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Regional patient transfer 
patterns matter for the spread 
of hospital‑acquired pathogens
Hanjue Xia 1*, Johannes Horn 1, Monika J. Piotrowska 2, Konrad Sakowski 2, André Karch 3, 
Mirjam Kretzschmar 4 & Rafael Mikolajczyk 1

Pathogens typically responsible for hospital-acquired infections (HAIs) constitute a major threat 
to healthcare systems worldwide. They spread via hospital (or hospital-community) networks by 
readmissions or patient transfers. Therefore, knowledge of these networks is essential to develop 
and test strategies to mitigate and control the HAI spread. Until now, no methods for comparing 
healthcare networks across different systems were proposed. Based on healthcare insurance data 
from four German federal states (Bavaria, Lower Saxony, Saxony and Thuringia), we constructed 
hospital networks and compared them in a systematic approach regarding population, hospital 
characteristics, and patient transfer patterns. Direct patient transfers between hospitals had only a 
limited impact on HAI spread. Whereas, with low colonization clearance rates, readmissions to the 
same hospitals posed the biggest transmission risk of all inter-hospital transfers. We then generated 
hospital-community networks, in which patients either stay in communities or in hospitals. We found 
that network characteristics affect the final prevalence and the time to reach it. However, depending 
on the characteristics of the pathogen (colonization clearance rate and transmission rate or even the 
relationship between transmission rate in hospitals and in the community), the studied networks 
performed differently. The differences were not large, but justify further studies.

Healthcare-associated infections (HAIs) threaten individual patients’ health as well as healthcare systems world-
wide. Each year 3.1–4.6 million people acquire a HAI in acute care hospitals in European Union (EU) countries, 
Iceland, Norway, and the United Kingdom1. The emergence of HAIs not only increases morbidity and mortal-
ity, but also triggers psychological problems for patients as well as a financial burden for the healthcare system. 
Each year, more than 90,000 people die in EU countries, including Iceland, Norway, and the United Kingdom 
due to the six most common HAIs2. HAIs are the single most deadly and costly adverse event, representing up 
to 6% of public hospital budgets3, and nowadays HAI spreading is a universal public health threat at local and 
national scales.

In recent years, English, Dutch, as well as French national medical registration datasets have been used to 
construct “healthcare networks” to provide insights into patient transfer management, hospital infection preven-
tion and control. In these networks, nodes represented hospitals and edges between pairs of nodes represented 
patient transfers between the linked hospitals. The networks were used for simulating the spread of HAIs4–18, 
evaluating epidemic risks5,6,10–18, and recommending control strategies5,6,10–18. Patients’ and hospitals’ charac-
teristics, as well as patient transfer patterns, may differ in different regions of a country, leading to the different 
spread of pathogens11,14. These regional variations were not considered yet. Some recent studies focused on 
incomplete network data4 and modeling the epidemic spread4,5,11–18. Nevertheless, a comparison of healthcare 
networks from different regions or countries with heterogeneous patients’ and hospitals’ characteristics as well 
as patient transfer patterns, has not been done yet. Here, we fill this gap and present an analysis of different 
regions of Germany which with its federal structure might have more regional diversity, but our findings can be 
still informative for other settings.
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Results
The results address several aspects of the conducted research. First, the general properties of the datasets after the 
scale-up procedure are discussed. Then, properties of the network models of the regional healthcare networks, 
derived from the up-scaled datasets are considered. Finally simulation of dynamics of Klebsiella (as a model 
pathogen for HAI) spread is presented, which is the main result of this study.

Federal scaled‑up datasets
In the scaled-up datasets, the largest numbers of hospitals and hospitalized patients were in Bavaria, reflect-
ing the larger population. The average LOSs (length of stay) in hospitals were 9 days or longer, which perfectly 
matched the Germany-wide average LOS19. In Saxony and Thuringia, hospitals were on average larger and had 
longer patient stays than in the other two federal states. In contrast, the average numbers of hospitalizations per 
patient were close to each other (cf. Table 1).

To provide further information about the hospital and patient characteristics, we also presented the distri-
bution of hospital- and community-node sizes in Supplemental Fig. S5, in hospital groups defined by size in 
Supplemental Fig. S7, of admissions in different age groups in Supplemental Fig.S8, of LOSs in Supplemental 
Fig. S9, of the number of hospitalizations in Supplemental Fig. S10, as well as dependencies of corresponding 
community-node sizes on hospital-node sizes in Supplemental Fig. S6.

We found that Lower Saxony had the largest proportion of medium size hospitals, and the proportion of large 
hospitals was biggest in Saxony and Thuringia (see Supplemental Figs. S5 and S7). The sizes of community nodes 
were positively correlated to the sizes of hospital nodes (see Supplemental Fig. S5). The community nodes were 
much larger than the hospital nodes and the ratio was higher than 80:1 in the studied federal states. The patient 
age distributions were very similar in Bavaria and Lower Saxony, whereas Saxony and Thuringia had larger pro-
portions of older patients (see Fig. S8). Consequently, the proportion of long LOSs in Saxony and Thuringia was 
larger than in the other two federal states (see Fig. S9). However, the distributions of the number of hospitaliza-
tions per person did not show much difference across the federal states and nearly half of the patients (around 
45% ) had only been hospitalized once in six years (see Supplemental Fig.  S10). Fewer patients had been hospital-
ized twice (around 22.5% ), three times (around 12.5% ), four times (around 7.5% ) or more often (around 12.5%).

Properties of the hospital networks
First, we constructed the hospital network based on the original parameter settings for ESBL-Klebsiella, as 
introduced in “Network construction” of “Methods”. Through the hospital network, we can directly identify and 
assess the risk of transmission posed by the transfer of patients between hospitals. The effective edge weights are 
distributed similarly in these four federal states (see Supplemental Fig. S11), and the effective weights of more 
than 90% of edges were less than 0.5 patients per day. The distributions of in- and out-strengths were nearly the 
same, and both of them showed that the larger the hospital sizes, the higher the hospital network strengths (see 
Fig. 1 and Supplemental Fig. S12). Because for most hospitals the largest portion of the strengths was related 
to auto-transfers, auto-transfers triggered the largest risk of epidemic spread (see Fig. 1 and Supplemental Fig.  
S12). Generally, there were 62.3% auto-transfers in Saxony and Thuringia in total, whereas only 57.1% in total 
in Bavaria and Lower Saxony. Besides auto-transfers, hospital strengths originating from small hospitals were 
also relatively strong, whereas the strengths originating from large hospitals were the weakest (Fig. 1 and Sup-
plemental Fig. S12).

We also used the same basic hospital networks with varying the colonization clearing rate and thereby the 
effective edge weights, which led to different distributions of hospital in- and out-strengths. As shown in Fig. 2, 
Supplemental Figs. S12 and S13, we found that the average strengths originating from auto-transfers decreased 
more sharply with increasing colonization clearing rate than the strengths of other types of transfers.

Table 1.   Basic characteristics of hospitals and patient stays in three federal states for the scaled-up datasets. 
∗ We generated 100 different federal scaled-up dataset samples and calculated the statistics above for each 
federal scaled-up dataset. Then we computed empirical 95% confidence intervals (CIs) for each statistic. ∗∗
While we have data from two federal states provided by the AOK Plus, we cannot separate them in the dataset.

Federal States Bavaria Lower Saxony Saxony and Thuringia**

Time span (years) 2010–2015 2010–2015 2011–2016

Number of hospitals 357 211 126

Number of patients with at least one
hospitalization during six years (CI*)

7590768
([7396910, 7784625])

4287973
([4204486, 4371461])

3339086
([3272147, 3406025])

Average number of occupied beds
per hospital per day (CI*)

241.3
([234.8, 247.8])

223.2
([218.7, 227.7])

316.7
([310.0, 323.4])

Average length (days) of
hospital stays (CI*)

9.1
([9.1, 9.1])

9.1
([9.1, 9.1])

9.7
([9.7, 9.7])

Average time (days) between
two successive hospital stays (CI*)

255.6
([255.4, 255.8])

262.0
([261.8, 262.1])

242.9
([242.8, 243.0])

Average number of hospitalizations
per patient during six years (CI*)

2.7
([2.7, 2.7])

2.7
([2.6, 2.7])

2.7
([2.7, 2.7])
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Figure 1.   In-strengths for hospitals originating from auto-transfers and from transfers from different hospitals, 
categorized by hospital sizes L (large), M (medium), S (small), by federal states.
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Figure 2.   Distributions and density function of average in- and out-strengths of hospitals originating from 
auto-transfers and from hospitals categorized by hospital sizes (L, M, S) for varying colonization clearing rates γ 
in Bavaria.
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Spread of HAI within the hospital‑community network
In the baseline scenario (i.e. no community node transmission), the time for reaching the final states in indi-
vidual hospital and community nodes was highly heterogeneous (Fig. 3, Supplemental Fig. S15). In Saxony and 
Thuringia, 80% of the nodes reached the final state within 3000 days. However, in Bavaria and Lower Saxony, 
the hospitals took longer to reach their final states. The final prevalence in most hospitals was very low (ranging 
from 0 to 0.004) (see Fig. 3). High final prevalence (ranging from 0.3 to 0.65) appeared only in some of the small 
hospitals which were ranked higher than 60 in Bavaria and Lower Saxony as well as higher than 50 in Saxony 
and Thuringia (see Table 2; Fig. 3). To check whether hospital prevalence is correlated with hospital size, we 
calculated the Pearson correlation. The correlation was −0.15 in Bavaria, −0.13 in Lower Saxony and −0.08 in 
Saxony and Thuringia. We also calculated the Pearson correlation between the hospital prevalence and the LOS, 
resulting in 0.91 in Bavaria and Lower Saxony, and 0.73 in Saxony and Thuringia. This suggests that the higher 
prevalence may result from longer LOSs. Moreover, the prevalence fluctuated on different days of the week, likely 
due to the daily variation in patient transfer probabilities. In comparison to the healthcare networks in Bavaria 
and Lower Saxony, the hospital node prevalences in Saxony and Thuringia were lower.

The prevalence of ESBL-Klebsiella at the admission in all federal states showed a strong drop at the beginning, 
because we started the simulation with the same prevalence in each hospital, and actually this start prevalence 
is higher than the final prevalence in many large hospitals (Fig. 4). It is also due to the fact that the decline in 
many larger hospitals happened faster than the increase in a few small hospitals. After this drop, it increased 
sharply at the start of each simulation and then gradually reached the final states, which differed across the 
federal states. It took around 4200 days to reach the final states in Saxony and Thuringia, 6500 days in Bavaria, 
and 8400 days in Lower Saxony. Lower Saxony had the highest final hospital prevalence (around 1.12–1.27%), 
closely followed by Bavaria (around 0.94–1.07%), while Saxony and Thuringia had much lower final prevalence 
than the other two federal states (around 0.54–0.62%). The simulated final prevalences were close to the ESBL-
Klebsiella prevalences at admission which were measured in previous studies20–22, i.e. 0.85% , 0.66% , and 1.38% . 
Due to daily admission/discharge patterns, the prevalence in each federal state fluctuated more strongly in 
hospitals and weaker in community nodes.

In the next step, we varied the parameters for transmission rate inside hospitals βH , for colonization clearing 
rate γ , and for relative community transmission rate βC . We showed in Fig. 5 and Supplemental Fig. S16 that 
these parameters had different influences on the final prevalence in both hospital and community nodes. In case 
of βC

= 0 , the final prevalence in hospital nodes displayed strong variation across days of the weeks. In the case 
of βC > 0.1 · βH,transmission in the community nodes was decisive for final prevalence, which was shown as 
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Figure 3.   Prevalence at admission. The x-axis represents hospitals, ranked from largest to smallest (left to right) 
based on the average number of hospital beds that were occupied per day.
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the daily fluctuations disappeared and only very little difference between hospital and community prevalence 
existed. When βH increased, the final prevalence also increased whereas γ had a negative correlation with the 
final prevalence.

For βH
≤ 2 · 0.03 day−1 Lower Saxony had the highest prevalence, whereas the prevalence in Saxony and 

Thuringia was the lowest. When βH reached 2.5 · 0.03 day−1 Bavaria had the highest prevalence. For a higher 
βH , the prevalence in Saxony and Thuringia became the highest and the prevalence in Lower Saxony became the 
lowest. The final prevalence in all federal states was almost 0 in hospital nodes when γ reached 5 · 1

365 day−1 . For 
varying the relative community transmission rate βC

= ν · βH , the prevalence increased dramatically when βC 
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Figure 4.   Prevalence at admission to hospitals, evolving over time since the introduction of the pathogen, by 
the federal state; sections are enlarged to illustrate the weekly prevalence variations.
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ranged from βC
= 0.05 · βH to βC

= 0.25 · βH . Afterwards, the increase was slower. Nevertheless, the prevalence 
was almost the same in the studied federal states after βC reached 0.1 · βH.

Discussion
Based on health insurance data, we constructed hospital networks to study spread of HAI caused by patient 
transfers between hospitals. The edge weights, defined in “Network construction” of  “Methods”, can be regarded 
as the average epidemic risk in the most severe case caused by the patient transfers in this direction per day. In 
previous publications4,6,16, the edge weights were solely calculated as a sum of the number of patient transfers 
without differentiating the importance of each transfer and could not efficiently reflect the actual risks in those 
directions. However, the prevalence in different hospitals might be distinct due to heterogeneous inter- and intra-
hospital transfers23 as well as measures like hand hygiene etc. We found that differences in network structures 
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Figure 5.   Final average prevalence at admission in hospital nodes for varying transmission parameters in the 
studied federal states. The upper and lower bars indicate the spread between the highest and lowest prevalence 
in the weekly patterns. When there is no variation, the bars converge to a single line. βH and βC are the 
transmission rates in hospitals and in community nodes, respectively. γ is the colonization clearing rate.
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were correlated with epidemic outcomes: time to reach the final prevalence and the final prevalence itself in a 
rather complex way. The prevalence showed a substantially fluctuating pattern. The hospital prevalence was not 
correlated to the hospital sizes while the LOSs and the hospital prevalence were positively correlated. The final 
community node prevalence was about 10 times lower than the final hospital prevalence with around 0.09% in 
Lower Saxony, 0.08% in Bavaria, and 0.05% in Saxony and Thuringia.

Auto-transfers were the dominant risk factor for inter-hospital epidemic spread only when the colonization 
clearing rate was low. This might be due to the fact that while most of the patient transfers were auto-transfers, 
the time between hospitalizations in auto-transfers was longer than in other types of patient transfers, thus, 
after the colonization clearing rate reached a certain value, the other types of transfers contributed more to the 
pathogen spread.

We first used transmission parameters based on previous research for modeling ESBL-Klebsiella20–22 and 
assumed that the transmission of HAIs does not take place in the community nodes4,5,11–17. Therefore, patients 
who were hospitalized only once played no role in the epidemic spread. This lack of transmission in community 
nodes is a simplification, but for multi-resistant strains this appears a reasonable approximation. Once also other 
strains are modeled, transmission in the community can play a stronger role and effectively change the dynamics. 
We further varied the transmission parameters across a range of clinically relevant parameters for modeling the 
spread of various HAIs in healthcare systems. From Fig. 5 and Supplemental Fig. S16, the heterogeneous struc-
tures of the hospital-community networks in given federal states could be projected into the distinct final preva-
lence. Ignoring this, because Saxony and Thuringia had the longest average LOS and shortest average number 
of days between two hospitalizations (see Table 1, Supplemental Fig. S11), we would expect that the prevalence 
in Saxony and Thuringia would be the highest. However, this was not always true. For varying only the hospital 
transmission rates βH , when βH

≤ 2 · 0.03 day−1 , the final prevalence in Lower Saxony was the highest. Bavaria 
had the highest (among considered federal states) prevalence at βH

= 2.5 · 0.03 day−1 . The final prevalence in 
Saxony and Thuringia took the first place at βH

≥ 3 · 0.03 day−1 . With increasing colonization clearing rate γ , 
the final prevalence decreased gradually and when γ = 5 · 1

365 day−1 , the ESBL-Klebsiella almost died out. The 
final prevalence in different federal states was obviously distinct, when the transmission rate inside community 
nodes was relatively low compared to the transmission rate inside hospitals, i.e. βC

≤ 0.05 · βH.
The simulated final prevalence based on the initial parameter setup in the simulation was close to the hospital 

prevalence at admission observed in reality20–22. When βC got larger, the final prevalence in different federal 
states was close to each other, which indicated that the transmission within community nodes dominated the 
transmission in the whole system. We found out that even though the transmission rate in community nodes was 
10% of the transmission rate in hospital nodes, the hospital prevalence already reached 0.25 which was caused 
by the fact that the community nodes are much larger than their corresponding hospital nodes.

Our hospital-community based model relied on two assumptions that should be addressed. First, since 
our data do not include any detailed information about a patient’s residence, we developed community nodes 
for representing patient stays in real communities. These community nodes are just virtual representations of 
patients returning at some point to hospitals. We do not have information on people in the community, who 
do not visit hospitals (within the six years period). As long as we assume no infection transmission in the com-
munity, community nodes are just theoretical compartments. Once this assumption is changed, many things 
change. Real transmissions can only occur among persons with some level of physical proximity and can also 
occur in overlapping populations, i.e. when from the same population patients attend different hospitals. This can 
be particularly the case in urban communities served by multiple hospitals. Models accounting for this would 
require geographical resolution. Furthermore, contacts in community nodes can be diluted by the population 
not visiting hospitals. Depending on regional age distribution, this segment can vary and the same probability 
of transmission in the community can result in different prevalence at admission. Furthermore, we were not able 
to account for regional differences in the population coverage of the studied companies. For example, it could 
be that the coverage differs between larger cities, smaller cities, and the countryside.

Second, our model assumed homogeneous mixing within the hospitals as well as within community nodes 
and ignored the real ward structures as well as the community groups interacting with each other. Likely, this 
heterogeneity results in different transmission dynamics, but addressing this question would require a lot of 
additional data, not contained in the datasets used in this manuscript. In a different part of the project, we 
obtained data from single hospitals and conducted intra-hospital modeling23, but we were not able to generalize 
this to all hospitals. In addition, we did not consider other factors potentially influencing transmission besides 
hospital networks.

Furthermore, we did not account for seasonality. Seasonal variation was described for klebsiella24, likely there 
are also seasonal changes in the hospital transfers and thus in the network structure. Possibly these effects are 
not strong, but should be assessed in future studies.

In summary, our findings support that in the hospital networks studied here, the spread of multiresistant 
pathogens caused by patient transfers came mainly from auto-transfers, when the colonization clearing rate 
was low. The final prevalence differed across federal states due to the mixed effects of heterogeneous patient 
characteristics and the structures of constructed hospital-community networks. Assuming pathogen parameters 
of ESBL-Klebsiella, Saxony and Thuringia would have the lowest prevalence. However, for other HAIs with a 
higher hospital transmission rate, Saxony and Thuringia would have higher prevalence than the other two federal 
states. Thus, transmission parameters of the pathogen might determine which network organization performs 
better in reducing epidemic risk.
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Methods
Creating federal scaled‑up datasets
Due to the multitude of insurance companies in Germany25, we had to rely on datasets that do not cover the 
entire population. We used six-year anonymized hospital discharge databases, provided by three German regional 
insurance companies: AOK Bavaria (active in the federal state of Bavaria), AOK Lower Saxony (in Lower Saxony), 
and AOK PLUS (in Saxony and Thuringia). Since the dataset from AOK PLUS included patients from two federal 
states that could not be separated because of unknown hospital locations, three regions were compared, even if 
four federal states were included. AOKs (Allgemeine Ortskrankenkasse, historically “general local healthcare 
insurance company”, but currently only the abbreviation is used) are insurance companies, which historically 
exclusively insured persons from the federal states where they were founded. Therefore, they have high coverage 
of the population in their own federal state and low coverage outside. The data cleaning process, which ensures 
the unique assignment of patients to hospitals every single day, is described in our previous research4.

AOK-insured persons were divided into sex and age groups and compared to the general population in the 
corresponding federal state to obtain age- and sex-specific population coverage (see Supplemental Figs. S1–S3). 
According to our previous research4, the distribution of the length of hospital stay (LOS) varied between sex and 
age groups. The crude analysis of the AOK patient records can lead to an inaccurate estimation of LOS and patient 
transfer patterns, which would affect the simulation results of epidemic spread. Nevertheless, the population 
coverage of our AOK datasets is generally above 30% in each sex and age group, and the general patient transfer 
patterns can still be recovered as shown in4. To reduce the effect of a non-uniform sex and age distribution in 
the populations of the insurance companies, we reweighted their populations to fit the sex and age distribution 
of the respective federal states4. In brief, for each sex and age group, we randomly resampled patients from the 
same sex and age group in the AOK datasets to compensate for patients that were not insured by AOK. For each 
resampling, once the patient was chosen, his/her hospitalization records were duplicated and labeled as a new 
patient. The resampling procedure was repeated within each sex and age group until there was the same number 
of patients in the resampled dataset as there was in the corresponding total population of the federal state. We 
labeled these datasets as federal scaled-up datasets. We generated 100 different federal scaled-up datasets for each 
federal state and used them for all further analyses in corresponding federal states. More detailed information 
about the original AOK datasets can be also assessed in our previous analyses4,5,26,27.

Network construction
We used federal scaled-up datasets to build two networks to represent the patient transfer data. The first “hos-
pital network” was not used for detail modeling epidemic spread but only for reflecting the importance of each 
patient transfer path within a certain period. This network had N nodes and e directed weighted edges, where 
nodes represented the hospitals. An edge connecting node i to node j indicated the existence of patient transfers 

from the i-th to the j-th hospital, and its weight was defined as mij = ǫ =

∑
Lij
ǫ=1 e

−γ�tǫ

T  . Here, ǫ ∈

{

1, . . . , Lij
}

 
denoted each patient transfer from i-th to j-th node, and �tǫ was the duration of transfer ǫ between discharge 
from hospital i and admission to hospital j. The term e−γ�tǫ indicated the probability of a patient colonized with 
a HAI at discharge still carrying HAI at the next admission13,15. The parameter γ was the colonization clearing 
rate and T was the observation period determined by the data. Lij indicated the total number of transfers from 
i-th to j-th node during the time interval [1, T].

Initially, to model the spread of Extended-spectrum β lactamase-Producing Klebsiella pneumoniae (ESBL-
Klebsiella)20–22 and other common HAIs4,5,11–17,28, we set γ =

1
365 day

−1 based on the assumption that the mean-
time of colonization was 365 days in the baseline scenario. We also studied other patient transfer patterns for 
different values of γ with γ = ϑ ·

0.5
365 day

−1 , ϑ = 0, 1, 2, . . . , 300 for sensitivity analyses. Note that for γ = 0 , the 
edge weight represents the average number of transfers per day between considered hospitals; we defined this 
as total edge weights. The effective edge weight mij indicated the average number of colonized patients per day, 
which can transmit the disease from node i to node j. The effective edge weights can be viewed as a measure of 
average daily transmission risk from node i to node j. The total edge weights and effective edge weights differ for 
γ  = 0 , because some of the transfers may not lead to a transmission when the patient has cleared colonization 
before being readmitted. Weight mii described the situation of patients being readmitted to the same hospitals, 
and we defined these kinds of patient transfers as auto-transfers.

The second network was generated to simulate the patients’ residence outside hospitals, which we used for 
modeling the daily patient transfers and epidemic spread of the studied pathogen. We refer to it as a “hospital-
community network” (Fig. 6).

Since the anonymized AOK data did not contain any information about hospital locations and in order to 
track the patient staying at home between successive hospitalizations, for each hospital i we created a community-
node indexed by N + i , where N was the number of all considered hospitals4,28. However, in contrast to the previ-
ous approach28, we assumed the patients to be in the community-node N + i if their next hospitalization was at 
hospital i. After the last discharge, the patient was allocated to the corresponding community-node of the hos-
pital, where the last hospitalization had occurred. Since hospital admission and discharge patterns were hetero-
geneous on different days of the week (see Supplemental Fig. S4), we created separate hospital-community 
networks for each day of the week w ∈ {1, . . . , 7} , representing Monday to Sunday. In this network, edges rep-
resented all possible routes of patient transfers between the nodes (hospital- or community-nodes). They were 
weighted by pij(w) =

nij(w)

ai(w)
 with i  = j , describing the probability of a patient being transferred from node i to j 

on a day of the week w, where nij(w) with i  = j denoted the average number of transferred patients from node i 
to j on days of the week w, and ai(w) represented the average number of patients in node i on one day of the week 
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Figure 6.   Representation of hospital-community network on a day d concerning possible patient movements 
between two hospitals and corresponding communities. Panel (a) shows the admission of patients to the 
hospital from their corresponding community. Panel (b) shows that patient transfers can also happen between 
hospitals. Panel c shows that patients can be transferred from hospitals to communities. Links between nodes 
indicate all possible routes of patient transfers. Purple loops indicate the situations when patients stay in the 
hospital or community nodes.
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w, both calculated directly from federal scaled-up datasets. Similarly to the previous approach28, the probability 
of a patient staying in node i on one day of the week w can be calculated as p(w)ii = 1−

∑2N
j=1,j �=i p

(w)
ij  . The hospital-

community network on one day of the week w can also be simply presented by a transfer probability matrix 

P
(w)

:=

[

p
(w)
ij

]2N

i,j=1
 , with w = 1, . . . , 7.

Sizes of hospital nodes
Since healthcare facilities were anonymized, we did not have external information on their sizes. Thus, to estimate 
the sizes of considered hospital nodes, we counted the number of occupied beds in the federal scaled-up data in 
each facility each day, and then took the average over the facility’s opening period. Analogously, we also defined 
the sizes of corresponding community-nodes. To deliver a better overview of hospital properties, we can sum-
marize hospital properties by using three size groups: large (L), medium (M) and small (S) (see Table 2), based 
on definition used in previous research29.

Analysis of hospital networks
In the hospital networks, two types of transfers were observed: the first type—called auto-transfers—described 
the event that patients were readmitted to the same hospitals5,28; the second type described transfers between 
different hospitals.

For the hospital networks, effective edge weights reflected the transmission risk through patient transfers 
between hospitals. Thus, the risk of acquiring and spreading the infection in a hospital can be measured by sum-
ming the effective weights of its ingoing and outgoing edges, defined as in- and out-strengths, respectively. Since 
hospital size determined the capacity for patient admissions and patient transfers, we calculated the strengths of 
single hospitals and their connected hospital size groups, defined in Table 2. The in-strengths of hospital i can 
be caused by auto-transfers and transfers arising from hospitals in hospital group G, defined as si→i = mii and 
sG→i =

∑

j∈G∧j �=i mji , respectively. Similarly, the out-strength of hospital i can also be caused by auto-transfers 
si→i and transfers targeting to hospitals in hospital group G, defined as si→G =

∑

j∈G∧j �=i mij with G = L,M, S 
as defined above. To investigate the overall distribution of strengths, we also calculated the total in- and out-
strengths by summing the strengths of every hospital by distinguishing different transfer types.

Modeling HAI spread based on hospital‑community networks
We used the hospital-community networks described in “Network construction” to simulate the patient traffic 
and spread of the pathogen in the networks.

The main features of the proposed model were:

•	 Nodes in the network represented healthcare facilities and communities.
•	 The pathogen spread in the nodes was modeled using the standard SIS model.
•	 In the nodes, admissions, discharges and transfers occurred. They are assumed to happen instantly at the 

end of every day.
•	 Admissions, discharges, and transfers were the subject to day-to-day fluctuations depending on day of the 

week, which was accounted for in the model.

The rest of this section refers to the mathematical description of the model displaying these features. Let 
c0 :=

[

c1
0, . . . , c2N

0
]

 be the initial patient probability distribution in hospital-nodes (indexed from 1 to N) and 
community-nodes (indexed from N + 1 to 2N) at the end of day 1 (Monday) i.e. a vector with the coordinates 
from 1 to N storing the probability of a patient to be in a particular hospital (numbered from 1 to N), while the 
coordinates from N + 1 to 2N storing the probability of a patient to be in a particular community (numbered 
from N + 1 to 2N). The model operates on the probability distributions, i.e., on the ratios of the number of 
patients in each particular node compared to the total number of patients present in the system. Therefore 
instead of the absolute patient numbers, the sum of all elements of vector c0 is 1. Multiplying the patient prob-
ability distribution vector by the total number of patients in the system we can restore the numbers of patients 
in particular hospital or community nodes. The patient probability distribution at the end of day d, denoted 
as cd , is calculated by multiplying the patient probability distribution vector at the day before (i.e. cd−1 ) by the 
transfer probability matrix at day d (i.e. Pd):

cd := cd−1
P
d .

Table 2.   Distribution of hospitals based on size. ∗ Stratification criterion: average number of occupied beds.

Hospital size Large (L) Medium (M) Small (S)

Stratification criterion* ≥ 800 [400, 799] ≤ 399

Number of hospitals

Bavaria 19 34 304

Lower Saxony 5 31 175

Saxony and Thuringia 8 16 102
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We assumed that d = 1 represents Monday, d = 2 represents Tuesday and so on while d = 7 represents Sunday. 
We can repeat that calculation d times obtaining

Thus, function m, defines as m(d) = (d−(d mod 7))
7  , gives us the number of full weeks within the d days of simula-

tion. So the patient probability distribution at day d is given by

Clearly, if (d mod 7) = 0 , this means that we simulate multiple weeks, then the formula can be written as

where weekly transfer matrix P is defined as P := P
1
· . . . · P7.

To define the initial condition for our simulations, first we found the week-stationary patient probability 
distribution which indicates the expected long-term distribution of patient probabilities. To do so, we used 
weekly transfer matrix P and confirmed that it was regular. Next, we found the left eigenvector c⋆ of matrix P cor-
responding to eigenvalue 1 by solving system cP = c . Finally, we set c0 = c⋆ as the initial condition for our model.

We used ESBL-Klebsiella as an exemplary multiresistant pathogen and modeled the colonization of patients 
within nodes. We followed5,28 and adopted a susceptible–infectious–susceptible (SIS) ordinary differential equa-
tions model. We assumed that each node has one well-mixed and constant in time population consisting of 
N individuals that can be either susceptible (S) or infectious (I), thus I(d)+ S(d) = N  where d denotes time 
(counted in days). Here, patients colonized or infected were defined as “infectious”. Since the group of colonized 
patients is much larger than the group infected, we use the term colonized and infectious interchangeably. The 
transmission of the pathogen takes place as a result of the contact of susceptible and infectious individuals and 
is described by the term β I(d)

N S(d) , while the process of clearing colonization is modeled by the term γ I(d) . 
Thus, the system describing the daily change of the number of patients in each stage (susceptible and infectious) 
is given by:

Since I(d)+ S(d) = N , we have

which is the logistic equation30 with analytical solutions, which exist globally and are unique. We applied this SIS 
model to all hospital- and community-nodes. However, since we focus only on Klebsiella as an example of HAIs 
in our work, we assumed that the transmission rate in all community nodes βC was equal to zero in the baseline 
scenario. In contrast, the transmission rate in hospital nodes βH was set to βH

= β > 0.
All individuals (at the end of day d, for d ∈ N+ ) were assigned to one of two groups (susceptible or infec-

tious), thus vectors Id :=

[

I1
d , . . . , I2N

d
]

 , Sd :=

[

S1
d , . . . , S2N

d
]

 contain the number of patients of each group 
in each hospital and each community. The total number of patients at day d in each hospital and community as 
given by a vector

which can be rewritten as

Let n denote the total number of patients on the first day in the system. Then, since I0 + S0 = n · c0 , we 
have Nd

:= n · c0 · (P)m(d)
· P

1
· . . . · P(d mod 7) . If we start with the eigenvector c0 = c⋆ = c⋆P , then 

Nd
:= n · c⋆ · (P)m(d)

· P
1
· . . . · P(d mod 7).

Our algorithm was implemented in R and it is as follows: first, we set initial conditions I0 :=
[

I1
0, . . . , I2N

0
]

 , 
S0 :=

[

S1
0, . . . , S2N

0
]

 such that the number of individuals in nodes agreed with the distribution given by week-
stationary patient i.e. I0 + S0 = n ·

[

c1
0, . . . , c2N

0
]

 . Then for each node we solved the logistic equation (3) for 1 
day duration numerically (indicated as solveLogistic function), calculated numbers of susceptible patients and 
then transferred the obtained numbers of patients in each group in each node according to a given day matrix. 
We repeated that procedure for D days, as presented below:

cd = c0P1 · . . . · Pd .

cd := c0P1 · . . . · Pd = c0
(

P
1
· . . . · P7

)m(d)
· P

1
· . . . · P(d mod 7)

= c0(P)m(d)
· P

1
· . . . · P(d mod 7).

cd := c0
(

P
1
· . . . · P7

)m(d)
:= c0(P)m(d),

(1)
∂

∂d
I(d) = β

I(d)

N
S(d)− γ I(d),

(2)
∂

∂d
S(d) = −β

I(d)

N
S(d)+ γ I(d).

(3)∂

∂d
I(d) = −β

(I(d))2

N
+ (β − γ )I(d),

Nd
:=

(

S0 + I0
)

· (P1 · . . . · P7)m(d)
· P

1
· . . . · P(d mod 7)

= Sd + Id ,

Nd
:=

(

S0 + I0
)

· (P)m(d)
· P

1
· . . . · P(d mod 7).
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We set the simulation time-step as one day, and the colonization clearing rate and transmission rate did not 
vary between hospitals. For the initial conditions in our simulation, we adopted the week-stationary probability 
distribution of patients within the nodes and assigned the start prevalence as 0.005 in all hospital nodes and 
0.0005 in all community nodes. We chose D = 14,600 days for the simulation length. Here, if the prevalence gets 
into a stable periodicity, we say that the prevalence reaches the final state.

Parameters for modeling ESBL-Klebsiella were based on the literature20–22, i.e. βH
= 0.03 day−1 for transmis-

sion rate within hospitals and βC
= 0 for transmission inside community nodes, while the colonization clearing 

rate was identical in hospital and community nodes, set as γ =
1
365 day−1 . Apart from these default parameter 

settings, we varied the parameter values to study the behavior of our model. The βH and γ were varied by setting 
βH

= p · 0.03 day−1 and γ = q · 1
365 day−1 with p, q = 0.5, 1, . . . , 5.

In the literature it has been pointed out that several HAIs, for instance Methicillin-resistant Staphylo-
coccus aureus, can also be transmitted within communities31. With this concern, in addition to the original 
parameter settings, we varied the parameter for community transmission rate βC by setting βC

= ν · βH with 
ν = 0, 0.05, . . . , 0.5 . Since we here assumed that βC is proportional to βH , we named it “relative community 
transmission rate”. We have generated 100 different federal scaled-up datasets and obtained a probability matrix 
for each dataset. Then we conducted simulations by busing the average of these probability matrices.

Data availability
The anonymized insurance data are owned by a third party (AOK Lower Saxony) and authors do not have per-
mission to share them. These data may be requested from: AOK Bavaria, Carl-Wery- Straße 28, 81739 München, 
https://​www.​aok.​de/​pk/​bayern/; AOK Lower Saxony, Hildesheimer Straße 273, 30519 Hannover, https://​niede​
rsach​sen.​aok.​de/; AOK PLUS, Sternplatz 7, 01067 Dresden, https://​www.​aok.​de/​pk/​plus/. For further questions, 
please contact the corresponding author.

Code availability
The code for the data processing, data analyzing, and SIS simulations was written in R. To visualize the data we 
used the R package “ggplot2”32. For all analyses, we used R version 4.0.333. The original R codes are uploaded to 
GitHub under the URL: https://​github.​com/​Schro​eding​erKat​ze/​Emerg​eNetC​ompar​ison.
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