set B in Property 6.9 has the properties of a base of the topological space T , as it generates
all its open sets. In topology, however, it is not required that a base be closed under intersection [5, 10].

The first example is a topology on X∗ which is strongly compatible with the Cantor topology but not an
L-topology.

Example 6.11. Let X = {a, b} and define B := {w ·X∗ \ V : w ∈ X∗ ∧ V ⊆ a∗ · b} and the family of open sets
O as in Property 6.9. Then T = (X∗,O) is a topology finer than the prefix topology Tp and, since V δ = ∅ for
V ⊆ a∗ · b, coarser than Tsc.

Consider W := b · (X∗ \ a∗ · b). Then b ∈ W and bb /∈ W . The smallest open set containing the word b is
b ·X∗ \ a · a∗ · b which contains the word bb. Thus W is not open, and according to Theorem 5.9 the topology
T is no L-topology.

Since the topology T = (X∗,O) of Example 6.11 is coarser than Tsc, its open sets are (σ, δ)-subsets of X∗.
Next we provide an example of a compatible but not strongly compatible L-topology having all open sets as
(σ, δ)-subsets of X∗.

Lemma 6.12. There are compatible L-topologies on X∗ such that all its open sets are (σ, δ)-subsets of X∗

which are not strongly compatible with the Cantor topology.

Proof. We construct an L-topology T = (X∗,O) such that every open set W ∈ O and hence also every closed
set is a (σ, δ)-subset. To this end we use Theorem 5.9 and Property 6.9.

We let X = {a, b} and B =
{
w ·X∗ \ U · b · a∗ : w ∈ X∗ ∧ U ⊆ X∗ finite

}
be a base of T .

Then every open set has the form3

W =
⋃

i∈M
(wi ·X∗ \ Ui · b · a∗), M ⊆ N . (6.4)

First we show that O is closed under the operations w · and /w. Closure under premultiplication with a word
is trivial. It remains to show that (w ·X∗ \ U · b · a∗)/v = (w ·X∗/v) \ (U · b · a∗)/v is a union of sets of the
given shape. If v /∈ pref(w ·X∗), (w ·X∗ \ U · b · a∗)/v = ∅. Otherwise, w ·X∗/v = w′ ·X∗ for a suffix w′ of w.
Moreover, observe that

(U · b · a∗)/v =

{
(U/v) · b · a∗ , if v /∈ U · b · a∗ and
(U/v) · b · a∗ ∪ a∗ , otherwise.

In the former case (w ·X∗ \U · b · a∗)/v = w′ ·X∗ \ (U/v) · b · a∗ is of the required form. In the latter case we get
w′ ·X∗ \ a∗ =

⋃
v′∈w′·a∗·b v

′ ·X∗ and, consequently, (w ·X∗ \ U · b · a∗)/v =
⋃

v′∈w′·a∗·b(v
′ ·X∗ \ (U/v) · b · a∗)

is also in O.
Next, we show that every open set W ⊆ X∗ is a (σ, δ)-subset of X∗, that is, for ξ ∈ W δ we have to show

that pref(ξ) \W is finite. If ξ ∈ W δ in view of equation (6.4) there is an i ∈ N such that ξ ∈ wi ·Xω. Since Ui

is finite, ξ /∈ Ui · b · aω implies that pref(wi) ∪ (pref(ξ) \W ) ⊆ pref(ξ) ∩ Ui · b · a∗ is also finite.

3Observe that the union in equation (6.4) is always a countable one.



12 L. STAIGER ET AL.

If ξ ∈ Ui · b · aω then ξ = u · b · aω for some u ∈ Ui. Since pref(ξ) ∩W is infinite, there is a j ∈ N such that
pref(ξ) ∩ (wj ·X∗ \ Uj · b · a∗) contains a word |w| ≥ |u|+ 2. Thus u · b · a ⊑ w ⊏ ξ.

For w ∈ u · b · a∗ and w /∈ Uj · b · a∗ it holds u /∈ Uj . Thus u · b · a∗ ∩Uj · b · a∗ = ∅ whence pref(u)∪ (pref(ξ)∩
Uj · b · a∗) ⊇ pref(ξ) \W is finite.

For the compatibility of T = (X∗,O) with the Cantor topology, in view of Lemma 4.9, it suffices to
show that W δ is open if W is given by equation (6.4). First observe that W δ ⊆

⋃
i∈N wi ·Xω and wi ·Xω ⊇

(W δ ∩ wi ·Xω) ⊇ wi ·Xω \ Ui · b · aω. Thus wi ·Xω \W δ is finite, hence wi ·Xω ∩W δ is open. Consequently
W δ =

⋃
i∈N(wi ·Xω ∩W δ) is also open.

Finally, the set b · a∗ is closed in T and (b · a∗)δ = {b · aω} but pref({b · aω}) ̸⊆ b · a∗. Thus T = (X∗,O) is
not strongly compatible with the Cantor topology.

7. Miscellaneous

In this section we first present examples of topologies which are compatible with the Cantor topology
but not strongly compatible. Then we consider L-topologies related to the Cantor-Bendixson derived set in
Cantor space.

7.1. Some examples

The first one is coarser than the prefix topology, and the second one is a refinement of the first one incom-
parable with the prefix topology and the center topology. For both topologies the open (and closed) sets are
(σ, δ)-subsets.

Example 7.1. Define the topology T2p by O2p := {W · X∗ : W ⊆ (X2)∗}. Then every open set is also a
(σ, δ)-subset of X∗.

The set a ·X∗ = {a}∪ (a ·X) ·X∗ is not open. Thus T2p is strictly coarser than Tp. Since W ·Xω = (W ·X∗ ∩
(X2)∗) ·Xω = ((W ·X∗ ∩ (X2)∗) ·X∗)δ, Lemma 4.3.1 shows that T2p is compatible with the Cantor topology.

Lemma 7.2. Let B2sc := {Wi ·X∗ \ Vi : Wi ⊆ (X2)∗ ∧ V δ
i = ∅} and define O2sc as in Property 6.9. Then B2sc

is closed under finite intersection and O2sc consists solely of (σ, δ)-subsets of X∗.

Proof. Closure under intersection follows from the identities (Wi ·X∗ \ Vi)∩ (Wj ·X∗ \ Vj) = (Wi · (X2)∗ ∩Wj ·
(X2)∗) ·X∗ \ (Vi ∪ Vj) and (Vi ∪ Vj)

δ = ∅.
Finally, since O2sc ⊆ Osc, all open sets are (σ, δ)-subsets of X∗.

Example 7.3. Lemma 7.2 shows that O2sc is a family of open sets consisting solely of (σ, δ)-subsets. Assume
a ·X∗ = {a} ∪ (a ·X) ·X∗ to be open. Then a ·X∗ =

⋃
i∈I(Wi ·X∗ \ Vi) implies that e ∈ Wi ⊆ (X2)∗ for some

i ∈ I, that is a ·X∗ ⊇ X∗ \ Vi. This contradicts a ·Xω = (a ·X∗)δ ⊆ (X∗ \ Vi)
δ = Xω.

Thus the topology T2sc is not finer than the prefix topology Tp. Since every U with U δ = ∅ is closed in T2sc,
in particular, every finite set is closed in T2sc, the topology is not coarser than Tc.

7.2. Cantor-Bendixson-topology

In this section we first present two examples of L-topologies which are strictly finer than the supercenter
topology. Thus they are not strongly compatible. The first example is related to the Cantor-Bendixson
derived set in Cantor space and compatible with the Cantor topology. The second one refers to the Cantor-
Bendixson Theorem as it is concerned with condensation points in W δ, that is, points ξ ∈ Xω for which every
w ·Xω ∩W δ, w ⊏ ξ, is uncountable.

Theorem 7.4. Let L∞ := {W : W δ is infinite }. Then AnfL∞ is a derived set operator on X∗ and the topology
defined by AnfL∞ is compatible with the Cantor topology.

Moreover, AnfL∞(W )δ = ∅ whenever W δ is finite.
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Proof. It is readily seen that AnfL∞ satisfies Conditions 1 and 2 of Theorem 5.5 and the hypotheses of
Proposition 5.6. Thus AnfL∞ is a derived set operator which, according to Proposition 5.3, is prefix closed.

Now, in view of Proposition 5.8 it suffices to show that, for the closure αL∞ of the topology generated by
AnfL∞ , the ω-languages αL∞(W )δ are closed, and (X∗ \ αL∞(W ))δ are open in Cantor space.

Observe that w ∈ AnfL∞(W ) is equivalent to W δ/w is infinite which in turn is equivalent to W δ ∩ w ·Xω

is infinite. Thus, ξ ∈ AnfL∞(W )δ if and only if W δ ∩ w · Xω is infinite for all w ∈ pref(ξ), that is, in view
of equation (3.3) AnfL∞(W )δ is the Cantor-Bendixson derived set of W δ. This shows that αL∞(W )δ =
W δ ∪ AnfL∞(W )δ = C(W δ) is closed.

It remains to prove that (Xω \ αL∞(W ))δ is open. To this end we use again the fact that AnfL∞(W )δ is the
Cantor-Bendixson derived set of W δ and AnfL∞(W ) = pref(AnfL∞(W )) is a (σ, δ)-subset of X∗.

The latter implies AnfL∞(W )δ = Xω \ (X∗ \ AnfL∞(W ))δ. Then AnfL∞(W )δ ⊆ Xω \ (X∗ \ αL∞(W ))δ ⊆
αL∞(W )δ = C(W δ), and according to Property 2.1 the set Xω \ (X∗ \ αL∞(W ))δ is closed.

The second assertion is obvious.

Example 7.5. To see that the L∞-topology is not strongly compatible we remark that the L∞-closed set {ab}∗
is not a (σ, δ)-subset of X∗.

Indeed, since ({ab}∗)δ is finite, we have αL∞({ab}∗) = {ab}∗.

Finally, we give a non-trivial example4 of an L-topology not compatible with the Cantor topology.

Example 7.6. Let LCB := {W : W δ is uncountable }. As in the case of L∞ we prove that AnfLCB
is a derived

set operator. Here (AnfLCB
(W ))δ =

{
ξ : ∀w(w ⊏ ξ → w ·Xω ∩W δ is uncountable)

}
is the set of condensation

points of W δ in Cantor-space (cf. [5], Ch. 2, Sect. 23, III).
As AnfLCB

(a∗ba∗) = ∅ the language a∗ba∗ is closed, but (a∗ba∗)δ = a∗baω is not closed in Cantor space.

Acknowledgements. Some of the results were announced in [16].
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[9] H. Prodinger and F.J. Urbanek, Language operators related to Init. Theor. Comput. Sci. 8 (1979) 161–175.

[10] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics. PWN, Warszawa (1963).
[11] R.R. Redziejowski, Infinite-word languages and continuous mappings. Theor. Comput. Sci. 43 (1986) 59–79.
[12] T. Richter and L. Staiger, Topological language operators, in Proceedings 18. Theorietag Automaten und Formale Sprachen.

Institut für Informatik, Universität Gießen, Gießen (2008) 109–114.
[13] M.B. Smyth, Topology, in Handbook of Logic in Computer Science, Vol. 1, edited by S. Abramsky, D.M. Gabbay and Thomas

S.E. Maibaum. Oxford University Press, New York (1992) 641–761.
[14] L. Staiger, Sequential mappings of ω-languages. RAIRO Inform. Théor. Appl. 21 (1987) 147–173.
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