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1. Introduction

Let p be prime and G be a finite group. Normalizers of non-trivial p-subgroups of 
G are called p-local subgroups of G. We say that G has characteristic p if and only 
if CG(Op(G)) ≤ Op(G) and that G has local characteristic p if and only if all the p-
local subgroups of G have characteristic p. The group G is of parabolic characteristic 
p if and only if all the p-local subgroups containing a Sylow p-subgroup of G are of 
characteristic p. A group G is called a CK-group if all composition factors are among 
the known simple groups: a cyclic group of prime order, an alternating group, a simple 
group of Lie type or one of the 26 sporadic simple groups. A group G is a Kp-group, if 
any subgroup which normalizes a non-trivial p-subgroup of G is a CK-group. This paper 
is part of a programme to investigate Kp-groups of parabolic characteristic p. See [14]
for an overview of this programme.

Of fundamental importance to the theory of groups of parabolic characteristic p are 
large subgroups: a p-subgroup Q of G is called large if and only if

(i) CG(Q) ≤ Q; and
(ii) NG(U) ≤ NG(Q) for all 1 �= U ≤ CG(Q).

For example, if G is a simple group of Lie type in characteristic p and S ∈ Sylp(G), 
then Q = Op(CG(Z(S))) is almost always a large subgroup of G. Indeed this is true 
exactly when Z(S) is a root group, that is provided G is not one of Sp2n(2a), n ≥ 2, 
F4(2a) or G2(3a). This in part motivates the study of groups with a large subgroup.

If Q is a large subgroup of G, then Op(NG(Q)) is also a large subgroup of G [15, 
Lemma 1.5.2 (e)]. Thus when studying groups with a large subgroup we may and will in 
addition assume that the large subgroup satisfies

(iii) Q = Op(NG(Q)).

One of the consequences of having a large subgroup is that G is of parabolic character-
istic p (see [15, Lemma 1.55 (c)]). In fact any p-local subgroup of G which contains Q
has characteristic p. Throughout the paper we let

˜ : NG(Q) → NG(Q)/Q

the natural projection homomorphism x �→ xQ.

For the remainder of this introduction we fix a prime p, a finite Kp-group G, a Sylow 
p-subgroup S of G and a large subgroup Q ≤ S with Q = Op(NG(Q)).

For a finite group L, denote by YL the unique maximal elementary abelian normal 
p-subgroup of L with Op(L/CL(YL)) = 1. Such a subgroup of L exists (see for example 
[14, Lemma 2.0.1(a)]). The subgroup YL was first introduced by John Thompson.
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If X is a set of subgroups of G, we write Xmin for the set of elements in X which are 
minimal by inclusion. Further, if T ≤ G, then

X (T ) = {U ∈ X | T ≤ U}.

For H ≤ G, define

LH = {L | L ≤ H,Op(L) �= 1, CH(Op(L)) ≤ Op(L)}.

For N ∈ LG(S), we shall use the following notation

N◦ = 〈QN 〉, VN = [YN , N◦]

Furthermore, we denote by the natural homomorphism from N onto N/CN (YN ). Note 
that for different members M of LG(S), we still use to represent the homomorphism 
to M/CM (YM ). This should not lead to confusion.

We intend to investigate the groups G which have

VL = {L ∈ LG(Sg) | VL � Qg, g ∈ G}

non-empty. In particular, we will focus on the subset VLmin of VL. The overarching aim 
is to prove the Global Structure Theorem which concerns the Kp-groups with a large 
subgroup Q such that VL is non-empty. The intention is to provide information about 
the subgroup 〈LG(S)〉 of G and, when p = 2, the isomorphism type of G.

The following subsets of VL play a pivotal role in our proof of the Global Structure 
Theorem:

VLlin =
{
L ∈ VL | L◦ ∼= SL2(q) and YL = VL = Vnat

}
,

VLorthsymp =

⎧⎪⎪⎨
⎪⎪⎩L ∈ VL | (L◦, VL) =

⎧⎪⎪⎨
⎪⎪⎩

(Ω±
n (q), Vnat) n ≥ 3

(Sp2n(q), Vnat) n ≥ 2, p = 2
(Sp4(2)′, Vnat)

⎫⎪⎪⎬
⎪⎪⎭ ,

and

VLwreath =

⎧⎪⎪⎨
⎪⎪⎩L ∈ VL | (L◦, VL) =

⎧⎪⎪⎨
⎪⎪⎩

(O+
4 (2), Vnat)

(SL2(4), Vnat) |YL : VL| = 2
(ΓL2(4), Vnat) |YL : VL| ≤ 2

⎫⎪⎪⎬
⎪⎪⎭ .

Here, for a classical group X, Vnat denotes a natural module for X. We extend this 
notation to subgroups containing perfect derived subgroups of classical groups. For L ∈
VLlin ∪ VLorthsymp, q = qL will be as defined for the classical groups and when L◦ ∼=
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Sp4(2)′ and VL is the natural module, we set q = 2. We know from [24] that VLwreath =
VLmin

wreath.
Our first objective in this article is to prove the following theorem.

Theorem A. Suppose that p is a prime, G is a finite Kp-group, S a Sylow p-subgroup of G
and Q ≤ S is a large subgroup of G with Q = Op(NG(Q)). Assume that L ∈ VL(S). Then 
there is a unique subgroup ML ∈ VLmin(S) with ML ≤ L. Furthermore, the following 
hold.

(i) ML ∈ VLlin(S) ∪VLorthsymp(S) ∪VLwreath(S), CML
(YML

) is p-closed, and YML
=

Ω1(Z(Op(ML))).
(ii) If L is not in the wreath product case or the weak wreath product case of [15, 

Theorem A], then for each possibility for L, the structure of ML = ML/CML
(YML

), 
M◦

L and the action of the latter group on YML
is presented in the final three columns 

of Table 1. In particular, in all cases VML
is a natural M◦

L-module.
(iii) If L̂ ∈ LG(ML), then L̂ ∈ VL(S), ML = ML̂ and

〈L̂,NG(Q)〉 = 〈ML, NG(Q)〉 = 〈L,NG(Q)〉.

See [15, Section A.2] for a description of the modules listed in Table 1. As an immediate 
corollary to Theorem A we obtain the following remarkable observation.

Theorem B. We have

VLmin = VLmin
lin ∪ VLmin

orthsymp ∪ VLmin
wreath.

By inspecting the final three columns of Table 1, we observe that just a few pos-
sibilities occur. Namely M◦

L can be Ω±
n (q) with n ≥ 3, Sp2n(q) with n ≥ 2 and 

q even, SL2(q) or Sp4(2)′. As the Global Structure Theorem considers the possibil-
ity that VL is non-empty, for the proof of the Global Structure Theorem we have 
VLmin = VLmin

lin ∪ VLmin
orthsymp ∪ VLmin

wreath is non-empty by Theorem B and this gives a 
convenient division of the proof into subcases. The case VLmin

wreath �= ∅ has been studied 
in [24]. In this article we consider the possibility that VLmin

lin �= ∅. In a forthcoming paper 
we will study the case VLmin

orthosymp �= ∅.
The second main objective of this paper is to prove the Global Structure Theorem in 

the case that Q is abelian.

Theorem C (Global Structure Theorem for Q abelian). Let p be a prime, G be a finite 
Kp-group, S a Sylow p-subgroup of G and Q ≤ S be a large subgroup of G with Q =
Op(NG(Q)). Suppose that Q is abelian and NG(Q) is not the unique maximal p-local 
subgroup of G containing S. Then one of the following holds
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M◦
L YML

(q)S̄ Ω+
4 (q) YML

= VML

2(q)S̄ SL2(q) YML
= VML

2n(q)S̄ Sp2n(q) |YML
: VML

| ≤ q

4(2)
′S Sp4(2)

′ YML
= VML

(q)S̄ Ω±
n (q) YML

= VML

(q)S̄ Ω+
6 (q) YML

= VML

(q)S̄ Ω3(q) YML
= VML

(q)S̄ Ω−
4 (q) YML

= VML

(q)S̄ Ω+
8 (q) YML

= VML

0(q)S̄ Ω+
10(q) YML

= VML

(2) Ω+
4 (2) YML

= VML

2(2) SL2(2) YML
= VML

(2) Ω−
4 (2) YML

= VML

4(2) Sp4(2)
′ YML

= VML

(2) Ω+
6 (2) |YML

: VML
| ≤ 2

(3) Ω−
4 (3) |YML

: VML
| = 3

4(2) Sp4(2) |YML
: VML

| = 2
(3) Ω3(3) YML

= VML

(3) Ω−
4 (3) |YML

: VML
| = 3

(3) Ω5(3) |YML
: VML

| = 3
(2)S̄ Ω+

6 (2) |YML
: VML

| = 2
Table 1
The minimal groups ML with YML

� Q.

L◦ p VL◦ ML

(1) SLm1 (q) ⊗ SLm2 (q),m1,m2 ≥ 2 p tensor product Ω+
4

(2) SLn(q), n ≥ 2 p Vnat SL
(3) Sp2n(q), n ≥ 2 2 Vnat Sp
(4) Sp4(2)

′ 2 Vnat Sp
(5) Ω±

n (q), n ≥ 5 p Vnat Ω±
n

(6) SLn(q)/〈(−1)n−1In〉, n ≥ 5 p
∧2(Vnat) Ω+

6

(7) SLn(q)/〈(−1)n−1In〉, n ≥ 2 p S2(Vnat) Ω3

(8) SLn(q2)/Z, n ≥ 2 p U2(Vnat) Ω−
4

Z = 〈λIn | λ ∈ GF(q), λn = λq+1 = 1〉
(9) Spin+

10(q) p half-spin Ω+
8

(10) E6(q) p q27 Ω+
1

(11) 3.Sym(6) 2 26 Ω+
4

(12) 3.Alt(6) 2 26 SL
(13) Mat(22) 2 Golay 210 O−

4

(14) Mat(24) 2 Golay 211 Sp
(15) Mat(24) 2 Todd 211 Ω+

6

(16) Mat(11) 3 Golay 35 Ω−
4

(17) Aut(Mat(22)) 2 Todd 210 Sp
(18) 2.Mat(12) 3 Golay 36 Ω3

(19) Ω−
4 (3) 3 Vnat Ω−

4

(20) Ω5(3) 3 Vnat Ω5

(21) Ω+
6 (2) 2 Vnat Ω+

6
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(i) p = 2 and F ∗(G) ∼= PSLn(2a) with a ≥ 1 and n ≥ 3, or F ∗(G) ∼= Mat(22), Mat(23), 
Mat(24), Alt(6) or Alt(9);

(ii) p is odd and F ∗(〈LG(S)〉) ∼= PSLn(pa) with a ≥ 1 and n ≥ 4; or
(iii) p is odd and there exists L ∈ VL(S) such that (NG(Op(L)), NG(Q)) is a weak 

BN -pair of type PSL3(pa), a ≥ 1, over NG(Op(L)Q). Furthermore 〈LG(S)〉 =
〈NG(Op(L)), NG(Q)〉.

Remarks

(i) Suppose that Theorem C(ii) holds and in addition assume that G is of local char-
acteristic p. Set H = 〈LG(S)〉. Then, by [25, Theorem 1], either G = H or H is a 
strongly p-embedded subgroup of G. Using n ≥ 4, [21, Proposition 9.1] yields that 
mp(CH(t)) ≥ 2 for any involution t ∈ H. Finally, under the assumption that G is a 
K2-group [21, Theorem 1.4] yields that H cannot be strongly p-embedded in G and 
so F ∗(G) = F ∗(H) ∼= PSLn(q).

(ii) Suppose that Theorem C(iii) holds with q > p. Set H = 〈LG(S)〉 and put 
H∗ = 〈Op′(Op(NG(Op(M)))), Op′(Op(NG(Q)))〉. Then H = H∗NG(QOp(M)) by 
Lemma 6.4. H∗ is a completion of a weak BN -pair of type PSL3(q). Since Q and 
Op(M) are both large assuming that every proper subgroup of G is a K-group, we 
can apply [19, Theorem 1.6] to obtain H∗ ∼= PSL3(q). Then [20, Main Theorem 2]
or more directly [20, Proposition 9.1] and then [22] yields F ∗(G) ∼= PSL3(q).

Assume that Q is abelian and L ∈ LG(S). If VL ≤ Q, then, as Q is large, L ≤
NG(VL) ≤ NG(Q). Hence with the assumption of Theorem C(c), we have that VL � Q

for some L ∈ LG(S). Hence L ∈ VL(S) and so the conclusions of Theorem C form part 
of the Global Structure Theorem.

Among the case divisions in [15, Theorem A] there are the “wreath product case” 
and the “weak wreath product case”. These cases are studied in [24]. In particular, it is 
demonstrated that, if L ∈ VL and L is in one of the wreath product cases, then either 
L ∈ VLmin

wreath or

(L◦, YL) ∈ {(SL2(q), Vnat), (Ω+
4 (2), Vnat)}.

Hence in these cases L ∈ VLmin
lin ∪ VLmin

orthsymp ∪ VLmin
wreath. Furthermore, [24, Main The-

orem, Corollary] yields

Theorem 1.1. Suppose that VLmin
wreath is non-empty. Then G ∼= Mat(22), Aut(Mat(22)), 

Sym(8), Sym(9) or Alt(10).

By inspecting the groups which appear in Theorem 1.1, we observe that, if Q is 
abelian, then F ∗(G) ∼= Mat(22). This case is therefore included in the conclusion as part 
of Theorem C(i).
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Because of Theorem 1.1, we may assume that VLmin
wreath(S) is empty. Hence to prove 

the Global Structure Theorem we may assume that

VLmin = VLmin
lin ∪ VLmin

orthsymp.

In particular, to prove Theorem C, we may suppose that L ∈ VLmin
lin (S) ∪VLmin

orthsymp(S)
and, as Q is abelian, Corollary 4.6 implies L ∈ VLmin

lin (S). Conversely, if L ∈ VLmn
lin (S), 

then Q is abelian by Lemma 5.2 (v). Thus Theorem C follows by combining Theorem 1.1
with

Theorem 1.2. Suppose that p is a prime, G is a finite Kp-group, S ∈ Sylp(G) and Q ≤ S

is a large subgroup of G with Q = Op(NG(Q)). If VLmin
lin �= ∅, then

(i) p = 2 and F ∗(G) ∼= PSLn(2a), a ≥ 1, n ≥ 3 or G ∼= Mat(22), Mat(23), Mat(24), 
Alt(6) or Alt(9);

(ii) p is odd and F ∗(〈LG(S)〉) ∼= PSLn(pa) for some a ≥ 1 and n ≥ 4; or
(iii) p is odd and, for M ∈ VLmin

lin (S), (NG(Op(M)), NG(Q)) is a weak BN -
pair of type PSL3(pa), a ≥ 1, over NG(Op(M)Q). Furthermore 〈LG(S)〉 =
〈NG(Op(M)), NG(Q)〉.

The paper develops as follows. In Section 2 we gather a number of standard tools which 
are used in the proof. In particular, we record the theorem which gives the groups which 
have a strong dual F -module. We also present a proposition, Proposition 2.5, which will 
be used to identify the projective linear groups PSLn(q) and relies on a theorem which 
identifies buildings from internal subgroup structure [17]. In Section 3 we gather together 
some basic facts about groups G with a large subgroup. We also show that in almost 
all cases, Op′(G) = 1. Probably the smallest counterexample to the general statement 
is the non-split extension 26.PSp4(3) which has a large 3-group and is generated by 
its 3-local subgroups which contain a fixed Sylow 3-subgroup. In Section 4, we prove 
Theorem A. However, this is not the only purpose of this section. It also lays out a 
number of structural results, Lemma 4.4 and Lemma 4.5 for example, which will be used 
in the paper following this one which proves the Global Structure Theorem in general.

As we have mentioned, to prove Theorem C, it suffices to prove Theorem 1.2 and so 
in Section 5 we start the proof of Theorem 1.2 by establishing results which are used 
to limit the structure of 〈V NG(Q)

M 〉, M ∈ VLmin
lin (S), by using results about strong F -

modules. Here the relatively uncomplicated structure of M plays an influential role. The 
bulk of the proof of Theorem 1.2 covers Section 6 and Section 7 where we cover the 
possibilities that Op(M) = VM and Op(M) > VM separately. The first case leads to 
the groups Alt(6), the Mathieu groups Mat(22) and Mat(23) and the family of weak 
BN -pairs of type PSL3(q) and the second case uncovers the groups Mat(24), Alt(9) and, 
with the help of Proposition 2.5, the groups PSLn(q), n ≥ 4, q = pa. Particularly in 
Section 7, the structure of addition members of LG(S) is required and at this stage the 
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results from Theorem A are applied. The theorem is used in two distinct ways. The 
uniqueness of M provided by Theorem A eventually leads in Lemma 7.8 to the fact 
that 〈LG(S)〉 = 〈M, NG(Q)〉. Theorem A is also used to restrict the structure of certain 
overgroups L of M . This is achieved by first showing that they are in LG(S) and then by 
reading Table 1 from the right-hand side to the left-hand side to extract the structure 
of L◦.

Our notation is mostly standard and follows [2,6,15]. For groups A and B, we write 
X = A.B for a group with a normal subgroup N isomorphic to A and X/N ∼= B. If it 
is useful to know the extension is split, we write X = A:B and, if it is useful to know 
it is non-split, we write X = A.B. When SLm1(q) × SLm2(q) acts on Vnat1 ⊗ Vnat2 , the 
kernel of the action is Z = 〈

( λIm1 0

0 λ−1Im2

)
| λ ∈ GF(q), λm1 = λm2 = 1〉 and the notation 

SLm1(q) ⊗ SLm1(q) represents the group (SLm1(q) × SLm2(q))/Z.

2. Modules and other background results

In this section we collect some facts about modules together with some other useful 
results, which will be required in the proof of Theorem C.

Definition 2.1. Let X be a group and V be a non-trivial module for X over GF(p). 
Assume that A is an elementary abelian p-subgroup of X with A � CX(V ) and Q is a 
p-subgroup of X which is not normal in X. Then

(i) A acts quadratically on V if and only if [V, A, A] = 0;
(ii) V is an F -module with offender A if and only if |V/CV (A)| ≤ |A/CA(V )|;
(iii) A is a best offender on V if |B||CB(V )| ≤ |A||CV (A)| for all B ≤ A;
(iv) an F -module V with offender A is strong if and only if CV (a) = CV (A) for all 

a ∈ A \ CA(V );
(v) V is a dual F -module with offender A if and only if [V, A, A] = 0 and |[V, A]| ≤

|A/CA(V )|;
(vi) a dual F -module V with offender A is strong if and only if [v, A] = [V, A] for all 

v ∈ V \ CV (A); and
(vii) V is a Q!-module for X with respect to Q, if NX(U) ≤ NX(Q) for all 0 �= U ≤

CV (Q).

Lemma 2.2. Let p be a prime, X a group with F ∗(X) quasisimple, F ∗(X)/Z(F ∗(X)) a 
CK-group, and V be an irreducible, faithful F ∗(X)-module over GF(p) which is a strong 
dual F -module with offender A. Then for X1 = F ∗(X)A one of the following holds:

(i) X1 ∼= SLn(pa) or Sp2n(pa), a ≥ 1, and V is a natural module.
(ii) p = 2 and

(a) X1 ∼= Alt(6) and V is one of the 4-dimensional modules over GF(2).
(b) X ∼= Alt(7) and V is one of the 4-dimensional modules over GF(2).
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In both cases (a) and (b), |A| = |V : CV (A)| = |[V, A]| = 4.
(iii) p = 2 and X = X1 ∼= O±

2n(2) or Sym(n) and V is the natural module. In these 
cases, |A| = |V : CV (A)| = |[V, A]| = 2 and A �≤ F ∗(X).

Proof. See [13, Theorem 3.1]. �
Lemma 2.3. Suppose that X is a group, E = O2(X) is elementary abelian of order 16
and X/E ∼= Alt(6) induces the non-trivial irreducible part of the 6-point permutation 
module on E. Then X splits over E.

Proof. See [24, Lemma 2.1]. �
Lemma 2.4. Suppose that V is a p-group and X is a group which acts faithfully on V
with Op(X) = 1. Assume A ≤ X is an elementary abelian p-subgroup of order at least 
p2 which has the property CV (A) = CV (a) for all a ∈ A#. If L is a non-trivial subgroup 
of X and L = [L, A], then A acts faithfully on L.

In particular, A centralizes every p′-subgroup which it normalizes, [A, F (X)] = 1, 
E(X) �= 1 and, if L is a component of X which is normalized but not centralized by A, 
then A acts faithfully on L.

Proof. See [24, Lemma 2.8]. �
The next lemma is our main device for recognising the linear groups. It presents [17, 

Theorem 6.8] in a form which makes our application more straight-forward.

Proposition 2.5. Suppose that p is a prime, X is a finite group, X1, X2 are subgroups of 
X, T ∈ Sylp(X1) ∩ Sylp(X2) and Op(X) = 1. For i = 1, 2, set Bi = NXi

(T ). Assume 
that {i, j} = {1, 2},

(i) X = 〈X1, X2〉;
(ii) X1/Op(X1) ∼= SL3(pa), and X2/Op(X2) ∼= SLn(pa) with a ≥ 1 and n ≥ 3;
(iii) Bi ≤ NX(Xj) and Bj ≤ NX(Xi);
(iv) (X1 ∩X2)Bi/Op(Xi) is a minimal parabolic subgroup of Xi/Op(Xi) corresponding 

to an end node of the Coxeter diagram for Xi/Op(Xi); and
(v) CX(Op(X2)) ≤ Op(X2) and |Op(X2)| ≥ pan.

Let M∗ > B1 be such that M∗/Op(X1) is the parabolic subgroup of X1/Op(X1) with 
Op′(M∗) �≤ X2 and R > B2 be such that R/Op(X2) is the maximal parabolic subgroup 
of X2/Op(X2) with X2 = 〈X1 ∩X2, R〉.

If [Op(Op′(M∗)), Op(Op′(R))] ≤ T , then X ∼= PSLn+1(pa).
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Proof. We follow [17] for our notation regarding buildings. Let Δ be the building of type 
An over GF(pa) with type set I = {1, . . . , n} and Coxeter diagram Π labelled by I as 
follows:

1◦ 2◦ 3◦ · · ·n−2◦ n−1◦ n◦.

Assume L = PSLn+1(pa) acts on Δ. Define

D1 = {1, 2} and D2 = {2, 3, . . . , n}

to be subsets of I. Note that any subset of I of size at most 2 corresponding to a 
connected subset of Π is contained in either D1 or D2.

Fix a chamber c of Δ. For J ∈ {D1, D2}, ΔJ(c) denotes the residue of type J in 
Δ which contains c and LJ = Op′(PJ) where PJ = StabL(ΔJ (c))/RJ and RJ is the 
subgroup of PJ which fixes every chamber in ΔJ(c). For J1 ⊂ J , let LJ,J1 be the parabolic 
subgroup of LJ which fixes the residue of type J1 in ΔJ(c) which contains c. Then 
LD1

∼= PSL3(pa) and LD2
∼= PSLn(pa). Set XDi

= Xi.
Using (ii), define surjections

φDi
: XDi

→ LDi

to be the quotient map to XDi
/KDi

followed by an isomorphism where KDi
/Op(XDi

) =
Z(XDi

/Op(XDi
)) and Op(XDi

) = Op(KDi
). For j ∈ Di, define XDi,j to be the preimage 

under φDi
of LDi,j . Using (iv), we can adjust the surjections by using graph automor-

phisms of LD1 and LD2 if necessary so that φDi
(XD1 ∩XD2) ≥ Op′(LDi,2) for i = 1, 2. 

Furthermore, B1 = XD1,∅ and B2 = XD2,∅. Finally define HDi,k = Op(Op′(XDi,k)) for 
k ∈ Di, i = 1, 2 and notice that HD1,2 = HD2,2. We have established the necessary 
notation from [17, Notation 6.1] (with X in place of G). Furthermore, [17, Hypothesis 
6.2 (i), (ii), (iii), (vi) and (vi)] all hold. Assumption (iii) implies that [17, Hypothesis 
6.2 (iv)] holds. We are left to show that [17, Hypothesis 6.2 (v)] is valid. This means we 
need to show HD1,1HD2,k = HD2,kHD1,1 for k ∈ D2 \{2}. From the definition of M∗, we 
have HD1,1 = Op(Op′(M∗)) and from the definition of R we have HD2,k ≤ R. Suppose, 
as in the statement, that [Op(Op′(M∗)), Op(Op′(R))] ≤ T and set

T1k = [HD1,1, HD2,k] ≤ [Op(Op′
(M∗)), Op(Op′

(R))] ≤ T.

Then HD1,1 normalizes HD2,kT12 and so also normalizes Op(HD2,kT12) = HD2,k. In 
particular, HD1,1 and HD2,k permute. We have shown that [17, Hypothesis 6.2] holds. 
As T/Op(X2) ∈ Sylp(X2/Op(X2)) and |Op(X2)| ≥ pan, the additional hypotheses of [17, 
Theorem 6.8] follow from (v). Hence Op′(X) ∼= L ∼= PSLn+1(pa) by [17, Theorem 6.8]. 
This concludes the proof. �
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We shall use the next proposition in the final argument of this paper. Recall that the 
Thompson subgroup, J(T ), of a group T is generated by set Ae(T ) the maximal rank 
elementary abelian subgroups of T .

Proposition 2.6. Suppose that n ≥ 4, X ≤ ΓLn(2a) and F ∗(X) ∼= SLn(2a). Let T ∈
Syl2(X) and T0 = T ∩ F ∗(X). Then

(i) J(T ) = J(T0); and
(ii) every involution in T0 is X-conjugate to an element of Z(J(T )).

Proof. By [7, Table 3.3.1], F ∗(X) has 2-rank m1 = �n2/4�a. For involutions x ∈ T \ T0, 
we have CF∗(X)(x) ∼= SLn(2a/2) by [7, Proposition 4.9.1(a) and (d)]. Hence the 2-rank 
of CX(x) is m2 = 1 + �n2/4�a

2 . As m1 > m2, the members of Ae(T ) are all subgroups 
of T0. Hence (i) holds.

Let V be the natural GF(2a)F ∗(X)-module and let V > Vn−1 > · · · > V1 > 0 be a 
maximal flag of V preserved by T0. The Thompson subgroup of T0 is described in [3, 
Theorem 6.1, Corollary 6.2]. From this description, we deduce that, if n is even,

J(T0) = Z(J(T0)) = CX(V/Vn/2) ∩ CX(Vn/2)

and, if n is odd,

Z(J(T0)) = CX(V/V�n/2
) ∩ CX(V�n/2�).

By considering the Jordan form of elements of order 2 in T0, we see that they are F ∗(X)-
conjugate into Z(J(T0)). Hence (ii) follows from (i). �
3. Preliminary results about groups with a large subgroup

From here on we shall assume that G is a finite Kp-group, S a Sylow p-subgroup of 
G and Q ≤ S is a large subgroup of G with Q = Op(NG(Q)).

We begin by drawing some facts from [15] and applying them in the case when VL is 
non-empty.

Lemma 3.1. The following hold:

(i) Q is weakly closed in S with respect to G.
(ii) Z(Q) is a trivial intersection set in G.
(iii) If L ∈ LG(S), then

(a) Ω1(Z(S)) ≤ YL ≤ Ω1(Z(Op(L)));
(b) L◦ = 〈QL◦〉; and
(c) L = L◦NL(Q).
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(iv) If L ∈ LG(S) with Q � Op(L), then
(a) L◦ �≤ NG(Q); and
(b) CG(L◦) = 1, Z(L) = 1 and Ω1(Z(S)) ≤ VL.

(v) If L, M ∈ LG(S) with L ≤ M , then YL ≤ YM and VL ≤ VM .
(vi) If L ∈ LG(S), then VL and YL are Q!-modules for L with respect to Q.

Proof. (i) is [15, Lemma 1.52(b)].
(ii) Suppose Z(Q) ∩ Z(Q)g �= 1. Then, as Q is large,

Q ≤ Op(NG(Z(Q) ∩ Z(Q)g)) ≥ Qg

and so Q = Qg by (i). Thus Z(Q) = Z(Qg) = Z(Q)g.
(iii) The first assertion is [15, Lemma 1.24(g)]. The second one follows from (i) and 

[15, Lemma 1.46(c)]. Part (c) follows from (i) by applying the Frattini argument to L◦.
Assume that L ∈ LG(S) with Q � Op(L).
(iv) (a) If L◦ ≤ NG(Q), then, (iii)(b) implies L◦ = 〈QL◦〉 = Q ≤ Op(L), a contradic-

tion.
(iv) (b) CG(L◦) = 1 is [15, Lemma 1.55(d)]. As Z(L) ≤ CG(L◦), we have Z(L) = 1. 

That Ω1(Z(S)) ≤ VL is an application of [15, Lemma 1.24(e)] and [9, (I.17.4)].
(v) That YL ≤ YM is [15, Lemma 1.24 (f)]. Hence VM = [YM , M◦] ≤ [YL, L◦] = VL.
(vi) This follows from the definition for a Q!-module, as Q is a large subgroup of L. �

Lemma 3.2. Assume that L ∈ VL(S) and K ∈ LG(L). Then

(i) Q � Op(L) and L◦ �≤ NG(Q);
(ii) K ∈ VL(S);
(iii) Op(〈L, NG(Q)〉) = 1; and
(iv) S is contained in at least two maximal p-local subgroups.

Proof. (i) Assume that Q ≤ Op(L). Then VL ≤ CG(Q) ≤ Q, a contradiction. Hence 
Q �≤ Op(L) and L◦ �≤ NG(Q) by Lemma 3.1 (iv)(a).

(ii) We have VL ≤ VK by Lemma 3.1(v). As VL �≤ Q, VK �≤ Q and so K ∈ VL(S).
(iii) Set X = 〈L, NG(Q)〉. If Op(X) �= 1, then X ∈ LG(S) and so (ii) implies X ∈

VL(S). This is impossible as YX ≤ Op(X) ≤ Q. Hence Op(X) = 1.
(iv) This follows from (iii). �

Lemma 3.3. Suppose that M ∈ LG(S) and VM is irreducible as an M -module. If N is 
a non-trivial normal subgroup of M , then VM ≤ N . In particular, VM is contained in 
every non-trivial characteristic subgroup of Op(M).

Proof. By Lemma 3.1 (iv)(b), Ω1(Z(S)) ≤ VM . By the definition of LG(S), Op′(M) = 1
and so p divides |N |. Hence VM ∩N ≥ N ∩ Ω1(Z(S)) > 1. As VM ∩N is normalized by 
M and M acts irreducibly on VM , we obtain VM ≤ N . �
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Lemma 3.4. Suppose that M ∈ VL(S), VM is irreducible as an M -module and YM �=
Op(M). Then VM ≤ Op(M)′ ≤ Φ(Op(M)) and Õp(M) is not abelian.

Proof. We exploit Lemma 3.3. Consider the possibility that Op(M) is abelian. Then, 
as YM �= Op(M), Op(M) is not elementary abelian. Hence, as Φ(Op(M)) is charac-
teristic in Op(M), VM ≤ Φ(Op(M)) by Lemma 3.3. However, as Op(M) is abelian, 
[Q, Op(M), Op(M)] = 1. Hence Op(M) acts quadratically on Q/Φ(Q) and thus

VM ≤ Φ(Op(M)) ≤ CG(Q/Φ(Q)) ≤ Q,

which contradicts M ∈ VL(S). Hence Op(M) is not abelian and Op(M)′ is a non-trivial 
characteristic subgroup of Op(M). Thus VM ≤ Op(M)′ ≤ Φ(Op(M)) by Lemma 3.3. In 

addition, as M ∈ VL(S), Q < VMQ ≤ Op(M)′Q and Õp(M) is not abelian. �
To continue this section, we will prove two lemmas about the normal p′-subgroups 

of G.

Lemma 3.5. Suppose that Q ≤ G1 ≤ G, R is a p′-subgroup of G which is normalized G1
and U is a p-subgroup of G1. If U contains a non-trivial element x which is G1-conjugate 
into Z(Q), then CR(U) = 1. In particular, if U is elementary abelian of order at least 
p2 and every maximal subgroup of U contains an element which is G1-conjugate into 
Z(Q)#, then R = 1.

Proof. We may assume that x ∈ Z(Q). Then [CR(x), Q] ≤ R∩Q = 1, as Q is large. But 
then, also as Q is large, we have that CR(x) ≤ CG(Q) ≤ Q. Hence CR(x) = 1 which is 
the first assertion. The second claim follows by coprime action [6, Proposition 11.13]. �
Lemma 3.6. Let M ∈ VLlin ∪ VLorthsymp. Suppose that M◦ � Ω3(p), p odd. Then M◦

does not normalize any non-trivial p′-subgroup of G. In particular Op′(G) = 1.

Proof. We may assume that S ≤ M . Assume that R is a non-trivial p′-subgroup of G
which is normalized by M◦. By the definition of VLlin and VLorthsymp, we have that 
M◦ ∼= Ω±

2n(q), Ω2n+1(q) (q odd), Sp2n(q) (q even), Sp4(2)′ or SL2(q) and VM is the 
corresponding natural module.

By Lemma 3.5 applied with U = Z(Q) ∩VM , we have |Z(Q) ∩VM | = p. In particular, 
as Z(Q) ∩ VM contains a 1-space of VM this implies q = p. Furthermore, as VM is the 
natural module for M◦ ∼= SL2(q), Sp2n(q) or Sp4(2)′ these cases cannot occur as all 
non-trivial elements of VM are conjugate. If M◦ ∼= Ω±

n (p), n ≥ 4, then Z(Q) ∩ VM

corresponds to a singular 1-space in VM and every maximal subgroup of VM contains an 
element corresponding to a singular vector for the action of M◦ on VM . This contradicts 
Lemma 3.5 applied with U = VM . We are left with M◦ ∼= Ω3(p) with p odd and this is 
the excluded case. �
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The special case in Lemma 3.6 with p odd, M◦ ∼= Ω3(p) and Op′(G) �= 1 really does 
occur. Suppose that K ∼= PSp2n(p) with p odd is a subgroup of G containing Q and 
Op′(G) �= 1. As Q is large, this means that a root element in K acts fixed-point-freely 
on Op′(G). By a result of John Thompson Op′(G) is nilpotent. Using a result due to 
Alex Zalesskii [29, Theorem 3] this implies that 2n = 4. Furthermore, if R is a Sylow r-
subgroup of Op′(G), then all the PSp4(p)-composition factors in R are isomorphic to the 
unipotent modules of dimension r(r2−1)/2. In particular, the semidirect product of such 
a module with K = PSp4(p) is an example of a group with a large p-subgroup Q, where 
NG(Q) and M are the two minimal parabolic subgroups containing S, (so M◦ ∼= p3.Ω3(p)
and NG(Q)′ ∼= p1+2

+ .SL2(p)). In this case, 〈LG(S)〉 is a complement to Op′(G). Selecting 
a non-split extension (if such exists) provides an example with G = 〈LG(S)〉. In the 
smallest example, p = 3 and we can choose G to be the non-split extension 26.PSp4(3)
(the derived group of Aut(E) where E ∼= 21+6

− ). In this case, as G is a non-split extension, 
we have G = 〈M, NG(Q)〉 and G has parabolic characteristic 3.

Finally we prove a lemma which could have been in [15].

Lemma 3.7. Assume that L ∈ LG(S) with L◦ ∼= Sp4(2)′. If VL = Vnat, then YL = VL.

Proof. Let X = CVL
(S). Then |X| = 2 and CL◦(X) ∼= Sym(4). As X ≤ Z(Q) and Q is 

large, CL◦(X) ≤ NG(Q). Since Q �≤ Op(L) by Lemma 3.2 (i), Q is a non-trivial normal 
subgroup of CL◦(X). Thus Q = O2(CL◦(X)). In particular, Q does not act quadratically 
on VL. Hence there is U ≤ L◦, U ∼= Alt(5), Q ≤ U and VL is the non-trivial irreducible 
part of the permutation module for U . As VL is a projective U -module, YL = VL×CYL

(U). 
In particular [Q, CYL

(U)] = 1. As Q is large and U does not normalize Q, we obtain 
CYL

(U) = 1, so VL = YL. �
4. The proof of Theorem A

In this section we assume that G is a finite Kp-group, S a Sylow p-subgroup of G
and Q ≤ S is a large subgroup of G with Q = Op(NG(Q)) and VL �= ∅. Then, by 
Lemma 3.2(iv) (b), there are at least two maximal p-local subgroups containing S. Hence 
the conditions required to apply [15, Theorems A] are satisfied and this provides us with 
the structure of L◦ and VL for L ∈ VL. To interpret what we require from [15] we need 
some notation.

We assume that the reader is familiar with the action of the simple groups on small 
modules as can be found in [15, Appendix A and B] and, in particular, in the section 
[15, Naming Modules]. For a classical group X defined over GF(q), q = pa, Vnat de-
notes a natural module for GF(q)X considered as a GF(p)X-module. We extend this 
notation to subgroups of classical groups which contain the derived subgroup when this 
group is perfect. For X = SLn(q), we denote by 

∧2(Vnat), S2(Vnat) and U2(Vnat), the 
alternating square, symmetric square and unitary square of a natural module GF(q)X-
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module considered as a GF(p)X-module. For clarity this means that when |Vnat| = pan, 
| 
∧2(Vnat)| = pa(n−1)n/2, |S2(Vnat)| = pa(n+1)n/2 and |U2(Vnat)| = pan

2/2.
We also need to consider some exceptional cases. In this context X = Spin+

10(q)
appears acting on one of the half-spin modules, again considered as a GF(p)X-module 
and simply denoted half-spin. For X the quasisimple group E6(q), there are two natural 
modules over GF(p), both of dimension 27a where q = pa. In this situation, we denote 
these modules by q27. Similarly, 26 denotes one of the two faithful GF(2)-modules of 
dimension 6 for 3.Alt(6). We also call the dual module of a natural module a natural 
module. The same principle applies for all the modules above. See the discussion about 
this in [15, Section A.2].

One of the main objectives of this section is to prove Theorem A. As we have already 
remarked in the introduction, the theorem has already been proved for L ∈ VL which 
satisfies the wreath product case [15, Theorem A (3)]. We now will prove a little bit 
more. We will show that Theorem A holds if VLwreath �= ∅. Recall that the unambiguous 
wreath product cases and corresponding ambiguous wreath product cases are explained 
just before the statement of the main theorem in [24].

Lemma 4.1. Assume there exists L ∈ VL(S) with L in the unambiguous wreath product 
case. Then

VL(S) = VLwreath(S)

and Theorem A holds.

Proof. The main theorem in [24] characterises the groups which have L ∈ VL(S) with 
L in the unambiguous wreath product case. By [24, Proposition 3.5], we have that 
L◦ ∼= O+

4 (2), ΓL2(4) or SL2(4) and L ∈ VLwreath(S). In all cases L◦S ∈ VLmin
wreath(S). 

Thus Theorem A holds for L.
We now will show VL(S) = VLwreath(S), which then proves the lemma.
Assume that L◦ ∼= O+

4 (2), then by [24, Proposition 4.1] we have G ∼= Sym(8), Sym(9)
or Alt(10) and Q ∼= Dih(8). If G ∼= Sym(8) or Sym(9), then there is just one maximal 
element M ∈ LG(S) with M �= L. This group is the normalizer of Q and so the claim 
holds in this case. In case of G ∼= Alt(10) again we have just one maximal group M ∈
LG(S) \ {L}, M ∼= 24O−

4 (2), where YM is the natural module. Further NG(Q) ≤ M and 
so M /∈ VL(S). Thus VLwreath(S) = VL(S) in this case as well.

Assume that L◦ ∼= ΓL2(4). Then by [24, Proposition 5.1] we have G ∼= Mat(22) or 
Aut(Mat(22)). By [7, Table 5.3c] all elements in LG(S), which are not contained in L
are contained in the subgroup M ∼= 24.Alt(6) or 24.Sym(6), respectively. In both case 
NG(Q) ≤ M and so M � VL(S). Hence we have also VL(S) = VLwreath(S) holds in 
these cases.

Assume finally that L◦ ∼= SL2(4). By [24, Proposition 6.2], |YL : VL| = 2 and G ∼=
Aut(Mat(22)) again. Furthermore we have that NG(Q) ∼= 24.Sym(6), which again shows 
that VLwreath(S) = VL(S) holds. �
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Table 2
The possibilities for (L◦, p, VL).

L◦ p VL LST Thm. A

(1) SLn(q), n ≥ 2 p Vnat (1), (3), (6)
(2) Sp2n(q), n ≥ 2 or Sp4(2)

′ 2 Vnat (2)
(3) Ω±

n (q), n ≥ 5 or (n,±) = (4,+) p Vnat (3), (5), (10)(5, 6, 7)
(4) SLn(q)/〈(−In)n−1〉, n ≥ 5 p

∧2(Vnat) (7)(1)
(5) SLn(q)/〈(−In)n−1〉, n ≥ 2 p odd S2(Vnat) (7)(2)
(6) SLn(q2)/Z, n ≥ 2 p U2(Vnat) (7)(3)

Z = 〈λIn | λ ∈ GF(q2), λn = λq+1 = 1〉
(7) Spin+

10(q) p half-spin (8)(1)
(8) E6(q) p q27 (8)(2)
(9) 3.Alt(6) 2 26 (9)(1)
(10) 3.Sym(6) 2 26 (9)(1)
(11) Mat(22) 2 Golay 210 (9)(2)
(12) Mat(24) 2 Todd 211 (9)(3), (10)(8)
(13) Mat(24) 2 Golay 211 (9)(3)
(14) Mat(11) 3 Golay 35 (9)(4)
(15) Aut(Mat(22)) 2 Todd 210 (10)(2)
(16) 2.Mat(12) 3 Golay 36 (10)(3)
(17) (SLm1 (q) ⊗ SLm2 (q))/Z p Vnat1 ⊗ Vnat2 (6)

Assume that there is L ∈ VL(S), which is in the ambiguous wreath product case. 
From [24], this means that L◦ ∼= SL2(q) or q = p = 2 and L◦ ∼= Ω+

4 (2) and in both cases, 
YL is the natural L◦-module and so L ∈ VLlin ∪ VLorthsymp.

Thus from here on, to prove Theorem A, we may assume that no member of VL(S)
is in the unambiguous wreath product case. In particular, this has the consequence that 
no member of VL satisfies the weak wreath product case [15, Theorem A (4)].

We now list the triples (L◦, p, VL) that the Local Structure Theorem requires that we 
examine in order to prove Theorem A.

Proposition 4.2 (Case Division for the Global Structure Theorem). Assume that p is a 
prime, G is a finite Kp-group which contains a large subgroup and L ∈ VL. Then the 
triple (L◦, p, VL) and its location in the Local Structure Theorem (LST) is as described 
in Table 2. In particular, in each case VL is an irreducible L◦-module.

Proof. We use our standard notation and apply [15, Theorem A] to check which cases 
specify that VL �≤ Q (Q• in [15, Theorem A]). In Table 2, the final column indicates to 
which of the 10 outcomes of [15, Theorem A] a particular line in the table corresponds. 
After observing that case [15, Theorem A (10)(1)] does not appear as there YL ≤ Q

since YL is not characteristic p-tall in G, there are just three cases which require further 
discussion. These are the wreath product cases [15, Theorem A(3) and (4)] and the tensor 
product case [15, Theorem A (6)]. We have already mentioned that in the wreath product 
case, we have repositioned two families of possibilities. The first is that L◦ ∼= SL2(q) and 
VL is the natural module, this is included in line (1) here (and hence the requirement 
n ≥ 2) and the other is that L◦ ∼= Ω+

4 (2) and VL is the natural module and this 
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case is now included in row (3). For the tensor product case which is listed as (6) in 
[15, Theorem A] we adopt their notation. In particular, L = L1L2 with L1/CL(YL) ∼=
SLm1(q), L2/CL(YL) ∼= SLm2(q), m1, m2 ≥ 2 and YL is the tensor product of two 
natural modules. The first possibility listed in [15, Theorem A (6)(c)] is that L◦ ∼= O+

4 (2)
and YL is the natural module. This case can also be regarded as being in the wreath 
product case and in that guise is handled in [24] and so is not included here. The 
next possibility is that L◦CL(YL) = L1 (or L2). In this case L1 is a normal subgroup 
of L and we set L0 = L◦S = L1S. Then YL0 = CYL

(S ∩ L2) is the natural module 
for L◦

0CL1(YL1)/CL1(YL1). Since [L1, L2] ≤ CL(YL), and L◦CL(YL) = L1, we obtain 
L2 ≤ NG(Q) as Q is weakly closed in S with respect to L. So YL is just the normal 
closure of YL1 under L2 and therefore YL � Q if and only if YL1 � Q. Thus this 
configuration is the one described in item (1) of Table 2. The final possibility is listed in 
line (17) of Table 2 if (t1, t2) �= (2, 2) and otherwise it is included in line (3) as L ∼= Ω+

4 (q)
and VL is the natural module. �
Lemma 4.3. Suppose that K ∈ VL(S) and L ∈ LK(S) with L � NG(Q). If VL ≤ Q, then 
L◦ ∼= SLn(q) for some n and q and VL = Vnat.

Proof. As VL ≤ Q and K ∈ VL(S), we have VL �= VK . Since the statement concerns L◦, 
and YL◦S ≤ YL ≤ Q by Lemma 3.1 (v), we may replace L by L◦S.

We apply [15, Lemma 1.56(a)] first to K. Thus there exists M ∈ MG(S) and K∗ ≤ M

such that

S ≤ K∗, YK = YK∗ ,KCG(YK) = K∗CG(YK) and K◦ = (K∗)◦.

Since L = L◦S and L◦ ≤ K◦ = (K∗)◦, we have L ≤ M . In particular, [15, Theorem A]
applies to L and M . As YK = YK∗ and (K∗)◦ = K◦, we obtain YK ≤ YM and VK ≤ VM . 
Hence M ∈ VL(S). We consider each of the cases in [15, Theorem A].

In the linear case, [15, Theorem A(1)], we have the claimed outcome.
In the symplectic case, [15, Theorem A(2)], L◦ ∼= Sp2n(q) and n ≥ 2 or L◦ ∼= Sp4(2)′. 

As VL �= VM , [15, Theorem A(2)(d)] applies to give VL � Q, a contradiction.
Similarly, in the wreath product case, [15, Theorem A(3)(b) and (c)] yields L◦ ∼=

SL2(q) and YL = VL is the natural module.
In the weak wreath product case, [15, Theorem A(4)], M satisfies the wreath product 

case with M
◦

� SL2(q). However, we have already remarked that this case cannot occur.
In conclusions [15, Theorem A(5)–(9)], VL � Q. In case [15, Theorem A (10)], then 

either VL = VM or VL �≤ Q, both of which are impossible
This concludes the inspection of the cases in [15, Theorem A] and proves the 

lemma. �
Lemma 4.4. Suppose that L ∈ VLlin(S) ∪ VLorthsymp(S). Then

L◦ ∩NG(Q) = NL◦(CVL
(S ∩ L◦))
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Table 3
The structure of NL◦ (CVL

(S ∩ L◦)).

L◦ Structure of NL◦ (CVL
(S ∩ L◦))

Ω±
n (q), n ≥ 4, (n,±) �= (4,+) qn−2.Ω±

n−2(q).(q − 1)
Ω+

4 (q) q2.(q − 1)2/ gcd(q − 1, 2)
Ω3(q), q odd q.(q − 1)/2
Sp2n(q), n ≥ 2 and q even q2n−1.Sp2n−2(q).(q − 1)
Sp4(2)

′ Sym(4)
SL2(q) q.(q − 1)

Table 4
The action of L◦ ∩ NG(Q) on VL and Q.

L◦ |CVL
(Q)| |(VL ∩ Q)/CVL

(Q)| irr. Q irr.

Ω±
n (q), (n,±) �= (4,+) q qn−2 yes yes

Ω+
4 (q) q q2 no no

Sp2n(q), n ≥ 2 q q2n−2 yes no
Sp4(2)

′ 2 22 yes yes
SL2(q) q 1 - yes

and the structure of NL◦(CVL
(S ∩ L◦)) is as described in Table 3. In particular, Q is 

normalized by NL◦(CVL
(S ∩ L◦)) and

Op(NL◦(CVL
(S ∩ L◦))) ≥ Q > 1.

Proof. Since Q ≤ L◦, CVL
(S ∩ L◦) ≤ CVL

(Q) ≤ Z(Q) and so, as Q is large, then 
NL◦(CVL

(S∩L◦)) ≤ NG(Q). Since VL is a natural L◦-module, we have NL◦(CVL
(S∩L◦))

is a maximal parabolic subgroup of L◦. As L �≤ NG(Q) it follows that L◦ ∩ NG(Q) =
NL◦(CVL

(S ∩ L◦)). The information in Table 3 follows from the structure of point sta-
bilisers when acting on natural modules as given in [15, Lemma B.28] for example. Note 
here that Ω±

n (q) for n ≥ 4 is transitive on singular vectors where as Ω3(q) with q odd, 
has two orbits on singular vectors. �

For each possibility for L◦ and VL in Table 3, columns 2 and 3 of Table 4 give
|CVL

(Q)| and |(VL ∩Q)/CVL
(Q)|. In addition, column 4 of Table 4 indicates whether or 

not L◦ ∩ NG(Q) acts irreducibly on (VL ∩ Q)/CVL
(Q) and the final column gives the 

same information for the action of L◦ ∩NG(Q) on Q.

Lemma 4.5. Assume that L ∈ VLlin(S) ∪VLorthsymp(S) and set X = CVL
(S∩L◦). Then 

Q = Op(NL◦(X), CVL
(Q) = X has order q, VL ∩ Q = [VL, Q], |ṼL| = q and NL◦(X))

acts irreducibly on ṼL. In particular, the information presented in Table 4 is correct.

Proof. Observe that QOp(L) is normal in L ∩NG(Q) = NL◦(X) and so Q is normal in 
NL◦(X) and Q �= 1 by Lemma 4.4.
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Recall from Lemma 3.1 (vi) that VL is a Q!-module for L with respect to Q. We begin 
by considering L ∈ VLorthsymp(S) and |VL| ≥ q4. Then, as VL is a natural L◦-module, 
we may apply [15, Lemma B.37]. We note that the fact that L◦ ∼= Ω±

n (q), Sp2n(q) or 
Sp4(2)′ implies that L◦ ≤ Cl�(VM )� = H� where we have temporarily adopted the 
notation of [15, Page 268] to ease the application of [15, Lemma B.37]. In particular, 
Q ≤ H� ∼= Ω±

2n(q), Sp2n(q). This means that the exceptional cases [15, Lemma B.37 
(3),(4), (5) and (6)] do not occur as in these instances Q is not contained in H� or 
L
◦ ≤ Q

H�

is too small. Thus [15, Lemma B.37 (1) or (2)] hold and this shows that 
CV (Q) = X and Q = Op(NL

◦(X)) in all these cases. Furthermore, |VL/[VL, Q]| = q and 
|[VL, Q]/X| = qn−2 if L◦ is orthogonal and q2n−2 if L◦ is symplectic or Sp4(2)′.

If L◦ ∼= Ω3(q), or L ∈ VLlin(S), then NL◦(X) = NL◦(S ∩ L◦) acts irreducibly on 
S ∩ L◦ and so Q = S ∩ L◦ = Op(NL◦(X)). Furthermore, in both cases we have |X| =
q = |VL : [VL, Q]| with [VL, Q] : X| = q when L

◦ ∼= Ω3(q).
Since NL

◦(Q) acts irreducibly on VL/[VL, Q] which has order q and VL ∩ Q is nor-
malized by NL◦(Q), VL > VL ∩ Q ≥ [VL, Q] implies |ṼL| = q. This establishes the 
main statements of the lemma and so it just remains confirm the details in the fourth 
column of Table 4. By [15, Lemmas B.28 (b) and (c)] if L◦ ∼= Sp2n(q), n ≥ 2, 
or Ω±

n (q) with (n, ±) �= (4, +), [VL, Q]/CVL
(Q) is an irreducible natural module for 

NL◦(CVL
(S ∩L◦))/Q. Since CVL

(Q) = [VL, Q] for L◦ ∼= SL2(q), we have established row 
1,3 and 5 of Table 4. If L◦ ∼= Ω+

4 (q), [VL, Q]/CVL
(Q) is the natural module for Ω+

2 (q) by 
[15, Lemmas B.28 (d)] and, as this group does not act irreducibly on the natural module, 
the information provided in row 2 of Table 4 is correct. To provide the information in 
row 4, we may calculate explicitly with Sp4(2)′ acting on VL. �
Corollary 4.6. Suppose that L ∈ VLorthsymp(S). Then [VL, Q] = VL∩Q, and [VL, Q, Q] =
CVL

(Q). In particular, Q is not abelian and Q does not act quadratically on VL.

Proof. By Lemma 4.5, Q = Op(NL◦(CVL
(S ∩ L◦))) and [VL, Q] = VL ∩ Q. Since VL is 

the natural L◦-module, we have [VL ∩Q, Q] = CVL
(Q) by applying [15, Lemma B.28] or 

by calculation if L◦ ∼= Sp4(2)′. This proves the claim. �
Lemma 4.7. Suppose that L ∈ VL(S). Then L◦S ∈ VL(S).

Proof. We know from Lemma 3.1(iii)(c) and (v) that L = L◦NL(Q) and VL◦S ≤ VL. 
Therefore, as VL is an irreducible L◦-module by Proposition 4.2, we have

VL = 〈V L
L◦S〉 = 〈(VL◦S)L

◦NL(Q)〉 = 〈(VL◦S)NL(Q)〉.

Since L ∈ VL(S), we conclude that VL◦S �≤ Q which means that L◦S ∈ VL(S). �
Lemma 4.8. If M ∈ VLmin(S), then M = M◦S = NM (S ∩ CM (YM )), S ∩ CM (YM ) =
Op(M), CM (YM ) is p-closed and YM = Ω1(Z(Op(M))).
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Proof. As M ∈ VLmin(S), Lemma 4.7 implies M = M◦S. In particular, CM (YM ) is 
p-closed. Employing [15, Lemma 1.24 (k)] now gives YM = Ω1(Z(Op(M))). �
Lemma 4.9. Suppose that L ∈ VL(S) and that there exists a unique U ≤ L normalized 
by S and containing (S ∩L◦)CL(YL) minimal with the property that US ∈ VL(S). Then 
U◦S is the unique member of VLmin(S) contained in L.

Proof. Suppose that M ∈ VLmin(S), M ≤ L. Then Lemma 4.8 implies that M =
M◦S ≤ L◦S. Let U∗ = M◦(S ∩ L◦)CL(YL). Then U∗ is normalized by S, contains 
(S ∩ L◦)CL(YL) and YM ≤ YU∗S by [15][Lemma 1.26(f)]. Hence U∗S ∈ VL(S) and so 
U ≤ U∗ by the uniqueness of U . It follows that

U◦ ≤ (U∗)◦ = (M◦)◦ = M◦.

Since U◦S ∈ VL(S) by Lemma 4.7 and M = M◦S ∈ VLmin(S), we have M = U◦S. 
This proves the lemma. �
Lemma 4.10. Let L ∈ VLlin(S) ∪ VLorthsymp(S). If M ∈ VL(S) with M ≤ L, then 
M◦ = L◦. In particular, L◦S ∈ VLmin

lin (S) ∪ VLmin
orthsymp(S) and L◦S is the unique 

member of VLmin(S) contained in L.

Proof. Since M ≤ L, M◦ ≤ L◦ and VM ≤ VL by Lemma 3.1 (v). Assume M◦ <

L◦. Then M◦(S ∩ L◦)/Op(L◦) is a proper subgroup of L◦/Op(L◦). As L◦/Op(L◦) is a 
group of Lie type in characteristic p, the Borel-Tits Theorem [7, Theorem 2.6.7] implies 
Op(M◦(S ∩L◦))Op(L◦)/Op(L◦) �= 1. Therefore VM ≤ CVL

(Op(M◦(S ∩L◦))) < VL with 
CVL

(Op(M◦(S ∩ L◦))) a GF(q)-subspace of VL which is normalized by Q. But then 
Lemma 4.5 and Table 4 imply

VM ≤ CVL
(Op(M◦(S ∩ L◦))) ≤ [VL, Q] = VL ∩Q ≤ Q.

This contradicts M ∈ VL(S) and so we conclude that M◦ = L◦. �
We are now going to prove Theorem A and at the same time verify Table 1.

Proof of Theorem A. We prove parts (i) and (ii) together. Recall that by Lemma 4.1
we may assume that VLwreath = ∅. By Lemma 4.8, CML

(YML
) is p-closed and YML

=
Ω1(Z(Op(ML))). Hence the corresponding parts of Theorem A (i) hold once we have 
found ML.

Set

S0 = S ∩ L◦CL(YL),

J = NL◦CL(YL)(CYL
(S0))).
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We investigate the cases described in Proposition 4.2. We first consider the tensor product 
case described in the final line of Table 2. Thus L◦ = L1L2 with Li

∼= SLmi
(q) for i = 1, 2. 

As YL = VL is the tensor product module for L◦, we have VL = W1 ⊗W2 where Wi is a 
natural Li-module. We calculate that Op′(J) has shape

(qm1−1.SLm1−1(q)) × (qm2−1.SLm2−1(q))

and, as L◦ = L1L2, Q = Op(J).
Select subgroups P1 of L1 containing S0 ∩ L1 and P2 of L2 containing S0 ∩ L2 such 

that P1 �≤ J , P2 �≤ J and, for i = 1, 2, Pi/Op(Pi) ∼= SL2(q). Notice that these subgroups 
are uniquely determined. Furthermore, as S normalizes J , P1P2 is normalized by S. Set 
ML = (P1P2)◦S. By construction (ML/CML

(YML
))◦ ∼= Ω+

4 (q) and YML
= VML

is the 
corresponding natural module. Hence ML ∈ VLorthsymp(S) by Lemma 4.3. Therefore 
Lemma 4.9 implies that ML is the unique member of VLmin(S) contained in L. This 
completes the analysis of the tensor product case in Table 2.

Assume that Table 2 (1) holds. Then L◦ ∼= SLm(q) and VL is the natural module. 
Furthermore, VL = YL by [15, Theorem A(1)(b)]. We may take m > 2 as otherwise 
we define ML = L◦S and the conclusion of the lemma holds by Lemma 4.10. As VL

is the natural L◦-module, Op′(J) has shape qm−1.SLm−1(q). Hence there is a unique 
subgroup U of L◦CL(YL) containing S0CL(YL) with U/Op(U) ∼= SL2(q) such that U
is not contained in NG(Q). As S normalizes J and NG(Q), we know S normalizes U . 
Because J acts irreducibly on VL/CVL

(S0), we have

VL = 〈(VUS)J〉 = 〈(VUS)NL(Q)〉.

In particular, as VL �≤ Q, VUS �≤ Q which means that US ∈ VL(S). Thus setting 
ML = US, Lemma 4.9 applies to give ML is the unique member of VLmin(S) contained 
in L. Furthermore, as VML

≤ VL, we have that VML
= YML is the natural M -module 

where M◦
L
∼= SL2(q). That is ML ∈ VLmin

lin . This establishes line (2) of Table 1.
Lines (2) and (3) of Table 2 are the symplectic and orthogonal cases and these have 

been investigated in Lemma 4.10. In particular, in the case of line (2) of Table 2, we 
obtain line (3) of Table 1 and, when L◦ ∼= Sp4(2)′, Lemma 3.7 implies that VML

= YML

and this is line (4) of Table 1. If (3) of Table 2 holds and VL = YL, we have line (5) of 
Table 1 whereas the cases in which YL > VL are listed separately in lines (19), (20) and 
(21) of Table 1.

We next explore the non-natural SLn(q)-cases and the exceptional cases. These pos-
sibilities are enumerated in lines (4) to (8) of Table 2. In each case, J is a maximal 
parabolic subgroup of L◦ and so there is a unique P ∈ LL(S) with P �≤ NG(Q) and 
P/Op(P ) ∼= SL2(q).

If (5) or (6) of Table 2 holds. Then VPS = YPS ≤ YL0S is the natural PS/CPS(YPS)-
module where P ◦ ∼= Ω3(q), p odd in the first case and P ◦ ∼= Ω−

4 (q) in the second 
case. Since L ∈ VL(S), Lemma 4.3 implies VPS �≤ Q. Hence, by Lemma 4.10, P ◦S ∈
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VLorthsymp(S) and so we have ML = P ◦S in these cases and furthermore ML is unique 
by Lemma 4.9. These possibilities are listed in lines (7) and (8) of Table 1 respectively.

In case (4), (7) and (8) of Table 2, we have YL = VL (see [15, Theorem A(7)(1), 
(8)]). In this case, VPS is the natural P ◦-module and P ◦ ∼= SL2(q). The subgroup P
corresponds to the second node of the An−1 Coxeter diagram in case (4), to one of the 
end nodes on the short arms in the D5 Coxeter diagram in case (7) and to one of the 
end nodes on the long arms in the E6 Coxeter diagram in case (8). Let M ≥ P be such 
M ≤ L and

M◦ ∼=

⎧⎪⎪⎨
⎪⎪⎩

Ω+
6 (q) case (4)

Ω+
8 (q) case (7)

Ω+
10(q) case (8).

Notice that this choice of M is unique and minimal subject to the requirement the 
M◦/Op(M◦) is an orthogonal group. In each case YM ≤ YL is the natural M◦-module. 
By Lemma 4.3, VMS �≤ Q and so MS ∈ VL(S). Now Lemma 4.10 implies that M◦S ∈
VLmin

orthsymp(S) is the unique member of VLmin(S) in L. These cases are listed in Table 1
lines (6), (9) and (10).

Consider lines (9) and (10) of Table 2. Then L◦ ∼= 3.Alt(6) or 3.Sym(6), YL = VL

is an irreducible GF(2)-module of dimension 6. On restriction to O2(L◦), VL can be 
regarded as a 3-dimensional module over GF(4). There are subgroups N1 and N2 in 
O2(L◦) containing S ∩ L◦, such that N1 is the normalizer of a 1-dimensional and N2 is 
the normalizer of a 2-dimensional GF(4)-subspace of YL. We have

N1CL(YL)/CL(YL) ∼= N2CL(YL)/CL(YL) ∼= 3 × Sym(4).

Furthermore, O2′(N1) centralizes CYL
(S) and

L◦S = 〈N1, N2〉S = 〈O2′
(N1), N2〉S.

Since O2′(N1) ≤ NG(Q), N2 �≤ NG(Q). In addition, have YN2 ≤ YL and YN2 has order 
24.

If L◦
0
∼= 3.Sym(6), then, as

Q �≤ O2(N1/CL0(YL0)) ∩O2(N2/CL0(YL0)),

we have Q �≤ Z(S). Hence Q = O2(N1/CL0(YL0)). In particular,

N◦
2CN2(YN2)/CN2(YN2) ∼= Ω+

4 (2)

and YN2 is the corresponding natural module. Hence N2S ∈ VLorthsymp(S) and N◦
2S ∈

VLmin
orthsymp(S) by Lemma 4.10.
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If L◦
0
∼= 3.Alt(6), then L0 ∼= 3.Sym(6) by [15, Theorem A (9)(1)] and so YN2 is a 

natural module for

N◦
2CN2(YN2)/CN2(YN2) ∼= SL2(2).

Thus N◦
2S ∈ VLmin

lin (S), which gives line (12) of Table 1.

Next consider Table 2 line (11). Then L◦ ∼= Mat(22) and YL is the Golay module of 
order 210. We argue as in [15, Chapter 10.2, page 237, Case 10]. The structure of YL

restricted to subgroups of LL◦(S ∩ L◦) can be found in [16, Lemma 3.3]. In particular, 
this shows that J ∼= 24:Alt(6) and that there is a unique subgroup U with U ∼= 24:ΓL2(4)
such that YU is the O−

4 (2)-module. Furthermore, U◦CU (YU )/CU (YU ) ∼= Ω−
4 (2). By 

Lemma 4.3, YU �≤ Q and so U◦S ∈ VLmin
orthsymp(S) is unique in L. This case is listed in 

Table 1 line (13).
If we have Table 2 line (12) or (13), then L◦ ∼= Mat(24). If YL is the simple Golay code 

module, then arguing as in [15, Chapter 10.2, Case 11] we obtain line (14) in Table 1. 
If VL0 is the Todd module, then the argument in [15, Chapter 10.2, Case 12] applies to 
give line (15) in Table 1 with |YML

: VML
| ≤ 2.

If Table 2 line (14) holds, then the justification in [15, Chapter 10.2, Case 13] yields 
Table 1 line (16).

Finally, in the case of line (15) of Table 2, arguing as in [15, Chapter 10.2, Case 14]
delivers Table 1 line (17) and, if line (16) of Table 2 holds, then [15, Chapter 10.2, Case 
15] gives line (18) of Table 1.
This completes the investigation of Table 2 and proves that for each such L ∈ VL(S) there 
is a unique minimal ML ∈ VLmin

lin (S) ∪ VLmin
orthsymp(S). In particular, both Theorem A

(i) and (ii) hold.

(iii) By the construction above we have that L0 = 〈ML, NG(Q) ∩ L0〉. As ML ≤ L̂, 
we have that ML = ML̂. This now shows that

〈L,NG(Q)〉 = 〈ML, NG(Q)〉 = 〈ML̂, NG(Q)〉 = 〈L̂,NG(Q)〉. �
From Theorem A we now get the following corollary, which is Theorem B:

Corollary 4.11. VLmin = VLmin
lin ∪ VLmin

orthsymp ∪ VLmin
wreath.

5. Preliminary results for the proof of Theorem 1.2

As explained in the introduction, to prove Theorem C it suffices to prove Theorem 1.2. 
Hence for the remainder of this article we assume

Hypothesis 5.1. G is a finite Kp-group, S a Sylow p-subgroup of G, Q ≤ S is a large 
subgroup of G with Q = Op(NG(Q)) and M ∈ VLmin

lin (S).
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This means M ∈ VLmin
lin (S) corresponds to the minimal configurations listed in Table 1

lines (2) and (12). So, by definition, we have M◦ ∼= SL2(q) and YM = VM is the natural 
M◦-module. We begin by enumerating some fundamental facts about the configuration, 
which have mostly already been established. If z ∈ Z(Q)# and x = zg for some g ∈ G, 
then Qg is the unique conjugate of Q which is normalized by CG(x) by Lemma 3.1(i). 
For this reason we will write Qx = Qg and observe that Q = Qz. We also define

QM = Op(M).

Lemma 5.2. The following hold:

(i) M = M◦S and M◦ ∩NG(Q) = NM◦(CVM
(S ∩M◦)) = NM◦(QQM ).

(ii) QQM ∈ Sylp(M◦QM ) and |Q : Q ∩QM | = q.
(iii) VM = YM = Ω1(Z(QM )) and |CVM

(Q)| = |[VM , Q]| = |ṼM | = q.
(iv) If x ∈ M◦ \NG(Q), 〈Q, Qx〉QM = M◦QM .
(v) Q is elementary abelian and a trivial intersection set in G.
(vi) Q is a strong dual F -module with strong dual offender ṼM .
(vii) Q is a strong F -module with strong offender ṼM .
(viii) NG(VM )◦ = M◦.

Proof. That M = M◦S and VM = Ω1(Z(QM )) is included in Lemma 4.8. Part (i) now 
follows from Lemma 4.4. Part (ii) is stated in Lemma 4.5. In particular, VM ∩ Q is 
normalized by M◦ ∩NG(Q) and so VM ∩Q = CVM

(Q) has order q and |ṼM | = q. Hence 
(iii) holds.

Since SL2(q) is generated by any two of its Sylow 2-subgroups, (iv) follows from (i) 
and (ii).

By Lemma 4.5 and Table 4, we have that [Q, VM ] = CVM
(Q) ≤ Z(Q) and Φ(Q) ≤ QM . 

If Φ(Q) �= 1, then, as Z(S) ∩Φ(Q) �= 1, we have that Φ(Q) ∩VM �= 1 by Lemma 3.1(iv)(b). 
Since NM (QQM ) normalizes Q by Lemma 3.1(i), the irreducible action of M◦ ∩NG(Q)
on CVM

(Q) yields Φ(Q) ∩ VM = Z(Q) ∩ VM . Therefore [VM , Q] ≤ Φ(Q). However, this 
means

VM ≤ CNG(Q)(Q/Φ(Q)) ≤ Op(NG(Q)) = Q,

which is a contradiction as VM �≤ Q. Therefore Q is elementary abelian. As Q = Z(Q)
is large it is a trivial intersection set in G by Lemma 3.1 (ii). This proves (v).

As VM is the natural M◦-module, we have |[Q, VM ]| = |ṼM | = q by (iii) and [Q, v] =
[Q, VM ] for all v ∈ VM \ Q. Since [Q, VM , VM ] = 1, Q is a strong dual F -module with 
offender ṼM in the sense of Definition 2.1. This is (vi).

Recall from (iii) that |[Q, VM ]| = |ṼM |. Hence [12, Lemma 1.5 (d)] and part (vi) yield 
ṼM is a strong offender on Q. This is (vii).

Finally, as M acts transitively on V #
M , (vii) follows by [15, Lemma 1.57(c)]. This proves

(viii). �
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An important role in the proof is played by the following subgroup

UM = 〈(Q ∩QM )M
◦〉.

From here on we fix x ∈ M◦ \NG(Q). With this fixed we have 〈Q, Qx〉QM = M◦QM by 
Lemma 5.2 (iv).

Lemma 5.3. The subgroup UM = (QM ∩ Qx)(QM ∩ Q) is elementary abelian and con-
tains all the non-central M◦-chief factors in QM . Furthermore, Qx ∩ QM ∩ Q = 1 and 
[Q, QM ] = CQ(UM ) = Q ∩QM .

Proof. We have that M◦ is Q-minimal as defined in [15, Definition 1.36]. Further, by 
Lemma 5.2 (v), Q is an elementary abelian trivial intersection set in G and, by Lemma 3.1
(iv)(b), Z(M◦) = 1. We intend to apply [15, Lemma 1.43] with Y = Q, UM = A and 
M◦ = L. Then [15, Lemma 1.43(e)] implies UM = (Q ∩ QM )(Qx ∩ QM ) and by [15, 
Lemma 1.43(a)] UM is elementary abelian. Further, as Q is a trivial intersection set, also 
Qx ∩QM ∩Q = 1. As M◦ = 〈Q, Qx〉, we have [QM , M◦] ≤ UM , so all non-central chief 
factors of M◦ in QM are contained in UM . In particular, [Q, QM ] ≤ UM . By [15, Lemma 
1.43(g)] we have that [UM , Q] = Q ∩ UM , which now implies [QM , Q] = UM ∩ Q =
CQ(UM ). �
Lemma 5.4. Suppose that [VM , Op′(ÑG(Q))] �= 1. Then q = p ∈ {2, 3} and VM = QM

has order p2 and S is extraspecial of order p3.

Proof. By Lemma 5.2(vii), we may apply Lemma 2.4 to ÑG(Q) and ṼM . If |ṼM | ≥ p2, 
then by Lemma 2.4 ṼM centralizes Op′(ÑG(Q)). Thus |VM : CVM

(Op′(ÑG(Q)))| = p. As 
Lemma 5.2 (iii) gives q = |ṼM |, we have

q = |ṼM | = p.

Hence M◦ ∼= SL2(p) and VM induces GF(p)-transvections on Q. Suppose that r �= p is 
a prime and R ∈ Sylr(Op′(ÑG(Q))). By coprime action [2, 18.7], we may assume that 
R is normalized by Q̃M . As ṼM does not centralize Op′(ÑG(Q)), we may additionally 
assume that ṼM does not centralize R. By [2, 23.3], [R, ̃VM ]ṼM

∼= SL2(p) with p ∈ {2, 3}. 
Since QM acts on [R, ̃VM ]ṼM , we see that Q̃M = ṼMCQM

([R, ̃VM ]ṼM ). Therefore VM �≤
Φ(QM ) and so Lemma 3.4 with Lemma 5.2 (iii) implies that VM = QM . It follows that 
|QM | = p2 and S is extraspecial of order p3. �
Lemma 5.5. Suppose L̃ is a component of ÑG(Q) with [ṼM , L̃] �= 1 and let L ≥ Q denote 

its preimage. Then L̃ is the unique component of ÑG(Q) which admits ṼM non-trivially, 
M ∩NG(Q) normalizes L and Q is irreducible as an L-module.
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Proof. By Lemma 5.2(vi) ṼM is a strong dual offender on Q. Application of [12, Lemma 
1.5(c)] implies that ṼM is a best offender on Q, which then by [12, Lemma 2.3(a)] yields 
that ṼM normalizes L̃. By [12, Lemma 2.6] ṼM normalizes any perfect L-submodule 
X = [X, L] in Q. Now [12, Lemma 1.4(b)] implies that [Q, VM ] ≤ X and so

[Q,L] ≤ [Q, 〈V L
M 〉] = 〈[Q,VM ]L〉 ≤ X = [X,L] ≤ [Q,L].

Therefore

[Q,L]/C[Q,L](L) is irreducible and [Q,VM ] ≤ 〈[Q,VM ]L〉 = [Q,L]. (∗)

Assume K̃ �= L̃ is a component of ÑG(Q) which is not centralized by ṼM . Then, by (∗), 
[Q, K] = 〈[Q, VM ]K〉 ≤ [Q, L] and similarly [Q, L] ≤ [Q, K]. Hence [Q, K] = [Q, L]. Since 
[Q, K, L] = 0 by [12, Theorem 1(b)], we now have [Q, L, L] = 0, which is a contradiction 

as L is not a p-group. Hence L̃ is the unique component of ÑG(Q) which is normalized 
and not centralized by VM .

Since M ∩NG(Q) normalizes VM and permutes the components of ÑG(Q) which are 
not centralized by ṼM , M ∩ NG(Q) normalizes L. In particular, QM normalizes L and 
so also normalizes C[Q,L](L). If C[Q,L](L) �= 1, then

VM ∩ C[Q,L](L) = Ω1(Z(QMQ)) ∩ C[Q,L](L) �= 1

by Lemma 5.2 (ii). As M ∩ NG(Q) acts irreducibly on [VM , Q], we deduce [VM , Q] ≤
C[Q,L](L). Since, by (∗), [Q, L] = 〈[VM , Q]L〉, this is impossible. Hence C[Q,L](L) = 1
and [Q, L] is irreducible as an L-module. Since [Q, L] is normalized by M ∩NG(Q) and 
[Q, L] �≤ QM , QQM = [Q, L]QM and Q = [Q, L](Q ∩QM ). Hence, as UM is abelian by 
Lemma 5.3, Q ∩QM = [Q, QM ] = [[Q, L], UM ]. Thus Q = (QM ∩Q)[Q, L] = [Q, L] and 
this proves the claim. �
Lemma 5.6. Suppose that ṼM acts faithfully on a component L̃ of ÑG(Q). Assume that 

L̃ is isomorphic to SLn(pf ) or Sp2n(pf ) with n ≥ 2. Then L̃ = 〈ṼM

ÑG(Q)
〉 ∼= SLn(q), Q

is the natural L̃-module, ṼM is a long root group of L and ŨM = CL̃(Q ∩QM ).

Proof. As L is quasisimple we have that

(n, pf ) �= (2, 2). (∗)

Lemma 5.5 states that Q is an irreducible L-module and L is normalized by M ∩NG(Q). 
By Lemma 5.2 (vi), Q is a strong dual F -module with offender ṼM . Hence Lemma 2.2(i) 
and (∗) imply that Q is a natural module for L̃ and ṼM ≤ L̃.

Let wQ ∈ (ṼM ∩ Z(S̃ ∩ L))#. Then [Q, w] = [Q, VM ] has order q, and so, as Q is the 
natural module, |[Q, w]| ∈ {pf , p2f}. Thus L̃ ∼= SLn(q), Sp2n(q) or Sp2n(√q) and in the 
latter case q is a power of 2.
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Aiming for a contradiction, suppose that L̃ ∼= Sp2n(√q). As Q̃M centralizes [Q, VM ]
and [Q, VM ] contains the 1-space CQ(S ∩ L) ≤ [Q, VM ], no element of QM induces a 
non-trivial field automorphisms on L̃. In particular QM and UM act linearly on Q. By 
Lemma 5.3 [Q, QM ] = Q ∩ QM = CQ(UM ) and we deduce from [18, Lemma 2.53] that 
CQ(UM ) = [Q, QM ] is an isotropic subspace of Q. Since |Q : CQ(UM )| = q, this now 
implies |Q| = q2 and

L̃ ∼= Sp4(
√
q). (+)

Since M = SM◦, we have S/(S ∩ M◦QM ) = S/QQM embeds into Out(M◦QM/QM )
and so is cyclic. Set N = NL(Q ∩QM ) Then Ñ ∼= q3/2 : SL2(

√
q) and so (S ∩N)/QQM

is elementary abelian of order √q. As √q > 2 by (∗) and S/QMQ is cyclic, this is 
impossible. Hence L̃ � Sp2n(√q).

Suppose that L̃ ∼= SLn(q) or Sp2n(q). Then VM induces a group of GF(q)-transvections 
to a point and a hyperplane. As ṼM is normalized by S̃ ∩ L this means that ṼM is 
contained in a root group of L̃. As ŨM centralizes Q ∩QM ≥ [Q, VM ] and |ŨM | = |Q ∩QM |
by Lemma 5.3 we also have ŨM ≤ L̃. Hence L̃ ∼= SLn(q) and CL̃(Q ∩QM ) = ŨM . This 
proves the lemma. �
6. The proof of Theorem 1.2 when QM = VM

In this section we will consider the possibility that QM = VM when Hypothesis 5.1 is 
satisfied. Thus we have

M◦ ∼= SL2(q)

and

QM = VM is the natural M◦-module.

This hypothesis will reveal the conclusion in Theorem C(iv) and also provide some of 
the examples in parts of (i) and (iii) of Theorem C. More precisely we will prove

Proposition 6.1. Assume that Hypothesis 5.1 holds and that QM = VM . Then either

(i) G ∼= Mat(22) or Mat(23); or
(ii) (NG(QM ), NG(Q)) is a weak BN-pair over B̂ = NG(QMQ) of type PSL3(q). More-

over,
(a) if q is even, then F ∗(G) ∼= PSL3(q) or Alt(6); and
(b) if q is odd, then 〈LG(S)〉 = 〈NG(QM ), NG(Q)〉.

We start by providing details about the structure of M .
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Lemma 6.2. Suppose QM = VM . Then one of the following holds

(i) M◦ ∼= q2:SL2(q) ∼= 〈V NG(Q)
M 〉; or

(ii) M◦ ∼= SL2(4), VM is the natural SL2(4)-module and M ∼= Sym(5) and either
(a) NG(Q) ∼= 24.Alt(6); or
(b) NG(Q) ∼= 24.Alt(7).

Proof. If q = 2 or 3, then S ∼= Dih(8) or 31+2
+ and M◦ ∼= q2 : SL2(q). Since Q is abelian 

and large, |Q| = q2 and so we also have 〈V NG(Q)
M 〉 ∼= q2 : SL2(q). So (i) holds when q ≤ 3.

Assume that q > 3. Then application of Lemma 5.4 gives

[ṼM , Op′(ÑG(Q))] = 1.

Hence [E(ÑG(Q)), ̃VM ] �= 1 and Lemma 5.5, implies ÑG(Q) has a unique component 
which is not centralized by ṼM and Lemma 2.4 implies that ṼM acts faithfully on L̃. 
Furthermore Q is irreducible as an L-module. By Lemma 5.2 (vi), Q is a strong dual 
F -module for L̃VM and so Lemma 2.2 yields that either

(a) q = 4 and L̃ ∼= Alt(6) or Alt(7); or
(b) L̃ ∼= SLn(pf ) or Sp2n(pf ) with n ≥ 2.

If (a) holds, then |QM | = 24 and |S̃| ≤ 23. Thus |S| ∈ {26, 27} and consequently ÑG(Q) ∼=
Alt(6) or Alt(7), |Q| = 24 and |S| = 27. Furthermore, |S/QM | = 8 and so M/QM

∼=
Sym(5) and (ii)(a) or (b) holds.

We are left to consider case (b). By Lemma 5.6, L̃ ∼= SLn(q), Q is the natural module 
and ṼM induces GF(q)-transvections. As |Q : Q ∩QM | = |Q : Q ∩ VM | = q = |Q ∩ VM |, 
we have |Q| = q2 and obtain L ∼= SL2(q), which is the configuration in (i). �

The next proposition proves most of Proposition 6.1.

Proposition 6.3. Suppose VM = QM . Then either

(i) G ∼= Mat(22) or Mat(23) and Lemma 6.2(ii) holds; or
(ii) NG(QQM ) = NG(VM ) ∩ NG(Q), and (NG(VM ), NG(Q)) is a weak BN-pair over 

B̂ = NG(QMQ) of type PSL3(q) and Lemma 6.2(i) holds.

Proof. Suppose that Lemma 6.2(ii) holds. In case (ii)(a), Lemma 2.3 states that NG(Q)
splits over Q and so, as Q is large, the centralizer of a 2-central involution is a split 
extension of an elementary abelian group of order 16 by Sym(4). Thus G ∼= Mat(22) by 
[10].

In case Lemma 6.2(ii)(b), we have NG(Q) ∼= 24.Alt(7) contains 24.Alt(6) and so this 
extension also splits by Lemma 2.3. Hence in case (ii)(b), we have that a 2-central 
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involution has a centralizer which is a split extension of 24 by SL3(2). Application of [11]
gives G ∼= Mat(23). We have now proved (i).

Suppose Lemma 6.2(i) holds. Set D = 〈V NG(Q)
M 〉, N = NG(VM ), B0 = NG(Q) ∩ N , 

T = VMQ and B̂ = NG(T ). By construction, we have D is normal in NG(Q) and, by 
Lemma 5.2 (viii), M◦ = N◦ is normalized by N . We claim B̂ = B0. By its definition, 
B0 ≤ B̂. Since Q is weakly closed in T , B̂ ≤ NG(Q). It remains to show B̂ ≤ N . If p = 2, 
then, by [18, Lemma 2.9], VM and Q are the only elementary abelian subgroups of T of 
order q2. Hence, as B̂ normalizes Q, it also normalizes VM . Thus B̂ ≤ N in this case.

Assume that p is odd. Let t ∈ M◦ be an involution with [t, M◦] ≤ QM . Then t ∈
NG(Q) as Q is large. Further t inverts Z = VM ∩ Q = [VM , Q] = T ′ and centralizes 
Q/Z ∼= QQM/QM . As B̂ normalizes Q and Z, this gives B̂ ≤ NG(tQ) and B̂ = CB̂(t)Q. 
As B̂ normalizes T we see that CB̂(t) normalizes [T, t] = VM . Therefore B̂ normalizes 
VM and so B̂ = B0 as claimed.

This proves that (N, NG(Q)) is a weak BN -pair over B̂ and then by [5, Theorem A]
it is of type PSL3(q). �
Lemma 6.4. If Proposition 6.3(ii) holds, then QM is large.

Proof. From Proposition 6.3(ii) it follows that QM = VM and we have the situation 
of Lemma 6.2(i). Set D = 〈V NG(Q)

M 〉. Since CG(QM ) = QM , to prove QM is large, 
we only need to show that NG(U) ≤ NG(QM ) for all 1 �= U ≤ QM . So assume that 
1 �= U ≤ QM . Since M◦ acts transitively on Q#

M by Lemma 6.2, we may assume that 
there exists z ∈ (U ∩ Q)#. Thus CG(z) ≤ NG(Q). Since D acts transitively on Q#, 
we have NG(Q) = CG(z)D and CG(z) ∩ D = QQM as D̃ ∼= SL2(q). Hence CG(z) ≤
NG(QQM ) ≤ NG(QM ) by Proposition 6.3(ii).

Assume that x ∈ NG(U). Then, as M◦ acts transitively on Q#
M , there exists g ∈ M◦ ≤

NG(QM ) such that zg = zx. Hence xg−1 ∈ CG(z) ≤ NG(QM ). Thus x ∈ NG(QM ) and 
so NG(U) ≤ NG(QM ) as required. �

The conclusion of the next lemma also holds when p = 2, but we shall prove much 
more in that case.

Lemma 6.5. Suppose that QM = VM and that p is odd. Then 〈LG(S)〉 = 〈NG(QM ),
NG(Q)〉.

Proof. Set H = 〈NG(QM ), NG(Q)〉. Since p is odd, Lemma 6.2 implies that Proposi-
tion 6.3(ii) holds. Suppose that K ∈ LG(S) and K �≤ H. Since Q is abelian, YK �≤ Q

for otherwise K = NK(YK) ≤ NG(Q) ≤ H as Q is large. Hence K ∈ VL(S). Let 
MK ∈ VLmin(S) be as in Theorem A. If MK ≤ H, then

K ≤ 〈K,NG(Q)〉 = 〈MK , NG(Q)〉 ≤ H
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by Theorem A (iii) and this is impossible. Hence MK �≤ H and MK ∈ VLmin
lin (S) ∪

VLmin
orthsymp(S) by Theorem 1.1 (recall that in the wreath product case of Theorem 1.1 we 

have p = 2). By Corollary 4.6, MK ∈ VLmin
lin (S) and so M◦

K/Op(M◦
K) ∼= SL2(r), r = pb, 

and VMK
is a natural module. In particular, Hypothesis 5.1 applies with MK in place 

of M . Set QMK
= Op(MK) and put D = 〈V NG(Q)

M 〉. Then Q is the natural D̃ ∼= SL2(q)-
module and, as VMK

is normalized by S, VMK
∩ D �≤ Q. Hence [VMK

, Q] ≥ [QM , Q]
and

ṼMK
≤ Q̃MK

≤ CS̃([QM , Q]) = ṼM .

We deduce that r = |[VMK
, Q]| = |[QM , Q]| = q. Therefore VMK

Q = VMQ and QMK
=

VMK
. Now QMK

, QM and Q are all large subgroups contained in QQM by Lemma 6.4. 
In particular, they are all normal in NG(QQM ). Let tD ∈ NG(Q) be an involution which 
inverts Q. Then tD centralizes Q̃M = Q̃MK

. Hence CQQM
(tD) has order q and, as QM

and QMK
are both tD-invariant,

QM = (QM ∩Q)CQQM
(tD) = QMK

,

which is a contradiction as MK �≤ NG(QM ) ≤ H. Hence H = 〈LG(S)〉 as claimed. �
To complete the proof of Proposition 6.1, we just have to investigate Proposition 6.3(ii) 

when q even and prove

Proposition 6.6. Assume that q is even and that Proposition 6.3(ii) holds. Then F ∗(G) ∼=
PSL3(q) or Alt(6).

Hence until the beginning of Section 7 we will assume that we are in the situation 
described in Proposition 6.3(ii) with q even. We start with the smallest possible cases.

Lemma 6.7. If Proposition 6.3(ii) holds with q = 2, then G ∼= PSL3(2) or Alt(6).

Proof. In this configuration we have that CG(Z(Q)) ∼= Dih(8). Furthermore, using 
Lemma 3.6, we easily deduce that G is simple. Now application of [26, Example 2, 
page 231] gives the assertion. �

We now turn to the general case when q > 2 is a power of 2. Set

T = QQM

and continue with D = 〈V NG(Q)
M 〉.

Lemma 6.8. We have T is a Sylow 2-subgroup of both D and M◦. Furthermore, if K ≥
〈D, M◦〉, then all the involutions in M◦ ∪D are K-conjugate.
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Proof. We have that M◦/QM
∼= D̃ ∼= SL2(q) by Lemma 6.2 (i). Thus T ∈ Syl2(M◦) ∩

Syl2(D). As q is even, VM and Q are the only elementary abelian subgroups of T of 
order q2 by [18, Lemma 2.9]. Hence every involution of T is in Q ∪ QM . As all the 
involutions in Q are D-conjugate and all the involutions in QM are M◦-conjugate, the 
claim follows. �

Set

G1 = G(∞).

Lemma 6.9. Assume that Proposition 6.3(ii) holds with q > 2. Then 〈M◦, D〉 ≤ G1, 
T ∈ Syl2(G1) and (NG1(QM ), NG1(Q)) is a weak BN -pair over NG1(T ) of type PSL3(q).

Proof. Let S1 = S ∩ G1. As M◦ and D are perfect, 〈M◦, D〉 ≤ G1. Assume that T /∈
Syl2(G1). Then S1 > T and T is normalized by S1. As S̃1 acts faithfully on D̃, we have 
that S1/T is isomorphic to a cyclic group of outer automorphisms of D̃. Let R be a Hall 
2′-subgroup of ND(T ). Then, as q > 2, R = CD(R) = NRT (R). By a Frattini argument, 
S1D = NS1RT (R)D and S1D/D = NS1R(R)D/D is cyclic. We may suppose that R is 
chosen so that NS1R(R) = NS1(R)R and so NS1(R) is cyclic. Let x ∈ NS1(R) be an 
involution. As NG(T ) = NG(QM ) ∩ NG(Q) by Proposition 6.3, x normalizes both Q
and QM . As x is an involution and |Q| = |QM | = q2, |CQM

(x)| ≥ q and |CQ(x)| ≥ q. 
Notice that x induces a field automorphism on M◦/QM and so T = CS1(QM∩QM ). Thus 
CQM

(x) �≤ Q and CQ(x) �≤ QM . Therefore CQM
(CQ(x)) = Q ∩QM and so CQM

(x)CQ(x)
is non-abelian. Hence

1 �= (Ω1(CS1(x)))′ ≤ Z(T ) = Q ∩QM ≤ Q.

Since Q is large, NG(CS1(x)) ≤ NG(Q). In particular, CS1(x) ∈ Syl2(CG(x)) and so x is 
not G-conjugate to an element of T by Lemma 6.8. Now application of [6, Proposition 
15.15] yields that G1 has a subgroup of index 2, a contradiction. Hence T ∈ Syl2(G1). 
Since Q is large in G1, we can now apply Proposition 6.3 to G1 and obtain the statement 
of the lemma. �

We now define B = NG(T ), P1 = DB ∩G1 and P2 = M◦B ∩G1. Then O2′(P1) = D, 
O2′(P2) = M◦ and P1 ∩ P2 = B ∩G1 = NG1(T ).

Lemma 6.10. For i = 1, 2, we have NG1(Pi) = Pi.

Proof. We have that NG1(P1) normalizes D and NG(P2) normalizes M◦. Hence by the 
Frattini argument

P1 ≤ NG1(P1) = DNNG (P1)(T ) ≤ D(P1 ∩ P2) ≤ P1
1
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and

P2 ≤ NG1(P2) = M◦NNG1 (P2)(T ) ≤ M◦(P1 ∩ P2) ≤ P2

Hence NG1(Pi) = Pi for i = 1, 2. �
We have that (P1, P2) is a weak BN -pair over P1 ∩ P2. Set P = 〈P1, P2〉 and denote 

by Γ = Γ(P ; P1, P2, P1 ∩ P2) the corresponding coset graph. For elementary properties 
of this coset graph and the amalgam method see [15, Appendix E]. In particular, the 
vertices of Γ are the right cosets of P1 and P2 in P and two vertices form an edge if and 
only if they are distinct and have non-empty intersection. The graph Γ is connected and 
the set of right cosets of P1 and the set of right cosets of P2 forms a bipartition of Γ. The 
group P acts faithfully on Γ by right multiplication. This action is transitive on the parts 
of the bipartition and on the edges of Γ. If ν is a vertex of Γ, then we denote by Pν the 
stabilizer of ν in P . The general theory tells us that Pν is P -conjugate to either P1 or P2. 
In addition, we denote the vertex stabilized by P1 by 1 and the vertex stabilized by P2

by 2. The action of Pi on the neighbours of the vertex i, is exactly the action of Pi on the 
cosets on P1 ∩ P2 and so, as |Pi : P1 ∩ P2| = q + 1, this can be identified with the action 
on the projective line. We denote the distance between vertices α, β ∈ Γ by d(α, β). The 
action of P on Γ is called locally n-path transitive if and only if for i ∈ {1, 2}, Pi acts 
transitively on all paths of length n emanating from the vertex i. If γ = (α0, α1, α2, α3)
is a path of length 3, then we say γ is regular if Pα0 ∩ Pα1 ∩ Pα2 ∩ Pα3 acts transitively 
on the neighbours of α0 other than α1 on the neighbours of α3 other than α2.

Lemma 6.11. The group P acts locally 4-path transitively on Γ, there are regular 3-paths, 
and Γ has no cycles of length less than 6.

Proof. This is elementary and is taken from [5, Table on page 98]. �
We have the following

Lemma 6.12. Suppose that ν ∈ Γ \ {1, 2}. Then P1 �= Pν �= P2.

Proof. We may as well suppose that ν = P1g where g ∈ P . So Pν = P g
1 . If Pν = P1, then 

g ∈ P1 by Lemma 6.10. But then ν = P1g = P1 which is the vertex 1, a contradiction. 
If Pν = P2, then P g

1 = P2 and so P1 and P2 are conjugate by an element of NG1(T )
by Sylow’s Theorem. However, Proposition 6.3(ii) gives NG1(T ) normalizes both Q and 
QM . Hence Pν �= P2. �

Let F be a complement to T in NG1(T ). Then, for i = 1, 2, F∩O2′(Pi) is a complement 
to T in NO2′ (Pi)(T ). As q > 2, F is non-trivial. The group F will be fixed in the remainder 
of this section.
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We denote by ΓF the subgraph of Γ which consists of the fixed points of F on Γ. Since 
F ≤ P1 ∩ P2, we obviously have {1, 2} ⊆ ΓF . Let A denote the connected component of 
ΓF which contains {1, 2}.

Lemma 6.13. We have that A is a circuit.

Proof. Suppose that i ∈ {1, 2}. Then Pi = O2′(Pi)F and F ∩O2′(Pi) normalizes exactly 
two Sylow 2-subgroups of O2′(Pi). Because F has odd order, we deduce that F normalizes 
exactly two Sylow 2-subgroups of Pi. Since edge stabilisers are precisely normalizers of 
Sylow 2-subgroups, the result follows. �
Lemma 6.14. Suppose Proposition 6.3(ii) with q > 2 holds. Then there is an involution 
t ∈ Z(Q) and a P -conjugate z of t, such that z normalizes F and acts as a reflection on 
A. Furthermore, z ∈ O2(Pβ) where d(β, 1) = 2 and |[F, z]| = q − 1.

Proof. All the involutions of P1 are conjugate to t by Lemma 6.8. Furthermore, D =
O2′(P1) contains an involution z which inverts F̃ ∩D and so we may suppose that z
inverts F ∩D. Then NFD(F ∩D) = 〈z〉F and [F, z] = F ∩D has order q− 1. As z ∈ P1

and z normalize F , z leaves A invariant. Since z exchanges the two neighbours of 1 fixed 
by F , we conclude that z acts as a reflection on A. Let T ∈ Syl2(P1) be such that z ∈ T . 
Then T = T g for some g ∈ P1. As every involution in T is in Q ∪ Qg

M and z /∈ Q, 
z ∈ Qg

M \Q. Now Qg
M =

⋂
h∈P g

2
(Q ∩Qg

M )h and so we conclude that there exists h ∈ P g
2

such that z ∈ Qg
M ∩Qh. Set β = P1h. Then z ∈ O2(Pβ) and d(1, β) = 2. �

Lemma 6.15. Suppose Proposition 6.3(ii) with q > 2 and let z be as in Lemma 6.14. 
Then z fixes a vertex α opposite to 1 in A.

Proof. The assertion follows directly from Lemma 6.14 as the circuit A has even 
length. �

We refer to [27, page 15] for the definition of a generalized polygon and recall that a 
generalized 3-gon is just the incidence graph of a projective plane.

Lemma 6.16. Suppose Proposition 6.3(ii) with q > 2 holds. Then Γ is a generalized 3-gon.

Proof. We first show that

there are 6-cycles in Γ. (1)

Suppose that α ∈ A is as in Lemma 6.15 and β as in Lemma 6.14. Then z ∈ O2′(Pα)
as z fixes α. By Lemma 6.8 we have a neighbour δ of α not in A such that z ∈ O2(Pδ). 
Furthermore z ∈ O2(Pγ), where γ is the common neighbour of β and 1.
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Recall that by Lemma 6.4, QM is also large in P . In particular, Q and QM are both 
trivial intersection sets in P by Lemma 5.2 (v).

If α = P1g for some g ∈ P , then, as z ∈ O2(Pγ) ∩O2(Pδ) and γ and δ are cosets of P2, 
the trivial intersection property implies O2(Pδ) = O2(Pγ). But then Pγ = NP (O2(Pγ)) =
NP (O2(Pδ)) = Pδ and so by Lemma 6.12 γ = δ. This means that d(1, α) = 2. Now we 
move the path (1, δ, α) by applying an element of F , and this provides us with a 4-circuit 
in Γ, contradicting Lemma 6.11.

Thus we have that α is of type 2 and so δ is of type 1. Now z ∈ O2(Pβ) ∩O2(Pδ) and 
as O2(Pδ) is a conjugate of Q, we have O2(Pδ) = O2(Pβ). This time Lemma 6.12 yields 
δ = β. This shows d(1, α) = 3 and acting with an element of F yields a 6-circuit in Γ, 
which is (1).

Now the assertion follows from (1), Lemma 6.11 and the definition of a generalized 
polygon. �
Lemma 6.17. Assume that Proposition 6.3(ii) holds with q > 2. Then

F ∗(P ) ∼= PSL3(q).

Proof. A generalized 3-gon is just the incidence graph of a projective plane. We call the 
vertices of which are cosets of P1 points and those which are cosets of P2 lines. There 
are exactly q2 + q + 1 points and q2 + q + 1 lines. We have that Q stabilizes a line and 
all the points on it. Hence it acts regularly on the remaining points. This means that 
the projective plane is Moufang and by [28, Theorem A] it is Desarguesian and contains 
PSL3(q) as a normal subgroup. This proves the lemma. �
Proof of Proposition 6.6. If (P1, P2) has type PSL3(2), the proposition follows by 
Lemma 6.7. Hence we may assume that q > 2.

As G/G1 is soluble and O(G) = 1 by Lemma 3.6, F ∗(G) = F ∗(G1). By Lemma 6.9, 
QQM is a Sylow 2-subgroup of G1. Set H = NG1(QQM )P . Then H ≥ 〈D, M◦〉 and so 
H has one conjugacy class of involutions by Lemma 6.8. Let t ∈ H be an involution, 
then we may suppose that t ∈ Q. Hence, as Q is large,

CG1(t) ≤ NG(Q) ∩G1 = NG1(Q) = P1NG(QQM ) ≤ H.

It follows from [6, Proposition 17.11] that H is strongly p-embedded in G1. Now Bender’s 
Theorem [4] implies that H = G1. Hence, as F ∗(H) = F ∗(P ),

F ∗(G) = F ∗(G1) = F ∗(H) = F ∗(P ) ∼= PSL3(q)

by Lemma 6.17. This completes the proof of Proposition 6.6. �
Finally Proposition 6.1 follows by combining Proposition 6.3 and Proposition 6.6.
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7. The proof of Theorem 1.2 when QM �= VM

In this section we complete the proof Theorem 1.2. To do this we first prove

Proposition 7.1. Assume that Hypothesis 5.1 holds and that QM �= VM . Then one of the 
following holds

(i) F ∗(〈LG(S)〉) ∼= PSLn(q), n ≥ 4, and, if q is even, F ∗(G) ∼= PSLn(q); or
(ii) G ∼= Alt(9) or Mat(24).

Throughout this section we assume

VM �= QM .

We begin with a closer inspection of NG(Q).

Lemma 7.2. We have 
˜〈V NG(Q)
M 〉 ∼= SLn(q), Q is a natural SLn(q)-module and ṼM is a 

long root group of ˜〈V NG(Q)
M 〉.

Proof. By Lemma 5.4,

[ṼM , Op′(ÑG(Q))] = 1.

By Lemma 5.5, ṼM acts faithfully on some component L̃ of ÑG(Q) and L̃ is unique 
with this property. Furthermore, L is normalized by M ∩NG(Q) and Q is an irreducible 
L-module. Since, by Lemma 5.2 (vi), Q is a strong dual F -module with offender ṼM , 
Lemma 2.2 applies to give the candidates for L̃. As QM > VM , we have VM ≤ Q′

M by 
Lemma 3.4 and so, as QM normalizes L, the structure of Aut(L̃) and the description of 
the possibilities for ṼM given in Lemma 2.2 shows that L̃ ∼= SLn(pf ) or Sp2n(pf ). The 
assertion in the lemma now follows from Lemma 5.6. �

Because of Lemma 7.2, we set D = 〈V NG(Q)
M 〉 and note that as Q is irreducible Q ≤ D. 

Thus D = L and

D̃ ∼= SLn(q).

This means that ÑG(Q) is a subgroup of ΓLn(q) which contains SLn(q). If D̃ ∼= SL2(q), 
then |QQM | = q3, VM = QM , a contradiction. We therefore assume

n ≥ 3 and QM > VM .

We also introduce the following notation
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H = 〈D,M〉,

L1 = Op′
(ND(Q ∩QM )),

L̂1 = 〈QL1
M 〉,

U = 〈M◦QM , L1〉,

B̂ = NG(QQM ), BD = B̂ ∩D, BM = M ∩ B̂.

By Lemma 7.2, ṼM is a central root subgroup of a Sylow p-subgroup of D̃ and so, as 
QMQ centralizes [VM , Q] = CVM

(Q) and CS(CVM
(Q)) = S∩M◦QM = QQM , we deduce 

QQM ∈ Sylp(D). We record

Lemma 7.3. We have QQM ∈ Sylp(M◦QM ) ∩ Sylp(D) and Q ∩ QM = [Q, QQM ] is a 
GF(q)-hyperplane of Q. �
Lemma 7.4. We have U = M◦L̂1,

U/Op(U) ∼= SL2(q) ◦ SLn−1(q)

and Op(U) = J(Op(L1)) = J(UMQ) = UM . Furthermore, [M◦, L̂1] ≤ UM and UM is 
the tensor product module for U/Op(U). In particular, QQM ∈ Sylp(U).

Proof. We have that Q ∩ QM is a GF(q)-hyperplane in Q by Lemma 7.3. Fix x ∈
M◦ \NG(Q). Then, by Lemma 5.3, Qx ∩QM ∩Q = 1,

UM = (Q ∩QM )(Q ∩QM )x ≤ M◦

and UM is elementary abelian. Hence, as |Qx ∩ QM | = qn−1 = |Op(L̃1)| and Qx ∩ Q

centralizes QM ∩Q, ŨM = Op(L̃1) and |UMQ : UM | = q. Assume A ≤ UMQ is a maximal 
order abelian subgroup of UMQ with A �= UM . Then A ≥ Z(UMQ) ≥ Q ∩UM = Q ∩QM , 
q2n−2 > |A ∩UM | ≥ q2n−3 and AUM ∩Q > Q ∩QM . Since A ∩UM centralizes AUM ∩Q

and Q is a GF(q)-space, we deduce that A ∩UM ≤ Q and this implies that q2n−3 ≤ qn−1

which contradicts n ≥ 3. Hence UM is the unique abelian subgroup of maximal order in 
UMQ. Therefore UM = J(UMQ) and so UM is normalized by L1. Since M normalizes 
UM , so does U . As Õp(U) ≤ Op(L̃1) and Q � Op(U), we deduce Op(U) = UM . In 
particular, we have demonstrated

Op(U) = J(Op(L1)) = J(UMQ) = UM .

By Theorem A (iii) we have that US ∈ VL(S) as M = M◦S ≤ US. Using M◦ ∼=
SL2(q) and VM is the natural module and reading Table 1 right to left, yields U◦ ∼=
SLm(q) for some m ≥ 2 and VU is the natural module or q = p = 2, U◦ ∼= 3.Alt(6) and VU

is the 26 module. In particular, VM ≤ VU ≤ UM and so UM centralizes VU . By Lemma 5.3, 
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M◦S/UM has no non-central M◦-chief factors. Hence M◦(S ∩ U◦)CU◦(VU )/CU◦(VU )
is not characteristic p, it follows that U◦ ∼= SL2(q) and so U◦ = M◦. Therefore L1
normalizes M◦. In particular, QQM is a Sylow p-subgroup of U = M◦L1. As [QM , M◦] ≤
UM and L1 normalizes M◦, [L̂1, M◦] ≤ UM and also M◦L̂1 = U . As L̂1 does not 
normalize VM , we find, by Theorem A and Table 1 for example, that UM is the tensor 
product module of VM for M◦ with Q ∩ QM for L̂1. Since US has characteristic p, we 
have CU (UM ) = UM and the remaining details of the lemma easily follow. �
Lemma 7.5. The group B̂ normalizes D, M◦ and U . In particular F ∗(〈D, M◦〉) = F ∗(H), 
B = BDBM ≤ B̂.

Proof. By Lemma 7.2, we have that D̃ ∼= SLn(q). Furthermore Q is the natural D̃-
module and ṼM induces GF(q)-transvections on Q with QMQ ∈ Sylp(D) by Lemma 7.3. 
Furthermore, Lemma 7.4 shows that QQM is a Sylow p-subgroup of U .
As Q is weakly closed in QQM by Lemma 3.1 (i), B̂ normalizes Q and so B̂ ≤ NG(Q)
and normalizes D. Furthermore, as Q is the natural D̃-module, B̂ normalizes all the 
preimages of parabolic subgroups of D̃, which contain Q̃M . In particular it normalizes 
both L1 and QUM = Op(L1). By 7.4, UM = J(UMQ) and so B̂ normalizes UM .

Suppose that L1/QUM is quasisimple and let D1 be the preimage of E(L1/(Q ∩QM )). 
Then by Lemma 7.4 D1 = 〈QL1

M 〉 and QQM ∩ D1 = QM . As B̂ normalizes D1, we see 
that B̂ normalizes QM as well.

If L1/QUM is not quasisimple, then D̃ ∼= SL3(2), or SL3(3). In the first case, 
NG(QQM ) = QQM = S and there is nothing is to prove. Thus assume that L ∼= SL3(3). 
Then |UM | = 34 and this group is normalized by B̂. Furthermore by Lemma 7.4
QUM/UM and QM/UM act quadratically on UM and no other subgroup of order three 
in QQM/UM has this property. This again shows that B̂ normalizes QM . Hence in any 
case

B̂ normalizes QM . (1)

By (1) B̂ normalizes VM and then M◦ and by Lemma 7.4 it also normalizes U . This 
proves the first part of the assertion. In particular, as NG(Q) = B̂D, and M ≤ M◦B̂, 
we have F ∗(〈D, M◦〉) = F ∗(H).

Finally, as BD, BM ≤ B̂ and B̂ normalizes D and M◦QM , we get that BD and BM

normalize each other and so B = BDBM is a group. �
The next two propositions provide the major step in the proof of Proposition 7.1. As 

in Section 6 we use geometric arguments to identify F ∗(H).
We continue with our standard notation. By Lemma 7.2 we have that D̃ ∼= SLn(q) and, 
as QM �= VM , n ≥ 3.
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Let P be the preimage of the minimal parabolic subgroup of D̃, which contains QQM , 
but which is not contained in L1. This means that P normalizes VM ∩Q. Set

U1 = 〈M◦QM , P 〉.

Proposition 7.6. Suppose VM �= QM and D̃ ∼= SL3(q). Then F ∗(H) ∼= PSL4(q).

Proof. As D̃ ∼= SL3(q), we have |QMQ| = q6, |QM | = q5, |UM | = q4 and Φ(Q̃M ) = ṼM . 
Especially, we have

Φ(QM ) ≤ UM ∩ VMQ = VM (Q ∩ UM )

and so, by Lemma 7.4, QM/VM is elementary abelian. Also by Lemma 7.4, UM =
[QM , M◦] and UM/VM is a natural module for M◦. If q is odd, then the central involution 
of M◦QM/QM and coprime action, can be used to show QM/VM is a direct sum of a 
natural M◦QM/QM -module and trivial modules.

Assume that q is even. Then there is an element ν ∈ M◦ of order q + 1, which acts 
fixed-point-freely on UM and satisfies

QM = UMCQM
(ν) and UM ∩ CQM

(ν) = 1.

By Lemma 7.4, CQM
(UM ) = UM . Since QM/VM is elementary abelian, CQM

(ν) is ele-
mentary abelian, as [UM , x] = VM for all x ∈ CQM

(ν)#, all the involutions in xUM are 
contained in xVM . It follows that VMCQM

(ν) ∪ UM is the set of elements of order at 
most two in QM . In particular, VMCQM

(ν) is normalized by M◦QM .
We have shown

QM/VM = UM/VM ×W/VM , is elementary abelian, (1)

|W/VM | = q, [W/VM ,M◦] = 1 and UM/VM = [QM/VM ,M◦]

and further

if p = 2, then UM ∪W contains every involution in QM . (2)

Set WP = 〈V P
M 〉 and select g ∈ P such that Op′(P ) = 〈QM , Qg

M 〉. By Lemma 7.5, BD

normalizes VM . Thus |{V x
M | x ∈ P}| = q + 1 and QM acts transitively on {V x

M | x ∈
P} \ {VM} by conjugation. Hence, using (1), we obtain the first equality in

WP = VMV g
M [V g

M , QM ] = VMV g
M [V g

M , UM ] = VMV g
M (Q ∩ UM )

which has order at most q4. Since VM ∩Q is normalized by P , and Op(P )/(VM ∩Q) has 
order q4 and involves 2 natural SL2(q)-modules, we have |WP | = q3. If WP �≤ QM , then 
we obtain q3 = |VM [UM , WP ]| ≤ WP ∩ UM < WP , which is nonsense. Hence WP ≤ QM
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and WP is elementary abelian. Since |W̃P | is normalized by P̃ and ŨM is normalized by 
L̃1, WP �≤ UM . If p = 2, (2) yields WP = W . If q is odd, then, as BM normalizes P and 
VM , it also normalizes WP . Since the involution in BD/QQM centralizes QM/UM , we 
deduce that WP = W is this case as well. In particular

W = WP = Op(U1).

Now CU1(WP ) = WP , and [WP , Op(P )] = [VM , y] = VM ∩Q for all y ∈ QP \W . Hence 
WP is a strong dual F -module with offender Op(P )/W of order q2 and so Lemma 2.2
implies U1/WP

∼= SL3(q) and WP = VU1 is a natural module. We apply Proposition 2.5
with X1 = U1, X2 = D, T = QQM , B2 = BD. Then B1 = 〈BM , BD ∩ X1〉 and 
R = ND(Q ∩QM ) and M∗ = MB1. Then (X1 ∩X2)Bi/Op(Xi) is a parabolic subgroup 
of Xi/Op(Xi), [Op(Op′(M∗), Op(Op′(R)] ≤ T by Lemma 7.4 and Bi ≤ NG(X3−i) for i =
1, 2 by Lemma 7.5. Thus Proposition 2.5 implies that F ∗(H) = 〈X1, X2〉 ∼= PSL4(q). �
Proposition 7.7. Suppose VM �= QM and D̃ ∼= SLn(q) with n > 3. Then F ∗(H) ∼=
PSLn+1(q) or G ∼= Mat(24).

Proof. Select L∗
2 such that QQM ≤ L∗

2 ≤ L1 to be the maximal subgroup which satisfies 
〈(VM ∩Q)L∗

2 〉 has order qn−2 and put L2 = Op′(L∗
2). Then L2/Op(L2) ∼= SLn−2(q). Set 

L̂2 = Op(L2). Notice that, as n > 3, L2 �≤ BD.
By Lemma 7.4, we have that 〈M◦, L1〉 = M◦L̂1, and, as Op(L2) ≤ Op(L1) ≤ L̂1, 

〈M◦, L2〉 = M◦L̂2. In L we see that P normalizes L̂2. Thus

〈U1, L2〉 = U1L̂2. (3)

Since Op(L̂2) is non-trivial and is normalized by 〈M◦, Op(P )〉B, we obtain

Op(U1) �= 1.

Hence U1S ∈ LG(S) and Theorem A implies U1S ∈ VL(S). Using M◦ ∼= SL2(q) and 
VM is the natural module and Table 1 reading right to left, we obtain U◦

1
∼= SLm(q) for 

some m ≥ 2 and VU1 is the natural module or q = p = 2, U◦
1
∼= 3.Alt(6) and VU1 is the 

26 module.
Assume that U◦

1
∼= SLm(q) for some m ≥ 2. Then as M◦ ≤ U◦

1 , and P does not 
normalize M◦, m ≥ 3. Assume m ≥ 4. Then NU1

(VM∩Q) acts irreducibly on VU1/VM∩Q
and as VU1 �≤ Q, we deduce that VU1 ∩ Q = VM ∩ Q and |ṼU1 | = qm−1. Now VU1 ∩
UM = VM , and so [VU1 , M

◦] = VM . Hence M◦ normalizes 〈V P
M 〉 and so we conclude 

that VU1 = 〈V P
M 〉 and m = 3. Set X1 = U1, X2 = D. Then Proposition 2.5 yields 

F ∗(H) ∼= PSLn+1(q).
Suppose that U◦

1
∼= 3.Alt(6). Then p = q = 2 and |VU1 | = 26. Then NU1S(Q)/

CU1S(VU1) ∼= Sym(3) × Sym(4). Assume that n > 4. Then there exists P ∗ ≤ L1 such 
that P̃ ∗ is a parabolic subgroup of D̃ which permutes with P̃ but not with NU1S(QQM ). 
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Then P ∗ permutes with P and M but not with 〈P, M〉, a contradiction. Hence n = 4, 
ÑG(Q) ∼= SL4(2) and |Q| = 24. We claim that this extension splits. By Lemma 7.4, U
has shape 26.(SL2(2) ×SL3(2)) and O2(U) is a direct sum of two natural SL3(2) modules. 
By considering the normalizer of a Sylow 3-subgroup of M◦ in U , we see that U splits 
over O2(U). In particular, there is a subgroup of U isomorphic to 23 : SL3(2) and so S
splits over Q. Now [9, (I.17.4)] implies that NG(Q) is a split extension of Q by SL4(2). 
Finally [1, (41.5)] yields G ∼= Mat(24). This completes the proof of the proposition. �

To prove Proposition 7.1 we have to deal with the case that F ∗(H) ∼= PSLn(q), n ≥ 4. 
In the next lemma we prove the first assertion in Proposition 7.1(i).

Lemma 7.8. Assume that F ∗(H) ∼= PSLn(q), n ≥ 4. Then F ∗(H) = F ∗(〈LG(S)〉).

Proof. Suppose that the statement is false and select P ∈ LG(S) minimal so that P � H. 
Then Q is not normal in P as NG(Q) ≤ H. Since Q is large and abelian, we have that 
YP � Q. In particular, P ∈ VL(S). By Theorem A(iii), 〈P, NG(Q)〉 = 〈MP , NG(Q)〉 and 
so MP �≤ H and therefore

P = MP ∈ VLmin(S) = VLmin
lin ∪ VLmin

orthsymp(S) ∪ VLmin
wreath(S).

By Theorem 1.1, P ∈ VLmin
lin ∪ VLmin

orthsymp(S). Since Q is abelian, Q acts quadratically 
on WP and so Corollary 4.6 implies that P ◦ ∼= SL2(r) for some r = pb. Assume first 
that QP = WP . Then NG(Q) has no section isomorphic to PSLn(q) for n ≥ 3 by 
Proposition 6.1. Hence QP > WP . Therefore we may apply Lemma 7.4. The group L1
there is defined with respect to Q ∩QM . As Q ∩QM and Q ∩QP both are hyperplanes 
in Q which are S-invariant, we get Q ∩ QM = Q ∩ QP . Hence Op′(ND(Q ∩ QM )) =
Op′(ND(Q ∩QP )). Now Lemma 7.4 yields

UP = J(UPQ) = J(Op(L1)) = J(UMQ) = UM .

Hence 〈P, M〉 ≤ NG(UM ) ∈ LG(S). By Theorem A (i), NG(UM ) contains a unique 
element of VLmin(S). Therefore P = M ≤ H, a contradiction. We conclude that H =
〈LG(S)〉 and the lemma is proved. �
Proof of Proposition 7.1. By Propositions 7.6, 7.7 and Lemma 7.8,

F ∗(H) = F ∗(〈LG(S)〉) ∼= PSLn(q)

with n ≥ 4.
To complete the proof of the proposition, we assume that p = 2 and demonstrate that 

G = H. Let K = F ∗(H) and S0 = S ∩K. So we know K ∼= PSLn(q). By Lemma 3.6, G
has a component E. Since E ∩ S ∈ Syl2(E), E ∩H �= 1 and so K ≤ E. It follows that 
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F ∗(G) = E. Since F ∗(K) ≤ E, E satisfies the hypothesis of Theorem 1.2 and so we may 
suppose that G is simple.

As M is normalized by S, S normalizes all the parabolic subgroups of K which 
contain S0. Hence H is isomorphic to a subgroup of PΓLn(q).

Let z ∈ Z(S)#. Assume g ∈ G and 1 �= Qg ∩H ≤ S. Then, as Q is large, z normalizes 
Qg and |CQg (z)| ≥ 4 as |Q| ≥ q3. Hence |Qg ∩ S| ≥ 4 and, as S/S0 is cyclic, we 
then have Qg ∩ K �= 1. By Proposition 2.6 (i) and (ii), there exists h ∈ H, such that 
Qgh ∩ Z(J(S)) �= 1. Thus, as Q is large, J(S) = J(QghJ(S)) and Lemma 7.8 implies 
Qgh ≤ NG(J(S)) ≤ H. Hence there exists h1 ∈ H such that Qghh1 = Q as Q is weakly 
closed. Since NG(Q) ≤ H, we deduce g ∈ H. In particular,

zG ∩H = zH .

Now, as H is not soluble, application of [8] (see also [23, Lemma 2.6]) shows G = F ∗(H)
or H ∼= PSL4(2) and G ∼= Alt(9). This proves the proposition. �
Proof of Theorem 1.2. This follows from Proposition 6.1 and Proposition 7.1. �
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