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field conditions at Strathalbyn in South Australia in 
2015 and 2016. Seven yield component traits reflect-
ing ear length, grain number per ear and grain dimen-
sion were measured. Among 114 quantitative trait 
loci (QTL) identified for the seven traits in both years, 
many co-localise with known genes controlling flow-
ering and spike morphology. There were 18 QTL hot-
spots associated with four loci or more, of which one 
at the beginning of chromosome 5H had wild alleles 
that increased both grain number per ear and thou-
sand-grain weight. A wide range of effects was found 
for wild alleles for each trait across all QTL identi-
fied, providing a rich source of genetic diversity that 
barley breeders can exploit to enhance barley yield.

Keywords Barley · Grain size and weight · GWAS · 
HEB-25 · NAM · QTL

Introduction

Barley is one of the most important cereal crops glob-
ally and is ranked fourth in the world in terms of 
quantity produced and area of cultivation. (Capettini 
et  al. 2010; Zhou 2010). It is also the second most 
important crop in Australia, with average grain pro-
duction of about 9 million tonnes per annum, 70% of 
which is exported (ABARES 2019). Australia makes 
up over 30% of the world malting barley trade and 
approximately 20% of the world feed barley trade 
(Barley 2022). Although barley yield in Australia 

Abstract This study aimed to identify wild bar-
ley alleles controlling grain size and weight with the 
potential to improve barley yield in Australia and 
worldwide. The HEB-25 nested association map-
ping population was used, which samples 25 differ-
ent wild barley accessions in a ‘Barke’ genetic back-
ground. The HEB-25 population was evaluated in 
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increased from 1.2  t/ha in 1969 to 2.5  t/ha in 2015, 
this rate of genetic gain is still slower than those of 
other countries especially the European Union (EU) 
(2 to 5–8  ton/ha) (Schils et  al. 2018; Spragg 2016). 
This is probably caused by low soil fertility, lower 
and highly variable precipitation with many stresses 
that reduce productivity in Australia (Hochman et al. 
2013; Richards 1991; Van Gool and Vernon 2006). 
Thus, breeding for higher yield in Australia is a chal-
lenging task as grain yield has a relatively low herit-
ability due to the high GEI (genotype × environment 
interaction) (Slafer 2003). Nevertheless, there have 
been continuous efforts spent to increase barley grain 
yield in this highly variable environment (Brown 
et  al. 1988; Donald 1979; Eagles and Moody 2004; 
Finlay and Wilkinson 1963).

The most significant breakthrough in barley 
yield improvement was achieved by the introduc-
tion of Green Evolution genes sdw1.d, sdw1.c (origi-
nally named denso), uzu1.a, and erectodies (ari-e.
GP), which resulted in shorter plants, better lodging 
resistance, and higher harvest index, thus leading to 
higher yield (Jia et al. 2016; Mickelson and Rasmus-
son 1994; Nadolska-Orczyk et  al. 2017). However 
there is evidence that the best alleles conditioning the 
short stature in barley tend to become fixed in mod-
ern barley breeding germplasm (Jia et  al. 2009). In 
addition, some of these genes (i.e. denso and uzu1.a) 
also were reported to associate with unwanted traits 
such as lowered malt quality or temperature sensitiv-
ity (Dockter et al. 2014; Hellewell et al. 2000; Wang 
et  al. 2010b), and therefore, there were attempts to 
replace them with other plant height-conditioning 
genes (Dockter et al. 2014).

The other promising avenue employed to improve 
yield is to improve yield component traits such as 
number of spike/plant (or tiller number), grain num-
ber per ear, and thousand-grain weight (Jedel and 
Helm 1994; Peltonen-Sainio et al. 2007). Depending 
on the genotypes and the environments tested, the 
interaction among these three components was found 
to be either negative (Bulman et al. 1993; Hadjichris-
todoulou 1990), positive (Saade et al. 2016), or both, 
but depending on the environment (Markova et  al. 
2015; Wiegmann et  al. 2019). This indicates that 
yield components also have strong GEI, and there is 
plasticity in the yield components to compensate for 
yield reduction (Sadras and Rebetzke 2013). Never-
theless, improving one trait without compromising 

one another was feasible (Griffiths et al. 2015; Zhou 
et  al. 2016). Genotypic selection for yield compo-
nent quantitative trait loci (QTL) in tandem with 
phenotypic yield selection may be more beneficial to 
improving yield than yield testing alone. QTL affect-
ing the three aforementioned yield components have 
been defined and mapped in barley (Cu et  al. 2016; 
Maurer et al. 2016; Mikołajczak et al. 2016; Sharma 
et  al. 2018; Walker et  al. 2013; Wang et  al. 2019; 
Xu et  al. 2018; Zhou et  al. 2016). In recent studies, 
many “hotspots”, QTL regions controlling multiple 
traits, were identified. In a few cases, these hotspots 
reside near key genes controlling plant stature, flow-
ering time, and spike morphology, such as vrs1, nud, 
VRN-H3 and sdw1/denso (Wang et al. 2019). In other 
cases, they co-locate with barley orthologs of genes 
controlling grain size and weight in other cereal spe-
cies such as rice, maize, and wheat, demonstrating 
the conservation of gene function within the cereal 
family. Functional genomics and analysis of natural 
or induced mutants have revealed genes involved in 
spike morphology, such as Vrs1 (Komatsuda et  al. 
2007), Vrs5 (Ramsay et  al. 2011), INT-C/HvTB1 
(Lundqvist 1997), HvAP2 (Houston et al. 2013), and 
HvCKX (Zalewski et al. 2010, 2014, 2012) determine 
yield components and grain yield.

For a specific trait, the genetic improvement of 
crop plants is accomplished by stacking and accumu-
lating favourable alleles within gene pools. In barley, 
domesticated barley (H. vulgare L. ssp. vulgare) and 
wild barley (H. vulgare L. ssp. spontaneum) constitute 
two primary sources of advantageous alleles in breed-
ing (Wendler et al. 2014). Beneficial alleles from wild 
barley have been repeatedly used to improve  yield 
in elite cultivars (Kalladan et  al. 2013; Lakew et  al. 
2013; Nevo and Shewry 1992). To capture a wide 
range of genetic diversity from wild barley for bet-
ter identification of beneficial alleles, a Nested Asso-
ciation Mapping (NAM) population was created from 
crossing 25 genetically diverse wild barley accessions 
originating from the Fertile Crescent region to the 
malting cultivar ‘Barke’ (Maurer et  al. 2015). NAM 
populations combine the advantages and minimise 
the disadvantages of two traditional methods for iden-
tifying quantitative trait loci, including bi-parental 
and association mapping populations. NAM popula-
tions have higher allelic diversity and higher recom-
bination events than biparental populations, decreas-
ing the population structure’s confounding effect seen 
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in the association mapping populations (Gage et  al. 
2020; Hu et  al. 2018; Kitony et  al. 2021). HEB-25 
population (HEB stands for Halle Exotic Barley) has 
been utilized to study flowering time, salinity and 
drought tolerance, grain size and weight and disease 
resistance in barley in a wide range of environments 
across the globe (Büttner et  al. 2020; Herzig et  al. 
2018; Maurer et al. 2015; Maurer et al. 2016; Pham 
et  al. 2019; Saade et  al. 2016; Sharma et  al. 2018; 
Vatter et al. 2017, 2018). This population harbours a 
reservoir of beneficial alleles that can be exploited for 
variety development and yield improvement in previ-
ously tested environments. In 2020, the HEB-25 pop-
ulation was evaluated and screened to identify QTL 
relating to phenology in Charlick, South Australia 
(Pham et al. 2020). Here, we report on the results of a 
Genome-Wide Association Study (GWAS) conducted 
for spike morphology-related traits from the same 
field trials conducted by Pham et al. (2020) that might 
contribute alleles to increase yield in environments 
such as those in southern Australia.

Materials and methods

The plant materials

The wild barley HEB-25 NAM population was devel-
oped by crossing and then backcrossing 25 diverse 
wild barley accessions (Hordeum vulgare ssp. sponta-
neum and agriocrithon) to the cultivar Barke. Details 
about the population design and development were 
described previously (Maurer et  al. 2015). In sum-
mary, there were 25 subfamilies, with the number of 
lines within each family in the range from 22 (family 
no.18) to 75 (family no.3) (Maurer et al. 2015, Addi-
tional file 1). On average, there were 52 lines per fam-
ily, with each  BC1S3 plant hadving an expected segre-
gation of 71.875% homozygous Barke loci, 21.875% 
homozygous wild barley loci, and 6.25% heterozy-
gous loci. The lines sown in 2015 and 2016 were 
 BC1S3:8 and  BC1S3:9 lines, respectively.

Genotyping of NAM lines

The population was genotyped with the Illumina 
iSelect 50 K chip (Bayer et al. 2017), and a total of 
32,995 SNPs meeting the quality criteria (poly-
morphic in at least one HEB family, < 10% failure 

rate, < 12.5% heterozygous calls) were utilised for 
GWAS in this study.

A quantitative identity by state (IBS) approach 
described by Maurer et al. (2015) was used to define 
the SNP matrix. Missing SNPs were imputed using 
the mean score of polymorphic flanking mark-
ers (matrix E, Maurer & Pillen,  2019,  https:// doi. 
org/https:// doi. org/ 10. 5447/ ipk/ 2019/ 20).

HEB-25 field trials

Field trials were conducted at Charlick, Strathalbyn in 
South Australia in 2015 (− 35° 19′ 20″ N, 138° 53′ 
24″ E) and 2016 (− 35° 19′ 22″ N, 138° 52′ 56″ E) 
with 941 and 1294 lines of the HEB-25 population 
respectively. The lines tested in 2015 were a subset 
of the population containing 18 families, of which 
seeds were available for testing at the time of sowing 
in 2015. The experiment design was fully described 
by Pham et  al. (2020). In summary, the experiment 
design for 2015 was an unreplicated augmented block 
design with lines grouped by family. There were 1176 
plots arranged into 12 bays × 98 columns with two 
plots for check varieties per column. For 2016, a par-
tially replicated randomized design was implemented 
with 147 out of 1294 lines replicated, and the same 
check lines sown in 2015 were used again at a fre-
quency of one check plot every 10 test lines. Check 
lines used in both years included ten Australian varie-
ties (Admiral, Capstan, Commander, Compass, Fleet, 
Flagship, Hindmarsh, Gairdner, Navigator, and Keel), 
and the parental line Barke. Plots in 2015 and 2016 
were 2.24  m2 doubled-rows with 3.20 m in length and 
separated by 0.5  m to reduce competition between 
plots. Two rows within a plot were 0.20 m apart.

The sowing and harvesting dates for the 2015 
trial were June 16th and December 15th, respec-
tively. The sowing and harvesting dates for the 2016 
trial were May 18th 2016, and December 20th 2016, 
respectively.

Phenotypic data

Seven traits measured in this study included ear 
length (EL), awn length (AL), grain number per ear 
(GPE), grain area (GA), grain width (GW), grain 
length (GL), thousand-grain weight (TGW). For the 
first three traits, phenotypic values for each genotype 
were calculated as an average of measurements taken 

https://doi.org/
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from 15 randomly chosen ears per plot. Ear length 
was measured in cm from the bottom to the top of the 
ear, and awn length was measured in cm from the top 
of the ear to the tip of the awn. Grain number per ear 
(GPE) was measured as total grain counts from each 
ear. The latter four were measured using the 150–300 
seeds using GrainScan software (Whan et  al. 2014) 
and expressed in mm for GL and GW,  mm2 for GA 
and gram for TGW.

Within and between year phenotypic analysis

Within each of the years, the analysis of individual 
grain traits was conducted using a linear mixed model 
(LMM) that appropriately partitioned and accounted 
for all genetic and non-genetic sources of variation 
(Pham et al. 2020) specified as the following:

If y =
(

y1,… , yn
)

 are a vector of n phenotypic trait 
responses, then the LMM was defined as

where X� was the fixed component of the model and 
contained a population type factor to estimate the 
overall mean of the HEB-25 population as well as 
separate means for each of the parents and controls 
involved in the experiment. This component also con-
tained terms to model distinct spatial trends such as 
linear column or row effects if present in the field. 
The term Zu was the random component contain-
ing factors to model possible sources of non-genetic 
variation including non-linear row or column effects. 
This component may have also contained terms to 
model potential outliers using the methodology out-
lined by Gumedze et  al. (2010). Additional extrane-
ous spatial variation was captured with the residual 
model error term, e , and was assumed to be distrib-
uted e ∼ N(0,R ) where R = 𝜎2

�r ⊗ �c is a separable 
correlation structure with �r,�c parameterized as an 
auto-regressive structure of order 1 in the row and 
column direction respectively. The underlying genetic 
variation of the HEB-25 lines was modelled using the 
random component term Zgg where the genetic ran-
dom effects, g , are an r length vector and assumed to 
be distributed g ∼ N(0, �2

g
Ir) . This assumes a com-

mon genetic variance across the HEB-25 population. 
Under this LMM structure the effects, (u, g, e) , were 
considered to be mutually independent. From each of 
the fitted models, the vector of best linear unbiased 

(1)y = X� + Zu + Zgg + e

predictions (BLUPs) g̃ = (g̃1,… , g̃r) of the HEB-
25 lines, as well as their prediction error variances, 
were used to calculate broad sense generalized her-
itabilities with the formula developed by Cullis et al. 
(2006), namely

where PEVave is the average of the prediction error 
variances of all elementary contrasts between the 
progeny lines and �̂2

g
 is a REML estimate of the 

genetic variance of the progeny obtained from the fit-
ted model.

To understand the genetic relatedness of the 
traits between the 2  years, (1) was extended to a 
multi-year LMM. For each trait, the fixed compo-
nent of the multi-year LMM consisted of an inter-
action of a two-level year factor with a population 
factor to ensure HEB-25 progeny means, parents 
and controls were estimated independently for each 
year. Extraneous sources of environmental varia-
tion modelled with fixed and random terms in the 
single year models, were also appropriately added 
to the multi-year LMM. The multi-year LMM resid-
ual was assumed to be distributed e ∼ N

(

0,⊕2
i=1

Ri

)

 
where ⊕2

i=1
Ri = diag

(

Ri

)

 (Butler et al. 2018) with R 
defined previously. Most importantly, the random 
genetic effects are assumed to have a multiplicative 
structure with distribution g ∼ N

(

0,G⊗ Ir
)

 where 
G is a 2 × 2 correlation matrix with diagonal ele-
ments reflecting the underlying genetic variation 
of the HEB-25 lines in each year and off diagonal 
covariance reflecting the genetic relationship of the 
lines between years.

Computations and heritability

All phenotypic models were fitted using the LMM 
software ASReml-R (Butler et  al. 2018), available 
as a package in the R statistical computing envi-
ronment. ASReml-R uses a residual maximum 
likelihood approach toestimate mean and variance 
parameters (Patterson and Thompson 1971).

For individual traits analysed using the LMM, 
broad sense generalised heritabilities were cal-
culated using the formula Cullis et  al. (2006) 
described.

H2
g
= 1 −

PEVave

2�̂2
g
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Genome-wide association study

QTL detection and cross-validation were conducted as 
described by Büttner et  al. (2020). The detection rate 
was calculated to represent validity and significance, 
and each marker detected in at least 20 cross-validation 
runs was declared significantly associated with the trait. 
Significant marker-trait associations were grouped to a 
single QTL if the significant SNPs were linked by less 
than 5 cM and expressed the same direction of additive 
effects, i.e. both exotic alleles increased or decreased 
the trait of interest. We applied the cumulation method 
to estimate a parent-specific QTL effect, as presented 
in Maurer et al. (2017). This procedure was conducted 
within each cross-validation run, and their mean of 
them was taken as the final parent-specific QTL effect 
estimate. The required genetic positions of 50 k mark-
ers were estimated as described in Büttner et al. (2020). 
All SNPs from the respective QTL interval were fitted 
in a linear model to estimate the QTL’s explained phe-
notypic variance (Vp) in the whole dataset.

Specifically, preceding marker-based analysis, the 
BLUPs for individual traits within each year were de-
regressed using the formula described by Garrick et al. 
(2009), namely

where g̃i and PEVi is the BLUP and prediction error 
variance of the i th line respectively.

For each set of de-regressed BLUPs, a GWAS was 
conducted using a two stage multiple regression pro-
cedure similar to the methods described by Liu et  al. 
(2011) and Maurer et al. (2016). In the first stage a set 
of SNP co-factors are sought of from an initial saturated 
additive SNP model specified as

where �p was a vector of fixed effect parameters used 
to estimate the NAM sub-population means and Xp 
was the associated indicator matrix that maps trait 
responses to the appropriate sub-population. In this 
saturated SNP model Mi was the i th genetic marker 
covariate containing quantitative allelic values span-
ning the NAM genotypes and qi is its associated 
effect size. The model error, e∗ represents resid-
ual genetic error and is assumed to be distributed 

g∗
i
=

g̃i

1 − PEVi∕�̂g

2
, i = 1,… , r.

g∗ = 1� + Xp�p +
∑t

i=1
Miqi + e∗#

e∗ ∼ N(0,�2Ir) . To determine the set of SNP co-
factors, a forward–backward stepwise regression 
approach was implemented where inclusion or exclu-
sion of individual SNPs was determined through min-
imising the Bayesian Information Criterion. From the 
determined set of c SNP co-factors, a genome wide 
scan is then conducted with each marker individually 
added to a multiple regression model of the form

where  Mk is the marker being assessed and co-fac-
tors that were less than 1 cM from the marker being 
assessed were excluded from the co-factor set. The 
Bonferroni-Holm method (Holm 1979) was used to 
provide a family-wise adjusted p-value for multiple 
testing of marker-trait associations with significant 
markers accepted if pBON−HOLM < 0.05 . The approxi-
mate proportion of genetic variance explained by a 
marker was determined by estimating  R2 after mod-
elling the marker solely in a linear model.

Candidate genes for QTL detected by GWAS 
were identified using the BARLEYMAP pipeline, 
MorexV3 map (Cantalapiedra et al. 2015). In addition 
we compared the genomic position of the detected 
QTL with the position of 164 barley orthologs with 
the cereal genes for grain size and weight reported by 
Wang et al. 2019. Genes were suggested as candidates 
if they were within 4 cM upstream or downstream of 
a QTL, reflecting the LD decay of 7.85 cM reported 
in HEB-25 by Vatter et al. (2017).

Results

Trait variation, trait heritability, and multiyear 
relationship

Among the investigated traits, large ranges in phe-
notypic values were observed, with the maximum 
values often 2-3X larger than the minimum values. 
(Fig.  1 and Table  1). HEB-25 lines surpassing the 
recurrent parent ‘Barke’, and ten check varieties were 
observed for all measured traits except for TGW, GW, 
and GA in 2015 and AL, GA, and GW in 2016 (Fig. 1 
and Online Resource 1).

When a Student t-test was used, a significant dif-
ference between the 2  years was observed for all 
traits measured (P < 0.05, data not shown). The mean 

(2)g∗ = 1� + Xp�p +Mkqk +
∑c

j=1
Mjqj + e∗
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trait values for AL, EL, GA, and GL in 2015 were 
higher than those in 2016, while the reverse trend 
was found for GPE, TGW and GW. The significant 
difference between the 2  years for the seven traits 
measured was probably attributable to the difference 

in cultural practice, environment and genetic compo-
sition between 2  years. The trial in 2015 was sown 
1 month later than the usual sowing date for the loca-
tion (mid-May) as there was little rain to support seed 
growth in May 2015. Growing season rainfall (GSR) 

Fig. 1  Ridge plots display seven traits measured in 2015 and 2016. The circle and triangle indicate trait scores of Barke (recurrent 
parent) and Compass (an Australian high yielding variety)

Table 1  Summary of simple statistics for the field experiments in 2015–2016

1 The values for Barke and Compass are the mean values of the traits for two varieties

Trait Year Mean Minimum Maximum CV (%) Barke1 Compass1

Awn length (AL) 2015 11.2 6.2 17.4 11.4 12.2 11.8
2016 10.2 5.8 16.4 15.1 10.1 10.3

Ear length (EL) 2015 8.0 4.8 11.1 10.6 7.7 6.7
2016 7.8 4.0 12.5 13.5 7.5 6.4

Grain number per ear (GPE) 2015 21.3 9.0 34.7 17.1 23.6 21.1
2016 25.6 14.5 54.6 14.5 26.9 24.7

Thousand grain weight (TGW) 2015 38.3 26.5 58.2 10.1 42.6 46.6
2016 47.1 26.7 66.6 10.0 48.1 51.3

Grain area (GA) 2015 24.1 20.0 31.8 6.5 23.7 25.2
2016 23.9 14.9 32.5 9.9 23.1 24.5

Grain length (GL) 2015 9.3 7.9 12.1 6.1 8.6 8.8
2016 8.7 6.8 12.2 9.0 8.0 8.2

Grain width (GW) 2015 3.3 2.9 3.6 3.4 3.5 3.7
2016 3.5 2.7 4.0 4.5 3.7 3.8
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of 2015 and 2016 at the tested location was 229 mm 
and 502 mm, respectively, representing a reduction of 
26% and an increase of 60% compared to the 26-year 
average for the location (Online Resource 2). Finally, 
seeds of only 18 families were sown in 2015 as the 
other seven families were still under assessment in 
quarantine.

In general, heritabilities were relatively high, rang-
ing from 0.49 to 0.84 (Table  2). Heritabilities were 
higher for 2016 compared to 2015, possibly due to 
the smaller number of lines tested in 2015 compared 
to 2016. The lowest heritability was found for GPE in 
2015 (0.49), and the highest heritability was found for 
GW in 2016 (0.87). The difference in magnitude of 
heritability between the 2 years was greatest for GPE 
and GW.

Although the heritabilities of the traits were con-
sistent between 2 years, the within-year genetic cor-
relations ranged from 0.57 to 0.69 except for GW 
(0.84), reflecting a reduced genetic similarity in each 
of the studied traits between the years (Table 2). Tak-
ing everything into consideration, traits within each 
year were individually processed for further analysis.

Within-year trait relationships

Correlations among seven measured traits are shown 
in Fig.  2. In both years, TGW had a strong positive 
correlation with GW and GA and weaker positive 
correlations with GL and AL. There was a correlation 
with GPE and EL in 2016 only.

GA correlated positively and strongly with GL, 
GW, and TGW. Both AL and GL showed a negative 

correlation with GPE. AL had a low but significant 
positive correlation with TGW, GA and GL but not 
with GW. Although slightly differing in magnitude, a 
similar correlation trend among these variables was 
also observed in the field trials in Germany and Scot-
land for the HEB-25 population, as shown by Sharma 
et al. (2018).

GWAS results

The summary and full GWAS output of seven traits 
in both years were listed in the Table  2 and Online 
Resource 3, respectively.

GWAS-AL: there were 13 and 14 QTLs identified 
for awn length in 2015 and 2016, respectively, with 
four common QTLs between 2  years. The QTLs 
explained that the most phenotypic variation (Vp) 
in 2015 and 2016 was QAl.HEB-25-3H.2 (43.5 cM, 
15%) and QAl.HEB-25-1H.3 (97.9  cM, 20%), 
respectively.

GWAS-EL: there were 10 and 13 QTLs identified 
for EL in 2015 and 2016, respectively, with three 
common QTLs between 2  years. The QTLs that 
explained the most Vp in 2015 and 2016 were QEl.
HEB-25-2H.1 (63.55  cM, 11.4%) and QEl.HEB-
25-3H.1 (40.7  cM, 21.3%), respectively. Among the 
three common QTLs for EL, the QTLs QEl.HEB-
25-4H.1 had wild alleles that increased EL in both 
years, while the remaining two QTLs on chromo-
somes 5H and 7H had wild alleles with a mixed effect 
in both years.

GWAS-GPE: there were 7 and 14 QTLs 
detected for grain number per ear for 2015 and 

Table 2  Summary of QTL and total phenotypic variation explained by the QTL detected for seven traits in 2015–2016

Vp, total phenotypic variation

No Trait name Trait abbreviation 2015 2016 Genetic 
correla-
tionQTL detected Vp (%) Heritability QTL detected Vp (%) Heritability

1 Awn length AL 13 46 0.63 14 57 0.73 0.69
2 Ear length EL 10 33 0.59 13 48 0.64 0.57
3 Grain number per 

ear
GPE 7 32 0.49 14 62 0.69 0.61

4 Thousand grain 
weight

TGW 8 63 0.60 23 62 0.74 0.68

5 Grain width GW 17 74 0.60 21 73 0.87 0.84
6 Grain length GL 13 72 0.63 13 65 0.73 0.69
7 Grain area GA 12 60 0.59 16 61 0.64 0.57
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2016, respectively, with two QTLs shared between 
2 years. Both common QTLs had wild alleles from 
all families that reduced GPE. The QTLs explained 
that the largest Vp were QGpe.HEB-25-7H.1 
(11.3%) and QGpe.HEB-25-2H.1 (21.7%) in 2015 
and 2016, respectively. The QTLs at which wild 
alleles increased GPE the most were QGne.HEB-
25-3H.3 (52.6 cM) in 2015 (up to 1.4 grain on aver-
age) and QGne.HEB-25-6H.1 (116.75 cM) on 2016 
(increased GPE up to 2.3 grain in average) (Fig. 3).

GWAS-TGW : 8 and 23 QTLs were identified 
for TGW in 2015 and 2016, respectively TGW 
QTLs were mapped to all chromosomes. The QTLs 
explained that the largest Vp were QGpe.HEB-
25-4H.4 (20.6%) and QGpe.HEB-25-6H.1 (20.9%) in 
2015 and 2016, respectively. There were three com-
mon QTLs between the 2 years, with the two QTLs 
QTgw.HEB25-6H.1 and QTgw.HEB25-7H.2 having 
wild allele reduced TGW in both years in most of 
the HEB-25 families. In contrast, the common QTLs 
QTgw.HEB25-5H.1 increased TGW in both years in 
all families. The QTLs that increased TGW the most 
was QTgw.HEB25-6H.3 at which wild alleles from 
only family no. 25 increased TGW to 5.35  g. How-
ever, it was only detected in 2016, and alleles from all 
other families except no.25 reduced TGW.

GWAS-GL, GW, GA: there were 13 QTLs detected 
for GL in either 2015 or 2016, with only one common 
QTLs between 2 years. These QTLSs were mapped to 
all chromosomes and individually explained 1–35.2% 
of Vp. There were 12 and 16 QTLs detected for GA 
in 2015 and 2016, respectively, with five shared 
between 2 years. An individual QTLs explained from 
5.9 to 35.5% of the phenotypic variance. The QTLs 
explained that the most Vp in both years for GL and 
GA was QGl.HEB25-1H.1, which co-localized with 
the thresh-1 locus (Schmalenbach et al. 2011).

There are 17 and 21 QTLs detected for GW in 
2015 and 2016, respectively, with six shared between 
2  years. These QTLSs were mapped to all chromo-
somes, and an individually explained 6.2 to 27.1% 
of the phenotypic variance The QTLs explained that 
the most Vp for GL and GA in both years was QGl.
HEB25-1H.1, which co-localized with the HvAPO2/
BFL locus.

Hotspot for grain size and weight

When all trait QTLs detected were plotted on the 
barley genetic map, several regional ‘hotspots’ were 
associated with multiple traits. There were 18 ‘hot-
spots’, defined as a window within 7.85  cM where 
four or more QTLs coincide, as this window was 
reported to be the linkage disequilibrium decay for 
this population by Vatter et al. (2017) (Fig. 4). There 
were three hotspots in each of the five chromosomes 
1H, 2H, 4H, 5H and 7H, two hotspots in chromosome 
3H and one in chromosome 6H. The hotspot 1_2 was 
found to associate with five traits, three of which had 

Fig. 2  Correlation matrices for seven traits measured from 
field trials from 2015 to 2016. Correlation matrices for seven 
traits in 2015 and 2016. In the following plots, the distribution 
of each variable is shown on the diagonal. The bivariate scatter 
plots with a fitted line are displayed on the bottom of the diag-
onal. The value of the correlation plus the significance level 
as stars are displayed on the top of the diagonal. Each signifi-
cance level is associated to a symbol: p-values (0, 0.001, 0.05, 
0.01) <  =  > symbols (“***”, “**”, “*”)
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QTLs within this hotspot in both years. Another hot-
spot, 3_1, was linked with QTLs of six traits meas-
ured in this study. The rest of the hotspots associated 
with three to four traits.

Discussion

Phenotypic variation compared to the control 
varieties reveals promising candidate lines for 
breeding

For all seven traits except for GW, there were individu-
als with phenotypic values greater than most of the 
ten check varieties (Online Resource 1), implying the 
potential for use of the HEB-25 wild barley alleles in 
breeding to improve yield and yield component traits 
in Australian environments. Two HEB-25 lines, HEB-
16-121 and HEB-16-144, had significantly higher GPE 
(up to 10 grains/ear) while having TGW equivalent to 
Compass, the current benchmark variety for high TGW 
and plumpness in Australia. In addition, line HEB-22-
118 had TGW and GPE greater than Compass in both 
years, and its tiller number was equal to that of Com-
pass in the wetter year 2016 (Online Resource 4, Pham 
et  al. 2020). The correlation between GPE and TGW 
was found to be very low (< 0.1) for both years in the 
field trials, which was similar to findings from the salt 
stress study by Saade et  al. (2016) and Sharma et  al. 
(2018). The independent relationship of these traits 
in the HEB-25 population would be advantageous 

as beneficial alleles conditioning high GPE and high 
TGW can be combined into one genetic background 
without worrying about the trade-off effect between 
these two traits.Detection of a QTL is merely the result 
of statistical work using the association between geno-
type and phenotype. Therefore, the positive effect of 
identified beneficial alleles needs to be further validated 
in different genetic backgrounds using either biparental 
populations or a panel of diverse germplasm lines (Lan-
gridge et  al. 2001; Pu-yang et  al. 2022; Zhang et  al. 
2019). The beneficial wild allele conditioning increased 
GPE and TGW in the above lines. It was introgressed 
into three Australian cultivars, Compass, LaTrobe and 
Granger, via backcrossing and Kompetitive  allele spe-
cific PCR (KASP) markers. We hypothesize that some 
progenies with transgressive segregants from these 
crosses will surpass the yield of the recurrent parental 
elite cultivars Compass, LaTrobe, and Granger. Both 
subsequent genomic and phenotypic selection will ena-
ble the identification of lines with potential high yield-
ing from these crosses. Ultimately, field trials need to 
be conducted in the future to validate the effectiveness 
and drawbacks (i.e. linkage drag) of these beneficial 
wild alleles to yields and yield components.

Hotspots with beneficial wild alleles detected in this 
study and possible candidate genes

Eight hotspots were found to be common when the 
locations of our 18 hotspots were aligned to those of 
14 hotspots detected for grain size and weight when 

Fig. 3  Family-specific effect of alleles from 25 families that were identified to be associated with the grain number per ear trait 
across 2 years of trials
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Fig. 4  Barley grain and ear 
dimension QTLs–genetic 
distributions and overlaps. 
The genetic positions of all 
QTLs identified here were 
based on the genetic map 
developed by Maurer et al. 
(2015) and (Büttner et al. 
2020). The QTLs affecting 
four or more traits were 
grouped into QTL hotspots 
which shown in the rectan-
gular boxes. Also plotted 
are genetic map locations 
for barley orthologs of 
known cereal grain trait 
genes (Wang et al. 2019) 
and other developmental 
genes known to affect yield 
in barley. Bars indicate the 
detection rate of each QTL 
detected for each trait, green 
and orange represents 2015 
and 2016, respectively



Euphytica (2024) 220:24 

1 3

Page 11 of 16 24

Vol.: (0123456789)

the HEB-25 was evaluated in Germany and Scotland 
(Sharma et al. 2018). Among these typical hotspots, 
few co-localize with genes regulating flowering time/
development, including Ppd_H2, HvELF3, HvCEN, 
HvCO1, and the remaining located closely to barley 
orthologs of cereal genes, including SRS3, GSK2, 
qGL3/GL3.1, and GW2 (Xu et al. 2018).

In this study, only three of the 16 hotspots (2_1, 
4_1, and 5_1) had wild alleles, which positively 
affected on the traits measured, while others had a 
mixed effect or only negative effect. Wild alleles at 
these three hotspots increased GPE up to 0.9 grains/
ear (hotspot 4_1 in family no.1, equivalent to 4.1% 
increase) and TGW up to 2  g (hotspot 2_1 in fam-
ily no. 4, equivalent to 5.5% increase) compared to 
the Barke alleles. At the hotspot 5_1, four important 
yield component traits (GPE, TGW, GA and GW) 
were improved by the wild alleles from all families. 
It is noteworthy that the beneficial QTLs detected for 
GPE at these hotspots 4_1 and 5_1 were not found 
in the European counterpart study, signifying the 
value of this study that not only we can learn about 
the essential core loci/genes underlying one trait 
across environments but also those that are useful 
yet very environment-specific. Another advantage of 
these hotspots is that they reside near the end of the 
chromosome with a higher recombination rate, thus 
greatly facilitating recombination-based breeding.

Among these three hotspots, only one (4_1) has 
a potential candidate gene, LONELY GUY   (LOG), 
which is a gene that has a direct role in the activation 
of cytokinins (Kuroha et  al. 2009; Tokunaga et  al. 
2012). Rice plants with mutant log had abnormal 
branching, reduced number of floral organs and inflo-
rescence complexity (Kurakawa et al. 2007).

When markers linked with the QTLs within the 
hotspot 2_1 and 5_1 were used to search for candi-
date genes within 4 cM upstream and downstream of 
these markers, 28 genes and 39 genes with high con-
fidence were detected, respectively (Online Resource 
5). For the hotspot 2_1, it is difficult to pinpoint a 
potential candidate gene for this region. In contrast, 
four candidate genes such as sucrose-phosphatase 1 
(HORVU5Hr1G000580), ethylene receptor 1 (HOR-
VU5Hr1G000590), MAD-box transcription factor 
(HORVU5Hr1G000370 or HORVU5Hr1G000480) 
could be the most promising candidate genes for 
the hotspot 5_1 as these were shown to hold a criti-
cal role to the grain filling process and grain weight 

(Jiang et al. 2011; Jiang et al. 2015; Luo et al. 2019; 
Paul et  al. 2020; Radchuk et  al. 2021; Wuriyanghan 
et al. 2009; Chen et al. 2016; Yang et al. 2012).

Comparison to QTLs detected in other studies for 
GPE and TGW 

For GPE: across the four global field trials with the 
HEB-25 population conducted in Germany, Scot-
land, United Arab Emirates, and Australia, QTLs 
located near five loci including HvCEN (2H-56 cM), 
Vrs1 (2H-80  cM), Vrs4/btr1/btr2 (3H-46  cM), LOG 
(4H-1  cM), and VRN-H3 (7H-34  cM) were always 
detected regardless of the environment (Sharma et al. 
2018; Saade et  al. 2016). When GPE was mapped 
using materials with less complex genetic structure 
(association panel, double haploid populations, or 
introgression lines from wild barley), fewer QTLs 
linking with previously known genes controlling grain 
number observed, such as loci near Vrs1 and VRN-H3 
were reported by Li et al. (2006); Ren et al. (2013), or 
only Vrs1 (Wang et al. 2016), HvCEN and Vrs1 (Hon-
sdorf et al. 2017, Xu et al. 2018), or Ppd-H1, VRN2 
and VRN-H3 (Wang et  al. 2010a) were detected for 
GPE. Vrs4  was reported to regulate  Vrs1  to control 
spikelet determinacy and morphology and indirectly 
control LOG-like gene expression (Koppolu et  al. 
2013). Furthermore, HvCEN was reported to interact 
with HvFT1 (VRN-H3) to regulate floral development 
and, thus, indirectly control GPE (Bi et al. 2019; Los-
cos et  al. 2014). The consistent result in finding the 
five loci associated with GPE in experiments across 
the globe demonstrates the power of the HEB-25 pop-
ulation to detect essential genes/loci regulating GPE 
due to its intrinsic wide genetic variation.

In this study, the two QTLs at which wild alleles 
increased GPE the most were QGpe.HEB25-4H.3 
(4H-43.5 cM, family no.16) and QGpe.HEB25-6H.1 
(6H-117 cM, family no. 17 and 25). The former QTL 
was not detected when HEB-25 was evaluated in the 
European environments where the latter was only 
detected in Scotland, with much lower effect. Both 
of these two QTLs were detected in Dubai (UAE) by 
Saade et al. (2016) for GPE, but in that study, the for-
mer did have the largest effect while the latter QTL 
expressed a negative effect. In contrast, the QTL 
with the biggest GPE promoting effect in the coun-
terpart European study on chromosome 5H at 165 cM 
(family no.18) was not detected for GPE in South 



 Euphytica (2024) 220:24

1 3

24 Page 12 of 16

Vol:. (1234567890)

Australian environment. Thus, this study provides 
another piece of the puzzle to help barley breeders 
better understand the location-specific effect of the 
wild barley alleles governing GPE in the HEB-25 
population. In this study, the markers used to map 
yield component traits in the HEB-25 population 
were 6X more than those used in previous GWAS 
studies by Saade et  al. (2016) and Sharma et  al. 
(2018). The markers identified in this study, thus, are 
expected to be closer to the actual gene(s) than those 
identified in the previous study. For example, the 
marker associated with GPE and located near Vrs1 
genes in this study, JHI-Hv50k-2016-107351, was 
0.35 cM (777 kb in physical distance) from the actual 
Vrs1 gene. In contrast, Sharma et al. (2018) identified 
one GPE-linked SNPs for either Halle (Germany) or 
Dundee (Scotland), both of which reside 4 cM from 
Vrs1. Thus markers identified in this study should be 
much more useful and informative for subsequent fine 
mapping and marker-assisted selection for breeding 
to improve yields and yield components in barley.

For TGW : the TGW QTLs detected in this study 
overlapped with 11, 11, and 22 QTLs reported for 
TGW when the HEB-25 was evaluated at Halle (Ger-
many), Dundee (Scotland) by Sharma et  al. (2018), 
and Dubai (United Arab Emirates-UAE) by Saade 
et al. (2016), respectively. Notably, among four loca-
tions where HEB-25 was tested for TGW globally, 
TGW QTL, where the wild allele expressed the most 
significant positive effect, were usually environment-
specific. For example, it was 3H-96.3  cM for Halle 
(Germany), 3H-107.8  cM for Dundee (Scotland), 
6H-110.9 (Charlick, South Australia), and 3H-51.5 
for Dubai (UAE). Thus, barley breeders should exer-
cise caution depending on the target environment 
when selecting beneficial wild alleles from the HEB-
25 population.

Among ten common TGW QTLs shared across 
the four global field trials with the HEB-25 in Ger-
many, Scotland, UAE, and Australia, QTLs that 
reside closely to genes regulating flowering time 
(HvELF3, HvAP2(Zeo), HvPRR95, HvPRR1/
HvTOC1/HvCO5/HvCO7) and row-type phenotype 
(Vrs1/3/4/5) were found to govern the TGW trait at all 
sites (Online Resource 3). The only common QTLs 
that increased TGW in all families at all four evalu-
ating locations was QTgw.HEB25-5H.1 (1 cM). The 
wild alleles at this QTLS increased TGW in both 
control and salt-stressed field conditions and 2 years 

with the stark contrast in precipitation in Australia. 
Therefore, it could serve as a novel marker to add 
to the breeders’ toolbox to improve TGW in barley, 
especially in water-limiting or salt-stressed environ-
ments. This locus also merits further investigation as 
no known genes can be aligned to this locus thus far.

Conclusions

In this study, the field trial of the HEB-25 NAM pop-
ulation conducted in Australia identified QTLs unique 
to the Australian environment and different from the 
counterpart studies in the northern hemisphere. Our 
study showcased that genes known to regulate the 
flowering time and spike morphology in barley were 
pivotal in determining yield component traits like 
seed size and weight.

 There were 18 hotspots associated with multiple 
grain size/weight traits in which one of them had wild 
alleles exerting a positive effect on both TGW and 
GPE. The wild alleles of genes/loci lying within this 
hotspot could serve as a valuable source for improv-
ing yield in Australia and worldwide.
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