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1 Introduction

The property of an electrical conductor to carry electric current without Ohmic resis-
tance and Joule heating is called superconductivity. It is a state of matter that arises in
many elemental metals and alloys at temperatures close to absolute zero. From a tech-
nological point of view, superconductivity is highly interesting, with excellent potential
for energy-efficient and innovative future applications. However, the need for cryogenic
cooling, expensive fabrication costs, and a lack of understanding of the underlying phys-
ical processes are severe obstacles for industrial mass production of superconducting
technology.

This research aims at investigating the behavior of so-called type-II superconductors
(SCs) in confined nanosystems and in close vicinity to ferromagnetic materials. Of partic-
ular interest are the dynamics of superconducting vortices – whirls of supercurrent that
arise in SCs in the presence of magnetic fields. The behavior of vortices is crucial for
the electromagnetic properties of the SC and hence for the efficiency of superconducting
devices. In this work, it is investigated how these topologically protected current whirls
behave in confined nanostructures and how their interaction with a nearby ferromag-
net (FM) can be utilized to control the information transfer through FM/SC hybrid
systems. Additionally, some problems of fundamental interest will be addressed as well,
e.g., spin-orbit-coupling (SOC) induced vortex pinning and vortex motion in the presence
of temperature gradients.

Superconductivity in ultracold electric conductors is a phenomenon that has been
known for over one hundred years. It was first discovered in 1911 by Heike Kamerlingh
Onnes, a pioneer in the field of cryogenic gases, who observed a sudden disappearance of
electrical resistance in mercury as the material is cooled to temperatures below 4.2 K [1].
Onnes immediately saw the potential of his discovery, and it did not take long to realize
that the phenomenon, which he called ”superconductivity”, was not unique to mercury.
In fact, the so-called critical temperature Tc at which the conductor loses electrical
resistance turned out to be a material constant, and superconductivity was confirmed
for many elemental metals. Moreover, in 1933 It was found by W. Meißner and R.
Ochsenfeld that SCs are not only perfect conductors but also perfect diamagnets, which
means they expel magnetic fields completely from their interior [2].

The discovery of the Meißner-Ochsenfeld effect, often called the Meißner effect, was
an important milestone on the way to a better understanding of superconductivity. In
particular, it was found that the perfect expulsion of magnetic fields is not a mere conse-
quence of perfect conductivity, as one would expect from classical electrodynamics. The
Meißner effect appears, irrespective of whether the material is cooled under an applied
magnetic field or the field is applied after the superconducting transition. The final state
is independent of the system’s history, i.e., superconductivity is a distinct thermodynamic
state. Experimentally, one finds that screening of SCs is limited, and a sufficiently strong
field drives the material to the normal conducting state. The associated magnetic field
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CHAPTER 1. INTRODUCTION

is called the thermodynamic critical field, and its temperature dependence can be well
approximated by Hcth(T ) = Hcth(0)(1 − T/Tc). Strong electric currents have the same
effect on the SC as Hcth, i.e., a critical current density jc can destroy the superconducting
state.

In 1935 the two brothers Fritz and Heinz London developed the first phenomenologi-
cal theory, which was able to describe superconductivity’s main aspects – zero electrical
resistance and perfect diamagnetism [3]. In 1950 V. L. Ginzburg and L. D. Landau
presented their own approach to the problem, the Ginzburg-Landau (GL) theory [4],
which was later utilized by A. A. Abrikosov to predict the existence of type-II SCs [5].
Despite being a great success, the London theory and its generalizations did not provide
insight into the microscopic processes of the phenomenon of superconductivity. It took
another 22 years for the next breakthrough to happen. In 1957 J. Bardeen, L. Cooper,
and J. Schrieffer developed the first microscopic theory explaining superconductivity in
elemental metals [6]. The celebrated BCS theory is based on the idea that electrons form
bound pairs, so-called Cooper pairs when the material is cooled below its critical temper-
ature. The attractive interaction between the negatively charged electrons is mediated
by vibrations of the atomic lattice, so-called phonons. Through their bosonic nature,
all the Cooper pairs can occupy the same quantum state and form a pair-correlated
condensate. This ”macroscopic quantum state” can not be easily destroyed by scat-
tering events between electrons and lattice atoms. For this reason, electric transport
becomes effectively lossless. The validity of the BCS theory has been proven in many
experiments [7–10], and the riddle of superconductivity seemed to be solved. However,
in 1986 a new class of cuprate SCs was discovered with a critical temperature of about
Tc ≈ 30 K [11]. These high-temperature SCs possess a pair binding mechanism that
differs from that of conventional BCS-SCs. For this reason, they are also called uncon-
ventional SCs. In the following years, more exotic SCs were found, e.g., heavy fermion
SCs [12], Iron Pnictides [13], organic SCs [14] and spin-triplet SCs [15]. The micro-
scopic origin of unconventional superconductivity is an open question until today (see,
e.g., [16,17]). One of the most exciting discoveries of the last years was the appearance of
superconductivity in various hydrogen-rich compounds. Under sufficient pressure, these
materials can have very high critical temperatures of up to Tc = 260 K [18,19]. With this
discovery, room-temperature superconductivity seems to be closer at hand than ever.
Yet, there are still many problems to be solved until superconducting technology can
become part of everyday life.

The development of highly energy-efficient, environment-friendly electric devices is
the main goal of the superconducting industries. Magnetic resonance imaging, high-field
magnets in particle accelerators, and SQUIDS (superconducting quantum interference
devices) as ultra-sensitive magnetic field detectors are technologies that are already well
established [20]. The ever-growing need for industrial know-how is followed by a rapidly
evolving body of scientific literature ranging from fundamental research to device fab-
rication methods. Over the last decades, computer-based research has become more
important than ever to solve the theoretical models of increasing complexity, evaluate
large amounts of data, and find new superconducting materials [21]. Especially, large-
scale simulations of mesoscopic SCs coupled with FMs are highly demanding and rarely
to be found in the literature. Such systems are highly interesting since geometric confine-
ment and the presence of a FM can lead to superconducting states that can not appear
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under normal conditions [22–25]. On the other hand, the superconducting component
can also be utilized to control the information transfer through the FM, making FM/SC
hybrids attractive for applied research.

This theoretical study aims to provide novel ways to control and utilize superconduct-
ing vortices in electromagnetically coupled FM/SC bilayers. The main tools for this task
will be the time-dependent Ginzburg-Landau (TDGL) equations of superconductivity
and the Landau-Lifschitz-Gilbert (LLG) equation of micromagnetism. These equations
are to be solved numerically and selfconsistently to simulate the FM/SC system under
various conditions. Specifically, the following questions will be addressed:

� How can a structured FM be used to control superconducting vortices in confined
nanosystems;

� How does interfacial Rashba SOC affect the vortex dynamics in a proximity-coupled
FM/SC bilayer;

� How can the vortices be utilized to modify the magnonic information transfer
through a FM/SC hybrid structure;

� How does local heating of the material affect nearby vortices.

Finding answers to these questions provides better insight into the rich physics of
superconducting vortex matter – a subject that, despite being under investigation for
over 50 years, is not fully understood yet. Also, applied research could benefit from
the here-presented findings since all known high-Tc SCs are of type II. Controlling the
vortex dynamics in these materials is crucial for the industrial mass production of energy-
efficient, reliable, and inexpensive superconducting devices.

In this work, the focus lies on a phenomenological description of the SC and FM.
That means the system constituents are characterized by appropriate macroscopic or-
der parameters. In contrast, the microscopic processes that lead to the appearance of
superconducting- and ferromagnetic order are not studied here. The use of a macro-
scopic model for FM/SC hybrids leads to results of quite general nature, valid for a
large class of materials. However, this study is still restricted to s-wave SCs described
by the conventional TDGL-formalism. The phenomenological description of exotic SCs
requires using a generalized GL-model (e.g., [26]). In addition, the chosen theoretical
framework is only valid within certain limits, which will be specified later. It should also
be mentioned that, in most cases, the quality of the used samples is artificially high –
most of the here-introduced systems consist of perfectly homogeneous materials without
impurities or geometric deformations. Furthermore, only a limited number of selected
material parameters is considered. In real materials, these parameters may vary, even
between different samples of the same material [27]. Finally, research limitations are also
set by the availability of computational resources entailing certain simplifications of the
models to reduce computational effort. These simplifications and their impact on the
results will be addressed in the main body of the text.

This thesis is organized as follows. Chapter 2 presents the theoretical framework for a
mean-field description of the SC and FM. That includes an introduction to the TDGL
theory and micromagnetism and a short review of the fundamental properties of SCs and
FMs. Chapter 3 introduces the solution methods for the TDGL equations and the LLG
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CHAPTER 1. INTRODUCTION

equation. The basic idea for calculating spin wave spectra of magnonic waveguides is also
presented. Chapter 4 describes how vortices behave under geometrical confinement and
in the vicinity of a patterned FM. Chapter 5 deals with the problem of proximity-induced
supercurrent generation in coupled multiferroic/SC nanostructures. Chapter 6 addresses
the third research question, i.e., how superconducting vortices can be utilized to modify
the magnonic information transfer through FM/SC hybrid systems. The effect of a local
hot spot on an isolated vortex is discussed in Chapter 7. Finally, Chapter 8 provides a
summary of the obtained results.
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2 Theoretical background

This section introduces two of the most commonly used theoretical models of supercon-
ductivity, namely the London theory and the GL theory. Both models are phenomeno-
logical in nature, which means they do not relate to the microscopic processes that lead
to the formation of the superconducting state. Instead, superconductivity is described
on a mesoscopic level and with the aid of conventional electrodynamics. Although the
main tool for this research project will be the TDGL theory, it is worth introducing the
London approach as well since it can be considered a precursor for the more advanced
GL model. For computer simulations on systems of mesoscopic size, a phenomenological
approach is advantageous since the use of microscopic theories becomes very involved.
In addition, as already mentioned, in high-Tc materials, the microscopic origin of super-
conductivity is still not fully understood, and a complete microscopic theory is currently
not existing for these materials. Furthermore, on a macroscopic scale, most known SCs
behave very similarly under the influence of external magnetic fields. For this reason, the
London theory and the GL equations are well-established and commonly used in various
situations. Here only a rough overview of these models is given. For more information
on the London theory and its extensions, see the standard literature, e.g., [28, 29].

2.1 London theory

The London theory was developed by F. London and H. London in 1935 [3]. It was the
first successful attempt to formulate a model for the two most important phenomena
connected with superconductivity - perfect diamagnetism and lossless current transport.
Although the London brothers did not give a rigorous derivation of their equations,
it is possible to obtain them from classical Drude theory. This simple model treats
the conduction electrons as classical particles moving through the crystal lattice and
scattering by collisions with the metal ions. Within this picture, the electrical response
of a normal metal to an applied electric field can be formulated as a force-balance equation

me
∂v

∂t
= qeE− me

τ
v. (2.1)

Here me and qe are the mass and charge of an electron. The first term on the right side
corresponds to the accelerating force that acts upon an electron in an electric field. The
second term is a friction force that counteracts the acceleration and leads to a steady
state motion of the electrons. Thereby, τ is the mean flight time between two scattering
events. Despite its simplistic nature, the Drude model is able to qualitatively explain
Ohm’s law. This can be seen by considering the case ∂v/∂t = 0. By expressing the
electric current in terms of the electronic number density ne and mean velocity v, one

5



CHAPTER 2. THEORETICAL BACKGROUND

obtains j = neqev and consequently

j = σE, σ =
q2eneτ

me
, (2.2)

i.e., a linear relation between current density and applied electric field. If a perfect
conductor is considered, this relation no longer holds since the electrical conductance σ
becomes infinite as τ → ∞. However, in this limit equation (2.1) reduces to

∂js
∂t

=
1

Λ
E, Λ =

ms

nsq2s
(2.3)

allowing a persistent supercurrent flow over arbitrary times if E = 0. The coefficient
Λ is known as the London coefficient and contains the number density ns, charge qs,
and mass ms of the superconducting electrons. Originally it was believed that these
quantities were the same as those for the normal conduction electrons. But since the
advent of the BCS theory, it is known that ms = 2me, qs = 2qe and ns = 0.5ne, i.e., the
superconducting electrons are bound pairs of electrons. Since the property (2.3) only
holds for temperatures T < Tc, it implies that the number density ns has to become zero
at T = Tc and finite for T < Tc.

Taking the curl of (2.3) yields the second London equation

∆B =
µ0

Λ
B, (2.4)

where Maxwells equations

∇ ·E =0 (2.5)

∇ ·B =0 (2.6)

∇×E = − ∂B

∂t
(2.7)

∇×B =µ0j +
1

c2
∂E

∂t
(2.8)

as well as the vector identity ∇×∇×B = −∆B+∇(∇·B) were used. In the derivation,
the effect of displacement currents is not considered, and charge neutrality is assumed.
Equation (2.4) has the form of a screening equation and describes the exponential decay
of magnetic fields in the superconducting material, i.e., the Meißner effect. In the original
paper of F. London and H. London, it was shown that the other quantities j and E are
screened from the interior of the SC in the same way as B [3]. The characteristic length
over which the fields decay is called the London penetration depth

λL =

√︄
Λ

µ0
. (2.9)

Experimentally, one finds λL(t) = λL(0)(1 − t
4
)−1/2 where t = T/Tc is the reduced

temperature and λL(0) the value of λL for t = 0 (Gorter-Casimir-model) [30]. This
model adequately describes the disappearing of ns and the diverging penetration depth
at T = Tc. Equations (2.3) and (2.4) contain the main aspects of macroscopic SCs. It
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2.2. GINZBURG-LANDAU THEORY

is also possible to combine them into a single equation by expressing E and B in terms
of their electromagnetic potentials. In this way, and by setting the scalar potential ϕ to
zero, one obtains

js = − 1

Λ
A. (2.10)

A linear relation between supercurrent density and magnetic vector potential is also
predicted by the BCS theory, and it appears in other phenomenological theories as well.
However, (2.10) is not gauge invariant and only compatible with (2.3) if ∇ ·A is valid.
This condition, called London-gauge, is necessary to ensure ∇ · js = 0.

A more general form of the London equations can be derived from quantum mechanical
principles, as was done by F. London in 1950 [31]. The idea is that the ensemble of
superconducting electrons forms a quantum-mechanically correlated state that can be
described by a macroscopic wave function Ψ(r, t) = Ψ0(r, t)e

iθ(r,t). Here ns = Ψ2
0 is the

density of superconducting charge carriers. When this wave function is inserted into the
Schrödinger equation, one obtains the standard quantum mechanical expression for the
current density

js =
qs
ms

ns (ℏ∇θ − qsA) . (2.11)

It can be easily seen that for a space-independent phase, the expression (2.11) becomes
identical to (2.10). But in contrast to the old expression, the new form of the supercurrent
density is gauge invariant. By taking the curl of (2.11), one gets the second London
equation (2.4) again. A slightly modified form of the first London equation can also be
obtained from the quantum mechanical treatment of the SC. But the derivation is not
laid out here since it does not add to the discussion.

Although the London theory has the advantage of being valid for all temperatures
T < Tc, it is based on the assumption of a homogeneous condensate ns. In many
situations, this assumption is not justified, e.g., at SC/normal metal interfaces or in
type-II SCs where the presence of vortices leads to strong spatial variations of ns(r). In
such situations, it is necessary to use a more general approach, like the GL theory.

2.2 Ginzburg-Landau theory

The second famous mean field theory of superconductivity was developed in 1950 by
V. L. Ginzburg and L. D. Landau [4]. Like the London theory, the GL-model relies
on the existence of a macroscopic wave function Ψ(r) = Ψ0(r)eiθ(r) which describes the
entire pair-correlated electronic system of the SC. In fact, the GL theory can be seen
as a generalized London theory for situations where the superconducting condensate
is non-homogeneous, e.g., due to strong external magnetic fields or material defects.
However, given its highly phenomenological nature, and rather intuitive derivation, the
classic GL theory was initially treated with skepticism. Only in 1959 was it shown by
Gor’kov that the GL-equations can be derived from the microscopic BSC theory under the
condition that T ⪅ Tc [32]. With its new microscopic interpretation, GL theory became
one of the most important tools for the theoretical investigation of superconductivity.
Over the last decades, it was not only extended in various ways [33–39], it also found
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applications in other areas of condensed matter physics. For example, it is an effective
tool to describe the dynamics of nonlinear waves, superfluids, liquid crystals, and strings
in field-theory [40].

In the framework of Landau’s theory of second-order phase transitions, the occurrence
of superconductivity in a metal at T < Tc can be characterized as a phase transition
of second order. Thereby it is assumed that the macroscopic wave function undergoes
a continuous change at the critical temperature with Ψ = 0 for T > Tc and Ψ ̸= 0 for
T < Tc. In this way, the wave function can be utilized as an order parameter of the
system where ns = |Ψ|2 corresponds to the density of superconducting charge carriers.
The phase θ by itself is no observable, and the physical state of the system is unaffected by
arbitrary changes of the form Ψ → Ψeiχ with χ(r, t) being a continuously differentiable
scalar field. Although not uniquely defined, the mere existence of a global phase can be
seen as a type of order that is not present if the system is in the normal state. In Landau’s
theory of phase transitions, the appearance of a new, ordered phase is connected with a
change of certain symmetries in the system. In the case of superconductivity, it is the
gauge symmetry that is broken, as explained further down below.

Starting point for the development of the GL theory is the idea that close to the critical
temperature Tc, the order parameter becomes small, and it is allowed to express the free
energy density of the system in a series expansion of the form [4]

f = fn + α(T )|Ψ|2 +
β(T )

2
|Ψ|4. (2.12)

In order for the system to develop a stable equilibrium, the functional derivatives δf/δΨ =
0 and δ2f/δ2Ψ > 0 have to hold true. At temperatures above Tc, the free energy of the
system has its normal-state value f = fn. If the system is cooled below its critical temper-
ature, the ordered phase with Ψ ̸= 0 is energetically favorable and f < fn. By evaluating
(2.12) under these conditions, one finds α < 0 for T < Tc and α ≥ 0 for T ≥ Tc. That
allows approximating the true temperature dependence close to the critical temperature
as α(T ) ≈ α0(T − Tc) with α0 > 0. The second condition for thermodynamic stability is
that β > 0 for all temperatures. The equilibrium state which minimizes (2.12) is then

Ψ =

√︃
−α

β
eiθ = Ψ∞eiθ. (2.13)

Here Ψ∞ is the theoretical order parameter value inside an infinitely large SC. Appar-
ently, the solution is only determined up to a global phase factor θ, and all solutions on
the circle (2.13) in the complex plane are physically equivalent. This situation resembles
the breaking of rotational symmetry when a FM is cooled down below its Curie tem-
perature. In the paramagnetic phase, the magnetization displays rotational symmetry
since the magnetic moments of the material are randomly distributed and cancel each
other. However, below the Curie temperature, the magnetic moments reorient along a
direction that is chosen randomly. Rotations of the system around that direction do not
change the state of the system and do not cost energy. These excitations are also known
as Goldstone modes. The Goldstone modes of the SC are associated with rotations of
the global phase. This analogy is often referred to as the breaking of gauge symmetry
at the phase transition into the superconducting state, even though the gauge invariance
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2.2. GINZBURG-LANDAU THEORY

of the theory is always intact [41]. If (2.13) is inserted into the expression of the free
energy (2.12), one obtains

f − fn = −
B2

cth(T )

2µ0
= −α2

2β
= −α2

0

2β
T 2
c

(︃
1 − T

Tc

)︃2

< 0, (2.14)

i.e., the energy difference between the superconducting and the normal conducting phase.
The generation of supercurrents in response to an external magnetic field is associated
with a gain in kinetic energy. Therefore (2.14) can be expressed in terms of the thermo-
dynamic critical field Bcth that destroys superconductivity. The prediction of the correct
temperature dependence of the critical field was one of the first successes of the theory.

In cases where the order parameter can no longer be assumed uniform, it is necessary
to add more terms to the free energy expression (2.12). In order to take gradients of Ψ
and magnetic fields into account, Landau proposed the following form of the total free
energy [4]

f − fn = α(T )|Ψ|2 +
β

2
|Ψ|4 +

1

2ms

⃓⃓⃓⃓
ℏ
i
∇Ψ − qsA

⃓⃓⃓⃓2
+

B2

2µ0
. (2.15)

Again, the first two terms correspond to the condensation energy of the superconducting
electrons. The next term can be written as |D̂Ψ|2/2ms = p2/2ms and corresponds to
the kinetic energy of flowing supercurrents. The last term is the field energy density
associated with the magnetic flux density B = ∇×A = Be +Bs. Thereby Be = ∇×Ae

corresponds to an external magnetic field, and Bs = ∇×As is the superconducting stray
field, i.e., in the Meißner phase Bs = −Be. One can again express Ψ = Ψ0e

iθ in terms
of its amplitude and phase to get an equivalent form of (2.15)

f − fn = α(T )Ψ2
0 +

β

2
Ψ4

0 +
ℏ2|∇Ψ0|2

2ms
+

Ψ2
0

2ms
(ℏ∇θ − qsA)2 +

B2

2µ0
. (2.16)

Apparently, deformations of the order parameter increase the total energy of the system,
and it is, therefore, unfavorable to allow spatial variations of Ψ0 or θ on an arbitrarily
small length scale. Instead, the order parameter possesses a certain stiffness, and Ψ can
only vary over a characteristic length scale ξGL, which is introduced below. The gauge
invariant phase gradient has the form of a supervelocity msvs = (ℏ∇θ − qsA) and is
connected to flowing supercurrents. A functional derivative of f [Ψ,A] with respect to
Ψ⋆ and A yields the well known GL-equations

0 = Ψ
(︁
β|Ψ|2 − |α(T )|

)︁
+

1

2ms

(︃
ℏ
i
∇− qsA

)︃2

Ψ (2.17)

1

µ0
∇×∇×A = js = i

qsℏ
2ms

(Ψ∇Ψ⋆ − Ψ⋆∇Ψ) − q2s
ms

|Ψ|2A (2.18)

The first GL-equation (2.17) resembles the Schrödinger equation of a charged particle
in a magnetic field. However, the equation is nonlinear in Ψ, and the cubic term acts
as a repulsive potential of Ψ onto itself. Therefore the wave function tends to avoid
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the accumulation of superconducting charge. This tendency is counterbalanced by the
negative pair binding potential −|α(T )|. The interplay between these terms and the mag-
netic vector potential A shapes the energy landscape of the SC, as described by (2.15).
The nonlinear Schrödinger equation also appears in many other areas of physics like
fluid dynamics, optics, and Bose-Einstein condensation (see [42] and references therein).
However, nontrivial analytical solutions can only be found by simplifying the model, e.g.,
by neglecting the nonlinear term in the limit T ⪅ Tc where |Ψ|2 ≪ 1 [5]. The expression

on the right hand side of (2.17) should be understood as an operator expression D̂
2
Ψ

which evaluates to

(a∇ + bA)2 Ψ = a2∆Ψ + 2ab∇Ψ ·A + abΨ∇ ·A + b2A2Ψ. (2.19)

In the derivation of (2.17) the boundary condition(︂
D̂Ψ

)︂
· n = 0, on ∂ΩSC (2.20)

was applied where n is the outer surface normal of the superconducting domain boundary
ΩSC. This boundary condition is valid for SC/insulator interfaces. A generalization
of (2.20) can be obtained by setting D̂Ψ · n = iℏΨ/b [43]. This form considers the
superconducting proximity effect at SC/normal metal interfaces. The parameter b is
called the extrapolation length and states how far superconductivity can penetrate into
the adjacent metal. For normal metals one has b > 0 whereas for insulators b → ∞
leading to (2.20). For FMs, the extrapolation length goes to zero, which enforces Ψ = 0
and D̂Ψ · n = 0. The boundary condition Ψ = 0 on its own is not a valid choice since
it can lead to unphysical solutions for certain geometries of the SC [3]. It should be
noted that all the above-mentioned boundary conditions lead to js · n, which means
supercurrents can not cross the surface of the SC.

The second GL-equation is Ampère’s law for a stationary supercurrent. The derivation
of this equation from the free energy density (2.15) requires setting a boundary condition
for B = ∇ × A. For homogeneous external magnetic fields, two choices are valid. For
example, if a finite-sized SC in free space is considered, it is possible to use open boundary
conditions. Thereby B = Be is set at large distances from the SC. In this way, the
interaction of the SC with its own stray field is adequately taken into account, and
demagnetization effects due to sample geometry are also considered. From a numerical
standpoint, operating with open boundary conditions is highly demanding and often only
applicable to stationary systems. A more common choice is to set B × n = Be × n at
the surface of the SC, which is essentially the same as

Bs × n = 0, on ∂ΩSC. (2.21)

This boundary condition is applicable if demagnetizing effects can be neglected, e.g., for
very long superconducting prisms.

For non-homogeneous external fields, e.g., generated by a current-driven coil, the right
side of equation (2.18) needs to be supplemented with an additional term je = ∇×Be/µ0.
Also in this case, open boundary conditions are valid with B = 0 at large distances.

The expression of js in (2.18) is identical to the supercurrent density derived from
the London theory. Also, in the limit of a homogeneous order parameter distribution,
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2.3. TYPE-II SUPERCONDUCTORS

(2.18) and (2.4) have an identical form, which can be easily verified by applying the curl-
operator to (2.18). Therefore, for constant ns, the two models lead to the same results.
Given this similarity, one can easily find an expression for the magnetic penetration depth
in the GL theory. By replacing the particle density ns in (2.9) with |Ψ∞(T )|2 = α(T )/β
one obtains

λGL(T ) =

√︄
msβ

q2sµ0|α(T )|
=

λL(0)

2

1√
1 − t

(2.22)

This result is formally identical to (2.9) for T ⪅ Tc. The second equality was derived by

utilizing 1 − t
4 ≈ 4(1 − t) for t ⪅ 1. The GL-penetration depth is a material parameter

that is usually taken from experiments. It is known that λGL depends not only on the
material and sample composition [44] but also on the geometry of the SC [45], i.e., in
thin films, the effective penetration depth has the form λeff = 2λ2

GL/d with film thickness
d.

The second important length scale in the GL-formalism is the GL-coherence length
ξGL, which indicates the spatial scale over which the order parameter can effectively
change. Naturally, it is connected with the stiffness term in (2.16) and appears when
the equation is normalized by dividing by |α|. In the absence of magnetic fields, the
normalized energy density takes on the form

f

|α|
=

fn
|α|

+ Ψ2
0

(︃
−1 +

1

2

Ψ2
0

|Ψ∞|2

)︃
+ ξGL(T )2 |∇Ψ0|2 , (2.23)

with

ξGL(T ) =

√︄
ℏ2

2ms|α(T )|
= ξGL(0)

1√
1 − t

. (2.24)

Like the GL penetration depth, the coherence length diverges at the critical temperature.
With the above definitions, it is now possible to express the thermodynamic critical field
in terms of the characteristic length scales.

Bcth =
ℏ√

2qsλGLξGL

. (2.25)

Since λGL and ξGL show the same temperature dependence near Tc their ratio

κ =
λGL

ξGL
=

√︄
m2

sβ

µ0ℏ2q2s
(2.26)

is a temperature-independent material parameter called GL parameter. The important
meaning of κ for the response of a SC to external magnetic fields will become evident in
the context of type-II SCs.

2.3 Type-II superconductors

In 1950, Ginzburg and Landau predicted that the surface energy of an interface between
superconducting and normal conducting material could become negative for sufficiently
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high values of κ [4]. For such a SC it is, therefore, energetically advantageous to allow
the formation of normal conducting domains inside the material. Due to this tendency of
proliferating normal metal/SC interfaces, this new class of materials was expected to dis-
play a certain instability of the normal phase. Some years later, a correct interpretation
of this phenomenon was given by A.A. Abrikosov in his famous work about so-called
type-II SCs [5]. Up to this point, it was only known that SCs show the conventional
Meißner effect and expel magnetic fields from their interior for B < Bcth.

For sufficiently small magnetic fields, type-II SCs behave exactly the same as type-I
SCs. The predicted phase instability comes into play when the external magnetic field is
increased above the value Bc1. At this so-called lower critical field, the magnetic response
of the SC changes, and magnetic fields are no longer screened perfectly. More precisely,
it was shown by Abrikosov that for materials with κ ≥ 1/

√
2, the magnetic flux can

enter the SC in quantized amounts Φ0 = 2πℏ/qs once the magnetic field exceeds the
value Bc1. In this new state, the magnetic field is threading the material along channels
of weakened superconductivity, called vortices or fluxons. Each vortex corresponds to a
normal conducting tube surrounded by a whirl of supercurrents, and each vortex carries
exactly one quantum of magnetic flux. The tendency to form these normal conducting
regions is a natural consequence of the negative interface energy of type-II materials. It
is counterbalanced by the positive energy related to gradients in the order parameter
amplitude ns and phase θ. The exact condition under which a vortex can form is,
therefore, dependent on the topography of the energy landscape of the SC. Material
composition and geometry of the sample also play an important role in the problem of
vortex formation.

The field interval Bc1 < Be < Bc2 over which vortex states appear is also known as
the Shubnikov phase, and Bc2 is called the upper critical field. In the framework of
conventional GL theory, the values of Bc1 and Bc2 can be estimated analytically [28],
although in general, they need to be calculated numerically by solving the GL-equations.
For high magnetic fields Be > Bc2, the SC becomes normal conducting again. To some
extent, this is because of the pair-breaking effect of the flowing supercurrents. But also,
the high number of increasingly overlapping vortex cores reduces the order parameter.
The gradual reduction of superconductivity at Bc2 comes along with a second-order
phase transition into the resistive state. This is in contrast to the sharp first-order phase
transition of type-I materials at Bcth.

In general, the number of vortices in the sample increases with the strength of the
applied magnetic field. It is, therefore, natural to ask how these objects interact with
each other and how they arrange when the SC is in equilibrium. This question was first
addressed by A.A. Abrikosov in 1957, and he predicted a simple cubic vortex lattice
to be the state of lowest energy [5]. However, a more detailed analysis of this problem
reveals that vortices have a greater tendency to arrange in a hexagonal lattice, called
the Abrikosov lattice. Qualitatively this behavior can be understood from classical elec-
trodynamics. From an electromagnetic point of view, vortices behave similarly to little
bar magnets. The current loops around each fluxon generate a magnetic moment that
is aligned with the direction of the external magnetic field. Bringing magnetic moments
of such orientation in close vicinity to each other is energetically unfavorable. Therefore,
under normal conditions, vortices have a strong tendency to repel each other. The state
which minimizes the interaction energy between neighboured fluxons corresponds to a
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hexagonal lattice. For such a crystal, the field-dependent lattice constant can be calcu-
lated as ch = 1.075

√︁
Φ0/Be, whereas for a cubic lattice, one finds cc =

√︁
Φ0/Be [28].

That means, in a cubic lattice, the distance between vortices is slightly smaller and the
interaction energy larger.

In a real SC, the vortex lattice often deviates from a perfectly hexagonal structure.
The reason for this discrepancy between theory and experiment is the existence of in-
homogeneities in the material. For example, variations in the electronic mean free path
l also affect the critical temperature Tc as well as λGL and ξGL [44]. That, in return,
makes some places in the material energetically more favorable for vortex accumulation
than others. In particular, vortices occupy places with reduced order parameter density
since such a combination of vortex and defect allows the SC to save the condensation
energy required for the generation of the vortex core [29]. Also, locations of reduced
sample thickness attract vortices since, in this way, the supercurrent threading the ma-
terial, and the associated kinetic energy, can be reduced. A consequence of such material
imperfections is the distortion of the vortex lattice. Material defects that can bind vor-
tices are also called pinning centers. Depending on the strength and overall distribution
of material defects, the vortex lattice can be kept static in the presence of a transport
current. In the absence of pinning centers, a current density je injected into the SC will
impose a Lorentz force density

FL = je ×B (2.27)

onto each vortex (see e.g [29]). This force deflects the vortices, giving them velocities of
up to several km/s [46, 47]. A moving vortex thereby generates an electric field coun-
teracting the imposed bias voltage. As a consequence, the flux flow state of the SC is
characterized by a finite electrical resistance and unwanted energy dissipation. In extreme
cases, the generated heat can even transit the SC back into the normal conducting state.
The vortex motion itself is viscous, meaning that once the electric current is switched
off, the SC quickly returns to equilibrium. In superconducting devices, the motion of
vortices is often highly undesirable, and much research was performed to understand how
the pinning properties of SCs can be optimized. [48–52]. In high-temperature SCs the
problem of flux motion becomes even more involved since thermal fluctuations deterio-
rate the pinning properties of the material even further. In addition, the combination
of material properties and defects can lead to the appearance of various vortex phases,
including vortex crystals, liquids, and glassy phases [53]. The problem of vortex pinning
will be addressed again in Chapter 5.

2.3.1 Structure of a vortex

Before it is discussed how the stray field of a superconducting vortex can be calculated,
it is worth taking a closer look at the spatial structure of such an entity. In Fig. 2.1,
a vortex-solution of the classic GL-equations in a bulk SC with ξGL = 150 nm and
λGL = 450 nm is shown. In this particular case, only one fluxon is present in the system,
and the external magnetic field is set to zero. As one can see, a regular Abrikosov-
vortex has cylindrical symmetry, and the order parameter is suppressed at its center.
However, the defining property of a vortex is its distinct phase profile which demands
that

∮︁
C ∇θ · dl = 2π (cf. Fig. 2.1(b)). Here C is an arbitrary closed path around
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the phase singularity at the vortex core. The condition of a constant winding number
gives the vortex state a high degree of stability, which means smooth deformations of
the phase field can not destroy it. In terms of classical field theory, one can say that
the vortex experiences topological protection, and the winding number of the phase field
is a topological invariant. However, for the following discussion, the topological aspects
of superconductivity are not of importance. For further information on this topic, see,
e.g., [54] and references therein. Close to the vortex center, the phase gradient can be
approximated by ∇θ = eφ/r, which means that the corresponding superfluid velocity
takes on very large values. Still, the supercurrent density is finite since js ∼ nsvs with
ns = 0 at the vortex core. The spatial distribution of js is shown in Fig. 2.1 (c).
The circular supercurrents around the vortex core give rise to a magnetic field with flux∫︁
F B · dF = Φ0 where F is a slice through the vortex in a quasi-infinite sized SC. In

small-sized SCs, this property has the more general form of

ms

qs

∮︂
∂F

vs · dl +

∫︂
F
B · dF = nΦ0, n = 0, 1, 2, ... (2.28)

where the quantity on the left side is called fluxoid. The existence of this quantization
condition is another aspect of the macroscopic quantum nature of SCs. Its experimental
confirmation by Doll and Näbauer [9] and Deaver and Fairbank [10] in 1961 also verified
that qs = 2qe, as predicted by the BCS-theory.

In Fig. 2.1 (e), the radial profile of a vortex is shown. It should be noted that here
Ψ0 = |Ψ| is plotted whereas in (a), ns = |Ψ|2 is shown. In principle, one can operate with
either of these quantities, but it is conventional to use ns for numerical investigations of
SCs. In contrast to the Cooper pair density, the actual amplitude of the wave function is
not differentiable at the core of the vortex. Furthermore, Ψ0 rapidly rises to unity over
the length scale ξGL giving the vortex a diameter of approximately 2ξGL. Depending
on material composition and temperature, the normal conducting core can extend to
a few nm (like in YBCO and other high-Tc materials [28, 55]) up to several hundred
nanometers (e.g., in clean Nb at T ⪅ Tc [28]). The supercurrent density and magnetic
flux density have a similar behavior outside the vortex where they diminish over the
characteristic length scale λGL. Inside the vortex, js goes to zero, whereas Bs reaches
its maximum. The displayed behavior is typical for vortices in a perfectly clean bulk
material. At surfaces, the magnetic flux density adopts a more complicated form, and
the magnetic field spreads like a flower giving rise to nonzero x- and y-components (cf.
Fig. 2.2). Material defects can also change the flow of js leading to vortex bending and
the formation of complicated filamentary structures in extended SCs [56–58].

In many situations, the external magnetic field is homogeneous, and all vortices have
equally oriented magnetic moments. If the external field is inhomogenous, e.g., in the
vicinity of a FM, the vortices try to align locally with the external field. In this way,
vortices of opposite polarity can appear in the same sample, and one speaks of vortices
and antivortices [59–65]. Due to their opposite polarity, these vortex-antivortex (VAV)
pairs attract each other, and they have a high tendency to annihilate. In certain cases,
the external magnetic field also allows the formation of closed vortex loops and semi-
loops [66–68]. The research in superconducting vortex dynamics is an active field, and
many exotic vortex states have been found, e.g., giant vortices [69], multi-quanta-vortices
[70], fractional quantum vortices [71], VAV-pairs in type-I SCs [72], Josephson- and
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Figure 2.1: Vortex profile of a SC with λGL = 450 nm, ξGL = 150 nm and κ = 3 in
zero external magnetic field. (a)-(d): local Cooper pair density ns = |Ψ|2, phase field θ,
supercurrent density js and magnetic flux density Bs,z of the vortex. The white arrows
in (c) mark the local direction and magnitude of the supercurrent density (e): Radial
profile of |Ψ|, Bs,z and |js| around the vortex core.

Josephson-like vortices [73, 74] and pancake vortices [75] in high-Tc materials. Finally,
it should be noted that VAV-pairs can also be generated with the aid of a transport
current flowing through the SC [76]. The combination of different external magnetic
fields, transport currents, temperature fields, and SC geometries allows for a plethora
of new and unexplored vortex states, making the field of vortex research interesting for
theory and application.

2.3.2 Field of a vortex

Apart from their important impact on the electrodynamic behavior of the SC, vortices are
also interesting for applications. An ensemble of static fluxons can be used to construct
logic gates with potential usage in information technology [77–79]. But also in FM/SC
hybrids, vortices were proposed to be useful in order to generate and amplify spin waves
[80, 81], bind skyrmions [82–84] and shape the magnonic dispersion [85]. In all these
cases, the magnetic field generated by the vortices is of crucial importance. However, the
calculation of this field is a difficult task since, in general, it requires the self-consistent
solution of the GL-equations. Analytical solutions to this problem can only be found if
simplifications are made. For example, it is often suitable to operate in the high kappa
limit, where the vortex diameter can be neglected, and ns is approximately constant.
In this way, it is possible to find analytical approximations for the vortex field Bv of a
single straight vortex line in a thin film of arbitrary thickness [86]. In the work presented
here, such a simplification is unsuitable since Nb is the superconducting material of
choice. Depending on its degree of purity Nb has κ∞ = 0.8 (clean limit) and κ ≫ 1
(dirty limit) [28]. Though, the latter limit will not be relevant to this work. The here-
considered Nb samples are of average purity with 1 < κ < 5. In this regime, the size of
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Figure 2.2: Schematic of a superconducting thin film of arbitrary shape. The red curves
correspond to the field lines of Bs in the vicinity of a superconducting vortex.

the vortex core and its influence on the current distribution and stray fields can not be
neglected. Still, the self-consistent solution of (2.17)and (2.18) can be avoided in certain
cases, as discussed in the following paragraphs.

Thin film

In the following, it is assumed that the SC is a plain thin film of arbitrary shape (see
Fig. 2.2). For such a geometry with d ≪ ξGL, the order parameter becomes effectively
independent of the direction of the film-normal (here the z-direction). For the external
magnetic field, two cases have to be considered.

First, a field parallel to the plane does not allow vortex solutions since this would
require d ∼ 2ξGL. In the here-considered case, increasing the in-plane field only leads to
a gradual order parameter suppression with a second order phase transition at Hc∥ [29].
The diamagnetic response of the SC to such an in-plane field is usually rather weak and,
therefore, Hc∥ can exceed the bulk value Hc2 for the upper critical field substantially.

If the external magnetic field is directed parallel to the plane-normal, vortex solutions
of the GL-equations become possible. However, the quantum expression for the supercur-
rent density (2.11) does not explicitly depend on the film thickness, i.e., for A = A(x, y)
and Ψ = Ψ(x, y) also the supercurrent density becomes independent of the z-direction.
That means if the film thickness is reduced, the stray fields of the vortices become weaker
as well. In addition, the effective magnetic penetration depth λeff ∼ 1/d is thickness de-
pendent as well, reducing the screening capabilities of the SC even further [45]. Under
these conditions, the magnitude of the stray field becomes negligible compared to the
external magnetic field, and the solution of the first GL-equation is sufficient to simulate
the system behavior [73].

If the SC stray field is still of interest, e.g., as input for another differential equation, it
can be calculated from (2.18). A standard procedure for this problem is to choose open
boundary conditions for As and solve Ampère’s law in free space. This method will be
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explained in more detail in Chapter 4. If only the field distribution in a small fraction
of space is of interest, it is more convenient to solve Biot Savarts Law

Bv =
µ0

4π

∫︂
js(r

′) × r− r′

|r− r′|3
dV′. (2.29)

For later numeric calculations, it is convenient to use the fact that js = js(x, y) and
integrate (2.29) along the film thickness. In this way, one obtains

Bv =
µ0

4π

∫︂ (︃
1

rz−
− 1

rz+

)︃
js(r

′
0) × ez − g(r′0)

[︁
js(r

′
0) ·

(︁(︁
r0 − r′0

)︁
× ez

)︁]︁
ezdF′. (2.30)

where the domain of integration is now the cross-section of the superconducting prism.
The space-dependent function g is given as

g(r′0) =
1

|r0 − r′0|
2

(︃
z−
rz−

− z+
rz+

)︃
rz± =(x− x′)2 + (y − y′)2 + z2±

z± =z ± d/2.

with r0 = (x, y, 0) and r′0 = (x′, y′, 0).

Artificial vortex lattice

In situations where the density of vortices in the sample is high, and the extent of the
SC is finite, the existing analytic thin-film solutions of Bv can no longer be applied. It is
then necessary to approximate the vortex field by other means. One technique relies on
the observation that the stray field of an isolated vortex resembles the field of a small bar
magnet. The stray field of a ferromagnetic cuboid of side length ∆x = 2xb, ∆y = 2yb,
∆z = 2zb and magnetization M = Msez can be calculated analytically [87] and has the
form:

hFM =
Ms

4π

2∑︂
k,l,m=1

(−1)k+l+m [log (yl + rklm) ex + log (xk + rklm) ey] + (2.31)

− Ms

4π

2∑︂
k,l,m=1

(−1)k+l+msign(xkzm) arctan

(︃
|xk| yl

|zm| rklm

)︃
ez.

Here, the origin of the coordinate system is located at the center of the cuboid. Also,
the following abbreviations are used

xk = x + (−1)kxb

yl = y + (−1)lyb

zm = z + (−1)mzb

rklm =
√︂

r2k + y2l + z2m.
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CHAPTER 2. THEORETICAL BACKGROUND

By adjusting the dimensions and magnetization of such a ferromagnetic nano cube, it
is possible to use (2.31) to approximate the field of an ensemble of superconducting
vortices. This technique will be used in Chapter 6 to simulate the interaction between
vortices and magnons. Although useful, the magnetic field described by (2.31) is not
suitable as input for the GL-equations since here, the magnetic vector potential instead
of the H-field is required. In situations where the interaction between vortices and
ferromagnetic nanocubes is of interest, it is, therefore, suitable to calculate the vector
potential corresponding to (2.31). This field can be calculated analytically as well and
has the form

AFM = −B0

2∑︂
k,l,m=1

(−1)k+l+m [xk log (−zm + rklm) + zm log (−xk + rklm)] ex (2.32)

+B0

2∑︂
k,l,m=1

(−1)k+l+m [yl log (−zm + rklm) + zm log (−yl + rklm)] ey

+B0

2∑︂
k,l,m=1

(−1)k+l+m

[︃
|xk| arctan

(︃
ylzm

|xk| rklm

)︃
ey − |yl| arctan

(︃
xkzm

|yl| rklm

)︃
ex

]︃
with the same abbreviations as before and B0 = µ0Ms/4π.

2.4 Time-dependent Ginzburg-Landau theory

Over the decades, the London theory and the conventional GL theory have proven to be
powerful tools that can explain many features of conventional SCs, e.g., the appearance
of Little-Parks oscillations in thin-walled cylinders [88,89] and the Josephson effect [90].
Also, a considerable number of generalized GL-theories were developed to describe phe-
nomena like the Fulde-Ferrel-Larkin-Ochinikov-phase (FFLO) in SC/FM hybrids [91],
superconducting alloys at arbitrary temperatures [92] and unconventional p-wave super-
conductivity in SC/FM multilayer systems [93]. However, one fundamental flaw of the
theory is its inability to describe non-equilibrium phenomena since the conventional GL
approach does not consider a time dependence of Ψ and A. Finding a time-dependent
generalization of the GL equations has turned out to be rather difficult since, for conven-
tional SCs, the density of states displays a singularity at the gap edge [29]. Therefore a
good TDGL theory of general validity can only be obtained for materials that are gapless
or the singularity in the density of states has been smoothed out by a sufficient concen-
tration of paramagnetic impurities. Several TDGL approaches were developed, taking
these considerations into account [94–96]. For the present discussion and the forthcoming
calculations, the TDGL equations proposed by Schmid and derived by L.P. Gor’kov and
G.M. Eliashberg will be used [94]

0 =
ℏ

2msD

(︃
ℏ
∂Ψ

∂t
+ iqsϕΨ

)︃
+ Ψ

(︁
β|Ψ|2 − |α(T )|

)︁
+

1

2ms

(︃
ℏ
i
∇− qsA

)︃2

Ψ (2.33)

1

µ0
∇×∇×A = −σ

(︃
∂A

∂t
+ ∇ϕ

)︃
+ js. (2.34)

18



2.4. TIME-DEPENDENT GINZBURG-LANDAU THEORY

The first thing to note is that the equations (2.33) and (2.34) are invariant under the
gauge transformations [97]

Ψ(r, t) −→ Ψ(r, t)ei
qs
ℏ χ(r,t)

A(r, t) −→ A(r, t) + ∇χ(r, t)

ϕ(r, t) −→ ϕ(r, t) − ∂

∂t
χ(r, t).

Later on, this property will be useful for simplifying the equations. The two most com-
monly used gauges in the TDGL-formalism are ϕ = 0 (zero electric potential gauge) and
ϕ + ω∇ · A = 0, with a suitably chosen constant ω. These gauges have the advantage
of eliminating the scalar potential from the TDGL equations altogether. The Coulomb
gauge ∇ · A = 0 is also a valid choice. But it is less frequently used since it requires
solving an additional equation for ϕ

0 = ∇ ·
[︃
σ

(︃
∂A

∂t
+ ∇ϕ

)︃
+ js

]︃
, (2.35)

which can be obtained by applying the divergence to (2.34). It was already mentioned
that in equilibrium situations and near the critical temperature, the first GL-equation
(2.17) becomes identical to a Schrödinger equation for a charged particle in a magnetic
field. This similarity disappears when dynamic systems described by the first TDGL
equation (2.33) are considered. From a technical point of view, the first TDGL equation is
a nonlinear diffusion equation for the complex-valued order parameter Ψ. The dynamics
it describes are purely dissipative, meaning particle conservation and wave-like solutions
are no longer possible. This point becomes clearer when considering a situation without
electromagnetic fields and a spatially homogeneous order parameter. In this case, the
equilibrium solution of (2.33) corresponds to (2.13). By inserting |Ψ| = |Ψ∞| + δ with
|δ| ≪ 1 into the first TDGL equation and neglecting terms second order in δ one gets

δ = δ0e
− t

τGL , τGL =
ℏ2

2msD
. (2.36)

Deviations from equilibrium, therefore, decay exponentially on a characteristic time scale
τGL. The diffusion coefficient in the above formalism is D = vf l/3 where vf is the
material-specific Fermi velocity, and l is the electronic mean free path [29]. The scalar
potential ϕ = ϕe − µ/e ensures gauge invariance of (2.33) and takes the effect of elec-
tric fields and the chemical potential µ into account. However, the scalar potential is
often a redundant quantity in the TDGL-formalism and can be removed by applying an
appropriate gauge. More insights into the dynamics of the SC are possible by inserting
Ψ = Ψ0e

iθ into (2.33) and splitting into real- and imaginary parts. This procedure leads
to two coupled equations for Ψ0 and θ

0 =
ℏ2

2msD

∂Ψ0

∂t
+ Ψ0

(︁
βΨ2

0 − |α(T )|
)︁
− ℏ2∆

2ms
Ψ0 +

1

2ms
(ℏ∇θ − qsA)2 Ψ0 (2.37)

ℏ
2msD

(︃
ℏ
∂θ

∂t
+ qsϕ

)︃
Ψ2

0 =
ℏ

2qs
∇ · js. (2.38)
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Equation (2.38) can be interpreted as a continuity equation for supercurrents. In the
presence of electric fields, and in non-equilibrium situations, the divergence of js is no
longer zero. That is, for example, the case if a time-dependent magnetic field is applied
to the SC. The external vector potential then drives the time evolution of the phase and
the coupled order parameter amplitude. For small magnetic fields one has Ψ0 ≈ Ψ∞,
which allows to simplify (2.38) to

∂θ

∂t
−D∆θ = −qs

ℏ
(ϕ + D∇ ·A) (2.39)

i.e., an inhomogeneous diffusion equation for the phase field θ. It should be noted that it
is possible to eliminate the source term in (2.39) by using the gauge ϕ+D∇·A = 0 [97].
But even in this case, the phase can assume nonzero values since its time evolution is
also driven by the boundary condition (2.20), which has the form

Ψ0 (ℏ∇θ − qsA) · n = 0, on ∂ΩSC (2.40)

∇Ψ0 · n = 0, on ∂ΩSC. (2.41)

The second TDGL-equation is the generalization of Ampère’s law (2.34) with an addi-
tional eddy current term. The electrical conductivity σ(r) is a material constant that can
be taken from experiments (e.g., [44, 98]). A commonly used formula for the electrical
conductivity is [27]

σ =
l

3.72 ∗ 10−16

[︃
A

Vm2

]︃
. (2.42)

In most situations, σ can be treated as a scalar. However, in free space, σ is a step
function with σ > 0 in the material and σ = 0 outside, giving ∇σ → ∞ on the surface
of the sample.

After over 70 years of intense research, GL theory has helped to generate an enormous
amount of scientific literature. One of its main applications is the theoretical inves-
tigation of superconducting vortex states in various 2d and 3d systems [99–111]. In
particular, current driven vortex dynamics and vortex pinning [74, 112–127] have been
studied in view of their high relevance for device performance. Apart from applied
research [77–79, 128–134] also questions of fundamental interest are posed, e.g., How
vortices react to temperature gradients [134–145], nearby ferromagnets [22,68,146–163],
time dependent magnetic fields [164,165] and electromagnetic radiation [166–168].

2.5 Validity of the Ginzburg-Landau theory

The series expansion of the GL-free energy (2.12) is only valid near the critical tem-
perature where |Ψ|2 ≪ 1. In cases of a non-homogeneous order parameter distribution,
it is additionally required that Ψ and A are functions that vary slowly with r. More
precisely, it was shown by Gor’kov that the characteristic length scale for spatial vari-
ations of either of these quantities is the BCS-coherence length ξ0 [32]. For the order
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2.5. VALIDITY OF THE GINZBURG-LANDAU THEORY

parameter, therefore, it is required that ξGL(T ) ≫ ξ0, a condition that is well satisfied
for T ≈ Tc (cf. (2.24)). The same argument can be made for spatial variations of the
vector potential demanding λGL(T ) ≫ ξ0. In dirty SCs, the conditions for validity are
less restrictive since the electrodynamics of the SC become local [29]. In the dirty limit,
one has l ≪ ξ0, and the theory is valid already for ξGL(T ) ≫ l and λGL(T ) ≫ l.

Although the GL-theory has been developed for T ⪅ Tc, it still can give qualitatively
correct results for much lower temperatures [169]. From a practical point of view, it is
often suitable to operate at temperatures T > 0.4Tc. However, at low temperatures,
the physics of the vortex core are no longer correctly described by the GL-formalism
[57]. A better match with experiments can be obtained by modifying the temperature

dependence of the GL parameters such that α ∼ (1−t
2
)/(1+t

2
) and β ∼ 1/(1+t

2
)2 [29].

Mean field theories are only valid as long as thermal fluctuations are negligible. Tech-
nically this limits the applicability of the GL theory to temperatures T < Tc1 < Tc. Very
close to the critical temperature, the mean value of the order parameter can no longer be
considered dominant over the thermal fluctuations. The actual width of the forbidden
temperature region can be estimated from the Ginzburg criterion. In this formalism,
Tc1 depends on the material itself and the considered system’s dimensionality. E.g. for
weak-coupling SCs in three dimensions, the temperature region [Tc1, Tc] is usually very
small, and the GL-theory can be considered to be valid arbitrarily close to Tc [170].
Nonetheless, if the effect of thermal fluctuations is of relevance, it can be included in the
TDGL-formalism by adding a corresponding term to the first TDGL equation [142].
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2.6 Micromagnetism

In this section, the basic concepts of micromagnetism and magnonics are introduced.
Here, only the continuum approach of micromagnetism is covered since this work mainly
focuses on the interaction of mesoscopic SCs and FMs. The methods and tools intro-
duced here will be used in Chapter 6, where the interaction between magnonic excitations
and superconducting vortices is investigated.

Micromagnetism is a continuum theory that aims at characterizing the state of a FM
via its spatially averaged mean magnetization M(r, t, T ). On a microscopic scale, lo-
cal magnetic moments µ are associated with the spin and orbital motion of the elec-
trons. The spatial and temporal mean value of µ taken over a sufficiently large number
of moments defines the local value of the macroscopic magnetization M, which is, in
most cases, a smooth and continuously differentiable vector field. The magnetization
amplitude |M(r, t, T )| = Ms(r, T ) is a temperature-dependent quantity that may vary
locally. However, for sufficiently low temperatures, this local variation becomes small,
and |M(r, t, T )| = Ms(T ) everywhere in the material, with Ms being the temperature-
dependent saturation magnetization. In the following, the temperature dependence of
the magnetization is not discussed. In the continuum limit, the micromagnetic energy of
a FM under external magnetic field He can be written in the form of a Gibbs–Landau
free energy functional [171]

G[M(r, t),He(r, t)] =

∫︂ (︃
A

M2
s

|∇M|2 + fan(M) − µ0M ·He −
µ0

2
M ·Hm

)︃
dV (2.43)

In the following, each energy contribution will be addressed separately. Here it is to say
that the micromagnetic energy given by (2.43) is by far not complete, and effects due to
stress, magnetorestriction, and antisymmetric exchange [172] are not taken into account.
Although, their inclusion is straightforward once the corresponding energy is inserted
into the integral.

2.6.1 Exchange interaction

The first term in the free energy functional (2.43) has a form similar to the stiffness
term in the superconducting free energy density (2.16). That means that also in fer-
romagnetic systems, the corresponding order parameter M can not vary on arbitrarily
small length scales. The microscopic origin of this phenomenon is a strong coupling be-
tween neighboured spins of the crystal lattice, called exchange interaction. Consequently,
neighboured spins in the crystal lattice can not change independently from each other
and tend to align along a certain direction. A quantum mechanical treatment of this
problem was done by W. Heisenberg, and he showed that ferromagnetic exchange due to
the Pauli exclusion principle can be formulated as a Hamiltonian of the Form

ĤH = −2
∑︂
i>j

JijŜi · Ŝj . (2.44)

In FMs, the exchange constant Jij is positive, and a parallel spin alignment minimizes
energy. In antiferromagnets Jij < 0, and spins tend to align antiparallel to minimize
energy.
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2.6. MICROMAGNETISM

In the low-temperature limit, the exchange interaction prevails over all other interac-
tions, and the canting between neighboured spins will be small. This idea can be utilized
to express Ŝi · Ŝj in terms of the canting angle between the spins and expand the Hamil-
tonian (2.44) in a Taylor series [173]. As a result, the exchange energy in the continuum
limit is

Gexc =

∫︂
A

M2
s

|∇M|2 dV =

∫︂
A

M2
s

3∑︂
i=1

|∇ (M · ei)|2 dV, (2.45)

where A is known as exchange stiffness, a material constant that depends on the prop-
erties of the crystal lattice and on the exchange constant J . The expression (2.45) is
valid for the many common crystal types, like cubic and hexagonal lattices. However, its
applicability is limited to low temperatures and smooth sample geometries where abrupt
changes in the magnetization are energetically unfavorable.

2.6.2 Magnetic anisotropy

In many known ferromagnetic materials, it can be observed that the magnetization
alignment favors certain directions in space. This phenomenon is known as magnetic
anisotropy. It is often an intrinsic property of the material, e.g., it can result from
the crystal symmetry, the shape of the material, or internal strain [174, 175]. Nonethe-
less, also external forces can enforce spin alignment in the form of pressure-induced
anisotropy [176]. In all these cases, an incomplete alignment between the magnetiza-
tion and its preferred axes is energetically costly. Therefore, the favored directions are
also called the ”easy axes,” whereas the directions of the highest energy cost are called
”hard axes.” Often magnetic anisotropy is rather weak compared to ferromagnetic ex-
change. Nevertheless, its role in the process of domain formation and magnetic equilib-
rium states is still important and of technological relevance (for a detailed discussion,
see, e.g., [173,177,178]). In many materials, a combination of spin-orbit coupling and an
anisotropic crystal lattice makes the spins prefer a specific space direction. This so-called
magneto-crystalline anisotropy can be viewed as an internal material-specific field that
tends to align the electronic spins along certain crystallographic directions. This kind
of anisotropy often has uniaxial character, and the corresponding energy density can
be expressed as a Taylor series in the angle ϑ between the easy axis and the magnetic
moment [173]

gan = −K1 cos(ϑ)2 + K2 cos(ϑ)4 + · · · . (2.46)

In many cases, it is sufficient to truncate the series already after the first term since
K2 and higher order terms are negligible compared to K1. Also, since the directions
corresponding to ϑ = π and ϑ = −π are energetically equivalent, odd powers of cosϑ do
not appear in the series expansion (2.46). Expressed in terms of the easy axis direction
ea the magnetic anisotropy energy can be written as

gan = −K1 (m · eea)2 . (2.47)

In Chapter 6, the considered FM is made from Permalloy, for which even K1 ≈ 0.
Therefore the role of magneto crystalline anisotropy for the presented results is of minor
relevance.

23



CHAPTER 2. THEORETICAL BACKGROUND

2.6.3 Zeeman energy

The energy of a magnetic moment in an external magnetic field is known as Zeeman-
energy and has the form

gz = −µ0M ·He. (2.48)

The external field exerts a torque on M leading to a precessional motion of the magnetic
moment around the direction defined by He. However, magnetic damping is always
present in realistic systems, and an equilibrium state of the magnetization is achieved
once the magnetic moment and external field align.

2.6.4 Magnetostatic self-energy

The last term entering the micromagnetic energy (2.43) is known as the self-energy of
the FM. It is a natural consequence of Maxwell’s law for the divergence freedom of the
Flux density (2.6). With the constitutive relation B = µ0(M + Hm) it follows

∇ ·M = −∇ ·Hm. (2.49)

According to the Helmholtz theorem for vector fields, one has Hm = −∇u + ∇ × a.
Furthermore, since no free conduction currents are considered, Ampère’s law states that
∇×Hm = µ0jfree = ∇×∇× a = 0 and consequently a = ∇a0 and Hm = −∇u. That
means divergences of the magnetization have to be compensated by a stray field Hm to
ensure that ∇ ·B = 0. Equation (2.49) now takes on the form

∇ ·M = ρM = ∆u. (2.50)

This formula also appears in classical electrostatics, describing the relation between a
charge density ρ and the corresponding field ϕ =̂ u. Therefore, the divergence of M is
often seen as a magnetic charge. At the surface of the FM, the divergence of M has the
most prominent effect and causes the generation of a macroscopically measurable field
Hm known as stray field. Inside the material, the magnetic self field is also called the
demagnetization field since it tends to drive the FM into a state that minimizes magnetic
charge. This tendency of demagnetization manifests itself in the appearance of magnetic
domains inside the material. The shape and extent of these domains is determined by
the interplay between demagnetization, anisotropy, and exchange, where the latter two
favor uniform magnetization. In soft FMs, the minimization of the self-field energy can
manifest itself in the formation of magnetic vortex states. In thin films, the stray field
can be minimized by forcing the magnetization along a certain in-plane direction. This
stray field induced preferential direction of M is often called shape anisotropy, an effect
that purely depends on the geometry of the sample. In contrast to the strong short-range
exchange forces, the dipolar interaction between magnetic moments is long-ranged. The
free-energy density associated with the magnetic self field can be written as [171]

gs =
µ0

2
M · ∇u. (2.51)
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2.6.5 Landau-Lifschitz-Gilbert equation

The equilibrium state of the FM depends on the various interactions between the mag-
netic moments in the sample. The combination of these interactions acts like an effective
magnetic field that locally tries to align the magnetization into an energetically favorable
direction. In equilibrium, therefore, the following condition holds [171]

δG = −µ0

[︃∫︂
Heff · δM dV − 2A

µ0M2
s

∮︂
ΩFM

∂M

∂n
· δM dS

]︃
= 0. (2.52)

Variations in the free energy due to variations in the direction of M are supposed to be
zero since Ms = const.. By carrying out the variational procedure, it is straightforward
to show that the effective field takes on the form

Heff = − 1

µ0

δG

δM
=

2A

µ0M2
s

∆M +
2K1

µ0M2
s

(M · ea) ea + Hext −∇u. (2.53)

The surface integral appearing in (2.53) is a natural consequence of minimizing the ex-
change term in the free energy. It can be eliminated by applying the boundary condition

∂M

∂n
=

3∑︂
i=1

(∇Mi) · n = 0, on ∂ΩFM (2.54)

which is valid in the absence of surface anisotropy. Under the action of (2.53), the
magnetization is locally precessing and obeys the conventional dynamic equation for a
magnetic moment in an external magnetic field

∂M

∂t
= −γµ0M×Heff . (2.55)

The prefactor γ is the gyromagnetic ratio of the electron spin and has a value γ =
gqeℏ/2me with a Landé-factor g ≈ 2. Remarkably, the precessional frequency is not
dependent on the angle between the magnetic moment and the effective field. This
behavior is also known from the quantum mechanical description of magnetic moments.
In that sense, equation (2.55) is not very realistic since a constant precessional motion
does not allow the FM to find an equilibrium state where M ×Heff = 0. This obstacle
was overcome by Landau and Lifschitz, who proposed that relaxation could be achieved
by adding a damping term to (2.55) [179]. However, even though the new form of
(2.55) was able to give qualitatively correct magnetodynamics, in many cases, it still
predicted incorrect behavior in the limit of strong damping. An improved version of the
Landau-Lifshitz equation, valid also in the high damping regime, was developed by T.
L. Gilbert [180]

∂M

∂t
= −γ⋆M×Heff +

Γ

Ms
M× ∂M

∂t
. (2.56)

This equation is commonly known as the Gilbert equation. Mathematically, the orig-
inal Landau-Lifschitz equation and (2.56) are representatives of a class of equivalent
differential equations differing only in the definition of the constants. For this reason,
dynamic equations of the form (2.56) are often referred to as Landau-Lifschitz-Gilbert
equation. In this work, the same name convention will be used. Representatives of the
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LLG-equation have to obey two principles: conservation of the magnetization amplitude
|M| = const. and the equilibrium condition between the local magnetization and the
effective field M×Heff = 0. It can be easily shown that the LLG-equation (2.56) fulfills
both conditions. The damping term is as well constructed to fulfill these requirements.
It has the form of a torque that drives the magnetic moment into the direction of the
effective field. The combined action of the two torque terms in the LLG-equation leads
to a spiral trajectory of m on the Bloch-sphere (see Fig. 2.3). The gyromagnetic factor

Figure 2.3: Damped precessional motion of a magnetic moment due to an effective field.
Left: damping torque TD and precessional torque TP acting on the magnetization M.
Right: Trajectory of m on the Bloch sphere.

appearing in the LLG equation is, in general, a function that depends on the state of the
system as well as damping. For simplicity, in most cases, only the latter is considered.
By comparing the Landau-Lifschitz-equation and the LLG-equation one can show that
γ⋆ = γL(1 + Γ2) where often γL = γ is used [180]. In cases where the total angular mo-
mentum of the unpaired electrons has a significant contribution from the orbital angular
momentum, the precessional factor needs to be adjusted accordingly.

2.6.6 Spin waves

Under the action of the effective magnetic field (2.53), the energetic ground state of a
FM corresponds to regions of approximately uniform magnetization but different orien-
tations. The exchange interaction forces neighbored spins to equally align inside each
domain, as described by the Heisenber-operator (2.44). Inverting the direction of one
moment is energetically costly. However, suppose such a deviation from the ground state
is uniformly distributed across the spin system. In that case, neighbored moments will
only be slightly canted, and the penalty in exchange energy will be less severe. The
corresponding periodic modulations of the spin system are called spin waves, as depicted
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in Fig. 2.4(a). Spin waves or magnons (in reference to their energy-excitation quanta)

Figure 2.4: (a) spin wave propagating along a chain of magnetic moments m. (b)
schematic experimental setup for magnon propagation in a waveguide of backward vol-
ume magnetostatic spin wave (BVMSW) configuration. The left antenna is fed by a
microwave current giving rise to a time-dependent excitation field Ha. The right an-
tenna serves for magnon detection.

are dynamic collective excitations of the ferromagnetic ground state. Technically they
are similar to phonons - the collective excitations of the atomic lattice of a solid. Both
are bosonic in nature and carry a quantized amount of energy. However, the relation be-
tween wave vector k and frequency f has a complicated form for magnons. In particular,
it depends not only on the underlying material but also on the mutual orientation be-
tween the magnetic field and propagation direction. In addition, in a FM, the coupling
between neighboured magnetic moments has contributions from short-range exchange
interactions and long-range dipolar interactions making a systematic study of f(k) chal-
lenging. Dipolar coupling dominates the spin-wave dispersion for |k| ≪ 1 and in large
probe geometries. Here the mutual orientation between k and He determines the prop-
agation characteristics of magnonic excitations (see, e.g., [181]). In the following, only
the so-called backward volume magnetostatic spin wave (BVMSW) configuration is con-
sidered, as shown in Fig. 2.4 (b). In this particular case, the external bias field of the
FM is oriented parallel to the propagating modes, i.e., He ∥ k. In contrast to surface
waves, volume modes are characterized by a nonvanishing amplitude of the spin waves
in the entire volume of the sample. The term ”backward volume” referes to the property
vpvg < 0 meaning at (k1, f1) the phase velocity vp = f1/k1 > 0 is opposite to the group
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velocity vg = ∂f/∂k < 0. The exact frequency interval for which this property holds
depends on the sample geometry and the internal field Heff of the waveguide. A typical
BVMSW spectrum (except for the band gaps) is shown in 6.5 (d).

Due to its high potential for applications in information technology, the research in
magnonics has grown exponentially in recent years [182,183]. Various proposed magnonic
device ideas include spin wave filters, emitters, logic devices, diodes, and integrated cir-
cuits. One of the key ideas for magnonic logic applications is tailoring the spin wave
dispersion, allowing the control of information transfer through a waveguide. For exam-
ple, this can be done by introducing periodic modulations to chosen system parameters,
such as waveguide thickness [184], external magnetic field [85], magnetic texture [185]
or material parameters [186]. In this way, a so-called magnonic crystal [187–189] can
be constructed, which is the magnetic analog to a photonic crystal [190, 191]. However,
magnonic crystals have several advantages over their optical counterpart, e.g., lower en-
ergy consumption, smaller wavelength, and smaller device features [183]. The basic idea
of periodically patterned materials is that propagating waves subsequently scatter at
the introduced nonuniformity. Then, due to destructive interference, waves in a certain
frequency interval are not allowed to propagate inside the crystal. The corresponding
frequency regime is called a band gap. Controlling the width and number of these for-
bidden bands is one of the driving factors for research in magnonics. Here only a rough
introduction to this vast research field can be given. The literature is referred to for
further information about magnonics and magnonic crystals.
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3 Numerical procedure

This section presents the methods for the numerical solution of the TDGL-equations and
the LLG-equation. First, the superconducting subsystem and the numerical treatment
of the TDGL are discussed. The numeric integration scheme for the LLG and methods
for calculating the magnonic dispersion are introduced afterward.

Before the actual solution method for the TDGL-system (2.33)-(2.34) is presented,
it is useful to make the equations dimensionless by applying a suitable scaling. For
this reason, the superconducting order parameter Ψ = Ψ∞(T0)Ψ̃, the position vec-
tor r = Lr̃, the time t = τ t̃, the vector potential A =

√
2Bcth(T0)LÃ, the magnetic

flux density B =
√

2Bcth(T0)B̃, the temperature T = TcT̃ , the supercurrent density
js =

√
2Bcth/µ0λGLjs̃ and the scalar potential ϕ =

√
2Bcth(T0)λGL(T0)

2/τϕ̃ are set in
relation to their dimensionless quantities which are denoted by a tilde. In the follow-
ing, the tilde is omitted, and only the dimensionless variables are considered. Equation
(2.33) is divided by |α(T0)| and (2.34) by

√
2Bcth(T0)/µ0λGL. The dimensionless TDGL

equations now have the form

η1

(︃
∂Ψ

∂t
+ iκϕΨ

)︃
+ Ψ

(︃
|Ψ|2 − 1 +

T − T0

Tc − T0

)︃
+

(︃
1

inκ
∇− nA

)︃2

Ψ = 0, (3.1)

1

n
∇×∇×A = −η2

(︃
n
∂A

∂t
+

1

n
∇ϕ

)︃
+ js, (3.2)

js =
i

2nκ
(Ψ∇Ψ⋆ − Ψ⋆∇Ψ) − n|Ψ|2A, (3.3)

with boundary condition(︃
1

inκ
∇Ψ − nΨA

)︃
· n = 0, on ∂ΩSC. (3.4)

The boundary condition for (3.2) will be specified later. The constants appearing in the
rescaled TDGL equations are

η1 =
ξGL(T0)

2

Dτ
, (3.5)

η2 = σ
µ0λGL(T0)

2

τ
, (3.6)

n =
L

λGL(T0)
. (3.7)

The measures for time (τ), space (L), and the operating temperature (T0) are chosen
according to the problem at hand. A common choice is to set τ = ξGL(T0)

2/D, σ =
1/(µ0κ

2D) and L = λGL(T0) which sets the constants to unity [69, 76, 115, 192]. In the
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CHAPTER 3. NUMERICAL PROCEDURE

dirty limit, one has η1 ≈ 1, which is a commonly accepted parameter in the literature and
known to lead to qualitatively and sometimes even quantitatively correct results [193].
In the following calculations, the superconducting material is chosen to be Nb. Niobium
is the elemental SC with the highest critical temperature Tc ≈ 9 K and a natural type-II-
material with κ ≥ 0.8 [28]. Depending on its purity, Nb can host vortices with comparably
large cores and strong stray fields. All these properties make Nb especially suitable for
studying superconducting vortices under various conditions. The material properties of
Nb are therefore well studied and can be easily found in the literature [27,44,98].

In the first TDGL-equation (3.1) the temperature-dependent expression

f(T ) = −1 +
T − T0

Tc − T0
(3.8)

becomes zero if T = Tc and −1 if T = T0. That means that in equilibrium and under
zero external field, the SC is in the Meißner state. In this case the order parameter is
homogeneous and 0 = |Ψ∞(Tc)|2 ≤ ns ≤ |Ψ∞(T0)|2 = 1.

In most cases, (3.1) and (3.2) are solved numerically by the use of either the finite-
difference method (see [192] and references therein) or the finite element method (FEM)
[194, 195]. Finite difference schemes are usually faster than the FEM and allow large-
scale simulations of systems of micrometer size and beyond [196]. On the other hand,
the FEM allows the solution of the TDGL equations on superconducting samples of
complex shapes, like spheres, tubes, or geometries that are taken from real experiments.
In the following, only finite-sized SCs are considered, where geometric confinement ef-
fects are important. For this reason a linearized semi-implicit Galerkin-mixed FEM is
used for the simultaneous solution of (3.1)-(3.4) [194]. The computations are carried out
with the FEM software FEniCS [195] and generation of finite-element meshes is done
with the open source 3D finite element mesh generator GMSH [197]. Depending on the
problem at hand, boundary conditions and element orders are adapted to match specific
requirements. Details about these modifications will be provided in the corresponding
text passages. A detailed discussion of the FEM is beyond the scope of this work. For
more information, the reader is referred to the literature, e.g., [198,199].

In many cases, solving the LLG equation is quite involved. The solution of (2.56) is
a 3D vector field that fulfills the constraint |m(r)| = 1 at all times. Also, calculating the
dipolar field Hm = −∇u is numerically demanding. So, the numerical solution of the
LLG equation is performed with the micromagnetic simulation program MuMax3 [200].
This software package uses a finite-difference discretization scheme where the ferromag-
netic sample is uniformly subdivided into a grid of orthorhombic cells. The output data
of MuMax3 consists of a number of arrays for each magnetization component mx,y,z(tj)
and each instance of simulation time tj . Each value of the arrays corresponds to the
local magnetization component at a specific grid site.

In Chapter 6, the considered magnetic samples consist of long Py strips subjected to
an external bias field H∥, which points along the strip’s central axis. If H∥ = H∥ex,
the equilibrium solution of the LLG equation consists of the vector field m = ex. Note
that shape anisotropy supports such a magnetization alignment since, in this way, the
magnetic charge ∇ · m inside the waveguide can be minimized. Dynamic deviations
from the equilibrium solution appear if the magnetization is locally stirred, e.g., by the
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Oersted field of a microwave antenna. The magnetic disturbance travels through the
waveguide as a spin wave with a specific, mode-dependent frequency f(k). In the follow-
ing, the orthogonal magnetization components will be denoted as δmy,z. In particular,
the orthogonal magnetization component δmz(x, y0, z0, t) will be used to calculate the
waveguide’s spin wave dispersion. Here, δmz(x, t) is evaluated along the waveguide’s
central axis, and y0 and z0 are chosen accordingly. The spinwave dispersion can be cal-
culated by applying a 2D Fast Fourier transform (FFT) to the 2D matrix δmz(xi, tj)
yielding δm̂z(ki, fj). The maxima of the Fourier amplitudes correspond to modes that
are allowed to travel along the waveguide. By transforming the array |δm̂z(ki, fj)| into a
pseudocolor image, e.g., by using the Python library Matplotlib [201], the entire spectrum
can be visualized. The spatial distribution of a specific mode can be found by evaluat-
ing Ftδmz(xi, tj) = δm̂z(xi, fj) and inspecting the local magnetization in the frequency
domain.

Before applying the FFT it is advisable to multiply the magnetization array by an
appropriate window function to avoid FFT-specific errors like scalloping loss [202]. In
the here-presented calculations δmz(xi, tj) is multiplied by Hanning windows [203]

Ht(t) =
1

2

(︃
1 − cos

(︃
2πj

M − 1

)︃)︃
, 0 ≤ j ≤ M − 1, (3.9)

Hx(x) =
1

2

(︃
1 − cos

(︃
2πi

N − 1

)︃)︃
, 0 ≤ i ≤ N − 1. (3.10)

Here, M and N correspond to the number of samples over time and space. The sampling
rates are chosen to match the requirements of the dispersion plots. For example, by
using a sinc-field Ha = H0 sin (2πf0t)/(2πf0t)ey to excite spin waves, only modes with
frequencies f < f0 = 20 GHz are excited. Therefore, it is sufficient to evaluate δmz

every ∆t = 25 ps giving the calculated spectrum an upper bound (Nyquist frequency)
of fNyquist = 0.5/∆t = 20 GHz. On the other hand, the resolution in frequency space is
determined by the total simulation time T = M∆t. The simulations in Chapter 6 were
run for T = 1µs allowing for a resolution of ∆f = 1/T = 1 MHz. Similar arguments can
be made for the spatial sampling of δmz. Here, the cell size l of the finite difference grid
determines the maximum wave vector kNyquist = π/l that can be resolved, whereas the
waveguide length L = Nl determines the resolution in k-space. For more information
about magnonic dispersion calculations, see, e.g., [202].
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4 Controlled vortex formation at
nanostructured
superconductor/ferromagnetic junctions

Coupling between superconducting and ferromagnetic matter can be achieved in two
ways. For directly coupled FM/SC hybrids, the two system constituents are in physical
contact. Thereby, the ferromagnetic correlations usually prevail since they have a strong
pair-breaking effect on the superconducting condensate. As a result, superconductivity
is suppressed around the FM/SC interface. On the other hand, if the ferromagnetic
order is weakly developed, the competition between FM and SC is more balanced. In
such a system, novel effects may appear, e.g., a direct coupling between the magnetic
spin system and the superconducting phase field, leading to anomalous supercurrents at
the material interface. This effect will be discussed in detail in Chapter 5.

In many applications and theoretical studies, the direct proximity effect is avoided
by separating the two sub-systems by an insulating interlayer. In this way, the system
constituents only interact via their corresponding stray field. The following section deals
with such an electromagnetically coupled FM/SC hybrid system.

The results presented in this chapter are based on studies of vortex patterns in con-
fined FM/SC bilayers, published by the author of this thesis [204]. In this section, it will
be discussed how the stray field of a patterned nanomagnet affects vortex nucleation in a
nearby SC. It will also be shown how an external magnetic field can be used to precisely
control the total vorticity of the FM/SC hybrid structure. Here the old results will be
reviewed, and an outlook will be given on how the research in the field might be continued.

The three main parameters in the TDGL-equations that determine the solution of (3.1)
and (3.2) are the material constants, the boundary conditions, and the external vec-
tor potential. For this reason, the major part of publications in the field of vortex
physics deals with problems related to modifying these system parameters. In many
of these works, several simplifying assumptions are made to keep the computational ef-
fort tractable. For example, the assumption of an infinitely long superconducting prism
along the z-direction allows to neglect the z-dependence of the superconducting order
parameter Ψ and vector potential A and renders the system essentially two-dimensional.
Additionally, for such a system geometry, demagnetization effects do not occur, which
allows simplification of the boundary conditions for the magnetic field [194]. Another
simplification method is to neglect the superconducting stray field completely and solve
only the first TDGL for a given external vector potential. This approach is valid in thin
films and nano-sized systems or in other cases where the superconducting stray field is
negligible compared to the external field [73]. In films of intermediate thickness, such

32



4.1. SIMULATION DETAILS

a simplification becomes less appropriate since demagnetization effects due to the su-
perconducting stray field become important. Also, superconducting vortices can behave
differently in extended systems and tend to form loops [66, 67, 73], semi-loops [58, 68]
and connected networks [56]. That is often the case if the SC is subject to the stray
field of a nearby FM. Also, the superconducting stray field and material inhomogeneities
play an important role in extended geometries and lead to a complicated vortex-vortex
interaction. The statics and dynamics of such systems are difficult to investigate since
they often appear only in samples of macroscopic size. Hence, the computational effort
for computer simulations becomes enormous. For this reason, the amount of literature in
the field is rather limited. On the other hand, the potential for applications is high since
artificial FM/SC compounds are known to give rise to effects that can not be observed
in each of the systems separately.

For this reason, this work investigates how superconducting films of intermediate thick-
ness behave in the vicinity of a FM with a distinct domain structure. The stray field of
such a magnet is highly inhomogeneous in space and has the potential to induce VAV
systems in the nearby SC. It will be shown that in conjunction with additional exter-
nal magnetic fields, the vorticity of the system can be precisely controlled and allows
to perform logic operations based on the vortex state of the SC. Also, the transport
properties of the SC are expected to be strongly modified by the FM since they are
inherently coupled to the vortex dynamics. The presented findings are also interesting
from a fundamental point of view since 3D-simulations of vortex states in highly confined
geometries and in the presence of inhomogeneous magnetic fields are rarely to be found
in the literature.

4.1 Simulation details

A sketch of the domain of computation is shown in Fig. 4.1. The SC has a square
geometry and is located on top of a FM of the same size. Both layers have a side length
of a = 2µm, a thickness of d = 200 nm and are separated by a thin insulating oxide layer
of height h = 20 nm. The insulator prevents direct proximity between the materials
and makes the interaction between the system constituents purely electromagnetic. The
entire trilayer is surrounded by a vacuum and placed in a cubic box of side length
b = 10µm. In general, the magnetization M of the FM and the superconducting order
parameter Ψ will, by mutual interaction, find an equilibrium state which minimizes the
free energy of the entire system. Even though it is an interesting process, the relaxation
of the entire system is not considered here. Instead, the FM will be set to have a
fixed magnetization of strength and direction that are chosen freely. The ferromagnetic
component is assumed not to be affected by external fields of any kind and only serves
as a magnetic field source. In the following, the operating temperature will be set to
T0 = 8.26 K, corresponding to T0 = 0.92Tc with Tc = 9 K for Nb. The state of the SC is
calculated by solving the dimensionless TDGL-equations (3.1) and (3.2). The material
constants of Nb are taken from the literature and displayed in table 4.1 [29,44]. In order
to simplify the problem, the gauge ϕ = 0 is chosen [97]. Therefore, the superconducting
wave function and the vector potential are the only quantities to be calculated. The
latter can be split into several contributions A = Ae +AFM +As where Ae is the vector
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CHAPTER 4. CONTROLLED VORTEX FORMATION AT NANOSTRUCTURED
SUPERCONDUCTOR/FERROMAGNETIC JUNCTIONS

Figure 4.1: Sketch of the considered FM/SC hybrid structure. The SC is a square film
made from Nb. It is separated from the FM by a thin insulating oxide layer. The sur-
rounding empty box is for the computation of the vector potentials, which are supposed
to fulfill open boundary conditions.

Quantity Value

Magnetic penetration depth λGL 266 nm
GL-parameter κ 3.4
Basic time unit τ 3.3 ps
Basic length unit L 266 nm
Mean free path l 9 nm
Fermi velocity vf 6 × 105 m s−1

Relative temperature T/Tc 0.9175
Length ratio n 1
First TDGL coefficient η1 1
Second TDGL coefficient η2 0

Table 4.1: Material parameters of Nb and the quantities used in the calculations. [204]

potential of homogeneous external fields, AFM is the potential of the ferromagnetic flux
density, and As corresponds to the superconducting stray field. From Ampére’s law, it
follows

1

µ0
∇×∇×AFM = ∇×M. (4.1)
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4.2. RESULTS AND DISCUSSION

Equations (3.2) and (4.1) are solved with open boundary conditions for As and AFM

and the corresponding fields tend to zero at infinite distance from the sample. This
boundary condition is approximated by setting the following Dirichlet condition for the
vector potentials

A× n = 0 at ∂Ω (4.2)

where ∂Ω denotes the outer boundary of the box. The condition (4.2) enforces B · n =
0 at the boundary, i.e., the whole system is surrounded by a perfectly diamagnetic
material that screens all fields. Under these conditions, it is known that the FEM delivers
acceptable numeric results if the distance from the center of the sample towards the box
edges is about five times the distance between the center and the outer surface of the
sample [205]. Numeric accuracy also requires a sufficiently high amount of finite-element
cells outside the sample. These conditions are fulfilled with the above-shown geometry
and the usage of ten million cells outside the sample and about one million cells in each
layer.

In principle, the ferromagnetic vector potential could also be calculated analytically
from (2.32). Both methods were tried out, and the results were confirmed to be identical.
The numeric procedure is now the following. Equation (4.1) is solved for M = M0m
with M0 = 1 kA/m and unit vector m for a chosen magnetic configuration. The vector
potential AFM is inserted into the first TDGL equation, and the equation is solved for
a slowly increasing field. This procedure is possible since Ampére’s law scales linearly
with the magnetization amplitude. Once the desired field value is reached, the system
is allowed to relax, and the equilibrium order parameter Ψ and supercurrent js are
calculated. With js at hand, the stray field As of the SC is calculated by solving the
second TDGL equation. This field is then reinserted into the first TDGL equation, and
the relaxation procedure starts again. The equilibrium state of the system is usually
reached after two relaxation cycles, and the state of the system is evaluated. Since only
equilibrium states are of interest here, the effect of normal currents is not considered,
and η2 = 0 is set. Technically, it would also be possible to directly solve the static GL-
equations selfconsistently for Ψ and As. However, the solution of the classic GL-equation
is much more difficult than solving the time-dependent problem. For the external vector
potential, the symmetric gauge Ae = 0.5Be(−yex + xey) is chosen. The corresponding
flux density Be = Beez is the field at the center of a very long solenoid. This particular
field matches the setup where a conventional Helmholtz coil produces the external field.

4.2 Results and discussion

In the following, several magnetic configurations will be considered, and it will be shown
how they affect the state of the SC. Specifically, the magnetization of the FM shown
in Fig. 4.1 is now divided into several domains. In the first case, the FM consists of
two domains of opposite magnetization separated by a domain wall of negligible size (see
Fig. 4.2). The saturation magnetization, in this case, is assumed to be Ms = 75 kA/m, a
realistic but relatively weak value compared to the magnetization of standard materials
like Permalloy (600 − 1900 kA/m) or YIG (140 kA/m).

Such a weak magnetization is chosen because of the comparably small separation be-
tween the layers. At close distances, conventional FMs produce a stray field that is strong
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SUPERCONDUCTOR/FERROMAGNETIC JUNCTIONS

Figure 4.2: State of the FM/SC bilayer where the FM consists of two domains of opposite
magnetization direction. No additional external fields are applied, and the saturation
magnetization is set to Ms = 75 kA/m. (a): Sketch of the system geometry. (b): Order
parameter amplitude |Ψ|2 on a slice through the center. (c): phase θ of the wave function.
(d): z-component of the superconducting stray field Bs.

enough to substantially suppress the superconducting state, especially at temperatures
close to the critical temperature of the SC. That means, in close proximity to the FM,
vortex states appear already at small magnetization values. These states with a com-
parably small number of fluxons are of primary interest in this work since they already
reflect the principal behavior of the system very well. Furthermore, at small distances,
the stray field of the FM reflects very well the actual state of the magnetization and
the shape of the magnet. So the geometry of the magnetic layer becomes an important
parameter in the problem.

For the system shown in Fig. 4.2, the stray field is relatively homogeneous above
each domain, but its sign rapidly changes at the domain wall. Also, directly above the
domain wall, the stray field has its strongest magnitude and the greatest effect on the
SC. Here, under slowly increasing magnetization, the superconducting order parameter is
gradually suppressed, leading to the formation of a pocket of reduced superconductivity.
For sufficiently large magnetization, this region becomes unstable, and dynamic vortex
nucleation sets in. In the final stage of the process, the normal conducting region collapses
into a vortex semi-loop. Despite the sample’s comparably large thickness d ≈ 2.5 ξGL,
the semi-loop is unstable and splits into two independent fluxons. Driven apart by the
strong Meissner currents above the domain walls, each fluxon travels into a region that
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4.2. RESULTS AND DISCUSSION

magnetically stabilizes it. The stabilizing mechanism here is the attractive interaction
of current loops of opposite flow directions.

On the one hand, the Meissner currents above each ferromagnetic domain are directed
oppositely to the magnetization current of the underlying ferromagnetic texture. In this
way, the magnetic stray field is expelled from the SC. On the other hand, the screening
currents flowing around the vortices have the opposite polarity. Therefore, fluxons with a
certain magnetic moment will preferably assemble above magnetic domains that share the
same polarity. In this way, the conventional Meißner currents and the fluxonic currents
cancel to some extent, and the energy of the system is reduced.

This is also reflected in the stray field produced by the fluxons. The z-component of
Bs points in the same direction as the stray field of the underlying ferromagnetic domain.
As the magnetization increases further, more and more fluxons enter the sample. Vortex
creation, in this case, happens not only at the center of the SC but also at its edges,
like under the action of a homogeneous magnetic field. The fluxons form two seemingly
independent lattices and populate the domains according to their polarity. However,
superconducting vortices are topological entities, so their presence affects the entire SC.
By looking at the superconducting phase, it becomes apparent that, despite their spatial
separation, the VAV-pairs are still connected. The phase gradient of a vortex opposes
that of an antivortex, and under normal conditions, both entities attract each other and
annihilate. In the present case, the current flow at the domain wall prevents annihilation,
and the two fluxon subsystems are stable. Also, vortex expulsion through the edges is
prevented by the magnetic barrier. Without additional magnetic fields, fluxons in the
considered system can only appear in pairs. That is because the total flux provided
by the FM is zero, and the vorticity of the SC has to follow this tendency to minimize
energy.

The situation is similar if the FM is divided into four domains, as shown in Fig.
4.3. Such a magnetic configuration can be experimentally reproduced by combining
four magnetic plaques into the considered structure. Since the volume of each domain
is now smaller than in the case of a two-domain system, the stray field is weaker as
well. A higher magnetization is, therefore, necessary to generate vortices. Upon slowly
increasing magnetization, vortex generation at the domain walls and the sample edges
is observed again. In this case, the fluxons form stable systems above each domain
with a polarity that matches the underlying magnetization direction. Due to symmetry,
for all magnetizations, the number and arrangement of the fluxons is observed to be
identical in each subsystem. This symmetry can be disturbed under the application of
an external field. Concretely the additional field adds to the stray fields of the magnet
and increases or decreases the total field in certain parts of the structure. E.g., For
Be = Beez, the fluxons in the lower left and upper right corner experience an increased
magnetic flux. As a result, the corresponding vortex lattices shrink in size. On the other
hand, the antivortex lattices at the lower right, and upper left corner expand since the
external field counteracts the magnetic stray field. If the external magnetic field is strong
enough, it can change the number of vortices in the sample. In this way, it is possible
to reduce the fluxon number to zero in domains where the external and ferromagnetic
fields cancel each other. In the remaining domains, superconductivity is strongly reduced
under the action of the external field. At this point, it should be mentioned that in a
more realistic system, the magnetization of the plaques might very well have in-plane
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Figure 4.3: State of the FM/SC bilayer where the FM consists of four domains of opposite
magnetization direction. No additional external fields are applied, and the saturation
magnetization is chosen to be Ms = 95 kA/m. (a): Sketch of the system geometry. (b):
Order parameter amplitude |Ψ|2 on a slice through the center. (c): phase θ of the wave
function. (d): z-component of the superconducting stray field Bs.

components, and the field acting on the SC is reduced to some degree. Also, the width
of the domain walls is nonzero, and the stray field is modified accordingly [206, 207].
The fluxonic state presented here should be easily modifiable by altering the magnetic
domain structure. That, together with the aid of external magnetic fields, provides the
possibility of applications relying on precisely controllable fluxon systems [77–79]. Also,
the superconducting stray field of VAV-systems might be used to control the magnon
propagation in an adjacent magnetic waveguide.

So far, the geometry of the entire system has been relatively simple. Therefore, to
put more emphasis on the geometry of the FM, the size and orientation of the layers are
changed. The new geometry is shown in Fig. 4.4. As before, the SC sits on top of the
FM, and an insulating layer separates both systems. The thicknesses of the layers and
their quadratic geometry are also the same as before. But the FM is now rotated by 45
degrees with respect to the other layers. Also, its side length is reduced to a = 1µm.
Consequently, the SC now has two regions of opposite magnetic flux density. Directly
above the FM, the field points mainly into the z-direction. Outside, it has the opposite
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Figure 4.4: FM/SC bilayer-system with a ferromagnetic bottom layer of side length
a = 1µm and a rotation of 45◦ with respect to the superconducting top layer. (a):
geometry of the system. (b): magnetic stray field at the bottom of the superconducting
layer for Ms = 1 kA/m. (c), (d): state of the SC for a magnetization Ms = 105 kA/m
and Ms = 130 kA/m, respectively.

orientation. At the edges of the FM, the field orientation changes rapidly from positive to
negative. If the superconducting layer were infinitely wide, the magnetic flux provided
by the FM would be exactly zero. In the here-considered case, the SC is finite, and
the flux is positive. That also becomes apparent if the magnetization is ramped up
and the appearing vortices are investigated. In the absence of additional external fields,
only vortices of distinct polarity are observed to gather above the domain of positive
flux. However, in the process of fluxon generation, VAV-pairs were observed to appear
at the corners of the FM. But due to finite-size effects and strong interaction with the
Meissner currents, the antivortices are quickly expelled from the system. As a result,
only vortices can populate the material and find a stable equilibrium. The situation
is expected to be different for larger samples since the total flux tends to zero, and
also, VAV-pairs should be able to stabilize [208]. With these observations at hand, it is
straightforward to conceive a scenario where an additional external magnetic field restores
the flux equilibrium in the system. However, before this idea is elaborated further, it
is instructive to investigate how such a field modifies the superconducting state in the
absence of magnetization.
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The importance of geometric confinement in nano-SCs becomes especially apparent
if the magnetization of the bottom layer is set to zero and the external field is slowly
increased. Fig. 4.5 shows the resulting vortex arrangement. Under the action of a ho-

Figure 4.5: Vortex lattice for Ms = 0 and increasing external field B = Beez. Left:
Be = 8.5 mT. Right: Be = 15.7 mT.

mogeneous magnetic field, vortex generation solely happens at the sample edges, and
vortices appear in multiples of four. Here the fourfold multiplicity is a natural conse-
quence of strong geometric confinement. In nanosized SCs, it is typical for fluxons to
arrange in a way that reflects the system geometry [209]. The influence of geometric
confinement is also reflected by the symmetry of the Abrikosov lattice. In extended sys-
tems, vortices arrange in a lattice of hexagonal symmetry due to their mutual repulsion.
In the here-considered case, the lattice has a simple cubic structure that is rotated by 45
degree compared to the sample geometry. However, the states depicted in Fig. 4.5 might
be metastable, and the lattice potentially reconfigures into a sixfold symmetry over large
time scales.

Now, it is discussed how a homogeneous external field can be utilized to manipulate
the vortex state generated by a nearby FM. Starting point is the system shown in Fig.
4.4(c), where Ms = 105 kA/m and four vortices are present in the SC. The external field
Be = Beez is chosen to have a direction that opposes the direction of the stray field of
the FM. Therefore, its presence reduces the magnetic flux in the system and stabilizes
antivortices. Initially, the vortices sit at the center of the SC and are caged by circulat-
ing Meißner currents along the FM/SC interface. As the external field is increased, the
negative magnetic flux outside the ferromagnetic domain is enhanced, and antivortices
enter the system from the sample edges. For Be = 9.4 mT, the fluxons of negative vor-
ticity build a stable ring around the central region. In this case, the magnetic barrier
around the FM/SC interface is strong enough to prevent VAV-annihilation. If the field is
further increased, the magnetic flux at the center region gradually tends to zero, and the
magnetic barrier becomes too weak to prevent fluxons from mutual annihilation. After
reaching a new equilibrium, the center region is devoid of fluxons, and superconductivity
is fully restored. Also, the number of antivortices has increased, and the total vorticity
is negative. The observations made on this system show that careful adjustment of the
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Figure 4.6: Upper panels: vortex states of the system shown in Fig. 4.4(c) for external
magnetic field Be = Beez. The field amplitude increases from left to right and has
values Be = 1.2 mT (left), Be = 9.4 mT (middle), Be = 12.3 mT (right). Lower panels:
z-component of the superconducting stray field Bs for increasing external fields as in the
corresponding upper panels.

external field allows for precisely controlling the SC’s vorticity in this hybrid structure.
Also, the size and geometry of the FM are important parameters in this problem since
the vortices will adjust their position to the magnetic flux provided from outside.

The results evidence that vortex formation in FM/SC hybrid systems depends remark-
ably on the sample geometry- and size. It is demonstrated how a nanomagnet can serve
as a field source in such a structure, enabling the formation of well-separated VAV-
systems in the SC layer. The application of additional external magnetic fields allows
further control of these fluxonic states. By adjusting the ferromagnetic domain struc-
ture and external field, it is possible to precisely control the vorticity of the SC layer
enabling potential applications in fluxonic logic devices. Also, the stray field of the VAV-
systems could serve as a building block for a dynamic magnonic crystal. This idea will
be elaborated further in Chapter 6.

Due to the length restriction on the thesis, only a selected number of results were
presented here. However, from a general perspective, this research project can be con-
sidered a precursor for more advanced ideas. For example, one could investigate how the
here-presented fluxonic systems affect the high-harmonic generation in superconductors
under structured light. One can also conceive a scenario where the coupled FM/SC bi-
layers are integral parts of a Josephson junction. The findings of such research studies
will be reported elsewhere.
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5 Supercurrent induced by chiral coupling
in multiferroic/superconductor
nanostructures

In this chapter, it is discussed how interfacial Rashba-SOC modifies the dynamic prop-
erties of superconducting vortices in coupled FM/SC hybrid systems. Specifically, it is
considered how electric current-induced vortex motion is affected if the SC and FM are
in close contact. The results presented in this chapter are selected from the original
article [210], published by the author of this thesis.

From an application point of view, vortex motion is problematic since it is connected with
finite electrical resistance and unwanted energy dissipation. On the other hand, type-II
SCs are known to have much higher critical magnetic fields and critical current densi-
ties than type-I materials. Therefore, finding effective pinning mechanisms for fluxons
is of high interest and an active field of research. A standard method for vortex pining
consists of introducing artificial pinning centers into the SC, for example, nanoparticles,
antidots, columnar defects, thickness modulations, and magnetic dots [48–52]. Another
interesting and effective method relies on the so-called flux pinning [211]. Here, the vor-
tex is magnetically bound to a position where a local external field is applied. This is
the case when the SC is placed on top of a strong-anisotropy FM which is divided into
several domains. The corresponding magnetic stray fields have been proposed to exert
exceptionally strong pinning forces on vortices [212].

In this work, another strategy is applied. The idea is to prevent fluxon penetration
into the material in the first place. In SCs of non-ellipsoidal shape, it is commonly
observed that an energetic barrier significantly inhibits vortex generation at the edges of
the sample. This surface barrier usually depends in a complicated way on the geometry of
the sample and the material composition. Its investigation is, therefore, quite challenging.
Nonetheless, it is crucial to understand how vortex entry is affected by surfaces since it
directly affects flux flow in the system [213–215]. Therefore, a natural idea is to use the
energetic entry barrier to keep the material free of fluxons. Furthermore, combined with
conventional pinning mechanisms, even better fluxon control can be achieved and the
critical current of devices can be significantly enhanced [216].

In the following, it will be discussed how the fluxonic entry barrier in a microsized
FM/SC bilayer is modified by interfacial Rashba-SOC. Specifically, it will be shown
how the flux flow in a conventional s-wave SC is modified by direct proximity to a helical
multiferroic oxide, such as TbMnO3 [217]. In such a material, a combination of electronic
correlations, magnetic exchange, and SOC can lead to the appearance of spontaneous
electric polarization. Thus, the material is ferroelectric and ferromagnetic at the same
time. As a consequence, the underlying magnetic order becomes susceptible to changes
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in the electric polarization providing an opportunity for an all-electric control of the
spin-ordering [218, 219]. In helical ferroics, it has been demonstrated that the switching
from positive to negative helicity can already be achieved with comparably small electric
fields. On the other hand, in proximity-coupled FM/SC hybrids, interfacial SOC is
directly affected by changes in the magnetic order of the FM. Combining these ideas
allows the multiferroic layer to be utilized as an electrical control element for flux motion
in the adjacent SC.

In the following, it will be demonstrated how changes in the spin-helicity of a multi-
ferroic layer drive a proximity-coupled SC into subsequent states of vortex pinning and
viscous flux flow. It will be shown that the key mechanism responsible for this behavior
is a change in the energetic barrier for fluxon entry. This change is associated with a
modified magnetic field at the sample edges, and in return, natural consequence of the
interfacial Rashba SOC between the materials. Furthermore, it will be shown that the
SOC-induced supercurrents lead to a substantial anisotropy in the vortex dynamics.

5.1 Methods

The geometry of the considered system is shown in Fig. 5.1. The SC is a square film

Figure 5.1: Geometry of the considered system. A superconducting square layer of length
d = 4µm and height hSC is placed underneath a multiferroic oxide of equal dimensions.
The multiferroic top layer hosts a helical magnetic ordering and is proximity coupled to
the SC via interfacial Rashba-SOC. Both layers are subject to an external magnetic field
He. A transport current je is applied to the SC, driving the SC into a state of continuous
flux flow.

of side length d = 4µm and a height hSC. It is placed directly under a multiferroic film
of equal side length and height hFM. Both layers are in close contact and subject to
an external magnetic field He pointing into the z-direction. The ferroic layer hosts a
magnetic ordering in the form of a transverse spin spiral. It will be referred to as the
magnetic layer, though its mean magnetization is zero in equilibrium. Two electrodes
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are attached to the sides of the bottom layer where a transport current je is injected.
Space-inversion symmetry is broken at the interface between the layers, allowing for a
finite Rashba-SOC. In addition, the top layer displays an intrinsic SOC associated with
its distinct ferroelectric properties. Upon close contact and in the presence of SOC, the
local exchange interaction leads to a magneto-electric coupling between the magnetic
texture m and the superconducting phase field θ [38, 220, 221]. This interaction results
in a flow of supercurrents around the interface, even without additional external magnetic
fields. In the following, this magnetoelectrically generated current is investigated for its
potential to control fluxon motion.

In the presence of SOC, the free energy functional of the SC (2.15) has to be modified
to account for SOC-induced current flow. In the series expansion of the free energy then
an additional term appears [39,222]

fSOC =
αs

2ms
·
[︂
Ψ
(︂
D̂Ψ

)︂⋆
+ Ψ⋆

(︂
D̂Ψ

)︂]︂
. (5.1)

Here, one has αs = αs,0N× h with the Rashba-constant αs,0 being nonzero only in the
absence of inversion symmetry. The normal vector N points in the direction of the broken
inversion symmetry, here the z-direction. The exchange field h has the same orientation
as the local magnetization M and penetrates the SC in a thin layer around the interface.
In very thin films with hSC ≪ λGL and hSC ≪ ξGL the exchange can be averaged out
over the superconducting volume [25, 223]. Also, in this limit, the order parameter no
longer changes across the height of the layer. After functional minimization, the modified
TDGL equations take on the form

0 =
ℏ

2msD

(︃
ℏ
∂Ψ

∂t
+ iqsϕΨ

)︃
+ Ψ

(︃
β|Ψ|2 − |α(T )| − α2

s

2ms

)︃
+

1

2ms

(︂
D̂ + αs

)︂2
Ψ (5.2)

1

µ0
∇×∇×A = σ

(︃
∂A

∂t
+ ∇ϕ

)︃
+ js (5.3)

0 = ∇ ·
(︃
σ

(︃
∂A

∂t
+ ∇ϕ

)︃
+ js

)︃
. (5.4)

js =
iqsℏ
2ms

(Ψ∇Ψ⋆ − Ψ⋆∇Ψ) − qs
ms

|Ψ|2 (qsA−αs) . (5.5)

with boundary conditions (︂
D̂ + αs

)︂
Ψ · n = 0, on ∂Ωv (5.6)

Ψ = 0, on ∂Ωe (5.7)

−σ

(︃
∇ϕ +

∂A

∂t

)︃
· n = je · n, on ∂Ωe. (5.8)

The parts of the boundary ∂Ωv and ∂Ωe indicate SC/vacuum and SC/electrode interfaces,
respectively. Note, in general ϕ has contributions from the screening of the polarization
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p of the top layer. However, p is very small in the chosen material and does not need to
be considered here. The SOC-parameter αs enters the first TDGL in the form of a pair
binding potential and leads to an increased critical temperature T ⋆

c = Tc + α2
s/2msα0.

That means a space-dependent magnetic texture is now via SOC directly translated
into an according modification of the order parameter amplitude. The SOC parameter
also enters the equation in the form of a vector potential ASOC = −αs/qs and leads
to an anomalous contribution to the supercurrent density. This observation indicates
that only certain magnetic textures can generate supercurrents around the interface.
Specifically, if αs = ∇u, and u being a continuously differentiable field, the first TDGL
equation is solved by a homogeneous order parameter distribution Ψ = Ψ∞e−iq2su/ℏ. On
the other hand, if αs = ∇ × w, the SOC-term has the effect of a regular magnetic
field applied to the sample. In the following calculations, the SOC-term is chosen to
have values |αs| ≤ 0.1ℏ/ξGL, and order parameter variations due to the anomalous
pair binding potential can be neglected. Nonetheless, this value is still large compared
with commonly used values |αs| ≤ 0.01ℏ/ξGL [224]. Also, for strong SOC, it has been
reported that the generation of antivortices is enabled [225]. However, SOC-induced
vortex nucleation was not observed here, presumably because a different material and
sample geometry was used in this work. For the SC, the material parameters of Nb are
chosen [204]. In addition, the electrical conductivity is set to σ = 38 × 106/Ωm. At this
point, it should be mentioned that the combination of Nb and TbMnO3 is not optimal
since the wavelength of the spin spiral, typically on the order of several nanometers, is
smaller than the Ginzburg-Landau coherence length. Here, using a high-Tc material with
very small ξGL could be a better choice for experiments. In the here-considered case,
the spin spiral is chosen to have the form of a Néel spiral with a minimum wavelength
of Λ = 400 nm ≈ 2.5 ξGL, which is roughly the size of a vortex. The corresponding
exchange field reads

h = − sin

(︃
2πmx

d

)︃
ex − cos

(︃
2πmx

d

)︃
ez. (5.9)

Here, m is the winding number with m = 1 indicating the magnetization making one
complete rotation across the entire length of the sample. The absolute value of the
exchange field is absorbed into the SOC parameter, and h is a unit vector field. From
this field, it is straightforward to calculate the SOC-parameter as

αs = −αs,0 sin

(︃
2πmx

d

)︃
ey. (5.10)

Following the above discussion, it can be confirmed that αs = ∇×w and ∇·αs = 0 and
the anomalous supercurrent distribution is nonzero. In contrast, for a magnetic texture
in the form of a Bloch spiral, the curl of αs would be zero, and the current flow would
not be observable. The magnetic field corresponding to (5.10) is now

BSOC = −∇× αs

qs
= 2πm

αs,0

dqs
cos

(︃
2πmx

d

)︃
ez. (5.11)

The SOC-induced magnetic field has a spatial dependency and modulates the external
field. With increasing winding number, the amplitude of this modulation increases as
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well. However, the total magnetic flux over one half-period of BSOC is constant, i.e,

ΦSOC =

∫︂
BSOC · ezdF = 2

αs,0

qs
d2. (5.12)

Before the results are discussed, several simplifying assumptions have to be made. First
of all, a very thin superconducting film is considered. For such a system, the effective
London penetration depth is very high, and the superconducting stray field is usually
relatively weak. In this case, it is permitted to neglect the influence of the stray field on
the order parameter and set As = 0. Furthermore, the magnetic layer is assumed to be
unaffected by the SC, external fields, and Oerstedt fields stemming from current flow in
the bottom layer [226]. Also, the thickness of this layer is assumed to be small enough
to neglect magnetic stray fields that eventually appear [223]. Finally, the Oerstedt fields
of the circuits are also not expected to act on the SC. Another important point is that,
in general, the magnetization of the top layer is not a perfect spin spiral but distorted
due to external and internal fields. In the presence of broken inversion symmetry, such
deviations can lead to additional Lifschitz-invariants in the free energy functional [227].
For simplification purposes, effects stemming from texture imperfections are not taken
into account.

5.2 Results

5.2.1 Vortex dynamics for zero SOC

Before it is discussed how SOC affects the vortex motion, it is instructive to see the
principal behavior of fluxons under transport current. Starting point is the state with
a single vortex under applied magnetic field Be = 1.5 mT. Upon slowly ramping up the
external current je = jeey, the vortex is deflected into the x-direction. The resulting
vortex motion is associated with a normal current flow and an increased voltage between
the electrodes. The mean voltage, in this case, can be calculated as

⟨U⟩x,y =
1

d

∫︂
ΩSC

∇ϕ · ex,ydF. (5.13)

This quantity will be used in the following to characterize the dynamic state of the
system. If the current is strong enough, a continuous vortex motion sets in, as shown in
Fig. 5.2.

The dynamical behavior of the SC can be understood as follows. Initially, the vortex
at the SC center is deflected towards the sample edge by the applied transport current.
If the current is sufficiently small, the vortex finds a new equilibrium position closer to
the edge at x = 2µm. In this case, vortex expulsion from the system is prevented by
an energetic surface barrier, resulting from the microscopic Bean-Livingston barrier and
geometric confinement [228–230]. Flux expulsion only happens once an additional fluxon
enters the sample from the left edge at x = −2µm. The possibility of having another
fluxon entering the sample has two reasons. First, the external current has a direction
that enhances the supercurrent flow at the left edge of the SC and reduces it at the right
edge. The increased current magnitude locally reduces the order parameter density and
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Figure 5.2: Time evolution of the superconducting state for Be = 1.5 mT, αs,0 = 0 and
je = 7.07 GA/m2ey. The black curve shows oscillations of the mean voltage due to
periodic vortex motion in the SC. Lower panels: Vortex states for specific points in time.
The numbering corresponds to the points indicated in the upper plot.

the edge barrier for vortex entry. Second, the initial vortex now has a greater distance
towards the left edge, and its screening currents are less effective in keeping other fluxons
out of the sample. Once nucleated, the second vortex travels toward the center of the
sample, where it pushes against the first vortex. The combined forces of the external
current and the other fluxon provoke an annihilation event at the right edge, and another
metastable equilibrium is reached. The whole dynamic process repeats every t = 1.2 ns.
In general, the edge barrier depends on the exact current distribution and, therefore,
on the number and spatial distribution of fluxons. In return, The barrier determines
the flux configuration of the SC. In realistic samples, edge imperfections modify the
energetic barrier for vortex nucleation. However, only clean samples with perfect edges
and nonzero SOC are considered in the following.

5.2.2 Vortex dynamics in the presence of SOC

In this section, it is investigated how Rashba SOC with αs,0 = 0.1ℏ/ξGL affects the
previously described vortex dynamics. Starting point is the dynamic state shown in
Fig. 5.2, from which the winding number of the spin spiral is slowly increased from
m = 0 to |m| = 10. Experimentally such a change of the winding number can be
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achieved by applying an electric field to the top layer that acts upon the ferroelectric
polarization. This field is supposed to be symmetric with respect to the y-axis leaving
the magnetization unchanged along that direction. This way, the spin spiral is contracted
symmetrically around the central axis. The ferroic top layer acts on the SC via the space-
dependent SOC field defined in equation (5.11) and modifies the current distribution
around the interface. In the following calculations, the spin spiral is always assumed to
be a static structure, and the transient spin dynamics are not considered. Apart from
the symmetric contraction around the central axis, two other scenarios are considered
as well: one where the magnetization is always fixed at the left edge of the SC and one
where it is fixed at the right edge. The corresponding SOC-parameters are denoted as
αl

s (left edge fixed) and αr
s (right edge fixed) respectively

αl,r
s = −kr,lαs,0 sin

(︂
nπ

[︂
2
x

d
+ kr,l

]︂)︂
ey. (5.14)

Here kl = 1 and kr = −1. The corresponding magnetic field is

Bl,r
SOC = kr,l2πn

αs,0

dqs
cos
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nπ

[︂
2
x

d
+ kr,l

]︂)︂
ez. (5.15)

From now on, the SOC parameter corresponding to a symmetric contraction around
the central axis will be referred to as αs

s. The mean voltage for increasing winding
number |m| and different magnetic textures αl,s,r

s is shown in Fig. 5.3. First, the case
of the symmetric SOC-parameter αs

s is considered. For increasing winding number, the
mean voltage displays several plateaus followed by sharp drops towards local minima.
Analyzing the simulation data reveals that the voltage oscillations result from vortices
experiencing different dynamic phases. Each plateau corresponds to a superconducting
state where vortex motion is inhibited, and the current flow is dissipationless. The voltage
minima, on the other hand, result from enhanced vortex mobility, and the corresponding
states are highly dynamic. It is also observed that the onset of vortex motion upon
increasing m is always triggered by a vortex entering the sample from the left edge.
That indicates that the energy barrier for fluxon entry plays an important role in the
problem. The barrier for vortex exit is observed to be of lesser relevance. That also
becomes apparent if the magnetic spiral is contracted in a way that the magnetization
is fixed either on the left or right edge of the magnetic layer.

First the SOC-parameter αl
s is considered for slowly increasing |m| (see Fig. 5.2(b)).

In this case, the SOC-field BSOC is constructed such that for m > 0, the field on the left
edge of the sample points into the positive z-direction, whereas for m < 0, the field is
negative.

For positive field values (m > 0), Vortex motion is permanently inhibited, and the
mean voltage is only changing slightly. These small voltage changes are caused by fluxon
rearrangements due to the changing spatial distribution of the magnetic field. Such
vortex displacements are also the reason for voltage drops across the plateaus in Fig.
5.2(a).

If the SOC field is permanently negative at the left edge (m < 0), the frequency of the
voltage oscillations roughly doubles. Also, the voltage plateaus only gradually appear in
the form of local spikes. The negative SOC field at the left sample edge makes vortex
entry permanently easier. The higher amount of fluxons, as well as their position and
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Figure 5.3: Mean voltage versus winding number for Be = 1.5 mT, αs,0 = 0.1ℏ/ξGL,
je = 7.07 GA/m2 and three distinct magnetic magnetic textures. (a): the magnetic
spiral is symmetrically contracted around the y-axis with SOC-parameter αs = αs

s. (b):
the magnetization is fixed at x = −d/2 with αs = αl

s. (b): the magnetization is fixed at
x = +d/2 with αs = αr

s.

interaction, now lead to a more complex behavior of the energy barrier. In this case,
extended regions of vortex pinning are no more to be found.

These observations indicate that the sign of BSOC at the layer edges is responsible for
the different dynamic fluxon phases. Therefore, a change of the system’s dynamic state
should be possible by applying an appropriate phase shift to the spin spiral. To support
these assumptions, the symmetric SOC parameter is now modified to

αs
s = −αs,0 sin

(︂
2πm

x

d
+ φ

)︂
ey, (5.16)

where φ ∈ [0, 2π] corresponds to the phase of the spin spiral. Then φ is varied from 0 to
2π for a number of specific m-values. The results are shown in Fig. 5.4. Here the values
of m are chosen such that for φ = 0, the vortices are highly mobile, and the system is
in the resistive state (see Fig. 5.2(a) ). Upon increasing the phase factor from 0 to π,
vortex pinning can be restored, and the system becomes dissipationless, as indicated by
the voltage plateau at φ = π. Such a phase shift corresponds to a sign inversion of BSOC

from negative to positive values at x = −2µm. For φ = π, the energy barrier for vortex
entry is enhanced, and vortices become immobile. The observations made for different
phase factors match those made for the SOC-parameter αl

s. The sign inversion of BSOC

for negative values of m is also reflected in the symmetry of the curve in Fig. 5.2(a), i.e.,
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Figure 5.4: Mean voltage versus phase shift φ for a symmetric SOC-parameter αs
s and

selected winding numbers. The values of m are chosen such that the system is in the
resistive state for φ = 0. Upon a phase change of φ = π, the system transits into the
dissipationless state.

the curve is antisymmetric with respect to m = 0.

The spin spiral is now fixed at the right edge of the layer with a SOC-parameter
αs = αr

s. The corresponding SOC-field is constructed such that for positive m, BSOC is
negative at the right edge of the sample, and for negative m, the field is positive. If a
symmetric contraction with αs = αs

s is considered, a sign- change of BSOC at the sample
edges requires a change in the winding number of ∆m = 1. On the other hand, if the
magnetization is fixed at one of the edges, the field value of BSOC at the opposite side
flips from positive to negative already for ∆m = 0.5. In the here-considered case, this
means that the voltage oscillations double their frequency for αs = αr

s. That is indeed
the case, as can be seen in Fig. 5.2(c). Interestingly the curve, in this case, is not as
symmetric as the one for αs = αs

s. That indicates that the vortex expulsion barrier,
despite its seemingly lesser relevance, plays a role in the given problem.

From now on, the external current that transits the system into the flux flow state
is denoted as depinning current jd. The dependency of this current on the winding
number for αs = αs

s, Be = 1.5 mT and αs,0 = 0.1ℏ/ξGL is shown in Fig. 5.5. Here,
the vortices are pinned for je ≤ jd, whereas for je > jd, a continuous vortex motion sets
in. The shape of the curve matches the one in 5.2 (a) very well, i.e., depinning current
maxima and voltage plateaus appear for the same values of m. Interestingly two regimes
for the vortex dynamics can be distinguished. For small values of m, vortex mobility
is enhanced for half-integer values of the winding number whereas for large values of
m the corresponding voltage minima appear at full integer values. Also, the vortex
number changes more rapidly for small winding numbers. For high values of m, mostly
1-vortex and two-vortex states are found to be stable. The curve also displays several
sharp kinks. During the simulations, it was found that jd suddenly changes when the
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Figure 5.5: Depinning current versus winding number for αs = αs
s, Be = 1.5 mT and

αs,0 = 0.1ℏ/ξGL. The black curve approximates the current values for which vortex
motion is barely prevented. The points on the curve show the number of vortices simul-
taneously existing in the SC.

total fluxon number in the sample changes as well. Also, vortex rearrangements were
observed to have the same effect. SOC-induced vortex pinning becomes strongest for
m ≈ 1.5, and the depinning current, in this case, has an approximately 28% higher value
than in the SOC-free case.

A better understanding of the two dynamic regimes of small and large winding num-
bers can be obtained by inspecting the supercurrent density in the absence of vortices.
Additionally, Be = 0, je = 0 and |αs

s| = 0.1ℏ/ξGL are set, which means the super-
current is purely defined by its anomalous part. For small current densities, the order
parameter is now approximately homogeneous, and the supercurrent can be written as
js = qsα

s
s/ms. In Fig. 5.6, the y-component of this current across the x-axis is plotted

for selected values of m. For comparison, the supercurrent for αs,0 = 0 and Be = 1.5 mT
is also displayed here.

Note, despite the increasing winding number, the amplitude of js is for all curves
the same. That is because the magnetic flux ΦSOC = 2αs,0d

2/qs threading the SC/FM
interface over one half-period of αs

s is independent of m.

For small winding numbers, the currents spread broadly across the entire SC. In this
regime, increased vortex mobility is observed for m = 0.5 and m = 2.5. Here from (5.10),
it follows that the anomalous supercurrent js,y ∼ αs

s,y along the edges has the same flow
direction as the conventional Meißner current induced by external fields (see Fig. 5.6).
As a consequence, the total current is increased, leading to stronger suppression of the
order parameter along the edges. As a result, the corresponding energy barriers are
reduced as well, enabling an easier fluxon transit through the material [231].

If the current flow is reversed by a sign change of BSOC, the anomalous supercurrents
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Figure 5.6: y-component of the supercurrent js for |αs
s| = 0.1ℏ/ξGL, Be = 0 and in

the absence of vortices and external currents. For the selected winding numbers m, the
current becomes extremal around the edges. Cyan curve: reference state for Be = 1.5 mT
and zero SOC.

counteract the conventional Meißner currents along the edges. That is, for example, the
case for m = 1.5. Now the edge barrier is higher than before, and vortex flow is inhibited.
This effect resembles the restoration of the edge barrier by vortex entry into the SC [232].

An externally imposed current flow, on the other hand, reduces the entry barrier and
enhances the exit barrier since its flow direction is strictly along the positive y-direction.
In this way, an imbalance in the entry and exit conditions for fluxons is created, leading
to the dynamic phases discussed above.

For large winding numbers, the extrema of the depinning current are shifted to full
integer values of m where the SOC-induced supercurrent along the edges becomes zero.
In this regime, it is evident that not the actual value of js but rather the total current dis-
tribution along the edges determines the conditions for the flux flow. For example, vortex
pinning is observed for m = 4, i.e., when the first extremum of js is negative near the left
edge. In contrast, vortex flow is re-enabled js has a local maximum near the left edge.
The total current flow around the edges is also in the low-m regime, the decisive fac-
tor for the vortex dynamics. Here the broad current distribution allows more vortices at
the same time to exist in the SC, leading to an enhanced voltage signal (see Fig. 5.2 (a)).

Finally, also vortex motion due to an external current along the x-direction is considered.
Such a current is directed transversely to the wave vector k of the spin spiral αs

s. In this
case, the fluxons are forced to move along the y-axis and produce a voltage signal that
depends on the winding number m of the spin spiral (see Fig. 5.7). For comparison, the
voltage signal for je = jeey is also plotted for the same values of m.

In contrast to the case where je ∥ k, a transverse current flow leads to a substan-
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Figure 5.7: Left: Mean voltage versus winding number for αs = αs
s and different direc-

tions of the injected transport current. Here k is the wave vector of the spin spiral. For
transport-currents parallel to k (upper curve), vortices experience consecutive phases of
pinning and enhanced mobility. For transport currents transverse to k (lower curve),
vortex-pinning is not observed. Right: Frequency of the voltage oscillations for je = jeex
depending on the average vortex number and the time a vortex resides in the sample.

tially enhanced voltage signal. Also, instead of consecutive phases of vortex pinning and
flux flow, this time, the voltage signal oscillates with increasing winding number. That
indicates the complete absence of static vortex phases. Instead, the SC is in a state
of constant flux flow where the average number of fluxons varies continuously with m.
The maxima and minima of the average vortex number coincide with the corresponding
extrema in the voltage curve.

An interesting observation can be made by comparing the voltage maxima and minima
of the two curves in Fig. 5.7. Apparently, the winding numbers that prevented flux
motion in the case je ∥ k also reduce the voltage signal when je ⊥ k. So far, no suitable
explanation for this phenomenon could be found. That is mainly because the current
distribution along the boundaries is more complicated for transverse current flow.

In any case, vortex entry is always observed at parts of the boundary where BSOC

points into the positive z-direction. There it leads to an enhanced total field. For αs = αs
s

this is, for example, the case at (x = 0, y = ±2µm). For a symmetric SOC parameter, the
SOC-enhanced magnetic field at the center of the sample builds a channel that hinders
transverse vortex motion. Only for small winding numbers, the slowly varying SOC field
allows for lateral movement. On the other hand, for higher values of m, vortex motion
becomes highly directional along the y-direction.

The frequency f of the time-dependent voltage oscillations for je ⊥ k is shown in Fig.
5.7 (b). This frequency depends on the moving speed of individual fluxons, their average
number, and the time that an individual vortex resides in the SC before it gets expelled.
One can see that f has values in the GHz-regime with a local maximum for m = 1.
For larger winding numbers, the frequency approaches the initial value for BSOC = 0
since the SOC field becomes averaged out on a spatial scale. That is also visible in
Fig. 5.5 where the maximum depinning current is reduced for large winding numbers. If
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the winding number becomes negative (not shown here), the mechanism that increases
vortex mobility is reversed, and vortex pinning is again observable.

In this chapter, it was investigated how the vortex dynamics of a superconducting thin
film are affected by interfacial Rashba-SOC. The SC was proximity-coupled to a magneti-
cally ordered top layer with strong intrinsic SOC. The magnetic ordering was assumed to
have the form of a Néel-spiral with a freely adjustable winding number m. A subsequent
increase of m was found to force the vortices in the system through alternating phases of
pinning and enhanced mobility. Thereby, a SOC-induced modification of the energetic
edge barrier for vortex nucleation was identified as the main reason for the modified
vortex dynamics. Furthermore, the coupling between the superconducting phase field θ
and the magnetic texture was also observed to modify the average vortex number and
the critical depinning current of the sample. In particular, SOC-induced vortex pinning
is most effective for low winding numbers. In contrast, for high winding numbers, the
coupling to the multiferroic layer became less relevant since SOC-related effects are aver-
aged out. It was also investigated how phase changes of the spin spiral affect the vortex
mobility. Thereby it was confirmed that a modification of the edge barrier for vortex
penetration is susceptible to such a phase change leading to the modified vortex dynam-
ics described earlier. Finally, if the external electric current is directed transversely to
the spin spiral vortex motion becomes channeled. In this case, phases of vortex pinning
can be avoided altogether for positive winding numbers of the spin spiral. The results
of this section potentially allow for superconducting devices where the vortex dynamics
are electrically coupled to the magnetization of a multiferroic top layer. In this way, an
all-electric control of the dynamic state of the system could be achieved with potential
applications in fluxonic memory devices. The results presented in this section are also
expected to remain valid if the interfacial SOC field is replaced with the stray field of
an appropriately textured FM (e.g., a FM with a magnetization in the form of a chiral
domain wall).
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6 Magnon-fluxon interaction in coupled
superconductor/ferromagnet hybrid
systems

In this chapter, it is investigated how magnon propagation in a micro-sized waveguide is
affected by the vortex field of a nearby SC. First, the equilibrium state of the SC, and
the associated stray field, are obtained by solving the TDGL equations of superconduc-
tivity. Then, a replacement system consisting of ferromagnetic nanocubes is constructed,
mimicking the vortex field and serving as input for the Landau-Lifschitz equation. The
material parameters are chosen to match the experiment of Dobrovolskiy et al. [85], al-
lowing for a quantitative comparison of the here-presented results to realistic systems. It
was found, that the presence of the vortex lattice leads to the formation of a Bloch-like
band structure in the magnon spectrum. It was also observed that the presence of the
nanomagnets leads to a downward shift of the lowest order allowed bands due to the
confinement of the low-frequency magnonic modes. The role of structural disorder in the
vortex lattice was also investigated. It was observed that already a slight distortion of
the lattice substantially inhibits the propagation of the lowest-frequency modes, whereas
the high-frequency modes are only slightly disturbed. Finally, it is also discussed how
the magnonic bands change with varying waveguide thickness.

6.1 Methods

The here-presented system consists of a ferromagnetic magnonic waveguide and a type-II
SC on top. Both layers are separated by an insulating layer of height h = 5 nm. In this
way, the interaction between the two layers is purely electromagnetic, and hybridization
effects do not have to be considered [233]. Spin wave dynamics are then only driven
by the stray fields of the system constituents and intrinsic damping of the FM layer.
A schematic of the structure under investigation is shown in Fig. 6.1 (a). For the
ferromagnetic strip, the material constants of a Py layer are chosen, i.e., a saturation
magnetization Ms = 676 kA/m, an exchange stiffness A = 16 pJ/m, and zero magneto-
crystalline anisotropy. In this work, the effects of damping are not taken into account for
reasons explained later. The SC is made from Nb with a magnetic penetration depth of
λ(8 K) = 150 nm [85]. The GL-parameter is estimated as κ = 1, which is a typical value
for Nb in the clean limit [234].

The interaction of the magnonic excitations in the waveguide with the superconduct-
ing vortices is simulated in two steps. First, the TDGL-equations (3.1) - (3.4) are solved
under Be = Beez in order to get the field distribution of a static vortex lattice. Then,
the static vortex field Bv is used as input for the LLG equation. In this way, the mag-
netization dynamics of the FM can be calculated independently from the SC dynamics.
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Figure 6.1: (a): Schematic of the system under investigation. The SC is a host for
vortices that modulate the field distribution in the waveguide below. (b): Amplitude of
the superconducting order parameter for an external field of Hz = 5 mT. The blue regions
are normal conducting and indicate the positions of vortices. (c): Replacement system
where nanomagnets modulate the field of the waveguide instead of vortices. The black
dots indicate the lateral positions of the nanomagnets. (d): Field distribution Bz in the
wave guide, modulated by nanomagnets with magnetization Ms1 = Ms0 = 12.6 kA/m.
The lines in (c) and (d) indicate the regions over which line plots were taken.

Technically, the complete set of TDGL equations and the LLG equation have to be solved
selfconsistently to capture all aspects of coupled FM/SC dynamics. However, this task
is computationally very demanding, so the dynamics of the SC and FM are decoupled.
That can be done by assuming that the vortex lattice is static and non-affected by the
stray field of the underlying FM layer. Still, in a realistic scenario, the magnonic stray
fields can very well act back on the vortex lattice [235]. Also, to trigger magnonic ex-
citations in the ferromagnetic waveguide, it is common practice to use the time-varying
Oersted field of a microwave antenna. Its effect on the static vortex lattice is also not
considered in this work. For a detailed discussion of this problem, see Appendix A of
the original paper [236].

In this research, it is attempted to keep the model close to the one used in [85], i.e., the
SC is a clean thin film of length L = 10µm, width w = 4µm and thickness d = 80 nm.
The entire bilayer-structure is subject to an external magnetic field Be = B⊥ez + B∥ex.
Here, the in-plane component B∥ has the purpose of setting the magnonic waveguide
into BVMSW configuration, whereas B⊥ triggers vortex nucleation in the SC. Since the
superconducting layer is a thin film of thickness d < ξGL the in-plane field is not able
to generate vortices for the given geometry [237], and it is also not able to change the
equilibrium state of the SC. For this reason, B∥ = 0 is set in the first TDGL equation.
The external field acting on the SC is then Be = ∇ × Ae = Beez with Be = 5 mT.
Operating in the thin film limit is equivalent to setting κ ≫ 1 and allows to neglect the
back-action of the SC stray field. In that case, the electromagnetic behavior of the SC
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is dominated by the external magnetic field, and it is allowed to set As = 0 in the first
TDGL equation [238]. The solution of (3.1) then yields the equilibrium order parameter
Ψ and the corresponding supercurrent distribution js. The latter can be used as input
for the second TDGL equation (3.2), or the Biot Savart law (2.29), providing the stray
field Bv of the vortex lattice. The solution of the first TDGL equation is performed
under the gauge ϕ = 0 and by setting Ae = −Beyex.

The equilibrium state of the SC is shown in Fig. 6.1 (b). Since the SC is simulated
without structural defects, the vortices tend to form a hexagonal lattice [5]. Each blue
dot corresponds to a vortex with a normal conducting core surrounded by a whirl of
supercurrents. For the system under investigation, the fields of these currents are not
strong enough to effectively alter the state of the SC. However, they still modulate
the field in the magnonic waveguide and change the magnon dynamics. Since it is
inconvenient to import the numerically calculated vortex field Bv into micromagnetic
software like MuMax3 [200], the vortex lattice is replaced with a lattice of nanomagnets
that approximately produce the same stray field. The field of a magnetic cuboid can be
calculated analytically, and its strength and spatial distribution can be easily adapted to
Bv [87]. The nanomagnets are chosen to have dimensions ∆x = ∆y = 250 nm and ∆z =
360 nm, and they are placed under the waveguide. An air gap of ∆h = 175 nm separates
the magnetic lattice from the waveguide above. Like the vortices, the magnet-lattice has
hexagonal symmetry with a lattice constant of aVL = 700 nm (see Fig. 6.1 (c)). Each
nanomagnet has a magnetization M = Ms1ez where Ms1 is chosen as a free parameter.
For Ms1 = 12.6 kA/m, the field distribution in a magnonic strip of width w = 700 nm
is shown in Fig. 6.1 (d). Like the vortex field, the nanomagnets produce a field with
local maxima directly above each magnet. The fields are compared via line plots along
the x-direction in the waveguide (see Fig. 6.2). The true field of the vortices (TDGL-
model) was calculated from (2.30) under the assumption of a supercurrent density that
is independent of the z-direction. With the chosen geometry of the nanomagnet lattice,

Figure 6.2: Comparison of the vortex field (TDGL-model) and the field of the nano-
magnets (FM-model) for Ms1 = Ms0 = 12.6 kA/m along the lines indicated in Fig. 6.1
(b),(d).

and by setting Ms1 = 12.6 kA/m, the in-plane components of the superconducting stray
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field can be well approximated. In the following, this magnetization value is denoted
as Ms0, i.e., for Ms1 = Ms0, the replacement system of nanocubes produces a realistic
vortex field. The matching for the z-component is of poorer quality. However, numeric
experiments have shown that the magnonic dispersion is virtually independent of Bv,z.
Therefore, even a bad approximation of this field component does not notably change
the magnetization dynamics. In the original experiment, the lattice constant was found
to be aVL(B⊥ = 5 mT) = 691 nm [85], whereas the here presented TDGL-simulations
yielded aVL(B⊥ = 5 mT) = 720 nm. As a compromise between these two values, the
nanomagnet-lattice is chosen to have a lattice constant of aVL = 700 nm leading to a
slight mismatch between the fields shown in Fig. 6.2 (a).

Magnon dynamics along the waveguide are now simulated by solving the Landau-
Lifshtiz equation (2.56) with the micromagnetic simulation program MuMax3 [200]. For
the waveguide, a Py stripe of variable width w, but fixed thickness d = 1 nm and length
L = 28µm is chosen. The material parameters are as indicated above, and the cell size
of the finite-difference mesh is chosen to be 5 × 5 × 1 nm3. For spin-wave excitation, a
sinc-field Ha = H0 sin (2πf0t)/(2πf0t)ey is applied to a 5 nm long stripe at the center of
the waveguide and across its width. The frequency of this field is set to f0 = 20 GHz and
its amplitude to H0 = 15 mT, which is small enough to keep the magnetization dynamics
in the linear regime. As already mentioned, the waveguide is placed in a magnetic bias
field H∥ = 60 mT, bringing the system into BVMSW configuration. The out-of-plane
field H⊥ = 5 mT was also applied but was not observed to have a noticeable effect on
the results. By applying a 2D FFT to the dynamic magnetization fluctuations δmz(x, t),
it is possible to calculate the spin wave spectra [202]. However, it can be expected
that band gaps in the magnonic dispersion are on the order of MHz since the vortex
field is comparably weak. That means getting spectra of acceptable resolution requires
long simulation times. That means magnetic damping has to be neglected. Otherwise,
the system returns to equilibrium too quickly, leading to dispersion plots of insufficient
quality. In the here presented calculations, it was found that for all tested values of
Γ, the spectrum does not qualitatively change. For this reason, magnetic damping was
neglected completely by setting Γ = 0.

6.2 Results and discussion

In the following calculations, the magnetization is allowed to have values up to Ms1 =
25Ms0 = 315 kA/m. Operating with an artificially strong field allows to get a better
insight into the characteristics of the magnonic dispersion. The corresponding band
diagrams for Ms1 = 0 and Ms1 = 25Ms0 are shown in Fig. 6.3. For Ms1 = 0, the
stray field of the vortex lattice is zero, and the magnonic dispersion shows BVMSW
behavior. Here, two modes are triggered by the external excitation signal; a first-order
mode of high intensity and a higher-order mode of low intensity [187, 239–241]. In a
typical BVMSW-spectrum, the k-space region around k = 0 is dominated by long-range
dipolar interactions leading to a negative group velocity vg of magnonic excitation [181].
However, the here-considered waveguide is comparably thin, and the magnonic modes are
mainly driven by short-range exchange interactions. Therefore, the region with vg < 0 is
very narrow and not visible in the plots of Fig. 6.3. Nonetheless, dipolar interactions are
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Figure 6.3: Magnonic dispersion modulated by the stray field of a superconducting vortex
lattice. Left: band diagram in the absence of vortices (Ms1 = 0). Right: band diagram
for an artificial vortex lattice. The stray field of the vortices is replaced by the magnetic
field of a lattice of nanomagnets with magnetizations Ms1 = 25Ms0 = 315 kA/m.

still relevant and lead to an effective magnetic pinning of the dynamic magnetization at
the lateral edges of the waveguide. This so-called dipolar pinning is connected with an
upward shift of the entire spectrum giving rise to an intrinsic gap f < 6.62 GHz where spin
wave propagation is prohibited [242,243]. If now the vortex field is switched on by setting
Ms1 = 25Ms0 additional band gaps appear at wave vectors k = nπ/aVL, n ∈ Z (see
Fig. 6.3 (b)). The opening of these gaps at the edges of the Brillouin zones (BZs) (thick
green lines) is a consequence of the periodically modulated field inside the waveguide and
reflects the translational symmetry of the vortex field in the x-direction. The formation of
standing wave patterns in periodic systems due to interference of incoming and partially
reflected waves is a phenomenon that appears not only in magnonic systems [187, 241]
but is also well known in photonics [190] and electronic systems. In Fig. 6.3 (b), it
can be observed that higher-order bands have gaps that open inside the BZs (vertical
dashed lines). These gaps are a natural consequence of the interaction between first-
order modes and higher-order width-modes, leading to more complicated standing wave
patterns in the waveguide. This behavior was already observed in width-modulated
magnonic crystals where the higher order modes are excited by magnonic scattering at
edge steps in the waveguide [244,245]. Another important observation is the appearance
of a magnonic band at f = 6.3 GHz. In the absence of vortices, magnon propagation at
such a frequency is not allowed due to the intrinsic gap f < 6.62 GHz.

In order to get a better insight into this problem, micromagnetic simulations were
performed for a gradually increasing magnetization Ms1 of the artificial vortex field
(see Fig. 6.4). In addition, effects resulting from varying the distance h between the
waveguide and vortex lattice were investigated as well. In (a), one can see that several
band gaps open (white color) with increasing strength of the vortex field. In zero field,
all frequencies with f > 6.62 GHz are allowed to propagate (grey color). The width of
the lowest-order band is very narrow, and the band quickly flattens out for an increasing
magnitude of the vortex field. Another important observation is a gradual downward
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Figure 6.4: Frequency versus magnetization Ms1 for a wave guide of width w = 700 nm.
White color corresponds to forbidden frequency bands, whereas magnon propagation
is allowed for gray color. The air gap between the waveguide and the nanomagnets is
chosen to be (a): h = 175 nm and (b): h = 100 nm.

shift of the band for higher values of Ms1. The second band behaves similarly under
varying magnetization, whereas higher-order modes do not show a noticeable frequency
shift. In Fig. 6.4 (b), one can see that for a reduced air gap size h between FM and SC,
the spectrum is much more susceptible to changes in Ms1. That is because a reduction of
h has a similar effect like increasing the magnetization of the nanocubes. In both cases,
the stray field acting on the waveguide grows in magnitude, leading to a pronounced
downward shift of specific frequency bands. However, for h = 100 nm, the frequency
shift is much stronger than for h = 175 nm, and also, higher frequency bands show the
tendency to become completely flat. With these observations at hand, it becomes easy
to interpret the appearance of the lowest frequency band in Fig. 6.3 (b). The band at
f = 6.3 GHz is located in the forbidden frequency region due to a frequency shift induced
by the artificial vortex lattice.

If the magnetization is reduced to Ms1 = Ms0, the stray field of the nanocubes re-
sembles a realistic vortex field. In this case, one finds only a single band gap of width
∆f ≈ 18 MHz in the magnonic spectrum. Therefore, the width of this gap is considerably
smaller than the one reported by Dobrovolskiy, where ∆f ≈ 50 MHz. The discrepancy
between the results will be discussed at the end of this chapter.

6.3 Effect of the thickness of the wave guide

It is now investigated how the waveguide’s thickness hFM affects the magnonic dispersion.
In order to reduce the computational effort, the width of the FM is set to w = 65 nm
whereas its length L = 28µm remains as before. Furthermore, the magnetization of the
artificial vortex lattice is set to Ms1 = 1Ms0. At first, it should be mentioned that a
reduction of the width w leads to a stronger mode quantization in the waveguide. As a
consequence, higher-order modes are shifted upwards in frequency space. For the here
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considered setup, the second band in Fig. 6.4 disappears completely since the microwave
excitation signal only triggers magnonic modes of frequency f < 20 GHz. On the other
hand, if the waveguide’s thickness hFM increases, dipolar interactions become of greater
relevance. In that case, one can expect a typical BVMSW-type spectrum of the magnonic
excitations.

Figure 6.5: Dispersion properties of a magnonic wave guide of length L = 28µm, width
w = 65 nm and variable thickness hFM. The magnetization of the artificial vortex lattice
is set to Ms1 = 1Ms0 leading to the formation of band gaps in the spectrum. (a),(b):
width of the band gaps (a) and corresponding center frequencies (b) in dependence on
the waveguide thickness. (c),(d): band diagrams for hFM = 5.5 nm (c) and hFM = 15 nm
(d). Vertical green lines correspond to the first two Brillouin zone edges k1 = ±π/aVL,
k2 = ±2π/aVL. Dashed lines indicate gap opening at unconventional k-values.

In Fig. 6.5, it is shown how the width and center frequency of the band gaps change
under variations of the waveguide thickness. For hFM = 1 nm only one band gap of with
∆f ≈ 23 MHz appears in the spectrum. This value is somewhat larger than the gap
width ∆f ≈ 18 MHz found for a FM of lateral extent w = 700 nm. If hFM is increased,
the gap width gradually reduces until it becomes zero at hFM = 7.5 nm. At the same
time, a second gap opens at hFM = 4 nm remaining finite for intermediate and large
thicknesses of the waveguide. Here it should be noted that gap widths of ∆f < 2 MHz
are not recorded in Fig. 6.5 (a). That is because the here considered simulation times
did not allow for a sufficient resolution in frequency space (see, e.g., [202]).

In Fig. 6.5 (b), it is shown how the waveguide thickness affects the center frequencies of
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the gaps. As already mentioned, an increasing hFM leads to stronger dipolar interactions
in the system. As a result, the entire spectrum is shifted upwards in frequency space
leading to continuously increasing center frequencies of the band gaps. Also, the region
in k-space where the group velocity is negative considerably widens. For hFM = 5.5 nm
one finds vg < 0 inside the entire first BZ.

If the waveguide thickness is increased to large values, the dipolar shift of the spectrum
saturates, and the system shows strong BVMSW behavior (see Fig. 6.5 (d)). In this
regime, the center frequencies in Fig. 6.5 (b) show only a slight hFM dependency. Also,
only one complete band gap appears in the spectrum opening at unconventional k-values
(dashed vertical lines). An interesting observation is the appearance of a second, incom-
plete band gap opening at the edges of the first BZ (grey bar). For a better understanding
of these features, a logarithmic color scale was applied to the spectrum (cf. Fig. 6.6).
Now it becomes clear that the complete band gap already opens at k = ±0.5π/aVL and
inside the first BZ. It can also be seen that the incomplete band gap only affects modes
with negative group velocity. In contrast, for vg > 0, wave propagation in this frequency
regime is not forbidden. An explanation for these features is still missing, and they will
not be investigated further in this work. Nevertheless, the above discussion shows that
the waveguide thickness is an important parameter in the problem of magnon-fluxon in-
teraction. This point will be addressed again at the end of this chapter when comparing
theory and experiment.

Figure 6.6: Band diagram corresponding to 6.5 (d) but with a logarithmic color scale.
Vertical green lines correspond to the edges of the first BZ (k1 = ±π/aVL), whereas
dashed lines indicate a gap opening at k1 = ±0.5π/aVL.
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6.4 Disordered vortex lattice

In this section, it is investigated how an imperfect vortex lattice affects magnon-propagation
in the waveguide. Specifically, two kinds of disorder are of interest here. At first, vari-
ations in the supercurrent density between individual vortices are considered. In a per-
fectly clean material, the electronic mean free path l and the film thickness d are uniform,
leading to a homogeneous GL-parameter κ throughout the sample. In contrast, real ma-
terials have a certain degree of impurity, and geometric imperfections are present, making
the GL parameter a space-dependent quantity. As a consequence, the screening capa-
bilities of the material are nonuniform, and the stray fields emanating from individual
vortices are not identical in magnitude. That has also been shown in numeric simulations
of superconducting wedges [246]. The uniform thickness gradient in such a sample leads
to a space-dependent GL parameter allowing for vortex nucleation even if κ < 1/

√
2. But

more importantly, vortices in the region of reduced sample thickness have weaker stray
fields and smaller vortex cores due to an effective increase of κ. Even in mostly uniform
thin films, structural imperfections can affect the equilibrium position of vortices. From
an energetic point of view, it is beneficial for fluxons to populate positions of reduced
sample thickness. This way, the volume threaded by supercurrents and the associated
kinetic energy can be reduced. The new equilibrium state of the systems corresponds to
a hexagonal vortex lattice with a certain degree of structural disorder.

A space-dependent electronic mean free path l(r) affects the SC in a similar way, i.e., it
makes the magnetic penetration depth λ, coherence length ξ and GL-parameter κ space
dependent as well [29, 44].

In a real SC, the vortex lattice rarely meets structural perfection. Therefore, it is in-
structive to investigate how an imperfect lattice affects the interaction between magnons
and fluxons. For Simplicity, the effects of random vortex field magnitudes, and random
vortex positions, are disentangled from each other. Instead, each kind of disorder is
investigated separately.

6.4.1 Variations in field strength

In this section, it is investigated how random field variations between individual fluxons
affect the magnonic dispersion. For the waveguide geometry, the one shown in Fig. 6.1
is chosen, i.e., the FM now has a width w = 700 nm, a thickness hFM = 1 nm and a
length L = 28µm. Also, the air gap between the system constituents is reverted back to
h = 175 nm.

The setup for the following calculations is shown in Fig. 6.7(a). Here, each black
dot represents a superconducting vortex (or nanomagnet), and the sizes of the dots
correspond to the magnetization Ms1. The ideal vortex lattice has perfect hexagonal
order, and the stray fields of the fluxons are identical in magnitude. Disorder in the
field amplitudes can be simulated by giving the magnetization of individual nanocubes a
fixed random value in interval [M ′

s1 − ∆M,M ′
s1 + ∆M ]. Here M ′

s1 is the magnetization
in the absence of disorder, and ∆M is the maximum deviation from the ideal value. In
the following calculations M ′

s1 = 3.5Ms0 is set allowing the formation of a band gap
f = 65 MHz. This value better matches the experimentally obtained band gap width
f = 50 MHz [85]. A second band gap f = 12 MHz is present as well, but its center
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Figure 6.7: Setup to investigate effects of an imperfect vortex lattice on the magnonic
dispersion. (a): artificial vortex lattice of perfect structural order but randomly varying
magnetic moments. The size of each dot corresponds to the magnetization Ms1 of indi-
vidual nanomagnets. The disorder is introduced by giving each nanomagnet a random
magnetization in the interval [0.85Ms1, 1.15Ms1] or [0.7Ms1, 1.3Ms1] with Ms1 = 3.5Ms0.
(b): artificial vortex lattice of uniformly magnetized nanodots. Each magnet can occupy
a random position in a box of side length a = 100 nm or a = 200 nm. The boxes are
centered around the ideal vortex positions in the absence of disorder.

frequency is outside the frequency region of interest.

In the here-presented calculations, three levels of disorder are considered. At first, it
is investigated how the magnonic spectrum behaves for ∆M = 0. Then, two calculations
with ∆M = 0.15M ′

s1 and ∆M = 0.3M ′
s1 are performed and the results are compared.

The spectrum without disorder is shown in Fig. 6.8. As in previous cases, the artificial
vortex lattice leads to the formation of several band gaps in the magnonic spectrum.
Thereby the lowest band has a small but finite dispersion.

If the magnetization Ms1 is randomized, the band quickly flats out, and the dispersion
becomes zero (cf. Fig. 6.9). Also, more flat bands appear in the formerly forbidden
frequency region. In order to get a better understanding of the modifications of the
spectrum for ∆M > 0, a 1D Fourier Transformation of δmz(x, t) was performed in the
time domain. For a selected number of frequencies, the corresponding Fourier amplitudes
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are shown in the middle panels of Fig. 6.8 and 6.9. For a perfectly structured lattice
(∆M = 0), the lowest order modes are located at positions where the vortex field opposes
the external bias field. In the here considered case, that means Bvx < 0, as indicated
by vertical blue lines. At such positions, the effective magnetic field in the waveguide is
weakened, and the energy associated with magnonic modes is reduced. In this way, mode
propagation is inhibited to some degree. The effect of mode confinement is also observable
in the magnonic spectrum, where it leads to a loss of dispersion of the corresponding
band. For high levels of disorder, the band becomes completely flat, and the magnonic
mode can no longer propagate in the waveguide.

Upon inspection of the mode profiles in Fig. 6.9, one can see that for ∆M > 0, the
uniformly distributed Fourier peaks turn into a random arrangement of isolated knots.
The incoherent oscillation of these knots prevents uniform wave propagation and leads to
the appearance of additional flat bands in the dispersion plots. Only the low-frequency
dipolar modes are affected by the randomization of the vortex stray field. The high-
frequency modes are barely affected since they are mostly exchange driven.

With these observations at hand, it becomes possible to interpret the flattening of
bands due to an increase of Ms1 (cf. Fig. 6.4). A strong vortex field confines the low-
frequency magnonic modes above the positions of the nanomagnets. Consequently, the
corresponding bands become flat and are shifted downward in frequency space.

Similar mode confinement and frequency shifts have also been predicted to occur in
surface-modulated magnonic crystals [184]. In this particular system, an array of grooves
in the sample surface creates a periodic modulation of the waveguide stray field. The
consequent modification of the magnonic spectrum is similar to the one presented here.
Flat bands are also known to occur in waveguides with periodic Dzyaloshinskii-Moriya
interaction [186].

6.4.2 Variations in field position

Now, the case of a vortex lattice with uniform magnetization Ms1 = 3.5Ms0, but a
structural disorder is discussed. As displayed in Fig. 6.7 (b), the nanomagnets can now
occupy random locations in a box of side length a = 100 nm or a = 200 nm around
their ideal positions. In Fig. 6.10, it can be seen that randomization of the vortex
positions has a similar effect like a nonuniform field magnitude, i.e., the low-frequency
modes become flat and coherent mode propagation is inhibited. In addition, this time,
the exchange-driven modes are affected by lattice imperfection. That is especially true
for a = 200 nm corresponding to high structural disorder. Here even the mode profiles
for frequencies up to f = 7.2 GHz are highly distorted.
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Figure 6.8: Band diagram for a perfectly structured vortex lattice. The magnetization of
the replacement system is set to Ms1 = 3.5Ms0 leading to the formation of a band gap
∆f = 65 MHz. Upper panels: components Bvx and Bvz of the vortex field Bv along the
waveguide. Center panels: Mode profiles of selected frequencies. The vertical red lines
mark positions in the waveguide where the in-plane field has maxima. Vertical blue lines
mark the minima of the field.
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Figure 6.9: Band diagram for a disordered vortex lattice. The magnetization of individ-
ual nanocubes takes on random values from the interval [0.85M ′

s1, 1.15M ′
s1] (left) and

[0.7M ′
s1, 1.3M

′
s1] (right) with M ′

s1 = 3.5Ms0. Upper panels: components Bvx and Bvz

of the vortex field Bv along the waveguide. Center panels: Mode profiles of selected
frequencies. The vertical red lines mark positions in the waveguide where the in-plane
field has maxima. Vertical blue lines mark the minima of the field.
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SUPERCONDUCTOR/FERROMAGNET HYBRID SYSTEMS

Figure 6.10: Band diagram for a disordered vortex lattice. The magnetization of the
nanocubes is set to Ms1 = 3.5Ms0. The disorder is introduced by allowing the magnets
to occupy random positions in a box of side length a = 100 nm (left) or a = 200 nm (right)
around their ideal position. Upper panels: components Bvx and Bvz of the vortex field
Bv along the waveguide. Center panels: Mode profiles of selected frequencies. The
vertical red lines mark positions in the waveguide where the in-plane field has maxima.
Vertical blue lines mark the minima of the field.
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6.5 Summary and comparison with experiment

In this work, a simplified method for investigating the interaction between magnonic
excitations and superconducting vortices was presented. Thereby, the stray field of a
static vortex lattice was fitted to the magnetic field distribution of a lattice of ferromag-
netic nanodots. It was found that the presence of the artificial vortex field leads to the
formation of band gaps in the magnonic spectra due to conventional Bragg scattering
at the BZ boundaries. The in-plane component of the vortex field was found to be the
main driving factor for gap formation, whereas the perpendicular component was con-
firmed to be negligible. The calculated spectra showed high susceptibility to changes in
the waveguide geometry, the field strength of individual vortices, and the spatial distri-
bution of fluxon. Furthermore, it was found that the vortex fields are able to confine
dipolar magnonic modes causing a shift of the corresponding bands to lower frequencies.

Several open questions remain, as becomes evident by comparing the numeric results
with the experiment of Dobrovolskiy et al. [85]. In order to enable such a comparison,
material parameters and SC geometry were chosen as in the experiment. Also, the ex-
ternal magnetic field B⊥ = 5 mT was adapted to simulate a realistic vortex distribution.
The system size in the calculations is comparable to the experiment as well. However,
the FM geometry could not be matched due to the numerical complexity of the result-
ing problem. The difference in the waveguide geometry can be considered one of the
main reasons for no quantitative agreement between the here-presented calculations and
the experiment. For comparison: in most of the simulations, the FM was chosen to
have a width of w = 700 nm and thickness d = 1 nm. Under the influence of a realistic
vortex field (Ms1 = Ms0), the corresponding magnonic spectrum consists of two allowed
frequency bands separated by a gap of width f = 18 MHz. In the experiment, the waveg-
uide had a width of w = 2µm and thickness d = 80 nm, giving rise to two band gaps of
widths f ≈ 50 MHz. Apart from the geometric sample mismatch, it could also be pos-
sible that the vortex field in the experiment was stronger than here. This modification
of Bv is possible when the interaction of the SC with its own stray field can not be con-
sidered negligible. At the same time, a larger vortex field would lead to stronger mode
confinement, and the corresponding band shift potentially widens existing band gaps.
Another source of error could be an inaccurate estimate of the GL parameter, which was
set to κ = 1. It should also be considered that the superconducting vortex field is highly
nonhomogeneous in space. In a thicker waveguide, such a field affects magnonic modes
at the top and bottom of the FM differently. Finally, the dynamic interaction between
the SC and FM was neglected as well. That also includes a potential modification of the
FM’s dynamic stray fields due to the conventional Meißner screening of the nearby SC.
For example, electromagnetic coupling between FM and SC is known to be connected
with enhanced phase velocities and nonreciprocal magnon dispersion [247,248].
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7 Temperature-driven vortex dynamics

In experiments, it is found that a local increase in temperature exerts a force on nearby
vortices and drives them out of equilibrium [141, 144]. Thereby, the force direction is
such that the vortices find their new equilibrium position at the center of the hot spot.
This temperature-induced vortex motion is interesting for applications since it allows
precise control of the position of individual vortices. For example, this idea could find
use in fluxonic memory devices [77–79]. Also, by carefully adjusting the hot spot size,
it is possible to sweep the vortices out of certain areas in the SC [144]. In particular
for nanosystems such vortex cleansing could be interesting since it potentially allows to
reduce energy dissipation associated with unwanted vortex motion.

Apart from its potential practical use, temperature-driven vortex motion is also fas-
cinating on a theoretical level. However, many of the studied systems only consider
the static equilibrium configuration of fluxons in the presence of uniform temperature
gradients [135, 137, 138]. A detailed, TDGL-based analysis of the dynamic interaction
between a fluxon and a nonhomogeneous temperature field is still pending at the moment
of writing. For example, an open question is how the size of the vortex core and the
exact distribution of supercurrents affect the attractive force on the vortex [144].

In a realistic situation, the temperature-induced dragging force is counterbalanced
by pinning forces. Such effects are not considered in this work. Instead, the dynamic
interaction between an isolated fluxon and a nearby hot spot is investigated. A detailed
analysis of the TDGL equations reveals which role the supercurrent distribution and
density variations in the superconducting condensate play. It is found that the superfluid
velocity v of the vortex and the density of superconducting charge carriers ns near the
vortex core play a key role in the problem. It is demonstrated that an interaction of the
form v · ∇ns, induced by the external heat source, has the same effect on the vortex as
an electric field. Therefore, the hot spot exerts a force onto the vortex that is similar
to the conventional Lorentz force due to external current flow. Furthermore, it will be
shown how different probe geometries affect the interaction between the vortex and the
temperature field.

7.1 Setup

Fig. 7.1 shows the system under investigation. The SC is a semi-infinite cuboid of side
length L = 18µm, with w = 4.5µm and a height h much larger than the GL-coherence
length ξGL. A superconducting vortex is placed at the center of the structure, and its
interaction with a nearby hot spot at x = 2.25µm is investigated. In the dynamic
processes described later, the vortex will gradually approach the edge at x = 9µm. That
makes the interaction between supercurrent and boundary a complicated time-dependent
function and the dynamic processes hard to interpret. To avoid such complexities, the
SC is chosen to be comparably long. On the other hand, even under external drive the
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Figure 7.1: Setup of the system. The SC is a rectangular prism of length L = 18µm,
width w = 4.5µm and heigth h ≫ ξGL. At the center of the strip, a vortex is located
with supercurrents js flowing around it. Its interaction with a nearby hot spot is the
subject of study. The large arrow indicates the moving direction of the vortex in the
absence of pinning forces.

vortex keeps a constant distance to the boundaries at y = ±2.25µm. Therefore, w can
be considered a static, system-specific parameter.

The system is simulated by solving the normalized TDGL-equations (3.1)-(3.3) to-
gether with the equilibrium heat equation

0 = ∆T + Tcf(r) − η3(T − T0). (7.1)

For simplicity, the material constants η1 and η2 are set to unity and the operating temper-
ature to T0 = 0.9Tc. Correspondingly one has D = τ/ξGL(T0)

2 and σ = τ/(µ0λGL(T0)
2).

The basic time unit in (3.5) (3.6) is chosen to be τ = 0.1 ps. The temperature is a
space-dependent function with values T ≥ T0 and T0 ≤ Tc. That means in the absence
of magnetic fields and for homogeneous temperature distribution eq. (3.1) has equilib-
rium solutions |Ψ(T0)|2 = 1 (indicating perfect superconductivity) and |Ψ(T ≥ Tc)|2 = 0
(normal conductivity). The boundary conditions for equations (3.1) and (3.2) are chosen
as (︃

∇Ψ

inκ
− nΨA

)︃
· n = 0, on ∂ΩSC (7.2)

(∇×A) × n = Be × n, on ∂ΩSC. (7.3)

Equation (7.3) ensures the continuity of the tangential component of the magnetic flux
density across the superconducting interfaces. It is applicable if the stray field Bs of
the SC has a vanishing tangential component at the interfaces, e.g., for infinitely long
superconducting prisms. The scalar potential appearing in the TDGL equations can be
eliminated by applying a suitable gauge. In this work, ϕ = −∇ · A is chosen, which
requires the additional boundary condition A · n = 0 for the vector potential [97]. Fur-
thermore, the total vector potential is split into its individual contributions A = As+Ae,
where As is the contribution of the superconducting stray field and Ae is the vector po-
tential of external magnetic fields. For the latter one, it is suitable to choose a modified
Landau gauge Ae = −Beyex + ∇u where the gauge field u ensures that ∇ ·Ae = 0 and
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CHAPTER 7. TEMPERATURE-DRIVEN VORTEX DYNAMICS

Ae ·n = 0 on ∂ΩSC. With these presets, the boundary conditions of the system can be
reformulated as

As · n = 0, on ∂ΩSC (7.4)

∇Ψ · n = 0, on ∂ΩSC (7.5)

(∇×As) × n = 0, on ∂ΩSC. (7.6)

For the heat equation (7.1) the boundary condition

T = T0, on ∂ΩSC (7.7)

is applied, ensuring the equilibrium solution T = T0 in the absence of heat sources. The
material constant in (7.1) is set to η3 = 1.67× 10−7, a value very similar to the one used
in [141]. An external heat source, e.g., a laser beam hitting the superconducting surface,
is described by the space-dependent function f . In the here-considered case f = f0 inside
a circular region of radius b = 100 nm located at (2.25µm, 0, 0) (see Fig. 7.1). Outside
that region, f = 0 is set. The simulation procedure is now the following. For a chosen
value of f0, equation (7.1) is solved and the obtained temperature field is used as input
for the TDGL-equations. Equations (3.1) and (3.2) are then solved selfconsistently for
the given temperature until an equilibrium solution is found. The dynamic behavior of
the vortex is recorded and evaluated for a number of selected time steps.

7.2 Results

7.2.1 Temperature induced vortex motion

For a first principal investigation of the system, the material parameters are chosen as
λGL = 450 nm and ξGL = 150 nm resulting in κ = 3. In a more realistic scenario, one
could use the material parameters of Nb, in particular, λGL = 150 nm and λGL = 50 nm,
depending on the purity of the material [44]. However, a reduction of either λGL or ξGL

was found to deteriorate the numerical accuracy of the results due to increasing levels
of numeric noise. A better spatial resolution in the FEM-formalism could resolve this
problem. However, operating with such a high-density mesh would substantially increase
the computational time. In addition, the principal dynamic behavior of the vortex was
not observed to depend on the specific choice of material. Therefore, choosing comparably
large values of λ and ξ is convenient. In the following, it is discussed how a local hot
spot affects the vortex.

Before the heat source is switched on, the vortex sits at the center of the SC, and the
system is in equilibrium. In the here considered case, no external magnetic fields are
applied, and a non-equilibrium situation only arises once the temperature is raised in the
vicinity of the vortex. In Fig. 7.2, it can be seen that with an increasing value of f0, the
temperature at the center of the hot spot increases as well. The order parameter adapts
to the modified temperature distribution, and, as a result, the vortex is deflected from the
coordinate center. The entire dynamic process can be roughly divided into three stages.
Shortly after the heat is applied, the deflection ∆X grows linearly, and the vortex moves
at an approximately constant speed. As the vortex draws closer to the heat bubble,
its velocity increases until a maximum is reached. In the final phase of the process,
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Figure 7.2: (a): Deflection of the vortex from the coordinate center due to a nearby hot
spot. For ∆X = 2.25µm, the vortex finds a new equilibrium position at the center of
the heat bubble. (b): Temperature distribution in the SC for f0 = 24 × 10−6. The red
dot at x = 0 marks the initial position of the vortex. (c): Temperature profile along the
x-axis for different values of f0.

the vortex enters the heated region and finds a new equilibrium at x = 2.25µm. The
principal character of the heat-induced vortex motion was observed to be independent of
the actual value of f0. On the other hand, the maximum velocity and the total time of
the entire process strongly depend on the heat distribution in the SC. The here-presented
results correspond to the case of a perfectly clean SC without material imperfections. For
such a material, each nonzero value f0 > 0 is potentially able to trigger vortex motion.
However, the transition time of the dynamic process goes to infinity for an ever increasing
distance between the vortex and the hot spot.

In order to determine the mechanisms that drive the vortex out of equilibrium, the
order parameter is reformulated into its amplitude-phase form Ψ = Ψ0e

iθ. By inserting
this Ansatz into the dimensionless TDGL-equations (3.1)-(3.3) and splitting into real
and imaginary parts, the system of partial differential equations takes on the form

η1
∂Ψ0

∂t
+ Ψ0

(︃
Ψ2

0 − 1 +
T − T0

Tc − T0

)︃
− ∆Ψ0

n2κ2
+ Ψ0

(︃
∇θ

nκ
− nA

)︃2

= 0 (7.8)

η1

(︃
∂θ

∂t
+ κϕ

)︃
Ψ2

0 =
∇
nκ

· js (7.9)

js = Ψ2
0

(︃
∇θ

nκ
− nA

)︃
. (7.10)

The principal form of the second TDGL-equation (3.2) remains unchanged under the
transformation. In the absence of temperature gradients and electric fields, the vortex
is at rest, and (7.9) demands that ∇ · js = 0. In the here-considered case, electric fields
only appear in non-equilibrium situations, e.g., when a vortex is created at the sample
boundary or a transport current is injected into the SC. If the material is heated locally,
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the condensate field Ψ0 changes according to (7.8). The modified order parameter then
affects the phase field via equation (7.9), and a non-equilibrium situation arises where
∇·js ̸= 0. As a consequence, the time evolution of θ is driven in a way that the divergence
of js is compensated - the vortex is deflected towards the hot spot. The phase field and the
condensate field thereby evolve simultaneously in time, and the vortex core follows the
deflected phase singularity. If pinning is strong enough, the temperature-induced driving
force can be compensated by the pinning force, and a new equilibrium is established. In
the absence of pinning forces, a new equilibrium configuration can only arise once the
vortex has entered the heat bubble. With these observations, the temperature-induced
divergence of the supercurrent density can be identified as the driving force for the vortex
core. In order to get further insight into the problem, equation (7.9) is reformulated into

η1ns
∂θ

∂t
=

1

nκ
∇ns · vs + ns

(︃
1

nκ
∇ · vs − η1κϕ

)︃
(7.11)

where vs = 1/(nκ)∇θ−nA is the superfluid velocity. Specifically, now it is searched for
the condition under which ∇ · js = 0 is no longer possible, and the time evolution of θ is
inevitable. From equation (7.11), it can be immediately seen that the divergence of vs

has the form of a scalar electric potential. On the other hand, it is commonly known that
an electric current flow associated with ∇ϕ exerts a Lorentz force onto the vortex and
drives it out of equilibrium. Therefore, it becomes evident that the temperature-induced
modification of ns leads to a divergence of the supervelocity, which acts on the vortex as
a conventional transport current. To elaborate on this point further, one can define the
potentials

ϕ1 =
1

nκ
∇ns · vs (7.12)

ϕ2 =
1

nκ
ns∇ · vs (7.13)

which in equilibrium have the property ϕ1 = −ϕ2. Before the temperature-induced vortex
motion is investigated in more detail, it is instructive to analyze how the potentials ϕ1

and ϕ2 behave if an electric current drives the vortex.

7.2.2 Current induced vortex motion

An electric current flow in the SC can be simulated by solving (3.1)-(3.4) together with
the continuity equation

0 = −η2∇ ·
(︃
n
∂A

∂t
+

1

n
∇ϕ

)︃
+ ∇ · js (7.14)

with the methods described in [210]. That means the SC geometry is now reduced to
a very thin film in which the effects of superconducting stray fields can be neglected,
i.e., As = 0. Additionally the boundary conditions (5.6) - (5.8) are applied with ∂Ωv

denoting the insulator boundary at x = ±9µm. The electrode boundary for current
injection is located at y = ±2.25µm. For the following discussion, it is sufficient to
choose a comparably small transport current je = jeey with je = 0.01

√
2Bcth/(µ0λGL) =

85.9 MA/m2. In this way, the vortex is deflected along the positive x-direction due to
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the Lorentz-force FL = je ×B.
This simple relation no longer predicts the correct dynamics if A = 0 is assumed since it
implies FL = 0. That would mean the vortex remains static under arbitrary transport
currents. However, under realistic conditions, the magnetic field of individual vortices is
never vanishingly small and therefore As ̸= 0.
The time-dependent vortex deflection due to je is shown on the left side in Fig. 7.3.
As the current is switched on, the vortex experiences a short acceleration phase during

Figure 7.3: Left: Time-dependent deflection ∆X of the vortex along the x-axis due to
an external current je = jeey with je = 8.59 GA/m2. The inset shows the total electric
potential ϕtot = ϕ1 + ϕ2 at t = 350 ps. Right: Time evolution of the global maximum
values of the electric potentials ϕ1, ϕ2, and ϕtot. At all simulation times, the maximum
of ϕtot is located on the axis (x, y = 175 nm).

which it is almost immobile. In this phase, the potentials ϕ1 and ϕ2 quickly build
up in magnitude. After 50 ps, the system develops a dynamic equilibrium. Here the
vortex moves with constant velocity along the x-axis, and the magnitude of the potentials
becomes constant as well. Once the system has stabilized, the moving vortex creates its
own electric potential ϕtot = ϕ1 + ϕ2, which counteracts the applied electric field. This
dynamic electric field is commonly associated with the unwanted energy dissipation of a
moving vortex. Technically it is equivalent to the gauge-invariant time evolution of the
superconducting phase field, which appears on the left side in equation (7.9).
The spatial distribution of the electric potentials is shown in Fig. 7.4. Before the electric
current is applied, the system is at rest and ϕ1 + ϕ2 = 0. In an infinitely extending
system, both potentials would be initially zero since the supercurrents around the vortex
core have only angular components, whereas the condensate gradient has only radial
components giving ∇ns · vs = 0. However, the here-presented system has only a semi-
infinite geometry since the strip length and width are finite. Specifically, the boundaries
closest to the vortex lead to a deformation of the velocity field vs due to the imposed
boundary condition (7.2). This geometry-induced distortion of the phase field leads to
a nonzero initial distribution of the electric potentials. Note, the initial electric fields
associated with ϕ1,2 have no accelerating effect on the vortex since the corresponding
Lorentz forces cancel each other (see black arrows in Fig. 7.4(g)).
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Figure 7.4: Time evolution of the electric potentials ϕ1, ϕ2 and ϕtot due to an external
current je = jeey with je = 8.59 GA/m2. (a)-(c): Line plots of the potentials along the
axis (x, y = 175 nm) at selected times. (d)-(f) and (g)-(i) spatial distribution of ϕ1 and
ϕ2 respectively. The black arrows in (g) correspond to the principal direction of the
electric field E = −∇ϕ2.

When a transport current is injected into the system, the balance between ϕ1 and ϕ2

is disturbed, and the magnitude of the potentials increases. Initially, the system’s time
evolution is driven by the applied potential. Thereby the time derivative ∂tθ tends to
counteract the applied electric potential and, as a result, the time evolution of ϕ1 and
ϕ2 is driven as well. In this process, ϕ2 remains symmetric around the vortex core,
which means it does not accelerate on the vortex. In contrast, the potential ϕ1 loses its
symmetry leading to Ey1 > Ey2. Therefore it can be concluded that the deformation
of the fields ns and θ gives rise to an electric potential ϕ1 ∼ ∇ns · vs opposing the
current-driven vortex motion. The final velocity of the vortex is limited by the total
field ϕtot ∼ ∇ · js, which, in return, is coupled to the maximum velocity at which the
normal conducting vortex core can move. This velocity depends on the dynamics of the
condensate field, i.e., equation (7.8). That means, if the vortex is pinned and the core is
immobile, the phase field will adapt such that ϕtot = 0.
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7.2.3 Temperature induced vortex motion – interpretation in terms of
electric potentials

In the previous section, it was investigated how an applied electric field drives the time
evolution of the superconducting phase field. In this process, it was observed that the
divergence of js becomes nonzero in response to the deflection of the vortex core, and
a dynamic equilibrium is established defined by (7.9). However, if the vortex is solely
driven by a temperature gradient, the situation is reversed. Such a temperature-induced

Figure 7.5: (a): Time-dependent deflection ∆X of the vortex along the x-axis due to a
hot spot located at x = 2.25µm with f0 = 16 × 10−6. (b): Time evolution of the global
maximum values of the electric potentials ϕ1, ϕ2, and ϕtot. (c)-(n): spatial distribution
of ϕ1, ϕ2, and ϕtot for times indicated in (b) (green dots). The red dot marks the position
of the hot spot.

modification of the condensate field ns leads to a non-equilibrium situation and, since
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now ϕext = 0, the time evolution of the superconducting phase field θ is driven by ∇ · js.
In Fig. 7.5, the principal behavior of the system is shown. Initially, the vortex is at
rest, and no external electric or magnetic fields are applied. Once the heat source is
switched on, the phase field is deformed, and the vortex is deflected along the x-axis (see
Fig. 7.5 (a)). Similarly to a transport current, the temperature field leads to a vortex
deflection that is initially almost linear. However, the force that acts on the vortex
depends now on the distance toward the hot spot, and the vortex experiences a phase of
strong acceleration before it enters the center of the heat bubble. This dynamic behavior
is also reflected in the time evolution of the scalar potentials ϕ1 and ϕ2.
In Fig. 7.5 (b), it can be seen that the potentials initially grow rapidly in magnitude
and ϕ1 ≈ ϕtot. The force that drives the vortex out of equilibrium is therefore found
to be of the form ∇ns · vs. As the vortex approaches the hot spot, the electric fields
continue increasing toward a global maximum. In the final stage of the process, the
vortex enters the hot spot, and ϕtot rapidly goes to zero. In this phase, the potential ϕ2

plays a dominant role in the fluxon dynamics since now ϕ2 ≈ ϕtot. Therefore, close to
the hot spot, the vortex is predominantly driven by a strong divergence of the superfluid
velocity vs, and the driving potential has the form ns∇ · vs.
The temperature-induced dynamics can also be understood by recalling that equation
(7.11) has a mathematical form that resembles a convection-diffusion equation for the
superconducting phase field θ. Using the London-gauge ∇ · A = 0 one can therefore
write

η1ns

(︃
∂θ

∂t
+ κϕ

)︃
ns +

1

nκ
(−∇ns) ·

(︃
1

nκ
∇θ − nA

)︃
− 1

n2κ2
ns∆θ = 0 (7.15)

The second term on the left corresponds to −ϕ1 and describes the advection of the
superconducting phase in response to a change in the condensate field ns. In this picture,
the phase of the vortex tends to ”flow” into directions of reduced condensate density
(defined by −∇ns), provided that ∇ns · ∇θ ̸= 0. The ensuing local build-up in phase
is counterbalanced by the diffusive nature of θ, which is described by the third term
in (7.15). In Fig. 7.5, it can be seen that the corresponding potential ϕ2 ∼ ns∆θ has
a strong dependence on the actual state of the condensate field. In regions of reduced
order parameter density, the diffusive nature of θ is stronger since the time evolution of
the phase is directly coupled to ns (see the first term in (7.15)). As a result, the phase
change due to the moving vortex is also stronger inhibited, and the viscous drag force
corresponding to ϕ2 is enhanced. However, ϕ2 not only has a phase-equalizing effect.
The potential also gives rise to a nonzero force component along the direction of vortex
motion, induced by Ey1 = −∇ϕ2 ∼ ey. The electric field Ey1 is defined in the same
way as in Fig. 7.4 (g), i.e., −∇ϕ2 is evaluated at the ”left side” of the vortex. In close
vicinity to the heat bubble, this field becomes the actual driving force for the vortex since
Ey2 = −∇ϕ2 ∼ −ey is strongly suppressed inside the hot spot. (see Fig. 7.5 (h)-(j)).
By comparison, for a current-driven vortex, ϕ2 was not observed to play an important
role in the dynamics. In the scenario of a current-driven vortex, the condensate field is
mostly uniform, and the forces due to E = −∇ϕ2 cancel each other.
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Vortex dynamics for different sample geometries

In this section, the effect of the sample geometry on the vortex dynamics is discussed.
Specifically, the question is addressed of how the SC strip width w affects the temperature-
induced vortex motion. For this reason, three different simulations were conducted where
the strip width was gradually reduced from w = 4.5µm down to w = 2.5µm. The sys-
tem’s initial configuration was chosen to be the same as before, i.e., the vortex was placed
at the coordinate center, and a hot spot with f0 = 16× 10−6 was applied at x = 2.5µm.
During the simulation, the vortex location and the local maximum values of the electric
pseudo-potentials ϕ1,2 and ϕtot were recorded. In Fig. 7.6, one can see that the principal
dynamical behavior of the system is the same as before, and the vortex experiences a
phase of strong acceleration before it finds a new equilibrium position inside the hot
spot. However, in Fig. 7.6 (a), one can see that reducing the strip width still consider-
ably affects the temperature-induced vortex deflection ∆X. For w = 2.5µm, the fluxon
acceleration is much smaller than for w = 4.5µm, and the vortex takes considerably
longer to reach its final equilibrium position. The reason for this behavior can be found
in the time evolution of the pseudo-potentials ϕ1,2 and ϕtot (see Fig. 7.6 (b)-(d)). Like
the vortex deflection, the time evolution of the potentials is qualitatively the same as
before. The dynamic process starts with an initial build-up phase of the potential mag-
nitude, followed by a global maximum value, and finally ϕ1,2 = ϕtot = 0. It can also
again be observed that ϕ1 ≈ ϕtot at the beginning of the simulation and ϕ2 ≈ ϕtot in the
final phase. If the strip width w is reduced, the magnitude of the potentials is reduced as
well. Specifically, a reduction of ϕ1 in the initial phase leads to a less effective deflection
of the vortex in response to the applied temperature field. In addition, the slower vortex
motion leads to a longer build up-phase of the potentials, which is translated back into a
less effective vortex acceleration. The reason for the geometry dependence of ϕ1 can be
found in a modified temperature distribution due to the shrinking width of the sample.
In Fig. 7.5 (e)-(f), one can see that for a given heat source, the iso-contours of constant
temperature become more and more elliptic. Due to the reduced volume-to-surface ra-
tion, the boundary condition for T has a greater effect on the bulk properties of the
temperature field. This leads to a less effective temperature increase for a given heat
source. Consequently, the temperature at the vortex location and the corresponding
condensate deformation ∇ns are reduced, leading to the previously described effects. It
should be noted that the system geometry only slightly affects the supervelocity field vs

in the bulk material. Although the boundary condition (3.2) enforces vs · n = 0 at the
sample surface, in the vicinity of the vortex, the flow direction of vs unaffected by the
value of w (see red circles in Fig. 7.5 (e)-(f)). Therefore, it can be concluded that the
geometry dependence of the temperature distribution in the SC is reflected in a modified
condensate field deformation. The following decrease of the potential ϕ1(T (w)) leads to
a less effective vortex deflection.
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Figure 7.6: (a): Time-dependent deflection ∆X of the vortex along the x-axis due to a
hot spot located at x = 2.25µm for f0 = 16× 10−6 and different strip widths w. (b)-(d):
Time evolution of the global maximum values of the electric potentials ϕ1, ϕ2, and ϕtot.
(e)-(f): temperature distribution in the SC for (e): w = 2.5µm and (f): w = 4.5µm.
The white curve corresponds to the iso-contour of T that goes through the center of the
vortex. The red curves correspond to the streamlines of vs.
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7.3 Outlook

In this chapter, it was investigated how isolated fluxons react to the presence of a nearby
hot spot. By solving the TDGL equations of superconductivity, it was found that a
nonhomogeneous temperature field attracts a nearby vortex and drives the system into
non-equilibrium. In this process, the applied temperature gradient enforces a deformation
of the condensate field ns, affecting the supercurrent density such that ∇· js ̸= 0. A new
interpretation of the diverging current in terms of electric fields allowed a more detailed
characterization of the entire dynamic process. Thereby it was found that an interaction
of the form ∇ns · vs acts in an accelerating way on the vortex and draws it closer to the
heated region. In close vicinity to the hot spot, the interactions character changes, and
now ns∇ ·vs becomes the main driving factor for the fluxon. The here presented results
were also interpreted hydrodynamically. In this picture, the deformed condensate field
leads to an advection of the superconducting phase driving the vortex into the direction
of enhanced temperature. This motion is counterbalanced by the phase field’s diffusive
nature, avoiding large gradients of the form ∇θ. The effect of the sample geometry was
investigated as well. Thereby it was found that a reduced width of the SC strip hinders
the temperature-induced vortex motion. The reason for this behavior is the less effective
heating of the sample due to the imposed boundary condition T = T0 simulating effective
heat removal from the sample. The effect of other boundary conditions on the system
dynamics is still to be investigated.

Another open question regards the presence of external magnetic fields. In the here-
presented calculations, Be = 0 was set, making the vortex state metastable. Applying
such a field provides a confining potential for the vortex but can also alter its dynamical
behavior. However, even in this case, the results of the main text remain valid. That
is because the principle form of the fields vs and ns does not qualitatively change for
Be ̸= 0, provided the field is weak enough to prevent additional vortex nucleation.
Investigations in this direction are ongoing. In principle, one could also operate with
other material parameters. However, as already pointed out, the principle form of the
system dynamics is not affected by the specific choice of λ or ξ. The sample geometry is
another adjustable parameter. Especially in thin superconducting strips, the interaction
of the vortex with the boundary currents could lead to substantial modifications of ϕ1,2.
Finally, it should also be noted that the here-presented results are formally only valid
for gapless SCs described by the conventional TDGL equations. For example, in dirty
gapped SCs, inelastic electron-phonon scattering can notability alter the vortex dynamics
demanding the use of a generalized TDGL-theory [95,110,249].
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8 Summary and outlook

The overall aim of this research has been to investigate how superconducting vortices
behave in closed nanosystems and in the vicinity of a nearby ferromagnet. Specifically, it
was searched for novel ways to utilize the fluxons as control elements in FM/SC hybrids,
with potential applications in fluxonic memory devices. In addition, the problem of
temperature-induced vortex motion was addressed as well. To this end, the following
research questions were posed:

� How can a structured FM be used to control superconducting vortices in confined
nanosystems;

� How does interfacial Rashba SOC affect the vortex dynamics in a proximity-coupled
FM/SC bilayer;

� How can the vortices be utilized to modify the magnonic information flow through
the FM/SC hybrid structure;

� How does local heating of the material affect nearby vortices;

The interaction between SCs and FMs is a vast topic with many different aspects. There-
fore, four different FM/SC systems were chosen as study objects.

The first research project investigated how the nucleation of superconducting vortices
is affected by the presence of a nearby FM. Specifically, the first research question was
addressed, i.e., how the FM can be used as a control element for fluxons under strong
geometrical confinement. The results of this study indicate that a carefully adjusted
FM layer can nucleate well-separated systems of vortices and antivortices in a nearby
SC. Thereby the size and orientation of the FM, its distinct domain structure, and its
distance from the SC layer strongly affect the distribution and number of generated VAV
pairs. Furthermore, it was found that the number and distribution of the fluxons can be
precisely controlled under the application of an external magnetic field, allowing basic
logic operations.

From a practical point of view, the here investigated system could serve as a precursor
for fluxonic memory devices. Thereby, the basic logic operations could be linked to the
overall vorticity of the system or the magnetic field distribution above specific locations.
The readout could be performed by choosing a suitable vortex imaging technique (see,
e.g., [250] and references therein). The here presented results could also find applications
in magnonics. For example, the stray field of a fluxon ensemble could be used to modify
the spin-wave dispersion in a magnonic waveguide. Thereby, the simultaneous existence
of vortices and antivortices could lead to modifications of the band structure that can not
be achieved by conventional means. Furthermore, an electric current-assisted, dynamic
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modification of the vortex lattice provides an additional way to shape the magnonic
dispersion, even in operating mode.

This project is an example of the self-consistent solution of the TDGL equations in
extended 3D space and can serve for further studies on coupled FM/SC systems. For
example, more realistic results can be achieved by coupling the LLG equation to the
TDGL equations allowing a mutual interaction of the system constituents. In this way
a dynamic coupling between fluxons and nontrivial magnetic textures, like domain walls
or Skyrmions, becomes possible. The here presented results are published in [204].

The second research study addressed how vortex dynamics are affected by interfacial
Rashba SOC. Similarly to the first project, this study aimed to use a multiferroic layer
to modify and control the vortex dynamics in a superconducting thin film. Thereby
both materials were allowed to be in close proximity to each other, allowing a direct
coupling of the superconducting phase and the magnetic texture. The resulting super-
current in the SC was found to be susceptible to changes in the underlying magnetic
order of the multiferroic under the application of a small gate voltage. For a first inves-
tigation of such a system, TbMnO3 was chosen, a multiferroic oxide having a Néel-spiral
as magnetic texture and a voltage-dependent winding number m. The results of this
study indicate that for certain winding numbers, the current-induced vortex motion in
the nearby SC is partially inhibited. In contrast, other values of m were observed to
foster vortex mobility. Furthermore, by carefully adjusting the winding number m, it
was found possible to switch the system from one dynamic regime to the other. The
reason for the distinct vortex phases was found in a SOC-induced modification of the
energetic barrier for vortex nucleation.

The findings provide a pathway for an all-electrically controlled FM/SC hybrid sys-
tem with adjustable vortex dynamics. As in the first study, such a structure could find
application as a fluxonic memory device. However, in this particular case, the basic
logic operations are performed by switching the system from the static to the dynamic
regime with the aid of the coupled multiferroic layer. Another interesting observation is a
SOC-induced amplification of the critical current of the system. That means that by ap-
propriately adjusting the magnetic layer, it is possible to reduce the energy consumption
of the underlying SC.

Note, only the first TDGL equation was solved, which means the effects of the su-
perconducting stray fields are neglected. Future studies should also cover the effects of
material impurities and thermal noise since they are expected to affect the here presented
results as well. The results of this project are published in [210].

The third research project dealt with the problem of magnon-fluxon interaction in
FM/SC hybrids. Specifically, it was investigated how vortices can be utilized to modify
the magnonic information flow through the FM/SC hybrid structure (cf. third research
question). The idea behind this project was to supplement the recent experimental ob-
servation of magnon-fluxon interaction [85] with a theoretical study. To this end, it was
attempted to reproduce the experimental results as accurately as possible and to give
an interpretation in the framework of micromagnetism. Due to the problem’s computa-
tional complexity, it was necessary to construct a simplified replacement system where
the stray field of a superconducting vortex lattice was replaced with the magnetic field
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of an arrangement of ferromagnetic nanodots. The artificial vortex field was then used
as input for the LLG equation allowing an insight into the interaction between vortices
and spin waves. The results of this study indicate that the static vortex lattice acts as
a Bragg grating leading to the formation of forbidden bands in the magnonic spectrum.
Furthermore, it was found that the number and width of these bands strongly depend on
the strength of the vortex lattice and the geometry of the waveguide. Further findings
show that a disordered vortex lattice tends to disrupt the formation of coherent spin
waves in the regime of dipolar modes. Also, the stray field of the artificial vortex lattice
was observed to confine these modes above the vortex locations leading to a downward
shift of the corresponding frequency bands.

The here presented study provides deeper insights into the interaction between magnons
and superconducting vortices. However, the experimental results of Dobrovolskiy et al.
could not be qualitatively reproduced. It is suspected the main reason for the discrep-
ancy between the numeric results and the experiment lies in a difference between the
chosen sample geometries. Solving the LLG equation on a domain of a similar extent as
in the experiment would have drastically increased the computation time of the micro-
magnetic simulations. Therefore the extent of the waveguide had to be reduced. The
second important simplification regards the dynamic interaction between the spin waves
and the SC system. A more realistic study should consider this interaction by simulta-
neously solving the LLG and TDGL equations in a realistic setup. In this way also, the
interaction of the SC with its own stray field would be adequately taken into account.

Apart from these shortcomings, the here presented study can serve as a foundation
for further research on magnon-fluxon interaction. In especially, the construction of the
artificial vortex lattice is simple yet effective, allowing even to simulate spin waves in
the presence of a current-driven vortex lattice. An extension of this research project in
this direction is ongoing. As already discussed, also more complicated vortex patterns,
VAV-systems, and superconducting islands can serve as building blocks for magnonic
crystals allowing for advanced control of the information flow through the FM/SC hy-
brid structure. The results of this section are published in [236].

The last research project addressed how an isolated superconducting vortex is affected
by the presence of a nearby hot spot. This study was motivated by an existing research
gap regarding the dynamic interaction of superconducting vortices with nonhomogenous
temperature gradients. In especially, it was investigated how the attractive interaction
between the vortex and the heated region manifests itself in the framework of TDGL the-
ory. Thereby, it was found that a local deformation of the superconducting condensate
affects the superconducting phase field similarly to a conventional transport current, i.e.,
the interaction appears in the TDGL equations in the form of a scalar electric potential.
Moreover, the corresponding electric field was found to have a complicated space- and
time dependency with contributions of the condensate field ns(r, t) and the superfluid
velocity vs(r, t). The found results can also be interpreted hydrodynamically with the
aid of convection-diffusion theory revealing the advection of the superconducting phase
as the main driving force for the fluxon. Furthermore, it was found that a reduced width
of the chosen SC strip leads to a considerably reduced vortex motion.

The findings of this study are primarily of interest to fundamental research. How-
ever, advanced functionalities based on temperature-driven fluxon motion can be easily

84



conceived. For example, one can consider a scenario where temperature-induced vortex
motion affects a nearby system, e.g., a Skyrmion, providing additional control mecha-
nisms for magnetically susceptible systems. In addition, the precise control of individual
superconducting vortices is a requirement for applications like fluxonic logic devices.
A better insight into the mechanics of temperature-induced vortex motion can help to
improve the functionality of such devices.

In this study, no external magnetic fields were applied to the system making the state
of an isolated vortex metastable. Also, the material was assumed to be perfectly clean
and without structural defects. Future studies should take these problems into account.
The effects of different probe geometries and material parameters are also open for future
studies. Another way to extend this project would be to investigate the effects of electron-
phonon interaction on the vortex motion requiring the solution of a generalized TDGL
theory.
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[46] Ž. L. Jelić, M. V. Milošević and A. V. Silhanek, Velocimetry of superconducting
vortices based on stroboscopic resonances. Sci. Rep. 2016, 6, 35687.

[47] O. V. Dobrovolskiy, D. Y. Vodolazov, F. Porrati, R. Sachser, V. M. Bevz, M. Y.
Mikhailov, A. V. Chumak and M. Huth, Ultra-fast vortex motion in a direct-write
Nb-C superconductor. Nat. Com. 2020, 11, 3291.
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[63] M. V. Milošević, F. M. Peeters, Superconducting Wigner vortex molecule near a
magnetic disk. Phys. Rev. B 2003, 68, 024509.

[64] D. A. Frota, A. Chaves, W. P. Ferreira, G. A. Farias, and M. V. Milošević,
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M. Peeters, Optimization of superconducting critical parameters by tuning the size
and magnetization of arrays of magnetic dots. Phys. Rev. B, 2007, 76, 100502(R).

[150] A. V. Kapra, V. R. Misko and F. M. Peeters, Controlling magnetic flux motion
by arrays of zigzag-arranged magnetic bars. Supercond. Sci. Technol., 2013, 26,
025011.

96



Bibliography
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