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A B S T R A C T

Cerebral aneurysms are pathological dilations in the vasculature of the human
brain that are subject to rupture. A rupture can cause permanent disability or
death. As unruptured aneurysms can be treated leading to a good patient outcome,
early detection of aneurysms is very important. They are commonly detected in
angiographic imaging techniques. Angiographic data sets are routinely acquired
for diagnosis of vessel related pathologies.

Aneurysm detection by assistance of a computer-aided diagnosis system is de-
sirable. Such a system has the potential to find additional aneurysms that may
have been overlooked by physicians.

This thesis presents a system to automatically detect unruptured aneurysms
in angiographic data sets. The processing of different angiographic modalities,
Reconstructed 3D X-ray Rotation Angiography (3D-RA), Contrast-Enhanced Mag-
netic Resonance Angiography (CE-MRA), Time of Flight Magnetic Resonance An-
giography (TOF-MRA) and CT Angiography (CTA), is supported by the system. A
vessel segmentation that could heavily influence the whole detection system is not
required.

Initial aneurysm candidates are found by applying a sphere-enhancing filter.
Several features are computed on found Region(s) of Interest (ROI) and are com-
bined in a Linear Discriminant Function (LDF) to distinguish between true aneu-
rysms and false positives. The features include shape information, spatial infor-
mation and probability information. The LDF is parametrized either by domain
experts or automatically by training on a database.

The system is evaluated on 197 clinical angiographic data sets of all four relevant
angiographic modalities. Evaluation assesses the parameter robustness as well as
the contribution of the individual parts of the system to the overall performance.
For all modalities, more than 90% of aneurysms were found at reasonable average
false positive rates. The average rates were between 2 and 14 per data set. The
expert parametrization yield equal or better results than the trained parametriza-
tion. It was shown that the system is able to find aneurysms that were previously
overlooked by physicians.

Z U S A M M E N FA S S U N G

Zerebrale Aneurysmen sind krankhafte Arterienerweiterungen in Hirngefäßen. Ei-
ne Ruptur kann zum Tod oder zu schweren Behinderungen führen. Es existieren
Behandlungsmethoden, die nicht rupturierten Aneurysmen zu verschließen oder
zu entfernen. Dafür ist jedoch eine Erkennung dieser Pathologie notwendig. Zu
Erkennung von Aneurysmen werden angiographisch bildgebende Methoden ver-
wendet. Systeme zur computerassistierten Erkennung von Aneurysmen können
Ärzte unterstützen, nicht rupturierte Aneurysmen zu finden.

v



Diese Arbeit stellt ein solches System vor, dass ohne Nutzerinteraktion und oh-
ne Segmentierung diese Aufgabe durchführen kann. Dazu werden verschiedene
angiographische Methoden, 3D Rotationsangiographie, kontrastverstärkte Magne-
tresonanzangiographie, Time-of-Flight Magnetresonanzangiographie und CT An-
giographie, verarbeitet.

Das vorgestellte System basiert auf einem multi-skalen Filter, der kugelförmi-
ge Objekte in den Datensätzen hervorhebt. Aus dem Filterergebnis werden Re-
gionen von zusammenhängenden Pixeln bestimmt; auf diesen werden Merkma-
le berechnet. Die Merkmale verwenden räumliche Information sowie Form- und
Wahrscheinlichkeitsinformation. Die Merkmale werden in einer linearen Diskrimi-
nanzfunktion zur Unterscheidung zwischen tatsächlichen Aneurysmen und falsch-
positiven Kandidaten verwendet. Die Diskriminanzfunktion kann entweder durch
Experten oder durch Training auf vorhandenen Datensätzen parametrisiert wer-
den.

Eine Evaluation wird auf 197 Datensätzen von allen relevanten angiografischen
Modalitäten durchgeführt. Sowohl die Robustheit der Parameter, als auch der An-
teil jedes Algorithmusschrittes zum Gesamtergebnis wird getestet. In allen Moda-
litäten können mehr als 90% der Aneurysmen erfolgreich detektiert werden. Die
Anzahl der insgesamt gefundenen Kandidaten schwankt dabei zwischen 2 und 14
im Durchschnitt pro Datensatz. Mit der Expertenparametrisierung werden gleiche
bzw. bessere Ergebnisse als mit der trainierten Parametrisierung erzielt. Es kann
gezeigt werden, dass das vorgestellte System Aneurysmen erkennt, die von Ärzten
übersehen worden sind.
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1
I N T R O D U C T I O N

Cerebral aneurysms are pathological dilations of cerebral blood vessels inside the
head that can rupture. This poses a serious threat resulting in a hemorrhage that
can lead to death or permanent disability. Currently, a prognosis if and when a
rupture occurs is only possible with low accuracy. The treatment of unruptured
aneurysms is commonly done to prevent a rupture. Therefore, the early detection
of unruptured aneurysms plays an important role in therapy.

Recently, due to the increased use of medical imaging modalities, incidental
findings of aneurysms occur more frequently [Gabriel et al., 2010]. Until now, no
Computer-aided Diagnosis (CAD) algorithm exists that is able to detect cerebral
aneurysms with a sufficient high accuracy in multimodality angiographic image
data. Almost all algorithms are developed especially for one modality, Time of
Flight Magnetic Resonance Angiography (TOF-MRA), such as [Arimura et al., 2006;
Yang et al., 2011]. Moreover, all algorithms depend on vessel segmentation and the
evaluation of most algorithms was done with too few data sets.

The overall goal of this thesis is to develop a system to detect unruptured cere-
bral aneurysms to assist the physician. The relatively low prevalence of aneu-
rysms impairs the detection rate of radiologists. Thus, especially small aneurysms
are overlooked. The system should work with angiographic data sets acquired
of the head of living humans. Four modalities are relevant in aneurysm detec-
tion: Reconstructed 3D X-ray Rotation Angiography (3D-RA), Contrast-Enhanced
Magnetic Resonance Angiography (CE-MRA), TOF-MRA and CT Angiography (CTA)
[Wanke and Forsting, 2008]. Further requirements of the system are the processing
with minimal user interaction and the independence to a vessel segmentation. The
vision is that the system can be clinically used to routinely scan acquired image
data for aneurysms. If aneurysms are found, the physician is provided with this
information to confirm or reject the finding. As no additional images are needed
to be acquired, no disadvantage occurs for the patient.

In terms of quality, the algorithm aims for detecting > 90% aneurysms with a
preferably small amount of False Positives (FPs). The FP rate varies depending on
the modality, an average of ten FP per data set should not be exceeded.

The aneurysm detection has to overcome several challenges:

1. The shape of cerebral aneurysms can hardly be generalized,

2. The feature characteristics for aneurysms are rather variable and depend on
the modality,

3. The image quality varies depending on the modality as well as on the acqui-
sition device,

4. CTA has difficult intensity characteristics as the intensity levels of bones and
blood overlap and

5. Statistical information should only minimally be used.

1



2 1 introduction

1.1 structure

This thesis is divided into seven chapters. Chapter 2 introduces the medical back-
ground. First, an overview about cerebral aneurysms is given and their treatment
options are explained. Second, the relevant angiographic imaging modalities are
discussed especially by their value and use in aneurysm management. Finally, the
chapter is concluded with an overview of the cerebral aneurysm management at
the University Hospital of Magdeburg.

In Chapter 3, an overview is given about computer-aided management of aneurysms.
The different areas of computer assistance are introduced and discussed with re-
spect to their use in a clinical environment.

In Chapter 4, the State of the Art of aneurysm detection is given. In a broad-
to-fine approach, first, object detection algorithms are outlined, then, an overview
about CAD algorithms is given and finally, existing algorithms to detect cerebral
aneurysms are discussed in detail.

In Chapter 5, the proposed method is explained. Details about all algorithm
steps are given and it is illustrated how these steps were found. Furthermore, the
different parametrizations are discussed and alternatives to parts of the algorithm
are presented.

In Chapter 6, a thorough evaluation and discussion of the proposed method is
made. Experiments are made to evaluate the robustness of algorithm parameters
and to prove the suitability of the chosen algorithm parts. Also variants or alterna-
tives of the different parts are tested. After the discussion of the proposed system,
the system is compared with existing methods.

In Chapter 7, a summary of the thesis is given. The scientific contributions and
the future work are discussed.

Marginal notes are used for summarizing the most important statements of a
section.

A list of all symbols and a list of abbreviations can be found after table of con-
tents.
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2
M E D I C A L B A C K G R O U N D

In this chapter, a short overview about aneurysms is given with the focus on cere-
bral aneurysms. Furthermore, the angiographic modalities that are relevant for
cerebral aneurysm management are introduced and discussed with respect to their
clinical value.

2.1 aneurysms

An aneurysm is a pathological blood vessel dilation. Aneurysms occur on vessels
throughout the human body, e. g., in the brain (Figure 2.1a), heart, intestine and
aorta. The clinical relevant aneurysms appear at arterious vessels, however also
venous aneurysms occur, but they are rare [Gillespie et al., 1997]. The two most
relevant types of aneurysms with respect to health risk and possible fatal conse-
quences in case of a rupture are cerebral aneurysms and aortic aneurysms. Cerebral
aneurysms are located inside the brain and aortic aneurysms are located at the aorta.
A rupture of a cerebral aneurysm is possible which may lead to a severe hemor-
rhage causing a stroke. Aortic aneurysms are dilations of the aorta. A rupture
leads to massive internal hemorrhage that leads to death unless it is immediately
treated. More information about aortic aneurysms are given in [Upchurch and
Schaub, 2006; Hirsch et al., 2006].

In Germany, 62 085 people died in 2011 of cerebrovascular diseases, the expenses
of the consequences were e 1044 billion [Bundesamt, 2012]. Thus, a rupture of an
aneurysm has to be prevented with respect to ethical aspects and economical costs.

2.1.1 Classification

Aneurysm can be classified based on location, morphology, size and etiology.
Intracranial aneurysms are often used as a synonym for cerebral aneurysms in

the literature. However, they are limited in their location within the skull. It
has to be differentiated between extradural and intradural aneurysms. Intradural Classification based on

locationaneurysms are within the dura mater (a thin membrane around the brain) and a
rupture of these lead to a Subarachnoid Hemorrhage (SAH). Extradural aneurysms
are commonly located at the cavernous section of the Arteria Carotis Interna (ACI)
and do not lead to a SAH in case of rupture, but rather lead to a formation of a
fistula that is not life-threatening [Fiehler, 2012]. In this thesis only unruptured
cerebral aneurysms are considered. If not stated otherwise, unruptured cerebral
aneurysms are meant if spoken of aneurysms.

Cerebral aneurysms can be divided into three types based on their morphology
[Wanke and Forsting, 2008]:

• saccular aneurysms (Figure 2.2a) , Classification based on
morphology

• fusiform aneurysms (Figure 2.2b) and
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(a) (b)

Figure 2.1: (a) Sketch of an aneurysm in the human head. (b) Scheme of a saccular aneu-
rysm adapted from [Neugebauer et al., 2010].

(a) (b) (c)

Figure 2.2: Scheme of (a) a saccular, (b) a fusiform and (c) a dissecting aneurysm.

• dissecting aneurysms (Figure 2.2c).

Saccular aneurysms are balloon-shaped vascular eversions (see Figure 2.3). They
can be divided into several structural shape parts (see Figure 2.1b). Blood flows
through the parent or feeding vessel into the aneurysm and leaves it commonly
through the same vessel. The structural shape part includes: The ostium separates
the aneurysm body from the vessel. The aneurysm part furthermost from the neck
is called dome. In saccular aneurysms, a neck exists commonly, as the diameter at
the ostium is usually smaller than the largest diameter of the aneurysm sac form-
ing a bottleneck for the inflowing blood. The neck is connected to the feeding
vessel. Saccular aneurysms are the most common cerebral aneurysm morphology,
as they account for about 91% of cerebral aneurysms [Inagawa, 1991].

In contrast, fusiform aneurysms are dilated, tortuous and elongated vessel seg-
ments. They usually appear as an enlargement of the vessel with a peak diameter

4



2.1 Aneurysms 5

(a) (b) (c)

Figure 2.3: Example visualizations of aneurysms with different sizes based on 3D-RA data
sets. Only the aneurysms and the surrounding vessels are shown. The data sets
are courtesy of Oliver Beuing, department of neuroradiology, University Hos-
pital of Magdeburg. (a) An aneurysm at the AComm with a diameter of 3.9mm.
(b) An aneurysm at the ACM with a diameter of 8.7mm. (c) An aneurysm at
the ACI with a diameter of 16.6mm.

in the middle decreasing to both sides. A neck is not present. They represent
about 6% of all cerebral aneurysms [Inagawa, 1991].

Dissecting aneurysms are rips in the vessel wall that lead to bleeding within the
wall. The occurrence is more seldom than the two other types [Wanke and Forsting,
2008], however, no explicit numbers are provided in the literature. Other aneurysm
types that have almost no clinical relevance are infectious aneurysms, traumatic
aneurysms and inflammatory aneurysms [Wanke and Forsting, 2008]. This work
focuses on saccular and fusiform aneurysms as they represent the vast majority of
all cerebral aneurysms.

Aneurysm classification based on size and etiology is discussed in the next sec-
tion.

2.1.2 Properties

It is difficult to estimate the prevalence of cerebral aneurysms in the general pop-
ulation. The most recent meta-analysis of studies suggests a prevalence of 3.2%
in a healthy, age-normalized population consisting of an equal amount of men
and women [Vlak et al., 2011]. However, the Prevalence Ratio (PR) for first-degree
relatives with a history of intracranial aneurysms of SAH is 3.4 [Vlak et al., 2011] be- Aneurysm prevalence

cause of genetic factors. Aneurysms occur more often in women than men leading
to a PR of 1.6 [Vlak et al., 2011]. Interestingly, the PR for German citizens is higher
than for citizens of other countries in the Western world, although the values are
not significant [Vlak et al., 2011]. Generally, aneurysm occurrence is linked to the
age, but the difference was not significant except for patients older than 80 years
and younger than 30 years [Vlak et al., 2011]. The frequency of multiple aneurysms
in a patient is 19% to 27% [Inagawa, 2009, 1991] in all aneurysm patients. If the
gender and the age is given, a patient specific prevalence can be computed.
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The majority of aneurysms are not congenital, but they develop during life
[Wiebers, 2006]. The cause and pathogenetic criteria for aneurysm development
are only partially understood. Endogenous factors like elevated blood pressure
and exogenous factors like cigarette smoking have been found to be associated
to aneurysm occurrence [Fiehler, 2012; Juvela et al., 2001]. Furthermore, the veryAneurysm etiology

seldom autosomal dominant polycystic kidney disease is known to elevate the risk
for formation of an aneurysm significantly [Vlak et al., 2011]. Recently, also genetic
components are discussed as it was found that specific genes are associated with
cerebral aneurysms [Helgadottir et al., 2008]. However, the research in this area is
far from being conclusive.

The majority of unruptured aneurysms are asymptomatic. Only in a few cases
aneurysms cause symptoms due to their mass, e. g., if pressure is applied on the
optic nerve where vision disorders would be the consequence. Most aneurysms re-
main undetected unless they become symptomatic, i. e., a rupture occurs. Recently,
aneurysms are often incidentally found by neurological imaging techniques [Tum-
mala et al., 2005; Gabriel et al., 2010].

Most cerebral aneurysms emerge on vessels associated to the Circle of Willis also
known as Circulus arteriosus cerebri (see Figure 2.4a). It is located in the midbrain
and indicates the major arteries that supply the brain with blood. Furthermore,Aneurysm location

most aneurysms are located in proximity to a bifurcation of the major arteries.
About 85% of all cerebral aneurysms originate from the anterior circulation [Vlak
et al., 2011]. The location, where aneurysms occur, is classified by their feeding
vessel. The arteries in the human head are classified as given in Figures 2.4a and
2.4d and can be grouped using the following scheme:

• Anterior circulation system (Figure 2.4c)

– Arteria Carotis Interna (ACI)

* Cavernous part of the ACI

* Non-cavernous part of the ACI

* PComm

– Arteria Cerebri Media (ACM)

– Arteria Cerebri Anterior (ACA) system

* Arteria Cerebri Anterior (ACA)

* Arteria Communicans Anterior (AComm)

• Posterior circulation system

– Arteria basilaris

– Arteria vertebralis

– Arteria Cerebri Posterior (ACP)

For each artery group, for the formation of aneurysms a probability can be given.
The most common location given in the literature is the AComm or the ACI, depend-
ing on the definition and the formed groups. A comparison between three different
sources is given in Figure 2.5. Between 38% and 42% of aneurysms originate from
the ACI. Between 23% and 35% of aneurysms emerge at the ACM and between 12%
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(a) (b)

(c) (d)

Figure 2.4: The Circle of Willis as a (a) symbolic representation (adapted from http:

//commons.wikimedia.org/wiki/File:Circle_of_Willis_la.svg, public do-
main, author: Rhcastilhos). (b) The Circle of Willis and the brain in a joint visu-
alization (http://commons.wikimedia.org/wiki/File:Gray516.png, public do-
main, author: Gray’s Anatomy). (c) Coronal view of the anterior circulation
as two combined 2D-DSA images that are both visualized as a tMIP. (d) Trans-
versal view of the Circle of Willis as seen in TOF-MRA by combining 20 slices.
Above left and right, the ACM can be seen. In the center, the AComm is displayed.
Below left and right the ACP is seen and in the center the Arteria basilaris is dis-
played. The PComm is not visible in TOF-MRA although it is located among the
slices. The data sets are courtesy of Oliver Beuing, department of neuroradiol-
ogy, University Hospital Magdeburg.
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Figure 2.5: Percentage of aneurysm occurrence by feeding vessel. The vessels are divided
into Arteria Carotis Interna (ACI), Arteria Cerebri Media (ACM), Arteria Cerebri
Anterior (ACA) and Posterior circulation. The data is taken from [Wiebers et al.,
2003], [Vlak et al., 2011] and from the own database. The number in brackets
represent the number of aneurysms in the respective study. P. circulation =
Posterior circulation.

and 25% appear at the ACA system. The posterior circulation system only plays a
minor role as most of the aneurysms in this group occur at the tip of the basilar
artery. Despite measuring the occurrence probability based on the feeding vessel,
it is possible to connect single bifurcation points with common forming [Edlow
et al., 2008]. The most common site for fusiform aneurysms is the ACM [Park et al.,
2008].

The size of aneurysms varies broadly. It is usually measured by taking the
largest diameter of the aneurysm body into account. Additionally, height and
width is sometimes measured. Height is defined as the maximum length of theAneurysm size

line from ostium to the dome and width is defined as the maximum length of the
line perpendicular to the height line inside the aneurysm sac. Aneurysms with
a size of smaller than 2mm are hardly visible in medical imaging modalities and
are commonly excluded from studies. Aneurysms with size more than 25mm are
called giant aneurysms. The mean of the maximal diameter ranges from 5.7mm
to 11.4mm, depending on the study [Wiebers et al., 2003; van Rooij and Sluzewski,
2006; Beck et al., 2006].

The International Study of Unruptured Intracranial Aneurysms (ISUIA) was the
largest study of unruptured cerebral aneurysms with 4060 patients and 6221 aneu-
rysms assessed from centers in North America and Europe [Wiebers et al., 2003].
It was a prospective non-randomized study. Here, the mean maximum diameter
was between 9mm ± 7.1mm. 47% of the patients had an aneurysm with size be-
tween 2mm and 7mm, in 32% the size was between 7mm and 12mm, in 16% the
size was between 13mm and 24mm and 5% of the aneurysms were greater than
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25mm1. A meta-analysis provided the information that 66% of aneurysms have a
size of 6 5mm, 27% of aneurysms have a size between 5mm and 10mm and only
7% have a size of > 10mm [Vlak et al., 2011]. These numbers question the ISUIA

study.
The main threat of aneurysms is their potential to rupture. A rupture leads to an

uncontrolled leakage of blood into the subarachnoid region called Subarachnoid
Hemorrhage (SAH). The mortality rate for this pathology is about 50% [van Gijn
et al., 2007]. 46% of survivors have long-term impairment with serious effects on
quality of life [Suarez et al., 2006]. Thus, the economical expenses are tremendous Consequences of rupture

and the consequences of a rupture are severe.
Prognosis, if and when a rupture of a cerebral aneurysm emerges is currently

only possible with insufficient accuracy. According to the ISUIA, significant predic-
tors of rupture are size and location of aneurysms [Wiebers et al., 2003]. However, Estimation of rupture

ratethe total rupture rate of aneurysms is relatively small. A rupture rate of 0.05% per
year for aneurysms 6 10mm in diameter was reported. For aneurysms having a
diameter > 10mm, the rate was 0.5% per year [Wiebers et al., 2003]. The study
was controversially discussed; the low rupture rates have been questioned by the
medical community.

A review article scrutinizes the validity of ISUIA as they authors of the review ar-
ticle found several methodological difficulties that bias the rupture rate [Raymond
et al., 2008]. They further criticized the non-randomized design of the study and
the high follow-up loss. A worst-case scenario where these follow-up losses are
rated among death from aneurysm rupture leads to a considerably higher rupture
rate of 1.2% per year. A study was proposed that overcomes these difficulties and
gives a reliable estimation of the rupture rate [Raymond et al., 2011]. However, this
study was stopped after three years because of poor patient recruitment. A possi-
ble explanation for the failure of this study is that patients were very anxious and
refused to participate in the study as they preferred an interventional treatment
over a conservative treatment or randomization [Fiehler, 2012].

These psychological factors have to be taken into account in aneurysm man-
agement as the life quality can drastically decrease once the knowledge about an
aneurysm is present [Ferns et al., 2011]. Aneurysms are commonly perceived as
a ticking bomb in the head once they are found, hence a proper risk assessment
about treatment is not possible [Fiehler, 2012]. Thus, the widely used ISUIA results
should be cautiously approached although the general tendencies presumably are
still valid. Similar to aneurysm formation, there are different risk factors for their
rupture. An overview of different endogenous and exogenous risk factors is given
in Table 2.1. The most important factors are age, gender, size, location and type
(symptomatic vs. asymptomatic) [Wermer et al., 2007].

Other studies report rupture rates of small aneurysms < 5mm of 0.54% per
year. An interventional treatment is recommended if the patient is younger than
50 years, has hypertension and multiple aneurysms > 4mm [Sonobe et al., 2010].
Another review study reports an annual rupture rate of 1.9% [Rinkel et al., 1998].

1 The sizes are grouped disadvantageously. The histogram bins are not equally distributed and it also
remains unclear where aneurysms with a size between 12mm and 13mm and between 24mm and
25mm are grouped.
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Table 2.1: Overview of risk factors for aneurysm rupture. The data is taken from
[Wermer et al., 2007; Clarke, 2008]. Those numbers marked with * were
significant.

Factor Relative Risk

En
do

ge
no

us Gender: being a woman 1.6*
Age 2.0 if > 60 years*
Posterior circulation 2.5*
Size Proportional to size (e. g., 2.9*

with > 10mm compared to < 5mm)
Ethnicity 3.4* if of Finnish/Japanese descent
Causes symptoms 4.4*

Ex
og

en
ou

s Hypertension 1.1
Smoking 1.7
Heavy alcohol consumption 2.1*
Body mass index 1.4

Additional hypotheses link features from blood flow simulations such as Compu-
tational Fluid Dynamics (CFD) with rupture risk [Cebral et al., 2005]. Hemodyna-
mic factors such as complexity of flow patterns and the size of the inflow jet were
investigated with respect to the rupture rate. It is stated that vague trends have
been found, but that CFD is still too imprecise and dependent from other parame-
ters to give a clear prognosis of rupture. Also, a shape analysis of aneurysms was
proposed as a discriminant for rupture [Lauric et al., 2011]. Further insights are
given in Section 3.4 and Section 3.5.

In conclusion, the rupture risk depends on several factors. A rough estimation
of the rupture rate of 5% in 5 years is reasonable [Fiehler, 2012]. Factors like age,
size and type of the aneurysm are already influencing the treatment decision of
physicians. However, the interference of these factors is still unknown. Whether
the type, the size of an aneurysm or hypertension of the patient influences the
rupture risk has to be determined. Besides a prediction if an aneurysm ruptures
the time of a ruptures is crucial and complicates the topic further. Hence, there
are no methods known to accurately predict aneurysm rupture that could support
physicians in treatment decision.

2.1.3 Treatment

Because of the relatively low rupture rates, the treatment options of unruptured
aneurysms have to be considered very carefully. With the increasing use of imag-
ing modalities, the chance to incidentally detect unruptured aneurysms increases
[Tummala et al., 2005; Gabriel et al., 2010]. The following treatment options exist:

• Conservative treatment

• Endovascular treatment

– with coiling (Figure 2.6a)

10
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(a) (b) (c)

Figure 2.6: The three different treatment options shown as symbolic schemes. (a) Treat-
ment by coiling, (b) treatment by stenting and (c) treatment by clipping.

– with stenting (Figure 2.6b)

– with a combination of both techniques

– Parent Artery Occlusion (PAO)

– liquid embolization

• Surgical treatment

– with clips (Figure 2.6c)

– using a bypass treatment

Conservative treatment is the first possible treatment option. No intervention is
done and the aneurysm growth is screened regularly with angiographical methods.
The patient is clarified about risks and chances.

Two active treatment methods are applied routinely: surgical clipping and en-
dovascular coiling. In the first method, a craniotomy is performed and the ostium
of the aneurysm is closed with a clip [Solomon et al., 1994]. Endovascular coiling Active treatment is done

via clipping, coiling or
stenting

is minimally invasive and was introduced by Guglielmi in 1991 [Guglielmi et al.,
1992]. The coil is attached to a delivery wire and mostly passed through the aorta
into brain arteries and finally into the aneurysm. The platinum coil is detached
electrolytically from the delivery wire to fill most of the aneurysm volume with
the coil. The goal is to initiate a thrombotic reaction that occludes the aneurysm.

Apart from these two treatment methods, stents are also used [Byrne et al., 2000].
Originally they were used to keep coils confined within the aneurysm, especially
in wide neck aneurysms [Piotin et al., 2010]. Recently, so-called flow-diverters have
emerged that aim at reducing the blood flow into the aneurysm enforcing a throm-
bosis [Pierot, 2011]. These stents are very fine-meshed. Furthermore, the stent is
used to restore the original vessel by forming a scaffold for fibrocytes. Stents are de-
livered via a wire to the feeding vessel of the aneurysm. They are expandable and
consist of coils that are tortuously arranged to mimic a tube shaped vessel. Stents
are very flexible in their shape, they adapt also to gyrose vessels. This treatment
option is usually taken into account if the two other methods are impossible due
to the morphology of the aneurysm or the vessel topology (e. g., if an aneurysm
thrombosis would block the arterial supply of the brain).

Other methods less commonly used are PAO, liquid embolization and a bypass
treatment. PAO prevents the blood flow in the whole artery e. g., by using coils
[Kallmes and Cloft, 2004]. As most arteries in the Circle of Willis are connected
to each other, other arteries can compensate the blood flow of the blocked artery.
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However, the consequences of this method have to be well evaluated before. Liquid
embolization is similar to coiling in that the aneurysm sac is filled with a liquid
that solidifies on blood contact [Mandai et al., 1992]. In case of a bypass treatment,
a bridge is build around the aneurysm blocking the blood supply [Ausman et al.,
1990].

A lot of effort was made to compare the treatment methods by their mortality,
i. e., if patients died because of the treatment and morbidity, i. e., if treatment has
led to permanent disability or a poor health. The ISAT study was one of the largest
study regarding the comparison of both methods with 2143 patients [Molyneux
et al., 2005]. One year after the intervention, the mortality for endovascular treat-
ment was 8.0%, while for surgical treatment, it was 9.9%. The morbidity at one
year was 15.5% for endovascular treatment and 21.0% for neurosurgical treatment.
Other studies report mostly lower mortality and morbidity rates for endovascular
coiling.

Also, first results have been published regarding the clinical outcome with stents.
These report a mortality of 8% and a morbidity of 4% in 70 patients [Byrne et al.,
2010].

Interestingly, the combined mortality and morbidity rate is lower for a conserva-
tive treatment (i. e., between 0.5% and 1.9% annual rupture rate) than for any sort
of interventional treatment (between 8.7% and 30.9%). However, these statisticalConservative treatment

has the lowest mortality
and morbidity rates

numbers are not yet clinically accepted and unruptured aneurysms are usually ac-
tively treated. The chosen treatment option is a complex decision based on several
factors like clinical preferences, the experience of the physician and the location of
the aneurysm.

Nevertheless, an early detection of unruptured aneurysms is favorable as neu-
roradiologists and neurosurgeons can individually decide, together with patients,
for a therapy option.

2.1.4 Aneurysm screening

Screening for aneurysms has been discussed in the scientific medical community.
The natural history of aneurysms has to be taken into account, i. e., their preva-
lence, their rupture rate and their growth. Generally, for being effective, a screen-
ing would have to be highly sensitive and specific. Magnetic Resonance Angiogra-
phy (MRA) or CTA would be the imaging modality of choice. However, for small
aneurysms, those modalities have some limitations in terms of sensitivity (see Sec-
tion 2.2). A general screening for aneurysms similar to screening programs for
breast cancer is not reasonable [Wardlaw and White, 2000]. However, a screening
is recommended if two or more first-degree relatives have had a SAH or a history
of polycystic kidney disease [Rinkel, 2005]. As this standard is very strict, a more
individual analysis is suggested since also other risk factors increase the aneu-
rysm prevalence [Fiehler, 2012; Wardlaw and White, 2000]. Also for patients who
suffered a SAH, a screening can be taken into account as they are at risk of a recur-
rence. It has been shown that the risk of recurrences has been halved by screening,
however only with a decrease in life quality and increasing costs [Wermer et al.,
2008]. The psychological effects of an aneurysm screening should also been taken
into account. Screening can lead to anxieties and depressing states [Ferns et al.,
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2011]. The patient should be clarified about the consequences of a positive finding
[Fiehler, 2012; Rinkel, 2005]. A repetition of screening is advised every 2 to 5 years
[Rinkel, 2005].

Although a screening for aneurysms may not be recommended, a CAD system
to automatically find aneurysms may be useful as cerebral angiographies are rou-
tinely used in the diagnosis and detection of arteriovenous malformations, arte-
riosclerosis, tumors or a stroke. If the image is routinely acquired or without a Aneurysm screening is

only reasonable in some
cases

specific aneurysm suspicion, the radiologist does not specifically search for aneu-
rysms which can lead to overlooking aneurysms. Also, usually only one radiolo-
gist reads the data opposed to screening programs where two radiologists look at
the images [Tang et al., 2009]. A CAD system could indicate possible aneurysms
that are then evaluated by the radiologist. Additionally, CAD has been proven to
be useful as a second opinion [Doi, 2007].

2.2 angiographic modalities

In this section, it is discussed which modalities are suitable for the use in aneurysm
management. Each relevant technique is shortly introduced and analyzed for their
image quality, radiation, sensitivity to detect aneurysms by physicians and other
criteria that influence aneurysm management. Usually, (neuro)radiologists read
the images, however also other physicians like neurosurgeons or emergency physi-
cians may read the images.

Non-invasive medical imaging methods form the backbone of modern medicine
as they visualize internal structures in the body. Starting from the discovery of
the X-radiation by Wilhelm Röntgen in 1885, medical imaging is now routinely
used in medical environments for diagnosis and therapy planning. Especially the
invention of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT)
in the 1970s are the reason for the success of the medical imaging modalities.

Among others, X-ray based methods, magnetic resonance modalities, sonogra-
phy modalities and nuclear medicine modalities exist to create images of the hu-
man body. X-ray based and magnetic resonance methods are used to visualize the
three-dimensional morphology, whereas sonography techniques are used to depict
a two-dimensional slice2. Nuclear medicine modalities and a subtype of MRI are
functional imaging techniques that are able to visualize time-resolved processes
such as blood-flow or Contrast Agent (CA) concentration.

Generally, CT and MRI methods can be used to evaluate cerebrovascular diseases.
CT is commonly deployed if SAH is suspected [Wanke and Forsting, 2008]. SAH can
also be detected by MRI using the FLAIR sequence [Fiebach et al., 2004], although
this is only rarely used. To detect other, especially subtle vascular diseases like
cerebral aneurysms, however, specialized angiographic modalities are by far more
suitable. These techniques are used to visualize blood vessels in the human body.
Methods including the administration of CA exist, but there are also other methods
that do not rely on CA. Of particular interest are the depiction of arteries, veins and
the heart chambers. With respect to cerebral aneurysms, the cerebral vasculature
morphology is important, i. e., the vessels inside the brain. Additionally, functional
angiographic modalities that visualize the time-dependent blood flow exist. In the

2 Three-dimensional ultrasound containing multiple slices also exists.
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following, angiographic modalities and Transcranial Doppler Sonography (TCD)
are analyzed.

To quantitatively compare several imaging method and other factors, objective
measures have to be established. Assuming a valid ground truth is provided,
sensitivity and specificity can be computed. The sensitivity se is defined as:

se =
nTP

nTP +nFN
, (2.1)

where nTP are the number of true positives, i. e., the correctly found aneurysms
and nFN is the number of false negatives, i. e., the aneurysms that were not found.
Thus, se gives the percentage of aneurysms that were found. Detection rate is used
as a synonym for sensitivity.Definition of sensitivity

and specificity to
evaluate the

angiographic modalities

The specificity sp is defined as:

sp =
nTN

nTN +nFP
, (2.2)

where nTN is the number of true negatives, i. e., the correctly rejected structures
and nFP is the number of false positives, i. e., the incorrectly found aneurysms.
This number measures how many aneurysms are erroneously found although no
aneurysms are present.

A high sensitivity and a high specificity are simultaneously desirable as it in-
dicates no errors. However, with respect to aneurysm detection or pathological
findings in general, a high sensitivity is more important than a high specificity
because overlooked aneurysms have a worse consequence than false positive find-
ings.

As gold-standard double-read Intra-arterial Digital Subtraction X-ray Angiogra-
phy (2D-DSA) is frequently used in publications [Wanke and Forsting, 2008; Sug-
ahara et al., 2002; Suri et al., 2002a]. The double-reading is done commonly by
experienced neuroradiologists. The reason is the excellent spatial image resolution
and the clear contrast between blood vessels and background. Thus, 2D-DSA has a
sensitivity and specificity of 100% by definition.2D-DSA is used as

gold-standard The following modalities are relevant for aneurysm management and are there-
fore discussed in the following sections:

• Cerebral Angiography

• CT Angiography (CTA)

• Magnetic Resonance Angiography (MRA)

• Transcranial Doppler Sonography (TCD)

2.2.1 Cerebral Angiography

Two types of the classical cerebral angiography exist: 2D-DSA (see Figure 2.7a)
and 3D-RA (see Figures 2.7b and 2.7c). In this work, both types are aggregated
by the term Cerebral Angiography (ANG). Both types rely on injecting an iodine-
based CA intra-arterially that has a high density. Thus, the X-rays are absorbed

14



2.2 Angiographic modalities 15

(a)

(b) (c)

Figure 2.7: Example visualization of (a) 2D-DSA image displayed as a tMIP containing two
aneurysms, (b) a transversal slice of a 3D-RA and (c) a volume-rendering of 3D-RA

showing the left ACI. The data sets are courtesy of Oliver Beuing, department
of neuroradiology, University Hospital Magdeburg.

by the CA. A mask image is acquired prior to the CA injection. The mask image
is then subtracted from the contrast-enriched images in real-time leaving only the
vessels visible. In 2D-DSA, the propagation of the blood over time is made visible
in a two-dimensional image, thus it is a type of fluoroscopy. This modality is
used to visualize the hemodynamics of the blood. It is typically acquired with
5 Frames per Second (FPS) to 30 FPS.

In 3D-RA only the morphology of the cerebral vessel system is displayed, no
hemodynamics is shown. A X-ray gantry rotates around the head and acquires 2D
projections, from which a three-dimensional volume is reconstructed similar to CT.
In these projection images, however, the hemodynamics is visible.

As only one CA injection at a time is done at both modalities, only a part of
the cerebral vasculature, the contrasted artery and their successors, are visible.
If an examination of the whole vasculature is necessary, four consecutive image

15



16 2 medical background

sequences have to be acquired as four arteries supply the brain with blood (the left
and right ACI and the left and right Arteria vertebralis3).2D-DSA and 3D-RA

have excellent quality,
but only one artery can

be displayed at once

In case of vascular defects, bi-plane 2D-DSA images are routinely acquired. The
images are two-dimensional and time-dependent (2D+t). Based on the two projec-
tions, the physician is able to build a mental representation of the current branch of
the cerebral vasculature system. The hemodynamics in aneurysms is different than
in normal vessels as the velocity is usually smaller and the flow is more turbulent.
This flow characteristics and the shape help radiologists to find aneurysms.

In some cases, a selective catheter angiography is performed where a catheter
is pushed forward into the aneurysm and the CA injection is then started. The
hemodynamics of large aneurysms can be better evaluated by using this technique.

3D-RA is more and more routinely acquired additional to 2D-DSA. However, in
the literature it is mostly regarded as helpful additional image source. 3D-RA is a
three-dimensional modality providing geometrical information and no flow infor-
mation. Hence, the physician can only rely on the shape information of aneurysms
as a criterion. The precise 3D visualization of the aneurysm neck, the shape, the
size and the relationship to nearby vessels are important facts for treatment deci-
sions and planning of endovascular therapy [Anxionnat et al., 2001]. 3D-RA has the
potential to replace 2D-DSA as the gold-standard [Shi et al., 2011; van Rooij et al.,
2008].

The disadvantages of cerebral angiographies are the invasiveness and the radia-
tion exposure. For 2D-DSA, a mean effective dose of 3.4mSv per scan was reported.
For 3D-RA, a lower mean effective dose of 0.2mSv was reported [Bridcut et al., 2007].
Due to the radiation and the interventional procedure, the cerebral angiography
increasingly substituted by its CT and MRI counterparts [Wanke and Forsting, 2008].

2.2.2 CT Angiography

The CTA (Figure 2.8a and 2.8b) is less invasive than ANG, but also requires the
injection of a CA to highlight the blood vessels. The iodine-containing CA is in-
jected in an arm vein; this procedure is more comfortable for the patient than the
intra-arterial catheter injection in ANG. CTA is no subtraction-based modality, i. e.,
additional objects are visible in the scans as the main difference to CT are the con-
trasted blood vessels. The Hounsfield Unit (HU) of the contrast enriched blood in
CTA is in the same range as bones, which leads to problems separating those two
structures. Due to research progress, multi-detector CT scanners, flat detector CT

scanners and dual-source or dual-energy CT scanners were developed that lead to
improved image quality with < 1mm slice thickness at a shorter scan time and
lower radiation exposure [Kalender, 2011].

CTA is more patient friendly as 3D-RA, but the resolution of 3D-RA is superior
(see Table 2.2). The disadvantage of radiation exposure still remains. The effective
dose for the patient is between 4.7mSv and 13.7mSv per scan [Fraioli et al., 2006].
Another study reports a radiation exposure of 1mSv to 2mSv for a head CT similar
to CTA [Furlow, 2010]. Thus, CTA has a considerably higher radiation exposure than
2D-DSA and 3D-RA. Modern CT scanners offer low-dose protocols with 0.3mSv to

3 Actually, the Arteria carotis externa provides also blood to the brain, but only to the cerebral mem-
brane and to the face, though it is usually neglected.
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(a) (b)

Figure 2.8: Example visualization of (a) a CTA slice and (b) a CTA volume rendering (the
volume rendering is clipped in front and the back so that the skull does not
occlude the vessels). The data sets are courtesy of Oliver Beuing, department
of neuroradiology, University Hospital Magdeburg.

1.4mSv per scan with a similar quality [Siemens, 2012; Philips, 2012]. In contrast
to ANG, CTA depicts the complete cerebral vasculature at once. CTA has the potential to

become the new gold
standard

The detection rate of cerebral aneurysms in CTA is 85% to 98% [Wardlaw and
White, 2000]. Due to the increasing quality of CT technique, the detection numbers
are also generally increasing in newer studies [Teng et al., 2006]. A recent meta-
study confirms this fact by reporting a sensitivity in 1-row CTA of 91.8%, in 4-row
CTA of 92.8% and in 64-row CTA of 97.8% [Menke et al., 2011].

However, the detection rate decreases with aneurysm size. For aneurysms smal-
ler than 3mm, a detection rate of only 61% is reported [White et al., 2000]. This
detection rate also significantly increases with the amount of detector rows. For
aneurysms 6 4mm, the detection rate is 75% with 1-row CTA and 94% for 64-row
CTA [Menke et al., 2011]. The use of modern

scanners leads to a
detection rate of 98% in
CTA data sets

Furthermore, problems regarding the detection arise if the location of the an-
eurysm is close to a bone structure like the skull. It was shown that CTA with
bone subtraction leads to a better sensitivity, 91.5%, than without bone subtrac-
tion, where 84.4% of the aneurysms were found [Hwang et al., 2010]. Three tech-
niques exist to suppress bones: Bone Subtracted Computed Tomography Angi-
ography (BSCTA) or digital subtraction CTA, dual-energy CTA and software-based
methods.

In BSCTA, two scans are acquired: a non-enhanced CT scan and a CTA scan. Bones
are extracted in the CT volume and then, the volume is registered to the CTA vol-
ume. Finally, bones are subtracted in the CTA scan. BSCTA allows for robust elimi-
nation of bony structures and thus is useful for detection and therapy planning of
cerebral aneurysms, especially if they are located at the skull base [Tomandl et al.,
2006]. Sensitivity regarding aneurysm detection increases significantly [Hwang
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et al., 2010]. However, the radiation exposure increases compared to CTA by 20%
to 25% [Van Straten et al., 2005].An intensity overlap

between bones and
vessels exist leading to

challenging image
interpretations

The dual-energy CTA relies on only one scan with two different tube voltages
(there are two X-ray sources and detector pairs arranged at 90°) that are simultane-
ously acquired. The bone removal is then trivial as the bone and contrast-enhanced
blood characteristics are different at two different voltages. It was shown that the
sensitivity is between 95% and 96.5% [Zhang et al., 2010b; Zhou et al., 2012]. For
aneurysms 6 3mm, a sensitivity of 91.3% was reported [Zhou et al., 2012]. It was
also shown that the radiation exposure is smaller in dual-energy CTA than in BSCTA

[Zhang et al., 2010a].
Software-based approaches for CTA bone removal without acquiring a second

scan have also been proposed based on an interactive controlled watershed algo-
rithm [Hahn et al., 2006] and a probabilistic model [Militzer and Vega-Higuera,
2009]. However, these methods have disadvantages due to their challenging task.

CTA is widely regarded as a possible replacement for 2D-DSA and 3D-RA although
this modality has a higher radiation exposure [Zhang et al., 2010a; Wanke and
Forsting, 2008]. The presence of bones can be circumvented by using dual-energy
CTA.

2.2.3 MR Angiography

Two different MRA techniques exist to display the cerebral vasculature, one incor-
porating the injection of CA, the other without CA administration. The latter can
be divided into five subtypes according to [Suri et al., 2002a]:

• Contrast-Enhanced Magnetic Resonance Angiography (CE-MRA) (examples
displayed in Figures 2.9c and 2.9d)

• non-contrast enhanced MRA

– Time of Flight Magnetic Resonance Angiography (TOF-MRA) (examples
displayed in Figures 2.9a and 2.9b)

– black-blood MRA

– Phase-Contrast Magnetic Resonance Angiography (PC-MRA) (an exam-
ple displayed in Figure 2.10)

– T2-weighted MRI

– T∗2-weighted MRI

CE-MRA relies on the injection of a CA that is Gadolinium-based and reduces
the T1 value of the blood [Ho et al., 2005]. Similar to CTA, the CA is also injected
intravenously. So-called blood-pool agents that remain in the vasculature up to an
hour, allow high resolution scans with larger acquisition times. Timing of the CA

injection plays an important role in CE-MRA. Improper timing results in artifacts
and worse image quality as well as a preferred visualization of veins compared to
arteries [Suri et al., 2002a]. A major advantage is the short scan time with good
Signal-to-Noise Ratio (SNR) (approximately 20 s) [Weiger et al., 2000].

TOF-MRA relies on the in-flow effect [Lewin et al., 1991]. A short repetition time
is used that results in a much stronger signal of the flowing blood compared to the
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(a) (b)

(c) (d)

Figure 2.9: Visualizations of example data sets. Displayed are (a) a MIP of a TOF-MRA vol-
ume around the Circle of Willis, (b) a volume rendering of a TOF-MRA volume,
(c) a MIP of a CE-MRA volume around the Circle of Willis and (d) a volume
rendering of a CE-MRA volume. The data sets are courtesy of Oliver Beuing,
department of neuroradiology, University Hospital Magdeburg.

non-moving tissue which exhibit low signal intensities [Suri et al., 2002a; Backens
and Schmitz, 2005]. The technique is non-invasive as it requires no CA, but rather
relies on the flowing properties of blood. A drawback is that slow flowing areas
like large aneurysms or turbulent blood do not provide accurate vessel visualiza-
tion [Suri et al., 2002a]. Also, the scan time is considerably longer than for CE-MRA,
namely 4min to 12min [Hoogeveen, 2007]. The quality of TOF-MRA particularly
relies on the magnetic field strength. MRA has the advantage

of no radiation exposureBlack-blood Magnetic Resonance Angiography (BB-MRA) aims to minimize flow
related-signal in contrast to TOF-MRA. Signal voids exist at flow positions describ-
ing the vasculature and leading to its name [Suri et al., 2002a]. This technique
enables to visualize the vessel lumen more accurate than TOF-MRA and is less sensi-
tive to slow flowing blood. However, as also other dark or black areas exist in these
images, the interpretation is challenging for radiologists. It is rarely used in neu-
roradiological departments, but it is suggested as useful additional technique as
morphological measurements can be done more accurately [Stivaros et al., 2009].
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Figure 2.10: Visualization of a PC-MRA volume by employing transparent streamlines and
the overlaid vessel morphology. The data sets are courtesy of Daniel Stucht,
department of biomedical magnetic resonance, University of Magdeburg and
Oliver Beuing, department of neuroradiology, University Hospital Magde-
burg.

Opposed to other MRA techniques PC-MRA is a 3D+t functional imaging tech-
nique, although also 2D+t images are possible [Dumoulin et al., 1989]. This means,
additionally to the morphology, the blood flow direction and velocity is measured.
The dislocation of the blood can be estimated by the phase difference that is caused
by moving through a bipolar gradient magnetic field [Suri et al., 2002a]. PC-MRA

also works without CA. A major disadvantage is the long acquisition time (approx-
imately 10min for a field of view covering the Circle of Willis and a resolution of
0.8mm per pixel) as at least four acquisitions are needed to sample all dimensions
in 3D (three for all dimensions and one reference frame). Also, the spatial resolu-
tion is limited. PC-MRA is a rather exotic technique that has its strength in other
areas than imaging, e. g., quantitative flow measurement [Markl et al., 2003].

Additionally, also T2-weighted MRI and T∗2-weighted MRI exist, e. g., the FLAIR
sequence, but as they are not specialized for the visualization of vessels, the other
MRA modalities are clinically preferred.

Further technical details about the MRA imaging modalities can be found in [Suri
et al., 2002a].

The technical progress of magnet resonance modalities in the past few years
is promising. High field strength in MRI of 3T or even 7T have led to higher
resolution at the same scan time or a shorter scan time at the same resolution.
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Recently, 3T MRI scanners are available more frequently [Kapsalaki et al., 2012].
Also, parallel imaging methods and compressive sampling lead to better image
quality at the same scan time [Trzasko et al., 2011].

The detection rate of MRA is generally lower than the rate of CTA, 79% to 97%
[Wardlaw and White, 2000]. A recent meta-study reported a sensitivity of 85%
[Zhang et al., 2012]. The rate also decreases with size. Only 38% of the aneurysms
with a size 6 3mm were detected [White et al., 2000]. Even in a more recent study
using 3T TOF-MRA images, the sensitivity was only 67% for aneurysms 6 3mm
compared to 89% overall [Hiratsuka et al., 2008]. Another study reports consid- Even if scanners with

high Tesla field strength
are used, the detection
rate in MRA data sets is
lower than in CTA data
sets

erably better detection rates, 99.3% overall and 98.2% for aneurysms < 3mm [Li
et al., 2011] with 3T TOF-MRA images. Initial results of aneurysm detection with
7T scanners are available, but the results are only preliminary and the statements
vague [Mönninghoff et al., 2009]. In conclusion, MRA is only suitable for detection
of aneurysms with a size > 3mm.

It is difficult to compare the different types of MRA with respect to their sensitiv-
ity. The detection rate of TOF-MRA images acquired with field-strength > 3T and
CE-MRA are comparable. However, different studies report contrary statements
whether TOF-MRA or CE-MRA leads to a better detection rate [Gibbs et al., 2005;
Nael and Villablanca, 2006]. CE-MRA is more suitable for follow-up investigation
after endovascular aneurysm repair [Kaufmann et al., 2010]. Black-blood MRA was
assessed comparable to TOF-MRA, however no quantitative study was performed
[Stivaros et al., 2009]. In a small study, the sensitivity of PC-MRA was worse than
the sensitivity of TOF-MRA [Ikawa et al., 1994].

The visualization type influences the detection rate. An accurate visualization
is an axial-based 2D slice view of the images. Also, 3D visualizations are suitable
[Li et al., 2012]. In contrast, MIP as a projection-based technique is not suitable as
important information are lost [Wardlaw and White, 2000].

Most studies conclude that MRA can be used for detection of aneurysms; how-
ever other modalities have to be used to exclude small aneurysms. A more critical
study reports different aneurysm findings in MRA and 2D-DSA in 59% of the cases
[Schwab et al., 2008]. False-positives have been found and the MRA findings dif-
fered substantially from 2D-DSA in terms of location, number and aneurysm type.
The authors criticized that previous studies were done in an academical setting
that does not reflect a clinical environment. It was suggested to use MRA tech-
niques neither as screening modality nor as sole basis for a therapeutic decision
making.

2.2.4 Transcranial Doppler sonography

Transcranial Doppler Sonography (TCD) is also a non-invasive technique to visu-
alize cerebral blood vessels. The method relies on exploiting the Doppler effect
to measure blood flow velocity. Ultrasound is blocked by bony structures like the
skull. Thus, regions with thinner walls have to be found. In 5% to 20% of all
patients no such region can be identified [Wanke and Forsting, 2008]. Additionally, TCD is unsuitable for

aneurysm detectionTCD is very operator-dependent and it was reported that in 18% of the cases the
quality of the ultrasound was unsatisfactory for evaluation of the aneurysmal site
[Cordebar et al., 2004].
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An advancement of TCD, Power TCD, was applied for cerebral aneurysm detec-
tion. Detection rates of 82% have been reported [White et al., 2000]. The sensitivity
dropped to 35% for aneurysms 6 5mm [White et al., 2001]. Although the method
is quick, safe and inexpensive, TCD cannot be recommended for routine use of an-
eurysm detection because of the low sensitivity [Wanke and Forsting, 2008]. Even
for the use of follow-up after endovascular treatment, the technique cannot be rec-
ommended [Cordebar et al., 2004]. From the imaging point of view, TCD has a low
SNR with many artifacts which leads to a challenging reading and analysis of the
images. Also, the modality is only two-dimensional.

2.2.5 Clinical detection of aneurysms

The detection of aneurysms by physicians depends on several factors:

• aneurysm-based

– size of aneurysm

– location of aneurysm (i. e., parent vessel)

• image-based

– contrast vessel-background

– image resolution

– image artifacts

• experience of physician

– with reading angiographic images

– with aneurysms detection

The aneurysm-based factors have been discussed in Section 2.1.2, the image-
based factors have been discussed in Section 2.2 and the last factor is shortly dis-
cussed in this section.

From the imaging modality side, there is a trend in clinical institutions to use CTA

and MRA instead of ANG. Reasons are the more patient-friendly approach in case
of CTA and the non-invasiveness and lack of radiation exposure in case of MRA.
Nevertheless, ANG is still the gold standard with regard to resolution and clini-
cal detection rate of aneurysms. Modern CT scanners have an isotropic sub-mm
resolution, a high SNR and thus a high sensitivity for aneurysms. Dual-energy CT

scanners also circumvent the problem of aneurysm finding close to bones. MRA has
a lower sensitivity compared to ANG and CTA, especially for aneurysms < 3mm.
However, these aneurysms also have a smaller rupture rate than larger aneurysms.
Therefore, MRA is an option for the use in screening and as follow-up of endovas-
cular treated aneurysms.

An overview about all discussed modalities with relevant parameters is given in
Table 2.2.

Most studies about aneurysm detection in angiographies do not consider the
experience and specialization of the physician. The expertise and experience in
reading an angiographic image and searching for aneurysms is relevant. A highly

22



2.3 Aneurysm management at University Hospital Magdeburg 23

Table 2.2: Comparison of different modalities regarding technical specifications. The
data are taken from recent publications [White et al., 2000, 2001; Bridcut et al.,
2007; Furlow, 2010; Menke et al., 2011; Hiratsuka et al., 2008; Ikawa et al., 1994]
and are valid for modern scanners only. Dim.: Dimension, Voxel size: typical
voxel size in plane and out of plane, se: Sensitivity, proj.: projective technique
without voxel size.

Modality Dim. Voxel size se (all/6 3mm) Radiation Duration CA

Unit - mm - mSv min

2D-DSA 2+t proj. 100%/100%a 3.4 < 1 x
3D-RA 3 0.5/0.5 ∼2D-DSA 0.2 < 1 x

CTA 3 0.5/0.5 98%/94% 2.0 < 1 x

TOF-MRA 3 0.4/0.4 89%/67% none ∼ 8

CE-MRA 3 0.5/0.6 ∼TOF-MRA none ∼ 1 x
BB-MRA 3 unknown ∼TOF-MRA none ∼ 4

PC-MRA 3+t 0.8/0.8b 70%/-c none ∼ 10

TCD 2+t proj. 82%/35%d none real time
a per definition.
b PC-MRA has a temporal resolution of 64ms.
c no data was available.
d for aneurysms 6 5mm as no information for aneurysms 6 3mm is available.

specialized neuroradiologist found more aneurysms than a neurosurgeon and a
general radiologist in MRA volumes [Okahara, 2002]. This statement most likely The experience of the

physician plays a major
role in aneurysm
detection

applies also to other modalities than MRA. Furthermore, the detection rates of
aneurysms in clinical studies are dependent on the prevalence of aneurysms in
the data: the higher the prevalence, the higher is the detection rate [Wardlaw
and White, 2000]. As most clinical studies are performed with more than 75%
aneurysm prevalence, the detection rate is overestimated.

The aim of a Computer-aided Diagnosis (CAD) algorithm is to support radiolo-
gists in reading the images by pointing them to possible abnormal structures such
as aneurysms. CAD systems are useful as a second opinion for a radiologist. It
is especially important that such a system detects small aneurysms, aneurysms
at unusual positions and in modalities that have a detection rate < 95%. It has
been shown that CAD is able to significantly improve physician sensitivity [Hirai
et al., 2005] and is also able to reduce the mean reading time [Kakeda et al., 2008].
All angiographic three-dimensional modalities have their relevance in aneurysm
management and, in general, in vascular imaging. They are used according to the
diagnostic question, the availability and preference of the radiologist or the clinical
institution.

2.3 aneurysm management at university hospital magdeburg

This research was done in cooperation with the department of neuroradiology at
the University Hospital of Magdeburg. Therefore, the current practice is intro-
duced in this section.
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A neuroradiological department is relatively rare in Germany and not situated in
every major hospital, not even in every University Hospital. Thus, the department
has a relatively large draw radius of about 100 km. The next neuroradiological
departments are situated in Berlin, Leipzig and Hannover. The department is
headed by Prof. Skalej and consists of ten neuroradiologists.

Multiple angiographic images have to be managed in the daily workflow. In
case of an emergency admission and symptoms like a severe headache or if a
hemorrhage, e. g., a SAH, is suspected, a CTA volume is acquired. The presence
of intracerebral blood is then confirmed or excluded by physicians that read the
image slice by slice. Additionally, as ruptured cerebral aneurysms are a major
causes of SAH, the ruptured aneurysm quickly is found in most cases.

Other suspicions that entail an acquisition of a CTA are stroke and vascular de-
fects. MRA images are acquired if the patient is unable to undergo CTA, e. g., be-
cause of radiation protection or if no explicit aneurysm suspicion is present. Ad-
ditionally, other angiography images from foreign institutions that were referring
the patient to the University Hospital are imported into the database.

If a suspicion of a ruptured aneurysm is present because of SAH or other symp-
toms, the three-dimensional data-sets are carefully evaluated to find the site. If
no aneurysm symptom is present, an explicit search for an unruptured aneurysm
is not done. Rather, the image is scanned quickly slice-by-slice for the clinical re-
port. Thus, it depends on the skill of the radiologist and the time pressure if a
cerebral aneurysm is found. Especially small asymptomatic aneurysms tend to be
overlooked.

If an unruptured aneurysm is found, a CTA is done to confirm the aneurysm if it
has not been acquired before and ANG images are acquired to exclude a false find-
ing. Quantitative measurements of the found aneurysms are done and the feeding
vessel is determined. Additionally, these ANG modalities are used to decide, after
consulting the patient, for a treatment. The decision is done by a council of neu-
roradiologists and neurosurgeons. An endovascular treatment is preferred; how-
ever cases where such a treatment is not possible are referred to the neurosurgery
department at the University Hospital. A conservative treatment is usually not
desired by the patient independent from the recommendation like explained in
Section 2.1.3.2D-DSA, 3D-RA, CTA,

TOF-MRA and
CE-MRA are used for

aneurysm management
at the University

Hospital of Magdeburg

If an endovascular treatment was chosen, this is done at the neuroradiology
department. A coiling procedure is the first choice, a stenting procedure is only
considered if the arterial tree ahead of the aneurysm is complicated, if outflow
arteries originate from the aneurysm or if a coiling would otherwise inhibit the
blood flow. Also, health economic reasons have to be considered as special fine-
mesh stents, so-called flow-diverters are very cost-intensive.

Throughout the procedure, 2D-DSA is done to monitor the process of the catheter
and the occlusion of the aneurysm. Complications like blood wall perforation by
the catheter, coil or aneurysm rupture are immediately detected. The duration
of the procedure depends on the difficulty due to the aneurysm location and the
aneurysm size.

Regular follow-up is done after the procedure with CE-MRA. This modality is
suitable for detection of recurring perfusion of the aneurysm (see Section 2.2.3).
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C O M P U T E R - A I D E D M A N A G E M E N T O F C E R E B R A L
A N E U RY S M S

In today’s clinical practice, computers are regularly used for image analysis, seg-
mentation, quantification, detection and other purposes for CAD (see also Sec-
tion 4.2). In this chapter, the potential of CAD algorithms in aneurysm management
is discussed and existing algorithms are presented.

Different clinical workflows in the area of aneurysm management have been
proposed that incorporate patient-specific data to assist the physician in the analy-
sis and treatment of cerebral aneurysms. A workflow is defined as sequence of
concatenated steps that starts with the acquisition of angiographic data sets and
ends with an appropriate visualization of annotated or information-enriched im-
age data.

The two research projects @neurIST and Mobestan have been working on this
subject. While @aneurIST [Frangi, 2007] is a large intra-European project funded
by the European Union, Mobestan [Thévenin, 2008] is a smaller project within the
University of Magdeburg funded by the state of Sachsen-Anhalt. The proposed
workflow of @aneurIST can be found in [Villa-Uriol et al., 2010, 2011] and an ex-
cerpt of the workflow of Mobestan is published in [Janiga et al., 2011, 2013].

The patient-specific concepts to specifically adapt each relevant part to the pa-
tient have a major relevance. Therefore, the goal of computer-aided management
is to model a workflow to reach the best possible outcome by providing patient-
specific clinical decision support.

The following steps are necessary to build a workflow:

• acquisition of angiographic image data and addition of the data sets and
other relevant information to the patient entry in the clinical database

• extraction of vessels (Section 3.1)

• detection of aneurysm, either by the physician or automatically (Section 3.2)

• extraction of aneurysm Region(s) of Interest (ROI) (Section 3.3)

• aneurysm segmentation and model generation (Section 3.3)

• aneurysm shape analysis and quantification (Section 3.4)

• performing a blood flow simulation (Section 3.5)

• performing a virtual stenting or coiling (Section 3.6)

• rupture prediction based on shape-based or hemodynamic-based features
(Sections 3.4 and 3.7)

• visualization of e. g., the morphology or the blood flow simulation (Sec-
tion 3.8)
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Figure 3.1: Simplified workflow of computer-aided management of cerebral aneurysms.

These steps are interdependent as summarized in Figure 3.1 and will be de-
scribed in detail in the following sections.

3.1 segmentation of blood vessels

Angiographic modalities depict the cerebral vascular system. However, also non-
vascular objects are visible in the image data. As only the vessels are relevant
for analysis, these have to be extracted from the image data by segmentation tech-
niques. The method has to be chosen according to the modality. Trivial methods
reach good results for 3D-RA, but sophisticated methods have to be used for the
extraction of vascular structures in CTA. The goal of the segmentation is to extract
a vessel model of the complete cerebral vessel or arterial system, respectively.

Vessel segmentation is a prerequisite for many of the before mentioned workflow
steps, particularly blood-flow simulations, aneurysm quantification and analysis of
the aneurysm shape. Vessel segmentation only depends on the image data.Vessel segmentation

forms the basis of most
workflow steps

Apart from vessel segmentation, a classification of cerebral arteries has been
presented [Uchiyama et al., 2006]. It is based on a cerebral atlas and includes
point-based registration at bifurcation points.

Several vessel segmentation techniques have been proposed. Detailed reviews
can be found in [Kirbas and Quek, 2004; Suri et al., 2002b; Lesage et al., 2009].
[Lesage et al., 2009] categorize the segmentation methods by three major aspects:
models, features and methodology. Models describe the (simplifying) assumptions
about the vessels, whereas features aim at describing these models in the image.
The methodology then employs a model guided by features to compute the final
vessel segmentation. The disadvantage of most algorithms is their unknown multi-
modality ability as they are only tested on one modality. The modality-dependence
is discussed as last topic of this section.
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3.1.1 Vessel models

Models can be further subdivided into appearance models, geometric models and
hybrid models [Lesage et al., 2009]. Appearance models are based on the expec-
tation of a certain intensity distribution of vessels. In angiographic modalities,
vessels usually have a higher intensity than the background. Therefore, intensity-
based models have been presented [Chung et al., 2002; Manniesing et al., 2006].

In contrast to appearance models, geometric models use the shape of vessels as
driving force. An Active Shape Model (ASM) model was proposed for segmentation
of Abdominal Aortic Aneurysm (AAA) [de Bruijne et al., 2003]. Centerlines can be
seen as geometrical modeling since they represent the skeleton of a generalized
cylinder, e. g., in [Bouix et al., 2005].

By far the most methods employ hybrid information of both models, e. g., by
template-based shape spaces to model vessels as generalized ellipsoids [Frangi
et al., 1998; Sato et al., 1998].

3.1.2 Vessel features

Features can be categorized either as local intensity-based or as local geometry-
based [Lesage et al., 2009]. Intensity features can be e. g., the medialness operator
[Aylward et al., 1996] or the spherical flux [Law and Chung, 2009].

An example for geometric features is the vesselness feature. It employs second-
order intensity derivatives for modeling a feature describing vascular structures.
The local intensity variation is analyzed by an eigenanalysis of the Hessian ma-
trix. The implicit similarity to bright elongated ellipsoids is computed. These have The vesselness feature is

commonly used as
feature to enhance
vessels

the property of two large eigenvalues and one eigenvalue close to 0. The various
variants of the feature enjoy a high popularity in the vessel segmentation commu-
nity [Frangi et al., 1998; Sato et al., 1998; Koller et al., 1995; Li et al., 2003; Forkert
et al., 2011]. The vesselness feature is mostly used as multiscale filter employing
Gaussian scale-space theory.

3.1.3 Extraction methodology

The extraction methodology can be divided into skeleton-based and non-skeleton-
based methods [Suri et al., 2002b]. While skeleton-based approaches derive a seg-
mentation based on the detection of the vessel centerline, non-skeleton-based ap-
proaches directly compute a segmentation on the image data. Non-skeletal ap-
proaches can be categorized in region-growing, threshold-based, active contours
and stochastic approaches [Lesage et al., 2009].

Most algorithms require a pre-processing to initialize the segmentation. The
initialization can be done either automatically or user-given. Automatic initializa-
tion may be based on a priori knowledge, such as a mask of the object of interest
or a probabilistic atlas [Passat et al., 2005]. User-based initialization ranges from
defining a single point up to drawing a ROI.

Abnormalities like vessel stenoses, aneurysms or calcifications usually interfere
with the vessel segmentation algorithms as they change the vessel characteristics.
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28 3 computer-aided management of cerebral aneurysms

Some methods are robust against aneurysms, e. g., a centerline-based segmentation
of the aorta that is able to handle AAA in the image data [Wink et al., 2000].

A major problem of vessel segmentation algorithms is the restricted image res-
olution that causes problems to segment small vessels. Also, the kissing vessel
effect where two nearby vessels seem to touch [Tomandl et al., 1999] and anoma-
lies cause problems. The quality of an algorithm can be assessed by comparing
the results with ground truth data. The crucial question is always what the expert
defines as minimal vessel diameter that has still to be included in the segmentation.
Common choices are a diameter of 1mm to 2mm. In order to find vessels having
a smaller diameter, the parametrization can be adapted. However, it is likely that
a higher noise level severely influences the segmentation quality then.

Most skeleton-based methods are semi-automatic as they need a user-given seed
point at the root of the vascular tree. The local orientation of the vessel can be used
in a tracking-like algorithm by, e. g., employing the Hessian matrix [Aylward and
Bullitt, 2002]. If the start point and the end point of a vessel is given, an energy-
minimizing approach can be used to determine the centerline [Wink et al., 2004;
Udupa and Samarasekera, 1996].

Flux-driven automatic centerline extraction methods have been proposed [Bouix
et al., 2005] that rely on the outward flux of the gradient vector field of a distance
function to the boundary of vessels. Another interactive algorithm is based on a
medialness description of the centerline and findings of bifurcation points [Antiga
et al., 2008].

Non-skeleton-based approaches incrementally segment objects by iterating over
pixels based on a starting pixel. They can be categorized into global and local
threshold-based methods and active contours.

Local thresholding methods like region-growing has been successfully applied to
vessel segmentation [Passat et al., 2005]. Also front propagation techniques are
used commonly for vessel extraction [Quek and Kirbas, 2001; Sethian, 2001].

Threshold-based methods rely on a global homogeneity criterion, Region-growing
approaches rely on a local criterion. However, for most modalities thresholding
methods are not suitable as the intensity distributions of vessels and background
overlap partly.

The classic active contours have also been used for vessel segmentation. Active
contours use internal model-based forces and external image-derived forces to iter-
atively influence an initialized geometrical model. Parametric models as proposed
by [Kass et al., 1988] and extensions like Topology-adaptive snakes [McInerney and
Terzopoulos, 1999] have been tested for vessel segmentation. They rely on a La-
grangian formulation for contour evolution. Their advantage is the computational
efficiency; a disadvantage is the complex parametrization in 3D.

Implicit active contours such as Level-Sets are very popular and have been suc-
cessfully employed for vessel segmentation [Manniesing et al., 2006]. Their compu-Level-Sets are frequently

used for vessel
segmentation

tation relies on an Eulerian formulation of contour evolution as partial differential
equations are solved. Their parametrization is less complex; however, their algo-
rithmic cost is higher than parametric active contours. Efficient solving methods
such as the narrow-band Level-Set method have been proposed [Sethian, 2001; Os-
her, 2001]. The strength of Level-Sets is their ability to handle topological changes
implicitly which is advantageous especially for vessel segmentation. A major dis-
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advantage of Level-Sets is their dependence on the initialization as they find only
local optimal solutions. An example of Level-Sets used for vessel segmentation
can be found e. g., in [Chan and Vese, 2001].

3.1.4 Image modality

The quality of a segmentation algorithm especially depends on the image modality
and the intensity of vessels. For CTA data sets, intensities correspond to the HU

value range of vessels and are known [Wesarg and Firle, 2004]. However, for MRA
data sets, the topic is more complicated as the intensity values depend on the
acquisition device and the sequence.

The intensity distributions for vessel and background are separable in 3D-RA
although in a typical histogram the peak is too small to be seen due to the small
number of vessel pixels (see Figure 3.2a). A simple thresholding technique pro-
duces good results [Lauric et al., 2010]. The threshold can reliably be determined
using threshold estimation techniques such as [Zack et al., 1977; Otsu, 1975].

CE-MRA data sets have a slightly lower image quality than 3D-RA because of
the higher noise levels (see Figure 3.2b for a histogram). Vessel segmentation
algorithms have been presented, e. g., based on fuzzy connectedness [Saha et al.,
2000]. The image quality differs

per modalityThe extraction of vessels in TOF-MRA data sets is more difficult than in CE-MRA
because of the lower contrast between vessels and background (see Figure 3.3a for
a histogram). Furthermore, image artifacts play a role, e. g., magnetic field in-
homogeneities that occur especially at high field strength > 3T. Techniques for
vessel segmentation in TOF-MRA have been presented that rely on vesselness fil-
tering [Forkert et al., 2011] or a combination of thresholding and region-growing
[Uchiyama et al., 2009].

CTA is the most challenging modality for vessel segmentation because of sev-
eral reasons. In a histogram of an example data set, it can be seen that no peak
at vessel positions exists (Figure 3.3b). Data sets can either include or exclude
bones depending on the abilities of the acquisition device. Also software solutions
for bone extraction exist (cf. Section 2.2.2). For data sets where bone is already
excluded, several segmentation methods have been presented [Manniesing et al.,
2006; Kostopoulos et al., 2007].

In [Manniesing et al., 2006], a Level-Set was applied that incorporates user-
supplied information about the vessel intensity distribution and the background
distribution. In [Kostopoulos et al., 2007], the distributions are trained using
a supervised pixel-classification algorithm. Only few algorithms have been pre- Software-based methods

to remove bones from
CTA have limitations

sented to segment the cerebral vasculature in CTA images that still contain bones
[Behrens, 2012; Straka et al., 2003; Militzer and Vega-Higuera, 2009; Scherl et al.,
2007]. The method by [Behrens, 2012] relies on geodetic dilatation preprocessing,
double-thresholding segmentation and subsequent Level-Set segmentation. A dis-
advantage is that not all blood vessels in proximity to bones are segmented. The
other methods rely on a probabilistic aspect [Straka et al., 2003; Militzer and Vega-
Higuera, 2009] or a semi-automatic initialization of a Level-Set [Scherl et al., 2007].

Very few algorithms that are capable to segment vessels in multi-modality data
sets have been presented. This ability is important for the use of a segmentation al-
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Figure 3.2: Histogram of (a) a 3D-RA data set and (b) a CE-MRA data set. In both his-
tograms, only one peak at the background can be seen. No peak can be seen at
values > 1000 (3D-RA) or > 100 (CE-MRA) representing vessels.
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Figure 3.3: Histogram of a (a) a TOF-MRA data set and (b) a CTA data set. In (a), a peak
at the background that is either air or brain matter can be seen. Vessels having
intensities > 50 form no peak. In (b) the first large peak at −1000HU represents
air, the small peak at −900HU represents pillows to fixate the head, the small
peak at −100HU is fat tissue and the second large peak at 0HU represents
water. No peak can be seen at vessel HU values between 150 and 300.
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32 3 computer-aided management of cerebral aneurysms

gorithm in aneurysm management. A technique to segment vessels in 3D-RA and
CTA images was presented by [Hernandez and Frangi, 2007]. A histogram-based
intensity-normalization was done as a preprocessing step [Bogunović et al., 2008].
For segmentation, a Level-Set algorithm was used. The speed function guidingFew segmentation

algorithms exist that are
able to process

multi-modality data sets

the Level-Set expansion depends on intensity gradients and trained intensity dis-
tributions. An improved version of the algorithm was also tested with TOF-MRA
[Bogunović et al., 2011]. Very good results were achieved on ten data sets with the
average surface error being in the pixel-resolution range. Interestingly, the results
of the marching cubes algorithm [Lorensen and Cline, 1987] using a manually-
chosen threshold were only slightly worse with respect to the given ground truth.

3.2 detection of aneurysms

Aneurysm detection is the next step in computer-aided aneurysm management.
The goal is to identify (rectangular) ROI containing aneurysms by determining the
center point (x,y, z)T and the volume s of the region. All further analyses have to
be done on these ROI only. This preprocessing of the data is suitable as an analysis
of the complete cerebral vasculature would be computationally expensive and lead
to more exceptions. Additionally, these pathologic regions are of clinical interest.

Aneurysm detection can be done manually, semi-automatically or automatically.
Manual search involves common slice-based scanning of volumes by a domain ex-
pert, usually a neuroradiologist. The scanning is done in one to three directions of
axial-aligned slices, which usually are orthogonal to each other. Less commonly,
multiplanar reconstruction having a manually defined direction is used. All fourManual aneurysm

detection relies on the
experts experience

major arteries are slice-based scanned craniocaudal until small vessels at the skull
are reached. The vessels that usually form a circular profile are followed slice-
by-slice. Any abnormalities are carefully analyzed employing also other planes.
During this manual process, the physician has to develop a mental representation
of the major cerebral blood vessels in order to identify suspicious areas. As an-
eurysms are expected on certain locations, e. g., specific bifurcation points [Edlow
et al., 2008], at these locations the visual analysis is performed more thoroughly.
3D volume visualization techniques or MIP are only rarely employed for aneurysm
detection, they are rather used for evaluating the aneurysm morphology or for
neurosurgical intervention planning.

If aneurysm-related symptoms exist, the physician examines the data set more
thoroughly than if the data set was acquired for another reason. It is possible
that there are initial assumptions of the aneurysm site, e. g., due to a known SAH.
As most aneurysms are asymptomatic until their rupture, usually no aneurysm is
suspected and only a quick routine scanning of the data set is done which increases
the probability that aneurysms (or other pathologies) are overlooked.

Automatic algorithms for aneurysm detection have been proposed and will be
extensively discussed in Section 4.3. The main advantage is the ability to include
such algorithms in a clinical workflow without altering it. Potential aneurysms
could be found automatically by scanning the data set without the need for user
interaction. Thereby, physicians could evaluate these suspicious regions at a self-
chosen point in time. The probability to overlook aneurysms would be decreased,
especially in data sets without aneurysm symptoms. If the amount of time should
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decrease, the amount of FP must not be too high. If such an algorithm has to be clin-
ically valuable, it should work on multiple angiographic modalities. As pointed
out in Section 4.3, only two algorithms exist that fulfill these requirements. How-
ever, neither algorithm has been tested with all relevant angiographic modalities.
Besides, the evaluation was not sufficient to estimate a reliable quality because of
a too small database or an unclear evaluation. Furthermore, all algorithms require
a good vessel segmentation. This is not desirable. Thus, only a newly developed
algorithm could fulfill all necessary requirements. Automatic detection of

aneurysms is able to
increase the detection
rate of radiologists

The detection of aneurysms is the most important step in the aneurysm man-
agement workflow as it has the potential to change the whole clinical aneurysm
management. Almost all other steps, except the vessel segmentation, depend di-
rectly or indirectly on the knowledge of the positions of aneurysms (see Figure 3.1
and Table 3.2). The manual detection is complex, time-consuming and, even if
done by experienced neuroradiologists, error-prone which would greatly benefit
from an automatic approach. However, it is important to bear in mind that such
an approach is thought as support for physicians in the sense of CAD. Otherwise,
it would be part of an automated computer diagnosis system which has proven in
the past to be too complex and unsuitable (cf. Section 4.2).

In this thesis, the detection of aneurysms is chosen as major topic of all methods
in the domain of computer-aided management of cerebral aneurysms.

3.3 extraction of aneurysm regions

After the ROI containing aneurysms were detected, only the inflowing and outflow-
ing vessels and the aneurysm itself are of further interest and therefore, all other
background voxels can be excluded from further analysis. This step involves de-
termination of the relevant vessels, of the aneurysm sac and of the aneurysm neck
(see Figure 2.1b).

The main problem in algorithms determining the aneurysm neck is that there
are various subjective definitions of the aneurysm neck. It would be desirable if an
objective definition would exist that is accepted in the medical community. Thus,
the used measures lead to a large inter-observer variance.

In [Neugebauer et al., 2012], a discrimination between near-vessel and far-vessel
regions is proposed additionally to the aneurysm sac. The discrimination is based
on a centerline representation. To locate the ostium, an algorithm was used that Commonly, the

aneurysm ROI is
classified into aneurysm
and near/far vessel

computes an ostium plane and thus divides the geometry into aneurysm sac and
adjacent vessels [Neugebauer et al., 2010]. The adjacent vessels are then analyzed
by an approximation of the vessel cross section shape using an ellipse and a sub-
sequent vessel area profile computation along the centerline. The function of the
area of the approximated ellipse is fitted to a Gaussian function and the transition
between far and near vessel is defined by a specific point at the approximation
function. The decomposition was found to be useful by medical experts and it
has been shown to be robust to noise. Disadvantages are that the size of the ROI

has to be determined manually and that the centerline detection algorithm is only
semi-automatic. Similar to the previous approach, [Shojima et al., 2004] defined
near vessel and far vessel domains whereby vessel segments having a distance of
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34 3 computer-aided management of cerebral aneurysms

< 10mm to the ostium surface are defined as near vessel region, the remaining
ones as far vessel region.

A simple definition of the relevant vessels was presented by [Millan et al., 2007].
The parent vessel is included in the ROI from the aneurysm neck until the length
that equals one diameter of the aneurysm.

[Firouzian et al., 2011] presented an algorithm based on a Level-Set formulation
to segment the aneurysm sac in CTA volumes. A user-provided seed point is given.
The speed function to find the aneurysm surface is based on intensity, gradient
magnitude and local intensity variance. The intensity is assumed to be similar to
the neighborhood of the seed point, the gradient magnitude and the local variance
are assumed to have high values. The aneurysm and surrounding vessels could be
segmented successfully with an average surface distance of 0.13mm. In contrast
to the previously mentioned methods, no differentiation between aneurysm and
surrounding vessels is done. However, this information is important e. g., for blood
flow simulation or visualization.

In [Cárdenes et al., 2011], the aneurysm neck is detected semi-automatically. A
ROI is defined manually on the segmented data set and subsequently, a centerline
is computed. The algorithm requires the manual definition of the bifurcation point
that divides the aneurysm from the parent vessel. All centerline pixels of the ROI
are then either classified as vessel cv or aneurysm ca. This assignment is doneThe proposed extraction

algorithms rely on user
input

by computing a surface Voronoi diagram based on a distance transform from the
centerline to the surface. Each surface voxel is assigned to the same class as the
nearest centerline voxel. Finally, the aneurysm neck is found by iterating over all
surface voxels of ca and searching for the shortest geodesic curve on the surface.

Another approach for semi-automatically defining the aneurysm neck was pro-
posed by [Kohout et al., 2013]. The algorithm is similar to [Cárdenes et al., 2011] as
the definition is based on a segmented centerline and a user-given splitting point
on the centerline. In contrast, the neck is found by computing a fuzzy probabilistic
metric taking into account the nearest voxels rather than using a binary metric.
The neck is defined as the isosurface where the probability is 0.5 that the surface
pixel belongs to the aneurysm class.

Some algorithms, especially blood flow simulations, require the definition of a
mesh as input data. The segmented ROI are therefore converted into a geometrical
mesh model if needed. This can be done by employing several algorithms such as
[Lorensen and Cline, 1987; Lederman et al., 2011a].

Post-processing of the mesh may be required to resolve so-called kissing-vessel
artifacts [Tomandl et al., 1999] or to manually include missed vessels. There is cur-
rently no algorithm known that solves the problem automatically. Therefore, the
mesh has to be processed manually by adequate mesh-manipulating software, e. g.,
[Cignoni et al., 2008; Schöberl, 1997] to resolve these artifacts. Further information
about possible solutions and other model optimizations are discussed in [Mönch
et al., 2011].

To summarize, several algorithms have been presented in the area of aneurysm
ROI extraction. They can determine relevant vessels, segment the aneurysm sac or
find the aneurysm neck. A segmentation is always required as input. The division
between aneurysm sac and vessel is commonly used. However, the aneurysm neck
that is used as cutting curve cannot clearly be defined. Usually, rules of thumb

34



3.4 Shape characterization of aneurysms 35

have been used to define the size of the aneurysm ROI, e. g., taking two to three
times the diameter of the aneurysm [Cárdenes et al., 2011].

3.4 shape characterization of aneurysms

The goal of the shape characterization is to compute features on the extracted ROI.
These voxel- or geometric-based features aim at characterizing the aneurysm with
respect to important clinical questions, e. g., the prediction of rupture or the growth
rate. Additionally, hemodynamic features are employed for rupture risk analysis
(see Section 3.7).

Several size-based and shape-based features have been proposed to characterize
aneurysms (see Table 3.1 for a schematic illustration):

• Aspect ratio ra = da
dn

, where da is the aneurysm size and dn is the neck width,

• Volume s,

• Maximal radius rmax,

• the Writhe number Wr (cf. Section 4.3.2),

• Bottleneck factor bn = 2rmax
dn

,

• Moment-based geometric invariants mg,

• Moment-based Zernike invariants mz,

• Undulation index u = 1− s
sCH

. where sCH is the volume of the convex hull,

• Nonsphericity index ns = 1− (18π)
1
3 s

2
3

a , where a is the surface area and

• Ellipticity index e = 1 − (18π)
1
3
s
2
3
CH

aCH
, where aCH is the surface area of the

convex hull.

Moment-based features have been employed to describe and analyze the shape
of aneurysms [Millan et al., 2007] and were linked to the rupture risk.

The shape analysis is done based on a smoothed surface description of the aneu-
rysm ROI. Moment theory has been proposed for characterizing 3D shapes. Differ-
ent orders of moments can be used to describe the shape with arbitrary precision.
Order 3 moments encapsulate a very rough representation of the object giving it
a very smooth appearance, whereas order 30 moments incorporate detailed infor-
mation about the morphology. Two different invariants, geometric and Zernike,
were used as descriptor and both moments are invariant to translation, scaling
and rotation.

The method has been evaluated with segmented ROI stemming from CTA and
3D-RA data sets containing 31 ruptured aneurysms and 24 unruptured aneurysms.
Zernike moment invariants performed better in experiments than geometric mo-
ment invariants with respect to the robustness of different segmentation methods.
Correct rupture prediction of 66% was found if aspect ratio ra was used as dis-
crimination function. With order 10 Zernike moments, the correct classification
rate was 80%.
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Table 3.1: Schematic illustrations of shape index values, adapted
from [Raghavan et al., 2005].

Shape Index Low High

Aspect ratio ra

Bottleneck factor bn

Undulation index u

Nonsphericty index ns

Ellipticity index e

This method is one of the few that employs shape-based features for rupture risk
analysis. The approach is interesting because aneurysms are made comparable by
their shape using moment feature invariants. This shape description approach
could be used as a clustering of aneurysm types.

In [Raghavan et al., 2005], size and shape features were compared on the ba-
sis of their power to discriminate between ruptured and unruptured aneurysms
in a study of 27 aneurysms from segmented CTA data sets. While size features
(volume, maximal diameter and aspect ratio, among others) were not suitable for
discrimination, some shape features had a high discriminatory power. The shape
features leading to the best discrimination were the undulation index u and the
nonsphericity index ns. With ns, it was possible to reach a sensitivity of 87% while
reaching a specificity of 70%. The accuracy was 79%. However, it was not tested
if a (linear) combination of features leads to better results.A maximum accuracy of

80% in rupture
prediction can be reached

with shape-based
analysis

Another study of [Lauric et al., 2011] proposed the Writhe number as discrimi-
nant for an aneurysm rupture. 117 saccular aneurysms in segmented 3D-RA data
sets were analyzed. In contrast to [Raghavan et al., 2005], the good discrimination
power of ns could not be confirmed. The accuracy was only 67%. The Writhe
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number was computed for each point on the aneurysm surface. Its distribution
is approximated by histogram smoothing. Then, several statistical measures are
computed on the histogram. The histogram of the Writhe number is assumed to
have different characteristics for ruptured and non-ruptured aneurysms. The final
classification is done by logistic regression with cross validation. By using five
features, an accuracy of only 68% could be reached. It was found that aneurysms
having different type (sidewall or bifurcation) distort the measure as they had a
high variability between these classes. The accuracy was 87% for sidewall aneu-
rysms and 71% for bifurcation aneurysms, respective. While this method reports
encouraging results, the reasons for the good performance of the Writhe number
in rupture analysis remains an open question.

Further, mostly geometric features such as the aneurysm inclination angle or a
Fourier-derived feature have been used for rupture status classification [Dhar et al.,
2008; Rohde et al., 2005]. They are not discussed here as they do not reach as good
accuracy as the previously discussed methods.

All shape analysis algorithms that aim at discriminating between ruptured and
unruptured aneurysms rely on the assumption that aneurysm shape and size do
not change upon rupture. This topic is still controversially discussed as some
publications support this assumption [Ujiie et al., 1999] while others disapprove
[Wiebers et al., 2003]. Thus, the research about this topic has to be reconsidered
if this assumption turns out to be incorrect. Only very seldom unruptured aneu-
rysms are included that ruptured shortly after image acquisition.

Despite their use in clinical workflow and clinical studies [Wiebers et al., 2003],
size-related features are not suitable for discrimination between ruptured and un-
ruptured aneurysms [Dhar et al., 2008; Raghavan et al., 2005]. Several shape-based
features have been proposed that reach at most a an accuracy of about 80%.

Furthermore, shape characterization can be important in terms of shape com-
parison between two data sets acquired at different time points. This is the case if
unruptured aneurysms are followed-up regularly. Such a shape comparison com-
prising of an elastic model-based registration of aneurysms was presented [Leder-
man et al., 2011b]. The model consists of a tetrahedral mesh that was previously Aneurysm growth can be

measured by registrationcreated from segmented 3D-RA and CTA volumes. The mesh is then deformed
to match the newly acquired data set. As similarity function, a data fidelity term
using Level-Sets and a volumetric elastic energy preventing large deformations
are combined. The aneurysm growth can then be directly computed based on the
mesh deformation.

3.5 blood flow simulation

Blood flow simulations are computed to estimate hemodynamics. These simula-
tions are done using CFD [Chung, 2010]. Hemodynamic features such as blood
flow velocity or direction are connected to rupture prediction [Cebral et al., 2005].
A review about hemodynamic analysis of aneurysms can be found in [Jeong and
Rhee, 2012; Sforza et al., 2009].

Alternatives to blood flow simulations are direct measurements. PC-MRA data
sets have been used also to directly measure the blood flow [Yamashita et al., 2007].
For relatively large aneurysms or large vessels, this works well. However, for small
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aneurysms or vessels, the resolution limit (at best 1mm isotropic voxel size at 7T)
is reached and the flow cannot be represented with high quality [Boussel et al.,
2009]. Furthermore, post-processing of the data is required e. g., by registration
with a TOF-MRA data set providing high geometric resolution. TCD also can be
used to measure parts of the blood flow. However, this technique has major disad-
vantages as pointed out in Section 2.2.4.

CFD techniques are a subpart of fluid mechanics that use numerical methods and
algorithms to analyze fluid flow problems. The Navier-Stokes equations [Batch-
elor, 2000] have to be solved, this is usually done using either commercial or
open-source software. The experiments are done with simplifying assumptionsCFD is used to analyze

the blood flow like modeling static geometries, omitting chemical processes and without physical
particle interaction. Blood is often modeled as a Newtonian fluid with constant
density and viscosity [Radaelli et al., 2008].

An automatic image-based modeling framework for patient specific computat-
ional hemodynamics has been presented by [Antiga et al., 2008]. The framework
supports all relevant steps for blood flow simulation, i. e., image processing, geo-
metric analysis and mesh generation. Parts of the approach have been implemen-
ted in the open source Vascular Modeling Toolkit software [Antiga, 2007].

It is a controversial topic in the biomedical community if CFD, which leaves the
geometry static, is sufficient to simulate the patient-specific blood flow. In contrast,
Fluid-structure Interaction (FSI) takes the influence of pulsatile blood flow on (flexi-
ble) vessels into account as the pulsatile flow behavior could be linked to aneurysm
rupture [Costalat et al., 2011]. It was shown that the use of FSI alters hemodynamic
features such as Wall Shear Stress (WSS) [Torii et al., 2009]. A major disadvantage
of FSI is the large computation time that is at least one order higher compared to
CFD computations. Also, higher computational resources are required.

For patient-specific flow simulations, the morphology of the vessel system in the
vicinity of the aneurysm has to be determined. Furthermore, inflow and outflow
information are required as boundary conditions for an accurate CFD simulation.Requirements for

simulation are the
morphology and

boundary conditions

The geometry has more influence on the CFD result than the boundary conditions
[Marzo et al., 2011]. The computation time depends on the number of elements
and the available computing power. 20h were reported for a 13 500 000 element
mesh on a standard PC with eight cores [Janiga et al., 2013]. Validation of CFD can
be done in vivo by TCD or PC-MRA [Boussel et al., 2009] or in vitro by phantom
experiments [Bölke et al., 2007].

3.5.1 Morphology

The morphology of the vessels is extracted from angiographic data sets as dis-
cussed in the previous Sections 3.1 and 3.3. In [Geers et al., 2011], geometric and
hemodynamic variables for the same aneurysms in 3D-RA and CTA were com-
puted. It was found that models built from CTA often had larger aneurysm necks
and most of the vessels having diameter < 1mm could not be successfully recon-
structed. The measured features differed 14% to 44% by their mean value. De-
spite these large differences, good agreement was found for qualitative variables
that describe the flow field such as the structure of the flow pattern having an
agreement κ > 0.9.
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3.5.2 Boundary conditions

Boundary conditions are the second influence factor of blood flow simulations.
Blood flow velocity is highly patient-specific as it depends on various parameters
such as age, sex, vessel location and vessel characteristics. In a study large vari-
ations were shown between arteries: while the left ACI had a mean flow rate ±
standard deviation of (264± 52) ml

min , the left Arteria vertebralis had a mean flow
rate of (96± 38) ml

min [Zhao et al., 2007]. Thus, patient specific boundary conditions
have to be modeled for accurate blood flow simulations. Currently, in many al-
gorithms, boundary conditions are applied with uniform or parabolic profile and
velocity given by literature such as [Marzo et al., 2011]. Patient-specific

boundary conditions
ensure realistic
simulations

While the outflow boundary condition is commonly assumed with uniform rel-
ative pressure 0, the patient-specific input boundary condition is desirable. Thus,
only the input boundary condition is regarded in the following.

Patient-specific blood flow can be measured directly by PC-MRA or TCD data sets
and indirectly by using 2D-DSA or 3D-RA data sets [Shpilfoygel et al., 2000; Waechter
et al., 2008; Hentschke et al., 2011b]. The first modalities are not regarded due to
the discussed limitations (cf. Sections 2.2.4 and Section 2.2.3).

In [Waechter et al., 2008], the blood flow waveform and the flow wave are de-
termined from a 3D-RA volume including projections. A model of CA dispersion
is estimated from the spatial and temporal CA progression using a pulsatile wave-
form. Acquisition-related rotation artifacts are reduced using a reliability map. In
phantom experiments, relative errors of 5% to 10% were determined. The method
was validated with two clinical data sets using TCD leading to a relative quantifica-
tion error of < 15% [Sun et al., 2011]. No standard 3D-RA protocol could be used
as the injection flow rate had to be reduced. Furthermore, the method requires a
mask scan for background subtraction and requires the catheter to be in the field
of view.

In the work of [Hentschke et al., 2011b], flow information from 2D-DSA data sets
and morphologic information from 3D-RA data sets are fused to estimate the blood
flow velocity. The flow is measured as an integral value at 2D vessel centerline
positions. The projective velocity is measured by comparing time-intensity curves
on the centerline in 2D-DSA. The vessel centerline is then re-projected to the seg-
mented 3D-RA volume of the same subject using a 2D-3D registration algorithm
[Hentschke and Tönnies, 2010] and a ray tracing approach. Thus, true distance in-
formation can be recovered. Ambiguities caused by occluding vessels were solved
using a graph-based approach. The method was tested with phantom and patient
data leading to a small relative quantification error of 11% to 16%. In contrast to
[Waechter et al., 2008], no changes to clinical angiographic protocols were neces-
sary. Thus, the method is a suitable tool for estimating the patient-specific blood
flow by analyzing angiographic images that are routinely acquired clinically.

3.5.3 Flow-derived features

Several quantitative and qualitative hemodynamic features have been proposed.
The most important ones are:
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• Quantitative features

– The Wall Shear Stress (WSS) describes the stress that a fluid causes mov-
ing across a solid boundary causes.

– The Oscillatory Shear Index (OSI) measures the change of WSS over time.

– The flow velocity describes the rate and direction of the blood flow.

– The inflow concentration measures the degree of concentration of the flow
stream entering the aneurysm.

– The turnover time is the time the blood resides inside the aneurysm
(based on the aneurysm neck as border).

• Qualitative features

– Flow pattern is a qualitative feature that describes the flow characteristic,
e. g., if the flow is turbulent or straight.

– The inflow jet describes an area with parallel inflow and high speed
compared to other parts in the aneurysm.

– The impingement zone is the region on the aneurysm wall where the
inflow jet is seen to impact the wall and the jet changes direction. The
size of the impingement zone can be derived.

These features are further analyzed with respect to the rupture prediction (cf
Section 3.7), to assist the physician in evaluating different treatment options (cf.
Section 3.6) or to analyze the vector field as discussed in the following section.

3.5.4 Analysis of CFD vector fields

Explorative analysis of CFD may lead to new insights in the hemodynamic analysis
for radiologists and biomedical researchers. In [Gasteiger et al., 2012], a compu-
tation approach to reliably compute the inflow jet and the impingement zone is
presented. The velocity vector field of the CFD is used as input for this method.
The inflow jet is defined by three constraints: minimal distance to the aneurysm
surface, rapid change in flow direction and strong change of flow speed. These
constraints are formalized by a quality function. The upper 5% quantile of this
function is taken as a reasonable isosurface for the inflow jet. The impingement
zone is defined subsequently by employing the rapid change of the flow direction
criterion. Both features are visualized for explorative analysis (see Section 3.8).

[Kuhn et al., 2011] presented a clustering-based visualization technique to an-
alyze vector fields stemming from flow simulation-derived features. Meaningful
regions are emphasized by finding clusters having similar geometric stream prop-
erties, e. g., integral curvature.

3.6 virtual treatment

With respect to the clinical aneurysm management, blood flow simulations are
relevant if a change of the geometry occurs either intentionally, e. g., if a stent is
inserted.
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The goal in virtual treatment is similar to the clinical goal in endovascular treat-
ment: a reduction of blood inflow into the aneurysm to enforce a thrombosis for-
mation. To measure this goal the two hemodynamic features turnover time and the
flow velocity are suitable. Different parametrizations can be compared and these
leading to the optimal measures should be preferred. However, this approach is
chosen in literature rarely as WSS is the most used measure despite the unclear
relation to aneurysm rupture. Virtual treatment has the feasibility to support the
physician by evaluating quantitatively different possible treatment options.

Virtual treatment can be categorized in three methods:

• virtual stenting,

• virtual coiling and

• thrombosis modeling.

In [Ventikos et al., 2009], a method for each category is presented. The flow
properties change after the virtual insertion of a stent, which leads to reduced WSS

and also reduced size of the inflow jet. The flow patterns especially depend on
the mesh density of the stent. For virtual coiling, it was reported that the velocity
profile is changed from the first inserted coil on resulting in a fast decrease of
inflow velocity. The packing density measures the volume of the coil with respect
to the volume of the whole aneurysm. The desired stagnation of blood flow could
be reached in simulation even at small packing densities of 10%. This is consistent
to the clinical experience. Furthermore, the first steps to compute a thrombosis
simulation were presented. However, only mechanical properties can be simulated
by CFD and biological processes are neglected. To simulate a realistic thrombosis
formation, this factor has to be regarded as well.

In [Appanaboyina et al., 2009], it was shown that the stent design, stent position-
ing and a combination of different stents have a large influence on the hemodynam-
ics in aneurysms. Especially if more than one stent configuration is considered at
bifurcations, a virtual stenting is clinically valuable (see Figure 3.4). As quantita-
tive features, the ratio of the aneurysm inflow to the parent flow rate, the velocity
in the aneurysm and the WSS were employed. Compared to the pre-treatment val- Virtual stenting has a

large potential to assist
physicians

ues, these feature values mostly improve with the use of a stent. However, the
magnitude of improvement depends on the used stent and the geometry. Helical
or SILK-stents that are fine-meshed lead to a greater decrease of flow velocity in
the aneurysm than Neuroform stents that are wide-meshed.

The accurate placement of stents in the vessel geometry is challenging. A virtual
stenting methodology with the focus of a realistic stent placement was presented
in [Janiga et al., 2013]. Stents were positioned for a wall-tight employment using a
non-rigid registration based on a free-form deformation. This new approach is con-
ceptually easier than prior approaches, e. g., [Appanaboyina et al., 2009; Larrabide
et al., 2012], which rely on a deformable shape model.

Several virtual intracranial stenting challenges have been performed during the
past years [Radaelli et al., 2008; Cito, 2011]. Similar to the lung nodule detection
challenges [van Ginneken et al., 2010], their aim is to compare different methods
using the same evaluation data (morphologic model of aneurysm and vasculature,
stent model and boundary condition). As quantitative features, WSS, velocity and Objective comparison

between different blood
flow simulations is
important
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(a) (b) (c)

Figure 3.4: Three different configurations for stenting treatment of an aneurysm at the tip
of the Arteria basilaris (in red) based on [Janiga et al., 2013]. (a) The stent is
placed from the Arteria basilaris to the left ACP, (b) the stent is placed from the
Arteria basilaris to the right ACP and (c) treatment with a combined solution.

pressure had to be computed. However, no quantitative comparison could be
done as no ground truth was provided. A quantitative comparison, e. g., between
CFD and PC-MRA data would be the next step. Evaluation studies using one CFD

parametrization have been already done [Gasteiger et al., 2011; Papathanasopoulou
et al., 2003].

The effects of packing density to aneurysmal hemodynamics was investigated
in [Morales et al., 2011] by virtual coiling. Five different packing densities were
tested and each was generated by using three coil configurations, i. e., different ar-
rangements of coils in the aneurysm. CFD was carried out on each variant. Similar
to [Ventikos et al., 2009], it was found that the aneurysmal flow velocity decreased
with higher packing densities. Even for small packing densities of 12%, the aver-
age flow velocity could be reduced by > 50%.

Virtual stenting has the largest potential of all virtual treatment methods al-
though stents are employed rather seldom as endovascular aneurysm treatment.
However, they are usually employed in complicated cases with relatively high com-
plication rates (cf. Section 2.1.3). The thrombosis model is too simplified to account
for suitable results and the virtual coiling cannot model all necessary parameters
of the treatment leading to imprecise results. All methods use one quantitative fea-
ture to evaluate the treatment effects. However, the treatment decision should be
made based on a multi-goal optimization incorporating multiple quantitative fea-
tures. The configurations leading to the best results may then be further evaluated
by medical experts.

3.7 rupture risk evaluation with hemodynamic features

Some of the previously described features derived from CFD have also been linked
with aneurysm rupture.

In [Cebral et al., 2005], CFD of 62 patient-specific aneurysm models has been
computed. The relationship between features and rupture status was analyzed.
The only significant discriminatory feature that could be found was the impinge-
ment jet size. Aneurysms with small jet sizes were more likely to rupture than
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aneurysms with a large jet size. Although the database was relatively large, the
relatively large amount of some feature classes led to a small sample size per class.
Thus, no statistical significance could be found with respect to the rupture sta-
tus. Similar to [Marzo et al., 2011], it was also reported that small changes of the
geometry may lead to large changes of the flow characteristics.

In a subsequent publication by the same authors [Cebral et al., 2011], 210 aneu-
rysm models were used in a CFD simulation. It was observed that ruptured an-
eurysms were more likely to have complex flow patterns, unstable flow patterns,
concentrated inflow and a small impingement zone. All values were significant Hemodynamic features

alone are not enough to
predict aneurysm
rupture. The
combination with
shape-based features
leads to promising
results

with p < 0.018. Contrary to the prior publication [Cebral et al., 2005], the im-
pingement jet size is classified as either concentrated or diffuse. It is unclear, if
the same standards were imposed in both publications. Thus, qualitative features
were computed rather than quantitative features.

In a similar publication investigating AComm aneurysms, it was found that the
maximum WSS differed significantly1 as ruptured aneurysms had a higher maxi-
mum WSS than unruptured aneurysms [Castro et al., 2009]. In contrast, in another
study, no correlation was found [Shojima et al., 2004].

In [Xiang et al., 2011], hemodynamic features in 119 aneurysms have been found
as significant discriminant for a rupture. These features were average WSS, maxi-
mum WSS, average OSI, number of vortices and relative turnover time. Multivari-
ate logistic regression has been performed and revealed average WSS and average
OSI as the only independent significant variables. Together with a morphologic
variable, a combined model could be established that predicts the rupture status
precisely (Area under Curve (AUC) of 0.89). That means, morphological analysis is
as important as hemodynamic analysis to predict the aneurysm rupture.

In conclusion, tendencies were found by analyzing CFD related features with
aneurysm rupture, but no statement about rupture prediction can be done with
high certainty.

3.8 visualization of aneurysms

The final step of the pipeline and the endpoint for most algorithms is the visual-
ization. The goal is to provide morphological and hemodynamic information to a
physician or the biomedical researcher in a comprehensible way. Physicians usu-
ally rely on the unaltered two-dimensional visualization of slices of the respective
data sets using a center-window approach. As soon as the underlying data are
three-dimensional, sophisticated visualization methods can be applied [Preim and
Bartz, 2007].

Simple methods such as the Maximum Intensity Projection (MIP) method can
be used to visualize a 3D data set (see Figure 3.5a). This technique is popular
in the medical community as first overview visualization. More suitable methods
that facilitate a three-dimensional impression use opacity and color to display the
important parts (see Figures 3.5b and 3.5c). Therefore, a four-dimensional color
map (three dimensions for color, one for opacity) has to be created either manually
or automatically, e. g., by employing knowledge about the modality. Additional Volume visualization is

adequate to represent the
morphology, but rarely
used in clinical practice

shading can lead to a better perception of depth and vessel topology. A review

1 However, p=0.1 is relatively large.
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(a) (b) (c)

Figure 3.5: Example visualizations of a TOF-MRA data set. (a) Maximum Intensity Pro-
jection (MIP), (b) volume visualization with appropriate color transfer function
and (c) illuminated volume visualization. Data set courtesy of Oliver Beuing,
department of neuroradiology, University Hospital of Magdeburg.

about 3D visualizations of vessels can be found in [Preim and Oeltze, 2008]. The
visualization of morphology, i. e., the segmented vasculature, is less challenging
if the threshold value is known. The morphology can be directly visualized by
employing e. g., Marching Cubes [Lorensen and Cline, 1987].

An overview about flow visualization can be found in [Laramee et al., 2004]. A
comprehensive review about visualization of hemodynamics is given in [van Pelt,
2012]. The author proposes a visualization of the blood flow by particle tracing
in contrast to the commonly used streamline approach. A special focus is the
interactive explorative approach of visualization.

[Gasteiger et al., 2012] propose a volume visualization incorporating anatomical
context to analyze the blood flow in the cerebral vasculature (see Figure 3.6). The
anatomy is visualized by a smoothed ROI model having a semi-opaque surface
and an emphasized aneurysm neck. To visualize the jet stream surface, a color-
coding is used with optional surface strips. Also, a fade-out effect of the surface is
employed to convey the uncertainty of the jet after touching the impingement zone.
A glyph can also be employed to summarize the jet stream. For the depiction of the
impingement zone, the quality function is directly used by choosing an adequate
isosurface value and a color-coding. Alternatively, impingement zone and the
inflow jet can be visualized together. According to the authors, a combination of
morphological analysis and hemodynamic analysis is important for evaluating the
aneurysmal region.

In [Neugebauer et al., 2009], a map display is proposed to visualize scalar data
on aneurysm surfaces. The aneurysm surface is projected onto a cube that is
positioned around the aneurysm ROI. Four cube sides are then projected onto a
spherical map around the surface visualization of the aneurysm; the background
side is projected onto an extruded curve next to the spherical map. In this way,
it is possible to display all available scalar data at a time without occluding parts
because of the viewpoint. Moreover, the anatomy is visualized which enables the
user to establish a connection between the 3D surface visualization and the 2D
map projection by choosing a point on either visualization.

[Neugebauer et al., 2011] propose different visualization techniques that aim
at displaying the blood flow with anatomy guidance. Slow flow and fast flow
visualization enhancement techniques have been integrated by using an adequate
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Figure 3.6: Visualization of a blood flow simulation with morphological information using
streamlines. The seeds are placed in the aneurysm. Slow flow velocities are
encoded red and high flow velocities are encoded purple. Image data cour-
tesy of Oliver Beuing, department of neuroradiology, University Hospital of
Magdeburg. The flow simulation was performed by Philipp Berg, institute of
Fluid Dynamics and Thermodynamics, University of Magdeburg and the visu-
alization was done by Mathias Neugebauer and Rocco Gasteiger, department
of Simulation and Graphics, University of Magdeburg.

color transfer function and streamlines that have been seeded at the aneurysm
neck. In contrast to these 3D techniques, 2D isocontour techniques are employed
to visualize the velocity in a 2D slice together with the semi-opaque anatomy.

Thus, visualization techniques have been presented that aim at providing mor-
phological and hemodynamic information. Furthermore, these visualizations are
enriched by representing suitable features.

3.9 summary

In this chapter, a potential workflow for a patient-specific computer-aided man-
agement of aneurysms has been presented. It includes all important steps for
the clinical management whose key points are the detection of aneurysms and the
blood-flow simulation (see Table 3.2). An automatic algorithm that indicates poten-
tial aneurysms to the physician would have a large impact on the whole aneurysm
management. However, such an algorithm has high requirements that are not yet
fulfilled by existing methods.

Rupture prediction can be made based on morphological and hemodynamic fea-
tures of an aneurysm. It was discussed that only both types of features together
have the potential to lead to high correct prediction rates. Additionally, also mea-
sure of the aneurysm growth should be considered for the rupture prediction.

Virtual stenting of aneurysms can provide additional information for the physi-
cian especially in aneurysms containing multiple inflowing or outflowing vessels.
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3.9 Summary 47

To close the gap between medicine and biomedical research, it is important to
convey (possibly research-related) information to the physician by visualization of
the aneurysm morphology and features.

Despite the research effort and progress that have been made in the past ten
years, only very few methods are regularly used in the clinical workflow. This may
be caused by the reservations of physicians against innovative methods, but can
be also explained by the lack of feasible solutions that model the whole workflow
rather than include only parts of it. Moreover, most tools in this area are expert
tools that can only be controlled by biomedical experts. Furthermore, such medical
software systems are very complex and a certification requires time, experience
and is expensive. In this context, also large-scale validations are required that
have only seldom been performed, but are necessary to ensure the quality and
generality of an algorithm.

For the future, the potential workflow has to be incorporated into the clinical
workflow rather than to only solve academical problems.
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4
S TAT E O F T H E A RT

Aneurysm detection can be generalized as a part of a Computer-aided Diagno-
sis (CAD) algorithm. CAD algorithms are a subset of object detection. Therefore,
the following coarse-to-fine structuring approach is chosen for this chapter: first, a
short overview about the general topic object detection is given. Different methods
to solve the detection problem are discussed. Then, CAD is introduced and appli-
cations of object detection algorithms in medical images are presented. Finally,
existing approaches to aneurysm detection are thoroughly discussed. Through-
out the whole chapter, the focus is placed on the actual topic, object detection in
medical images and the methods that are applied for object detection.

It is the goal of this chapter to discuss the relationship between aneurysm detec-
tion and related methods. The following questions arise:

• Which methods exist to detect objects in (medical) data sets?

• Which pathologies are similar to cerebral aneurysms in shape, intensity and
texture?

• How suitable are existing detection methods to solve the aneurysm detection
problem?

4.1 object detection

Object detection is a part of computer vision and aggregates all methods to find
specific objects in images or videos. Despite its complexity, objects are recognized
by humans within few milliseconds and even for unknown object instances. How-
ever, for computer systems this still poses a large challenge. Although it is an
active research topic for 30 years now, it hardly is solved satisfactorily. The more
specific the object detection problem is, e. g., the amount of objects is known, the
shape of objects is known and the image characteristics are known, the more likely
computer vision is able to solve the problem satisfying.

Object detection is relevant in many areas like surveillance, e. g., to detect bags
that are set aside, automotive vision, e. g., to detect passengers in front of a car,
microscopy, e. g., counting organisms in a microscopic image, scene categorization,
e. g., classification of satellite image regions, and in CAD, e. g., to detect organs in
medical images [Treiber, 2010].

For decades, psychologists and neuroscientists investigated human vision to un-
derstand the visual and cognitive system of humans. Marr proposed a computat-
ional approach on multiple processing levels [Marr, 1982]. Another computational
approach is proposed by [Poggio et al., 1985]. Several ill-posed problems known
as early or low-level vision, such as optical flow and shape from shading, are
solved with regularization theory. Theories about human vision point out that
edges are salient features of an image. Thus, edge detection algorithms like pro-
posed by Canny or Marr [Canny, 1986; Marr and Hildreth, 1980] can be seen as
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low-level vision systems. Biederman postulated a specific theory about human im-
age understanding also known as recognition-by-components [Biederman, 1987].
The basic assumption is that every object is composed of elementary parts calledA theory of human

vision geons. Geons are three-dimensional general shapes, e. g., cylinders or cones. An
object is recognized by mentally disassembling it into these viewpoint invariant
geons. Further information about the theory of human vision can be found in
[Wild, 2005; Bruce et al., 2003].

These theories have their strengths and weaknesses. However, neurological ex-
periments have shown that the human vision is more complex than these theories
imply [Dayan and Abbott, 2001]. It is even questionable whether a computer vision
system that adapts the human vision may be suitable for object detection.

4.1.1 Principles

Object detection is too complex to rely on low-level features only, thus it is clas-
sified as high-level computer vision. The goal is to find n objects in m images,
where n,m ∈N. If a time-dependent image sequence is used (m� 1), the task is
commonly called object tracking. Depending on the specific task, n may be known
or unknown and it is even possible that no object is present in the data at all.

There are two general strategies to solve the detection problem: the bottom-up
approach and the top-down approach. Bottom-up is data-based and solves the prob-Basic strategy:

bottom-up vs. top-down lem by combining image-derived features. A top-down approach generalizes the
object by defining a model and fitting the model to the data. These two strategies
are contrary.

Bottom-up approaches rely on features computed on the image data. The sim-
plest features are the intensities or its derivatives. Scale-invariant features that cap-
ture important image information by an abstraction of edges have been proposed
and used successfully [Lowe, 2004; Bay et al., 2006]. In contrast, texture features
condense texture information in a scalar value [Haralick et al., 1973]. Another im-
portant feature is shape, i. e., the object boundaries. If the shape information is
coupled with intensity information, it is referred to as appearance. Other features
are discussed in [Theodoridis and Koutroumbas, 1999].

A top-down strategy employs a model to generalize the information about the
object to be found. This could be, e. g., a geometric polygon-model describing the
shape. The challenge is to find a formalization of natural descriptions such as “the
object is round in shape, not larger than 5 cm in diameter and usually occurs in
the upper right corner of the image”. Features such as intensity and texture are
used to guide the model during the image data fit. Hence, these features play an
important role here as well. Additionally, in a model intrinsic constraints may be
employed such as a smooth motion in an image sequence or known acquisition
parameters.

The difficulty and complexity of the object search is influenced by the underlying
image data and especially its dimensionality. Medical images are two, three or four-
dimensional. Two-dimensional images are e. g., X-ray images, three-dimensional
images are e. g., CT data sets. If the third dimension is time, it is spoken of a
2D+t dimensionality. This is the case e. g., for 2D-DSA images. It is also possible
that images have three dimensions and a time component (3D+t) such as PC-MRA
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images. The higher the dimensionality, the more challenging the object detection
task is.

4.1.2 Model-based approaches

In the remainder of this chapter, only model-based approaches are further dis-
cussed as they are the most suitable group for object detection algorithms in pres-
ence of additional information.

Top-down techniques for object detection rely on some sort of model that incor-
porates knowledge of the object properties into the algorithm. Such knowledge
can be diverse, such as shape, intensity, location or any other feature describing
the object in a general, unique way. These information may also be defined infor-
mally (“objects never occur at the border” or “objects are moving in some defined
way in an image sequence”), which implies a formalization of object detection for
model matching. In the further process, mostly shape is used as a feature and a
model represents a shape if not stated otherwise.

The information can be formalized by an energy-minimization scheme:

E = χ(mϕ,D)→ min (4.1)

where E is the energy and χ is a similarity function. χ measures the distance of
the model m parametrized with parameters ϕ ∈ Φ in a parameter space Φ on the
underlying data D, usually being an image function or an image-derived feature
function. ϕ can be described using a transformation θ on m. θ may be rigid
or elastic (non-rigid). Equation . 4.1 can be solved using various schemes such Object detection can be

interpreted as an
energy-minimizing
approach

as gradient-descent, genetic algorithms or simulated annealing. Implicit energy
functions produced by e. g., template matching have been used too. The minima
can be determined e. g., by clustering methods like Mean shift.

In case of statistical models, the energy optimization is often interpreted as a
Maximum a Posteriori (MAP) estimation.

Instead of choosing a linear categorization, model-based approaches are differ-
entiated with respect to three high level dimensions:

• Elasticity

– Deformable models adapt to the data while

– rigid templates keep their shape throughout the fitting process.

• Division

– The model may consist of either one part or

– multiple parts.

• Representation

– The model can be statistical, trained on a database or

– created by a domain expert resulting in a generalized model.

All detection methods are combinations of representations with respect to differ-
ent property dimensions. In the following, each dimension is described in detail
and methods are presented exemplarily.
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4.1.2.1 Deformable vs. rigid models

Models can be rigid or deformable. A deformable model adapts to the data while
a rigid model, or template, remains unchanged throughout the detection process.
Rigid models are computationally less complex, but can represent only small varia-
tion with respect to the features. In contrast, deformable models are more suitable
for large feature variation; they have higher computational costs, though.

Template Matching (TM) approaches rely on rigid shape and intensity as generic
information. These approaches are used to solve problems like traffic sign detec-
tion with predefined feature templates [Gavrila, 1999]. They are also used to detectTemplate matching is

one of the most basic
techniques that employ

rigid models

objects in three-dimensional images like pulmonary nodules in CT images [Lee
et al., 2001]. This method is an application of a rather simple template-matching
approach using Gaussian distribution information. This has the advantage of
rotation-invariance and therefore is computationally suitable. However, objects
that largely deviate from the model shape cannot be found.

A similar approach was presented by [Feuerstein et al., 2009] to detect lymph
nodes in CT data. The method relies on a Hessian Eigenvalue Analysis (HEA) to
recognize round shapes. The Hessian matrix is a square matrix of second-order
partial derivatives of a function. Details about HEA can be found in Section 4.3.1.
Instead of directly searching for profiles having a Gaussian shape by using TM, this
is done indirectly by the HEA.

A method to detect objects based on the Generalized Hough Transform (GHT) in
X-ray images was proposed by [Ruppertshofen et al., 2010]. The GHT extends the
Hough transform to allow for detection of arbitrary object shapes by using a rigid
template [Ballard, 1981]. A shape model that represents the location of edges is
computed by training. The method has problems to find abnormal objects and is
not suitable for objects having large shape variance.

An evolutionary algorithm employing a deformable model for detection of objects
in 3D medical data was proposed by [Heimann et al., 2007]. Initial candidates are
found by randomizing pose (translation, rotation, scale) and shape parameters in
image space. Shape is represented by a point distribution model that incorporates
trained landmark coordinates evaluated by a Principal Component Analysis (PCA)
to find the modes of variation. The energy or fitness for each individual candidate
is estimated by summing the probabilities of all landmarks. Each candidate is
mutated in an iterative manner with a probability proportional to its fitness. After
a fixed number of iterations, the candidate having the maximum energy is taken
as final solution. The method has limited ability to recognize objects that differ
from objects in the training database.

A similar approach using Mass-spring Model (MSM) was proposed to localize
lymph nodes in CT data sets [Dornheim and Dornheim, 2008]. This approach is
computationally expensive showing processing times up to 17min per data set and
thus is unsuitable for object detection. [Engel et al., 2011] propose a hierarchicalDeformable models adapt

to the data and are able
to detect objects having

flexible shape

Finite Element Method (FEM)-based approach that is discussed in the next section.
Other possibilities for the implementation of a deformable model include polygo-
nal meshes [Kobbelt et al., 1998] as well as implicit models like Level-Sets [Sethian,
2001] (cf. Section 3.1.3).

Both model representations, rigid templates and deformable models, have their
advantages and disadvantages. For aneurysm detection, deformable models are
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challenging to parameterize because of their shape variability and because of the
possibility of multiple occurrences. It is questionable if rigid templates manage to
account for the large shape variance, however their parametrization is easier and
their computational complexity is lower.

4.1.2.2 Single vs. multi-part models

All of the aforementioned models are single-part models that consist of one con-
nected component. These models do not include a (spatial) dependence of object
parts. The search space may be constrained through this additional information to
reduce the computational complexity and to exclude impossible instances.

Single part models are suitable for the detection of relatively well-defined objects
whereas multi-part models are suitable also for objects having variable represen-
tation as additional information. The relationship of each part is defined by their Multi-part models define

relationships between
single-part models

spatial relation. This constrains the possible solutions of Equation 4.1. Further-
more, the detection process does not depend on a single decision to find one object,
but on multiple widely independent decisions. This ensures a high robustness.

Hierarchical models are a subgroup of multi-part models. Their relationship is
modeled on several levels. For example, to find a house on a satellite image, first
the correct district is searched for, then the representation of the house using only
the district boundaries. Thus, a hierarchy is built to reflect the sub-part models
rather than only creating relationships among them.

In [Donner et al., 2010], a method was proposed to locate anatomical structures
in CT data sets. The objects were found by training a random forest classifier
that employed Haar wavelet features on a point-distribution model. The optimal
candidate for each object was found by solving a Markov Random Field (MRF) that
represents the spatial configuration likelihood among objects. MRF are commonly
used for constrained energy minimization.

A hierarchical approach to detect different organs in CT volumes was proposed
by [Seifert et al., 2009]. The approach operates in three steps. First, salient slices
are detected using a previously trained probabilistic boosting-tree with Haar-like
features. These slices constrain the subsequent search space as the orientation of
the CT data sets is known. Then, body landmarks (e. g., left/right hip, spine) are
found by employing a trained probabilistic boosting-tree again. All landmarks Hierarchical models

define relationships of
multiple levels between
single-part models

are connected in a graph allowing for spatial representation. The final step then
includes Marginal Space Learning (MSL) (cf. Section 4.1.2.3). The search space is
once again constrained by a priori probability that is given by the found landmarks.
This method is a good example for detection where the search space is reduced
step-by-step based on statistical information. This yields an implicit hierarchical
model that relies on initially found landmarks. This information is passed to the
next classifier in a cascade-like approach. The danger is that an initially incorrect
assumption leads to wrong detection result as all constraints are hard and a once
excluded search space is discarded.

A hierarchical FEM-based approach to localize auditory cortical regions was in-
troduced by [Engel et al., 2011]. A cortical mapping is done on MRI data sets
to flatten the three-dimensional information to 2D images. A hierarchical model
is employed to represent the location and shape of gyri and sulci around the au-
ditory cortex. The top level model enforces the locations of substructures (e. g.,
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temporal sulcus, Sylvian fissure). The second level model consists of triangular
meshes of these structures. A shape-structure hierarchy is modeled with appear-
ance and pose as driving features. The model is trained with annotated data sets.
The search space is constrained by using a cortical atlas. The initial structures
are found by employing an evolutionary algorithm with a quality-of-fit function
similar to [Heimann et al., 2007]. The method is able to reliably detect objects
having a non-discriminatory shape occurring similarly at different positions of the
data set by evaluating the structure and position of neighboring of all candidates.
The method formalizes constraints by including hierarchical knowledge using a
deformable model and an atlas.

A hierarchical multiple-part model could also be suitable for aneurysm detection.
The first level would model the head, the second level would model the vessels
and the third level would model pathologies like aneurysms. This would also
make incorporation of an atlas feasible. In CTA also other objects like the eyes
or the skull are included. These could be used for plausibility-checking. Single-
part models could be employed by using an appropriate quality-of-fit function in
conjunction with an evolutionary algorithm. However, this quality-of-fit function
would be challenging to design because of the high disparity among aneurysms.

4.1.2.3 Statistical vs. physical-based models

Generally, a model contains the expected distribution of features such as shape
and intensity. This modeling step can either be done by a statistical model or
by formalizing (expert-given) domain knowledge about the object into a physical-
based model. In the latter case, variation is represented via parametrization.

Statistical models rely on learning representative samples that are included into
a database. The probability of occurrence of an object o given in a local image
region R is p(o|R). On each region, features are computed that are condensed in
a feature vector F. The conditional probability of an object to be represented by a
feature vector can be computed by using Bayes’ rule: p(o|F) = p(F|o)p(o)

p(F) with p(o)
being the a priori probability of object o, p(F) being the a priori probability of the
feature vector F and p(F|o) the probability density function of the feature vector
of object o. Therefore, probability distributions of features have to be estimated.Statistical models

employ training to
represent the shape or

other features of an
object

This can be done by learning on an annotated database, i. e., where the position of
objects is known. Methods such as kernel density estimation or other histogram
approximation methods can be employed.

Classic statistical models are ASM [Cootes et al., 1995] and Active Appearance
Model (AAM) [Cootes et al., 2001]. These models are represented by a point distri-
bution model. Landmark points xo are given for each object o. These result in an
average shape x̄. A PCA is computed on the covariance matrix of xo that yields
the principal modes of variation pm. All valid shapes x can then be described
using a limited number (c) of parameters ym: x = x̄+

∑c
m=1 ympm. The shapes

that contribute the most to the overall representation correspond to the highest
eigenvalues given by PCA.

Another example of a statistical model was presented by [Viola and Jones, 2001]
to detect faces in (non-medical) 2D images based on Haar wavelet features. A cas-
cade of weak classifiers similar to AdaBoost is used for classification. In each step
of the cascade a simple classifier with a high true-positive rate is used. Through
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this approach, a high true-positive rate can be achieved while also the false pos-
itives are minimized. Although the method was tested with 2D photographic
images, the proposes features were successfully used to detect organs in medical
images [Seifert et al., 2009; Donner et al., 2010; Zheng et al., 2009].

Marginal Space Learning (MSL) was proposed for organ detection in (medical) im-
ages [Zheng et al., 2009]. The principal idea is to constrain and divide the search
space by employing statistical knowledge and then solve the actual detection prob-
lem by relatively simple techniques. The search space finding a 3D object in a 3D
image is nine-dimensional (three parameters for position, orientation and scaling).
Instead of training a discriminative classifier in the nine-dimensional space, a clas-
sifier is trained on three three-dimensional sub-spaces. 3D Haar wavelet features
and steerable features are used. The ranges of parameter values are either given
or trained. Further constraints on the search space are introduced by excluding
the image borders and by using the fact that most parameters in the sub-spaces
are depending on each other. Again, this is solved by estimating a joint proba-
bility density function. This dimensional division approach is relatively elegant
accounting for a coarse-to-fine approach of statistical 3D object detection.

In many areas, atlases are a method to include statistical or expert-based knowl-
edge. Atlases form a normalized representation of a model that includes the like-
lihood of object occurrence with respect to the location. Atlases contribute addi-
tional information to detect objects in medical images of the head [Nowinski et al.,
2011; Talairach and Tournoux, 1988] and other regions such as the liver [Seghers
et al., 2007].

Physical-based models are less used than statistical models in object detection
algorithms. Examples of physical-based models are the expert-given MSM in [Dorn- Physical-based models

rely on expert knowledge
to define the shape or
feature assumptions

heim and Dornheim, 2008], a simple model of a sphere in [Lee et al., 2001; Feuer-
stein et al., 2009] and the hierarchical model employed in [Engel et al., 2011].

Employing a statistical model for aneurysm detection would be challenging as
the shape variability as well as the training effort is quite high. Furthermore, the
dependence on a representative database should be avoided. Physical-based mod-
els that are parametrized by experts are more suitable because a high generality
can be ensured. Also, if other features than the shape should be employed in a
statistical model, these features would vary among angiographic modalities. It is
beneficial to use models that are valid for each modality.

4.1.3 Summary

Object detection algorithms commonly incorporate a model to represent shape or
other features. The main differences among the models are their ability to change,
their number of parts and their creation. Other aspects are the optimization ap-
proach and the employed features.

Models can either be deformable or rigid. While rigid models can be used Each model-based
approach differs by the
dimensions elasticity,
division and
representation

to represent objects with a fixed shape, deformable models adapt to the image
data. Deformable models are more often used, but their main disadvantage is the
computational complexity, especially in 3D.

Most models represent the object as one part. In 3D imaging modalities, the
information content is high and commonly the aim is to detect multiple objects.
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Table 4.1: Overview of the different dimensions in model-based object detection.
Dim.=Dimension, Repres.=Representation.

Dim. Type Methods Examples

Elasticity
Rigid TM, HEA

Lee et al. [2001]; Feuerstein et al.
[2009]

Deformable ASM, AAM, GHT
Cootes et al. [1995, 2001]; Rup-
pertshofen et al. [2010]

Division
Single-part ASM, TM Cootes et al. [1995]; Lee et al. [2001]

Multi-part MRF
Donner et al. [2010]; Seifert et al.
[2009]

Hierarchical - Engel et al. [2011]

Repres.
Statistical

ASM, AAM, GHT,
MSL

Cootes et al. [1995, 2001]; Zheng
et al. [2009]

Physical-
based

MSM, FEM
Dornheim and Dornheim [2008];
Engel et al. [2011]

Therefore, multi-part models enjoy high popularity. Their main idea is to divide
the object into different components and use (spatial) relationships among them.
Hierarchical models additionally include a hierarchy between subparts.

Models can be created by either statistical or expert-given physical-based ap-
proaches. Statistical approaches rely on learning to describe objects by their fea-
tures, with shape and intensity-based being the most popular ones. All statistical
approaches rely on a database. Thus, their performance can vary significantly for
unknown objects. In contrast, physical-based models aim at building an object
representation by domain knowledge. In Table 4.1, the discussed methods are
summarized with respect to all three model dimensions.

Haar-like features are employed in all types of detection algorithms regardless of
the data dimension. These features are used commonly in statistical models. Their
popularity is also based on their fast computability. Other commonly employed
features are shape, intensity, edges, gradients and position.

4.2 computer-aided diagnosis

In the last section, a methodological overview about object detection was given. In
this section, a short summary of algorithms that are used for CAD is given with a
focus on applications as cerebral aneurysm detection is a part of CAD. Especially,
algorithms that detect pathologies similar to aneurysms are discussed.

Computer-aided Diagnosis (CAD) describes procedures that assist the physician
in the interpretation of medical images. Different algorithms are employed to
describe a CAD system. The emphasis in CAD is to support the physicians instead of
replacing them. A sharp contrast to CAD is automated computer diagnosis, where
the goal is to substitute the physician by a machine with appropriate algorithms
[Doi, 2005]. However, this concept from the 1960s proved to be a misjudgmentCAD systems assist the

physician to find a good
diagnosis based on all
available information

as most detection problems are too complex to be solved by an algorithm with
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comparable quality to a human. The performance of the respective algorithms
does not have to be comparable to or better than radiologists, but needs to be
complementary to them [Doi, 2007].

The purpose of CAD is to serve the physician as a second opinion or to give
suggestions. The probability to overlook pathologic regions decreases with the use
of CAD [Cupples et al., 2005]. Due to the pressure that physicians are exposed to in
today’s health care system, CAD is also cost-effective as it may substitute a double-
reading1. Nevertheless, CAD systems are only able to make suggestions, the final
diagnosis is made by the radiologist.

CAD systems can be further classified into three groups [Giger et al., 2008]:

• Computer-aided Detection (CADe) to mark suspicious regions in a data set,

• Computer-aided Diagnosis (CADx) to analyze these regions, e. g., for malig-
nancy or benignancy and

• Computer-aided Quantification (CADq) to quantify the (already known) pa-
thology.

Comprehensive information about CADe and CADx can be found in [Doi, 2005,
2007; van Ginneken et al., 2001]. An overview about CADq can be found in [Giger
et al., 2008]. The term CAD is used commonly for CADe and CADx systems in the
literature. In this work, the term CAD is used as a synonym for CADe algorithms
unless otherwise noted as the initial detection of pathologies is relevant for this
thesis.

CAD systems are especially relevant in modern medicine as the amount of medi-
cal images has increased due to the availability of high quality and patient-friendly
imaging techniques. Most of them are three-dimensional. 2D images, e. g., mam-
mography images, can be interpreted by an experienced radiologist relatively fast
(118 s for an information-rich mammography [Tchou et al., 2010]). The interpreta-
tion of 3D images is more challenging by reason of their additional information
content; hence the reading time also increases. [Kato et al., 1995] reported a mean
interpretation time of CT volumes of 343 s and for MRI of 530 s. The reading time CAD is able to shorten

reading time of
radiologists

also depends on the image size and reason of the image acquisition (e. g., diagno-
sis with respect to a certain suspicion or therapy). CAD can help the radiologist to
reduce the interpretation time especially for 3D image data [Yoshida and Näppi,
2001]. The reading time for a mammography with a CAD system was 19.5% of the
reading time without CAD [Tchou et al., 2010].

4.2.1 Evaluation measures

CAD algorithms have to be evaluated to determine their quality and to compare
different algorithms. Standard evaluation measures assess the output of the CAD

system by comparing it with a given ground truth, i. e., data sets aggregated in
a database where the pathologies are labeled by radiologists or domain experts.

1 Reading refers to the process of interpreting a medical data set by a physician.
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Thus, the sensitivity se of an algorithm is equal to the definition given in Section 2.2
and defined as:

se =
nTP

nTP +nFN
, (4.2)

where nTP is the number of True Positives (TPs) (the correctly identified pathologic
regions by the CAD system) and nFN is the number of False Negatives (FNs) (the
pathologic regions that were not found by the CAD system).

It is important to also measure the average FP amount fpDS for evaluation of a
CAD system:

fpDS =
nFP
nDS

. (4.3)

nFP is the number of FPs (the identified pathologic regions by the CAD system
that are not pathologic) and nDS is the number of total data sets.

Additionally, the Free Response-operator Characteristic (FROC) curve can be com-
puted to measure the performance of a system by leaving one parameter variable
while fixing all other parameters. The curve plots se against fpDS. For a detailed
explanation, see Section 6.3.

4.2.2 Applications

CAD algorithms have been proposed to detect various pathologies in medical im-
ages. These algorithms are employed to detect e. g., cancerous tumor regions in
various organs, coronary artery disease or cerebral aneurysms. The majority of
algorithms have been presented to find tumors in three organs: lung, breast and
colon [Ye et al., 2009; Cheng, 2003; Yoshida and Näppi, 2007]. All three organs areMost CAD systems aim

at detecting cancerous
regions

a major source of today’s cancer occurrence. By far the most methods regarding
CAD are about detection of breast cancer in mammographies [Suri and Rangayyan,
2006; Tang et al., 2009]. Despite the common use of these methods, the benefit of
such a system is still discussed in the medical community. The sensitivity of an
expert usually increases by incorporating the system, however also the FP amount
increases [Karssemeijer et al., 2009].

In the following sections, example CAD algorithms for different pathologies are
presented. First, systems to detect lung nodules are presented. The problem of
detecting lung nodules is closely related to cerebral aneurysm detection as they
have similar properties. Secondly, two approaches are introduced that have been
proposed to detect AAA and to detect retinal microaneurysms. It is analyzed if
these types of aneurysms are related to cerebral aneurysms and if the employed
algorithms are suitable for cerebral aneurysm detection. Finally, a general scheme
for CAD algorithms is derived.

4.2.3 Methods to detect lung nodules

A large proportion of CAD algorithms have been developed to detect lung nodules.
Nodules in the lung tissue are early indications of lung cancer (see Figure 4.1 for an
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Figure 4.1: Example of a CT data set slice containing a lung nodule, which
is denoted by the pink arrow (Author: Lange123, license: CC3.0,
source: http://commons.wikimedia.org/wiki/File:Thorax_CT_peripheres_

Brronchialcarcinom_li_OF.jpg).

example). Lung nodules are similar to cerebral aneurysms. They can be generally Lung nodules and
cerebral aneurysms share
many features

described having a spherical shape and nodules are commonly in the direct vicinity
of blood vessels. Both statements are also true for cerebral aneurysms.

Many CAD systems to detect lung nodules are proposed [Ye et al., 2009; Li et al.,
2003; van Ginneken et al., 2010]. In [Ye et al., 2009] anisotropic diffusion is used as
a pre-processing step. The lung region is segmented using a fuzzy thresholding
method. Initial candidates are found by evaluating the shape using a Shape index
value and a sphericity value. The Shape index value is based on mean curvatures
at a voxel position p:

SI(p) =
1

2
−
1

π
arctan

κ1(p) + κ2(p)

κ1(p) − κ2(p)
, (4.4)

where κ1(p) and κ2(p) are primary and secondary principal curvatures at voxel
p. The sphericity is based on an analysis of the eigenvalues of the Hessian matrix
[Li et al., 2003] to emphasize spherical structures.

Both features aim at finding spherical structures and thus the approach uses
a rigid model with parametric domain knowledge. ROI are found by using an Methods to find lung

cancer are mostly based
on shape information

adaptive thresholding technique and a combination of a MRF and an expectation-
maximization algorithm on maps of both feature values. To reduce the amount
of FP, first a Rule-based System (RBS) is applied to remove easily dismissible non-
nodule objects and then a Support Vector Machine (SVM) with radial kernel classi-
fication is done. Shape and intensity features are used for both classifiers.

The method was tested with 54 CT data sets having 118 nodules. A detection
rate of 90.2% is reported at 8.2 fpDS. Problems to detect non-spherical and low-
contrast nodules were described.

In [van Ginneken et al., 2010], six algorithms to detect lung nodules were evalu-
ated on the same 55 data sets under the same conditions. The algorithm leading to
the best results [Murphy et al., 2009] is similar to [Ye et al., 2009] in its initial ROI
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detection. FP removal relies on a k-nearest Neighborhood classifier (kNN). Eight
low-level features are used to exclude obvious incorrect ROI by employing a RBS.Challenges have been

performed to objectively
evaluate the quality of

algorithms on the same
database

Finally, 19 high-level features are employed to also classify ambiguous candidates
accurately. The study proposes a scoring scheme for CAD algorithms that relies on
the FROC analysis (see Section 6.3). Seven predefined FP rates (2−3, 2−2, . . . , 23 FP

per scan) are used.
Unfortunately, even this environment only allows partial objective evaluation of

algorithms. The algorithm leading to the best quality was developed by the orga-
nizers of the study and had full access to the test database in advance. The scores
were considerably better than those of the other participants. This strengthens the
requirement to separate the test and the training data set to objectively evaluate
the algorithm on unknown data sets.

Apart from detection algorithm, also algorithms to segment lung nodules in CT
data sets have been proposed. The method was additionally tested so segment
liver metastases and enlarged lymph-nodes in CT data sets. Thus, it is one of few
algorithms that have been practically applied to analyze other organs than they
were originally developed for. In [Moltz et al., 2009], an algorithm was proposed
that combines a threshold-based approach with a model-based morphological pro-
cessing (smart opening). The initial position is user-given and is also utilized to
estimate the intensity distribution of nodules. According to the found type of the
lesion, adaptive thresholds for the segmentation are found. The erosion strength
is also set adaptively and finally, an ellipse-fitting is done. Thus, both parametric
and statistical information are used to create the model in this approach. The basic
algorithm is the same to segment different organs except for its parametrization.

4.2.4 Methods to detect Abdominal Aortic Aneurysms

An Abdominal Aortic Aneurysm (AAA) is a localized dilation of the abdominal
aorta (see Figure 4.2a). Similar to cerebral aneurysms, a rupture is life-threatening
and can lead to death within minutes [Upchurch and Schaub, 2006]. AAA can be
roughly compared to fusiform aneurysms by their shape, but their diameter of
> 30mm is notably larger than of cerebral aneurysms.

[Dehmeshki et al., 2009] have proposed a segmentation-driven detection algo-
rithm for AAA in CTA volumes. The approach incorporates an extraction of theThe automatic detection

of Abdominal Aortic
Aneurysms is easier than

the automatic detection
of cerebral aneurysms

aortic lumen by threshold-based segmentation. Subsequently, the abdominal sec-
tion is found by detecting anatomic structures that bound this section (spine and
kidneys). The position of the celiac trunk and the iliac junction (see Figure 4.2) are
found by a simple threshold segmentation and a bifurcation detection technique
on the centerline. Finally, based on the localized position, an ellipsoid fitting al-
gorithm is applied to segment the abdominal aorta. A mask containing several
anatomic objects close to the aorta (spine, fat, blood vessels) guides the fitting pro-
cess; they are used as repulsive forces. The segmented aorta is evaluated quantita-
tively in terms of maximum diameter, shape irregularity and displacement. Based
on these features, aneurysms are detected. The method was tested on 60 CTA im-
ages. The sensitivity of the AAA detection is reported to be 98%. To quantitatively
evaluate the segmentation, the mean overlap with a manual expert segmentation
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(a) (b)

Figure 4.2: (a) Scheme of an abdominal aortic aneurysm. The celiac trunk is seen in the
upper part of Section C above the aneurysm. The iliac junction is seen in
the lower part of Section C below the aneurysm. (Author: National Institutes
of Health, public domain, source: http://commons.wikimedia.org/wiki/File:
Aortic_aneurysm.jpg). (b) Sagittal CT slice depicting an AAA. (Author: Glitzy
queen00, public domain, source: http://commons.wikimedia.org/wiki/File:

Sagital_aaa.JPG).

has been computed. 95% of voxels overlap. However, the evaluation is quite
unclear and suffers on the imprecise experiment description.

Other CAD algorithms have been presented to segment the AAA in multi-spectral
MRI [de Bruijne et al., 2003] based on an user-initialized AAM [Cootes et al., 2001]
and in CTA based on a Level-Set formulation [Subasic et al., 2000].

The focus of most approaches in this area is the automatic segmentation and/or
quantification. The problem is clearly defined: AAA could only appear on the ab-
dominal part of the aorta, what constraints the location considerably. Furthermore,
the aorta is subject to relatively simple segmentation in CTA as it is a large and
good distinguishable blood vessel with a high intensity. The detection of AAA heav-
ily relies on the quantification of the aorta and thus on the successful segmentation.
Thus, most algorithms are more a CADq algorithm than a CAD algorithm.

In conclusion, the detection of AAA is rather simple compared to the detection
of cerebral aneurysms because of their defined location. AAA are comparable to
cerebral giant fusiform aneurysms. Thus, the techniques to detect AAA are not
applicable for cerebral aneurysm detection of saccular type.
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4.2.5 Methods to detect retinal microaneurysms

Retinal microaneurysms are visible in 2D digital color fundus photographs of the
eye. In these images, they appear as very small, dark and round objects. Microa-
neurysms have a similar shape compared to cerebral aneurysms; however, the im-
age modality is two-dimensional rather than three-dimensional as in angiographic
images. Microaneurysms are related to diabetic retinopathy and can lead to blind-
ness [Niemeijer et al., 2010].

A retinopathy online challenge was organized to objectively evaluate the detec-
tion of microaneurysms under realistic clinical assumptions [Niemeijer et al., 2010].
Five different methods were tested with the same objective score as in [van Gin-
neken et al., 2010]. The score values of all algorithms were similar. An algorithm
that involved a template matching in the wavelet domain yield to the best results
[Quellec et al., 2008]. The method uses a gaussian model with different standard
deviations to characterize the microaneurysms as an object with circular shape.
Low and high frequency subbands were ignored. As similarity measure, the coef-
ficients of the wavelet transform of the model are compared against those of the
image. A vessel segmentation step is further done to exclude vessels.

The method leading to the best results has a sensitivity of 40% at 1.08 fpDS.Retinal microaneurysms
are similar to cerebral

aneurysms by its shape,
however they are

detected in 2D data sets

These poor results are mainly caused by the realistic experiments, thus leading to
the conclusion that such a tool is not yet suitable for screening purposes [Niemeijer
et al., 2010].

Another algorithm has been presented by [Hipwell et al., 2000]. A subtraction-
based ROI finding is proposed in conjunction with a RBS for classification. The
algorithm is tested on 3783 images and reached a sensitivity of 78% at 0.07 fpDS.
However, the method was trained beforehand on a subset of the test database
which influences the evaluation beneficially.

One has to bear in mind that the objects of interest, microaneurysms, are rather
small, but the images are two-dimensional, have a good SNR and the information
density is rather small as many areas with uniform intensity exist. Thus, only the
technique to find round shapes can be applied to the cerebral aneurysm detection
problem. Otherwise, the two problems, detection of retinal microaneurysms in 2D
data sets and detection of cerebral aneurysms in 3D data sets, are too different.

4.2.6 General approach to CAD

In almost all CAD algorithms, the workflow is similar and based on a pattern
recognition approach. The algorithms commonly consist of four consecutively
performed steps:

1. Pre-processing and normalization,

2. Segmentation,

3. ROI detection and

4. Classification of ROI.
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The pre-processing aims at enhancing the image data through noise reduction
techniques and image restoration methods. Furthermore, the image is normal-
ized with respect to the intensity range, the image size and the orientation to
create similar conditions for all input images. As pre-processing techniques, linear
and non-linear filters are employed, e. g., Gaussian filter and anisotropic diffusion
[Tönnies, 2012]. For intensity normalization, simple methods like linear contrast
stretching may be used as well as complex histogram-based methods [Bogunović
et al., 2008]. Orientation normalization may be reached by using information pro-
vided by Digital Imaging and Communications in Medicine (DICOM) header or
registration methods [Maes et al., 2003].

The second step, segmentation, is done to either remove background structures
or to focus on a global structure. This can be, e. g., the lung in the case of a lung
nodule detection system [Lee et al., 2010] or the removal of vessels in the case of a
retinal microaneurysm detection system [Hipwell et al., 2000]. This step represents
a hard constraint as all objects lying outside the search space are not considered
anymore. The final exclusion decision should be done as late as possible in the
algorithm.

The third step, ROI detection is the crucial part of most CADe algorithms. Features The initial ROI detection
is the crucial part of
every CAD algorithm

are computed that describe the object depending on the used strategy, the object
and the image characteristics. Ideally, features f should be highly discriminative,
i. e., they should have the form of a generalized Dirac impulse:

f(Ri) =

{
ζ if Ri is the object of interest,

0 otherwise.
(4.5)

R is a region and ζ ∈ R is a scalar feature value.
However, this is not possible due to the complexity and the insufficient gen-

eralization and only an approximation of this function is used. This function f̂
is an approximated version of f. In practice, many features like shape [Yoshida
and Näppi, 2007], intensity [Suzuki et al., 2005], size [Lauric et al., 2010], location
[Russakoff and Hasegawa, 2006] and reference to close-by structures [Dehmeshki
et al., 2009] are feasible for this step. The actual ROI are defined, e. g., by using a
threshold t on the feature image and a clustering method to aggregate pixels. As
a high sensitivity is crucial for CADe approaches, usually a large amount of ROI are
identified to minimize the chance that a pathology is overlooked [Doi, 2007].

The fourth and last step consists of a classification. The aim is to discriminate
between true objects and FPs (see Figure 4.3 for an example). The classification can
be done either by training or by utilizing expert or empirical domain knowledge.

Several machine learning approaches are used for training, such as kNN clas-
sifiers, Artificial Neural Network (ANN) or SVM [Lu and Weng, 2007]. These
approaches commonly include feature selection to identify a subset of relevant
features [Böröczky et al., 2006]. The quality of statistical methods depends on
the quantity and quality of training samples [Lu and Weng, 2007]. The training
database is usually rather small, rarely exceeding 100 data sets.

Expert or empirical knowledge is formalized in a Rule-based System (RBS). Sim-
ple rules are defined, such as exclusion of the image border or definition of min-
imal and maximal valid feature values for assignment of ROI to TP or FP. Thus,
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Figure 4.3: Visualization of classification in a two-dimensional feature space. The fea-
ture space is divided by a hyperplane into two half spaces (a line in a two-
dimensional space). One member of each class is misclassified using this sepa-
ration line.

RBS are classifiers without training. Examples of Rule-based System (RBS) can be
found in [Ye et al., 2009; Feuerstein et al., 2009; Lauric et al., 2010]. An advantage of
expert-based models is that they usually can cope better with outliers than statisti-
cal methods as a larger variation of the model is permitted. The main disadvantage
is the need for an expert that explicitly designs the rules.

Recently, open web databases have been established that cover images of dif-
ferent pathologies, e. g., lung nodules in CT volumes [van Ginneken et al., 2010]
and chest radiography images [Shiraishi et al., 2000], digital fundus color pho-
tographs of the eye [Niemeijer et al., 2010], mammography images containing can-
cer [Heath et al., 2000], CT colonoscopy images containing colon cancer [Johnson
et al., 2008] and liver tumors in CT volumes [Niessen et al., 2008]. However, at
this date, no publicly available database is known that also covers aneurysms in
angiographic images. The establishment of public available databases are neces-No publicly available

angiography database
exists that contains

aneurysms

sary to objectively compare CAD algorithms as advocated in [van Ginneken et al.,
2010; Niemeijer et al., 2010]. The composition of the training data set influences the
quality of the algorithm, especially if statistical methods are employed. The more
homogeneous a data set is the greater is the risk of an overadaption. Especially if
the pathologies itself are heterogeneous as is the case with cerebral aneurysms, a
database consisting of a wide range of typical objects is essential.

In conjunction with these open databases, grand challenges have been proposed
to objectively compare different algorithms on the same database [van Ginneken
and Kerkstra, 2013]. A benchmark for the State of the Art in different CAD areas
can be established in this way.

4.2.7 Summary

In this section, a short introduction about CAD algorithms was given. Example
algorithms in three different areas have been presented (see Table 4.2). With re-
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Table 4.2: Overview about the different discussed CAD methods. Sim. = similarity to
cerebral aneurysms with respect to features, e. g., shape.

Pathology Method Data ROI finding Sim.

Lung nodules
Ye et al. [2009];
van Ginneken
et al. [2010]

CT (3D)
Spherical shape detec-
tion, machine learning

High

Abdominal
Aortic Aneu-
rysm

Dehmeshki et al.
[2009]

CTA (3D)
Segmentation-based
feature analysis

Smalla

Retinal microa-
neurysms

Niemeijer et al.
[2010]; Quellec
et al. [2008]

Color
photo
(2D)

Stochastic modeling of
intensity distribution

Medium

a High similarity only to fusiform aneurysms.

spect to the model, mostly rigid single-part models are applied. Statistical and
parametric models are used in approximately the same extent.

The pathology most similar to cerebral aneurysms, with respect to image pro-
cessing characteristics, described in the last section is lung nodules. The detection
of lung nodules relies on the shape and is mostly solved by a multi-scale filter that
emphasizes spherical objects.

The detection of AAA differs to the detection of cerebral aneurysms as their
location is clearly defined. Retinal microaneurysms are detected in 2D images.
Therefore, the technique of these algorithms is only limited applicable for cerebral
aneurysm detection.

The existing approaches are almost always based on the general four-step tech-
nique (cf. Section 4.2.6). First, the image data is normalized and then a segmenta-
tion is computed to reduce the search space. Subsequently, the initial ROI detection
is done based on the primary feature and then the selected regions are classified to
reduce FP. It is suitable to use this approach also for a cerebral aneurysm detection
algorithm. However, it would be desirable to minimize the dependence on the
segmentation and on a statistical database.

4.3 existing approaches to aneurysm detection

Existing approaches to detect cerebral aneurysms are discussed in this section.
Most algorithms have been published in the last seven years. The methods can be
categorized with respect to their ROI detection approach in five different groups:

1. spherical shape-based analysis,

2. symmetrical shape-based analysis,

3. skeleton analysis,

4. difference image-based technique and

5. a combination of the above techniques.
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While the first two categories rely on the shape of aneurysms, the skeleton is the
main information carrier in the third category. In the fourth category, a normal
artery model is subtracted from the original image resulting in a difference-based
approach. A combination of different approaches is used in the last category.

Below, the different approaches are characterized, techniques are outlined and
results are given.

4.3.1 Spherical shape-based analysis

First, general methods to detect spherical shapes are presented. Then, the existing
aneurysm detection approaches are summarized that use such methods.

general methods to detect spherical shapes Three groups of meth-
ods have been employed to find spherical objects in three-dimensional data sets:

• intensity-based methods measuring the local intensity distribution

– template-matching

– gradient concentrate feature computation

– multi-scale filtering with Hessian Eigenvalue Analysis (HEA)

• surface-based methods measuring characteristics of a segmented surface

– shape index

– curvedness

– sphericity

• statistical approaches.

The first intensity-based method is template-matching. It is a standard image pro-
cessing technique to search for a predefined static shape in an image by comparing
the shape intensity to intensity in image regions. It is successfully applied to detect
spherical pathologies such as lung nodules [Lee et al., 2001]. The gradient concen-
trate, proposed in [Uchiyama et al., 2005] to detect cerebral aneurysms is a similar
method. It is based on the gradient intensity magnitude and direction. The third
intensity-based method is the analysis of the Hessian matrix [Li et al., 2003; Frangi
et al., 1998; Sato et al., 1998]. Originally, most of these methods aim at finding
vascular structures that are modeled by ellipsoids having a long diameter and a
short diameter. In the case of spherical objects, a sphere is used as model.

Surface-based features are the shape index (Equation 4.4), the curvedness of a
surface [Zhao, 2011] and the sphericity Ψ. Ψ is defined as:

Ψ =
π
1
3 (6s)

2
3

a
, (4.6)

where s is the volume of the ROI and a is the surface area of the ROI. It was used
e. g., in [Murphy et al., 2009] to detect lung nodules.

Statistical approaches to find round objects have been presented to detect e. g.,
breast cancer in 2D mammographies [Tang et al., 2009].
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In the following, the Hessian eigenvalue analysis is described in detail as it
used a general model. Furthermore, it is used in many CAD methods such as the
detection of cerebral aneurysms and lung nodules [Arimura et al., 2006; Li et al.,
2003].

The Hessian matrix H of a point p is defined as a matrix of the second order
derivatives:

H(p) =

f ′′xx f ′′xy f ′′xz
f ′′yx f ′′yy f ′′yz
f ′′zx f ′′zy f ′′zz

 , (4.7)

where f ′′ij is the second derivative in direction i and j of p approximated in a
discrete image e. g., by differences. Thus, the matrix describes the second order
intensity variations of an image. An eigenvalue analysis of H(p), Eig(H), is done
to compute the three eigenvalues λ1, λ2 and λ3 with |λ1| > |λ2| > |λ3|.

Bright spherical objects on a dark background lead to the general property λ1 ≈
λ2 ≈ λ3 � 0 [Frangi et al., 1998], i. e., there is a strong magnitude change of
intensity in three orthonormal directions in the center of the sphere. Spherical objects are

determined by their
eigenvalues that have
specific properties

Three different approaches were chosen to compute an estimation for the blob-
ness b [Sato et al., 1998; Frangi et al., 1998; Li et al., 2003]. In [Lesage et al., 2009],
further approaches are summarized.

[Sato et al., 1998] proposes

b(Eig(H)) =

|λ3|
(
λ2
λ3

)δ1 (
1+ λ1

|λ2|

)δ2
if λ3 < λ2 < λ1 6 0.

0 otherwise.
(4.8)

δ1 and δ2 control the sharpness of the selectivity for the isotropy of the object
with respect to the relation λ2

λ3
and λ1

λ2
, respectively. Common choices for both

parameters are 0.5.
[Frangi et al., 1998] proposes

b(Eig(H)) =


(
1− exp

(
−
R2A
2α2

))
exp

(
−
R2B
2β2

)
exp

(
− S2

2γ2

)
if λ3 < λ2 < λ1 6 0.

0 otherwise.

(4.9a)

RA =
|λ2|

|λ1|
, RB =

|λ3|√
|λ1λ2|

, S =

√∑
k63

λ2k. (4.9b)

α, β and γ control the sensitivity of the filter to the measures RA, RB and S.
Common choices are α = β = 0.5 and γ = 5.

[Li et al., 2003] proposes

b(Eig(H)) =

{
|λ3|

2

|λ1|
if λ3 < λ2 < λ1 < 0.

0 otherwise.
(4.10)
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(a) (b)

(c) (d)

Figure 4.4: (a) Example 2D-DSA image. Three different blobness parametrizations are com-
pared: (b) the method by [Sato et al., 1998] with δ2 = 1 (δ2 is irrelevant in 2D),
(c) the method by [Frangi et al., 1998] with α = β = 0.5 and γ = 10 and (d)
the method by [Li et al., 2003]. They are all parametrized to find dark circular
objects with the same diameter (2px to 8px). The first two parametrizations
produce rather similar results with large plateau-like intensity peaks while
the third parametrization is rather strict producing rapidly sloping maximum
peaks.

A visual comparison of all parametrizations is given in Figure 4.4. The concep-
tually easiest parametrization is the one by [Li et al., 2003] only taking the smallest
and the largest eigenvalue into account and using no other parameters.

All these Hessian-based methods employ scale knowledge as the object diameter
has to be known. By using scale-space approaches [Lindeberg, 1994], this problem
can be circumvented by taking different scales [rmin, rmax] into account. The
image is convolved using a Gaussian kernel having the standard deviation σ. It
is reasonable to assume that the following relationship exists: σ0 = r

2 as 95% of
the area of the Gaussian function lies within this area [Li et al., 2003]. Thus, the
maximum amount of blobness filter response can be measured in the center of the
sphere if the smoothing is chosen according to the radius.Scale-space theory is

applied to find spherical
objects having different

diameters
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The image is then convolved N times between the minimum and maximum
scales. N = 5 was suggested as sampling for medical imaging applications. Addi-
tionally, exponential smoothing scales were proposed by [Li et al., 2003]:

σn =

(
rmax

rmin

) 1
N−1

σ1, (4.11a)

σ1 =
rmin
4

. (4.11b)

The filter response image Bσi is multiplied at each scale with σ2i to compare the
filter responses at the different scales.

The maximum filter value of all scales is taken as the final blobness value [Frangi
et al., 1998]:

B = max
σi

B(Mρ
σi
), i = 1, . . . ,N. (4.12)

B(Mσi) is the image filtered at scale σi.

methods for aneurysm detection Shape-based methods model the ap-
pearance of an aneurysm. Although a generalization of aneurysms with respect
to the shape is difficult (cf. Section 2.1.2), a spherical shape representation is com-
monly used as model to search for initial ROI. Popular techniques to find spherical
structures are especially the previously discussed techniques that rely on the Hes-
sian eigenvalue analysis.

One of the first methods related to a CAD system for aneurysm detection was
presented by [Hayashi et al., 2003]. It relies on the shape index and curvedness
measuring the Gaussian curvature of a shape in the image data. Aneurysms do
usually not have a smooth surface in contrast to vessels. This basic assumption Aneurysms commonly

have a spherical shape,
thus they can be
recognized by enhancing
spherical structures

is utilized in this approach. In a three-dimensional visualization environment,
both features are overlaid using a color table. The evaluation was done by two
neuroradiologists. In 18 TOF-MRA data sets with 24 aneurysms, they found three
aneurysms that were previously not found. Although it is only a feasibility study,
it was a pioneer work as similar shape-based features were used in subsequent
publications.

A similar method was presented by [Prasetya et al., 2011] for the (manual) de-
tection of aneurysms in CTA images.

The first automatic CAD system to detect aneurysms was developed by [Arimura
et al., 2004, 2006]. The algorithm was built for TOF-MRA image data. The scheme
involves a detection of ROI by using a sphere-enhancing filter, then a feature ex-
traction of the segmented ROI and finally a removal of FP by a RBS and Linear
Discriminant Analysis (LDA).

Initial selection involves two sources: the blobness filter with Li’s parametriza-
tion [Li et al., 2003] and short branches of the vessel skeleton (see Figures 4.5 and
4.6). Peaks of the filter image are extracted by a multiple gray-value thresholding
technique. These peaks and the short branches are then used as initial seed points
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(a) (b)

Figure 4.5: Example of the multi-scale filter to enhance blob-like structures on a TOF-MRA
slice containing two aneurysms. Li’s parametrization is used. The aneurysms
are indicated by the white arrows. At their positions in the filtered slice, clear
highlighting occurs.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: The four different aneurysm classes shown by a MIP and their skeleton repres-
entation: (a) and (e) large type, (b) and (f) short-branch type, (c) and (g) bifur-
cation type and (d) and (h) single-vessel type. Depiction is based on [Arimura
et al., 2006] with own data. The different images have different scale that is
indicated by the bars.
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for a region-growing segmentation resulting in initial ROI. Large aneurysms hav-
ing a spherical shape are enhanced by the multi-scale filter while small aneurysms
adjacent to bending vessels are found by the vessel skeleton approach.

Features are computed on each ROI. Different features are computed based on
a categorization of each ROI in four different types: large type, bifurcation type,
short-branch type and single-vessel type. They are classified according to their
diameter and skeleton properties (see Figure 4.6).

Furthermore, a so-called Shape-based Difference Image (SBDI) was computed
similar to the difference-image approaches (cf. Section 4.3.4). The SBDI aims at cor-
rection for local changes in vessel thickness to suppress normal vessels and leave
(small) pathological vessel parts like small aneurysms based on the skeletonized
segmented image. Seven features are computed on the SBDI image for single-vessel
type and bifurcation type ROI.

Five intensity features have been employed, e. g., average voxel intensity and rel-
ative difference in standard deviation of voxel values between inside and outside
regions. Eight morphological features have been used, e. g., sphericity and max-
imum/minimum distance between centroid and surface. Seven SBDI features are
computed that are a mixture of shape-based and intensity-based features.

For further removal of FP, a RBS and a consecutive LDA are used. Both clas-
sifiers are trained using a test data set. RBS rules are applied that define max-
imum value ranges [f̂min, f̂max] for every feature with f̂min = 0.95 · fmin and
f̂max = 1.05 · fmax, where f̂max is the estimated maximum value and fmax is the
measured maximum value for true aneurysm ROI in the training database. A LDA

is computed on four features chosen by feature selection method as the final FP

exclusion step.
For evaluation, a leaving-one-out technique was used. The method was tested

on two data sets from different institutions: 115 TOF-MRA data sets including
61 aneurysms (database A) and 63 TOF-MRA data sets including 36 aneurysms
(database B). Sensitivity of the algorithm is reported to be 97% with 3.8 fpDS on
database A. The inclusion of the SBDI feature leads to a decrease of 34.5% of FP

at the same sensitivity compared to a previous publication [Arimura et al., 2004].
The robustness of the algorithm was shown on a test with database B. Results were
good yielding to a sensitivity of 94% at 2.3 fpDS. Nonetheless, a strong dependence
on the training data set was reported, which is always a problem in statistical-
based approaches. The authors stated also that the resolution plays an important
role for the algorithm.

Another spherical shape-based method was presented by [Uchiyama et al., 2005].
The method is similar to the previous method with respect to the initial ROI finding
approach. A simplified single-scale gradient-filter is used to enhance round convex
regions in the original image [Kobatake and Murakami, 1996].

Removal of FP was done by an experimentally-found RBS and a Quadratic Dis-
criminant Analysis (QDA) with three features (size, sphericity and mean value of
filtered image with respect to the ROI). Details about the RBS were not given. Also, False positives are

eliminated commonly by
using Linear- or
Quadratic Discriminant
Analysis

it is unclear why two elimination steps are performed. It can be assumed that most
FP that are identified by the RBS are also recognized by the QDA.

The algorithm was tested on 20 TOF-MRA volumes containing 7 aneurysms. A
sensitivity of 100% was reported at 1.85 fpDS. The evaluation scenario is invalid
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as the statistical-based algorithm is tested on the same data set that it is trained
with. Furthermore, the evaluation can give only a very rough estimation of the
performance of the algorithm as the database is too small.

An extension to this method was presented in [Uchiyama et al., 2008]. As addi-
tional feature, the anatomical location is used, hence vessel regions are identified
as described in [Uchiyama et al., 2006]. This algorithm is based on a registration
approach. First, a rough initialization is made by maximizing the overlap of ves-
sel regions using only translation. Then, a control-point-based rigid registration
is done by a least-square fitting of previously found control points. Thus, a com-
mon coordinate system is found for every data set. The normalized position vector
(xy z)T is used as additional feature in the FP removal stage.

In contrast to the previous algorithm, the RBS scheme is explained in detail. Sim-
ilar to [Arimura et al., 2006], the minimum and maximum values for each feature
are computed and a valid feature range is defined. However, the minimal and max-
imal values are taken directly without margin what leaves the assumption that the
training database was again used for testing. The database contains 100 TOF-MRA
data sets with 30 aneurysms. The overall sensitivity was 90% at 1.5 fpDS.

4.3.2 Symmetrical shape-based analysis

In this group of methods, the analysis relies on the shape, however without em-
ploying curvature-based or spherical-based measures. Instead, a measure is pro-
posed for the symmetry of objects. Only one publication is known applying this
method. Although the initial ROI detection strategy is to find short branches of the
medial axis, we do not number this publication among the skeleton based group
(cf. Section 4.3.3) as the algorithm depends especially on the shape analysis.

This method relies heavily on the surface measure Writhe number [Lauric et al.,
2010]. This number describes how much a curve twists and coils and is extended to
surfaces in the publication. The Writhe number cannot be interpreted intuitively.
Generally, the Writhe number is 0 if the surface can be described via a mirror
symmetry. A mirror plane exists in cylinders or extruded parabolas that are gen-
eralizations of vessels, thus Wr = 0 for ideal vessel-like objects. It is assumedThe basic assumption is

that aneurysms have
shape asymmetries in

contrast to vessels

that aneurysm ROI are characterized by no or only small and partial symmetries
of points on the surface, thus leading to Wr > 0. The Writhe number aims at dif-
ferentiating healthy vessels with clear defined tubular morphology and pathologic
vessel objects with unclear and somewhat different morphology. With respect to
this idea, this approach is slightly similar to difference-based approaches (cf. Sec-
tion 4.3.4).

The Writhe number is defined as follows. Given two points p and p ′ on a
(connected) surface, their relationship w is defined by

wr(p,p ′) =

[
n̂p,p ′ − p, n̂ ′p

]
|n̂p| · |p ′ − p| ·

∣∣n̂ ′p∣∣ , (4.13)

where n̂p is the surface normal at point p, |p| is the norm of the vector p and
[a,b, c] is the triple scalar product of vectors a, b and c. It is defined as [a,b, c] =
a · (b× c), where a ·b denotes the dot product and a×b denotes the cross product.
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The Writhe number Wr of a point p in a local neighborhood N(p) is given by:

Wr(n,N(p)) =

∫
p ′∈N(p)

wr(p,p ′) dp ′. (4.14)

Simplified2, p ′ belongs toN(p) and is connected to p. This leads to the following
equation in a discrete space:

Wr(n,N(p)) =
∑

p ′∈N(p)

wr(p,p ′). (4.15)

The approach requires a segmented vasculature as input. A medial axis is com-
puted based on the segmentation. Similar to [Arimura et al., 2006], cerebral aneu-
rysms are assumed to be short branches of the medial axis. ROI are extracted based
on local neighborhoods of short branches. For each ROI, the Writhe number and
the volume are computed. ROI having a non-zero Writhe number and a large size
are taken as final candidates.

It is shown that true aneurysms generally have a large volume size and a large
Writhe number. No information is provided why this observation is not used as
classification criterion.

The method is one of the few tested on multi-modal images [Lauric et al., 2010;
Lauric, 2010]. It has been tested on 3D-RA data sets, MRA data sets and CTA
data sets. The MRA data sets consist of TOF-MRA data sets and CE-MRA data
sets. For each modality, ten data sets were tested. Results of 100% sensitivity at The algorithm by Lauric

et al. [2010] was tested
with multiple
angiographic modalities

0.66 fpDS for 3D-RA, and 5.36 fpDS for CTA are reported [Lauric et al., 2010]. For
MRA, 100% sensitivity at 5.7 fpDS was achieved [Lauric, 2010]. Problems have
been reported regarding fusiform aneurysms that are true radially symmetric as
the Writhe number is ∼ 0 in these cases and no longer useful as discriminatory
criterion. As the evaluation database is rather small, no general statement about
the quality of the method can be made.

The algorithm uses the Writhe number as indication for aneurysms. This num-
ber is obviously suitable for the detection task as it evaluates the symmetry of the
segmented shape of the vasculature. However, it is a very complex construct what
leads possibly to results that are difficult to understand. Also, no prediction can
be made when the method leads to good results and when it fails.

The algorithm heavily depends on high quality segmentation as no intensity
data or other features are used as information. This is a problem especially in the
case of CTA data as high quality segmentation is a challenging task. CTA data
required manual pre-processing.

This is the closest approach in literature to define an aneurysmness measure3 as
a single feature rather than to combine several features by applying LDA or other
feature selection schemes.

2 For details, see [Lauric et al., 2010].
3 Analogue to the vesselness measure introduced in [Sato et al., 1998; Frangi et al., 1998].
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4.3.3 Skeleton analysis

Another approach to aneurysm detection is an analysis of the skeletonized vas-
culature. The basic assumption is that aneurysms can be characterized by short
branches in the vessel tree. This approach was used in several publications [Ari-
mura et al., 2006; Lauric et al., 2010; Hassan et al., 2011; Suniaga et al., 2012]. As
already mentioned in Sections 4.3.2 and 4.3.1, the approach by [Lauric et al., 2010]
and [Arimura et al., 2006] is categorized in these sections although the ROI detec-
tion step is also based on an evaluation of short branches.

The vessel skeleton can be computed from vessel segmentation. Vessel seg-
mentation and centerline detection algorithms have been reviewed in Section 3.1.
Their quality depends first and foremost on the image modality and the vessel-
background contrast. Vessel segmentation is trivial for 3D-RA data sets, and gets
more difficult for CE-MRA, TOF-MRA and CTA data sets.

In [Hassan et al., 2011], a distance-based centerline extraction method was per-
formed on an existing vessel segmentation. By using a modified Dijkstra algo-
rithm, a connected, one voxel wide centerline is extracted. The centerline is then
seen as a graph with the vertices being the bifurcation and terminating points
and the edges being the blood vessels. The length of each branch l is calculated
using a modified Euclidean distance. Additionally, for each voxel of the branch,
the radius ri perpendicular to the branch is computed. An average radius ravg is
computed by taking all centerline voxels of a branch into account. Vessels have a
relatively constant and slow changing diameter whereas aneurysms usually have
a large change in their diameter. A least-squares fitting on the quadratic function
ravg = a+bl+ cl2 with a,b, c ∈ R is done to evaluate the diameter changing char-
acteristic. Branches fulfilling c > ct, where ct = 0.2 is determined experimentally,
are counted as aneurysm candidates. No further classification was done.The basic assumption of

skeleton-based
algorithms is that

aneurysms are
characterized by short
branches in the vessel

tree

The method was tested with 20 data sets containing of CTA and MRA volumes.
A sensitivity of 100% is reported at 0.1 fpDS. The average vessel quantification error
was 11.7%. The evaluation is very short and imprecise. Thus, the quality of the
algorithm cannot be judged reliably. A disadvantage is that only one connected
component of the segmentation can be analyzed per pass. However, a visible
connection of the cerebral vasculature is not necessarily present in all modalities
although an actual connection exists. The method does also depend on the quality
of the centerline and the segmentation, respectively.

Another algorithm similar to the previous one was recently presented by [Suni-
aga et al., 2012]. After an automatic segmentation, the centerline is approximated
by thinning. Initial ROI are found at terminating points of the skeleton. Several
features are computed on these ROI: blobness, vesselness, Förstner filter [Förstner
and Gülch, 1987], distance to the next bifurcation and vessel thickness. A SVM was
trained as classifier. A leaving-one-out cross validation on 20 TOF-MRA data setsThe algorithm of

Suniaga et al. [2012]
employs a classification

with SVM

incorporating only saccular aneurysms revealed a sensitivity of 100% at 3.86 fpDS

using a SVM with linear kernel. A radial-basis function kernel SVM led to worse re-
sults. FP findings were reported to be located commonly at high surface curvatures
and twisting vessels.

Skeleton-based algorithms completely depend on the centerline of the cerebral
vasculature. Thus, the search space is reduced largely. However, the risk to miss
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(a) (b) (c)

Figure 4.7: Examples of ROI that are found by the algorithm of [Kobashi et al., 2006]. The
vessel centerline is gray and dashed. The red areas denote found ROI. (a)
Sidewall aneurysm, multiple ROI are found. (b) Fusiform aneurysm, no ROI is
found. (c) Bifurcation aneurysm, multiple ROI are found. Drawing adapted
from [Kobashi et al., 2006].

important short centerlines is great. An equilibrium between eliminating short
branches due to noise and retaining short branches have to be found [Bouix et al.,
2005; Antiga et al., 2003]. The choice of the centerline extraction algorithm has
more influence on the results than the actual method. Also, only small aneurysms
can be characterized by short branches, this may not be the case with large aneu-
rysms as the skeleton is quite cluttered there (see Figure 4.6).

4.3.4 Difference image-based technique

Difference image-based methods model a healthy vessel volume that is then sub-
tracted from the given volume. Remaining voxels are assumed to be pathologies,
e. g., aneurysms. They are clustered and form initial ROI that are then classified.

The method presented by [Kobashi et al., 2006] employs this strategy to detect
aneurysms in TOF-MRA images. First, a normal artery model is constructed that
consists of a set of tubes and represents the healthy part of the vasculature. The
model is guided by the skeleton of the cerebral vasculature. To extract the cerebral
vasculature, the approach proposed in [Kobashi et al., 2001] is used that is based
on a watershed segmentation and classification with an ANN. Then, short branches
are removed in the skeleton. The vessel radii are estimated by finding the closest
fit of a tube to the data with the given skeleton as basis. The normal artery model
is reconstructed by using the skeleton and the estimated smoothed radii. Subse-
quently, the normal vasculature is subtracted from the segmented vasculature. A
connected component analysis is done to find ROI. Difference image-based

approaches model the
healthy vasculature and
obtain differences to the
original image as initial
ROI

For the FP removal step, each ROI is given a score that corresponds to the esti-
mated probability to be a true aneurysm. This is done by kNN. Nine intensity or
shape-based features are computed similar to [Arimura et al., 2006; Hayashi et al.,
2003]. The score is computed by using a slightly modified kNN classifier with k = 1.
The score A of a ROI R with respect to a database D is computed by:

A(R,D) =
dFP(R,D)

dFP(R,D) + dTP(R,D)
, (4.16)

where dFP is the distance of r to the nearest FP sample of the database and dTP is
the distance to the nearest TP sample in the database. The Euclidean norm is used.
Experiments with the Mahalanobis distance lead to worse results.
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The method was tested with phantom and patient data. The phantom exper-
iments revealed that the method is more suitable for detection of saccular aneu-
rysms than for fusiform aneurysms and that aneurysms are rather detected if they
are located at a bifurcation than on a straight artery (see Figure 4.7). A clinical
evaluation on TOF-MRA image data of 16 patients inhibiting 19 aneurysms was
done. A sensitivity of 100% was reported at 6.4 fpDS. The evaluation was done
with a modified leaving-one-out technique.

The method is similar to skeleton-based approaches (see Section 4.3.3) as charac-
teristics of the vessel skeleton are used. In contrast, this approach is based on em-
ploying a tube-fitting algorithm to represent vessels. Interestingly, small skeleton
branches are removed as pre-processing. This assumes that aneurysm are always
associated with a short skeleton branch. Like other approaches, the segmentation
influences the detection. The FP reduction step is statistically based and relies on a
kNN classifier with k = 1. This classifier is not very robust as it is prone to outliers
in the database. The reason for this is probably the small database. An advantage
of this approach is the potential of online-learning by assigning the (re)labeled
data directly to the database.

4.3.5 Hybrid approaches

Most methods do not depend on one ROI finding strategy solely, but one strat-
egy clearly dominates this step. In contrast to this, [Yang et al., 2011] propose a
method where three of the previously mentioned strategies are combined. Initial
ROI are found by analyzing the skeleton, by using the difference-based technique
and by using the sphere-shaped based technique (see Figure 4.8, cf. Section 4.3.3,
Section 4.3.4 and Section 4.3.1). The FP elimination is done by a RBS involving a
relatively large amount of features.

In a first step, the image data is segmented with a threshold-based method and
a subsequent region-growing algorithm similar to [Uchiyama et al., 2005]. Then,The method of Yang et al.

[2011] employs a
combination of the

previously discussed
approaches

all three strategies are employed to find initial ROI. The skeleton-based method
extracts short branches, bifurcations, vessels with a local diameter maximum and
cyclic short vessel segments similar to [Arimura et al., 2006]. The difference image-
based technique is similar to [Kobashi et al., 2006] and a sphere-shaped strategy
was employed similar to [Arimura et al., 2006]. A clustering is done to detect
multiple findings of the same region.

To reduce the amount of FP, a RBS based sieving technique is applied. Six differ-
ent intensity and shape-features were extracted dependent on the ROI type. Addi-
tionally, the location is used. The rules of the RBS are partly empirically chosen and
partly expert-chosen. It is unclear how the expert knowledge is formalized. Finally,
a score is assigned to each remaining ROI based on their type. The ROI originated
from the skeleton approach are evaluated by a formula involving several features
like size of the ROI, radius of the vessel and distance to center of the image. The
scores of all other ROI types are assigned only by their distance to the image center.

The evaluation was done with 287 TOF-MRA studies containing 147 aneurysms.
No leaving-x-out technique was used for evaluation. As this may be valid at the
first glance, this is clearly challenging. Obviously, the RBS was build, at least par-
tially, by statistical methods. A sensitivity of 96% was reported at 11.6 fpDS.
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Figure 4.8: Scheme of the algorithm by [Yang et al., 2011].

A further evaluation study on a different data set was done yielding 94.6% sen-
sitivity at 6.7 fpDS what fortifies the evaluation [Blezek et al., 2010]. However, the
evaluation of both publications is not directly comparable as they had a different
gold-standard. In the first publication, single reading of 2D-DSA images was used
as gold standard and in the latter one double reading of two radiologists was used
as gold standard.

The publication of [Yang et al., 2011] represents a mixture of previously pre-
sented approaches and is no novelty. The RBS is questionable as it seems rather
arbitrary as the rule finding mechanisms are explained by experiments. Thus,
the approach is theoretically independent of a database and represents a general
model. Practically, the rules are statistically dependent. The strength of the pub-
lication is the large image database that contains almost 300 data sets. The main
disadvantage of the algorithm is its non-transparency and complexity that could
lead to inexplicable results.

4.4 summary

This section concludes the State of the Art, which gave in a broad-to-narrow man-
ner an overview of the research topic. First, object detection methods in general
have been discussed. Then, an introduction to CAD with focus to methodology has
been given. Finally, methods to detect cerebral aneurysms have been outlined that
are summarized in Table 4.3. Their performance is compared with respect to their
FROC in Figure 4.9
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Figure 4.9: FROC for the existing aneurysm detection methods for TOF-MRA [Arimura
et al., 2006; Yang et al., 2011; Lauric, 2010; Kobashi et al., 2006; Uchiyama et al.,
2008]. For the methods of [Prasetya et al., 2011; Hassan et al., 2011; Suniaga
et al., 2012], no FROC or respective values are given. For methods tested with
CTA and 3D-RA only one publication [Lauric et al., 2010] provides FROC infor-
mation, therefore no FROC is given for these modalities.

The three major questions defined in the first paragraph of Chapter 4 can be
answered as follows:

• The methods to find initial ROI rely commonly on a search for specific shapes,
e. g., by analysis of the Hessian matrix, by an intensity template or by Gaus-
sian mixture modeling. To minimize FP, empirically found rules or machine
learning methods such as SVM or LDA are applied.

• Especially, lung nodules are similar to cerebral aneurysms with respect to
their shape and their common occurrence at blood vessels.

• The spherical shape-based analysis is the most promising technique to detect
cerebral aneurysms. The concept of multiple cascades in FP elimination is
suitable because there exist groups of FP that have different feature character-
istics with respect to true pathologies.

In summary, five different techniques for the initial detection of ROI exist in aneu-
rysm detection algorithms. These are spherical shape-based methods, symmetrical
shape-based objects, skeleton analysis approaches and difference image-based ap-
proaches (see Table 4.3). Additionally, hybrid methods have been proposed.

Shape-based methods assume a specific shape of aneurysms (e. g., spherical or
non-symmetrical) while skeleton-based methods rely on the specific characteristics
of the vascular skeleton in aneurysm regions. Small aneurysms are indeed repre-
sented by a short branch in the skeleton, but large and possibly close-to-vessel
aneurysms may have no characteristic terminating branch. They rather are charac-
terized by a clot in the skeleton. Difference image-based methods are only partially
suitable for initial ROI detection as the definition of a normal artery model is very
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challenging and can easily cause erroneous results. Most methods except spherical
shape-based methods are not able to detect fusiform aneurysms. Thus, in contrast
to the other strategies, spherical shape-based methods are suitable for detecting
small and large aneurysms of saccular and fusiform type.

As FP reduction step mostly statistical methods are employed. Several features
are computed usually based on intensity and shape of regions. The following
classification methods have been used:

• Linear Discriminant Analysis (LDA) or QDA,

• Rule-based System (RBS),

• Support Vector Machine (SVM),

• k-nearest Neighborhood classifier (kNN) and

• Thresholding.

For an overview of the different FP reduction step that are employed in the
aneurysm detection algorithms, see Figure 4.3. Most methods use LDA or QDA.
These methods employ a combined feature selection and classification and are
robust with respect to their parameter settings. Thus, the full potential of State
of the Art classifiers is not exploited. One reason for this may be the imbalance
that occurs in the database usually. That is, the sample size of aneurysmal ROI

compared to that of FP ROI is in the order of 101 to 103 times smaller. More
information about this problem is given in Section 5.9. However, recently a method
was proposed that employs a SVM [Suniaga et al., 2012].

The problem of statistical analysis still remains the same independent from the
used classifier: it is heavily dependent on the underlying samples, i. e., the test
database. Not only the amount of samples plays a role, but also the sample selec-
tion. Information about the selection of samples is not provided in any publication.
Most databases have only less than 50 true positive samples, which does not allow
properly to estimate the feature distribution in a high-dimensional space.

Possible problems related to the classification involve e. g., other ethnicities or
other scanning devices than used in the test data. For example, Asians have an-
other body structure than Caucasians, which leads presumably to different feature
distributions of aneurysms. Similarly, other acquisition devices lead to different im-
age characteristics changing the appearance of aneurysms. An acquisition-device
invariant reduction of ROI has to be found as well as a characterization that is valid
on all angiographic modalities.

Most algorithms are only tested on one modality. In a modern clinical environ-
ment multiple angiographic modalities are used for aneurysm management (cf.
Section 2.2 and 3). It is unlikely that an algorithm that is specifically developed
and tested for one modality will also work on another modality. Only two algo-
rithms have been tested on multiple modalities [Lauric et al., 2010; Hassan et al.,
2011]. Other algorithms neglect CTA and 3D-RA as major angiographic modalities
that are used routinely.

The segmentation of the vasculature is a prerequisite for all discussed aneurysm
detection algorithms, even if some parts, such as the blobness filter in [Arimura
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et al., 2006], work on the original data. This implies not only an additional effort,
but also that most algorithm results depend on the quality of the segmentation
algorithm.

The algorithms can be compared by means of their FROC curve (see Figure 4.9).
However, the evaluation of the algorithms can be questioned with respect to the
following points:

• The testing database is too small.

• The testing database contains only images from one acquisition device.

• The testing database contains almost only data sets with aneurysms.

• The evaluation scheme is not described properly.

• The algorithm is trained on the testing database.

The generalization ability can only be tested if the database is large enough
and consists of heterogeneous data sets. Otherwise, the algorithm may adapt to
the specific characteristics of a scanning device. It is important that the evalua-
tion database contains data sets without aneurysms. If the aneurysm prevalence
is almost 100%, the FP rate may be underestimated and it is not clear how the
algorithm will work with images from healthy patients. The evaluation should
be described properly and conducted in a valid, transparent way to simulate the
behavior of the method on unknown data sets.

Therefore, the following specifications for a valid evaluation are defined:

• The testing database should contain at least 50 data sets per modality.

• The testing database should contain data sets from different devices. An evaluation scenario
of a cerebral aneurysm
detection system is
specified

• The testing database should contain an aneurysm prevalence of ∼ 50%.

• The evaluation should be transparent and replicable.

• The evaluation has to be valid (separate training and testing database).

The aneurysm prevalence should ideally be realistic, i. e., 3%. However, it is
infeasible to assemble such a large database with enough aneurysms.

In clinical applications, a high sensitivity as well as a low FP rate of a CAD soft-
ware is crucial. Current algorithms reach a high sensitivity between 90% and 100%
at fpDS values that depend on the modality. For TOF-MRA, the value is between
1.9 fpDS and 11.2 fpDS, for CTA it is 5.4 fpDS and for 3D-RA, it is 0.7 fpDS. The
quality of the different algorithms is not objectively comparable as they depend
on their parametrizations and were tested on different databases with different
aneurysm characteristics.

Although all authors claim that their CAD system is automatic, they are far away
from being used in a clinical environment. Most algorithms depend on user inputs
or are very sensitive to parameter changes. Moreover, some algorithms require
(manual) pre-processing like vessel segmentation.
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M E T H O D

Different requirements for a clinical aneurysm detection algorithm have been sum-
marized in the Chapters 2 and 3. In this chapter, the own method is described.
The algorithm should work without vessel segmentation as this heavily influences
the detection process. Although, a large amount of pixels can be excluded (only
0.5% to 5% of all pixels are vessel pixels), a vessel segmentation represents a hard
constraint. That is, those pixels that are not included in the segmentation are
never considered again in the process. Furthermore, the quality of segmentation
methods depends on the image quality and therefore, on the modality. The vessel
segmentation is replaced by other algorithms, primarily registration to a model
data set.

Statistical methods depend on the underlying database. Such a dependence
should be avoided. However, it is clear that a complete independence cannot be
reached as some assumptions that originate from a statistical database have to
be made. The most important requirement is the multi-modality ability of the
algorithm for the four relevant modalities as already discussed in Section 2.2.5.

The strategy that is employed for aneurysm detection is based on expert knowl-
edge. In several discussions with neuroradiologists, this knowledge could be iden-
tified. The challenge is to formalize the knowledge by deriving features and in-
corporating constraints. A parametrical model is applied to govern the detection.
This model includes modality-given intrinsically information, e. g., the intensity
distribution of aneurysms, and extrinsically information given by experts, e. g., the
minimal size of aneurysms. Alternatively, a statistical model is employed that is
based on training. Both strategies are compared.

5.1 overview

An overview of the scheme is given in Figure 5.1. The workflow is derived from
the general workflow for CAD algorithms (cf. Section 4.2.7).

The overall scheme was initially presented in [Hentschke et al., 2011a] and then
continuously enhanced in [Hentschke et al., 2012a,b].

First, the data sets are normalized to account for different intensity distributions
and orientations within the same modalities. The data sets are then processed by a
multi-scale sphere-enhancing filter, also called blobness filter, to emphasize possi-
ble aneurysm regions. Initial ROI are found by applying a threshold segmentation
followed by a Connected Component Analysis (CCA) on the filtered image. Sev-
eral low-level and high-level features are computed on each ROI. These features
are intensity-based, shape-based or location-based. Then, two possible variants
are implemented: (I) A RBS excludes ROI based on simple rules that originate ei-
ther from modality-based knowledge or empirical domain knowledge. An Linear
Discriminant Function (LDF) employing either trained weighting or expert-based
weighting is used for further FP reduction by projecting the weighted features to
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Figure 5.1: The scheme of the proposed algorithm. The dotted line illustrates that features
are always computed on the normalized image.

an axis. The ROI that have a certain scalar LDF value above a threshold are deter-
mined as final aneurysm candidates. (II) State of the Art classification algorithms
are used directly on the features to eliminate FP.

Thus, in variant I an intelligent feature is used in conjunction with a simple
classifier. In contrast, in variant II relatively simple features are used, but an in-
telligent classifier. These are the two principal approaches in pattern recognition
[Duda et al., 2000].A parametrizable system

is presented that has a
flexible workflow

In order to cope with different modalities, a parametrizable scheme is used that
is adapted according to the modality. The major difference between CTA and other
modality data sets is that a mask image is created from CTA that only contains in-
tensities of contrast-enhanced blood vessels. The information about known vessel
HU in CTA is used (cf. Section 2.2.2). Additionally to vessels, also bone structures
are present in this mask.

5.2 aneurysm characteristics

Aneurysms can be divided into saccular or fusiform type (cf. Section 2.1.2). The
shape of both types differs. A generalization of aneurysms with respect to shape
or gray-level distribution is difficult.

Additionally, the feature characteristics differ depending on the modality. The
more objects or brain matter are present in the data, the more challenging is the
detection task. An optimal data set only contains vessel structures or arteries, re-
spectively. This is the case in 3D-RA. In MRA, vessels are usually emphasized
by intensity, however also brain matter is visible in TOF-MRA data. CTA without
bone-subtraction is the most challenging modality because of the ambiguous inten-
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sity distribution of bone matter and blood vessels that overlap in their HU values.
Furthermore, many cerebral structures are visible in the data sets similar to a nor-
mal head CT volume. Thus, the level of challenge in CAD algorithms depend on
the modality. The same applies for segmentation and detection algorithms.

Interviews with neuroradiologists and a medical literature review have been
made to characterize aneurysms with respect to specific features.

The following characteristics have been found:

1. They are located in the direct vicinity of vessels.

2. They are located at specific positions more frequently. Six general
characteristics to
describe aneurysms are
found

3. Their intensity value is between 150HU and 375HU for CTA data sets.

4. They have a diameter of 2mm to 25mm.

5. They have a high degree of roundness.

6. They are commonly located medial rather than lateral.

The characteristics 1-4 have a high degree of certainty while 5-6 are only true
tendentially (stated by neuroradiologists).

No statement about intensity can be made except for CTA data sets. For CTA
data sets, a certain intensity value range can be given as the HU values are nor-
malized [Dammert et al., 2004]. Aneurysms smaller than 2mm in diameter are
usually neglected and aneurysms larger than 25mm in diameter occur only rarely
[Wiebers et al., 2003].

It is not possible to describe aneurysms by only a single characteristic. In this
work, the goal is to use the found characteristics that apply for the majority of an-
eurysms. They have to be weighted as not all characteristics are equally important
and are not valid for all aneurysms or modalities.

Computable features from these key characteristics are derived later on (see
Section 5.5).

5.3 normalization

The image normalization (step 1) consists of a linear contrast stretching, an isotro-
pic voxel resampling and orientation normalization. Normalization is important
to produce data sets that have similar intensity distributions to minimize the influ-
ence of the acquisition device or the used sequence to the algorithm.

The contrast is stretched in the range of [0; 2048] for all 3D-RA and MRA data
sets. In CTA, the intensity values have a physical meaning and they are already HU

normalized. This has the advantage that the intensity level of contrast-enhanced
vessel voxels is known and can be used as a mask for the subsequent filter com-
putation in CTA. Different algorithms could be applied: classic thresholding or
double thresholding [Canny, 1986]. The latter is a technique using four thresholds,
two upper (tu1, tu2) and two lower thresholds (tl1, tl2). tu2 and tl1 define the
value range where all pixels must be segmented. tu1 and tl2 define the range Normalization in CTA

involves a mask image
consisting of vessel HU

where the values have to be segmented only if they are connected to pixels fulfill-
ing the other criterion. The double thresholding represents a more strict constraint
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that leads to fewer segmented pixels. Pixels outside the mask are set to an inten-
sity i that is either set to 0 or −2048, the HU value for water or air, respectively.
The first one produces within-object gradients and object-background gradients
whereas the latter one enhances especially object-background gradients. Further
post-processing algorithms as CCA or morphological operators like opening are
possible. However, this is not suitable as it bears the danger that aneurysm re-
gions are excluded. Therefore, only the intensity information and no other con-
straints are used to compute the mask image. The threshold segmentation forms
a constraint and represents no vessel segmentation as also other structures are
included.

The intensity values of the other methods have only partial meaning. 3D-RA
is subtraction based and measures the difference of material density before and
after CA administration. Vessels independent of size have the highest intensity
values in the data set. MRA measures the relaxation times of hydrogen atoms
that are induced through a magnetic field. The intensity values are usually higher
for vessels than the background. However, especially in TOF-MRA, also other
objects have high intensity values or vessels have a relatively low intensity value
due to slow blood flow. Only an approximate mapping between intensity and
membership to vessels can be done in these modalities.

Almost all medical data sets have different pixel spacing in the slice than be-
tween slices. Thus, the volume of a pixel is s = ps2p · pss, where psp is the pixel
spacing or side length of a voxel in mm in the slice (that is the same for both slice
directions usually) and pss is the pixel spacing of a voxel between slices. As a non-
isotropic voxel size is unfavorable for most image processing algorithms, they are
resampled by linear interpolation to reach an isotropic voxel size. A subsampling
is done within-slices and a supersampling is done between slices what constitutes
a compromise with respect to the sampling. Each voxel is assigned a side length of
l =
√
psp · pss in each dimension. The geometric mean as voxel length is proposed

in [Ibáñez et al., 2005]. Typical values for (psp, pss) areResampling is done to
ensure pixels of isotropic

side length • 3D-RA: (0.535, 0.535), thus they have already isotropic resolution,

• CE-MRA: (0.5, 0.98),

• TOF-MRA: (0.43, 0.86) and

• CTA: (0.395, 0.5).

Thus, 3D-RA data sets are not resampled. In CTA, the resampling does only
change the image content slightly. The largest effect due to resampling was in the
MRA modalities as psp ≈ 2pss.

It is required that all data sets have a certain orientation with respect to a pa-
tient coordinate system for the computation of a reference coordinate system. The
orientation of the volume is normalized so that the (x/y/z) coordinates of the im-
age correspond to left-right direction, to anterior-posterior direction and superior-
inferior direction, respectively. This information is taken from the header of the
DICOM data set where the direction vectors of all axes are stored. A transformation
to the desired coordinate system is then performed.
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Figure 5.2: Example of a Maximum Intensity Projection of a CE-MRA image with sagittal
slices and the desired region shown.

In contrast to other medical imaging algorithms, where commonly a smoothing
filter is applied, the input images are not filtered beforehand. Although noise
occurs in angiographic data sets, a linear filter alters the image information which
may invalidate certain assumptions about aneurysms and prevent analysis.

The data sets are assumed to have an acquired volume that includes at most the
head region from mandible to the top of the head. This was the case for the vast
majority of the data sets as the diagnostic or therapeutic questions were always
related to the cerebral vasculature or the neck vasculature. However, in few cases
of CE-MRA data sets, the acquired volume was very large and reached from the
aortic arch to the tip of the head. The desired region is then defined by a manual
cropping in one dimension (see Figure 5.2).

Furthermore, the computation of the normalized reference coordinate system
can be seen as a part of the normalization process. Details can be found in Sec-
tion 5.6.

5.4 blobness filtering

The derivation of initial ROI is the most important step in a CAD system. Differ-
ent techniques used in similar algorithms have been evaluated in Section 4.3. The
skeleton-based, difference image-based and symmetrical shape-based methods vi-
olate the constraint to be segmentation-free. The spherical shape-based analysis
is the most suitable method as its sole assumption is the approximated Gaussian
distribution of an aneurysm. A certain degree of roundness can be assumed for
the majority of aneurysms and describe saccular and fusiform aneurysms. Thus,
this morphological feature is chosen as a necessary condition. Different methods
were proposed for detection of spherical objects (see Section 4.3.1).
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(a) (b) (c)

Figure 5.3: (a) Example axial slice of a TOF-MRA data set containing one aneurysm (high-
lighted by an arrow), (b) the corresponding blobness image and (c) the corre-
sponding vesselness image. Vesselness and blobness values are high for the
aneurysmal region.

The HEA method is chosen because of their parametrical property. This method
employs a multi-scale filtering and is also known as blobness filter as it enhances
blob-like structures. The object diameter has to be known for the computation
of the multi-scale filter; however, this information is given. The method does not
rely on the exact image intensities. It rather uses the general spherical intensity
characteristic as constraint.

Different variants of the method exist. The variants of [Li et al., 2003] and [Frangi
et al., 1998] are suitable for the use as initial ROI finding method in step 2 (see
Figure 5.3b for an example of the filter output with Frangi’s variant). Li’s methodThe blobness filtering

enhances spherical
objects as cerebral

aneurysms

was chosen because of its parameter independence, Frangi’s method was chosen
because of its common use in CAD algorithms [Zhou et al., 2007; Forkert et al.,
2011; Wei et al., 2012]. Therefore, the system is configured using either of the two
methods. It is tested which variant leads to the best results.

The HEA relies on multi-scale information for object size characterization. Ob-
jects with a diameter between 2mm and 10mm are enhanced. 93% of aneurysms
fall in this range [Vlak et al., 2011]. Larger spherical objects are also found as
multiple sub-structures (see Figure 5.4).

Additionally, the vesselness is computed based on Frangi’s variant to enhance
vessel-like regions [Frangi et al., 1998] (Figure 5.3c). The filter output is used later
on as a feature. It is parametrized to enhance vessels having a diameter between
2mm and 6mm, which are typical values of the cerebral vasculature [Nowinski
et al., 2011]. Smaller vessels are considerably less relevant with respect to aneu-
rysm detection, larger vessels only occur outside a normal cerebral vasculature.

The multi-scale filtered data sets are the basis of the computation of initial ROI.
How the actual ROI are derived is the topic of the next section.
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(a) (b)

Figure 5.4: (a) 3D-DSA volume rendering of a giant aneurysm with a diameter of 21.3mm
is shown. (b) Volume visualization of a blobness filter of the same image is
shown. As the diameter of the aneurysm is larger than the maximum expected
radius rmax, multiple substructures are found.

5.5 computation of regions of interest

The goal of step 3 is to derive ROI from the blobness filtered data set. The highest
peaks in the blobness image are found by thresholding segmentation. The thresh- Initial ROI are found by

threshold segmentation
and clustering on the
blobness image

old t ′ = t Bmax was found experimentally for each modality (see Table 5.2 for
values and Section 6.4 for robustness experiments). Bmax is the maximum inten-
sity in the blobness image. t depends on the enhancement amount of the blobness
filter that is influenced by the modality characteristics. The lesser the difference
in intensities between background and vessels is, the smaller is the enhancement
amount on this modality. Thus, for 3D-RA, t has the highest value. This value
decreases with MRA and finally CTA has the lowest value.

The segmented volume is then clustered into ROI by a CCA to find connected
regions. Components having a volume smaller than smin are excluded. smin is
estimated to be the volume of a sphere s = 4

3πr
3 with radius r =1mm. Also,

it slightly depends on the enhancement amount of the blobness filter. Due to the
modality characteristic, this was smaller for CTA than for the other modalities since
otherwise small aneurysm ROI are excluded erroneously (see Table 5.2). These
initially computed ROI form the set of C0.

The employed threshold segmentation does not contradict the constraint to use
no segmentation as it is made on a feature image and not on the original data set.
It has the aim to find regions containing spherical objects and not to find vessel
pixels.

5.6 feature computation

In step 4, features are computed for each ROI. Most of these are derived from the
defined aneurysm characteristics (cf. Section 5.2).
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Table 5.1: Relationship between the characteristics for aneurysms
and derived image-based features.

Characteristic Feature degree of certainty

Vessel vicinity v, dCoW certain

Parent vessel location pA certain

Intensity range (CTA) i certain
Intensity range (3D-RA, MRA) i unknown

Diameter range sa certain

High degree of roundness b, Ψ tendentially

Medial location dc tendentially

Parent vessel location of FPb pFP -
a by indirect measurement in the blobness image.
b algorithm-introduced measure, no aneurysm characteristic per se.

18 distinct features are computed on the set of all initial ROI, C0. The features are
computed for each pixel contained in the ROI. The feature values for all pixels are
extracted and stored in a feature vector. Statistical measures are then computed on
the vector to derive scalar values.

The following features are computed:

• iavg, imin, imax, istddev : average (avg), minimal (min), maximal (max) and
standard deviation (stddev) value of the image intensity,

• bavg, bmin, bmax, bstddev: average, minimal, maximal and standard deviation
blobness values to enhance sphere-like structures,

• vavg, vmin, vmax, vstddev: average, minimal, maximal and standard deviation
vesselness values to enhance vessel-like structures,

• dc: Euclidean distance of the center of the ROI to the center of the data set (in
mm),18 features are computed

on the ROI to include
intensity-, location- and
probability information

• Ψ: sphericity as a second measure of the roundness,

• s: volume of the ROI in mm3 (s > smin),

• dCoW: distance of the ROI to an artery of the Circle of Willis in the reference
data set,

• pA: probability of aneurysm occurrence at the ROI position given by an atlas
and

• pFP: probability of FP occurrence at the ROI position given by an atlas.

Note that i,b and v are vector-based features, the other features are scalar values.
The 18 features form a feature vector F = (f1 · · · f18)T =

(
iavg · · ·pFP

)T . These
features can be divided into low-level and high-level features. While i, dc and s
provide only simple information, the other features are high-level descriptions of
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Table 5.2: Parametrization for each step of the workflow and all modalities. The step
numbers refer to Figure 5.1. Sec. = Section

Step Sec. 3D-RA MRA CTA

1 5.3 Normalization so that i = [0, 2048]
Mask image: 150 6
iavg 6 375

2 5.4 Parametrization is modality-independent

3 5.5 t = 0.25 t = (0.2a/0.15b) t = 0.12
smin = 8mm3 smin = 8mm3 smin = 5mm3

4 5.6 15 features 18 features

5 5.7 - - 150 6 iavg 6 375

- 0px 6 dCoW < dCoWmax
- dc < dmax

6 5.8 The LDF depends on a weighting vector W that is com-
puted either by training (Wt/Wte) or defined by experts (We)

7 5.9 Parametrization is modality-independent
a for TOF-MRA.
b for CE-MRA.

image or object characteristics that incorporate (model-based) knowledge and are
realized through sophisticated algorithms. b, v and Ψwere described in Section 5.4,
The atlas-based features dCoW, pA and pFP are presented in the following. These
features are not computed in 3D-RA data sets because this modality does only
contain one supplying artery per data set. A required model data set could have
been constructed by fusing multiple data sets.

Two different normalization methods were used. The first method normalizes
each feature with respect to the current data set DS:

min fi = min
DS

fi, max fi = max
DS

fi. (5.1)

min fi and max fi are the minimal and maximal feature values.
The second method normalizes each feature with respect to all data sets of the

modality M:

min fi = min
∀DS∈M

fi, max fi = max
∀DS∈M

fi. (5.2)

The relationship between characteristics and features are summarized in Ta-
ble 5.1.

The system shall not require a vessel segmentation as it has been shown to
heavily influence the detection quality [Lauric et al., 2010]. Furthermore, for CTA
without bone-subtraction, existing vessel segmentation algorithms require a large
prototypical training database.

Since inclusion of the vessel information is advantageous nonetheless, it is pro-
posed to replace vessel-segmentation by an atlas-based registration to determine
likely vessel locations [Hentschke et al., 2012b]. This produces the dCoW feature. A
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model data set of a normal patient is determined manually for all modalities. The
model data set has been chosen having a representative head size, a high image
quality and occurrence of no or only small aneurysms. A small amount of poten-Segmentation is replaced

by registration to a
model data set

tial normal data sets have been chosen and initial registration experiments have
been made. The candidate data set that proves to result in the best registration
quality (evaluated qualitatively) was chosen. Vessels in the reference data set are
segmented on each modality. I. e., a vessel segmentation algorithm is applied in a
controlled environment only for the four modalities rather than for every data set.

In case of the two MRA modalities, the Circle of Willis arteries are segmented.
In both cases, a threshold segmentation was used and a subsequent CCA was ap-
plied. The largest x components (x = [1, 5]) were taken as initial segmentation and
manually edited (especially at ACA locations, where the intensity is rather small).
In case of the CTA reference image, a manually segmented CE-MRA data set of
the same patient has been manually registered to the CTA data set resulting in an
excellent alignment.

The atlas-based features dCow,pA and pFP are not computed on the 3D-RA data
sets as only a part of the vasculature is seen in each data set which hampers the
registration to the reference data set. Furthermore, due to the high vessel inten-
sities, a vessel segmentation is implicitly included and probability information is
not necessary.

Then, a distance-transform is applied to the segmented model data sets with
a maximum distance of 20voxels similar to [Chillet et al., 2003]. This represents
8.3mm for TOF-MRA data sets, 10.7mm for CE-MRA data sets and 12.1mm for
CTA data sets. All voxels having a larger distance than 20voxels to the segmented
voxels are defined as background with a value < 0. By using a distance transform
a fuzzy degree of vessel membership is used rather than applying binary informa-
tion (vessel/no vessel). This fuzzy degree is necessary as a registration induces
alignment errors, i. e., a perfect matching cannot be reached. Furthermore, the
vessel topology and morphology is unique for every human, although a general
conformity exists. By using a distance transform, a statement can be made if a
voxel of a registered data set is inside the vessel (d = 0), in the vicinity of a vessel
(d < 20) or far away from a vessel (d < 0 or d > 20). Thus, registration errors and
the inter-patient vessel variability can be compensated by this technique.

Finally, each data set is automatically registered to the model data set. The goal
is to align the vessels of the Circle of Willis in both data sets and then use this infor-
mation to determine the likelihood of vessels without employing segmentation. A
rigid multi-scale registration with normalized cross correlation as similarity metric
and a stochastic adaptive gradient-descent as optimizer are used [Klein et al., 2010;
Maintz and Viergever, 1998]. The multi-scale approach is able to correct for large
initial misplacements. Cross correlation as similarity measure is sufficient because
of the intra-modality comparison. With the rigid approach, a good alignment
could be found in most cases. Since elastic registration incorporates additional
complexity into the problem, this technique was not used.

The distance of a ROI to the nearest vessel of the Circle of Willis arteries, dCoW,
can be determined by a lookup in the distance-transformed model data set. AA normalized reference

system is defined normalized reference system for each modality is defined through the registration.
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(a) (b)

Figure 5.5: (a) Volume visualization of the TOF-MRA reference data set. (b) Visualization
of the probability atlas (in red) in conjunction with the reference data set. White
arrows denote the left and right cavernous part of the ACI artery, the yellow
arrow represents the AComm artery and the green arrows denote the left and
right ACM artery.

Additionally to the intra-modality registration an inter-modality registration has
been found between the model data sets to be able to align the reference systems
of different modalities.

Based on the reference system, an atlas is built that incorporates the occurrence
probability of aneurysms with respect to the location. Aneurysm locations are
known as they are given by neuroradiologists (see Section 6.2). pA can be directly
derived from the atlas. A similar probabilistic atlas has been proposed for a breast
cancer CAD algorithm [Russakoff and Hasegawa, 2006]. A histogram of the oc- An atlas is computed to

include aneurysm
occurrence information

currences of these locations is built through the use of the normalized reference
system. Aneurysm positions from all modalities are used.

A 3D Kernel density estimation [Parzen, 1962] is carried out on the histogram
data set IA to compute an estimation of the true location distribution. For this
purpose, IA is filtered with a Gaussian kernel G having a standard deviation σ:

ĨA ≈ IA ∗G(σ). (5.3)

σ = 100 is set relatively large to ensure a blurring of the positions to account for
registration errors and inter-patient vasculature variability.

The final probability pA is computed by normalization over the whole atlas:

pA(x,y, z) =
ĨA(x,y, z)

max ĨA
, (5.4)

where max ĨA is the maximal intensity of ĨA. Naturally, the value is desired to
be high at aneurysm regions and low at positions where an aneurysm is unlikely
to occur.

An example of the aneurysm probability atlas can be seen in Figure 5.5b. Loca-
tions of high probability are at the AComm, the ACM and the cavernous part of the
ACI.
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Similarly to pA the probability pFP is derived by building an atlas of FP ROI for
the algorithm. pFP is algorithm induced, not an inherent property of aneurysms.
An accumulation of FP ROI was found to be at specific positions, especially around
the cavernous ACI with a high curvature (see Section 6.6.3). The same Kernel den-
sity estimation as described before is used to construct the atlas. The normalization
is done accordingly:

pFP(x,y, z) =
ĨFP(x,y, z)

max ĨFP
. (5.5)

The value of pFP is desired to be large for FP ROI. No relationship exists for true
aneurysm ROI.

The vessel segmentation is replaced by two algorithms:

• Multi-scale filter enhancing

– spherical-like structures (blobness filter) and

– vessel-like structures (vesselness filter)

• registration to a normalized vessel reference system.

The blobness filter is directly used to find initial ROI by threshold-segmentation
on the filtered data set. The vesselness filter and the registration are employed to
measure the likelihood of the ROI to be located in the direct vicinity to vessels.
Thus, the classification of a voxel to vessel or background does not longer rely on
one algorithm only. Additionally, no binary assignment, but a fuzzy assignment is
done. Whereas vessel segmentation has to be very accurate to ensure good results
in a detection algorithm, the employed algorithms allow for deviations from an
optimal result with only small changes in the detection algorithm output. Thus,
these steps influence the whole detection system lesser than normal (intensity-
based) vessel segmentation.

5.7 rule-based system

As seen in the workflow of the system in Figures 5.1 and 5.6, two variants have been
proposed after feature computation. Both variants serve the further analysis of the
ROI and the minimization of the FP amount. In variant I, a RBS and the classification
with linear discriminant are employed (see Section 5.7 and Section 5.8). In variant
II, State of the Art classification methods are used directly on the features (see
Section 5.9). The system is either performed with steps 5 and 6 (variant I) or with
step 7 (variant II). For an overview about the different variants, see Figure 5.6. The
results are compared in Sections 6.5.4 and 6.5.5.

In step 5, an RBS is used to exclude ROI from C0 that are not aneurysms. These
ROI are also denoted as FP. This is done by defining expected feature value ranges
for three features. If these features lie outside the range, the ROI is labeled asFeature value ranges are

defined to exclude FP a FP and not transferred to the next set C1 (see Figure 5.6). This represents a
hard constraint. The specific feature value ranges depend on the modality (see
Table 5.2). The constraints represent domain knowledge about expected location
and intensity of aneurysms.
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Figure 5.6: Details about the steps 5,6 and 7 that implement the FP elimination are given.
The two variants I (employing RBS and LDF) and II (employing only State of the
Art classifiers) get their input set of ROI C0 originating from the ROI compu-
tation. In variant I, the RBS is executed resulting in the ROI set C1 as output.
Then, the LDF has to be parametrized with a weighting. This is done by either
experts or with training. A score value is determined for each ROI. All ROI are
then ordered by their score value. Either an absolute global threshold on the
score value on all data sets is applied or a local rang ordering threshold on the
rank of the score value for each data set is chosen. This results in the set of
final aneurysm candidates Cf. In variant II, only the State of the Art classifiers
are executed also resulting in Cf.

The iavg constraint has been chosen according to the known HU value range of
enhanced blood vessels in CTA. The constraint of the dCoW value ensures that ROI

that are not attached to blood vessels near the Circle of Willis are excluded. This
constraint is chosen rather soft to avoid erroneously excluded true aneurysm ROI.
The constraint of the dc value excludes ROI that lie lateral with respect to the image
center. The maximum tolerated distance, dcmax, is estimated from the observed
values of dc of true aneurysm ROI:

dcmax = η max (dc). (5.6)

η > 1 is a tolerance factor.
In 3D-RA data sets, an additional constraint is introduced: ROI that are within

5px near the image boundary are excluded. This is necessary as the blobness
measure can reach extreme high values at the data set boundary. The cropping
vessels comply well with the spherical shape and a high filtering answer is the
consequence.

This sieving step is important to reduce the computational complexity. Further-
more, if a ROI can be excluded based on simple rules with a probability close to
certainty, this has to be exploited as the following classification is easier.

These constraints represent simple classification methods. The aim is to find a
good trade-off between exclude as many FP as possible while retaining the true
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aneurysms. When in doubt, a less restrictive method is more suitable and a classi-
fication can be postponed.

5.8 linear discriminant function

The set C1 contains all candidate ROI that are not excluded by the previous step.
To compute the set of final aneurysm candidates, Cf, it is desirable to assign a
score value to each ROI that describes the probability to be a true aneurysm (see
Figure 5.6). All derived features from Section 5.6 are included and combined in
the LDF as described in [Hentschke et al., 2012b]. The LDF is then used for final
classification in step 6. The score value A(c) of a ROI c is defined as:

A(c) =

18∑
i=1

wif̂i(c) + ε. (5.7)

with wi being the weights, f̂i(c) being all normalized feature values, c ∈ C1A linear discrimination
function condenses the
characteristic features

resulting in a score value
for each ROI

being a ROI and ε being a scalar error term. f̂i(c) is defined as:

f̂i(c) =

{
1− ¯fi(c) if f̄ =̂ {dCoW,dc,pFP, imin,bmin, vmin}

¯fi(c) otherwise.
(5.8)

f̄i(c) =
fi(c) − min fi(c)

max fi(c) − min fi(c)
. (5.9)

All feature values aim at having a maximal value for aneurysm regions. There-
fore, six of them are inverted.

The weighting vector W = {wi}, i = 1, . . . , 18 can be parametrized through
several techniques. Three techniques are chosen (see Figure 5.6):

• expert determined weights (a-priori), denoted as We,

• weights trained on a database using all features, denoted as Wt andThe LDF can be either
parametrized by expert

knowledge or by training • weights trained on a database using only the expert features, denoted as Wte.

In the first weighting variant, the decision is independent from training. How-
ever, as this assumption may not be true, the method is evaluated additionally by
the trained weighting and the results are compared. Additionally to train Wt with
all features, it is possible to take only the features set to 1 in We into account. Wte
implements an explicit feature selection step. Thus, if the results of Wte are better
than with Wt, the hypothesis is supported that the features taken in We form a
relevant subset of all features.

In a final step, all ROI are given a score value A(c) that depends on their features
and the chosen weighting. If ‖W‖ = 1 and ∀fi ∈ [0, 1]: A(c) ∈ [0, 1]. The higher the
value of A(c), the more likely the ROI is a true aneurysm.

Two different schemes have been used for finding a threshold (see Figure 5.6):
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• global threshold At or A thresholding on the
score value A determines
the final aneurysm
candidates

• rank ordering threshold rkt based on all A values per data set.

By using the global threshold, all ROI ci where A(ci) > At are taken as the final
aneurysm candidates Cf. At depends on the modality.

The threshold rkt is based on ordering all ROI ci based on their A(c) value. The
ROI having the largest rkt values are taken as Cf. The advantages and disadvan-
tages of these approaches are evaluated and discussed in Section 6.5.4.

5.8.1 Expert-based weighting

In case of the expert chosen features, a weighting vector We is built based on the
characteristic features defined in Section 5.2. According to Table 5.1, bavg char- The aneurysm

characteristics are linked
to the employed features

acterizes a high spherical shape whereas vavg and dCoW ensure the proximity of
the ROI to vessels. pA introduces a statistical measure of location occurrence. s
incorporates the size of the enhanced and segmented ROI that correlates with the
size of the potential aneurysm. dc integrates the tendency of aneurysms to occur
rather medial than lateral. pFP is used as algorithm-induced feature to integrate
the probability of FP location.

Even domain experts fail to define an importance for each characteristic feature.
Thus, each characteristic feature is taken as equally important for aneurysms. The
weights are set equally for all important features. For CTA and the MRA modali-
ties, We is defined as follows:

wi =

{
1
7 if fi ∈ {s,bavg, vavg,dc,dCoW,pA,pFP}

0 otherwise.
(5.10)

In case of 3D-RA, the reference-system-based features are not computed (cf. Sec-
tion 5.6), thus they are omitted:

wi =

{
1
4 if fi ∈ {s,bavg, vavg,dc}

0 otherwise.
(5.11)

ε is set to 0 in all modalities.

5.8.2 Training-based weighting

The training-based weighting Wt is computed by training a parametrization based
on a database with annotated class labels. For each modality, a different data base
exists what also leads to a different Wt per modality. The hypothesis is that Wt
and We have a similar weighting if the characteristic features do truly discriminate
true aneurysms and FP ROI.

In matrix form Equation 5.7 can be written as:

WT
t F = L (5.12a)
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Wt = (w1 · · ·w18, ε) , F =


f11 · · · fn1
...

. . .
...

f118 · · · fn18
1 · · · 1

 , L =

l1...
ln

 . (5.12b)

where W is the weighting vector, F is the matrix of normalized features contain-
ing all ROI, L is the class label vector and n is the number of ROI. li = 1 is set for
true aneurysm ROI while li = 0 is chosen for FP ROI. ε is included as the 19th

feature vector.
Linear regression is used as the training-based parametrization algorithm [Wit-

ten and Frank, 2000]. By using linear regression, the Mean Square Error (MSE)
error is minimized [Duda et al., 2000]:

eMSE(Wt) =

N∑
i=1

(WT
t F− L)

2 = ‖FWt −C‖2 → min . (5.13)

No attribute selection is used and the Akaike criterion for model selection is
chosen [Akaike, 1974]. The derived weighting vector is denoted as Wt.

The only difference in computing Wte compared to Wt is using a different F
matrix. This F matrix consist only of the values of the four (for 3D-RA) or seven
(for all other modalities) expert-chosen features.

5.9 classification

State of the Art classification methods are used in step 7 to sieve ROI that are no
true aneurysms. In variant I the classification is done on the one-dimensional LDF

value (see Figure 5.1 and previous section). In contrast, in variant II the computed
features are directly used as input for the classification algorithm. Thus, the classi-
fication is done in an 18-dimensional space (for CTA and MRA) or 15-dimensional
space (for 3D-RA), respectively.

Well-known State of the Art non-linear classification methods are e. g., SVM, Neu-
ral Networks and alternating decision tree.

The quality of a classification result depends on several parameters. One of
the largest influence factors is the sample size of the underlying classes. Most
classification algorithms work best if the sample sizes are equal for each class [Sun
et al., 2009].

In this work, each ROI contains one of two classes:

• ROI containing true aneurysms CTP and

• all other ROI CFP.

The samples belonging to CTP and CFP are denoted as #CTP and #CFP, respec-
tively. As #CTP � #CFP, CTP is the minority class whereas CFP is the majority
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class. Imbalance occurs if samples of a class occurs more often (in the order of
magnitude) than another class. The between-class ratio µ is defined as

µ =
#CTP
#CFP

. (5.14)

Imbalanced class distributions have led to poor results with State of the Art
classifiers [Sun et al., 2009]. A distribution is imbalanced if µ 6 0.1. In practical Imbalanced class

distributions commonly
lead to poor classification
results

applications, even more drastic ratios occur. Almost all algorithms fail to classify
the samples without losing the sensitivity of the minority class [Sun et al., 2009].

Imbalance occurs in many CAD algorithms [Doi, 2007]. This is due to the aim to
avoid missing a pathology what leads to a relatively high amount of ROI containing
only few true pathologies. An additional problem is that the absolute amount of
#CTP is usually small. Thus, only a sparse sampling of the n = 18 dimensional
space is done.

The main problem with imbalanced data in classification is the large sample size
of the majority (FP) class. If µ = 0.01 and all samples are classified as the majority
class, the overall accuracy is 99% (see Section 6.3 for the definition of the accuracy).
The accuracy is used commonly as measure that is maximized by the classifier. In
this case, samples from the minority class would be classified correctly although
the accuracy measure is very high. The output of such an algorithm would be
useless for CAD purposes.

To overcome the problem of classification of imbalanced data, several approaches
have been proposed [He and Garcia, 2009; Sun et al., 2009]. A general data-level
strategy is to resample the data to reach an equal sample size of the minority and
majority class [Chawla et al., 2002]. This can be done by undersampling the majo-
rity class or oversampling the minority class. Another strategy is at the algorithm The problem of

classifying imbalanced
data can be solved by
using misclassification
costs or data resampling

level by incorporating an appropriate inductive bias into the classification algo-
rithm. This requires deep knowledge and severe modification of the classifier [He
and Garcia, 2009]. While resampling strategies are independent of the classifier,
this is not the case for algorithm-level approaches. Thus, these approaches can
only be used individually. MetaCost, a general strategy independent of the clas-
sifier, was proposed to overcome this problem by including misclassification costs
[Domingos, 1999].

Thus, three different strategies are compared:

• the original classifier with the original database (original),

• the classifier adapted with misclassification costs and the original database
(MetaCost) and

• the original classifier with the Synthetic Minority Over-sampling Technique
(SMOTE) resampled database (resampling).

The classifiers are chosen so that four different classification strategies were
covered: Bayesian classification, classification by (non-linear) decision boundaries,
tree-based classification and classification by boosting. These State of the Art clas-
sifiers are compared:
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• Naive Bayes [Jain et al., 2000]

• SVM [Cortes and Vapnik, 1995] with

– linear kernel

– polynomial kernel

– radial kernel

• Neural network [Theodoridis and Koutroumbas, 1999]

• Alternating decision tree [Freund and Mason, 1999]

• Logit Boost [Friedman et al., 2000]

SVM is parametrized with c = 10000 in case of the original classifier and Meta-
Cost and with c = 1 in case of the resampling. The parametrization was chosen
empirically. All other parameters were set to their default values of the used soft-
ware package Weka [Hall et al., 2009].

MetaCost overcomes the problem of individually adapting classifiers for imbal-
anced data sets by forming a general cost-sensitive framework for arbitrary classi-
fication methods [Domingos, 1999]. A variant of bagging is used as the ensemble
method. Multiple bootstrap replicates of the training set are formed and a classifier
is trained on all bootstraps. Each class probability is estimated by the votes that it
receives from the ensemble. All training samples are relabeled with the estimated
optimal class given by Bayes’ conditional misclassification risk:

R(i|x) =
∑
j

P(j|x)Cx(i, j), (5.15)

where P(j|x) is the conditional probability of sample x having class j and Cx is the
cost matrix. Then, the classifier is applied once more on the relabeled training data
set.

The following cost matrix is used:

Cx =

(
0 µ

1 0

)
, with the first row accounting for TP and the second row account-

ing for FP. Hence, the cost for misclassifying 1 TP and µ FP are equal.
SMOTE was successfully applied to imbalanced data problems [Chawla et al.,

2002]. The algorithm oversamples the original data set by analyzing the similarities
in feature space of the minority class. Artificial samples are added into the cluster
of CTP. For CTP, the k nearest neighbors in feature space for each sample xi ∈ CTP
are computed. One neighbor x ′i is randomly chosen and the vector xsyn = xi +

αr(x
′
i − xi) is computed. αr is a random variable between [0, 1]. xsyn is added to

CTP. Thus, in SMOTE the cluster of the minority class is synthetically condensed.
Adaptations and further algorithms based on SMOTE exist [He and Garcia, 2009].

An oversampling percentage of 1000% with k = 5 nearest neighbors is chosen.
Additionally to SMOTE, CTP are randomly subsampled to ensure µ = 1.

5.10 generalization

Apart from the detection of algorithms, ideas of the proposed system can be em-
ployed in other areas.
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To use the proposed system to detect specified organs or pathologies the follow-
ing adaptations have to be done:

• The characteristics of the organ have to be found (e. g., location, shape and
other preferably unique characteristics).

• Computable features have to be derived from the characteristics.

• The data sets have to be normalized if they are acquired with different de-
vices. The proposed system can

be generalized to find
other pathologies• A necessary condition has to be found for initial ROI detection. This is com-

monly the most important characteristic of the pathology.

• Rules to eliminate FP ROI have to be defined based on modality-based knowl-
edge, expert-based knowledge and statistical analysis.

• To rate the remaining ROI, the importance of features or characteristics has
to be weighted. This weighting can either be acquired by interviews with
experts or by training. Training could also be utilized for the generation of a
probability atlas.

Exemplarily, the adaption of the proposed system to work as a detection system
for lung nodules is discussed. Most of the characteristics of cerebral aneurysms
also apply for lung nodules. An obvious difference is that the pathology occurs in
lungs instead of the cerebral vasculature. It has to be assessed if they occur com-
monly at certain locations or in the vicinity to landmarks. The same features as in
the proposed cerebral aneurysm detection system could be used. A normalization
of CT data sets is presumably not necessary as the CT modality is already normal-
ized by HU values. To find initial ROI, the blobness filter is suitable as lung nodules
commonly have a spherical shape. The parametrization of the RBS would have to
be adapted, e. g., by employing intensity information about lung nodules, distance
of the lung nodules to the lung wall or the expected size of the lung nodules. An
adaption of the LDF would also be necessary. As annotated lung nodule databases
are publicly available, a training of the LDF weights is possible. Also the formation
of a probability atlas containing enough samples is simplified.

The formalization of characteristics is the main source of intelligence in the sys-
tem. Characteristics are usually described by vague informal statements. It is com-
monly difficult for medical experts to formulate their implicit knowledge. Often,
they refer to their experience as major source in pathology detection. The transfer
of the characteristics to computable features relies on the skills of a computer sci-
entist and cannot be formalized. It is important that the scientist obtains a deep
understanding about the pathology by discussion with medical experts, literature
review and observation of the clinical workflow.

An expert weighting for an LDF can be acquired by using questionnaires. The
medical experts have to decide whether the chosen features describes the patho-
logy well, e. g., by assigning a numeric score. To reach a high generality, a high
amount of experts have to fill out the questionnaire. The weighting can be obtained
by averaging. Then, the expert-weighted parametrization of the LDF corresponds
to a suitable scalar score value.
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Furthermore, it may be useful to determine subgroups of the pathology, e. g.,
small and large pathologies. These groups have varying characteristics and should
be treated differently.

The substitution of the segmentation by a registration is advantageous and an
important step in the proposed system. This idea can be also be used in other
CAD or image-processing areas where a segmentation influences the subsequent
algorithms. The binary decision if a voxel consists to a vessel is replaced by a
fuzzy degree, e. g., by incorporating a distance transform on a segmented model
data set as proposed. The registration also simplifies the creation of a probability
atlas by defining a standardized reference system.
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6
E VA L U AT I O N A N D D I S C U S S I O N

In this chapter, the presented method was tested with clinical data sets. The ro-
bustness of the parameters and possible variants of each part of the algorithm were
evaluated. Thereby, the following major questions had to be answered:

1. What is the best possible performance of the system given the best parame-
trization?

2. Does the expert-set parametrization of the LDF lead to similar or better results
than the trained parametrization?

3. Does the trained parametrization produce similar weighting values than the
expert-based parametrization?

4. Are the results computed with the expert-set or trained parametrization com-
parable to State of the Art classifiers?

First, a short introduction is given about external tools used for implementing
the prototype. Then, the evaluation data is presented and the used evaluation
measures are introduced.

The experiments are divided into two sections: First, the robustness experiments
are presented. Then, the procedural experiments are summarized whereby the
different variants of the algorithm are examined. The chapter concludes with a
discussion and a comparison to existing algorithms.

As many symbols were used, the referring sections are indicated. Furthermore,
a list of all symbols can be found after the table of contents at the beginning of the
thesis.

6.1 implementation

Several software tools and libraries were used to implement a C++ prototype of
the described method. The open-source C++ library ITK provides a large variety
of image-processing methods [Ibáñez et al., 2005]. Segmentation methods, cluster-
ing methods, multi-scale filtering and other methods provided by ITK have been
used. The open-source C++ library VTK provides capabilities to visualize (medi-
cal) image data [Schroeder et al., 2006]. It has been used to provide informative
(volume) visualization. A small C++ wrapper library around the open-source C++
library GDCM [Malaterre, 2008] was used to read DICOM data sets. The library
was written by Tom Brosch. To compute the multi-scale blobness filter of Li [Li
et al., 2003], a C# implementation written by Fabian Held and Stephan Fensky was
used.

Qt is an open-source C++ library providing Graphical User Interface (GUI) func-
tionality and additional methods extending the standard template library of C++
[Blanchette and Summerfield, 2008]. It was employed to build the framework of
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Table 6.1: Overview of the four evaluation databases. DS = Data sets, A. = Aneu-
rysms, #Total = Total number, #w/o A. = number of data sets without
aneurysms, #< 5mm = Number of aneurysms smaller than 5mm, #NIR
= number of aneurysms initially not in report. The pixel spacing is given
after isotropic resampling.

DS A.
Modality #Total #w/o A. #Total # <5 mm #NIR Pixel spacing

3D-RA 46 6 47 18 2 0.32mm–0.54mm
CE-MRA 38 23 19 6 0 0.37mm–0.91mm
TOF-MRA 41 18 34 7 0 0.42mm–0.76mm
CTA 72 29 59 26 9 0.55mm–0.79mm

the prototype and for building the GUI. Furthermore, the commercial software
Mevislab [Ritter et al., 2011] and Matlab [Attaway, 2011] have been used for rapid
prototyping and creating State of the Art volume visualization for this thesis.

The implementation of the open source data mining software Weka was used
for computation of the linear regression and all classification methods [Hall et al.,
2009]. The registration was performed with the open-source toolkit elastix [Klein
et al., 2010].

6.2 data

The proposed system was evaluated on 197 clinical patient data sets which con-
sisted of 46 3D-RA data sets, 38 CE-MRA data sets, 41 TOF-MRA data sets and 72
CTA data sets. These data sets contained a total of 159 cerebral aneurysms. All
data sets of the same modality formed a database. An overview of the databases
is given in Table 6.1.

The data sets were acquired with different scanners. While the scanning se-
quences were the same for the majority of CTA and all 3D-RA data sets, different
sequences have been used for CE-MRA and TOF-MRA data sets. The majority of
data sets were acquired with the SENSE protocol, however the acquisition param-
eters varied. The scanners had a magnetic field strength of 1T to 3T with most
data sets acquired at 1.5T.

Some data sets originated from the same patients, but had different modalities
except for some cases. These were 3D-RA data sets where different arteries were
contrasted, e. g., the left and right ACI. Although for some patients pre-treatment
and post-treatment data sets were available, only the first acquired data set con-
taining the untreated aneurysm(s) was considered.

Overall, 159 unruptured aneurysms were present in the data sets. The size of
the aneurysms measured by their largest diameter ranged from 2.0mm to 54.5mm.
An overview of all aneurysm sizes is given in Figure 6.1. Seven aneurysms were
of fusiform type, all other were of saccular type. A distribution of aneurysm sites
is given in Figure 2.5.

The effort to collect data sets was high. Access to the clinical database was
given, however no access could be granted to the patient record and thus, the
diagnosis for each patient was only available by request later on. As data set
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Figure 6.1: Overview of aneurysm sizes in all databases. The bins are divided in 5mm
steps except for the first and the last bin. The first bin covers aneurysms be-
tween 2mm and 5mm as 2mm is the minimum defined size of aneurysms.
The last bin covers all aneurysms equal to or larger than 25mm, so-called giant
aneurysms.

information, only the modality and the part of the body that was scanned were
available. Thus, it was unclear if the data set contains aneurysms. CTA data
sets where a subarachnoid hemorrhage was present or images that had a poor
image quality (rated as 5 or 6 on a German standard school grade scale by a
neuroradiologist) were excluded. Still, some grade 4 data sets were included that
were challenging to read even for experienced neuroradiologists. Other artifacts
such as image distortions because of clipping or metallic dentures occurred. These
and all other data sets were included in the evaluation data bases, no selection was
done.

The ground truth consisting of the number and location of aneurysms was given
by two experienced neuroradiologists (experience seven and nine years, respec-
tively) who screened the data sets explicitly looking for aneurysms. Additionally,
the information was available whether the found aneurysms were listed in the
clinical report. Those who were not listed are assumed to be especially hard to
find as they were overlooked at least once by a physician. 11 aneurysms were in
this group. The quality of the ground truth is comparable to or better than similar
aneurysm detection methods. However, it has to be noted that there still is a small
chance that aneurysms could be overlooked. This applies especially to small aneu-
rysms in the MRA data sets where the detection rate by physicians is considerably
smaller than in the other modalities.

In conclusion, the most data bases fulfill all criteria defined in Section 4.4. For
each modality, at least 38 data sets were present. The data sets were acquired with
different devices. Approximately 50% of the data sets contain no aneurysm except
for 3D-RA. This was caused by the aneurysm management in the University Hos-
pital Magdeburg (cf. Section 2.3) where 3D-RA data sets are almost only acquired
if an aneurysm has already been found. The aneurysm management was also a
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reason for the small number of aneurysms in CE-MRA as this modality was used
for regular follow-up after treatment.

6.3 measures

The quality of a CAD algorithm can be measured with respect to a given ground
truth. All ROI can be classified as one entry in the standard confusion matrix [Jain
et al., 2000] (cf. Section 2.2):

• True Positive (TP),

• False Positive (FP),

• True Negative (TN) and

• False Negative (FN)

The sensitivity se given a parametrization is defined as:

se =
nTP

nTP +nFN
, (6.1)

where nTP and nFN denotes the amount of TP ROI and FN ROI, respectively. se
is computed based on the number of total aneurysms in the data sets. Thus, for
reaching se = 1 it is required that each aneurysm (TP ROI) is found. If not stated
otherwise, TP or FP always denote TP ROI or FP ROI, respectively.

An aneurysm was rated as found and thus belonging to the class TP if a ROI is
near the given aneurysm position. Formally defined, it is found if:

pg ∈ ci ∨ d(c(ci),pg) < 2rg. (6.2)

pg is the given position of the aneurysm, c(ci) is the center point of a ROI ci found
by the CAD system, d(p1,p2) denotes the Euclidean distance between two points
p1 and p2 and rg is the radius of the aneurysm. The found ROI does not have to
be centered in the actual aneurysm as a physician notices the aneurysm even if the
ROI is located at the aneurysm neck or in the feeding vessel in the vicinity of the
aneurysm.

The sensitivity of a system alone is not sufficient for evaluation as the suitability
is also expressed by its specificity. It is defined as:

sp =
nTN

nTN +nFP
. (6.3)

nFP is the quantity of FP ROI.
However, in practice, the related amount of FP is of interest to evaluate the algo-

rithm. Therefore, the average FP amount per data set, fpDS, is computed:

fpDS =
nFP
nDS

. (6.4)
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(b)

Figure 6.2: (a) The AUC is the area under the FROC curve plotting sensitivity against fpDS.
FP0.9 is defined as the amount of fpDS at 90% sensitivity. (b) se10 is defined
as mean sensitivity at 10 fpDS ± 5 fpDS (and sampled every 2.5 fpDS, which is
omitted in the scheme for better clarity).

nFP and nDS is the number of data sets. fpDS is normally computed using all
data sets of a modality.

Choosing the optimal parameters of a system is a tradeoff between a high sensi-
tivity and a low FP rate. This is condensed in the Free Response-operator Character-
istic (FROC) curve by changing a parameter value while leaving all other parameter
values fixed and plotting a curve defined by se and fpDS (see Figure 6.2a). Either
the global threshold At or the rank order threshold rkt is used as varying parame-
ter. se and fpDS are mutually dependent: se(fpDS) or fpDS(se) can be computed.
The following evaluation measures are derived from the FROC:

• Area under Curve (AUC) of the FROC (see Figure 6.2a),

• fp0.9: the amount of false positive ROI at a sensitivity of 0.9 (see Figure 6.2a),

• se10: the average sensitivity at 10 fpDS ± 5 fpDS (see Figure 6.2b).

The AUC of the FROC is defined as:

AUC =
1

Ω

Ω∫
0

se d fpDS. (6.5)

Ω > 0 is the maximum defined fpDS value.
Discretized over all measuring points of the FROC and using the trapezoid rule

this leads to:

AUC =
1

2Ω

Ω−1∑
i=0

(fpDS(i+ 1) − fpDS(i)) (se(i) + se(i+ 1)) . (6.6)

Ω = 15 is chosen for the evaluation of the system as a high sensitivity is reached
with this value for all modalities.
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AUC is defined in the range of [0, 1] with an optimal value of 1. In this case,
each ROI is correctly classified independent of the parametrization.

A high sensitivity is of paramount importance since it is the goal to support
physicians by detecting aneurysms. A sensitivity of at least 90% has to be reached
to be suitable for a clinical employment. Thus, FP0.9 is defined as:

FP0.9 = fpDS(0.9). (6.7)

That means, the average amount of false positives per data set is computed at
90% sensitivity. A low FP0.9 value is desired for a CAD algorithm.

In a CAD, too many FP are not acceptable since it no longer reduces reading
time. Interviews with neuroradiologists have revealed different statements about
the maximum amount of FP that could still be tolerated. A fpDS value of 10 is
assumed to be the upper bound. Thus, as last evaluation measure the averagese10 is the main

evaluation measure sensitivity at 10 fpDS ± 5 fpDS is used as a score value similar to [van Ginneken
et al., 2010]. se10 is defined as:

se10 =
1

5

∑
i

se(5+ 2.5i), i = 0, . . . , 4. (6.8)

se10 takes values between [0, 1], se10 = 1 is the optimal value.
As evaluation measures for the classification algorithms, the sensitivity or TP

rate (Equation 6.1) and the specificity or TN rate (Equation 6.3) are usually used.
Additionally, the accuracy acc is commonly employed:

acc =
nTP +nTN

nTP +nFP +nTN +nFN
. (6.9)

However, this assumes the same misclassification costs, i. e., equal costs for mis-
classifying a true lesion as FP and to misclassify a FP as true lesion. A classifier
leading to a simultaneous high sensitivity and specificity is desirable especially
for CAD systems as the misclassification costs differ, e. g., it is more costly to erro-
neously classify a true lesion as no lesion than to classify no lesion as true lesion.
The measure G-mean gm leads to this property [Kubat et al., 1998]:

gm =
√
se · sp. (6.10)

Consequently, it is used as the evaluation measure for the classification algo-
rithms. gm yields to values between [0, 1] with 1 being the optimal value.

6.4 robustness experiments

Each experiment was performed as a cross-validation to separate training and test
data as the system partly depends on statistical measurements. The features pA,
pFP, dcmax,Wt andWte depend on training. For each modality, the data sets were
divided into four folds having approximately the same amount of aneurysms and
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Table 6.2: Overview about the parameters of the
method.

Symbol Algorithm part Section

α, β, γ Blobness filter 5.4
rmin, rmax, N

t, smin ROI extraction 5.5

dCoWmax, dcmax RBS 5.7

data sets. The atlas-dependent feature pA was computed on all data sets of all
modalities except the current fold (inter-modality cross-validation). pFP and the
threshold dcmax were computed on all data sets of the current modality except
the current fold (intra-modality cross-validation). Also, the training of Wt and
Wte was done by intra-modality cross-validation. Note: a list of

smybols/parameters can
be found after the table
of contents at the
beginning of this thesis

Each experiment resulted in four FROC, one for each fold. The average FROC was
computed by the aggregation of the results of all folds. For pA computation, it
was ensured that no data sets of the same patient having a different modality were
included in the probability maps. However, this happened only three times.

The goal of the robustness experiments was to test the dependence of the sys-
tem on its parametrization. In Table 6.2, the relevant parameters are summarized.
The testing protocol was the following: only one parameter was varied at a time
whereas all other parameters remained fixed. A meaningful value range was de-
termined for each parameter in a pilot experiment on few prototypical randomly
chosen data sets. Based on the found value range, a suitable parametrization value
sampling was chosen. The experiments were then done either on all databases or
only on specific databases. The decision depended on the measured parameter
influence in the pilot experiments or expected influence on the results.

Typically, comparative experiments have been done to measure the change of
results between different parametrizations or variants. These changes were mea-
sured using the introduced evaluation measures. The most important evaluation
measure is se10, as it condenses the important characteristics of the FROC in a
scalar value. Thus, this measure was used to compare different parametrizations
or variants by employing diagrams. Additionally, tables containing all evaluation
measures of all experiments can be found in Appendix A.

6.4.1 Multi-scale filter parametrization

The first relevant part of the system is the computation of the multi-scale blobness
filter described in Section 5.4. This method is the backbone of the whole system as
all other parts depend on the filter output. Either Frangi’s variant or Li’s variant
can be used for computation.

As a multi-scale filtering approach was employed, the expected object radii
[rmin, rmax] and the sampling rate N were important parameters for both variants.
Larger objects than rmax were found as multiple sub-structures (see Figure 5.4).
The parameters α, β and γ were used for Frangi’s variant only. These parameters
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Figure 6.3: The robustness of blobness parameters rmin and rmax computed with Frangi’s
method (F) was evaluated. For TOF-MRA, also Li’s method (L) was evaluated.
rmax = 10 rmin.

represent coefficients to weight different measures that determine the deviation
between object and a Gaussian intensity distribution.

parametrization of rmin , rmax and N Pilot experiments have been made
with eight randomly chosen CE-MRA data sets containing nine aneurysms and
Frangi’s blobness variant. The expected radii of the aneurysms were parame-
trized with [rmin, rmax] = 2i·[0.25mm, 2.5mm], i = 0, . . . , 3. N was set to 5.
All parametrizations led to the same se10 values and similar AUC values with a
maximum difference of 3.9% (see Table A.1).

The second and third multi-scale parametrization with i = 1 and i = 2 were
then chosen for the test with all databases except for the 3D-RA database. ForOptimal diameter ranges

were between 1mm and
10mm

all databases, the parametrization with [rmin,rmax] = [0.5mm, 5mm] led to the
best results (see Table A.2). The se10 value was 2.4% better for CE-MRA, 22.4%
better for TOF-MRA and 36.2% better for CTA with respect to the parametrization
[1mm, 10mm]. Thus, an expected object diameter of 1mm to 10mm led to the best
results, as expected. This range represents 77% of the aneurysms in all evaluation
databases.

Regarding the sampling rate N, it was found in a pilot experiment that the
default value of N = 5 and N = 6 led to the best results in terms of se10 (see
Table A.1). N = 5 was used for all remaining experiments due to the smaller
computational cost. No further experiments were done as the maximal differences
in se10 were only 5.3%.

parametrization of α, β and γ The weighting parameters α and β were
proposed to be set to 0.5 [Frangi et al., 1998] and were fixed for the evaluation. γ
depends on the gray-scale range of the image. Experiments were done with the
CE-MRA database with γ = 5, γ = 10 and γ = 20. The last two γ values led to the
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same results, while γ = 5 led to considerable poorer results (see Table A.2). Thus,
γ = 10 was used for further experiments.

comparison of li’s blobness and frangi’s blobness Pilot experiments
have also been done to evaluate the parameters of Li’s blobness variant. This
method only requires the parameters [rmin, rmax] and N. It was assumed that the
effects of N are the same as in Frangi’s method, thus N was set to the value 5.

In an experiment using seven randomly chosen data sets of all modalities con-
taining 13 aneurysms, [rmin, rmax] were set to the radii 2i·[0.25mm, 2.5mm],
i = 0, . . . , 3, as before. The parametrization with [0.5mm, 5mm] and [1mm, The blobness variant by

Frangi performed
slightly better

10mm] led to the best results and was subsequently tested on the TOF-MRA
database. Again, the parametrization with [0.5mm, 5mm] led to better evalua-
tion measurements (see Figure 6.3 and Table A.3). The se10 value had improved
by 19.7% in comparison to [1mm, 10mm]. Concerning the comparison to Frangi’s
variant, the results of Li’s variant led to slightly worse evaluation measures. While
the se10 measure was 1.7% worse, the AUC value was 3.3% worse for the radii
[0.5mm, 5mm].

In conclusion, if the best parametrization for both blobness variants was found,
they produced similar results. However, Frangi’s variant was more robust with
respect to the parametrization. Thus, Frangi’s method was preferred to enhance
spherical structures in this system and used in following experiments.

6.4.2 ROI extraction parametrization

The next investigated part is the ROI formation described in Section 5.5. The rele-
vant parameters are the threshold factor t used for the extraction of ROI by cluster-
ing all peaks in the blobness image and the minimal size of a ROI, smin. Note that
the actual threshold value is t ′ = t Bmax.

parametrization of t Experiments have been made with all databases. Val-
ues between t = [0.05, 0.25] with ∆t = 0.05 have been tested. In 3D-RA, t =

[0.05, 0.4] was tested. The results varied largely per modality (see Figure 6.4 and
Table A.4). The best and the worst se10 value differed 6.8% for 3D-RA, 7.6% for
CE-MRA, 25.6% for TOF-MRA and 11.4% for CTA. t = 0.15 is a good tradeoff
between finding the relevant peaks at aneurysmal positions in the blobness image
and finding too many peaks related to non-aneurysmal positions. This parame-
trization led to good results for all databases. However, for each modality, the
optimal results were achieved using a specific value for t by optimizing se10: For optimal results, t

has to be set differently
for each modality• For 3D-RA, this was t = 0.25 leading to FP0.9 = 2.41 and se10 = 1.0.

• For CE-MRA, this was t = 0.15 leading to FP0.9 = 9.24 and se10 = 0.895.

• For TOF-MRA, this was t = 0.2 leading to FP0.9 = 10.34 and se10 = 0.835.

• For CTA, this was t = 0.15 leading to FP0.9 = 47.47 and se10 = 0.634.

parametrization of smin No formal evaluation has been done with the min-
imal valid volume of a ROI, smin. This parameter has been estimated based on the
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Figure 6.4: The effect of t on the results was studied. t controls the peak extraction from
the blobness filtered data set that form the ROI. t was varied between 0.05 and
0.4 for 3D-RA and between 0.05 and 0.25 for all other modalities.

minimal expected diameter of aneurysms, 2mm. Theoretically, this results in a
volume s = 4.19mm3 for a perfect sphere. As the ROI were not perfectly sphere-
shaped and the volume of a pixel differed quite much (between 0.03mm3 and
0.75mm3), the value has been chosen slightly larger. For CTA smin = 5mm3 was
chosen, thus 2r = 2.12mm, for the other modalities smin = 8mm3 was chosen,
thus 2r = 2.48mm. No aneurysmal ROI has been found in the database that was
smaller than these values. As long as smin <10mm3, a different parametrization
of smin only led to small changes in the results except for CTA. In CTA 5% of the
aneurysmal ROI have a volume of < 10mm3. This was the case for < 3% only in
the other modalities. smin depends on t also: The higher t, the smaller generally
was the volume of the ROI.

6.4.3 Rule-based system parametrization

The parametrization of the RBS is important as this step represents a hard con-
straint. The relevant parameters are the maximal tolerated distance to the next
vessel in the model volume, dCoWmax, and the maximal tolerated distance to the
center point of the data set, dcmax. The first parameter depends on the registration
quality while the second parameter is a statistical measure.

parametrization of dCoWmax In this experiment, dCoWmax was assigned
the value of 5px, 10px, 15px and 20px. Experiments have been done on the CTA
database as this parameter has a large importance there. The results can be found
in Figure 6.5 and in Table A.5. 20px was the value leading to the best resultsA large value for

dCoWmax led to
distinctly better results

in terms of all three evaluation measures. The se10 measure increased directly
proportional to the value of dCoWmax. Thus, the larger the distance to the vessels
were, the less was the probability that a ROI was erroneously excluded. Therefore,
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dCoWmax was set to 20px for all modalities. This is the maximal value as the
distance transform has been computed with a maximum distance of 20px.

parametrization of η η represents a tolerance factor accounting for inter-
fold variations. dcmax = η max (dc) was computed for each cross-validation fold
with max (dc) denoting the maximum value of dc for TP ROI on all data sets of a
database except these that were in the current fold. η was parametrized with 1.05,
1.1, 1.15 and 1.2 to estimate a suitable dcmax value.

The experiments are summarized in Figure 6.6 and in Table A.6. The parameter η η is robust to changes,
but a higher value is
preferred to provide a
safety margin

did only have a minor influence on the results as the se10 measure varied between
0.4% and 3.7% if the best and the worst results were taken into account. The
best results have been achieved with η = 1.05 in case of CE-MRA and CTA. For
TOF-MRA, η had to be set between 1.15 and 1.2 to ensure the inclusion of all
true aneurysm ROI. A too low value for η has the risk that a true aneurysm ROI

is excluded. Therefore, higher values for η were preferred. Further experiments
between the parametrization η = 1.15 and η = 1.2 revealed that 1.17 was a suitable
value for all modalities to minimize the risk of eliminating a TP ROI at the cost of
including more FP ROI.

6.4.4 Summary

t was the most important analyzed parameter as it heavily influenced the results
of the system. This parameter had to be determined carefully for each modality. A
default value that produced good results for all modalities has been found. In all
further experiments, t was fixed at the optimal value to estimate the best results.
Frangi’s variant of blobness produced slightly better results than Li’s variant. A
minimal expected object radius of 1mm and a maximal object radius of 10mm led
to the best results. The other blobness filter parameters were relatively robust.

The RBS parameters had to be carefully set as they could lead to the elimina-
tion of true aneurysm ROI. A good parametrization has been found by setting
dCoWmax = 20px and η = 1.17 for each modality. Both parameters were set rather
conservatively. This led to an optimal sensitivity, but also to a higher amount of FP

ROI.

6.5 procedural experiments

Every part of the system workflow influences the results. For most parts, different
variants have been proposed and it was tested which one led to the best result.
If no variants have been proposed, the relevance of the parts was evaluated by
comparing the results obtained with and without the specific algorithm step.

Both experiment types are referred to as procedural1 experiments. An overview
about the relevant steps covered by experiments is given in Table 6.3. The different
blobness variants have already been tested in Section 6.4.1, all other variants are
tested below.

1 procedural: of or pertaining to a procedure or procedures (according to www.dictionary.com).
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Figure 6.5: The robustness of dCoWmax, the maximal distance to the nearest vessel, was
evaluated. The rank order scheme was chosen.
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Figure 6.6: The robustness of the η, directly related to dcmax (maximal distance to the
center of the image of a ROI), was evaluated.
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Table 6.3: Overview about relevant steps that were tested in procedural experiments. V =
Variant, S = Skip step.

Step Variants Section

CTA mask image Thresholding, Double Thresholding (V) 5.3

Blobness variant Frangi, Li (V) 5.4

Registration quality Omit registration-based parameters (S) 5.6
Feature normalization Local, global (V) 5.6

Relevance of RBS Omit RBS (S) 5.7

Single features as threshold for
classification

s, bavg, bmax, Ψ (V) 5.8

Influence of LDF weighting We, Wt, Wte (V) 5.8
Different ordering scheme At, rkt (V) 5.8

Classification State of the Art classifiers (V) 5.9

6.5.1 CTA mask computation

As first procedural experiment, the mask computation of CTA was evaluated. The
mask ensures that the blobness computation is only done on relevant blood vessel
intensities (cf. Section 5.3). Three options have been tested: no masking, normal
thresholding and double thresholding. The normal thresholding has been tested
with two outside values, 0 and −2048. The double thresholding has been tested
with masking (the value of the segmented pixels remains unchanged while the
others were set to the value 0) and without masking (binary segmentation).

A masking of CTA data sets was important. In experiments without a mask,
the number of ROI approximately tripled. The general problem was that extremely
high blobness values emerged at skull bones that distorted the whole multiscale-
filtered image. As the ROI extraction step depends on the maximal blobness, most
relevant ROI at vessel positions were either not regarded or too many ROI were
included.

The produced segmentations with thresholding and double thresholding were
similar. The amount of segmented pixels was only 18% less with double thresh-
olding compared to normal thresholding. This value was expected higher as the
double thresholding algorithm includes more information compared to a simple
thresholding algorithm.

In a pilot experiment, the unmasked double thresholding led to better results
than the masked double thresholding and was used afterwards. Surprisingly, the
double thresholding led to worse evaluation results than simple thresholding (see
Figure 6.7 and Table A.7). The value of se10 decreased by 40.1% and 35.9% in
comparison to normal thresholding with −2048HU and 0HU outside value, re-
spectively. The vessel masking of the double thresholding was more precise. How-
ever, many (artificial) boundaries were introduced that led to a larger amount of
ROI in comparison to the normal thresholding. Normal thresholding

performed better than
double thresholding for
CTA mask computation

The thresholding variant with an outside value of −2048HU led to better results
than the variant using 0HU as outside value. The se10 value increased by 3.1%.
This was due to the effect of the higher gradients at the boundaries between ves-
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T (-2048) T (0) DT
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Figure 6.7: Influence of the CTA Mask image parametrization on the system. In contrast
to thresholding, where t has been set to the value of 0.12, the experiments with
DT were done with t = 0.07. The results achieved with t = 0.12 and DT were
worse. T (-2048) = thresholding with −2048HU, T (0) = thresholding with 0HU,
DT = double thresholding without masking.

sels and background in CTA. They were more important than the within-object
boundaries as they contributed to the differentiation between vessels and other
objects.

6.5.2 Registration features

The registration-based features are important to discriminate between vessel ROI

and non-vessel ROI (dCoW). Additionally, the probability features pA, pFP are in-
corporated into the LDF. These features depend on the registration quality. The
registration led to suitable results even if it was only approximate. Possible reg-
istration errors and the inter-patient vessel variability are compensated by several
mechanisms. Thus, the registration-based features are valid even in the case of
minor registration errors.

Due to the lack of ground truth as in most registration problems [Maintz and
Viergever, 1998; Aylward et al., 2003], the registration quality could be measured
by using appropriate methods such as comparing the distance between fiducial
markers at the same morphological (vessel) locations in the model image and the
original data set. Also other methods have been proposed [van de Kraats et al.,
2005]. However, a formal evaluation of the registration quality was relinquished.

Instead, an indirect evaluation of the impact of these features was done by omit-
ting them in the computation of A. The results of this experiment are summarized
in Figure 6.8 and Table A.8. The evaluation measures deteriorated if the threeThe system performed

worse without
registration-based

features

registration-based features were weighted with 0 in experiments on all databases.
The deterioration measured by se10 was 16.1% for CE-MRA, 6.8% for TOF-MRA
and 22.1% for CTA. No experiments have been done with the 3D-RA database as
none of the registration-based features was computed there (see Section 5.6).

116



6.5 Procedural experiments 117

6.5.3 Rule-based system

The RBS eliminates ROI by defining valid feature value ranges. This step is im-
portant because otherwise irrelevant ROI are included in the final aneurysm can-
didates. This was confirmed in the experiments with and without the RBS (see
Figure 6.9 and Table A.11). The largest effect was present in the CTA database due
to the impact of the intensity constraint. The se10 value deteriorated by 56.3%. The rule-based system is

important to exclude
false positive ROI

For the TOF-MRA database, the se10 value deteriorated by 44.3% and for CE-
MRA, the value deteriorates by 38.3%. In the 3D-RA database, only few ROI were
excluded as the initial ROI computation already contained almost only relevant ROI.
The se10 value did not change and the AUC value deteriorated by 1.3%.

Thus, the RBS is an important part of the system as irrelevant ROI were discarded.

6.5.4 Linear discriminant function

After the completion of the RBS, the remaining ROI are further evaluated on basis
of a score value A. Two thresholding methods were tested to define the final
aneurysm candidates onA (cf. Section 5.8). The absolute thresholdAt is computed
on all data sets, while the rank order threshold rkt is computed per data set. The
ROI having the rkt largest A values are defined as final candidates.

thresholding of the scoring value A The effect of both methods on
the different modalities is summarized in Figure 6.10 and Table A.11. In 3D-RA,
both methods produced equal se10 values, only a difference in the FP0.9 measure
was present (25.2% in favor of the absolute scheme). For CE-MRA, the difference Rank order thresholding

led to better results for
CTA while absolute
thresholding led to better
results in all other
modalities

in se10 was 4.9% in favor of the absolute scheme. For TOF-MRA there was no
difference in terms of se10, however the other two values were slightly better by
employing the absolute threshold (4.1% for AUC and FP0.9). For the CTA data base,
the rank ordering led to considerably better results (see Figure 6.19b). The se10
value differed by 16.6%.

It is desirable to combine the absolute and the rank order scheme. This can
be done as follows: first, all ROI fulfilling the criterion A(ci) < At are excluded.
Then, the rank order thresholding is done with rkt as the varying parameter. This
led to good results in all modalities and can be seen as a compromise for the two
schemes (see Figures 6.18 and 6.19). A drawback is the resulting two-dimensional
optimization function.

ldf parametrization : We , Wt and Wte An important aspect is if the ex-
pert parametrization and the trained parametrization led to comparable results.
We represents the expert weighting while Wt denotes the trained weighting using
all features. Wte is the trained weighting computed by regarding the features of
We. Wt and Wte are computed using linear regression.

The results are summarized in Figure 6.11 and Table A.10. Compared to We, the The expert
parametrization led to
better results for all
modalities compared to
the trained
parametrization

parametrization Wt resulted in worse evaluation measure values in almost every
database. In 3D-RA the difference in se10 was 4.5%, in CE-MRA the difference was
1.1%, in TOF-MRA the value differed by 25.6% and in CTA the value differed by
14%. Thus, a good generality has been achieved with the trained parametrization
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Figure 6.8: Results that were achieved by omitting registration-based features pA, pFP and
dCoW (w/o registration features). Results achieved with these features (w/
registration features) are shown for comparison.
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Figure 6.9: Results that were achieved without excluding ROI by the RBS (w/o RBS). Results
achieved with the RBS are shown for comparison (w/ RBS).
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Figure 6.10: Results that were achieved with the absolute threshold (abs) and the rank
order threshold (rk).

only for 3D-RA and CE-MRA. The small amount of training data sets (75% of
data sets for each database as a four-fold cross-validation was done) influenced
the results in favor of the static expert parametrization.

The relevance of the expert-chosen weighting can be indirectly measured by
comparing the results using the parametrization Wt and Wte. If the features are
relevant, the evaluation measures computed with Wte should improve in com-
parison with Wt. This was clearly the case for all modalities except 3D-RA (see
Figure 6.11 and Table A.10). In 3D-RA the differences between the evaluation mea-
sure values were only marginal (no difference in terms of se10 and 1% in terms
of AUC). For CE-MRA the difference in terms of se10 was 1.1%, for TOF-MRA the
improvement was 15% and for CTA the value increased by 5.4% compared to the
results computed with Wt parametrization.

The results with We parametrization led to better measurements than with Wte
parametrization except for CE-MRA. The improvement in terms of se10 was 4.4%
for 3D-RA, 9.2% for TOF-MRA and 27.3% for CTA. For CE-MRA, the se10 value
was the same. Thus, even if a feature selection was done, the generalization of the
expert-based parametrization could not be achieved using the trained parametri-
zation.

To test the influence of the cross-validation, the experiments with parametriza-
tionWt andWte were repeated without cross-validation, thus using all data sets of
a database for training. The improvements for Wt were between 2.3% and 14.3% Expert-based feature

selection improved the
results

and for Wte the improvement was between 1.3% and 14.3% in terms of se10 (see
the error bars in Figure 6.11 and the average FROC curve of CTA in Figure 6.13).
This was the estimation of the upper boundary of results that can be achieved
with linear discrimination. The evaluation measures of We and Wte converge if a
training on all datasets is done.

It is also possible to computeWt on all modalities rather than only on one moda-
lity. The chance is that additional training samples lead to a better discrimination
model. The risk is that the data sets of different modalities are too heterogeneous
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Figure 6.11: Experiments with the LDF and parametrization with We, Wt and with Wte.
The error bars show how the values improved if no cross-validation was done
(all data sets of the same modality were used for training).

and that the ROI characteristics of the two classes cannot be generalized with re-
spect to their features. The 3D-RA database was not considered in the computa-
tion as its image characteristics are too different and as only one supplying vessel
is shown per data set.

The results are summarized in Figure 6.12 and Table A.9. The measures dete-
riorated compared to the training over one modality for CE-MRA by 8.3% and
for CTA by 9.5%. For TOF-MRA, however, the results improved by 6.9%. This
means that the in-modality heterogeneity of TOF-MRA (between folds) was larger
than the heterogeneity across all modalities. For the other modalities the assump-
tion holds true that the characteristics of the modalities were too different to be
well-generalized in a common training.

An interesting question is which features were the most relevant with respect to
their statistical discrimination power computed in Wt. The trained weighting val-
ues in Wt are shown in Table 6.4 (computed per modality). The weighting values
differed quite heavily per modality and also per fold. For the 3D-RA database the
volume s statistically was the most relevant feature for discrimination. For the CE-
MRA database, it was the standard deviation of the blobness values, bstddev. For
TOF-MRA, it was the standard deviation of the vesselness, vstddev, and for CTA, it
was the aneurysm probability, pA.

single features as scoring value The LDF value A(ci) consists of the
combination of four or seven weighted feature values. To demonstrate the superi-
ority of this combination over the use of single feature values as score, experiments
have been performed (similar to [Hentschke et al., 2012a]). The LDF was parame-
trized with a weighting factor 1 for the tested feature and 0 for all other features.
As threshold At, all absolute values of the respective feature were iterated and
a FROC was computed. In a pilot experiment, only four features led to good re-
sults: s, bavg, bmax and Ψ. These were subsequently tested as score values for
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Figure 6.12: Results with Wt trained across all modalities. For comparison, the results
achieved with Wt trained across one modality is shown.
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Figure 6.13: Average FROC for CTA database reached with rank ordering scheme and
different LDF weighting parametrization with cross-validation (w/ CV) and
without cross-validation (w/o CV).
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Figure 6.14: Experiments with single features as score values. The results were computed
with the ordering scheme leading to the optimal quality. A is the score value
for aneurysms, s is the volume of the ROI, bavg is the average blobness value
and Ψ is the sphericity value. Ψ was not computed for 3D-RA due to technical
restrictions. Psi = Ψ.

all databases. The results are summarized in Figure 6.14 and Table A.12. The best The combined feature A
led to superior results
compared to other single
features

results achieved with single features as score were still worse than the A value com-
puted with the We parametrization for all modalities. The best single feature was
s for 3D-RA, CE-MRA and TOF-MRA and bavg for CTA. The difference in terms
of se10 to the results with A was 2.1% for 3D-RA, 2.4% for CE-MRA, 10% for
TOF-MRA and 42.6% for CTA. Thus, the largest effects of the feature combination
were seen in the TOF-MRA and the CTA database.

Furthermore, the same experiment was done with the locally normalized fea-
tures instead of the globally normalized features. The value was normalized by
the maximum value of the feature in the data set (see Section 5.6). By locally
normalizing the feature values the probability density functions of the classes TP

and FP change. More importantly, the overlap of both distributions changes. A
small overlap is desirable as the classes can be differentiated based on feature
value threshold. The probability density functions are directly associated with the
FROC: Each point on the curve represents a classification threshold value. Thus,
the AUC values computed with locally normalized feature values were compared
to the non-normalized feature values. If the AUC measure value increases, the lo-
cal normalization reduces the overlap of both probability density functions. For
the majority of features, this was the case (see Figure 6.15 and Table A.13). The
normalization has only a small effect for 3D-RA and CE-MRA data sets while for
TOF-MRA and CTA data sets, the effect was larger. Thus, the use of local normal-
ization is suitable as it led to quality improvements in the proposed system.
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Figure 6.15: Experiments with feature normalization. The difference between the AUC com-
puted with local normalization (AUCl) and the AUC computed wit global
normalization (AUCg) is given for selected features. A is the score value for
aneurysms, s is the volume of the ROI, bavg is the average blobness value and
Ψ is the sphericity value. Ψ was not computed for 3D-RA due to technical
restrictions. Psi = Ψ.

6.5.5 Classification

The LDF can be replaced by State of the Art classification algorithms (cf. Section 5.9).
While a LDF uses a linear decision boundary, classification algorithms also allows
for non-linear decision boundaries. The experiments have been done in the same
test environment as the experiments with LDF. All features were locally normal-
ized. A four-fold cross-validation was employed. The data basis was the ROI set
C0, i. e., the results of the system without applying the RBS. Experiments with
applied RBS resulting in the ROI set C1 led to worse results. This was due to the
smaller amount of samples (ROI) in C1 with respect to C0.

The amounts of samples were:

• For 3D-RA 267 and 305 in C1 and C0, respectively,

• for CE-MRA 700 and 2587 in C1 and C0, respectively,

• for TOF-MRA 657 and 2565 in C1 and C0, respectively and

• for CTA 40 613 and 8106 in C1 and C0, respectively.

All experiments have been done with five classifiers (Naive Bayes, SVM, Neural
Network, ADTree and LogitBoost) and three different parametrizations:

• Neither the data, nor the classifier was altered (original).

• The data was resampled (resampling).

• The classifier was evaluated incorporating misclassification costs (MetaCost).
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For details about the classifiers, their parametrization and selection, see Sec-
tion 5.9. A scatterplot of the features bavg and vavg can be found in Table 6.6.
Further feature scatterplots can be found in Figure A.15 and Figure A.16. As the
main evaluation measure, G-mean gm was used (see Section 6.3).

The results are summarized in Figure 6.16, Figure 6.17 and Table A.14. The orig-
inal classifiers without adaptations did not allow a good discrimination between
true aneurysm ROI and FP ROI. The naive Bayes classifier led to the best results
with an average gm of 0.78 and an average se of 0.68. However, this quality was
still too poor for the use in a CAD algorithm. The resampling

parametrization and
MetaCost were able to
classify the imbalanced
data leading to good
results

The results of all algorithms improved in terms of gm if the database was re-
sampled or if the algorithm accounted for misclassification costs by using Meta-
Cost. The resampling method performed slightly better on average, the average
gm value of all databases was 0.82 compared to 0.70 with MetaCost. However,
for three modalities, the best results of a single classifier were achieved with the
MetaCost adaptation.

A disadvantage of MetaCost is that misclassification costs have to be provided.
These were estimated by the between-class ratio µ. The resampling algorithm was
less dependent on its parametrization and should therefore be preferred. The best
results of one classifier averaged over all modalities have been achieved with the
combination of LogitBoost and MetaCost.

As no robustness evaluation with respect to the relevant parameters has been
done, no FROC could be computed, but only a point on the FROC curve. Based on
this point, a quality can be given as se and fpDS values are defined. As the classifi- Comparison of the

classifier results and the
results with the linear
discriminant function is
only indirectly possible

cation algorithms were trained on the ROI set C0, they were also evaluated on this
set. In this set, a very small amount of aneurysms were not included because they
have not been found during the initial ROI finding step. For LogicBoost a sensitiv-
ity of 77% in 3D-RA at 0.85 fpDS could be reached. For CE-MRA the sensitivity was
95% at 8.9 fpDS and for TOF-MRA 79% sensitivity has been reached at 10.7 fpDS.
In case of CTA the sensitivity was 90% at 44.2 fpDS. Except for 3D-RA these results
are within the FROC curve of the results achieved withWe LDF parametrization (see
Figures 6.18 and 6.19). Thus, the use of a classification method instead of applying
the LDF led to better results only in the case of 3D-RA. The results with LogicBoost
were better compared to the results computed with Wt parametrized LDF. Thus,
the non-linear classifier is superior to the linear discriminant function.

Note that the results were affected by the cross-validation and by the relatively
small amount of folds. Because of computational complexity and reduction of
evaluation effort, four folds were chosen. Also, this represents a rather realistic
evaluation as the system was tested on a relatively large amount of unknown data
sets.

6.5.6 Summary

Regarding the procedural experiments, the ordering scheme in the final classifi-
cation step has a large influence on the results. While the rank order scheme
produced distinctly better results for the CTA database, the absolute thresholding
produced slightly better results in the other databases. The difference was 16.6%
in terms of the se10 value for CTA and 4.9% for CE-MRA. The se10 values were
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Figure 6.16: Experiments with the tested State of the Art classifiers and resampling. NB =
Naive Bayes, SVM p = SVM with polynomial kernel, SVM r = SVM with radial
kernel, NN = Neuronal network, LB = LogitBoost.
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Figure 6.17: Experiments with the tested State of the Art classifiers and MetaCost. NB =
Naive Bayes, SVM p = SVM with polynomial kernel, SVM r = SVM with radial
kernel, NN = Neuronal network, LB = LogitBoost.
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Table 6.5: The optimal evaluation measurements
computed with the weighting We. The
values correspond to the FROC in Fig-
ures 6.18 and 6.19. The best evaluation
measure values for each modality are
printed bold.

Ordering Database AUC FP0.9 se10

abs 3D-RA 0.927 2.41 1
rk 3D-RA 0.927 3.22 1
combined 3D-RA 0.927 2.41 1

abs CE-MRA 0.786 9.08 0.905
rk CE-MRA 0.735 11.39 0.863
combined CE-MRA 0.764 8.24 0.895

abs TOF-MRA 0.689 10.34 0.835
rk TOF-MRA 0.662 10.78 0.835
combined TOF-MRA 0.668 10.1 0.835

abs CTA 0.608 48.53 0.692
rk CTA 0.637 14.03 0.807
combined CTA 0.688 13.93 0.807

equal for TOF-MRA and 3D-RA, however the other evaluation measures showed
better results. A combined scheme can be computed leading to good results in
all modalities. It resulted in the best values for FP0.9 in all modalities and in the
best values for se10 in all modalities except for CE-MRA, where it was only 1.1%
worse.

It was shown that the registration-based features led to an improvement of the
system quality. The se10 measurement deteriorated between 6.8% and 22.1% with-
out the use of these features. The use of the expert feature weighting We led to
similar or better results than the trained weighting Wt for all modalities except
CE-MRA, especially because of the small amount of folds in the cross-validation.
The improvements were between −3.4%2 and 9.2%. Additionally, no non-linear
classifiers were found that produced better results for all modalities except for
3D-RA.

6.6 discussion

In Figures 6.18 and 6.19, the FROC of the system using the optimal parametriza-
tion is shown. Note that the average FROC was computed because of the cross-
validation evaluation. The respective evaluation measures for each database are
summarized in Table 6.5. They are directly related to the grade of complexity
that the modality poses for aneurysm detection. The best measure values have
been achieved on the 3D-RA database. On the CE-MRA database, the results were
slightly worse. Because of the heterogeneity of the data sets, the proposed al-
gorithm performs worse in TOF-MRA than in CE-MRA. Although the task was

2 For CE-MRA, the parametrization with We led to worse evaluation values than the parametrization
with Wt.
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challenging, the results for the CTA database have almost reached the quality of
the TOF-MRA database. For all modalities a good sensitivity was achieved at a
reasonable amount of FP.

The four key questions can be answered as follows:

1. The results reaching the maximal sensitivity for the four modalities were (cf.
Section 6.5.4):

• 3D-RA: 100% sensitivity at 3.7 fpDS,

• CE-MRA: 95% sensitivity at 8.2 fpDS,

• TOF-MRA: 94% sensitivity at 10.9 fpDS and

• CTA: 95% sensitivity at 22.8 fpDS.

2. The expert-set parametrization We of the LDF led to comparable or better re-
sults for all modalities than the trained parametrization Wt (cf. Section 6.5.4).

3. The trained weighting vector values in Wt were similar to the expert-based
weighting vector values in We for TOF-MRA and CTA. For 3D-RA and CE-
MRA the similarity was small (cf. Section 6.5.4).

4. The results achieved with the expert-set parametrization We were compara-
ble or better to the chosen State of the Art classifiers. The results computed
with the classifiers led to better evaluation measures than the parametriza-
tion with Wt (cf. Section 6.5.5).

For the MRA modalities > 90% sensitivity was reached while having around
10 fpDS. For the 3D-RA modality, even > 95% sensitivity has been reached at
3 fpDS. These values are within the initially defined target. For CTA data sets
> 90% sensitivity has been reached at 14 fpDS. However, compared to the other
modalities, this is a good result considering the challenges of CTA data sets.

The detection method had an average runtime of 4min 20 s per data set on a
standard quad-core PC. The runtime on CTA was higher than on MRA and 3D-RA
as it mainly depends on the image size. The major amount of time was required
to compute the multi-scale filter and the registration (combined 94% of the time).
The runtime may be easily reduced, e. g., by using parallelization and hardware
acceleration.

6.6.1 Detection of small and overlooked aneurysms

The size of aneurysms influences the detection rate by neuroradiologists [Ward-
law and White, 2000]. Smaller aneurysms tend to be overlooked more easily than
larger aneurysms, although the position described by their feeding vessel plays an
important role as well [Wardlaw and White, 2000; White et al., 2000]. The sensitiv-The sensitivity to detect

small aneurysms is good ity to detect small aneurysms having a diameter of < 5mm was 95% (56/59) in the
proposed system measured across all modalities. The FROC for small aneurysms is
given in Figure 6.20 for each modality. For 3D-RA and TOF-MRA, the results with
data sets containing small aneurysms were better than the results on all data sets.
On CTA, the evaluation measures were slightly worse and on CE-MRA, they were
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Figure 6.18: The average FROC for the three different ordering schemes for (a) 3D-RA and
(b) CE-MRA using the We parametrization. In (a), the rank order and the
combined ordering scheme produce identical results. Additionally, the perfor-
mance with the best classifier, LogitBoost, is shown as a black circle.
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Figure 6.19: The average FROC for the three different ordering schemes for (a) TOF-MRA
and (b) CTA using the We parametrization. In (b), the rank order and the
combined ordering scheme produce almost identical results. Additionally, the
performance with the best classifier, LogitBoost, is shown as a black circle.
Note that the x-axis in (b) is differently scaled than in the other FROC curves.
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Figure 6.20: The average FROC for the all databases for small aneurysms (diameter < 5mm)
using the We parametrization is shown. The FROC on all data sets are shown
for comparison.

distinctly worse. More CE-MRA data sets containing small aneurysms have to be
tested to evaluate this result further.

The system detected 82% of aneurysms (9/11) that were not detected by at least
one radiologist who was responsible for the clinical report. Thus, the proposed
system is able to reveal previously overlooked aneurysms.The proposed system is

able to detect aneurysms
that were overlooked by

physicians

All fusiform aneurysms in the data sets have been found. These were quite
large3 in size (8.6mm to 54.4mm).

6.6.2 Relationship between A and aneurysm features

The scalar value of A(ci) may be correlated to aneurysm features such as size or
parent vessel location. Therefore, the feature vectors were compared using the
correlation coefficient4. The correlation was high for the CE-MRA database withThe value of A is related

to the vessel location We (0.62) and low with all other databases (0.24 for 3D-RA, 0.04 for TOF-MRA and
0.03 for CTA). Thus, a high A value does usually not imply a large aneurysm size.

The parent vessel location influenced the score value A(ci) with parametrization
We. ROI belonging to AComm aneurysms generally had high A values for 3D-RA,
CE-MRA and CTA data sets. Almost all aneurysms at this location had a round
and regular shape and did fulfill all defined criteria quite well despite that they

3 This is related to the definition of the size as the largest lumen diameter. For fusiform aneurysms,
the diameter perpendicular to the vessel centerline is more relevant. It is 5.0mm to 18.8mm.

4 Two vectors, Fa and Aa, were compared. Fa = (fa1, . . . , fan) denotes the features values fai, i =
1, . . . ,n of all aneurysm ROI. Aa = (A(c1), . . . ,A(cn)) represents the A values of the corresponding
aneurysm ROI.
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had a small size of approximately 5mm in average. ROI belonging to aneurysms
at the ACM had small values in all modalities. The reason might be that the ACM

is rather laterally located and that the aneurysms are commonly small. Thus, the
defined aneurysm criteria were not fulfilled well and the A value was rather low.
Also ROI belonging to aneurysms at ACI locations had usually quite high A values.

6.6.3 Analysis of FP and FN

In the next paragraphs, FP ROI and FN ROI are analyzed in detail per modality. The
analysis was done at two system parametrizations ϕ1 and ϕ2. A parametrization
may be specified by defining a point on the FROC curve. Either the point having
the maximal sensitivity was taken, denoted by ϕ1, or the point at 3 fpDS, denoted
by ϕ2. FN ROI was analyzed with both parametrizations, while FP ROI were only
analyzed at ϕ2. For the analysis with ϕ1 all data sets were taken into account,
while for ϕ2 only between 4 and 15 randomly chosen data sets were employed.

fn analysis The proposed algorithm was able to detect 96.8% of aneurysms
(154/159) overall at parametrization ϕ1. Only five aneurysms were never found,
i. e., they were FN. The proposed algorithm detected all aneurysms in 3D-RA. One
aneurysm was missed in CE-MRA, two aneurysms were missed in TOF-MRA and
in CTA, respectively.

In CE-MRA, no ROI was found at the aneurysm position because of a blobness
value smaller than the threshold value defined by t. The two missed aneurysms Analysis of aneurysms

that were not detected by
the proposed algorithm

in TOF-MRA were poorly enhanced in the blobness image and thus were also
below the threshold. Both aneurysms were small (size of 3.3mm and 5.2mm)
and were in the direct vicinity of large tortuous vessels. This usually complicates
the detection, since these structures also had a high blobness value. In the CTA
database, all but one aneurysms were included before the RBS was executed. This
aneurysm originated from a data set that contained abnormal high HU values.
Some vessels such as the Arteria basilaris had a HU value of >500 in this data set.
Consequently, neither the vessel nor the aneurysm at this position were included
in the initial mask image that covered values between 150HU and 375HU. The RBS

excluded another aneurysm in CTA, as the dCoW value for the aneurysmal ROI was
erroneously assigned to the background. The registration failed to align this data
set to the reference data set. This was the only example in which the registration
led to erroneously exclusions of true aneurysm ROI.

Naturally, more FN occurred at parametrization ϕ2 as the sensitivity was con-
siderably smaller than with ϕ1. Only one aneurysm could not be found in the
selection of 3D-RA data sets. It was quite large, 18.5mm, but had an ellipsoid
shape with a rather irregular surface. Thus, the blobness and the vesselness were
low compared with other ROI. Aneurysms were not detected in the selection of
CE-MRA at lateral positions, commonly at the ACM and if they were small. In
the set of TOF-MRA data sets, the missed aneurysms were excluded especially be-
cause of their small volume, small blobness value or small aneurysm probability
occurrence value. This led to a low A value and the ROI were excluded. In the CTA
selection, no clear grouping of TN could be done as the aneurysms had different
sizes, locations and properties.
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fp analysis Below, FP are analyzed with parametrization ϕ2 and the selected
example data sets. One example of a 3D-RA data set can be found in Figure 6.21.
FP occurred most notably at bifurcations and at the ACI where the vessel had lot of
twists and a high curvature. Furthermore, the ACI is located centrally in the data
set. Therefore, the aneurysm criteria formulated in Section 5.8 were fulfilled as a
high blobness value, a high vesselness value and a medial position were present
in these ROI.

The selected CE-MRA data sets had similar behavior than the 3D-RA data sets.
An example is shown in Figure 6.22. FP occurred at similar locations.

Also, in the selection of TOF-MRA data sets a frequent appearance of FP at
ACI locations with a high curvature could be observed (an example is shown in
Figure 6.23). However, FP appeared less frequently at bifurcation positions.

The most challenging modality for aneurysm detection was CTA. This wasFalse positive ROI
commonly occurred at

bifurcations and
tortuous vessel segments

proven by the analysis (see Figure 6.24 for an example data set). The analysis
of FP ROI in CTA led to the following insights:

• 32% of FP were located in bony structures or at the border from bone to other
matter.

• 50% of FP were located at vessels of the Circle of Willis.

– location at bifurcations

* 19% of vessel FP were located at bifurcations.

– location at vessels

* 30% of vessel FP were located at ACI locations, especially at locations
having a high tortuosity.

* 30% of vessel FP were located at the posterior circulation.

* 21% of vessel FP were located at the ACM.

* 12% of vessel FP were located at the ACA and AComm locations.

* 7% of vessel FP were located at other Circle of Willis locations.

• 18% of FP were located elsewhere (including vessels outside the Circle of
Willis)

The amount of FP that were at the posterior circulation was too high as aneu-
rysms occur only relatively seldom at this location (about 16%) compared to the
anterior circulation. Remarkably, only 10% of FP occurred outside the Circle of
Willis and simultaneously were not within bone. Thus, the RBS system eliminated
the majority of irrelevant ROI. The FP characteristics in CTA were different than in
the other modalities. More FP occurred at bifurcations and less FP occur at tortuous
vessel locations.
32% of FP in CTA have been found in bony structures. With the broader employ-

ment of dual-energy CT devices, these FP would vanish. The system then would
achieve the same quality in CTA and TOF-MRA (approximately a FP0.9 value of
10 fpDS).

Thus, two large groups of FP were found across all modalities: bifurcations and
tortuous vessel locations, mostly at the ACI. For CTA, FP at bony structures form a
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Figure 6.21: (a) Result of the proposed system on an exemplary 3D-RA data set with CA

injection in the right ACI. The ROI centers are marked as colored spheres.
The aneurysm position is indicated by a red arrow. (b) The values for each
corresponding ROI (differentiated by the color of the spheres) for A and rk are
given for each ROI and each weighting. TP are printed bold.
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Figure 6.22: (a) Result of the proposed system on an exemplary CE-MRA data set. The ROI

centers are marked as colored spheres. The aneurysm position is indicated by
a red arrow. (b) The corresponding values for A and rk are given for each ROI

and each weighting. FN are printed italic.
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(a)

A (rk)
We Wt Wte

0.72 (1) -0.05 (12) 0.10 (2)

0.65 (2) 0 (8) 0.06 (10)

0.61 (3) 0.08 (3) 0.10 (3)

0.60 (4) -0.09 (16) 0.11 (1)

0.59 (5) -0.04 (7) 0.05 (12)

0.56 (6) -0.04 (11) 0.08 (4)

(b)

Figure 6.23: (a) Result of the proposed system on an exemplary TOF-MRA data set. The
ROI centers are marked as colored spheres. The aneurysm position is indicated
by a red arrow. (b) The corresponding values for A and rk are given for each
ROI and each weighting. TP are printed bold.

(a)

A (rk)
We Wt Wte

0.62 (1) 0.06 (30) 0.05 (26)

0.62 (2) 0.06 (24) 0.05 (22)

0.61 (3) 0.15 (1) 0.07 (10)

FN 0.55 (13) 0.1 (4) 0.04 (41)

(b)

Figure 6.24: (a) Result of the proposed system on an exemplary CTA data set. The data set
is cropped on the borders to visualize vessels inside the skull. The ROI centers
are marked as colored spheres. The aneurysm positions are indicated by a red
arrow. (b) The corresponding values for A and rk are given for each ROI and
each weighting. TP are printed bold, FN are printed italic.
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third group which fail to differentiate between vessels and bone by the HU value.
Thus, these FP comply well with the defined aneurysm characteristics.

Another interesting observation was that FP commonly occur at similar positions
at both sides of the vascular system, especially for MRA data sets. The vascular
system of healthy people is symmetric, as a sagittal mirror axis can be found at
the middle of the head. Thus, if a ROI is found by the proposed system at the
first bifurcation of the left ACM, this is commonly also the case for the right ACM.
This is especially the case for the tortuous segment of the left and right ACI. In
the example visualizations (Figures 6.22 and 6.23) however the symmetry is not
observable, as only the ROI having the highest A values are shown.

If the HU window for contrast-enhanced vessels of a CTA data set is not in the
predefined range, this leads to undetected aneurysms. However, this only occurred
once in our database. Also, as the HU values are standardized and absolute, this
is a technical calibration problem of the scanner and the CA injection and is no
limitation of the proposed system.

The intensity overlap between vessels and bone is the largest problem in CTA
data sets. This problem is solved hardware-sided by dual-energy CT devices
[Kalender, 2011].

6.6.4 Unusual results

The different performance of the absolute thresholding and rank order threshold-
ing in CTA needs reflection (see Figure 6.10). With all other modalities the differ-
ences of both ordering schemes were negligible. There are different explanations
for this phenomenon. In CTA the number of ROI per data set was larger and also
has a higher variability than in other modalities. In CTA data sets the average
amount of ROI in the set C1 was 113 ± 56, for TOF-MRA it was 16 ± 6. Thus, the
A values have a higher variability per data set than in the other modalities. A re-
lated explanation might be that the feature distributions have a higher variance per
data set. Thus, a rank ordering leads to an implicit normalization of the feature
values and consequently also the A values. However, no large differences were
observable between the different modalities in the feature distributions visualized
by scatterplots in Tables 6.6, A.15 and A.16.

The experiments have shown that the expert parametrization with We led to
similar or better results than the trained parametrization with Wt (see Figure 6.11).
This is unusual as We is a static parametrization, while Wt is a dynamic para-
metrization and relies on data observation. One possible explanation is the curse
of dimensionality [Houle et al., 2010]. Wt was trained in an 18-dimensional fea-
ture space. Only a sparse sampling of the feature distributions can be done as
the number of training samples is too small. Feature selection could solve this
problem. Indeed, the results with the Wte parametrization were similar in com-
parison to the We parametrization, especially if one considers the influence of the
cross-validation (see Figure 6.11).

It is difficult to compare the performance of the tested State of the Art classifiers
to the results with the LDF. The classifiers were not tested independently of the
parametrization and thus, no FROC could be determined. Instead, the default set-
ting of Weka was used for each classifier. Although small tests revealed that this
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parametrization is relatively robust, further tests have to be done for a conclusive
statement. With the default parametrization, LogitBoost was the classifier leading
to the best performance. Compared with the FROC curve using the LDF and the
trained parametrization Wt, the performance was slightly better for 3D-RA and
CE-MRA and equal for TOF-MRA and CTA (see Section 6.5.5). Thus, the potential
of non-linear classifiers was shown and is at least similar to the quality of the linear
discriminant function.

The performance of the TOF-MRA database differed largely with respect to the
other databases. Especially compared to the related CE-MRA database, the perfor-
mance was distinctly worse. The reason might be the large differences between
folds. The folds were constructed randomized, but by chance one fold contained
many data sets acquired with a different device than in the other folds. Thus, the
image characteristics changed significantly and also the feature distributions for
TP and FP were different. In experiments on all data sets, the quality with the
trained parametrization Wt increased considerably. The results acquired with the
parametrizations We and Wte were approximately the same if one considers the
large influence of the cross-validation (see Figure 6.11).

6.7 comparison with existing methods

The comparison with other methods is no trivial task as one compares apples with
oranges. The proposed method has another focus than the existing methods. The
major differences are that the proposed method:

• does not require explicit vessel segmentation,

• is multi-modality capable,

• has only a small dependence on a database and

• was evaluated on a database containing more samples than all other methods
except for [Yang et al., 2011].

Compared to other algorithms that are specialized for TOF-MRA, the proposed
method has a smaller AUC value5. However, it reaches similar results as [Yang
et al., 2011] for the relevant sensitivity range of > 90% (see Figure 6.25). Two other
methods [Arimura et al., 2006; Uchiyama et al., 2008] present better results than
the proposed method.

The only other algorithm that is able to process data sets of multiple modalities
was evaluated with only ten data sets for each modality [Lauric et al., 2010]. There-
fore, a comparison has to be drawn very carefully. For 3D-RA 100% sensitivity
at 0.7 fpDS was reported and for MRA 100% sensitivity at 5.7 fpDS was achieved.
For CTA 100% sensitivity at 5.4 fpDS has been reported. Thus, the method of [Lau-
ric et al., 2010] achieves better results than the proposed method. However, the
method requires a manual bone-removal for CTA data sets and a segmentation of
the data sets.

5 The AUC of other algorithms is computed based on the FROC that is given in the respective publica-
tions.
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Figure 6.25: FROC for the proposed method compared with the existing aneurysm detection
methods for TOF-MRA and CE-MRA ([Arimura et al., 2006], [Uchiyama et al.,
2008] and [Yang et al., 2011]). Only methods that were tested with an adequate
amount of testing data sets were included.

Despite the fact that other methods achieved better results for single modalities,
the proposed method has its value besides the multi-modality ability. It is able to
find saccular and fusiform aneurysms. All other methods except for [Yang et al.,
2011] have problems detecting fusiform aneurysms.

Also, the sensitivity with respect to small aneurysms is convincing in the pro-
posed system. In comparison to [Yang et al., 2011], where 91% of small aneurysms
were found, the proposed system is able to detect 95% of small aneurysms. The
only constraint of our method with respect to the data sets is that the acquired vol-
ume should include at least the Circle of Willis and at most an area of the whole
head.

A major disadvantage of existing methods is that they require a fairly large
amount of (manual) pre-processing. A manual bone removal for CTA data sets
is required in [Lauric et al., 2010], vessel segmentation is required in all existing
methods (cf. Section 4.3) and skeleton-based approaches require additionally the
skeleton, where bifurcation points and endpoints have to be labeled [Arimura et al.,
2006; Lauric et al., 2010; Hassan et al., 2011; Suniaga et al., 2012].

In contrast, the proposed method relies on no segmentation and needs no bone-
removal. The only constraint is that the data sets have an acquired volume that
includes at least the Circle of Willis and at most the whole head.
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7
S U M M A RY A N D F U T U R E W O R K

A system for cerebral aneurysm detection in multi-modality angiographic data
sets was presented in this thesis. The system is able to process data sets of four
angiographic types, 3D-RA, CE-MRA, TOF-MRA and CTA. These modalities are
heterogeneous with respect to the image and aneurysm characteristics. The goal
to implement a system that does not depend on vessel segmentation and that does
not require user interaction was reached.

The workflow of the system is parametrizable to work with all four modalities.
First, initial regions of interest are found by enhancing sphere-like structures using
a multi-scale filtering approach. Low-level and high-level features are computed
on the regions of interest. These are intensity-based features, shape-based features
and location-based features that evaluate the location with respect to a normalized
coordinate system. For the latter, a registration to a model data set is performed
and a probability atlas is constructed. These methods are able to replace vessel
segmentation information.

Two algorithms are used subsequently to eliminate false positives: a rule-based
system and a classification method. The rule-based system operates based on mo-
dality characteristics and empirically-found rules. As classification method either
a linear discriminant function or non-linear state-of-the-art classifiers were em-
ployed. The linear discriminant function can be parametrized either by medical
experts or by training.

The system was thoroughly evaluated on 197 clinical patient data sets contain-
ing all four previously mentioned modalities. All data sets of a modality form
an evaluation database. The ground truth consisting of number and position of
aneurysms were given by experienced neuroradiologists.

In the evaluation, it was found that the expert parametrization lead to slightly
better results for most modalities than the trained parametrization. Thus, it was
shown that the dependence of a method on a training database can be reduced by
incorporating expert knowledge. For all modalities except CTA, more than 90% of
aneurysms could be detected with an average amount of false positives per data
set below 11. Thus, the initially defined quality goal could be achieved for these
modalities. The average amount of false positives was 2.41 for 3D-RA, 9.07 for
CE-MRA and 10.3 for TOF-MRA. In case of CTA, this quality is reached with 14.03
false positives per data set on average.

The following contributions were made in the thesis. A thorough State of the Art
in aneurysm detection is given. The existing approaches are presented and their
quality is evaluated. No survey publication about this topic exists yet. Additionally,
existing computer-aided methods for aneurysm management are summarized and
the effects on the clinical workflow are shown. Their aim is to assist radiologists in
treatment decision by providing a reliable scanning for aneurysms, a rupture risk
estimation and a quantitative comparison of different treatment options.
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The proposed system is the first one published that is designed and tested for
more than two types of angiographic data sets. It includes a parametrizable work-
flow that accounts for the different image and aneurysm characteristics. The sys-
tem is either parametrized by experts or by learning, making it adaptable to par-
ticular requirements.

The system has a modular design; each part can be substituted without affecting
the functionality. This was important as several variants for algorithm parts exist.
The variants are compared with respect to their performance in the evaluation.
The modular approach also simplifies future extensions of the system.

CAD systems commonly rely on segmentation methods to define the object of
interest. In the proposed approach, the segmentation has been replaced by multi-
scale filtering and registration. The advantage is that these techniques do not need
to be perfectly accurate to achieve good results in contrast to the segmentation.
Small changes in the input do not lead to largely different results of the detection
system.

By defining a standardized vessel reference system for each modality, a probabil-
ity atlas can be created. The atlas determines the aneurysm occurrence probability
for each vessel location. The mapping of the data sets to the reference system is
done by registration. The system makes use of the probability atlas as aneurysms
mostly occur at certain locations.

7.1 future work

Future improvements of the proposed CAD system are possible and are briefly
outlined in this section.

The quality of a CAD system should be evaluated on a large database, preferably
incorporating a large amount of heterogeneous data sets. The database in the
present thesis is already quite large. However, by evaluating the proposed system
on a broad database containing images from multiple scanner types and hospitals,
the quality of the system could be measured more precisely. Furthermore, the
quality and validity of the probability atlas increases with the amount of data sets
containing aneurysms in the database. Also the image resolution could have an
influence on the quality of the system. This has to be evaluated systematically.

The benefit of the probability atlas depends on the quality of the registration.
The quality can be further improved by using non-rigid registration methods or
by employing specific registration methods that were successfully tested in vessel
applications [Chillet et al., 2003; Bullitt et al., 2005].

In the current state, the system is parametrized either by an expert or by training.
An alternative would be a hybrid approach. The amount of influence of each part
could depend on the sample size in the database. The larger the database, the
greater could the influence of the trained parametrization be weighted. If no or
only few data sets are available for training, the expert parametrization could be
emphasized.

The majority of false positives occur at bifurcations and tortuous vessel segments.
Thus, the system could be improved by eliminating these types of false positives.
Algorithms to detect bifurcation have been proposed and could be employed that
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rely on centerline detection [Zhang et al., 2005] and standard moments [Fotin et al.,
2010].

Especially for CTA data sets, the amount of false positives should be reduced
for the use in a clinical environment. A further preprocessing of the data sets
is required to reliably reduce the initial amount of false positives in CTA. For
this purpose, CTA masking could employ additional features like vesselness to
suppress other irrelevant structures. However, the effect of data sets acquired
with dual energy CT scanners has to be investigated. A smaller amount of false
positives is likely.

An information that could be suitable for false-positive reduction in MRA and
CTA is the symmetry of the vessel system. ROI emerge commonly at symmetrical
locations having similar feature values. Symmetrical ROI that have similar feature
vectors could be removed. Symmetrical aneurysms occur, however, it is very un-
likely that their feature values resemble.

The major property of the proposed system is the ability to process data sets of
four different modalities. This ability could be further exploited if multiple data
sets of the same patient having different modalities acquired within a short time
interval are available. The result of each data set could be mapped to a common
reference vessel system for all modalities. Then, ROI at similar positions could be
joined and the remaining ROI form a common result. Depending on the quality of
a data set, modality characteristics and A values of each ROI, the results for each
modality could be joined to create a common result.

To show the improvements of a CAD system, it is necessary to test the algorithm
in a clinical environment with unknown cases. A reader study with and without
the CAD system is required to measure how the detection rate of radiologists
is affected using the proposed system. In this context, not only the output of
such a system, the location of aneurysm candidates, but also their visualization is
important and both aspects have to be regarded.

In conclusion, the large potential of CAD systems in cerebral aneurysm manage-
ment was shown. A step towards better patient-specific diagnosis and treatment
of cerebral aneurysms has been made.
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A
A P P E N D I X

The last part of this thesis is the appendix. All evaluation measures for all exper-
iments are listed in the following tables. See Section 6.4 and Section 6.5 for the
description of the respective experiments.

The best measure for each database and measure is printed bold. The value “-”
in the FP0.9 column means that no sensitivity of 90% or more was reached.
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Table A.1: Pilot experiment to the robustness of blobness pa-
rameters computed with Frangi’s method on a
subset of the CE-MRA database.

Parameter Value AUC FP0.9 s10

[rmin, rmax] [0.25mm, 2.5mm] 0.778 - 0.867
[rmin, rmax] [0.5mm, 5mm] 0.761 - 0.867
[rmin, rmax] [1mm, 10mm] 0.788 - 0.867
[rmin, rmax] [2mm, 20mm] 0.792 - 0.867

N 3 0.764 - 0.844
N 5 0.805 - 0.889
N 6 0.812 - 0.889
N 8 0.757 - 0.844

Table A.2: The robustness of blobness parameters computed with
Frangi’s method are evaluated.

Parameter Value Database AUC FP0.9 s10

[rmin, rmax] [0.5mm, 5mm] CE-MRA 0.786 9.08 0.905
[rmin, rmax] [1mm, 10mm] CE-MRA 0.775 - 0.884

[rmin, rmax] [0.5mm, 5mm] TOF-MRA 0.689 10.34 0.835
[rmin, rmax] [1mm, 10mm] TOF-MRA 0.573 - 0.682

[rmin, rmax] [0.5mm, 5mm] CTA 0.608 48.53 0.692
[rmin, rmax] [1mm, 10mm] CTA 0.456 - 0.508

γ 5 CE-MRA 0.727 - 0.842
γ 10 CE-MRA 0.775 9.58 0.895
γ 20 CE-MRA 0.775 9.58 0.895

Table A.3: The robustness of blobness parameters computed with Li’s
method are evaluated.

Parameter Value Database AUC FP0.9 s10

[rmin, rmax] [0.5mm, 5mm] TOF-MRA 0.666 - 0.821
[rmin, rmax] [1mm, 10mm] TOF-MRA 0.570 - 0.686
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Table A.4: The robustness of the blobness peak extraction
depending on the threshold parameter t is eval-
uated.

Parameter Value Database AUC FP0.9 s10

t 5 3D-RA 0.887 3.63 0.970
t 10 3D-RA 0.908 4.00 0.991
t 15 3D-RA 0.907 3.11 0.996
t 20 3D-RA 0.914 2.70 0.996
t 25 3D-RA 0.927 2.41 1.000
t 30 3D-RA 0.907 2.96 0.979
t 35 3D-RA 0.923 2.30 0.979
t 40 3D-RA 0.896 2.07 0.936

t 5 CE-MRA 0.773 10.21 0.884
t 10 CE-MRA 0.767 9.24 0.884
t 15 CE-MRA 0.786 9.08 0.905
t 20 CE-MRA 0.739 - 0.832
t 25 CE-MRA 0.764 - 0.832

t 5 TOF-MRA 0.564 33.46 0.665
t 10 TOF-MRA 0.612 20.10 0.753
t 15 TOF-MRA 0.595 14.68 0.730
t 20 TOF-MRA 0.689 10.34 0.835
t 25 TOF-MRA 0.661 - 0.8

t 5 CTA 0.493 95.43 0.569
t 10 CTA 0.532 57.00 0.610
t 15 CTA 0.559 47.47 0.634
t 20 CTA 0.553 - 0.607
t 25 CTA 0.536 - 0.597

Table A.5: The robustness of the dCoWmax, maximal dis-
tance to the nearest vessel, is evaluated. The
rank ordering ordering scheme is chosen.

Parameter Value Database AUC FP0.9 s10

dCoWmax 5 CTA 0.495 - 0.566
dCoWmax 10 CTA 0.607 31.57 0.705
dCoWmax 15 CTA 0.573 22.04 0.725
dCoWmax 20 CTA 0.637 14.03 0.807
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Table A.6: The robustness of the a, directly related to dcmax, maximal
distance to the center of the image of a ROI, is evaluated.

Parameter Value Database Ordering AUC FP0.9 s10

a 1.05 CE-MRA abs 0.801 8.18 0.916
a 1.1 CE-MRA abs 0.795 8.68 0.916
a 1.15 CE-MRA abs 0.786 9.45 0.895
a 1.17 CE-MRA abs 0.786 9.08 0.905
a 1.2 CE-MRA abs 0.779 9.92 0.895
a 1.05 CE-MRA rk 0.733 11.29 0.863
a 1.1 CE-MRA rk 0.728 11.53 0.853
a 1.15 CE-MRA rk 0.727 11.61 0.853
a 1.17 CE-MRA rk 0.735 11.39 0.863
a 1.2 CE-MRA rk 0.728 11.62 0.853

Table A.7: Three different mask computation variants for CTA data sets have been
tested.

Variant Ordering Parameter AUC FP0.9 s10

Thresholding abs -2048 outside value 0.608 48.53 0.692
Thresholding rk -2048 outside value 0.637 14.03 0.807

Thresholding abs 0 outside value 0.554 61.03 0.614
Thresholding rk 0 outside value 0.622 26.83 0.783

Double thresholdinga abs unmasked 0.460 - 0.502
Double thresholdinga rk unmasked 0.470 - 0.576
a In contrast to the other experiments, where t = 0.12 has been set, these experiments

were done with t = 0.07. The results achieved with t = 0.12 were worse.

Table A.8: Results that were achieved by omitting pA, pFP and dCoW .
Results achieved with these features are shown for com-
parison. Additionally, the results are given with the two
ordering schemes.

Variant Ordering Database AUC FP0.9 s10

with features abs CE-MRA 0.786 9.08 0.905
with features rk CE-MRA 0.735 11.39 0.863
without features abs CE-MRA 0.673 15.89 0.779
without features rk CE-MRA 0.642 16.92 0.789

with features abs TOF-MRA 0.689 10.34 0.835
with features rk TOF-MRA 0.662 10.78 0.835
without features abs TOF-MRA 0.639 12.98 0.782
without features rk TOF-MRA 0.634 13.35 0.8

with features abs CTA 0.608 48.53 0.692
with features rk CTA 0.637 14.03 0.807
without features abs CTA 0.446 69.58 0.488
without features rk CTA 0.541 45.88 0.661
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Table A.9: Wt trained across all modalities.

Variant Ordering Database AUC FP0.9 s10

across all modalities abs CE-MRA 0.730 16.50 0.821
across all modalities rk CE-MRA 0.681 13.84 0.800
across one modality abs CE-MRA 0.789 10.56 0.895
across one modality rk CE-MRA 0.776 9.89 0.905

across all modalities abs TOF-MRA 0.557 12.95 0.712
across all modalities rk TOF-MRA 0.556 13.95 0.724
across one modality abs TOF-MRA 0.543 10.55 0.665
across one modality rk TOF-MRA 0.568 13.93 0.718

across all modalities abs CTA 0.441 62.51 0.525
across all modalities rk CTA 0.499 36.54 0.641
across one modality abs CTA 0.466 68.21 0.532
across one modality rk CTA 0.565 45.17 0.708

Table A.10: Experiments where the the LDF is parametrized
with We, Wt and with Wte.

Variant Ordering Database AUC FP0.9 s10

We abs 3D-RA 0.927 2.41 1
We rk 3D-RA 0.927 3.22 1
Wt abs 3D-RA 0.896 3.52 0.957
Wt rk 3D-RA 0.887 3.93 0.957
Wte abs 3D-RA 0.887 3.65 0.957
Wte rk 3D-RA 0.886 3.93 0.957

We abs CE-MRA 0.786 9.08 0.905
We rk CE-MRA 0.735 11.39 0.863
Wt abs CE-MRA 0.789 10.56 0.895
Wt rk CE-MRA 0.776 9.89 0.905
Wte abs CE-MRA 0.814 11.13 0.905
Wte rk CE-MRA 0.816 5.92 0.937

We abs TOF-MRA 0.689 10.34 0.835
We rk TOF-MRA 0.662 10.78 0.835
Wt abs TOF-MRA 0.543 10.55 0.665
Wt rk TOF-MRA 0.568 13.93 0.718
Wte abs TOF-MRA 0.62 11.13 0.765
Wte rk TOF-MRA 0.638 12.18 0.824

We abs CTA 0.608 48.53 0.692
We rk CTA 0.637 14.03 0.807
Wt abs CTA 0.466 68.21 0.532
Wt rk CTA 0.565 45.17 0.708
Wte abs CTA 0.548 55.19 0.634
Wte rk CTA 0.576 21.92 0.746
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Table A.11: Results that were achieved by omitting the RBS. Re-
sults achieved with the RBS are shown for compari-
son. Additionally, the results are given with the two
ordering schemes.

Variant Ordering Database AUC FP0.9 s10

with RBS abs 3D-RA 0.927 2.41 1
with RBS rk 3D-RA 0.927 3.22 1
without RBS abs 3D-RA 0.915 2.87 1
without RBS rk 3D-RA 0.916 3.5 1

with RBS abs CE-MRA 0.786 9.08 0.905
with RBS rk CE-MRA 0.735 11.39 0.863
without RBS abs CE-MRA 0.450 34.45 0.558
without RBS rk CE-MRA 0.528 24.79 0.695

with RBS abs TOF-MRA 0.689 10.34 0.835
with RBS rk TOF-MRA 0.662 10.78 0.835
without RBS abs TOF-MRA 0.398 46.68 0.465
without RBS rk TOF-MRA 0.365 48.17 0.471

with RBS abs CTA 0.608 48.53 0.692
with RBS rk CTA 0.637 14.03 0.807
without RBS abs CTA 0.291 324.91 0.332
without RBS rk CTA 0.288 162.28 0.353

Table A.12: Experiments with single features as score val-
ues. The results are computed with the order-
ing schemes leading to the optimal quality.

Feature Ordering Database AUC FP0.9 s10

A abs 3D-RA 0.927 2.41 1
s abs 3D-RA 0.932 1.83 0.979
bavg abs 3D-RA 0.867 3.54 0.979
bmax abs 3D-RA 0.880 3.28 0.979

A abs CE-MRA 0.786 9.08 0.905
s abs CE-MRA 0.735 12.21 0.884
bavg abs CE-MRA 0.658 12.11 0.821
bmax abs CE-MRA 0.732 11.34 0.863
Ψ abs CE-MRA 0.753 14.45 0.863

A abs TOF-MRA 0.689 10.34 0.835
s abs TOF-MRA 0.456 13.07 0.759
bavg abs TOF-MRA 0.509 14.37 0.659
bmax abs TOF-MRA 0.523 13.44 0.682
Ψ abs TOF-MRA 0.617 14.29 0.747

A rk CTA 0.637 14.03 0.807
s rk CTA 0.412 43.14 0.542
bavg rk CTA 0.440 49.49 0.566
bmax rk CTA 0.412 43.14 0.542
Ψ rk CTA 0.312 66.49 0.417
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Table A.13: Experiments with normalized single features as
score values.

Feature Ordering Database AUC FP0.9 s10

A abs 3D-RA 0.927 2.41 1
s abs 3D-RA 0.920 3.32 0.979
bavg abs 3D-RA 0.914 3.04 0.979
bmax abs 3D-RA 0.915 3.28 0.979

A abs CE-MRA 0.786 9.08 0.905
s abs CE-MRA 0.655 13.71 0.800
bavg abs CE-MRA 0.730 16.92 0.853
bmax abs CE-MRA 0.730 16.92 0.853
Ψ abs CE-MRA 0.767 14.82 0.874

A abs TOF-MRA 0.689 10.34 0.835
s abs TOF-MRA 0.545 14.85 0.694
bavg abs TOF-MRA 0.614 14.78 0.735
bmax abs TOF-MRA 0.636 11.80 0.788
Ψ abs TOF-MRA 0.595 11.54 0.765

A abs CTA 0.608 48.53 0.692
s abs CTA 0.389 94.90 0.468
bavg abs CTA 0.332 74.32 0.400
bmax abs CTA 0.426 73.72 0.468
Ψ abs CTA 0.388 71.67 0.444
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Table A.14: Experiments with the tested classification algorithms. The best
results for each modality are printed bold.

Original Resampling MetaCost
Algorithm Database rTP gm rTP gm rTP gm

Naive Bayes 3D-RA 0.70 0.77 0.83 0.82 0.74 0.75
SVM linear 3D-RA 0.55 0.72 0.79 0.81 0.64 0.75
SVM polynomial 3D-RA 0.47 0.65 0.62 0.73 0.53 0.68
SVM radial 3D-RA 0.43 0.63 0.85 0.84 0.60 0.72
Neural Network 3D-RA 0.53 0.69 0.81 0.77 0.60 0.72
ADtree 3D-RA 0.51 0.69 0.77 0.76 0.74 0.78
LogitBoost 3D-RA 0.43 0.63 0.74 0.73 0.77 0.80

Naive Bayes CE-MRA 0.61 0.74 0.83 0.85 0.94 0.83
SVM linear CE-MRA 0.11 0.33 0.89 0.89 0.39 0.62
SVM polynomial CE-MRA 0.28 0.52 0.78 0.82 0.50 0.70
SVM radial CE-MRA 0.33 0.58 0.89 0.89 0.56 0.74
Neural Network CE-MRA 0.28 0.53 0.78 0.86 0.67 0.80
ADtree CE-MRA 0.06 0.24 0.78 0.85 0.78 0.83
LogitBoost CE-MRA 0.06 0.24 0.67 0.79 1.00 0.94

Naive Bayes TOF-MRA 0.59 0.72 0.69 0.76 0.84 0.81
SVM linear TOF-MRA 0 0 0.84 0.83 0 0
SVM polynomial TOF-MRA 0.09 0.30 0.88 0.82 0.16 0.39
SVM radial TOF-MRA 0.09 0.30 0.91 0.84 0.25 0.49
Neural Network TOF-MRA 0.09 0.30 0.63 0.76 0.38 0.59
ADtree TOF-MRA 0 0 0.63 0.75 0.94 0.87
LogitBoost TOF-MRA 0 0 0.66 0.76 0.84 0.84

Naive Bayes CTA 0.83 0.89 0.83 0.87 0.86 0.85
SVM linear CTA 0.05 0.23 0.88 0.91 0.14 0.37
SVM polynomial CTA 0.28 0.53 0.71 0.82 0.36 0.60
SVM radial CTA 0.28 0.53 0.90 0.91 0.40 0.63
Neural Network CTA 0.26 0.51 0.76 0.85 0.47 0.68
ADtree CTA 0.05 0.23 0.74 0.84 0.90 0.88
LogitBoost CTA 0.07 0.26 0.83 0.89 0.91 0.92
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H. Bogunović, A. G. Radaelli, M. De Craene, D. Delgado, and A. F. Frangi. Image intensity
standardization in 3D rotational angiography and its application to vascular segmenta-
tion. In SPIE Medical Imaging, pages 6914–1–8, 2008. (Cited on pages 32 und 63.)
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