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M.Sc. Mol. Life Sci. &M.Sc. Bioinformatics. Mohammad Mobashir 

Title: Mathematical Modeling and Evolution of Signal Transduction Pathways and Networks 

ABSTRACT 

Signal transduction is the process of routing information inside cells when receiving stimuli from their 

environment that modulate the behavior and function. In such biological processes, the receptors, 

after receiving the corresponding signals, activate a number of biomolecules which eventually 

transduce the signal to the nucleus. The main objective of my work is to develop a theoretical 

approach which will help to better understand the behavior of signal transduction networks due to 

changes in kinetic parameters, network topology, and the concentration of the signaling molecules 

for different values of input signal. Additionally, I have also investigated the role of different possible 

cross-talks on the nature of the signaling pattern/the output of the signaling network.  

By using ordinary differential equations approach, I have designed a simplistic mathematical model 

which performs basic signaling tasks similar to the signaling process of living cells. I have used a 

simple dynamical model of signaling networks of interacting proteins and their complexes and 

studied the evolution of signaling networks described by mass-action kinetics. For the optimization of 

purpose, an evolutionary algorithm has been used. During the optimization process, the fitness of 

the networks is determined by the number of signals detected out of a series of signals with varying 

strength. The mutations include changes in the reaction rate (kinetic parameter), concentration of 

the signaling molecules, and network topology.  

I found that stronger interactions and addition of new nodes lead to improved evolved responses. 

The strength of the signal does not play any role in determining the response type. The kinetics of 

the response is predominantly controlled by the concentration levels of proteins. The some of the 

cross-talks (not all the cross-talks) may also force the cellular response to be transient. This model 

will help to understand the dynamic behavior of the proteins involved in signaling pathways. It will 

also help to understand the robustness of the kinetics of the output response upon changes in the 

rate of reactions and the topology of the network. 
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Title: Mathematical Modeling and Evolution of Signal Transduction Pathways and Networks 

ZUSAMMENFASSUNG 

Äußere Reize, die auf Zellen wirken, lösen häufig den Prozess der Signaltransduktion aus, wodurch 

das Verhalten und die Funktion der Zelle verändert und gesteuert wird. Wenn Rezeptoren ihr 

entsprechendes Signal registrieren, aktivieren  sie eine Vielzahl von Biomolekülen, die im 

allgemeinen die Signale bis zum Zellkern weiterleiten. 

Wie genau Zellen miteinander kommunizieren, z.B. während der Entwicklung eines Organismus oder 

in einem Krankheitsstadium, stellt immer noch eine große Herausforderung in der Biologie dar. 

Damit die Zellen eines mehrzelligen Organismus wissen ob sie proliferieren, migrieren, differenzieren 

oder sterben sollen, nehmen die Zellen aus ihrer Umgebung Hormone und andere Signalmoleküle 

wahr. Damit diese Signale von der Zelloberfläche an ihrem  Wirkort weitergeleitet werden können, 

transportieren die Signalmoleküle die Information in Form verschiedener chemischer und 

physikalischer Änderungen, so zum Beispiel Konformations- oder Strukturveränderungen oder durch 

Aufbau von Komplexen. 

Das Hauptziel meiner Dissertation war die Entwicklung  eines theoretischen Ansatzes, der dazu 

dienen soll das Verständnis der Signaltransduktion in biochemischen Netzwerken besser zu 

verstehen. Der Fokus lag hierbei auf dem Einfluss der kinetischen Parameter, der Netzwerktopologie 

sowie der Konzentration von Signalmolekülen. Da, wie bereits erwähnt, Zellen in der Regel mehreren 

Signalen gleichzeitig ausgesetzt sind, bestand eine zusätzliche Aufgabe in der Analyse des Cross-talks 

in einem Netzwerk beim gleichzeitigen Empfang von zwei verschiedenen Signalen. 

 

Ich habe ein vereinfachtes mathematisches Modell auf der Basis gewöhnlicher 

Differentialgleichungen entwickelt. Das dynamische Modell eines Signalnetzwerkes beschreibt per 

Massenwirkungsgesetz die Interaktion von bis zu vier Proteinen mit je drei Zuständen: unmodifiziert 

und zwei chemische Modifikationen. Weiterhin werden binäre Komplexe explizit einbezogen. Hierbei 

wird eine zufällige Auswahl von Bindungspartnern aus allen möglichen Kombinationen der 

Proteinzustände getroffen, um so verschiedene Netzwerk-Topologien zu generieren. In jedem 

Komplex bekommt ein beteiligter Proteinzustand eine enzymatische Funktion zugeordnet, der bei 

Dissoziation des Komplexes den Zustand des Interaktionspartners ändert. Zum Beispiel ist das 

Anhängen eine Phosphat-Gruppe (Phosphorylierung) an Proteine eine häufiger Vorgang bei der 

Signaltransduktion. Die drei Molekülzustände können dann als unphosphoryliertes Protein bzw. 

Einfach- und Doppelphosphorylierung interpretiert werden, während die Enzymatische Funktion 

einer Kinase bzw. Phosphatase entspricht. Die auf diese Weise erzeugten Netzwerke werden einem 
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Evolutionsalgorithmus unterworfen. Der Grundgedanke ist, dass jedes Netzwerk eine Antwort für 

einen Satz von Signalen verschiedener Stärke liefern muss. Die Antwort wird dabei so einfach wie 

möglich definiert. Konkret wurde manuell ein Proteinzustand als Output gewählt, so dass die 

Konzentration dieses Zustandes bei Vorliegen eines Signals eine Schwelle für eine beliebige Zeit 

überschreitet. Dadurch wird keine Kinetik fixiert, so dass zum Beispiel anhaltende, oszillierende, 

adaptive oder transiente Aktivierung des Netzwerkes erlaubt sind. Das Signal selbst ist dabei 

entweder konstant vorhanden oder liegt als Puls vor. Die Fitnessfunktion ist so konstruiert, dass für 

jedes erfolgreich detektiertes Signal sich die Fitness um 1 erhöht. Maximale Fitness eines Netzwerkes 

ist dann gleichbedeutend mit der Detektion aller Signal (unter der Nebenbedingung, dass in 

Abwesenheit des Signals, das Netzwerk inaktiv bleibt). 

Um den Einfluss verschiedener Parameter auf die Funktion von Signalnetzwerken zu analysieren, 

habe ich vier Grund-Szenarien angesetzt: (i) Die kinetischen Parameter der Protein-Protein-

Wechslewirkung werden „mutiert“, analog wie der Austausch einer Aminosäure in Bindungs-

relevanten Sequenzen die Affinitäten von Proteinen zueinander oder die enzymatische Aktivität 

beeinflußt. (ii) Die Topologie des Netzwerkes wird mutiert, indem ein neues Protein mit zufällig 

gewähltem Satz an Interaktionspartnern bzw. enzymatischer Funktion hinzugefügt wird. Hierbei 

werden die kinetischen Parameter beim Zufügen des Proteins fixiert und im Laufe der Evolution nicht 

mehr verändert. (iii) Analog zum Fall (i) werden die kinetische Parameter mutiert. Zusätzlich wird 

jedoch die Gesamtkonzentration der beteiligten Proteine mutiert. Diese Situation entspricht dem 

Effekt von stillen Mutationen der kodierenden DNA-Sequenz, die die Effizienz der Proteintranslation 

oder die Regulation durch micro-RNA ändern und schlussendlich die Proteinexpression beeinflussen 

kann. Ebenso werden hier die Wirkungen von Mutationen/Regulationen von Transkriptionsfaktoren 

vereinfacht erfasst. (iv) Zwei Netzwerke mit manuell fixierter aber verschiedener Topologie werden 

durch eine gemeinsame Interaktion aneinander gekoppelt. Beide Netzwerke müssen jeweils „ihr“ 

Signal detektieren. Der Einfluss der Kopplung/des Cross-talks wird untersucht, indem die kinetischen 

Parameter im Evolutionsalgorithmus mutiert werden. Der Evolutionsalgorithmus selbst benutzt für 

alle Szenarien „elite selection“, dass heißt die ggf. mutierten Nachkommen des besten Viertels 

(=höchste Fitness) der Netzwerke stellt die nachfolgende Generation. Deren Fitness wird reevaluiert, 

indem die Antwort auf den Satz verschiedener Signal ausgewertet wird. Dieser Vorgang wird 

wiederholt, bis die Fitness und das Mittel der mutierten Faktoren sich nicht mehr ändern. Die erste 

Generation wird hierbei mit Klonen einer zufällig gewählten Topologie angefüllt. Der Endzustand ist 

eine Generation von Netzwerken, die die Fitnessfunktion optimal lösen (und mit Ausnahme von 

Szenario ii eine identische Topologie haben). Für jedes Szenario wurde eine Reihe von 

Wiederholungen simuliert, die alle mit verschiedenen Zufallszahlen gestartet worden sind, so dass 
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sowohl die Mutationen als auch die Topologie und kinetischen Startparameter der Anfangs-

Netzwerke verschieden sind. 

 

Für das Szenario (i) ergaben sich zwei interessante Resultate. Zum einen ist die generische Antwort 

des Netzwerkes eine anhaltende Aktivierung des Output-Knotens; andere Kinetiken traten praktisch 

nicht auf bzw. wurden nach kurzer Zeit wieder ausselektiert. Zum anderen erreicht die Fitness der 

Netzwerke innerhalb weniger Generationen maximale Werte, wobei die kinetischen Parameter eine 

Drift aufzeigen, die noch viele Generationen anhält. Weiterhin habe ich drei Unterfälle des Szenarios 

analysiert, in denen die maximale Stärke der kinetischen Parameter unterschiedlich limitiert waren. 

Hierbei stellte sich heraus, dass es eine Schwelle gibt unterhalb der,  die Netzwerke nicht in der Lage 

sind maximale Fitness zu erreichen. Sobald diese Schwelle überschritten wird, zeigen die Netzwerke 

die anhaltende Aktivierungskinetik und die kinetischen Parameter driften zu hohen Werten (ohne 

jedoch das gesetzte Limit zu erreichen). Zu bemerken ist hierbei, dass unabhängig von der 

Eingangssignalstärke, die Antwort praktisch gleich stark ausfällt ohne notwendigerweise maximal zu 

sein. So zeigen viele Netzwerke eine 90%-ige Aktivierung des Output während andere für alle Signale 

z.B. eine 30%-ige Aktivierung aufweisen. 

Überraschend ist Szenario (ii) vollkommen analog zu Szenario (i). Je nach gesetztem Limit für die 

kinetischen Parameter, wenn das neue Protein eingebunden wird, evolvieren die Netzwerke zu 

maximaler Sensitivität oder versagen bei der Detektion schwächerer Signale. Vermutlich genügt ein 

Untermenge von Interaktionen mit großen kinetischen Parametern, um die beobachteten Effekt zu 

erzielen. Daraus habe ich geschlossen, dass die Anwesenheit starker Interaktionen wichtig ist für die 

anhaltende Aktivierung des Netzwerkes, jedoch die genaue Topologie starker Interaktionen ebenso 

wie die Netzwerktopologie im allgemeinen nicht bestimmend für das Netzwerk-Verhalten sind. 

Dieser Schluss wurde durch die Ergebnisse mit veränderten Protein-Konzentrationen (Szenario iii) 

unterstrichen. Es zeigte sich, dass unter diesen Bedingungen eine signifikante Menge von 

Netzwerken eine transiente Antwort auf anhaltend vorliegende Signal erzeugt. Zwischenzeitlich 

treten sogar Netzwerke auf, die je nach Signalstärke mit transienten bzw. anhaltenden 

Aktivierungskinetiken reagieren. Diese Netzwerke erwiesen sich jedoch nicht als evolutionär stabil, 

dass heißt sie sind in der finalen Generation nicht zu finden. Interessanterweise haben Änderungen 

der Konzentration des Proteins, dessen Aktivierungszustand als Output gewählt wurde nur 

minimalen Einfluss auf die Kinetik des Netzwerkes. 

Die Analyse des Cross-talks (Szenario iv) ergab, dass nur einige bestimmte Kopplungen nicht-triviale 

Ergebnisse aufzeigen. Ein häufiger Fall ist hierbei, dass die Ko-Aktivierung beider Signale zu einem 
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transienten Verhalten eines der beiden gekoppelten Netzwerke führt. Andere Kopplung erzeugen 

hingegen nur eine vollständige Inhibierung oder haben keine sichtlichen Einfluss der 

Signale/Netzwerke aufeinander. 

Kritisch anzumerken ist jedoch, dass die Ergebnisse an die Wahl der Fitnessfunktion gekoppelt sind. 

Eine andere Fitnessfunktion, die z.B. eine oszillierende Lösung einfordert, kann eventuell eine 

stärkere Sensitivität gegenüber der Topologie oder den kinetischen Parametern des Netzwerkes 

aufweisen. 

 

Zusammengefasst zeigen meine Ergebnisse, dass sowohl die Interaktionsstärke als auch die 

Netzwerktopologie gegenüber den relativen Konzentrationen der beteiligten Moleküle eine geringe 

Rolle bei der Festlegung der Kinetik des Netzwerkes spielen. Diese Erkenntnis erscheint überraschend 

positiv für die experimentelle Untersuchung von Signaltransduktion. Sowohl die (vollständige) 

Netzwerktopologie als auch die zugehörigen kinetischen Parameter sind schwer zu erfassende 

Parameter, insbesondere da die Identifkation von Signal-Subnetzwerken eher experimentellen 

Einschränkungen, denn einer umfassenden Analyse einer Zelle unterworfen ist. Demgegenüber 

erscheint eine Bestimmung der Gesamtkonzentration von Proteinen eine vergleichsweise einfach zu 

lösende Aufgabe, die im Hinblick auf meine Ergebnisse eher geeignet scheint, das Signalverhalten für 

ein konkretes Problem zu bestimmen bzw. im Umkehrschluss durch biochemische oder genetische 

Eingriffe zu modulieren. 
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Chapter 1 INTRODUCTION 

1.1 Signal transduction process 

Signal transduction is a major step in inter- and intra-cellular communication 1. In signal 

transduction processes, an external stimulus is transformed into a cellular response 

through a network of proteins that ultimately alters the behavior of the cell2,3.  There are 

many diseases which arise due to the malfunctioning of signal transduction pathways 

such as cancer, diabetes, and anchondroplasia (dwarfism) which are the diseases caused 

due to malfunction in signal transduction pathways 4. 

 

 

 

 

 

Figure 1.1MAP kinase cascade. After receiving the signal from RasGTP (active Ras), inactive Raf is phosphorylated 

(activated) and phosphorylated Raf activates Mek and active Mek further activates inactive Erk to active Erk. (Rafp - active 

Raf, Mekp - single phosphorylated Mek, Mekpp - double phosphorylated Mek, Erkp - single phosphorylated Erk, and Erkpp - 

double phosphorylated Erk). 
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To study how in exact the cells communicate is a challenging task in all aspects of biological 

science, from developmental stage to diseased state. In multicellular organisms, cells detect 

the presence of neighboring cells, hormones, and other biomolecules before and during 

making a decision such as whether to proliferate, migrate, differentiate, or to die. In order to 

transduce the information from one level to another level, the SMs involved in signal 

transduction can go to different kind of physical changes such as conformational changes, 

structural modifications, formation of scaffolds etc. The most common example is the 

posttranslational modifications of proteins (Figure 1.1), e.g., phosphorylation and 

dephosphorylation 5.  

 

For a more detailed understanding about the transmission of signal from one molecule to 

another, I take MAPK pathway as an example that shows different response types depending 

on the cell type and/or stimulus (Figure 1.1). This pathway involves Raf, MEK (MAPK/ERK 

kinase), and ERK (extracellular signal regulated kinase) and is considered to be centrally 

involved in cellular decision making processes where small quantitative differences often 

lead to major phenotypic changes 6. It has been shown that the upstream molecules induce 

quantitative and qualitative differences in the duration and magnitude of ERK activity that 

regulate the function and behavior of a cell. The MAPK pathway is a prototype for the 

general scheme of signal transduction, in which, after receiving a signal from ligand-bound 

receptors, the involved proteins are altered (‘‘activated’’) by posttranslational 

modifications5,7. Subsequently, the active form activates the other inactive proteins by 

means such as recruitment to specific locations, altering the enzymatic activity, or 

conformational changes exposing binding sites for further binding partners. 

 

The aim of my thesis was to focus mainly on the intracellular signal transduction at the 

molecular level and to develop mathematical models which can be applied to investigate the 

signal transduction processes in T-cell signaling. Before introducing my work, first of all I 

would like to introduce the biological signaling process in T-cell activation and then a specific 

signal transduction pathway (mitogen activated protein kinase (MAPK) pathway) to illustrate 

the information flow from the receptor level to the effector level (Figure 1.1). 

 

 



9 
 

1.2 T-cell signaling 

T-Cell Receptor (TCR) activation leads to the activation of several biomolecules resulting 

in a number of signaling cascades (Figure 1.2). The dynamics of these cascades ultimately 

determine cell fate through the regulation of cytokine production, migration, cell 

survival, proliferation, apoptosis, and differentiation. In TCR activation, in the initial step 

after detection of appropriate ligand, phosphorylation of immunoreceptor tyrosine-

based activation motifs (ITAMs) takes place on the cytosolic part of the TCR/CD3 

complex by lymphocyte protein-tyrosine kinase (Lck). Where it becomes activated, 

promotes the recruitment and phosphorylation of downstream signaling molecules. Zap-

70 phosphorylates SLP-76 the phosphorylated SLP-76 promotes the recruitment of Vav (a 

guanine nucleotide exchange factor), the adaptor protein GADS and inducible T cell 

kinase (ITK). ITK phosphorylates PLCγ1 (phospholipase C γ1) which results in the 

hydrolysis of PIP2 (phosphatidylinositol 4,5-bisphosphate). The hydrolysis of PIP2 

produces the second messengers diacylglycerol (DAG) and inositol trisphosphate (IP3). 

DAG activates protein kinase C theta (PKCθ)and the MAPK pathway which also promotes 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. IP3 

triggers the release of Ca2+ from storage organelles such as endoplasmic reticulum (ER), 

mobilizes the Ca2+ , and helps in the entry of extracellular Ca2+ into the cells through 

calcium release-activated Ca2+ (CRAC) channels 8. CD28 recruits PI3K 

(phosphatidylinositide 3-kinase). PI3K produce PIP3 and PIP2. PIP3 recruits PDK1 

(phosphoinositide-dependent kinase-1) and protein kinase B (PKB also called AKT) which 

leads to the phosphorylation of AKT by PDK1. Finally, this phosphorylated AKT can 

activate the downstream signaling molecule ERK (MAPKKK). Ca2+ binds to calmodulin 

which binds to calcineurin which leads to the activation of calcineurin. This active 

calcineurin finally activates NFAT (nuclear factor of activated T cells) 9. From previous 

studies it is known that the temporal behavior of Ca2+, MAPK, and NF-kB determines the 

cellular decision 6,10,11. 
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Figure 1.2 T-cell signaling: In T-cell signaling TCR triggering leads to the activation of several signaling molecules and feeds a 

number of signaling cascades which determine cell fate decision (Figure adapted from Lin J. and Weiss A. 2001
8
). 
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1.3 Role of input signals, interaction strength, addition of new protein, concentration 

levels on the cellular response 

From previous studies it is known that cells can communicate through the processing of 

information from one level to another by controlling the temporal behavior (dynamics) 

of the signaling molecules. The temporal dynamics of these signaling molecules control 

the cellular decision (such as apoptosis, proliferation, or differentiation, etc.). The 

dynamics is used to describe the change in the concentration, activity, modification 

state, or localization of the signaling molecules over time 12. The signaling mode encodes 

the information in the frequency, amplitude, duration, or the other features of the 

temporal signals. 

In previous studies, various modeling approaches have been applied to investigate the 

behavior of signaling networks (SNs). Francois and Hakim (2003)13 developed a model to 

generate genetic circuits which can deliver a variety of functional behaviors and 

demonstrated the vital role of post-transcriptional interactions, i.e. protein-protein 

interactions for controlling gene regulation. They used an evolutionary approach. This 

evolutionary approach has been extended by the others to protein-protein interaction 

networks with specific functional characteristics: oscillators, bistable switches, 

homeostatic systems, and frequency filters 14,15. 

In a previous study 16, the role of kinetic parameters, local concentration variations, and 

feedback loops have been studies. In this work, they have presented a computational 

model of the GTPase-cycle module that predicts the interplay of local G protein, coupled 

receptor, and GTPase-activating protein (GAP) concentrations which gives rise to 

different regimes and numerous intermediate signaling phenomena. This model provides 

mechanistic insights into the regimes under which distinct GTPase-cycle modules 

function and yield a wide range of biochemical phenotypes and provides the quantitative 

framework for the experimental investigations of GTPase-cycle modules. 

To predict the function of a signaling module it is necessary to understand the design 

principle of SNs that underlie the behavior, function, and robustness. From experiments 

neither the topology of a SN nor the kinetic parameters of its underlying elementary 

interactions are known in detail such that it remains open how sensitive the function of a 

network is due to these parameters. In addition to it, it is also hard to measure the 

concentration levels of all the signaling molecules involved in transmitting the signals 

from one signaling levels to another (like receptor level, mediator level, and effector 
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level as well as post-translational modification thereof). Therefore, it seems appealing to 

investigate the roles of change in SN topology, kinetic parameters, and the concentration 

levels of signaling molecules to get a glimpse of how important each detail is for the 

outcome. 
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1.4 Cross-talk between signal transduction pathways 

From previous work it is known that the receptors for GFs (growth factors) and the ECM 

(extracellular matrix) are ubiquitously expressed in multicellular organisms. For signal 

transduction process, integrin-type ECM receptors anchor cells to their surrounding and 

concomitantly activate intracellular signaling pathways. For this signal processing system 

it has been shown that there are different possible cross-talk (Figure 1.3). In case of 

activation of cellular signaling pathways, the interaction between integrin and GFRs 

(growth factor receptors) can take place in different ways: (i) The downstream action of 

the two receptors can take place concomitantly and independently (concomitant 

signaling), (ii) integrins can also gather different proteins around themselves and help 

GF-dependent GFR signaling (collaborative signaling), (iii) even in the absence of GFs, 

integrins can also directly activate GFRs (direct signaling), and (iv) as it is also known that 

GFR-generated signals lead to the activation of integrin gene expression, so the 

increased level of integrins on the cell surface can also further activate signaling by GFRs 

(amplification of signaling) 17.  
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Figure 1.3 Possible interactions between integrin and GFRs. (a) Concomitant signaling: interaction between integrin and 

GFRs are concomitant and independent, (b) Collaborative signaling: Here, integrin brings more molecules close to itself and 

help in GF-dependent GFR signaling, (c) direct activation: in this case integrin can directly activate GFRs even in the absence 

of GFs, and (d) Amplification of signaling: GFR-generated signals can lead to the activation of integrin gene expression and 

this increased integrin gene expression may further activate GFR signaling (Figure adapted from Ivaska J. and Heino J., 

2011
17

). 
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In addition to the above mentioned work on cross-talk, there are some other interesting 

facts about the role of cross-talk on the cellular response revealed by a theoretical 

approach 18. Here, it has been shown thatin a single cell, during signal transduction 

process, the cell responds to only one of the stimuli even when exposed to both. They 

also claim that these pathways achieve specificity by filtering out spurious cross-talk 

through mutual inhibition and the variability between the cells allows for heterogeneity 

of the decisions (Figure 1.4). Although components of a signaling system shared between 

pathways provide the signaling network with a capacity for signal integration. The 

problem to the study mentioned above addresses is: signals transmitted through one 

pathway could cross-activate the other through these shared components, leading to a 

loss of specificity. In order to overcome this problem, the signaling network must be able 

to respond properly to the external stimuli. For this purpose they proposed two 

fundamentally different mechanisms allow signaling pathways that share components to 

respond specifically to any one stimulus. 

 

 

Figure 1.4 Different mechanisms for achieving specificity of two parallel signaling pathways yield different responses after 

exposure to both signals. (a) Scaffolding proteins insulate two pathways from each other. For perfect insulation, the rate of 

cross-activation ka equals 0. When exposed to both signals simultaneously, both pathways are active. (b) Two pathways 

show cross-activation but maintain specificity by cross-inhibition of X3 and Y3 (adapted from McClean M N. et al, 2007
18

). 
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The first mechanism is insulation. This can be achieved by incorporating the shared 

component into distinct macromolecular complexes— one for each signal to be 

processed (Figure 1.4a). The second mechanism is mutual inhibition, which is used to 

eliminate unwanted interactions between the pathways (Figure 1.4b). Through 

mathematical modeling, they show that they can use physiological measurements to 

distinguish between these two mechanisms of achieving specificity. They then apply their 

analysis to the specific example of MAPK pathways in the yeast S. cerevisiae 18. 
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1.5 Evolutionary Algorithm 

Evolutionary algorithm is a type of evolutionary computation which is mainly inspired by 

biological evolution concepts such as reproduction, mutation, and selection19. In the past 

evolutionary algorithm have been applied to address many biological problems and has 

been found as a helpful approach20. This algorithm is based on initial population, 

mutation,  selection, and iteration19. During optimization, the fitness function plays 

important role in determining and selecting most appropriate solution. In general, 

heritable variation requires some kind of change in the features and/or parameters used 

for the preparing the initial populations. These changes are repeated again and again and 

each iteration is as one generation. Before entering into iteration cycle, selection process 

is applied. Based on the fitness the set of a population is declared as the fittest 

population. In each iteration, the sets of the population are created (similar to biological 

term reproduction). There are different known selection process e.g., elite selection (I 

have used in the thesis work). The more details of this algorithm, I have shown in the 

method chapter.  
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1.6 Aims and objectives of my Ph.D. thesis work 

As I have mentioned in the previous section 1.3 that the temporal dynamics of the 

signaling molecules play critical roles in controlling the cellular behavior. Thus, a good 

understanding of the time-scale of a particular system is crucial for determining and 

understanding the cellular behavior. Where the system will help to understand the 

factors such as the input signals, kinetic parameters, change in signaling network 

topology, the concentrations of the signaling molecules, motifs and domains of signaling 

proteins responsible to control and affect the temporal behavior of the signaling 

molecules. In addition to it, the system will also help to understand the roles of different 

possible cross-talk of the signal transduction pathways and the network motifs on the 

cellular function. 

 

In my Ph.D. thesis work, I have addressed mainly the following problems: 

 Effect of kinetic parameters of the reactions, input signals, concentration of SMs 

(signaling molecules) on the final response: 

As the problem mentioned in the previous section that the temporal dynamics of the 

signaling molecules control the cellular decision, so it sounds to be interesting and 

promising to investigate the roles of the kinetic parameters (in experiment, it is hard to 

measure the kinetic parameters) and input signals on the temporal dynamics of the 

signaling molecules. 

 

 Cross-talk of signaling pathways 

In section 1.5, I have introduced that many diseases such as cancer, diabetes, obesity, 

and asthma are caused due to defects in multiple genes and pathways. And it is also 

known that the genes to be functional, they need to interact with many more 

molecules. Since, in the above mentioned diseases, it is not that one gene is responsible 

but there are many other molecules involved. Which leads the current one-target-one-

compound approach in drug discovery and development to failure to deliver as many 

efficacious medicines as expected in the post-genomic era. So, instead of investigating 

on a particular pathway, it may be a positive step to investigate also the possible cross-

talk between the signal transduction pathways and their impact on the output response. 
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There are many important works which have been published related to these works but 

the main feature of our work is to develop and study the cellular behaviors due to the 

perturbation in the interaction. This approach will bring our theoretical predictions very 

close to the experimental predictions and will also help the experimentalists to save the 

time and manpower and will guide to proper directions for performing new 

experiments. 
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Chapter 2 RESULTS 

Before discussing the results, I would like to present an overview of the ten different 

subsections. These ten subsections are organized as: 

 Subsection 2.1 - In this subsection, the evolution pattern of SNs has been discussed 

for the system where the SNs have been evolved by allowing the change in the 

kinetic parameters only. The concentration of different SMs are fixed and equal. 

 Subsection 2.2 - In this subsection, the kinetics of the output response and the 

evolution pattern of kinetic parameter (interaction strength) for the evolved 

networks have been shown for the system where the SNs have been evolved by 

allowing the change in the kinetic parameters only. The concentration of different 

SMs are fixed and equal. 

 Subsection 2.3 - In this subsection, the evolution pattern and the kinetics of the 

output response of SNs has been discussed for the system where the SNs have been 

evolved by allowing the change in the kinetic parameters only. The concentration of 

different SMs are fixed and unequal. 

 Subsection 2.4 - In this subsection, the evolution pattern and the kinetics of the 

output response of SNs has been discussed for the system where the SNs have been 

evolved by allowing the change in the kinetic parameters and also in the 

concentration of different SMs during the evolutionary process. 

 Subsection 2.5 -To verify my theoretical finding, one of my collaboration group 

member (Dr. Tina M. Schnöder) has performed western blot analysis for MEK and 

ERK molecule of MAPK pathway. This western blot result have been shown here. 

 Subsection 2.6 -Here, I have discussed the signal-response relationship for all the 

different conditions used for simulation. 

 Subsection 2.7 - In order to check the effect of removal of input signal after certain 

time, I have run the simulation where the input signal remains present only for fixed 

time points. This result for the removal input signal has been shown here. 

 Subsection 2.8 - This subsection contains the kinetics of the partially active (single 

phosphorylated) SMs. 

 Subsection 2.9 - Explains the addition of new nodes in the minimal model and its 

evolution. 
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 Subsection 2.10 - Finally, I have investigated the feedforward, feedback and cross-

talkpresence during signal transduction process. 

 

For this work, I have set up a simplified model to represent a signal transduction 

pathway allowing two post-translational modifications of similar to the MAPK cascade 21. 

In order to transduce the signal, I have included protein-protein interactions, protein 

phosphorylation and dephosphorylation 22. Double phosphorylated proteins act as fully 

activated and single phosphorylated molecules as partially activated molecules. Note, 

that the term phosphorylation is used for convenience as any other post-translation 

modification adding a small chemical group, lipid, protein or carbohydrate modifying a 

protein’s spectrum of interaction partners or enzymatic activity are covered by the 

model (Figure 2.1). 
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Figure 2. 1STNs with random interactions and bimolecular complexes formation. S represents the input signal (green color 
node), A1, A2, and A3 denote inactive signaling proteins (blue color nodes), their partially active (single phosphorylated 
(cyan color nodes)) forms are A1p, A2p, and A3p, respectively. The fully active forms (red color nodes) are A1pp, A2pp, and 
A3pp. And all other nodes (yellow color) represent the possible complexes formed during signal processing. 
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The interaction between the signaling proteins are set up randomly to create the initial 

population as well as when adding proteins during evolution. In my current model, I have 

not classified the proteins of the SN. 

Once the receptor receives the signal then it can activate other signaling molecules. All the 

signaling molecules are allowed to phosphorylate or dephosphorylate each other (Figure 2.1) 

and the final products will be formed depending on the complex. All the reactions in this 

model are bimolecular, autophosphorylation and homodimer formation are not allowed. 

Every molecule that becomes partially (single phosphorylated) or full active (double 

phosphorylated) can interact with any other molecule in any state. These interactions lead 

to complex formation. The complexes can dissociate without changes to its constituents or 

upon modifying on of it by means of phosphorylation or dephosphorylation. The interaction 

of two partially active molecules produces either one of them being fully activated (dual 

phosphorylated) or inactivated (dephosphorylated) without changing the other reacting 

partner’s state (attributing it an enzymatic role) as shown in Figure 2.1. Which of the 

possible reactions are realized is determined randomly once at the beginning (with 

constraints, see next paragraph), thus setting up the network topology. 

I start the evolution of SNs by assuming that the basic task of signal transduction is to 

provide an above-threshold response to a signal which is generated by a ligand binding to its 

receptor (see Methods). The response is measured at a pre-selected node. When the 

activation state of this node crosses a threshold the network for an arbitrary amount of 

time, the SN is considered to be successful in the detection of the signal and the fitness is 

increased by Ffactor = 1 otherwise the fitness for the signal in question remains 0. For the task 

to detect multiple signals of different strengths the fitness contributions are summed up. 

During simulations signals are either present throughout the simulation or given as a pulse 

of fixed duration. I have investigated the evolution of SNs and their activation pattern 

underfollowing types of changes: variations of kinetic parameters, addition of new nodes, 

variation in the concentration of the SMs, and the cross-talk of signal transduction pathways. 

The evolutionunder all the above mentioned perturbations are investigated independently 

and compared using replicates with identical parameter settings but different seeds for the 

pseudo-random number generator. 
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2.1 Evolution of SNs with varying interaction strength 

I have analyzed the effect of strong and weak interactions by simulating SNs evolution for 

three different regimes: weak (k < 10, dimensionless parameter), moderate (k < 30), and 

strong interactions (k > 30). When the interaction strength remains below a certain value (k 

< 10 in the model setting) the networks are unable to reach maximum fitness (Figure 2.2). At 

the same time the fitness of the population fluctuates significantly. If the interaction 

strength remains below a value of 30, then the networks population reaches almost 

maximum fitness, but exhibits a considerable amount of fitness fluctuations. Further 

increase in the interaction strength (k > 30) suppresses fluctuations in the fitness, i.e., a 

population has evolved in which virtually all the networks are able to detect every single 

input signal. For all parameter regimes I have observed that the evolutionary process 

approaches a steady state after less than 30 generations (Figure 2.2) (data published 23). 

 

 

 

 

Figure 2. 2Evolution of SNs by mutating kinetic parameters. The mean fitness of fitness (Fnorm) during the evolution of SNs 
for three different regimes of maximal interaction strengths: weak (k < 10), moderate (k < 30), and strong (k > 30) 

interactions (Number of generations: 200, Number of SNs: 200, Threshold level: 
𝟏

𝟏𝟎

th
 of the initial concentration level of 

protein). 
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2.2 Strong interactions promote signal strength-independent and robust activation 

patterns 

In order to understand how the evolved networks manage the task of detecting signals, it is 

important to analyze the dynamic behavior of the networks over the evolution period. Due 

to the random generation of the initial kinetic parameters, the activation patterns of the 

nodes of the networks are different in each starting population. In analogy to the fitness 

function, I have defined a protein to be strongly active when its relative fraction in the active 

state passes a given threshold. Any other non-zero value defines the node as weakly active. I 

observe that the output node initially passes the signaling threshold only for the stronger 

signals while during the course of evolution the networks detect more and more signals 

(Figure 2.3). Depending on the strength of interactions between the proteins and their 

complexes, most successfully evolved networks show a similar activation pattern with little 

change during the following generations. 

When the networks evolve and kinetic parameters are allowed to mutate within the range of 

1 to 10 then the activation pattern is weak even with respect to strong input signals. Also the 

initial variable activation pattern remains throughout the entire evolution period (marked as 

Sys III in Figure 2.3). Hence, weak interactions do not produce signaling strength-

independent activation patterns. From this observation I conclude that the kinetics of the 

output nodes of the evolved networks are not robust when proteins interact weakly. The 

same topology, however, can detect signals when the interaction strength is increased. 

Evolution of networks with kinetic parameter values in the range of 1 to 30 show strong 

activation and also display a similar activation pattern throughout the SN population after 

about 50 generations. If networks are evolved permitting even higher kinetic parameter 

values (k > 30) then the networks quickly adapt their dynamics to strong and robust 

activation patterns. The output node of each of the successful network becomes activated 

soon after detecting the signal and shows almost equal response strength and similar 

activation pattern irrespective of the input signal strength (marked as Sys II and I inFigure 

2.3) (data published 23). 
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Figure 2. 3Kinetics of the evolved networks. Shown are the networks with the highest fitness score from one of the 
simulation runs. g1, g50, and g150 denote the generation 1, 50, and 150, respectively. The six solid lines show the kinetics 
of activation of the output node in response to six different input signal strengths (strength increases with signal index). 
Signals are provided at time t~150. Sys III, weak interactions (k<10). Sys II, moderate interactions (k<30). Sys I, strong 
interactions (k >30). 
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In these simulations, I observe that about 50 generations are sufficient to achieve a 

stationary distribution of activation patterns all of which show strong activation provided the 

interaction strength is sufficiently high (Figure 2.3). Yet, an investigation of the mean kinetic 

parameter shows that thereis a drift towards stronger interactions in the following 

generations (Figure 2.4). It takes as long as 150 generations to achieve a stationary 

population for the regime in which the strongest interactions are permitted (Figure 2.4). A 

detailed investigation of the parameter distribution of the final generation shows that there 

is no preferred pattern of kinetic parameters (Figures 2.5 and 2.6). In a brief phase around 

the time when the population reaches maximal fitness the population is dominated by the 

networks having rather similar kinetic parameters. Subsequent generations then diversify 

again resulting in a wide distribution of kinetic parameters used by the networks. This 

suggests that none of the interactions is critical in the sense that it is subject to a strong 

selection pressure. Moreover, the same topology can solve the task using very different 

parameter setups which appear to form a connected set in the parameter space given the 

chosen fitness function. However, a further increase in the interaction strength does not 

provide a selective advantage as it has only minimal influence on the activation pattern of 

the network (data published 23).  
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Figure 2. 4Mean kinetic parameter values of networks during evolution. The numeric values for all kinetic parameters in the 
SN are averaged omitting the formal difference of first-order and second-order reactions (see Methods). 
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Figure 2. 5Kinetic parameter distribution of the initial networks (in 1
st

 generation). The numeric values for all kinetic 
parameters in the SN are averaged omitting the formal difference of first-order and second-order reactions (see Methods). 
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Figure 2. 6Kinetic parameter distribution in the fully evolved networks (in 200
th

 generation). The numeric values for all 
kinetic parameters in the SN are averaged omitting the formal difference of first-order and second-order reactions (see 
Methods). 
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2.3 Difference in the concentration of the signaling molecules lead to transient 

activation 

To investigate the modulation of cellular response from adapted to non-adapted and vice-

versa, I have evolved the networks by applying the evolutionary algorithm (see Methods) 

under four different conditions. (i) Evolution of STNs due to variations in the kinetic 

parameters while the concentrations remain fixed. Different from previous section the 

concentration of the receptor, intermediate, and effector molecules are chosen to be 

different (Figure 2.7, SystemI). (ii) Evolution of STNs due to variations in the concentration of 

the receptor molecules and kinetic parameters (Figure 2.8, System II). (iii) Evolution of STNs 

due to variations in the concentration of the intermediate signaling molecules and kinetic 

parameters (Figure 2.9, System III). (iv) And evolution of STNs when the concentration of the 

effector molecules and kinetic parameters is varied (Figure 2.10, System IV ). Each system of 

System I to IV has three different subsystems subsystem a (interaction strength <10), b 

(interaction strength <30), and c (interaction strength <100). The evolution with these four 

different conditions are investigated independently and compared using replicates with 

identical parameter settings but different seeds for the pseudo-random number generator. 

Then the fitness (Fnorm) of the networks in each generation is determined (Figure 2.7A, 2.8A, 

2.9A, and 2.10A). The fitness shown here represents the mean fitness values of the fitness 

(Fnorm) in the respective generations. Only the successfully evolved networks were allowed to 

enter next generation. The different sets of concentration for System I have been defined in 

the method section. 

I have compared the effect of strong and weak interactions (System I) as well as the 

consequences of changes in the interaction strengths and concentrations of the signaling 

molecules during the evolutionary period (System II, III, and IV ). In System Ia, when the 

interaction strength remains below a certain threshold (k <10 in our model setting) the 

networks are unable to reach maximum fitness (Figure 2.7A). It means the evolved networks 

do not detect every input signal (Figure 2.7B). Further increase in the interaction strength (k 

<100) leads the fitness to the maximum (Figure 2.7A), i.e., a population has evolved in which 

virtually all the networks are able to detect every single input signal (System Ic) (Figure 2.7B). 

These results demonstrate, that the conclusions made previously with respect to the role of 

the kinetic parameter strength vs. fitness also hold for different concentrations of the 

molecules. 
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In System IIa and IIIa, when the interaction strength remains below a certain threshold (k 

<10 in our model setting) the networks are unable to reach maximum fitness and at the 

same time the fitness curve shows significant fluctuation (Figure 2.8A and Figure 2.9A). 

Based on this evolution pattern, I conclude that the evolved networks do not detect every 

input signal (Figures 2.8B and 2.9B). Further increase in the interaction strength (k <100) 

leads the fitness to the maximum and the fitness shows rapid fluctuation even at stronger 

interactions (Figures 2.8Aand2.9A), i.e., a population has evolved in which virtually all the 

networks are able to detect every single input signal (System IIb, IIc, IIIb, and IIIc) (Figures 

2.8B and 2.9B). 

The evolution pattern of STNs in System IV where the mutation in the concentration of the 

effector molecules in addition to kinetics parameters has been allowed (Figure 2.10A) 

appears similar to the evolution pattern of the STNs in System I for all the three kinetic 

parameter regimes (Figure 2.7A). While the kinetics of the evolved networks (Figure 2.10B) 

are different in System IV than the kinetics of the evolved networks in System I (Figure 2.7B). 

In system IV, there are significant number of the evolved networks with sustained response 

while in system I, most of the evolved networks show transient response with few 

exceptions. 

I have run the simulations for STN evolution at constant concentration and with the 

possibility of variation in the interactions strengths in each generation for three different 

sets of concentrations of signaling molecules. (A) Simulation with the concentration of the 

receptor molecule set to 10, intermediate molecule set to 5, and effector molecule set to 1 

(System AI). (B) Simulation with the concentrations of the three molecules set to 5, 10, and 1 

(System BI). (C) The concentrations of the three molecules set to 1, 5, and 10 (System CI). 

Each simulation was performed for three different regimes of interaction strength as 

mentioned in the previous section. I analyzed kinetics of the evolved networks in System AI, 

BI, and CI (concentrations are fixed but not equal) and observed that the output node shows 

a transient response in all these systems for all the three different interaction strength 

regimes (Figure 2.7B). However, it appears that the response-type becomes signal strength 

dependent over the evolutionary period as low input signal responses develop sustained 

behavior (Figure 2.7B, rightmost panels). For convenience I show only the result of System 

AI. This result appears completely different from our previously published result (where all 

types of signaling molecules have an identical and fixed concentration) where the output 
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response is always sustained. From this observation, I conclude that the difference in the 

concentration of the signaling molecules are responsible for producing the transient cellular 

response. Note that the transient response in the STNs is not due to degradation of 

molecules (which is impossible in our STN) or explicit/manual introduction of negative 

feedbacks(manuscript submitted). 

 

 

 

Figure 2. 7 Evolution of STNs by mutating kinetic parameters. The fitness (Fnorm) during the evolution of STNs for three 
different regimes of maximal interaction strengths: weak (k <10), moderate (k <30), and strong (k <100) interactions 
(Number of generations: 200, Number of STNs: 200, Threshold level: 1/10

th
of the initial concentration of protein). For all 

the systems, six different strength input signal were used which are 10
-7

, 10
-5

, 10
-3

, 0.1, 10, and 100. The concentration for 
the receptor, mediator, and effector molecules are 10, 5, and 1, respectively. (A) Evolution of STNs and (B) kinetics of the 
evolved STNs for three different kinetic parameter regimes in generation 1, 50, and 200. g1, g50, and g200 stand for 
generation 1, 50, and 200, respectively. The fitness shown here represents the mean fitness values of the fitness (Fnorm) in 
the respective generations. 
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2.4 Effect of variation in the concentration of the signaling molecules on the kinetics of 

the STN response 

To reveal more details about the effect of concentration variations in the receptor, 

intermediate, and effector molecules I have analyzed the kinetics of the systems II (variation 

in the concentration of receptor molecule), III (variation in the concentration of intermediate 

molecule), and IV (variation in the concentration of effector molecule). I found that in these 

three systems too, fluctuations in the concentration of SMs also lead to transient response 

for all the three regimes of kinetic parameters (Figure 2.8B, 2.9B, and 2.10B). The difference 

between the kinetics of the evolved networks of system I with the kinetics of the evolved 

networks of the other three systems is that in system I, most of the evolved networks show 

transient response while in other three systems (II, III, and IV) there are considerable 

number of the networks with sustained response. During the evolution (in generations 50 to 

150) such evolution pattern of the kinetics in the evolved networks continues while by the 

end of evolutionary time i.e., in 200thgenerations most of the evolved networks are with 

sustained responses which is prominent in particular for systems with strong interactions 

(Figure 2.8B, Figure 2.9B, and Figure 2.10B). 

In our previous section (section 2.2), I have already shown that in the presence of equal and 

fixed concentration, the networks do not show any kind of transient behavior when the 

interaction strength varies during the evolution. In contrast in systems I (where the 

concentration is fixed but not equal and the kinetic parameters change during evolution), 

after 10 generations, I observed a transient activation pattern (Figure 2.7B). From these 

observations I conclude that the strength of input signals and the protein-protein interaction 

strengths do not play relevant role, neither together nor independently, in controlling the 

transient nature of the final response. Yet stronger input signals and stronger interaction 

strengths robust and sustained activation pattern. The factor left for inducing the transient 

response is the variation in the concentration of the signaling molecules or in other words 

the difference in the relative concentration of receptor, intermediate, and effector 

molecules(manuscript submitted). 
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Figure 2. 8Evolution of STNs by mutating kinetic parameters and the concentration of the receptor molecule A1.The fitness 
(Fnorm) during the evolution of STNs for three different regimes of maximal interaction strengths: weak (k <10), moderate (k 
<30), and strong (k >30) interactions (Number of generations: 200, Number of STNs: 200, Threshold level: 1/10

th
of the initial 

concentration of protein). For all the systems, 6 different strength input signal were used which are 10
-7

, 10
-5

, 10
-3

, 0.1, 10, 
and 100.The fitness shown here represents the mean fitness values of the fitness (Fnorm) in the respective generations. 

 

 

 

 

 

 

Figure 2. 9 Evolution of STNs by mutating kinetic parameters and the concentration of the intermediate signaling molecule 
A2 (A) Evolution of STNs and (B) kinetics of the evolved STNs for three different kinetic parameter regimes in generation 1, 
50, and 200.The fitness shown here represents the mean fitness values of the fitness (Fnorm) in the respective generations. 
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Figure 2. 10 Evolution of STNs by mutating kinetic parameters and the concentration of the effector molecule A3 (A) 
Evolution of STNs and (B) kinetics of the evolved STNs for three different kinetic parameter regimes in generation 1, 50, and 
200.The fitness shown here represents the mean fitness values of the fitness (Fnorm) in the respective generations. 

 

 

2.5 Experimental verification of the effect of variation in the concentration on the final 

cellular response 

To confirm theoretical findings (difference in the concentration of SMs as one of the possible 

factor for controling the transient response), Dr. Tina M. Schnöder used the pro-B cell line 

Ba/F3 stably transfected with the erythropoietin receptor(EpoR) and wildtype JAK2 tyrosine 

kinase. This cell line is completely dependent on the growth hormoneerythropoietin (EPO). 

Phosphorylation of several tyrosine residues of the cytoplasmic tail of the EpoRafter EPO 

stimulation leads to subsequent activation of intracellular signaling pathways including 

STAT5,MAPK, and PI3K/AKT 24. Ba/F3 cells were serum-starved for 4 hours and then re-

stimulated withdifferent EPO concentrations (0, 0.1, 0.5, 1, 2 U/ml) for various time points (5 

min, 10, min, 30 min). As read-out for EPO signaling I analyzed the phosphorylation status of 

MEK and ERK1/2 (Figure 2.11). InFigure 2.11, I have shown that the pERK2 (upper band 

pointed with blue arrow) is transient while pERK1expression is sustained(Figure2.11A). If I 

compare the total amount of the two ERK isoforms I observe that ERK2 isfar less abundant 

than ERK1. Hence, in accordance with my results the different total amount correlateswith a 
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different kinetics, i.e. transient vs. sustained. Of note, the upstream activator for both ERK 

isoforms,the kinase MEK, shows a sustained pattern of activation (Figure2.11B) and could be 

considered as the signalthat is continuously present as in our simulations. For a full formal 

comparison with my results it would berequired, to fully quantify all other molecules 

interacting with ERK as well as the demonstration that theyhave similar kinetic parameters 

towards both ERKs. These experimental observations are suggestive to theidea that lower 

total concentration of a signaling molecule favors transient response. This could be 

furthertested using other cells with dissimilar amounts of two closely related isoforms that 

are dependent on thesame upstream activator(s) (Figure 2.11). The quantification of the 

western blot results have been shown in Figure 2.12. 

 

 

 

Figure 2. 11 Western blot analysis in Ba/F3 JAK2-WT cell line. Ba/F3 cells were cultured in RPMI1640 medium (PAA) 
supplemented with 10% fetal bovine serum (PAA) and with 1 U/ml of human recombinant Erythropoietin (EPO) (Janssen-
Cilag) in a humid atmosphere of 5% CO2 at 37 °C. (A) pERK expression and (A) pMEK expression. 
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Figure 2. 12 Quantification of western blot analysis in Ba/F3 JAK2-WT cell line. This figure shows the quantification of the 
western blot analysis for the relation expression of (A) pErk1/2 and (B) pMek1/2. 
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2.6 Dose-response relationship of the evolved SNs 

I have also investigated the relationship between the input signals and the output response 

in the evolved STNs. For this purpose, I considered ten input signals of different ranges (from 

weak to strong) beyond the range of our six signals used for selection. STNs were evolved as 

described in the previous sections and the different generations were tested for their 

response to the extended range of signals. The activation patterns evolving when strong 

interactions are permitted appear independent of the input signal strength, a behavior also 

known for the MAPK cascade in certain systems. In the beginning of the evolutionary time 

period (i.e., generations), irrespective of the input signals, all the networks have cellular 

response below the threshold level. After a few generations, the evolved STNs at very weak 

input signals, have their responses below the threshold level while for all other input signals, 

all the networks show strong activation even at comparatively weak input signal strengths 

(Figure 2.13). This means, the networks require a signal to become active confirming that the 

evolution did not generate self-activating networks, which would not be excluded by our 

choice of the fitness function. Thus, the strength of the input signal does not affect the peak 

response the SN. Therefore, it appears that the generic behavior of a SN is switch-like when 

facing the task to 'somehow' detect a signal. For all the systems (Figure 2.13), ten different 

strength input signals were used which are 10-9, 10-7, 10-5, 10-3, 10-2, 0.1, 1, 10, 50, and 

100(manuscript submitted). 
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Figure 2. 13 Dose-response relationship of the evolved STNs for moderate interaction strength for all the systems The graph 
shows the maximum response of the output node of the best network versus the input signal in the respective generations 
1, 100, and 200. For all the systems, 10 different strength input signal were used which are 10

-9
, 10

-7
, 10
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, 10
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, 0.1, 1, 

10, 50, and 100. 
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2.7 Effect of removal of input signals on the kinetics of the evolved SNs 

To further investigate the behavior of the output node, I simulated pulse activation of the 

networks: After initial equilibration of the network the signal is present for a fixed amount of 

time before being removed again. Before the pulse is given, all the networks remain in their 

basal inactive state. Evolved networks typically respond with a switch-like response to the 

signal pulse (Figure 2.14). Some of the networks will show an even enhanced response after 

the signal has been removed (Figure 2.14), while the majority revert back to the initial state. 

Since, our fitness function does not generate selection pressure to either of the network 

responses after removing the signal, both response types are valid. It is interesting to 

observe the occurrence of a pulse-detector, which requires a memory of previous signals, 

e.g. by generating irreversibility in the system. With a fitness-function sensitive to the phase 

following the removal of the signal, a trigger or an irreversible switch could be easily 

selected from the networks generated in our simulations (data published 23). 
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Figure 2. 14 Effect of the removal of the input signal on the kinetics of evolved networks. Shown are the networks with the 
highest fitness score from one representative simulation run. g1, g50, and g150 denote the generation 1, 50, and 150, 
respectively. The six solid lines show the kinetics of activation of the output node in response to six different input signal 
strengths (strength increases with signal index). Sys I, weak interactions (k<10). Sys II, moderate interactions (k<30). Sys III, 
strong interactions (k>30). 
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2.8 The role of partially active nodes 

After studying the kinetics of the pre-defined output node (a fully active node) I also studied 

the kinetics of the partially active proteins. I observed that single phosphorylated proteins 

show predominantly a transient response and some of the networks shows partially adapted 

response (Figure 2.15). There is a clear trend that weaker interaction permit stronger 

transient activation of the monophosphorylated forms (Sys I, II, & III in Figure 2.15) (data 

published 23).  

 

Figure 2. 15 Role of the partially active nodes. Shown is the kinetics of the node (A2p) from the networks with the highest 
fitness score from one of the simulation runs. g1, g50, and g150 denote the generation 1, 50, and 150, respectively. The six 
solid lines show the kinetics of activation of the output node in response to six different input signal strengths (strength 
increases with signal index). Sys I, weak interactions (k<10). Sys II, moderate interactions (k<30). Sys III, strong interactions 
(k>30). 
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2.9 Evolution of SNs by adding new proteins 

In thenext step, randomly generated SNs were evolved by adding new proteins instead of 

altering only kinetic parameters. The new proteins are randomly interacting with potentially 

all proteins in all states (but not complexes) with also randomly generated kinetic 

parameters. Hence, all kinetic parameters are fixed as soon as the proteins are added. All 

other parts of the evolutionary algorithm remain the same. The addition of new nodes 

displays virtually the same effects on the evolution of the networks as well as the dynamics 

of the response which I observed due to the mutation of kinetic parameters. After a few 

generations, all evolving networks show similar and strong activation patterns provided the 

new interactions arising with the newly added proteins are of sufficient strength (data not 

shown). Also the distribution of the kinetic parameters of the new nodes shows no trends 

towards a particular pattern (data published 23). 
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2.10 Cross-talk of the signal transduction pathways 

For investigating the roles of the possible cross-talk (between different signaling pathways) 

on the cellular response, I have created two signal transduction pathways and randomly 

connected the one molecule of a pathway with another molecule of the second pathway. 

For example in cross-talk (Figure 2.16 e and f), one pathwaypositively/negativelyinteracts 

with the other pathway. After connecting two pathways, I have applied the evolutionary 

approach in the similar way as applied for investigating the roles of the kinetic parameters 

and the concentration of the SMs (mentioned in beginning of result section). Then I have 

analyzed the kinetics of the output response (response 1 for pathway 1 and response 2 for 

pathway 2). 

In the past, many research groups have focused on the signal transduction pathways and 

investigated different factors which may play critical roles in controling the cellular response 

nature and finally the cell-fate (or cell-fate decision)25-28. The factors which have been 

investigated so far are the rate of reactions13,23, network topology13, concentration of the 

SM29,30, feed forward loops (FFLs), feedback loops (FBLs) 25,26, or the cross-talk of the signal 

transduction pathways17,18,31-36.  

In biological systems, mainly four different types of cross-talks ((i) concomitant signaling, (ii) 

collaborative signaling, (iii) direct signaling,  and (iv) amplification of signaling), have been 

reported17. Unlike to these previous works, I have started the investigation of a minimal 

cascade to the complex signaling regulation by adding all the possible interactions in one 

model. 

Some of the FBLs26, FFLs37, and cross-talks17,18,31,38-40 have been in investigated in biological 

signaling. In addition to these previously studied possible regulations, I have included more 

possible FFLs (both positive and negative), FBLs (both positive and negative), the 

combination of FFLs and FBLs, and increased more cross-talk possibilities (both the cross-

interactions between the cascades i.e., inhibition and activation) between the linear 

cascades in one model and investigated their impact in controling the cellular response 

nature. From our results, I conclude that FBL and cross-talk plays critical role in determining 

transient cellular response. This model will help to understand the cellular response nature, 

to further reveal the new interactions based on the desired output response, and to perturb 

the output response by targeting the specific SM. 
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Figure 2. 16 Signaling cascade and its regulations. S, R, ISM, and TP stand for input signal, receptor, intracellular signaling 
molecule, and target protein, respectively. (a) A typical linear signaling cascade where R after detecting input signal S 
becomes active (goes to post-translational modification (e.g., phosphorylated)), active R activates ISM (single or double 
phosphorylation) and finally active ISM activates TP (single or double phosphorylation), (b) its simplified form, and (c) and 
(d) represents possible feed forward and feedback regulation (both positive (arrow) and negative regulation (blocked line)). 
(e) and (f) represent the cross-talks (arrows – activation and lines with blocked end -- inhibition) between signal 
transduction pathways (cascades). (g) cross-talks known in biological signal transduction 

17
. 
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As mentioned in the previous section, some of the FBLs, FFLs, and cross-talks have been in 

investigated in biological signaling. In addition to these previously studied possible 

regulations, I have included more possible FFLs (both positive and negative), FBLs (both 

positive and negative), the combination of FFLs and FBLs, and increased more cross-talk 

possibilities (both the cross-interactions between the cascades i.e., inhibition and activation) 

between the linear cascades in one model (Figure 2.16 a, b, c, d, e, f, and g) and investigated 

their impact in controling the cellular response nature. The major difference between the 

previous works and our work is the investigation of the combinations of different kinds of 

FFLs and FBLs and more cross-interactions between the signaling cascades in the presence 

and absence of FFLs and FBLs than the four positive cross-talks (Figure 2.16 g) reported by 

Ivaska J and Heino J 17,18,31,32,35,41-46. In this model, the complex signaling networks have been 

simplified and represented as receptor level (R), intracellular signaling level (ISM), and target 

level (TP). So that the effect of different kinds of interactions at different levels on the final 

cellular response nature can be studied. 

A linear cascade always produces sustained cellular response 

Here, I have investigated the kinetics of the signaling molecules for linear cascade (a cascade 

without feed forward loop, feedback loop, and cross-talk between a pair of linear cascades) 

and linear cascades with feed forward loop and feedback loop (Figure 2.16 a, b, c, and d).  

For this purpose, I have generated linear cascades with different sets of kinetic parameters 

(𝑘𝑝𝑎𝑟 ). In case of signaling networks, the unit of 𝑘𝑝𝑎𝑟  can be second-1 or minute-147. It is 

known that in general, the signal transduction process is faster than the other regulatory 

processes such as transcription networks and metabolic networks48. Throughout our work, I 

have written time instead of second or minute. Initially, 𝑘𝑝𝑎𝑟  were randomly generated 

between 0.001 to 0.1. So, all the cascades have response kinetics close to zero (Figure 

2.17a). Then, I have applied an evolutionary algorithm (EA)23,49 to evolve the cascades. 

During the evolutionary period, I allowed the change in 𝑘𝑝𝑎𝑟  and the concentration level of 

SMs. In this period, the signaling cascade adapts the improved kinetic parameters to 

produce better response.  

After analyzing the kinetics of the evolved networks, I observe that in a linear signaling 

cascade (without any FFL/FBL), the change in the kinetic parameters or the concentration 
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does not produce any transient response (Figure 2.17 b, c, and d). Increase in the 

concentration (SMs) or the kinetic parameter values leads to improved sustained response 

(Figure 2b, c, and d).  

Addition of a positive FFL in a signaling cascade (Figure 2.16c) does not change the cascade 

response and it remains sustained (Figure 2.17e, left) while the addition of a negative FFL 

disturbs the output response. The addition of a negative FFL produces mixed response either 

as transient, or sustained, or complete blocking of the response (Figure 2.17e, right) which 

means the activation pattern is not robust. Addition of FBL (positive or negative) leads to 

transient response (Figure 2.17f). Presence of one positive FFL and a positive FBL leads to 

sustained response (Figure 2.17g, left), presence of one negative FFL and a negative FBL and 

one negative FFL and a positive FBL leads to transient response (Figure 2.17 g and h), and 

presence of one positive FFL and a negative FBL does not change the sustained response to 

transient nature (Figure 2.17i). These FFL (positive or negative) and FBL (positive or negative) 

are from R to TP or TP to R (Figure 1d). When I apply the FBL (positive or negative) and/or 

FFL (positive or negative) from R to ISM or ISM to R in a cascade, I always observe sustained 

output response (Figure 2.17j). 



49 
 

 

Figure 2. 17 Response kinetics (normalized value) of the signaling cascade. (a) Initially, kinetics of all the signaling cascade 
with or without additional regulation (e.g., FFL, FBL, or cross-talks) stays close to zero (𝒌𝒑𝒂𝒓 are generated randomly 

between 0.001 and 0.1). (b) kinetics of the fully evolved signaling cascade (the concentration of R, ISM, and TP are fixed and 
equal i.e., 10μl, during the evolutionary period the signaling cascades were allowed to adapt new 𝒌𝒑𝒂𝒓 (between 0.1 and 

100) values to improve the kinetic response). (c) kinetics of the fully evolved signaling cascade (the concentration of R, ISM, 
and TP are fixed and unequal i.e., 10 μl, 5 μl, and 1 μl, respectively, during the evolutionary period the signaling cascades 
were allowed to adapt new 𝒌𝒑𝒂𝒓 (between 0.1 and 100) values to improve the kinetic response). (d) kinetics of the fully 

evolved signaling cascade (initially the concentration of R, ISM, and TP are fixed and equal i.e., 10 μl, during the 
evolutionary period the signaling cascades were allowed to adapt new 𝒌𝒑𝒂𝒓 (between 0.1 and 100) values and change in the 

concentration of R, ISM, and TP to improve the kinetic response). (e) kinetics of the fully evolved signaling cascade in the 
presence of FFL (the concentration of R, ISM, and TP are fixed and unequal i.e., 10 μl, 5 μl, and 1 μl, respectively, during the 
evolutionary period the signaling cascades were allowed to adapt new 𝒌𝒑𝒂𝒓 (between 0.1 and 100) values to improve the 

kinetic response). (f) kinetics of the fully evolved signaling cascade in the presence of FBL, (g) FFL and FBL (both positive and 
negative), (h) negative FFL and FBL, (i) FFL and negative FBL, and (j) FFL and negative FBL from ISM to R (the concentration 
of R, ISM, and TP are fixed and unequal i.e., 10 μl, 5 μl, and 1 μl, respectively, during the evolutionary period the signaling 
cascades were allowed to adapt new 𝒌𝒑𝒂𝒓 (between 0.1 and 100) values to improve the kinetic response). 
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Concomitant inhibitory between cascades dominantly produce transient response 

After analyzing the kinetics of signaling cascade response, I investigated the change in the 

kinetics of the TP of the signaling cascade in the presence of different kinds of cross-talks 

known from biological system (reference). I have investigated their inhibitory forms (in 

biological cross-talks the links between the cascades are activation) also for all the four 

cross-talks. I found that concomitant signaling (activation link between two cascade) leads to 

sustained response (Figure 2.18a) and its inhibitory form produces transient response 

(Figure 3b). While all the three other kinds of cross-talks (collaborative, direct, and signal 

amplification) between the cascades help in producing stable sustained response (Figure 

2.18 c, d, e, f, g, and h) irrespective the nature (activation or inhibition) of the links between 

the cascade. In case of direct signaling, inhibitory interaction between the two cascades 

leads to only one output response in cascade 1 and complete blockage of the output 

response of cascade 2 (Figure 2.18f) because here input signal (S2) is blocked.  
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Figure 2. 18Kinetics of output response in case of cross-talk between the signaling cascades. (a) activation concomitant 
signaling, (b) inhibitory concomitant signaling, (c) activation type collaborative signaling, (d) inhibition type collaborative 
signaling, (e) direct signaling – activation, (f) direct signaling – inhibition, (g) amplification of signaling – activation, and (h) 
amplification of signaling – inhibition. In figure c, d, e, f, g, and h, left side figure represents the kinetics of the output 
response of cascade 1 and right side figure represents the kinetics of out response of cascade 2. 
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Increase in the number of inhibitory links leads to transient response or complete blockage 

of the output response 

Finally, I have investigated the effect of all the possible interactions (FFL, FBL, and cross-

talks) in a single model. Here, I have two linear cascades in parallel without any cross-

interaction. I have generated 200 sets of parallel cascades and evolved them in parallel until 

100 generations by allowing the rate of reactions (𝑘𝑝𝑎𝑟 ) to change during evolutionary 

period to adapt new 𝑘𝑝𝑎𝑟  in order to produce improved kinetic response. After 100 

generations, all the new interactions were added one-by-one in a linear signaling cascade 

(Figure 2.16a) in each generation. In this work, first I have started addition of negative 

interactions between two cascades, then FFL and FBL, and finally the positive interactions 

between cascades.  

I observe that all the minimal cascades produce sustained output response for all the six 

different (strength) input signals (Figure 2.19 a and b). In contrast, addition of new inhibitory 

interactions between the two cascades, FFL, and FBL leads to transient response which can 

be seen between generation 100 and 165 in Figure 2.19 a and b. The response nature has 

been shown in Figure 2.19c (for a linear cascade – where both the cascades produce 

sustained output response before generation 100 (left – pathway 1 and right – pathway 2)). 

Since, in the beginning I add the interactions through which pathway 2 inhibits pathway 1 so 

the output response of pathway 1 is transient and pathway 2 remains sustained (Figure 

2.19d). When I add the interactions (inhibitory) between both the pathways then both the 

pathways produce transient response or completely block the output response of both the 

pathways (Figure 2.19e). Addition of positive interactions between the cascades lead to the 

sustained output response which can be seen in Figure 2.19 a and b after generation 165 

and the kinetics of the output appears similar to Figure 2.19c. As far as the fitness of the 

cascades is concerned, as long as the cascades are free from additional interactions, the 

fitness remain stable and stays at maximum (Figure 2.19f (left)) because the kinetics of all 

the cascades for all the input signals easily crosses the threshold level and remain sustained. 

While addition of new inhibitory interactions between the cascades and the FFL and FBL 

shows fluctuation in the fitness because the output response becomes either transient or 

does not crosses the threshold. I further investigated the change in the 𝑘𝑝𝑎𝑟 . In linear 

cascade which has comparatively less number of reactions so the mean of the 𝑘𝑝𝑎𝑟  is 
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comparatively lower than the cascade with new interactions and the addition of new 

interactions in each generation leads to the gradual increase in the 𝑘𝑝𝑎𝑟  (Figure 2.19f 

(right)). So, I conclude that the irrespective the response nature (sustained or transient) the 

𝑘𝑝𝑎𝑟  increases but it does not affect the cellular response nature.  

 

 

 

Figure 2. 19Change in response kinetics of the signaling cascade from simple cascade (without FFL, FBL, and cross-talk) to 
complex cascade (with FFL, FBL, and cross-talks). (a) Total number signaling cascades with transient and sustained response 
among the best 25 signaling cascades. (b) As in our model for each cascade I have six input signals (of different strength) so 
I have six output response. Here, I show total number of response (transient and/or sustained) in each cascade. (c), (d), and 
(e) show the kinetics of the output response (cascade 1(left side figure) and cascade 2 (right side figure)) in generation 99, 
105, and 125, respectively. (f) Mean fitness (left side) and the mean of 𝒌𝒑𝒂𝒓 (right side) of cascades (best cascades). 
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Chapter 3 DISCUSSION 

In my thesis work, I have investigated the roles of input signal and its strengths, kinetic 

parameters, addition of the new nodes, concentration of the SMs, and the cross-talk of the 

signaling pathways on the cellular response.  

Inthe previously published work, four different possible input-output relations for signal 

transduction have been shown50. The first one is the classical case which is single input and 

single output, the second possible relation is signal concatenation (multiple inputs and single 

output), the third relation is signal pleiotropy (single input and multiple outputs), and last 

one is the complex signaling event which has multiple inputs and multiple outputs. Out of all 

these four possible signaling events my model is designed to represent the classical case 

which is frequent in biological signaling processes. Although not the scope of my present 

study,the model can also be modified to understand the remaining three types of signaling 

input-output relations in the future. 

I haveinvestigated the evolution of STNs under the premise that the primary task of signal 

transduction is to detect a signal without pre-determining a desired kinetics. Any form of the 

protein can - depending on its interaction partner - play the role of a kinase or phosphatase. 

Typically, proteins do not fulfill both functions, however, due to their phosphorylation state 

may recruit proteins that perform this function but are not explicitly modeled in my 

approach. During the evolutionary process,the mutations were allowed either in the kinetic 

parameters or the topology of the network or in the concentration of the SMs. The STN 

population achieves maximum fitness only when protein-protein interactions are sufficiently 

strong.  

When the SNs were evolved by allowing mutation in kinetic parameters only and the 

concentration of the SMs were fixed and equal, then the generic solution is a sustained 

activity of the output node as long as the signal is present. Weak interaction strength results 

in networks that respond differently and only to some of the signals. In a cellular system 

weak interactions could therefore probably not provide reliable cellular decisions. For the 

input sensor - response relationship, I conclude that neither the starting topology nor the set 

of kinetic parameter values is constraining the evolution of the networks (provided 

sufficiently strong interactions). Therefore, short circuits coupling the receptor directly to 

the output node by two reactions are possible but certainly not the only solutions. In 
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particular, the final generation has a high variability in the kinetic parameters suggesting that 

no dominant subnetwork (network motif) of interactions exists. 

The activation pattern of the evolved networks in a stationary population are robust against 

strong interactions and in most cases sustained response, suggesting that this type of 

response is the generic cellular behavior when the presence of a signal is sufficient 

information for a cell51.I observe that the response kinetics does not alter after about 30–50 

generations but the kinetic parameters still change. This observation lead to 

theinterpretation in the following way: When the first networks with enhanced fitness 

appear they give rise to multiple clones that have largely similar kinetic parameters. This is 

similar to the bottleneck effect, i.e. many networks do not generate offsprings due to their 

low fitness and only similar networks pass on to the next generation. Following this phase 

the networks start to diversify again and a large range of the allowed kinetic parameter 

regime is explored. The diversification also indicates that there is a large number of solutions 

in the parameter space to ‘solve’ the fitness function. These solutions appear to be 

connected in a large set as the different kinetic parameters can be explored by the STNs 

without losing their fitness. Alternatively, one can view this situation as overfitting as the 

quite large number of parameters allows the networks to ‘solve’ the fitness function in many 

different ways. 

In addition to above mentioned simulation condition (where the SNs were evolved by 

allowing mutation in kinetic parameters only and the concentration of the SMs were fixed 

and equal), I have evolved the SNs for four different conditions. In these simulations, 

mutations were allowed during the evolutionary process in the kinetic parameters and also 

in the concentration of the receptor, intermediate, and the effector molecules. The 

simulations, where the mutations were allowed only in kinetic parameters and the 

concentration of the receptor, intermediate, and effector molecules are fixed but unequal, 

has a transient output activity as generic solution. Irrespective of the constraints on the 

kinetic parameter almost all the networks are able to detect the signal and respond in a 

transient manner. 

The evolved networks in a stationary population show stable activation pattern against 

strong interactions and the transient response in System I (Figure 2.7Bin section 2.3), 

suggesting that this type of response is the generic cellular behavior when the presence of a 

signal is sufficient information for a cell51. I observe that in System I the response kinetics 
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does not alter after about 30 to 50 generations and maintains transient nature but the 

kinetic parameters still change as shown in section 2.2 (Figure 2.4). While in case of change 

in the concentration (System II, III, and IV ), a significant number of the evolved STNs show 

transient response within 100 generations. Afterwards the response kinetics fluctuate too 

much and a large number of STNs change their transient behavior to sustained behavior 

while the kinetic parameters and concentration still change. 

I compared the evolved SNs for the system where the mutations were allowed in kinetic 

parameters only and the concentration of the SMs were fixed but equal with the evolved 

SNs for the system where the mutations were allowed in kinetic parameters only and the 

concentration of the SMs were fixed but unequal. For the former system, I have shown that 

the strength of output response is directly proportional to the kinetic parameter and the 

nature of response is always sustained. I have also shown that the final response of the 

evolved networks becomes stronger and stronger until they reach to the maximum and 

almost all the networks show sustained response(Figure 2.3). In the later system (where the 

mutations were allowed only in kinetic parameters and the concentration of SMs were fixed 

and unequal), in all the evolved networks I found that irrespective of the kinetic parameters 

the nature of final response is always transient (Figure 2.7B). 

 

From this comparative analysis I conclude that the difference in the concentration of the 

receptor, intermediate, and effector molecules is responsible for this transient response 

(Figures2.7B, 2.8B, 2.9B, and 2.10B). In another way I can say that irrespective of the protein-

protein kinetic parameters, difference between the concentration of signaling molecules 

(receptor, intermediate, and effector) acts as one of the possible factors for controling the 

transient response when the mere detection of the presence of a signal is relevant (System I, 

II, III, and IV ). 

Based on these results it appears that the difference in the concentration of the SMs as one 

of the possible factor leading output response to the transient behavior. Since the kinetic 

parameter and input signal strengths do not have any direct impact on the nature of the 

final response but when I evolved the networks allowing the variations in the protein 

concentration during evolution then I found that there are majority of the evolved networks 

which show transient response. So I can say from these observations that the fluctuation in 

protein concentration definitely play some kind of roles in controlling the transient output 
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response. In addition, I have also shown the experimental results to validate my theoretical 

findings of the effect of concentration difference on the final cellular response. Where the 

results clearly show the transient response due to the variation in the concentration of the 

signaling molecules (Figure 2.10). 

The higher average fitness of networks with strong interactions is due to the ability to detect 

weak signals. This corresponds to situations such as bacterial chemotaxis and T-cell receptor 

signaling where cells are sensitive to detect very few ligands. In the simulated systems, I 

have three different simulating conditions. weak (k<10), moderate (k<30), and strong (k>30). 

Signaling networks are still functional with or moderate interactions. However, at weak 

interaction strengths the STNs will work but in case the input signal is also weak then STNs 

often fail to detect. When the interaction strength is moderate then the STNs function and 

can also respond to weak input signals. Another difference between the STNs working at 

moderate and strong interaction strength is that at strong interaction strength the STNs 

show a strong and quick output response in contrast to weak interactions where the kinetics 

is typically slow and weak.  

The rapid increase in fitness for the STNs suggests that any weakly interacting network that 

is capable of evoking at least some response to a signal, quickly evolves into a strongly 

interacting STN provided the selective pressure is present. This results in a high flexibility of 

cells to gain new signal transduction pathways when required and the critical invention is 

the proper receptor rather than a correct connection to the appropriate cellular response. 

Thus, a cell may retain a number of weak interactions among signaling proteins that do not 

interfere with primary signaling pathways, which can be converted should such a demand 

arise during evolution. As a consequence, a high number of weak unspecific interactions 

among proteins enables the cell to flexibly and quickly adapt to changing environments. 

Based on our results, I hypothesize that this is not a property that must be developed by a 

cell during evolution, but is inherent to weakly interacting protein-protein interaction 

networks. The diversification of kinetic parameters following the evolution of successful 

STNs in the regime of strong interactions also indicates that a large number of weak 

interactions do not harm the performance of the evolved signal--response relation. Thus, the 

STNs can reliably respond to the signal while at the same time retain a plethora of 

connections which may be used to ‘solve’ evolutionary demands that may occur in addition. 
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This effect is in agreement with the notion that robustness combined with a high evolvability 

is a favorable and likely outcome of evolution 52-54. 

I have also computed the signal-response relationship (peak response versus input signal) for 

all the four systems. For all these four different simulation conditions, the activation 

patterns in the evolved STNs when strong interactions are permitted appear independent of 

the input signal strength, a behavior also known for biological signaling systems. In the 

beginning of the evolutionary time period (i.e., generations), irrespective of the input signals, 

all the networks have cellular response below the threshold level. In the beginning of the 

evolutionary period, the STNs have too weak kinetic parameter to initiate the signaling 

reactions. After a few generations the STNs adapt new kinetic parameter to strong kinetic 

parameter. STNs at very weak input signals, have their responses below the threshold level 

(shown in Figure 2.13) while for all other input signals, all the networks show strong 

activation even at comparatively weak input signal strengths (Figure 2.13). 

As I have discussed in section 2.1 to 2.5 the model which evolves STNs with the variations in 

kinetic parameter and concentration of the signaling molecules of the STNs21,22. The kinetic 

parameters of all the signaling molecules are in general hard to access experimentally by the 

experimentalists. In the simulations, I see that the exact value of the kinetic parameter plays 

a minor role in controling the transient nature of the final output response. Unfortunately, 

the number of possible parameter sets to generate a certain behavior is large such that the 

topology alone is not likely to predict the function of the network reliably. However, it is not 

the only kinetic parameters and input signal which vary but also protein concentration affect 

the behavior of a STN 21,22 and protein concentrations bear the advantage of being 

experimentally quite easily accessible variables. Furthermore, stimulation of receptors 

virtually never occurs in isolation, the triggered receptors activate the downstream signaling 

molecules in order to transduce the response to the nucleus. The activated signaling 

molecules can also activate the nearby SMs which are the part of another signal 

transduction pathway. Therefore, the interaction of signal transduction pathways can 

become relevant 50,55,56. The questions of how does cross-talk affect the network’s behavior 

and how does it affect the evolution of the STN is worth pursuing using our approach by 

embedding a STN into the wider context of co-evolving signaling networks.  

To address the role of cross-talk of signal transduction pathways, I have investigated four 

different cross-talks and found that out of these four cross-talks (Figures 2.16, 2.17, 2.18, 
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and 2.19) only one of the cross-talk (a cross-talk where the fully active form of downstream 

SM A3pp of pathway 1 dephosphorylates the partially active downstream SM B3p of pathway 

2 to the inactive form B3shown in Figure 2.17 (called as cross-talk type 2)) has transient 

response for response 1 of pathway 1 while all other cross-talks produce sustained response. 

Based on the my current results related to cross-talk work, I can say that in addition to the 

difference in the concentration of the SM, few of the cross-talks may also play critical roles 

in controling the transient cellular response.  

From previous experimental works 30,57 some interesting facts about the effect of variation in 

the concentration of SMs are known. Here, they have investigated the role of change in the 

concentration of an individual molecule and not investigated in comparison to the other 

molecules involved in signaling. 

In the previous works17, it has been shown that in a biological system there are different 

kinds of cross-talks (see section 1.4 cross-talk) which may occur during signal transduction 

process from receptor level to the nucleus (which means the interaction between the 

pathways can take place at different level (i.e., at the receptor or intermediate or effector 

level)).  In my thesis work, I have set up a simplistic mathematical model which can 

theoretical investigate the effect of known cross-talks similar to the biological system and in 

the future, this model can be applied to understand the biological system. The advantage of 

our model is that it will not only help to understand the effect of the variation in the 

concentration of the receptor molecules but also help to understand the impact of the 

concentration of other signaling molecules (such as intermediate and effector molecules) 

involved in the signal transduction. These models can only be applied to those systems 

which are known to have such behavior, but often the exact behavior of the STNs is not 

known. Therefore, the creation of a fitness function that encodes the task that a cell solves 

under certain experimental conditions, may be more beneficial in determining possible and 

likely behavior of the underlying STNs. 

 

In cross-talk of signal transduction pathway study, I have investigated the change in the 

output response nature (sustained or transient) of the signaling cascade in the presence and 

absence of the FFL, FBL, and cross-talks between two cascades. The cascade which I have 

used here, is similar to the MAPK cascade58. Based our data, I propose that transient 

signaling responses result from FBL and/or negative cross-interactions between signaling 
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cascades. If the concentration of the TP is lower than the concentration of the R and ISM, 

and either FBL or negative cross-talks are present then all the cascade produce consistently 

transient output response. Irrespective of the concentration of the signaling molecules, FFL 

and all the positive interactions (cross-talks) between the cascades lead to stable and 

sustained output response.  

The evolved networks in a stationary population show stable activation pattern against the 

change in kinetic parametersfor both signaling cascades (until generation 100) and addition 

of the positive interactions between the signaling cascades (after generation 165 onwards) 

and the output response assustained response.This suggests that this type of response is the 

generic cellular behavior when the presence of a signal is sufficient information for a cell. 

While in the presence of inhibitory interactions between the signaling cascades and the 

cascade with FBL and the simultaneous presence of FBL and FFL, the kinetics of the output 

response is always transient (if the concentration of the TP is less than R, and ISM). The 

fitness of the cascades fluctuates significantly. This suggests the transient response as the 

generic solution. If the concentration of R, ISM, and TP is equal then the cascades with 

inhibitory cross-talks and the cascade with FBL or with combination of FFL and FBL also 

produces the transient response but not all the cascades (with the exceptions of few 

cascades having sustained response). 

From previous works17,25-27,59,60, some interesting facts about the effect of variation in the 

concentration of SMs, FBL, FFL, and cross-talk of signaling pathways are known. Here, they 

have investigated the role of change in the concentration of an individual molecule and not 

investigated in comparison to the other molecules involved in signaling. The FBL, FFL, or 

cross-talk of pathways have been investigated individually and not in combination of FFL and 

FBL or cross-talk. 

Most of the complex and/or common diseases such as cancer, diabetes, obesity, and asthma 

are caused by defects in multiple genes and pathways. So, it is not surprising that the current 

one-target-one-compound approach in drug discovery and development has failed to deliver 

as many efficacious medicines as expected in the post-genomic era38,61,62. In order to 

understand such complex diseases and find therapeutic solution, it appears to be promising 

point to understand the signal transduction process from a simple linear cascade to a 

complex regulatory mechanism (a linear cascade with different loops and the cross-
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interactions of the cascade) of signaling network.By applying this approach, I can selectively 

target the signaling molecules to get the desired output response and will help to target 

multiple signaling molecules. 

The advantage of our model is that it will not only help to understand the effect of the 

variation in the concentration of the receptor molecules but also help to understand the 

impact of the concentration of other signaling molecules (such as intermediate and effector 

molecules) involved in the signal transduction and will give an insight of the different 

additional regulations such as FFL, FBL, and cross-talk. These models can only be applied to 

those systems which are known to have such behavior, but often the exact behavior of the 

STNs is not known. Therefore, the creation of a fitness function that encodes the task that a 

cell solves under certain experimental conditions, may be more beneficial in determining 

possible and likely behavior of the underlying signaling cascades. 
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3.1 Future Perspectives 

As I have discussed that I have investigated the roles of the input signals, kinetic parameters, 

addition of new node (change in network topology), concentration of SMs, and four different 

cross-talks.Still there are many interesting points which can be done in the future by using 

the current approach and model. 

 

Here, I discuss three points as the future perspectives: 

 To implement cross-talk between the signal transduction pathways in biological 

system 

 To investigate the roles of domains and motifs of the SMs and the scaffold formed by 

the SMs during signal transduction 

 To investigate the signaling network motifs 

 

3.1.1 Protein domains and motifs concept in signaling 

In cell signaling, there is a huge number of multi-domain proteins known and these proteins 

play critical roles in signal transmission from receptor levels to the nucleus. These domains 

are of different nature like catalytic or regulatory (Figure 3.1). The signaling molecules also 

possess a set (pattern) of amino acid residues in particular pattern (for example: TCR chains 

contain ITAMs (immunoreceptor tyrosine-based activation motifs) as motifs with sequence 

of YXXL/I) known as motifs63.  

 

The domains typically contain >30 amino acid residues while motifs have < 10. The domains 

and motifs passes through different physical change (like phosphorylation) to 

activate/deactivate the signaling molecules for the respective cellular functions. It is also 

known that the different combinations of the domains (catalytic/interaction) and motifs 

together produce complex targeting and regulatory activity of the proteins 64-68. 

 

To introduce the importance of the motifs during signal transduction I took the example 

from previous studies. It is known that ITAMs are the essential part of the TCR/CD3 complex 

which are phosphorylated by Lck to trigger the downstream signal processing. Recently, it 

has also been shown that distinct TCR signaling pathways drive proliferation and cytokine 
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production in T cells63. In addition to ITAM motifs, TCR/CD3 complex also possess additional 

motifs such as BRS (basic residue-rich stretch) and PRR (proline-rich region). BRS motifs plays 

important roles in membrane association of TCR cytoplasmic chain with the 

plasmamembrane and modulate T cell signaling. The PRR motif has no role in TCR triggering 

but is considered to be involved in the regulation of TCR expression levels in thymus69.  

 

For a more detailed understanding of the role of the protein domains in signal transduction, 

I take an example of the architecture of the Ill characterized Src family kinase (SFK) protein 

which contains the proteins Src, Lck, Fyn, Hck, Lyn, Blk, Fgr, Yes, and Yrk found in many cell 

types. Each SFK  has four domains: the unique region, folloId by the SH3, SH2, and a kinase 

domain (SH1 domain). The unique region varies among the family members. For full activity, 

SFK members must need to be phosphorylated in the kinase domain at Tyrosine 416 

(autophosphorylation site in Src) or its homologs in the other members of the Src family, 

respectively70. 

 

 

Figure 3. 1 Domain structure of Src family kinase proteins. Unique region varies among the SFK members, The unique 
region is folloId by SH3, SH2, and kinase domain. 

 

 

 

 Possible aim for Protein motifs and the domains: 

In signal transduction, the signals are mediated by the networks of proteins. These 

signaling specialized proteins are made up of specific kind of substructures in the 

form of motifs and domains. As mentioned previously, these substructures play 

critical roles in modulating the signals. These domains and motifs also help the 

signaling molecules (present inside or around the cells) to combine each other to 

form a bigger complex structures which are known as scaffolds and adapters. The 

scaffolds and/or adapters assist in modulating the signals in much better way. 
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So, in this study I mainly focused on the structural properties of the signaling 

proteins, docking interactions, scaffolds, and adapters, second, the interactions 

betIen proteins, motifs, domains, docking interactions, scaffolds, and adapters 

(Figure 3.2). To investigate these properties of the signaling molecules, I have 

investigated the cellular response due to the (i) shuffling of the domains and motifs, 

(ii) mutation in the domain and motif sequence pattern, and (iii) the shuffling of the 

mutated domains and motifs or the shuffling of the mutated domain/motif with wild 

type domain/motif. 

 

 

 

 

(a)                                                                             (b) 

 

Figure 3. 2 Modular domains interactions. (a) Transferability of modular recognition and catalytic functions: swapping of 
domains and ligands leads to the formation of new connections betIen proteins which finally  gives the possibility of a new 
set of possible enzyme-substrate interactions and (b) enzyme regulation by modular domains are often used to regulate 
enzyme activity more directly. These domains can participate in interactions that inhibit catalysis, either by sterically 
blocking access to the catalytic site or by preferentially stabilizing an inactive conformation of the catalytic domain. These 
inactive states can then be reversed upon exposure to competing ligands that bind to the domains or by covalent 
modification of the domains or ligands

64
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3.1.3 Network motifs concept in signaling 

In general, the biological networks are highly complex and it is hard to analyze all the 

molecules involved. It has also been shown that in the biological networks, there are some 

parts of the network in particular order (arrangement) which plays critical roles in controling 

the function and the behavior of the cell. These subnetworks are called network motifs. 

Network motifs are considered as recurring circuits of interactions from which the networks 

are built. As it is known that to transduce the signal, a cell uses many biological molecules 

which form a complex signal transduction network, in such complex network, not all the 

signaling molecules are of equal importance while some of the signaling molecules are 

crucial in determining the cellular functions and behaviors. The number of such crucial 

molecules are not so high71. To unravel the combination and interaction of these crucial 

molecules are challenging tasks in network biology. The network motifs are also considered 

as the circuits which carry out the key information to process the task. In the next step, I 

would like to introduce the approach (algorithm) which I have used to investigate the signal 

transduction networks and its behavior. 

 

 Possible aim for network motifs: 

It is already known48,71,72that in a complex biological network, not all the signaling 

molecules are of equal importance. While some of the signaling molecules are crucial 

in determining the cellular functions and behaviors. So, it is of significant importance 

to analyze the signaling network motifs and unravel their impact on the final cellular 

response. This network motifs concept may also help in drug targeted therapy 

approach and might serve as one of the tool in the field of synthetic biology. To find 

the motifs and their biological importance in signal transduction, it will be a starting 

point to investigate the topology (in the sense of kinetic parameters) of the evolved 

signaling networks.  
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Chapter 4 CONCLUSIONS 

1. Based on current results (from section 2.2), I conclude that sustained responses are 

the generic solution of a SN when the mere detection of the presence of a signal is 

relevant. This response occurs as soon as the protein-protein interactions are of 

sufficient strength, either by mutation of the kinetic parameter underlying existing 

interactions with the network or by recruiting new proteins to the network that 

generate a sort of bypass by supplying the network with strong interactions. 

Remarkably, the exact values of the kinetic parameters are irrelevant as soon as a 

pathway of sufficiently strong interacting proteins is provided. Given the quick 

evolution of the SNs, I conclude that weak protein-protein interactions serve as a pool 

to rapidly evolve new pathways, but play only a minor role in modulating the actual 

responses of a signal transduction network. 

Stronger interactions and addition of new nodes (section 2.8) lead to improved 

evolved responses. The strength of the signal does not play any role in determining 

the response nature. 

2. From section 2.3 and 2.4 I conclude that irrespective of the protein-protein 

interaction strength (kinetic parameter), the variation in the concentration of the 

signaling molecules (receptor, intermediate, and effector molecules) produces 

transient response when the mere detection of the presence of input signal is 

relevant. I conclude that the difference between the concentration the receptor, 

intermediate, and effector molecules also produces transient response although I do 

not allow the mutation in the concentration of SMs during the evolution optimization. 

3. Transient response is controlled by the FBL and the negative cross-interactions 

between the cascades. If the concentration of the TP is lower than the concentration 

of the R and ISM, and either FBL or negative cross-talks are present then all the 

cascade produce consistently transient output response. Irrespective of the 

concentration of the signaling molecules, FFL and all the positive interactions (cross-

talks) between the cascades lead to stable and sustained output response. 
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Chapter 5 METHODS 

5.1 Model 

I set up a simplified model to represent a signal transduction pathway allowing two post-

translational modifications of similar to the MAPK cascade5. In order to transduce the 

signal, I have included protein-protein interactions, protein phosphorylation and 

dephosphorylation73. Double phosphorylated proteins act as fully activated and single 

phosphorylated molecules as partially activated molecules. Note, that the term 

phosphorylation is used for convenience as any other post-translation modification 

adding a small chemical group, lipid, protein or carbohydrate modifying a protein’s 

spectrum of interaction partners or enzymatic activity are covered by the model. 

The interaction between the signaling proteins are set up randomly to create the initial 

population as well as when adding proteins during evolution. In my current model, I have 

not classified the proteins of the SN. The kinase or phosphatase function of a protein is 

determined for each reaction by the matrix Aij (see below). Initially, all the proteins are 

inactive. One of the initially present inactive signaling molecules is designated as 

receptor and receives the signal to become activated. The total number of input signals 

are six and each network is tested for their response to these six different input signal 

strengths. Once the receptor receives the signal then it can activate other signaling 

molecules. All the signaling molecules are allowed to phosphorylate or dephosphorylate 

each other (Figure 2.1) and the final products will be formed depending on the complex. 

All the reactions in this model are bimolecular, autophosphorylation and homodimer 

formation are not allowed. Every molecule that becomes partially (single 

phosphorylated) or full active (double phosphorylated) can interact with any other 

molecule in any state. These interactions lead to complex formation. The complexes can 

dissociate without changes to its constituents or upon modifying on of it by means of 

phosphorylation or dephosphorylation. The interaction of two partially active molecules 

produces either one of them being fully activated (dual phosphorylated) or inactivated 

(dephosphorylated) without changing the other reacting partner’s state (attributing it an 

enzymatic role) as shown in Figure 2.1. Which of the possible reactions are realized is 

determined randomly once at the beginning (with constraints, see next paragraph), thus 

setting up the network topology. 
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For feedforward, feedback, and cross-talk in signal transduction study, I have set up a 

signaling cascade which function in the similar way as MAPK signaling cascade works 

(Figure S1). This signaling cascade is divided into several different levels of signaling such 

as receptor level (represented as R), intracellular signaling level (as ISM), and the target 

level represented as TP (the target proteins are those proteins which communicate the 

information to the nucleus in the form of the output response. Then, I have added 

different kinds of loops and the cross-interactions (cross-talks) between two signaling 

cascades at different levels of signaling. In the next step, I have created mass-action 

kinetic model by using the ordinary differential equations (ODEs) for all the molecules 

including the complexes formed as result of chemical reaction 

 

            A                                                                          B 

 

Figure 5.1 Interaction strength and addition of new nodes. (A) Mutation of kinetic parameter. A1* represents the active 

form of the protein A1, A2 another inactive protein molecule, A1*A2 is the complex formed during the reaction between 

A1* and A2. A2* is the active form of A2. kf, kb, and kdare the rates (interaction strength) of the reactions. A mutation of the 

reaction alters any of the rates, e.g., kd = 1.0 (top) adopts the new value kd = 3.0. (B) Addition of new node in the minimal 

model. An inactive protein C is added, that can either become activated (C*) by A1* (kd) or is inactivating the active protein 

A1* (k'd). 

 

 

 

In addition, one randomly selected double phosphorylated protein, different from the 

receptor node, is designated the output node. It represents the molecule which will 

eventually induce the cellular response. 
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5.2Reaction details of the model 

Here, I have shown the details of the possible reaction during signal transduction 

process. Figure 5.2 shows the possible reaction for three nodes network while Figure 5.3 

a and b show additional reactions taken place after the addition of fourth node in the 

three node network (minimal model).  

 

 

Figure 5.2 List of possible reactions in the minimal model with three proteins. S represents the input signal, A1, A2, and A3 

denote inactive signaling proteins, their partially active (single phosphorylated) forms are A1p, A2p, and A3p, respectively. 

The fully active forms are A1pp, A2pp, and A3pp. 
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Figure 5.3 List of possible reactions after the addition of a new node designated as A4 in the minimal model. A1, A2, A3, and 

A4 denote the inactive signaling proteins, their partially active (single phophorylated) forms are A1p, A2p, A3p, and A4p, 

respectively and their fully active forms are A1pp, A2pp, A3pp, and A4pp, respectively. 
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5.3 Generalized mass-action kinetics equation 

A network consists of the above mentioned signal transduction pathway where both 

inactive and active proteins and complexes are represented as nodes. The interaction 

matrix (Aij) between all these molecules including complexes are represented as +1 

(production/generation), -1 (degradation/dissociation), and 0 (no interaction). The 

entries of Aij are chosen once for a network under the constraints that the total amount 

of each protein is conserved and the SN generated does have a stable inactive state. 

The entries Aij generate the index/indices for the reactant(s) xp(r) for the reaction r. Each 

arc encoded by the interaction matrix is associated with a weight that represents the 

kinetic parameters with which production or degradation takes place. The dynamics xi of 

the node i is governed by the equation: 

𝑑𝑥𝑖
𝑑𝑡

=   𝐴𝑖𝑟𝑘𝑟  𝑥𝑝(𝑟) 

𝑟𝑡𝑜𝑡

𝑟=1

(1) 

 

kr denotes the kinetic parameter of the reaction number r. Note, that I chose k to be 

dimensionless in the sense that the time is scaled appropriately and the concentrations 

are normalized such that the numeric values of first- (k2, k3 in Figure5.1) and second-

order (k1 in Figure5.1) reactions approach a similar range. 

The fitness of a SN was tested by calculating its response to ns = 6 different signals. For 

every signal n, the dynamics of the pre-selected output node is tested whether it exceeds 

a threshold f. This threshold (𝑓 =  
1

10
𝑡ℎ of the initial concentration level) is defined to be 

the relative fraction of the double phosphorylated protein to the total amount of the 

protein. If the output node crosses the threshold f at any point during the dynamics the 

network gains a fitness contribution Ffactor(n) = 1. The normalized fitness Fnorm is 

calculated as the average fitness contribution for all signals which are weighted equally: 

 

𝐹𝑛𝑜𝑟𝑚 =  
 𝐹𝑓𝑎𝑐𝑡𝑜𝑟 (𝑛)
𝑛𝑠
𝑛=1

𝑛𝑠
(2) 

 

Hence, the maximum fitness of a network will be 1 when it detects all signals or 0 when 

there is no above-threshold response to any of the signals. 
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5.4 Algorithm 

I have applied an evolutionary algorithm 20to evolve the networks (Figure5.4). Before 

starting evolution, I create a set of diverse networks with the same randomly generated 

interaction matrix for three proteins with three states (un-, mono-, and dual-

phosphorylated) and different randomly selected kineticparameters (Equation 1). The 

evolution of the networks is either controlled by mutation of the kinetic parameters or 

the addition of new nodes. In the latter case kinetic parameters are randomly selected 

once at the generation of the initial population and once for every single newly added 

protein. The kinetic parameters are generated randomly initially in the range 0.001 to 1. 

The total number of the networks is N = 200. For each network, Fnorm is computed. In 

each generation, I have calculated the mean of the fitness (Fnorm) in each genration.I 

perform elite selection of 𝑓 =  
1

4
𝑡ℎ of the population. The successful networks are 

mutated by changing the kinetic parameters (kr) or adding new proteins as explained 

above. The subsequent generation is then populated by four copies of the successful 

networks keeping the number N of networks identical in each generation. I evolve the 

population of networks for 200 generations. Systems of ordinary differential equations 

were formulated and solved with MATLAB 7.9.0. 

 

 

Figure 5.4 Scheme of the evolutionary algorithm. In order to generate genetic diversity, a set of 200 networks is created 

with diverse sets of kinetic parameters. In each iteration the dynamics of all networks is calculated for the complete set of 

input signals. Based on dynamics, the fitness is calculated. Based on the fitness scores, the successful network are selected 

(elite selection). For each selected network mutations are either applied to the kinetic parameters or the topology of the 

network by adding new proteins. Each selected network gives rise to an equal number of clones such that the population 

contains again 200 networks. 
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5.5 Methods for investigating the roles of the cross-talk of signal transduction 

pathways 

For investigating the roles of different possible cross-talks between the signal 

transduction pathways, the method was exactly the same as discussed in the above 

mentioned sections 5.1, 5.2, 5.3, and 5.4. I have selected the signaling molecules from 

both the pathways for interaction and then created a set of signaling pathways (similar 

and dissimilar pathways) with different sets of kinetic parameter values. The networks 

have been evolved in the similar way as discussed in the previous section.  

As mentioned in section 1.4, in biological systems different kinds of cross-talk have been 

found in signaling systems. Those different cross-talk systems have been represented in 

generalized forms. According to Papin J A. and Palsson B O. (2004)50, cross-talk is the 

nonnegative linear combination of the signaling pathways. The pair-wise combination of 

pathways is the simplest form of cross-talk. They have classified cross-talks in SNs 

different categories based on the extreme pathways. 

In my thesis work, I have created two similar kind of pathways (Figures 5.5 A and B) 

which can detect both similar and dissimilar input signals and the pathways can cross 

interact with each other through any of the molecules. The interaction may be activatory 

or inhibitory in nature. Based on the nature of interaction response 1 and 2 can be 

generated. In my thesis work, I have shown only four of the possible cross-talk and their 

results. All other types of possible cross-talk will be carried out in the next step as a 

future perspective. 

 

For my thesis work, I have investigated four possible cross-talks between two similar kind 

of pathways. These cross-talks are either activatory or inhibitory in nature which means 

one of the pathway can either activate one of the molecule of another pathway or inhibit 

the pathway by targeted blocking of one of the molecule. The molecules selected to 

either activate or inhibit was random. 

 

 

 

 

 



74 
 

5.6 Experimental details 

Dr. Tina M. Schnöder performed western blot experiment and analysis to verify our 

findings for the effect of concentration of the SMs on the cellular response where I 

conclude that difference in the concentration of signaling molecules leads to the 

transient cellular response. 

 

Cell culture: Ba/F3 cells were cultured in RPMI1640 medium (PAA) supplemented with 

10% fetal bovine serum (PAA) and with 1 U/ml of human recombinant Erythropoietin 

(EPO) (Janssen-Cilag) in a humid atmosphere of 5% CO2 at 37 °C. 

 

Immunoblotting: Ba/F3 cells expressing EpoR and wildtype JAK2 were washed twice with 

PBS and starved for 4 h in serum-reduced (0.5%) medium at a density of 1x106/ml.. Cells 

were re-stimulated with different EPO concentrations (0, 0.1, 0.5, 1, 2 U/ml) for 5, 10 or 

30 min and lysed as described previously74. The following antibodies were purchased 

from Cell Signaling and used in 1:1000 dilution: p-p44/42 MAPK (9106), p44/42 MAPK 

(9102). GAPDH antibody (H86504M, 1:5000) was purchased from Meridian Life Sciences. 
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