
INSTITUT FÜR INFORMATIONS- UND
KOMMUNIKATIONSTECHNIK (IIKT)

Implicit Sequence Learning in
Recurrent Neural Networks

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von

Dipl.-Ing. Stefan Glüge

geb. am 16.07.1982 in Magdeburg, Deutschland

genehmigt durch die

Fakultät für Elektrotechnik und Informationstechnik

der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof.Dr. rer. nat. Andreas Wendemuth

Prof.Dr. Günther Palm

Jun.-Prof. PD.Dr.-Ing. habil. Ayoub Al-Hamadi

Promotionskolloquium am 11.10.2013

ii

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die Hilfe eines
kommerziellen Promotionsberaters habe ich nicht in Anspruch genommen. Dritte haben
von mir weder unmittelbar noch mittelbar geldwerte Leistungen fr Arbeiten erhalten,
die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter Weise
zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadenser-
satzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafverfol-
gungsbehörden begründen kann.

Ich erkläre mich damit einverstanden, dass die Dissertation ggf. mit Mitteln der elek-
tronischen Datenverarbeitung auf Plagiate überprüft werden kann.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher
Form als Dissertation eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

Magdeburg, den 26.06.2013

Dipl.-Ing. Stefan Glüge

Stefan
FoxitMobilePDFSiㇿ

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich in den letzten
Jahren bei der Arbeit an meiner Dissertation unterstützt haben.

Den größten Anteil hat sicherlich Prof. Dr. Andreas Wendemuth, der mich wissen-
schaftlich betreut hat. Zusätzlich zu den Ideen und Anregungen bezüglich der wissen-
schaftlichen Fragen, hat er mit seiner offenen Art für ein Klima gesorgt, in dem man
gern arbeitet. Prof. Dr. Günther Palm danke ich vor allem für die Bereitschaft, trotz der
Bergen von Arbeit auf seinem Schreibtisch, meine Dissertation zu begutachten. Dasselbe
gilt für Prof. Dr. Ayoub Al-Hamadi, der sich ebenfalls bereit erklärt hat als Gutachter
zu fungieren.

Des Weiteren danke ich meinen Kollegen am Lehrstuhl für Kognitive Systeme an der
Otto-von-Guericke Universität. Besonders erwähnen möchte ich die tolle Zusammenar-
beit und die vielen interessanten Diskussionen und Projekte mit Ronald Böck.

Der Otto-von-Guericke Universität und dem Land Sachsen-Anhalt danke ich für die
finanzielle Unterstützung während der Promotion.

Letztendlich gilt mein liebster und innigster Dank meiner Frau Jule und meiner Fam-
ilie, die immer an mich glauben. Ohne ihre Unterstützung wäre diese Arbeit nicht
möglich gewesen.

iv

Abstract

This thesis investigates algorithmic models of implicit learning, and presents new meth-
ods and related experiments in this field.

Implicit learning is a common method of acquiring knowledge and therefore happens
in childhood development and in everyday life. It can be shortly defined as incidental
learning without awareness of the learned matter. As this is a highly desirable feature in
machine learning, it has many applications in computational neuroscience, engineering
applications and data analysis.

The first part of this thesis is focused on cognitive modelling of implicit sequence
learning as it was observed in behavioural experiments with human subjects. The ex-
perimental setup is known as conditional associative learning scenario. Insights gained
in this process are then used in the second part of this work. Here, the implicit learning
of sequential information by recurrent neural networks is investigated in the context of
machine learning.

For cognitive modelling a Markov model is used to analyse the explicit part of the
associative learning task which was given to the subjects. Thereafter, simple recurrent
networks are applied to model the implicit learning of temporal dependencies that oc-
curred in the experiments. Therefore, the development and storage of representations of
temporal context in the networks is further investigated.

Recurrent networks are a common tool in cognitive modelling, but even more an
important method in the machine learning domain. Whenever it comes to sequence
processing the capability of these networks is of great interest. One particular prob-
lem in that area of research is the learning of long-term dependencies, which can be
traced back to the problem of vanishing error gradients in gradient based learning. In
my thesis I investigate the capabilities of a hierarchical recurrent network architecture,
the Segmented-Memory Recurrent Neural Network, to circumvent this problem. The
architecture itself is inspired by the process of memorisation of long sequences observed
in humans. An extended version of a common learning algorithm adapted to this ar-
chitecture is introduced and compared to an existing one concerning computational
complexity and learning capability. Further, an unsupervised pre-training procedure for
the recurrent networks is introduced that is motivated by the research in the field of
deep learning.

The learning algorithm proposed in this thesis dramatically reduces the computational
complexity of the network training. This advantage is paid with a reduction of the time
span between inputs and outputs that my be bridged by the network. However, this loss
can be compensated by the application of a pre-training procedure.

In general, recurrent networks are of interest in cognitive modelling, but in fact, this
leads to their application in rather technical sequence classification and prediction tasks.
This work shows, how those networks learn task-irrelevant temporal dependencies implic-
itly, and presents progress which is made to make them applicable to machine learning
and information engineering problems.

v

Kurzfassung

Diese Arbeit untersucht algorithmische Modelle des impliziten Lernens und präsentiert
neue Methoden, sowie Experimente, auf diesem Feld.

Implizites Lernen ist ein Weg des Wissenserwerbs und passiert im alltäglichen Leben,
vor allem in der Kindheit. Es wird kurz als zufälliges Lernen, ohne Bewusstsein für das
Gelernte, definiert. Diese Eigenschaft ist auch für technische Systeme interessant und
findet unter anderem Anwendung in der Neuroinformatik, den Ingenieurswissenschaften
und im Bereich der Datenanalyse.

Der erste Teil dieser Arbeit befasst sich mit der kognitiven Modellierung von im-
plizitem Lernen von Sequenzen, wie es in einem Verhaltensexperiment mit Versuchsper-
sonen beobachtet wurde. Derartige Experimente werden in der Kognitionsbiologie zur
Untersuchung von konditionellem assoziativen Lernen genutzt. Die durch die Model-
lierung gewonnen Einsichten, werden im zweiten Teil der Arbeit weiter verwendet. Dort
wird, im Kontext des maschinellen Lernens, das implizite Lernen von Zeitabhängigkeiten
durch rekurrente neuronale Netze analysiert.

Um den expliziten Teil der assoziativen Lernaufgabe zu analysieren, wird ein Markov
Modell vorgeschlagen. Danach werden einfache rekurrente Netze (simple recurrent net-
works) genutzt, um den impliziten Teil des Lernens von Zeitabhängigkeiten, wie sie
im Experiment auftraten, zu modellieren. Hierzu wird vor allem die Entwicklung und
Speicherung von Repräsentationen des zeitlichen Kontextes in den Netzen untersucht.

Rekurrente Netze sind ein gutes Werkzeug für die Modellierung kognitiver Prozesse,
aber ein ebenso wichtiges Werkzeug im Bereich des maschinellen Lernens. Vor allem beim
Verarbeiten von Informationssequenzen sind die Eigenschaften dieser Netze von großem
Interesse. Ein bedeutendes Problem in dieser Domäne ist das Lernen von Langzeitab-
hängigkeiten, welches auf das Abnehmen der Fehlergradienten beim gradientenbasierten
Lernen (vanishing gradient problem) zurückgeführt werden kann. In meiner Arbeit unter-
suche ich, in wie weit ein hierarchisches rekurrentes Netz (Segmented-Memory Recurrent
Neural Network) das vanishing gradient problem umgehen kann. Die Netzarchitektur ist
inspiriert durch die Art und weise, wie sich Menschen längere Sequenzen merken. Für die
Architektur wird eine erweiterte Version eines bekannten Lernalgorithmus vorgeschlagen
(BPTT), und bezüglich des Rechenaufwandes und der Fähigkeit Langzeitabhängigkei-
ten zu lernen untersucht. Außerdem wird ein nicht überwachtes Vortraining beschrieben,
welches durch die Forschung im Bereich der tiefen neuronalen Netze (deep learning) in-
spiriert ist.

Der in dieser Arbeit vorgeschlagene Lernalgorithmus verringert den Rechenaufwand
für das Netzwerktraining erheblich. Die Zeitspanne zwischen Ein- und Ausgangssignalen
des Netzes, die überbrückt werden kann, ist jedoch kleiner als bei einem etablierten
Algorithmus. Dieser Nachteil kann weitestgehend durch das Vortraining kompensiert
werden.

Im Allgemeinen haben rekurrente Netze interessante Eigenschaft für kognitive Mod-
elle, aber im Speziellen werden diese oft in technischen Sequenzverarbeitungsaufgaben
angewandt. Diese Arbeit zeigt, wie die Netze zeitliche Zusammenhänge implizit lernen
und trägt dazu bei, sie für technische Anwendungen nutzbar zu machen.

vi

Contents

1 Introduction 1

2 State of the Art in Implicit Learning 7
2.1 Implicit Learning in Psychology . 8

2.1.1 Empirical Studies of Implicit Learning 8
2.1.2 The Empirical Problem . 11
2.1.3 Debates in Implicit Learning . 13
2.1.4 Recent Work in Implicit Learning 14

2.2 Implicit Learning in Cognitive Biology . 16
2.2.1 Sequence Learning and Temporal Context 16
2.2.2 Studies of Temporal Order Effects 17
2.2.3 Task Irrelevant Temporal Context in Conditional Associative Learn-

ing . 17
2.3 Computational Models of Implicit Learning 20
2.4 Connectionist Model of Implicit Learning 21
2.5 Supervised, Unsupervised and Reinforcement Learning 24
2.6 Sequence Learning as a Machine Learning Discipline 27
2.7 Discussion . 29

3 Computational Models of Conditional Associative Learning 31
3.1 Markov Model of Conditional Associative Learning 31

3.1.1 Markov Property and Markov Model 32
3.1.2 Behavioural Markov Model . 32
3.1.3 Analysis of the Markov Model . 39
3.1.4 Fit of Model Parameter to Subjects’ Data 41

3.2 Connectionist Model of Conditional Associative Learning 43
3.2.1 Reinforcement Learning in Neural Networks 43
3.2.2 Simulation on the Conditional Associative Learning Task 46
3.2.3 Summary of the Experiment . 52

3.3 Discussion of the Models . 52

4 Representation of Temporal Context in Simple Recurrent Networks 55
4.1 The 4-2-4 Encoder Simple Recurrent Network 56

4.1.1 Encoding Task . 56
4.1.2 Network Configuration . 57
4.1.3 Network Training . 58

4.2 Results of the Training . 60

vii

Contents

4.3 Results of the Testing . 64
4.4 Representation of Temporal Context . 65
4.5 Discussion . 69

5 Learning Long-Term Dependencies in Recurrent Neural Networks 71
5.1 The Vanishing Gradient Problem . 73
5.2 Segmented-Memory Recurrent Neural Network 74

5.2.1 Forward Processing in the Segmented-Memory Recurrent Neural
Network . 75

5.2.2 Effect of the Segmented Memory 77
5.3 Extension of Real-Time Recurrent Learning for Segmented-Memory Re-

current Neural Networks . 78
5.3.1 Extension of Real-Time Recurrent Learning 78
5.3.2 Computational Complexity of Extended Real-Time Recurrent Learn-

ing . 81
5.4 Extension of Backpropagation Through Time for Segmented-Memory Re-

current Neural Networks . 85
5.4.1 Extension of Backpropagation Through Time 85
5.4.2 Computational Complexity of Extended Backpropagation Through

Time . 88
5.5 Evaluation on the Information Latching Problem 91
5.6 Discussion . 94

6 Unsupervised Pre-Training for Segmented-Memory Recurrent Neural
Networks 95
6.1 Deep Neural Networks . 96
6.2 Auto-Encoder Pre-Training of Segmented-Memory Recurrent Neural Net-

works . 99
6.3 Pre-Trained Segmented-Memory Recurrent Neural Networks (SMRNNs)

on the Information Latching Problem . 101
6.3.1 Effect of the auto-encoder pre-training 103
6.3.2 Alternative Context Weight Initialisation 106

6.4 Discussion of the Pre-Training Procedure 110

7 Summary and Outlook 113

List of Acronyms 117

Bibliography 118

List of Authored Publications 131

viii

1 Introduction

F
rom our own experience we know that learning may happen unintentionally and
unconsciously: for instance, after learning how to ride a bicycle it is hard to
explain to somebody how to keep balance when riding it, nonetheless oneself

simply ‘knows’ how it works. Often the same issue arises when a native speaker shall
explain a certain phrase or statement to a non-native speaker. For the native speaker the
phrase just sounds right without having a detailed description why. Another example
is the ability to walk. Usually people learn it in the early childhood and just know
how to do it. It seems impossible to give instructions to somebody on ‘how to walk’.
Psychological research on this phenomenon can be subsumed under the term implicit
learning, and shortly defined as: incidental learning without awareness of the learnt
matter (Cleeremans, 1993).

The first half of this thesis deals with questions concerning implicit learning as they
arise form studies in experimental psychology and cognitive biology. I focus on implicit
sequence learning like it is observed in humans in the conditional associative learning
scenario. That is, subjects implicitly learn temporal dependencies even though they
are task-irrelevant. Simple recurrent networks turned out to be a good tool to model
such behaviour. After a discussion of modelling aspects I investigate the question, how
temporal context is represented in these kind of networks.

Based on the findings in the modelling of implicit learning in humans, the second
part of my work deals with recurrent networks in the context of machine learning. To
utilize their implicit learning capabilities for technical tasks two main problems have
to be solved. First, the problem of learning long-term dependencies, particularly the
vanishing gradient problem, has to be circumvented. Second, computational feasible
training methods have to be developed.

The first point is tackled by the usage of an enhanced network architecture, namely
Segmented-Memory Recurrent Neural Network. The architecture is inspired by the pro-
cess of memorisation of long sequences, as it is observed in humans. It is a stack of two
simple recurrent networks with a segmentation of the outputs of the first stage, before
it is processed further in the second stage.

Regarding the problem of the computational complexity of the network training I
introduce an extended version of a common algorithm adapted to this hierarchical net-
work architecture. It is compared to an established algorithm concerning its ability to
learn long-term dependencies on a benchmark problem. Further, I analytically derive
the computational complexity of both algorithms to study their usability for real world
applications, where considerably large networks might be used. Thereafter I apply a
layer-local unsupervised pre-training procedure prior to the actual supervised training
and evaluate it on the benchmark problem.

1

Chapter 1

Cognitive Modelling

The first part of my thesis deals with cognitive modelling of implicit learning. As this
discipline is rather uncommon in the engineering community, I want to motivate and
introduce the basic concepts. An extensive overview of the field of cognitive modelling
is given in the first chapter of Cooper (2002). I summarise the main points here to
establish a link to the topics covered in my thesis.

Cognitive modelling is the creation of computational models of (mostly) human cogni-
tion. The fundamental idea is that the development of computer models can further our
understanding of those processes by allowing us to evaluate computational mechanisms
that underlie behaviour. Therefore, a computer model in cognitive science is an abstract
representation of a cognitive process. The main use of such models is to simulate and
predict human behaviour.

The modern era of cognitive science dates back to the end of the 19th century. Early
attempts in empirical psychology were based on introspection. For instance, Ebbing-
haus et al. (1913) studied the processes of memory by learning lists of nonsense words.
Such studies soon were criticised as being subjective and non-scientific. This rejection
of introspection was accompanied by the rise of behaviourism which dominated the psy-
chology for the first half of the 20th century. Behaviourists argued for an objective study
of internal mental states by the claim that simple stimulus-response patterns explain all
kinds of behaviour.

Then, in the middle of the 20th century, it became accepted that stimulus-response
links alone could not explain the full range of human behaviours, for instance, language.
Instead, a new picture of cognition evolved that understood the mind as an information
processor and cognition as information processing. This view regards sensory processes,
such as vision or hearing, as input devices that convert environmental information into
internal representations. Mental processes manipulate and transform these representa-
tions, which in turn, may lead to a response.

During the last decades computer simulation techniques were adopted to evaluate
competing theories of cognitive processing on empirical phenomena. Such computational
modelling, and the simulation, is one of the distinguishing features of cognitive science.

As in any scientific domain, modelling provides a way of investigating the rules that
govern a complex system that yet is not understood. Further, the simulation is the basic
method of studying the model’s characteristics. In cognitive psychology three different
aspects of cognition are distinguished: behaviour, processes underlying behaviour, and
theories of those processes. A model generates behaviour according to an implemented
theory and simulates cognitive processes. By that, modelling serves an important role
in cognitive science.

While few theories within cognitive psychology are stated in a specific manner, mod-
elling forces precision, because it requires the theory to be computationally complete.
Thereby, a computational model can be an elegant expression of a theory in objective
terms. Compared to verbal or diagrammatic theory specification, a model, described in
a computer language, is not open to interpretation. In some cases the formal analysis

2

Introduction

of a model’s properties allows the derivation of consequences from theoretical assump-
tions, even without running a simulation. Further, modelling facilitates evaluation of
theoretical proposals and enables us to investigate the impact of changes in theoretical
assumptions on the model’s behaviour. Thus, it allows an evaluation and exploration of
a theory.

Even though modelling is motivated by these benefits it is not without difficulties.
They primarily arise from the need to make detailed assumptions about the representa-
tions and processing that are necessary to construct and run a model. Such details may
be hard to justify empirically and physically.

However, while those who practice cognitive modelling generally agree on the benefits
of this approach, they often disagree about the specific strategy. There are several
schools of cognitive modelling, and representatives of one are usually critics of another.
They differ in their assumptions about mental representation and the relation between
a cognitive model and the brain.

Connectionists argue that the neural tissues implementing information processing
mechanisms of the mind are the key to understand the brain’s work. In contrast, sym-
bolic cognitive models make the assumption that information processing can be described
by the manipulation of symbolic representations. Here the neural substrate is regraded
as an implementation of the representations, that is of secondary importance. Both
approaches to cognitive modelling share little, except the idea that the functioning of
the mind is computational describable and so may be simulated by a machine.

To complete the picture two more approaches to modelling shall be listed here: the
architectural approach and the dynamical approach. The former aims at the formulation
of a hypothesised organisation of the complete set of information processing structures
that comprise the mind. Then, models are developed along the lines of this theory.
The dynamical approach emphasises the mathematical nature of cognition. In its most
extreme form it denies the existence of mental representations. Instead, it claims that
mental processing my be described by differential equations. So the mental processing
does not involve solving equations, rather it involves responding to the mental equivalents
of forces.

Structure and Research Goals of the Thesis

As discussed above, cognitive modelling provides an approach to further our understand-
ing of cognitive processes in general. The first half of my thesis deals with the modelling
of one specific aspect of cognition, the implicit learning of sequential information, and
how this supports explicit learning. In particular, simple recurrent networks are applied
to model the implicit learning of temporal dependencies.

Such recurrent networks are a common tool in cognitive modelling, but further, of
interest in engineering applications. Therefore, the second half of my thesis is devoted
to the application of recurrent networks in the field of machine learning. There are two
main problems that are considered in this context. First, the problem of learning long-
term dependencies, and second, the computational complexity of the training algorithms.

So, the research goals of my thesis can be summarised as follows:

3

Chapter 1

• Establish a model of implicit learning as one particular process of human cognition
and thereby gain a deeper insight into this process.

• Simple recurrent networks are able to reproduce the effects of implicit sequence
learning in humans. The basic mechanisms of this ability shall be investigated.

• The ability of implicit learning in recurrent networks is used to solve rather tech-
nical sequence classification problems. Therefore, the effect of vanishing error
gradients has to be circumvented.

• Training algorithms that are computational feasible have to be developed.

The following chapters address the different goals and discuss in what respect they are
achieved:

Chapter 2 gives a short literature review on research of implicit learning. Therefore, the
concept itself, as it is defined in the field of psychology, is introduced. Further,
experimental studies, the role of implicit sequence learning, and the use of recur-
rent networks for modelling aspects are discussed. Subsequently, the conditional
associative learning scenario which is used in cognitive biology is introduced. This
scenario was developed to study especially the role of implicit learning of a task-
irrelevant temporal context. The chapter finishes with an explanatory description
of the main types of problems in machine learning, because it is of interest later
and shall be specified once. In particular the concepts of supervised, unsuper-
vised, and reinforcement learning are introduced. This is complemented with an
overview on sequence learning as it is perceived in the machine learning community.

Chapter 3 presents two different computational models of the processing in the condi-
tional associative learning scenario. Both models use different approaches to the
problem and account for different aspects of the learning situation. At first, a
Markov model is introduced that aims towards the explicit aspects of the learning
task. It requires a number of assumptions, but in turn, the analysis of the model
makes distinct predictions concerning the influence of model parameters. Those
parameters can be controlled by the experimental setup and therefore, may be
verified in the laboratory. A connectionist approach is introduced to address the
implicit learning of task-irrelevant temporal information in that scenario. A simple
recurrent network is simulated on the task. It shows qualitatively the same be-
haviour as the human subjects, which means that it is able to reproduce the effect
observed during the behavioural experiment.

Chapter 4 follows the finding that simple recurrent networks are able to reproduce the
effects of implicit sequence learning in humans. The focus is put on the investiga-
tion of the basic mechanisms of this ability of the networks. Using the example of a
simple encoding task, it shows how networks develop representations of implicitly
learnt temporal information. Therefore, the influence of the sequential input dur-
ing training and testing is examined and the networks are tested on various input

4

Introduction

sequences.

Chapter 5 turns the focus towards the applicability of recurrent networks in machine
learning tasks. The question is whether the ability of implicit learning in such net-
works can be used to solve certain sequence classification problems. As a matter
of fact, simple recurrent networks cannot be used right away. To explain why, I
reveal how the idea of a segmented memory helps to attenuate the effect of van-
ishing gradients that prevents simple recurrent networks from learning long-term
dependencies. Segmented-Memory Recurrent Neural Networks were proposed to
circumvent the problem of vanishing gradients. The established learning algorithm
for this architecture has a very high computational complexity. Therefore, I in-
troduce an alternative algorithm that significantly reduces the computational cost.
Concluding, both algorithms are evaluated on the information latching problem
concerning their capability of learning long-term dependencies.

Chapter 6 shows how to apply the idea of an unsupervised pre-training from the domain
of deep multilayer feed-forward networks to the training of Segmented-Memory
Recurrent Neural Networks. This improves the ability to learn long-term depen-
dencies with these networks and extends their area of application.

Chapter 7 summarises and highlights the main results of my thesis. Additionally, topics
that yet are not sufficiently examined and remain future work are suggested.

Before ending with the introductory part, I want to point out that the work presented
in the following evolved with the help and collaboration of my colleagues. As I am the
author, the term “I” is used throughout my thesis. Nevertheless, I do not claim that this
work has been done all by myself. The list of publications at the end of the thesis names
all the co-authors that contributed to my research. It simply could not be achieved
without their support.

5

6

2 State of the Art in Implicit Learning

Contents

2.1 Implicit Learning in Psychology 8

2.1.1 Empirical Studies of Implicit Learning 8

2.1.2 The Empirical Problem . 11

2.1.3 Debates in Implicit Learning 13

2.1.4 Recent Work in Implicit Learning 14

2.2 Implicit Learning in Cognitive Biology 16

2.2.1 Sequence Learning and Temporal Context 16

2.2.2 Studies of Temporal Order Effects 17

2.2.3 Task Irrelevant Temporal Context in Conditional Associative
Learning . 17

2.3 Computational Models of Implicit Learning 20

2.4 Connectionist Model of Implicit Learning 21

2.5 Supervised, Unsupervised and Reinforcement Learning . . . 24

2.6 Sequence Learning as a Machine Learning Discipline 27

2.7 Discussion . 29

T
his chapter gives a survey of the research on implicit learning from different
perspectives. After a short introduction, an overview on the implicit learning
literature is given. Thereafter, the ways implicit learning was studied are pre-

sented in more details. Finally, the motivation for a focus on implicit sequence learning
and connectionist models as proposed by Cleeremans (1993) is given.

The literature on implicit learning dates back to the 1960th, when Arthur S. Reber
(1967) explicitly used the term in an article. Today, there exists a large collection of
literature on the topic from analytic and applied psychology. Short reviews can be found
in Cleeremans et al. (1998), Shanks (2005) and Perruchet (2008). For a comprehensive
overview, amongst others, the works of Reber (1993); Underwood (1996); Berry (1997)
and Stadler & Frensch (1998) should be referred.

In biology, implicit learning is not regarded to be a phenomenon that occurs on its
own, but in connection with associative learning. It is often referred as context-dependent
learning. A short overview on the biological research according to context-dependent
learning and the special relevance of temporal context can be found in the first chapter
of Hamid (2011). As he states, context condition learning is also known as context
conditioning, occasion setting, model-based reversal learning, goal-directed behaviour

7

Chapter 2

and outcome re-valuation/devaluation. This shows that research on the topic is much
more scattered from the side of biology. One reason for this diversity may be the fact
that the biological research is focused on the explanation of phenomena on the physical
level, for instance, which brain regions are involved in learning of that kind. Therefore,
the experimental setup has to be very basic, such that measured signals can be linked
to the events that occur during the experiment. Further, ethical concerns often prohibit
the assignment of human subjects.

On the other hand, behaviour experiments in psychology are much more complex and
done with human subjects. The results are not used to explain processes on a physical
level, but to set up and form a theory of human cognition.

2.1 Implicit Learning in Psychology

The term implicit learning is typically used to characterize those situations where a
person learns about the structure of a fairly complex stimulus environment, without
necessarily intending to do so, and in such a way that the resulting knowledge is difficult
to express (Berry & Dienes, 1993). Or more generally, implicit learning is said to occur
when there is an increase in task performance without an accompanying increase in verbal
knowledge about how to carry out the task (Underwood, 1996). Frensch & Stadler (1998)
list as much as eleven definitions of implicit learning. They basically share the same core
ideas:

1. During the learning phase, learning happens incidentally without awareness.

2. The implicit learning results in implicit knowledge, as a form of abstract represen-
tations that cannot be verbalised.

Several studies prove that humans make decisions not rationally but based on implicit
knowledge. For instance, the statistician who is making a decision that violates bayesian
principles or a physician making inappropriate choices in a triage-type setting (Reber,
1993; Kahneman & Tversky, 1982). All this shows that implicit learning is a phenomenon
which is hard to define. Psychologists proposed a number of experimental designs to
study the implicit learning process. The most relevant shall be discussed shortly.

2.1.1 Empirical Studies of Implicit Learning

It is helpful to have a look on the methods that were used to study implicit learning in
order to gain a deeper understanding for the phenomenon. This section shall create a
feeling for the tasks that have been used to study implicit learning and outline the main
results. For a more comprehensive coverage of the empirical research see Reber (1993);
Berry (1994, 1997); Cleeremans (1993).

One has to name at least three paradigms that dominate the psychological literature
on implicit learning over the last decades. That is artificial grammar learning, con-
trol of complex systems, and sequential pattern acquisition. According to Cleeremans
et al. (1998), all of these tasks that were used to study implicit learning involve three
components:

8

State of the Art in Implicit Learning

1. A complex rule-governed environment to induce incidental learning conditions.

2. A measure to observe subjects’ ability to express acquired knowledge about the
environment through performance on the same or on a different task.

3. A measure of the amount of consciousness of the knowledge subjects have acquired.

Grammar Learning

Basically, Arthur S. Reber is regarded as the initiator of the research on implicit learning.
His Master’s thesis (Reber, 1965) and the article “Implicit learning of artificial grammar”
(Reber, 1967) was the starting point for a growing interest in learning without awareness.

In experiments, Reber showed that people become sensitive to the constraints of a
synthetic grammar. During the learning phase human subjects were shown series of
letters generated by a finite state grammar (cf. Figure 2.1). They were told to memorise
the letter strings and were not informed about the grammatical nature of the series. A
control group simply learnt random strings. In the recall phase subjects were informed
about the existence of an underlying grammar and asked to classify a new set of strings
being grammatical or not. The set consisted of half grammatical and half ungrammatical
samples (cf. Table 2.1).

Figure 2.1: Schematic state diagram of the grammar used by Reber (1967). Strings
are generated by entering the In node and moving from node to node until
the Out node is reached. Each transition produces the letter linked to the
connection between the nodes.

The main results of this study are: (i) subjects who had seen grammatical strings in
the learning phase performed significantly above chance level on the classification task,
and (ii) subjects were not able to explain how they made their decisions, or what the
rules of the underlying grammar might be.

9

Chapter 2

Table 2.1: Possible grammatical strings (left) and ungrammatical strings (right). Gram-
matical string are produced as described in Figure 2.1. Ungrammatical strings
are generated by switching at least one letter to another or adding/removing
letters to a grammatical string.

grammatical ungrammatical

TPPTS TPPTSS
V V PXXV S V XV V PXV S
TPTXV PS V TPTXV PS

As one can see, Reber’s experiments yield the core ideas of implicit learning. The
effect is very robust and was approved in several subsequent studies by several different
authors (Reber, 1976; Brooks, 1978; Dulany et al., 1984; Servan-Schreiber & Anderson,
1990; Berry, 1997).

Another issue in implicit learning research is knowledge transfer. Subjects are able
to transfer their (implicitly acquired) knowledge from one setting to another. In Reber
(1969) subjects memorized strings from a finite-state grammar and subsequently were
asked to memorize new strings which were generated either from the same grammar or
from a different one. Further, either the same set of letters was used or a different one.
It was found that subjects performed better on the second set of strings than on the first
when both sets where generate from the same grammar, even when the set of letters was
changed (Cleeremans, 1993).

Complex Process Control

A more complex scenario in empirical research of implicit learning is process control.
Berry & Broadbent (1984) investigated the relationship between subjects’ performance
on the actual learning task and explicit (verbalizable) knowledge. Subjects were asked
to control a computer program with the aim to reach and hold several output variables
while manipulating one or more input variables. The setting of the task was, for instance,
the control of a sugar production factory or a computer simulated person.

The results of these studies showed the same tendency as Rebers’ experiments. Prac-
tice on the task improved subjects’ performance significantly, but did not improve their
ability to answer questions on the task afterwards. Further, an instruction on the best
way to control the task had no effect on the performance. In other words, subjects were
unable to use the explicit knowledge (Cleeremans, 1993).

Again these results were approved in follow-up studies (Berry & Broadbent, 1987;
Berry, 1991; Stanley et al., 1989; Dienes & Fahey, 1995; Berry, 1997).

Sequential Pattern Acquisition

Sequence-learning tasks were found to be a useful paradigm to study implicit learning.
Basically, it is assumed that subjects’ responses reflect their sensitivity to the sequential

10

State of the Art in Implicit Learning

properties of the presented stimulus material. Therefore, the reaction time or prediction
accuracy is used to measure the acquired knowledge of the subjects. In general, the
sensitivity to temporal context is implicit, that is, not verbalizable. Sequence-learning
was studied in three different settings: probability-learning tasks, prediction tasks, and
serial reaction time tasks (Cleeremans, 1993).

Nissen & Bullemer (1987) introduced the serial reaction time task which was used
in many studies in a more or less modified form. The original setup used a light that
appeared on one of four positions on a monitor. Subjects should press the one key below
the position on the screen where the light appeared. Their reaction time was measured
and the sequence of lights was either random or repeated as 10-trail sequence. A sig-
nificant decrease of reaction time was measured in training with repeating sequences.
During random training no change in reaction times was observed. Most of the subjects
noticed the repeating sequences and some could describe parts of it. In a later study
Willingham et al. (1989) showed that many subjects performed procedural learning of
the sequences, without explicit knowledge of it (Berry, 1997).

Prediction tasks use the same idea as serial reaction time tasks. Here subjects are
required to predict the next stimulus. This may be a question of what the next stimulus
will be or where it will appear. Usually the percentage of correct predictions is measured.
As a result subjects’ prediction accuracies improve over training, while they remain
unable to specify the underlying rules of the sequence (Kushner et al., 1991; Cleeremans,
1993).

In probability-learning, subjects observe a series of events and then try to reproduce
it. Millward & Reber (1968, 1972) showed subjects a sequence of more than hundred
two-choice trails that contained increasingly remote contingencies. The sequences were
structured, such that certain events were dependent on earlier trails with increasing
temporal distance. Subjects learnt to encode the contingencies, as they showed a higher
likelihood to produce the contingent event on trails on which it was supposed to occur
(Cleeremans, 1993).

2.1.2 The Empirical Problem

The studies described above, as empirical studies on implicit learning in general, share
the same elementary problem. In any learning task, subjects’ performance arises most
likely from both: (i) explicit code-breaking strategies and (ii) the passive, unspecific
learning called implicit learning. This evident fact makes it hard, for instance, to find
unassailable arguments for or against a position concerning the question whether the
acquired knowledge is abstract or rather specific (cf. Section 2.1.3).

Following Cleeremans (1993), two factors influence the mixture of learning processes
in a particular task, namely regularity salience and task demands.

Regularity salience, original a multidimensional construct itself, can be considered
as stimulus associability. It represents the extent to which stimuli can be combined
and related to each other in meaningful ways. The higher the regularity salience, the
higher the chance that subjects use explicit problem-solving strategies. On the contrary,
subjects presumably use implicit learning strategies in tasks with low regularity salience.

11

Chapter 2

Figure 2.2: Illustration of different learning paradigms in regularity salience - task de-
mands space. Low regularity salience is reported in studies of complex se-
quence learning (Cleeremans & McClelland, 1991), grammar learning (Reber,
1967), and process control (Berry & Broadbent, 1984). Medium regularity
salience is assumed in simple sequence learning (Lewicki et al., 1988), gram-
mar learning (Reber et al., 1980), and process control (Berry & Broadbent,
1988). High regularity salience arises in elementary tasks (Seibel, 1963),
grammar learning (Reber et al., 1980), and problem solving (Newell, 1972).

Task demands stand for the complexity to encode stimulus and context, in which it
is presented, to perform the learning task. The higher the demands, the more likely
subjects use explicit learning strategies.

Figure 2.2 illustrates where different learning paradigms are located in this two dimen-
sional space. It is inspired by Table 1.1 in Cleeremans (1993). Here a coordinate system
instead of a table is used to emphasise the continuous character of the dimensions and
the fuzzyness of the positioning of the different learning scenarios.

Learning paradigms with low regularity salience and low task demands should be
positioned in the lower left part of Figure 2.2, for instance, sequence learning. In such
scenarios implicit learning most likely yields a high performance. The upper right area,
on the other hand, contains tasks with high demands and high regularity salience, for
instance, problem solving. In these tasks it is evident that explicit learning strategies
are better qualified to achieve success.

12

State of the Art in Implicit Learning

2.1.3 Debates in Implicit Learning

Even though a large number of empirical studies proofs the existence of implicit learning,
many claims made by researches in the field are still controversial. In Underwood (1996)
a review on three key issues is given, namely: (i) the degree to which the acquired
knowledge is really implicit, (ii) the form of appearance of the underlying representations,
and (iii) the degree to which the learning is unintentional.

The basic idea and claim of implicit learning is that it leads to knowledge which
subjects are not aware of. In many cases, the fact that they are not able to explain
their actions is used to proof this claim. The position against this “knowing without
awareness of the knowledge” is twofold. Researchers argue that the acquired knowledge
is actually explicit, for instance (Dulany et al., 1984; Perruchet & Pacteau, 1990; Shanks
& St. John, 1994). Further, it is argued that subjects become aware of the knowledge
after some time and/or in an incomplete form (Sanderson, 1989; Dienes et al., 1991).
Dulany et al. (1984) modified the recall phase of Reber’s grammar learning task. Besides
the classification of strings, subjects were asked to underline and/or cross out the crucial
parts of it that are ungrammatically. The underlining and crossing out should give an
indication of the explicit knowledge used for the decisions. It was found that the rules,
deduced from subjects’ marks of the key elements in the strings, were sufficient to explain
the performance on the classification task. This shows that classification in an artificial
grammar task should not be taken as a pure measure of implicit influences. Further,
the recognition on the other hand, cannot be assumed to reflect a complete index of
conscious knowledge (Cleeremans et al., 1998).

Even those researchers that argue for the idea of implicit knowledge, accept that at
least some explicit encoding occurs. For instance, Reber & Lewis (1977) report that
subjects with advanced practice on the grammar learning tasks are able to give a far
better verbal description of their knowledge than in previous studies. Nevertheless, they
highlight the existence of a considerable gap between classification performance and
verbal reports. In summary, it appears that the claim for implicit knowledge very much
depends on the criterion chosen to measure awareness (Cleeremans et al., 1998).

When it comes to modelling the discussion about the nature of the underlying repre-
sentations of knowledge arises. According to Cleeremans et al. (1998) early research in
that direction described implicit knowledge as abstract. It was based on the finding that
subjects are able to transfer their knowledge when asked to classify novel letter strings
in a grammar learning scenario (Reber, 1967, 1989, 1993). Likewise, it has often been
assumed that a decrease in reaction time in sequence-learning reflects a basic knowledge
about the underlying rules, which were used in the generation of the stimulus sequences
(Lewicki et al., 1987, 1988). The idea of abstract knowledge is unspecific regarding the
form of the knowledge, except that it somehow represents the structure of the stimuli and
their relationship. On the other hand, there is evidence that a non-abstract approach is
sufficient to explain observed transfer of knowledge. The performance of subjects in arti-
ficial grammar learning can be explained with the explicit knowledge of grammatical or
ungrammatical strings that are partly similar to those shown in the recall phase (Brooks,
1978; Brooks & Vokey, 1991; Vokey & Brooks, 1992). Perruchet & Pacteau (1990) argue

13

Chapter 2

that knowledge acquired in artificial grammar learning and sequence-learning tasks con-
sists of small fragments/chunks explicitly memorised during training. Hence, learning
and transfer performance depend on the amount of memorised chunks in the novel ma-
terial. This mechanism is incompatible to distributed memory models like connectionist
models proposed by Dienes (1992) and Cleeremans & McClelland (1991).

The third subject of discussion is the claim, that implicit learning is an automatic,
passive process (Reber, 1993; Berry & Dienes, 1991). Given the difficulty of assess-
ing awareness, researchers consider implicit learning as an automatic learning process
regardless of the type of resulting knowledge. Instead, the focus shifted on exploring
the influence of intention to learn, attention, stimulus complexity, and task demands
(Cleeremans et al., 1998). The term automatic implies several characteristics. Con-
cerning learning, automatic actions are: developed with extensive practice, performed
smoothly and efficiently, resistant to modifications, unaffected by other activities, initi-
ated without intention, and not under conscious control. Yet, there is no decision crite-
rion for categorising an activity as being automatic rather than volitional. To consider
implicit learning as effortless it has to happen, at least in parts, automatic (Underwood,
1996). At this point frequency detection has been proposed as an automatic process
that underlies implicit learning (Hasher & Zacks, 1984; Wattenmaker, 1993). In several
studies it was shown that our knowledge of the frequencies of events is learnt without
effort (Hasher & Zacks, 1979; Hintzman, 1969; Zacks et al., 1982).

The discussion above shows that implicit learning is a fundamental process in cog-
nition. Yet, the theoretical development in the field is insufficient to give a generally
accepted definition of features for implicit learning. Cleeremans et al. (1998) argue for
the need of a better understanding of the nature of consciousness and more sophisticated
empirical methods to explore implicit learning. Besides these rather psychological meth-
ods, computational modelling may help to shed light on the differences between direct
and indirect learning tasks. Further, the field could benefit from functional brain imag-
ing and neuropsychological data to understand the biological fundamentals of implicit
learning.

2.1.4 Recent Work in Implicit Learning

Of course, the research on implicit learning is still in progress. Thereby, the original
problem is divided into more and more partial aspects, which are investigated in detail
by different researchers. This work is only of limited interest for the purpose of my
thesis, but should shortly be listed to reveal the general trend during the last years.

One major point of interest is the question what people can or cannot learn without
awareness to the learnt matter. It is accepted that complex rules can be learnt (Halford
et al., 2005; Lewicki et al., 1992; Nissen & Bullemer, 1987), but these learning processes
are goal dependent and require some attention of the subjects (Dijksterhuis & Aarts,
2010). Generally, the load of attention does not influence learning. It is rather the
selective attention to crucial information that is needed in order to learn (Jimenez &
Mendez, 1999). Further, it was shown that implicit learning is influenced by goals. In
an experiment by Eitam et al. (2008) half of the participants were primed with the goal

14

State of the Art in Implicit Learning

to achieve, while the other half was not primed. They found that those participants who
were primed with achievement performed better than the others, which means, they
implicitly learnt more. Nevertheless, the ability to verbalize what they had learnt was
equally poor in both conditions (Dijksterhuis & Aarts, 2010).

Another research topic deals with the kind of material that can be learnt implicitly.
It is hypothesized that bidirectional structures, like associations, can be learnt auto-
matically, while predictive relations between events, like causal rules, require strategic
processing and awareness (Berry & Dienes, 1993; Sloman, 1996). Experiments of Alonso
et al. (2006) support this hypothesis. They found that the formation of bidirectional
associations can occur without awareness. For the formation of unidirectional relations,
that is, structures that capture a predictive relation between events, awareness was
needed (Dijksterhuis & Aarts, 2010).

Recent results, published in Custers & Aarts (2011), suggest that conscious awareness
is not the critical factor that determines how predictive relations are acquired. It rather
needs a process in which attention is directed outside of awareness by processing task-
relevant goals (Dijksterhuis & Aarts, 2010).

15

Chapter 2

2.2 Implicit Learning in Cognitive Biology

From a biological point of view, implicit learning is not a term that is loaded with such a
fixed meaning as in psychology, where the term itself rises the question for consciousness
and awareness. These questions fall in a rather philosophical category that can hardly
be approached by biological research. Instead, context-dependent learning, a form of
associative learning, is studied. Compared to implicit learning, as it is perceived in psy-
chology, context-dependent learning shares the idea that learning happens incidentally
triggered by the environmental conditions. The question whether this is an unconscious
process, and whether the resulting knowledge is verbalizable, is not considered.

Further, biological research is committed to provide explanations for cognitive pro-
cesses on a physical level. This, not least, includes to find the neural substrate1 that
underlies these specific behaviours. Hence, animal learning is a well established field of
study. It allows the investigation of learning processes in organisms of lower complex-
ity, according to the pure number of neural units and connections. Animal experiments
with, for instance rats, do not raise as many ethical concerns as experiments with human
subjects.

The Encyclopædia Britannica defines ‘associative learning’ as “any learning process in
which a new response becomes associated with a particular stimulus”. So, the term refers
to learning situations where two different events occur or happen together. ‘Context’
is defined as a “situation within which something exists or happens, and that can help
explain it”2. Applied to associative learning, context-dependent learning appears when
a stimulus triggers more than one response. In such situations the context, in which the
stimulus appears, determines the appropriate response. In animal learning, this may
happen under two conditions: (i) the relation between the context and the different
meanings of a stimulus should be well defined (Dickinson, 1980; Mackintosh, 1983), and
(ii) there should be enough opportunities (time/repetitions) for the context to become
associated with the meaning of a stimulus (Hall, 1994). Hence, the context acts very
much the same as an additional cue, and is often seen as just another stimulus (Fanselow,
1986; Kiernan et al., 1995; Hamid, 2011)

2.2.1 Sequence Learning and Temporal Context

The introduction of “Sequential Pattern Acquisition” and the discussion on “The Em-
pirical Problem” around Figure 2.2 in Section 2.1.1 already emphasised the role of se-
quential information in implicit learning. It can be subsumed under the assumption that
sequence-learning tasks most likely lead to implicit learning strategies.

In research on context-dependent learning, temporal information was also found to
be of great importance (Miyashita, 1988; Hamid et al., 2010). Here, ‘temporal context’
is “the amount of reward-relevant information provided by the temporal statistics of
an environment in terms of the conditional probability for an event to be preceded or

1Set of brain structures which may be widely separated anatomically but which interact to support or
drive a specific behaviour or psychological state.

2from Cambridge Advanced Learners Dictionary

16

State of the Art in Implicit Learning

followed by some other event” (Hamid, 2011). Further, it is assumed that incidental
learning of consistent sequence information represents a suitable strategy for learning
scenarios in which environmental cues may change. This assumption is in coincidence
with the idea that frequency detection is an automatic process which underlies implicit
learning (Hasher & Zacks, 1984; Wattenmaker, 1993) (cf. Section 2.1.3).

2.2.2 Studies of Temporal Order Effects

The role of temporal context in associative learning was investigated in animal experi-
ments and in studies with human subjects. Hamid (2011) gives a broader overview of
this research. I focus only on the main points here, as this is sufficient for the purpose
of my thesis. Typically, conditional associative tasks were used in the experiments. A
set of visual stimuli is mapped randomly onto a set of motor responses. Then subjects
learn by trail and error which response is correct (yields reward) in the case of each
stimulus. This means, subjects should learn to link each stimulus to a specific response
that ensures reward.

In non-human primates direct evidence for an effect of the temporal order on as-
sociative memory comes from electrophysiological recordings. Monkeys were trained to
determine whether a sample stimulus matches with a delayed test stimulus. It was found
that neurons in the inferior temporal cortex increase their firing rates during the delay
interval selectively for some of the visual stimuli (Miyashita & Chang, 1988). Further,
some neurons in the inferior temporal cortex develop a task-irrelevant selectivity for
successive pairs of stimuli when they are shown in a consistent order (Yakovlev et al.,
1998). Neuronal selectivity for pairs of different objects that are presented successively
was found in the same neurons (Sakai & Miyashita, 1991; Sakai et al., 1994)

For human subjects, behavioural results are consistent with the idea that tempo-
ral order shapes associative learning (Blumenfeld et al., 2006; Preminger et al., 2009).
For instance, humans lose the ability to distinguish two faces when viewing image se-
quences in which the face changes as the head rotates (Wallis & Bülthoff, 2001). The
correlated appearance over time leads the human observers to assign two different faces
to the same person. More generally, temporal order effects are known from psychological
experiments as described in Section 2.1.

2.2.3 Task Irrelevant Temporal Context in Conditional Associative
Learning

In this section a finer point is put to the experimental part within the conditional asso-
ciative learning scenario. It is crucial for an understanding of the computational models
introduced in the following Chapter of this thesis. The very details of the experiment can
be found in Hamid et al. (2010) and Hamid (2011). This also includes a Reinforcement
Learning (RL) model fitted to the data gathered in the experiment.

The investigation starts with the question, how temporal context affects the learning
of arbitrary visuo-motor associations. Human subjects learnt to associate one of four

17

Chapter 2

buttons (motor responses) to highly distinguishable fractal objects (visual stimuli). The
temporal context between objects was manipulated simply by the fact that some objects
were consistently preceded by specific other objects. For each object, one response was
set to be ‘correct’ while the remaining three were ‘incorrect’. The subjects’ task was to
learn the ‘correct’ response for each object by trial and error (cf. Figure 2.3).

Figure 2.3: Experimental design (schematic): Each trial comprises three phases: stimu-
lus presentation, motor response, and reinforcement. Firstly, a fractal object
appears, surrounded by four response options (grey discs). Secondly, the
subject reacts by pressing the key that corresponds to one response option
(outlined disk). Thirdly, a colour change of the chosen option provides rein-
forcement (green if correct, red if incorrect) (Hamid et al., 2010).

It was made clear that no pattern or system exists that predicts the required response
for a particular object based on its appearance. Further, the sequence in which objects
are shown was not mentioned or referred.

Behavioural data was gathered in five experimental sessions. Each session provided
the subjects with a different kind of temporal relation between the fractal objects. In
the first experiment, sequences of eight objects were divided in two classes, either deter-
ministic or random. In the deterministic case, the eight objects were repeatedly shown
in the same order. By that, preceding objects were just as predictive about the ‘correct’
response in the current trail as the current object. The random sequence guaranteed that
each object followed every other object with equal probability, with the constraint that
an object is not immediately repeated. Thus, preceding objects provided almost no in-
formation about the ‘correct’ response in the current trail. Subjects quickly understood
the existence and nature of the two types of sequences, even though the instructions had
been silent on this point. The behavioural data displayed in Figure 2.4, shows that the
temporal context significantly accelerates the conditional associative learning. Those
objects that were presented in a deterministic order were learnt significantly faster than
those which were presented in a random order. This result was approved in all five
experiments.

18

State of the Art in Implicit Learning

5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

cycle

deterministic sequence

random sequence

Figure 2.4: Learning curve of human subjects in conditional associative learning. In
every cycle eight fractal objects were shown in either deterministic or random
order. The mean probability of success P is averaged over 10 subjects for
every cycle. The correct association for the objects were learnt faster when
they were shown in a deterministic sequence than in a random sequence.

At this point I would like to emphasise the irrelevance of the temporal context for the
solution of the association task. Each fractal object had exactly one ‘correctly’ associated
button. The association is specific for each object and independent of all other preceding
and subsequent objects. This property makes the learning scenario different from implicit
learning task like grammar learning (Reber, 1967) or sequence prediction tasks (Kushner
et al., 1991), where the sequential information of letters/stimuli directly contribute to
the solution of the task (cf. Section 2.1.1).

One can divide the conditional associative learning task presented here in two subtasks:

1. A task irrelevant sequence learning part with low regularity salience and low task
demands. This part is likely to be learnt implicitly (cf. Section 2.1.1 and Fig-
ure 2.2).

2. An associative learning part with high regularity salience and low, medium or high
task demands, dependent on the number of objects to be associated. This rather
explicit task covers, and is supported by, the first one.

The first task is comparable to serial reaction time tasks as used in Cleeremans (1993)
and Reed & Johnson (1994) to study implicit learning. At the same time, the second
task clearly makes a different to these serial reaction tests. Therefore, the conditional
associative learning task seems to be suited to study how the implicit learning of temporal
information may support the rather explicit learning of stimulus - response associations.

19

Chapter 2

2.3 Computational Models of Implicit Learning

Following Cleeremans et al. (1998), computational models of all three learning paradigms
in implicit learning have been proposed (Cleeremans, 1993; Servan-Schreiber & Ander-
son, 1990; Dienes & Fahey, 1995; Gibson et al., 1997; Dienes, 1992). Figure 2.5 shows
different modelling approaches applied to the artificial grammar learning task.

Figure 2.5: Illustration of computational models to artificial grammar learning after
Cleeremans et al. (1998). Each approach assumes different mechanisms in
processing and memorization of the strings.

Basically, one can distinguish neural networks, and fragment-based models. The latter
one assumes a continuous process of chunk/fragment creation and application. While
no model can claim generality, both share central properties:

• Learning is based on elementary association or memorization processes, which are
highly sensitive to statistical features of the training data.

• Learning is incremental and continuous.

• Learning generates distributed knowledge from the processing of training examples.

• Learning is unsupervised.

These properties of the models let implicit learning appear as a form of priming. The
experience during training continuously shapes memory, while stored traces, in turn,
continuously influence further processing. Such priming is far away from the ideas of
passive and automatic acquisition of abstract knowledge as discussed in Section 2.1.3.
Further, it is dependent on the complexity of the task and the degree of similarity
between learning and transfer conditions (Whittlesea & Dorken, 1993; Whittlesea &
Wright, 1997).

Both, fragment-based and neural-network models, explain how statistical properties
of an environment can be learnt from the processing of training examples. They differ
in the question, whether features of the training material are represented explicitly or

20

State of the Art in Implicit Learning

rather computed when needed. Thus, it appears that the knowledge acquired in implicit
learning is rather somewhere between explicit exemplar-based representations and gen-
eral abstract representations. This characteristic is especially well represented in neural
networks.

2.4 Connectionist Model of Implicit Learning

After the rather broad view on computational models I will now concentrate upon con-
nectionist models of implicit learning. As described above, learning typically proceeds
through some form of strengthening of the most task-relevant representations that have
developed through exposure to the material (Cleeremans, 1993). Especially artificial
neural networks incorporate these mechanism, and further have there origin at biologi-
cal foundations.

Neural networks constitute a class of powerful but simple learning algorithms (Rumel-
hart & McClelland, 1986). Learning in neural networks is based on the development of
task-relevant representations of the stimulus material. Further, associations between
these representations to some desired network responses are established. The adapta-
tion of relevant connections3 as a function of the task constitutes the actual learning
process. This may be error-driven, or units compete to respond to input patterns with-
out external feedback.

Simple Recurrent Networks

The usage of Simple Recurrent Networks (SRNs) to model human behaviour in implicit
learning tasks was firstly proposed by Servan-Schreiber et al. (1989). A comprehensive
discussion on the motivation for their use can be found in Cleeremans (1993).

Early models of sequence processing used all cues of a sequence in parallel, that is, the
complete sequence was processed in one piece. Therefore, one needed the assumption
that the sequence of relevant elements is of a fixed length, cf. (Fanty, 1986; Sejnowski
& Rosenberg, 1987; Hanson & Kegl, 1987). Typically, these models used a set of input
units for every event presented at time t to t + n, with n denoting the fixed length of
the time interval (Cleeremans, 1993). This approach is often referred as moving window
or sliding window.

Elman (1988, 1990) was the first who described the connectionist architecture of SRNs,
which are also known as Elman Networks. In his work the network architecture showed
its potential to process sequential material on a simple temporal version of the XOR
problem. Further, he showed that it is able to discover the syntactic and semantic
features of words. Recurrent connections to a context layer provide the network with
a dynamic memory. The usage of such recurrent links was firstly proposed by Jordan
(1986).

In contrast to the sliding window approach, the processing in SRNs is local in time in
the sense that the elements of the sequence are processed at the time of their appearance.

3may be interpreted as smallest “knowledge unit”

21

Chapter 2

It does not need the assumption of a fixed time window of relevant information. Further
and equally important, SRNs are able to learn an internal representation of the input
sequence. The recurrent network architecture proposed by Jordan (1986) is already able
to learn how to use the succession of internal states, but cannot learn an encoding of the
sequential information.

Processing in Simple Recurrent Networks

Standard Feed-Forward Networks (FFNs) are able to develop internal representations of
the input pattern in their hidden units. These internal representations are then used to
produce the correct output assigned to some input (cf. Figure 2.6a). If such a network
has more than one hidden layer, it is referred to as a Multilayer Feed-Forward Network.

The structures of a FFN and an SRN differ in one substantial point. Besides the
hidden layer, a so called context layer is introduced. This layer stores the internal state
of the hidden layer at the present time t. At the next time step t+1, this internal state
is fed back to the hidden layer (cf. Figure 2.6b). This simple addition has a huge effect
on the processing in the network. As the context layer remembers the previous internal
state and provides this information to the hidden layer, the hidden units get a broader
task. In an SRN the external input and the previous internal state have to be mapped
to the desired output. The hidden–context layer pair must find a representation of
some input pattern and, at the same time, find a reasonable encoding for the sequential
structure of these representations. Therefore, Elman (1990) concludes: “..., the internal
representations that develop are sensitive to temporal context; the effect of time is
implicit in these internal states.”

Cleeremans (1993) view of SRNs behaving as finite-state automata helps to gain a
better understanding of the processing in the network. Generally, finite-state automata
are able to do some form of sequence processing based on previous inputs. Minsky (1967)
defined the finite-state automaton by:

h(t+ 1) = G(h(t), i(t)), (2.1)

o(t+ 1) = F (h(t+ 1)). (2.2)

This definition says that the internal state of the automaton h at time t+1 is a function
G of its previous state h(t) and the previous input i(t). The output o at time t+ 1 is a
function F of its current internal state h(t+ 1).

In an SRN, the internal state hsrn(t) (activation at the hidden layer) is a function of
the previous internal state hsrn(t−1) (stored in the context layer) and the current input
isrn(t). Further, the activation at the output layer osrn is a function of the new internal
state:

hsrn(t) = G(hsrn(t− 1), isrn(t)), (2.3)

osrn(t) = F (hsrn(t)). (2.4)

The similarity between Equations (2.1),(2.2) and Equations (2.3),(2.4) is obvious. There
is a difference in the point of time when the input effects the output. While the input

22

State of the Art in Implicit Learning

Hidden layer

Input layer

Output layer

(a) FFN

Hidden layer Context layer

Context

information

Copy

Input layer

Output layer

(b) SRN

Figure 2.6: Feed-Forward Network (FFN) (a) and Simple Recurrent Network (SRN) (b).
Each box represents a network layer (set of units), and each forward arrow
represents trainable connections form each unit in the lower layer to all units
in the upper layer. The backward arrow in the SRN denotes a copy operation.
This is achieved by connecting every single unit in the hidden layer to one
corresponding unit in the context layer. This recurrent connections are not
trainable.

of the finite-state automaton has an effect on the successive output, the input to a SRN
is processed directly and influences the output at the same time.

Servan-Schreiber et al. (1991) could show that SRNs are able to learn to mimic finite-
state automata in their behaviour and their state representations. Further, it could be
shown that it is possible to hard-wire a linear SRN to behave like an update graph, which
is another way to represent a finite-state automaton (Mozer & Bachrach, 1991). The
contrast between discrete states in traditional automata and the “graded nature of rep-
resentations” in a neural network motivated Servan-Schreiber et al. (1991) to constitute
a new class of automata called Graded State Machines. SRNs and similar architectures
fall into this class of automata.

23

Chapter 2

2.5 Supervised, Unsupervised and Reinforcement Learning

Yet, this Chapter dealt with the term implicit learning in the context of cognitive science.
However, if it comes to the computational modelling of learning, we have to consider the
knowledge that emerged in the rather technical field of artificial intelligence research.
The two research branches cannot, and should not, be treated separately as they share
fundamental principles and often use the same methods. For the purpose of my thesis I
introduce the three main types of learning problems as they are defined in the field of
Machine Learning, namely: supervised, unsupervised, and reinforcement learning. They
shall be specified once as foundation for the discussion in later chapters, where the focus
turns towards the applicability of recurrent networks in machine learning tasks.

Neural networks are able to cope with all of these problems, depending on the task at
hand. In each of these problem areas learning algorithms were proposed and applied to
all kinds of technical tasks. A complete discussion of this matter is beyond the scope of
this section. I give only an overview on each type of problem to provide a basis for the
characterisation of tasks that might appear. Further, I will address these issues again,
when they have some bearing on the questions being considered in later Chapters.

Supervised learning

In supervised learning the task is to learn a function between input objects and their
corresponding target objects. The data set consists of pairs of training examples {X,T}.
Each pair is made up from an input vector xi ∈ X and target vector ti ∈ T . The target
to a certain input is called supervisory signal or teacher signal. If the aim is to assign
each input to one of a finite number of discrete categories, the task is a classification
problem (cf. Figure 2.7b). If the target consists of one or more continuous variables, the
task is called regression (cf. Figure 2.7a) (Bishop, 2006).

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t

x

(a) Regression task: target data t shown as red
dots plotted against the input value x. The
blue curve shows the function sin (2πx) which
underlies the data. The task is to predict the
value of t given x.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x2

x1

(b) Classification task: the input values x1,x2

have to be matched to one of two classes,
figured as red and green dots. In the exam-
ple the classes are linearly separable by the
straight line x2 = 0.9x1 + 0.2.

Figure 2.7: Examples for a simple regression (a) and classification task (b)

24

State of the Art in Implicit Learning

The function between input and target that is found by some learning algorithm, should
provide a correct output for any valid input. Therefore, the algorithm has to generalise
from the training data to unseen input values.

Supervised learning has parallels to concept learning. It is studied in human and
animal psychology. Bruner et al. (1967) define concept learning as “the search for and
listing of attributes that can be used to distinguish exemplars from non exemplars of
various categories”, which is very similar to a classification task.

Unsupervised learning

The problem in unsupervised learning is to find an underlying structure in unlabeled
data. The training data consists only of a set of input values X. No target data is
given, such that a possible solution cannot be evaluated. Typical unsupervised learning
task are: (i) clustering, where the goal is to find groups of similar examples in the
data (cf. Figure 2.8), (ii) density estimation, where the distribution of the data in the
input space shall be determined, and (iii) visualisation, where high dimensional data is
projected down on two or three dimensions for the purpose of illustration.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x2

x1

Figure 2.8: Clustering task: the input values x1,x2 have to be grouped in clusters, fig-
ured as red, green, and blue dots. The dashed lines show possible boarders
between the three clusters. Input pairs in a cluster are more similar to each
other (in some sense) than to inputs in a different cluster. The fundamental
difference to the classification task in Figure 2.7b is that the labels (red,
green, blue) are not given, but have to be determined.

Reinforcement Learning

Inspired by behaviourist psychology, the technique of Reinforcement Learning (RL) (Sut-
ton & Barto, 1998) describes a class of machine learning methods that allow an agent to

25

Chapter 2

learn how to act in its environment based on a scalar reward signal r. The actions a an
agent takes may change the state s of the environment, while the observations o inform
the agent about the current state. Which actions the agent takes in which situation is
described by the policy π. Based on the reward, the agent shall learn an optimal policy,
that is to “behave” in an optimal way in its environment (cf. Figure 2.9).

Figure 2.9: Illustration of the Reinforcement Learning situation

In contrast to supervised learning, in reinforcement learning no examples of optimal
outputs (here optimal actions) are available, instead they have to be discovered by the
agent by trial and error. The reward signals only whether a state is “desirable” or not.
It does not provide any information which actions should have been taken to achieve
a “desired” state. Usually, a RL learning algorithm interacts with the environment
and produces a sequence of states and actions that is evaluated regarding a policy that
maximises the reward. Often an evaluation of the current reward to an action is not
sufficient, as the action taken may also influence the reward of all subsequent actions.
In that cases the objective is to learn a policy that maximises the long-term reward.
Concerning the error signal, RL can be located between supervised learning, which gives
a complete target value to every training input, and unsupervised learning, which does
not provide any target at all.

26

State of the Art in Implicit Learning

2.6 Sequence Learning as a Machine Learning Discipline

From the discussion above (cf. Sections 2.1 and 2.2) we saw that sequences play an
important role in implicit learning, but also in human skill learning in general (Sun
et al., 2001), high-level problem solving and reasoning (Anderson, 1995). Therefore,
it is reasonable to address sequence learning also in the field of intelligent systems as
a component in machine learning. Sun & Giles (2001) wrote one of the most cited
articles in this context. In their tutorial they summarize the state of the art techniques,
approaches, and paradigms of that time. Even though the algorithms and techniques
developed further, the problem formulation and basic sequence learning approaches are
still up to date. Those concepts shall be introduced in the following to put the work
presented in Chapters 5 and 6 into a broader context. The following summary is given
along the lines of Sun & Giles (2001).

In general, the sequence learning problem can be subdivided in three categories. If s
denote the elements and N denotes the length of a sequence they can be formulated as
follows:

• Sequence classification/recognition – determine if a sequence satisfies some criteria.
st−N , st−(N−1), . . . , st → yes/no, that is, given st−N , st−(N−1), . . . , st we want to
determine whether this sequence belongs to a predefined class and/or satisfies a
certain criterion.

• Sequence prediction – predict future element(s) of a sequence on the basis of
prior elements of the sequence. st−N , st−(N−1), . . . , st → st+1, that is, given
st−N , st−(N−1), . . . , st we want to predict st+1. If N is the total length we make pre-
dictions based on all the previously seen elements. If we set N = 1 the prediction
is only based on the actual element of the sequence.

• Sequential decision making – select a sequence of actions to accomplish a given goal.
st−N , st−(N−1), . . . , st;G → at, . . . , at + j, that is, given sequence st−N , st−(N−1)

, . . . , st and goal G, we want to chose a series of actions at, . . . , at + j that leads to
this goal. The goal itself may be a goal state, a goal trajectory or a reinforcement-
maximizing goal.

More specific problems in sequence learning can be derived from these basic categories,
for instance, the segmentation of sequences for a compact representation (Nevill-Manning
& Witten, 1997) or to learn to deal with temporal dependencies (Mccallum, 1996; Sun
& Sessions, 2000). Further, the formulation of hierarchies of sequential segmentation
during learning to facilitate the learning process is a research topic itself (Sun & Giles,
2001).

The most prominent approaches to sequence learning are Hidden Markov Models
(HMMs), recurrent neural networks and the temporal-difference method within the RL
framework. As we saw in Section 2.4 recurrent networks use hidden units as memory,
where a representation of the previously experienced sequence evolves. Such networks
are suitable for sequence classification and prediction tasks. I come back to this point
in Chapter 5 where a special network architecture is introduced for this purpose.

27

Chapter 2

HMMs learn underlying state transition probability distributions from which observed
data can be generated. Therefore, they are suited for sequence generation (Baum, 1972).
Further, HMMs can be applied to sequence classification by the computation of the
probabilities to generate a certain sequence from the underlying models.

The temporal-difference method (Sutton & Barto, 1998; Wendemuth, 2007) can be
applied to the problem of sequential decision making. It is a RL technique based on
an evaluation function which generates a “measure of goodness” for the current state.
This measure is called action value. Accordingly, the method selects an action on the
basis of the evaluation function leading to a new state and a reinforcement signal. Then
the action policy is updated based on the reward and action value, that is, increase
or decrease the probability to chose the action again in this situation. If the policy
and evaluation function is merged in on single function this method is called Q-learning
Q(x, a), where x is the current state and a is an action (Sun & Giles, 2001).

Many approaches exist where different learning techniques are combined to form hy-
brid models. For instance using SRNs to learn a RL policy (Bakker, 2004), or train an
SRN with a RL signal (cf. Section 3.2.1).

One significant issue in sequence learning remains the learning of temporal depen-
dencies. This occurs when a sequence element or the class of a sequence depends on
what has happened before or even on what has happened a long time ago. For dynamic
systems in general it is hard to deal with long-term dependencies (Bengio et al., 1994).
I put a finer point on this issue in Chapters 5 and 6.

28

State of the Art in Implicit Learning

2.7 Discussion

In this chapter the concept of implicit learning was introduced as ‘incidental learning
resulting in knowledge which cannot be verbalised’. First of all, implicit learning was
investigated empirically in psychology. The most prominent results from studies with
grammar learning, complex process control, and sequential pattern acquisition were
outlined to gain a deeper understanding for the phenomenon. This was enhanced by a
discussion of the problems that arise in empirical research and the general debates in
the psychology community concerning the nature of implicit learning.

Then implicit learning was reviewed from the point of view of cognitive biology, where
the term itself is not as established as in psychology. Here researchers rather talk about
context-dependent learning, which shares the idea with implicit learning that it happens
incidentally, triggered by the environmental conditions. Especially temporal context,
that is, the role of sequential information, was found to be of great importance in that
field. Several behavioural studies with non-human primates and human subjects sup-
port this assumption. Further, it is in coincidence with the idea from psychology that
frequency detection is a process that underlies implicit learning.

In particular a behavioural experiment using the conditional associative learning sce-
nario was highlighted. It is the basis for the computational models that are introduced
in the next chapter. Basically, it investigates the question how task-irrelevant tempo-
ral context affects the learning of arbitrary visuo-motor associations in humans. The
task can be divided in two subtasks, an implicit sequence learning part and an explicit
associative learning part.

Subsequently, different models of implicit learning were introduced. While non of them
can claim generality, they share central properties that are especially well incorporated
in artificial neural networks. This motivated the use of SRNs in cognitive modelling
of implicit learning, firstly proposed by Servan-Schreiber et al. (1989). As those net-
works are of special interest in this thesis the general idea, as compared to feed-forward
networks, and the processing in SRNs was introduced in detail.

Thereafter a short definition of three problem types in machine learning was given,
that is, supervised, unsupervised, and reinforcement learning. They are introduced as
foundation for the discussion in later chapters. The major approaches and paradigms in
the field of sequence learning were outlined for the same reason.

In the next chapter the conditional associative learning scenario is regarded as a rein-
forcement learning problem. However, the interest in this behavioural experiment arises
from its roots in cognitive biology. Therefore, the intention is first of all the formu-
lation of a computational model to gain an understanding for the cognitive processes
underlying the observed behaviour.

29

30

3 Computational Models of Conditional
Associative Learning

Contents

3.1 Markov Model of Conditional Associative Learning 31

3.1.1 Markov Property and Markov Model 32

3.1.2 Behavioural Markov Model . 32

3.1.3 Analysis of the Markov Model 39

3.1.4 Fit of Model Parameter to Subjects’ Data 41

3.2 Connectionist Model of Conditional Associative Learning . . 43

3.2.1 Reinforcement Learning in Neural Networks 43

3.2.2 Simulation on the Conditional Associative Learning Task . . . 46

3.2.3 Summary of the Experiment 52

3.3 Discussion of the Models . 52

I
n the following I introduce two fundamental different computational models for con-
ditional associative learning. Based on the learning scenario established in Hamid
et al. (2010) (cf. Section 2.2.3) a Markov model is introduced. It gives the chance

to an analysis of the explicit associative learning task. To capture the implicit learning
of task-irrelevant temporal context in that scenario, a connectionist model is proposed.
Finally both models are compared to each other and to the RL model introduced by
Hamid et al. (2010).

The models I present in this chapter may be regarded as accepted in the corresponding
scientific community. They are separately published. The Markov model as chapter in
the “Lecture Notes in Computer Science” – Volume 6686 (Glüge et al., 2011b) and the
connectionist model as article in the journal “Cognitive Computation” (Glüge et al.,
2010)1.

3.1 Markov Model of Conditional Associative Learning

Before I give a detailed description of the model, I would like to highlight the fact that
this model only represents the explicit part of the task presented in Section 2.2.3. It
refers to the learning of the ‘correct’ response by trial and error for each presented object

1Parts of the text in the Sections 3.1 and 3.2 are taken verbatim from these publications.

31

Chapter 3

as it is illustrated in Figure 2.3. The implicit part of learning the temporal order in which
objects are presented is not captured by the Markov model. Nevertheless, it provides
the opportunity to analyse the explicit learning task and judge the influence of model
parameters that can be controlled by the experimental setup.

3.1.1 Markov Property and Markov Model

The Markov property describes a special kind of random process. It says that knowledge
about the limited history of the process is sufficient to predict the future development of
the process as if one would know the entire history. For instance, in a first order Markov
process the next state depends only on the current state and not on the past. In a second
order Markov process the next state depends on the current and the previous state, etc.

A Markov model is based on a stochastic process which assumes the Markov property.
Figure 3.1 illustrates such model consisting of three states. In its simplest form, the
system states are modelled as random variables that evolve over time. In this case, the
Markov property guarantees that the actual distribution of the state variables depends
only on the previous distribution of state variables.

s1 s2 s3

0.1

0.4

0.60.9

0.5

0.5

Figure 3.1: Markov graph of transition probabilities between states s1,...,3

3.1.2 Behavioural Markov Model

Along the line of the underlying learning task, as it is described in Section 2.2.3, the
focus lies on three events which effect the subjects’ performance. Those are:

• Subjects may not remember whether the last trial on an object was successful or
not.

• If subjects remember the current object, they might not remember which actions
they chose in the previous trials.

• It might be hard to clearly distinguish various fractal objects of one another which
leads to confusion of objects.

The effects of confusing objects, memorising previous actions, and memorising success
for objects are represented by separate parameters of the model.

32

Computational Models of Conditional Associative Learning

At first, the state space for the learning process of a single object is defined. The
history of that learning process is accumulated in the state of the model. To narrow
down the possibilities of state transitions it is reasonable to assume a rational policy
in choosing the action on a certain object. This is: (i) once the successful button was
found, this choice is repeated in later trials, and (ii) these choices which so far have
not been successful are not taken again. The remaining options are chosen with equal
probability.

Based on this policy the Markov model for associative learning of the motor response
for an object is set up. It consists of 16 states (S = {s1, s2, . . . , s16}). Each state
represents one possible situation a subject might face during learning. At the beginning,
the subject has no clue which button to take (s1). For each possible decision we define
four states (s2, . . . , s5). After the first choice the subject has three possibilities left,
which lead to the next states and so on. Table 3.1 shows all possible situations/states.
The last state s16 represents success. In this state the subject found the correct button
and memorised it.

Table 3.1: Possible states during associative learning of one object by trial and error.
‘x’ implies ‘chosen and memorised to be wrong’ and
‘.’ implies ‘not chosen yet’.

state s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

left . x . . . x x x . . . x x x . success
right . . x . . x . . x x . x x . x success
up . . . x . . x . x . x x . x x success
down x . . x . x x . x x x success

Given the state space of the model, transition probabilities define the way through
it. It is summarised in the state transition matrix T. The general structure of the
matrix comprises the behaviour of a subject during learning. At this point a parameter
is introduce, which allows the model to make a mistake in recognition of success (Re-
inforcement - green/red disk, cf. Figure 2.3). If the system indicates that the chosen
button was correct, the subject might memorise the event. On the other hand, it may
simply forget this event in the following. This uncertainty is represented by the success
recall probability psuc indicating the chance a subject memorises a success. Hence, psuc
is the probability to get into the success state (s16) if the correct button was pressed.
The ideal case denotes psuc = 1. A lower psuc lowers the ability of the model to recall a

33

Chapter 3

success. With this parameter the transition matrix takes the form

Tleft =

0 1−psuc
4

1

4

1

4

1

4
0 0 0 0 0 0 0 0 0 0 psuc

4

0 0 0 0 0 1

3

1

3

1

3
0 0 0 0 0 0 0 0

0 0 0 0 0 1−psuc
3

0 0 1

3

1

3
0 0 0 0 0 psuc

3

0 0 0 0 0 0 1−psuc
3

0 1

3
0 1

3
0 0 0 0 psuc

3

0 0 0 0 0 0 0 1−psuc
3

0 1

3

1

3
0 0 0 0 psuc

3

0 0 0 0 0 0 0 0 0 0 0 1

2

1

2
0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

2
0 1

2
0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

2

1

2
0 0

0 0 0 0 0 0 0 0 0 0 0 1−psuc
2

0 0 1

2

psuc
2

0 0 0 0 0 0 0 0 0 0 0 0 1−psuc
2

0 1

2

psuc
2

0 0 0 0 0 0 0 0 0 0 0 0 0 1−psuc
2

1

2

psuc
2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

. (3.1)

Equation 3.1 shows the transition matrix in the case that the button ‘left’ is correct
for the concerning object. For the three other cases the matrix looks slightly different,
but the general structure is the same. If psuc < 1 a correct choice may be erroneously
considered as unsuccessful and therefore, not be chosen again. This leads to a case where
all four choices have been taken and all are recognised to be ‘incorrect’. In that situation
the model will reveal that something went wrong and start over, meaning going back to
state s1 (highlighted rows 12, 13, and 14 in Tleft).

The graphical representation of the model is shown in Figure 3.2 with the proposed
state space (Table 3.1) and the transition matrix Tleft.

34

Computational Models of Conditional Associative Learning

s2

s3

1/4

Start

Success

s1

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

1/4

1/4

1/3

1/3

1/3

1/3

1/3

psuc/4

(1-psuc)/4

(1-psuc)/3

psuc/3

(1-psuc)/3

1/3

1/3

psuc/3 (1-psuc)/3

psuc/3

1/3

1/3

1/2

1/2

1/2

1/2

1/2

1/2

1/2

(1-psuc)/2

psuc/2

1/2

(1-psuc)/2

psuc/2

1/2

(1-psuc)/2

psuc/2

1

1

1

1

1

Figure 3.2: Markov model for the associative learning of an object with the probability
to memorise success psuc, which is the probability to get into the success
state (s16) if the correct button ‘left’ was pressed (red arrows). Otherwise,
the correct button is memorised to be wrong (dashed arrows) leading to cases
where all four choices have been taken and all are recognised to be ‘incorrect’
(s12,s13,s14). Further, the nth column of states represents the models options
in the nth trail.

35

Chapter 3

History of Choices and Objects: Besides the possibility to be unsure about success
or failure, subjects might not remember which actions they chose in previous trials at
all. This shall be captured by a parameter in the model. The history of actions is
encoded in the model’s state. This means, the probability to remember the current
state directly represents a subject’s ability to remember its previous actions on an object.
Therefore, psr is defined as state recall probability, which implies that 1−psr represents the
probability to confuse the current state with all other possible states. The success state
s16 should not be confused. Thus psr is located between an ideal learner (psr = 1) and a
total confused one (psr = 1/15). The state confusion matrix C holds these probabilities,
where the element Cij is the probability of assigning state si to sj. In Equation 3.2
the model’s attention is uniformly distributed over all states. For an ideal learner C
becomes the identity matrix.

C =

psr
1−psr
14

1−psr
14 · · · 1−psr

14 0
1−psr
14 psr

1−psr
14 · · · 1−psr

14 0
...

. . .
...

...
1−psr
14 · · · 1−psr

14 psr
1−psr
14 0

1−psr
14 · · · 1−psr

14
1−psr
14 psr 0

0 · · · 0 0 0 1

(3.2)

Finally, subjects may confuse objects amongst each other. This is described by a third
parameter in the model. The object recall probability por is the model’s chance to re-
member the current object. In reverse, 1− por is the probability to confuse the current
object with all other possible objects. A series containing eight different objects leads to
1/8 ≤ por ≤ 1. In that way, por = 1 represents a perfect recall of objects and por = 1/8
describes a learner without any memory for objects. It is summarised in the object con-
fusion matrix O with Oij being the probability of assigning object i to object j. Again,
the attention is uniformly distributed over all objects and, as above, in case of an ideal
learner O becomes the identity matrix.

O =

por
1−por

7
1−por

7 · · · 1−por
7

1−por
7 por

1−por
7 · · · 1−por

7
...

. . .
...

1−por
7 · · · 1−por

7 por
1−por

7
1−por

7 · · · 1−por
7

1−por
7 por

(3.3)

Learning Process in the Model: With the defined state space and transition proba-
bilities the learning process for every single object can be described. For each object the
model performs a trial by selection of a button following the state transition matrix. As
this is not a deterministic process one has to calculate the probabilities to be in a certain
state π = P (si) for all si ∈ S. Always starting in state s1, the initial state distribution
π(t = 0) is π1(t = 0) = 1 and π2,...,16(t = 0) = 0. For every trial the new state probabil-
ity vector π(t+ 1) results from the product of the transposed transition matrix T and

36

Computational Models of Conditional Associative Learning

the previous state probability vector π(t). Since uncertainty about previous actions is
allowed the state confusion matrix gets part of the product

π(t+ 1) = TT ·C · π(t). (3.4)

To gain the total success probability, the probability of success of the actual and previous
trial has to be summed up. So, if ‘left’ is considered to be the correct button, state s15
automatically leads to success (s16) in the next trial (cf. Table 3.1 and Equation 3.1).
Thus, this sum becomes π15(t+ 1) = π15(t) + π16(t) for that case.

Yet, the state probabilities are calculated for each object separately, or in other words,
the learning processes was described for a single object so far. For a series of l objects,
it is represented by the state probability vectors πl for each object. The combination of
these separate learning processes into one single learning process for a series of objects
contains the possibility of object confusion. Therefore, the state probabilities for all
objects have to be updated, even if just one is really shown to the subject. This implies
that the probability of success on a presented object is the weighted sum of the success
states of all objects with their probability of appearance. A series of eight objects
l = 1, . . . , 8 yields the probability of success Pk for object k

Pk(t) =

8∑

l=1

Okl · πl
16(t) k ∈ {1, . . . , 8}. (3.5)

So, Pk is the final probability the model picks the correct button if object k is shown. Be-
fore the next learning step, the state probability vectors of all objects πl(t) are weighted
with the probability to confuse the current object k with object l

π
l
update = Oklπ

l + (1−Okl)π
l, with l = 1, . . . , 8 and k ∈ {1, . . . , 8} . (3.6)

Equation 3.6 ensures that all state probability vectors are updated, even if just object k
is shown. This is due to the fact that object k might be confused with all other objects.
In case of a perfect recall of objects this step does not change the state probability
vectors since Okl = 0 if k 6= l and Okl = 1 if k = l.

Figure 3.3 shows the processing in the model. Briefly summarised, for every single
object one learning process through 16 possible states is modelled. The state space is
given by the experimental set up and the state transitions are given by the assumed policy
a subject follows. Further, three parameters control typical mistakes that might occur
during trial and error learning. These parameters are: (i) the success recall probability
psuc giving the chance to confuse ‘success’ and ‘failure’, (ii) the state recall probability psr
representing the model’s ability to remember its previous actions on an object, and (iii)
the object recall probability por, indicating the chance to remember the current object
in a later trial.

37

Chapter 3

π - state probabilities

knowledge about previous actions

T - state transition matrix / rational decision

series of objects

P - probaility of success

C - state confusion matrix

O - object confusion matrix

Figure 3.3: Processing of the Markov model. Learning of a single object is modelled
by transitions between 16 states. Three parameters control typical mistakes
that occur during associative learning: psuc success recall probability, psr
state recall probability, and por object recall probability.

Figure 3.4 shows the learning curves of the model for each object in a series of eight.
In this simulation eight objects are shown to the model. The objects are presented for
ten cycles. That is, every single object is shown once per cycle, which results in 10 trials
on every object and 80 trials in total. In case of a deterministic order the objects are
presented in the same succession in every cycle. For the random case the succession of
the objects is randomised in every cycle.

As one can see, the model behaves similar for deterministic and random ordered
sequences. It treats every single object the same, regardless of its predecessors, or in
other words, regardless of its temporal context. The advantage of such basic Markov
model is the possibility to an analytic view on the learning process. The following
analysis is limited on the explicit associative learning task on a single object, which is
described above until Equation 3.4.

38

Computational Models of Conditional Associative Learning

8 16 24 32 40 48 56 64 72
0

0.2

0.4

0.6

0.8

1

P

trial
8 16 24 32 40 48 56 64 72

0

0.2

0.4

0.6

0.8

1

P

trial

Figure 3.4: Markov model learning a series of eight objects: deterministic order (left)
and random order (right). Every line shows the probability of success P
(cf. Eq. 3.5) for the concerning object. Model parameters were psuc = psr =
por = 0.9.

3.1.3 Analysis of the Markov Model

The steady state and convergence of the Markov model illustrate the correlation of the
parameters psuc and psr. Additionally, it shows their influence during learning. No
further finding on the role of the parameter por is gained by this analysis since the
parameter influences the learning process for a series of objects, but not the learning of
a single object.

The steady state has its relevance in the asymptotic character of the state probability
vector π(t) for t → ∞. Translated to the original learning situation it describes a subject
that is shown the same object an infinite amount of times. For convenience, the short
cut TT · C = A is used in the following (cf. Equation 3.4). Repetitive replacement of
π(t+ 1) by A · π(t) in Equation 3.4 gives the steady state:

πstat = lim
t→∞

At
π(0) =̂ πstat = Aπstat , (3.7)

leading to the linear system of equations

πjstat =
∑

i

Aijπistat , i, j ∈ S. (3.8)

With the analytic solution for the steady state (Equation 3.8) the final state probability
vector of the Markov chain can be calculated. The closed solution was found with a
computer algebra system. The final probability of success π16stat depends only on the
parameter psuc and psr in a fraction which numerator is a sixth-degree polynomial of psr
and second-degree of psuc. The denominator is a fourth-degree polynomial of psr and first
order for psuc. The structure of the whole term does not provide any extra information.
Nevertheless, it represents the probability of success on the explicit task of associating
one object with the rewarded choice, if the object is shown in an infinite loop. So, π16stat

39

Chapter 3

is the upper limit for the performance of the model and can be calculated solely based
on the parameters psuc and psr.

Figure 3.5 shows π16stat for variable psuc and psr. The impact of psr is much greater than
psuc. If psr < 1 than psuc only slightly affects π16stat. Therefore, one can conclude that
the probability a subject remembers the learning history on an object (psr) is primarily
responsible for the long-term development of the success probability.

0.2

0.4

0.6

0.8

1
0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

π16stat

psuc
psr

Figure 3.5: Upper limit of success probability π16stat depending on psuc and psr.

The convergence of the learning process is also affected by the parameters. The
matrix A = TT ·C has five non-zero eigenvalues whereas λ1 is dominant and λ2,...,5 take
the form

λ1 = 1

λ2 =
1
28(12 − 12psuc)

1

4 · (15psr − 1)

λ3 = − 1
28(12− 12psuc)

1

4 · (15psr − 1)

λ4 = I 1
28(12 − 12psuc)

1

4 · (15psr − 1)

λ5 = −I 1
28 (12− 12psuc)

1

4 · (15psr − 1).

(3.9)

For reasonable combinations of psuc, psr follows

|λ2,...,5| < 1 if
1

15
≤ psuc, psr ≤ 1. (3.10)

The state probability vector π can be written in terms of its orthogonal basis

π =

16∑

i=1

〈π,ei〉
|ei|2

ei, (3.11)

40

Computational Models of Conditional Associative Learning

such that Equation 3.7 at time t is

π(t) = At
π(0) =

16∑

i=1

〈π(0),ei〉
|ei|2

At
ei, (3.12)

which is by the definition of the eigenvalues

π(t) =
16∑

i=1

〈π(0),ei〉
|ei|2

λt
iei. (3.13)

Since λi is taken to the power of t the contribution of the eigenvalues λ2,...,5 to the
sum in Equation 3.13 is lowered with every step (|λ2,...,5| < 1). The smaller they are,
the faster they disappear in the sum and the faster the sum converges to the steady
state. Figure 3.6 shows |λ2,...,5| against the parameters psuc and psr. The impact of
psuc is stronger than those of psr. A moderate psr but a small psuc gives |λ2,...,5| > 0.5,
which leads to a slow convergence, and slow learning respectively. This tells us that the
probability a subject memorises a success correctly (psuc) mainly affects the slope of the
learning curve.

0

0.33

0.66

1

0

0.33

0.66

1

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

|λ2,...,5|

psuc psr

Figure 3.6: Absolute value of the eigenvalues |λ2,...,5| depending on psuc and psr. The
smaller |λ2,...,5|, the faster the sum in Equation 3.13 converges to the steady
state.

3.1.4 Fit of Model Parameter to Subjects’ Data

The Markov model was simulated on data gathered in the experiment presented in
Hamid et al. (2010) and shown in Figure 2.4. The subjects were tested on the random

41

Chapter 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

P

cycle

Markov model

subjects

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

P

cycle

subjects
Markov model

Figure 3.7: Learning process of the Markov model on the deterministic (left) and random
sequence (right). The parameters were psuc = 0.6, psr = 1, por = 0.9875 (left)
and psuc = 0.3, psr = 1, por = 0.9875 (right). The mean probability of success
P is averaged over all subjects.

and deterministic ordered sequence as described in Section 2.2.3. The model parameters
were manually selected to fit the subjects’ learning behaviour (cf. Figure 3.7).

As the learning curve of the subjects (red) differ only in the slop, only the param-
eter psuc has to be adjusted. This implies that a clear temporal relationship between
the shown objects, basically supports a subject’s ability to memorises the reinforcement
signal (correct/incorrect, and green/red circle respectively) on the objects. Of cause,
such conclusion is highly speculative, as it is based on limited data and just one model.
Further, the model actually ignores the temporal context between objects during learn-
ing. Therefore, we cannot expect it to make predictions concerning the performance
difference which occurred in the experiment.

Nevertheless, it allows to test different experimental settings that are captured by the
parameters. For instance, the object recall probability por can be influenced directly
by the selection of objects. Simple geometric figures instead of fractal objects might be
easier to remember which would require an even higher por.

Concerning the explicit associative learning task (object association with the correct
button) the analysis of the model produced two results. First, the probability a subject
memorises a success correct (psuc) affects mainly the slope of the learning curve (cf. Fig-
ure 3.6). Second, the probability a subject remembers the learning history on an object
(psr) is primarily responsible for the long term development of the success probability.
Especially in the range 0.6 < psr < 1 small changes of psr have a great impact on the
final success probability π16stat (cf. Figure 3.5).

42

Computational Models of Conditional Associative Learning

3.2 Connectionist Model of Conditional Associative
Learning

As pointed out in Section 2.4, Simple Recurrent Networks (SRNs) gained great attention
in the field of implicit learning. First of all, SRNs were able to capture the effects that
were measured in grammar learning and serial reaction time tasks (Cleeremans, 1993)
(cf. Section 2.1.1). It seems pretty natural to use the SRN approach on the conditional
associative learning task introduced earlier (cf. Section 2.2.3). The explicit part of object
association to some button can be learnt within the forward pass of the SRN. Here, the
network needs to find an encoding of the input (object) in the hidden layer and assign
the correct output (button) to it. The implicit part of sequence learning can be realised
due to the recurrent connections that provide the hidden layer of the network with the
knowledge about its previous state. The process is illustrated in Figure 3.8.

Hidden layer Context layer

Copy

Input layer

Output layer

Implicit learning of

temporal relations

between objects

Figure 3.8: Conditional associative learning in an SRN. The general SRN architecture
(right) is shown together with the processing in the conditional associative
learning task (left). The explicit object-to-button association is learnt via an
encoding of the objects in the hidden layer. The implicit part of the sequence
of objects can be learnt through the recurrent connections that provide the
hidden layer with its previous state.

3.2.1 Reinforcement Learning in Neural Networks

In terms of machine learning the conditional associative learning task is a classification
problem as described in Section 2.5. For each object the correct button (class) has to
be learnt. Usually, such tasks are solved using a supervised learning technique. For the
problem at hand we lack a fully specific target; that is, only a feedback whether the
choice was correct/incorrect is given. This directly leads to the Reinforcement Learning
(RL) paradigm.

43

Chapter 3

Commonly the training algorithms for neural networks are variants of gradient descent
methods. The output of the network is compared to the target output and some measure
of error is calculated. Then, the error is being propagated back through the network
and weights are changed by the gradient descent algorithm to minimise it.

From a non-technical point of view, backpropagation algorithms have two major draw-
backs: First, they are biological implausible because synapses are used bidirectionally.
Neural activity is forwarded through the network, and each synapse’s contribution to
the error is propagated back. The second criticism aims less at a specific algorithm but
at the supervised learning paradigm itself. It is cognitive implausible, as the network
needs a full and correct output pattern to learn. In most natural learning situations
such pattern is simply not available.

The second drawback again leads to the RL paradigm. One of the first approaches to
extend the standard backpropagation algorithm for neural networks (Rumelhart et al.,
1986a) is the complementary reinforcement backpropagation proposed by Ackley &
Littman (1990). The Elman backpropagation algorithm was adapted to RL by Grüning
(2007).

Approaches which address the biological implausibility of backpropagation are for
instance, associative reward penalty (Mazzoni et al., 1991) and node perturbation (Werfel
et al., 2005).

Backpropagation with Reinforcement Learning in Simple Recurrent
Networks

The easiest way to train an SRN on an RL signal is a gradient descent method with the
adaptation of Grüning (2007). The SRN is trained using the backpropagation algorithm
for feed forward networks with an RL-like error signal. To do so, two constraints must
be fulfilled:

1. The context units must be initialised with some activation for the forward propa-
gation of the first training vector. Commonly, these initial values are zero.

2. The activation levels of the hidden layer must be stored in the context layer after
each backpropagation phase. Thus, the context layer shows the state of the hidden
layer delayed by one time step.

In order to meet the second constraint, the weights between hidden and context layer
are fixed to 1, and the activation of the context units equal the output of the hidden
units delayed by one time step (cf. Figure 3.8). By that, the SRN turns into a FFN with
additional inputs from the context layer, and any algorithm for FFNs can be used to
train it (Elman, 1990).

Let x(t), y(t), and z(t) denote the output vectors of the input, hidden, and output
layer at time t and ax(t), ay(t), and az(t) denote the corresponding network activation
vectors. Further, Wyx, Wyy, and Wyz are the weight matrices for the input to hidden,
context to hidden and hidden to output connections (cf. Figure 3.8). Then the forward

44

Computational Models of Conditional Associative Learning

pass of the SRN with activation function fnet can be written as:

ayi (t) =
∑

j

W yx
ij xj(t) +

∑

j

W yy
ij yj(t− 1), (3.14)

yi(t) = fnet (a
y
i (t)) , (3.15)

azi (t) =
∑

j

W zy
ij yj(t), (3.16)

zi(t) = fnet (a
z
i (t)) . (3.17)

The layers are updated one after another for each input x(t). Further, each network
output z(t) is compared to a target vector. At this point the reinforcement learning
paradigm comes into play. Instead of providing a full target vector to the network only
the output of the winning unit is evaluated. The way this winning unit is found will be
explained later in Section 3.2.2. The selected output unit or rather the corresponding
action is reinforced either with r = 1 for the desired action or else with r = 0. Therefore,
the direct error signal of the winning unit k is computed by

e(t) = zk(t)− r . (3.18)

This error signal is used to build the complete error signal for the output layer. The
derivatives ∂E/∂azi , which are used in standard backpropagation, are overwritten with
the focus on the winning unit k

∂E

∂azi
=

{
f ′
net

(
azi (t)

)
e (t) i = k

0 i 6= k
. (3.19)

The error signal for the hidden layer and the weight updates ∆W are recursively com-
puted with the standard backpropagation algorithm by

∂E

∂ayj
= f ′

net

(

ayj (t)
)∑

i

∂E

∂azi
(t)W zy

ij , (3.20)

∆W zy
ij = −ε

∂E

∂azi
(t)yj(t), (3.21)

∆W yy
ij = −ε

∂E

∂ayi
(t)yj(t− 1), (3.22)

∆W yx
ij = −ε

∂E

∂ayi
(t)xj(t), (3.23)

where ε denotes the learning rate.
So, how does this algorithm correlate with the RL concept? First, the reward r is

checked against the expected reward for the actual network output, which yields the
direct error signal e(t) (Equation 3.18). The so called action of the network is simply
the selected output unit k and its value is the output activation level zk(t). The policy
of the agent is represented by the configuration of the network. It maps the input x(t)
(states) onto the output z(t) (actions).

45

Chapter 3

3.2.2 Simulation on the Conditional Associative Learning Task

In this Section, the SRN is trained on the conditional associative learning task. We will
see that the network is sensitive to task-irrelevant temporal information and investigate
the influence of the temporal order of the input sequence on the learning performance.

Task Formalisation

Before the network can be trained, one needs to formulate a mathematical equivalent to
the experiment that was done with the human subjects (cf. Section 2.2.3). Eight different
symbols (representing fractal objects) S1, . . . , S8 will be presented to the network. The
network has to associate each input with one of four predefined actions (representing the
motor response) A1, . . . , A4. In other words, the network learns the mapping Si → Aj.
The symbols are presented cyclically to the network. After each symbol the network
gets a scalar feedback (r = 1 or r = 0) for the selected action (Equation 3.18), and the
resulting error is propagated back according to the training process described above.
Since each action is evaluated right away, the process corresponds to online learning.

Network Configuration

Figure 3.9 shows the general structure of the used SRN. The input symbols are 1-of-8
coded. The input layer consists of eight input units which simply excite or not, given
the coding of the symbol. Thus, for the kth symbol we get

xi(t) =

{
1 i = k
0 i 6= k

i = 1, . . . , 8 (3.24)

at the output of the input layer. The hidden layer has the hyperbolic tangent as activation
function. Hence, the output of the hidden layer is

yi(t) = tanh
(
βayi (t)

)
i = 1, . . . , 3. (3.25)

Each hidden layer unit is connected to one corresponding unit in the context layer. The
connection weights are fixed to 1. The context units are fully connected to the hidden
layer providing it with the hidden layer output of the previous time step. Eight symbols
(binary coded) can be represented by three bits. Thus, the number of units in the hidden
layer is set to three. Furthermore, the hidden units are fully connected to the four output
units. As for the input, a 1-of-N coding is used to represent the network’s output. Each
of the four outputs symbolises one of four possible actions. Since the output units shall
generate positive real values, their activation function is the logistic sigmoid function.
The network output is

zi(t) =
1

1 + e−(βa
z
i (t))

i = 1, . . . , 4. (3.26)

The form of the activation function is specified by the network designer and depends
on the expected range of activation levels at the input and output of the layers. The

46

Computational Models of Conditional Associative Learning

parameter β in Equations 3.25 and 3.26 controls the slope of the activation functions
and was set to β = 1, since weight changes always allow to dynamically rescale this
factor. The weights in the forward directed connections were initialised randomly from
a uniform distribution in the range of (−1, 1). The learning rate in all simulations was
set to ε = 0.1.

tanh

logsig logsig logsig logsig

tanh tanh linear linear linear

linear linear linear linear linear linear linear linearInput layer

Hidden layer

Output layer

Context layer

Figure 3.9: Configuration of the SRN used in the simulations on the conditional associa-
tive learning task. The input layer consists of eight linear input units that
reproduce the coding of the input symbol. Further, three hidden units with
the hyperbolic tangent (tanh) activation function are fully connected to the
four output units with logistic sigmoid (logsig) activation function. The state
of the hidden layer is stored in the context layer and provided as additional
input to the hidden layer in the following time step.

Action Selection Method

The winning output, or rather the corresponding action, is rewarded either with r = 1
for the correct action or else with r = 0. But, how to find the winning unit?

If we engage in the interpretation of the outputs z(t) as action values, like they were
defined by Sutton & Barto (1998), then z(t) represents the estimated reward the agent
expects for the action. Thereby, the selection of the winning unit turns into the action
selection problem of the RL Action-Value method. This directly leads to the exploration-
exploitation problem, which is the relation between the exploration of new possibilities
and the exploitation of old certainties.

In the task at hand, each symbol is associated to one single action which guarantees
the highest possible reward. There is no use to accept a lower reward on the present
symbol to earn a higher reward on a later one. That motivates the use of the so called
greedy action selection policy. This means, the winning output k is simply the one with
the current highest estimated reward:

k = argmax
i

zi(t) i = 1, . . . , 4. (3.27)

47

Chapter 3

Sequences with Different Temporal Dependencies

The simulation of the associative learning task was done with three different symbol
sequences. This variation of the temporal characteristics allows us to study the implicit
learning of different types of task-irrelevant temporal contexts in SRNs.

Deterministic vs. Random Sequence: This constellation is the same as used in the orig-
inal experiment of Hamid et al. (2010) (cf. Section 2.2.3 and Figure 2.4). During each
cycle all eight symbols are shown. The simplest case is a deterministic order of the
symbols, such that the first cycle simply is repeated. This implies a very strong tempo-
ral relationship between the single symbols, each has the same successor for the whole
experiment. The worst case is a random order in each cycle, which denotes a weak
temporal correlation between the symbols.

deterministic sequence . . . |
cycle n

︷ ︸︸ ︷

1 2 3 4 5 6 7 8 |
cycle n+1

︷ ︸︸ ︷

1 2 3 4 5 6 7 8 | . . .

random sequence . . . |
cycle n

︷ ︸︸ ︷

4 5 1 7 8 3 2 6 |
cycle n+1

︷ ︸︸ ︷

2 7 6 4 3 1 8 5 | . . .

Alternating Deterministic and Random Symbols: The 1st, 3rd, 5th, and 7th positions
are assigned to certain fixed symbols. The remaining symbols are randomly set to the
positions between them. That is, each deterministic symbol is followed by one random
symbol.

deterministic symbols : 5 6 7 8

random symbols : 1 2 3 4

alternating sequence : . . . |
cycle n

︷ ︸︸ ︷

5 2 6 4 7 1 8 3 |
cycle n+1

︷ ︸︸ ︷

5 1 6 3 7 4 8 2 | . . .

Deterministic vs. Random Pairs: Again, eight symbols are presented cyclically to the
network. In every cycle the 1st/2nd and the 5th/6th positions are assigned to certain pairs
of symbols and repeated in every cycle. The other positions are randomly assigned to
the remaining symbols. In that way, a sequence with two deterministic and two random
pairs is being generated.

. . . |

cycle n
︷ ︸︸ ︷

det. pair
︷︸︸︷

1 2 3 8
︸︷︷︸

random pair

det. pair
︷︸︸︷

5 6 7 4
︸︷︷︸

random pair

|

cycle n+1
︷ ︸︸ ︷

det. pair
︷︸︸︷

1 2 8 4
︸︷︷︸

random pair

det. pair
︷︸︸︷

5 6 3 7
︸︷︷︸

random pair

| . . .

48

Computational Models of Conditional Associative Learning

Results

To measure the success of the network, the output is evaluated in terms of the probability
of success (PS) for each training cycle; that is, the number of correctly assigned symbols
divided by the total number of symbols per cycle. When training starts the probability
to excite the correct output is one out of four (PS = 0.25) for each symbol in the cycle.
During learning the probability of success should rise, since it gets more likely that the
network takes the correct action.

The network weights are initialised randomly, therefore the learning curves for single
networks may differ considerably. As the general behaviour of the network is in the focus
of interest, 100 networks are trained and the mean of their probability of success

(
PS

)

is calculated.
Figure 3.10a shows the learning curve of the SRNs on the deterministic and ran-

dom sequence for a training of 100 cycles. One can see that the deterministic sequence
is learnt faster than the random one. After 100 training cycles, the difference of the
mean success probability PS is 8%. The networks benefit from the temporal relation-
ship between the input symbols even if it is task-irrelevant. This result is qualitatively
comparable to the learning curve of the human subjects in Figure 2.4. Both, human
subjects and SRNs clearly benefit from the existence of a temporal relationship between
the symbols/objects.

Figure 3.10b shows the performance of the SRNs on sequences consisting of alternating
deterministic and random symbols. In the plot both kind of symbols are distinguished.
The difference of the mean probability of success (PS) is small, about 2%. Compared to
the complete deterministic sequence (Figure 3.10a) the SRNs perform 5% to 6% worse on
single deterministic symbols separated by random symbols (Figure 3.10b). Apparently,
the better performance on the completely deterministic order arises from a relation
between direct predecessor and successor in a sequence. This conclusion was tested in
the third experiment.

Figure 3.9c shows the performance of the SRNs on sequences of deterministic and
random pairs. The different pairs are plotted separately. Once more the network per-
forms better if a strong temporal relationship between the symbols is present. Especially,
successors in a deterministic pair are very close connected to their predecessors. The
performance on these symbols is comparable to the performance on a completely de-
terministic sequence (Figure 3.10a). Thus, one concludes that the network is first of
all sensitive to direct temporal relations between the present and previous input. A
deterministic predecessor in a deterministic pair on the other hand is successor of the
previous deterministic successor, thus they are connected to a symbol which lies three
steps back in the past. This temporal connection is not recognised by the networks in
the simulations. There is no substantial difference in the mean probability of success
(PS) between deterministic predecessors and random pairs (Figure 3.9c).

49

Chapter 3

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PS

cycle

deterministic seq.

random seq.

(a) Eight symbols were shown in either deterministic or random order. The
correct association for the symbols were learnt faster when they were
shown in a deterministic sequence.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PS

cycle

det. symbols

random symbols

(b) Deterministic and random symbols in an alternating sequence. The
difference between deterministic and random symbols is about 2%.

50

Computational Models of Conditional Associative Learning

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PS

cycle

det. successors

det. predecessors

random pairs

(c) Deterministic and random pairs in a sequence. Symbols with a strong
temporal relationship such as successors in a deterministic pair are
learnt faster. The performance on these symbols is comparable to the
performance on a completely deterministic sequence (cf. (a)).

Figure 3.8: Learning curve of SRNs on the associative learning task with three different
symbol sequences: (a) deterministic vs. random sequence, (b) alternating
sequence of single deterministic and random symbols and (c) sequence of
deterministic and random pairs of symbols. The mean probability of success
PS is averaged over 100 SRNs.

51

Chapter 3

3.2.3 Summary of the Experiment

Comparing the learning curves of the human subjects (cf. Figure 2.4) with those of the
SRNs (cf. Figure 3.10a) one can state, that the SRNs perform at least qualitatively like
human subjects. There is an evident difference in the learning performance between
random and deterministic sequences.

The SRN is endowed with an autoregressive context layer and therefore, it can use
temporal information implicitly. An SRN uses the temporal context which is inherent in
the task, even if it is not necessary to solve the overlying classification problem. The more
the temporal context is pronounced, the better the network performs on the task. The
simulations suggest that a succession of deterministic symbols is the major momentum
for the formation of the temporal context. As one deterministic symbol follows another
without interruption by a random one, the learning performance for the successor equals
the performance for a deterministic sequence (cf. Figures 3.10a and 3.9c).

For a temporal relation that spans over more than one time step, the influence of
the temporal context for the learning performance decreases. If deterministic symbols
are separated by one random symbol we observe a slightly better performance than
for random symbols only (Figure 3.10b). For deterministic symbols separated by two
random symbols we see no substantial difference in the mean probability of success
compared to random symbols only. This is shown by the third experiment in Figure 3.9c.
The deterministic predecessors in that sequence are separated by two random symbols
(random pair) to the next deterministic symbol.

3.3 Discussion of the Models

In this chapter, two different models for conditional associative learning were introduced.
On the one hand, the Markov model in Section 3.1 describes learning by means of a
stochastic process. The scenario is described with 16 possible states and the assumed
rational behaviour gives the state transitions. The parameters of the model (psuc, psr,
por) represent typical human mistakes. On the other hand, the SRN model in Section 3.2
does not need such assumptions, and can be considered to be closer to the biological
example.

Nevertheless, the Markov model with its assumptions allows an analysis of the explicit
task of object association with the correct button. It yielded two predictions. First,
the probability a subject memorises a success correctly affects mainly the slope of the
learning curve. This tells us that a strong reinforcement learning signal is the key to
associative learning of a single object. Second, the probability that a subject remembers
the learning history on an object is responsible for the long-term development of the
success probability. That means, the more complex the task, for instance eight buttons
per object instead of four, the lower the chance to finally learn all presented objects.
Both statements are reasonable and can be used in the design of future experiments of
that kind. In summary, it can be stated that the explicit design of the model requires
a number of assumptions that can be called into question, but it also enables us to

52

Computational Models of Conditional Associative Learning

make some explicit statements on the experimental setup that may be verified in the
laboratory.

In contrast to the Markov model, the SRN model is focused on the implicit learning
of the task-irrelevant temporal context that is present in the scenario. It utilizes the
sequential order of the input when solving the classification problem, which results in a
higher learning rate. A comparable effect was observed for human subjects that implicitly
learnt the order of presented objects when they were asked to assign the correct key to
them. Further, a direct succession of certain objects is the key element in learning their
temporal relation. If the succession is interrupted by one or two random objects, the
performance on the deterministic objects decreases. A similar behaviour could also be
observed for human subjects trained on such mixed sequences in Hamid et al. (2010).

Finally, the RL model introduced in Hamid et al. (2010) must be mentioned when
discussing models of conditional associative learning. It is a model-free RL approach
(Sutton & Barto, 1998; Dayan & Niv, 2008) were the response choice is probabilistic. The
expected reward for a choice is accumulated in the action values which are decreased or
increased depending on the actual reward for the choice. The key element, which allows
the model to learn temporal dependencies, is the fact, that the response choice depends
on three action values attached to the actual object and its two predecessors. In that way,
the two previous objects influence the response on the current object. Moreover, Hamid
et al. (2010) introduced a recognition parameter 0 ≤ γ ≤ 1 to model confusion about
objects. Within the general framework of RL, plus the assumption that two predecessors
contribute to the performance on the current object and the recognition parameter γ,
the model accounts qualitatively and quantitatively to the behavioural data gathered in
the experiments.

In terms of the implicit learning of temporal information, the SRN model is able
to reproduce the effect observed during the experiment without making any explicit
assumption on the processing of this information. In contrast, the RL model needs the
assumption that the last two objects contribute to the learning of the present one.

In conclusion, the question “Which is the best model?” cannot be answered, as the
question itself is too general. Regarding the explicit learning of object-button associa-
tions, the Markov model could give insights on the different factors that influence this
process. The broadly accepted RL idea used by Hamid et al. (2010) led to a model
that could reproduce the observed data. For this, one explicit assumption on the nature
of the processing of temporal information had to be made and suitable values for the
recognition parameter had to be chosen. Last but not least, the SRN model showed
the qualitative properties that cover the observed behaviour characteristics without an
explicit assumptions concerning the processing of sequential information. For instance,
it does not rely on the length of the history window that has to be considered. Instead,
the amount of temporal context to be considered is learnt by the model.

53

54

4 Representation of Temporal Context
in Simple Recurrent Networks

Contents

4.1 The 4-2-4 Encoder Simple Recurrent Network 56

4.1.1 Encoding Task . 56

4.1.2 Network Configuration . 57

4.1.3 Network Training . 58

4.2 Results of the Training . 60

4.3 Results of the Testing . 64

4.4 Representation of Temporal Context 65

4.5 Discussion . 69

A
s we saw in the previous chapters, temporal order plays an important role in
human learning. Chapter 3 discussed different models for the special case of
the conditional associative learning scenario, where the temporal component is

task-irrelevant but still supports learning. In terms of the psychology of learning and
biological plausibility, there is no doubt about the need for models based on recurrent
networks, since biological neural networks are recurrent. This motivates the use of
connectionist models like SRNs (cf. Section 2.4). Further, Section 3.2 emphasized the
potential of SRNs to reproduce the effects of implicit sequence learning observed in
humans.

We expect a good model to reproduce the experimental data, but further, also to
explain it and make verifiable predictions. Therefore, one basic requirement is an under-
standing of the processes in the network during learning. Heskes & Kappen (1991) have
studied the learning process and the learning dynamics of neural networks from a math-
ematical point of view. They have shown that a nonzero learning parameter enables a
network to adapt to changing environments. This leads to fluctuations in the plasticities
of the synapses which, in turn, leads to a trade-off between adaptability and accuracy.
In Heskes & Kappen (1993), a theory for online learning in artificial neural networks
is proposed. Online learning is necessary if not all training patterns are available at
once, which is common in natural learning scenarios. The authors again emphasize the
conflict between the adaptability and the confidence of the network’s representation in
a changing environment.

In the cognitive science community, recurrent neural networks are often employed to
process symbol sequences that represent natural language structures. Here, the aim

55

Chapter 4

is to study possible neural mechanisms of language processing and aid in development
of artificial language processing systems (Čerňanský et al., 2007). In this research,
Elman (1991) is the first who tackles the question how complex structural relations like
language can be represented in an SRN. He uses a principal component analysis on the
activation patterns of the hidden units to reveal the distributed representations that
encode grammatical relations.

Čerňanský et al. (2007) investigate the organization of the state space of an SRN that
is trained to predict the next symbol in a “language like” sequence. In the evolving
representations they find two properties. First, the activations emerging before training
are meaningful. They correspond to states of variable memory length Markov models.
Second, after training, the prediction is based on grammatical subcategories rather than
individual words.

In the following, the mechanisms of implicit sequence learning in SRN shall be in-
vestigated. It is shown how implicitly learnt temporal information is represented in
SRNs. For this purpose, the influence of the sequential input during training and test-
ing is examined. Further, the trained networks are tested on different input sequences
under different conditions, for instance with and without context memory. The work
presented here is published as contribution to the “International Joint Conference on
Computational Intelligence” (Glüge et al., 2010) and parts of the text are taken over
verbatim.

4.1 The 4-2-4 Encoder Simple Recurrent Network

To be able to study detailed effects of sequence learning in SRNs, a small network and
an auto-encoding task are used. Auto-encoders were introduced by Rumelhart et al.
(1986b). In general, the aim is to learn an efficient coding for a set of data. More
precisely, the problem is to learn an encoding of an N bit pattern into log2 N bit pattern
and further, learn to decode this representation into the output pattern (Rumelhart
et al., 1986b).

For the problem at hand, the task is designed according to the idea of the conditional
associative learning scenario discussed earlier (cf. Section 2.2.3). A task-irrelevant im-
plicit sequence learning process shall support the explicit learning of associations (input
- output pairings).

4.1.1 Encoding Task

The encoding task is the conversion of four 1-of-4 coded input vectors into a binary
representation and vice versa. For the network, the task is first to find a mapping for
the 1-of-4 coded input into a binary code. The second part is the retrieval of the binary
coded input into the 1-of-4 coded output. Table 4.1 shows one possible solution for the
problem.

56

Representation of Temporal Context in Simple Recurrent Networks

Table 4.1: 4-2-4 encoding task: a four bit input vector has to be represented by two bit
and vice versa.

Input Binary Code Output

0001 00 0001
0010 01 0010
0100 10 0100
1000 11 1000

Attention should be paid to the fact that the encoding is independent of the sequence
of input vectors. The network learns a direct mapping between input and output, which
represents the explicit learning of associations. Nevertheless, the SRN implicitly learns
a temporal relation between inputs and uses this to its advantage for memorising. Fig-
ure 4.1 illustrates the learning situation.

Figure 4.1: The encoding-decoding of the vectors is independent of their sequential pre-
sentation, even though, the succession of the vectors supports learning.

4.1.2 Network Configuration

Figure 4.2 shows the network used in the simulations on the encoding task. The same
notation as in Section 3.2.1 is used. x(t), y(t), and z(t) denote the output vectors of
the input, hidden, and output layer at time t. The corresponding network activation
vectors of the input, hidden, and output layer are represented by ax(t), ay(t), and az(t).
The weight matrices for the input to hidden, context to hidden, and hidden to output
connections are denoted Wyx, Wyy, and Wyz . With the activation function fnet the
forward processing in the network equals those in Section 3.2.1 and is described by
Equation 3.14, 3.15, 3.16, and 3.17.

The input layer consists of four input units which simply excite or not, given the
coding of the input vector. The hidden layer has the hyperbolic tangent as activation
function. Hence, the output of the hidden layer is

yi(t) = tanh
(
ayi (t)

)
i = 1, 2. (4.1)

Each hidden layer unit is connected to one corresponding unit in the context layer. The
connection weights are fixed to 1. The context units are fully connected to the hidden

57

Chapter 4

tanh

logsig logsig logsig logsig

tanh linear linear

linear linear linear linearInput layer

Hidden layer

Output layer

Context layer

Figure 4.2: Configuration of the SRN used on the 4-2-4 encoding task. The input is
directly forwarded by four linear input units. Then, the input is represented
by two hidden units with a hyperbolic tangent (tanh) activation function
and forwarded to four output units with logistic sigmoid (logsig) activation
function. The state of the hidden layer is stored in the context layer and
provided as additional input to the hidden layer in the following time step.

layer, providing it with the hidden layer output from the previous time step. Four
different input vectors can be represented by two bits. Since the network shall code the
input vectors into a binary representation, the number of units in the hidden layer is
set to two. Furthermore, the two hidden units are fully connected to four output units.
This corresponds to the retrieval of the binary coded input into a 1-of-4 coded output.
As the output units should generate values between 0 and 1 their activation function is
the logistic sigmoid function. The network output is

zi(t) =
1

1 + e−azi (t)
i = 1, . . . , 4. (4.2)

Note that the hyperbolic tangent at the hidden layer produces values between −1 and 1.
Therefore, the internal representation for the input will consist of values in the interval
(−1, 1) and not (0, 1) as in Table 4.1. The central interval about zero of this activation
function supports gradient based learning, as it allows a better flow of the error signal
backwards compared to the logistic sigmoid. Nevertheless, it is still required that the
internal representation be binary in the sense that the hidden layer has to produce coding
values for a uniquely distinguishable mapping at the output layer. The input and output
was presented to the network as shown in Table 4.1 and Figure 4.1.

4.1.3 Network Training

As pointed out earlier (cf. Section 3.2.1), the SRN can be seen as a feedforward network
with additional inputs from the context layer and any algorithm for feedforward networks
can be used to train it (Elman, 1990). To use the backpropagation algorithm the context

58

Representation of Temporal Context in Simple Recurrent Networks

units must be initialised with some activation for the forward propagation of the first
training vector. Here, the initial values were set to zero. Further, the activation levels
of the hidden layer were stored in the context layer after each backpropagation phase.
Thus, the context layer shows the state of the hidden layer delayed by one time step.

After each input, the network output is compared to the desired output and the
mean square error is propagated back through the network. The weights are updated
with the constant learning rate ε = 0.1. Since each output is evaluated right away,
the process corresponds to online learning. As already pointed out in the introduction
to this chapter, online learning appears when not all training patterns are available at
once. It is a biologically plausible scenario, because it is simply most common in natural
situations.

The weights are initialised with uniformly distributed random values in the interval
[−0.3, 0.3], apart from the fixed hidden to context layer weights. Learning rate and
weight initialisation interval are chosen according to preliminary tests, where the com-
bination that yielded best training results after 1000 training cycles was chosen.

Since we are interested in the network’s ability of implicit sequence learning, the
training input is presented in two different ways: a sequential and a random one. One
training cycle consists of a presentation of all four input vectors that are shown to the
network one after another. For the case of a deterministic order, the first cycle is repeated
for the whole training. This implies a strong temporal relationship between the input
vectors since each one has a fixed successor. For the case of a random order in each cycle
the temporal correlation between the input vectors is very weak.

If the numbers from one to four denote the input vectors, one can describe the two
types of sequences as follows:

deterministic sequence . . . |
cycle n
︷ ︸︸ ︷

1 2 3 4 |
cycle n+1
︷ ︸︸ ︷

1 2 3 4 |
cycle n+2
︷ ︸︸ ︷

1 2 3 4 | . . .

random sequence . . . |
cycle n
︷ ︸︸ ︷

4 3 1 2 |
cycle n+1
︷ ︸︸ ︷

2 1 3 4 |
cycle n+2
︷ ︸︸ ︷

3 2 1 4 | . . .

Each network is trained for 1000 cycles. Hence, every input vector is shown 1000 times
to the network. This results in 4000 training steps or rather 4000 weight updates.

To measure the success of the network the output is evaluated according to the winner-
take-all principle. The unit with the highest activation is counted as 1, the remaining
units as 0. Thus, the network’s output is always mapped onto a corresponding target
vector. Then the network output can be expressed in terms of the probability of success
(PS) for each training cycle. Figure 4.3 shows this procedure.

When training starts, the probability to excite the correct output is one out of four
(PS = 0.25). At the end of training the network should have learnt the coding and
always deliver the target vector, therefore one expects PS = 1.

Since the weights are initialised randomly, the learning curves for single networks may
differ considerably. To compare the general behaviour of the network, 100 networks are

59

Chapter 4

Figure 4.3: Measure for the success of the network: the output is evaluated according
to the winner-take-all principle which yields a corresponding target vector.
Probability of success (PS) is calculated for each training cycle

trained on each type of input sequence. Afterwards the mean probability of success is
calculated over the 100 networks (PS) for the two test cases.

4.2 Results of the Training

In the following we have a look on the influence of the temporal context during the
training of the SRN. This includes, first of all, the ability to learn the encoding task.
Further, the solutions found by the network and the role of the context layer weights are
examined. The performance of the networks during testing is treated separately in the
next section.

In Figure 4.4a, the mean probability of success PS during training is plotted against
the number of training cycles. In general, the networks perform better on a deterministic
input sequence than on a random one. In both cases, however, the expected PS = 1 is
not reached, which will be explained in the following.

Figure 4.4b shows the distribution of the individual success probability PS for the 100
networks after training. The number of networks n is plotted against the final probability
of success PS. Trained with a deterministic sequence one half of the networks (n = 51)
learnt the encoding completely (PS = 1 by the end of the training). On the other hand,
only 23 networks could succeed if trained with a random sequence.

In summary, it is more likely that a network trained with a deterministic sequence
succeeds in training. The reason is the temporal correlation between the input vectors.
This extra information, which is only provided in the deterministic sequence, raises the
probability of the SRN to learn the task.

Apparently, the learning task is quite demanding, since a high percentage of the net-
works got stuck in local minima or plateaus. Those networks that did not succeed
in training learnt an unstable solution. A more sophisticated training algorithm, for
instance a variable learning rate, a better measure for the network error, etc., might

60

Representation of Temporal Context in Simple Recurrent Networks

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

PS

cycle

deterministic sequence
random sequence

(a) Mean probability of success PS plotted against
the training cycles.

0 0.25 0.5 0.75 1
0

10

20

30

40

50

60

70

PS

n

deterministic sequence

random sequence

(b) Distribution of final success probabilities.
The number of networks n of 100 is shown
against the probability of success PS.

Figure 4.4: Success of the training of 100 SRNs trained on the 4-2-4 encoding task. Not
all networks were able to learn the task completely. However, the chance to
learn the task is higher given a deterministic than a random sequence.

be able to avoid unsuccessful training. Since the influence of task irrelevant temporal
information and the role of the context layer are in the focus of this study, the learn-
ing algorithm was not optimised. By that, the training procedure differs only in the
sequential presentation of training inputs.

Figure 4.5 exemplarily shows the output of the two hidden units during training for a
network that did not find a distinct encoding. The output of each hidden unit is plotted
for each specific input. The combination of the two hidden units’ outputs represents the
network’s internal state and therefore, the coding of the input vector. At the beginning
of the training all inputs are represented by values around zero. At the end of the
training, one can see that input vector 2 and 4 are well distinguishable, while the inputs
1 and 3 result in a nearly identical activation pattern. The network did not learn to
distinguish these input vectors.

The four input vectors have a representation as hidden units’ output pairs (y1, y2).
Figure 4.6 shows this constellation after successful (crosses) and unsuccessful (dots)
training. For the case of successful training, each pair of outputs lies in a different
quadrant of the y1-y2 coordinate system, which makes them easily separable. For the
unsuccessful training two inputs result in hidden layer outputs that are very close to
each other; here in the upper left quadrant of the y1-y2 plane.

61

Chapter 4

0 500 1000
−1

−0.5

0

0.5

1

0 500 1000
−0.5

0

0.5

1

0 500 1000
−1

−0.5

0

0.5

1

0 500 1000
−1

−0.5

0

0.5

1

cyclecycle

cyclecycle

u
n
it
s’

ou
tp
u
t

u
n
it
s’

ou
tp
u
t

hidden layer: input vector 1 hidden layer: input vector 2

hidden layer: input vector 3 hidden layer: input vector 4

unit 1

unit 2

Figure 4.5: Hidden layer output during training of a network that did not succeed in
training. For input vector 1 and 3 no distinct coding was learnt.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y1

y 2

unsuccessful

successful

Figure 4.6: Hidden layer outputs for each of the four input vectors after training. One
network succeeded in training (crosses) and one did not succeed in training
(dots).

62

Representation of Temporal Context in Simple Recurrent Networks

Weights of the Context Layer

The discussion above shows that the temporal relation of the input vectors was used
during learning. But, how is this relation represented in the network? The answer lies
in the weights of the network, since this is the only parameter that is changed during
training. Further, the key component to sequence learning is the context layer, thus the
development of the weights of this layer should be investigated.

Two context units are fully connected to two hidden units. This results in four weights
in the context weight matrix, W yy

ij where i, j = {1, 2} (cf. Equation 3.14). Figure 4.7
exemplarily shows the weights of the context layer during training. The four context
weights of two networks that solved the task (PS = 1 at the end of the training) are
plotted over the training steps. Each training cycle consists of four input vectors. A
training of 1000 cycles results in 4000 weight updates. The red lines show the weights
of a network trained with a random sequence, the blue lines those of a network trained
with a deterministic sequence. Each line represents the development of a single weight
of the weight matrix.

0 1000 2000 3000 4000
−2

−1

0

1

2

3

training step

weight

weights, det. sequence

weights, random sequence

Figure 4.7: Context layer weights of two networks that learnt the task. The blue and
red lines show the development of the single weights during training on a
deterministic sequence and a random sequence, respectively.

For a deterministic sequence the weights take a value between −2 and 2. Longer
training would result in higher weights, since the network tries to generate exactly 1 at
the output. This value is never reached by the activation function of the output units.

The random sequence leads to vanishing context weights, which means the weights
tend towards zero. Put another way, the network learns that there is no temporal

63

Chapter 4

dependency in the input. This leads to the remarkable result that the SRN turns into a
standard feed-forward network omitting contextual information.

4.3 Results of the Testing

Yet, the differences that occurred during training with a deterministic and a random
sequence were discussed. In the following, the performance of the networks during testing
shall be investigated. Those networks that solved the task at least in the last training
cycle (PS = 1) were chosen for testing. This criterion turns out to not guarantee that
the solution that the network has found is stable. The training in Section 4.2 yielded 51
successfully trained networks with a deterministic sequence and 23 successfully trained
networks with a random sequence (cf. Figure 4.4b).

To study how the existence of a temporal context during training influences the gen-
eralisation, the networks were tested on both sequences for 1000 cycles. Therefore, we
have to distinguish four cases: (i) trained deterministic and tested deterministic, (ii)
trained deterministic and tested random, (iii) trained random and tested random and
(iv) trained random and tested deterministic.

Table 4.2 shows that only cases were the sequence differs between training and testing
(ii, iv) is of further interest. Networks tested with their training sequence unsurprisingly
perform very well in the test run.

On the other hand, networks trained with the deterministic sequence performed very
poor in the test with a random sequence (PS ≈ 0.5). The networks did not learn just
the input itself, but also the temporal correlation between inputs. Tested on a random
sequence, the stored temporal information is misleading. For instance, if the network
learnt that input vector 1 is followed by 2 but in the next step vector 3 is presented,
then the network has to process two conflicting informations. The input layer indicates
vector 3 to the hidden layer but the context at the present time indicates vector 2 to the
hidden layer. The test result shows that this contextual information is not just some
add on but absolutely necessary for the networks to solve the task. Since just one type
of input sequence was shown during training, the networks did not generalise to other
types of sequences, which results in a poor overall performance in the test on a random
sequence.

In contrast, those networks that were trained with a random sequence turned into
feed-forward networks during training (cf. Section 4.2 and Figure 4.7). Therefore, they
could deal with any kind of input sequence since the encoding of an input is independent
of its context.

The result of the test run with the random sequence shows that networks trained
with the deterministic sequence heavily rely on the temporal structure of the input. To
investigate the influence of the context layer the networks are tested again. This time
the context weights are set to zero. Thereby, the networks trained with a deterministic
sequence lose the previously learnt temporal correlation between input vectors. Those
networks trained with a random sequence have zero context weights already, thus, the
replacement by zero should have no effect.

64

Representation of Temporal Context in Simple Recurrent Networks

Table 4.2: Results of testing: mean probability of success for the four combinations of
training and testing.

PS
training

det. sequence random sequence

testing
det. sequence 0.9657 0.9457

random sequence ≈ 0.5 ≈ 0.95

The modified networks were tested with the deterministic sequence for 1000 cycles.
Table 4.3 shows the mean probability of success in this test. Compared against Table 4.2,
the performance of the networks trained with a deterministic sequence decreases dra-
matically, 97% with, and 52% without context layer. Networks trained with a random
sequence still perform very well, 95% with, and 92% without context layer.

Table 4.3: Results of testing without context layer: mean probability of success when
omitting context layer weights after training.

PS
training

det. sequence random sequence

testing det. sequence 0.5196 0.9239

4.4 Representation of Temporal Context

To understand how the context layer weights encode sequential information it is helpful
to have a look onto the activation pattern of the network. As recurrent networks tend
to oscillate, they produce an activation in the output layer, even if the input is zero. In
the following we have a look on these activations. The sequences that are generated at
the networks’ output can be observed after one initial input.

Those networks trained with a random sequence do not oscillate, since the feedback
connections are zero. However, networks trained with a deterministic sequence produce
a variety of sequences. For the networks that succeeded training with the deterministic
sequence (n = 51, cf. Figure 4.4b), one could observe four different classes of oscillations
at their output. The types of sequences are:

1. full cycle oscillation (FCO),

2. half cycle oscillation (HCO),

3. constant after transient oscillation (CTO),

4. other.

This distinction is not universally valid, but seems to be adequate to classify the observed
behaviour.

65

Chapter 4

Full Cycle Oscillation is a sequence that reproduces the trained input sequence com-
pletely. In every cycle all four training inputs appear in the order of the deterministic
sequence (1, 2, 3, 4), but the cycle does not necessarily start with “1”.

e.g. . . . |
cycle n
︷ ︸︸ ︷

1 2 3 4 |
cycle n+1
︷ ︸︸ ︷

1 2 3 4 |
cycle n+2
︷ ︸︸ ︷

1 2 3 4 | . . . ,
or . . . | 2 3 4 1 | 2 3 4 1 | 2 3 4 1 |

Half Cycle Oscillation is a sequence that contains some part of the trained input
sequence with the period of a half cycle. Two input patterns appear, alternating two
times per cycle.

e.g. . . . |
cycle n
︷ ︸︸ ︷

1 4 1 4 |
cycle n+1
︷ ︸︸ ︷

1 4 1 4 |
cycle n+2
︷ ︸︸ ︷

1 4 1 4 | . . . ,
or . . . | 2 3 2 3 | 2 3 2 3 | 2 3 2 3 |

Constant after Transient Oscillation is a sequence that takes a constant value after
a transient oscillation of about two cycles,

e.g.

cycle 1
︷ ︸︸ ︷

1 1 1 4 |
cycle 2
︷ ︸︸ ︷

2 2 2 2 |
cycle 3
︷ ︸︸ ︷

2 2 2 2 | . . . ,
or 4 3 4 3 | 4 3 4 3 | 1 2 2 2 |

Other sequences are those that do not fit into the patterns above, like sequences that
reproduce the trained input with a blemish, or sequences that produce an oscillation
with a period that spans over several cycles.

e.g. . . . |
cycle n
︷ ︸︸ ︷

1 3 3 4 |
cycle n+1
︷ ︸︸ ︷

1 3 3 4 |
cycle n+2
︷ ︸︸ ︷

1 3 3 4 | . . . ,
or . . . | 1 1 2 2 | 2 3 3 3 | 4 4 1 1 |

Table 4.4 shows the distribution of the generated sequences over the classes of sequences.
Most of the networks (n = 23) generate the sequence presented during training after
activation with one single input pattern. In terms of sequence learning these networks
performed best. Another group of networks (n = 17) has an oscillating behaviour

66

Representation of Temporal Context in Simple Recurrent Networks

with the period of a half cycle. This can be interpreted as a clock signal with two
pulses/beats per cycle. A constant output is produced by five networks after a short
transient oscillation. The remaining networks (n = 6) produced oscillations that do not
fit into the aforementioned classes.

Table 4.4: Distribution of sequences generated by the 51 networks that were successfully
trained with deterministic sequence.

class FCO HCO CTO other
number of networks n 23 17 5 6

The key component to the generation of an oscillation by the network is the weight
matrix of the context layer. After one initial input, the input layer makes no further
contribution to the processing in the network. The output layer provides the encoding
from the binary representation of the network state into the 1–of–4 coded representation
at the output. The sequence of network states is solely generated by the interplay of the
hidden and context layer. Figure 4.8 shows this inner part of the SRN.

tanh tanh linear linearHidden layer Context layer

Figure 4.8: Interaction of Hidden and Context Layer

The process of sequence generation can be described by

y1(t) = tanh
(
W yy

11 y1(t− 1) +W yy
12 y2(t− 1)

)
, (4.3)

y2(t) = tanh
(
W yy

21 y1(t− 1) +W yy
22 y2(t− 1)

)
,

with initialisation

yi(t = 0) = tanh

∑

j

W yx
ij xj(t = 0)

 j = 1, . . . , 4 i = 1, 2. (4.4)

After the initial input, the network state y(t) depends only on the last state y(t − 1).
The transition of one state to another is controlled by the context weight matrix Wyy.
From this follows that the properties of Wyy determine which sequence the network
generates, or in other words, which sequence the network learnt during training.

67

Chapter 4

Properties of the Context Matrix

By the polar decomposition of a matrix it is possible to separate the matrix into a com-
ponent that stretches the space along a set of orthogonal axes and a rotation (Conway,
1990). The polar decomposition of a real valued matrix A has the form

A = RS, (4.5)

where R is a orthogonal matrix, and S is a positive-semidefinite symmetric matrix.
The matrix S represents the component that stretches the space while R represents the
rotation. The matrix S is given by

S =
√
A∗A, (4.6)

where A∗ denotes the conjugate transpose of A. If A is invertible, then the matrix R
is given by

R = AS−1 . (4.7)

The polar decomposition can be used to extract some properties of the context weight
matrix that are related to the generation of the specific types of sequences.

Full Cycle Oscillation: The component of the context matrix Wyy that represents
the rotation, takes the form of a rotation matrix that acts as a rotation in Euclidean
space. For example

Ryy =

(
cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

)

. (4.8)

By that the generation of a sequence (Equation 4.3) turns into

y1(t) = tanh
(
Ryy

11y1(t− 1) +Ryy
12y2(t− 1)

)
, (4.9)

y2(t) = tanh
(
Ryy

21y1(t− 1) +Ryy
22y2(t− 1)

)
,

which is a rotation of vector y in the y1-y2–plane (counter)clockwise by an angle of Θ.
This view neglects the effect of the component of Wyy that stretches the space. This is
possible since the hyperbolic tangent always maps y on values between −1 and 1. For
the observed context matrices the angle Θ lies between 78 and 100 degree. Figure 4.9
illustrates the process of the sequence generation.

At every time step the context matrix rotates y into a new quadrant, where the hy-
perbolic tangent maps the single components of the rotated vector onto the nearest 1 or
−1. By that y passes all four quadrants and therefore, one can observe all four training
inputs at the output of the network.

Half Cycle Oscillation: For networks that generate an HCO, the component of Wyy

that represents the rotation takes the form of a reflection matrix. A reflection matrix is
orthogonal with determinant −1. The eigenvalues are λ1 = 1 and λ2 = −1. In terms of

68

Representation of Temporal Context in Simple Recurrent Networks

Figure 4.9: Rotation of y by the context matrix Wyy

a geometric interpretation Wyy reflects y from one quadrant into another and reverse.
Hence, y passes two quadrants of the y1-y2–plane and therefore, one can observe only
two of the training inputs at the output of the network.

Constant after Transient Oscillation and Other: For these types of sequences
no property in the context matrix was found that is shared by all observed matrices.
Due to the diversity of the single sequences that fall into these classes, one can hardly
expect to find one mathematical property that explains all of the observed behaviours.

4.5 Discussion

The aim of the study in this chapter was to investigate the mechanisms of implicit
sequence learning in SRNs. Therefore, the learning task was constructed in a way, such
that the sequential order of the input was present during learning, but not needed to
solve the encoding task. In this sense, the learning of the input sequence was implicit.
The network was not trained to learn it, like in sequence prediction tasks.

In Section 4.2 it was found, that a fixed sequential order results in a higher learning
performance. Comparing Figure 4.4a and Figure 3.10a, one can see that this effect is
confirmed in Section 3.2.2, where SRNs showed the same behaviour in the conditional
associative learning scenario. Further, the pure number of networks that were able to
learn the task illustrates this fact. Nearly twice as many networks learnt the coding if
trained with a deterministic sequence than with a random one (cf. Figure 4.4b).

The 4-2-4 auto-encoding task was designed to allow a closer look on the inner pro-
cessing of the network. That includes a simple task and a small weight matrix. The
observation of the weights in the context layer showed the influence of this network
layer in the process of implicit sequence learning. A random input sequence provides
no sequential information. Hence, a network trained with such input simply learns that

69

Chapter 4

there is no contextual information. This results in vanishing context weights, like it is
depicted in Figure 4.7. By that, the SRN turns into a standard feed-forward network.

In addition, the test of the trained networks in Section 4.3 shows the importance of
a previously learnt sequential correlation between single inputs. Table 4.2 shows, that
the performance of the networks trained with a deterministic sequence heavily depends
on the presence of the temporal context. A test without the context layer showed its
relevance for the classification task. As the comparison of Tables 4.2 and 4.3 shows, the
overall performance decreases dramatically when the context weights are reset to zero.

In general, there is no sequence learning without a context layer which provides the
network with some memory. To deduce some specific properties of the context weights,
the network input was set to zero. Then, the output sequences that could be observed
after just one initial input were investigated in Section 4.4. There is no guarantee that
the network learns exactly the presented sequence in the context layer. In fact, the
input sequence often can only be reproduced in combination with an activation from
the input layer. The variety of generated sequences points out, that the networks find
different representations of the sequential information. The context weight matrix is the
determining factor in this process.

For the most likely classes of sequences, namely FCO and HCO (cf. Table 4.4), a
geometric representation of the sequential information was found. A full cycle through
the four states that represent the input vectors is achieved by a rotation through the
four quadrants of the two dimensional state-space (cf. Figure 4.9). In a similar manner,
the oscillation between two states was realised by a reflection of a state vector into its
opposite and reverse. With this result, it is possible to decide whether a network learnt
the sequence, on the basis of the properties of its context weight matrix.

One can easily extend this result to a more complex problem like a 8-3-8 encoding,
even if the variety of possible solutions grows with every dimension that is added to the
state space, and further, the probability to find the optimal solution declines.

70

5 Learning Long-Term Dependencies in
Recurrent Neural Networks

Contents

5.1 The Vanishing Gradient Problem 73

5.2 Segmented-Memory Recurrent Neural Network 74

5.2.1 Forward Processing in the Segmented-Memory Recurrent Neu-
ral Network . 75

5.2.2 Effect of the Segmented Memory 77

5.3 Extension of Real-Time Recurrent Learning for Segmented-
Memory Recurrent Neural Networks 78

5.3.1 Extension of Real-Time Recurrent Learning 78

5.3.2 Computational Complexity of Extended Real-Time Recurrent
Learning . 81

5.4 Extension of Backpropagation Through Time for Segmented-
Memory Recurrent Neural Networks 85

5.4.1 Extension of Backpropagation Through Time 85

5.4.2 Computational Complexity of Extended BackpropagationThrough
Time . 88

5.5 Evaluation on the Information Latching Problem 91

5.6 Discussion . 94

I
n the previous chapters the ability of SRNs to implicitly learn temporal information
was deduced and highlighted. First, this ability was utilized in the context of the
conditional associative learning scenario (cf. Chapter 3). The SRNs turned out to

be a possible cognitive model for implicit learning, as it was observed in humans. Then,
the focus shifted towards the question, how the temporal information is represented in
SRNs. It could be answered partly, by taking the example of a simple encoding task
(cf. Chapter 4).

Of course, the application of SRNs must not be restricted to cognitive modelling.
Apart from the rather theoretical problems in cognitive biology, there exists a variety of
technical applications were implicit learning of contextual information is required.

First and foremost, sequence prediction tasks are tackled with the help of recurrent
networks in all areas. The aim is to predict the next element of a given series (cf. Sec-
tion 2.6). Some examples are: load forecasting in electric power systems (Barbounis
et al., 2006), automatic speech processing (Varoglu & Hacioglu, 1999), health condition

71

Chapter 5

monitoring of mechanical components (Tian & Zuo, 2010), sunspot series prediction
(Park, 2011), network traffic prediction (Bhattacharya et al., 2003), and of course, stock
market prediction (Tino et al., 2001).

Another common task is sequence classification. In this case, the aim is to learn
the class label corresponding to a given sequence (cf. Section 2.6). Again, the area of
application is wide, for instance classification of electroencephalography signals (Forney
& Anderson, 2011), visual pattern recognition like handwritten numbers (Lee & Song,
1997) and characters (Nishide et al., 2011), seismic signal classification (Park et al.,
2011), and pattern recognition in images (Abou-Nasr, 2010).

Unfortunately, recurrent networks have difficulties in learning long-term dependencies,
that is, learning a relationship between inputs that may be separated over some time
steps. This is due to the so called vanishing gradient problem, which is the fact that
error signals propagated backwards become smaller with every time step and network
layer, respectively. Therefore the information about the error cannot reach its source
and learning cannot take place.

There are basically two ways to circumvent this problem. One idea is to use learn-
ing algorithms that simply do not use gradient information, like simulated annealing
(Bengio et al., 1994), cellular genetic algorithms (Ku et al., 1999), and the expectation-
maximization algorithm (Ma & Ji, 1998). Alternatively, a variety of network architec-
tures was suggested to tackle the vanishing gradient problem, for instance second-order
recurrent neural network (Giles et al., 1992), non-linear autoregressive model with ex-
ogenous inputs recurrent neural network (NARX) (Lin et al., 1996, 1998), hierarchical
recurrent neural network (El Hihi & Bengio, 1995), Long Short-Term Memory network
(Hochreiter & Schmidhuber, 1997a), Anticipation Model (Wang, 2001), Echo State Net-
work (Jaeger, 2001, 2002), Latched Recurrent Neural Network (Šter, 2003), Recurrent
Multiscale Network (Squartini et al., 2003a,b), a modified distributed adaptive control
architecture (Verschure & Althaus, 2003), and Segmented-Memory Recurrent Neural
Network (SMRNN) (Chen & Chaudhari, 2004, 2009).

In the following the vanishing gradient problem is introduced in detail and its effect on
the gradient based training of SRNs is described. Afterwards, the SMRNN architecture
is introduced, and the way it reduces the problem of vanishing gradients is explained.
Following this, the extended Real-Time Recurrent Learning (eRTRL) training algorithm,
proposed by Chen & Chaudhari (2004), is introduced with the objective to derive its
computational complexity. As this complexity is a major problem for applications where
considerable large networks are used, I will introduce an alternative learning algorithm
for SMRNNs. It is called extended Backpropagation Through Time (eBPTT). There-
after, the computational complexity is analysed for this algorithm and compared to the
complexity of eRTRL.

Finally, both learning algorithms are compared on a benchmark problem, which is
designed to test the ability of a network to store information for a certain period of time.
eBPTT is found less capable to learn the latching of information for longer time periods
in general. However, it nonetheless guarantees better generalisation, that is, higher
accuracy on the test set for successfully trained networks. Further, t he computational
complexity of eRTRL makes eBPTT the only practicable algorithm for tasks where

72

Learning Long-Term Dependencies in Recurrent Neural Networks

rather big networks are required.

The eBPTT algorithm together with an evaluation on the information latching prob-
lem is separately published as contribution to the “International Joint Conference on
Computational Intelligence” (Glüge et al., 2012)1.

5.1 The Vanishing Gradient Problem

In order to understand, why learning long-term dependencies with recurrent neural nets
is difficult, the vanishing gradient problem is sketched in this section. A more detailed
discussion can be found in (Hochreiter et al., 2001).

Recurrent connections are the key element for some form of memory in a neural
network. In particular, recurrent networks are able to store representations of recent
inputs as an internal state (activation pattern). Even though this property is of great
interest in the cognitive science community (cf. Section 2.4), it is of limited use in
practical applications, yet. One of the reasons is the complex training that is required
for recurrent networks. Often, simpler architectures like feedforward networks with
a time window at the input provide advantages in terms of training time, parameter
optimization, and therefore, final performance.

The common learning algorithms for recurrent networks are Backpropagation Through
Time (BPTT) (Werbos, 1990) and Real-Time Recurrent Learning (RTRL) (Williams &
Zipser, 1989). Both algorithms are based on the computation of the complete gradient
information. Thereby, the error signals are carried backwards in time and tend to blow
up or vanish. If they blow up the network weights oscillate, and if they vanish, learning
of long-term dependencies takes a long time or simply does not take place. Obviously,
both cases are undesirable. Bengio et al. (1994) and Hochreiter (1991) analytically
proved this limitation of gradient based learning in recurrent networks. Their result
holds regardless of the cost function, and regardless of the algorithm that is used to
compute the error gradients. Bengio et al. (1994) generalized the problem to dynamical
systems, which includes recurrent networks. Theorem 4 in (Bengio et al., 1994) shows
that the condition leading to gradient decay is also a necessary condition for the system
to robustly store discrete information for longer periods of time. In other words, if the
network configuration allows the storage of information in its hidden units, the problem
of vanishing gradients appears (Hochreiter et al., 2001).

Chen & Chaudhari (2009) discussed the problem particularly for SRNs. It occurs in
the hidden layer, where from Equations 3.14 and 3.15 the output of the hidden layer can
be written as

y(t) = fnet
(
Wyxx(t) +Wyyy(t− 1)

)
, (5.1)

with W denoting the weight matrices and x(t), y(t) the output vectors of the input and
hidden layer (cf. Figure 3.8). Further, the activation function fnet is applied element wise.

1Parts of text in the Sections 5.4.1 and 5.5 are taken verbatim from this article.

73

Chapter 5

If we evaluate the error function E at position T of an input sequence, the derivatives
of the error function with respect to the hidden layer weights are given by

∂E(T)

∂W
=
∑

τ≤T

∂E(T)

∂y(τ)

∂y(τ)

∂W
=
∑

τ≤T

∂E(T)

∂y(T)

∂y(T)

∂y(τ)

∂y(τ)

∂W
, (5.2)

where W represents Wyy and Wyx respectively. The position in the input sequence is
indexed by τ , with τ ≤ T . The partial derivative of the hidden layer output at the end
of the sequence ∂y(T) with respect to some previous output ∂y(τ) is the product of the
derivatives between τ and T

∂y(T)

∂y(τ)
=

∂y(T)

∂y(T − 1)

∂y(T − 1)

∂y(T − 2)
. . .

∂y(τ + 1)

∂y(τ)
=

T∏

t=τ+1

∂y(t)

∂y(t− 1)
. (5.3)

Bengio et al. (1994) showed that the norm of each factor in Equation 5.3 must be less
than 1

∣
∣
∣
∣

∂y(t)

∂y(t− 1)

∣
∣
∣
∣
< 1, (5.4)

if the network should be able to store information over longer periods of time. Therefore,
the partial derivation of the hidden layer output at the end of the sequence with respect
to previous outputs converges exponentially fast to zero, as the distance between T and
τ increases

∣
∣
∣
∣

∂y(T)

∂y(τ)

∣
∣
∣
∣
→ 0 where τ ≪ T (5.5)

and thus
∣
∣
∣
∣

∂E(T)

∂y(τ)

∂y(τ)

∂W

∣
∣
∣
∣
→ 0 where τ ≪ T. (5.6)

From Equations 5.2 and 5.6 one can see that the contribution to the error gradient
becomes very small for terms where τ is distal to T . In consequence, small changes
in W effect almost exclusively the network states of the near past, where τ is close to
T . So, the short-term information dominates the long-term information which makes
learning of such distant dependencies difficult (Chen & Chaudhari, 2009).

5.2 Segmented-Memory Recurrent Neural Network

The problem of vanishing error gradients is the basic limitation of gradient descent
learning for the weight optimisation in recurrent networks. This led to the development
of alternative network architectures. One particular approach is the Segmented-Memory
Recurrent Neural Network (SMRNN) proposed by Chen & Chaudhari (2004). From a
cognitive science perspective, their idea has the pleasant property that it is inspired

74

Learning Long-Term Dependencies in Recurrent Neural Networks

by the memorisation process of long sequences, as it is observed in humans. Usually
people fractionate sequences into segments to ease memorisation. Afterwards, the single
segments are put together to form the final sequence. For instance, telephone numbers
are broken into segments of two or three digits such that 7214789 becomes 72 - 14 -
789. This behaviour is not just plausible from everyday life, but evident in studies in
the field of experimental psychology (Severin & Rigby, 1963; Wickelgren, 1967; Ryan,
1969; Frick, 1989; Hitch et al., 1996).

5.2.1 Forward Processing in the Segmented-Memory Recurrent
Neural Network

The SMRNN architecture consists of two SRNs arranged in a hierarchical fashion as
illustrated in Figure 5.1. A sequence of inputs is presented to the network symbol
by symbol, that is, input vector by input vector. Separate internal states store the
symbol level context (short-term information), as well as segment level context (long-
term information). The symbol level context is updated for each symbol presented as
input while the segment level context is updated only after each segment.

Input layer

Output layer

Segment

level

Symbol

level

Figure 5.1: SMRNN topology – two SRNs are arranged hierarchically. The parameter
d on segment level makes the difference between a cascade of SRNs and an
SMRNN. Only after a segment of length d the segment level state is updated.

75

Chapter 5

...

...= =

...

...

...= =

...

...

...= =

...

Segment 1 Segment 2 Segment 3

Figure 5.2: SMRNN dynamics for a sequence of three segments with fixed interval d.

In the following the receiver-sender-notation is used to describe the processing in the
network. The upper indices of the weight matrices refer to the corresponding layer and
the lower indices to the single units. For example, W xu

ki denotes the connection between
the kth unit in hidden layer 1 (x) and the ith unit in the input layer (u) (cf. Figure 5.1).
Moreover, fnet is the transfer function of the network and nu, nx, ny, nz are the number
of units in the input, hidden 1, hidden 2, and output layer.

The introduction of the parameter d on segment level distinguishes a cascade of SRNs
from an SMRNN. It denotes the length of a segment which can be fixed or variable.
The processing of an input sequence starts with the initial symbol level state x(0) and
segment level state y(0). At the beginning of a segment (segment head SH) x(t) is
updated with x(0) and input u(t). On other positions x(t) is obtained from its previous
state x(t− 1) and input u(t). It is calculated by

xk(t) =

fnet

(
∑nx

j W xx
kj xj(0) +

∑nu

i W xu
ki ui(t)

)

if t = SH,

fnet

(
∑nx

j W xx
kj xj(t− 1) +

∑nu

i W xu
ki ui(t)

)

otherwise,
(5.7)

where k = 1, . . . , nx. The segment level state y(0) is updated at the end of each segment
(segment tail ST) as

yk(t) =

{

fnet

(
∑ny

j W yy
kj yj(t− 1) +

∑nx

i W yx
ki xi(t)

)

if t = ST,

yk(t− 1) otherwise,
(5.8)

where k = 1, . . . , ny. The network output results from forwarding the segment level state

zk(t) = fnet

ny∑

j

W zy
kj yj(t)

 with k = 1, . . . , nz . (5.9)

While the symbol level is updated on a symbol by symbol basis, the segment level
changes only after d symbols. At the end of the input sequence the segment level state is
forwarded to the output layer to generate the final output. The dynamics of an SMRNN
processing a sequence is shown in Figure 5.2.

76

Learning Long-Term Dependencies in Recurrent Neural Networks

5.2.2 Effect of the Segmented Memory

Chen & Chaudhari (2009) analytically deduced the effect of a segmented memory on
the vanishing gradient problem. Here, the crucial points are repeated to ease the under-
standing of the impact of the segment length d.

The derivatives of the error function with respect to the segment level weights Wyx and
Wxx are computed similar to an SRN by Equation 5.2. Further, the partial derivative
∂y(T)/∂y(τ) is given by Equation 5.3. As the segment level is updated according to
Equation 5.8, the partial derivative of the segment level output does not change during
symbol processing

∂y(t)

∂y(t − 1)
= 1 if t 6= nd or t 6= T. (5.10)

Thus, for a sequence of length T = Nd+m1 and T > τ = n1d+m2 with 1 ≤ m1,m2 ≤ d
it takes the special form

∂y(T)

∂y(τ)
=

∂y(T)

∂y(T − 1)

∂y(Nd)

∂y(Nd− 1)
. . .

∂y((n1 + 1)d)

∂y((n1 + 1)d − 1)
(5.11)

=
∂y(T)

∂y(T − 1)

N∏

n=n1+1

∂y(nd)

∂y(nd − 1)
. (5.12)

It is necessary that the norm of each factor in Equation 5.12 must be less than 1 if the
network should be able to store information over longer periods of time. So, for τ ≪ T
the norm |∂y(T)/∂y(τ)| still converges to zero. If we compare Equations 5.3 and 5.12
on a similar sequence of length T at the same point τ , we find that the product in
Equation 5.12 consists of less terms than the product in Equation 5.3. Therefore, the
partial derivative in the SMRNN converges less fast to zero, that is, it vanishes slower
than in an SRN.

Concerning the segment length d, the SMRNN turns into a recurrent network with
multiple hidden layers for d > T . For d = 1 one gets a recurrent network with multiple
hidden layers and multiple feedback connections. The advantage of a segmented memory
and the slower vanishing gradient occurs only if 1 < d < T . In other words, the length
of the interval d affects the performance of an SMRNN. Obviously, the optimal value for
d is task-dependent, and if it is chosen too small or too large the SMRNN fails to bridge
long time lags (Chen & Chaudhari, 2009).

77

Chapter 5

5.3 Extension of Real-Time Recurrent Learning for
Segmented-Memory Recurrent Neural Networks

Chen & Chaudhari (2009) proved the ability of SMRNNs to learn long-term dependencies
and applied it to the problem of protein secondary structure prediction. The networks
were trained by the eRTRL algorithm. In the following eRTRL is introduced in order
to derive the computational complexity of the algorithm.

Williams & Zipser (1995) showed that the original RTRL algorithm (Williams &
Zipser, 1989) has an average time complexity in order of magnitude O(n4), with n de-
noting the number of network units in a fully connected network. Therefore, most likely
eRTRL has such a huge complexity too.

5.3.1 Extension of Real-Time Recurrent Learning

In sequence processing, an error signal occurs only at the end of a sequence. Therefore,
learning is based on minimizing the sum of squared errors at the end of a sequence of N
segments,

E(t) =

{ ∑nz

k=1
1
2 (zk (t)− vk (t))

2 if t = Nd,
0 otherwise,

(5.13)

where vk(t) is the target value and zk(t) is the actual output of the kth unit in the
output layer. Every network parameter P ∈ {W xu

ki ,W
xx
kj ,W

yx
ki ,W

yy
kj ,W

zy
kj , xk(0), yk(0)}

is initialised with small random values and then updated according to the gradient
information

∆P = −α
∂E(t)

∂P
+ η∆′P (5.14)

with learning rate α and the momentum term η. The value ∆′P is the variation of P in
the previous iteration. Note that the initial states of the context layer on segment and
symbol level y(0) and x(0) are also adapted during learning.

Learning Output Layer Weights with Backpropagation of Error

The change in the output layer weights W zy
kj can be calculated in one single step following

the standard backpropagation algorithm

∆W zy
kj =

∂E(t)

∂W zy
kj

= (zk(t)− vk(t)) f
′
net (a

z
k(t)) yj(t), (5.15)

= ek(t) f
′
net (a

z
k (t)) yj(t), (5.16)

= δzk(t) yj(t). (5.17)

78

Learning Long-Term Dependencies in Recurrent Neural Networks

The local error at output unit k is calculated as difference between the unit’s output
and target value

ek(t) = zk(t)− vk(t). (5.18)

Weighted with the derivative of the activation function at the synaptic input one gets the
error signal for the connections from the second hidden layer towards the corresponding
unit in the output layer

δzk(t) = ek(t) f
′
net (a

z
k(t)) . (5.19)

Here, azk(t) denotes the synaptic input of output unit k and the δk(t) is a short hand
for ∂E(t)/∂ak(t), representing the sensitivity of E(t) to small changes of the kth unit
activation.

Learning Weights in the Segment Level SRN

The derivatives of E(t) with respect to other parameters need much more computation.
The segment level SRN and the symbol level SRN are treated as subnetworks that are
trained according to the RTRL algorithm (Williams & Zipser, 1989). The error signal
for the segment level subnetwork is the backpropagated error from the output layer.
Hence, the derivatives of E(t) with respect to the weights and the initial state of the
layers is given by

∂E(t)

∂P
=

nz∑

c=1

δzc

ny∑

b=1

W zy
cb

∂yb(t)

∂P
. (5.20)

The term δzc weighted withW zy
cb is the error signal for the segment level subnetwork which

is used to calculate the weight changes. The derivative of the hidden layer outputs with
respect to parameter P is computed in a recursive way.

At time t > 0, the derivatives of yb(t) with respect to W yy
kj , W yx

ki , and yk(0) are
calculated using the following equations:

∂yb(t)

∂W yy
kj

= f ′
net

(
ayb (t)

)

[
ny∑

a=1

W yy
ba

∂ya(t− 1)

∂W yy
kj

+ δ(b, k)yj(t− 1)

]

, (5.21)

∂yb(t)

∂W yx
ki

= f ′
net

(
ayb (t)

)

[
ny∑

a=1

W yy
ba

∂ya(t− 1)

∂W yx
ki

+ δ(b, k)xi(t)

]

, (5.22)

∂yb(t)

∂yk(0)
= f ′

net

(
ayb (t)

)

[
ny∑

a=1

W yy
ba

∂ya(t− 1)

∂yk(0)

]

. (5.23)

Here, δ(b, k) denotes the Kronecker delta with δ(b, k) = 1 if b = k and 0 otherwise.

79

Chapter 5

Learning Weights in the Symbol Level SRN

For the training of the symbol level SRN, the derivatives of yb(t) with respect to W xx
kj ,

W xu
ki , and xk(0) are calculated. This is necessary for the gradient computation in Equa-

tion 5.20. They are given as follows:

∂yb(t)

∂P
= f ′

net

(
ayb (t)

)

[
ny∑

a=1

W yy
ba

∂ya(t− 1)

∂P
+

nx∑

a=1

W yx
ba

∂xa(t)

∂P

]

(5.24)

with P ∈ {W xx
kj ,W

xu
ki , xk(0)}.

The derivatives of xa(t) with respect to W xx
kj , W

xu
ki , and xa(0) are also calculated in a

recursive way:

∂xa(t)

∂W xx
kj

= f ′
net (a

x
a(t))

[
nx∑

b=1

W xx
ab

∂xb(t− 1)

∂W xx
kj

+ δ(a, k)xj(t− 1)

]

, (5.25)

∂xa(t)

∂W xu
ki

= f ′
net (a

x
a(t))

[
nx∑

b=1

W xx
ab

∂xb(t− 1)

∂W xu
ki

+ δ(a, k)ui(t)

]

, (5.26)

∂xa(t)

∂xk(0)
= f ′

net (a
x
a(t))

[
nx∑

b=1

W xx
ab

∂xb(t− 1)

∂xk(0)

]

. (5.27)

They are applied to Equation 5.24 and yield:

∂yb(t)

∂W xx
kj

= f ′
net

(
ayb (t)

)

[
ny∑

a=1

W yy
ba

∂ya(t− 1)

∂W xx
kj

+

nx∑

a=1

W yx
ba

∂xa(t)

∂W xx
kj

]

, (5.28)

∂yb(t)

∂W xu
ki

= f ′
net

(
ayb (t)

)

[
ny∑

a=1

W yy
ba

∂ya(t− 1)

∂W xu
ki

+

nx∑

a=1

W yx
ba

∂xa(t)

∂W xu
ki

]

, (5.29)

∂yb(t)

∂xk(0)
= f ′

net

(
ayb (t)

)

[
ny∑

a=1

W yy
ba

∂ya(t− 1)

∂xk(0)
+

nx∑

a=1

W yx
ba

∂xa(t)

∂xk(0)

]

. (5.30)

Initial derivatives ∂yb(t)/∂P and ∂xa(t)/∂P

As the derivatives of the hidden layer outputs x(t) and y(t) with respect to the param-
eters P are calculated in a recursive way, initial values have to be defined. At the very
beginning t = 0 the initial derivatives with respect to the initial states in Equations 5.27
and 5.23 are

∂xa(t)

∂xk(0)
= δ(a, k), (5.31)

∂yb(t)

∂yk(0)
= δ(b, k), (5.32)

80

Learning Long-Term Dependencies in Recurrent Neural Networks

where δ(a, k) denotes the Kronecker delta with δ(a, k) = 1 if a = k, and 0 otherwise.
That is, the output of a unit at t = 0 is only sensitive to its own initial state at this
point in time. The initial derivatives with respect to the weights are set to zero

∂xa(t)

∂P
= 0 with P ∈ {W xu

ki ,W
xx
kj }, (5.33)

∂yb(t)

∂P
= 0 with P ∈ {W xu

ki ,W
xx
kj ,W

yx
ki ,W

yy
kj , xk(0)}. (5.34)

This implies that the first output of the hidden layers is independent of the initial weights.

5.3.2 Computational Complexity of Extended Real-Time Recurrent
Learning

After the description of eRTRL, as it was proposed by Chen & Chaudhari (2004), the
computational complexity of the algorithm shall be derived. For this purpose, the exact
computational complexity Θ (f(n)), that is, the number of operations needed, and the
class of complexity O (f(n)), are distinguished. The class of complexity is the order of
magnitude of the function of interest f(n).

In the learning algorithm, the most prominent computation is a form of inner prod-
uct where additions and multiplications occur equally often. These operations will be
counted in the following. The computational cost for the forward processing of the net-
work is ignored, as it is independent of the learning algorithm and much smaller than
the cost for the gradient computation. For the same reason, the amount of computations
needed to actually update the weights is ignored. The computational complexity of the
learning algorithm is solely the computational requirement to calculate the gradient of
the error with respect to the network parameter ∂E/∂P . As an error signal is only
available at the end of a sequence, the number of operations needed to compute the
error gradients for a single sequence is determined.

The number of operations needed to compute the change in the output layer weights
Wzy can be read from Equation 5.16. One multiplication is needed to compute
ek(t) f

′
net (a

z
k(t)) and one for the result to be multiplied with yj(t). Further this has to

be done for all nz · ny connections, which leaves us with

Θ

(
∂E(t)

Wzy

)

= 2nynz. (5.35)

For all other parameters of the network, we have to perform the computation according
to Equation 5.20, which costs

Θ

(
∂E(t)

∂P

)

= 2nz + nz

[

2ny + nyΘ

(
∂yb(t)

∂P

)]

(5.36)

operations.

81

Chapter 5

Segment Level Parameters The derivatives of yb(t) with respect to the segment
level parameters W yy

kj , W
yx
ki , and yk(0) are determined by Equation 5.21, 5.22, and 5.23.

This equations are defined recursively, such that the length of the sequence influences
the amount of computational steps, which is

Θ

(

∂yb(t)

∂W yy
kj

)

= (2ny + 3)(t− 1), (5.37)

Θ

(
∂yb(t)

∂W yx
ki

)

= (2ny + 3)(t− 1), (5.38)

Θ

(
∂yb(t)

∂yk(0)

)

= (2ny + 1)(t− 1). (5.39)

Symbol Level Parameters The symbol level derivatives of yb(t) with respect to the
parameters W xx

kj , W xu
ki , and xk(0) are determined by Equations 5.28, 5.29 and 5.30.

Again, they are defined recursively and their computational complexity depends on the
number of time steps. We end up with

Θ

(

∂yb(t)

∂W xx
kj

)

=

[

2 + 2ny + 2nx + nxΘ

(

∂xa(t)

∂W xx
kj

)]

(t− 1), (5.40)

Θ

(
∂yb(t)

∂W xu
ki

)

=

[

2 + 2ny + 2nx + nxΘ

(
∂xa(t)

∂W xu
ki

)]

(t− 1), (5.41)

Θ

(
∂yb(t)

∂xk(0)

)

=

[

2 + 2ny + 2nx + nxΘ

(
∂xa(t)

∂xk(0)

)]

(t− 1) (5.42)

operations, where

Θ

(

∂xa(t)

∂W xx
kj

)

= 2nx + 3, (5.43)

Θ

(
∂xa(t)

∂W xu
ki

)

= 2nx + 3, (5.44)

Θ

(
∂xa(t)

∂xk(0)

)

= 2nx + 1. (5.45)

Replacement of Θ(∂yb(t)/∂P) in Equation 5.36 with the values of Equations 5.37-5.42
gives the number of operations needed for a single element in P . To get the total number

82

Learning Long-Term Dependencies in Recurrent Neural Networks

of operations we have to multiply the result with the number of elements of P which is

Θ

(
∂E(t)

∂Wyy

)

= Θ

(

∂E(t)

∂W yy
kj

)

· n2
y, (5.46)

Θ

(
∂E(t)

∂Wyx

)

= Θ

(
∂E(t)

∂W yx
ki

)

· nynx, (5.47)

Θ

(
∂E(t)

∂y(0)

)

= Θ

(
∂E(t)

∂yk(0)

)

· ny, (5.48)

Θ

(
∂E(t)

∂Wxx

)

= Θ

(

∂E(t)

∂W xx
kj

)

· n2
x, (5.49)

Θ

(
∂E(t)

∂Wxu

)

= Θ

(
∂E(t)

∂W xu
ki

)

· nxnu, (5.50)

Θ

(
∂E(t)

∂x(0)

)

= Θ

(
∂E(t)

∂xk(0)

)

· nx. (5.51)

As a last step we sum up the amount of operations needed for every parameter in the
network

Θ

(
∂E(t)

∂P

)

=
∑

Pi

Θ

(
∂E(t)

∂Pi

)

(5.52)

with P denoting the set of network parameters. The resulting polynomial expression is
somewhat complex

Θ

(
∂E(t)

∂P

)

= 6nxnynz + 2ny
4nzt− 2nxny

3nz − nxny
2nz + ny

2nzt

+ 5ny
3nzt+ 4nx

2nynz + 2nxnunz + 2nxny
3nzt

+ 4nxnunynz + 3nxny
2nzt+ 2nxnunznynx (t− 1)ny (t− 1)

+ 5nx
2nznynx (t− 1) + 2nxnznyny (t− 1)

+ 3nxnznynx (t− 1) + 2nx
2nznyny (t− 1)

+ 2nxnznynx (t− 1)ny (t− 1) + 4nynz + 2nxnz

+ 2nx
2nznynx (t− 1)ny (t− 1) + 2nxnunznyny (t− 1)

+ 5nxnunznynx (t− 1) + 3ny
2nz − 3ny

3nz − 2ny
4nz

+ 2nx
2nz (5.53)

and for the sake of clarity we may assume n = nu = nx = ny = nz

Θ

(
∂E(t)

∂P

)

= −4n5 + 4n5t+ 8n4t+ 4n4 (n (t− 1))2

+ 14n4n (t− 1) + 4n4 + 2n3 (n (t− 1))2

+ 5n3n (t− 1) + n3t+ 13n3 + 6n2 (5.54)

83

Chapter 5

The dominating term in this sum is the polynomial 4n4 (n (t− 1))2. It depends on
t, which is the length of the sequence that is processed. Therefore, it is reasonable to
assume t ≫ 1 such that 4n4 (n (t− 1))2 ≈ 4n6t2. This means, for a sequence of N
segments of length d, the computational cost for the weight update according to eRTRL
can be estimated with

O
(
∂E(t)

∂P

)

= 4n6(Nd)2. (5.55)

As one can see, the amount of operations required to train an SMRNN with eRTRL
rises unreasonably with the number of units in the network layers n.

84

Learning Long-Term Dependencies in Recurrent Neural Networks

5.4 Extension of Backpropagation Through Time for
Segmented-Memory Recurrent Neural Networks

The high computational complexity of eRTRL makes it impractical for applications
where large networks are used (cf. Equation 5.55). In the following, an extension for
the BPTT algorithm (Werbos, 1990) is introduced, which has a much smaller time
complexity. Real-Time BPTT is adapted to SMRNNs, that is, the error at the output
at the end of a sequence is used instantaneously for weight adaptation of the network.

5.4.1 Extension of Backpropagation Through Time

Learning is based on minimizing the sum of squared errors at the end of a sequence of
N segments (cf. Equation 5.13),

E(t) =

{ ∑nz

k=1
1
2 (zk(t)− vk(t))

2 if t = Nd,
0 otherwise,

(5.56)

where vk(t) is the target value and zk(t) is the actual output of the kth unit in the out-
put layer. The error is propagated back through the network and also back through
time to adapt the weights. Further, it is not reasonable to keep the initial states
y(0) = fnet(a

yy(0)) and x(0) = fnet (a
xx(0)) fixed. Thus, the initial activations ayy(0)

and axx(0) are also learnt. Here, the upper indices of the activations refer to the corre-
sponding layer and a lower index to the single units. For example, ayxk is the activation
at the kth unit in the second hidden layer that results from connections from the first
hidden layer, which is simply ayxk (t) =

∑nx

i W yx
ki xi(t). The gradient of E(t) can be

computed using the injecting error

ek(t) = zk(t)− vk(t). (5.57)

Applying backpropagation, we compute the delta error. Here δk(t) is a short hand for
∂E(t)/∂ak representing the sensitivity of E(t) to small changes of the kth unit activation.
The deltas for the output units δzy, second hidden layer units δyy , and first hidden layer
units δyx at the end of a sequence (t = Nd) are

δzyk (t) = f ′
net

(
azyk (t)

)
ek(t), (5.58)

δyyk (t) = f ′
net

(
ayyk (t)

)
nz∑

i=1

W zy
ik δzyi (t), (5.59)

δyxk (t) = f ′
net

(
ayxk (t)

)
nz∑

i=1

W zy
ik δ

zy
i (t). (5.60)

At that point we enroll the SMRNN on segment level to propagate the error back in
time. The state of the second hidden layer changes only at the end of a segment t = nd
and n = 0, . . . , N − 1. Therefore, the delta error for the second hidden layer, and first

85

Chapter 5

hidden layer units results in

δyyk (nd) = f ′
net

(
ayyk (nd)

)
ny∑

i=1

W yy
ik δyyi ((n + 1)d) , (5.61)

δyxk (nd) = f ′
net

(
ayxk (nd)

)
ny∑

i=1

W yy
ik δyyi ((n+ 1)d) . (5.62)

Once the computation was performed down to the beginning of the sequence (t = 0),
the gradient of the weights and initial activation on segment level is computed by

∆W zy
ij = δzyi (Nd)yj(Nd), (5.63)

∆W yy
ij =

N∑

n=1

δyyi (nd)yj ((n− 1)d) , (5.64)

∆W yx
ij =

N∑

n=2

δyxi (nd)xj ((n− 1)d) , (5.65)

∆ayyi = δyyi (0). (5.66)

For the adaptation of the weights on symbol level we apply the BPTT procedure repet-
itively for every time step τ = 0, . . . , d for every segment of the sequence. That is, for
the end of a segment (τ = d)

δxxk (d) = f ′
net (a

xx
k (d))

ny∑

i=1

W yx
ik δyxi (d), (5.67)

δxuk (d) = f ′
net (a

xu
k (d))

ny∑

i=1

W yx
ik δyxi (d). (5.68)

Further, for τ < d we get

δxxk (τ) = f ′
net (a

xx
k (τ))

nx∑

i=1

W xx
ik δxxi (τ + 1), (5.69)

δxuk (τ) = f ′
net (a

xu
k (τ))

nx∑

i=1

W xx
ik δxxi (τ + 1). (5.70)

When the computation was performed to the beginning of a segment (τ = 0), the
gradient of the weights and initial activation on symbol level are computed by

∆W xx
ij =

d∑

τ=1

δxxi (τ)xj(τ − 1), (5.71)

∆W xu
ij =

d∑

τ=2

δxui (τ)uj(τ − 1), (5.72)

∆axxi = δxxi (0). (5.73)

86

Learning Long-Term Dependencies in Recurrent Neural Networks

Input layer

Input layer

Input layer

Input layerOutput layer

I. Sequence

 level

 error

II. Segment

 level

 error III. Symbol

 level

 error

Figure 5.3: Errorflow of the eBPTT algorithm in an SMRNN for a sequence of length
Nd. The solid arrows indicate the development of the states of the layers
in the network. The dashed arrows show the propagation of the error back
through the network and back through time.

Note that the sums in Equations 5.65 and 5.72 start at n = 2 and τ = 2 respectively.
This is due to the fact that at the beginning t = 0 the hidden layer 2 has no input from
hidden layer 1 and hidden layer 1 has no input from the input layer (cf. Figure 5.2).
Figure 5.3 illustrates the error flow in the SMRNN for one sequence of length Nd.

The computed gradients can be used right away to change the networks weights and
initial activations, respectively,

W̃ij = Wij − α∆Wij + η∆′Wij, (5.74)

where α denotes the learning rate and η the momentum term. The value ∆′Wij rep-
resents the change of Wij in the previous iteration. The gradients may also be applied
epoch-wise. That is, for an epoch of s = 1, . . . ,M sequences

W̃ij = Wij − α

(
M∑

s=1

∆Wij(s)

)

+ η∆′Wij. (5.75)

87

Chapter 5

5.4.2 Computational Complexity of Extended Backpropagation
Through Time

In order to compare eRTRL and eBPTT, the computational complexity is derived for
eBPTT in the following. The same notation as in Section 5.3.2 is used. Θ (f(n)) denotes
the exact computational complexity of the algorithm while O (f(n)) denotes the class of
complexity.

Again, the summation and multiplication are the operations of interest. Further, the
computational costs for the forward processing in the network and the actual weight
updates are ignored. They are much smaller than the cost for the gradient computation
and further, they are independent of the learning algorithm. Solely the computational
requirement to calculate the gradient of the error with respect to the network parameter
∂E/∂P is taken into account. Hence, I determine the number of operations needed to
compute the error gradients after one sequence of Nd time steps (t = 1, . . . , Nd), with
d denoting the length of a segment and N the number of segments of the sequence.

The number of operations needed to compute the change in the output layer weights
Wzy can be read from Equations 5.58 and 5.63. One multiplication is needed to compute
δzyk and one for the result to be multiplied with yj. Further, this has to be done for all
nz · ny connections, which gives

Θ (∆Wzy) = 2nynz. (5.76)

At the end of a sequence, the deltas for the first and second hidden layer are calculated
according to Equations 5.59 and 5.60, which costs

Θ
(
δyyk (t = Nd)

)
= 1 + 2nz, (5.77)

Θ
(
δyxk (t = Nd)

)
= 1 + 2nz (5.78)

operations.

Segment Level Parameters Enrolling the network on the segment level, one cal-
culates the delta errors for the hidden layers at the end of each segment t = nd and
n = 0, . . . , N . The number of computational steps needed for Equations 5.61 and 5.62
is

Θ
(
δyyk (t = nd)

)
= 1 + 2ny, (5.79)

Θ
(
δyxk (t = nd)

)
= 1 + 2ny. (5.80)

The deltas are applied to compute the gradients of the weights and initial activations on
the segment level in Equations 5.64, 5.65, and 5.66. Here,

Θ
(

∆W yy
ij

)

= Θ
(
δyyk (t = Nd)

)
+Θ

(
δyyk (t = nd)

)
· (N − 1) + 2N, (5.81)

Θ
(

∆W yx
ij

)

= Θ
(
δyxk (t = Nd)

)
+Θ

(
δyxk (t = nd)

)
· (N − 2) + 2(N − 1), (5.82)

Θ (∆ayyi) = 1 + 2ny (5.83)

operations are needed.

88

Learning Long-Term Dependencies in Recurrent Neural Networks

Symbol Level Parameters Parameters on symbol level are computed for each seg-
ment. At the end of a segment τ = d, Equations 5.67 and 5.68 are applied, while at
times τ = 0 . . . d− 1, Equations 5.69 and 5.70 are used. The computational effort is

Θ (δxxk (τ = d)) = 1 + 2ny, (5.84)

Θ (δxuk (τ = d)) = 1 + 2ny, (5.85)

Θ (δxxk (τ < d)) = 1 + 2nx, (5.86)

Θ (δxuk (τ < d)) = 1 + 2nx. (5.87)

Using this deltas the changes of the parameters on the symbol level are computed in
Equations 5.71, 5.72, and 5.73. It costs

Θ
(
∆W xx

ij

)
= Θ(δxxk (τ = d)) + Θ (δxxk (τ < d)) · (d− 1) + 2d, (5.88)

Θ
(
∆W xu

ij

)
= Θ(δxuk (τ = d)) + Θ (δxuk (τ < d)) · (d− 2) + 2(d− 1), (5.89)

Θ (∆axxi) = 1 + 2nx (5.90)

computational steps.
To get the total amount of operations needed, one has to multiply the computational

steps of a single parameter with the number of actual connections. Further, the opera-
tions on the symbol level (Equations 5.88 - 5.90) are done for each of the N segments of
the sequence. Therefore, one ends up with

Θ (∆Wyy) = Θ
(

∆W yy
ij

)

· n2
y, (5.91)

Θ (∆Wyx) = Θ
(

∆W yx
ij

)

· nynx, (5.92)

Θ (∆ayy) = Θ (∆ayyi) · ny, (5.93)

Θ (∆Wxx) = Θ
(
∆W xx

ij

)
·Nn2

x, (5.94)

Θ (∆Wxu) = Θ
(
∆W xu

ij

)
·Nnxnu, (5.95)

Θ (∆axx) = Θ (∆axxi) ·Nnx (5.96)

operations. The sum over the amount of operations needed for every parameter in the
network,

Θ

(
∂E(t)

∂P

)

=
∑

Pi

Θ

(
∂E(t)

∂Pi

)

, (5.97)

with P denoting the set of network parameters, gives the exact number of operations
needed to compute the weight updates after one sequence according to the eBPTT
algorithm

Θ

(
∂E(t)

∂P

)

= 2nzny + 2ny
2nz + 3ny

2N + 2ny
3N − 2ny

3 − 3nxny + 2nxnynz

+ 3nxnyN + 2nxny
2N − 4nxny

2 + ny + 2ny
2 + 2Nnx

2ny

+ 3Nnx
2d+ 2Nnx

3d− 2Nnx
3 − 3Nnxnu + 2Nnxnuny

+ 3Nnxnud+ 2Nnx
2nud− 4Nnx

2nu +Nnx + 2Nnx
2. (5.98)

89

Chapter 5

As this expression is as complex as it is for eRTRL in Equation 5.53, we may assume
n = nu = nx = ny = nz and get

Θ

(
∂E(t)

∂P

)

= 4n3Nd+ 2n3N − 2n3 + 6n2Nd+ 5n2N + n2 +Nn+ n. (5.99)

Here, the dominating term of the sum is 4n3Nd, such that

O
(
∂E(t)

∂P

)

= 4n3Nd (5.100)

can be considered as an estimation of the computational cost for the weight update
according to the eBPTT algorithm for a sequence of N segments of length d.

Comparing the computational costs of both learning algorithms, one can see that
eBPTT (Equation 5.100) requires much less operations than eRTRL (Equation 5.55).
The relation can be approximated with

O
(
∂E(t)

∂P

)

eRTRL

≈
[

O
(
∂E(t)

∂P

)

eBPTT

]2

. (5.101)

This fact is further illustrated in Figure 5.4, where the approximate number of oper-
ations is plotted against the number of units in the network’s layers. Note that the
y-axis is scaled logarithmically. Using 100 units in each layer of the network one needs
approximately 4 · 1016 operations with eRTRL versus 4 · 108 operations with eBPTT for
the gradient computation after a sequence of length 100.

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

n

ap
p
ro
x
im

at
e
n
u
m
b
er

of
op

er
at
io
n
s

eBPTT

eRTRL

Figure 5.4: Approximate number of operations required for the gradient computation
according to the eRTRL and eBPTT algorithm plotted over the number of
units in each layer of the network n. The length of the sequence Nd was set
to 100.

90

Learning Long-Term Dependencies in Recurrent Neural Networks

5.5 Evaluation on the Information Latching Problem

As shown in Section 5.4.2, eBPTT is highly advantageous compared to eRTRL concern-
ing the computational costs for network training. Now, their ability to deal with the
learning of long-term dependencies shall be investigated by a comparison on a benchmark
problem. For this purpose, the information latching problem is used. It was designed by
Bengio et al. (1994) to test a system’s ability to model dependencies of the output on
earlier inputs. In this context, “information latching” refers to the storage of information
in the internal states of the system for some time.

Basically, it is a sequence classification problem. The idea is to distinguish two classes
of sequences, where the class C of the sequence i1, i2, . . . , iT depends on the first L items

C(i1, i2, . . . , iT) = C(i1, i2, . . . , iL) ∈ {0, 1} with L < T. (5.102)

For the comparison, the sequences are generated from an alphabet of 26 letters (a - z),
such that the number of input neurons is 26 (1-of-N coding). A sequence is considered
to be class C = 1 if the items i1, i2, . . . , iL match a predefined string, otherwise it is
class C = 0. All items i of a sequence that are not predefined are chosen randomly from
the alphabet. Table 5.1 illustrates the problem for a sequence of length T = 22 with a
class-defining string of length L = 10.

Table 5.1: Information Latching problem for a sequence of length T = 22 with a class-
defining string of length L = 10

sequence class C

p r e d e f i n e d r a n d o m s t r i n g 1
r a n d o m s t r i o m s t r i n g a b c d 0
h d g h r t z u s z j i t m o e r v y q d f 0
p r e d e f i n e d q u k w a r n g t o h d 1

As the class label is only provided at the end of each sequence, the network needs to
bridge at least T −L time steps to relate the label to the class-defining string. So, if L is
kept fixed, the problem gets harder with increasing sequence length T . For the evaluation
a fixed string L = 50 was used. Further, the length of the sequence T was increased
gradually to test the networks ability to store the initial inputs over an arbitrary period
of time. For each sequence length T two sets for training and testing were created.
The sets were enlarged with increasing T to ensure generalisation. To determine the
algorithms’ ability to learn the task in general, 100 networks were trained with eRTRL
and eBPTT, respectively. This was done for every sequence length T . Moreover, the
sequences of the training set were shown in a random order in every epoch of the training.

The networks’ configuration and the size of the training/test sets were adopted from
Chen & Chaudhari (2004) where SMRNNs and SRNs are compared on the informa-
tion latching problem. Accordingly, the SMRNNs comprised of nu = 26 input units,
nx = ny = 10 hidden layer units, and one output unit nz = 1. Further, the length of a
segment was set to d = 15 and the sigmoidal transfer function fnet(x) = 1/ (1 + exp(−x))

91

Chapter 5

was used for the hidden and output units. The input units simply forwarded the input
data which were ∈ {−1, 1}. Initial weights were set to uniformly distributed random
values in the range of (−1, 1). The network output was assigned to one class by the
boundary at 0.5, that is,

C = 1 if z(t) ≥ 0.5 and C = 0 if z(t) < 0.5. (5.103)

Learning rate and momentum for each algorithm were chosen after testing 100 net-
works on all combinations α ∈ {0.1, 0.2, . . . , 0.9} and η ∈ {0.1, 0.2, . . . , 0.9} on the
shortest sequence T = 60. The shortest sequences were used for practical reasons,
as these require the smallest amount of samples to ensure generalisation. By that all αη-
combinations could be tested within a reasonable amount of time. Those combinations
that yielded the highest mean accuracy over 100 networks on the test set, were chosen
for the comparison on longer sequences, that is, α = 0.1, η = 0.4 for eRTRL and α = 0.6,
η = 0.5 for eBPTT. The learning rate and momentum found by this procedure are not
necessarily optimal for longer sequences with T > 60. However, as both algorithms
are compared, it need not be optimal, but comparable and be found in a reproducible
manner.

Training was stopped when the mean squared error of an epoch fell below 0.01 and
thus, the network was considered to have successfully learnt the task. For other cases,
training was cancelled after 1000 epochs. Table 5.2 shows the results for eRTRL and
eBPTT for sequences of length T from 60 to 130.

Table 5.2: eBPTT and eRTRL: Information latching problem with increasing sequence
length T and fixed predefined string (L = 50). 100 SMRNNs with parameters
nx = ny = 10, d = 15 were trained on each sequence length. The number of
successfully trained networks (#suc of 100) is shown together with the mean
value of the number of training epochs (#eps). Further, the mean accuracy
of the successfully trained networks on the test set (ACC) and its standard
deviation (STD) is shown.

T set size
eBPTT eRTRL

#suc #eps ACC STD #suc #eps ACC STD

60 50 79 230.6 0.978 0.025 100 44.3 0.978 0.025
70 80 58 285.7 0.951 0.047 100 63.9 0.861 0.052
80 100 61 215.2 0.974 0.024 100 66.2 0.862 0.088
90 150 48 240.4 0.951 0.123 100 52.4 0.940 0.044
100 150 43 241.4 0.968 0.018 100 82.1 0.778 0.065
110 300 36 250.0 0.977 0.049 100 69.6 0.868 0.052
120 400 17 305.4 0.967 0.050 100 56.7 0.950 0.040
130 500 14 177.6 0.978 0.017 96 101.4 0.896 0.078

mean 44.5 243.3 0.968 0.044 99.5 67.1 0.892 0.056

The column “#suc” in Table 5.2 clearly shows a decrease of successfully trained net-
works for eBPTT with the length of the sequences T . On the other hand, nearly all

92

Learning Long-Term Dependencies in Recurrent Neural Networks

networks were trained successfully with eRTRL. Therefore, we can state that eRTRL
is generally better able to cope with longer ranges of input-output dependencies than
eBPTT.

The third column in Table 5.2 shows the performance of successfully trained networks
on the test set (ACC). For eBPTT we observe higher accuracies than for eRTRL. It is
also reflected by the overall accuracy of 96.8% for eBPTT compared to 89.2% for eRTRL.
This implies, that successful learning with eBPTT guaranteed better generalisation.

Further, the mean number of epochs (#eps) that were needed for training is somewhat
misleading. Over the whole experiment eBPTT needs an average of 243.3 epochs for
successful training while eRTRL needs only 67.1 epochs. It is important to note that
this does not indicate that eRTRL training takes less time than eBPTT. The high
computational complexity of eRTRL (O(4n6T 2) cf. Equation 5.55) results in a much
longer computation time for a single epoch compared to eBPTT. This becomes more
and more evident with increasing network size. Figure 5.5 shows the time that is needed
to train an SMRNN for 100 epochs (T = 60, set size 50) depending on the number of
units in the hidden layers2. The time-axis is scaled logarithmically to allow a comparison
to Figure 5.4. For a network with nx = ny = 100 the training took about 3 minutes
with eBPTT and 21.65 hours with eRTRL. For larger networks the training with eRTRL
would have taken weeks, such that the experiment was stopped at nx = ny = 100 for
practical reasons.

0 100 200 400 600 800 1.000

0.25

0.5

1

5

10
15
20
25

number of neurons in hidden layers nx,ny

ti
m
e
fo
r
tr
ai
n
in
g
in

h
ou

rs

eBPTT
eRTRL

Figure 5.5: Computation time for training depending on the number of units in the
hidden layers of the network. Training lasted 100 epochs with 50 sequences
of length T = 60.

2Both algorithms were implemented in Matlab. Training was done on an AMD Opteron 8222 (3GHz),
8GB RAM, CentOS, Matlab R2011b (7.13.0.564) 64-bit.

93

Chapter 5

5.6 Discussion

This chapter showed how the concept of a segmented memory may attenuate the prob-
lem of vanishing gradients during gradient based learning in recurrent neural networks.
The SMRNN architecture implements this concept (cf. Section 5.2). Together with the
architecture, the eRTRL algorithm was proposed for the network training. Unfortu-
nately, it has a very high computational complexity, such that it is impractical for the
training of large SMRNNs (cf. Section 5.3.2).

Alternatively, eBPTT was introduced (Section 5.4). It does not have the high com-
putational costs of eRTRL, but the comparison on a benchmark problem showed that
eRTRL was generally better able to cope with the latching of information over longer
periods of time (Section 5.5). However, those networks that finally learnt the task with
eBPTT showed higher accuracies on the test set.

Altogether, the question which learning algorithm to use for a specific task strongly
depends on the character of the problem at hand. For small networks, as used for the
experiment in Table 5.2, the choice depends on the time span that has to be bridged.
If one expects the output to be dependent on inputs that are comparatively shortly
ago (T = 60, . . . , 100), eBPTT provides the better choice. There is a high chance for a
successful training of the network with a good generalisation. When the outputs depend
on inputs that appeared long ago (T > 100), the eRTRL algorithm provides the better
solution. It guarantees a successful network training where eBPTT could hardly train
the network.

In more complex problems, as speech recognition or handwriting recognition, the data
has not such compact representation as the strings in the information latching task. To
be able to learn from such data, the network size, that is, the number of processing
units, has to be increased. As shown in Figure 5.5, eRTRL becomes simply impractical
for such large networks (training time: 3 minutes eBPTT vs. 21.65 hours eRTRL where
nx = ny = 100). In these cases eBPTT is the only viable choice of a training algorithm.

94

6 Unsupervised Pre-Training for
Segmented-Memory Recurrent Neural
Networks

Contents

6.1 Deep Neural Networks . 96

6.2 Auto-Encoder Pre-Training of Segmented-Memory Recur-
rent Neural Networks . 99

6.3 Pre-Trained SMRNNs on the Information Latching Problem 101

6.3.1 Effect of the auto-encoder pre-training 103

6.3.2 Alternative Context Weight Initialisation 106

6.4 Discussion of the Pre-Training Procedure 110

T
he previous chapter introduced two learning algorithms for SMRNNs. An eval-
uation on the information latching problem (cf. Section 5.5) showed somewhat
conflicting properties between both algorithms. With eRTRL the training was

most likely successful for any timespan that had to be bridged between an input and
its corresponding output. However, the generalisation, that is, the accuracy on the test
set, was mediocre. For eBPTT on the other hand, we observed high accuracies on the
test set while the probability of a successful training decreased dramatically for longer
input-output dependencies (cf. Table 5.2).

The computational complexity of eRTRL makes it impractical for large networks
(cf. Section 5.3.2), which most likely are required in complex applications. eBPTT has
a much smaller computational complexity (cf. Section 5.4.2). Therefore, the focus is put
on the improvement of eBPTT’s ability to robustly latch longer ranges of input-output
dependencies in the following. The approach is inspired by the attempts in the field of
deep learning. Research on deep architectures aims at learning feature hierarchies with
features from higher levels, formed by the composition of lower level features. Thereby,
a system which automatically learns features at multiple levels of abstraction should be
able to learn a complex function, mapping the input to the output directly from data
(Bengio, 2009).

In the following a short introduction to the research on deep neural networks is given,
which motivates the idea of unsupervised pre-training. Thereafter, possible ways to
pre-train an SMRNN are described, for instance, as a stack of auto-encoder SRNs. The
approaches are evaluated on the previously introduced information latching problem

95

Chapter 6

(cf. Section 5.5). Results show that the pre-training significantly improves eBPTT’s
ability to cope with the learning of long-term dependencies.

The auto-encoder pre-training procedure, together with an evaluation on the informa-
tion latching problem, was separately published as a contribution to the “European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine Learn-
ing” (Glüge et al., 2013)1.

6.1 Deep Neural Networks

The following overview shortly describes the main ideas of deep architectures and unsu-
pervised pre-training. For an exhaustive introduction into the field of deep architectures
and their training methods I suggest the article of Bengio (2009).

Following Bengio (2009), the depth of an architecture describes the number of levels
of non-linear operations in the function that is composed during learning. Architectures
with one, two or three levels are called shallow architectures and architectures with more
than three levels are referred as deep architectures. In this sense, our brain is a deep
architecture, which inspired researchers to train deep multi-layer neural networks (Utgoff
& Stracuzzi, 2002; Bengio & LeCun, 2007).

Experimental results (Bengio et al., 2007; Erhan et al., 2009) show that the training
of deep architectures is considerably more difficult as compared to shallow architectures.
Using the standard random weight initialization, deep architectures generally produce
poor training and generalization results (Bengio et al., 2007). This suggests, that the su-
pervised gradient-based training of deep multi-layer networks gets stuck in local minima
or plateaus. The effect gets even worse the deeper the architecture is.

Hinton et al. (2006) were the first who successfully trained a deep architecture named
Deep Belief Network. They employed an unsupervised learning algorithm that trains
only one layer at a time, a Restricted Boltzman Machine (Freund & Haussler, 1994).
Subsequently, related algorithms using auto-encoders were proposed (Bengio et al., 2007;
Ranzato et al., 2007). More recently, algorithms were introduced using neither Restricted
Boltzman Machines nor auto-encoders (Mobahi et al., 2009; Weston et al., 2008). All
approaches exploit the same principle, which is: unsupervised learning helps in the
training of intermediate levels of representations and can be done locally at each level
(Bengio, 2009).

In practice, each layer is pre-trained one after another starting at the lowest level
with the actual input data (Hinton et al., 2006). The whole idea can be summarised as
follows: first, the lowest layer is trained with an unsupervised learning algorithm (e.g.
auto-encoder) to receive initial weights for this layer. Afterwards, the output of this layer
is used as input for the next layer, which is trained in a similar way. This procedure
may be repeated for several layers, until the whole network is initialised. Then, the
network can be fine-tuned, according to some supervised training algorithm. Figure 6.1
illustrates the training procedure for a deep neural network with stacked auto-encoders.

1Parts of text in the Sections 6.2 and 6.3 are taken verbatim from this article.

96

Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks

The advantage of such pre-training was demonstrated in several statistical comparisons
(Larochelle et al., 2007, 2009; Bengio, 2009; Erhan et al., 2009).

Note that only the input weights of each auto-encoder are used as initial weights after
pre-training. Further, the representation of the inputs that were learnt in each layer,
serves as input for the next layer. This layer, again, learns a representation of its input
data, which results in a representation of the representation of the input data of the
layer below. Following this scheme, higher-level features can evolve during pre-training
of a deep architecture.

Figure 6.1: Stacked Auto-Encoders: training of a multi-layered deep neural network.
During pre-training, each layer’s weights are initialised separately by training
as an auto-encoder (W1,W2, . . . ,WN). The first layer is trained with the
actual input data x1. The output of each layer serves as input for the layer
above (x2,x3, . . . ,xN). Finally, the obtained weights are used as starting
points for the supervised training on the actual target values v.

The success of layer-local unsupervised pre-training may be due to several effects.
Generally, it may help to guide the parameters of the layers towards better regions in
parameter space. Of course, the question “What are ‘better regions’?” arises in this
context. To be more specific, unsupervised pre-training has a regularising effect that

97

Chapter 6

leads to regions in the parameter space where solutions are allowed. That means, the
solution is “near” to those of the unsupervised training, that is, near a solution that
captures statistical structure of the input (Erhan et al., 2009). Experiments in Erhan
et al. (2009) show that the effect of unsupervised pre-training is an advantage mostly for
the lower layers of a deep architecture, as these layers are poorly trained with random
parameter initialization.

With a better initialization of the lower layers by a pre-training, the training and
generalization error during the supervised training can be reduced significantly. Bengio
(2009) hypothesizes that in a “well trained” deep neural network the hidden layers form
a good representation of the input data, which helps in obtaining good predictions.
Further, the pre-training can be seen as a way to decompose the problem into sub-
problems with different levels of abstraction. One layer of unsupervised learning could
extract features which are regarded as low-level features, due to the limited capacity
of one layer. Hence, learning a second layer using the previous layer’s outputs should
result in slightly higher-level features. Therefore, one could imagine that higher-level
abstractions of the input emerge in a deep architecture (Bengio, 2009).

Generally, training an auto-encoder can be regarded to be easier than training a
Restricted Boltzman Machine. Therefore, they have widely been used as building blocks
of deep neural networks (Bengio et al., 2007; Larochelle et al., 2007; Ranzato et al.,
2007; Vincent et al., 2008). An auto-encoder is trained to encode the input x into some
representation f(x), such that the input can be reconstructed from that representation.
Accordingly, the target output of an auto-encoder is the input itself. The hope is that the
evolving representation f(x) captures the main factors of variation in the data (Bengio,
2009).

Note that the term ‘unsupervised’ in the context of pre-training does not indicate
that the training of the auto-encoder itself is unsupervised as defined in Section 2.5.
Actually, the training of an auto-encoder is supervised, as target values are provided
during training. The motivation to call it nevertheless ‘unsupervised’ stems from the
fact, that the input data itself is used as target during pre-training. The original target
data is only used in the second step, when the completely initialised network is trained
(cf. Figure 6.1).

98

Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks

6.2 Auto-Encoder Pre-Training of Segmented-Memory
Recurrent Neural Networks

If one regards an SMRNN as a stack of two SRNs (cf. Figure 5.1), the idea of a layer-
local pre-training seems quite plausible. Even though the architecture itself may not be
regarded as deep in the conventional way, the recurrent character of a hidden–context
layer pair allows the composition of a complex non-linear operation. Therefore, such
layer-pair can be viewed as being deep in itself. Consequently, unfolded in time, a
recurrent network can be seen as a very deep multi-layer neural network.

The positive results reported with the pre-training of deep neural networks (cf. Sec-
tion 6.1) give rise to the hope that SMRNNs could also benefit from a pre-training
procedure. Generally, it should lead to initial weights that lie in a region of the param-
eter space were it is more likely to find a solution. Therefore, a pre-training should help
in rising the probability of a successful training with eBPTT.

Following the idea of layer-local pre-training, the single SRNs on the symbol and
segment level are separately trained as auto-encoders. In that way, the procedure does
not differ much from the pre-training of multi-layer neural networks, as described above.
In an SMRNN the segment level processes the input of the symbol level only at the
end of a segment. Hence, only these symbol level outputs are used for the segment
level pre-training. So, for segment length d every dth output of the symbol level auto-
encoder SRN is used for the segment level pre-training. Hereafter, the initialised weights
are used as starting points for the supervised training. Figure 6.2 illustrates this pre-
training procedure. Such pre-training is independent of the learning algorithm that is
used in the supervised training and vice versa.

99

Chapter 6

Figure 6.2: Auto-Encoder pre-training of an SMRNN. During pre-training, each
SRN’s weights are initialised separately by training as an auto-encoder
(Wxu,Wxx,Wyx,Wyy). Thereby, the output of the symbol level SRN serves
as input for the segment level SRN (x(t = nd) with n = 1, . . . , N), which is
trained in the same way. The weights obtained during pre-training are used
as starting points for the supervised training on the actual desired targets v.

100

Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks

6.3 Pre-Trained SMRNNs on the Information Latching
Problem

To reveal the effect of an auto-encoder pre-training on SMRNNs, the information latching
problem as described in Section 5.5 is used. Again, a fixed string with length L = 50
was used, and the length of the sequence T was increased gradually. For each sequence
length T , two sets for training and testing were created and enlarged with increasing
T . Further, 100 networks were pre-trained and randomly initialised, respectively. This
was done for every sequence length T . Moreover, the sequences of the training set were
shown in a random order in every epoch of the training. The random initial weights
were set to uniformly distributed random values in the range of (−1, 1). The eBPTT
algorithm was applied in the supervised learning phase.

Pre-training of the symbol and segment level SRN was performed as described in Sec-
tion 6.2 and depicted in Figure 6.2. Each network was trained to reproduce its input
at the output with the scaled conjugate gradient backpropagation algorithm (Møller,
1993). For the pre-training, as for the supervised training afterwards, the same data was
used. From this training material, 80% were shown for pre-training and 10% for testing
and validation of the pre-training, respectively. During pre-training, the sequences were
presented one after another, such that the sequential structure of the material was pre-
served. This is desirable, as SRNs are able to learn the temporal structure of the data
implicitly, even though auto-encoders in general learn a direct input-output mapping
(cf. Chapter 4). Pre-training was stopped after 1000 epochs or when the validation per-
formance has increased more than six times since the last time it decreased. Such early
stopping is widely used, because it is comparably easy to implement and was reported
to be superior to regularization methods like Weight Decay (Werbos, 1988) and Weight
Elimination (Chauvin, 1990), for instance in Finnoff et al. (1993). A further discussion
on the selection of a good stopping criterion and experimental results for different criteria
is being provided in Prechelt (1998).

After pre-training the weights (Wxu,Wxx,Wyx,Wyy) were used for the supervised
eBPTT training on the information latching problem.

The same network configuration as in Section 5.5 was used for the experiment. That is,
nu = 26 input units, nx = ny = 10 hidden layer units, and one output unit nz = 1. The
input units, again, simply forwarded the input data u(t) ∈ {−1, 1}. Further, the length
of a segment was set to d = 15, and the output layer used the sigmoidal transfer function
f(x) = 1/ (1 + exp(−x)). Unlike in Section 5.5, the hyperbolic tangent f(x) = tanh(x)
was applied in the hidden layers. This is advantageous as a symmetric activation function
about 0 allows error gradients to flow backwards more easily (Glorot & Bengio, 2010).
However, the hyperbolic tangent was not used in the comparison of eBPTT and eRTRL
in Section 5.5, as it was intended to use exactly the same network structure that was
used in the original article (Chen & Chaudhari, 2009), which introduced eRTRL. Again,
the network output was assigned to one class by the boundary at 0.5, that is,

C = 1 if z(t) ≥ 0.5 and C = 0 if z(t) < 0.5. (6.1)

101

Chapter 6

With the change of the transfer functions in the hidden layers, the optimal combi-
nation of learning rate and momentum for the eBPTT training had to be determined
again. Therefore, 100 randomly initialised networks were trained with each combination
α ∈ {0.1, 0.2, . . . , 0.9} and η ∈ {0.1, 0.2, . . . , 0.9} on the training set of the shortest se-
quence T = 60. The combination α = 0.2 and η = 0.1 yielded the highest mean accuracy
on the test set and thus, was used in the further experiment.

The supervised eBPTT training was stopped when the mean squared error of an epoch
fell below 0.01 and thus, the network was considered to have successfully learnt the task.
For other cases, training was cancelled after 1000 epochs.

Table 6.1 shows the results for pre-trained and randomly initialised SMRNNs on the
information latching problem with fixed predefined string of length L = 50, and increas-
ing sequence length T . 100 SMRNNs were trained and tested on each sequence length
T from 60 to 130.

Table 6.1: Randomly initialised and pre-trained SMRNNs on the information latching
problem with increasing sequence length T and fixed predefined string (L =
50). 100 SMRNNs with parameters nx = ny = 10, d = 15 were trained on
each sequence length. The number of successfully trained networks (#suc of
100) is shown together with the mean value of the number of training epochs
(#eps). Further, the mean accuracy of the successfully trained networks on
the test set (ACC) and its standard deviation (STD) is shown.

T set size
randomly initialised pre-trained as auto-encoder

#suc #eps ACC STD #suc #eps ACC STD

60 50 80 122.6 0.966 0.061 89 53.7 0.964 0.040
70 80 83 80.3 0.962 0.040 98 43.8 0.975 0.046
80 100 65 123.3 0.968 0.038 90 37.3 0.981 0.019
90 150 41 180.3 0.978 0.022 85 26.8 0.984 0.017
100 150 37 147.1 0.971 0.023 88 28.6 0.984 0.017
110 300 26 204.2 0.980 0.010 73 24.5 0.982 0.055
120 400 16 239.6 0.954 0.123 56 34.1 0.991 0.016
130 500 6 194.8 0.987 0.011 59 32.5 0.990 0.011

mean 44.5 161.5 0.972 0.041 79.8 35.2 0.981 0.028

As in the previous chapter in Table 5.2, in the column “#suc” one can observe the
decrease of successfully trained networks with an increase of the length of the sequences
T . This general trend holds for randomly initialised as well as for pre-trained SMRNNs.
However, the pre-trained networks do not suffer from that behaviour as much as the
randomly initialised ones. For the longest sequence T = 130, 59 out of 100 networks
were trained successfully when pre-trained, while only 6 out of 100 were obtained from
random initialisation. The accuracy on the test set (ACC) and its standard deviation
(STD) does not differ significantly for both cases, and confirms the values for eBPTT in
Chapter 5 (cf. Table 5.2).

102

Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks

Concerning the training time of pre-trained networks, significantly less epochs (#eps)
for the supervised training were needed. At an average 161.5 epochs were neede from
random initial weights compared to 32.5 epochs from pre-trained weights. Nevertheless,
one has to notice, that the whole training procedure consists of a pre-training plus
supervised training. Therefore, the time that is saved during the supervised training is
partly spend on the pre-training procedure. So, the total saving of time for the training
strongly depends on the time complexity of the learning algorithm that is used for the
auto-encoder pre-training.

Nonetheless, the pre-training led to a distinct increase of the number of successfully
trained networks, especially for long input-output dependencies, that is, T ≥ 90.

6.3.1 Effect of the auto-encoder pre-training

To understand the effect of the pre-training, it is useful to have a look at the network
weights. The weights are first of all initialised uniformly distributed in the interval
(−1, 1), such that the observation of a single network is somewhat unreliable for a general
statement. Nevertheless, statistics over 100 networks yields a rather universal trend
caused by the pre-training procedure. Figure 6.3 shows the weight distribution of the
single weight matrices for random initialised (red) and pre-trained (blue) SMRNNs. The
distribution of the random weights (red bars) taken by itself is of limited interest, as it
is known a priori. It is plotted first and foremost for the comparison with the weight
distribution after pre-training (blue bars). Even though Figure 6.3 shows the weight
distributions for the SMRNNs trained on the information latching problem with sequence
length T = 120, the same behaviour was observed for all other lengths T = 60, . . . , 130.

For the direct forward connections of the SMRNNs Wxu (Figure 6.3a) and Wxy

(Figure 6.3c), pre-training shifted the weights towards a distribution which appears
Gaussian-shaped with a mean near zero. Compared to the initial random distribution,
most of the weights attained smaller absolute values around zero, while a small number
of weights attained bigger absolute values, grater than 1 or smaller than −1. This
leads to the hypothesis, that the representation of the input in the hidden layers after
pre-training is based on a rather small number of weights with large absolute values.

Interestingly, weights in the recurrent connections on the symbol level and segment
level, that is, Wxx (Figure 6.3b) and Wyy (Figure 6.3d), show a different trend. They
are still uniformly distributed after pre-training but in a smaller interval. This means, at
average, pre-training uniformly lowered the absolute value of all weights in the context
layer. In other words, the weights tended to zero. According to the study in Chapter 4
vanishing context weights indicate that no temporal dependency in the input has been
learnt (cf. Section 4.2 and Figure 4.7).

103

Chapter 6

−3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

F
re
q
u
en

cy

Wxu

pre-trained

random init.

(a) Input–hidden1 weights

−1.5 −1 −0.5 0 0.5 1 1.5
0

200

400

600

800

1000

1200

1400

F
re
q
u
en

cy

Wxx

(b) Context1–hidden1 weights

−1.5 −1 −0.5 0 0.5 1 1.5
0

500

1000

1500

2000

2500

F
re
q
u
en

cy

Wxy

(c) Hidden1–hidden2 weights

−1.5 −1 −0.5 0 0.5 1 1.5
0

100

200

300

400

500

600

700

800

900

1000

F
re
q
u
en

cy

Wyy

(d) Context2–hidden2 weights

Figure 6.3: Each plot shows the weight distribution of a certain weight matrix, averaged
over 100 SMRNNs before and after pre-training, that is, random initialised
(red) and pre-trained (blue). Red bars are displayed thinner than blue bars
to facilitate a direct comparison. The SMRNNs were pre-trained on the
information latching problem with sequences of length T = 120.

The vanishing context weights may indicate that learning during pre-training mainly
takes place in the direct forward connections of the network (Wxu, Wxy). This hypoth-
esis was tested by setting the context weights Wxx and Wyy to zero after pre-training.
Then, the supervised training was done as before. Table 6.2 shows the results of this
experiment.

104

Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks

Table 6.2: Pre-trained SMRNNs with and without reset of the context weights: Infor-
mation latching problem with fixed predefined string L = 50 and increasing
sequence length T . 100 pre-trained SMRNNs with and without a reset of
their context weights (Wxx, Wyy) to zero were trained with eBPTT for each
sequence length T . The number of successfully trained networks (#suc of
100) is shown together with the mean value of the number of training epochs
(#eps). Further, the mean accuracy of the successfully trained networks on
the test set (ACC) and its standard deviation (STD) is shown.

T set size
pre-trained as auto-encoder

pre-trained as auto-encoder and
context reset to zero

#suc #eps ACC STD #suc #eps ACC STD

60 50 89 53.7 0.964 0.040 97 47.8 0.964 0.049
70 80 98 43.8 0.975 0.046 96 33.0 0.972 0.045
80 100 90 37.3 0.981 0.019 95 60.8 0.973 0.028
90 150 85 26.8 0.984 0.017 83 77.1 0.977 0.021
100 150 88 28.6 0.984 0.017 77 46.0 0.975 0.059
110 300 73 24.5 0.982 0.055 80 52.4 0.984 0.036
120 400 56 34.1 0.991 0.016 61 78.5 0.972 0.087
130 500 59 32.5 0.990 0.011 57 65, 7 0.989 0.016

mean 79.8 35.2 0.981 0.028 80.8 57.7 0.976 0.043

The reset to zero of the context weights after pre-training apparently had no effect
on the result of the supervised training. Other than some individual variations, there
is no significant difference in the number of successfully trained networks (#suc), nor
a significant difference in accuracy (ACC) (cf. Table 6.2). This affirms the impression
that we gained from Figurs 6.3b and 6.3d, that no temporal dependency in the input
was learnt during pre-training.

Of course, there are temporal dependencies between single characters of the input
sequences, especially for those that occur in the keyword at the beginning (cf. Table 5.1).
Yet, it seems that this dependencies are not well pronounced due to the complexity of
the sequences, such that they are not learnt implicitly during pre-training.

105

Chapter 6

6.3.2 Alternative Context Weight Initialisation

In Section 6.3.1 it was shown, that the auto-encoder pre-training procedure mainly affects
the direct forward connections of the SMRNN, while the context weights tend to zero
(cf. Figure 6.3). Even a complete reset of the context weights had no significant effect
on the subsequent supervised training (cf. Table 6.2). This supports the conclusion that
during auto-encoder pre-training, only representations of the actual input vectors are
learnt in the hidden layer weights (Wxu and Wxy). At the same time, no temporal
dependencies between those representations are learnt.

This is not a general behaviour of SRNs, but rather a consequence of the pre-training
as auto-encoder. Symbol level, as well as, segment level SRN do not need to encode
temporal relations between their inputs to reproduce the actual input at the output.
Therefore, the networks learn a direct representation of the input in the hidden layer.
Further, due to the complexity of the temporal dependencies between the single in-
puts, this context is not learnt implicitly, which results in context weights around zero
(cf. Section 4.2).

Forcing Error Propagation through Context Weights

For the task of information latching, the learning of representations for the single charac-
ters in the hidden layers during pre-training as auto-encoder turned out to be beneficial
(cf. Table 6.1). However, the zeroed context weights, resulting from such pre-training,
are rather counter-intuitive. The class of a string is provided at the end of the sequence,
that is, at the last letter (cf. Table 5.1). The important information, determining the
class, is the keyword at the beginning of the string. Therefore, it seems deceptive to use
zeroed context weights, preventing a flow of information from one state to its previous
state, or in other words, from the end of the string to its beginning.

A straightforward solution for this dilemma is the replacement of the context weights
after the pre-training as auto-encoder. By setting the recurrent weights Wxx and Wyy

to the identity matrix, one can force the network to provide the previous network state,
when processing the actual input. This should facilitate the information flow from the
end of the sequence to its beginning during supervised learning. Metaphorically spoken,
the supervised training is started with a network which has the basic assumption, that
its previous internal state is as important as the actual input.

To evaluate this approach, the experiment from Section 6.3.1 was repeated. This
time, after pre-training as auto-encoder, the context weights of the networks Wxx and
Wyy were replaced by the corresponding identity matrices. The remaining parame-
ters, as network configuration, training algorithms, learning rate, training/test material,
etc. were kept unchanged. Table 6.3 shows the results obtained from plain pre-training
as auto-encoder along with the results obtained if the context weights were replaced.

The replacement of the context weights by the identity matrix increased the number
of successfully trained networks (#suc) at average by 13.5% (79.8 versus 90.6). Further,
there is no significant difference in the number of training epochs (#eps), nor a significant
difference in accuracy (ACC) and its standard deviation (STD). In conclusion, the re-
placement of the recurrent weights of the SMRNNs by a simple identity matrix enforced

106

Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks

Table 6.3: Pre-trained SMRNNs with and without replacement of the context weights:
Information latching problem with fixed predefined string L = 50 and in-
creasing sequence length T . 100 pre-trained SMRNNs with and without a
replacement of their context weights (Wxx, Wyy) by the identity matrix were
trained with eBPTT for each sequence length T . The number of successfully
trained networks (#suc of 100) is shown together with the mean value of the
number of training epochs (#eps). Further, the mean accuracy of the suc-
cessfully trained networks on the test set (ACC) and its standard deviation
(STD) is shown.

T set size
pre-trained as auto-encoder

pre-trained as auto-encoder and
context replaced by identity matrix

#suc #eps ACC STD #suc #eps ACC STD

60 50 89 53.7 0.964 0.040 98 60.5 0.977 0.024
70 80 98 43.8 0.975 0.046 99 30.4 0.969 0.103
80 100 90 37.3 0.981 0.019 98 26.9 0.985 0.050
90 150 85 26.8 0.984 0.017 98 29.2 0.975 0.085
100 150 88 28.6 0.984 0.017 96 27.2 0.994 0.008
110 300 73 24.5 0.982 0.055 88 26.0 0.995 0.007
120 400 56 34.1 0.991 0.016 74 45.3 0.988 0.056
130 500 59 32.5 0.990 0.011 74 47.6 0.994 0.019

mean 79.8 35.2 0.981 0.028 90.6 36.6 0.985 0.044

the backpropagation of the error signal, and thereby supported learning of long-term
dependencies.

It should be noted that the modification of the weights followed the discussion about
the information latching problem. This implies prior knowledge about the nature of the
task to be solved, which in most cases is not available. However, generally it might
be a good idea to support the error propagation through time at the beginning of the
supervised training by the manual setup of the recurrent connections.

Pre-Training as Predictor

One way to enforce sequence learning during pre-training could be an SRN pre-training
as predictor. That is, the SRNs are pre-trained to predict the next input of the sequence.
Concerning the learning task, this is essentially different from the pre-training as auto-
encoder, where SRNs are pre-trained to predict the actual input of the sequence. In
theory, the prediction task forces a network to learn the temporal relations between
inputs.

Technically, the pre-training procedure itself does not differ very much from the auto-
encoder pre-training introduced in Section 6.2 and illustrated in Figure 6.2. The single
SRNs on the symbol and segment level are separately trained as predictors. Again, the
segment level processes the input of the symbol level only at the end of a segment. Hence,

107

Chapter 6

only these symbol level outputs are used for the segment level pre-training. Afterwards,
the initialised weights are used as starting points for the supervised training. Figure 6.4
illustrates the pre-training as predictor.

Figure 6.4: SMRNN pre-training as predictor. During pre-training, each SRN’s weights
are initialised separately by training as a predictor (Wxu,Wxx,Wyx,Wyy).
That is, the SRNs are trained to predict the next element of the input se-
quence. The output of the symbol level SRN serves as input for the segment
level SRN (x(t = nd) with n = 1, . . . , N), which is trained in the same way.

The procedure of a pre-training as predictor was evaluated on the information latch-
ing problem according to the evaluation of the pre-training as auto-encoder described
in Section 6.3. The only difference was the weight initialisation by a pre-training as
predictor (cf. Figure 6.4) instead of pre-training as auto-encoder (cf. Figure 6.2). All pa-
rameters such as network configuration, training algorithms, learning rate, training/test
material, etc. remained unchanged. Table 6.4 shows the results obtained from random
initialisation and pre-training as predictor side by side.

Apparently the pre-training as predictor provides only a slight advantage over ran-
domly initialised weights. There is a small improvement of successfully trained networks
(#suc), especially for longer sequences. However, compared to the pre-training as auto-
encoder (cf. Table 6.1) it performs rather poorly.

There are several aspects that might explain this behaviour. First of all, no direct
representation of the input data can be learnt during pre-training as predictor. As the
task is to predict the following input, the networks fail to learn a distinct representation
for the single inputs. Further, after pre-training, only the input weights of the layers
(Wxu,Wxx,Wyx,Wyy) are used as starting points for the supervised training. The
output weights of the layers (W̃xu,W̃yx) are discarded (cf. Figure 6.4).

This is not a problem for an auto-encoder, as input and output are the same. The
mapping to be learnt is for instance x(t) → x(t). Hence, input weights and output

108

Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks

Table 6.4: Randomly initialised and pre-trained SMRNNs as predictor on the informa-
tion latching problem with increasing sequence length T and fixed predefined
string (L = 50). 100 SMRNNs were trained with eBPTT for each sequence
length T . The number of successfully trained networks (#suc of 100) is shown
together with the mean value of the number of training epochs (#eps). Fur-
ther, the mean accuracy of the successfully trained networks on the test set
(ACC) and its standard deviation (STD) is shown.

T set size
randomly initialised pre-trained as predictor

#suc #eps ACC STD #suc #eps ACC STD

60 50 80 122.6 0.966 0.061 89 131.7 0.964 0.056
70 80 83 80.3 0.962 0.040 82 107.7 0.977 0.024
80 100 65 123.3 0.968 0.038 74 110.0 0.972 0.039
90 150 41 180.3 0.978 0.022 60 86.2 0.980 0.019
100 150 37 147.1 0.971 0.023 64 126.8 0.975 0.020
110 300 26 204.2 0.980 0.010 36 77.9 0.989 0.011
120 400 16 239.6 0.954 0.123 20 96.9 0.986 0.015
130 500 6 194.8 0.987 0.011 25 126.2 0.987 0.011

mean 44.5 161.5 0.972 0.041 56.3 107.9 0.979 0.024

weights, Wxu and W̃xx, are symmetric. In other words, the output weights carry no
further information concerning the representation of the input.

This is not the case for the predictor. Here, the input and output of a layer differ. The
mapping to be learnt is for instance x(t) → x(t+1) (cf. Figure 6.4). Therefore, input and
output weights of a layer do not hold the same information regarding the representation
of the input. That means, after pre-training as predictor, the information that was learnt
in the output weights W̃xu and W̃xx is not available for the supervised training.

Additionally, in the experiment, the context weights Wxx and Wyy still inclined to
zero. Thus, the hope, that the prediction task forces the network to learn the temporal
relations between inputs, was not fulfilled. Still, no temporal relation between inputs
could be learnt during pre-training.

109

Chapter 6

6.4 Discussion of the Pre-Training Procedure

From the research in the field of deep neural networks we know about the positive effects
of an unsupervised pre-training (cf. Section 6.1). It is reasonable to apply this idea to
recurrent neural networks (Vinyals et al., 2012) as well as to SMRNN, since those can
be regarded to be deep architectures. The SMRNN architecture is a stack of two SRNs,
such that it suggests itself to attempt a pre-training as a stack of auto-encoders. In that
way, the symbol level and segment level SRN can be pre-trained independently.

The evaluation of randomly initialised and pre-trained SMRNNs on the information
latching problem showed that pre-training improves eBPTT’s ability to learn long-term
dependencies significantly. It reduces the chance to get stuck in local minima or plateaus
and therefore, increases the number of successfully trained networks (cf. Table 6.1). The
pre-training showed no effect on the generalisation error of the supervised eBPTT train-
ing, which may be a consequence of the very low error that is already achieved with
random initialised weights. On the other hand, this means that there is the possibility
that pre-training improves the generalisation error of a supervised eRTRL training. How-
ever, I did not apply pre-training to eRTRL as this would further increase the already
unreasonable long training time. From my point of view this is possible but impractical,
especially in respect of real world applications where rather large networks are used.

The auto-encoder pre-training procedure mainly affects the direct forward connections
Wxu and Wxy of the SMRNN, while the context weights Wxx and Wyy tend to zero
(cf. Figure 6.3). Even a complete reset of the context weights had no significant effect
on the subsequent supervised training (cf. Table 6.2). This supports the conclusion,
that during pre-training only representations of the actual input vectors are learnt, and
no temporal dependencies are found between them. This is not a general behaviour of
SRNs, but rather a consequence of the pre-training as auto-encoder. The SRN does
not need to encode temporal relations between the inputs to reproduce the input at the
output. Therefore, the network learns a direct representation of the input in the hidden
layer. Further, due to the complexity of the temporal dependencies between the inputs,
the SRNs ‘learn’ that there is no temporal relation between them, that is, the context
weights tend to zero (cf. Section 4.2).

A replacement of the context weights by the identity matrix could further increased
the number of successfully trained networks (cf. Table 6.3). It should be noted that
the modification of the weights followed the discussion about the information latching
problem. This implies prior knowledge about the nature of the task to be solved, which
in most cases is not available. However, generally it might be a good idea to support
the error propagation through time at the beginning of the supervised training by the
manual setup of the recurrent connections.

The pre-training as predictor could hardly improve learning, compared to a random
weight initialisation. The networks could not be forced to learn the temporal relations
between inputs during such pre-training. Furthermore, the prediction task made it more
difficult to learn a direct representation of the data in the forward connections, which
resulted in a poor performance in supervised training.

Concerning the question which learning algorithm to choose we can conclude, that for

110

Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks

learning tasks which require large networks, that is, a large number of processing units,
eRTRL is impractical due to its computational complexity. Thus, eBPTT is the only
viable choice of a training algorithm in these cases. Further, pre-training extends the
area of application of eBPTT to long(er)-term dependencies in sequence classification.
Compared to eRTRL, it guarantees a better generalisation with a less time consuming
training.

Finally, even though the information latching problem is a widely used benchmark
task, it is exclusively constructed to test a system’s ability to store information over
some period of time. Hochreiter & Schmidhuber (1997b) consider it to be a trivial task,
as it may be solved by random weight guessing. Regarding this objection, eBPTT yet did
not prove to be applicable to nontrivial tasks. However, on the basis of the current results
and the successful application of SMRNN with eRTRL in protein secondary structure
prediction (Chen & Chaudhari, 2009) and speech processing (Glüge et al., 2011a) one
can expect that eBPTT is also applicable to such nontrivial tasks.

111

112

7 Summary and Outlook

In this thesis, the topic of implicit sequence learning in recurrent neural networks was
explored in a number of steps. Starting with the motivation for cognitive modelling in
general, a short literature review on the research concerning implicit learning was given.
Additionally, the concepts of supervised, unsupervised, and reinforcement learning, as
defined in the machine learning community, were introduced. This was complemented
with a short overview on the field of sequence learning in that domain.

Afterwards, two different computational models were introduced for the conditional
associative learning scenario, which is used to study implicit learning of a task-irrelevant
temporal context. First, the Markov model (Section 3.1) which describes learning by
means of a stochastic process and second, the connectionist Simple Recurrent Network
(SRN) model (Section 3.2).

With the Markov model mainly, the explicit part of the learning task was studied.
The biologically motivated associative learning task was mapped onto 16 possible states
plus state transitions. The transitions were deduced from the assumption of a rational
behaviour. Further, three typical human mistakes were captured by separate parameters.
The analysis of the model (cf. Section 3.1.3) yielded two predictions: (i) the probability
to memorise a success correctly affects the slope of the learning curve and, (ii) the
probability to remember previous actions on an object is responsible for the long-term
development of the success probability. Thus, the explicit design of the model led to
explicit statements concerning the experimental setup. At the same time, it requires a
number of assumptions that are specific for the conditional associative learning task.

In contrast, the SRN model does not rely on explicit assumptions concerning the
behaviour of the subjects, and can be considered to be closer to the biological reality.
It aims towards the implicit learning of the task-irrelevant temporal context. The effect
of a higher learning rate on objects that were presented in a deterministic instead of a
random order, could be reproduced qualitatively by the SRNs. Further, it was found
that the direct succession of objects is the key element for the networks to learn the
temporal relation.

Following this, the mechanisms of implicit sequence learning in SRNs were investigated
(cf. Section 4). A 4-2-4 auto-encoder SRN was used for this purpose. The task was
constructed such that the sequential order of the input was not relevant for the solution.
In that way, learning of the input sequence was implicit.

The weights of the context layer were found to be the major factor in terms of sequence
learning in SRNs. If no sequential information is present, this weights tend to zero and
turn an SRN into a Feed-Forward Network (cf. Figure 4.7). However, if sequential
information is provided during learning, the network may not learn the exact sequence

113

Chapter 7

in the context layer. Instead, the input sequence may be reproduced only in combination
with an activation from the input layer.

The question how implicitly learnt temporal information is represented in SRNs could
be answered partly for the considered task. For the most prominent sequence represen-
tations that evolved during learning, a geometric representation was found. A rotation
through the four quadrants of the two dimensional state-space realised a cycle through
the four states that represented the networks’ input. Similarly, a reflection of a state
vector into its opposite and reverse yielded an oscillation between two states.

The ability of recurrent networks to learn temporal dependencies implicitly is not
just of interest as an aspect in cognitive modelling. In fact, in the context of machine
learning, this ability is advantageous for technical sequence classification and prediction
tasks. Regarding this, SRNs are often inapplicable, as they suffer from the problem of
vanishing gradients (cf. Section 5.1), and therefore fail to learn long-term dependencies.
The Segmented-Memory Recurrent Neural Network (SMRNN) architecture is one way
to reduce this problem. The extended Backpropagation Through Time (eBPTT) train-
ing algorithm for this kind of networks was introduced, and it was shown that it requires
dramatically less operations than the established extended Real-Time Recurrent Learn-
ing (eRTRL) algorithm (cf. Section 5.4). However, the comparison on the information
latching problem showed that eBPTT is generally less capable to learn the latching of
information for longer periods of time than eRTRL (cf. Section 5.5). Nevertheless, if a
network was trained successfully with eBPTT, it yielded a better generalisation, that is,
higher accuracy on the test set. Additionally, due to the computational complexity of
eRTRL, eBPTT is the only viable choice of a training algorithm for large networks.

Subsequently, eBPTT’s ability to learn long-term dependencies should be improved.
The resulting approach is based on the idea of a layer-local pre-training for deep multi-
layer neural networks known from the deep learning literature. Transferring this idea
to SMRNNs, the single SRNs on symbol and segment level are separately pre-trained
as auto-encoders. Afterwards, the resulting initial weights are used as a starting point
for the supervised training (cf. Section 6.2). The evaluation on the information latching
problem yielded a significant improvement in the learning of long-term dependencies
with eBPTT. For the longest sequence, corresponding to the longest input-output de-
pendencies, 59 out of 100 networks were trained successfully when pre-trained against
6 out of 100 when randomly initialised. Concerning the accuracy on the test set, no
difference was found between both cases.

Further investigations showed that the auto-encoder pre-training mainly affects the
direct forward connections of the SMRNNs. The context weights tended to zero (cf. Fig-
ure 6.3), that is, during pre-training no temporal dependency was found between the
network inputs.

All in all, pre-training allows learning of long(er)-term dependencies with eBPTT.
Thus, the less time consuming eBPTT training together with the pre-training, opens
the possibility for the application of SMRNNs to more complex problems where rather
large networks are required.

114

Summary and Outlook

Suggestions for Future Work

It is often the case with scientific investigations that more questions than answers are
produced. Concerning the proposed implicit learning models, introduced in Chapter 3,
the impact has to be discussed in the corresponding scientific community of psychology
and behavioural biology. From a technical point of view, the Markov model makes
predictions on the role of the reinforcement signal and the influence of the probability of
a subject remembering the learning history on an object. Those insights might be used
in the design of future experiments.

Regarding sequence learning in the machine learning domain, it was shown that SRNs
provide a good basis for the implicit learning of sequential information, even though it
is task-irrelevant. I think the potential of recurrent network architectures is yet unex-
hausted, leaving a wide field for future research work. Therefore, there is a long list of
research problems that occur in the context of recurrent networks and sequence learning
in general. However, as my thesis mainly discusses the SMRNN architecture, I would
like to focus on specific problems that arise from a segmented-memory architecture:

Selection of the optimal sequence length on the segment level of the SMRNN: If the
optimal segment length is task dependent, there should be a way to determine it from
the data. So the question arises: is it possible to learn this parameter from the data? For
symbolic sequences like texts, grammar learning techniques (Nevill-Manning & Witten,
1997; Chaudhari & Wang, 2009) may be applicable to infer grammar rules, which in
turn give evidence for a reasonable selection of the segment length.

For multi-variant sequences, that is, sequences of real-valued vectors without a sym-
bolic representation, other techniques are required. In the data mining community sev-
eral high level representations of time series have been proposed, for instance wavelets
(Chan & Fu, 1999), symbolic mappings (Agrawal et al., 1995; Das et al., 1998; Perng
et al., 2000) and piecewise linear representations (Hunter & McIntosh, 1999; Wang &
Wang, 2000). Such representations may also be helpful in the selection of the appropri-
ate segment length.

Multiple hierarchical levels: Especially grammar learning techniques yield a hierarchical
structure of the sequences. For instance, a text (sequence of characters) has several
levels of representation like characters, words, paragraphs, etc. Therefore, it is desirable
to represent this knowledge about the structure in the classifier. Transferred to the idea
of SMRNNs one could extend the network architecture to multiple levels of segments,
which correspond to the assumed levels of the hierarchy. Every additional level could be
realised by an additional SRN on top of the SRNs of the underlying levels.

Sequence prediction: In this thesis SMRNN were applied to a common benchmark prob-
lem in sequence classification. It remains for future work to apply SMRNN to the prob-
lem of sequence prediction. The available training algorithms allow a direct application.
A prediction should be made on the basis of a sequence of preceding elements. At that
point one has to decide how long the “sequence of preceding elements” should be. It

115

Chapter 7

could be of fixed length or dynamically grow with the length of the training material.
Of course, the selection of an appropriate length is task dependent. However, instead of
guessing this parameter there might be a more general rule of thumb for a useful initial
approximation.

Network pre-training: The possibilities of unsupervised pre-training (cf. Section 6.2) for
SMRNN should be further explored. We saw that during pre-training as auto-encoder
no temporal dependency between the inputs was learnt. To improve the learning of the
temporal nature of the sequence the pre-training as predictors was proposed, but turned
out to be unfavourable. Another idea to improve sequence learning could be a mixture
of a pre-training as auto-encoder and predictor. For this, the forward connections of the
SRNs could be trained as auto-encoders to learn a direct representation of the input data
in the hidden layer. Thereafter the SRNs are trained as predictor to learn a temporal
relation between the network inputs only in the recurrent connections, while the forward
weights are kept fix. Such procedure might improve learning of temporal dependencies
between inputs during pre-training, which in turn would support the solution of the
actual supervised learning task. This is especially important if we consider sequence
prediction.

Application to real world problems: As stated above, eBPTT training, together with
the pre-training procedure, enables us to train relatively large SMRNNs (nx, ny > 100)
that are still able to learn long-term dependencies. Yet, it remains to be proven that
this approach is applicable to real world problems. The UCI Machine Learning Repos-
itory (Frank & Asuncion, 2010) provides a variety of sequential and time series data
for classification and regression tasks. It is a good starting point to study the assets
and drawbacks of SMRNNs, because the classification/regression results for some of
the datasets are already published. Therefore, those datasets may constitute a useful
benchmark.

116

List of Acronyms

BPTT Backpropagation Through Time.

eBPTT extended Backpropagation Through Time.

eRTRL extended Real-Time Recurrent Learning.

FFN Feed-Forward Network.

HMM Hidden Markov Model.

RL Reinforcement Learning.

RTRL Real-Time Recurrent Learning.

SMRNN Segmented-Memory Recurrent Neural Network.

SRN Simple Recurrent Network.

117

118

Bibliography

Abou-Nasr, M. A. (2010). Terrain identification in grayscale images with recurrent
neural networks. In Proceedings of the 2010 International Joint Conference on Neural
Networks (IJCNN), (pp. 1–5). 72

Ackley, D. H., & Littman, M. L. (1990). Generalization and scaling in reinforcement
learning. In D. S. Touretzky (Ed.) Advances in neural information processing systems
2 , (pp. 550–557). San Francisco, USA: Morgan Kaufmann Publishers Inc. 44

Agrawal, R., Lin, K.-I., Sawhney, H. S., & Shim, K. (1995). Fast similarity search in
the presence of noise, scaling, and translation in time-series databases. In Proceedings
of the 21th International Conference on Very Large Data Bases, (pp. 490–501). San
Francisco, USA: Morgan Kaufmann Publishers Inc. 115

Alonso, D., Fuentes, L. J., & Hommel, B. (2006). Unconscious symmetrical inferences:
A role of consciousness in event integration. Consciousness and Cognition, 15 (2),
386–396. 15

Anderson, J. (1995). Learning and Memory: An Integrated Approach. New York: Wiley.
27

Bakker, P. B. (2004). The State of Mind: Reinforcement Learning with Recurrent Neural
Networks. Leiden, the Netherlands: Universiteit Leiden. 28

Barbounis, T., Theocharis, J., Alexiadis, M., & Dokopoulos, P. (2006). Long-term
wind speed and power forecasting using local recurrent neural network models. IEEE
Transactions on Energy Conversion, 21 (1), 273–284. 71

Baum, L. E. (1972). An inequality and associated maximization technique in statistical
estimation for probabilistic functions of markov processes. In O. Shisha (Ed.) Inequal-
ities III: Proceedings of the 3rd Symposium on Inequalities, (pp. 1–8). Los Angeles,
USA: Academic Press. 28

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in
Machine Learning , 2 (1), 1–127. 95, 96, 97, 98

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise train-
ing of deep networks. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.) Advances in
Neural Information Processing Systems 19 , (pp. 153–160). Cambridge, USA: MIT
Press. 96, 98

Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou,
O. Chapelle, D. DeCoste, & J. Weston (Eds.) Large Scale Kernel Machines, (pp.
1–41). MIT Press. 96

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5 (2), 157–166.
28, 72, 73, 74, 91

119

Berry, D. C. (1991). The role of action in implicit learning. Quarterly Journal of
Experimental Psychology: Section A, 43 (4), 881–906. 10

Berry, D. C. (1994). Implicit learning: Twenty-five years on. A tutorial. In C. Umilta,
& M. Moscovitch (Eds.) Consciousness and Unconscious Information Processing: At-
tention and Performance 15 . Cambridge, US: MIT Press. 8

Berry, D. C. (Ed.) (1997). How implicit is implicit learning? . Oxford, UK]: Oxford
University Press. 7, 8, 10, 11

Berry, D. C., & Broadbent, D. E. (1984). On the relationship between task performance
and associated verbalizable knowledge. Quarterly Journal of Experimental Psychology:
Section A, 36 (2), 209–231. 10, 12

Berry, D. C., & Broadbent, D. E. (1987). The combination of explicit and implicit
learning processes in task control. Psychological Research, 49 (1), 7–15. 10

Berry, D. C., & Broadbent, D. E. (1988). Interactive tasks and the implicit-explicit
distinction. British Journal of Psychology , 79 (2), 251–272. 12

Berry, D. C., & Dienes, Z. (1991). The relationship between implicit memory and implicit
learning. British Journal of Psychology , 82 (3), 359–373. 14

Berry, D. C., & Dienes, Z. (Eds.) (1993). Implicit Learning: Theoretical and Empirical
Issues. New York, USA: Lawrence Erlbaum Associates. 8, 15

Bhattacharya, A., Parlos, A., & Atiya, A. (2003). Prediction of mpeg-coded video source
traffic using recurrent neural networks. IEEE Transactions on Signal Processing ,
51 (8), 2177–2190. 72

Bishop, C. M. (2006). Pattern Recognition and Machine Learning . New York, USA:
Springer. 24

Blumenfeld, B., Preminger, S., Sagi, D., & Tsodyks, M. (2006). Dynamics of memory
representations in networks with novelty-facilitated synaptic plasticity. Neuron, 52 (2),
383–394. 17

Brooks, L. R. (1978). Non-analytic concept formation and memory for instances, vol. 3,
(pp. 169–211). Hillsdale, USA: Erlbaum. 10, 13

Brooks, L. R., & Vokey, J. R. (1991). Abstract analogies and abstracted grammars:
comments on Reber (1989) and Mathews et al. (1989). Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 120 (3), 316–323. 13

Bruner, J. S., Goodnow, J. J., Austin, G. A., & Brown, R. W. (1967). A study of
thinking . New York, USA: Wiley. 25

Chan, K.-P. C., & Fu, A. W.-C. (1999). Efficient time series matching by wavelets. In
Proceedings of the 15th International Conference on Data Engineering , (pp. 126–133).
Washington, DC, USA: IEEE Computer Society. 115

Chaudhari, N. S., & Wang, X. (2009). Language structure using fuzzy similarity. IEEE
Transactions on Fuzzy Systems, 17 (5), 1011–1024. 115

Chauvin, Y. (1990). Dynamic behavior of constrained back propagation networks. In
D. S. Touretzky (Ed.) Advances in neural information processing systems 2 , (pp. 642–
649). San Francisco, USA: Morgan Kaufmann Publishers Inc. 101

Chen, J., & Chaudhari, N. S. (2004). Capturing long-term dependencies for protein
secondary structure prediction. In F.-L. Yin, J. Wang, & C. Guo (Eds.) Advances in
Neural Networks - ISNN 2004 , vol. 3174 of Lecture Notes in Computer Science, (pp.

120

494–500). Springer Berlin Heidelberg. 72, 74, 81, 91
Chen, J., & Chaudhari, N. S. (2009). Segmented-memory recurrent neural networks.

IEEE Transactions Neural Networks, 20 (8), 1267–1280. 72, 73, 74, 77, 78, 101, 111
Cleeremans, A. (1993). Mechanisms of implicit learning: Connectionist models of se-

quence processing . Cambridge, USA: MIT Press. 1, 7, 8, 10, 11, 12, 19, 20, 21, 22,
43

Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from the
front. Trends in Cognitive Sciences, 2 (10), 406–416. 7, 8, 13, 14, 20

Cleeremans, A., & McClelland, J. L. (1991). Learning the structure of event sequences.
Journal of Experimental Psychology: General , 120 (3), 235–253. 12, 14

Conway, J. (1990). A Course in Functional Analysis (Graduate texts in mathematics).
New York, USA: Springer. 68

Cooper, R. P. (2002). Modelling high-level cognitive processes. Mahwah, USA: Lawrence
Erlbaum. 2

Custers, R., & Aarts, H. (2011). Learning of predictive relations between events depends
on attention, not on awareness. Consciousness and Cognition, 20 (2), 368–378. 15

Das, G., Lin, K.-I., Mannila, H., Renganathan, G., & Smyth, P. (1998). Rule discovery
from time series. In Proceedings of the 3rd International Conference on Knowledge
Discovery and Data Mining , (pp. 16–22). Palo Alto, USA: AAAI Press. 115

Dayan, P., & Niv, Y. (2008). Reinforcement learning: The good, the bad and the ugly.
Current Opinion in Neurobiology , 18 (2), 185–196. 53

Dickinson, A. (1980). Contemporary animal learning theory . Cambridge, Uk: Cambridge
University Press. 16

Dienes, Z. (1992). Connectionist and memory-array models of artificial grammar learn-
ing. Cognitive Science, 16 (1), 41–79. 14, 20

Dienes, Z., Broadbent, D., & Berry, D. (1991). Implicit and explicit knowledge bases in
artificial grammar learning. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 17 (5), 875–887. 13

Dienes, Z., & Fahey, R. (1995). Role of specific instances in controlling a dynamic system.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 21 (4), 848–
862. 10, 20

Dijksterhuis, A., & Aarts, H. (2010). Goals, Attention, and (Un)Consciousness. Annual
Review of Psychology , 61 (1), 467–490. 14, 15

Dulany, D. E., Carlson, R. A., & Dewey, G. I. (1984). A case of syntactical learning and
judgment: How conscious and how abstract? Journal of Experimental Psychology:
General , 113 (4), 541–555. 10, 13

Ebbinghaus, H., Ruger, H., & Bussenius, C. (1913). Memory: a contribution to experi-
mental psychology . Educational reprints. New York, USA: Teachers College, Columbia
University. 2

Eitam, B., Hassin, R. R., & Schul, Y. (2008). Nonconscious goal pursuit in novel envi-
ronments: the case of implicit learning. Psychological Science, 19 (3), 261–267. 14

El Hihi, S., & Bengio, Y. (1995). Hierarchical recurrent neural networks for long-term
dependencies. In D. S. Touretzky, M. Mozer, & M. Hasselmo (Eds.) Advances in Neural
Information Processing Systems 8 , (pp. 493–499). Cambridge, USA: MIT Press. 72

121

Elman, J. L. (1988). Finding structure in time. Tech. Rep. 8801, San Diego, CA:
University of California, Center for Research in Language. 21

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14 (2), 179–211. 21,
22, 44, 58

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and gram-
matical structure. Machine Learning , 7 , 195–225. 56

Erhan, D., Pierre-Antoine, M., Bengio, Y., Bengio, S., & Vincent, P. (2009). The
difficulty of training deep architectures and the effect of unsupervised pre-training.
Journal of Machine Learning Research - Proceedings Track , 5 , 153–160. 96, 97, 98

Fanselow, M. S. (1986). Associative vs. topographical accounts of the immediate-shock
freezing deficit in rats: Implications for the response selection rules governing species
specific defense reactions. Learning and Motivation, 17 (1), 16–39. 16

Fanty, M. (1986). Context-free parsing with connectionist networks. Tech. Rep. 174,
Rochester, NY: University of Rochester, Computer Science Department. 21

Finnoff, W., Hergert, F., & Zimmermann, H. G. (1993). Improving model selection by
nonconvergent methods. Neural Networks, 6 (6), 771–783. 101

Forney, E., & Anderson, C. (2011). Classification of eeg during imagined mental tasks
by forecasting with elman recurrent neural networks. In Proceedings of the 2011
International Joint Conference on Neural Networks (IJCNN), (pp. 2749–2755). New
York, USA: IEEE Press. 72

Frank, A., & Asuncion, A. (2010). UCI machine learning repository.
URL http://archive.ics.uci.edu/ml 116

Frensch, P. A., & Stadler, M. A. (1998). One concept, multiple meanings: On how to
define the concept of implicit learning , (pp. 47–104). London, UK: Sage Publications.
8

Freund, Y., & Haussler, D. (1994). Unsupervised learning of distributions on binary
vectors using two layer networks. Tech. rep., University of California at Santa Cruz,
Santa Cruz, USA. 96

Frick, R. W. (1989). Explanations of grouping in immediate ordered recall. Memory and
Cognition, 17 (5), 551–562. 75

Gibson, F. P., Fichman, M., & Plaut, D. C. (1997). Learning in dynamic decision tasks:
Computational model and empirical evidence. Organizational Behavior and Human
Decision Processes, 71 (1), 1–35. 20

Giles, C. L., Chen, D., Miller, C. B., Chen, H. H., Sun, G. Z., & Lee, Y. C. (1992).
Second-order recurrent neural networks for grammatical inference. In Proceedings of
the International Joint Conference on Neural Networks, (pp. 273–281). New York,
USA: IEEE Press. 72

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-
ward neural networks. Journal of Machine Learning Research, 9 , 249–256. 101

Glüge, S., Böck, R., & Wendemuth, A. (2010). Implicit sequence learning - a case study
with a 4-2-4 encoder simple recurrent network. In J. Filipe, & J. Kacprzyk (Eds.)
Proceedings of the International Conference on Fuzzy Computation and International
Conference on Neural Computation, (pp. 279–288). SciTePress. 56

Glüge, S., Böck, R., & Wendemuth, A. (2011a). Segmented-memory recurrent neu-

122

http://archive.ics.uci.edu/ml

ral networks versus hidden markov models in emotion recognition from speech. In
K. Madani, J. Kacprzyk, & J. Filipe (Eds.) Proceedings of International Conference
on Neural Computation, Theory and Application, (pp. 308–315). SciTePress. 111

Glüge, S., Böck, R., & Wendemuth, A. (2012). Extension of backpropagation through
time for segmented-memory recurrent neural networks. In A. C. Rosa, A. D. Correia,
K. Madani, J. Filipe, & J. Kacprzyk (Eds.) Proceedings of the 4th International Joint
Conference on Computational Intelligence, (pp. 451–456). SciTePress. 73

Glüge, S., Böck, R., & Wendemuth, A. (2013). Auto-encoder pre-training of segmented-
memory recurrent neural networks. In M. Verleysen (Ed.) Proceedings of European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN). Louvain-la-Neuve, Belgium: Ciaco. 96

Glüge, S., Hamid, O. H., Braun, J., & Wendemuth, A. (2011b). A markov model of con-
ditional associative learning in a cognitive behavioural scenario. In J. M. Ferrández,
J. R. Álvarez Sánchez, F. Paz, & F. Toledo (Eds.) Foundations on Natural and Ar-
tificial Computation, vol. 6686 of Lecture Notes in Computer Science, (pp. 10–19).
Berlin / Heidelberg, Germany: Springer. 31

Glüge, S., Hamid, O. H., & Wendemuth, A. (2010). A simple recurrent network for
implicit learning of temporal sequences. Cognitive Computation, 2 (4), 265–271. 31

Grüning, A. (2007). Elman backpropagation as reinforcement for simple recurrent net-
works. Neural Computation, 19 (11), 3108–3131. 44

Halford, G. S., Baker, R., McCredden, J. E., & Bain, J. D. (2005). How many variables
can humans process? Psychological Science, 16 (1), 70–76. 14

Hall, G. (1994). Pavlovian Conditioning: Laws of Association, (pp. 15–44). San Diego,
USA: Academic Press. 16

Hamid, O. H. (2011). On the Role of Temporal Context in Human Reinforcement Learn-
ing . Ph.D. thesis, Otto von Guericke University Magdeburg, Faculty for Natural
Science, Magdeburg, Germany. 7, 16, 17

Hamid, O. H., Wendemuth, A., & Braun, J. (2010). Temporal context and conditional
associative learning. BMC Neuroscience, 11 (45), 1–15. 16, 17, 18, 31, 41, 48, 53

Hanson, S. J., & Kegl, J. (1987). PARSNIP: A connectionist network that learns natural
language grammar from exposure to natural language sentences. In Proceedings of the
9th Annual Conference of the Cognitive Science Society , (pp. 106–119). Hillsdale,
USA: Erlbaum. 21

Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal
of Experimental Psychology: General , 108 (3), 356–388. 14

Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information.
American Psychologist , 39 (12), 1372–1388. 14, 17

Heskes, T. M., & Kappen, B. (1991). Learning processes in neural networks. Physical
Review A, 44 (4), 2718–2726. 55

Heskes, T. M., & Kappen, B. (1993). On-line learning processes in artificial neural
networks. In J. Taylor (Ed.) Mathematical approaches to neural networks, vol. 51 of
North-Holland Mathematical Library , (pp. 199 – 233). Elsevier. 55

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18 (7), 1527–1554. 96

123

Hintzman, D. L. (1969). Recognition time: Effects of recency, frequency and the spacing
of repetitions. Journal of Experimental Psychology , 79 (1), 192–194. 14

Hitch, G. J., Burgess, N., Towse, J. N., & Culpin, V. (1996). Temporal grouping effects
in immediate recall: A working memory analysis. Quarterly Journal of Experimental
Psychology Section A: Human Experimental Psychology , 49 (1), 116–139. 75

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Master’s
thesis, Institut für Informatik, Technische Universität München. 73

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, (pp. 237–243). New
York, USA: IEEE Press. 73

Hochreiter, S., & Schmidhuber, J. (1997a). Long short-term memory. Neural Computa-
tion, 9 (8), 1735–1780. 72

Hochreiter, S., & Schmidhuber, J. (1997b). LSTM can solve hard long time lag problems.
In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.) Proceedings of the Conference on
Advanced Neural Information Processing Systems 9 , (pp. 473–479). Cambridge, USA:
MIT Press. 111

Hunter, J., & McIntosh, N. (1999). Knowledge-based event detection in complex time
series data. In W. Horn, Y. Shahar, G. Lindberg, S. Andreassen, & J. Wyatt (Eds.)
Artificial Intelligence in Medicine, vol. 1620 of Lecture Notes in Computer Science,
(pp. 271–280). Berlin / Heidelberg, Germany: Springer. 115

Jaeger, H. (2001). The ¨echo state¨ approach to analysing and training recurrent neu-
ral networks. Tech. Rep. GMD report 148, German national research institute for
computer science. 72

Jaeger, H. (2002). Short term memory in echo state networks. Tech. Rep. GMD report
152, German national research institute for computer science. 72

Jimenez, L., & Mendez, C. (1999). Which attention is needed for implicit sequence
learning? Journal of Experimental Psychology: Learning, Memory, and Cognition,
25 (1), 236–259. 14

Jordan, M. I. (1986). Serial order: A parallel, distributed processing approach. Tech.
Rep. 8604, San Diego, CA: University of California, Center for Research in Language.
21, 22

Kahneman, D., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and
biases. New York, USA: Cambridge University Press. 8

Kiernan, M. J., Westbrook, R. F., & Cranney, J. (1995). Immediate shock, passive
avoidance, and potentiated startle: Implications for the unconditioned response to
shock. Animal Learning and Behavior , 23 (1), 22–30. 16

Ku, K., Mak, M. W., & Siu, W. C. (1999). Adding learning to cellular genetic algorithms
for training recurrent neural networks. IEEE Transactions on Neural Networks, 10 (2),
239–252. 72

Kushner, M., Cleeremans, A., & Reber, A. S. (1991). Implicit detection of event in-
terdependencies and a PDP model of the process. In Proceedings of the 13th Annual
Conference of the Cognitive Science Society . Mahwah, USA: Lawrence Erlbaum As-
sociates. 11, 19

Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). Exploring strategies

124

for training deep neural networks. Journal of Machine Learning Research, 10 , 1–40.
97

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empir-
ical evaluation of deep architectures on problems with many factors of variation. In
Z. Ghahramani (Ed.) Proceedings of the 24th International Conference on Machine
Learning , (pp. 473–480). New York, USA: ACM. 97, 98

Lee, S.-W., & Song, H.-H. (1997). A new recurrent neural-network architecture for visual
pattern recognition. IEEE Transactions on Neural Networks, 8 (2), 331–340. 72

Lewicki, P., Czyzewska, M., & Hoffman, H. (1987). Unconscious acquisition of complex
procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 13 (4), 523–530. 13

Lewicki, P., Hill, T., & Bizot, E. (1988). Acquisition of procedural knowledge about a
pattern of stimuli that cannot be articulated. Cognitive Psychology , 20 (1), 24–37. 12,
13

Lewicki, P., Hill, T., & Czyzewska, M. (1992). Nonconscious acquisition of information.
American Psychologist , 47 (6), 796–801. 14

Lin, T., Horne, B., Tino, P., & Giles, C. (1996). Learning long-term dependencies in narx
recurrent neural networks. IEEE Transactions on Neural Networks, 7 (6), 1329–1338.
72

Lin, T., Horne, B. G., & Giles, C. L. (1998). How embedded memory in recurrent
neural network architectures helps learning long-term temporal dependencies. Neural
Networks, 11 (5), 861–868. 72

Ma, S., & Ji, C. (1998). Fast training of recurrent networks based on the EM algorithm.
IEEE Transactions on Neural Networks, 9 (1), 11–26. 72

Mackintosh, N. J. (1983). Conditioning and Associative Learning . Oxford, UK: Oxford
University Press. 16

Mazzoni, P., Andersen, R. A., & Jordan, M. I. (1991). A more biologically plausible
learning rule for neural networks. Proceedings of the National Academy of Sciences of
the United States of America, 88 (10), 4433–4437. 44

Mccallum, A. K. (1996). Learning to use selective attention and short-term memory in
sequential tasks. In P. Maes, S. W. Wilson, & M. J. Mataric (Eds.) From Animals
to Animats 4: Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior , (pp. 315–324). Cambridge, USA: MIT Press. 27

Millward, R. B., & Reber, A. S. (1968). Event-recall in probability learning. Journal of
Verbal Learning and Verbal Behavior , 7 (6), 980–989. 11

Millward, R. B., & Reber, A. S. (1972). Probability learning: Contingent-event schedules
with lags. American Journal of Psychology , 85 (1), 81–98. 11

Minsky, M. L. (1967). Computation: Finite and Infinite Machines. Upper Saddle River,
USA: Prentice-Hall. 22

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the
primate temporal cortex. Nature, 335 (6193), 817–820. 16

Miyashita, Y., & Chang, H. S. (1988). Neuronal correlate of pictorial short-term memory
in the primate temporal cortex. Nature, 331 (6151), 68–70. 17

Mobahi, H., Collobert, R., & Weston, J. (2009). Deep learning from temporal coherence

125

in video. In Proceedings of the 26th International Conference on Machine Learning ,
(pp. 737–744). New York, USA: ACM. 96

Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6 (4), 525–533. 101

Mozer, M. C., & Bachrach, J. (1991). Slug: A connectionist architecture for inferring
the structure of finite-state environments. Machine Learning , 7 (2–3), 139–160. 23

Nevill-Manning, C. G., & Witten, I. H. (1997). Identifying hierarchical structure in
sequences: a linear-time algorithm. Journal of Artificial Intelligence Research, 7 (1),
67–82. 27, 115

Newell, A. (1972). Human problem solving . Upper Saddle River, USA: Prentice-Hall. 12
Nishide, S., Okuno, H., Ogata, T., & Tani, J. (2011). Handwriting prediction based

character recognition using recurrent neural network. In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, (pp. 2549–2554). New
York, USA: IEEE Press. 72

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence
from performance measures. Cognitive Psychology , 19 (1), 1–32. 11, 14

Park, D.-C. (2011). Sunspot series prediction using adaptively trained multiscale-bilinear
recurrent neural network. In Proceedings of the 9th IEEE/ACS International Confer-
ence on Computer Systems and Applications, (pp. 135–139). Washington, DC, USA:
IEEE Computer Society. 72

Park, H., Dibazar, A., & Berger, T. (2011). Discrete synapse recurrent neural network
with time-varying delays for nonlinear system modeling and its application on seismic
signal classification. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), (pp. 2374–2381). New York, USA: IEEE Press. 72

Perng, C.-S., Wang, H., Zhang, S., & Parker, D. (2000). Landmarks: a new model for
similarity-based pattern querying in time series databases. In Proceedings of the 16th
International Conference on Data Engineering , (pp. 33–42). Washington, DC, USA:
IEEE Computer Society. 115

Perruchet, P. (2008). Implicit learning. In J. H. Byrne (Ed.) Learning and Memory: A
Comprehensive Reference, (pp. 597–621). Oxford, UK: Academic Press. 7

Perruchet, P., & Pacteau, C. (1990). Synthetic grammar learning: Implicit rule ab-
straction or explicit fragmentary knowledge? Journal of Experimental Psychology:
General , 119 (3), 264–275. 13

Prechelt, L. (1998). Early stopping - but when? In G. Orr, & K.-R. Müller (Eds.) Neural
Networks: Tricks of the Trade, vol. 1524 of Lecture Notes in Computer Science, (pp.
55–69). Berlin / Heidelberg, Germany: Springer. 101

Preminger, S., Blumenfeld, B., Sagi, D., & Tsodyks, M. (2009). Mapping dynamic
memories of gradually changing objects. Proceedings of the National Academy of
Sciences of the United States of America, 106 (13), 5371–5376. 17

Ranzato, M. A., Poultney, C. S., Chopra, S., & LeCun, Y. (2007). Efficient learning
of sparse representations with an energy-based model. In B. Schölkopf, J. C. Platt,
& T. Hoffman (Eds.) Advances in Neural Information Processing Systems 19 , (pp.
1137–1144). Cambridge, USA: MIT Press. 96, 98

Reber, A. S. (1965). Implicit learning of artificial grammars. Master’s thesis, Brown

126

University, Providence, Rhode Island, USA. 9
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning

and Verbal Behavior , 6 (6), 855–863. 7, 9, 12, 13, 19
Reber, A. S. (1969). Transfer of syntactic structure in synthetic languages. Journal of

Experimental Psychology , 81 (1), 115–119. 10
Reber, A. S. (1976). Implicit learning of synthetic languages: The role of instructional

set. Journal of Experimental Psychology Human Learning and Memory , 2 (1), 88–94.
10

Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental
Psychology: General , 118 , 219–235. 13

Reber, A. S. (1993). Implicit learning and tacit knowledge: An essay on the cognitive
unconscious. Oxford, UK: Oxford University Press. 7, 8, 13, 14

Reber, A. S., Kassin, S. M., Lewis, S., & Cantor, G. (1980). On the relationship between
implicit and explicit modes in the learning of a complex rule structure. Journal of
Experimental Psychology: Human Learning and Memory , 6 (5), 492–502. 12

Reber, A. S., & Lewis, S. (1977). Toward a theory of implicit learning: The analysis of
the form and structure of a body of tacit knowledge. Cognition, 5 , 333–361. 13

Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: Deter-
mining what is learned about sequence structure. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 20 (3), 585–594. 19

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning representations
by back-propagating errors. Nature, (6088), 533–536. 44

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Parallel distributed pro-
cessing: explorations in the microstructure of cognition, vol. 1. chap. Learning internal
representations by error propagation, (pp. 318–362). Cambridge, USA: MIT Press. 56

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition. Cambridge, USA: MIT Press. 21

Ryan, J. (1969). Temporal grouping, rehearsal and short-term memory. Quarterly
Journal of Experimental Psychology , 21 (2), 148–155. 75

Sakai, K., & Miyashita, Y. (1991). Neural organization for the long-term memory of
paired associates. Nature, 354 (6349), 152–155. 17

Sakai, K., Naya, Y., & Miyashita, Y. (1994). Neuronal tuning and associative mecha-
nisms in form representation. Learning and Memory , 1 (2), 83–105. 17

Sanderson, P. M. (1989). Verbalizable knowledge and skilled task performance: Associa-
tion, disssociation and mental models. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 15 (4), 729–747. 13

Seibel, R. (1963). Discrimination reaction time for 1,023 alternative task. Journal of
Experimental Psychology , 66 (3), 215–226. 12

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce
english text. Complex Systems, 1 (1), 145–168. 21

Servan-Schreiber, D., Cleeremans, A., & McClelland, J. L. (1989). Advances in neural
information processing systems 1. chap. Learning sequential structure in simple re-
current networks, (pp. 643–652). San Francisco, USA: Morgan Kaufmann Publishers
Inc. 21, 29

127

Servan-Schreiber, D., Cleeremans, A., & Mcclelland, J. L. (1991). Graded state ma-
chines: The representation of temporal contingencies in simple recurrent networks.
Machine Learning , 7 , 161–193. 23

Servan-Schreiber, E., & Anderson, J. R. (1990). Learning artificial grammars with
competitive chunking. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 16 (4), 592–608. 10, 20

Severin, F. T., & Rigby, M. K. (1963). Influence of digit grouping on memory for
telephone numbers. Journal of Applied Psychology , 47 (2), 117–119. 75

Shanks, D. R. (2005). Handbook of Cognition, chap. Implicit Learning, (pp. 202–220).
London, UK: Sage Publications. 7

Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning
systems. Behavioral and Brain Sciences, 17 (3), 367–447. 13

Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological
Bulletin, 119 , 3–22. 15

Squartini, S., Hussain, A., & Piazza, F. (2003a). Attempting to reduce the vanishing
gradient effect through a novel recurrent multiscale architecture. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN), (pp. 2819–2824). New
York, USA: IEEE Press. 72

Squartini, S., Hussain, A., & Piazza, F. (2003b). A recurrent multiscale architecture for
long-term memory prediction task. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), (pp. 789–792). New York,
USA: IEEE Press. 72

Stadler, M., & Frensch, P. (1998). Handbook of implicit learning . London, UK: Sage
Publications. 7

Stanley, W. B., Mathews, R. C., Buss, R. R., & Kotler-Cope, S. (1989). Insight without
awareness: On the interaction of verbalization, instruction and practice in a simulated
process control task. Quarterly Journal of Experimental Psychology: Section A, 41 (3),
553–577. 10

Sun, R., & Giles, C. L. (2001). Sequence learning: From recognition and prediction to
sequential decision making. IEEE Intelligent Systems, 16 , 67–70. 27, 28

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge:
a bottom-up model of skill learning. Cognitive Science, 25 (2), 203–244. 27

Sun, R., & Sessions, C. (2000). Self-segmentation of sequences: automatic formation of
hierarchies of sequential behaviors. IEEE Transactions on Systems Man and Cyber-
netics, 30 (3), 403–418. 27

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cam-
bridge, USA: MIT Press. 25, 28, 47, 53

Tian, Z., & Zuo, M. (2010). Health condition prediction of gears using a recurrent neural
network approach. IEEE Transactions on Reliability , 59 (4), 700–705. 72

Tino, P., Schittenkopf, C., & Dorffner, G. (2001). Financial volatility trading using
recurrent neural networks. IEEE Transactions on Neural Networks, 12 (4), 865–874.
72

Underwood, G. (1996). Implicit Cognition. Oxford, UK: Oxford University Press. 7, 8,
13, 14

128

Utgoff, P. E., & Stracuzzi, D. J. (2002). Many-layered learning. Neural Computation,
14 (10), 2497–2529. 96

Varoglu, E., & Hacioglu, K. (1999). Speech prediction using recurrent neural networks.
Electronics Letters, 35 (16), 1353–1355. 71

Čerňanský, M., Makula, M., & Beňušková, Ľ. (2007). Organization of the state space of
a simple recurrent network before and after training on recursive linguistic structures.
Neural Networks, 20 (2), 236–244. 56

Verschure, P., & Althaus, P. (2003). A real-world rational agent: Unifying old and new
ai. Cognitive Science, 27 (4), 561–590. 72

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th
International Conference on Machine Learning , (pp. 1096–1103). New York, USA:
ACM. 98

Vinyals, O., Ravuri, S., & Povey, D. (2012). Revisiting recurrent neural networks for
robust ASR. In Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processesing (ICASSP), (pp. 4085–4088). New York, USA: IEEE Press.
110

Vokey, J. R., & Brooks, L. R. (1992). Salience of item knowledge in learning artificial
grammars. Journal of Experimental Psychology: Learning, Memory, and Cognition,
18 (2), 328–344. 13

Šter, B. (2003). Latched recurrent neural network. Elektrotehniski Vest-
nik/Electrotechnical Review , 70 (1–2), 46–51. 72

Wallis, G., & Bülthoff, H. H. (2001). Effects of temporal association on recognition
memory. Proceedings of the National Academy of Sciences of the United States of
America, 98 (8), 4800–4804. 17

Wang, C., & Wang, X. S. (2000). Supporting content-based searches on time series
via approximation. In Proceedings of the 12th International Conference on Scientific
and Statistical Database Management , (pp. 69–81). Washington, DC, USA: IEEE
Computer Society. 115

Wang, D. (2001). Anticipation model for sequential learning of complex sequences. In
R. Sun, & C. Giles (Eds.) Sequence Learning , vol. 1828 of Lecture Notes in Computer
Science, (pp. 53–79). Berlin / Heidelberg, Germany: Springer. 72

Wattenmaker, W. D. (1993). Incidental concept learning, feature frequency, and corre-
lated properties. Journal of Experimental Psychology: Learning, Memory, and Cog-
nition, 19 (1), 203–222. 14, 17

Wendemuth, A. (2007). Dynamics of temporal difference learning. In Proceedings of
the 20th international joint conference on Artifical intelligence, (pp. 1107–1112). San
Francisco, USA: Morgan Kaufmann Publishers Inc. 28

Werbos, P. (1988). Backpropagation: past and future. In Proceedings of the IEEE
International Conference on Neural Networks, (pp. 343–353). Long Beach, USA: IEEE
Press. 101

Werbos, P. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE , 78 (10), 1550–1560. 73, 85

Werfel, J., Xie, X., & Seung, H. S. (2005). Learning curves for stochastic gradient descent

129

in linear feedforward networks. Neural Computation, 17 (12), 2699–2718. 44
Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embed-

ding. In Proceedings of the 25th International Conference on Machine learning , (pp.
1168–1175). 96

Whittlesea, B. W., & Dorken, M. D. (1993). Incidentally, things in general are par-
ticularly determined: An episodic-processing account of implicit learning. Journal of
Experimental Psychology: General , 122 (2), 227–248. 20

Whittlesea, B. W., & Wright, R. L. (1997). Implicit (and explicit) learning: acting
adaptively without knowing the consequences. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 23 (1), 181–200. 20

Wickelgren, W. A. (1967). Rehearsal grouping and hierarchical organization of serial po-
sition cues in short-term memory. The Quarterly Journal of Experimental Psychology ,
19 (2), 97–102. 75

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1 (2), 270–280. 73, 78, 79

Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent
networks and their computational complexity , (pp. 433–486). Hillsdale, NJ, USA: L.
Erlbaum Associates Inc. 78

Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of pro-
cedural knowledge. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 15 (6), 1047–1060. 11

Yakovlev, V., Fusi, S., Berman, E., & Zohary, E. (1998). Inter-trial neuronal activity in
inferior temporal cortex: a putative vehicle to generate long-term visual associations.
Nature Neuroscience, 1 (4), 310–317. 17

Zacks, R. T., Hasher, L., & Sanft, H. (1982). Automatic encoding of event frequency:
Further findings. Journal of Experimental Psychology: Learning, Memory, and Cog-
nition, 8 (2), 106–116. 14

130

List of Authored Publications

Articles in International Journals

1 A simple recurrent network for implicit learning of temporal sequences
(S. Glüge, O.H. Hamid, A. Wendemuth), Cognitive Computation, volume 2, pp.
265–271, 2010.

2 On network representations of antennas inside resonating environments
(F. Gronwald, S. Glüge, J. Nitsch), Advances in Radio Science, volume 5, pp.
157–162, 2007.

Contributions in Book Series and Proceedings of International Conferences

3 Auto-Encoder Pre-Training of Segmented-Memory Recurrent Neural
Networks (S. Glüge, R. Böck, A. Wendemuth), Proceedings of the European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN 2013), Louvain-la-Neuve: Ciaco, pp. 29–34, 2013.

4 Extension of backpropagation through time for segmented-memory re-
current neural networks (S. Glüge, R. Böck, A. Wendemuth), Proceedings of
the 4th International Joint Conference on Computational Intelligence, SciTePress,
pp. 451–456, 2012.

5 Intraindividual and interindividual multimodal emotion analyses in human-
machine-interaction (R. Böck, S. Glüge, A. Wendemuth, K. Limbrecht, S. Wal-
ter, D. Hrabal, H.C. Traue), IEEE International Multi-Disciplinary Conference on
Cognitive Methods in Situation Awareness and Decision Support, Piscataway, NY:
IEEE, pp. 59–64, 2012.

6 Combining mimic and prosodic analyses for user disposition classifica-
tion (R. Böck, K. Limbrecht, I. Siegert, S. Glüge, S. Walter, A. Wendemuth),
Proceedings der 23. Konferenz Elektronische Sprachsignalverarbeitung, Dresden:
TUDpress, pp. 29–31, 2012

7 Describing human emotions through mathematical modelling (K. Hart-
mann, I. Siegert, S. Glüge, A. Wendemuth, M. Kotzyba, B. Deml), MATHMOD,
ARGE Simulation News, Vienna University of Technology, 6 p., 2012.

8 Segmented-memory recurrent neural networks versus hidden markov
models in emotion recognition from speech (S. Glüge, R. Böck, A. Wende-
muth), Proceedings of the International Conference on Neural Computation Theory
and Applications, SciTePress, pp. 308–315, 2011.

131

9 A markov model of conditional associative learning in a cognitive be-
havioural scenario (S. Glüge, O.H. Hamid, J. Braun, A. Wendemuth), Foun-
dations on Natural and Artificial Computation, volume 6686 of Lecture Notes in
Computer Science, Berlin / Heidelberg: Springer, pp. 10–19, 2011.

10 IMPLICIT SEQUENCE LEARNING - A case study with a 4-2-4 en-
coder simple recurrent network (S. Glüge, R. Böck, A. Wendemuth), Pro-
ceedings of the International Conference on Neural Computation, SciTePress, pp.
279–288, 2010.

11 Neurobiologically inspired companion systems (A. Wendemuth, S. Glüge,
O.H. Hamid), Proceedings of Research Workshop on “Emotion-, Speech-, and Face
Recognition with advanced classifiers”, Magdeburg: University, pp. 57–66, 2008

Contributions in Workshops

12 Emotion detection by event evaluation using fuzzy sets as appraisal vari-
ables. (M. Kotzyba, B. Deml, H. Neumann, S. Glüge, K. Hartmann, I. Siegert, A.
Wendemuth, H. Traue, S.Walter), Proceedings of the 11th International Conference
on Cognitive Modeling, Universitätsverlag der TU Berlin, pp. 123–124, 2012.

13 Cognitive science and information (S. Glüge, A. Wendemuth), International
Conference on What makes Humans Human (WMHH2010), March, 26-27, 2010,
Ulm, Germany

14 Simulated group meetings-insights from sociology and engineering (T.
Grosser, V. Heine, S. Glüge, I. Siegert, J. Frommer, A. Wendemuth), International
Conference on What makes Humans Human, March, 26-27, 2010, Ulm, Germany

15 Implicit sequence learning by recurrent neural networks (S. Glüge, A.
Wendemuth), Proceedings of Interdisciplinary College 2010, March, 12-19, 2010,
Günne, Germany

Publications to appear

16 Solving Number Series with Simple Recurrent Networks (S. Glüge, A.
Wendemuth), Proceedings of the International Work-Conference on the Interplay
between Natural and Artificial Computation (IWINAC2013), Palma de Mallorca,
2013.

17 Dempster-Shafer theory with smoothness (R. Böck, S. Glüge, A. Wende-
muth), Proceedings of the 3rd International Symposium on Integrated Uncertainty
in Knowledge Modelling and Decision Making (IUKM2013) Beijing, China, 2013.

18 Modelling of emotional development within human-computer-interaction
(I. Siegert, K. Hartmann, S. Glüge, A. Wendemuth), Proceedings des 2. interdiszi-
plinären Workshops, Duisburg, Germany, 2012.

132

	Introduction
	State of the Art in Implicit Learning
	Implicit Learning in Psychology
	Empirical Studies of Implicit Learning
	The Empirical Problem
	Debates in Implicit Learning
	Recent Work in Implicit Learning

	Implicit Learning in Cognitive Biology
	Sequence Learning and Temporal Context
	Studies of Temporal Order Effects
	Task Irrelevant Temporal Context in Conditional Associative Learning

	Computational Models of Implicit Learning
	Connectionist Model of Implicit Learning
	Supervised, Unsupervised and Reinforcement Learning
	Sequence Learning as a Machine Learning Discipline
	Discussion

	Computational Models of Conditional Associative Learning
	Markov Model of Conditional Associative Learning
	Markov Property and Markov Model
	Behavioural Markov Model
	Analysis of the Markov Model
	Fit of Model Parameter to Subjects' Data

	Connectionist Model of Conditional Associative Learning
	Reinforcement Learning in Neural Networks
	Simulation on the Conditional Associative Learning Task
	Summary of the Experiment

	Discussion of the Models

	Representation of Temporal Context in Simple Recurrent Networks
	The 4-2-4 Encoder Simple Recurrent Network
	Encoding Task
	Network Configuration
	Network Training

	Results of the Training
	Results of the Testing
	Representation of Temporal Context
	Discussion

	Learning Long-Term Dependencies in Recurrent Neural Networks
	The Vanishing Gradient Problem
	Segmented-Memory Recurrent Neural Network
	Forward Processing in the Segmented-Memory Recurrent Neural Network
	Effect of the Segmented Memory

	Extension of Real-Time Recurrent Learning for Segmented-Memory Recurrent Neural Networks
	Extension of Real-Time Recurrent Learning
	Computational Complexity of Extended Real-Time Recurrent Learning

	Extension of Backpropagation Through Time for Segmented-Memory Recurrent Neural Networks
	Extension of Backpropagation Through Time
	Computational Complexity of Extended Backpropagation Through Time

	Evaluation on the Information Latching Problem
	Discussion

	Unsupervised Pre-Training for Segmented-Memory Recurrent Neural Networks
	Deep Neural Networks
	Auto-Encoder Pre-Training of Segmented-Memory Recurrent Neural Networks
	Pre-Trained smrnn on the Information Latching Problem
	Effect of the auto-encoder pre-training
	Alternative Context Weight Initialisation

	Discussion of the Pre-Training Procedure

	Summary and Outlook
	List of Acronyms
	Bibliography
	List of Authored Publications

