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Abstract: Steviol and isosteviol were prepared from the commercially available sweetener stevioside
and converted into lipophilic F16 hybrids. Their cytotoxicity was determined in SRB assays and
showed to depend on both the substitution pattern of the aromatic substituent as well as on the
spacer length. Therefore, compound 25 held an IC50 (A2780) of 180 nM, thus surpassing the activity
of comparable rhodamine hybrids. Several of the compounds were also able to overcome drug
resistance in the A2780/A2780cis model. Extra staining experiments showed a similar subcellular
accumulation pattern of the F16 hybrids as a well-established mitocan, hence proving preferential
mitochondrial accumulation but also some other accumulation in other cellular areas.
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1. Introduction

Exploiting structural metabolic differences between “normal” cells and cancer cells
determines the efficiency, safety and success of a therapy and cure for cancer. Since cancer is
still one of the most common causes of death worldwide, despite all the successes achieved,
the development of new therapeutics is of the highest interest and essential importance.
In addition to other structural differences, cancer cells can differ from normal cells in
the potential of their mitochondrial membranes [1]. This is higher in many tumor cells,
resulting in an increased affinity for cations, especially if these also have a high lipophilicity.

The resulting concept was successfully proven for compounds carrying, for example,
a triphenylphosphonium residue [2], or a rhodamine residue connected via a suitable
linker [3] or a Changsha NIR ligand [4]. Hybrids of acetylated pentacyclic triterpene
carboxylic acids with (homo)-piperazinyl linkers and rhodamine residues were shown
to act as mitocans. IC50 values in the single-digit or even sub-nanomolar nanomolar
concentration range could be obtained with relatively high selectivity between malignant
and non-malignant cells. Depending on the triterpene carboxylic acid used (or its degree
of hydroxylation/acetylation), 2,3,23-tris-acetylated triterpene carboxylic acid derivatives
interact preferentially with mitochondrial membranes with the almost complete shutdown
of mitochondrial ATP synthesis, whereas with mono-acetylated analogues the conjugates
could also be detected in the cell nucleus in some cases [4–6].

Currently, hybrids of pentacyclic triterpene carboxylic acids with a distal-linked, sub-
stituted N-methylpyridinium radical, so-called F16 derivatives [7,8], can also be prepared,
which exhibit low EC50 values with good selectivity [9–11]. A decrease in the intensity of
ADP phosphorylation was also observed for these derivatives.

In extensions of our previous investigations of triterpenes to diterpenes [12–14], we
were able to present and investigate cytotoxic derivatives of isosteviol, a stachane-type
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diterpene, for the first time and to achieve initial success [15]. Therefore, it was obvious to
also make corresponding F16 derivatives of steviol and isosteviol synthetically accessible
and to investigate their cytotoxic potential.

2. Results

Steviol (1) [16–22] and isosteviol (2) [23–25] can be obtained by hydrolysis from com-
mercially available stevioside (Scheme 1). Stevioside is used in large quantities in food man-
ufacturing as a non-cariogenic sweetener with high sweetness. Its acid hydrolysis [26–29]
proceeded smoothly and yielded isosteviol (2) in 63% isolated yield (Scheme 1). Meanwhile,
the preparation of 1 is more problematic, as the degradation reaction described in the litera-
ture (Malaprade cleavage [30–32] with NaIO4 followed by alkaline hydrolysis) of stevioside
gave 1 in only 20–30% yield. Our yield is in excellent agreement with the reported data [29]
of M. Ukiya; previously reported [30–32] yields ranging between 57 and 70% could not be
reproduced in our labs. Alternatively, enzymatic hydrolyses have been described in the
literature [33,34], but the enzymes used in these reactions are not commercially available or
are difficult to obtain. Our own experiments with commercially available pectinases (from
Aspergillus niger), pancreatinases (porcine or hog) and β-glucosidases (almonds, A. niger) in
acetate buffer at pH = 6 either at 21 ◦C or 50 ◦C for a period of 1–7 days with or without
co-solvent ethanol or toluene were not successful at all, and only small amounts of 1 were
isolated. Therefore, we decided to keep the classical synthesis variant—even if the yields
were not satisfactory. Attempts to optimize this reaction were not very successful, and the
yields could not be improved.

Molecules 2024, 29, x FOR PEER REVIEW 2 of 23 
 

 

prepared, which exhibit low EC50 values with good selectivity [9–11]. A decrease in the 
intensity of ADP phosphorylation was also observed for these derivatives. 

In extensions of our previous investigations of triterpenes to diterpenes [12–14], we 
were able to present and investigate cytotoxic derivatives of isosteviol, a stachane-type 
diterpene, for the first time and to achieve initial success [15]. Therefore, it was obvious to 
also make corresponding F16 derivatives of steviol and isosteviol synthetically accessible 
and to investigate their cytotoxic potential. 

2. Results 
Steviol (1) [16–22] and isosteviol (2) [23–25] can be obtained by hydrolysis from com-

mercially available stevioside (Scheme 1). Stevioside is used in large quantities in food 
manufacturing as a non-cariogenic sweetener with high sweetness. Its acid hydrolysis [26–
29] proceeded smoothly and yielded isosteviol (2) in 63% isolated yield (Scheme 1). Mean-
while, the preparation of 1 is more problematic, as the degradation reaction described in 
the literature (Malaprade cleavage [30–32] with NaIO4 followed by alkaline hydrolysis) of 
stevioside gave 1 in only 20–30% yield. Our yield is in excellent agreement with the re-
ported data [29] of M. Ukiya; previously reported [30–32] yields ranging between 57 and 
70% could not be reproduced in our labs. Alternatively, enzymatic hydrolyses have been 
described in the literature [33,34], but the enzymes used in these reactions are not com-
mercially available or are difficult to obtain. Our own experiments with commercially 
available pectinases (from Aspergillus niger), pancreatinases (porcine or hog) and β-gluco-
sidases (almonds, A. niger) in acetate buffer at pH = 6 either at 21 °C or 50 °C for a period 
of 1–7 days with or without co-solvent ethanol or toluene were not successful at all, and 
only small amounts of 1 were isolated. Therefore, we decided to keep the classical synthe-
sis variant—even if the yields were not satisfactory. Attempts to optimize this reaction 
were not very successful, and the yields could not be improved. 

 
Scheme 1. Synthesis of steviol (1) and isosteviol (2) from stevioside; numbering scheme as well as 
reactions and conditions: (a) NaIO4, H2O, 21 °C, 1 d, 26%; (b) aq. HCl, MeOH, reflux, 2 h, 63%. 
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nished (E) configurated pyridyl-ethenylindoles 3–5. The coupling constant between the 
olefinic protons of J ~ 16 Hz confirms the (E) configuration of the compounds. The esteri-
fication of 1 or 2 with 1,2-dibromoethane, 1,3-dibromopropane or 1,4-dibromobutane 
(Scheme 3) furnished esters 6/7, 14/15 and 22/23, respectively, whose microwaves assisted 
coupling with 3–5 furnished final F16 derivatives 8–13, 16–21 and 24–29. This small library 
of compounds hence differs in the kind of diterpenoid skeleton (steviol vs. isosteviol), the 
length of the spacer between the diterpenoid core and the F16 moiety (2–4 carbons) and 
the substitution pattern of the F16 unit (ortho, meta or para). 

Scheme 1. Synthesis of steviol (1) and isosteviol (2) from stevioside; numbering scheme as well as
reactions and conditions: (a) NaIO4, H2O, 21 ◦C, 1 d, 26%; (b) aq. HCl, MeOH, reflux, 2 h, 63%.

The reaction [35] of gramine (Scheme 2) with o-, m- or p-pyridine carbaldehyde fur-
nished (E) configurated pyridyl-ethenylindoles 3–5. The coupling constant between the
olefinic protons of J ~ 16 Hz confirms the (E) configuration of the compounds. The es-
terification of 1 or 2 with 1,2-dibromoethane, 1,3-dibromopropane or 1,4-dibromobutane
(Scheme 3) furnished esters 6/7, 14/15 and 22/23, respectively, whose microwaves assisted
coupling with 3–5 furnished final F16 derivatives 8–13, 16–21 and 24–29. This small library
of compounds hence differs in the kind of diterpenoid skeleton (steviol vs. isosteviol), the
length of the spacer between the diterpenoid core and the F16 moiety (2–4 carbons) and the
substitution pattern of the F16 unit (ortho, meta or para).
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MeCN, K2CO3, 3 h 50 ◦C; (b) DMF, microwaves (14 h, 120 ◦C).

All products were fully characterized by their 1H-, 13C NMR, IR and UV-vis spectra,
as well as MS spectra and microanalysis. The obtained spectroscopic data agreed perfectly
with the expected values. The assignment of the signals of the (iso)-steviol skeleton in the
respective NMR spectra followed the assignments previously made [15].

All compounds were screened for their cytotoxic activity and tumor cell selectivity
using our standard model, previously [36] described, comprising a selection of human
tumor cell lines representing different solid tumor entities and non-malignant human
fibroblasts (CCD18Co) including the cell line pair A2780/A2780cis, a well-known model of
acquired drug resistance. The results from these assays are summarized in Tables 1 and 2
and depicted in Figure 1.
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Table 1. Cytotoxicity (IC50 in µM) of isosteviol derivatives from SRB assays; cell lines: A2780
(ovarian carcinoma), A2780cis (resistant derivative of A2780), A549 (lung carcinoma), MCF7 (breast
carcinoma), HT29 (colorectal carcinoma), CCD18Co (non-malignant human fibroblasts); results
are mean values (n = 3) with SD for all experiments between 5 and 10%. DOX: doxorubicin as a
positive standard; SL denotes the spacer length, SP the substitution pattern (ortho, meta or para in the
pyridinium moiety); resistance index (RI): quotient IC50 values A2780cis/A2780; selectivity index
1 (SI 1): CCD18Co/A2780, SI 2 = CCD18Co/A549.

SL SP # A2780 A2780cis A549 MCF7 HT29 CCD18Co RI SI 1 SI 2

o 3 1.19 39.23 26.27 1.12 28.70 87.41 32.88 73.27 3.33
m 4 1.17 20.97 16.41 5.18 7.83 90.32 17.97 77.40 5.50
p 5 2.26 16.42 15.41 10.86 16.49 100.00 7.26 44.21 6.49

2 Br 7 19.12 28.70 32.07 11.84 16.14 62.28 1.50 3.26 1.94
2 o 13 1.92 4.07 10.85 3.83 6.35 20.64 2.12 10.75 1.90
2 m 11 2.94 5.24 23.59 8.73 9.42 29.35 1.78 9.97 1.24
2 p 9 0.93 1.54 9.09 1.08 1.56 12.95 1.66 13.96 1.42

3 Br 15 9.00 16.65 24.77 12.78 15.13 41.48 1.85 4.61 1.67
3 o 21 1.86 2.35 9.27 1.71 3.38 10.06 1.26 5.42 1.09
3 m 19 0.99 1.93 11.22 2.50 5.05 15.49 1.94 15.60 1.38
3 p 17 0.28 0.30 3.39 0.59 0.76 19.93 1.07 71.25 5.88

4 Br 23 13.03 29.10 34.29 18.36 24.61 31.33 2.23 2.40 0.91
4 o 29 1.06 3.22 9.86 2.05 3.81 18.58 3.05 17.61 1.88
4 m 27 0.76 1.27 6.28 1.57 2.20 10.83 1.67 14.18 1.72
4 p 25 0.18 0.31 2.62 0.49 0.88 10.85 1.70 59.32 4.14

DOX 0.007 0.109 0.017 0.083 0.098 0.242 14.7 32.7 13.9

Table 2. Cytotoxicity (IC50 in µM) of steviol derivatives from SRB assays; cell lines: A2780 (ovarian
carcinoma), A2780cis (resistant derivative of A2780), A549 (lung carcinoma), MCF7 (breast carci-
noma), HT29 (colorectal carcinoma), CCD18Co (non-malignant human fibroblasts); results are mean
values (n = 3) with SD for all experiments between 5 and 10%. DOX: doxorubicin as a positive
standard; SL denotes the spacer length, SP the substitution pattern (ortho, meta or para in the pyri-
dinium moiety); resistance index (RI): quotient IC50 values A2780cis/A2780; selectivity index 1 (SI 1):
CCD18Co/A2780, SI 2 = CCD18Co/A549.

SL SP # A2780 A2780cis A549 MCF7 HT29 CCD18Co RI SI 1 SI 2

2 Br 6 24.78 28.08 83.38 29.42 30.59 42.19 1.13 1.70 0.51
2 o 12 25.73 29.43 54.31 20.23 28.51 75.93 1.14 2.95 1.40
2 m 10 2.80 4.20 16.69 3.83 7.65 22.72 1.50 8.12 1.36
2 p 8 2.01 1.86 8.82 1.81 1.81 11.82 0.92 5.87 1.34

3 Br 14 27.65 28.36 28.97 28.09 29.11 41.72 1.03 1.51 1.44
3 o 20 1.81 2.70 12.57 1.85 6.11 19.44 1.49 10.73 1.55
3 m 18 2.28 2.71 9.47 9.47 6.66 26.91 1.19 11.82 2.84
3 p 16 0.32 0.45 3.00 0.72 0.98 8.33 1.41 26.27 2.77

4 Br 22 16.66 18.95 35.62 21.17 29.52 59.68 1.14 3.58 1.68
4 o 28 0.50 1.68 7.51 1.18 1.78 10.94 3.33 21.75 1.46
4 m 26 1.28 1.82 6.94 1.98 2.43 11.73 1.42 9.14 1.69
4 p 24 0.24 0.28 2.76 0.58 0.88 13.09 1.13 53.96 4.74
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Figure 1. Representative IC50 (in µM) values (from SRB assays) for steviol- and isosteviol-derived
compounds employing A2780 ovarian carcinoma cells with respect to substitution pattern (ortho-,
meta- or para in the pyridinium moiety) and spacer length (2–4).

The results reveal that the compounds were most sensitive for A2780 cells, with
pyridyl-ethenylindoles 3–5 showing IC50 values below 3.0 µM. While the spacered diter-
penoids were not cytotoxic at all, the F16 hybrids were even more active than their parent
compounds, with only marginal differences observed between steviol- and isosteviol-
derived variants. Those hybrids holding the linker in the para-position proved to be the
most active, especially with a higher spacer length. Therefore, compound 25 has an IC50
(A2780) of 180 nM, surpassing the activity of comparable rhodamine hybrids. Though the
activity is increased, coupling the F16 structures with the diterpenes leads to less selective
compounds, except for compounds 17, 24 and 25, which retained selectivity. Thus, the
three most active compounds were also the most selective. In addition, compounds 17, 24
and 25 were able to reduce or even overcome drug resistance in the A2780/A2780cis model.
Using doxorubicin treatment as a control, the relative resistance of A2780cis compared
to A2780 was reproduced, resulting in an approximately 14-fold difference in their IC50
values. In conclusion, compounds 17, 24 and 25, representing the para-linked hybrids
with higher spacer length, showed the most promising profiles, combining anti-tumor cell
activity, selectivity and the ability to overcome drug resistance. An increased spacer length
allows more flexibility, providing effective action at its target site. Moreover, it offers a
larger nonpolar region, obviously enhancing the compound’s ability to be accumulated
in the mitochondria. However, no complete SAR model can be developed based on these
results because the mode of action of the compounds is not yet fully understood. The
influence of the orientation of the pyridinium and indole moiety on the cytotoxicity of F16
has already been established by Xu et al. [37]. Our own corresponding molecular modelling
calculations for conformational analysis of the derivatives were postponed. In addition,
since the intracellular distribution is much more inhomogeneous than, for example, with
AHCS2 (see below), any differences in constitution, configuration and orientation will
also have an influence on the mode of action. This will have to be investigated in detail in
further experiments as well as with an exact investigation of possible differences between
malignant and non-malignant cells.

Next, the subcellular accumulation of compounds 17 and 25 compared to 5 (F16
group) was studied, employing the fluorescent characteristics mediated by the F16 group.
Expecting a mitochondrial accumulation of the compounds, our previously described
strong mitochondria-targeted and NIR fluorescent agent/mitocan AHCS2 (compound 21
in ref. [4]) was used, thus enabling simultaneous analysis and direct comparison due to
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different fluorescence spectra. As shown in Figure 2, a similar subcellular accumulation
pattern of the F16 compounds and AHCS2 could be observed, proving mitochondrial
accumulation. However, a thorough analysis, especially of the merged pictures, revealed
some minor accumulation of the F16 diterpene hybrids in other cellular areas in addition
to mitochondria.
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mitochondrial targeting compound AHCS2 and Hoechst 33,342 for the staining of nuclei showing the
preferential mitochondrial localization of compounds with some accumulation in other cellular areas.
Scale bar: 20 µm; (for higher resolution, see original images in the Supplementary Materials File).

As a possible mode of action—in analogy to F16 or rhodamine conjugates of triter-
penes [3,4,8]—an induced cell death combined with a cell cycle arrest, an interruption of
the mitochondrial respiratory chain and an influence on the intracellular ATP level seems
most likely. Further clarification is reserved for future experiments, as is the performance
of clone formation assays or cell scratch assays. The results of our investigations also shed
new light on earlier reports on the cytotoxicity of “simple” alkylpyridinium compounds;
however, the F16 derivatives investigated in this work are significantly more cytotoxic than,
for example, cetylpyridinium chloride—a very commonly used disinfectant [38].
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3. Conclusions

Steviol and isosteviol were prepared from the commercial sweetener stevioside and
converted into lipophilic F16 hybrids. Their cytotoxicity was determined in SRB assays
and was shown to depend on both the substitution pattern of the aromatic substituent and
the spacer length. Several of the compounds were able to overcome drug resistance in the
A2780/A2780cis model. Staining experiments revealed a similar subcellular accumulation
pattern of the F16 hybrids as a well-established mitocan, thus demonstrating preferential
mitochondrial accumulation, but also minor accumulation in other cellular compartments.
The IC50 value of compound 25 was as low as 0.18 µM (for A2780 ovarian tumor cells),
holding a selectivity for this tumor cell line (as compared to non-malignant human fibroblast
CCD18Co) of 59. Despite these very good results, the authors are aware that more intensive
biological studies are needed to prove the merits of this new class of compounds.

4. Experimental Procedure
4.1. General

Reagents were bought from commercial suppliers and used without further purifi-
cation. The solvents were dried according to the usual procedures. TLC was performed
on silica gel (Macherey-Nagel, detection with UV absorption; Macherey-Nagel, Düren,
Germany). Melting points have been measured with a Büchi M-565 instrument (Büchi
Labortechnik, Flawill, Switzerland). NMR spectra were recorded using VARIAN spectrom-
eters (Varian Germany, Darmstadt, Germany) at 27 ◦C (δ given in ppm; J in Hz, typical
experiments for assignments: 13C APT, HMBC, HSQC). Numbering in the NMR spectra:
1–20 (diterpene core), 21–24 for O-(CH2)n-N fragment followed by the pyridinium ring,
the ethenyl moiety and the indole moiety. ASAP-MS spectra were taken on an Advion
(Advion, Ithaca, NY, USA); expression: CMS-L with an ASAP/APCI Ion source (capillary
voltage 150 V, capillary temperature 220 ◦C and voltage of the ion source: 15 V; APCI source
temperature 300 ◦C with 5 µA). IR spectra were recorded on a Perkin-Elmer Spectrum
Two (UATR Two Unit, Perkin-Elmer GmbH, Rodgau, Germany). The human cancer cell
lines A2780 (ECACC #93112519), A2780Cis (ECACC # 93112517), A549 (ATCC—CCL-
185), HT29 (ATCC—HTB-38) and MCF7 (ATCC—HTB-22) were cultivated in RPMI1640
medium, and non-malignant human fibroblasts CCD18Co (ATCC—CRL-1459) were grown
in MEME (both from Sigma-Aldrich, St. Louis, MO, USA). Both media were supplemented
with 10% fetal bovine serum (Biowest, Nuaillé, France) and 1% penicillin-streptomycin
(Sigma-Aldrich).

Cytotoxic activities of compounds were analyzed using the SRB cytotoxicity assay.
Cells were seeded in 96-well plates and after 24 h were treated with serial dilutions of
compounds for 72 h. All subsequent steps were performed according to the previously
described SRB assay protocol [36]. Dose–response curves and calculation of IC50 values,
including standard deviations, were carried out using GraphPad Prism8.

Analysis of subcellular localization of compounds was performed in A549 cells using
the established mitochondrial targeting compound AHCS2 [4] for direct comparison. For
all procedures, RPMI 1640 media without phenol-red (Pan-Biotech GmbH, Aidenbach,
Germany) was used. Cells were seeded in a µ-Plate 96-well black plate (ibiTreat: #1.5
polymer coverslip bottom, ibidi GmbH, Gräfelfing, Germany) at a cell density of 30.000 per
well. After 24 h, cells were treated with 10 µM of compound 5 or 1 µM of compound 17 or
1 µM of compound 25, each together with 20 nM of compound AHCS2. After 24 h, Hoechst
33342 (Sigma-Aldrich) was added and live cell imaging was performed on an Axio Observer
7 (Carl Zeiss Microscopy Deutschland GmbH, Oberkochen, Germany) using the settings
for Ex/Em, as follows: Hoechst 33342 (385 nm/425 nm), F16 compounds (475 nm/514 nm),
AHCS2 (735 nm/785 nm). For simultaneous analysis, multiple Z-stacked images were
taken and resulting pictures were reconstructed using the ZEN 3.5 pro software (Zeiss).
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4.2. Syntheses
4.2.1. (4α) 13-Hydroxy-kaur-16-en-18-oic Acid (1)

To a solution of stevioside (100.0 g, 0.12 mol) in dist. water (8.0 L), NaIO4 (160.0 g,
0.75 mol) was added and the mixture was stirred for 1 day at 21 ◦C. Finely ground KOH
(650.0 g, 11.6 mol) was added, and the mixture was stirred under reflux for 3 h. The mixture
was cooled to 0 ◦C and HOAc (650 mL) was slowly added; the mixture was extracted
with ether (1.8 L). The combined organic layers were washed with water, dried (MgSO4),
and the solvents were removed under reduced pressure. The residue was subjected to
re-crystallization from MeOH to yield 1 (10.5 g, 26%) as a colorless solid: Rf = 0.47 (SiO2,
CHCl3/MeOH, 9:1); m.p. = 204–206 ◦C [lit.: [39] 212–213 ◦C]; [α]20

D = −62.88◦ (c = 0.09,
CHCl3) [lit.: [40] [α]20

D = −55.2◦ (CHCl3)]; IR (ATR): ν = 2945br, 1694w, 1456w, 1184w, 757w
cm−1; 1H NMR (500 MHz, CDCl3): δ = 4.98 (s, 1H, 17-H), 4.81 (s, 1H, 17-H), 2.20 (dt, J = 17.0,
2.9 Hz, 1H, 15-H), 2.14 (td, J = 13.4, 3.3 Hz, 1H, 3-H), 2.12–2.04 (m, 2H, 14-H, 15-H), 1.94 (td,
J = 13.8, 4.1 Hz, 1H, 2-H), 1.92–1.70 (m, 5H, 1-H, 6-H, 11-H, 12-H), 1.65–1.51 (m, 3H, 7-H,
11-H, 12-H), 1.48–1.39 (m, 2H, 2-H, 7-H), 1.30 (dd, J = 10.5, 2.7 Hz, 1H, 14-H), 1.23 (s, 3H,
19-H), 1.08 (dd, J = 12.1, 2.3 Hz, 1H, 5-H), 1.04–0.99 (m, 1H, 3-H), 0.99–0.96 (m, 1H, 9-H), 0.95
(s, 3H, 20-H), 0.84–0.79 (m, 1H, 1-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 183.77 (C-18),
155.80 (C-16), 103.20 (C-17), 80.51 (C-13), 57.03 (C-5), 53.96 (C-9), 47.54 (C-15), 47.05 (C-14),
43.74 (C-4), 41.87 (C-8), 41.36 (C-7), 40.64 (C-1), 39.65 (C-10), 39.50 (C-12), 37.84 (C-3), 28.92
(C-19), 21.93 (C-6), 20.59 (C-11), 19.14 (C-2), 15.55 (C-20) ppm; MS (ESI, MeOH): m/z (%) 317
(100%, [M − H]−).

4.2.2. (4α, 8β, 13β) 13-Methyl-16-oxo-17-norkauran-18-oic Acid (2)

A solution of stevioside (86.0 g, 0.10 mol) in MeOH (500 mL) and aq. HCl (33%, 90 mL)
was heated under reflux for 2 h. Stirring at 21 ◦C was continued overnight, water (1200 mL)
was added slowly, and the precipitate was filtered off, dried and re-crystallized from
EtOH (300 mL) to yield 2 (21.6 g, 63%) as a colorless solid: Rf = 0.71 (SiO2, CHCl3/MeOH
9:1); m.p. = 229–231 ◦C [lit.: [41] 228–230 ◦C]; [α]20

D = −84.02◦ (c = 0.15, CHCl3) [lit.: [39]
[α]20

D = −79.3◦ (EtOH)]; IR (ATR), 1H NMR and 13C NMR as previously reported; MS (ESI,
MeOH/CHCl3, 4:1): m/z (%) 317 (100%, [M − H]−).

4.2.3. General Procedure for the Synthesis of Pyridyl-ethenylindoles 3–5 (GPA)

A mixture of 2-, 3- or 4-pyridinecarboxaldehyde (1.5 equiv), tri-n-butyl-phosphine
(1.5 equiv) and gramine (3-dimethylaminomethyl-indole, 3 equiv) in dry acetonitrile (75 mL)
was stirred at 85 ◦C for 1 day; [35] the volatiles were removed under reduced pressure, and
the residue was purified by chromatography.

4.2.4. 3-[(E)-2-Pyridin-2-yl-ethenyl]-1H-indole (3)

Following GPA from gramine (5.25 g, 30 mmol), acetonitrile (75 mL), n-PBu3 (12 mL,
46 mmol) and 24-pyridinecarbaldehyde (4.2 mL, 45 mmol) followed by chromatography
(SiO2; hexanes/ethyl acetate, 1:1), 5 (3.05 g, 46%) was obtained as a yellowish solid: Rf = 0.52
(SiO2, hexanes/ethyl acetate, 1:1); m.p. = 185–187 ◦C (lit: [41] 190–191 ◦C); IR (ATR):
ν = 3128w, 3086w, 3041w, 2972w, 2919w, 2879w, 1632m, 1565m, 1523w, 1500m, 1451m, 1417m,
1346br, 1283m, 1252m, 1222w, 1185w, 1151w, 1138w, 1117m, 1084w, 1042w, 1025w, 977w, 952s,
913w, 881w, 853w, 817w, 771br, 739s, 701s, 627m, 618m, 564w, 547w, 426m cm−1; UV-Vis
(MeOH): λmax (log ε) = 303.67 nm (2.38); 1H NMR (500 MHz, DMSO-d6): δ = 11.42 (s, 1H,
NH), 8.50 (ddd, J = 4.8, 1.8, 0.7 Hz, 1H, 15-H), 7.99 (d, J = 7.8 Hz, 1H, 3-H), 7.88 (d, J = 16.1 Hz,
1H, 9-H), 7.73 (d, J = 2.7 Hz, 1H, 8-H), 7.69 (td, J = 7.6, 1.8 Hz, 1H, 13-H), 7.47 (d, J = 7.9 Hz,
1H, 12-H), 7.45–7.41 (m, 1H, 2-H), 7.18 (dd, J = 7.0, 1.2 Hz,1H, 5-H), 7.15(d, J = 16.3 Hz, 1H,
10-H), 7.20–7.09 (m, 1H, 4-H), 7.12–7.10 (m, 1H, 14-H) ppm; 13C NMR (126 MHz, DMSO-d6):
δ = 156.42 (C-15), 149.20 (C-11), 137.19 (C-1), 136.51 (C-13), 127.85 (C-9), 127.45 (C-6), 126.38
(C-8), 125.12 (C-3), 124.15 (C-10), 122.63 (C-12), 121.93 (C-4), 121.22 (C-14), 119.99 (C-5),
112.03 (C-7), 111.68 (C-2) ppm; MS (ESI, DMSO/CHCl3, 4:1): m/z (%) 221 (100%, [M + H]+);
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analysis calcd. for C15H12N2 (220.28): C 81.79, H 5.49, N 12.72; found: C 81.63, H 5.70,
N 12.45.

4.2.5. 3-[(E)-2-Pyridin-3-yl-ethenyl]-1H-indole (4)

Following GPA from gramine (5.25 g, 30 mmol), acetonitrile (75 mL), n-PBu3 (12 mL,
46 mmol) and 3-pyridinecarbaldehyde (4.2 mL, 45 mmol), followed by chromatography
(SiO2; hexanes/ethyl acetate, 1:1), 4 (3.32 g, 50%) [42–45] was obtained as a yellowish
solid: Rf = 0.25 (SiO2, hexanes/ethyl acetate, 1:1); m.p. = 194–195 ◦C (lit.: [35] 194–195 ◦C);
IR (ATR): ν = 3129w, 3089w, 3039w, 2970w, 2921w, 2881w, 1630m, 1568m, 1524w, 1499m,
1452m, 1416m, 1348br, 1281m, 1250m, 1224w, 1186w, 1153w, 1136w, 1118m, 1083w, 1042w,
1026w, 976w, 953s, 911w, 882w, 851w, 816w, 772br, 740s, 699s, 629m, 617m, 563w, 548w, 424s
cm−1; UV-Vis (MeOH): λmax (log ε) = 335.01 nm (2.51); 1H NMR (500 MHz, DMSO-d6):
δ = 11.40 (s, 1H, NH), 8.77 (d, J = 2.2 Hz, 1H, 15-H), 8.37 (dd, J = 4.6, 1.6 Hz, 1H, 14-H), 8.05
(d, J = 7.8 Hz, 1H, 2-H), 7.99 (dt, J = 7.9, 1.8 Hz, 1H, 12-H), 7.68 (dt, J = 2.6 Hz, 1H, 8-H),
7.56 (d, J = 16.6 Hz, 1H, 9-H), 7.45 (d, J = 7.8 Hz, 1H, 3-H), 7.34 (dd, J = 7.9, 4.7 Hz, 1H,
13-H), 7.21–7.16 (m1H, 5-H), 7.14 (td, J = 7.4, 6.8, 1.2 Hz, 1H, 4-H), 7.12 (d, J = 16.6 Hz, 1H,
10-H) ppm; 13C NMR (126 MHz, DMSO-d6): δ = 147.95 (C-15), 147.47 (C-14), 137.54 (C-6),
134.76 (C-11), 131.91 (C-12), 127.17 (C-8), 125.57 (C-1), 125.14 (C-9), 124.10 (C-13), 122.37
(C-5), 120.38 (C-2), 120.31 (C-4), 119.93 (C-10), 114.02 (C-7), 112.45 (C-3) ppm; MS (ESI,
MeOH/DMSO, 4:1): m/z (%) 219 (77%, [M − H]−); analysis calcd. for C15H12N2 (220.28):
C 81.79, H 5.49, N 12.72; found: C 81.58, H 5.79, N 12.40.

4.2.6. 3-[(E)-2-Pyridin-4-yl-ethenyl]-1H-indole (5)

Following GPA from gramine (5.25 g, 30 mmol), acetonitrile (75 mL), n-PBu3 (12 mL,
46 mmol) and 4-pyridinecarbaldehyde (4.2 mL, 45 mmol), followed by chromatography
(SiO2; hexanes/ethyl acetate, 1:1), 3 (4.31 g, 65%) was obtained as a reddish solid [37,46–51]:
Rf = 0.26 (SiO2, hexanes/ethyl acetate, 1:1); m.p. = 254–255 ◦C (lit.: [37] 255–256 ◦C); C;
IR (ATR): ν = 3127w, 3086w, 3064w, 3026w, 2958w, 2915w, 2869w, 1625m, 1592s, 1547m,
1519m, 1493m, 1444s, 1420s, 1352w, 1332w, 1303w, 1279m, 1247s, 1215m, 1200m, 1153w,
1135w, 1121m, 1093m, 1065w, 1018w, 999m, 962s, 902w, 869m, 830m, 802m, 772w, 732s, 666w,
618m, 559w, 546w, 526m, 496w, 422m cm−1; UV-Vis (MeOH): λmax (log ε) = 352.44 nm (1.26);
1H NMR (400 MHz, DMSO-d6): δ = 11.63–11.45 (s, 1H, NH), 8.47 (d, J = 6.1 Hz, 2H, 13-H,
14-H), 8.03 (dd, J = 7.5, 1.5 Hz, 1H, 5-H), 7.73 (d, J = 13.8 Hz, 1H, 9-H,), 7.75 (s, 1H, 8-H),
7.52 (d, J = 6.2 Hz, 2H, 12-H, 15-H), 7.43 (d, J = 7.9 Hz, 1H, 2-H), 7.20–7.11 (m, 2H, 3-H,
4-H), 7.04 (d, J = 16.5 Hz, 1H, 10-H) ppm; 13C NMR (101 MHz, DMSO-d6): δ = 150.18 (C-13,
C-14), 146.38 (C-11), 137.61 (C-1), 128.44 (C-8), 127.83 (C-9), 125.50 (C-6), 122.54 (C-4), 120.67
(C-10), 120.55 (C-3), 120.43 (C-5), 120.37 (C-12, C-15), 113.65 (C-7), 112.54 (C-2) ppm; MS
(ESI, MeOH/DMSO, 4:1): m/z (%) 219 (83%, [M − H]−); analysis calcd. for C15H12N2
(220.28): C 81.79, H 5.49, N 12.72; found: C 81.50, H 5.71, N 12.46.

4.2.7. General Procedure for the Synthesis of Alkyl Bromides 6, 7, 14, 15, 22 and 23 (GPB)

To a solution of 1 or 2 in dry DMF/ACN (3:1), finely ground K2CO3 (2 equiv.) and
1,2-dibromoethane, 1,3-dibromopropane or 1,4-dibromobutane (4 equiv.) were added,
and the mixture was stirred for 3 h at 50 ◦C [8]. The volatiles were removed under
reduced pressure, and the residue was subjected to chromatography to yield compounds
6 and 7 (from dibromoethane), 14 and 15 (from dibromopropane) and 22 and 23 (from
dibromobutane), respectively.

4.2.8. General Procedure for the Synthesis of the F16 Conjugates 8–13, 16–21 and
24–29 (GPC)

A mixture of bromide 6, 7, 14, 15, 22 or 23 (1.0 mmol) and pyridyl-ethenylindoles 3–5
(1 equiv.) in dry DMF (10 mL) was stirred in a microwave for 14 h at 120 ◦C (microwave
assisted; Anton Parr Monowave apparatus; Anton Paar GmbH, Graz, Austria). The volatiles
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were removed under reduced pressure and the residue was subjected to chromatography
to yield products 8–13, 16–21 and 24–29.

4.2.9. 2-Bromoethyl (4α)-13-Hydroxykaur-16-en-18-oate (6)

Following GPB from 1 (0.5 g, 1.57 mmol), K2CO3 (0.434 g, 3.1 mmol), 1,2-dibromoethane
(0.55 mL, 6.3 mmol) followed by chromatography (SiO2, hexanes/ethyl acetate, 6:1), 6
(0.45 g, 68%) was obtained as a colorless solid: Rf = 0.33 (SiO2, hexanes/ethyl acetate,
8:2); m.p. = 115–117 ◦C; [α]20

D = −57.06◦ (c = 0.145, CHCl3); IR (ATR): ν = 3554m, 2934m,
2853m, 1709s, 1460m, 1443m, 1388w, 1366w, 1316w, 1282w, 1208m, 1138s, 1113m, 1092m,
1057w, 1008w, 967m, 877w, 819w, 774w, 678w, 578w, 531w cm−1; 1H NMR (500 MHz, CDCl3):
δ = 4.97 (s, 1H, 17-H), 4.81 (s, 1H, 17-H), 4.42–4.30 (m, 2H, 21-H), 3.53 (t, J = 5.8 Hz, 2H, 22-H),
2.17 (dd, J = 9.0, 5.6 Hz, 2H, 12-Ha, 15-Ha), 1.93–1.71 (m, 4H, 2-Ha, 6-H, 1-Ha), 1.71–1.57 (m,
5H, 3-H, 7-H, 11-Ha), 1.57–1.35 (m, 5H, 2-Hb, 11-H, 14-H), 1.20 (s, 3H, 19-H), 1.10–0.94 (m,
2H, 12-Hb, 5-H), 0.88 (s, 3H, 20-H), 0.87–0.76 (m, 2H, 1-H, 9-H) ppm; 13C NMR (126 MHz,
CDCl3): δ = 177.27 (C-18), 143.61 (C-16), 103.04 (C-17), 82.73 (C-13), 63.99, 56.85 (C-5), 53.88
(C-9), 51.00 (C-15), 48.08 (C-14), 44.13 (C-4), 41.45 (C-8), 40.98 (C-1), 39.75 (C-7), 39.50 (C-10),
38.16 (C-12), 31.89 (C-3), 29.05 (C-22), 28.96 (C-19), 21.15 (C-6), 20.93 (C-11), 19.18 (C-2),
15.47 (C-20) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) 345 (100%, [M − Br]+); analysis
calcd. for C22H33O3Br (425.41): C 62.12, H 7.82; found: C 61.97, H 8.03.

4.2.10. 2-Bromoethyl (4α, 8β, 13β) 13-Methyl-16-oxo-17-norkauran-18-oate (7)

Following GPB from 2 (0.5 g, 1.57 mmol), K2CO3 (0.434 g, 3.1 mmol), 1,2-dibromoethane
(0.55 mL, 6.3 mmol) followed by chromatography (SiO2, hexanes/ethyl acetate, 9:1), 7
(0.43 g, 64%) was obtained as a colorless solid: Rf = 0.7 (SiO2; hexanes/ethyl acetate, 4:1);
m.p. = 141–144 ◦C; [α]20

D = −63.27◦ (c = 0.156, CHCl3); IR (ATR): ν = 2935m, 2883w, 2839m,
1723s, 1470m, 1451m, 1431w, 1386w, 1322w, 1291w, 1229m, 1209m, 1176s, 1146s, 1132s, 1093m,
1060w, 1030w, 1017w, 996w, 974m, 952w, 928w, 880w, 856w, 803w, 759m, 696w, 587w, 574w,
561w, 535w, 505w, 462w cm−1; 1H NMR (500 MHz, CDCl3): δ = 4.42–4.32 (m, 2H, 21-H), 3.53
(t, J = 5.7 Hz, 2H, 22-H), 2.64 (dd, J = 18.6, 3.8 Hz, 1H, 15-H), 2.21 (d, J = 13.5 Hz, 1H, 3-H),
1.91 (dd, J = 14.1, 2.6 Hz, 2H, 2-H, 15-H), 1.86–1.76 (m, 3H, 1-H, 6-H, 11-H), 1.75–1.52 (m, 6H,
6-H, 7-H, 11-H, 12-H, 14-H), 1.52–1.34 (m, 3H, 2-H, 12-H, 14-H), 1.23 (s, 3H, 19-H), 1.22–1.13
(m, 2H, 5-H, 9-H), 1.04 (td, J = 13.5, 4.2 Hz, 1H, 3-H), 0.98 (s, 3H, 17-H), 0.92 (td, J = 13.3,
4.2 Hz, 1H, 1-H), 0.75 (s, 3H, 20-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.39 (C-16),
177.03 (C-18), 63.94 (C-21), 57.09 (C-5), 54.69 (C-9), 54.28 (C-14), 48.70 (C-13), 48.42 (C-15),
43.97 (C-4), 41.51 (C-7), 39.79 (C-1), 39.48 (C-8), 38.09 (C-10), 37.93 (C-3), 37.31 (C-12), 28.95
(C-22), 28.93 (C-19), 21.73 (C-6), 20.35 (C-11), 19.85 (C-17), 18.89 (C-2), 13.45 (C-20) ppm; MS
(ESI, MeOH:CHCl3 4:1): m/z (%) 345 (100%, [M − Br]+); analysis calcd. for C22H33O3Br
(425.41): C 62.12, H 7.82; found: C 61.87, H 7.97.

4.2.11. 2-{4-[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}-ethyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (8)

Following GPC from 6 (0.23 g, 0.54 mmol) and 3 (0.12 g, 0.54 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 9:1), 8 (0.15 g, 48%) was obtained as a reddish solid:
Rf = 0.2 (SiO2, CHCl3/MeOH, 9:1); m.p. = 188–190 ◦C; [α]20

D = −27.39◦ (c = 0.076, MeOH);
IR (ATR): ν = 2924w, 2850w, 1721w, 1594m, 1574m, 1500m, 1430m, 1363w, 1317br, 1275w,
1245m, 1203w, 1178m, 1131m, 1043w, 958w, 870w, 744m, 611w, 565br, 509w, 424w cm−1;
UV-Vis (MeOH): λmax (log ε) = 436.98 nm (4.46); 1H NMR (500 MHz, DMSO-d6): δ = 11.99
(s, 1H, NH), 8.83 (d, J = 6.9 Hz, 2H, 23-H, 27-H), 8.32 (s, 1H, 37-H), 8.29 (d, J = 16.2 Hz, 1H,
29-H), 8.19–8.13 (m, 2H, 24-H, 26-H), 7.98 (d, J = 2.9 Hz, 1H, 35-H), 7.51 (d, J = 7.5 Hz, 1H,
32-H), 7.30 (d, J = 16.2 Hz, 1H, 28-H), 7.27–7.19 (m, 2H, 33-H, 34-H), 4.83–4.71 (m, 2H, 22-H),
4.75–4.64 (m, 2H, 17-H), 4.58 (m, 2H, 21-H), 2.54–2.46 (m, 1H, 15-H), 1.95 (s, 1H, 12-Ha),
1.84–1.65 (m, 4H, 3-H, 6-Ha, 11-Ha, 15-Ha), 1.65–1.43 (m, 4H, 1-Ha, 2-Ha, 11-Hb, 14-Ha),
1.43–1.17 (m, 3H, 2-Hb, 6-Hb, 7-Ha), 1.14 (d, J = 10.0 Hz, 2H, 12-Hb, 14-Hb), 1.03 (s, 3H, 19-H),
0.96 (q, J = 13.6, 12.6 Hz, 2H, 3-H, 7-Hb), 0.84 (d, J = 8.0 Hz, 2H, 5-H, 9-H), 0.72 (t, 1H, 1-Hb),
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0.61 (s, 3H, 20-H) ppm; 13C NMR (126 MHz, DMSO-d6): δ = 176.64 (C-18), 156.59 (C-16),
155.67 (C-25), 144.13 (C-23, C-27), 138.00 (C-36), 137.66 (C-29), 133.12 (C-35), 125.39 (C-31),
123.42 (C-31), 122.23 (C-33), 121.67 (C-24, C-26), 120.94 (C-34), 117.23 (C-28), 114.16 (C-30),
113.09 (C-32), 102.96 (C-17), 79.03 (C-13), 62.73 (C-21), 57.94 (C-22), 56.21 (C-5), 53.50 (C-9),
47.63 (C-15), 46.50 (C-14), 43.74 (C-4), 43.70 (C-8), 41.43 (C-7), 41.19 (C-1), 39.39 (C-10), 39.12
(C-12), 37.72 (C-3), 28.63 (C-19), 21.93 (C-6), 20.32 (C-11), 18.99 (C-2), 15.42 (C-20) ppm; MS
(ESI, MeOH/DMSO, 4:1): m/z (%) 566 (66%, [M − Br]+); analysis calcd. for C37H45N2O3Br
(645.68): C 68.83, H 7.03, N 4.34; found: C 68.59, H 7.26, N 4.11.

4.2.12. 2-{4-[(E)-2-(1H-Indol-3-yl)-ethenyl]pyridinium-1-yl}-ethyl (4α, 8β, 13β)
13-Methyl-16-oxo-17-norkauran-18-oate Bromide (9)

Following GPC from 7 (0.215 g, 0.51 mmol) and 3 (0.115 g, 0.51 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 9:1), 9 (0.2 g, 72%) was obtained as a reddish solid:
Rf = 0.32 (SiO2, CHCl3/MeOH, 9:1); m.p. = 194–196 ◦C; [α]20

D = −43.56◦ (c = 0.101, MeOH);
IR (ATR): ν = 2925br, 2848w, 1726s, 1645w, 1594s, 1574s, 1500s, 1431s, 1356w, 1317w, 1275w,
1246m, 1204m, 1176s, 1130s, 1043w, 960w, 870w, 745s, 663w, 612w, 563w, 509w, 425w cm−1;
UV-Vis (MeOH): λmax (log ε) = 438.15 nm (4.79); 1H NMR (500 MHz, DMSO-d6): δ = 11.98
(s, 1H, NH), 8.83 (d, J = 6.8 Hz, 2H, 23-H, 27-H), 8.31 (s, 1H, 37-H), 8.29 (d, J = 16.1 Hz, 1H,
29-H), 8.19 (d, J = 7.0 Hz, 2H, 24-H, 26-H), 8.12 (d, J = 7.6 Hz, 1H, 32-H), 7.51 (d, J = 7.6 Hz,
1H, 35-H), 7.29 (d, J = 16.1 Hz, 1H, 28-H), 7.27–7.19 (m, 2H, 33-H, 34-H), 4.77 (s, 2H, 22-H),
4.57–4.50 (m, 1H, 21-Ha), 4.44–4.37 (m, 1H, 21-Hb), 2.29–2.20 (m, 1H, 15-Ha), 1.95 (d, J = 12.8
Hz, 1H, 3-Ha), 1.75 (d, J = 18.5 Hz, 1H, 15-Hb), 1.65–1.46 (m, 5H, 1-Ha, 6-Ha, 2-Ha, 7-Ha,
11-Ha), 1.40–1.20 (m, 6H, 2-Hb, 7-Hb, 12-H, 14-H), 1.13–1.02 (m, 3H, 5-H, 6-Hb, 9-H), 1.06 (s,
3H, 19-H), 1.02–0.91 (m, 2H, 3-Hb, 11-Hb), 0.88–0.78 (m, 1H, 1-Hb), 0.75 (s, 3H, 17-H), 0.44 (s,
3H, 20-H) ppm; 13C NMR (126 MHz, DMSO-d6): δ = 220.8 (C-16), 176.6 (C-18), 155.7 (C-25),
144.2 (C-23, C-27), 138.0 (C-36), 137.8 (C-29), 133.2 (C-37), 125.4 (C-31), 123.4 (C-24, C-26),
122.2 (C-28), 121.7 (C-34), 120.9 (C-33), 117.2 (C-32), 114.2 (C-30), 113.1 (C-35), 63.0, 57.9,
56.1 (C-5), 54.0 (C-9), 53.6 (C-14), 48.2 (C-13), 48.1 (C-15), 43.7 (C-4), 40.8 (C-7), 39.4 (C-1),
39.3 (C-8), 37.8 (C-10), 37.7 (C-3), 36.9 (C-12), 28.7 (C-19), 21.8 (C-6), 20.2 (C-11), 20.1 (C-17),
18.8 (C-2), 13.2 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 566 (85%, [M − Br]+);
C37H45N2O3Br (645.68): C 68.83, H 7.03, N 4.34; found: C 68.71, H 7.19, N 4.05.

4.2.13. 2-{3-[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}-ethyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (10)

Following GPC from 6 (0.23 g, 0.54 mmol) and 4 (0.12 g, 0.54 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 9:1), 10 (0.13 g, 42%) was obtained as a yellowish
solid: Rf = 0.12 (SiO2, CHCl3/MeOH, 9:1); m.p. = 184–187 ◦C; [α]20

D = −6.74◦ (c = 0.095,
MeOH); IR (ATR): ν = 3370br, 2928m, 2851m, 1725m, 1662w, 1632m, 1615m, 1576m, 1526w,
1503w, 1459m, 1434m, 1387w, 1364w, 1330w, 1276w, 1229m, 1167w, 1148m, 1118m, 1083m,
1048w, 967w, 920w, 874w, 819w, 747s, 681m, 611w, 571w, 528w, 500w, 475w, 425w cm−1;
UV-Vis (MeOH): λmax (log ε) = 360.00 nm (4.17); 1H NMR (400 MHz, DMSO-d6): δ = 11.6 (s,
1H, NH), 9.4 (s, 1H, 23-H), 8.9 (d, J = 5.9 Hz, 1H, 27-H), 8.7 (d, J = 8.3 Hz, 1H, 25-H), 8.3 (s,
1H), 8.1 (dd, J = 8.1, 6.0 Hz, 1H, 26-H), 8.0 (d, J = 7.6 Hz, 1H, 32-H), 7.9 (s, 1H, 37-H), 7.9 (d,
J = 16.5 Hz, 1H, 29-H), 7.5 (d, J = 7.4 Hz, 1H, 35-H), 7.2 (d, J = 16.4 Hz, 1H, 28-H), 7.3–7.1 (m,
2H, 33-H, 34-H), 5.0–4.8 (m, 3H, 17-Ha, 22-H), 4.7–4.4 (m, 3H, 17-Hb, 21-H), 2.0–1.9 (m, 3H,
15-H, 3-Ha), 1.7–1.5 (m, 6H, 1-Hb, 2-H, 6-Hb, 11-Ha, 14-Hb), 1.5–1.4 (m, 1H, 6-Ha), 1.3–1.1
(m, 6H, 7-H, 11-Hb, 12-H, 14-Ha), 1.0 (s, 3H, 19-H), 1.0–0.9 (m, 2H, 3-Hb, 5-H), 0.9–0.8 (m,
1H, 9-H), 0.7 (s, 1H, 1-Ha), 0.5 (s, 3H, 20-H) ppm; 13C NMR (101 MHz, DMSO-d6): δ = 176.7
(C-18), 156.7 (C-16), 142.4 (C-23), 141.1 (C-27), 140.6 (C-25), 140.0 (C-36), 137.7 (C-24), 133.5
(C-37), 130.8 (C-29), 128.2 (C-26), 125.3 (C-31), 122.9 (C-34), 120.9 (C-33), 120.4 (C-32), 115.7
(C-28), 113.4 (C-30), 112.8 (C-35), 103.0 (C-17), 81.1 (C-13), 63.0 (C-21), 59.8 (C-22), 55.9 (C-5),
53.4 (C-9), 47.5 (C-15), 47.0 (C-14), 43.7 (C-4), 43.7 (C-8), 41.3 (C-7), 40.6 (C-1), 39.4 (C-10),
39.2 (C-12), 37.8 (C-3), 28.5 (C-19), 20.9 (C-6), 18.9 (C-11), 16.8 (C-2), 15.1 (C-20) ppm; MS
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(ESI, MeOH/DMSO, 4:1): m/z (%) 566 (70%, [M − Br]+); analysis calcd. for C37H45N2O3Br
(645.67): C 68.83, H 7.02, N 4.34; found: C 68.61, H 7.22, N 4.17.

4.2.14. 2-{3-[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}-ethyl
(4α)-13-Hydroxykaur-16-en-18-oate bromide Bromide (11)

Following GPC from 7 (0.215 g, 0.51 mmol) and 4 (0.115 g, 0.51 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 9:1), 11 (0.24 g, 83%) was obtained as a yellowish
solid: Rf = 0.22 (SiO2, CHCl3/MeOH, 9:1); m.p. = 193–194 ◦C; [α]20

D = +0.25◦ (c = 0.081,
MeOH); IR (ATR): ν = 2926w, 2848w, 1725m, 1663w, 1630m, 1615w, 1576w, 1525w, 1501w,
1456m, 1433m, 1340w, 1319w, 1276w, 1250m, 1229m, 1176w, 1146w, 1130w, 1111w, 1095w,
1029w, 964w, 928w, 882w, 825w, 744m, 681m, 616w, 590w, 569w, 528w, 505w, 473w, 425w
cm−1; UV-Vis (MeOH): λmax (log ε) = 360.42 nm (4.22); 1H NMR (400 MHz, DMSO-d6):
δ = 11.66 (s, 1H, NH), 9.43 (s, 1H, 23-H), 8.88 (d, J = 6.0 Hz, 1H, 27-H), 8.77 (d, J = 8.4 Hz,
1H, 25-H), 8.30 (s, 1H, 37-H), 8.12 (dd, J = 8.2, 6.0 Hz, 1H, 26-H), 8.04 (d, J = 7.7 Hz, 1H,
32-H), 7.89 (d, J = 16.5 Hz, 1H, 29-H), 7.47 (d, J = 7.5 Hz, 1H, 35-H), 7.20 (d, J = 16.5 Hz, 1H,
28-H), 7.27–7.10 (m, 2H, 33-H, 34-H), 5.01–4.79 (m, 2H, 22-H), 4.63 (dt, J = 12.3, 4.4 Hz, 1H,
21-Ha), 4.47 (dd, J = 11.9, 3.5 Hz, 1H, 21-Hb), 2.20 (dd, J = 18.4, 3.4 Hz, 1H, 15-Ha), 1.94 (d,
J = 12.8 Hz, 1H, 3-Ha), 1.74 (d, J = 18.4 Hz, 1H, 15-Hb), 1.60–1.40 (m, 5H, 1-Ha, 2-Ha, 6-Ha,
7-Ha, 11-Ha), 1.38–1.16 (m, 6H, 2-Hb, 7-Hb, 12-H, 14-H), 1.10–1.00 (m, 2H, 5-H, 9-H), 1.04 (s,
3H, 19-H), 1.02–0.86 (m, 3H, 3-Hb, 6-Hb, 11-Hb), 0.81 (s, 3H, 17-H), 0.85–0.73 (m, 1H, 1-Hb),
0.41 (s, 3H, 20-H) ppm; 13C NMR (101 MHz, DMSO-d6): δ = 221.0 (C-16), 176.6 (C-18), 142.3
(C-23), 141.2 (C-27), 140.5 (C-25), 139.9 (C-36), 137.7 (C-24), 130.8 (C-29), 129.7 (C-37), 128.2
(C-26), 125.3 (C-31), 122.9 (C-28), 120.9 (C-34), 120.4 (C-32), 115.6 (C-33), 113.4 (C-30), 112.8
(C-35), 63.1 (C-21), 59.8 (C-22), 56.1 (C-5), 54.0 (C-9), 53.5 (C-14), 48.2 (C-13), 48.2 (C-15),
43.7 (C-4), 40.6 (C-7), 39.4 (C-1), 39.3 (C-8), 37.8 (C-10), 37.6 (C-3), 36.9 (C-12), 28.6 (C-19),
21.8 (C-6), 20.2 (C-11), 20.1 (C-17), 18.7 (C-2), 13.1 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1):
m/z (%) 566 (60%, [M − Br]+); analysis calcd. for C37H45N2O3Br (645.67): C 68.83, H 7.02,
N 4.34; found: C 68.64, H 7.19, N 4.21.

4.2.15. 2-{2-[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}-ethyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (12)

Following GPC from 6 (0.23 g, 0.54 mmol) and 5 (0.12 g, 0.54 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 8:2), 12 (0.12 g, 40%) was obtained as a yellowish
solid: Rf = 0.11 (SiO2, CHCl3/MeOH, 8.5:1.5); m.p. = 90–93 ◦C; [α]20

D = −11.07◦ (c = 0.042,
MeOH); IR (ATR): ν = 3386br, 2926w, 2854w, 1654s, 1495w, 1436m, 1420m, 1389m, 1351m,
1252w, 1166w, 1110m, 1061w, 823w, 666w, 481br cm−1; UV-Vis (MeOH): λmax (log ε) = 433.17
nm (3.48); 1H NMR (500 MHz, DMSO-d6): δ = 12.17 (s, 1H, NH), 8.87 (d, J = 6.2 Hz, 1H,
23-H), 8.62 (d, J = 8.7 Hz, 1H, 26-H), 8.40 (t, J = 8.1 Hz, 2H, 25-H), 8.35 (d, J = 15.8 Hz, 1H,
29-H), 8.28 (s, 1H, 37-H), 8.13 (d, J = 7.2 Hz, 1H, 32-H), 7.76 (t, J = 6.4 Hz, 1H, 24-H), 7.52 (d,
J = 7.2 Hz, 1H, 35-H), 7.40 (d, J = 15.6 Hz, 1H, 28-H), 7.28–7.17 (m, 2H, 33-H, 34-H), 5.26–5.07
(m, 2H, 22-H), 4.94 (s, 1H, 17-Ha), 4.73 (s, 1H, 17-Hb), 4.69–4.57 (m, 1H, 21-Ha), 4.41–4.31
(m, 1H, 21-Hb), 2.03–1.80 (m, 2H, 3-Ha, 15-H), 1.74–1.36 (m, 6H, 1-Ha,2-Ha, 6-Ha, 11-Ha,
12-Ha, 14-Ha), 1.35–1.03 (m, 7H, 2-Hb, 6-Hb, 7-H, 11-Hb, 12-Hb, 14-Hb), 0.98 (s, 3H, 19-H),
0.96–0.73 (m, 3H, 3-Hb, 5-H, 9-H), 0.72–0.61 (m, 1H, 1-Ha), 0.51 (s, 3H, 20-H) ppm; 13C NMR
(126 MHz, DMSO-d6): δ = 176.9 (C-18), 154.5 (C-16), 145.6 (C-23), 145.1 (C-27), 144.1 (C-25),
139.3 (C-29), 137.8 (C-36), 132.9 (C-37), 125.8 (C-31), 124.6 (C-26), 123.5, 123.4 (C-24, 34),
121.8 (C-33), 121.4 (C-30), 120.6 (C-32), 114.0 (C-17), 113.1 (C-35), 110.3 (C-28), 81.2 (C-13),
62.2 (C-21), 56.0 (C-5), 55.5 (C-22), 53.5 (C-9), 47.7 (C-14, 15), 43.7 (C-4), 41.4 (C-8), 41.1 (C-7),
40.7 (C-1), 39.4 (C-10), 39.2 (C-12), 37.8 (C-3), 28.4 (C-19), 21.0 (C-6), 20.8 (C-11), 19.0 (C-2),
15.1 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 566 (55%, [M − Br]+); analysis
calcd. For C37H45N2O3Br (645.67): C 68.83, H 7.02, N 4.34; found: C 68.63, H 7.27, N 4.19.
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4.2.16. 2-{2-[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}-ethyl (4α, 8β, 13β)
13-Methyl-16-oxo-17-norkauran-18-oate Bromide (13)

Following GPC from 7 (0.215 g, 0.51 mmol) and 5 (0.12 g, 0.54 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 8:2), 13 (0.10 g, 40%) was obtained as a yellowish
solid: Rf = 0.35 (SiO2, CHCl3/MeOH, 8.5:1.5); m.p. = 94–97 ◦C; [α]20

D = −12.83◦ (c = 0.073,
MeOH); IR (ATR): ν = 3368br, 2923m, 2850m, 1725s, 1629w, 1604s, 1562m, 1496m, 1446br,
1433m, 1375w, 1318w, 1280w, 1244m, 1209w, 1166w, 1146w, 1131m, 1112w, 1095w, 1056m,
1040w, 966w, 928w, 818w, 745m, 665w, 570w, 508w, 423w cm−1; UV-Vis (MeOH): λmax
(log ε) = 434.17 nm (4.02); 1H NMR (500 MHz, DMSO-d6): δ =12.14 (s, 1H, NH), 8.83 (d,
J = 5.5 Hz, 1H, 23-H), 8.61 (d, J = 7.9 Hz, 1H, 26-H), 8.41 (t, J = 7.6 Hz, 1H, 25-H), 8.35 (d,
J = 15.6 Hz, 1H, 29-H), 8.32 (s, 1H, 37-H), 8.12 (d, J = 7.2 Hz, 1H, 32-H), 7.76 (t, J = 6.8 Hz, 1H,
24-H), 7.52 (d, J = 7.0 Hz, 1H, 35-H), 7.38 (d, J = 15.7 Hz, 1H, 28-H), 7.30–7.20 (m, 2H, 33-H,
34-H), 5.25–4.95 (m, 2H, 22-H), 4.65–4.53 (m, 1H, 21-Ha), 4.43–4.30 (m, 1H, 21-Hb), 2.20 (dd,
J = 18.4, 3.6 Hz, 1H, 15-Ha), 1.91 (d, J = 12.8 Hz, 1H, 3-Ha), 1.73 (d, J = 18.5 Hz, 1H, 15-Hb),
1.60–1.48 (m, 6H, 1-Hb, 2-H, 6-Hb, 7-Hb, 11-Hb), 1.46–1.36 (m, 4H, 7-Ha, 12-H, 14-Hb), 1.32 (d,
J = 7.7 Hz, 2H, 11-Ha, 14-Ha), 1.17–1.04 (m, 2H, 5-H, 9-H), 1.03 (s, 2H, 3-Hb, 6-Ha), 0.99 (s,
3H, 19-H), 0.87 (s, 1H, 1-Ha), 0.85 (s, 3H, 17-H), 0.39 (s, 3H, 20-H) ppm; 13C NMR (126 MHz,
DMSO-d6): δ = 221.1 (C-16), 176.8 (C-18), 154.4 (C-27), 145.5 (C-23), 145.4 (C-37), 144.0 (C-25),
139.2 (C-29), 137.7 (C-36), 125.7 (C-31), 124.4 (C-26), 123.4 (C-34), 123.2 (C-24), 121.8 (C-33),
120.4 (C-32), 119.6, 113.9 (C-30), 113.1 (C-35), 110.1 (C-28), 62.2 (C-21), 56.4 (C-22), 56.1 (C-5),
54.1 (C-9), 53.6 (C-14), 48.3 (C-13), 48.2 (C-15), 43.6 (C-4), 40.7 (C-7), 39.4 (C-1), 39.3 (C-8),
37.8 (C-10), 37.7 (C-3), 37.0 (C-12), 28.4 (C-19), 21.7 (C-6), 20.2 (C-17), 18.9 (C-11), 18.8 (C-2),
13.0 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 566 (65%, [M − Br]+; analysis calcd.
for C37H45N2O3Br (645.67): C 68.83, H 7.02, N 4.34; found: C 68.60, H 7.19, N 4.08.

4.2.17. 3-Bromopropyl (4α) -13-hydroxykaur-16-en-18-oate (14)

Following GPB from 1 (0.5 g, 1.57 mmol), K2CO3 (0.434 g, 3.1 mmol) and 1,3-
dibromopropane (0.64 mL, 6.3 mmol) followed by chromatography (SiO2, hexanes/ethyl
acetate, 6:1), 14 (0.3 g, 44%) was obtained as a colorless solid: Rf = 0.3 (SiO2, hexanes/ethyl
acetate, 8:2); m.p. = 97–99 ◦C; [α]20

D = −56.12◦ (c = 0.104, CHCl3); IR (ATR): ν = 3493m,
2990w, 2974w, 2958w, 2939m, 2851m, 1703s, 1469w, 1458w, 1444w, 1392w, 1369w, 1330m,
1275w, 1237m, 1220w, 1201w, 1178w, 1155w, 1119m, 1097w, 1018w, 1001m, 967w, 952w,
938w, 891w, 875w, 849w, 813w, 770w, 694w, 620w, 571w, 518w, 420w cm−1; 1H NMR
(400 MHz, CDCl3): δ = 4.99–4.95 (m, 1H, 17-Ha), 4.83–4.79 (m, 1H, 17-Hb), 4.26–4.18 (m,
1H, 21-Ha), 4.17–4.08 (m, 1H, 21-Hb), 3.48 (t, J = 6.5 Hz, 2H, 23-H), 2.23–2.00 (m, 6H, 3-Ha,
14-Ha, 15-H, 22-H), 1.89–1.79 (m, 3H, 1-Ha, 2-Ha 6-Ha), 1.79–1.71 (m, 3H, 6-Hb, 11-Ha,
12-Ha), 1.62–1.55 (m, 1H, 11-Hb), 1.55–1.48 (m, 2H, 7-Ha, 12-Hb), 1.48–1.35 (m, 2H, 2-Hb,
7-Hb), 1.29–1.23 (m, 1H, 14-Hb), 1.17 (d, J = 1.7 Hz, 3H, 19-H), 1.08–0.93 (m, 3H, 3-Hb,
5-H, 9-H), 0.85 (d, J = 2.3 Hz, 3H, 20-H), 0.80 (dd, J = 13.4, 4.8 Hz, 1H, 1-Hb) ppm; 13C
NMR (101 MHz, CDCl3): δ = 177.3 (C-18), 156.0 (C-16), 102.9 (C-17), 82.6, 80.2 (C-13),
61.8, 56.9 (C-5), 53.7 (C-9), 50.9, 47.4 (C-15), 47.0 (C-14), 43.9 (C-4), 41.6 (C-8), 41.3 (C-7),
40.6 (C-1), 39.3 (C-10), 39.2 (C-12), 38.0 (C-3), 31.5 (C-22), 29.6 (C-23), 28.8 (C-19), 21.9
(C-6), 20.4 (C-11), 19.1 (C-2), 15.5 (C-20) ppm; MS (ESI, MeOH:CHCl3 4:1): m/z (%) 359
(90%, [M − Br]+); analysis calcd. for C23H35O3Br (439.43): C 62.87, H 8.03; found: C 62.77,
H 8.20.

4.2.18. 3-Bromopropyl (4α, 8β, 13β) 13-Methyl-16-oxo-17-norkauran-18-oate (15)

Following GPB from 2 (0.5 g, 1.57 mmol), K2CO3 (0.434 g, 3.1 mmol) and 1,3-
dibromopropane (0.64 mL, 6.3 mmol) followed by chromatography (SiO2, hexanes/ethyl
acetate, 6:1), 15 (0.42 g, 61%) was obtained as a colorless solid: Rf = 0.69 (SiO2, hex-
anes/ethyl acetate,8:2); m.p. = 103–106 ◦C; [α]20

D = −58.31◦ (c = 0.15, CHCl3); IR (ATR):
ν = 2932m, 2899w, 2884w, 2854w, 2839w, 1720s, 1470m, 1457m, 1423w, 1389w, 1369w,
1332m, 1321w, 1288m, 1257m, 1233m, 1219w, 1209w, 1179s, 1149s, 1135m, 1110m, 1097m,
1062w, 1018m, 978m, 942w, 929w, 895w, 876w, 852w, 827w, 767m, 738w, 696w, 660w,
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632w, 612w, 587m, 532w, 507w, 462w, 436w, 418w cm−1; 1H NMR (400 MHz, CDCl3):
δ = 4.25–4.17 (m, 1H, 21-Ha), 4.15–4.06 (m, 1H, 21-Hb), 3.46 (t, J = 6.5 Hz, 2H, 23-H), 2.62
(dd, J = 18.6, 3.8 Hz, 1H, 15-Ha), 2.16 (p, J = 6.2 Hz, 3H, 3-Ha, 22-H), 1.92–1.84 (m, 1H,
6-Ha), 1.85–1.78 (m, 1H, 2-Ha), 1.79 (d, J = 18.7 Hz, 1H, 15-Hb), 1.74–1.60 (m, 5H, 1-Ha,
6-Hb, 7-Ha, 11-H), 1.61–1.49 (m, 2H, 12-Ha, 14-Ha), 1.48–1.31 (m, 4H, 2-Hb, 7-Hb, 12-Hb,
14-Hb), 1.29–1.21 (m, 1H, 9-H), 1.19 (s, 3H, 19-H), 1.13 (dd, J = 12.0, 2.1 Hz, 1H, 5-H), 1.02
(td, J = 13.5, 4.2 Hz, 1H, 3-Hb), 0.96 (s, 3H, 17-H), 0.90 (td, J = 13.1, 4.2 Hz, 1H, 1-Hb), 0.70
(s, 3H, 20-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.3 (C-16), 177.1 (C-18), 61.8 (C-21),
57.0 (C-5), 54.7, 54.3 (C-14), 48.7 (C-13), 48.4 (C-15), 43.9 (C-4), 41.5 (C-7), 39.8 (C-1), 39.4
(C-8), 38.0 (C-10), 37.9 (C-3), 37.3 (C-12), 31.4 (C-22), 29.6 (C-23), 28.9 (C-19), 21.7 (C-6),
20.3 (C-11), 19.8 (C-17), 18.9 (C-2), 13.4 (C-20) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%)
359 (80%, [M − Br]+); analysis calcd. for C23H35O3Br (439.43): C 62.87, H 8.03; found: C
62.66, H 8.24.

4.2.19. 3-{4-[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}-propyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (16)

Following GPC from 14 (0.155 g, 0.35 mmol) and 3 (0.08 g, 0.36 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 6:1), 16 (0.161 g, 79%) was obtained as a reddish
solid: Rf = 0.84 (SiO2, CHCl3/MeOH, 9:1); m.p. = 209–211 ◦C; [α]20

D = −20.78◦ (c = 0.074,
MeOH); IR (ATR): ν = 3316w, 3163w, 2935w, 1720m, 1607s, 1575m, 1503m, 1462m, 1433m,
1362w, 1330w, 1251m, 1204w, 1180m, 1165w, 1142m, 1104m, 1086w, 1049w, 1038w, 960m,
873m, 832w, 745s, 608w, 570w, 513w, 429w cm−1; UV-Vis (MeOH): λmax (log ε) = 445.33 nm
(4.59); 1H NMR (500 MHz, DMSO-d6): δ = 11.98 (s, 1H, NH), 8.78 (d, J = 6.8 Hz, 2H, 25-H,
27-H), 8.28 (d, J = 16.3 Hz, 1H, 30-H), 8.19–8.12 (m, 3H, 24-H, 28-H, 33-H), 7.98 (d, J = 2.8 Hz,
1H, 38-H), 7.51 (d, J = 7.2 Hz, 1H, 36-H), 7.31 (d, J = 16.1 Hz, 1H, 29-H), 7.29–7.19 (m, 2H,
34-H, 35-H), 4.92–4.86 (m, 1H, 17-Ha), 4.70–4.65 (m, 1H, 17-Hb), 4.51 (t, J = 7.0 Hz, 2H,
23-H), 4.17–3.99 (m, 2H, 21-H), 2.32–2.23 (m, 2H, 22-H), 1.99 (dd, J = 26.6, 9.8 Hz, 3H, 3-Ha,
15-H), 1.86 (dd, J = 10.8, 1.1 Hz, 1H, 14-Hb), 1.80–1.55 (m, 6H, 1-Ha, 2-Ha, 6-H, 11-Ha, 12-Ha),
1.55–1.39 (m, 2H, 7-Ha, 11-Hb), 1.34 (s, 3H, 2-Hb, 7-Hb, 12-Hb), 1.20 (dd, J = 11.1, 1.7 Hz,
1H, 14-Ha), 1.08 (s, 3H, 19-H), 1.03 (dd, J = 11.9, 1.5 Hz, 1H, 5-H), 0.95 (td, J = 13.5, 4.1 Hz,
1H, 3-Hb), 0.90 (d, J = 7.9 Hz, 1H, 9-H), 0.80–0.76 (m, 1H, 1-Hb), 0.74 (s, 3H, 20-H) ppm;
13C NMR (126 MHz, DMSO-d6): δ = 176.9 (C-18), 156.7 (C-16), 145.0 (C-26), 143.9 (C-25,
C-27), 138.0 (C-37), 137.2 (C-30), 133.0 (C-38), 125.4 (C-32), 123.4 (C-34), 122.4 (C-24, C-28),
121.6 (C-35), 120.9 (C-33), 117.2 (C-29), 114.1 (C-31), 113.1 (C-36), 103.0 (C-17), 81.2 (C-13),
61.4 (C-21), 57.2 (C-23), 56.4 (C-5), 53.6 (C-9), 47.7 (C-15), 46.6 (C-14), 43.7 (C-4), 41.5 (C-8),
41.3 (C-7), 40.4 (C-1), 39.5 (C-10), 39.2 (C-12), 37.8 (C-3), 29.9 (C-22), 28.7 (C-19), 22.0 (C-6),
20.4 (C-11), 19.2 (C-2), 15.7 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 580 (80%,
[M − Br]+); analysis calcd. for C38H47N2O3Br (659.70): C 69.18, H 7.18, N 4.25; found: C
68.88, H 7.30, N 4.03.

4.2.20. 3-{4-[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}-propyl (4α, 8β, 13β)
13-Methyl-16-oxo-17-norkauran-18-oate Bromide (17)

Following GPC from 15 (0.212 g, 0.48 mmol), 3 (0.11 g, 0.05 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 6:1), 17 (0.246 g, 88%) was obtained as a reddish
solid: Rf = 0.85 (SiO2, CHCl3/MeOH, 9:1); m.p. = 184–186 ◦C; [α]20

D = −15.67◦ (c = 0.052,
MeOH); IR (ATR): ν = 2924w, 2847w, 1722m, 1644w, 1598s, 1574m, 1500m, 1457w, 1432m,
1371w, 1355w, 1317w, 1275w, 1246m, 1205m, 1174s, 1131s, 1096w, 1043w, 965w, 871w,745s,
663w, 611w, 568w, 512w, 425w cm−1; UV-Vis (MeOH): λmax (log ε) = 444.49 nm (4.70); 1H
NMR (400 MHz, DMSO-d6): δ = 11.94 (s, 1H, NH), 8.75 (d, J = 6.9 Hz, 2H, 24-H, 28-H),
8.25 (d, J = 16.2 Hz, 1H, 30-H), 8.14 (d, J = 6.9 Hz, 3H, 25-H, 27-H, 33-H), 7.96 (d, J = 2.7 Hz,
1H, 38-H), 7.50 (d, J = 7.0 Hz, 1H, 36-H), 7.29 (d, J = 16.1 Hz, 1H, 29-H), 7.26–7.18 (m, 2H,
34-H, 35-H), 4.48 (t, J = 7.0 Hz, 2H, 23-H), 4.17–3.96 (m, 2H, 21-H), 2.41 (d, J = 18.4 Hz, 1H,
15-Ha), 2.31–2.21 (m, 2H, 22-H), 1.96 (td, J = 12.5, 2.8 Hz, 1H, 3-Ha), 1.87 (d, J = 18.5 Hz, 1H,
6-Ha), 1.72 (td, J = 13.3, 2.4 Hz, 1H, 15-Hb), 1.68–1.54 (m, 5H, 1-Ha, 2-Ha, 6-Hb, 7-Ha, 11-Ha),
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1.54–1.44 (m, 2H, 12-Ha, 14-Ha), 1.44–1.29 (m, 4H, 2-Hb, 7-Hb, 12-Hb, 14-Hb), 1.23–1.11 (m,
3H, 5-H, 9-H, 11-Hb), 1.09 (s, 3H, 19-H), 0.97 (td, J = 13.5, 4.2 Hz, 1H, 3-Hb), 0.92–0.87 (m, 1H,
1-Hb), 0.85 (s, 3H, 17-H), 0.60 (s, 3H, 20-H) ppm; 13C NMR (101 MHz, DMSO-d6): δ = 220.8
(C-16), 176.4 (C-18), 154.8 (C-26), 143.4 (C-24, C-28), 137.5 (C-37), 136.7 (C-30), 132.5 (C-38),
124.9 (C-32), 123.0 (C-29), 121.9 (C-25, C-27), 121.2 (C-35), 120.4 (C-34), 116.8 (C-33), 113.6
(C-31), 112.6 (C-36), 61.0 (C-21), 56.8 (C-23), 55.9 (C-5), 53.7 (C-9), 53.1 (C-14), 47.9 (C-15),
47.7 (C-13), 43.2 (C-4), 40.1 (C-7), 39.0 (C-1), 38.9 (C-8), 37.4 (C-3), 37.2 (C-10), 36.6 (C-12),
29.4 (C-22), 28.3 (C-19), 21.3 (C-6), 19.8 (C-11), 19.7 (C-17), 18.5 (C-2), 13.0 (C-20) ppm; MS
(ESI, MeOH/DMSO, 4:1): m/z (%) 580 (80%, [M − Br]+); analysis calcd. for C38H47N2O3Br
(659.70): C 69.18, H 7.18, N 4.25; found: C 68.89, H 7.33, N 4.02.

4.2.21. 3-{3-[(E)]-2-(1H-Indol-3-yl)-ethenyl]-pyridinium-1-yl}-propyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (18)

Following GPC from 14 (0.305 g, 0.7 mmol) and 4 (0.154 g, 0.7 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 6:1), 18 (0.366 g, 91%) was obtained as a yellowish
solid: Rf = 0.13 (SiO2, CHCl3/MeOH, 9:1); m.p. = 175–177 ◦C; [α]20

D = −43.33◦ (c = 0.111,
MeOH); IR (ATR): ν = 2932br, 2850w, 1713m 1631m, 1577m, 1525w, 1501w, 1459w, 1432m,
1365w, 1331w, 1277w, 1235m, 1148m, 1096w, 1055w, 1020w, 958w, 880w, 818w, 745m, 679w,
568w, 527w, 501w, 426w cm−1; UV-Vis (MeOH): λmax (log ε) = 358.18 nm (4.66); 1H NMR
(500 MHz, DMSO-d6): δ = 11.66 (s, 1H, NH), 9.35 (s, 1H, 28-H), 8.83 (d, J = 6.0 Hz, 1H, 24-H),
8.75 (d, J = 8.4 Hz, 1H, 26-H), 8.12–8.04 (m, 2H, 25-H, 33-H), 7.89 (d, J = 16.6 Hz, 1H, 30-H),
7.78 (d, J = 2.7 Hz, 1H, 38-H), 7.48 (d, J = 7.5 Hz, 1H, 36-H), 7.22 (d, J = 16.5 Hz, 1H, 29-H),
7.24–7.14 (m, 2H, 34-H, 35-H), 4.87 (s, 1H, 17-Ha), 4.69 (d, J = 7.2 Hz, 3H, 17-Hb, 23-H),
4.21–4.03 (m, 2H, 21-H), 2.42–2.33 (m, 2H, 22-H), 2.05–1.90 (m, 3H, 3-Ha, 15-H), 1.85 (d,
J = 11.0 Hz, 1H, 14-Hb), 1.79–1.65 (m, 3H, 1-Ha, 2-Ha, 6-Ha), 1.65–1.49 (m, 3H, 6-Hb, 11-Ha,
12-Ha), 1.50–1.39 (m, 2H, 7-Ha, 11-Hb), 1.33 (s, 3H, 2-Hb, 7-Hb, 12-Hb), 1.19 (dd, J = 10.8,
1.6 Hz, 1H, 14-Ha), 1.06 (s, 3H, 19-H), 1.03 (dd, J = 12.0, 1.7 Hz, 1H, 5-H), 0.95 (td, J = 13.5,
4.2 Hz, 1H, 3-Hb), 0.89 (d, J = 8.1 Hz, 1H, 9-H), 0.79–0.76 (m, 1H, 1-Hb), 0.75 (s, 3H, 20-H)
ppm; 13C NMR (126 MHz, DMSO-d6): δ =176.9 (C-18), 156.7 (C-16), 142.0 (C-28), 141.1
(C-24), 140.1 (C-37), 140.0 (C-26), 137.8 (C-27), 130.7 (C-30), 129.7 (C-38), 128.2 (C-25), 125.3
(C-32), 122.9 (C-29), 120.9 (C-35), 120.5 (C-33), 115.8 (C-34), 113.4 (C-31), 112.8 (C-36), 103.0
(C-17), 79.1 (C-13), 61.5 (C-21), 59.1 (C-23), 56.4 (C-5), 53.6 (C-9), 47.7 (C-15), 46.6 (C-14),
43.6 (C-4), 41.4 (C-8), 41.3 (C-7), 40.5 (C-1), 39.5 (C-10), 39.2 (C-12), 37.8 (C-3), 30.0 (C-22),
28.7 (C-19), 22.0 (C-6), 20.4 (C-11), 19.2 (C-2), 15.7 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1):
m/z (%) 580 (63%, [M − Br]+); analysis calcd. for C38H47N2O3Br (659.70): C 69.18, H 7.18,
N 4.25; found: C 68.88, H 7.37, N 3.99.

4.2.22. 3-{3[(E)-2-(1H-Indol-3-yl)-ethenyl]-pyridinium-1-yl}-propyl (4α, 8β, 13β)
13-Methyl-16-oxo-17-norkauran-18-oate Bromide (19)

Following GPC from 15 (0.423 g, 0.96 mmol) and 4 (0.212 g, 0.96 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 6:1), 19 (0.418 g, 75%) was obtained as a yellowish
solid: Rf = 0.27 (SiO2, CHCl3/MeOH 9:1); m.p. = 171–173 ◦C; [α]20

D = −29.97◦ (c = 0.109,
MeOH); IR (ATR): ν = 3164br, 3058w, 2937m, 2847w, 2454w, 1732m, 1718s, 1632m, 1584m,
1526w, 1500m, 1456m, 1427m, 1374w, 1336w, 1321w, 1273w, 1246m, 1225m, 1159s, 1130m,
1108m, 1056w, 1016w, 976w, 953m, 926w, 905w, 873w, 822w, 807w, 746s, 678m, 662m, 610w,
590w, 567m, 508w, 441w, 423m cm−1; UV-Vis (MeOH): λmax (log ε) = 358.18 nm (4.02); 1H
NMR (500 MHz, DMSO-d6): δ = 11.65 (s, 1H, NH), 9.32 (s, 1H, 28-H), 8.81 (d, J = 6.0 Hz,
1H, 26-H), 8.75 (d, J = 8.3 Hz, 1H, 24-H), 8.12–8.04 (m, 2H, 25-H, 33-H), 7.88 (d, J = 16.5 Hz,
1H, 30-H), 7.77 (d, J = 2.6 Hz, 2H, 38-H), 7.48 (d, J = 7.9 Hz, 1H, 36-H), 7.22 (d, J = 16.3 Hz,
1H, 29-H), 7.23–7.13 (m, 1H, 34-H, 35-H), 4.66 (t, J = 6.9 Hz, 2H, 23-H), 4.12 (m, 2H, 21-H),
2.46–2.34 (m, 3H, 15-Ha, 22-H), 1.95 (d, J = 13.0 Hz, 1H, 3-Ha), 1.84 (d, J = 18.3 Hz, 1H,
15-Hb), 1.73–1.49 (m, 6H, 1-Ha, 2-Ha, 6-H, 7-Ha, 11-Hb), 1.49–1.26 (m, 6H, 7-Hb, 11-Ha, 12-H,
14-H), 1.19–1.04 (m, 3H, 2-Hb, 5-H, 9-H), 1.08 (s, 3H, 19-H), 0.98 (td, J = 13.5, 3.9 Hz, 1H,
3-Hb), 0.88 (td, J = 13.4, 3.7 Hz, 1H, 1-Hb), 0.83 (s, 3H, 17-H), 0.61 (s, 3H, 20-H) ppm; 13C
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NMR (126 MHz, DMSO-d6): δ = 221.2 (C-16), 176.9 (C-18), 142.0 (C-28), 141.2 (C-26), 140.1
(C-37), 140.0 (C-24), 137.8 (C-27), 130.7 (C-30), 129.7 (C-38), 128.2 (C-25), 125.3 (C-32), 122.9
(C-29), 120.9 (C-35), 120.4 (C-33), 115.8 (C-34), 113.4 (C-31), 112.8 (C-36), 61.6 (C-21), 59.3
(C-23), 56.4 (C-5), 54.1 (C-9), 53.6 (C-14), 48.3 (C-13), 48.1 (C-15), 43.6 (C-4), 40.9 (C-7), 40.5
(C-1), 39.5 (C-8), 39.4 (C-10), 37.9 (C-3), 37.7 (C-12), 29.9 (C-22), 28.7 (C-19), 21.8 (C-6), 20.3
(C-2), 20.2 (C-17), 19.0 (C-11), 13.5 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 580
(64%, [M − Br]+); analysis calcd. for C38H47N2O3Br (659.70): C 69.18, H 7.18, N 4.25; found:
C 68.96, H 4.45, N 4.02.

4.2.23. 3-{2-[(E)-2-(1H-Indol-3-yl)-ethenyl]-pyridinium-1-yl}-propyl
(4α)-13-Hydroxykaur-16-en-18-oate bromide (20)

Following GPC from 14 (0.305 g, 0.7 mmol) and 5 (0.154 g, 0.7 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 4:1), 21 (0.12 g, 30%) was obtained as a yellowish
solid: Rf = 0.2 (SiO2, CHCl3/MeOH, 8.5:1.5); m.p. = 91–94 ◦C; [α]20

D = −31.96◦ (c = 0.097,
MeOH); IR (ATR): ν = 3370br, 2925w, 2851w, 1716w, 1628w, 1605m, 1564m, 1499m, 1461w,
1431m, 1364w, 1325w, 1274w, 1243m, 1164w, 1152w, 1135w, 1116w, 1051w, 955w, 816w, 745m,
520br, 423w cm−1; UV-Vis (MeOH): λmax (log ε) = 427.47 nm (4.24); 1H NMR (400 MHz,
DMSO-d6): δ =12.14 (s, 1H, NH), 8.81 (d, J = 6.1 Hz, 1H, 24-H), 8.57 (d, J = 8.4 Hz, 1H, 27-H),
8.37 (t, J = 7.7 Hz, 1H, 26-H), 8.32 (d, J = 16.1 Hz, 1H, 30-H), 8.21 (s, 1H, 38-H), 8.06 (d, J = 7.7
Hz, 1H, 33-H), 7.74 (t, J = 6.6 Hz, 1H, 25-H), 7.50 (d, J = 7.8 Hz, 1H, 36-H), 7.31–7.14 (m, 2H,
34-H, 35-H), 7.23 (d, J = 15.2 Hz, 1H, 29-H), 4.94 (s, 1H, 17-Ha), 4.84 (t, 2H, 23-H), 4.56 (s,
1H, 17-Hb), 4.23–4.03 (m, 2H, 21-H), 2.33–2.12 (m, 2H, 22-H), 1.99–1.70 (m, 4H, 3-Ha, 14-H,
15-Ha), 1.69–1.31 (m, 10H, 1-Ha, 2-Ha, 6-H, 7-H, 11-H, 12-H), 1.32–1.04 (m, 2H, 2-Hb, 15-Hb),
0.99 (s, 3H, 19-H), 0.97–0.69 (m, 4H, 1-Hb, 3-Hb, 5-H, 9-H), 0.67 (s, 3H, 20-H) ppm; 13C NMR
(101 MHz, DMSO-d6): δ = 176.8 (C-18), 153.8 (C-16), 145.1 (C-24), 144.9 (C-28), 143.8 (C-26),
139.1 (C-30), 137.7 (C-37), 133.6, 132.8 (C-38), 125.6 (C-32), 124.7 (C-27), 123.5 (C-25), 123.3
(C-35), 121.7 (C-34), 120.3 (C-33), 113.8 (C-31), 113.1 (C-36), 110.1 (C-29), 102.9 (C-17), 81.2
(C-13), 61.6 (C-21), 56.7 (C-5), 56.1 (C-9), 55.4 (C-23), 50.9 (C-15), 49.0, 47.6 (C-14), 46.7, 43.6
(C-8), 41.6 (C-7), 39.4 (C-1), 38.4 (C-10), 37.8 (C-3), 37.8, 32.2, 29.4 (C-22), 28.7 (C-19), 22.5
(C-6), 20.8 (C-11), 19.1 (C-2), 15.4 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 580
(90%, [M − Br]+); analysis calcd. For C38H47N2O3Br (659.70): C 69.18, H 7.18, N 4.25; found:
C 68.96, H 7.34, N 4.13.

4.2.24. 3-{2-[(E)-2-(1-H-Indol-3-yl)-ethenyl]-pyridinium-1-yl}-propyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (21)

Following GPC from 15 (0.371 g, 0.72 mmol) and 5 (0.158 g, 0.72 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 6:1), 20 (0.174 g, 36%) was obtained as a yellowish
solid: Rf = 0.1 (SiO2, CHCl3/MeOH, 9:1); m.p. = 89–92 ◦C; [α]20

D = −57.04◦ (c = 0.301,
MeOH); IR (ATR): ν = 3360br, 2925w, 2848w, 1721m, 1628w, 1605m, 1564m, 1524w, 1499m,
1449w, 1432m, 1374w, 1318w, 1274w, 1237m, 1156m, 1131m, 1112w, 1096w, 1057w, 1039w,
1016w, 966w, 877w, 853w, 816w, 745s, 663w, 567w, 508w, 423w cm−1; UV-Vis (MeOH): λmax
(log ε) = 430.32 nm (4.24); 1H NMR (500 MHz, DMSO-d6): δ = 12.08 (s, 1H, NH), 8.77 (d,
J = 6.2 Hz, 1H, 24-H), 8.57 (d, J = 8.1 Hz, 1H, 27-H), 8.38 (dd, J = 7.8 Hz, 1H, 26-H), 8.31 (d,
J = 15.6 Hz, 1H, 30-H), 8.19 (d, J = 2.9 Hz, 1H, 38-H), 8.07 (d, J = 7.6 Hz, 1H, 33-H), 7.75 (t,
J = 6.6 Hz, 1H, 25-H), 7.51 (d, J = 7.6 Hz, 1H, 36-H), 7.27 (d, J = 28.6 Hz, 1H, 29-H), 7.28–7.17
(m, 2H, 34-H, 35-H), 4.89–4.76 (m, 2H, 23-H), 4.23–4.09 (m, 2H, 21-H), 2.33–2.22 (m, 3H,
15-Ha, 22-H), 1.93 (d, J = 13.2 Hz, 1H, 3-Ha), 1.70–1.42 (m, 7H, 1-Ha, 6-H, 7-Ha, 11-Ha, 15-Hb),
1.43–1.20 (m, 6H, 2-H, 7-Hb, 12-H, 14-H), 1.20–1.03 (m, 2H, 5-H, 9-H), 1.01 (s, 3H, 19-H),
1.00–0.86 (m, 3H, 1-Hb, 3-Hb, 11-Hb), 0.83 (s, 3H, 17-H), 0.53 (s, 3H, 20-H) ppm; 13C NMR
(126 MHz, DMSO-d6): δ = 221.0 (C-16), 176.9 (C-18), 153.8 (C-28), 145.1 (C-24), 143.8 (C-26),
139.1 (C-30), 137.8 (C-37), 132.6 (C-38), 125.7 (C-32), 124.6 (C-27), 123.6 (C-25), 123.4 (C-35),
121.7 (C-34), 120.3 (C-33), 113.9 (C-31), 113.1 (C-36), 110.2 (C-29), 61.8 (C-21), 56.4 (C-5), 55.6
(C-23), 54.1 (C-9), 53.6 (C-14), 48.3 (C-13), 47.9 (C-15), 43.6 (C-4), 40.8 (C-7), 39.3 (C-1, 8), 37.8
(C-10), 37.7 (C-3), 37.0 (C-12), 28.7 (C-19), 28.6 (C-22), 21.7 (C-6), 20.2 (C-11), 20.2 (C-17), 19.0
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(C-2), 13.4 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 580 (70%, [M + H]+); analysis
calcd. for C38H47N2O3Br (579.8): C 78.72, H 8.17, N 4.83; found: C 78.56, H 8.37, N 4.65.

4.2.25. 4-Bromobutyl (4α) -13-Hydroxykaur-16-en-18-oate Bromide (22)

Following GPB from 1 (0.5 g, 1.57 mmol), K2CO3 0.434 g, 3.1 mmol), 1,4-dibromobutane
(0.74 mL, 6.3 mmol) followed by chromatography (SiO2, hexanes/ethyl acetate, 6:1), 22
(0.53 g, 74%) was obtained as a colorless solid: Rf = 0.37 (SiO2, hexanes/ethyl acetate, 8:2);
m.p. = 92–96 ◦C; [α]20

D = −50.12◦ (c = 0.353, CHCl3); IR (ATR): ν = 3419br, 2934m, 2848m,
1719s, 1465w, 1444m, 1387w, 1365w, 1329m, 1270w, 1229m, 1202w, 1151s, 1118m, 1081m,
1047w, 1020w, 973w, 953w, 920w, 882w, 868w, 818w, 754m, 694w, 647w, 562w, 531w, 501w,
432w cm−1; 1H NMR (500 MHz, CDCl3): δ = 5.09 (s, 1H, OH), 4.96 (s, 1H, 17-Ha), 4.80 (s,
1H, 17-Hb), 4.13–3.98 (m, 2H, 21-H), 3.43 (t, J = 6.6 Hz, 2H, 24-H), 2.19–2.11 (m, 3H, 3-Ha,
14-Ha, 15-Ha), 2.00–1.91 (m, 2H, 22-H), 1.87–1.72 (m, 5H, 1-Ha, 2-Ha, 6-Ha, 23-H), 1.71–1.56
(m, 3H, 11-H, 12-Ha), 1.56–1.34 (m, 4H, 2-Hb, 6-Hb, 12-Hb, 15-Hb), 1.30–1.22 (m, 1H, 14-Hb),
1.16 (s, 3H, 19-H), 1.07–0.93 (m, 3H, 3-Hb, 5-H, 9-H), 0.84 (s, 3H, 20-H), 0.82–0.78 (m, 1H,
1-Hb) ppm; 13C NMR (126 MHz, CDCl3): δ = 177.4 (C-18), 143.5 (C-16), 102.9 (C-17), 82.6
(C-13), 63.1 (C-21), 56.7 (C-5), 53.8 (C-9), 50.9 (C-15), 47.9 (C-14), 43.9 (C-4), 41.3 (C-8), 40.9
(C-7), 40.7 (C-1), 39.6 (C-10), 39.4 (C-12), 38.1 (C-3), 31.8 (C-24), 29.6 (C-22), 28.8 (C-19), 27.2
(C-23), 21.0 (C-6), 20.8 (C-11), 19.1 (C-2), 15.3 (C-20) ppm; MS (ESI, MeOH:CHCl3 4:1): m/z
(%) 373 (70%, [M − Br]+); analysis calcd. for C24H37O3Br (453.46): C 63.57, H 8.22; found:
C 63.41, H 8.39.

4.2.26. 4-Bromobutyl (4α, 8β, 13β) 13-Methyl-16-oxo-17-norkauran-18-oate (23)

Following GPB from 2 (0.5 g, 1.57 mmol), K2CO3 (0.434 g, 3.1 mmol) and 1,4-
dibromobutane (0.74 mL, 6.3 mmol) followed by chromatography (SiO2, hexanes/ethyl
acetate, 6:1), 23 (0.53 g, 75%) was obtained as a colorless solid: Rf = 0.68 (SiO2, hex-
anes/ethyl acetate, 4:1); m.p. = 104–106 ◦C; [α]20

D = −54.38◦ (c = 0.158, CHCl3); IR (ATR):
ν = 2937m, 2891w, 2845w, 1734s, 1718s, 1448m, 1387w, 1355w, 1320w, 1299w, 1245w, 1231m,
1208w, 1180s, 1153s, 1133w, 1109w, 1095w, 1060w, 1031w, 1017w, 1002w, 978w, 928w, 868w,
850w, 827w, 809w, 776w, 750w, 735w, 694w, 652w, 594w, 557w, 513w, 462w cm−1; 1H NMR
(400 MHz, CDCl3): δ = 4.13–3.96 (m, 2H, 21-H), 3.43 (t, J = 6.6 Hz, 2H, 24-H), 2.61 (dd,
J = 18.6, 3.8 Hz, 1H, 15-Ha), 2.17 (dt, J = 13.4, 3.8 Hz, 1H, 3-Ha), 1.99–1.85 (m, 3H, 6-Ha,
22-H), 1.85–1.74 (m, 4H, 2-Ha, 15-Hb, 23-H), 1.74–1.57 (m, 5H, 1-Ha, 6-Hb, 7-Ha, 11-Ha),
1.53 (td, J = 11.4, 3.6 Hz, 1H, 14-Ha), 1.48–1.31 (m, 4H, 2-Hb, 7-Hb, 12-H, 14-Hb), 1.18 (s,
3H, 19-H), 1.15 (s, 2H, 9-H, 11-Hb), 1.12 (dd, J = 11.9, 2.2 Hz, 1H, 5-H), 1.03 (td, J = 13.4,
4.1 Hz, 1H, 3-Hb), 0.97 (s, 3H, 17-H), 0.90 (td, J = 13.1, 4.2 Hz, 1H, 1-Hb), 0.70 (s, 3H,
20-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.4 (C-16), 177.3 (C-18), 63.2 (C-21), 57.0
(C-5), 54.7 (C-9), 54.3 (C-14), 48.4 (C-15), 41.5 (C-7), 39.8 (C-8), 39.4 (C-1), 38.0 (C-10),
37.9 (C-3), 37.3 (C-12), 32.9 (C-24), 29.5 (C-22), 29.0 (C-19), 27.2 (C-23), 21.8 (C-6), 20.3
(C-11), 19.8 (C-17), 19.0 (C-2), 13.4 (C-20) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%)
373 (90%, [M − Br]+); analysis calcd. for C24H37O3Br (453.46): C 63.57, H 8.22; found: C
63.41, H 8.39.

4.2.27. 4-{4-[(E)-2-(1H-Indol-3-yl)ethenyl-pyridinium-1-yl-butyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (24)

Following GPC from 22 (0.3 g, 0.66 mmol) and 3 (0.146 g, 0.66 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 6:1), 24 (0.287 g, 73%) was obtained as a reddish
solid: Rf = 0.11 (SiO2, CHCl3/MeOH, 9:1); m.p. = 179–182 ◦C; [α]20

D = −44.96◦ (c = 0.045,
MeOH); IR (ATR): ν = 3308br, 2953w, 2934m, 2857w, 2843w, 1716m, 1647w, 1591m, 1573m,
1556w, 1492m, 1460w, 1439m, 1385w, 1371w, 1356w, 1316w, 1278w, 1245m, 1207w, 1179m,
1150w, 1136w, 1116m, 1083w, 1062w, 1047w, 1021w, 984w, 967w, 940w, 899w, 872w, 841w,
820w, 802w, 766w, 751m, 696w, 617w, 574w, 551w, 527w, 513w, 499w, 429w cm−1; UV-Vis
(MeOH): λmax (log ε) = 438.12 nm (4.14); 1H NMR (500 MHz, DMSO-d6): δ = 11.97 (s, 1H,
NH), 8.78 (d, J = 7.0 Hz, 2H, 25-H, 29-H), 8.27 (d, J = 16.1 Hz, 1H, 31-H), 8.15 (m, 3H, 26-H,
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28-H, 34-H), 7.98 (d, J = 2.7 Hz, 1H, 39-H), 7.51 (d, J = 7.3 Hz, 1H, 37-H), 7.30 (d, J = 16.2
Hz, 3H, 30-H), 7.27–7.19 (m, 2H, 35-H, 36-H), 5.00 (s, 1H, 17-Ha), 4.64 (s, 1H, 17-Hb), 4.48 (t,
J = 7.1 Hz, 2H, 24-H), 4.12–3.94 (m, 2H, 21-H), 2.07–1.90 (m, 6H, 3-Ha, 14-H, 15-Ha, 22-H),
1.78–1.66 (m, 3H, 1-Ha, 2-Ha, 6-Ha), 1.65–1.48 (m, 4H, 11-H, 23-H), 1.48–1.40 (m, 2H, 12-H),
1.39–1.18 (m, 3H, 2-Hb, 6-Hb, 15-Hb), 1.10 (s, 3H, 19-H), 1.06–0.87 (m, 3H, 3-Hb, 5-H, 9-H),
0.82–0.76 (m, 1H, 1-Hb), 0.74 (s, 3H, 20-H) ppm; 13C NMR (126 MHz, DMSO-d6): δ = 176.4
(C-18), 154.7 (C-16), 144.5 (C-27), 143.3 (C-25, 29), 137.5 (C-38), 136.7 (C-31), 133.2 (C-39),
132.4, 124.9 (C-33), 122.9 (C-35), 121.9 (C-26, 28), 121.1 (C-36), 120.4 (C-34), 116.8 (C-30),
113.6 (C-32), 112.6 (C-37), 102.5 (C-17), 80.7 (C-13), 62.9 (C-21), 58.5 (C-24), 55.7 (C-5), 53.1
(C-9), 50.5 (C-15), 47.2 (C-14), 43.3 (C-4), 43.2 (C-8), 41.0 (C-7), 40.2 (C-1), 39.0 (C-12), 38.8
(C-10), 37.4 (C-3), 28.3 (C-19), 27.4 (C-22), 24.8 (C-23), 20.5 (C-6), 20.4 (C-11), 18.7 (C-2), 15.0
(C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 594 (75%, [M − Br]+); analysis calcd.
for C39H49N2O3Br (673.72): C 69.53, H 7.33, N 4.16; found: C 69.39, H 7.54, N 3.87.

4.2.28. 4-{4[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}butyl (4α, 8β, 13β)
13-Methyl-16-oxo-17-norkauran-18-oate Bromide (25)

Following GPC from 23 (0.3 g, 0.66 mmol) and 3 (0.146 g, 0.66 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 6:1), 25 (0.314 g, 80%) was obtained as a reddish
solid: Rf = 0.17 (SiO2, CHCl3/MeOH, 9:1); m.p. = 174–176 ◦C; [α]20

D = −7.30◦ (c = 0.178,
MeOH); IR (ATR): ν = 3406br, 3128br, 2925m, 2848w, 1721m, 1645w, 1597s, 1575m, 1557w,
1531w, 1501m, 1457m, 1432m, 1371w, 1356w, 1318w, 1274w, 1246m, 1206m, 1173s, 1132s,
1112m, 1097w, 1058w, 1044w, 1016w, 965m, 928w, 871w, 744s, 663w, 612w, 590w, 569w,
510w, 425w cm−1; UV-Vis (MeOH): λmax (log ε) = 443.61 nm (4.58); 1H NMR (500 MHz,
DMSO-d6): δ = 11.97 (s, 1H, NH), 8.79 (d, J = 6.9 Hz, 2H, 25-H, 29-H), 8.26 (d, J = 16.3 Hz, 1H,
31-H), 8.17–8.12 (m, 3H, 26-H, 28-H, 34-H), 7.96 (d, J = 2.4 Hz, 1H, 39-H), 7.51 (d, J = 7.3 Hz,
1H, 37-H), 7.29 (d, J = 16.2 Hz, 1H, 30-H), 7.27–7.20 (m, 2H, 35-H, 36-H), 4.47 (t, J = 6.1 Hz,
2H, 21-H), 4.06–3.93 (m, 2H, 24-H), 2.35 (dd, J = 18.3, 3.5 Hz, 1H, 15-Ha), 2.02 (d, J = 13.0 Hz,
1H, 3-Ha), 1.99–1.88 (m, 2H, 23-H), 1.80 (d, J = 18.3 Hz, 1H, 15-Hb), 1.79–1.70 (m, 1H, 6-Hb),
1.71–1.51 (m, 6H, 1-Ha,2-Ha, 7-Ha, 11-Ha, 22-H), 1.49 (d, J = 14.0 Hz, 1H, 6-Ha), 1.44 (dd,
J = 11.3, 1.9 Hz, 1H, 14-Ha), 1.39 (td, J = 13.1, 3.1 Hz, 1H, 7-Hb), 1.39–1.18 (m, 4H, 2-H, 12-H,
14-Hb), 1.19–1.13 (m, 2H, 5-H, 9-H), 1.12 (s, 3H, 19-H), 1.08–0.94 (m, 2H, 3-Hb, 11-Hb), 0.87
(td, J = 13.4, 13.0, 4.2 Hz, 1H, 1-Hb), 0.78 (s, 3H, 17-H), 0.57 (s, 3H, 20-H) ppm; 13C NMR
(126 MHz, DMSO-d6): δ = 221.1 (C-16), 176.9 (C-18), 155.2 (C-27), 143.8 (C-25, 29), 138.0
(C-38), 137.2 (C-31), 133.0 (C-39), 125.4 (C-33), 123.4 (C-36), 122.4 (C-26, 28), 121.6 (C-35),
120.9 (C-34), 117.2 (C-30), 114.1 (C-32), 113.1 (C-37), 63.5 (C-24), 59.0 (C-21), 56.4 (C-5), 54.1
(C-9), 53.6 (C-14), 48.3 (C-13), 48.0 (C-15), 43.7 (C-4), 41.0 (C-7), 39.5 (C-1), 39.4 (C-8), 37.9
(C-10), 37.8 (C-3), 37.0 (C-12), 28.9 (C-19), 28.0 (C-23), 25.2 (C-22), 21.8 (C-6), 20.3 (C-11),
20.1 (C-17), 19.0 (C-2), 13.5 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 594 (80%,
[M − Br]+); analysis calcd. for C39H49N2O3Br (673.72): C 69.53, H 7.33, N 4.16; found: C
69.40, H 7.53, N 3.89.

4.2.29. 4-{3-[(E)-2-(1H-Indol-3-yl)-ethenyl]-pyridinium-1-yl}butyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (26)

Following GPC from 22 (0.526 g, 1.15 mmol) and 4 (0.256 g, 1.16 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 6:1), 26 (0.420 g, 61%) was obtained as a yellowish
solid: Rf = 0.06 (SiO2, CHCl3/MeOH, 9:1); m.p. = 182–184 ◦C; [α]20

D = −33.43◦ (c = 0.157,
MeOH); IR (ATR): ν = 3376br, 3210br, 2933w, 2849w, 1707m, 1632m, 1577m, 1525w, 1501w,
1459w, 1434m, 1386w, 1364w, 1329w, 1276w, 1236m, 1202w, 1152m, 1116m, 1082w, 1055w,
1018w, 954w, 819w, 745s, 680w, 618w, 570w, 500w, 424w cm−1; UV-Vis (MeOH): λmax
(log ε) = 359.12 nm (4.17); 1H NMR (500 MHz, DMSO-d6): δ = 11.65 (s, 1H, NH), 9.36 (s,
1H, 25-H), 8.82 (d, J = 5.9 Hz, 1H, 29-H), 8.74 (d, J = 8.4 Hz, 1H, 27-H), 8.32 (s, 1H), 8.11–8.05
(m, 2H, 28-H, 34-H), 7.90 (d, J = 16.5 Hz, 1H, 31-H), 7.78 (d, J = 2.7 Hz, 1H, 39-H), 7.49 (d,
J = 7.7 Hz, 2H, 37-H), 7.22 (d, J = 16.4 Hz, 1H, 30-H), 7.25–7.14 (m, 2H, 35-H, 36-H), 4.99 (s,
1H, 17-Ha), 4.73–4.55 (m, 3H, 17-Hb, 24-H), 4.10–3.95 (m, 2H, 21-H), 2.11–1.97 (m, 5H, 3-Ha,
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14-H, 23-H), 1.90 (d, J = 9.3 Hz, 1H, 15-Ha), 1.82–1.57 (m, 6H, 1-Ha, 2-Ha, 6-Ha, 11-Ha, 22-H),
1.56–1.40 (m, 3H, 11-Hb, 12-H), 1.39–1.15 (m, 3H, 2-Hb, 6-Hb, 15-Hb), 1.10 (s, 3H, 19-H), 1.02
(dd, J = 12.1, 1.6 Hz, 1H, 5-H), 0.95 (td, J = 13.5, 9.3, 3.7 Hz, 1H, 3-Hb), 0.89 (d, J = 8.0 Hz, 1H,
9-H), 0.77 (d, J = 8.5 Hz, 1H, 1-Hb), 0.74 (s, 3H, 20-H) ppm; 13C NMR (126 MHz, DMSO-d6):
δ = 176.4 (C-18), 156.2 (C-16), 144.5 (C-38), 141.3 (C-25), 140.5 (C-29), 139.5 (C-27), 137.3
(C-26), 133.2, 130.2 (C-31), 129.1 (C-39), 127.7 (C-28), 124.8 (C-33), 122.4 (C-35), 120.4 (C-36),
120.0 (C-34), 115.3 (C-30), 112.9 (C-32), 112.3 (C-37), 102.5 (C-17), 80.7 (C-13), 62.9 (C-24),
60.3 (C-21), 55.7 (C-5), 53.0 (C-9), 50.5 (C-15), 47.2 (C-14), 43.2 (C-4), 41.5 (C-8), 41.0 (C-7),
40.8 (C-1), 40.2 (C-10), 38.7 (C-12), 37.4 (C-3), 31.8, 28.3 (C-19), 27.5 (C-23), 24.8 (C-22), 20.5
(C-6), 20.4 (C-11), 18.7 (C-2), 15.0 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 594
(70%, [M − Br]+); analysis calcd. For C39H49N2O3Br (673.72): C 69.53, H 7.33, N 4.16; found:
C 69.40, H 7.52, N 3.97.

4.2.30. 4-{3-[(E)-2-(1H-Indol-3-yl)ethenyl]-pyridinium-1-yl}butyl (4α, 8β, 13β)
13-Methyl-16-oxo-17-norkauran-18-oate Bromide (27)

Following GPC from 23 (0.533 g, 1.17 mmol) and 4 (0.26 g, 1.18 mmol) followed by
chromatography (SiO2, CHCl3/MeOH 6:1), 27 (0.447 g, 65%) was obtained as a yellowish
solid: Rf = 0.09 (SiO2, CHCl3/MeOH 9:1); m.p. = 167–169 ◦C; [α]20

D = −28.15◦ (c = 0.115,
MeOH); IR (ATR): ν = 3417br, 4198br, 2928w, 2848w, 1722m, 1633m, 1578m, 1525w, 1501m,
1456w, 1434m, 1372w, 1337w, 1321w, 1276w, 1250w, 1233m, 1179w, 1151w, 1132w, 1111w,
1059w, 1029w, 1016w, 959w, 929w, 824w, 744m, 681w, 618w, 598w, 569w, 504w, 424w cm−1;
UV-Vis (MeOH): λmax (log ε) = 357.9 nm (4.25); 1H NMR (500 MHz, DMSO-d6): δ = 11.65
(s, 1H, NH), 9.37–9.31 (m, 1H, 25-H), 8.83 (d, J = 5.9 Hz, 1H, 29-H), 8.76 (d, J = 8.4 Hz, 1H,
27-H), 8.15–8.06 (m, 2H, 28-H, 34-H), 7.89 (d, J = 16.5 Hz, 1H, 31-H), 7.78 (d, J = 2.7 Hz,
1H, 39-H), 7.50 (d, J = 7.7 Hz, 1H, 37-H), 7.22 (d, J = 15.7 Hz, 1H, 30-H), 7.27–7.16 (m, 2H,
35-H, 36-H), 4.65 (t, J = 7.1 Hz, 2H, 24-H), 4.11–3.97 (m, 2H, 21-H), 2.35 (d, J = 21.9 Hz,
1H, 15-Ha), 2.14–1.98 (m, 3H, 3-Ha, 23-H), 1.82 (d, J = 18.3 Hz, 1H, 15-Hb), 1.82–1.75 (m,
1H, 6-Ha), 1.73–1.47 (m, 7H, 1-Ha, 2-Ha, 6-Hb, 7-Ha, 11-Ha, 22-H), 1.43 (dd, J = 11.4, 2.1
Hz, 1H, 14-Ha), 1.40–1.21 (m, 5H, 2-Hb, 7-Hb, 12-H, 14-Hb), 1.19–1.15 (m, 2H, 5-H, 9-H),
1.14 (s, 3H, 19-H), 1.02 (m, 2H, 3-Hb, 11-Hb), 0.89 (td, J = 13.3, 3.9 Hz, 1H, 1-Hb), 0.84 (s,
3H, 17-H), 0.59 (s, 3H, 20-H) ppm; 13C NMR (126 MHz, DMSO-d6): δ = 221.1 (C-16), 176.9
(C-18), 141.7 (C-25), 141.0 (C-29), 140.0 (C-38), 140.0 (C-27), 137.8 (C-26), 130.7 (C-31), 129.7
(C-39), 128.2 (C-28), 125.3 (C-33), 122.9 (C-30), 120.9 (C-36), 120.4 (C-34), 115.8 (C-35), 113.4
(C-32), 112.8 (C-37), 63.5 (C-24), 60.9 (C-21), 56.4 (C-5), 54.1 (C-9), 53.5 (C-14), 48.3 (C-13),
48.0 (C-15), 43.7 (C-4), 41.0 (C-7), 39.4 (C-1, 8), 37.9 (C-10), 37.8 (C-3), 37.0 (C-12), 28.9 (C-19),
28.0 (C-23), 25.2 (C-22), 21.8 (C-6), 20.2 (C-11), 20.1 (C-17), 19.0 (C-2), 13.5 (C-20) ppm; MS
(ESI, MeOH/DMSO, 4:1): m/z (%) 594 (80%, [M + H]+); analysis calcd. for C39H49N2O3Br
(673.72): C 69.53, H 7.33, N 4.16; found: C 69.46, H 7.58, N 3.86.

4.2.31. 4-{2-[(E{-2-(1H-Indol-3-yl)ethenyl]pyridinium-1-yl}-butyl
(4α)-13-Hydroxykaur-16-en-18-oate Bromide (28)

Following GPC from 22 (0.263 g, 0.58 mmol) and 5 (0.128 g, 0.58 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 4:1), 28 (0.123 g, 36%) was obtained as a yellowish
solid: Rf = 0.19 (SiO2, CHCl3/MeOH 8.5:1.5); m.p. = 84–87 ◦C; [α]20

D = −21.46◦ (c = 0.135,
MeOH); IR (ATR): ν = 3375br, 2925w, 2851w, 1715w, 1627w, 1605m, 1563m, 1499w, 1472w,
1432m, 1364w, 1329w, 1319w, 1278w, 1242m, 1153m, 1135w, 1117w, 1082w, 1055w, 1019w,
955w, 864w, 815w, 743w, 694w, 610w, 567w, 515w, 422w cm−1; UV-Vis (MeOH): λmax
(log ε) = 426.84 nm (4.14); 1H NMR (400 MHz, DMSO-d6): δ = 12.11 (s, 1H, NH), 8.81 (d,
J = 5.8 Hz, 1H, 25-H), 8.57 (d, J = 8.2 Hz, 1H, 28-H), 8.37 (d, J = 8.1 Hz, 1H, 26-H), 8.32 (d,
J = 15.4 Hz, 1H, 31-H), 8.19 (s, 1H, 39-H), 8.06 (d, J = 7.2 Hz, 1H, 34-H), 7.72 (t, 1H, 27-H),
7.50 (d, J = 7.1 Hz, 1H, 37-H), 7.28 (d, J = 16.1 Hz, 1H, 30-H), 7.22 (s, 2H, 35-H, 36-H), 4.94 (s,
1H, 17-Ha), 4.90–4.74 (m, 2H, 24-H), 4.66 (s, 1H, 17-Hb), 4.12–3.87 (m, 2H, 21-H), 2.03–1.83
(m, 5H, 3-Ha, 14-H, 23-H), 1.75 (d, 1H, 15-Ha), 1.73–1.36 (m, 10H, 1-Ha, 2-Ha, 6-Ha, 7-Ha,
11-H, 12-H, 22-H), 1.26 (m, 4H, 2-Hb, 6-Hb, 7-Hb, 15-Hb), 0.92 (s, 3H, 19-H), 0.90–0.74 (m,
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3H, 3-Hb, 5-H, 9-H), 0.72–0.64 (m, 1H, 1-Hb), 0.62 (s, 3H, 20-H) ppm; 13C NMR (101 MHz,
DMSO-d6): δ = 176.8 (C-18), 156.7 (C-16), 153.5 (C-29), 145.1 (C-25), 144.9 (C-38), 143.7
(C-26), 139.0 (C-31), 137.8 (C-33), 132.8 (C-39), 125.6 (C-32), 124.4 (C-28), 123.4 (C-27), 123.3
(C-36), 121.7 (C-35), 120.3 (C-34), 113.9 (C-17), 113.1 (C-37), 110.0 (C-30), 81.2 (C-13), 63.4
(C-21), 61.5 (C-24), 56.1 (C-5), 53.5 (C-9), 51.0 (C-15), 47.6 (C-14), 43.6 (C-4), 42.3 (C-8), 41.7
(C-7), 40.5 (C-1), 40.1 (C-10), 39.1 (C-12), 37.8 (C-3), 28.6 (C-19), 26.6 (C-23), 25.4 (C-22), 21.0
(C-6), 20.8 (C-11), 19.1 (C-2), 15.4 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 594
(80%, [M − Br]+); analysis calcd. for C39H49N2O3Br (673.72): C 69.53, H 7.33, N 4.16; found:
C 69.42, H 7.57, N 3.91.

4.2.32. 4-{2-[(E)-2-(1H-Indol-3-yl)ethenyl]pyridinium-1-yl}-butyl (4α, 8β, 13β)
13-Methyl-16-oxo-17-norkauran-18-oate Bromide (29)

Following GPC from 23 (0.267 g, 0.59 mmol) and 5 (0.13 g, 0.59 mmol) followed by
chromatography (SiO2, CHCl3/MeOH, 4:1), 29 (1.04 g, 30%) was obtained as a yellowish
solid: Rf = 0.35 (SiO2, CHCl3/MeOH, 8.5:1.5); m.p. = 86–89 ◦C; [α]20

D = −5.25◦ (c = 0.294,
MeOH); IR (ATR): ν = 3381br, 2924w, 2850w, 1719m, 1660w, 1627w, 1605m, 1562m, 1523w,
1499w, 1469w, 1432m, 1380w, 1335w, 1319w, 1278w, 1242m, 1156w, 1131w, 1112w, 1059w,
1016w, 966w, 855w, 816w, 744m, 661w, 564w, 506w, 459w, 423w cm−1; UV-Vis (MeOH):
λmax (log ε) = 427.68 nm (4.67); 1H NMR (500 MHz, DMSO-d6): δ = 12.10 (s, 1H, NH), 8.81
(d, J = 6.2 Hz, 1H, 25-H), 8.58 (d, J = 8.4 Hz, 1H, 28-H), 8.40–8.32 (m, 1H, 26-H), 8.33 (d,
J = 15.9 Hz, 1H, 31-H), 8.20 (d, J = 2.8 Hz, 1H, 39-H), 8.07 (d, J = 7.0 Hz, 1H, 34-H), 7.73 (t,
J = 6.9 Hz, 1H, 27-H), 7.50 (d, J = 7.7 Hz, 1H, 37-H), 7.30 (d, J = 15.6 Hz, 1H, 30-H), 7.27–7.17
(m, 2H, 35-H, 36-H), 4.83 (t, J = 7.3 Hz, 2H, 24-H), 4.14–3.86 (m, 2H, 21-H), 2.24 (dd, J = 18.3,
3.3 Hz, 1H, 15-Ha), 2.05–1.87 (m, 3H, 3-Ha, 23-H), 1.78–1.51 (m, 5H, 2-Ha, 6-Ha, 15-Hb, 22-H),
1.51–1.18 (m, 10H, 1-Ha, 2-Hb, 6-Hb, 7-H, 11-Ha, 12-H, 14-H), 1.08–0.98 (m, 2H, 5-H, 9-H),
0.96 (s, 3H, 19-H), 0.94–0.86 (m, 2H, 3-Hb, 11-Hb), 0.86–0.80 (m, 3H, 17-H), 0.75 (td, J = 12.9,
12.4, 4.9 Hz, 1H, 1-Hb), 0.48 (s, 3H, 20-H) ppm; 13C NMR (126 MHz, DMSO-d6): δ = 221.0
(C-16), 176.8, 153.5 (C-29), 145.1 (C-25), 143.7 (C-26), 139.0 (C-31), 137.8 (C-38), 132.7 (C-39),
129.8, 125.7 (C-33), 124.4 (C-28), 123.4 (C-27), 122.7 (C-36), 121.7 (C-35), 120.3 (C-34), 113.9
(C-32), 113.1 (C-37), 110.0 (C-30), 63.6 (C-21), 57.2 (C-24), 56.3 (C-5), 54.0 (C-9), 53.5 (C-14),
48.3 (C-13), 47.9 (C-15), 43.6 (C-4), 40.8 (C-7), 39.4 (C-1), 39.4 (C-8), 39.3 (C-10), 37.8 (C-3),
37.0 (C-12), 28.7 (C-19), 26.8 (C-23), 25.4 (C-22), 21.7 (C-6), 20.2 (C-17), 20.2 (C-11), 18.9 (C-2),
13.4 (C-20) ppm; MS (ESI, MeOH/DMSO, 4:1): m/z (%) 594 (75%, [M + H]+); analysis calcd.
For C39H49N2O3Br (673.72): C 69.53, H 7.33, N 4.16; found: C 69.36, H 7.59, N 3.94.
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