
janick martinez esturo

S H A P E S I N V E C T O R F I E L D S

S H A P E S I N V E C T O R F I E L D S

M E T H O D S F O R C O N T I N U O U S D E F O R M AT I O N S

A N D S U R FA C E - B A S E D F L O W V I S U A L I Z AT I O N S

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke Universität Magdeburg.

vorgelegt von: Dipl.-Inform. Janick Martinez Esturo
geboren am: 29. Juli 1983

in: Bünde (Krs. Herford)

Gutachter: Prof. Dr. habil. H. Theisel
Prof. Dr. M. Botsch
Prof. Dr. M. Wardetzky

eingereicht am: 21. Mai 2013

verteidigt am: 25. Oktober 2013

location:
Otto-von-Guericke University
Faculty of Computer Science
Institute of Simulation and Graphics
Magdeburg

Janick Martinez Esturo: Shapes in Vector Fields – Methods for Continuous Defor-
mations and Surface-based Flow Visualizations

A C K N O W L E D G M E N T S

First of all, I sincerely thank my advisor Holger Theisel for introducing me to
the exciting field of computer graphics with his lectures in Bielefeld, and for sup-
porting, guiding, and encouraging me throughout the last years in Magdeburg.
Without his inspiration, this project would not have been started. I would also
like to express my gratitude to my co-advisor Christian Rössl for his dedication
and endless but very fruitful discussions. This work has greatly benefited from
his helpful advices and comments. Many thanks also go to my reviewers Mario
Botsch and Max Wardetzky for their time and encouragements. It has been a
great experience to share their knowledge in interesting discussions. I am very
grateful to a lot of people in Magdeburg for providing such an enjoyable and
stimulating environment. Special thanks go to Maik Schulze, Dirk J. Lehmann,
Alexander Kuhn, Mathias Otto, and Benjamin Wegener. My work has to a large
extend been funded by the Studienstiftung des deutschen Volkes. I also wish to
thank my parents who always encouraged me to pursue my studies and live my
passion for research, and Felipe for being such a great brother. Most of all, I
wish to thank Sophie for all her support, patience, and love.

v

A B S T R A C T

Geometric shapes are the basic building blocks of any graphics related application.
The effective manipulation of shapes is therefore of central interest for many
relevant problems. In particular, there is a growing demand for high-quality
nonlinear deformations for shape modeling and animation. The application of
vector fields that guide a continuous deformation is a practical approach for their
computation. It turns out that typically challenging nonlinear problems can be
solved in an elegant way using such vector field-based methodologies. This the-
sis presents novel approaches and prospects for vector field-based manipulation
of geometric shapes (Part I). Thereafter, also the definition of geometric shapes by
means of vector fields is examined (Part II).

Depending on the specific shape representation and the concrete modeling prob-
lem, different types of vector fields are required: a family of generalized vector
field energies is introduced that enables near-isometric, near-conformal, as well
as near-authalic continuous deformations of planar and volumetric shapes. It is
demonstrated how near-isometric surface and volume-preserving isosurface de-
formations are computed by a similar framework. Furthermore, an integration-
based pose correction method is presented. Based on a generic energy descrip-
tion that incorporates energy smoothness, a conceptual simple but effective gen-
eralized energy regularization is proposed, which is not only beneficial for con-
tinuous deformations but additionally enhances a variety of related geometry
processing methods.

In the second part of the thesis vector fields are not considered to represent
deformations anymore. Instead, they are interpreted as flow fields that define
characteristic shapes such as stream surfaces: a deformation-based approach
for interactive flow exploration and the extraction of flow-tangential and flow-
orthogonal surfaces is proposed. It is shown how an unified computational
framework yields parametrizations that are particularly useful for surface-based
flow illustrations. Finally, an automatic method for the selection of relevant
stream surfaces in complex flow data sets is presented that is based on a new
surface-based intrinsic quality measure.

The usefulness of the newly developed methods is shown by applying them to a
number of different geometry processing and visualization problems.

vii

Z U S A M M E N FA S S U N G

Geometrische Formen sind die grundlegenden Bausteine jedweder graphischen
Anwendung. Die effektive Manipulation dieser Formen ist daher von besonde-
rem Interesse für viele relevante Probleme. Insbesondere herrscht sowohl für
die Modellierung als auch für die Animation von Formen ein stetig steigender
Bedarf an nichtlinearen Deformationen von hoher Qualität. Die Nutzung von
Vektorfeldern, die dabei eine kontinuierliche Deformation leiten, ist ein geeigne-
ter Ansatz für deren Berechnung. Hierbei stellt sich heraus, dass typischerweise
anspruchsvolle nichtlineare Probleme in einer eleganten Art und Weise unter Zu-
hilfenahme solcher Vektorfeld-basierten Methodiken gelöst werden können. Die-
se Dissertation präsentiert dazu neue Ansätze und Perspektiven für Vektorfeld-
basierte Manipulationen von geometrischen Formen (Teil I). Darüber hinaus wird
die Definition von geometrischen Formen durch Vectorfelder näher untersucht
(Teil II).

In Abhängigkeit der spezifischen Formrepräsentation und des konkreten Model-
lierungsproblems werden verschiedene Typen von Vektorfeldern benötigt: Hier-
für wird eine Familie generalisierter Vektorfeldenergien eingeführt, die Approxi-
mationen von isometrischen, konformen, sowie volumenerhaltenden kontinuier-
lichen Deformationen von planaren und volumetrischen Formen ermöglicht. Es
wird gezeigt, wie Approximationen von isometrischen Oberflächendeformatio-
nen sowie volumenerhaltenden Isoflächendeformationen in einem ähnlichen Sys-
tem berechnet werden. Darüber hinaus wir eine integrations-basierte Methode
zur Korrektur von Posen präsentiert. Auf der Grundlage einer generischen Ener-
giebeschreibung, welche Energieglattheit mit berücksichtigt, wird eine konzep-
tionell einfache aber effektive generalisierte Energieregularisierung vorgeschla-
gen, die sich nicht nur als nützlich für kontinuierliche Deformationen erweist,
sondern zusätzlich eine Vielzahl an verwandten Geometrieverarbeitungsmetho-
den verbessert.

In dem zweiten Teil der Dissertation werden Vektorfelder nicht mehr zur Reprä-
sentation von Deformationen genutzt. Stattdessen werden sie als Strömungsfel-
der interpretiert, die charakteristische geometrische Formen, wie beispielswei-
se Stromflächen, definieren: Dazu wird ein deformations-basierter Ansatz zur
interaktiven Exploration von Strömungen und zur Extraktion von tangentialen
und orthogonalen Oberflächen vorgeschlagen. Es wird gezeigt, wie durch einen
einheitlichen numerischen Ansatz Parameterisierungen berechnet werden, die
besonders nützlich für Oberflächen-basierte Strömungsillustrationen sind. Ab-
schließend wird auf Grundlage eines neuen Oberflächen-basierten intrinsischen

viii

Qualitätsmaßes eine Methode zur automatischen Selektion von relevante Strom-
flächen in komplexen Strömungsdatensätzen präsentiert.

Der Nutzen der neu entwickelten Methoden wird demonstriert, indem sie auf
eine Reihe von unterschiedlichen Geometrieverarbeitungs- und Visualisierungs-
problemen angewendet werden.

ix

P U B L I C AT I O N S

Parts of this thesis appeared previously in the following peer-reviewed publica-
tions and submissions:

[MRF∗11] Martinez Esturo J., Rössl C., Fröhlich S., Botsch M., Theisel

H.: Pose correction by space-time integration. In Proc. VMV (2011),
EG, pp. 33–40. (Cited on page 98.)

[MRT10] Martinez Esturo J., Rössl C., Theisel H.: Continuous deforma-
tions of implicit surfaces. In Proc. VMV (2010), EG, pp. 219–226.
(Cited on page 81.)

[MRT12] Martinez Esturo J., Rössl C., Theisel H.: Continuous deforma-
tions by isometry preserving shape integration. Springer LNCS (Proc.
Curves and Surfaces 2010) 6920, 1 (2012), 456–472. (Cited on page 64.)

[MRT13a] Martinez Esturo J., Rössl C., Theisel H.: Generalized metric
energies for continuous shape deformation. Springer LNCS (Proc.
Curves and Surfaces 2012) 8177, 1 (2013), 135–157. (Cited on page 45.)

[MRT13b] Martinez Esturo J., Rössl C., Theisel H.: Smoothed quadratic
energies on meshes. ACM Trans. Graph. (2013), (to appear). (Cited
on page 121.)

[MSRT13a] Martinez Esturo J., Schulze M., Rössl C., Theisel H.: Global se-
lection of stream surfaces. Comput. Graph. Forum (Proc. Eurographics)
32, 2 (2013), 113–122. (Cited on pages 169 and 178.)

[MSRT13b] Martinez Esturo J., Schulze M., Rössl C., Theisel H.: Poisson-
based tools for flow visualization. In Proc. PacificVis (2013), IEEE,
pp. 241–248. (Cited on pages 148, 153, 156, and 160.)

xi

C O N T E N T S

1 introduction 1

1.1 Thesis Structure . 3

1.2 Notation . 4

i shapes manipulated by vector fields 7

2 overview of continuous deformations 9

2.1 Related Work . 11

3 vector field-based continuous deformation energies 17

3.1 Continuous Shape Deformations . 17

3.2 Continuous Metric Energies . 18

3.3 A Generalized Family of Energies 25

3.4 Discrete Setting . 27

3.5 Implementation . 35

3.6 Analysis and Results . 38

3.7 Relation to Linear Elasticity . 45

3.8 Discussion . 46

3.9 Summary . 49

4 isometric surface integration 51

4.1 Near-Isometric Surface Energy . 51

4.2 Implementation . 58

4.3 Analysis and Results . 61

4.4 Spectral Energy Properties . 65

4.5 Discussion . 67

4.6 Summary . 70

5 continuous deformations of implicit surfaces 71

5.1 Continuous Isosurface Deformations 72

5.2 Implementation . 76

5.3 Analysis . 79

5.4 Applications . 81

5.5 Discussion . 83

5.6 Summary . 84

6 pose correction by space-time integration 85

6.1 Background . 86

6.2 General Idea and Overview . 88

6.3 Algorithmic Details . 89

6.4 Analysis and Results . 97

6.5 Discussion . 101

6.6 Summary . 103

xiii

xiv contents

7 smoothed energies for geometry processing 105

7.1 Background . 106

7.2 Smoothed Energies . 107

7.3 Discretization . 109

7.4 Applications . 114

7.5 Results . 121

7.6 Discussion . 127

7.7 Summary . 130

ii shapes defined by vector fields 133

8 overview of surface-based flow visualization 135

8.1 Related Work . 137

8.2 Definitions and Notation . 138

9 interactive surface-based flow visualization using poisson-
based tools 141

9.1 Poisson-based Optimization and Modeling 141

9.2 Interactive Deformation-based Flow Alignment 144

9.3 Surface Parametrization for Seed Extraction 149

9.4 Parametrization-based LIC-like Visualization 152

9.5 Results . 153

9.6 Discussion . 157

9.7 Summary . 161

10 automatic global selection of stream surfaces 163

10.1 Background . 164

10.2 Desiderata . 165

10.3 On the Complexity of the Search Space 166

10.4 Quality Measures for Stream Surfaces 167

10.5 Automatic Seed Curve Selection . 171

10.6 Results . 176

10.7 Discussion . 183

10.8 Summary . 184

11 conclusions 185

iii appendix 189

a differential operators of linear functions on simplices 191

a.1 Gradient Operators of Linear Functions on Simplices 191

a.2 Integration Operators of Linear Functions on Simplices 194

b metric deformation errors 197

bibliography 201

1
I N T R O D U C T I O N

For decades media have been dominated by text only. Then multi-media was
introduced in form of images, sounds, and videos. Lately, geometric models of
object shapes have emerged as an important new form of digital media. Digital
representations of geometric shapes are ubiquitous. They are becoming even
more important in various economical application areas such as industrial de-
sign, entertainment, and e-commerce, where sophisticated digital methods based
on geometric data help to improve products and reduce their costs. In the same
way, whole scientific fields like visualization, computational medicine, and me-
chanical engineering are to a great extend concerned with the study of different
representations of real or simulated geometric shapes for the discovery of novel
scientific results. The importance of geometric shapes comes with the need for
appropriate data structures and algorithms that are required for their effective
processing. In computer science, the field of digital geometry processing examines
methods for geometric shapes that are both efficient and scalable. Computing
with geometric shapes lies at the core of geometric modeling and processing.
A variety of effective methods is known for, e.g., the acquisition, analysis, and
storage of shapes [BKP∗10].

This thesis is concerned with the manipulation of geometric shapes, i.e., the pur-
poseful modification of shape geometry. Modifications can either be performed
interactively by a user for persistent shape modeling, or be performed automat-
ically for shape optimization. Shape modeling is a challenging topic of digital
geometry processing because the oftentimes involved and computationally ex-
pensive deformation methods need to be performed at interactive rates and be
hidden behind intuitive modeling metaphors. Shape optimization, on the other
hand, is generally an offline process but has to guarantee similar properties in
terms of robustness and accuracy of the solution.

The manipulation of shapes is tightly coupled to their representation and the
used deformation paradigm. Typically, a shape is viewed as a set of points and
represented according to the available data and the intended application. Shapes
are generally represented either explicitly or implicitly, and a representation is

1

2 introduction

Figure 1: Shape Representations. Laser range scanning of the Otto-von-Guericke bust re-
sults in the shape represented by an explicit triangular surface mesh (left). The
crocodile mummy is a volume data set obtained by CT scanning and defines
the shape of (volume rendered) implicit level set surfaces (right).

chosen in a problem-specific way. Two examples are shown in Figure 1. Inde-
pendent of the shape representation is the deformation paradigm. The classic
paradigm considers deformations that are maps of a shape (or its surrounding
space) to a deformed version, which are computed as a single deformation step.
Linear and nonlinear single-step deformations are well-researched.

In this work, we study the class of shape manipulations that are continuous,
i.e., represented as a continuously parameterized family of shape deformations.
Continuous deformations have received less attention, although a number of tra-
ditionally hard nonlinear problems like volume-preserving deformations have
natural solutions in this framework. An elegant way to define continuous defor-
mations is the usage of vector fields that guide the evolving shapes. We consider
vector field-based deformations of explicitly and implicitly defined shapes and
apply them to both shape modeling and shape optimization. Continuous de-
formations are the main focus of the first part of this thesis. We propose new
vector field energies and corresponding deformation types and present novel
applications for continuous deformations.

For vector field-based deformations the guidance velocity fields are not given
in the first place but are generally computed in a problem-specific way, e.g., to
induce a low amount of shape distortion. However, the abstract vector field con-
cept can also represent different kinds of fields: vector fields are also particularly
well suited to represent the velocity field of complex flows. The analysis of prop-
erties of these vector fields is of special interest for various scientific fields. In
contrast to the first part of this thesis, flow vector fields are either measured or
simulated. In particular, they are given a priori and are not modified for the
analysis. The field of flow visualization focuses on the computation of more ab-
stract and characteristic representations of flow fields to facilitate the analysis
of complex flow phenomena. Among the different types of flow visualization

1.1 thesis structure 3

techniques the class of geometry-based methods relies on geometric shapes to
convey flow field properties. Generally, these shapes are defined by the flow vec-
tor field. Flow defined shapes will be considered in the second part of this thesis
where we apply geometry processing techniques to improve geometry-based
flow visualization.

1.1 thesis structure

We continue to give a brief overview of the structure of the following chapters
and summarize the main contributions of this work. This thesis is separated into
two parts. We consider vector field-based shape manipulations in the first part
that consist of the following chapters:

• Chapter 2 introduces continuous deformations and reviews related work
on shape deformations with a focus on continuous methods.

• Chapter 3 studies vector field-based and GPU-accelerated deformations of
planar and volumetric shapes. Vector fields are obtained by variational
optimization of a new family of generalized vector field energies that sup-
ports near-isometric, near-conformal, and near-authalic deformations as
well as nonhomogeneous and anisotropic behavior.

• Chapter 4 introduces a method for near-isometric continuous surface defor-
mations. These GPU-accelerated deformations are of higher quality com-
pared to related nonlinear methods.

• Chapter 5 considers continuous deformations of implicitly defined isosur-
faces. Vector field-based deformations are computed by a new GPU-based
backward integration scheme and are guaranteed to preserve the volume
and topology of every isosurface.

• Chapter 6 applies continuous deformations to pose databases for the au-
tomatic correction of geometric artifacts like local self-intersections. Path
line integration is performed in vector fields that are reconstructed using
a new radial basis function center selection and GPU-accelerated factoriza-
tion update scheme.

• Chapter 7 introduces a conceptually simple but very effective generic en-
ergy regularization scheme that is not only applicable to continuous defor-
mations but to a variety of geometry processing methods. Energy regular-
ization is easy to implement and significantly improves results of a wide
range of variational approaches.

In the second part of this thesis, we present interactive and automatic methods
for geometry-based flow visualization that focus on surface-based techniques:

4 introduction

• Chapter 8 introduces the flow visualization setting and reviews related
work on surface-based visualization techniques.

• Chapter 9 applies Poisson-based deformations for flux optimization to ex-
tract flow-tangential and flow-orthogonal surfaces, which are well-suited
for interactive flow exploration. Flow-aligned parametrizations are com-
puted by the same framework and facilitate seed curve computation and
enable illustrative flow visualizations.

• Chapter 10 introduces a completely automatic selection method of stream
surfaces. Relevant stream surfaces are identified by a new intrinsic quality
measure. Representative stream surfaces are computed by a global combi-
natorial optimization.

We conclude this thesis in Chapter 11. The appendix of this work contains details
on discretizations of differential operators of linear functions on simplices and
metric deformation errors, which are used throughout this thesis.

1.2 notation

In large parts of this work, we study planar or two-manifold domains (surfaces)
D2 embedded in Euclidean spaces E2 or E3, respectively, as well as volumetric
domains D3 ⊂ E3. For convenience, we identify coordinate spaces Ep by the
vector spaces Rp, and use the terms domain and shape interchangeably if the
context is clear. We use the following basic notation for simplical discretizations
of these domains, which will be extended, if required, in the corresponding chap-
ters: surfaces are discretized by triangular meshes M = (V , E , T), i.e., as sets
of vertices i ∈ V , edges E ⊆ V2, and triangles T ⊆ V3. We will distinguish be-
tween internal edges Ei and boundary edges Eb. Piecewise linear d-dimensional
functions on M are represented by coefficients at the vertices, e.g., the vertex
coordinate function xi ∈ Rd. The collection of all “stacked” coefficients is de-
noted by a vector without subscript, e.g., x ∈ Rd |V|. Discretization elements, e.g.,
i ∈ V , are identified with indices if the context is clear. Piecewise linear func-
tions over volumetric domains are discretized similarly by tetrahedral meshes.
Higher-dimensional meshes will be considered in form of (pure) simplical com-
plexes. We will make no formal distinction between the terms element, simplex,
or cell and treat them synonymously if the context is clear.

Some non-instructive derivations of expression equalities were omitted in this
work. Instead, they are provided in the accompanying additional material.

1.2 notation 5

We briefly summarize on the notation used throughout this work in the follow-
ing table:

Notation Description

e, E; i Scalar value / function or index / set element, italic letters

v Column vector, bold lower case letters

A; F Matrix or tensor, bold upper case letters

S Set, calligraphic upper case letters

|e| ; |S| Absolute value of a scalar or the cardinality of a set

bac; dae; bae Previous, next, and nearest integer of (fractional) scalar

vT, AT Transpose of a vector or a matrix

vec(A) Column-wise vectorization of a matrix

det(A) Determinant of a matrix

Tr(A) Trace of a matrix

vol(Ω) Generalized volume of a (multi-dimensional) point set Ω

dim(Ω) Intrinsic dimensionality of a (multi-dimensional) point set Ω

diag(λ1, . . . , λd) Diagonal matrix constructed from coefficients

diag−1(A) Diagonal of a matrix(
1
2
)
; (a

b) Coefficient or block (column) vector (round brackets)(
1 3
2 4

)
Coefficient matrix (round brackets)[

A C
B D

]
Block matrix (square brackets)

‖v‖2 = vT v Squared Euclidean distance (squared two-norm) of a vector

‖v‖2
N = vT N v Squared vector norm parameterized by symmetric positive-

definite matrices N

‖A‖2
F = Tr

(
AT A

)
Squared Frobenius norm of a matrix

‖A‖2
N = Tr

(
AT N A

)
Squared matrix norm parameterized by symmetric positive-
definite matrices N

A⊗ B Kronecker product of two matrices

I, Id Square identity matrix / linear identity operator of general or
specific dimensionality

0; 1 Zero vector or matrix, and vector of ones

δij Kronecker’s delta function

Λ
i,j
r,s Single-entry r× s matrix that is one at (i, j) and zero elsewhere

ċ = d
dt c(t) Tangent vector of a curve

ux = ∂
∂x u(x, y)

Partial derivatives of multivariate function
uxy = ∂2

∂x ∂y u(x, y)

∇e(x), ∇x e(x, y) Gradient vector of a scalar-valued function w.r.t. all or a subset
of variables

∇v(x), ∇x v(x, y) Gradient tensor (transpose of Jacobian matrix / tensor) of a
vector-valued function w.r.t. all or a subset of variables

Part I

S H A P E S M A N I P U L AT E D B Y V E C T O R F I E L D S

2
O V E RV I E W O F C O N T I N U O U S D E F O R M AT I O N S

Persistent inelastic shape manipulation is a classic problem in computer graph-
ics and design. Even though numerous approaches haven been developed in the
previous decades, it is still an important and active area of research. Applica-
tions for planar shape deformations include, e.g., image warping and cartoon
animation. Deformation of 3d shapes is used in diverse domains such as in
engineering for shape modeling or for the creation of animations in the media
industry, but also, e.g., for data registration in medical applications.

A recent trend is the development of isometric [SVWG12] and less constrained
near-isometric deformation methods [KMP07, SBBG11a]. These deformations
should preserve angles and area as much as possible. Intuitively, isometry is a
good geometric measure for the quality of a deformation: while the shape should
accurately satisfy the constraints defining the deformation, it should not unnec-
essarily stretch or bend. Hence, near-isometric deformations yield intuitive and
high-quality results. Also, for a number of related applications the importance of
isometric maps is well known [MS04, BBK05b, KFC∗08, HSvTP10, SVWG12].

However, this is not free of cost! Roughly speaking, high quality near-isometric
deformations come at the price of solving computationally expensive nonlinear
problems. This is a major issue especially for interactive applications, which are
typical in computer graphics and are mandatory for interactive modeling. There
is a competition with more efficient linear methods (see, e.g., [BS08]), which are
based on simpler, often approximated differential quantities. It is well known
that linear methods fail to handle certain deformations: they either cope well
with translations or with rotations – but not with both simultaneously. Also,
there is no guarantee that the deformation does not induce local folds or self-
intersections. We arrive at the conclusion that both, linear and nonlinear meth-
ods, have their own right to co-exist in shape deformation frameworks: the user
has the choice between fast linear methods at the cost of sacrificing quality, and
high-quality nonlinear methods that are significantly harder to compute in terms
of computation costs and robustness.

The user has to pay a certain price – higher computation times or smaller data
sets – and therefore expects benefits from nonlinear methods. These include not

9

10 overview of continuous deformations

only geometric properties of the deformation but also other important criteria
related to usability. We identify a number of requirements that the computa-
tion of near-isometric shape deformations should fulfill and which make their
computation a challenging problem:

• The isometric deformation problem is nonlinear. Nevertheless, computa-
tion must be effective and robust to guarantee a globally optimal solution.
In addition, computation should be efficient enough to enable real-time re-
sponse to user input.

• Deformations should be plausible for aesthetic reasons and for acceptance
by the user. This requires suitable measures for the deviation of isometry.

• Deformations must interpolate constraints, which can be defined for any
point of the shape. Approximate satisfaction of “soft constraints” can be
tolerated only if arbitrarily small tolerances are possible in principle.

• Deformations must be smooth in a sense that the energy or metric error
is distributed smoothly over the shape. In particular, the error must not
concentrate near positional constraints.

• The final deformations must be independent of the particular partition of
the shape or the domain. This implies resolution and tessellation insensitivity.

• Ideally, the user can – globally and locally – attenuate isometry such that
continuous blends from angle preservation to area preservation are possi-
ble. Locally anisotropic behavior is an additional desirable design parame-
ter for the user.

• Deformations must not have singularities, i.e., the gradient of the map
from the original to the deformed shape must not vanish. In a discrete
setting, this means that elements, triangles or tetrahedra, must not change
orientation.

• Ideally, the formulation of the solution should be same for the 2d and the
3d case. This alleviates implementation.

A variety of nonlinear methods optimize for maximum local rigidity criteria
that are related to near-isometric deformations, but only partially fulfill these
requirements. For example, such nonlinear near-rigid energies are minimized
iteratively with alternating linearizations [LZX∗08] or by directly using generic
local nonlinear solvers [CPSS10]. Related are approaches that iteratively opti-
mize energies of loosely coupled near-rigid prisms [BPGK06]. These methods
all optimize nonlinear energies in a direct single-step deformation. According to
Lipman [Lip12, Section 6.1], deformations like [LZX∗08] might easily get stuck
in local minima. Other nonlinear methods are likely to have this property, too,
as global nonlinear optimization algorithms are seldom applied to deformation
problems. Hence, in general convergence to globally optimal solution cannot be
guaranteed by these methods (although results are generally of high quality).

2.1 related work 11

t = 0 t = 1
2 t = 1c(t) c(t) c(t)

Figure 2: Vector Field-based Continuous Deformation. A small handle region (•) is
moved along a guidance curve c(t), while the border (•) corresponds to the
fixed surface part. For every integration step at time t, the current surface ge-
ometry and constrained vectors (•) are given, while the remaining vectors (•)
are obtained by, e.g., a variational energy optimization.

The problem of direct nonlinear energy optimization can be avoided by relying
on vector field-based continuous deformations that evolve the deformation over
time: the energy minimizer at each infinitesimal time step determines a guid-
ance vector field of the deformation, and the final deformation is obtained as
the solution of an ordinary differential equation (ODE). From a technical point
of view, iterative solvers for minimizing nonlinear energies are, roughly speak-
ing, replaced by a nonlinear numerical ODE integration method. The latter is
a standard numerical problem that is well-understood and can be solved effi-
ciently and reliably. The main benefit of continuous methods consists in the fact
that deformation vector field are generally efficient to compute. In particular,
we show that it is a linear problem for near-isometric deformations. In addition,
and in contrast to single-step methods, all involved energy optimizations yield
globally optimal results. Figure 2 illustrates the vector field-based continuous
deformation principle.

We emphasize that vector field-based deformations are well suited to optimize
for near-isometric deformations in an indirect way, e.g., the methods by Kilian
et al. [KMP07] and Solomon et al. [SBBG11a] are formulated continuously. How-
ever, not only the hard nonlinear problem of near-isometric deformation can
be computed using continuous approaches. In fact, in this work we show that
continuous vector field-based deformations are suitable to compute a great va-
riety of different deformation types: for example, with carefully chosen vector
fields also volume-preserving deformations can be modeled in straightforward
way (see, e.g., Chapters 3 and 5). Moreover, we show how vector field-based
deformations are applied to related geometry processing problems like shape
optimization (see Chapter 6).

2.1 related work

We continue with a summary on methods that are most relevant to the shape
manipulation approaches we propose.

12 overview of continuous deformations

2.1.1 Manipulation of Explicit Shapes

A great variety of deformation methods acts on explicit shapes. Here, piece-
wise representations, especially triangle meshes (or, more generally, polygonal
surfaces) as well as point-based models have emerged as a de facto standard
for geometric shape models. The deformation of a explicitly parameterized
shapes consists of a map from the original shape to the deformed shape. Iso-
metric maps preserve lengths, which is equivalent to simultaneously preserving
angles (conformal maps) and area or volume (authalic maps). Isometric deforma-
tions have been studied extensively in differential geometry and mathematics
in general: Efimow [Efi57] theoretically investigates infinitesimal first-order and
higher-order deformations. In this work, we consider the vector field-based first-
order case. For a rigorous introduction of the differential geometry of such maps
we refer to do Carmo [dC92]. Related to shape deformation is parametrization
of surfaces, i.e., finding a map between a surface in 3d and a planar domain.
Naturally, isometry is a desired property for such maps; a pioneering approach
is the construction of most-isometric parametrizations by Hormann and Greiner
[HG99]. Liu et al. [LZX∗08] present hybrid parametrizations that interpolate lo-
cally rigid or local similarity transformations, which is similar to the generalized
framework for continuous deformations that we propose in Chapter 3. In the
following, we consider only shape deformation methods and refer to the survey
by Hormann et al. [HPS08] for a discussion of parametrization methods.

linear deformations . Linear shape deformation methods can be mod-
eled in various ways, for instance

• as a variational problem minimizing an energy functional that penalizes
certain linearized physically inspired shell-based bending energies (see,
e.g., [BK04]),

• as a reconstruction from any kind of differential coordinates (see, e.g.,
[YZX∗04, SCL∗04, NSACO05, LSLCO05]),

• as a multiresolution shape decomposition with subsequent detail transfer
(see, e.g., [KCVS98, BSPG06]),

• as a projection or Poisson reconstruction after application of a “transforma-
tion field” to individual triangles thus over-determining vertex positions
(see, e.g., [SP04, XZY∗07, ZRKS05, KG08]).

Several methods are closely related and rely on the minimization of certain lin-
ear (or potentially linearized) energy functionals, which often results in solving
associated Euler-Lagrange equations characterizing an equilibrium state. They
all share the goals of feature preservation and establishing smooth transitions
towards deformed regions. All of these methods rely on the factorization of a

2.1 related work 13

few or even only a single linear system, a fact that renders these methods inter-
active. In particular, movement of handles often requires only back-substitution
for solving the system. For an in-depth review of linear methods and a discus-
sion of their particular limitations and differences to nonlinear methods we refer
to the survey by Botsch and Sorkine [BS08].

nonlinear deformations . A popular approach to nonlinear isometry
preservation is to restrict deformations locally to near-rigid transformations,
i.e., translation and rotation. (Reflection is undesired.) This leads to the no-
tion of the well-established as-rigid-as-possible (ARAP) maps, which where ini-
tially introduced for shape interpolation by Alexa et al. [ACL00] and later
applied for shape deformation by Igarashi et al. [IMH05] as well as Sorkine
and Alexa [SA07]. Until today, there have emerged numerous extensions like
[WXXC08, LZX∗08, BWG09, SDC09, KFG09, MS11, Lip12, JBK∗12, MWCS13], to
mention just a few. ARAP approaches minimize a nonlinear energy expressing
local rigidity subject to constraints like fixed and displaced points. The classic
approach consists in an iterative algorithm that repeatedly estimates local rota-
tions to construct the global deformation until convergence [SA07]. A related
iterative algorithm for more general nonlinear geometry processing constraints
was proposed by Bouaziz et al. [BDS∗12]. Other approaches try to directly opti-
mize the nonlinear problem using dedicated solvers like (quasi) Gauss-Newton
solvers [CPSS10]. There are also alternative nonlinear deformation energies that
enforce rigidity in form of, e.g., the rest energy of coupled rigid prisms proposed
in for of the PriMo method by Botsch et al. for surfaces [BPGK06] and volumes
[BPWG07].

Various alternative methods for nonlinear planar, volumetric, or manifold shape
deformation exist: Barr [Bar84] and Sederberg and Parry [SP86] pioneered free-
form deformations that establish a mapping from the domain onto a warped
space. Related are a prominent class of methods that are based on generalized
barycentric coordinates and defined on the shape itself or on superposed control
structures [HF06, JSW05, JMD∗07, LLC08, WBCG09, JBPS11, WBGH11, JWS12,
WMZ12]. Besides isometry, here is also a demand for conformal maps, which
are produced by none of the above ARAP methods. Nonlinear space deforma-
tions are also obtained using moving least-squares techniques [SMW06, ZG07],
radial basis functions [BK05b], sweeps of shapes [MJBF02] serving as volume-
preserving tools [ACWK04, AWC04], and blended rigid transformations embed-
ded at nodes of space-spanning graphs [SSP07]. Furthermore, there are vari-
ous hybrid methods, see, e.g., [Coh09]. For a detailed overview and further
references we refer to the survey by Gain and Bechmann [GB08]. Nonlinear con-
straints are also solved on simplified subspaces around the shape [HSL∗06] or by
cascaded optimizations [KCATLF06, SZT∗07]. Hildebrandt et al. employ spectral
properties of discrete shell energies for surface modeling and shape space explo-
ration [HSTP11]. Vaxman performs the same operations on planar polyhedral

14 overview of continuous deformations

meshes using fitted affine maps [Vax12]. Furthermore, shapes are often supple-
mented by additional control structures like local transformations and skeletons
for skinning-based deformation propagation [KCvO08, XWY∗09, JS11, JBK∗12,
KS12]. Multiple input shapes are considered by nonlinear example-based meth-
ods for skeletal skinning and rigging [LCF00, WPP07, WSLG07, LWP10], as well
as shape deformations [SZGP05, DSP06, PJS06, FKY08]. Additionally, more
abstract representations of shape features allow for semantical deformations
[GSMCO09, BWSK12], semantic deformation transfer [BVGP09], as well as de-
formations that modify rendering results [RTD∗10, MIW13]. The recent survey
by Mitra et al. [MWZ∗13] gives an overview on structure-aware shape modifica-
tions.

Independent of the energy and the particular numerical scheme, the deformation
is obtained, either directly or indirectly, as the minimizer of a particular (non-)
linear energy that most often depends on the shape geometry at a singular point
in time: we refer to these methods as direct single-step methods.

continuous deformations . Nonlinear continuous deformations compleme-
nt the above single-step methods by also describing all deformations in between
the initial and final shape. Such descriptions are useful for, e.g., shape anima-
tion and shape space exploration applications. We distinguish between kinematic
formulations that describe deformations in a purely geometrical way, and dy-
namic formulations that consider deformations that originate from physically
motivated forces acting on mass-associated shapes.

The interpolation between shapes is a prominent continuous example: space-
time pose interpolation constraints were introduces by Welch and Witkin [WK88].
Additional kinematic interpolation and morphing methods exists for two [RV11]
or multiple poses [KG08, WDAH10]. More recently, Cashman and Hormann
present a parameterized kinematic representation for pose space exploration
[CH12]. Dynamic physics-based simulations can be considered to be a contin-
uous process, see, e.g., the survey of Nealen et al. [NMK∗06]. Pentland and
Williams pioneered dynamic simulations using modal deformation energy anal-
ysis [PW89]. More recently, dynamic continuous simulations of surfaces are
often discretized in both space and time and are commonly based on physi-
cally motivated thin shell energies [GHDS03, BMWG07]. Example-based dy-
namic methods employ similar energies [FB11, MTGG11, STC∗12, HSvTP12]. A
unified formulation for physical simulations of different shape types was pro-
posed by Martin et al. [MKB∗10]. Related are physical simulations of cloth
[BMF03, GHF∗07, EB08, FYK10], elastic rods and threads [BWR∗08, BAV∗10], and
FEM-based (linear) elasticity simulations that often require corotated energies
[MDM∗02, WBG07, MTPS08, KMBG08, MKB∗08, MZS∗11, HMT∗12, CMT∗12].

Vector field-based continuous deformations can be regarded as kinematic meth-
ods that integrate shapes defined in higher-dimensional shape spaces. Orig-

2.1 related work 15

inally, curvature flow is performed for surface fairing [DMSB99]. Isometric
deformations are guaranteed for integration of exact Killing vector fields 1, see,
e.g., [Kil88, BBSG09]. Kilian et al. [KMP07] approximate Killing vector fields by
a linear optimization. Using a hierarchical space and time discretization they
obtain shape space geodesics that yield near-isometric deformations and inter-
polations of two-manifolds embedded in three-space. More general gradient
flows are used by Eckstein et al. [EPT∗07] for surface interpolation, matching,
and optimization. Wirth et al. [WBRS09] and Heeren et al. [HRWW12] compute
geodesics for surface modeling in nonlinear physically-based shape spaces de-
fined by discretized elasticity or thin shell energies, respectively. Shape spaces
representing constrained shapes for, e.g., rationalization in freeform architecture
are explored by Yang et al. [YYPM11], Barton et al. [BSK∗13], and Deng et al.
[DBD∗13]. Here, tangential first-order shape variations need to be reprojected to
the shape space to fulfill prescribed constraints. Solomon et al. [SBBG11a] intro-
duce the notion of as-Killing-as-possible (AKVF) vector fields for near-isometric
deformations of planar shapes. In contrast to the above approaches, they ensure
smoothness by a post-process rather than by a regularization term, and instead
of a standard ODE solver, they use planar holomorphic curves as a predictor to
construct the trajectories. Von Funck et al. [vFTS06, vFTS07a, vFTS07c, vFTS07b]
develop a different family of approaches for continuous kinematic 3d surface
deformations, which preserve volume by integration of divergence-free vector
fields.

2.1.2 Manipulation of Implicit Shapes

There are numerous tasks in computer graphics and geometry processing that
are performed preferably on implicit shapes like isosurfaces rather than on ex-
plicit representations: for instance, changes in shape topology are generally sim-
pler. Self-intersections are avoided by construction. However, for shape mod-
eling there is significantly fewer work on deformation of implicit shapes than
for the explicit case. Closely related are volume deformations, which are often
modeled by a space deformation as discussed above. For instance, in medi-
cal applications this includes non-rigid registration of data sets: the data often
describes certain material properties, like soft-tissue, and manipulations are re-
quired to be physically-based. We refer to the survey by Chen et al. [CCI∗07]
for a general and broad review of volume deformations with a discussion on
various data representations and applications.

Several classic approaches to modeling with isosurfaces are based on level set
methods [OF01]. Museth et al. [MBWB02] define shape editing operations for

1 Vector fields generating isometries are named after the German mathematician Wilhelm Karl
Joseph Killing (1847-1923), who made important contributions to the fields of Lie algebras and
non-Euclidean geometries [Kil88].

16 overview of continuous deformations

smoothing, offsetting, and blending. Desbrun and Cani-Gascuel [DCG98] use
a level set approach to define active implicit surfaces inspired by geometric
snakes. Level set methods focusing on explicitly handling topology preservation
were presented in [AS05]. As these approaches act only on a particular isosur-
face, computations can be limited to a narrow band of the scalar field. Various
other approaches are physically plausible and employ particle systems and a La-
grangian integration scheme to simulate and animate surface material. In com-
puter graphics, this was pioneered by Desbrun and Cani-Gascuel [DG95], who
minimize local volume variations. Another potential goal for such approaches
is the emulation of virtual clay [MQW01, CA06]. Alternative sculpting methods
implement virtual carving operations [PF01] based on adaptive distance fields
[FPRJ00]. Yet a different approach to volume deformation consists in simulat-
ing networks of geometric primitives, e.g., using a chain mail analogy [Gib97].
Mullen et al. [MMTD07] present an Eulerian framework for geometry process-
ing problems like smoothing and gradient flow-based surface offsetting. Their
method handles multiple isosurfaces simultaneously but does not support sur-
face modeling. A crucial aspect of any deformation method is interactivity: the
user requires real-time feedback. The use of modern graphics hardware can
speed up computations or is even mandatory to achieve interactive frame rates
on volume data [RSSG01, WR01, GW06, SBH07, RWE08]. For a more in-depth
overview, we refer to the survey by Hadwiger et al. [HKRW06].

3
V E C T O R F I E L D - B A S E D C O N T I N U O U S D E F O R M AT I O N
E N E R G I E S

In this chapter, we introduce continuous deformations formally. We derive en-
ergies that determine different kinds of vector field-based deformations in 2d
and 3d. The main focus will lie on a generalized formulation of vector field
energies that determine a one-parameter family of different continuous defor-
mations: the generalized energy describes near-isometric, near-conformal, and
close-to-authalic deformations, and supports nonhomogeneous and anisotropic
behavior. Our approach is more general – but not more complicated – than
previous methods. In particular, we show that the recently proposed planar de-
formations by Solomon et al. [SBBG11a], which are based on approximate Killing
vector fields (AKVFs), constitute a special case of our energy.

3.1 continuous shape deformations

In this work, we considere geometric shapes that are compact d-dimensional point
sets Dd ⊂ Rd of intrinsic dimensionality dim(Dd) ≤ d, e.g., univariate curves D2

with dim(D2) = 1 embedded in R2. A continuous shape deformation is then given
as a map

f(x, t) : D0
d ×R→ Rd ,

i.e., a time-parameterized map from an initial shape D0
d to a deformed state in

Rd. In this work, we primarily consider the practically most relevant dimensions
d = 2 and d = 3 of planar, surface, and volumetric deformations, respectively,
but also provide generalizations for higher dimensions d > 3. We assume that f
is differentiable. D0

d can be considered to be a point in a high-dimensional space
and describes the realization of the initial shape in some Euclidean space, e.g., a
two-variate surface shape embedded in 3d. In the literature, this space is often
considered as a so-called shape space with a choice of a suitable metric [KMP07].
The deformed shape at time t is expressed as the image f(D0

d, t). We use the
short notation Dd = f(D0

d, t) ≡ x(t) for the deformed shape at the current time

17

18 vector field-based continuous deformation energies

(a) Near-isometric. (b) Near-conformal.

Figure 3: 2d Deformation Examples. On the straight strip some vertices were fixed (•)
while some vertices were moved (•) (all models have the same scale). The
deformations are generated by AMAP (9) and ACAP (13) vector fields. Note
the approximate length preservation in (a), and the preservation of angles and
the area deviation in (b).

t, which is clear from the context. The univariate curve x describes the time-
parameterized continuous shape deformation.

In this chapter, we concentrate our studies on continuous solid deformations
with dim

(
D0

d

)
= d. Related continuous space deformations will be presented in

Chapters 5 and 6. Surface deformations in 3d will be studied in Chapter 4.

A powerful way to describe continuous deformations is to define them by kine-
matic space-time integration along suitable vector fields. We define the velocity
tangent vector field of f as the vector field v(x, t) = ∂

∂t f(x, t). Given the initial
shape D0

d and the vector field v, the deformation f can be reconstructed by solv-
ing the ordinary differential equation (ODE) given as the initial value problem

d
dt

x(t) = v(x, t) with x(0) ≡ D0
d . (1)

Therefore, the deformation of the shape D0
d is completely defined by v, and

properties of the vector field directly influence properties of the deformation.
For example, applying vector fields that are divergence-free in the embedding
Euclidean space yields volume-preserving authalic deformations.

3.2 continuous metric energies

In the following, we derive conditions on v that lead to near-isometric, near-
conformal, as well as near-authalic maps f of any dimension. The conditions are
characterized as the minimizers of certain energies w.r.t. interpolation constraints
on v. Figure 3 shows examples for deformations that were determined by this
kind of vector fields. The different energies are characterized by the types of
deformations they define.

3.2 continuous metric energies 19

3.2.1 Characteristic Deformations

For a single-step (i.e., not time-dependent) deformation f(x) : D0
d → Rd with de-

formation gradient tensor field D = ∇f, the first fundamental form I of f has the
particularly simple form

I = DT D .

Therefore, the singular values σi of D are square roots of the eigenvalues λi of I .
Then the following equivalent local properties of the deformation map f can be
shown:

1. f is isometric ⇔ I = I ⇔ λi = 1 ⇔ σi = 1, (2)

2. f is conformal ⇔ I = µ I ⇔ λi

λj
= 1 ⇔ σi

σj
= 1, (3)

3. f is authalic ⇔ det(I) = 1 ⇔ ∏d
i=1 λi = 1 ⇔ ∏d

i=1 σi = 1.(4)

See, e.g., the work of Floater and Hormann [FH05] for a derivation and discus-
sion in the context of surface parametrizations (d = 2). Note that parametriza-
tions can be regarded as single-step deformations between surfaces embedded
in 3d and planar 2d shapes that minimize some form of deviation of these prop-
erties. In this chapter, we study corresponding continuous deformations that
are described by instantaneous deformation energies in the generating vector
fields.

If deformations are parameterized by time t, i.e., we have continuous deforma-
tions f(x, t) and deformation gradients D(x, t), these properties can be differen-
tiated in order to obtain defining conditions on the vector field of the continu-
ous deformation. Specifically, we apply the matrix algebra described by Minka
[Min01] to obtain matrix derivatives w.r.t. t: the differential dy(x) is defined to
be the part of y(x + dx) − y(x) that is linear in dx. Differentials are obtained
by iteratively applying a set of differentiation rules. After transformation into
canonical form the matrix derivative can directly be read off.

3.2.2 Isometric Energies

Exact isometric deformations are only possible for very simple shapes, e.g.,
for developable surfaces, and a very restrictive set of user-constraints. To en-
able deformations of a greater variety of shapes without the restriction of user-
constraints, the isometric deformation property is generally relaxed to near-iso-
metric deformations that should be “close” to exact isometries. Therefore, mea-
sures for the deviation from isometry are required. Depending on the ansatz of
deviation measurement, different types of near-isometric energies are defined.
We continue to present two different models: Killing and metric energies. We

20 vector field-based continuous deformation energies

also propose a third model of skew-symmetric energies, which turn out to be
equivalent to Killing energies.

killing energy. The matrix derivative of the isometry property (2) is ob-
tained by deducing the differential w.r.t. t, which gives

dDT D + DT dD = 0

using the product rule d(A B) = dA B + A dB and dI = 0. This equality has to
hold for every time t of the continuous deformation. Specifically, for t = 0 we
have D(x0, 0) = I for all x0 ∈ D0

d, and by using dDT = J, where J(v, x) is the
Jacobian of the tangent vector field v of f, we obtain

JT + J = 0 (5)

as the condition for f to be isometric expressed in the vector field v of the contin-
uous deformation. Equation (5) corresponds to the constraint that exact isomet-
ric deformations are generated by infinitesimal instantaneous rotations, as the
symmetric part of their vector field Jacobians, which are skew-symmetric then,
vanishes.

Using the Frobenius norm the L2 deviation of (5) over a shape Dd

EAkvf(v) =
∫
Dd

‖JT + J‖2
F dx (6)

is called Killing energy. Vector fields minimizing EAkvf are called approximate
Killing vector fields (AKVF). They are used by Solomon et al. [SBBG11a] for the
d = 2 case to compute as-Killing-as-possible (AKAP) planar deformations that are
near-isometric. Higher-dimensional cases (d > 2) are also well-defined by (6).
Note that the Jacobian is linear in the unknown vector field v as differentiation
is a linear operation, i.e., there exists a linear gradient operator G on Dd with
JT = G(v). See Appendix A.1 for a derivation of gradient operators on differ-
ent shape discretizations. Therefore, the energy EAkvf is quadratic in v, and the
corresponding variational optimization of EAkvf on an appropriate domain dis-
cretization leads to a linear system that can be solved efficiently for the optimal
vector field.

metric energy. The standard Killing energy (6) uses the Frobenius norm
of (5) to measure deviation from isometry. We propose a related energy that
measures another form of deviation from isometry that is not based on a L2 de-
viation of (5). Informally spoken, our energy directly observe an infinitesimally
small line segment and measures change of squared length under an infinites-
imal integration step in v. This is done for all possible infinitesimal segments,
i.e., we integrate the change of length over all possible directions. We call this

3.2 continuous metric energies 21

energy metric as distance variations are measured explicitly. We start with the
derivation of the 2d case followed by the 3d case.

In order to measure the variation of length under integration in v, we consider
a 2d line segment S between points x0 and x1 = x0 + r1 r1 for a unit direction r1

and segment length r1. The flow of S in v is given by x′0(h) = x0 +
∫ h

0 v(x′0(s))ds
and x′1(h) = x1 +

∫ h
0 v(x′1(s))ds for some (finite) integration time h > 0. This

integration induces the (finite) squared length variation

d(h) = ‖x1 − x0‖2 − ‖x′1(h)− x′0(h)‖2 .

Since we are interested in instantaneous variations (i.e., the squared length varia-
tion of an infinitesimal small line segment during an infinitesimal small integra-
tion time) only, we consider the point-wise directional limit

d0(r1) = lim
r1→0, h→0

d(h)
r2

1 h
.

d0 measures the instantaneous squared length variation at x0 in the direction r1.
We obtain the point-wise squared metric energy eMetr(x0, v) at x0 by considering
all possible line segment directions given by r1(α) = (cos(α) , sin(α))T:

eMetr(x0, v) =
1

2π

∫ 2π

0
dl

0(r1(α))
2 dα . (7)

It can be shown that (7) has the following closed-form solution that depends
only on the Jacobian of v 1:

eMetr(x0, v) = u2
x + v2

y +
1
2
(
uy + vx

)2
+

1
2
(
ux + vy

)2

= c
(
‖J + JT‖2

F + 2 Tr(J)2
)

. (8)

Here, J =
(

ux uy
vx vy

)
denotes the Jacobian matrix of v = (u(x, y), v(x, y))T at x0,

Tr(·) is the trace of a matrix, and c = 1/4 is a constant factor that does not
influence the optimal solution. The total metric energy of a vector field v on D2 is
now given by

EMetr(v) =
∫
D2

eMetr(x, v)dx . (9)

We call vector fields that minimize this energy approximate metric vector fields
(AMVF). Figure 3a shows examples for deformations that were determined by
this kind of vector fields.

1 The proof of equivalence is lengthy but consists only of basic algebraic transformations and
is therefore omitted in this work. — We provide “derivations” in form of Maple scripts
for all closed-form solutions of integrals in this chapter with the additional material folder
addmaterial/contdef.

22 vector field-based continuous deformation energies

We derive a similar energy for d = 3 dimensions using the same ansatz as above
for d = 2. Again, we integrate over all possible configurations of an infinitesimal
integration step of an infinitesimally small line segment between two points x0

and x1 = x0 + r1 r1 in 3d. The main difference to the 2d case is that angles in
the plane now have to be replaced by solid angles to perform local volumetric
integration. For the spherical parametrization of the unit direction r1(α, β) =

(cos(α) cos(β) , sin(α) cos(β) , sin(β))T we obtain the point-wise quadratic metric
energy as the integral

eMetr3d(x0, v) =
1

4π

∫ 2π

0

∫ π
2

− π
2

cos(β) d0(r1(α, β))2 dβ dα , (10)

which again has the closed-form solution

eMetr3d(x0, v) = c
(
‖J + JT‖2

F + 2 Tr(J)2
)

(11)

with c = 1/30. Interestingly, the factors of (8) and (11) only differ in the constant c,
although their dimensions differ. This property also holds for higher dimensions.
The total 3d metric energy is then obtained as

EMetr3d(v) =
∫
D3

eMetr3d(x, v)dx .

We again call the minimizers of this energy approximate metric vector fields (AMVF).
In the following we will use the identifiers Metr and Metr3d synonymously
whenever the context is clear.

3.2.3 Conformal Energy

We continue to derive conformal energies that measure the deviation of angles
induced by vector field integration. The differential of (3) is given by

dDTD + DT dD = dµ I .

We again evaluate it at t = 0, and by setting dµ = α we obtain

JT + J = α I

as the condition for the continuous deformation f to be conformal. Note that
here α, the differential of the scaling factor µ, is an additional degree of freedom
stating the fact that instantaneous uniform scaling is conformal for every scaling
factor.

3.2 continuous metric energies 23

We derive a point-wise energy eConf
that measures the L2 deviation of this confor-

mality condition. The construction of the energy holds for any dimension d from
which the important two and three-dimensional special cases can be obtained:

eConf
= ‖JT + J− α I‖2

F

= Tr
((

JT + J− α I
)T(

JT + J− α I
))

= Tr
((

JT + J
)T(

JT + J
))

+ Tr
(
−2α

(
JT + J

)
+ α2I

)
= ‖JT + J‖2

F − 2α Tr
(

JT + J
)
+ d α2

= ‖JT + J‖2
F − 4α Tr(J) + d α2 (12)

This energy formulation still depends on the scaling factor α. To obtain an ex-
pression that is independent of this parameter we consistently set it to the value

that minimizes the value of the energy. That is, we solve ∇α eConf

!
= 0 for α,

which gives α = 2
d Tr(J). Inserting this result into (12) we obtain

eConf
= ‖JT + J‖2

F −
4
d

Tr(J)2

for the general d-dimensional point-wise conformal energy in the vector field of
the continuous deformation. The total conformal energy of the vector field is then
given by

EConf
(v) =

∫
Dd

‖JT + J‖2
F −

4
d

Tr(J)2 dx .

Again, this energy is quadratic in the vector field and is defined for any dimen-
sion d. We call vector fields minimizing this energy approximate conformal vector
fields (ACVF). The important low-dimensional special cases are

EConf2d
(v) =

∫
D2

‖JT + J‖2
F − 2 Tr(J)2 dx and (13)

EConf3d
(v) =

∫
D3

‖JT + J‖2
F −

4
3

Tr(J)2 dx .

See Figure 3b for example deformations that were determined by vector fields
that minimize this type of energy.

3.2.4 Authalic Energy

In order to obtain the vector field condition for the continuous deformation to be
authalic, i.e., volume-preserving, we differentiate the left hand side of (4) using
the differentiation rule d det(A) = det(A) Tr

(
A−1 dA

)
:

d det
(

DTD
)
= 2 (d det(D)) det(D)

24 vector field-based continuous deformation energies

= 2
(

det(D) Tr
(

D−1 dD
))

det(D)

= Tr
(

2 det(D)2 D−1 dD
)

(14)

Evaluating (4) and (14) once again at t = 0, and by using dDT = J the authalic
condition on the vector field simplifies to

Tr(J) = 0,

which states that the vector field has to be divergence-free as Tr(J) = ∇T v is
the divergence of v. The corresponding L2 point-wise authalic energy eAuth =(
∇T v

)2 yields the total authalic energy

EAuth(v) =
∫
Dd

(
∇T v

)2
dx

for any dimension d. We call vector fields minimizing this energy approximate
authalic vector fields (AAVF).

3.2.5 Alternative Isometric Energy

For completeness, we provide a derivation of a different energy form that yields
equivalent near-isometric minimizers as the Killing energy. The Killing energy
(6) measures deviation from skew-symmetry using the L2 deviation of (5). Al-
ternatively, skew-symmetry can be measured by minimizing the L2 distance to
the closest skew-symmetric matrix in the Frobenius norm, which also gives near-
isometric deformations. We do only consider the 2d case as this ansatz is more
complex to generalize to higher dimensions. Let S =

[
0 −1
1 0

]
be a basis of skew-

symmetric tensors in 2d. Pointwise energies are then given by

eSkew2d
= ‖J− α S‖2

F

= Tr
(

JTJ− α JTS− α STJ + α2 I
)

= ‖J‖2
F − 2α Tr

(
STJ
)
+ 2α2

using the skew-symmetry of S. Solving ∇α eSkew2d

!
= 0 for α gives α = 1

2 Tr
(
STJ
)
,

such that we obtain a point-wise energy of

eSkew2d
= ‖J‖2

F −
1
2

Tr
(

STJ
)2

, (15)

and a total energy of

ESkew2d
(v) =

∫
D2

‖J‖2
F −

1
2

Tr
(

STJ
)2

dx . (16)

3.3 a generalized family of energies 25

Vector fields that minimize this energy are called approximate skew-symmetric vec-
tor fields (ASSVF). We will show that (6) and (16) have equal minimizers in Sec-
tion 3.4.3. Due to this equivalence we will not further analyze properties of
this energy in this work and continue to give a unification of all other proposed
energies.

3.3 a generalized family of energies

In the following, we relate the near-isometric, near-conformal, and near-authalic
energies to derive a generalized energy. It is a one-parameter family of energies
that determines smooth blends between the different deformation types.

We define the energy terms

q(x, v) := ‖J(x) + J(x)T‖2
F and r(x, v) := Tr(J(x))2 . (17)

Then all point-wise energies introduced so far can be expressed as linear com-
binations of q and r. Uniform energy scaling does not change the minimizing
vector field. Therefore, we can describe all energies as a one-parameter family of
generalized metric energies parameterized by a scalar φ:

Eφ(v) =
∫
Dd

wq(φ) q(x, v) + wr(φ) r(x, v)dx ,

where the weights wq(φ) := sin(φ) and wr(φ) := cos(φ) are chosen to have spe-
cific ratios. φ can vary in the interval (0, π − arctan d/4]. Then the parameter of
the isometric energies is given by φ = φAKVF = π/2, resp. φ = φMetr = arctan 1/2,
and the minimizers of EφAKVF(v) and EAKVF(v), resp. EφMetr

(v) and EMetr(v)
are equal. Furthermore, the d-dimensional conformal energy is given by φ =

φConf
= π − arctan d/4. The authalic energy is recovered for φ = φAuth = 0. We

note that volume preservation is not a sufficient condition for uniquely defining
v. However, adding a small amount of q to Eφ (i.e., choosing φ slightly above
zero) gives unique solutions corresponding to near-authalic deformations.

Figure 4 illustrates and summarizes the different choices of φ. Note that for
φ > π/2, Eφ contains negative quadratic terms. However, due to the definition of
the point-wise conformal energy (12) as a squared matrix norm, it is guaranteed
that Eφ is non-negative (as long as φ ≤ π − arctan d/4), and that an unique mini-
mizer exists. Obviously, general vector fields cannot have multiple characteristics
simultaneously. For example, a non-rigid vector field cannot always preserve
local angles and volumes at the same time. Vector fields defining continuous
deformation inherit this fundamental property from single-step deformations.

We note that in (17) only the symmetric part 1
2

(
J + JT) of the vector field Jacobian

J contributes to the energy. The trace-free skew-symmetric part 1
2

(
J− JT) does

not contribute to the energy as it represents the infinitisimal rotational part of J

26 vector field-based continuous deformation energies

wq

wr

φMetr

φAkvf

φConf3d

φConf2d

φAuth

Energy wq : wr φ

Metr 2d & 3d 1 : 2 arctan 1/2

Conf 2d 1 : −2 π− arctan 1/2

Conf 3d 1 : −4/3 π− arctan 3/4

Akvf 2d & 3d 1 : 0 π/2

Auth 2d & 3d 0 : 1 0

Figure 4: Energy Parameter Domain for 2d and 3d. The different energies obtained from
the general metric energy Eφ(v) are linear subspaces in the visualized domain
of weights wq and wr, i.e., every pair of weights in a subspace yields the same
energy minimizer. However, energies may not have unique minimizers, like
the Auth energy in the limit.

that induces no distortion. Hence, our generalized family of energies is invariant
to superimposed rigid vector fields.

anisotropic energies . The energy formulations presented so far are iso-
tropic as distortions are measured in an uniform way for every shape direc-
tion. We model anisotropic energies by replacing isotropic Frobenius norms with
anisotropic norms ‖·‖2

B defined by a rank-2 tensor fields of symmetric positive-
definite matrices B(x): ‖A‖2

B = Tr
(
AT B A

)
. Effectively, this way we modulate

the isotropic point-wise energies to obtain anisotropic behavior. For example,
the point-wise energy (12) then becomes

eConf
= ‖JT + J− α I‖2

B

= ‖JT + J‖2
B + Tr

(
−2α

(
JT B + B J

))
+ Tr

(
α2 B

)
= ‖JT + J‖2

B − 4α Tr(B J) + γ α2

= ‖JT + J‖2
B −

4
γ

Tr(B J)2 ,

where we have set γ = Tr(B) and used the identity Tr(A B) = Tr(B A) to-

gether with the solution of ∇α eConf

!
= 0, which is α = 2

γ Tr(B J). In general,
the anisotropic energy factors become

q = ‖J + JT‖2
B and r = Tr(B J)2 , (18)

together with wr = − 4
γ for the conformal energies. In the special case of B = I

the isotropic cases are recovered as then ‖·‖B ≡ ‖·‖F and γ = d.

A simple way to model the local anisotropic norm field is to attach a local d-
dimensional orthonormal basis {tk} together with local weights {λk}, λk > 0 to
each shape point. Then B is given by the spectral decomposition

B =
[
t1 · · · td

]
diag(λ1, · · · , λd)

[
t1 · · · td

]T
.

3.4 discrete setting 27

The weight λk indicates the anisotropic contribution of the measured error in
direction tk. Note that the basis directions need to be transformed during defor-
mation according to local shape rotations.

3.4 discrete setting

In this section, we provide suitable discretizations of the domains for the vector
field energies introduces above. LetM = (V , T) be a piecewise linear partition
of Dd (at a particular time t) with sets of vertices V and cells (or simplices) T (tri-
angle meshes for d = 2 and tetrahedral meshes for d = 3). From hereon, we will
omit dimension subscripts d whenever the context is clear. Furthermore, let |V|
denote the number of vertices, and xi for vertices i ∈ V indicate d-dimensional
vertex coordinates. The piecewise linear coordinate functions define the shape
of the realization ofM. We also express vector fields v as piecewise linear func-
tions onM: v is given as d-dimensional nodal values vi, i ∈ V ; we write v as the
a single (d |V|)-dimensional column vector v = (v1

T, . . . , v|V|T)
T. Its piecewise

constant Jacobian field is given as matrices Jc on each cell c ∈ T .

3.4.1 Energy Discretization

In the discrete setting Eφ is a quadratic form in the unknown vector field: Eφ(v) =
vT Eφ v. The d |V| × d |V| matrix Eφ is a symmetric positive-semi-definite sparse
matrix defining Eφ. The rank deficient of Eφ depends on φ, but for φ > 0 the
rank deficit is bounded from above by d2. Therefore, the vector field has to be
prescribed in form of user-specified boundary constraints at at least d vertices
for well-defined energy minimizing vector fields. In practice this is no problem
as d < |V| for any mesh and in general d� |V| for relevant meshes.

The matrix Eφ can be constructed in an element-wise way. With the Jacobians be-
ing constant on each cell, the coefficients of Eφ are the sum of permuted matrices
Ec

φ that capture the local error Ec
φ on cell c as

Ec
φ(v) =

∫
Dc

wq(φ) q(x, v) + wr(φ) r(x, v)dx

= vol(Dc)
(

wq ‖Jc + Jc
T‖2

F + wr Tr(Jc)
2
)
= vc

T Ec
φ vc .

Here, the d(d + 1)-dimensional vector vc is the concatenation of velocities of the
vertices of c, Jc is the constant Jacobian on c, and vol(Dc) is the volume of the cell,
e.g., triangle area or tetrahedral volume, which weights the constant expressions
during integration over the discrete domain M. Explicit expressions for Ec

φ are
derived in the following section.

28 vector field-based continuous deformation energies

The local quadratic forms Ec
φ on individual cells can then be assembled into

the global quadratic form Eφ using an element-wise setup that is similar to the
FEM-related stiffness matrix assembly:

Eφ = PT

(
∑

c∈T
Ec

φ ⊗Λc,c
|T |,|T |

)
P (19)

Here, P is an appropriate permutation / replication matrix that selects all vc

associated with a particular cell, ⊗ denotes the Kronecker product, and Λc,c
|T |,|T |

is a |T |-dimensional square single-entry matrix that is one at (c, c) and vanishes
everywhere else. Therefore, Eφ is a permuted block diagonal matrix of quadratic
forms in which every quadratic form measures the energy contribution of each
cell. In general, Eφ is highly sparse.

We use interpolation constraints on the flow v. This means that the user provides
guidance curves γi(t) that define the continuous paths of some constrained ver-
tices i ∈ V . This yields conditions vi(t) = d

dt γi(t) as the flow along the curves is
defined by their tangents. Not that this includes the special case of “fixed” ver-
tices for which the trajectory is a constant domain point with vi(t) ≡ 0. Different
simple types of user-interaction techniques for the guidance curve specification
will be presented in Section 3.5.1.

As Eφ(v) is quadratic in v, the optimal vector field

ṽ = argmin
v

Eφ(v) (20)

that minimizes the generalized energy is efficient to compute as the variational

critical point of the energy∇Eφ(v)
!
= 0, subject to these interpolation constraints,

which is a linear problem.

Note that Equations (19) and (20) describe the quadratic form assembly and
optimization only conceptually. In Section 3.5 we will discuss how to setup Eφ

and solve the arising linear systems efficiently in practice.

3.4.2 Energy Expressions

The implementation of the energy minimization on M requires explicit expres-
sions for Ec

φ. A straightforward method to obtain terms that are valid for any
dimension d is to use vectorizations of the Jacobians. We omit explicit cell in-
dices c in this section because the derivation also holds for the continuous point-
wise case. Let j = vec(J) be the column-wise vectorization of the Jacobian J,
e.g., in the 2d case

(
ux, vx, uy, vy

)T
= vec(J). Note that vectorization is a linear

operation such that there is an appropriately permuting linear gradient operator
on D with j = G(v). For notational convenience, in the following we will there-
fore restrict our derivation to j, which is directly related to the unknown vector

3.4 discrete setting 29

field by local gradient operators G. Additionally, we require the d2-dimensional
square commutation matrices Kd that are defined by Kd vec(A) = vec

(
AT) for

any square d-dimensional matrix A (see, e.g., the excellent book by Magnus and
Heudecker [MN07] for more applications and related matrix calculus concepts).
For example, in 2d and 3d

K2 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 and K3 =

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

 .

Note that commutation matrices are symmetric Kd = Kd
T (and are, in fact, in-

volutory Kd = K−1
d). As vT Eφ v = vT GT Mφ G v = jT Mφ j, we continue to

derive expressions for the quadratic forms Mφ that describe the local deforma-
tion properties. We focus on the anisotropic energies that have isotropic energies
as a special case. For the anisotropic factors q and r of (18) we obtain

q = ‖JT + J‖2
B

= Tr
((

JT + J
)T

B
(

JT + J
))

= vec
(

JT + J
)T

(Id ⊗ B) vec
(

JT + J
)

= (j + Kd j)T (Id ⊗ B) (j + Kd j)

= jT ((Id ⊗ B) + (Id ⊗ B) Kd + Kd (Id ⊗ B) + Kd (Id ⊗ B) Kd) j

= jT (Id2 + Kd)
T (Id ⊗ B) (Id2 + Kd)︸ ︷︷ ︸

Q

j

and

r = Tr(B J)2 = Tr
(

BT J
)2

=
(

vec(B)T vec(J)
)2

=
(

bT j
)2

= jT b bT︸︷︷︸
R

j

using the symmetry of Kd and B, b = vec(B), and the fundamental identity
Tr
(
XT Y Z

)
= vec(X)T (I⊗ Y) vec(Z) that relates matrix traces to vectorizations

using the Kronecker product ⊗. Finally, due to linearity, we have the fundamen-
tal anisotropic quadratic form given as

Mφ = wq(φ)Q + wr(φ)R . (21)

This expression simplifies to

Mφ = 2 wq(φ) (Id2 + Kd) + wr(φ) vec(Id) vec(Id)
T

30 vector field-based continuous deformation energies

in the isotropic case B = Id. Then the fundamental isotropic quadratic forms for
2d and 3d have the explicit representations

Mφ =

4 wq + wr 0 0 wr

0 2 wq 2 wq 0

0 2 wq 2 wq 0

wr 0 0 4 wq + wr

and

Mφ =

4 wq+wr 0 0 0 wr 0 0 0 wr
0 2 wq 0 2 wq 0 0 0 0 0
0 0 2 wq 0 0 0 2 wq 0 0
0 2 wq 0 2 wq 0 0 0 0 0

wr 0 0 0 4 wq+wr 0 0 0 wr
0 0 0 0 0 2 wq 0 2 wq 0
0 0 2 wq 0 0 0 2 wq 0 0
0 0 0 0 0 2 wq 0 2 wq 0

wr 0 0 0 wr 0 0 0 4 wq+wr

.

From these fundamental representations the following isotropic 2d special cases
are obtained (with analogous results for the 3d case):

MφAKVF =

4 0 0 0

0 2 2 0

0 2 2 0

0 0 0 4

 , MφMetr
=

6 0 0 2

0 2 2 0

0 2 2 0

2 0 0 6

 ,

MφConf
=

2 0 0 −2

0 2 2 0

0 2 2 0

−2 0 0 2

 , MφAuth
=

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 .

(22)

The quadratic form MφAuth
reveals the singular nature of the authalic energy,

which has a three times higher rank deficit compared to all other energy types.

We will obtain related quadratic forms for other geometry processing approaches
in the context of energy smoothing in Chapter 7 of this thesis. In fact, we will
show that a variety of different modeling methods are, at their core, describable
by energies that relate gradients using similar fundamental quadratic forms.

3.4.3 Equivalence of AKVFs and ASSVFs

The equivalence of approximate Killing (AKVF) and skew-symmetric (ASSVF)
vector fields is now straightforward to show using the vectorization of (15):

eSkew2d
= ‖J‖2

F −
1
2

Tr
(

STJ
)2

3.4 discrete setting 31

= vec(J)T vec(J)− 1
2

(
vec(S)T vec(J)

)2

= jTj− 1
2

jTssTj

= jT
(

I4 −
1
2

ssT
)

︸ ︷︷ ︸
MSkew2d

j ,

with s = vec(S). Hence, the ASSVF quadratic form is given by

MSkew2d
=

1 0 0 0

0 1/2 1/2 0

0 1/2 1/2 0

0 0 0 1

 .

Therefore, MSkew2d
is equal to MφAKVF in (22) up to a constant scaling factor,

which does not influence the optimal vector field that minimizes both energies.
Note that this derivation yields the matrix identity I4 − ssT = K2, which relates
skew-symmetric matrices to commutation matrices in 2d, and is, to the best
of our knowledge, not know in the literature. However, higher-dimensional
identity versions are more complex to describe, because a higher number of
skew-symmetric basis matrices are required.

3.4.4 Energy Smoothness

The derived energies do not yet enforce smoothness of the solution across the
domain. This means that even though we obtain energy minimizers, the resid-
ual energy is not distributed smoothly over the shape. In particular, in practice
this leads to high energy concentrations near constrained vertices, which results
in deformation artifacts after integration. These artifacts are highlighted in Fig-
ure 5.

Recently, Lipman [Lip12, Figure 3] also observes this effect for non-continuous
single-step as-rigid-as-possible deformations (ARAP) [IMH05, SA07] and pro-
poses a non-linear bounded distortion mapping space to circumvent these arti-
facts.

This problem was also discussed by Solomon et al. [SBBG11a, Figure 3] for con-
tinuous vector field-based deformations that are based on AKVFs. Their solution
consists in a post-process: they solve an additional linear system in form of a Pois-
son equation that diffuses the error minimizing vector field at the domain boundary
to construct a smooth vector field at the interior. Essentially, this way the optimal
energy-minimizing vector field at the interior of the domain is disregarded. We
identify three additional problematic consequences: firstly, the extra solving step

32 vector field-based continuous deformation energies

effectively halves performance. Secondly, previously defined user-constraints at
the shape interior can not be satisfied. In fact, during time-integration, this ap-
proach can leads to significant drift from the user-defined trajectories. And finally,
we show that the total resulting deformation error increases unnecessarily due to
disregarding large amounts of the optimal vector field (see Section 3.6).

We propose a different approach that is based on regularization. We define
smoothness as the local quadratic first-order energy variation. This way local defor-
mation errors vary smoothly and do not concentrate, e.g., only at the constrained
vertices. Minimizing energy variation will then lead to smoother vector fields,
which in turn results in smoother total deformations. We continue to derive our
formulation of this type of energy smoothing.

Note that the aforementioned deformation artifacts appear for any φ of the gen-
eralized vector field energy. Therefore, we derive energy smoothness in a generic
way that is not only applicable to AKVFs. We use the energy expressions derived
in Section 3.4.2

For notational simplicity, we again concentrate on vectorized Jacobians jc = Gcvc

per cell c in place of the vector field vc at c itself due to the linear relation by the
local gradient operator Gc. The energy expressions derived in Section 3.4.2 yield
the local generalized point-wise energy ec = jc

T Mc jc. Note that Mc defines the
energy properties in cell c, which depends on both, the energy parameter φc, and
the local anisotropic norm Bc. Then the first-order energy variation is given by
∇jc ec = 2 Mc jc. Note that this expression is linear in jc again.

The local energy of a cell depends only on its constant local Jacobian, i.e., there
is energy variation only on the cell boundaries. Let ci, cj ∈ T be two neighboring
cells Di, D j with Jacobians ji, jj, and local energy operators Mi, Mj, respectively.
Then we enforce smoothness by minimizing energy variation along common
points Bi,j = Di ∩D j, e.g., along a common triangle edge (d = 2) or tetrahedron
face (d = 3). Hence, we regularize by minimizing smoothness energies of the
form

Ei,j
S (v) =

∫
Bi,j
‖∇ji ei −∇jj ej‖2

F dx

=
∫
Bi,j
‖2
[
Mi −Mj

] (ji

jj

)
‖2

F dx

= 4 vol
(
Bi,j
) (ji

jj

)T [
Mi

TMi −Mi
TMj

−Mj
TMi Mj

TMj

] (
ji

jj

)

=
(

vi
T, vj

T
)

Ei,j
S

(
vi

T, vj
T
)T

Here, vol
(
Bi,j) is the volume of the common point set, e.g., the common triangle

edge length (d = 2) or the common tetrahedron face area (d = 3), that performs
the integration of the constant term, and vi,vj are the concatenated velocities

3.4 discrete setting 33

at the vertices of the neighboring cells. The 2 d(d + 1)-dimensional quadratic
form Ei,j

S measures the squared first-order energy variation between the pair of
elements ci, cj. Ei,j

S (v) is again quadratic in v. The total discrete smoothness
energy is then given by the sum over all adjacent cells

ES(v) = ∑
ci ,cj∈T :

ci ,cj adjacent

Ei,j
S (v) .

This energy has the quadratic form ES = vT ES v that is assembled similar to (19)
with appropriate permutations. It acts as a regularization term in a weighted
total generalized energy in the deformation vector field

E(v) = Eφ(v) + α ES(v) . (23)

Its quadratic form is E(v) = vT (Eφ + α ES
)

v := vT E v. Hence, we compute
smooth optimal vector fields

v̂ = argmin
v

E(v)

by solving for the critical point of the smoothed energy ∇E(v) !
= 0, subject to

the aforementioned user-constraints on v̂. The factor α weights between pure
energy minimization (α = 0) and energy smoothness (α > 0). We use a factor of
α = 0.1 in all our example deformations. Using this small factor was sufficient
to prevent spurious deformation artifact in all our experiment.

Figure 5 illustrates the effect of using the regularization term ES in two and three
dimensions. Note that smoothness of the vector field is preserved for handles
in the interior as well as on the boundary of the domain, and that handle con-
straints are interpolated exactly. The shape boundary varies in the regularized
cases but does not introduce higher deformation distortion near the boundary.
Additionally, the regularized optimization for v̂ requires the solution of a sin-
gle linear system. In contrast, the post-process of Solomon et al. [SBBG11a] is
only able to interpolate handle constraints at the boundary. The boundary does
not vary in their case, as they interpolate the boundary vector field in form of
Dirichlet conditions on the additional Poisson optimization. We compare both
smoothing techniques empirically in Section 3.6.

The proposed regularization based on energy variation minimization is not only
beneficial to prevent deformation artifacts in the context of continuous deforma-
tions. In fact, a variety of other geometry processing approaches can be enhanced
using a similar technique. We will study energy smoothing with applications to,
e.g., single-step deformations or surface parametrizations, in Chapter 7 of this
thesis.

34 vector field-based continuous deformation energies

α = 0 α = 0.1

Figure 5: Energy Smoothness. In 2d (top) and 3d (bottom) minimizers of the general-
ized metric energy are non-smooth near user-constraints (with fixed vertices
•) leading to the highlighted locally distorted deformations (colored images
show metric distortions, see Section 3.6). The smoothness energy term yields
smooth vector fields and therefore smooth deformations (α > 0). Note that
both interior (top) and boundary vertices (bottom) can be constrained.

3.4.5 Shape Integration

We are left with the problem of solving a d |V|-dimensional ODE numerically:
we solve d

dt xi(t) = v̂(xi(t), t) with initial vertex positions xi(0), i ∈ V , using a
standard ODE integrator. For every evaluation of the vector field the energy
minimizing flow v̂ is computed from the current shape configuration x(t). x(t)
is the resulting time-parameterized continuous deformation that represents a
curve in shape space to which v̂ is tangent.

3.5 implementation 35

p2

r2

p3

r3

p4

c(t)

r4
p0

p1

r1

(a) Space Curve Specification

(b) Linear Path (c) Non-orienting Path (d) Orienting Path

z(t)
c(t)

c(t)

v(t)
v(t)

Figure 6: User Interaction Concepts. (a) Space curves c(t) interpolate user-selected in-
terpolation points pi on spheres centered at pi−1 (shown as 2d dashed circles)
with user-specified varying radii ri. (b-d) Different path types that propagate
single curve constraints to handle regions (•). z(t) in (d) denotes the local cur-
vature center that defines local rotation fields (•) for orientation preservation.

3.5 implementation

We continue to provide implementation details of our specific implementation
of the proposed generalized energy.

3.5.1 Modeling Metaphor and User Interaction

In contrast to single-step deformation methods, continuous deformations require
velocities as boundary constraints (cf. [SBBG11a, KMP07]), i.e., for a subset of
vertices (handles) or sets of vertices (handle regions), we prescribe the associated
time-dependent vectors. This way we implement the standard handle metaphor
for shape modeling: the user selects surface regions which are either fixed, de-
formable, or displaced by a handle. There are various ways to prescribe veloc-
ities. In the simplest case they are provided as zero vectors for fixed vertices.
Translations can be modeled by constant velocities, rotations can be expressed
by linear flows. A fairly general and intuitive approach is the definition of a
space-time curve c(t) that acts as a trajectory, i.e., velocity along the curve is de-
fined as the tangent vector ċ(t) = d

dt c(t). The tangents of these curves determine
the movement of handle vertices.

From the user’s point of view, fixed and handle regions are selected. There is no
restriction on the number of such regions or their connectivity. Then arbitrary
parametric guidance curves for moving the handles are prescribed.

36 vector field-based continuous deformation energies

In particular, we adapt a modeling technique called ZSpheres of the modeling
package ZBrush [9] for guidance curve specification: a sphere is centered on the
initial curve point that is usually given by the handle vertex or the barycenter of a
handle region. By clicking on the sphere the user selects the next 3d interpolation
point of the space curve, and a new sphere is centered at this point. By not
releasing but holding the mouse button the user can vary the radius of this
new sphere. The next interpolation point is selected on this sphere. This way
it is simple to specify even complex spaced curves very quickly. Figure 6 (a)
illustrates this interaction concept in 2d. We use cubic C2-continuous B-Spline
curves with centripetal parametrization and natural end conditions for point
interpolation and curve reconstruction.

When a single guidance curve is assigned to a larger handle region the user is
able to choose from different possible types for the propagation of curve tangent
vectors to vector field constraints using “bundles” of trajectories. For simple
linear and non-orienting paths the tangent vector is simply duplicated for all
vertices of the region, see Figures 6 (b,c). For orientation-preserving paths local
rotations around the curve curvature center

z(t) = c +
c̈(ċTċ)2 − ċ(ċTċ)(ċTc̈)
(ċTċ)(c̈Tc̈)− (ċTc̈)2

and rotation axis direction ċ× c̈ need to be performed. The C2 curve continu-
ity is required for continuous second curve derivatives c̈(t) = d2

dt2 c(t) and the
corresponding spanning Frenet frames. See the local rotation field (•) in Figure
6 (d) for an example. This technique for orientation-preserving integration was
already used by, e.g., von Funck et al. [vFTS07b].

Indeed, our approach is even more general in a sense that we are not restricted
to parametric curves for specifying constraints: any piecewise linear time-depen-
dent vector field can be applied to prescribe motion of handles. In particular,
twisting and bending of the shape can be modeled easily.

In addition to vector field constraints, the user can model nonhomogeneous en-
ergies by changing the scalar parameter φ and the tensor field B. This can be
done globally or locally per cell, e.g., by a spatial blend (see Figure 12). From the
users point of view, near-isometric deformations often behave similarly to real
stiff materials, while near-conformal deformations often exhibit strong scaling
components towards smaller and larger area.

3.5.2 GPU Implementation

We implemented the most generic energy forms, which are parameterized with
per cell energy parameters φ and norms B. This generic implementation is able
to compute all deformation types introduced above.

3.5 implementation 37

GPU
CPU

Triangle Gradient

⇒ Gc ∈ R2×3

Gradients of ES

⇒ Ei,j
S ∈ R8×8

Gradients of Eφ

⇒ Ec
φ ∈ R6×6

Segmented Reduction

⇒ E(x)
parallel serial

Integration

⇒ x′
Repeated Sparse

⇒ v̂(x)

Cholesky Solve

Operators

Figure 7: GPU Pipeline. We use the GPU to setup linear systems and perform vector
field integration. The linear systems are solved on the CPU using an efficient
sparse solver. Operations marked (•) are performed in parallel on the GPU.

Our implementation uses the GPU to accelerate certain steps of our continuous
deformation algorithm. Figure 7 provides an overview, with matrix dimensions
given for the 2d case. In short, the setup of the linear system and the integration
of vertices are performed in parallel on the GPU, and the sparse system is solved
on the CPU. First, all triangle gradient operators Gc (see Appendix A.1) are
computed in parallel at the current shape configuration x(t). These are required
to compute the energy terms Eφ and ES. Then the energy gradients are computed
in parallel by exploiting symmetry for each cell and for each pair of adjacent cells.
The results are summed by a parallel segmented reduction operation to give the
coefficients of the final linear system [5].

The sparse system is downloaded to CPU memory, where it is solved using a
state-of-the-art sparse Cholesky solver that uses an approximate minimum de-
gree preordering to reduce fill-in [CDHR08]. We use a precomputed symbolic
factorization of the sparsity pattern of the linear system E, which is filled by the
numerical values computed by the GPU. In our experiments this direct system
solve is up to four times faster than solving the linear system on the GPU us-
ing an iterative sparse conjugate gradient solver (see, e.g., [PTVF07]). Botsch et
al. [BBK05a] obtain analogous results for pure CPU implementations of similar
solvers on mesh-based energy discretizations. Compared to a pure CPU imple-
mentation incorporating the GPU for system setup results in up to three times
faster execution times. This is because setup costs are significant as multiple
systems need to be solved during integration and the symbolic factorization is
amortized for multiple solves of systems with unchanged sparsity pattern.

Finally, shape integration along the optimal flow v̂ is performed on the GPU.
The problem of numerical ODE integration is well-understood and a number
of possible algorithms exits (see, e.g., [PTVF07]). Straightforward Euler integra-
tion yields visually pleasing results even for moderate time-steps. However, the
lack of accuracy of this scheme would spoil our overall carefully discretized ap-
proach and render this scheme unacceptable. Therefore, we rely on higher-order
schemes. Single-step ODE integrators such as Runge-Kutta integration schemes
are popular, e.g., for particle tracing in flow visualization approaches (see Part
II of this thesis), where vector field sampling is computationally inexpensive.
Instead, for numerical integration in our setting we prefer a third-order multi-

38 vector field-based continuous deformation energies

step predictor-corrector method with adaptive step size control: in contrast to
single-step schemes the predictor–corrector Adams-Bashforth-Moulton scheme
takes advantage of results from previous integrations steps. The initialization
is provided by a few fourth-order Runge-Kutta steps. The main motivation for
choosing this integrator is the relatively fewer number of required costly vec-
tor field evaluations compared to single-step methods, if similar approximation
errors are assumed. This choice was justified by experiments.

3.6 analysis and results

We continue to provide a further analysis of properties of our approach together
with deformation results in 2d and 3d.

energy comparison. We evaluate the angle and volume quality of defor-
mations using the following normalized error terms:

E2d
con f =

1
2 ∑

c∈T2

ρc(σ
c
1 − σc

2)
2 E3d

con f =
1
3 ∑

c∈T3

ρc ∑
(i,j)∈P3

(
σc

i − σc
j

)2

E2d
auth = ∑

c∈T2

ρc(σ
c
1σc

2 − 1)2 E3d
auth = ∑

c∈T3

ρc(σ
c
1σc

2σc
3 − 1)2 .

Here, σc
i is the i-th singular value of the deformation gradient of cell c, ρc =

vol(Dc)/vol(D) is the relative cell volume (triangle area or tetrahedron volume),
and P3 = {(1, 2), (2, 3), (3, 1)}. See Appendix B for a derivation of these errors.
To measure metric length-variation errors we introduce the normalized error
terms

E2d
metr = ∑

c∈T2

ρc

(
(σc

1 − 1)2 + (σc
2 − 1)2 − 1

4
(σc

1 − σc
2)

2
)

(24)

E3d
metr = ∑

c∈T3

ρc

 3

∑
i=1

(σc
i − 1)2 − 1

5 ∑
(j,k)∈P3

(
σc

j − σc
k

)2

 (25)

that are the weighted sum of local solutions of integrals of the form of (7) and
(10). In contrast to the previous derivation of vector field energies, the integrand
is no point-wise infinitesimal quadratic length variation but the point-wise finite
quadratic length variation induced by the deformation map, which is integrated
along all possible directions 1. Note that the metric errors (24) and (25) are
weighted combinations of isometric and conformal terms (cf. Equations (81) and
(82) of Appendix B). In the optimal case all error terms vanish.

Figure 8 shows error values and error visualizations for two planar deformations.
For the Auth results we used φ = arctan 2−9. The Metr energy generating near-
isometric vector fields achieves lowest metric and area distortions at the cost of

3.6 analysis and results 39

Metr

Akvf

Conf

Auth

Metr

Akvf

Conf

Auth

E2d
metr E2d

con f E2d
auth

Energy E2d
metr E2d

con f E2d
auth

Metr 0.0228 0.0216 0.036 0.0692 0.0155 0.0137

Akvf 0.028 0.0273 0.0211 0.0443 0.033 0.028

Conf 0.752 0.0902 0.0001 0.0098 0.978 0.273

Auth 0.0297 0.0489 0.1102 0.1864 5 · 10−6 4 · 10−6

Figure 8: 2d Energy Evaluation. Two initial models (left) are deformed using the same
boundary constraints for the different energy types. The plots visualize color
coded local errors (low error •, high error •). The table gives total errors for
each method and each model (frog left / giraffe right column).

40 vector field-based continuous deformation energies

E2d
metr E2d

con f E2d
auth E2d

metr E2d
con f E2d

auth

Metr

Conf

Our
Akvf

[SBBG11a]
Akvf

Figure 9: Akvf Comparison. A symmetric strip deformation is used to evaluate our
energies and compare them to the original Akvf formulation of Solomon et al.
[SBBG11a] who use no energy-based smoothing and only soft constraints. The
color coded images visualize local error components (low error •, high error •),
which are all scaled equally. For completeness the corresponding deformations
using the metric and conformal energies are shown.

change of angle. Deformations based on the Akvf energy show better angle
preservation compared to Metr, but they also show greater errors in length and
area variation. Almost no angle distortion is introduced by ACVFs based on
the Conf energy, however, this is at the cost of area errors. The opposite is true
for the Equia deformation that introduces almost no area error but instead a
large angular error. The experiments confirm that the parameter φ corresponds
to balance between metric and area preservation on the one side and angular
preservation on the other side (cf. Figure 4). No deformation can preserve all
properties at the same time.

Energy E2d
metr E2

con f E2d
auth

[SBBG11a] Akvf 0.084 0.075 0.080

Our Akvf 0.048 0.059 0.042

Metr 0.041 0.091 0.018

Conf 0.227 0.001 0.338

akvf smoothing comparison. In
Figure 9, we compare our energies (in-
cluding Akvf) to the original method of
Solomon et al. [SBBG11a] that uses, to a
certain extent, “soft” handle constraints
and achieves smoothness by an additional
diffusion step of the boundary vector field.
The table in the inset gives the correspond-
ing total error values. Note that the softly

3.6 analysis and results 41

(I) (II) (III) (IV)

Auth Conf

Metr

(I)/(III) Metr Conf Akvf Auth

E3d
metr 0.061 0.069 0.172 0.072 0.083 0.091 0.386 0.211

E3d
con f 0.356 0.421 0.022 0.027 0.305 0.357 2.357 1.367

E3d
auth 0.009 0.007 0.273 0.051 0.028 0.012 9 · 10−4 4 · 10−4

Figure 10: 3d Eagle Deformation. A tetrahedral model of an eagle (top left, with instanta-
neous vector field) was deformed in an animation of steps (I-IV). The closeups
show intermediate steps for different energies. Note the volume variation of
the near-conformal deformation, and the distortions of the near-authalic de-
formation.

constrained vertices drifted significantly. To compensate for this effect and for
a fair comparison, the constraints were selected such that the trajectories of all
handles (•) end in the (optimally) fixed soft handles (•) after the same integra-
tion time. The two Akvf and the Metr results look visually similar. However,
even for this simple deformation all three error values indicate that our Akvf

approach that uses a problem-dependent smoothing term achieves superior de-
formations of lower error compared to vector field diffusion [SBBG11a].

Figure 10 shows frames of the animated deformation of a volumetric mesh. The
wings of the eagle model were deformed symmetrically using three-dimensional
AMVFs, ACVFs, as well as with AAVFs with φ = arctan 2−9. Again, the confor-
mal energy trades volumetric error for angle preservation, while the isometric
energy has better length and volume preservation properties at the expense of
angular distortion. Best volume preservation but also most angular distortion is

42 vector field-based continuous deformation energies

[φMetr, φConf]

Figure 11: Nonhomogeneous Deformation. A nonhomogeneous parameter φ is given
as a scalar field in form of a blend from φMetr on the left side of the frog’s
domain to φConf

on the right. Deformation constraints (•) are defined sym-
metrically on both sides of the model.

“stiffer” axis

isotropic anisotropic

Figure 12: Anisotropic Deformation. An isotropic deformation (left) is compared to a de-
formation of anisotropic material with a locally “stiffer” axis direction (right).
Equal constraints are used together with near-isometric φAkvf. Closeups show
local eigenvectors of the tensor field B (scaled relatively by the eigenvalues).

achieved by authalic deformations. This is also reflected in the error values of
the animation steps (I) and (III), which are given in the table of Figure 10. For
completeness, we also provide the error values of the Akvf-based continuous
deformations of the same 3d animation, which is not shown 2.

energy parameters . Figure 11 shows an example where a nonhomoge-
neous parameter φ is prescribed as a scalar field on the domain. In the example
we use a spatial blend from near-isometric (left side) to conformal (right side).
Applying symmetric constraints shows the nonhomogeneous effect of φ in the
resulting deformation.

In Figure 12 we demonstrate the effect of using an anisotropic material compared
to an isotropic one. Specifically, we define a region in the center of the strip that
is “stiffer” along one prescribed axis modeled by a corresponding tensor field B.

2 Figure 52 in Chapter 7 shows the same model deformed using similar constraints for the Akvf

energy.

3.6 analysis and results 43

Figure 13: Tessellation Insensitivity. A differently tessellated shape (left) is deformed
with the same boundary constraints. The deformed shapes are insensitive to
varying domain discretizations (right).

The material modification leads to two near-isometric deformations of different
characteristics for the same boundary constraints. In the isotropic case the whole
shape is contracted symmetrically, whereas an asymmetric deformation results
from the anisotropic energy.

tessellation insensitivity. The discretization of both our vector field
energies and energy smoothness terms are integrated quantities on the discretized
domain. We therefore expect that the resulting deformations are insensitive of
the domain partition, i.e., of the tessellation, as long as there are enough degrees
of freedom available to represent the constrained deformation. This is confirmed
by all our experiments in 2d and 3d. See Figure 13 for an example.

modeling results . Figure 14 shows initial 2d shapes and two deformed
versions using AMAP and ACAP deformations. The model size ranges from 5k
to 11k vertices and the modeling time was below four minutes in every example.
More 2d examples are shown in Figures 3a, 3b, and 8. Besides the animation
in Figure 10, we show further tetrahedral deformations in Figure 15. Again
we have the initial shapes together with AMAP and ACAP deformations. The
meshes contain between 1, 500 to 5000 vertices, and are deformed interactively.
Again modeling time of an inexperienced user ranges from a few seconds to a
few minutes.

None of our tests suffered from stability issues, not even for extreme deforma-
tions. In particular, we didn’t observe local folds or flips. This is due to the
fact that the energy minimizing vector field generally does not vanish and the
smoothing term avoids strong local vector field variation. However, we have
no formal guarantee that these artifacts will never appear because we do not
explicitly avoid them. Artifact avoidance can be guaranteed by nonlinear opti-
mization in suitable spaces at the cost of a more expensive optimization. For
example, the bounded-distortion mapping spaces by Lipman [Lip12] guarantee
deformation bijectivity (for triangles only) by using a nonlinear constrained conic
optimization. Compared to our regularization-based approach, which only re-
quires efficient linear optimization of quadratic energies, this limits the effective
mesh sizes below a few hundred vertices. In Chapter 7, we will provide a more

44 vector field-based continuous deformation energies

Figure 14: 2d Deformation Examples. The triangulated models in the box were de-
formed using near-isometric AMVFs and near-conformal ACVFs.

Figure 15: 3d Deformation Examples. The tetrahedral models in the box were deformed
using near-isometric AMVFs and near-conformal ACVFs.

detailed analysis of our regularization approach and an explicit comparison to
Lipman’s method.

timings . The following table lists timings of our approach for deformations
of the smallest and largest models in 2d and 3d, respectively. We measured
the time for the initial symbolic factorization of the linear system (t1), system
setup time on the GPU (t2), time to solve the system by the CPU (t3), and the
total time T to perform ten consecutive integration steps. Ten integration steps
are sufficient to obtain, e.g., the Toucan deformations in Figure 14. Compared
to a sole CPU implementation, our parallel system setup using the GPU is up

3.7 relation to linear elasticity 45

Model (|T | , |V|) t1(ms) t2(ms) t3(ms) T(s)

Toucan (5.6k, 9.6k) 230 6 40 1.9

Cat (11k, 18k) 642 13 68 3.8

Octopus (1.5k, 5k) 168 19 51 2.9

Teapot (5k, 16k) 424 31 118 6.3

to three times faster, even though the system has to be transferred to the CPU
before solving it. Timings were measured on an AMD Phenom II 955 quad-core
CPU with 3.2GHz clock speed equipped with a NVIDIA GTX 560 Ti GPU with 2

GB of memory running Linux. Our approach is interactive for reasonably sized
models. However, as is true for most solvers of nonlinear measures, it also has
much higher computational costs compared to linear methods. Please also see
the accompanying video of [MRT13a] for additional modeling results 3.

3.7 relation to linear elasticity

X x

uOur geometrically-motivated energy formulation can be
related to physically-based theory of linear elasticity (see,
e.g., [Bra07, MZS∗11]). This formalism assumes that a rest
configuration with material coordinates X is deformed by a displacement field
u = x − X into a deformed shape x. The deformation results in an isotropic
internal potential deformation energy ψ = µ‖ε‖2

F +
λ
2 Tr(ε)2 that depends on the

local strain tensor ε, which is usually defined using the deformation gradient
tensor F = ∇X x = H + I with displacement gradient tensor H = ∇X u. Here,
µ and λ are the physical Lamé material constants, which are related to stiffness
and volume preservation, respectively. For small displacement gradients the
Lagrangian finite strain tensor ε can be approximated by the linearized small
strain tensor

ε :=
1
2

(
FTF− I

)
=

1
2

(
H + HT + HTH

) ‖H‖F�1
≈ 1

2

(
H + HT

)
,

and the linear elasticity energy becomes

ψ =
µ

4
‖H + HT‖2

F +
λ

2
Tr(H)2 .

It measures the potential energy of the deformed shape x relative to the rest con-
figuration X, which is different to our instantaneous deformation energies that
does not use the notion of a distant rest pose. Still, in the limit of instantaneous
deformations, i.e., x → X, we have H → JT, i.e., the displacement gradient be-
comes the (transposed) vector field Jacobian. Both the physical linear elasticity

3 The video is located in the additional material folder addmaterial/contdef.

46 vector field-based continuous deformation energies

model and our geometrically motivated energy formulation therefore coincide
in this case with the relation of parameters wq = µ/4 and wr = λ/2. However,
as we do not need to consider deformed shapes in different coordinate systems,
our instantaneous approach doesn’t require additional regularization methods
like corotational elasticity [MDM∗02] to correct artifacts of diverging coordinate
systems X and x that stem from energy linearization. Additionally, our instanta-
neous approach is unconditionally stable and we can therefore apply standard
explicit ODE solvers for integration and require no, e.g., implicit integration.
Moreover, this derivation shows that, e.g., AKAP deformations [SBBG11a] can
be regarded as a geometric instantaneous special case of physically-based linear
elasticity that describes near-isometric materials. In addition, in this work we
provide the parameters for materials that show, e.g., near-conformal behavior,
which might not always give physically plausible results.

3.8 discussion

Most existent geometrically-motivated approaches either optimize for near–iso-
metric [IMH05, SA07, KMP07, BWG09, SBBG11a] or for near–conformal defor-
mations [WBGH11, WMZ12]. In contrast to this, our generalized energy formu-
lation combines both extrema in an integral formulation, and it can be applied
the same way in any dimension and especially in 2d and in 3d.

We note that it is certainly possible to directly obtain near-conformal deforma-
tions in a single-step deformation by optimizing for deformation gradients that
are close to similarities. However, this is not possible for, e.g., near-isometric
single-step deformations, as fitting of deformation gradients to closest rotations
is a nonlinear problem that usually requires iterative solvers (see, e.g., Chapter
7). Both deformation types are supported in a uniform way by our continuous
approach.

In our setting of continuous deformations, all vector field energies that describe
near-conformal, near-authalic, and even near-isometric deformations are qua-
dratic, and variational optimizations become simple linear problems. The non-
linearity of the deformation is then provided by solutions of nonlinear ODEs.
As ODE integration is a well-understood problem, it tends to become simpler to
compute deformations that minimize nonlinear deformation energies, e.g., devia-
tions from perfect isometry. In particular, no specialized optimization algorithms
like local-global optimization schemes [SA07, LZX∗08], which only converge to
local minima, are required. In fact, for a given set of constrained vertex curves
γi(t), our continuous deformations are always globally optimal, because all in-
volved optimizations are convex and vector fields are guaranteed to be globally
optimal w.r.t. the boundary constraints. Additionally, this is the reason why
our continuous deformations require no convergence criteria [BWG09]. Still,
both continuous deformations and nonlinear single-step deformations perform

3.8 discussion 47

linearizations of the nonlinear problems, only at different points of the deforma-
tion: the optimization for vector fields of our continuous formulation is a linear
problem that can be related to the linear optimization for a descent direction of a
generic optimization algorithms like Gauss-Newton iterations [FB11]. Both opti-
mization strategies have their merits, but they are also hard to compare directly,
as vector field-based methods yield a continuously parameterized family of pure
plastic deformations, whereas single-step methods compute a single minimizer
of a pure elastic deformation energy.

The results in Solomon et al. [SBBG11a] indicate that their Akvf-based approach
yields deformations of superior quality compared to related linear and nonlin-
ear methods. Our approach is not only able to reproduce their results but it
shows even better behavior, getting even closer to isometric maps. At the same
time our method is less complex and more efficient as we achieve smoothness
by a regularization, enable true interpolation constraints, and use ODE solvers
that are not restricted to the 2d case only. We refer to their work for an error
evaluation of planar continuous deformations to other single-step nonlinear pla-
nar deformation approaches, i.e., Cauchy-Green coordinates [WBCG09], moving
least-squares coordinates [SMW06], and ARAP deformations [LZX∗08]. They
demonstrate that their continuous AKAP deformations show superior results
compared to all other tested planar deformation methods. In Chapter 4, we
provide an additional evaluation of surface-based near-isometric continuous de-
formations to other surface deformation approaches.

Our main feature, however, is the ability to control local deformation types by
the single parameter φ. We obtain deformations that range from conformal to
authalic with AKAP and our model of near-isometric deformations in between.
Additionally, we support anisotropic energies for all types of deformations. To
the best of our knowledge, this approach is the first geometrically-motivated
method that provides such range of vector field-based deformations in a single
and concise mathematical framework. Our Metr energies are an alternative way
to measure deviation from isometry. In a direct comparison to near-isometric
Akvf deformations, these new near-isometric energies show a better area preser-
vation at the expense of a slightly higher angle deviation. It is up to the user to
select one these near-isometric energy types for a concrete deformation problem.
Note that near-authalic deformations have not been studied thoroughly in the lit-
erature. Even though it is well known that these maps are not uniquely defined,
for φ → 0 we get close to this limit and obtain meaningful results. However,
we also point out that the numerical conditioning of the linear system degrades
slightly for this limit. This is not the case for all other deformation types.

It seems that for many relevant shape deformation tasks near-isometry is the
desired property. This is because isometric deformations have a plausible and
predictable behavior, as they approximate many common deformations of real-
world objects. On the other hand, near-conformal deformations seem less intu-
itive, as deformations with strong volume variation are less common. Still, this

48 vector field-based continuous deformation energies

type of deformation is valuable for, e.g., tasks were texture-mapped objects are
deformed, because the apparent texture distortions are minimized by the local
angle-preservation.

Our continuous deformations do not only depend on the initial and final handle
positions as is true for single-step deformations. In fact, the final deformation
depends on the whole path of every constraint, i.e., our deformations are path-
dependent. Depending on the particular application, this property can both be
seen as a feature or an artifact. We only state this property here and refer to
Chapter 4, where we discuss path-dependency in the context of surface-based
continuous deformations in more detail.

limitations and outlook . Nonlinear methods are expensive, and our
method is no exception. Although we use a parallelized GPU implementation, it
is impossible to outperform linear methods in terms of computation time. This is
a general drawback, and the user must decide if the additional cost is worthwhile
to obtain deformations of higher quality. Still, all shown examples were modeled
interactively.

So far we consider only the initial value problem for path constrained deforma-
tion. It is a more complex problem to solve a boundary value problem to find
an energy minimizing path between two poses in shape space, e.g., for interpo-
lation between poses (cf. [KMP07, CH12, HRWW12]). The application of our
generalized energies to these types of problems is an interesting direction for
further research.

We furthermore want to study the application of our generalized energies for
parametrization applications that allow locally varying parametrizations types
ranging from isometric to authalic behavior. Moreover, the eigen-spectrum of
the energy might allow a multiresolution (in the parameter φ) segmentation of
shapes.

Until now we consider only solid deformations. Hence, our proposed energies
cannot yet be applied to, e.g., explicit deformations of surfaces that are embed-
ded in 3d space. This is because the vector field Jacobians capture only the
tangential components of the vector field. They do not measure variations nor-
mal to the surface. For the same reason approximate Killing vector fields are,
until now, considered only tangentially for triangulated surfaces [SBBG11b]. To
address this limitation we propose a specialized type of vector field energy that
yields near-isometric continuous surface deformations in the next Chapter 4.

3.9 summary 49

3.9 summary

In this chapter we introduce a new family of generalized metric vector field
energies for continuous shape deformations. We obtain near-isometric and near-
conformal deformations by integration of approximate isometric and approxi-
mate conformal vector fields as special cases of the general energy. Deformations
can be nonhomogeneous and local anisotropic behavior is achieved by incorpo-
rating varying anisotropic energy norms. Our approach works in any dimension,
and we applied it for planar deformations of triangular meshes and volumetric
deformations of tetrahedral meshes. The method can easily be integrated into
existing tools as it shares the common intuitive user interface where few points
are fixed and few points act as handles, which can be dragged along paths in the
domain by the user. For the discretization of the energy we applied a first-order
smoothness criterion that is energy-aware. Our implementation uses the GPU to
achieve interactivity.

4
I S O M E T R I C S U R FA C E I N T E G R AT I O N

In the previous chapter we introduced a family of vector field energies that de-
scribes different possible deformation types of continuous deformations. The
formulation holds for any dimension, but deformations are restricted to solid
deformations only. This includes the deformation of planar triangle meshes and
volumetric tetrahedral meshes. In practice, however, also the deformation of sur-
faces, i.e., two-manifolds embedded in three-space, is of special importance. Yet,
surface deformations are not supported by the previously introduced energies.
Therefore, in this chapter we derive a new vector field energy for 3d surface
deformations. We restrict the derivation on the most relevant near-isometric
deformations.

4.1 near-isometric surface energy

As before, we define the continuous deformation of a two-manifold surface D ⊂
R3, dim(D) = 2 by vector field integration. Vector fields v(x), x ∈ D are obtained
from a variational energy minimization. The energy penalizes vector fields that
induce (locally) non-isometric behavior.

The subsequent energy derivation is motivated by the fact that integrating sur-
faces along perfectly rigid vector fields yields no distortion. Obviously they
won’t yield a reasonable deformation either. However, locally rigid vector fields
can be easily constructed and serve as a reference: the closer v is to a rigid vector
field, the more isometric the deformation. We show how this concept can be ex-
tended naturally to also incorporate smoothness of the resulting vector fields.

Our model of local instantaneous rigidity that yields near-isometric surface de-
formations is related to common single-step as-rigid-as-possible (ARAP) surface
deformations that optimize for closest rotational deformation gradients (see, e.g.,
[SA07] and Appendix B). However, ARAP approaches generally have to solve
global nonlinear problems for energy minimization, whereas in our instanta-
neous setting optimization is cheaper and therefore computationally more attrac-

51

52 isometric surface integration

tive. In fact, we show that global variational vector field optimization becomes a
linear problem.

4.1.1 Continuous Energy

We consider a 3d vector field r(x) describing a rigid vector field, i.e., it can be
written as r(x) = rt(x) + rr(x)× x. Here, rt and rr describe the local translational
part and the rotation axis, respectively. Note that even though r may be defined
everywhere in R3, we evaluate it only on the surface. We define the fitting energy
Ẽ as the squared difference of r and v integrated over the surface D:

Ẽ(v, r) =
∫
D
‖v(x)− r(x)‖2 dx .

Given a current surface D, our goal is to compute the closest rigid vector field
r̂(v) as a function of v by minimizing Ẽ(v, r) for all rigid fields r:

r̂(v) = argmin
r

Ẽ(v, r) . (26)

Then we obtain the total isometric vector field energy E as the deviation of v
from r̂:

E(v) = Ẽ(v, r̂) =
∫
D
‖v(x)− r̂(v, x)‖2 dx . (27)

This energy models a measure for the isometric distortion of D under instan-
taneous motion along v. With (27) it is evident that v is a Killing vector field
[Efi57, KMP07, SBBG11a] on D iff E(v) = 0, because in this case the best fitting
rigid field r̂ will be identical to v.

4.1.2 Energy Discretization

We discretize the surface D by triangular meshes M = (V , T) with vertices V ,
and triangles T . Let Ei denote the set of internal edges. The embedding of the
surface in three-space is defined by vertex positions xi ∈ R3, i ∈ V . Furthermore,
the piecewise linear vector field v =

(
v1

T, . . . , v|V|T
)T is defined by vectors vi ∈

R3 at each vertex.

t
vt

r̂t
Reviewing the situation for a single triangle t ∈ T is sufficient
to explain the energy discretization. The total energy is ob-
tained by contributions of all triangles. We consider a triangle
t = (1, 2, 3) with vertex coordinates x1, x2, x3 and associated
vectors v1, v2, v3 that define the linear coordinate function and
vector field vt(x) on t. We associate rigid fields rt(x) to each triangle with local

4.1 near-isometric surface energy 53

translation and rotation components. Then the fitting energy is defined on each
triangle with points Dt by

Ẽt(vt, rt) =
∫
Dt

‖vt(x)− rt(x)‖2 dx, (28)

and by evaluation of the integral we obtain the closed-form expression

Ẽt(vt, rt) =
At

3 ∑
(i,j)∈P3

‖vij − rt(xij)‖2 .

with triangle area At, xij = 1
2

(
xi + xj

)
, vij = 1

2

(
vi + vj

)
, and P3 = {(1, 2),

(2, 3), (3, 1)} corresponds to all triangle edges. Hence, the local minimization
problem (26) is a linear least-squares problem in the six coefficients of rt that de-
fine the optimal r̂t (• in the inset). It is important to note that these coefficients
depend in a nonlinear way on the current triangle coordinates, but are linear
in the target vector field vt. We provide more details on this local optimization
problem in Section 4.2.2. Analogously to the continuous case, we obtain the to-
tal triangle-based isometric vector field energy Et by the deviation of the local
vector field to the closest rigid vector field

Et(vt) = Ẽt(vt, r̂t) =
∫
Dt

‖vt(x)− r̂t(x)‖2 dx . (29)

Interestingly, Et is quadratic in the unknown vector field vt on t because r̂t de-
pends linearly on vt. The total discretized isometric vector field energy E is then
given by the contributions of all triangles as

E(v) = ∑
(i,j,k)∈T

Et(
[
vi, vj, vk

]
) .

4.1.3 Energy Properties

The energy E(v) is quadratic in v. Hence, there is a (sparse) quadratic form E
such that E(v) = vT E v. This property will allow an efficient optimization that
is discussed in Section 4.2. Note also that this is a fundamental difference to
common ARAP deformations, where analogous energies in the deformed coor-
dinates are nonlinear (see, e.g., Equation (80) for isometric deformation gradi-
ents).

The energy E(v) is also invariant under adding a rigid field to v: let r̂ be the best
fitting rigid field to v, and let p(x) be another arbitrary rigid vector field. Then it
is straightforward to show that the best fitting rigid field to the modified target
vector field v′(x) = v(x) + p(x) is r̂ + p. Furthermore, E(v) = E(v′).

We emphasize that by construction E(v) measures isometric distortion: using our
energy exact isometric deformations of developable surfaces (see Figure 20 (a))

54 isometric surface integration

are obtained and indeed yield E(v) ≡ 0 for the whole integration. In particular,
this differs from other vector field energy formulations (see, e.g., the related
discussion by Kilian et al. [KMP07]).

In the literature (cf. [KMP07, EPT∗07]) isometric distortion of a triangle t =

(1, 2, 3) under integration of its vertices is usually measured by

Ēt(v) = h2
1 + h2

2 + h2
3 with

h1 = (x3 − x2)
T (v3 − v2)

h2 = (x1 − x3)
T (v1 − v3)

h3 = (x2 − x1)
T (v2 − v1) . (30) x1

x2

x3

e3

e2 e1
v1

v2

v3

Here, hk are projections of vector field variation (•) at each edge onto the edge
vectors ek (•). This way the hk terms vanish if the vector field at an edge induces
no edge length variation. In particular, the measure vanishes if the vector field
is sampled from a rigid vector field. Then the summation of Ēt over all triangles
is the global energy to be minimized.

Our energy is related and compatible to this formulation in the sense that it can
be written as the quadratic form Et = (h1, h2, h3) M (h1, h2, h3)

T (M = I for Ēt):
let eij = ei

Tej and α = 4 vol(Dt)
2. Then direct calculation shows that M is a

symmetric quadratic form, which only depends on xt and not on vt:

M =
−1

144 α (e12 + e23 + e31)

 3 e2
23 + 4 α 6 e23 e31 − 4 α 6 e31 e12 − 4 α

6 e31 e23 − 4 α 3 e2
31 + 4 α 6 e12 e23 − 4 α

6 e12 e31 − 4 α 6 e23 e12 − 4 α 3 e2
12 + 4 α

 .

Hence, generally no edge or area weighting-scheme exists that turns their energy
Ēt(v) into Et(v), since M is generally not diagonal. In contrast to Ēt(v), and
roughly speaking, our energy Et(v) also incorporate all mixed products hihj, i 6=
j. The main reason why both measures differ is the fact that we perform a careful
discretization of integrated continuous point-wise energies (29), instead of only
measuring edge length variations of discretized surfaces without considering the
whole shape area (30).

The integration of error quantities on the whole surface is essential to the design
of our energy: this way, Et(v) will be more insensitive to subdivision of triangles
or generally of particular parametrization / tessellation. Figure 16a illustrates
this property by a simple example and compares Et(v) to Ēt(v): we prescribe a
vector field and evaluate the energy for different tessellations of the same shape,
a unit sphere. Then tessellation-insensitivity requires low variance of energy
values: our energy Et(v) shows much lower variance compared to Ēt(v). We
emphasize that geometrically the absolute values are meaningless for this exper-
iment. However, they can physically be interpreted to be the applied membrane
strain since isometric deformations are a geometric approximation of real-world,
thin surfaces deforming with a very high Young’s modulus [NMK∗06]. Further

4.1 near-isometric surface energy 55

Et(v)
Ēt(v)

v

0

10

20

30

40

(a) Tessellation Dependence

(1-2)

(3-5)

(6-8)

(b) Energy Stability

Figure 16: Energy Comparison. (a) Different unit sphere tessellations and values of our
energy Et(v) and Ēt(v) for the shown normal vector field v. Of importance is
the energy variance for different tessellations of the same shape, which should
be low. (b) The irregularly tessellated test surface (1-2) is Euler-integrated
three steps by minimizing Ēt(v) (3-5), and by minimizing our Et(v) (6-8).

experiments and a comparison are shown in Figures 20 and 16b (see also Section
4.5). Tessellation-insensitivity is generally an important requirement for many
algorithms, and it is also essential for meaningful continuous deformations be-
cause coherence for time–dependent deformations is improved.

4.1.4 Smoothness Energy

An energy that is based solely on the preservation of isometry is obviously not
sufficient to determine meaningful surface deformation: for instance, folding
yields perfect isometric deformations, whereas for shape deformation they are
considered unwanted artifacts. The energy E(v) does not exclude, e.g., fold-
ings of developable surfaces (see, e.g., [KFC∗08, SVWG12]). Consequently, we
require an additional energy term that penalizes discontinuous deformation by
enforcing smoothness of the vector field v.

A suitable measure that fits our setting should be derived from existing quanti-
ties. We take advantage of the fact that the best fitting rigid vector fields r̂ are
defined not only on respective triangles but everywhere in R3. In particular, we
can evaluate r̂ for a certain triangle t on an adjacent triangle t′.

56 isometric surface integration

t

t′

i

j

k
i′

r̂t

vt′

vt

Let triangles t = (i, j, k) and t′ = (k, j, i′) be adjacent with vertex coordinates x`
and associated vectors v`, ` ∈ {i, j, k, i′}. Furthermore, let r̂t (•) and r̂t′ be the
best fitting rigid fields on t and t′, respectively. Then, loosely spoken, r̂t and vt′

should not differ too much for a meaningful deformation. We formalize this by
applying r̂t to t′ (and r̂t′ symmetrically to t, respectively) and using the distance
to the local vector field as point-wise energy. Then the vector field smoothness
energy at neighboring triangles is given by

St,t′(v) =
∫
Dt′
‖vt′(x)− r̂t(x)‖2 dx ,

where vt′ denotes the linear vector field on triangle t′, and r̂t is the best fitting
rigid field optimized on t. This integral can be evaluated for the equivalent
closed-form

St,t′(v) =
At′

3 ∑
(m,n)∈{(k,j),(j,i′),(i′,k)}

‖vmn − r̂t(xmn)‖2

with xmn = 1
2 (xm + xn) and vmn = 1

2 (vm + vn). This energy is again quadratic
in the unknown vector field v. Using the energy St,t′(v) between neighboring
triangles we define the global vector field smoothness energy S on the entire
surface as the sum of all pairwise contributions:

S(v) = ∑
t,t′∈T :

t,t′ adjacent

St,t′(v) + St′,t(v) .

In general St,t′(v) 6= St′,t(v), which both have to be summed in S(v). The smooth-
ness energy can be written as the (sparse) quadratic form S(v) = vT S v. Note
that Botsch et al. [BPGK06] use a similar principle to match transformations of
incident prisms. We compare results of both approaches in Section 4.3.

With the two energies E(v) and S(v) we finally define the total smoothed vec-
tor field energy ES(v) that will be minimized to compute continuous deforma-
tions:

ES(v) = (1−ω) E(v) + ω S(v) ,

with a small weight ω > 0 (see below). This combination of distortion energy
and a suitable smoothness term is the surface-based analog to the total general-
ized space-deformation energy (23).

4.1 near-isometric surface energy 57

We motivated the second energy S(v) by the fact that isometry does not always
convey enough information for meaningful deformations. We remark that S(v)
is required for another reason: in special cases the discretization of E(v) yields
a singular or ill-conditioned operator, and S(v) acts as a regularization term.
For instance, a planar surface constitutes such a special case, independently of
the number of applied user-constrains. Of course, then it applies only to the first
integration step – after that the surface is probably no longer planar. However, to
ensure robustness of our approach in any possible situation we require ω > 0.

Our experiments show that a rather high value in (0, 1] can be chosen for ω

without spoiling minimization of distortion, i.e., the effect of E(v). The reason is
that the definition of S(v) retains essential properties of E(v) with the difference
of rigid vector field extrapolation to neighboring triangles. This energy-aware
smoothness term is reminiscent to the energy-aware smoothness already intro-
duced in Section 3.4.4. In fact, a variety of geometry processing approaches can
be enhanced using a similar approach, see Chapter 7.

We close this section with two final remarks: First, the energies E(v) and S(v) are
compatible in a sense that comparable quantities are measured, i.e., integrated
squared distances of vector fields to rigid vector fields. Second, there is a bias in
the weighting as summation is over |T | triangles for E(v) and over |Ei| adjacent
pairs of triangles for S(v). From the latter relation the Euler–Poincaré character-
istic applied to triangle meshes yields ω = 1/3 for an even weighting. We use
this value as the default parameter if not noted otherwise.

4.1.5 Shape Integration

In analogy to the solid vector field energies of Chapter 3, we optimize for the
piecewise linear vector field v̂ that minimizes the energy functional ES(v). In
contrast to the previous chapter, the energy is surface-based and defined on trian-
gular meshes with vertex coordinates x. The vector field v̂ minimizes isometric
distortion under integration of x due to the definition of E(v). Additionally, the
contribution of S(v) to ES(v) accounts for smoothness of v̂.

Our approach to near-isometric surface deformation assumes time-dependent
shapes x(t) and vector fields v̂(t) such that

d
dt

x(t) = v̂(t) (31)

(cf. Equation (1)). In every time step t (or generally every point t where the
vector field is evaluated) we determine v̂(t) for x(t) subject to user-constraints.
The associated optimization problem is again linear in the unknowns vi, i ∈ V .

58 isometric surface integration

CPU

Repeated Sparse

⇒ v̂(x)

Cholesky Solve

GPU
Dense Cholesky Solve

⇒ Pt ∈ R6×9

Gradient Operators of

S⇒ St,t′ ∈ R12×12

Gradient Operators of

E⇒ Et ∈ R9×9

Segmented Reduction

⇒ ES(x)
parallel serial

Integration

⇒ x′

Figure 17: Computational Pipeline. For each triangle on the GPU (•) we compute the pa-
rameter mapping matrices Pt, which are used to determine the gradient com-
ponents of the distortion and smoothness energies E and S. These coefficients
are combined in the global sparse quadratic form ES. All GPU operations are
performed in parallel (•). The system is solved serially on the CPU (•) using
a precomputed symbolic factorization yielding the optimal vector field v̂.

4.2 implementation

In this section, we discuss the implementation of each stage of our approach in
more detail. These are firstly, the specification of deformations, secondly, the
GPU-based linear framework for finding vector fields that minimize our error
measures in every time step, and finally, the numerical integration of the shape
over time.

4.2.1 Interaction

Deformations are specified by the user in the same way as discussed in Section
3.5.1, i.e., for a subset of vertices guiding curves are specified. This includes
prescribed vertex trajectories as well as fixed vertices with vanishing guidance
vectors. Twisting and bending motions are modeled by appropriate linear vector
fields.

4.2.2 Global Energy Minimization

Energies are quadratic forms in the unknown vector field v ∈ R3|V|. Our goal is
to minimize an energy of the form

ES(v) = vT((1−ω)E(x) + ω S(x)) v , (32)

where E and S are global sparse quadratic forms that implement the energies
E and S, respectively. The setup of the corresponding global sparse quadratic
form ES(x) = (1− ω)E + ω S is attended by considerable computational costs,
but is inherently parallizable. To guarantee fast execution times we again opt
for a combined GPU and CPU approach that is shown in Figure 17. The basic
computational pipeline is similar to the implementation discussed in Section 3.5

4.2 implementation 59

but includes an additional per-triangle optimization for best-fitting rigid field
operators.

best rigid fields . Both energies E and S depend on the evaluation of the
best fitting rigid fields r̂t on each triangle t = (i, j, k) ∈ T . Rigid fields are

parameterized by the rotational and translational parameters pt =
(

rr
t
T, rt

t
T
)T
∈

R6. The parameters p̂t of the closest rigid vector field are induced by the linear
vector field vt =

(
vi

T, vj
T, vk

T)T ∈ R9 on t by the optimization of (26). As this
optimization problem is quadratic in pt, there is a linear map Pt vt = p̂t that
relates the linear vector field to the best rigid vector field. Here, Pt ∈ R6×9 are
parameter mapping operators that are determined for each triangle independently
using a local optimization: switching to matrix notation, the integrated deviation
from a rigid vector field that is described by Equation (28) is expressed as

Ẽt = ‖vt −Rt pt‖2
Nt

. (33)

Here, Ri ∈ R9×6 is an operator that evaluates the rigid vector field parameterized
by pt at each vertex of triangle t. The norm Nt is the integration operator of
squared three-dimensional linear functions on triangle t. Please see Appendix
A.2 for a derivation of Nt, which corresponds to the case N2,3 in the notation of
that section and is also known as the FEM mass matrix. Let At be the area of t,
and let Ca (·) = a× (·) be the 3× 3 linear operator that performs a cross product
with the vector a. Then Nt and Rt are given explicitly by

Nt, αβ =

At/6 if α = β

At/12 if α− β mod 3 = 0

0 else

, Rt =

−Cxi I3

−Cxj I3

−Cxk I3

 ,

respectively. Note that both Rt and Nt depend on the geometric configuration
of t, i.e., its vertex coordinates, but not on the unknown vector field vt. Then
(33) is optimized for Pt by solving the linear system corresponding to ∇pt Ẽt

!
= 0,

yielding

Pt =
(

Rt
T Nt Rt

)−1
Rt

T Nt .

We perform these independent computations in a parallelized and numerically
stable way for each triangle on the GPU by computing one dense Cholesky fac-
torizations of Rt

T Nt Rt and nine corresponding back-substitutions. Note that
the computation of Pt is robust as long as the triangle is not degenerated, i.e., as
long as the triangle area and the edge length ratios are bounded from below.

distortion and smoothness gradient operators . Using the param-
eter mapping operators we can write Equation (29) in matrix form as

Et = ‖(I3 −Rt Pt) vt‖2
Nt

.

60 isometric surface integration

For the global optimization we require the gradient operator Et ∈ R9×9 that
maps vt to the energy gradient of Et. It contributes to the global quadratic form
E. This operator is obtained by differentiation of Et w.r.t. vt, which gives

Et = 2 (I3 −Rt Pt)
T Nt (I3 −Rt Pt) .

The computation of Et is performed in parallel for each triangle on the GPU.

Similarly, we find the gradient operators St,t′ ∈ R12×12 that contribute to S for
each pair of neighboring triangles t and t′ = (k, j, i′) by the evaluation of the
gradient of

St,t′ = ‖
(
I′3 −Rt′ Pt Qt

)
vt,t′‖2

Nt′

w.r.t. vt,t′ . Here, I′3 =
[
I3, 0

]
, and Qt ∈ R9×12 is a permutation matrix that selects

the vector vt that corresponds to t out of vt,t′ =
(
vt′

T, vt
T)T ∈ R12 in the correct

order. Also computed in parallel on the GPU this yields

St,t′ = 2
(
I′3 −Rt′ Pt Qt

)T Nt′
(
I′3 −Rt′ Pt Qt

)
.

linear systems . In the last step the final sparse symmetric quadratic form
ES is constructed as half of the Hessian of ES in parallel by a weighted segmented
reduction operation [SHZO07, 5]. In a single summation step all gradient opera-
tors Et and St,t′ that contribute to E and S, respectively, are summed to give the
nonzero coefficients of ES by a weighted sums according to

ES
αβ =

1
2

∂2ES

∂vα ∂vβ
=

1
2
(
(1−ω) Eαβ + ω Sαβ

)
.

We minimize ES(v) = vT ES v on the CPU subject to user-defined Dirichlet
boundary conditions (see Section 3.5.1). The resulting linear systems are sym-
metric positive-definite and sparse with about 1.5% non-zero entries on average.
The linear systems are solved by state-of-the-art direct solvers, namely a sparse
Cholesky factorization in combination with an approximate minimum degree
preordering to reduce fill-in [CDHR08]. We exploit the fact that the structure
of the linear system stays fixed in consecutive minimization steps, which allows
the precomputation of a symbolic factorization that strongly accelerates the op-
timization. Experiments reveal that using this direct CPU solver is two orders
of magnitude faster than a GPU-based sparse preconditioned conjugate gradi-
ent solver. This property was already observed by Botsch et al. [BBK05a] for
CPU-only implementations of these solvers for related discretized energies on
triangular meshes.

Finally, for the same reasons as already discussed in Section 3.5.2, we solve
(31) by a numerical shape integration on the GPU using a single-step Adams-
Bashforth-Moulton integration scheme [PTVF07].

4.3 analysis and results 61

4.3 analysis and results

In order to analyze our approach, we apply it to the four benchmark surface
deformation problems defined by Botsch and Sorkine [BS08]. The different de-
formation problems are designed to highlight varying deformation characteris-
tics that are hard to maintain by (linear) single-step approaches simultaneously,
e.g., translational or rotational awareness and local detail preservation. Our re-
sults are shown in Figure 18 (top) together with the initial benchmark surfaces.
For every problem our (nonlinear) near-isometric continuous deformations yield
plausible and visually convincing deformations.

Additionally, we compare our deformations to the single-step deformations de-
scribed in [BPGK06] (PriMo), [BSPG06] (ThinShells), [ZRKS05] (GradientEd),
[SCL∗04] (LaplacianEd), and [LSLCO05] (RotationInv). The deformation dis-
tortion values are summarized in the table of Figure 18. We use the 2d defor-
mation errors E2d

isom, E2d
auth, and E2d

con f derived in Appendix B for the considered
two-manifold surfaces. For our method, we use four different values of ω. Since
the absolute values of the distortions do not have a geometric meaning (because
they depend on a particular triangulation), we normalized them by the distor-
tion of our method with ω = 1

3 . (A number above 100% in the table indicates a
higher distortion than for our method with ω = 1

3 .) We compare the different
deformation results of the benchmark shapes and additionally visualize local
isometric distortions measured by E2d

isom (conformal and authalic errors are simi-
lar) in Figure 19. Both the distortion values and the deformation results indicate
that our method computes deformations of high quality for the various differ-
ent surface types. Yet, as our method is nonlinear, a direct comparison to the
listed methods is fair only with the nonlinear single-step PriMo approach by
Botsch et al. [BPGK06]. Our approach computes deformations that are equally
convincing, but haven even lower distortion values compared to PriMo deforma-
tions. A possible reason is the lower deformation smoothness of this approach,
which is indicated by, e.g., the PriMo Bar example in Figure 19. In contrast, our
proposed smoothness energy term measures smoothness globally and seems to
give superior results. Also note that our approach performs especially well on
the Bumpplane problem, since only at the small junctions of the bumps to the
underlying plane minimal distortions are introduced and the remaining surface
deforms isometrically with correct detail orientation.

Timings were measured on a Linux 2.6GHz AMD Opteron system with 8GB
RAM and a NVIDIA GTX 280 running CUDA. The number of required inte-
gration steps for each problem was 13 (Cactus), 44 (Bar), 46 (Cylinder) and
76 (BumpPlane), and the number of vector-field evaluations was roughly twice
as many. The first three models can be modified at interactive rates. However,
performance is impaired for the very large BumpPlane model. Here, the sparse
solver becomes the bottleneck of the optimization due to the size of the arising
linear systems, which was not the case for all other examples in this chapter.

62 isometric surface integration

Cactus Bar Cylinder Bumpplane

Figure 18: Benchmark Deformations. Standard surface deformation problems specified
by Botsch and Sorkine [BS08] with prescribed handle (•) and fixed (•) regions.
Our continuous deformation results are computed with ω = 1

3 and shown on
the top. The table underneath gives distortion values (see Appendix B) and
deformation times. All distortion values are relative to our result with ω = 1

3
(marked •).

4.3 analysis and results 63

Pr
i
m

o
Th

i
n

Sh
e

l
l

s
G

r
a

d
i
e

n
t

Ed
La

p
l

a
c

i
a

n
Ed

R
o

t
a

t
i
o

n
In

v
O

ur

Cactus Bar Cylinder Bumpplane

Figure 19: Deformation Comparison. We compare our continuous deformations (bot-
tom, ω = 1

3) to other surface deformation methods. The color coding visu-
alizes local isometric distortions measured by E2d

isom (see Appendix B). Color
scales range from low (•) to high (•) errors and are always scaled equally for
each shape.

64 isometric surface integration

(a) (b)

(c) (d)

Figure 20: Continuous Surface Deformation Examples. (a) Perfectly isometric deforma-
tion of developable plane. (b) Continuous deformations using multiple han-
dles. (c-d) Twisting deformation of the head of the cow and a strong twist of
a bar by 280◦ that is not achievable by single-step deformations.

Figure 21: Beetle Car Deformations. The original beetle model (left) is deformed by
fixing the rear of the car and moving the handle at the engine hood into four
different directions (right).

Further examples of our approach are shown in the Figures 20 and 21. Figure 20

(a) shows a perfectly isometric deformation (E2d
isom ≡ 0) of a developable surface

computed using our approach. Figure 20 (b) shows that deformations can con-
tain different handle paths: the front legs of the animals were moved in different
directions, yielding plausible deformations. Figure 20 (c) shows a twisting defor-
mation of the head of a cow model. There, the body leans forward to compensate
metric distortion. In Figure 21 a beetle car model is deformed in four antipodal
directions giving four rather different deformation results. The accompanying
video of [MRT12] shows additional results 1.

The impact of the variation of the weight ω is illustrated in Figure 22. The
example shows that too small weights can lead to unpleasant artifacts if defor-

1 The video is located in the additional material folder addmaterial/isomdef.

4.4 spectral energy properties 65

ω = 1 ω = 2/3 ω = 1/3 ω = 0.01

Figure 22: Energy Weighting. Smaller weights ω lead to small distortion but may pro-
duce deformation artifacts if the boundary conditions do not allow for near-
isometric deformations (ω = 0.01). Slightly higher ω values result in less
artifacts and similar global deformations.

Figure 23: Mesh Resolution Insensitivity. Pulling the handle vertices (•) at the center up
vertically produces a smooth deformation (right) independent of the inhomo-
geneous mesh resolution (left).

mations cannot be perfectly isometric and distortion minimization is enforced at
the expense of vector field smoothness in (32).

4.4 spectral energy properties

In addition to the definition of continuous deformations, the norm ES of the
quadratic form ES(v) = ‖v‖2

ES has interesting properties in the spectral domain
[ZvKD10]: let (λi, vi), i = 1, . . . , 3 |V|, be the eigenvalue and eigenvector / dis-
crete eigenfunction pairs of ES in ascending order of λi. As vi

T vj = δij, we
have ES(vi) = λi. For general surfaces ES has a rank deficit of six, i.e., λi = 0,
i = 1, . . . , 6, and λi > 0, i > 6, due to the definiteness of ES. The six kernel
dimensions correspond to the six degrees of freedom of globally rigid vector
fields, such that the corresponding eigenfunction are a basis of such fields. The
first twelve eigenfunctions of a simple model are shown in Figure 24.

The lower spectrum of eigenfunctions can be used for shape analysis to detect
structurally stiff regions in the shape: intrinsic stiffness corresponds to a low
amount of instantaneous motion, which induces low amount of distortion. As

66 isometric surface integration

v1, . . . , v6:

v7, . . . , v12:

Figure 24: Energy Eigenfunctions. The first twelve eigenfunction vi of ES. The first six
eigenfunctions are a basis of globally rigid vector fields, the next greater eigen-
functions describe near-isometric instantaneous intrinsic shape deformations.

Figure 25: Structural Shape Stiffness. Using the lower spectrum of the first twenty eigen-
functions of the isometric energy the local shape stiffness is computed. Re-
gions have lower (•) to higher (•) tendency to move instantaneously while
inducing low amount of distortion.

this type of instantaneous motion is given by the lower spectrum of n eigen-
functions, we can sum the norm of the contribution of the eigenfunction at each
vertex for all i < n. The resulting scalar field describes the local tendency to
move instantaneously while inducting low amount of distortion. In Figure 25

we show three examples of such a shape descriptor.

The lower spectrum can also serve as descriptors of a feature space for, e.g.,
shape segmentation: for each vertex we measure the norm of each eigenfunction
and use the resulting n-dimensional feature vector at each vertex for a segmen-
tation similar to the method of Huang et al. [HWAG09]. Note that their method
uses a feature description that is based on a modal analysis of a single-step
ARAP energy, whereas our vector fields directly describe first-order instanta-
neous deformations. Instead of a k-means clustering of the original method we
use spectral clustering based on normalized cuts proposed by Shi and Malik
[SM00]. This method has the advantage that the normalized cut measure allows
for an automatic cluster number selection. Moreover, segmentations generally

4.5 discussion 67

0 5 10 15 20 25 30 35 40

|Segments|

Dog

Horse

N
C

ut
V

al
ue

N
C

ut
V

al
ue

Figure 26: Stiffness-based Segmentation Results. Spectral clustering on energy eigen-
functions as feature vectors is used for region classification. Associated shape
regions are colored equally. The graphs (right) show the normalized cuts
value for different numbers of clusters for the dog and horse segmentation,
respectively.

showed a higher quality compared to k-means clustering. Surface segmentation
results using are shown in Figure 26.

4.5 discussion

We continue to discuss several aspects of our continuous deformation approach.

isometric surface energies . For our approach we developed a new dis-
crete vector field energy that measures instantaneous isometric distortions in-
duced by the field acting on surfaces. The usual approach (30) as used in
[KMP07, EPT∗07] is not sufficient because of two reasons: first, it does not con-
sider the triangle shapes and sizes. In Figure 16b, we show the impact on the
deformation stability in a simple experimental evaluation: for this experiment
the non-planar surface z(x, y) = 1

2 (1+ x)(1− x)(1+ y)(1− y) was sampled over
the interval [−1, 1]× [−1, 1] as shown in Figure 16b (1-2). Note that an irregular
tessellation was chosen. The deformation was defined by keeping the bound-
ary fixed and translating the (•) region in the direction of the z-axis. Figures
16b (3-5) show three steps of an Euler integration by minimizing Ē(v) defined
by (30), while Figures 16b (6-8) shows the same steps by minimizing our ES(v)
with ω = 0 i.e., without the smoothness term. Euler integration was chosen to
emphasize the artifacts. Even this very small example clearly shows that the
measure Ē(v) does not yield acceptable results. We point out that this is not due
to missing regularization (the initial surface is not planar), the corresponding
linear operators are sufficiently well conditioned.

68 isometric surface integration

The second advantage of our energy is that it offers a simple method to incorpo-
rate the smoothness of the deformation, i.e., to prevent appearance or disappear-
ance of sharp edges during the deformation. While we do not see a straightfor-
ward way to extend (30) in this direction, our measure can easily be extended in
this direction as shown in Section 4.1.4.

We conclude this aspect by visualizing the tessellation-insensitivity of our defor-
mation method for a simple example. Figure 23 shows a plane that is triangu-
lated with different resolutions and then deformed trivially: the tessellation has
no effect on the resulting surface shape due to the design of our energy, which
is a surface-integrated quantity (see also Figure 16a and Section 4.1.3).

relation to arap deformations . Our method is based on matching
deformation vector fields to closest rigid vector fields. It can therefore be in-
terpreted to be an instantaneous relative of the single-step as-rigid-as-possible
(ARAP) deformations that approximate closest rotational deformation gradients
(see, e.g., Section 7.4.2). Hence, both approaches minimize similar nonlinear de-
formation errors in two different ways: our method is based on ODE integration,
whereas the ARAP energy is commonly minimized iteratively. The following dif-
ferences are worth noting: due to the local direct minimization of the nonlinear
energy, the converged ARAP result depend on a deformation initialization, e.g.,
a fast to compute linear Laplacian deformation [SA07]. Our approach does not
require an initialization by a different deformation method as vector fields are
optimized on the currently integrated surface. On the other hand, our method
does not directly optimize the distortion of the final deformation, but rather tries
to minimize the variation of isometry in each integration step. This property is
advantageous if an animation of the deformation is also required. However, it
may also lead to an accumulation of distortion relative to the original surface,
although our experiments in Section 4.3 indicate that the total deformation qual-
ity is still high. Another consequence of our model is the dependency of the
deformation on the whole path of each handle.

handle path dependency. Being a continuous method the result of our
deformation depends not only on the final position of the constrained vertices,
but also on the paths on which they move from starting to final position. This
is a significant difference to single-step deformation approaches. Figure 27 il-
lustrates this property. There, the shape (a) is deformed by moving the yellow
boundary to the right while keeping the blue boundary fixed (b). The successive
reverse deformation (c) gives the original shape with minimal positional varia-
tion, i.e., for certain handle paths deformations are reversible. Our deformations
have this property if only a small amount of distortion is induced by the de-
formation constraints, e.g., the deformation in (b) is close to an exact isometry.
Contrary, by moving the handle first to the left (Figure 27 (d)) ends up in a signif-
icantly different shape (e), as the initial deformation induced a certain amount

4.5 discussion 69

t = 0 t = 1/2 t = 1 t = 1t = 1/2

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 27: Handle Path Dependency. Deforming the initial surface at t = 0 (a) by dif-
ferent handle paths from and to the same rest positions results in different
deformation at t = 1. The images (b-e) show two linear antipodal handle
paths, the images (f-i) two parabolic handle paths.

E2d
isom(t) E2d

auth(t) E2d
con f (t)

Figure 28: Time-Dependent bi-Laplacian Deformation. Comparison of distortions over
time for time-dependent bi-Laplacian deformation (•) and our method (•).

of distortion, which is preserved afterwards. Figures 27 (f-i) show the movement
of the handle over two mirrored paths, yielding different final shapes.

While such a path dependence might not always be a desired property, we em-
phasize that for a number of applications it opens a wider flexibility of the mod-
eling process because it reflects the fact that real materials are never deformed
in a perfectly elastic way. The “memory effect” of the deformation gives the look
of a combined plastic and elastic deformation of a real material, even though
only geometric measures of the surface are considered. Furthermore, it allows
to obtain strong twisting with rotation angles greater than π (Figure 20 (d)) and
knots [vFTS07b, Figure 14], which are hard to compute by path-independent
methods.

comparison to time-dependent bi-laplacian. We point out that it is
not sufficient to modify existent linear single-step energies to operate in a contin-
uous instantaneous setting to minimize isometric distortion. Consider Figure 28

as an example. For this simple deformation a bi-Laplacian operator (see [BS08])
was discretized for every time step, partial deformations were integrated within
the same solver, and the same boundary constraints as in Figure 23 were ap-
plied. Comparing results, metric distortions are still significantly higher — they
didn’t improve much — in comparison to our method. This is not surprising
as different energies are minimized. We remark as bottom line that by breaking
a discrete bi-Laplacian deformation trivially into a “continuous” deformation

70 isometric surface integration

one cannot achieve the same effect as our vector field-based method. Other dis-
crete state-of-the-art methods are also likely to exhibit higher distortion by this
strategy compared to our approach, too.

limitations . We see the main limitation of our approach in the relatively
high computation times: despite the fact that we accelerate our nonlinear ap-
proach using the GPU (and the experiments were performed on a relatively slow
machine), the technique is far less interactive than state-of-the-art linear frame-
works if applied to large models and thus does not scale to very large meshes yet.
We also mention that for the linear operators the memory footprint is probably
higher. As discussed in Chapter 2, nonlinear deformations of higher quality are
generally more expensive to compute. Our method shares this trade off with
other nonlinear deformation approaches. Efficiency for meshes of higher res-
olution could be improved using, e.g., multiresolution or subspace techniques
[KMP07, WDAH10, FB11, JBK∗12]. However, these accelerations are likely to
spoil local deformation quality, which is the main focus of our approach.

The path dependence of our method can as well be seen as a limitation. We
claim it is a features and an integral property of continuous vector field-based
deformations. However, we are aware that depending on the application path
dependence may be also interpreted as an artifact.

4.6 summary

In this chapter, we made the following contributions: we described a method for
continuous integration-based deformations of triangulated surfaces that tries to
preserve isometry. Results show significantly lower distortion of length, angles,
and area for a set of representative shapes compared to existing standard (lin-
ear and nonlinear) deformations. Moreover, the results look visually pleasing.
For every time step a piecewise linear vector field is constructed by applying a
quadratic energy minimization. The energy minimization consists of two com-
bined phases: a local rigid vector field fitting per triangle and a global vector field
optimization that measures the deviation from local rigid fields. Both phases are
accelerated using the GPU. Our new energy is surface-integrated and is extended
to incorporate smoothness. Our modeling metaphor defines handle paths. Both
the final position of the handles and the path influence the deformation.

The most prominent issue for future research is the further improvement of the
performance. Another interesting challenge is the boundary value problem of
path planning where the optimal path between two poses is determined. To do
so the method by Kilian et al. [KMP07] can be extended to use our vector field
energy formulation.

5
C O N T I N U O U S D E F O R M AT I O N S O F I M P L I C I T S U R FA C E S

In the previous chapters of this work, we considered continuous deformations
of explicit shapes that are represented by triangular and tetrahedral meshes. Al-
ternatively, a common approach in computer graphics is to represent shapes in
an implicit form, i.e., as the isocontours of (volumetric) scalar fields.

There are a number of approaches for implicit surface deformation and model-
ing. Most often, these methods focus on deforming one single isosurface. Volume
data, or more generally scalar fields, contain much more information than just
one isosurface. In fact, there is a whole family of isosurfaces that may represent
different kinds of information: in CT or MRI data from medical imaging ap-
plications, different isosurfaces describe transitions between different materials
(like bone, tissue, or air), in other applications different isosurfaces may contain
distance information to a particular isosurface of interest. Generally, for most
volume data sets there is more than a single isosurface of interest.

If one is interested in the deformation of one particular isosurface, a generic
solution is to extract it, then apply an explicit deformation, and finally perform
an implicitation. Such an approach does not regard any volumetric information
except for the location of one isosurface. However, if the complete volume is of
interest, a good deformation should incorporate the whole field, i.e., it should
take care of the shape of all isosurfaces.

In this chapter, we present a method for the computation of such deformations.
Deformations are again defined continuously by a path line integration of an
explicitly constructed divergence-free vector field. We show that they have the
following properties: the volume inside each isosurface is preserved during the
deformation, no isosurface changes its topology, no new critical points of the
volume data set appear or disappear, and a C1 continuity of the isosurfaces is
preserved during the deformation. The desired volume preservation is justified
by the fact that many common materials approximately preserve their volume
under deformation. At the same time, topology preservation allows to construct
complicated shapes with a pre-defined simple topology.

71

72 continuous deformations of implicit surfaces

The deformation is computed numerically by an efficient and unconditionally
stable backward Lagrangian integration scheme that is performed by the GPU.
For interactive real-time modeling, we visualize isosurfaces on the grid of the
underlying volume data set. In addition, an exact reconstruction can be used
to retrieve an arbitrary isosurface with exact topology and high accuracy. We
apply our technique to deform volume data sets and to model complex families
of isosurfaces with a pre-defined simple topology.

5.1 continuous isosurface deformations

Isocontours Sα of a scalar field s(x) in a spatial domain D are the set of points
Sα = {x ∈ D | s(x) = α} whose scalar value matches a prescribed isovalue α.
Given an initial scalar field s0(x) over D, we consider continuous deforma-
tions over time as the computation of time-dependent scalar fields s(x, t) with
s(x, t0) = s0(x). Then time-dependent scalar fields induce continuous defor-
mations of all Sα. In this chapter, we only consider the 3d case dim(D) = 3,
although most concepts generalize to other dimensions, too.

We define the deformation by a 3d time-dependent vector field v(x, t) describing
the transport of the isosurfaces over time. We make use of the concept of a flow
map φ of v. The map φ assigns to each point x0 ∈ D where a massless particle is
seeded at time t0 the point where it is located at time τ under a kinematic path
line integration of v:

φτ
t0
(x0) = x0 +

∫ τ

t0

v(x(t), t)dt (34)

with x(t0) = x0 and ẋ(t) = v(x(t), t). Given s0 and v, finding the deformation s
is equivalent to solving the PDE

∂

∂t
s = −(∇s)T v with s(x, t0) = s0(x) , (35)

where ∇· is the (spatial) gradient operator. Equation (35) is known as the funda-
mental level set equation [OF01], the solution is an initial value problem.

There are a variety of approaches to solve (35) that are based on a discretization
of s and v in both, space and time [OF02]. Eulerian integration schemes compute
s at a time step ti from s and v at the time ti−1 regarding only specific locations,
e.g., grid points. Lagrangian schemes follow the trajectories of particles forward
over all time steps, while semi-Lagrangian integration techniques evaluate s at
time ti by a single backward integration step of v. Furthermore, there are hybrid
schemes incorporating particle integrations to correct errors in the (Eulerian)
integration of the PDE (35).

5.1 continuous isosurface deformations 73

t

y

x

t0

Figure 29: Semi-Lagrangian (left) versus backward Lagrangian scheme (right). Both
schemes update s at grid points by integrating backward in time. The semi-
Lagrangian scheme, however, does this for each step. In our setting we can
apply a fully backward Lagrangian scheme, which requires only a single eval-
uation (interpolation) of s at t0. This scheme is simpler, more efficient, and
more accurate.

Eulerian schemes often suffer from stability problems as they are only condition-
ally stable. A common problem with fully Lagrangian schemes is a faithful re-
construction of s since the final particle distribution may be highly non-uniform.
This is why semi-Lagrangian schemes are often preferred (e.g., in fluid simula-
tion [Sta99]). They ensure reconstruction by choosing grid points as evaluation
points thus reverting to the spatial grid after each time step.

For our application we can rely on a much simpler integration scheme: a back-
ward Lagrangian integration. Note that standard methods to solve (35) steming
from level set theory and numerical flow simulation often assume that v and s
are not independent. In fact, usually the definition of v incorporates local com-
ponents of s such as its gradient, Hessian, or the Gaussian and mean curvature
of its isosurfaces, leading to the fact that v at a time ti is not known until s has
been computed in ti. We emphasize that this is not the case for our approach:
we define v independently of s. This allows for using a backward Lagrangian
scheme to solve (35): the scalar value at a time t is obtained by a complete path
line integration back until t0:

s(x, t) = s0(φ
t0
t (x)). (36)

This concept is illustrated in Figure 29. Note that for computing s(x, t), it is not
necessary to compute s at any intermediate time steps between t0 and t. There
are two main benefits of the backward Lagrangian scheme: firstly, improved
accuracy as we do not suffer from interpolation artifacts that occur for a semi-
Lagrangian scheme – the scalar field s is evaluated only once at t0. Secondly,
integration involves fewer data and fewer operations and can be implemented
more efficiently.

74 continuous deformations of implicit surfaces

5.1.1 Deformation Properties

Let v be a C1 continuous vector field over D with the following properties:

• local support: v is non-zero only in some inner region of D (it is constantly
zero at the boundary of D),

• boundedness: ‖v‖ < ∞ and ‖∇v‖F < ∞ at any location in D (∇v is the
transposed vector field Jacobian), and

• v is divergence-free, i.e., Tr(∇v) = 0.

Then the deformation s defined by (36) has the following properties:

a. s is volume-preserving: the volume inside every isosurface remains constant
under the deformation,

b. s is continuity-preserving: if s0 is C1-continuous then s is C1 as well, and

c. s is topology-preserving: no isosurface changes its topology during the de-
formation.

Property (a) follows directly from the definition of divergence of vector fields
[Dav67]. Property (b) has been proven in [vFTS06] for explicit surfaces, the same
proof holds for implicit surfaces as well.

Regarding Property (c), we realize that a topology change requires a critical point
of s, i.e., a point where the scalar field gradient ∇s vanishes [OF02]. Hence, we
can rephrase this property as follows: no critical points can appear or disap-
pear during the deformation. All critical points of s are obtained by integrating
the critical points of s0. In order to show Property (c), we observe how ∇s is
changing under integration of v over time:

∂

∂τ
∇s = lim

τ→t

∇s(φτ
t (x), τ)−∇s(x, t)

τ − t
=

∂

∂t
∇s + H v , (37)

where H denotes the (spatial) Hessian of s. We rewrite the PDE (35) in matrix
notation as the scalar product

(
vT 1

) (∇s
∂
∂t s

)
= 0 . (38)

Then computing the gradient of (38) by applying the product rule gives

[
H ∂

∂t∇s
] (v

1

)
+

[
∇v

0T

]T (
∇s
∂
∂t s

)
= 0 ,

Evaluation of the terms and comparison with (37) yields

∂

∂τ
∇s = −(∇v)T∇s. (39)

5.1 continuous isosurface deformations 75

Equation (39) holds everywhere in D and states that a critical point of s (i.e.,
∇s = 0) remains a critical point under the integration of v (i.e., ∂

∂τ∇s = 0).
Conversely, for a non-critical point, ∇s cannot vanish during the integration of
v as otherwise a backward integration starting from the critical point would
violate the previous statement.

5.1.2 Definition of the Vector Field

The divergence-free vector field v steers the deformation. Its definition is not a
contribution of this work, since we use the method presented by von Funck et al.
[vFTS06], who define deformations of explicit shapes (represented as triangular
meshes) by vector field integration. For the sake of completeness, we provide a
brief review: essentially, the definition of v is an interactive process, where v is
defined by three time-dependent scalar fields e(x, t), f (x, t), and r(x, t), together
with two thresholds ri, ro. The region field r and thresholds ri and ro define an
inner region of full deformation, a blended intermediate region, and a region of
zero deformation. The full deformation is defined by scalar fields p and q as

v = ∇p×∇q

with

p(x) =

e(x) if r(x) ≤ ri

(1− b) e(x) if ri < r(x) ≤ ro

0 if ro < r(x)

, q(x) =

f (x) if r(x) ≤ ri

(1− b) f (x) if ri < r(x) ≤ ro

0 if ro < r(x)

,

and b = b(r(x)) is a polynomial blending function with b(ri) = 0, b(ro) = 1, and
d
dr b(ri) = d

dr b(ro) = d2

dr2 b(ri) = 0 represented in Bernstein-Bézier form. Vector
fields v constructed this way are guaranteed to be divergence-free [Dav67]. As
these vector fields are independent of s they allow the usage of the proposed
backward Lagrangian integration scheme.

5.1.3 Deformation Types

With the choice of the scalar fields e, f , and r we can define different types of de-
formations. Since our approach does not focus on a particular isosurface, e, f , r
should be chosen to act on a family of isosurfaces simultaneously. For this pur-
pose we adapt the approach presented in [vFTS07b], which uses a spatial curve
that guides the deformation, to our setting of deforming a family of implicit
surfaces: the user specifies r(x, t0), ri, ro, and a curve c(t) with r(c(t0), t0) ≤ ri
interactively. The region field r and threshold ri, ro define the regions of full and
blended deformations, respectively, and c describes the path and orientation of

76 continuous deformations of implicit surfaces

t0 t1 t2

Figure 30: Deformation Principle. The dashed isocontours s(x, t) = 0 are deformed by
a translational motion. Shown are three time steps. The deformation region
consists of a full deformation (•) and a blended deformation (•) part.

Figure 31: Simple Deformations. Examples for translation along a curve (left) followed
by multiple rotations (right). Inner region (•) and intermediate region (•) are
highlighted. For each case two deformed isosurfaces are shown.

the inner region over time. This can be imagined as sweeping a deformation
tool with local support along c. See Figure 30 for an illustration of the basic in-
teraction metaphor. Defining N(t) = (t(t), n(t), b(t)) as the moving normalized
Frenet frame of c, we obtain

r(x, t) = r
(

c(t0) + N(t0)N(t)T (x− c(t)) , t0

)
,

and e, f describe a translation in the direction of the curve tangent ċ if computed
by

e = nT (x− c) and f = ‖ċ‖bT (x− c) .

Optionally, we allow rotational deformation around an axis given by a center p
and a direction d:

e = dT (x− p) and f = ‖d× (x− p)‖2 .

Figure 31 illustrates two examples: a translation in the inner region following a
curve c (left), and a subsequent rotation around an axis through the red center
(right).

5.2 implementation

In this section, we describe the implementation of our continuous isosurface
deformation approach. Generally, we discretize scalar fields on uniform grids,

5.2 implementation 77

and we use a tricubic C1 interpolation for evaluation of function values and
gradients. For path line integration we apply a fourth-order Runge-Kutta scheme
with adaptive step size control (see, e.g., [PTVF07]).

5.2.1 User Interface and Real-Time Visualization

The user first loads an initial scalar field, which is uploaded to the GPU. Then
she can set parameters of the tool interactively, e.g., type of deformation and
region fields, and perform sweeps in real-time. A particular or multiple isosur-
faces are displayed for interactive modeling, the isovalues can be varied freely. In
our experiments this approach has shown to be more intuitive than a more gen-
eral real-time volume rendering approach (see, e.g., [HKRW06] for an overview).
Our visualization uses a real-time GPU version of the marching cubes algorithm
based on histogram pyramids [DZTS08], which does not show any significant
impact on run time of the main algorithm in all our experiments. Marching
cubes is performed only if either the scalar field or the isovalue changes, and the
result is saved into a vertex buffer for rendering.

5.2.2 Interactive Scalar Field Manipulation

In all our examples we use a grid resolution of 2563. The maximum resolution is
mainly limited by available memory as the whole field is required to persist in
GPU memory for visualization. We remark that an out-of-core implementation
of our general approach is straightforward, currently it is the marching cubes
visualization that requires that all data persists on the GPU. For the deformation
approach itself we use s and a temporary buffer with size of the region of in-
terest on the GPU. Both, path line integration and scalar field interpolation are
performed by the GPU.

Deformations are specified as control points of the sweep curve c together with
additional properties such as region fields. Deformations can be extended by
editing the current curves and adding new ones interactively, restriction provides
an undo functionality. The associated parameter sets are sent to the GPU, their
memory footprint is not significant. When evaluating v, we exploit the fact that
the individual operations have local support, i.e., v is non-zero only within a
region of interest and can therefore be evaluated on a smaller grid.

For practical real-time editing we relax the integration scheme slightly using
intermediate results: we partition a sweep along the guiding curve c (see Section
5.1.3) into time intervals, each of which describes a partial modification. From
the arising series of modified scalar fields only the most recent scalar field is
stored in a GPU buffer of constant size. This means that we do not integrate
all way back to t0 but only to the last interval bound. However, each edit still

78 continuous deformations of implicit surfaces

(a) (b) (c) (d)

Figure 32: Reconstructions Comparison. (a) An extreme deformation leads to artifacts
for marching cubes reconstructions during interactive modeling. (b) The same
surface reconstructed exactly. Two (c) and three (d) interfaces (indicated by
arrows) that get close to each other are reconstructed correctly.

comprises a significant time interval and potentially many integration steps –
we are not switching to a semi-Lagrangian scheme. We use this compromise
of buffering intermediate edits to balance accuracy and efficiency. This way we
save on the integration process with shorter time intervals that only reach back
to the previous partial edit, and we can guarantee real-time response. The price
is a slight loss of accuracy due to interpolation of intermediate data. Of course,
we can control granularity of time intervals, and we can even invest some extra
time and do a full path line back integration to t0 at any time to visualize a better
approximation.

5.2.3 Offline High-Quality Isosurface Extraction

The quality of the rendered isosurfaces depends on the grid resolution for the
marching cubes algorithm. We use the same resolution as for computation of
s(t) and are generally limited by GPU memory. While this is acceptable for real-
time visualization, it is evident that artifacts show up whenever the sampling
rate becomes too low, depending on the particular isovalue (see Figure 32 (a)).
This is not a failure of our method but a failure of reconstruction. To show this
property we extract high-quality isosurfaces using the surface meshing routines
provided by the CGAL library [3]. We chose this library because the underlying
adaptive meshing algorithm by Boissonnat et al. [BO05] is extremely robust and
produces highly accurate triangulations of the isosurface. Even extreme exam-
ples with very thin or near overlapping surface parts are reconstructed faithfully,
see Figure 32 (b-d). The high-quality isosurfaces are extracted at the cost of us-
ing a sequential CPU implementation that takes the recorded parameter sets as
input and integrates the path lines. We note that this is a inherently sequential
process: the meshing algorithm does not have enough information of the sur-
face and treats evaluation as a black-box component, the so called oracle. We do
not have any influence on location and order of evaluation points, which seem
highly non-uniform. As a consequence this is clearly an off-line process. We ob-
served that sampling s(t) on a uniform grid and using the CGAL surface mesher
on this as input provides a significantly more efficient and fairly accurate recon-

5.3 analysis 79

V = 100% V = 100.16% V = 100.41%

V = 100% V = 100.01% V = 100.08%

V = 100% V = 100% V = 100.03%

t2t0 t1

α = 15

α = 22.5

α = 30

α0 α1

α0

α1

Vt
V0

V0
Vt
− 1

Vo
lu

m
e

Vo
lu

m
e

Er
ro

r

α

Figure 33: Volume Preservation. Left: Evaluation of the volume Vα of a randomly de-
formed (•) and original sphere (V0 = 4πα3, •), plotted over varying isovalues
α (≡ radii). The curves are nearly identical. The relative volume differences
are shown underneath. Two particular isosurfaces are shown on the right for
the isovalues α0 and α1. Right: Three isosurfaces at isovalues α shown at times
t0, t1, t2. Volume variation is low even for the applied extreme deformations.

struction. However, this compromise is less exact and depends on the sampling
rate.

5.3 analysis

We continue to analyze properties of our approach and its implementation.

volume preservation. We compare the volume preservation of deformed
isosurfaces to ground truth. The exact total volumes V of closed triangulated
isosurfaces are computed by signed tetrahedra volumes

V =
1
6 ∑

(i,j,k)∈T
det
([

xi xj xk

])
for sets of triangles T and vertex coordinates xi (see, e.g., [vFTS08]). Even though
the volumes are computed from meshes computed interactively by marching
cubes (and not by using the high quality extraction), our experiments already
confirm volume preservation. Figure 33 (left) plots volume of isosurfaces over
their isovalues for an initial sphere and a randomly deformed version (depicted
are isosurfaces corresponding to α0, α1). The relative error is very low even
though reconstruction artifacts come into play for smaller isovalues. Figure 33

(right) shows a similar experiment for a number of different isosurfaces and sur-
face triangulations by marching cubes for the initial surfaces and two particular
time steps. Again, volume variation is insignificant and confirms the volume
preservation of our approach even for discretized marching cubes isosurfaces.

80 continuous deformations of implicit surfaces

Figure 34: Topology Preservation. A double torus was deformed from its right to its left
handle. The deformation preserves its genus-2 topology. At the same time
the topology of an inscribed unconnected isosurfaces with lower isovalues
(solid •) remains unchanged. (Figure 32 (d) shows a comparable closeup of
the large isosurface (•) using exact reconstruction.)

reconstruction accuracy. The static grid of the GPU implementation
may lead to undersampling artifacts. For all our experiments, we could extract
high-quality surfaces with correct topology and without any self-intersections.
Figure 32 compares marching cubes to reconstruction with [BO05] and shows
extreme configurations with hard to reconstruct regions of isosurfaces where
interfaces are getting very close to each other. The volume variation of all shown
high-quality reconstructions was always below 0.01% 1.

topology preservation. Figure 34 shows isosurfaces for an extreme de-
formation of a double torus scalar field. The isosurfaces have different topology
at t0 (a single genus-2 surface and two disconnected genus-0 surfaces are shown),
and their topology is preserved over the whole deformation. In fact, topology
preservation shown in Section 5.1.1 was confirmed by all our experiments (dis-
regarding discretization artifacts from marching cubes).

performance . We implemented our approach using NVIDIA’s CUDA GPU
interface. All timings are measured for a NVIDIA GTX280 GPU with 1GB mem-
ory and an AMD Opteron processor at 2.6GHz.

N

h Translation Rotation Interpolation

32 64 128 32 64 128 Linear Cubic

103 0.96 1.36 2.16 0.87 1.21 1.81 0.01 0.01

104 1.55 2.41 4.62 1.87 2.15 3.64 0.01 0.02

105 7.42 13.74 26.41 6.12 11.16 21.42 0.03 0.04

106 64.65 125.28 247.71 48.55 92.63 180.97 0.04 0.05

1 The additional material folder addmaterial/voldef contains a video of the approach and high-
quality reconstructions of a mesh shown in Figure 32.

5.4 applications 81

The table summarizes integration and interpolation timings. Measured timings
(in ms) are listed for N GPU path line integrations that require on average h
integration steps each (left), and N scalar field interpolations (right). The pro-
cessing time of cubic interpolation is negligible. Numerical path line integration
is the most time consuming part of our algorithm. The average number of adap-
tive integration steps is 64 in all our examples. Typically, we observe numbers of
seven (Figure 32 (a)) up to 250 (Figure 35 (right)) time steps if using intermediate
scalar fields. This confirms that even a numbers of 106 path lines can be handled
efficiently. The main reason is that no time consuming vector field lookup into,
e.g., texture space, is required as our vector fields are parameterized and evalu-
ated in closed-form. Finally, we remark that a full backward integration is more
expensive and corresponds to a sum over all time steps back to t0. For most of
our examples this is in the order of 1000 steps in total. A single marching cubes
surface reconstruction required 14ms on average, depending on the number of
occupied voxels.

High quality reconstruction is an off-line process. Reconstruction time for the
double torus and torus models in Figure 35 was 656 seconds and 843 seconds,
respectively. Reconstruction of the Medusa head required 24 minutes.

5.4 applications

Our method can be applied to the following applications. Please also see the
accompanying video of [MRT10] for additional interactive results 1.

designing smooth surfaces from scratch . As a deformation approach
our method can be used for general modeling of smooth isosurfaces starting
from a smooth field, e.g., representing a family of spheres. The volume preser-
vation property mimics plasticine-like materials in a plausible way and leads
intuitive editing. In addition, constant topology is guaranteed for correct results.
As a remarkable feature these two properties are satisfied not only for a single
isosurface of interest but for all isosurfaces, i.e., the deformation acts on a family
of surfaces. Therefore, a whole family of isosurfaces can be modeled simulta-
neously. Figure 35 shows examples that were modeled in 3− 15 minutes by an
inexperienced user.

interactive deformation of volume data . Volume-preserving defor-
mations of a single isosurface result in modifications of all isosurfaces within the
inner and blended region fields. Figure 36 shows a deformation of the bonsai
volume data set, where the tool was swept to deform the trunk and its neighbor-
hood.

82 continuous deformations of implicit surfaces

α0 α1 α2

Figure 35: Faces of Different Topology. The images show isosurfaces of three modified
scalar fields with αi < αi+1: all isosurfaces are deformed simultaneously while
their volume and topology are preserved.

Figure 36: Volume Data Deformation. The volume rendered original bonsai data set
(left) is deformed near its trunk (•) (right). Nearby leafs (•) are deformed in
a volume-preserving way.

5.5 discussion 83

5.5 discussion

We continue to give a comparison of our approach to existing ones.

There are a number of approaches for deforming implicit surfaces, among them
some aiming at the preservation of the volume inside a particular isosurface
[CA06]. However, to the best of our knowledge, our approach is the first one
that preserves the volume of all isosurfaces. Also, topology preservation of all
isosurfaces is not addressed so far.

In comparison to other real-time volume deformation techniques [RSSG01, WR01,
SBH07] our approach allows for stronger and at the same time more localized
deformations. Also, volume and topology preservation is not addressed there.

The approaches closest to us are the methods by von Funck et al. [vFTS06,
vFTS07b], who define deformations by integration along similar vector fields.
Contrary to us, their methods only work on a single explicit surface, and a for-
ward integration of mesh vertices is used. Resampling of the deformed meshes
has to be accounted for explicitly in a post-process.

In volume modeling, a popular classification of approaches distinguishes physi-
cally-based and non-physically-based methods. Our approach lies between these
classes: although it is not explicitly physically-based, volume preservation is a
physically justified property for many materials.

In comparison to well-established integration techniques for level sets, our ap-
proach applies a backward Lagrangian integration scheme that cannot be ap-
plied to general level sets due to the dependencies of the level sets and the
steering field.

limitations . Although volume preservation appears to be a natural condi-
tion for plausible deformations, there are applications for which volume preser-
vation does not hold. For example, the growing of a tumor in a medical volume
data set cannot be addressed by our approach. Also, as we consider the whole
volume, well-established isosurface deformation tools, which focus on a partic-
ular surface, do not fit into our approach. This includes sculpting techniques
like cutting or carving [PF01] as well as volumetric copy and paste techniques
[MBWB02].

Since our technique only incorporates the volume of the isosurfaces, metric dis-
tortions of an isosurface are not addressed. Moreover, analytically represented
implicit surfaces cannot be deformed exactly by the integration scheme without
discretizing the defining function.

The limitations mentioned above are inherent to our approach. In addition, there
are algorithmic limitations that can be addressed in future research: the fixed

84 continuous deformations of implicit surfaces

grid resolution of the volume data is a compromise between interactive perfor-
mance and accuracy and is limited by GPU memory. This also naturally limits
the spacial extents of the domain, and artifacts may appear for isosurfaces near
grid boundaries unless special care is taken. Additionally, due to reconstruction
artifacts, topology preservation may appear corrupted for real-time visualization.
Hardware accelerated adaptive grids are a candidate for improvements here. Fi-
nally, more advanced deformation tools can be developed. In principle, different
choices of the fields e, f , r that stay independent of the underlying scalar field
allow for customized tools, but this depends on and has to be set for different
application scenarios.

5.6 summary

In this chapter, we introduced a continuous deformation method for implicitly
defined surfaces. Inside of a volume data set all isosurfaces in the vicinity of the
deformation tool are deformed. The deformation guarantees the preservation of
volume, continuity, and topology of each isosurface. For their computation we in-
troduced an efficient and accurate backward Lagrangian integration scheme that
is executed on the GPU for interactive modeling results. High-quality surfaces
are extracted in a post-process. Our approach can be used to deform measured
or simulated volume data sets as well as for the design of complex implicitly
defined shapes with a pre-defined topology.

6
P O S E C O R R E C T I O N B Y S PA C E - T I M E I N T E G R AT I O N

The previous chapters motivated that the deformation of a shape from a given
reference pose to a variety of new poses is a central task in computer graph-
ics, geometric modeling, and computer animation. In contrast to the proposed
continuous shape deformations, several recent approaches incorporate training
data in the form of example poses to satisfy the demand for ever more realistic
deformations without significantly increasing computation or simulation time:
given a rest shape and several example poses, new shape variations are cre-
ated by custom-tailored interpolation or extrapolation within a suitable shape
space [KMP07]. Example-based approaches have been proposed, e.g., for shape
interpolation [XZWB06, LSLCO05, KG08, WDAH10, FB11], skeletal skinning
[LCF00, WPP07, WSLG07], shape deformations [SZGP05, FKY08, PJS06], as well
as physical simulations [FYK10].

The reference model typically has been carefully designed and/or acquired from
a physical object, often requiring a lot of manual work to check for and re-
move geometric inconsistencies, such as degenerate triangles, fold-overs, or self-
intersections. The example poses are then created by deforming the rest pose
and fine-tuning the result. For this purpose the deformation methods from the
previous chapters can be used. In most cases, the rest pose and the example
poses share the same structure, i.e., the same mesh connectivity, which we as-
sume to be mandatory in the following.

Unfortunately, in practice many example poses suffer from geometric artifacts
– even if the rest pose is a clean mesh. Oftentimes the degeneracies are intro-
duced when deforming the rest pose into the target poses, e.g., by linear blend
skinning [MTLT88, LCF00]. For similar reasons, many models obtained from
shape-databases also contain geometric inconsistencies. These artifacts are then
reproduced (sometimes even amplified) in example-based mesh processing tech-
niques. They do not only corrupt the visual appearance, they may even cause
severe numerical problems for more sophisticated nonlinear approaches [FB11],
where they slow down or even spoil convergence of optimization schemes.

In this chapter, we apply integration-based continuous deformations in an au-
tomatic post-processing technique for detecting and resolving geometric incon-

85

86 pose correction by space-time integration

Figure 37: Elbow Deformation Repair. Self-penetrations of an articulated target pose
(left •) are corrected by our approach locally without altering the connectivity
of the underlying mesh (right •).

sistencies in given example poses. In contrast to the previous chapters, defor-
mations are not user-specified but defined by pairs of rest and target poses. In
particular, we use vector field-based shape integration because it guarantees the
avoidance of, e.g., self-intersections in the target pose and the preservation of
mesh connectivity.

Based on a linear (hence robust) mesh interpolation technique, we first gener-
ate a set of intermediate key-frames between rest pose and target pose. From
those we derive smooth vertex trajectories, to which we fit a 4d space-time vec-
tor field. Integrating this vector field through time deforms the rest pose mesh
into the target shape and corresponds to path line integration of each point of
the rest pose. Since path lines never cross each other in space-time [TWHS05],
the resulting mesh is free of self-intersections by construction. Regions that ini-
tially contained self-intersections are repaired, the remaining parts are faithfully
reproduced. Figure 37 shows an example of a repaired mesh.

6.1 background

In this chapter, our general scope is mesh repair, and in our approach we apply
vector field-based shape deformations and scattered data interpolation by radial
basis functions.

mesh repair . There is a variety of methods for repairing inconsistencies in
geometric models like holes, self-intersections, folds, and topological noise in dif-
ferent types of geometric models. Methods can roughly be classified into surface-
based methods and volumetric methods (cf. the recent survey by Ju [Ju09]).

Surface-based methods modify the surface meshes directly. In an early work,
Bohn [Boh93] proposes a topological shell-closure operator that guarantees ori-
entable surfaces. In order to also repair geometric inconsistencies, Barequet
et al. [BDK98] employ heuristics for solving ambiguous geometric configura-
tions. A frequent problem for scanned objects is topological noise. Guskov and

6.2 general idea and overview 87

Wood [GW01] remove small handles by a local wave-front mesh analysis and
non-separating cuts.

Volumetric methods are based on implicit surface models that guarantee sur-
faces without self-intersections. For instance, Nooruddin and Turk [NT03] use
voxelization to obtain an implicit surface, the repaired surface is generated from
iso-contours. Space partitions can lead to efficient algorithms. In [Ju04] an oc-
tree space voxelizations of an in/out volume classification is used for feature
adaptive mesh repair. Bischoff et al. [BPK05] present an octree-based mesh re-
pair framework which provides high accuracy. A follow-up [BK05a] focuses on
locality such that mesh connectivity is modified only locally in the vicinity of
inconsistencies. More recently, nested space partitions have been proposed by
Campen and Kobbelt [CK10] for model repair.

All these methods operate on a single surface, and all of them modify the inter-
nal structure, e.g., the mesh connectivity. In contrast to this, the input to our
method consists of poses of the same mesh with fixed connectivity. Only the ge-
ometry of the meshes is corrected by a deformation approach: our algorithm does
not modify mesh connectivity. We remark that there are deformation approaches
that suppress intersections directly in the modeling process [BK03] or in a phys-
ical simulation of cloths [BWK03]. However, these approaches aim at interactive
or physically plausible shape deformation rather than automatic model repair as
a post-process.

vector field-based deformations . Our approach can be considered as
a deformation method that exploits special properties of an underlying contin-
uous deformation vector field. The vector field-based formulation guarantees
the deformations to prevent self-intersections. In contrast to the continuous
deformation methods of the previous chapters, this vector field is determined
automatically by the input poses. We refer to the overviews and references on
continuous vector field-based deformations of the previous chapters for more
details.

interpolation by radial basis functions . We apply radial basis func-
tions (RBFs) as a model for space-time vector fields. RBFs are a general and
widely used tool for mesh-less scattered data interpolation [Wen04]. They are
used in numerous applications on different types of data. Examples related to
geometry processing include surface-fitting based on point samples [MYC∗01,
CBC∗01, OBS05], linear elasticity-based simulations [MKB∗08] as well as real-
time surface deformations [BK05b].

88 pose correction by space-time integration

Preprocessing

Key frame
Interpolation

Vertex
Classification

Constraint
Generation

Space-time Vector
Field Fi�ing

RBF
Evaluation

Farthest Point
Center Sampling

Factorization
Update

Space-time
Integration

ODE Integrator

CPU GPU

Vector Field
Sampling

Figure 38: Computational Pipeline. Rest pose (•) and target pose (•) are analyzed for
uncritical (•) and critical regions (•), from which space-time constraints are
computed. Then a space-time vector field (•) that describes the deformation
is fitted using RBFs. Space-time shape integration in this field yields the
repaired pose (•). Steps highlighted in • use GPU hardware acceleration.

6.2 general idea and overview

This section gives an overview of our method, which is also illustrated in Figure
38. Details on the particular steps are provided in the subsequent Section 6.3.

Given are two poses of a surface mesh, a reference mesh and a target mesh,
which both share the same connectivity. The target shows defects such as self-
intersections, and our goal is to remove defects and to repair the mesh.

We propose a deformation approach to repair the target pose. The deformation
is represented by a space-time vector field integration, and we exploit the fact
that path lines of integrated surface points do not intersect in space-time (see,
e.g., [TWHS05]). This way we obtain surfaces that approximate the given targets
and by construction are free of self-intersections. Similar to the isosurface defor-
mations of Chapter 5, the time-dependent vector field will be defined globally in
the whole embedding space of the surfaces and is not restricted onto the shape
itself as in Chapters 3 and 4.

We want to find these continuous time-dependent vector fields such that they
describe the motion of the surfaces under deformation from the reference poses
to the target poses. Our approach is based on fitting a smooth vector field to
a set of discrete samples. In our case, these samples are tangent vectors of
the trajectories of surface points moving in space-time. We obtain the tangent
vector samples by first generating a sequence of key frames that represent some
intermediate surfaces. Then we fit trajectories as C1-continuous cubic spline

6.3 algorithmic details 89

curves at each vertex to obtain continuous curves that describe the motion of
each vertex.

Large parts of the target surface do not require any repair or modification. Our
goal is to reproduce such regions as good as possible, whereas regions that
contain defects in the target pose should be repaired. We achieve this by an
automatic classification of surface regions. The reproduction of well-behaved sur-
face regions is due to constraints on the vector field fitting. The key idea is that
regions with defects do not generate any constraints on the vector field: we use
the extrapolation provided by the underlying RBF interpolation model to fill up
the vector field smoothly and in an energy minimizing way in the space-time do-
main where no constraints are available. This can roughly be compared to hole
filling in applications to surface reconstruction where RBF-based interpolation is
also used successfully (see, e.g., [CBC∗01]).

The vector field is represented as a radial basis function over the space-time
domain (see, e.g., [TWHS05]). The function interpolates the constraints given
by key frames and vertex classification. Then fitting the vector field to these
constraints boils down to solving a (dense) linear system.

Finally, we integrate all vertices of the reference pose through the vector field
to obtain the corrected result pose. The integration exploits the property that
path lines never cross each other in space-time to guarantee intersection-free
time-surfaces.

6.3 algorithmic details

Our approach proceeds in three steps: generation of space-time constraints, vec-
tor field fitting, and integration. This is illustrated in Figure 38. In this section,
we describe the algorithmic steps in detail.

We consider meshes Mk that share the same connectivity: the surfaces are de-
fined by vertex positions xi ∈ R3, i ∈ V , where V is the set of vertices. Let MR

be the reference pose, and MT, T 6= R is one of the target poses. We assume
that the referenceMR does not contain defects, and that the target poses should
be repaired. Note that our goal is to maintain a consistent triangulation over all
poses, i.e., the connectivity remains fixed. This is in contrast to other methods
that focus on repairing a single mesh like [CK10].

6.3.1 Preprocessing

Our algorithm works on the reference poseMR and one single target poseMT

at a time. It does not require or use data of other target poses. The input

90 pose correction by space-time integration

Figure 39: Preprocessing: Key Frame Interpolation. From the aligned reference (•) and
one target shape (•) we generate a dense set of intermediate key frame shapes
by linear Poisson-based interpolation (transparent •).

Figure 40: Preprocessing: Vertex Classification. Vertices at self-intersections (• dots) are
detected in the intermediate key frames (•) and removed from the set of
constrained vertices VC (•).

is a pair of meshes (MR, MT). The preprocessing step consists of key frame
interpolation, intersection detection, and constraint generation.

key frame interpolation. Our shape interpolation is based on Poisson
interpolation in gradient space (see [XZWB06]), because this linear method faith-
fully reproduces even artifact-tainted poses. However, we could also use any
other method for key frame generation (see, e.g., [SP04, KG08, WDAH10]). Note
that the key frames may contain defects and artifacts. In fact, if the target pose
contains defective regions, the intermediate key frames are likely to have defects,
too. Figure 39 shows an example for key frame shapes. Every surface refers to a
time step tk.

vertex classification. We determine the constrained surface points VC ⊂
V that refer to well-behaved regions as follows: initially, all surface parts are con-
sidered well-behaved, and we initialize VC = V . Then we generate a number of
key frame surfaces and scan these meshes for self-intersections. (We used 11 key
frames in all our examples.) We need to detect self-intersections in all interme-
diate key frames — not only in the target mesh — to capture the global support
of evolving self-intersections. The intersection tests are performed efficiently by
using a space hierarchy of axis-aligned bounding boxes that enclose the triangles
and exact geometric predicates, which are both provided by the CGAL library [3].
Whenever we detect self-intersecting triangles, their vertices and all vertices in
their one-ring neighborhood are removed from VC . Our experiments show that

6.3 algorithmic details 91

automatic(a) (b)

user selection

Figure 41: Repair of Common Skinning Artifacts. (a) Badly chosen skinning weights
lead to intersection artifacts at the highlighted regions of neighboring skeleton
joints (•mesh), which are automatically detected and repaired by our method
(• mesh). (b) Other types of skinning artifacts can also be repaired, but they
require manual selection (• vertices). Note that the original skinning skeleton
is not required for any correction.

tk−1

tk

tk+1

tk−1

tk

tk+1

ci(t) tk−1

tk

tk+1

ci(t)

ċi(t)

Figure 42: Preprocess: Constraint Sampling. Through each vertex (•) of the key frame
shapes at time tk we fit C1-continuous splines (•). The tangents to these
curves (•) are then used together with the vertex coordinates as space-time
constraints for vector field fitting.

the removal of one additional ring of vertices works well in practice. Removing a
larger neighborhood can lead to smoother transitions between regions. However,
there is a trade-off between smoothness and reproduction. Figure 40 illustrates
the process. We emphasize that the classification can be modified manually to
correct other types of artifacts that are not detected automatically (see Figure 41

(b) for an example related to skinning artifacts).

space-time constraint generation. The key frames define trajectories
of vertices moving in space-time. For vertex positions xi(tk), i ∈ V , we fit cubic
C1-continuous spline curves ci such that ci(tk) = xi(tk). We use Hermite inter-
polation with tangent directions approximated by finite differences w.r.t. time.
The trajectories ci can be evaluated at arbitrary times t ∈ [0, 1], where ci(0) and
ci(1) evaluate to points on the reference and the target surface, respectively. For
vector field fitting we require sampling of positions ci(t) to place RBF centers
in space-time, and sampling of tangents ċ(t) := d

dt c(t) to evaluate interpolation
constraints. Figure 42 illustrates this constraint sampling.

92 pose correction by space-time integration

The space-time deformation vector field u is a 3d function on a 4d space-time
domain: u(y) : R4 → R3. Given the vertex classification VC and smooth trajec-
tories ci, we can define point-wise interpolation constraints for the vector field
function. Let yi(tk) = (ci(tk), tk)

T ∈ R4 be a point in space-time. Then we have

the interpolation conditions u(yi(tk))
!
= ċi(tk). We denote the set of interpolation

constraints C as

C =
{
(yi(tk), ċi(tk))

∣∣ i ∈ VC , tk =
k
s , k = 0, . . . , s

}
.

ċi(t) are the tangents to trajectories of vertices i ∈ VC . We used s = 12 for all our
examples. To weight the spatial and temporal dimensions equally we scale all
models to the unit sphere before processing.

6.3.2 Space-Time Vector Field Fitting

Computing the space-time vector field that interpolates all constraints in C is the
most crucial step in our method. The quality of the vector field is directly related
to the quality of the deformed shapes. Furthermore, fitting of a continuous space-
time vector field that is smooth and well-behaved between constrained points
dominates the runtime of our approach.

rbf interpolation. We represent the space-time vector field u as a sum of

radial basis functions (RBFs) that interpolate the constraints: u(yi(tk))
!
= ċi(tk).

Our four-variate three-dimensional RBF model u : R4 → R3 is defined by a set
of centers γj ∈ R4 and associated weights wj ∈ R3:

u(y) = ∑
j

wj φj(y) + π(y) .

The function φj(y) = φ
(
‖γj − y‖

)
is the basis function 1 corresponding to the jth

center γj. We employ the triharmonic kernel for even dimensions φ(r) = r2 ln(r)
in combination with a four-variate quadratic polynomial π(y) ∈ Π2

4, since then
the resulting function u minimizes spline-like fairness energies and provides
desirable extrapolation properties [Wen04].

In order to interpolate n constraints V = [v1, . . . , vn]
T ∈ Rn×3 (corresponding to

ċi(tk)), we place the centers γ1, . . . , γn at the constrained positions (correspond-
ing to yi(tk)). We solve the corresponding linear system for the coefficients of
the basis functions W = [w1, . . . , wn]

T ∈ Rn×3 and the quadratic polynomial
U ∈ R15×3:[

Φ Π

ΠT 0

] [
W

U

]
=

[
V

0

]
.

1 The RBF basis functions are often called basic functions in the literature [Wen04]. We do not make
this distinction in this work.

6.3 algorithmic details 93

Ours

7 center, κ(A) = 3 · 104 , L2 error 4.6 12 center, κ(A) = 1.2 · 105 , L2 error 91.4 17 center, κ(A) = 1.5 · 106 , L2 error 1.82

22 center, κ(A) = 1.6 · 106 , L2 error 5 · 10−2 27 center, κ(A) = 1.6 · 106 , L2 error 9 · 10−3 32 center, κ(A) = 1.8 · 106 , L2 error 3 · 10−3

7 center, κ(A) = 42, L2 error 0.96 12 center, κ(A) = 4 · 102 , L2 error 0.1 17 center, κ(A) = 1.5 · 103 , L2 error 1 · 10−2

22 center, κ(A) = 3.3 · 103 , L2 error 3 · 10−3 27 center, κ(A) = 6.7 · 103 , L2 error 3 · 10−3 32 center, κ(A) = 1 · 104 , L2 error 1 · 10−3

Carr et al. [CBC∗01]

Figure 43: RBF Center Selection. A test function (•) is approximated by an iterative RBF
(•) refinement using the center (•) selection strategies of [CBC∗01] and our
extension. In each step m = 5 new centers are selected. No center clusters
are generated by our approach. We achieve the same total L2 approximation
accuracy with less centers (22 vs. 32) and a significantly better conditioning κ
of the linear system A.

The blocks Φ ∈ Rn×n and Π ∈ Rn×15 are given by Φij = φj(γi) and Πij = πj(γi),
and {π1, . . . , π15} is a basis of the function space Π2

4. The last 15 equations
augment the system with the orthogonality condition ΠT W = 0 (see [CBC∗01]).
This linear system is dense because of the global support of φ(r).

rbf center selection. Due to the density of the linear system we are lim-
ited to a few thousand centers in practice. Therefore, the selection of centers
plays a key role in RBF interpolation. We propose an iterative strategy for center
selection, which is an extension of the strategy used in [CBC∗01]. The idea is to
satisfy a prescribed approximation accuracy ε by carefully selecting a subset of
interpolation constraints, which requires a certain selection strategy.

Center selection is an iterative process. We start with the two most distant space-
time points in C as the initial set of RBF centers. In each iteration we evaluate

94 pose correction by space-time integration

the fitting error, and we stop if the maximum error drops below a threshold ε,
i.e., if

max
(y, v)∈C

‖u(y)− v‖ < ε .

In each iteration, the selection strategy by Carr et al. [CBC∗01] consists of enlarg-
ing the set of centers by the m space-time points with highest errors. It turns
out that this scheme leads to badly conditioned linear systems and requires a
high number of total centers for convergence. Instead, we extend the original
approach by adding a farthest point sampling step: we select the m most distant
points within p candidate center points with highest error, where p � m. We
use a kd-tree to partition the 4d space-time domain for efficient farthest point
queries [1]. The rationale is to avoid generation of clusters of centers that would
lead to ill-conditioned linear systems (see [BK05b]). Our selection strategy does
not only respect the range of u given by the fitting errors, which are minimized,
but also the geometry of the domain of u in form of pairwise center distances,
which are maximized. It turns out that this strategy significantly reduces the
number of centers that are required to achieve a prescribed error bound ε. Ad-
ditionally, the numerical stability is increased significantly (see Section 6.4 for
a quantitative analysis). For all examples we used m = 128, p = 1024, and a
fitting accuracy of ε = 10−4 · d, where d is the length of the spatial bounding box
diagonal of the reference pose. The algorithm terminated for all examples, i.e.,
the maximum error is reduced until it falls below ε.

A comparison of both selection strategies applied to the approximation of an
univariate function is shown in Figure 43. Our method avoids center clusters,
requires less centers for function approximation and is, at the same time, nu-
merically more stable to compute. Note that in this example the total L2 ap-
proximation error of the selection scheme by [CBC∗01] does not even decrease
monotonically (see the step from 7 to 12 centers). This is not the case for our
method, which decreases errors steadily. Although we cannot guarantee this be-
havior, all our experiments indicate a similar monotonic error reduction property
also for harder interpolation problems.

We remark that numerical stability and convergence rate of iterative space-time
vector field fitting are additionally improved by the vertex classification, which
excludes contradictory constraints.

blocked factorization update . For the factorization of the resulting lin-
ear system we exploit similarity of consecutive iterations and fuse center selec-
tion with the factorization of the system. This way, we obtain an efficient factor-
ization update scheme.

6.3 algorithmic details 95

In each iteration we update a (n + 15)× (n + 15) LU factorization with partial
pivoting of the RBF system A that is given by

A =

[
Φ0,0 Π0

ΠT
0 0

]
= PT L U R .

The system matrix A corresponds to the n selected centers of the previous iter-
ation. The matrices P and R are permutations (in the first iteration R = I), L
and U are lower and upper triangular, respectively. Permutations and triangular
factors are updated in each iteration.

The goal of factorization update is to reuse this known factorization for the effi-
cient computation of the LU factorization of the new (n+m+ 15)× (n+m+ 15)
RBF linear system A′ that is extended by m new RBF centers. It has the form

A′ =

Φ0,0 Φ1,0 Π0

ΦT
1,0 Φ1,1 Π1

ΠT
0 ΠT

1 0

 .

Blocks indexed by 1 are basis functions evaluated in the current iteration, whereas
0-indexed matrices are reused. We rewrite A′ by first applying global row and
column permutations Q such that we can reuse the factorization of A:

A′ = QT

Φ0,0 Π0 Φ1,0

ΠT
0 0 ΠT

1

ΦT
1,0 Π1 Φ1,1

 Q = QT

[
A C

CT Φ1,1

]
Q .

The permutation Q swaps the last two rows and columns of block matrices,
respectively. We did also substitute the block matrix CT =

[
ΦT

1,0 Π1

]
.

It is now possible to derive the updated LU factorization of A′ = P′T L′U′ R′ by
using only identity transformations and the Schur complement Φ1,1 −CT A−1 C
of the center block of A′ [8]:

A′ = QT

[
I 0

CT A−1 I

] [
A C

0 Φ1,1 −CT A−1 C

]
Q (40)

= QT

[
I 0

CT A−1 I

] [
PT L 0

0 I

] [
L−1 P 0

0 I

] [
A C

0 Φ1,1 −CT A−1 C

]
Q

= QT

[
PT L 0

CT RT U−1 I

] [
U R L−1 P C

0 Φ1,1 −CT A−1 C

] [
RT 0

0 I

] [
R 0

0 I

]
Q

= QT

[
PT L 0

S I

] [
U T

0 P̃T L̃ Ũ

] [
R 0

0 I

]
Q

96 pose correction by space-time integration

= QT

[
PT L 0

S I

] [
I 0

0 P̃T L̃

] [
I 0

0 L̃−1 P̃

] [
U T

0 P̃T L̃ Ũ

] [
R 0

0 I

]
Q

= QT

[
PT L 0

S P̃T L̃

] [
U T

0 Ũ

] [
R 0

0 I

]
Q

= QT

[
PT 0

0 P̃T

] [
P 0

0 P̃

] [
PT L 0

S P̃T L̃

] [
U T

0 Ũ

] [
R 0

0 I

]
Q

= QT

[
PT 0

0 P̃T

]
︸ ︷︷ ︸

P′T

[
L 0

P̃ S L̃

]
︸ ︷︷ ︸

L′

[
U T

0 Ũ

]
︸ ︷︷ ︸

U′

[
R 0

0 I

]
Q︸ ︷︷ ︸

R′

.

Hence, L′ and U′ are triangular, and P′ and R′ are permutations, as required
for the LU factorization of A′. We have made the substitutions S = CT RT U−1

and T = L−1 P C, which require two triangular back-substitutions for the known
triangular matrices L and U. Additionally, we substituted the LU factorization
with partial pivoting of the Schur complement Φ1,1 − CT A−1 C = Φ1,1 − S T,
which we denoted by P̃T L̃ Ũ. The factorization of this small m×m matrix is the
only costly numerical operation that has to be performed in every iteration. All
other operations are multiplications of dense matrices, which can be performed
efficiently and parallelized on, e.g., modern CPUs [6] or GPUs [7].

We note that this LU-based factorization update scheme does not take advan-
tage of the symmetry of A and A′ In fact, the symmetry of the system can be
exploited by instead updating a cheaper to compute LDL factorization with par-
tial pivoting A = PT L D LT P [GVL96]: a derivation similar to (40) yields the
update scheme

A′ = QT

[
PT 0

0 P̃T

]
︸ ︷︷ ︸

P′T

[
L 0

P̃ S L̃

]
︸ ︷︷ ︸

L′

[
D 0

0 D̃

]
︸ ︷︷ ︸

D′

[
LT ST P̃T

0 L̃T

]
︸ ︷︷ ︸

L′T

[
P 0

0 P̃

]
Q︸ ︷︷ ︸

P′

(41)

for the updated factorization A′ = P′T L′D′ L′T P′. Here, a single back-substitu-
tion for S = CT PT L−T D−1 has to be performed together with a small m×m LDL
factorization P̃T L̃ D̃ L̃T P̃ = Φ1,1 − S D ST. As LDL factorizations are half as ex-
pensive to compute in terms of computational and storage complexity compared
to LU factorizations [GVL96] this scheme should generally be preferred. Still, all
experiments in this chapter were performed using the previously derived LU
factorization.

Note that our fused update and factorization scheme for RBF interpolation is
not restricted to our particular problem of vector field fitting. In fact, it can be
applied to any scattered data approximation problem. Hence, a large number of
applications can potentially benefit from our method, too.

6.4 analysis and results 97

6.3.3 Space-Time Shape Integration

The RBF interpolation defines a smooth vector field u in space-time. Interpola-
tion of space-time constraints ensures both spatial and temporal continuity of
u. We integrate this vector field for all vertices of the reference surface starting
at time t = 0, and we expect an approximation of the target surface at t = 1.
The idea is to reconstruct the trajectories ci(t) of vertices i with path lines in u
starting at xi(0). For well-behaved regions, the path lines are close to the original
trajectories, and integration ends near xi(1). However, as path lines do not inter-
sect at specific point in time, self-intersections cannot be reproduced – instead
they are avoided and hence repaired in the final shape.

To show that path lines do not intersect at a specific point in time we lift u to
the 4d space-time vector field ū = (u, 1)T, in which the last component repre-
sents the time differential. Then path lines of u are represented as the tangent
curves (stream lines) of ū after re-projection into ordinary space. As only a sin-
gle tangent vector is defined in each space-time point, the tangent curves of ū
cannot intersect each other (except in critical points, which do not exist in ū
because ‖ū‖ > 0), and the ordinary path lines of u are also guaranteed to be
intersection-free at a specific point in time.

For the numerical ODE integration we use a standard fifth-order Runge-Kutta
integrator with adaptive step size control (see, e.g., [PTVF07]). This integrator
performed well in all our experiments as the fitted vector fields turned out to be
very smooth. The computation cost is dominated by evaluation of the RBF. To
speed up computations we apply a parallelized implementation on the GPU [5]
for basis function evaluation. Compared to a parallelized CPU implementation
on a quad-core processor, we obtain a speedup of 320% in double-precision com-
pute mode. We apply the GPU-based RBF basis function evaluation similarly for
setting up the linear systems.

We remark that by using global vector field integration our approach can only
remove self-intersections that are not already present in the reference pose. Yet
these do not impede our method otherwise: after vertex classification we simply
re-add the corresponding vertices of the reference pose to VC . Indeed, this way
initial self-intersection are reproduced with no effects on the remainder of our
method.

6.4 analysis and results

In this section we analyze properties of our approach, discuss its implementation,
and present results. The video accompanying the corresponding publication

98 pose correction by space-time integration

Figure 44: Shape Reproduction. Integrated from the reference pose (•, left) the shape
of the target Cat model (•) is correctly reproduced in the non-intersecting
regions of the head, neck, back and tail (•, middle). The close-ups show the
critical regions (•) corrected by our method (right).

0 0.08

Figure 45: Geometric Differences. Shown are corrected surfaces generated by our
method. The color code indicates the euclidean distance to the given tar-
get shapes. (Models were scaled to the unit sphere to enable comparison).
Shapes differ significantly only in region with defects, which are repaired
by our method. The experiment confirms accurate reproduction and smooth
transitions to repaired regions.

[MRF∗11] shows additional deformation results and examples of continuously
deforming time-integrated shapes 2.

target shape reproduction. Our goal is to repair defects. However, re-
gions of the target mesh without any defects should be reproduced. Our exper-
iments show that our method introduces geometric differences only locally at
vertices i /∈ VC . Figure 44 shows an example were the overall shape of the tar-
get cat pose is maintained while all self-intersection are corrected. The example
in Figure 45 shows color coded local geometric differences of some target mod-
els and our repaired models. The regions that show high geometric differences
in the visualizations are regions that have been repaired. All other regions are
reproduced accurately.

2 The video is located in the additional material folder addmaterial/pcorr. Additionally, this folder
contains pose correction results of the Lion, Cat, and Horse models, respectively.

6.4 analysis and results 99

Figure 46: Resolving Complex Self-Intersections. We compare the given target mesh (•)
to the repaired mesh (•). All self-intersections that were not already present
in the reference pose have been successfully removed. The overall shape is
maintained.

Figure 47: Relocation of Intersecting Triangles. Corrected results where triangles in •
indicate the locations of intersecting triangles of the initial target pose. If pos-
sible, relocation distance is minimal (left) while larger relocations are required
for deeper initial penetration distances (right) (see also Figure 46).

resolving intersections . Our continuous deformations of shapes that
are guided by a smooth space-time vector field cannot introduce new intersec-
tions of the shape during space-time integration. The reason for this is that path
lines, trajectories of surface points in space-time, do not intersect. In all our
experiments there are no newly introduced self-intersections. Figure 46 shows
an example with non-trivial self-intersections. The left target shape contains 523
self-intersecting triangles. In contrast, our result on the right contains 22 self-
intersecting triangles in the ears of the lion, i.e., it is not completely intersection-
free. However, all of these 22 self-intersections are already present in the ref-
erence shape. Therefore, our method successfully removes even very complex
intersections that had been introduced by initially modeling the target shape.
Figure 47 illustrates how the surface regions of VC are relocated to their cor-
rected intersection-free rest positions. The corrections are proportional to the
penetration depths in order to dissolve the self-intersections correctly.

discretization. Integration cannot introduce self-intersections. This prop-
erty holds strictly only for integration of a continuous surface. In the discrete

100 pose correction by space-time integration

setting, we are integrating only vertex positions, such that we have to assume a
sufficiently dense sampling of the surface. However, none of our experiments
suffered from under-sampling and resulting self-intersections. This issue is dis-
cussed similarly in [vFTS06] in a different context of continuous deformations of
triangle meshes by divergence-free vector fields.

benefits for subsequent processing . The motivation for surface repair-
ing is not restricted to improving visual appearance. Even more important is the
improvement and support of other geometry processing methods, which either
suffer from defects or strictly require “clean” surface meshes. These are, e.g.,
methods based on nonlinear optimization. Here, the numerical computations
frequently rely on well-behaved distribution of inner and dihedral angles. In
our experiments we examine the recent example-driven single-step deformation
and interpolation approach by Fröhlich et al. [FB11], who apply Gauss–Newton
iterations for nonlinear optimization. Their optimization is sensitive to extreme
dihedral angles (corresponding to local self-intersections) leading to increased
number of iterations or even failure of convergence. Our experiments show that
using the corrected poses the optimization required up to 60% fewer iterations
for convergence. Moreover, for poses like the lion pose in the Figures 45 and
46, the nonlinear optimization even fails to converge for the original data but
converges for our corrected shapes. Other example-driven nonlinear geometry
processing methods are likely to benefit from corrected poses, too.

timings . We compare our RBF center selection scheme (with blocked LU
factorization update and GPU-based evaluation) to the scheme used in [CBC∗01]
experimentally in the following table. The maximal condition number κ(A) /

Poses (p× |V|) Carr et al. [CBC∗01] Ours

Lion (5× 5k) 1 · 1010 / 12k / 2.2 · 103 2 · 106 / 2.7k / 13

Cat (5× 7k) 2 · 1011 / 15k / 3.4 · 103 2 · 107 / 4.5k / 42

Horse (10× 8k) 3 · 1010 / 13k / 3 · 103 7 · 106 / 4.6k / 43

Goblin (86k) exceeds memory limit 6 · 108 / 10k / 603

0

2

3k

Full solve
Blocked update

1k 2k# Centers

It
er

at
io

n
ti

m
e

(s
)

average number of required centers / and average total run times for vector

6.5 discussion 101

field fitting are listed. The rows show results for different data sets (averages
of p different poses) 3. All times are given in seconds on a Linux PC equipped
with a quad core AMD Phenom II CPU running at 3.4GHz, a NVIDIA GTX 460

GPU and 4GB of host memory. Our experiments show that our scheme leads
to better conditioning of linear systems, which in turn leads to fewer centers
and a significantly faster overall fitting process. Larger models may not even
be processable without our scheme due to memory exhaustion, e.g., the Goblin

model.

The plot underneath the table compares our blocked LU factorization update
to traditional full factorization. It demonstrates the runtime speedup achieved
when using our block factorization update scheme. Note that the speedup rate
grows super-linearly with the number of centers. The LDL-based update scheme
(41) is likely to further accelerate RBF fitting.

In all our experiments, the preprocessing stage required on average between 1.5s
(Lion), 1.9s (Horse), and 2.3s (Cat) for the smaller models; it required 19s for
the Goblin. Typical timings for integration are 29s (Lion), 32s (Cat), and 39s
for the Goblin (10k centers). Note that the integration does not only depend on
the number of vertices and centers but also on the smoothness of the vector field:
for instance, integration required only 19s for the Horse model.

6.5 discussion

From a designer’s point of view self-intersections may indeed be desirable: they
tend to generate a more natural visual appearance, especially at joints of neigh-
boring articulated parts (see Figure 37), although the actual surface does not
represent the outer hull of a solid object anymore. However, we believe that
other kinds of self-intersections (see Figures 41, 44, and 46) require corrections
even for visual plausibility. This is especially necessary for multiple poses of a
single model, as all interpolations or combinations of these shapes would inherit
the visual artifacts. Even more important than visual aspects is the improvement
of the triangulation in view of further algorithmic processing stages. This is a
central goal of any mesh repair method. Our experiments show that numerical
properties of a typical nonlinear mesh blending method like [FB11] are signifi-
cantly improved.

limitations . Our approach has several limitations. Self-intersections that
are already present in the reference pose are reproduced, they are not corrected.
In order to guarantee absence of self-intersections in the target, we require no

3 The Lion, Cat, and Horse poses were kindly provided by Robert Sumner [SP04].

102 pose correction by space-time integration

Figure 48: Limitations. The example shows key frames with opposing directions of mo-
tion, leading to global self-intersections: the lion’s tail moves through the leg
on the way to the target pose; there is no intersection between tail and leg in
the target pose (top). By construction, this situation cannot be reproduced by
vector field integration. Instead, integration results in a partially corrected (•,
bottom) shape. The remaining regions are copied from the original target (•).

self-intersections in the reference. This is not a severe limitation because the ref-
erence surface is usually modeled from scratch, and the additional effort to man-
ually remove defects is often not significant. In any case, an automatic standard
mesh repair method can be applied to the reference surface before generating
the target poses [Ju09].

Our method reproduces the shape of well-behaved regions. However, the re-
production is only approximately exact and slight variations in the final vertex
coordinates are inevitable since the fitted vector field is only exact up to the er-
ror bound ε. Moreover, the tangent curves are only approximated in a point-
wise way by the interpolation constraints. Hence, we trade reproduction quality
with computation time. Yet, if higher quality reproductions are necessary, the
fitting error bound ε and the number of interpolation time steps s can always
be adjusted accordingly to improve the results. Also, vertices of the integrated
poses that are close to their positions in the target pose can be mapped to these
locations for exact reproduction.

Guaranteeing absence of self-intersections is a main feature of our method. How-
ever, this can also impose a fundamental limitation. Figure 48 shows an example
where the key frame interpolation generates a global self-intersection: the lion’s
tail moves through the leg. Generally, such self-intersections can occur in prac-
tice. In a sense the input to interpolation methods like [XZWB06] is ill-posed:
these methods usually depend on local surface properties, such as coordinate
function gradients; they do not incorporate global (or even semantic) properties.
Therefore, global self-intersection cannot be avoided automatically in key frame
generation. By construction, our method is unable to reproduce self-intersections
in space-time. So in the example, the lion’s tail cannot move “through” the leg –

6.6 summary 103

it will always stay in front of the leg while both regions are deformed. In such
cases, we ignore the result from surface integration for the affected region and
replace it instead by the corresponding region of the input target mesh.

6.6 summary

We presented a novel automatic approach to mesh repair that is tailored to the
correction of a sequence of meshes with same connectivity representing different
poses of the same shape. Our aim is to keep the mesh connectivity fixed; this is in
contrast to existing mesh repair methods. This sort of mesh repair is important
not only to suppress visual artifacts but also to improve numerical stability of
further mesh processing stages that require compatible meshes.

Our approach to mesh repair is based on continuous mesh deformation. The
deformation is defined by space-time integration of a smooth time-dependent
vector field. This guarantees that deformations of the reference surface do not
introduce self-intersections in the desired target shape. The vector field is fitted
to interpolations of pairs of poses. Experiments for a variety of examples con-
firm the effectiveness of the method. Our approach is efficient thanks to first, an
improved strategy to select RBF basis functions, second, a novel blocked RBF fac-
torization update formulation, and third exploiting the GPU. These RBF-related
contributions are not specific to our problem of mesh repair and can be beneficial
for a variety of other methods, too.

The guaranteed avoidance of self-intersections is a main feature of space-time
surface integration. However, this imposes also a limitation as global self-inter-
sections cannot be reproduced. At present, we apply local modifications of the
mesh to handle such cases. A challenge for future research is the avoidance of
“collisions” that lead to global self-intersections during pose interpolation for
key frame generation. Anther possible direction is the extension of the approach
to space-time coherent remeshing.

7
S M O O T H E D E N E R G I E S F O R G E O M E T RY P R O C E S S I N G

The previous parts of this thesis demonstrated that a number of shape manipu-
lation approaches can be computed by energy minimization. In fact, solutions of
various problems in computer graphics are modeled in an elegant way by mini-
mizers of problem-specific energies. Of particular interest are quadratic energies
as their minimization leads to solving a linear system of equations, a task that
is well-understood and relatively inexpensive. For this reason, other types of
energies that involve more expensive nonlinear problems are often minimized it-
eratively, such that every step consists in the minimization of a quadratic energy,
e.g., in Quasi-Newton methods. Energy is a scalar quantity, which is typically
integrated over a domain. In discrete settings the domain is commonly parti-
tioned into simple elements: the energy is defined locally on each element such
that the global energy value consists in the sum of integrals over all elements.
The simplest and most wide-spread partitions in computer graphics employ tri-
angular elements for planar or two-manifold domains and tetrahedral elements
for volumetric domains (see, e.g., Chapters 3 and 4).

A lot of research has been devoted so far to the definition of energies and to
their discretization. In particular, this includes the well-known harmonic and
conformal energies and discrete versions of gradient, divergence, and Laplace
operators (or their counterparts in discrete exterior calculus). In this chapter, we
study the construction of regularization terms — a topic that has got considerably
less attention in many geometry processing applications. Regularization terms
are used for different purposes: first of all, they may enable the solution of rank-
deficient ill-posed problems. On the other hand, for well-posed problems they
may “pull” the solution towards a certain class of feasible solutions by penal-
izing “undesired” behavior. A well-known and generic approach is Tikhonov
regularization, which gives preference, e.g., to smoother solutions. De facto, this
is the standard approach for regularizing the minimization of quadratic energies,
especially for sparse operators.

In this chapter, we propose a different view on regularization that leads to a sim-
ple and generic construction of problem-specific regularized quadratic energies
on triangular or tetrahedral partitions. Instead of demanding smoothness of the

105

106 smoothed energies for geometry processing

solution, we give preference to solutions with low spatial variation in the energy
over the domain. This leads to the design of a problem-specific regularization that
is tailored to the particular energy. This is in contrast to generic Tikhonov reg-
ularization methods, which are independent of the energy and hence “problem-
unaware”. We show that there is a generic regularization construction that is for-
mally expressed as change of a norm and that features a simple and generic
implementation. We illustrate the recipe for the construction by applying this
approach to a number of typical problems in geometry processing. The effect is
demonstrated by experimental results, which reveal the practical benefits, e.g.,
avoidance of artifacts or, in some instances, the computation of solutions that
so far were only achieved by costly nonlinear optimization. In particular, our
approach does not increase the asymptotic complexity of the solved problems:
all optimizations remain linear, only the space of solutions is modified.

Our regularization is inspired by the energy smoothing of Section 3.4.4, which
can be considered to be a single specific bottom-up instantiation of our generic
concept for the problem of vector field-based shape deformations. In this chapter,
we provide a generic top-down regularization construction that is applicable to
a broad range of energies modeling various problems.

7.1 background

Regularization is an important tool for solving numerical problems. Typical
classes of application are the solution of rank-deficient problems or discrete ill-
posed problems that frequently arise for inverse problems. (We refer the reader
to, e.g., [Han10] for a rigorous introduction and overview.) The singular value
decomposition reveals characteristics of linear operators, and regularization can
be expressed as filtering singular values, e.g., truncation in the simplest case.
Classic Tikhonov regularization (with Γ ≡ γI in (46), see next section) can be
easily expressed as a “filter” for singular values. In practice, this is often not
an option as the dimension of linear operators may become too large. In gen-
eral, geometry processing applications involve too many degrees of freedom —
still, they typically employ sparse linear operators that define an integration of
a quadratic energy in a domain. Therefore, the classic formulation — adding
a quadratic regularization term — is preferred, and the numerical solution is
typically obtained from the normal equations or QR-factorization.

There is a huge body of research on the appropriate discretization of linear opera-
tors. This becomes evident especially in the geometry processing context, where
the domain is often a two-manifold embedded in 3d space: the discretization
of the Laplace-Beltrami operator on triangular meshes by, e.g., the well-known
cotangent-weights [PP93] was only recently complemented by a formulation for
general polygonal meshes by Alexa and Wardetzky [AW11], and there are a
number of variants (see, e.g., Wardetzky et al. [WMKG07] for a review).

7.2 smoothed energies 107

Interestingly, regularization operators got less attention. In fact, often regular-
ization is not considered at all. Mostly, there is a good reason for this: many
problems are not ill-posed, and the energy is carefully designed with a particu-
lar interpretation in mind, so from a puristic point of view regularization may
spoil the solution. Still, we will show that there are possible benefits of using reg-
ularization. Probably, the most widely used “regularization” is the preference of
“soft constraints” in least-squares sense, i.e., the introduction of a penalty term
instead of elimination (see, e.g., [BS08]). If regularization takes place, then this
is typically done by preferring either a low-norm solution or a smooth solution.
Both refers to standard Tikhonov regularization and does not take the particular
choice of energy into consideration. A typical example is the reconstruction of
curves and surfaces, where a smooth solution is preferred. Here, the additional
smoothness term accounts for missing data, for instance for parametric spline fit-
ting (see, e.g., [HL93]) or for more complex discrete surface reconstruction (e.g.,
[ACSTD07]). Eckstein et al. [EPT∗07] use regularization for the specific problem
of curvature flow design. They construct specific regularizers or priors and show
that this corresponds to constructing new inner products or norm alteration. We
will get to a similar interpretation for our generic approach.

Examples for ill-posed problems include the reconstruction of (geometric) data
by Bayesian statistics, where the so-called prior distribution provides a suitable
model of the data. The surface reconstruction in [HAW07], for instance, uses the
prior to constrain a “prototype surface”. Generally, the prior restricts the solution
space and enables a meaningful solution; this can be seen as a regularization
as well. Another notable example of a problem that is likely to be ill-posed
is the estimation of a linear operator for the refinement of animations: Kavan
et al. [KGBS11] transform a quadratic energy into a spectral space where the
regularization operator, a spatial low-pass filter, becomes diagonal. Note that we
apply our regularization to problems that are generally not ill-posed a priori.

The applications shown in this chapter focus on typical geometry processing
tasks. Although our approach is general and not restricted to this application
domain, we mostly stick to this perspective in the following. We selected a
number of standard problems and representative state-of-the-art solutions as
examples for employing our approach. Credits to these original approaches as
well as brief summaries are given in the respective parts of Section 7.4.

7.2 smoothed energies

We study problems in form of function spaces P whose solutions are defined
as minimizers of global quadratic energies EP defined in domains D. These
energies have the general form

EP (u) =
∫
D
‖e(u(x), x)‖2 dx . (42)

108 smoothed energies for geometry processing

Here, functions u ∈ P , u : D → Rd are feasible solutions of a specific problem
P with dimension d, and x ∈ D are points in the domain where local energies
e(u, x) corresponding to P are measured. The domains may be manifolds, e.g.,
two-manifolds embedded in 3d. The vector valued e are linear in u, and their
dimension n depends on the concrete problem P . Optimal solutions

u† = argmin
u∈P

EP (u) (43)

are the minimizers of EP , they are obtained as solutions of a linear system. This
optimization is generally performed subject to suitable boundary constraints on
u†. Boundary constraints either guarantee unique solutions, or they are imposed
by the user to modify the solution.

Many problems in geometry processing are in this class P because they require
minimization of quadratic energies. For example, D could represent an initial
surface, and u would be the coordinate function of a deformed version of D.
In this case e measures some form of distortion induced by the deformation
u relative to the initial shape given by x. We will show several examples in
Section 7.4.

Often energies of the form (42) alone are not sufficient to define desirable solu-
tions, as the local energies e do not measure smoothness of the solution. This
leads to undesirable artifacts in u†, which are often most noticeable near user-
imposed constraints. To alleviate undesired behavior, a common approach is to
add an additional regularization energy ER(u) that penalizes non-smooth or in
other respects undesirable behavior of u†:

E(u) = (1− β) EP (u) + β ER(u) (44)

u? = argmin
u∈P

E(u) . (45)

Here, u? denotes the optimal solution of the regularized problem E(u). The
amount of regularization is steered by the weight β ∈ [0, 1), i.e., E is a convex
combination of EP and ER. These energies often use forms of generic Tikhonov
regularizers ET

R that have the general form

ET
R(u) =

∫
D
‖Γ(u(x))‖2

F dx , (46)

and a prominent choice of regularization operator is given by the gradient oper-
ator Γ(·) ≡ ∇· on D to enforce global smoothness of u (see, e.g., [Han10]). We
identify two major drawbacks of using standard regularizations: first, generic
regularizers like those based on a low-pass filter on u are independent of the
concrete problem that is defined by the energy EP . We call this property problem-
unawareness. They often perform poorly or too aggressively in correcting artifacts
in u† (see Section 7.6). Second, oftentimes the design of effective regularizations
is not obvious and requires careful parameter tuning to not attenuate the result
of the original energy EP too severely.

7.3 discretization 109

To overcome these drawbacks, we propose a regularization that is based on en-
ergy smoothness. We define the quadratic energy smoothness regularization as

ER(u) =
∫
D
‖∇e(u(x), x)‖2

F dx, (47)

i.e., as the isotropic squared norm of the first-order energy variation. In contrast
to functionals like (46), we do not directly measure variation of the solution u,
but variation of the induced local energies e. This way the regularization is
tightly coupled and tailored to the original energy (42) and is problem-specific. In
particular, ER and standard Tikhonov regularizers ET

R are generally not identical,
which will be discussed in Section 7.6.

We will demonstrate in Section 7.4 that this conceptually simple regularization
strategy leads to attractive results for a wide range of problems. Due to the
linearity of the gradient operator, the tensor field ∇e is also linear in u. Hence,
the regularized optimization (45) stays quadratic in u and is efficient to compute.
Moreover, once a discretization of the original problem (43) is set up, the regu-
larization using (47) is very simple to obtain. We continue to show this property
in the following section.

7.3 discretization

In the following we consider only two-dimensional domains as the construc-
tion is essentially the same for three dimensions. We discretize planar or two-
manifold domains D by triangular meshesM = (V , E , T), i.e., as sets of vertices
i ∈ V , edges E ⊂ V2, and triangles T ⊂ V3. The edges E can be partitioned into
two disjoint sets: interior edges Ei and exterior edges Ee, the latter positioned
at the boundary of M. We write l(e) and r(e) to denote the left and right tri-
angle at an internal edge e, respectively. We consider discrete functions on M
that are piecewise linear and represented by coefficients at the vertices, e.g., the
vertex coordinate function xi ∈ R2/3, or problem solutions ui ∈ Rd. All coef-
ficients of a function are “stacked” into a single vector without subscript, e.g.,
u ∈ Rd|V|, or stacked component-wise into a single matrix U ∈ R|V|×d. For a
triangle t = (i, j, k) ∈ T we denote the stacked coefficients at all vertices of t by
ut =

(
ui

T, uj
T, uk

T)T ∈ R3d, and the component-wise stacked coefficient matrix

by Ut =
(
ui, uj, uk

)T ∈ R3×d. For convenience, we define the single-entry r × s
matrix Λ

i,j
r,s that is 1 at (i, j) and zero elsewhere. Finally, we use the notation

‖y‖2
N = yTN y and ‖Y‖2

N = Tr
(

YT N Y
)

(48)

for (squared) vector and matrix norms that are defined by symmetric and posi-
tive-definite matrices N. A popular example for such a norm is the well-known
Mahalanobis distance that is defined by the inverse of a covariance matrix.

110 smoothed energies for geometry processing

triangle-based energies . The majority of geometry processing approach-
es discretize continuous energies on a per triangle basis, e.g., Poisson-based
methods (see, e.g., [BKP∗10]). In these discretizations the local energies e of
EP are constant on each triangle, and domain integration is performed by area
weighting. Most discretizations of (42) for global, purely quadratic triangle-
based energies can be expressed in the form

EP (u) = ‖E u− c‖2
An

. (49)

Here, E(x) is a global energy matrix of dimension n |T | × d |V|, and c(x) ∈ Rn|T |

is triangle-constant. E maps feasible solutions u to |T | consecutive local n-
dimensional vectors et, which are constant per triangle t. In most cases, E is
a sparse matrix. In the remainder of this chapter, we assume that all et are de-
fined in a common coordinate system, e.g., the canonical world coordinates in
R3. This can always be ensured by construction. Then ‖et − ct‖2 is also constant
per triangle. Its integration over the mesh is performed by the n |T |-dimensional
square diagonal matrix An(x) given by An = In ⊗A. Here, ⊗ is the Kronecker
product, In is the n× n identity matrix, and A(x) is the diagonal matrix of trian-
gle areas.

For applications where the coordinate functions of the solutions are decoupled,
E can be expressed as a matrix of dimension n |T | × |V|, and the vectors u and
c become matrices U and C whose d columns correspond to coordinate func-
tions. The general formulation (49) remains the same with the difference that it
expresses a matrix norm (see (48)).

energy smoothness . Given a discretized energy in the form (49), the deriva-
tion of a discretization of the energy smoothness regularization ER of (47) turns
out to be straightforward. This is because the gradient field ∇e vanishes almost
everywhere on M due to the constantness of e in each triangle: e varies only
across internal edges. Therefore, the tensor ∇e only has a directional deriva-
tive component orthogonal to each edge at each point of an edge. We estimate
these directional derivatives by finite differences. A discretization of the energy
smoothness regularization ER that is directly based on the discrete energy EP is
then given by

ER(u) = ‖Dn (E u− c)‖2
Bn

.

Here, Dn is a sparse n |Ei| × n |T | discrete differences operator on the local en-
ergies. It is given by Dn = In ⊗Q, where the connectivity matrix Q is nonzero
only at

Qet =

{
1 if l(e) = t
−1 if r(e) = t

,

for all internal edges e ∈ Ei and triangles t ∈ T . As e is constant along each side
of an edge, the integration of (47) simplifies to a weighted sum of quadratic direc-
tional differences of the local energy along each internal edge. This integration

7.3 discretization 111

is performed by the n |Ei| square diagonal matrix Bn(x) given by Bn = In ⊗ B,
where B(x) is the diagonal matrix of edge lengths of all internal edges. Ulti-
mately, this discretization of (47) can be interpreted as measuring the squared
differences of local energies along each internal edge, which are weighted by the
respective edge lengths.

The discretization of the total regularized energy (44) is then given by

E(u) = (1− β) ‖E u− c‖2
An

+ β ‖Dn (E u− c)‖2
Bn

.

Using the energy residual vector r = Eu− c, we can transform this formulation
to

E(u) = (1− β) ‖r‖2
An

+ β ‖Dn r‖2
Bn

= (1− β) rT An r + β rT Dn
T Bn Dn r

= rT
(
(1− β)An + β Dn

T Bn Dn

)
︸ ︷︷ ︸

Wn

r = rT Wn r = ‖r‖2
Wn

(the derivation for matrix energy residuals R = E U− C is analog). Hence, we
obtain the compact form

E(u) = ‖E u− c‖2
Wn

(50)

with Wn = (1− β)An + β Dn
T Bn Dn .

β-weighted norm . The total regularized energy in (50) has the remarkable
property that it measures a modified norm of the same energy residual r as (49).
In fact, the domain integration represented by An simply has to be replaced by
the β-weighted generalized norm Wn (x , β).

To show that the norm ‖·‖2
Wn

is well-defined for β ∈ [0, 1), we show that Wn is
positive-definite: assuming non-degenerate meshes, the integration matrices An

and Bn are diagonal with strictly positive entries, i.e., they are positive-definite.
The difference operator Dn is rank deficient, i.e., one or more eigenvalues of
Dn

T Dn are equal to zero. This is because a manifold triangle polyhedron always
has more (internal) edges than triangles (Euler’s formula). Hence, Dn has more
rows than columns, and together with the fact that a discrete difference operator
has a nontrivial kernel, its maximum rank is n |T | − 1. Therefore, Dn

T Bn Dn

is symmetric and positive-semi-definite, i.e., yT Dn
T Bn Dn y ≥ 0 for y 6= 0.

Positive definiteness of Wn follows from the linearity of sums as for y 6= 0 and
β ∈ [0, 1) we have yT An y > 0 and

yT Wn y = (1 − β) yT An y + β yT Dn
T Bn Dn y > 0 .

Therefore, the norm ‖·‖2
Wn

is well-defined for β ∈ [0, 1).

112 smoothed energies for geometry processing

For β = 0, the original energy is recovered, and Wn only performs energy in-
tegration. For β > 0, Wn also measures first-order energy variation. Instead
of energy residuals, any other triangle-constant function may be integrated us-
ing Wn . Generally, Wn defines a normed function space of triangle-constant
functions. Minimization in this space yields functions of low norms, which in-
corporates low energy variation as steered by β. As the minimization problem
is defined by the energy, penalizing energy variation results in a problem-specific
regularization. In Section 7.5, we show for a number of typical applications that
the minimizers u? of problem-specific, smoothed energies E defined by (E , c)
are preferable to solutions without regularization or those from using Tikhonov
regularization.

optimization. The minimizer u? of the discretization of (45) given by (50)
can be computed by solving for the critical point of ∇E(u). Using normal equa-
tions, this is equivalent to solving the linear system

ETWn E u? = ETWn c . (51)

After a potential elimination of boundary constraints, which might be required
due to rank deficiencies of E, the system becomes symmetric positive-definite
and can be solved with the Cholesky factorization L LT = ET Wn E. Depending
on the application, the factorization can be reused for different right-hand sides
c. This factorization is efficient also for sparse matrices if an additional fill-in
reducing reordering is applied. Obviously, if E is sparse then the system matrix
remains sparse. However, for β > 0 the number of nonzero entries increases
as Wn is “quasi-banded” and not diagonal anymore, whereas An is. Our experi-
ments indicate that this lower sparseness results in almost no loss in performance
(see Section 7.5). This is because the dimension of the solved linear systems is
unchanged, and this dominates the asymptotic runtime of linear solvers.

generic implementation. The generalization of ‖·‖2
An

to ‖·‖2
Wn

is also
very beneficial from an implementation point of view: many problems that em-
ploy quadratic energies on meshes are already represented in the discretized
form (49). Given a model of the problem as (E, c), adding a problem-specific
regularization is nothing more than replacing the integration An by Wn, i.e., to
solve (50). The setup of the matrix Wn is simple, it depends only on the con-
nectivity and coordinates of the domain mesh M. In particular, the setup of
Wn is independent of a concrete energy or concrete problem and can be reused.
This makes the construction of the regularization a generic function that takes as
input β, a meshM, and a problem (E, c) with local energy dimensionality n.

volumetric domains . The discretization is not restricted to triangulations
of 2d domains. The setting is very similar for 3d (and even higher-dimensional)

7.3 discretization 113

piecewise linear domains. There, a tetrahedral partition of the domain is con-
sidered, and the local energies e are constant functions defined per tetrahedron.
Then the diagonal matrix An performs the integration, and the difference opera-
tor Dn is defined for inner triangles, each shared by its left and right tetrahedron.
Consequently, the integration of squared energy variation by Bn is then based
on triangle areas instead of edge lengths.

vertex-based energies . Until now, we consider only local energies that
are constant on each triangle. A similar approach is possible for piecewise linear
energies that are defined as nodal values at vertices. Note that it is generally eas-
ier and more natural to define energies or errors on a per-triangle basis, whereas
it is commonly artificial to do this for vertices. For example, all of our applica-
tions in Section 7.4 will only require triangle-based energies. Still, for instance
finite element-based energies are often discretized on a per-vertex basis. For
completeness, we give a short outline for the vertex-based energy setting, for
which our concept is applicable as well.

Quadratic vertex-based energies on triangle meshes can again be written in the
general form

EP (u) = ‖E u− c‖2
Mn

.

Here, E(x) is the energy matrix of dimension n |V| × d |V|, and c(x) ∈ Rn|V| is
vertex-constant. In contrast to (49), energies are piecewise linear and we perform
energy integration by the n |V| × n |V| mass matrix Mn(x) that integrates each of
the n energy components separately (see Appendix A.2 for a derivation of Mn

for n = 1). For regularization, we measure the first-order energy variation by
integrated energy gradients that are triangle-constant:

ER(u) = ‖Gn (E u− c)‖2
Amn

.

Here, Gn is the mn |T | × n |V| gradient operator that assigns each triangle the
constant gradient vector of each of the n energy components in a canonical m-
dimensional basis, e.g., m = 2 for triangle meshes and m = 3 for tetrahedral
meshes. Gn can be constructed in a component-wise way by replicating the plain
two-variate gradient operator G on M, see, e.g., (57) in the next section for the
m = 2 case or Appendix A.1. Integration of the constant squared gradient norms
is then again performed by area-based weighting using the diagonal triangle area
matrix Amn.

The vertex-based energy regularization can again be expressed compactly as

E(u) = ‖E u− c‖2
Wn

with Wn = (1− β)Mn + β Gn
T Amn Gn .

114 smoothed energies for geometry processing

Hence, similar to the triangle-based energies, we obtain regularized solutions by
optimization in a space of smoother solutions expressed by the modified norm
Wn.

We note that different integration operators are commonly used in the literature,
e.g., diagonal lumped barycentric mass matrices (see Appendix A.2). These op-
erators can be incorporated into our framework in a similar way. However, de-
pending on the particular integration model, different forms of energy gradient
operators need to be discretized. For instance, for constant barycentric integra-
tion, gradients need to be estimated along the internal dual edges of the mesh.

7.4 applications

We demonstrate our approach for a number of typical problems P from geome-
try processing. The minimization of quadratic energies on meshes is ubiquitous
in this application domain. The particular problems, their discretizations and
solutions have been addressed in a range of prior work. We reference represen-
tative work and describe how the problem-specific discretization (E, c) is set up.
We try to keep this description abstract to emphasize the main differences of
the particular settings. We do not recap the setup and elimination of boundary
conditions. Boundary conditions are generally “hard” interpolation constraints
like, for instance, Dirichlet conditions. Adding our regularization is then a sim-
ple and generic procedure as described above. Our examples include linear 2d
shape deformations, nonlinear and continuous deformations in 2d and 3d, and
surface parametrization.

7.4.1 Planar Linear Deformations

Shape deformations P of two-dimensional planar meshes xi ∈ R2 are displace-
ment maps u(x) : R2 → R2 with u(xi) = ui, i ∈ V that are piecewise linear on
each triangle t ∈ T : u(x) = Ft x + tt. A common approach to defining energy
minimizing deformations is to measure the difference of a particular deforma-
tion from a prototype deformation (see also Appendix B). Then the optimal de-
formation is given by the energy minimizing solution u?. As deformations are
piecewise linear, the 2× 2 deformation gradient tensor field Ft(u) is constant on
each triangle. Isotropically integrated translation-invariant discrete deformation
energies are therefore given by

EP (u) = ∑
t∈T

At ‖Ft −M(Ft)‖2
F , (52)

with triangle areas At and closest 2× 2 prototype deformation gradient tensors
M(Ft). Different choices for M will be discussed in the following paragraphs. As

7.4 applications 115

Ft is the gradient of u on a triangle t, it can be computed using a 2× 3 gradient
operator Gt(x): Ft = Gt Ut. We use a 2d gradient operator that computes gradi-
ents in a common global coordinate system to be able to apply our regularization.
It is given for a triangle t = (i, j, k) by

Gt =

[(
xj − xi

)T

(xk − xi)
T

]−1(
−1 1 0

−1 0 1

)
(53)

(see Appendix A.1 for a derivation). It is convenient to define a linear 4 × 6
operator Ht =

[
Gt

Gt

]
P with an appropriate permutation P, such that vec(Ft) =

Ht ut is the column-wise vectorization of Ft, i.e., the stacked gradients of all
displacement coordinate functions.

as-similar-as-possible (asap). We call deformations as–similar–as–possi-
ble (ASAP) if they are approximately conformal, i.e., angles should be preserved.
Here, we use a characterization that is similar to the one given by Liu et al.
[LZX∗08]. Discrete 2d deformations are conformal in least-squares sense if all
deformation gradients Ft =

(
f11 f12
f21 f22

)
are as close as possible to the closest 2d

similarity matrix S ∈
{(a b
−b a

)
| a, b ∈ R

}
that minimizes ‖Ft − S‖2

F (see [BS08]).
The similarity minimizing this distance is

S?
t =

1
2

(
f11 + f22 f12 − f21

f21 − f12 f11 + f22

)
.

The prototype deformation tensor in (52) is therefore given by the closest sim-
ilarity M(Ft) = S?

t . M is linear in Ft for this case of approximately conformal
deformations. Each triangle-constant energy term of the summation in (52) can
thus be written as ‖Et ut‖2 with local 4× 6 energy operators

Et =
1
2

1 0 0 −1

0 1 1 0

0 1 1 0

−1 0 0 1

 Ht .

The local operators Et on individual triangles can then be assembled into the
single global 4 |T | × 2 |V| operator E to give the energy (52) in the general form
(49):

E =

(
∑
t∈T

Et ⊗Λt,t
|T |,|T |

)
Q , c = 0 . (54)

Here, Q is an appropriate replication matrix that selects all ui associated with
a particular triangle, and Λt,t

|T |,|T | is a single-entry matrix (see Section 7.3). This
description of the as-similar-as-possible deformation energy is then suitable for
regularization by (50). For this problem, we have n = 4 as each triangle has four
associated energy components.

116 smoothed energies for geometry processing

linearized as-rigid-as-possible (larap). 2d deformations that are as-
rigid-as-possible (ARAP) are commonly computed by optimizing for deforma-
tion gradients that are close to rotations. Due to the nonlinearity of rotations,
this optimization generally requires iterative schemes (see Section 7.4.2). Lin-
earization of rotations is used to avoid nonlinear problems. However, this sim-
plification is often considered defective as large rotations lead to linearization
artifacts. Still, we show that even this linearized setting gives significantly more
competitive results with our proposed regularization scheme.

The rotation R ∈
{(

cos(α) sin(α)
− sin(α) cos(α)

)
| α ∈ R

}
that minimizes ‖Ft − R‖2

F has an

optimal rotation angle of α? = tan−1(a) with a = f12− f21/ f11− f22, and is given by

R?
t =

1√
a2 + 1

(
1 a

−a 1

)
. (55)

A linearized approximation R†
t ≈ R?

t is obtained from a Taylor series expansion
of R?

t around I2:

R†
t =

1
2

(
2 f12 − f21

f21 − f12 2

)
.

Then, we identify M(Ft) = R†
t as the prototype deformation tensor in (52) that

gives a (linearized) quadratic energy that measures deviation from rigidity. Tri-
angle-constant local energies ‖Et ut − ct‖2 are then given by

Et =
1
2

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 Ht , and ct =

1

0

0

1

 .

Similar to (54), the global energy matrix E is assembled block-wise of all Et, and
c is obtained by stacking all ct. Again, the dimension of local energies is n = 4.

7.4.2 Nonlinear Planar Deformations and Poisson-type Problems

The nonlinear as-rigid-as-possible (ARAP) energy is (52) with exact rotations
M(Ft) = R?

t as deformation gradient prototypes [IMH05]. The optimization
of these energies, which are nonlinear in u, is often performed iteratively with
alternating linearizations [SA07, LZX∗08] or by directly using nonlinear solvers
[CPSS10, Lip12]. We focus on the first type of iterative optimization, which
is most related to our framework as each step minimizes a quadratic energy.
In each iteration k an intermediate solution uk is improved by computing the
closest rotations to the deformation gradients Fk

t of uk relative to the initial shape

7.4 applications 117

x. Here, R?
t of (55) could be used. A numerically more stable variant is based

on the singular value decomposition (SVD) Fk
t = S Σ TT, such that R?

t = S TT

is the polar decomposition of Fk
t . (There are alternative methods to obtain the

polar decomposition.) Furthermore, an assumption requires that there is no
reflection, i.e., we have det

(
S TT) = +1. The computation of optimal rotations

is performed locally per triangle and does not involve any regularization. It
is the prerequisite for the next step: the definition of a quadratic energy for
the (k + 1)-th iteration step. Therefore, the matrices R?

t are used as the target
deformation gradients to reconstruct the coordinates of uk+1 in least-squares
sense. Reconstruction errors are triangle-constant due to the constant gradients
of u. The corresponding integrated triangle-based reconstruction energy can be
decomposed into component-wise functions U:

EP (uk+1) = ∑
t∈T

At ‖Fk+1
t −R?

t ‖2
F (56)

= ∑
t∈T

At ‖Gt Uk+1
t −R?

t ‖2
F

= ‖G Uk+1 −Ck‖2
An

.

This is a global energy similar to (54) with

G =

(
∑
t∈T

Gt ⊗Λt,t
|T |,|T |

)
Q , Ck = ∑

t∈T
R?

t ⊗Λt,1
|T |,1 , (57)

n = 2, and an appropriate replication matrix Q. The global gradient operator
G is sparse with a dimension of 2 |T | × |V|, and C is a dense 2 |T | × 2 matrix.
Again, this energy has the form (49) with

(E, C) = (G, Ck)

i.e., a matrix norm (48) is used, and regularization (50) is straightforward. Also,
note that system factorization only has to be performed once and can be reused
in each iteration as both G and Wn are discretized on the initial mesh x. Hence,
they are independent of the iteration k. This means that in every step the solution
uk+1 is obtained from back-substitution.

The particular energy type with E = G representing a discrete gradient operator
has a more general interpretation. The discrete energy (56) allows to fit scalar
fields u onM to prescribed gradients c. In the ARAP case, these are (component-
wise) deformations u and prescribed deformation gradients R?. In general, min-
imizers of this type of energy operator are described by the well-known discrete
Poisson equation that is in this context equivalent to (51) for β = 0. Therefore,
by using Wn instead of An, any Poisson-type energy on triangle meshes can be
regularized using our approach. (Poisson-type energies will also be used in the
context of surface-based flow visualization in Chapter 9 and reviewed in more
detail in Section 9.1.)

118 smoothed energies for geometry processing

7.4.3 Surface Deformations

Not only 2d planar, but also 3d surface-based deformations can be regularized
in the same way in our framework. For example, the planar ARAP deformations
of the previous section can directly be extended to 3d surface deformations de-
scribed by xi, ui ∈ R3 and regularized subsequently. The surface-based ARAP
energies can be setup using vertex-based one-ring transformations as described
by Sorkine and Alexa [SA07]. We provide an alternative formulation that is more
triangle-centric.

For regularization, we require 3× 3 deformation gradients in a common coor-
dinate system. We compute F̃t = Gt Ut using a 3× 3 extension of the gradient
operator (53) for triangles t = (i, j, k)

Gt =

(
xj − xi

)T

(xk − xi)
T

nt
T

−1−1 1 0

−1 0 1

0 0 0

 , (58)

where nt is the normalized triangle normal of t in the original x coordinates (cf.
Appendix A.1). The gradients of the coordinate functions of u computed by this
operator lie in the triangle planes of x in R3. However, closest rotations to F̃t are
not well-defined yet, because F̃t are singular in direction nt. One can combine
the ARAP local rotation optimization with the handling of this singularity in a
single step by using the 3× 3 SVD F̃t = S̃ Σ̃ T̃T: the closest 3D rotation to the
deformation gradient is R?

t = S TT, where S and T are derived from S̃ and T̃
by replacing their column that corresponds to the vanishing singular value in
Σ̃ with nt and nk

t , respectively. Here, nk
t is the normalized normal of t in the

deformation uk at iteration k. Given local rotations optimized this way as target
deformation gradients, the global deformation reconstruction in each iteration is
analogous to (56) with (57). In fact, the resulting Poisson system is equivalent
to (56), except that now n = 3 and the 3d versions of Gt and R?

t are used to
setup (E, Ck). All properties are inherited from the 2d case. Most importantly,
this way also surface deformations based on 3d ARAP energies can directly be
regularized.

7.4.4 Continuous Deformations

All deformation examples discussed so far are described by one single map from
the initial coordinates x to the coordinates of the deformed solution u, i.e., by a
single-step deformation. This map is obtained directly as the minimizer of some
deformation energy. An alternative way to describe deformations are continuous
formulations where ui(s) ∈ R2 represent time-dependent tangent velocity fields
at a specific time s (cf. Chapter 3). Deformations are then obtained by integrating

7.4 applications 119

an initial shape x along u(s) forward in time, giving time-dependent, continuous
deformations x(s). This requires evaluation of u(s) on different deformed x(s),
and the vector fields are obtained by optimizing energies in u.

Solomon et al. [SBBG11a] propose discretized energies that are quadratic in u
and yield near-isometric planar deformations. These as-Killing-as-possible (AK-
AP) energies are of the form

EP (u(s)) = ∑
t∈T

At ‖Jt + Jt
T‖2

F

(cf. the continuous version of Equation (6)). This energy measures the squared
distance of the 2× 2 vector field Jacobians Jt

T = Gt Ut from Jacobians of exact
isometric vector fields (known as Killing vector fields), which are anti-symmetric.
Here, we reuse the gradient operator (53), with the difference that it has to be
discretized on the current x(s) for each evaluation of the vector field. Vector field
Jacobians, which represent a different gradient type, are constant per triangle,
and therefore the energy is also local per triangle and fits our setting. The local
energies ‖Et ut‖2 are given by the local 4× 6 energy operators

Et =

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 Ht , (59)

and the global (E, c) are equivalent to (54) using these local operators and n =

4.

The same formulation also holds for the continuous deformation of 3d volumet-
ric shapes. In this case we have Jacobians Jt ∈ R3×3, and At is the volume of a
tetrahedron t.

In fact, the family of generalized anisotropic metric vector field energies pro-
posed in Section 3.3 can be regularized in a similar way: using the energy ex-
pressions derived in Section 3.4.2, which are defined by quadratic forms Mφ, we
obtain Et = Sφ Ht instead of (59), where Sφ are (real symmetric) matrix square

roots Sφ Sφ = Mφ

(
= Sφ

T Sφ

)
1. For the 2d isotropic energy special cases (22) the

unique positive-semi-definite square roots are given by

SφAKVF =

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 , SφMetr
=

√

2 + 1 0 0
√

2− 1

0 1 1 0

0 1 1 0
√

2− 1 0 0
√

2 + 1

 ,

1 The Cholesky factors of Mφ cannot be used because Mφ is only positive-semi-definite.

120 smoothed energies for geometry processing

SφConf
=

1 0 0 −1

0 1 1 0

0 1 1 0

−1 0 0 1

 , SφAuth
=

1
2

√

2 0 0
√

2

0 0 0 0

0 0 0 0
√

2 0 0
√

2

 .

For general anisotropic and higher-dimensional quadratic forms Mφ (cf. Equa-
tion (21)) the matrix square root can be computed using, e.g., the algorithm of
Higham and Wilkinson [HJW87].

We note that the regularization technique presented in this chapter is closely
related to the vector field energy smoothing already presented in Section 3.4.4,
where we also minimize first-order energy variation. However, the formulation
of this chapter is based on a more general problem description and is therefore
applicable to a larger number of energy types, i.e., it is not restricted to deforma-
tion vector field energies only.

7.4.5 Surface Parametrizations

The parametrization of a surface mesh can be considered as the computation of
a map from the surface coordinates xi ∈ R3 to coordinates ui = (ui, vi)

T ∈ R2

in the parametrization domain. This map should minimize some type of shape
distortion.

as-conformal-as-possible . Discrete near-conformal parametrizations are
obtained by satisfying the Cauchy-Riemann conditions ∇u = ∇v⊥ in least-
squares sense: this yields the least-squares conformal maps (LSCM) by Levy et
al. [LPRM02]. (A related approach with identical results was proposed simulta-
neously by Desbrun et al. [DMA02].) The corresponding discrete and integrated
energy can be written as

EP (u) = ∑
(i,j,k)=t∈T

At ‖Gt
(
ui, uj, uk

)T −Rt Gt
(
vi, vj, vk

)T‖2

(see, e.g., [BKP∗10]). Here, we use the surface-based gradient operator (58) for
gradients in a common 3d coordinate system, and Rt(·) ≡ nt × (·) are 3 × 3
rotation matrices performing π/2 rotations of vectors in each triangle plane. The
corresponding local energies ‖Et ut‖2 are given by the 3× 6 operators

Et =
[
Gt −Rt Gt

]
P

with an appropriate permutation P for the coordinate-wise gradient computa-
tion. The global energy is described by (E, c = 0), where the linear operator is
setup as in (54) but using Et as described here with n = 3.

7.5 results 121

as-rigid-as-possible . As shown by Liu et al. [LZX∗08], the ARAP energy
used in Section 7.4.2 can also be employed to compute surface parametrizations
with low distortions. To perform the local 2d rotation optimization we compute
the constant basis functions of a 2d gradient operator Gt in the parametrization
domain. This can be done by transforming each triangle t = (i, j, k) separately
and isometrically from 3d to 2d and computing the 2× 3 operators by

Gt =
(

S Rt

[
xj − xi xk − xi

])−T
(
−1 1 0

−1 0 1

)
. (60)

Here, Rt is the rotation that transforms nt into (0, 0, 1)T to align each triangle
locally with the xy-plane, and S =

(
1 0 0
0 1 0

)
projects the transformed edge vectors

into this plane. By transforming each triangle by S Rt we essentially obtain unde-
formed 2d reference triangles for the original 3d surface triangles. A parametriza-
tion uk at iteration k then defines 2× 2 deformation gradients Fk

t = Gt Uk
t , and

closest rotations R?
t can be fitted as before. The global Poisson-based reconstruc-

tion of uk+1 then is identical to (56) and (57), which can be regularized with β > 0.
Note that the definition of the global 2d gradient operator G (57) by using (60)
does not require a continuous reference mesh in the parametrization domain. In
fact, the connectivity of the meshM defines continuity of the solution.

7.5 results

In this section, we present experimental results and provide comparisons. We
also refer to the accompaning material of [MRT13b], which contains a Matlab

reference implementation of our approach, a video showing additional results,
as well as all result meshes of this chapter 2. If not stated otherwise, bound-
ary constraints are “hard” interpolation constraints, which can be interpreted as
pins or handles on vertices. They are rendered as blue spheres. The color-codes
visualize the local energies EP per triangle 3. Note that in general the plain en-
ergy cases (β = 0) correspond to results of the original methods (e.g., published
in [LZX∗08]). Results with β > 0 are our regularized versions with identical
boundary constraints.

Figure 49 shows the effect of our regularization for different types of 2d deforma-
tions for different shapes. We minimize the ASAP, LARAP (Section 7.4.1), and
ARAP (Section 7.4.2) energies for β ∈ {0, 0.2, 0.4}. The local variation of energy
decreases for increasing amount of regularization. The plain energy solutions
suffer from high distortion and flipped triangles near the handles for both ARAP
energy types, which was also observed by Jacobson et al. [JBK∗12, Figure 7]. Reg-
ularization corrects these artifacts, and especially the LARAP results are of im-
proved quality. As an additional positive side-effect, global self-intersections of

2 The accompaning material is located in the additional material folder addmaterial/se.
3 Some figures are best viewed in the electronic version of the thesis. Please zoom in closely.

122 smoothed energies for geometry processing

β = 0 β = 0.2 β = 0.4

ARAP

LARAP

ASAP

ARAP

ARAP

LARAP

LARAP

ASAP

ASAP

Figure 49: Regularized 2d Deformations. The initial shapes (top) are deformed using the
different original (β = 0) and regularized (β > 0) 2d deformation energies.
The color-coded images visualize local energies of EP on each triangle (low •,
high • energy). For β ∈ {0, 0.4} closeups visualize energies at critical regions
that contain high distortions as well as local and global self-intersections.

7.5 results 123

β = 0 β = 0.3

ARAP

β = 0 β = 0.3

Figure 50: Regularized ARAP Surface Deformation. The side and rear (not shown) of the
beetle surface are fixed and a vertex on the engine hood is moved to deform
the shape such that the ARAP energy is minimized. We show results for both
“soft” (•, top) and interpolating “hard” handle constraints (•, bottom). Our
regularized solution is artifact-free at the handles in both cases.

plain deformations, which are most notable in the ASAP case, are repressed in
the regularized solutions, although the regularization is not designed to directly
prevent this type of artifact.

Figure 50 shows simple examples of 3d surface deformations minimizing the
ARAP energy. The side and the rear (not shown) of the beetle surface were
fixed, and a vertex on the engine hood was moved to deform the shape globally.
We show results for both “soft” constraints, which only approximate the handle,
and interpolating “hard” handle constraints. In both cases, the regularized en-
ergy yields smooth deformations respecting the particular constraints, whereas
the original energy suffers from localized artifacts at the handle vertex. The ex-
periment supports the claim that our regularization also works for 3d surface
deformations. In particular, ARAP surface deformations are enhanced.

Figure 51 shows examples for parametrizations minimizing LSCM and ARAP
energies. We compare plain (β = 0) and regularized (β > 0) energies. The
boundary of the beetle parametrization (left) was fixed in the plane, and the
positions of four interior vertices were prescribed in the plane. The regularized
solution has no flipped triangles near the handles. The gargoyle model (right)
was cut open and mapped to the plane. (The same cut-open mesh was used in
the original work [LZX∗08].) Again, interior vertices were fixed. This is an action
that is highly relevant in practice for locally “fine-tuning” maps. At the same
time this is highly problematic as local “spikes” and fold-overs arise quickly,

124 smoothed energies for geometry processing

β = 0 β = 0.4

β = 0.3β = 0

LSCM ARAP

β = 0

β = 0.3β = 0 ARAP

LSCM β = 0.4

Figure 51: Regularization of Parametrizations. Top: LSCM of the beetle with boundary
and four interior vertices fixed in the plane. Bottom: ARAP parametrization
of the gargoyle with constraints on interior vertices. In contrast to the original
solutions our regularized solutions are free of triangle flips (see closeups).

which, until now, demanded nonlinear methods. Our regularization (β = 0.3)
handles these problems and provides a valid solution without flipped triangles
(see closeups).

We apply our regularization to continuous deformations that minimize the AKAP
energy in Figure 52. To emphasize total distortions we color-code isometric dis-
tortions End

isom relative to the original shape (cf. Appendix B). Plain (β = 0) de-
formations show notable artifacts identified by Solomon et al. [SBBG11a]. Their
filtering method requires the solution of an additional Poisson system that intro-
duces additional distortions and only approximates user constraints (cf. Sections
3.4.4 and 3.6). Our method also avoids deformation artifacts. Additionally, we
only require a single linear system solve and guarantee exact constraint satisfac-
tion. The tetrahedral eagle model is an example of our regularization method
applied to volumetric domains.

7.5 results 125

AKAP

AKAP

β = 0

β = 0.3

β = 0.3β = 0

Figure 52: Regularized Continuous Deformations. The AKAP energy is minimized and
the resulting vector field is integrated for a planar triangle mesh (top) and a
volumetric tetrahedral mesh (bottom). The color-coded visualizations show
local isometric distortions End

isom relative to the rest-pose. Artifacts of the orig-
inal energies (β = 0) are highlighted (•).

We compare our approach to standard Tikhonov regularization in Figure 53. The
2d giraffe shape is deformed, and a parametrization of the 3-balls surface is com-
puted both by minimizing an ARAP energy. The Tikhonov regularizer is defined
as ETR(u) =

∫
D‖∇u(x)‖2

F dx, i.e., first-order variation of the coordinate function
solution u is penalized. It is applied for β = 1

4 and β = 1
2 . We compare to our reg-

ularizer ER for β = 1
2 (right for each example). The undesired effect of Tikhonov

regularization is clearly visible: the solution is smoother but it “shrinks”. In fact,
Tikhonov regularization modifies the solution even if handles are not moved at
all due to the energy-unawareness. Our proposed regularization does not show
this effect because both the energy and the energy-aware regularization terms
vanish on the initial pose. Not shown are other typical choices of Γ like penaliz-
ing second-order variation (Γ ≡ ∆) or penalizing the magnitude of the solution

126 smoothed energies for geometry processing

ARAP

ARAP

ETR

ETR ER

ER

β = 1
4

β = 1
4

β = 1
4 β = 1

4

β = 1
2

β = 1
2

Figure 53: Regularization Comparison. We compare standard Tikhonov regularizer ETR
with Γ ≡ ∇ for β ∈

{
1
4 , 1

2

}
and our regularizer ER for β = 1

4 . The ARAP
energy is minimized to deform the giraffe and to obtain a parametrization of
the 3-balls surface.

(Γ ≡ I): they do not remedy undesired behavior either. This general statement
holds similarly for minimizing other deformation energies.

Figure 54 compares our results with the nonlinear bounded distortion (BD-)maps
proposed by Lipman [Lip12]. We consider near-conformal deformations from
minimizing BD-LSCM and ASAP energies and near-rigid deformations from
minimizing BD-ARAP and ARAP energies. Without regularization (β = 0) we
obtain the undesired artifacts that were pointed out by Lipman (red circles).
Adding our regularization β > 0 effectively removes artifacts and yields valid
shapes without local self-intersections. Interestingly, our solution with the smoo-
ther energy distribution for ASAP (β = 1

4) shows significantly less global de-
formation compared to BD-LSCM. The BD-ARAP and the regularized ARAP
deformation show comparable results: regularized ARAP yields a smoother en-
ergy distribution and a thinner neck of the dinosaur model. The β = 0.085 value

7.6 discussion 127

BD-LSCM ASAP β = 0 β = 1
4

BD-ARAP ARAP β = 0 β = 0.085

Figure 54: Comparison with BD-maps [Lip12, Figures 2 and 3]. Near-conformal (top)
and near-rigid (bottom) deformations of the initial models (•) using bounded
distortion mappings and our corresponding regularized energies (β > 0). Ar-
tifacts of the original energies (β = 0) are highlighted (•).

of this regularization is the smallest regularization parameter for which the de-
formation is artifact-free. Note that there are constraints on internal vertices. This
leads to a very visible artifact for the unregularized ARAP (β = 0). We empha-
size that we compare our approach to the original results of [Lip12, Figures 2

and 3], which are very coarsely tessellated because the nonlinear BD-maps op-
timization is limited to a low number of triangles. Our approach can efficiently
be applied to much larger meshes.

The experiment in Figure 55 shows that the proposed regularization is not only
problem-specific but also largely independent of the particular tessellation of a
mesh. We apply an ARAP deformation to four different meshes that all represent
the same shape geometry. Note that this particular shape with thin parts and rel-
atively long boundary is a nontrivial benchmark. The tessellation is challenging
as triangle area ratios vary up to 1.7 · 103, and the triangle circumcircle to incircle
radius ratio is up to 38.8. The results are similar for all tessellations, we show
this for two different values of β. This indicates that our energy discretization in
Section 7.3 is reasonable.

7.6 discussion

We tested our regularization on a number of typical problems in geometry pro-
cessing and showed experimental results. Our approach fits problems in this
application domain, but it is generally not limited to geometry processing.

128 smoothed energies for geometry processing

ARAP

β = 0.2

β = 0.45

Figure 55: Mesh Dependence. We deform a regular grid that is differently tessellated
using the same deformation constraints. We show results for the regularized
ARAP energy for two different β values. Other regularized energies show
similar results.

tikhonov regularization. It is noticeable that in particular for these ap-
plications, regularization is not considered at all. The reason is probably sim-
ple: first, standard Tikhonov regularization is available but it does not fit the
problems and yields rather undesired results. Second, most problems are not
ill-posed, and any regularization might increase the energy EP that characterizes
the problem. The first argument seems true as indicated by our experiments.
This holds also for the very popular Tikhonov-type regularization to prefer “soft
constraints”, i.e., a penalty term as regularizer, over “hard constraints”, i.e., con-
straint interpolation by elimination, in order to suppress or smooth out artifacts
near handles. Soft-constraints, however, have their drawbacks: artifacts only
appear later but are not effectively suppressed (see Figure 50), and in addition,
the solution may “float” in the domain. We refer to, e.g., [SBBG11a]. There are
exceptions to the second argument: for instance, minimizing the AKAP energy
[SBBG11a] is an example for a problem that is not ill-posed, though it inherently
requires regularization. However, there the standard approach of incorporating
smoothness of the solution, i.e., standard Tikhonov regularization, would lead
to undesirable results. For this reason, Solomon et al. propose a Poisson-based
smoothing step as a post-process.

Hence, in comparison to standard problem-unaware Tikhonov regularization,
our problem-specific approach provides the (more) desirable results. Even more,
the regularization enables imposing “hard” interpolation constraints not only on
the boundary. Our experiments show that constraints inside the domain are pos-
sible, at least to some extent. This makes minimizers of regularized quadratic en-
ergies competitive with solutions from nonlinear optimization. Of course there
is no guarantee that, e.g., triangle flips are avoided.

7.6 discussion 129

sobolev norm . Our regularization norm can be interpreted as a weighted
Sobolev H1 norm, i.e., as a norm in the function value and its first-order variation.
This norm was used by Eckstein et al. [EPT∗07, Section 4] for the specific problem
of regularized gradient flow computation. In contrast, we apply similar norms
to energies that do not only define gradient flows, but any type of quadratic
optimization. This is a key difference that enables the generalized application of
our method to a variety of geometry processing problems.

nonlinear optimization. Quadratic energies are attractive as models be-
cause their minimization is straightforward and numerically efficient. In partic-
ular, in geometry processing, operators are often linearized, which is efficient
but induces a model error. (Linearization of rotations is an example.) Drop-
ping linearization requires nonlinear optimization. Additionally, the range of
problems that can be modeled by quadratic energies is of course limited. Hence,
nonlinear models are required or preferred in many settings. A prominent exam-
ple is imposing general constraints or bounds on variables. This is often done
to guarantee properties of the solution. We consider the recent work by Lip-
man [Lip12] as a typical example: a sophisticated nonlinear model guarantees
bounded distortion and validity of piecewise linear (deformation) maps. The
type of distortion is generic, and validity refers to the absence of triangle flips.
This is much more than can be expected from a linear setting, i.e., quadratic
energy minimization, but it requires the more expensive solution of a nonlinear
problem, i.e., one has to invest more time and/or reduce the problem size. Note
that in this case the bounds on variables, which restrict the solution space, could
be interpreted as a nonlinear, (but still problem-unaware) regularization. If a fea-
sible solution exists in this space then it satisfies the guarantees by construction.
Having similar guarantees is generally not possible with our setting of quadratic
energy minimization. The comparisons by Lipman reveal these problems, they
show up early and frequently for typical deformation tasks. This changes, how-
ever, for quadratic energies that are regularized by our method. There are still
no guarantees, but our experiments show that the regularized solutions get sig-
nificantly closer to results from nonlinear optimization. And if they break, i.e.,
they yield an invalid result, this happens relatively late, meaning for extreme
deformations imposed by “large” movement of handles.

We conclude that although our regularization cannot provide similar guarantees
as nonlinear optimization, minimization in the regularized function space yields
competitive results that seem to remain valid for a considerable range of input
constraints. This is not possible without or even with standard regularization.

cost. The setup of the matrix Wn and the regularized normal equations (51)
takes more operations than the initial setup (49). More importantly, for sparse
operators the new system matrix has more nonzero entries. Our experiments
show that there is no significant effect on sparsity of the Cholesky factors L

130 smoothed energies for geometry processing

and on overall timings compared to having no regularization. Moreover, the
overhead is on par with that of Tikhonov regularization penalizing first-order
variation of the solution.

limitations . Our regularization is restricted to quadratic energies on dis-
crete domains. This is a standard scenario for geometry processing. We are
not limited to such scenarios but it may be the case that the penalization of
energy variation pays off in particular for this sort of applications. The penal-
ization of variation in the solution may be suited better for other applications.
In particular, a more general regularization based on the (generalized) singular
value decomposition with filtering singular values and the possibility for param-
eter estimation should be preferred for general ill-posed and inverse problems
[Han10]. However, for geometry processing this is generally less suited as global
SVD computations turn out to be too expensive.

We show empirically that the minimization of regularized quadratic energies
tends to get close to solutions from nonlinear optimization. There is of course
no guarantee for such behavior, moreover, there is no a priori optimal choice for
β. In particular, the regularized solutions tend to break much later but they will
break, i.e., represent an invalid result, for some extremal constraints. Regulariza-
tion of quadratic energies is therefore not a substitute for nonlinear models with
guarantees, but it may complement these models: the regularized solution can
be computed quickly for a number of β values. If it is valid (and satisfies any
other criteria) it may be used directly. Otherwise, it may serve as an initial guess
for a nonlinear solver.

7.7 summary

Many relevant problems can be formulated as the minimization of a quadratic
energy. In this chapter, we proposed a generic construction of regularized quadratic
energies: the input consists of any quadratic energy that is integrated in a dis-
crete domain, which is given as a partition of simplices. The output consists of
a new energy that incorporates a problem-specific regularization. This construc-
tion is generic and can be applied in a straightforward way if the problem is
modeled in a standard form (49). Essentially, we can interpret our regulariza-
tion as a simple change of the norm that is minimized. The key observation
of our approach is that the energy, which characterizes the problem, should
explicitly contribute to the regularization. This makes our regularization differ-
ent from standard methods based on Tikhonov regularization: it enforces low
energy variation instead of a generically smooth solution. We applied our reg-
ularization to a number of geometry processing applications. Our experiments
reveal the advantages of incorporating regularization, and they indicate that our
regularizers are appropriate for various energies and fit a range of different and

7.7 summary 131

relevant problems. Promising directions for further research include the efficient
automatic selection of the regularization weight β and the feasibility analysis of
higher-order problem-specific regularizers.

Part II

S H A P E S D E F I N E D B Y V E C T O R F I E L D S

8
O V E RV I E W O F S U R FA C E - B A S E D F L O W V I S U A L I Z AT I O N

In the first part of this thesis, we considered vector field-based manipulations of
shapes in the context of geometry processing problems. In this second part, we
now approach shapes that are defined by vector fields.

In particular, we consider vector fields that represent the velocity field of complex
flows. These fields are practically relevant as a variety of scientific, engineering,
and medical application areas study problems in which 3d flow phenomena play
a key role for their comprehension and solution. In contrast to the first part of
the thesis, the flow vector fields are given a priori and are not computed for a par-
ticular shape manipulation. Rather, vector fields are subject to further analysis
by extracting shapes as features that are directly related to the underlying flow
data. In computer graphics, these problems are studied by the flow visualization
research field.

Different flow-defined types of shapes can be used for the visualization of in-
tegrated flow features. The most common geometry-based flow visualization
techniques either rely on univariate curves or bivariate surfaces. Integral curves
like stream lines are defined by steady flows, whereas streak, path, and time lines
are defined by unsteady flows. Univariate shapes are well-accepted structures
for the visualization of 3d vector fields [WHT12].

In this part of the thesis, we focus on bivariate surface-based flow visualiza-
tion techniques. Integral surface-based approaches consider stream surfaces in
steady flows, as well as streak, path, and time surfaces in unsteady flows. Com-
pared to line-based visualizations, integral surfaces are often better suited to
reveal laminar flow regions and regions with convergent or divergent flow be-
havior. Additionally, the perception of surfaces is often superior compared to
sets of curves because advanced surface shading techniques can be applied. On
the other hand, surface-based approaches generally turn out to be more complex
due to the higher intrinsic dimensionality of surfaces. Still, properties of integral
surfaces are well-studied. In fact, deep and comprehensive research has been
done on the problem how to integrate and how to graphically represent integral
surfaces. However, in practice many important professional engineering tools
do rarely provide domain experts with such advanced visualization techniques:

135

136 overview of surface-based flow visualization

a lot of tools (like, e.g., the ANSYS CFD-Post package [2]) provide users only
with basic visualization techniques, e.g., iconic or glyph-based, slice-based, or
univariate stream line or path line visualizations. Visualizations by integral sur-
faces are infrequently used in practice despite their advantages over these basic
visualizations [MLP∗10].

A major reason for the less prominent representation in professional tools might
be the more complex interaction that is required for the specification of the sur-
faces to be visualized: stream surfaces are usually defined by seed curves from
which the surfaces are constructed by integration. The exact placement of these
curves is based on assumptions and experience of domain experts and is usually
performed manually in interactive sessions. Most often the choice of seed curve
geometry is very limited, e.g., to simple straight line segments or circles. Addi-
tionally, not every seed curve is suitable to define stream surfaces: in fact, seed
curves that the user erroneously positions tangentially to the flow result in de-
generate stream surfaces. These factors make interactive seed curve specification
challenging and time-consuming in practice. Moreover, a lot of methods exist for
automatic seeding of stream lines, whereas only a few limited approaches exist
to automatically extract relevant stream surfaces.

Hence, in order to make surface-based visualizations more accessible to use in
practice, it is necessary to provide users with additional stream surface specifica-
tion tools that overcome limitations of traditional interactive seed curve manip-
ulation. Alternatively, completely automatic methods for the selection of most
relevant stream surfaces can eliminate the need for manual interaction. Interac-
tive tools are useful if users are only interested in specific data set regions where
certain flow phenomena are already expected. Automatic selection methods, on
the other hand, are beneficial for flow field exploration and unsupervised flow
analysis. Here, no prior knowledge of the data set is required.

To address these stream surface specification and selection problems, we propose
two new interactive and automatic approaches that facilitate the application of
surface-based methods for the detection and analysis of relevant flow features.

In Chapter 9, we apply Poisson-based techniques to the specification and extrac-
tion problem of flow-aligned surfaces. Poisson-based methods are well-known
in image and geometry processing, but have not yet been applied to flow visual-
ization problems. We support the extraction of both flow-tangential surfaces and
flow-orthogonal surfaces. In contrast to traditional integration-based techniques,
our method is deformation-based and steered by flux optimization criteria. Sur-
faces can be positioned interactively by the user. They are deformed in real-time
according to the local flow. The same Poisson-based framework can be applied
to obtain parametrizations of flow-aligned surfaces. This way nontrivial seed
structures for standard integration-based flow visualization methods are simple
to specify. Additionally, we present illustrative and animated texture-based flow

8.1 related work 137

visualizations of stream and path surfaces, which are based on the same Poisson-
based computational toolkit.

In Chapter 10, we present a fully automatic approach for the global selection
of relevant stream surfaces. Stream surface relevance is measured by a new in-
trinsic surface-based quality criterion that prefers surfaces for which the flow
is aligned with principal curvature directions of the shape. This concept cor-
responds to curvature-based surface fairing known from geometry processing.
The problem of seed structure selection can then be reduced to the computation
of simple minimal paths in a weighted graph that spans the domain. A global
simulated annealing-based optimization method finds smooth seed curves of
globally near-optimal stream surfaces. The resulting stream surfaces are very
similar to surfaces manually selected by visualization experts.

8.1 related work

There is a large body of research on integration-based flow visualization. We
continue to summarize on surface and texture-based flow visualization methods
that are most related to our approaches. For a complete overview on the flow
visualization field we refer to a number of recent surveys: Post et al. review
feature and topology-based techniques [PVH∗02, PVH∗03], Laramee et al. survey
dense visualization methods [LHZP05], McLoughlin et al. give a summary on
integration-based approaches [MLP∗10], and Pobitzer et al. give an overview on
topology-based methods for unsteady flows [PPF∗11].

8.1.1 Surface-based Flow Visualization

In Chapter 9, we introduce an interactive flux-optimizing and deformation-based
method to extract both flow-tangential and flow-orthogonal surfaces. The classic ap-
proach to computing the former are based on surface integration — a problem that
is well-understood [MLP∗10]: Hultquist pioneered the development of stream
surface integrators [Hul92], which were extended by Stalling [Sta98] towards crit-
ical point handling. More recent techniques focus on higher approximation and
tessellation quality [SBH∗01, GTS∗04, GKT∗08, SWS09], GPU implementation
[STWE07], and topology-aware methods [PS09, SRWS10]. Schulze et al. present
an advanced global time-scaling approach [SGRT12]. Van Wijk [vW93] and
Stöter et al. [SWST12] propose implicit stream surface representations. Elabo-
rate approaches for time-dependent path surface integration [STWE07, GKT∗08],
and streak and time surface integration [vFWTS08, BFTW09, KGJ09, WHT12]
have been proposed recently. Edmunds et al. [ELC∗12] review surface integra-
tion and perception-improving rendering methods. Stream surface integration
is also regarded in the context of dynamical systems. The survey of Krauskopf

138 overview of surface-based flow visualization

et al. [KOD∗05] provides an overview on the extraction methods of (un)stable
manifolds in general vector fields.

Most related to the orthogonal surfaces that we compute by flux maximiza-
tion are the recently proposed as-perpendicular-as-possible surfaces (APAPs) by
Schulze et al. [SRGT12], who integrate along a scaled vector field to obtain or-
thogonally aligned surfaces. A simpler method that does not consider energy
minimization has been proposed before by Palmerius et al. [PCY09]. Addition-
ally, orthogonal structures were used to improve animations [BW08], to seed
stream lines on two-manifolds [RPP∗09], and they are well-known in the com-
puter vision community in the context of, e.g., shape-from-shading [CLL07].

Seed structures for stream geometries are usually placed manually. Seeds for
stream ribbons and particles can be interactively moved around for real-time
exploration [KKKW05]. The appearance of stream ribbons and surfaces can be
enhanced using illustrative techniques as shown by Born et al. [BWF∗10]. Hum-
mel et al. [HGH∗10] apply screen-space curvature approximations to enhance
integral surface visualizations. Recent approaches also focus on the computation
of frame-coherent and perceptually enhanced results for interactive exploration,
such as Günther et al. [GBWT11, GRT13] for line renderings. These approaches
only focus on the visual representation and not on selecting representative flow
features. In Chapter 10, we present a method for the automatic selection of
representative stream surfaces.

8.1.2 Texture-based Flow Visualization on Integral Surfaces

Another class of flow visualization techniques are dense texture-based methods.
Van Wijk pioneered texture-based flow visualization using spot noise [vW91].
Line integral convolution (LIC) approaches [CL93, SH95] can be used to visu-
alize the flow on integral surfaces in a dense way: recent methods range from
the generation of texture atlases [LTWH08] to image-space techniques [LGSH06],
which can be frame-coherent [HPW∗12]. The survey by Laramee et al. [LHD∗04]
discusses various other texture-based techniques. More abstract illustrative visu-
alizations of stream surfaces were proposed by Born et al. [BWF∗10]. In the next
chapter we introduce, inter alia, LIC-like flow structure visualizations and illus-
trations that are defined by globally flow-aligned parametrizations. Our method
provides frame-coherence and supports stream and path surfaces as well as ani-
mation and requires no flow integration or line integral convolution.

8.2 definitions and notation

In this part of the thesis, we make use of the following formal concepts: given
is a 3d steady (i.e., not time-dependent) differentiable vector field v(x) over a

8.2 definitions and notation 139

domain D. Let J(x) be the Jacobian tensor field of v. To ease the formal presen-
tation, we assume D = R3 to prevent boundary effects for integration. This is
not a limitation: in practice, integration is stopped if the domain boundary is
reached.

We again use the flow map concept φ that maps to the location of a massless
particle seeded at x0 after kinematic stream line integration in v over a time
period τ:

φτ(x0) = x0 +
∫ τ

0
v(x(t))dt

with x(0) = x0 and ẋ(t) = v(x(t)) (cf. the flow map (34) for unsteady flows).

Let x(s, t) be a regular parametric surface in D, and let n(s, t) be its unit normal.
Then a defining property of x being a stream surface is v(x(s, t))T n(s, t) = 0 for
every (s, t) of the surface domain:

x

n

s

v

One way to construct a stream surface is to start integration in v from a paramet-
ric seed curve s(s). A stream surface x can then be described in explicit parametric
form as the collection of all stream lines starting at s:

x(s, t) = φt(s(s)) .

Note that ṡ×v(s) 6= 0 has to hold for regular parametrizations of non-degenerate
stream surfaces.

Closely related are path surfaces xt0 in time-dependent flows v(x, t). These sur-
faces are also integrated from a seed curve s and given as the collection of all
path lines seeded on s at time t0 using the unsteady flow map (34):

xt0(s, t) = φt
t0
(s(s)) .

9
I N T E R A C T I V E S U R FA C E - B A S E D F L O W V I S U A L I Z AT I O N
U S I N G P O I S S O N - B A S E D T O O L S

In this chapter, we show that both, interactive flow-aligning surface deformations
and their parametrizations, can be computed efficiently and in a unified way
by a Poisson-based optimization framework. Poisson-based methods are well-
known with many applications in image and geometry processing. This is the
first approach that applies this technique in the context of surface-based flow
visualization.

In contrast to existing methods that require seed curve manipulation, our ap-
proach is based on direct interaction with entire surfaces that are near flow-
aligned. We do not perform surface integration but instead propose an inter-
active surface deformation-based method that allows free positioning of surfaces.
This way we achieve a more direct interaction with the resulting flow-aligned
surfaces. The set of flow-aligned surfaces under consideration does not only
contain flow-tangential surfaces, which correspond to standard stream surfaces,
but also flow-orthogonal surfaces, which, in general, cannot be obtained by a
simple surface integration. Our approach is generalized to computing both
types of surfaces by deformations that are steered by flux optimization criteria.
Our flow-tangential surfaces are particularly useful for interactive flow explo-
ration. Flow-orthogonal surfaces are well-suited to provide seed structures for
integration-based methods, because every embedded curve is flow-orthogonal
by construction. These curves can be obtained as iso-contours of special flow-
aligned parametrizations. Moreover, the same global parametrizations can fur-
ther be used for, e.g., texture-based visualization, and we show how they define
animated and view-independent LIC-like and illustrative renderings.

9.1 poisson-based optimization and modeling

Both our deformation and parametrization approaches apply Poisson-based op-
timizations. For completeness and self-containment, we begin this chapter with
a brief review of the general Poisson optimization method and its discretization
for piecewise linear functions on triangular meshes.

141

142 interactive flow visualization using poisson-based tools

Poisson-based surface deformations were first proposed by Yu et al. [YZX∗04].
They apply the idea of Poisson-based image editing by Perez et al. [PGB03] in the
context of geometric modeling. Using their basic technique a number of geom-
etry processing methods were proposed: applications range from user-defined
deformations [ZRKS05, SA07], pose interpolation [XZWB06], parametrizations
[LPRM02, ZRS05, LZX∗08] to deformation transfer [SP04, ZRKS05]. Surface re-
construction [KBH06, ZGHG10] and smoothly shaded drawings [OBW∗08] also
use related concepts. All these methods are based on similar Poisson-based com-
putations. They differ in the way local gradients are transformed prior to func-
tion reconstruction. This chapter shows how gradient transformations are deter-
mined in a data-driven way to align surfaces to a flow field using deformations.
We also refer to Section 7.4.2, where we study related discretized Poisson-type
systems in the context of energy regularization.

Given is a guidance vector field h in a two-manifoldM with associated gradient
operator ∇. Then Poisson-based methods search for the scalar field u on M
whose gradient ∇u best fits h in least-squares sense. Formally, the continuous
energy

e(u) =
∫
M
‖∇u− h‖2 dx (61)

is minimized. A computationally attractive and sufficient condition for a min-
imizer is given by the solution of Poisson’s (point-wise) elliptic linear partial
differential equation

∆ u = ∇T h , (62)

which has to hold for all x ∈ M and needs to be solved subject to suitable bound-
ary constraints (see, e.g., [AMR88]). In (62), ∆ denotes the Laplace-Beltrami op-
erator on M, which can be represented by ∆ = ∇T∇, i.e., as the divergence of
the gradient.

M

h u

We again discretize surfaces M by triangular meshes (V , T) defined by sets
V of vertices with coordinates xi ∈ R3, and sets T ⊂ V3 of triangles. Scalar
fields u are piecewise linear functions on triangulated surfaces, i.e., on a triangle
t = (a, b, c) with coefficients ui at the vertices i, we have u(x) = ∑i∈t φi

t(x) ui
with barycentric coordinates φi

t(x) as linear basis functions (see Appendix A).

9.1 poisson-based optimization and modeling 143

The piecewise constant gradient field on t is given by ∇u = ∑i∈t∇φi
t ui. One

way to compute the constant gradients ∇φi
t of the basis functions is to solve the

linear system(xa − xc)
T

(xb − xc)
T

nt
T

 [∇φa
t ∇φb

t ∇φc
t
]
=

1 0 −1

0 1 −1

0 0 0

 ,

where nt is the unit normal of the triangle. If all scalar field coefficients ui are
stacked in a vector u, one can assemble a 3 |T | × |V| gradient operator matrix
G from the basis function gradients such that G u is the vector of stacked scalar
field gradients on each triangle (see Appendix A.1 for a derivation).

As scalar field gradients on triangular meshes are constant per triangle, the inte-
gral of (61) simplifies to an area-weighted sum of quadratic differences, and we
can rewrite the integrated energy as

e(u) = ‖G u− h‖2
A , (63)

where h is the vector of stacked guidance gradient field vectors per triangle and
A is a 3 |T | × 3 |T | diagonal inner-product matrix of triangle areas that performs
the integration (see Chapter 7). Then the optimal scalar field minimizing e(u) is

obtained by solving the linear system ∇ e(u) !
= 0, which results in the normal

equations

GT A G u = GT A h . (64)

This linear system is a discretization of the Poisson Equation (62) on triangular
meshes with the discrete Laplace-Beltrami operator matrix L = GT A G and the
discrete divergence operator matrix D = GT A. The matrix L is sparse and
positive-semi-definite, its kernel is spanned by constant functions. Note that this
discretization of the Laplace-Beltrami operator is equivalent to the well-known
discrete cotangent discretization [PP93] with barycentric area weights (see, e.g.,
[BS08]).

For Poisson-based surface deformations the gradients of all three scalar coor-
dinate functions are modified, and the coordinates of the deformed mesh are
reconstructed by solving Equation (64). More precisely, let Yt be the 3× 3 matrix
of the mesh coordinate gradients of triangle t, YT =

[
YT

1 , . . . , YT
|T |

]
the 3 |T | × 3

matrix of all stacked gradients, and XT =
[
x1, . . . , x|V|

]
the |V| × 3 matrix of

stacked mesh coordinates such that Y = G X. Then the per-triangle gradients
are modified using local gradient transformations Tt to give Y′t = Yt TT

t . Finally,
the deformed mesh with coordinates X′, whose gradients best conform to the
transformed gradients in least-squares sense, is reconstructed by solving

L X′ = D Y′ . (65)

144 interactive flow visualization using poisson-based tools

M0 Mk

Figure 56: Deformation Principle. An initial surface mesh (•) is iteratively deformed by
conceptually aligning each triangle individually to the flow and reconstructing
the mesh (•) from these transformed gradients until the iteration converges
to a flow-aligned mesh (•).

As the gradients are translation-invariant, the coordinates of at least one vertex
need to be prescribed when solving this system.

Different applications rely on this general Poisson-based surface reconstruction
technique and differ only in the way the local transformations Tt are specified.
Usually, these transformations are combined rotation and scaling operations
[YZX∗04, SP04, ZRKS05, XZWB06]. In this chapter, we use a flow data-driven
specification of the local transformations Tt to obtain either flow-tangential or
flow-orthogonal surfaces.

9.2 interactive deformation-based flow alignment

In this chapter, we provide interactive tools for the explorative analysis of 3d
steady vector fields v(x) over a spatial domain D. A popular and well-studied
family of methods for the visualization of vector fields are integral surfaces. For
steady vector fields these are usually stream surfaces [MLP∗10]. As introduced in
Section 8.2, stream surfaces are regular surfaces S ⊂ D that are tangential to the
flow, i.e., given the normal n(x) of the stream surface, the local flux condition

n(x)T v(x) = 0

holds for all points x on S . Therefore, the total flux through a stream surface

f =
∫
S

n(x)T v(x)dx

vanishes 1.

Stream surfaces are usually constructed by advancing front integration algo-
rithms that start integration at seed curves, such as straight line segments. Seed
curves are usually defined manually by domain experts in an iterative and time

1 Note that there can be non-stream surfaces that minimize the total flux f due to the sign of the
integrand. However, the surfaces we compute minimize the total flux by being locally tangential

to the flow. Hence, effectively we optimize the absolute flux f̄ =
∫
S

∣∣∣n(x)T v(x)
∣∣∣ dx.

9.2 interactive deformation-based flow alignment 145

consuming process [MLP∗10]. Moreover, even if users are restricted to simple
seed geometries, it is still possible to specify flow-tangential curves that lead to
degenerate stream surfaces.

We propose an interaction metaphor that is different to this classic approach and
requires neither seed curve specification nor flow integration. Instead, our spec-
ification approach is deformation-based and we give the user direct, interactive
control over complete surfaces that are flow-aligned: the basic idea is to start from
an initial surfaceM0, which is usually a procedurally generated planar triangle
mesh. The user positions this surface within the area of interest of the flow do-
main. Then this surface is iteratively deformed into intermediate surfaces Mk
in a way such that the result converges to a surface that is aligned with the flow.
Figure 56 illustrates the basic principle. At any time the user can interactively
reposition the surface to more interesting locations. Simultaneously, the shape of
the surface adapts according to the altered local flow. We apply Poisson-based
deformations and achieve interactivity by pre-factorization of the involved lin-
ear operators. In contrast to other Poisson-based deformations, our approach is
data-driven in that it is steered by the local flow.

Note that in this chapter we denote both, flow-tangential and flow-orthogonal
surfaces, by the uniform term flow-aligned surfaces. The surfaces are distin-
guished by either minimizing or maximizing flux. Flow-tangential surfaces cor-
respond to stream surfaces, whereas flow-orthogonal surfaces are most useful
for the specification of seed structures that are near flow-orthogonal and define,
e.g., non-degenerate stream surfaces.

orthogonal alignment. Surfaces that we align orthogonally to the flow
maximize total flux. Exactly flow-orthogonal surfaces exist only in helicity-free
fields, i.e., in field where vT (∇× v) = 0 holds in every point [PCY09]. In gen-
eral vector fields the orthogonality of surfaces is only possible approximately
[SRGT12].

Before considering the entire surface mesh, we start with the analysis of aligning
a single triangle orthogonally to the flow. The only admissible class of deforma-
tions are (rigid) rotations, since we strive to preserve the shape of the triangle
and only align it locally to the flow. Let R(a, γ) ∈ SO(3) be the transformation
describing a rotation around the axis a with angle γ, and let γ(p, q) be the en-
closing angle between the vectors p and q. If we assume a linear vector field
v(x) on a triangle t = (a, b, c) given by vt(x) = ∑i∈t φi

t(x) v(xi), then the flux ft

through t is given by evaluation of the integral

ft =
∫

t
nt

Tvt(x)dx =
At

3
nt

T (v(xa) + v(xb) + v(xc)) ,

with triangle area At and normal nt. Since 1
3 (v(xa)+v(xb)+v(xc)) is the value of

the linearized vector field at the center of the triangle, the nonlinear flux through

146 interactive flow visualization using poisson-based tools

nt

t

vt

γ

nt

t

vt

γ
γ = π/2

n′t

t′ vt

γ = 0
n′t

t′
vt

RR

Figure 57: Triangle Alignment. A single triangle (resp. its coordinate function gradients,
•) is aligned either orthogonally (left, •) or tangentially (right, •) to the flow
by rotations R that depend on the angle γ.

the triangle can be approximated by dropping the linearity property and evalu-
ating the approximate flux by a single point quadrature that evaluates the vector
field only at the triangle center: ft ≈ At nt

T vt with vt = v(1
3 (xa + xb + xc)). To

maximize the flux and align the triangle orthogonally to the flow a rotation that
minimizes γ(nt, vt) has to be performed around the axis at = nt × vt. We there-
fore rotate the triangle (around its center) by the transformation R(at, γ(nt, vt)),
such that the approximated flux ft is maximized, see Figure 57 (left).

Using Poisson-based deformations this consideration for a single triangle can
directly be applied to align triangular meshes to the flow. Instead of transform-
ing the vertex coordinates directly the basic idea is to transform the gradients
of the coordinate function of each triangle. This means that the local gradient
transformations of each triangle of the mesh are given by

Tt = R(at, γ(nt, vt))

(see Section 9.1). The deformed mesh that optimally approximates these modi-
fied gradients (in least-squares sense) is then reconstructed by solving Equation
(65). Figure 56 (center) illustrates this concept. In Section 9.6, we show that our
method for computing orthogonal surfaces achieves higher flux rates compared
to APAP surfaces by Schulze et al. [SRGT12].

tangential alignment. Only a slight modification of the previous argu-
ment is required to directly obtain flow-tangential surfaces in the same frame-
work, as flow-tangential surfaces minimize the total flux. Therefore, using

Tt = R(at, γ(nt, vt)− π/2)

to minimize the deviation of γ(nt, vt) from π/2 as the local gradient transfor-
mation for each triangle minimizes the flux through each triangle, and approxi-
mately flow-tangential surfaces are obtained (see Figure 57 (right)).

interactive iterative deformation. Surfaces will in general not di-
rectly be aligned with the flow if the mesh is reconstructed using (65) together
with the proposed local gradient transformations. This is because the gradients
of the reconstruction only comply with the prescribed gradients in least-squares

9.2 interactive deformation-based flow alignment 147

sense. Moreover, and more importantly, the rotations are only flux-optimizing
if triangles undergo no translation (unless the vector field is constant). This is
because otherwise the local flow after reconstruction differs from the one that
was used to determine the rotations. In fact, the reconstruction inevitably has to
introduce slight translations for the mesh to be continuous. Therefore, one sin-
gle reconstruction is, in general, not sufficient to obtain a deformed and aligned
mesh. Yet, if only small deformations are performed, then the flux is iteratively
optimized until the mesh converges to an aligned configuration. This is justified
by a mild continuity assumption on the vector field, i.e., a matrix norm of the
Jacobian of the vector field is bounded. The convergence in interactive sessions
is further quantified in Section 9.5.

We perform small deformations by limiting the maximal absolute value of the
rotation angle by a constant small value η. Hence, small deformations are per-
formed iteratively and we compute new local gradient transformations for each
intermediate deformed configuration Mk. Convergence is achieved if the max-
imal rotation angle is smaller than a constant value ε. This iterative deforma-
tion approach is, in essence, similar to other single-step deformation [SA07] and
parametrization methods [ZRS05, LZX∗08], which also minimize nonlinear mea-
sures.

From the user’s perspective these iterative deformations seem to be continu-
ous, although the deformations do not comply with the formal definition of
continuous deformations of Section 3.1, because we compute no continuous
parametrization of the evolving shape. In the iteration we merely only obtain
discrete samples of an underlying continuous deformation. This is sufficient
for the considered application because deformations generally converge quickly
(see Section 9.5), and we are only interested in the final converged result as the
intermediate steps only approximate this solution.

stabilization. There are two cases that still need to be handled by correc-
tions of the local gradient transformations: first, triangle area may vary between
iterations due to the least-squares reconstruction. We avoid this artifact by per-
forming an additional damped rescaling transformation of the prescribed gra-
dients by using T′t =

√
A0

t/Ak
t Tt as local gradient transformations, where Ak

t is
the area of triangle t in the k-iteration. Second, for tangentially aligned sur-
faces it is possible that two neighboring triangles converge to a flow-aligned, but
oppositely directed folded configuration, because both configurations minimize
the local flux. This is due to the fact that local gradient transformations are
computed independently of each other. To correct this artifact we prescribe a
maximal dihedral angle θmax. If for two neighboring triangles p and q with dihe-
dral angle θpq we detect that the angle defect δ = θpq− θmax > 0, i.e., the dihedral
angle is greater than the prescribed maximum angle, we modify the local gradi-
ent transformations as T′p = R(np× nq, δ/2)Tp, and T′q = R(nq× np, δ/2)Tq. This
way the dihedral angle is minimized in consecutive iterations until the fold is

148 interactive flow visualization using poisson-based tools

resolved. We demonstrate the stability of this unfolding technique in the accom-
panying video corresponding to the publication [MSRT13b] 2. In the unlikely
event of sampling a critical point, i.e., vj = 0, or if the triangle is located outside
of the flow domain we simply set Tj = I. In all experiments we use η = 0.1,
ε = 10−6, and θmax = π/2. These are all parameters of our approach.

numerical solution. For the reconstruction of the deformed mesh using
(65) the coordinates of at least one vertex need to be prescribed to account for
the translation invariance of the Poisson system. We found that fixing vertices of
the triangle that is closest to the barycenter of the mesh works well in practice.
It is sufficient to use “soft” constraints on these vertices such that the system in
(65) becomes positive-definite.

The global iterative deformation can be performed in real-time as each single
deformation is very cheap. This is because for each iteration only the right-hand
side of (65) varies. In particular, the matrices L and D are constant as we dis-
cretize these operators on the initial mesh M0. This approach has two benefits:
first, since the system matrix L (augmented with a “soft” constraints diagonal
term WT W weighted by β 3) is symmetric positive-definite, we are able to per-
form one single sparse Cholesky factorization only once in a preprocessing step
of the interaction. This factorization RT R = L + β WT W yields the sparse trian-
gular Cholesky factor R. Then only efficient back-substitutions have to be per-
formed in each iteration for updated right-hand sides to update the mesh coordi-
nates and guarantee interactive deformations: X′k+1 = R−1 R−T (D Y′k + β WT Xc

)
with the matrix Xc of constrained mesh coordinates. Second, in each iteration
M0 is deformed according to the updated gradients, and we conceptually do not
deform intermediate meshes. This way possible errors introduced in a single de-
formation step cannot accumulate in the iteration and the mesh discretization of
the deformed surface is based onM0.

interaction. During the iterative deformation the user can interactively po-
sition and orient the current surface Mk inside the flow domain. In the next
iteration the surface is deformed according to the changed local flow. We pro-
vide rigid translation and rotation operations and interleave user operations
and deformation iteration. Usually deformations converge after a few iterations
(quantified experimentally in Section 9.5). The surface can also be grown in a
user-defined direction. We use a growing strategy that is similar to the one by
Schulze et al. [SRGT12] by computing an offset curve at the boundary that is
tangential to the surface. The offset curve is then tessellated to obtain the grown
surface. Note that we perform this update operation of mesh coordinates on

2 The video is located in the additional material folder addmaterial/poiss.
3 “Soft” constraints are a special form of (algebraic) Tikhonov regularization with W ≡ Γ, where Γ

encodes the indices of the constrained vertices (see Chapter 7).

9.3 surface parametrization for seed extraction 149

α0

α1

Figure 58: Flow-aligned Parametrizations. Top: an interactively placed flow-tangential
surface (•) is parameterized in a flow-aligned way. From an iso-contour (•) a
larger exact stream surface is integrated (left to right). Bottom: orthogonally
aligned surfaces (•) are parametrized using different angular rotations (left)
or using circular geodesics-based distance fields (right).

both the current meshMk and the base meshM0 to be able to update the differ-
ential operators, which are discretized onM0. However, since growing changes
the connectivity of the mesh, the discretized Laplace-Beltrami operator has to be
refactored in each growing step. This is a more expensive operation, especially
for large meshes. It turns out that growing a tangentially aligned surface in a
direction orthogonal to the flow is advantageous for the seed curve extraction
discussed in the next section (see Figure 61).

9.3 surface parametrization for seed extraction

The flow-aligned deformations presented in the previous section are well-suited
for interactive exploration of flow data sets. However, as we do not perform
mesh adaption during deformation, we cannot formally guarantee exact flow
alignment. Nevertheless, the converged surfaces are well-suited to provide or-
thogonal seed curves for an additional front line-based stream surface integration
using either classic [Hul92] or more advanced [SGRT12] surface integrators.

Stream surfaces seeded from curves in approximately flow-tangential surfaces
coincide locally, but they span a larger part of the domain due to integration.
Flow-orthogonal surfaces are even more suited for stream surface seeding as
any curve in such a surface is also flow-orthogonal by construction. Seed curves
on flow-orthogonal surfaces can either be manually “drawn” by the user (see Fig-
ure 61) or computed automatically. To automatically calculate seed curves we
first perform different kinds of parametrizations of flow-aligned surfaces. Flow-
orthogonal seed curves are then extracted as iso-contours of these parametriza-
tions.

150 interactive flow visualization using poisson-based tools

Note that the following computations are based on the same computational
framework of Poisson-based scalar field optimization. In fact, our approach

r(x)

s(x) bt

at

to parametrization of flow-aligned surfaces is similar to the
surface quadrangulation approach by Bommes et al. [BZK09].
This approach first computes a normalized orthogonal cross
field Ct = [at, bt] on each triangle t. If these are interpreted as
the parametrization gradient and cogradient, we can directly
compute the corresponding parametrization scalar fields. For
this a globally integrated parametrization energy

ep(r, s) = ‖G r− a‖2
A + ‖G s− b‖2

A = ‖G [r, s]− [a, b]‖2
A (66)

similar to (63) is minimized for the parametrization scalar fields r(x), s(x) with
stacked coefficients vectors (r, s). This is equivalent to solving

GTA G [r, s] = GTA C (67)

with the 3 |T | × 2 matrix CT =
[
CT

1 , . . . , CT
|T |

]
. Scalar fields need to be con-

strained at a single vertex c once again. Unless otherwise specified by the user
we constrain the vertex nearest to the barycenter onto the parameter origin. In
general, only the gradients at need to be determined, and the second orthogonal
cross direction follows from bt = at × nt. For quadrangulations the computa-
tion of the guiding cross fields turns out to be the most complex part, because
they need to be determined from the shape geometry only [BZK09]. In this work,
however, we make use of the flow-alignment property of the considered surfaces,
from which guidance fields can directly be determined. Figure 58 illustrates the
different parametrization types we propose: tangential, orthogonal, and circular
parametrizations.

tangential parametrization. For tangentially flow-aligned surfaces a
natural choice for the parametrization guidance field at is simply the vector field
itself: at = Pt vt/‖Pt vt‖with Pt = I−nt nT

t . The projection Pt into the triangle plane
is only required if the surface is not yet aligned exactly with the flow. Normaliza-
tion of the gradient field guarantees that iso-contour lines are near-equidistant
on the surface. Iso-contours of r(x) are near-perpendicular to the flow and can
therefore be used as seed curves of stream surfaces, whereas iso-contours of s(x)
should not be used as seed curves as they are near-tangential to the flow. Note
that the extracted iso-contours are general curves, which is a much greater set
of possible seed curves compared to the typically used straight line segments.
The number of possible selectable stream surfaces is therefore also much higher.
This natural Poisson-based parametrization technique for flow-aligned surfaces
is applicable to all other integral surfaces as well and is useful in its own right:
Figure 59 demonstrates that our normalized parametrizations are less distorted
compared to the unnormalized time line/stream line parametrizations, which
are generated by common stream surface integrators like [Hul92]. We use this
type of parametrization to compute LIC-like visualizations in Section 9.4.

9.3 surface parametrization for seed extraction 151

Ours

Hultquist
[Hul92]

Figure 59: Stream Surface Parametrizations. The exact unnormalized time line/stream
line parametrization obtained by front line-based integrators (top) exhibits
more distortion than our Poisson-based tangential parametrization (bottom).

orthogonal parametrization. One application of orthogonally aligned
surfaces for flow analysis is their applicability as general seed structures. There-
fore, points on the interactively specified surfaces can also directly be used for
seeding, e.g., illuminated stream lines [MLP∗10] (see Figure 60).

To extract seed curves for surface integration we again rely on a parametrization.

nc

rc
α

at

vtBy construction, the vector field does not directly provide
directions that are tangential to the surface and usable for
parametrization guidance. To obtain these directions we
perform a global surface-dependent rotation in the follow-
ing way: for the normal nc at the constrained vertex c as
the reference, we compute a global rotation axis rc by us-
ing one basis vector of the kernel of nc. The basis of the
kernel can, e.g., be obtained by using a full QR-factorization nc = Qc Rc and
taking the last two column vectors of Qc. Then the unnormalized guidance field
is given by at = Pt (R(nc, α) rc)× vt. Here, we have introduced one additional
degree of freedom for the user in that rc can additionally be rotated in the kernel
by an angle α to align the resulting iso-contours differently in the orthogonal
surface. Again, iso-contours are general curves as they are embedded in orthog-
onally aligned surfaces. Note that they have the tendency to span the surface in
a straight way (see Figure 58 (left)).

circular seeds . For certain flow phenomena straight seed curves may not
be the desired type of seed structures. For example, recently circular seed curves
were successfully used for illustrative flow visualization [HGH∗10]. This type of
curves can also be extracted in our computational framework. Note that circular
curves can be regarded as iso-contours of a geodesic distance field centered at c.
One way to compute geodesic distances is to use fast marching methods [KS98].

152 interactive flow visualization using poisson-based tools

Instead, we use the recent method by Crane et al. [CWW13], who compute
geodesics using a heat flow method, because it uses the same gradient-based
operators we use in our work. We only sketch an outline of this method here.
In essence, their method first performs a heat flow integration from a point heat
source to obtain a heat distribution scalar field. Then a guidance vector field
is obtained by normalizing the negative gradient of the heat distribution. The
heat integration is performed by a single implicit backward Euler step by solving
(I− λL) h = h0 for the heat scalar field h. Here, h0 is the initial heat distribution
that is one at c and vanishes on all other vertices. As proposed by the authors,
we use a scale-invariant time step of λ = 5 AM/|T |, where AM is the total surface
area. Then the guidance vector field is obtained by normalizing the negative gra-
dients a = −G h on each triangle and a final Poisson system is solved with these
gradients for a distance field d(x). We use iso-contours of d(x) to extract circular
seeds on orthogonally aligned surfaces. Figures 58 (right) shows an example of
using this technique.

9.4 parametrization-based lic-like visualization

The Poisson-based parametrization presented in the previous section can directly
be used to compute dense LIC-like texture-based flow structure visualizations
for stream and path surfaces [LHD∗04]. For the unnormalized tangential case
(at = vt) the key observation is that the energy (66) approximates flow directions
with gradients of r(x) in least-squares sense. The scalar field r(x) can therefore
be interpreted as an approximation for the time coordinate of a global space-time
parametrization of stream as well as path surfaces. Such space-time parametriza-
tions are either hard to compute or are of poor quality (see Figure 59 (top)). For
this reason, surface-based LIC techniques rely on chart-packing or screen-space
techniques to overcome the absence of a high quality surface parametrization
[LGSH06, LTWH08, HPW∗12].

We use global tangential parametrizations to efficiently compute LIC-like visu-
alizations. These special parametrizations allow to simply map precomputed
seamless but structured textures onto the integral surface to visualize the flow
behavior. One choice is a high contrast texture of colored noise that is anisotrop-
ically low-pass filtered in time direction and generates LIC-like flow structure
patterns. Alternatively, an illustrative visualization of flow directions is obtained
by using a seamless texture of flow-aligned arrows. Both textures are shown in
Figure 63 (bottom). As texture structures are approximately aligned to flow di-
rections due to the energy-minimizing parametrizations, the visualizations have
a LIC-like character.

Flow directions are only approximated in least-squares sense and are not neces-
sarily exactly interpolated everywhere by the minimizers of (66). However, in
all our experiments we found that the gradients of r(x) are generally very well

9.5 results 153

fitted to the flow and will only diverge in small regions of the surface. The time
component of the energy ep therefore vanishes almost everywhere on the surface,
and the LIC-like visualization is not flow-aligned only in small localized regions.
To remedy this limitation, we mask these regions by blending the texture with
the average texture color at each pixel. The blending function b(γ) depends on
the local angle γ(v(x),∇r(x)) between the flow and the gradient of the time
component of the parametrization. A smooth cubic sigmoid-shaped blending
polynomial that interpolates b(0) = 0 and b(π/2) = 1 turns out to be sufficient to
hide the parts of the surface where ∇r(x) is not exactly aligned with v(x). The
remaining structures of the visualization are aligned with the flow and their vari-
ation is also distributed approximately proportional to ‖v‖, since we use at = vt

to fit the parametrization.

Our technique neither requires any flow integration nor costly texture advection
and only amounts to optimizing a single global parametrization energy. This
makes our texture-based method very efficient to compute as we only have to
sample the vector field once to setup the resulting linear system (67). Addi-
tionally, our visualizations are frame-coherent and the texture map can also be
used to animate the flow structures in steady stream surfaces: an animation
of flow structures is obtained by simply offsetting the time-coordinate of the
parametrization for each frame, resulting in a movement of the flow structure
along approximated stream lines. Note that animation is only meaningful for
stream and not for path surfaces.

9.5 results

We continue to provide further results of our approaches. Examples for the inter-
active work-flow and further results of all proposed techniques are demonstrated
in the video accompanying the corresponding publication [MSRT13b] 2.

seed selection. Figure 60 shows integration results starting from seed cur-
ves on orthogonal surfaces. The orthogonal surfaces were all placed interac-
tively. Their number of triangles ranges from 1.7 · 103 (Stalling2D) to 3.5 · 103

(Cylinder). The Stalling2D flow is a conservative two-dimensional bench-
mark flow data set proposed by Stalling [Sta98]. We show multiple uniformly
distributed stream surfaces on a highly curved orthogonal surface. Our ap-
proach for orthogonal surfaces does not suffer from “spiky” artifacts at fixed
vertices that may appear using the APAP approach (see Figure 5 in [SRGT12]).
A similar example is shown for the more complex Cylinder flow [CSBI05]
(see, e.g., [BFTW09, ELM∗12, SGRT12]) where an orthogonal surface was placed
near the flow vortex. Iso-contour variation reveals the narrow outflow region
of the vortex through the orthogonal surface. Different levels of the tumbling

154 interactive flow visualization using poisson-based tools

Stalling2D

Cylinder BubbleChamber

DeltaWing

Step

Figure 60: Interactive Seeding Results. The orthogonal surfaces (•) are positioned inter-
actively by the user. Then stream surfaces and stream lines (•) are seeded
from these orthogonal surfaces and integrated tangentially to the flow. Both
orthogonal (Stalling2D, Cylinder, and Step) as well as circular parametriza-
tions (BubbleChamber, cutaway view) were used to extract flow orthogonal
seed curves.

flow in the measured BubbleChamber data set of a bioreactor can be visu-
alized using circular seeding curves on an orthogonal surface located at the
turnover point of the flow. The simulated DeltaWing data set of the flow at
a triangle-shaped airplane is known to contain two dominant vortical structures
[Dal83, GKT∗08, BWF∗10, HGH∗10, SGRT12]. Flow-orthogonal surfaces can be
used to seed integrated quantities like stream lines near the assumed locations
of the vortices for their concrete visualization. Stream surfaces of different com-
plexity can be selected as different iso-contours on an orthogonal surface in the
Step data set of a flow behind a backward-facing step [KJ00]. Note that the
shapes of all interactively deformed surfaces are fairly insensitive to tessellation

9.5 results 155

(I) (II) (III)

(I)

(II)

Turbine

Figure 61: Seeding at the Turbine. Left: a tangential surface is interactively placed into
the inflow area of the flow (I). It is then grown orthogonally to the flow (II)
and an iso-contour of a tangential parametrization yields a non-straight seed
curve (III) for the integration of the final stream surface (top right). Right:
onto an interactively placed orthogonal surface (I) an orthogonal seed curve
is manually “drawn” (II) and used for stream surface integration.

quality, because the energy (63) is an integrated quantity and a discretization of
a continuous energy.

Figure 61 (left) illustrates an effective work flow to compute seed curves in pre-
scribed flow tangential surface patches at the example of a hydroelectric Turbine

[SGRT12]: a tangentially aligned surface is placed in the inflow region and subse-
quently grown orthogonally to the flow. Then a seed curve can be extracted from
the tangential parametrization defining a stream surface that covers a large part
of the domain and interpolates the initial patch. Note that extending a stream
surface orthogonally to the flow is not possible with classic stream surface inte-
grators, but poses no problem for our deformation-based approach. Figure 61

(right) shows another stream surface integrated from an orthogonal seed curve
that is “drawn” by the user on an orthogonal surface, which was positioned
interactively before.

lic-like visualization. Figure 63 shows LIC-like and illustrative visual-
izations that are based on our tangential parametrizations for both stream and
path surfaces. The visualized structures capture flow directions in all non-
masked regions and bifurcations are correctly represented by the parametriza-
tions. We evaluate average angles (in degree) and their standard deviation (γ̄, σγ)

between v and ∇r for the DeltaWing (1.0◦, 0.9), Step (2.2◦, 2.4), and Turbine

(2.7◦, 5.7) data sets. These values are close to optimally aligned solutions. The
larger standard deviation is caused by outlier regions, which are masked by
blending. We note that for a few examples the parametrization may not be
onto, i.e., it may contain self-intersections in the parameter domain. However,
self intersections in the parametrization pose no problem in this application as

156 interactive flow visualization using poisson-based tools

they only result in texels that are mapped to multiple parts of the surface. As
the textures have no structure except flow alignment, which is maintained even
at self-intersections, no visual artifacts or incorrect visualizations arise. Exam-
ples of frame-coherence / viewport-independence and steady flow animation
are shown in the video of [MSRT13b] 2.

convergence . The interactive deformations presented in Section 9.2 are de-
signed to either maximize or minimize the total flux iteratively. We quantify the
convergence of the deformation iteration within interactive user sessions. As
flux depends on the vector field norm, which can significantly vary in the flow
domain, we measure the discrete normalized flux

fn =
1

AMk
∑
t∈T

At nt
T vt

‖vt‖

in each iteration k. The results are visualized in the next graphs:

1000500

0

1

0

fn

User interaction / iteration k

The normalized flux fn of each deformation iteration in an interactive session
for tangentially (•) and orthogonally (•) aligned surfaces is shown. Translations,
rotations as well as growing operations were performed by the user, which re-
sult in quickly optimized “flux spikes”. In fact, we observe rapid decay for both
surface types such that convergence is achieved after few iterations. Note that
fn = 1 for exactly orthogonal surfaces, and fn vanishes for exactly tangential
surfaces. Moreover, tangential surfaces always converge to exactly aligned sur-
faces, whereas orthogonal surfaces may not always reach an exact state. This is
not surprising, since perfect orthogonality is generally not possible, except for,
e.g., helicity-free flows [PCY09]. Nevertheless, the experiments indicate that our
flow-orthogonal surfaces are generally close to exact perpendicularity.

performance . We solve linear systems using the CHOLMOD [CDHR08]
library to perform sparse Cholesky factorization with fill-in reducing reorder-
ing. According to Crane et al. [CWW13], solving Poisson-type problems has,
in theory, sub-quadratic complexity, but scales even better in practice [BBK05a].
All our examples were computed on an Intel Core i7-2600 3.4GHz Linux PC.
The following table lists measured timings of our single-threaded deformation
method:

9.6 discussion 157

|T | Preprocess Iteration IT/s NConv

Factor GTransf Solve

8 · 102 0.5 0.26 0.16 2,300 5

5 · 103 2.3 1.5 0.25 570 9

2 · 104 13.2 6.4 0.83 130 16

8 · 104 932 24.2 4.5 35 19

3.2 · 105 8, 000 91.1 23.0 9 22

For differently sized meshes (|T |) we summarize the required times to perform
system factorization (Factor), gradient transformation (GTransf), and system
solving (Solve) in ms. IT/s indicates performed number of iterations per second,
and NConv denotes the average number of iterations for convergence. Using a
mesh resolution of |T | ≈ 5 · 103 turns out to be sufficient for all tested data
sets. Moreover, significantly larger meshes can also be handled without prob-
lems. The timings indicate that interactive results can be guaranteed. A linear
system factorization (Factor) has to be computed only once and in each iteration
only efficient gradient transformations (GTransf) and system solving (Solve) by
back-substitution need to be performed. Note that local gradient transformation
computations require vector field sampling (see Section 9.2), which turns out to
be costly for high mesh resolutions. However, since each transformation can be
computed independently, this operation is a natural candidate for acceleration
by, e.g., parallel vector field sampling and transformation computation on the
GPU. The timings for tangential / orthogonal parametrization as well as for the
LIC-like visualizations are very similar to the presented deformation timings, as
almost identical systems are solved for Poisson-based parametrization.

9.6 discussion

relation to integration-based methods . Our method does not strive
to replace classic front line-based stream surface integrators for tangential sur-
faces in terms of approximation quality: integrated surfaces are flow tangential
by construction, and the approximation quality is high due to adaptive local
mesh refinement, which we do not perform to guarantee interactivity. Rather,
our approach applies Poisson-based methods to enhance the usability and ef-
fectiveness of the concept of surface integrators in multiple ways: approximate
interactive deformation-based exploration and specification of interesting flow
regions provides a “preview” for integration-based methods. Additionally, we
solve the specification problem of general nontrivial seed curves using a para-
metrization-based extraction approach. Growing tangential surfaces orthogo-
nally to the flow is another technique that is not possible with classic integrators.
Additionally, orthogonal surfaces are naturally obtained by flux optimization,

158 interactive flow visualization using poisson-based tools

fn = 0.92 fn = 0.97

Ours
1

0.75

f j

APAP [SRGT12, Figure 10]

Figure 62: APAP Comparison. Starting from a converged integration-based APAP sur-
face (left) our deformation converges to an even better aligned orthogonal
surface (right). The color scale captures normalized f j ∈ [0.75, 1]. The high-
lighted fixation artifact at the center vertex (•, left) is also removed by our
deformation-based approach.

whereas only a few integration-based methods exist for these types of surfaces.
Most recently, APAP surfaces were proposed for this problem.

comparison to apap. In the case of flux maximization we search for the
same class of surfaces as the APAP approach of Schulze et al. [SRGT12]: orthog-
onally aligned surfaces. In contrast to the integration-based APAP method, the
vertices of our surfaces are not constrained to only move along (scaled) flow di-
rections. Instead they move along general paths. This way we achieve higher
flux rates compared to the APAP approach. Moreover, our method does not
generate deformation artifacts at constrained vertices, whereas even with care-
ful regularization these artifacts cannot be completely suppressed by the APAP
approach. Figure 62 exemplifies both properties: we initialize our deformation
method with a converged APAP surface and obtain an orthogonal surface of
higher quality. Additionally, we only need to perform the expensive linear sys-
tem factorization once, whereas APAP requires to solve a new linear system in
every integration step.

smoothed energies . The energy smoothness concept of Chapter 7 can di-
rectly be applied to the triangle-based energies considered in this chapter, too.
In fact, the discussed systems of this chapter are identical to the Poisson-type
problems of Section 7.4.2. Our results indicate that energy smoothing is not nec-
essary in the first place and deformations converge in all relevant data sets. This
is because target gradients are prescribed for all triangles in a smooth way due
to the smoothness of the underlying vector field.

Still, we can construct pathological fields for which our iteration does not con-
verge to a stable solution: consider the FocusSaddle vector field v(x) = (y −
x, x− y, z)T, which is not helicity-free. No exact orthogonal surfaces exist in this

9.6 discussion 159

Step

r(x)

s(x)

Turbine

Tornado

DeltaWing

Turbine

UnsteadyCylinder

Figure 63: LIC-like Visualization Results. Precomputed textures of anisotropic noise and
flow-aligned arrows (bottom) are mapped to the tangentially parametrized
stream surfaces (Step, Turbine, DeltaWing, Tornado), and two path sur-
faces (UnsteadyCylinder). Resulting LIC-like and illustrative structures are
flow-aligned everywhere except at locally masked regions (•).

field. Moreover, due to the swirling structure of the field, our optimization for
orthogonal surfaces does not converge (in this special field!), because the local
vector field before and after surface reconstruction differs in a way that results
in non-converging rotational motion. Figure 64 (top) shows an example where
we have fixed a center triangle with “hard” constraints using elimination to am-
plify deformation artifacts. Interestingly, the deformation converges instantly
to an artifact-free and near-orthogonal surface with a smoothed Poisson energy
that is discretized similar to (50) (Figure 64 (bottom) with β > 0). Hence, as
energy smoothing incurs practically no extra costs due to the simple change of
optimization norm, it can be beneficial to use it for the proposed deformations,

160 interactive flow visualization using poisson-based tools

β = 0

β = 1
5

1

0.75

f j

Time
Figure 64: Smoothed Energies. Using the smoothed triangle energies of Chapter 7, the

deformation for an orthogonally aligned surface instantly converges in the
pathological FocusSaddle field (β > 0), which is not the case for the original
energy (β = 0). Note that artifacts are intentionally amplified by using hard
constraints on the fixed vertices of a center triangle.

too, although we observed rapid convergence in all other tested vector field even
without energy smoothing.

limitations . Our deformation method is based on local alignment of sur-
face orientations to the flow. High curvature regions of the flow require tangen-
tial surfaces to change their normal rapidly. This is only possible for surfaces that
are locally tessellated sufficiently high. However, since we perform no adaptive
mesh refinement yet, the deformation iteration is unlikely to converge in these
areas. An adaptive subdivision scheme (with costly refactorization) and crite-
ria for its applications would therefore be required to also handle these regions.
Note that this lack of refinement is not a severe problem for the current approach
as meshes do not degenerate in these areas; the mesh is rather “pushed out” of
high curvature areas due to folding penalization (exemplified in the video of
[MSRT13b] 2).

Essentially, the quality of LIC-like visualizations depends on the quality of the
underlying parametrization. Although exact flow alignment cannot be guaran-
teed by the least-squares parametrization energy, the presented results show that
the parametrizations are flow-aligned almost everywhere in data sets of practi-
cal relevance. Still, there exist regions where flow alignment may not exactly
be met and which are masked in the visualization. Our parametrization trades
exact flow alignment, which is hard to compute, for more efficient computa-
tion, which may not be exact everywhere. In contrast, screen-space LIC methods
become unstable at silhouettes, and chart-packing approaches suffer from tex-
ture resolution and discontinuity artifacts. The explicit hierarchical handling
of critical or hard-to-parameterize regions [LTWH08] and the analysis of better
suited parametrization energies is, therefore, an interesting direction for further
research.

9.7 summary 161

9.7 summary

In this chapter, we introduced a number of interactive Poisson-based tools for
surface-based visualizations of steady flow fields. We presented the idea of flux-
optimizing deformations from which we obtain both flow-tangential and flow-
orthogonal surfaces. We showed that interactive deformations and parametriza-
tions are well-suited to support explorative analysis and seed specification to
study flow phenomena. Our approach is effective thanks to a numerical fac-
torization of the involved linear operators, and we demonstrated rapid conver-
gence. Additionally, we introduced fast to compute LIC-like rendering tech-
niques. Since these methods are all based on a small set of well-established
differential operators, it is easy to integrate our approach into existing visualiza-
tion packages.

Our deformation-based method may also be applied to different data, e.g., to
solve ambiguities of DT-MRI fiber tracking [SS08]. Another promising direction
is to respect additional application-dependent surface quality measures in the op-
timization. We believe that the proposed parametrizations are also beneficial for,
e.g., applications like remeshing of integral surfaces and for rendering methods
that depend on parametrizations with a low amount of distortion [HGH∗10].

10
A U T O M AT I C G L O B A L S E L E C T I O N O F S T R E A M S U R FA C E S

In the previous chapter, we introduced a number of interactive flow exploration
approaches. In this chapter, we complement these methods by presenting a tech-
nique that assists users in the completely automatic selection of stream surfaces.
That is, we solve the following problem: given a 3d steady vector field v(x), we
find a stream surface that describes the global flow behavior of v “best”. Auto-
matic characteristic surface selection methods are important for flow exploration,
i.e., the detection of relevant flow features in unknown data sets. Addition-
ally, unsupervised flow analysis applications benefit from automatically selected
stream surfaces.

Automatic stream surface selection requires suitable quantitative and compara-
ble criteria that evaluate the quality of stream surfaces relative to its defining
flow. However, in the literature there has not been a formal description of what
a “good” stream surface is. Hence, we start this chapter with the introduction of
a new quality measure for stream surfaces. Our quality measure prefers surfaces
where lines of curvature are aligned with stream lines on the surface as well as
possible, i.e., the structure of the shape and the flow should be similar. This intrin-
sic quality measure is motivated by the fact that for such surfaces common line
renderings of the geometry and the flow coincide and are therefore not interfer-
ing with each other. Additionally, we show that the quality measure is related
to curvature-based surface fairing methods, which are well-known in geometry
processing but were not yet applied to surface-based flow visualization problems.
To make such a quality measure applicable, we show that it can be computed
without the need to explicitly estimate curvature tensor fields on stream sur-
faces. Based on our quality measures, we provide an automatic algorithm for
finding globally optimal stream surfaces. No user interaction is required by our
approach. The utility of the quality measures and the extraction method is then
demonstrated for a number different data sets.

163

164 automatic global selection of stream surfaces

10.1 background

A number of methods were proposed for the automatic exploration of flows
using line and surfaces-based geometries.

automatic line-based flow exploration. The problem of automat-
ically finding good distributions of stream lines on 2d manifolds is well-re-
searched. Turk and Banks [TB96] are first to propose an image-based algorithm,
and Jobard and Lefer [JL97, JL00] propose direct methods to solve the stream
line placement problem. Multiple improvements have been published and are
discussed in the survey by McLoughlin et al. [MLP∗10].

Stream line placement in 3d flow is a more complex problem. Several approaches
have been proposed to find well-distributed seeds in data space as well as
occlusion-aware methods that work in view space [MCHM10, GRT13] or apply
clustering [CYY∗11]. We again refer to the survey by McLoughlin et al. [MLP∗10]
for an overview on advanced stream line seeding in both 2d and 3d flows. Note
that the problem of stream line selection is less complex than the stream surface
selection problem, because the search space is significantly smaller: there is a
unique stream line that passes through a domain point.

automatic surface-based flow exploration. Only few methods have
been proposed for the more complex problem of automatic stream surface selec-
tion. Cai and Heng [CH97] present the first method that is based on implicit
stream surfaces representations. The resulting surfaces can either be extracted
as isosurfaces or rendered directly via volume rendering. However, the required
stream function integral of the vector field can only be computed for curl-free
flow. Theisel et al. [TWHS03], Weinkauf et al. [WTHS04], and Peikert et al. [PS09]
automatically find seed curves from topological structures. Unfortunately, their
methods may either extract too many or not enough stream surfaces. Recently,
Edmunds et al. [EML∗12] use isolines on domain boundaries as seed curves and
propagate stream surfaces into surrounding space. Their method is limited to
the existence non-vanishing flux on domain boundaries and has a domain filling
behavior. In a follow-up work, a clustering approach of local flow properties
is applied to find seed curve locations [ELM∗12]. However, no surface-based
measure is applied to evaluate the optimality of resulting stream surfaces. Since
stream surfaces are global structures due to integration, our new approach is
based on a global flow field analysis and optimization by measuring optimality
of complete stream surfaces. In particular, our method is independent of vec-
tor field topology, or the existence of curl or outflow boundaries. Note that we
are focusing on one representative and relevant stream surface, i.e., it is not the
goal to densely cover the domain with surfaces that potentially hide each other.
Furthermore, we search for a view-independent solution.

10.2 desiderata 165

Figure 65: Classic Stream Surface Illustrations. Examples of hand-drawn flow illustra-
tions using a single representative stream surface that visualize the global flow
behavior. The images are courtesy of Uwe Dallmann [Dal83] and included in
this thesis with the kind permission of the DLR Göttingen.

10.2 desiderata

We continue to describe requirements and design decisions of our approach for
relevant stream surface selection in more detail.

requirement of global surface-based approach . All other automatic
stream surface selection methods listed in the previous section have in common
that they are local methods: stream surfaces are exclusively selected by the qual-
ity of seed curves, i.e., by considering v and its derivatives along the curves.
Even if their seed curves perfectly fulfill such local criteria [ELM∗12], nothing
prevents the final stream surfaces from being integrated into areas where they
are either less interesting or even lead to poor visualizations by hiding inter-
esting structures. Instead, we argue that is is necessary to directly evaluate the
quality of stream surfaces that are integrated from these seed curves. This re-
quires a surface-based quality measure that is global by construction due to the
domain-wide stream surface integration. We introduce such a surface-based
quality measure in Section 10.4.

restriction to single stream surface . Common approaches for stream
line selection focus on finding a set of stream lines that covers the domain in a
dense and space-filling way. The situation for stream surfaces is different: even
a single surface can cover the complete screen space. Moreover, it is known
that even in low numbers stream surfaces tend to hide each other, leading to
cluttered visualization. Also, having a look into classic literature where 3d flow
illustrations are used reveals that most examples of 3d flows are only illustrated
with a single carefully chosen stream surface [AS92, Dal83]. Some examples

166 automatic global selection of stream surfaces

(a) (b)

x
s

s0

n

v

x1
x2

s

s1

n

v

s2

Figure 66: Stream Surface Parameterizations. (a) Different seed curves s describing the
same stream surface. Among all stream surfaces there is a unique orthogonal-
optimal one s0. (b) Different orthogonal-optimal seed curves produce differ-
ent stream surfaces, here for the example of a constant v.

of these hand-drawn illustrations of representative stream surfaces are shown
in Figure 65. We want to find a single similarly relevant stream surface auto-
matically. Note that this assumption fails for highly turbulent flows, for which
surface-based approaches are generally considered unsuitable.

10.3 on the complexity of the search space

Before proposing a solution, we discuss the complexity of the problem of stream
surface selection. In other words, we answer the question how many stream
surfaces exist for a 3d vector field. Consider a point q ∈ D and a normal n
with nT v = 0. We analyze how many different stream surfaces exist that pass
through q and are constrained to have the surface normal n there. Every stream
surface can be described by a seed curve s(s) with

s(0) = q , ṡ(0)T n = 0 , ṡ(0)× v(q) 6= 0 . (68)

Note that different seed curves that fulfill (68) describe the same stream surface.
In fact, a seed curve s′(s) = φλ(s)(s(s)) (for any differentiable function λ(s) with
λ(0) = 0) gives the same stream surface in a different parametrization. Among
all seed curves describing the same surface there is one unique representative:
the seed curve fulfilling (68) and an additional orthogonality condition that is
expressed by the ordinary differential equation (ODE)

ṡ(s)T v(s(s)) = 0

for all s. We call such a seed curve an orthogonal-optimal seed curve s0. Figure 66

(a) illustrates the concept.

In order to find the number of different stream surfaces, we have to find the num-
ber of different orthogonal-optimal seed curves, i.e., curves that are the solution
of the ODE with the initial value ṡ(0) = v(q)× n. Note that unique solutions
of this ODE are not well-defined: solving it as an initial value problem for a

10.4 quality measures for stream surfaces 167

x x

Figure 67: Stream Surface Quality. Left: a stream surface of high quality: the stream lines
(•) are aligned with the lines of curvature (•). Right: a stream surface of lower
quality where lines are not well-aligned.

certain s does not give a unique direction of continuation but a one-parametric
family of directions. Thus, the set of different orthogonal-optimal seed curves
is an infinite-dimensional infinite set. Figure 66 (b) showcases this property for
a constant vector field in which two different stream surfaces that pass through
the same point with the same normal are shown. From the number of different
orthogonal-optimal seed curves it follows that the cardinality of the set of dif-
ferent stream surfaces through q with normal n is above the cardinality of Rn

for any natural number n. This number of possible stream surfaces results in a
very large search space and a high complexity of the problem of stream surface
selection.

10.4 quality measures for stream surfaces

We continue to derive our quality measure for stream surfaces, which has a
perceptual as well as a differential geometric interpretation.

perceptual interpretation. Using perceptual arguments we investigate
the question which intrinsic properties characterize a good stream surface. Their
graphical representation is challenging because two pieces of information have
to be simultaneously presented: the surface shape and the flow on the surface.
The shape is usually represented by (non)-photorealistic rendering techniques
[BWF∗10]. To show the flow on the surface, most 2d steady flow visualization
techniques can be adapted to stream surfaces: examples are image based tech-
niques [LHD∗04], stream lines [SLCZ09], or elementary techniques [PGL∗12].
However, the perception of the shape and the flow are not independent – see for
example the work by Laramee et al. [LHD∗04], where image-based flow visual-
izations on the surface limit the perception of the shape. Hence, it is desirable to
find stream surfaces where the representation of their shapes and the embedded
flows yield similar structures and therefore do not interfere with each other.

In non-photorealistic rendering of shapes, standard techniques for surface rep-
resentation are line rendering and hatching [DC90, SS02]. It is known that lines
of curvature are good candidates for representing the surface shape [RKS00]. A

168 automatic global selection of stream surfaces

variety of user-studies show that lines of curvature improve the perceptibility
of surfaces [Int97, GIHL00, KHSI04b, KHSI04a, SW04]. If these lines are stream
lines at the same time, they can represent both shape and flow. Hence, the basic
idea of our approach is to search for stream surfaces where the stream lines are
aligned with the principal directions as good as possible. Figure 67 illustrates the
setting. The differential geometric interpretation of this local criterion will mo-
tivate the global optimality of the surfaces minimizing this alignment measure.
Also, our experiments indicate that this measure characterizes representative
stream surfaces of a flow domain. Note that recently curvature approximations
have already shown to be beneficial for integral surface rendering [HGH∗10].

To formulate a local alignment error, consider a stream surface x(s, t) at a certain
point, and let κ1, κ2 be the principal curvatures and p1, p2 the corresponding
principal directions of x in its tangent space [BKP∗10]. Furthermore, let α be the
angle between v and one of the principal directions:

x

n
p2, κ2

p1, κ1

v
α

Then, we define the local alignment error

ea := cos(α) sin(α) (κ2 − κ1) . (69)

Note that e2
a neither depends on the choice of the principle direction nor on its

orientation, and it vanishes if v is aligned with one of the principal directions. It
also vanishes at umbilical points (κ1 = κ2) by construction, because alignment is
not well-defined at these points.

differential geometric interpretation. The error ea has a related
differential geometric interpretation providing an additional more global moti-
vation for the measure: following Euler’s theorem [Eul67] the normal curvature
κn at x in the direction v is

κn = κ1 (cos(α))2 + κ2 (sin(α))2 ,

which gives ea = d
dα κn. Hence, ea is the directional derivative of κn in flow

direction. Surfaces that minimize e2
a therefore have low normal curvature vari-

ation in the direction of v. The process of curvature variation minimization
is generally termed surface fairing, which follows the principle of simplest shape:
the surface should be free of any unnecessary details or oscillations (see, e.g.,
[MS92, WW92]). Therefore, minimizing e2

a globally yields stream surfaces that

10.4 quality measures for stream surfaces 169

Figure 68: Stream Surface Alignment Quality Measure. Shown is a simple stream sur-
face in a Saddle vector field. Superimposed are principal curvature direc-
tions (•, scaled by |κ1 − κ2|) and the local vector field (LIC). On the surface
the squared local alignment error e2

a is color coded (low error •, high error •),
which depends on the alignment of the flow and any principal direction.

do not only capture local flow details but rather represent the global flow behav-
ior.

The error ea is not yet suitable for minimization because it requires a local estima-
tion of the curvature tensor of x. We consider the first and second order partial
derivatives of the implicit parametrization of x from which the surface curvature
can be computed:

xs = ṡ , xt = v , xss = s̈ , xst = J ṡ , and xtt = J v . (70)

From (70) it is straightforward to compute κ1, κ2, p1, p2. Inserting these values
into (69) gives the closed-form expression 1

ea =
nT J (v× n)
‖v‖2 . (71)

Equation (71) shows a remarkable property: the local alignment error at x with
normal n does not depend on the seed curve but only on n, v, and J. In other
words: all stream surfaces through a point x with normal n have the same lo-
cal alignment error! See Figure 68 for an example of this local measure on a
simple stream surface (Figure 73 shows the measure on more complex stream
surfaces).

Based on ea, we compute the average squared alignment error Ea by integrating e2
a

over the stream surface:

Ea =
1
A

∫ t1

t0

∫ s1

s0

e2
a ‖xs × xt‖ds dt (72)

for the stream surface x(s, t) with (s, t) ∈ [s0, s1] × [t0, t1] and surface area A.
The measure Ea is nonnegative and comparable for stream surfaces of different
area.

1 The step from (69) to (71) is a straightforward computation for which we provide an accompanying
Maple sheet corresponding to [MSRT13a] in the additional material folder addmaterial/surfsel.

170 automatic global selection of stream surfaces

The error Ea will be the target function for minimization. However, Ea has trivial
minimizers, e.g., stream surfaces in laminar flows with almost vanishing Jaco-
bian: in these areas, nearly planar stream surfaces minimize (72) because ea

vanishes. To exclude these trivial solutions, we expect a representative stream
surface to have non-vanishing average normal curvature. Setting

E = xT
s xs , F = xT

s xt , G = xT
t xt ,

L = nT xss , M = nT xst , N = nT xtt ,

the normal curvature is the ratio of first and second fundamental forms [BKP∗10],
i.e.,

κn =
L ds2 + 2 M ds dt + N dt2

E ds2 + 2 F ds dt + G dt2 . (73)

Since the tangential direction v corresponds to the direction (ds, dt) = (0, 1) in
the parametrization, inserting (70) in (73) gives

κn =
nT J v
‖v‖2

as the closed-form expression of normal curvature using vector field quantities.
To obtain a comparable measure we compute the average squared normal curva-
ture

Kn =
1
A

∫ t1

t0

∫ s1

s0

κ2
n ‖xs × xt‖ds dt (74)

We will later minimize deviation of Kn from a prescribed K0.

A third quality measure solves the ambiguity of the seed curve of a stream sur-
face: we expect a good seed curve to be as-perpendicular-as-possible to the flow.
We define

Ep =
1
`

∫ s1

s0

(
vT ṡ
‖v‖‖ṡ‖

)2

‖ṡ‖ds (75)

as the average deviation from perpendicularity of v along s, where ` is the arc
length of s. W.l.o.g. we assume s to be arc length parameterized, such that
` = s1 − s0. Finally, we have to consider the area A of the stream surface as a
fourth quality measure.

We aim to find a seed curve of the stream surface that minimizes these four
quality measures. Direct numerical optimization of this problem is hardly feasi-
ble due to the search space complexity and the nonlinearity of involved terms.
Instead, we develop a combinatorial algorithm that yields near-optimal stream
surfaces w.r.t. our quality measures.

10.5 automatic seed curve selection 171

Domain
Discretization

Weighted
Domain Graph

Optimal
Stream Surface

Simulated Annealing
Path Optimization

Ribbon
Integration

Figure 69: Algorithm Overview. We discretize the domain using a domain graph of
refined cubic cells (left) and perform a stream ribbon integration for each edge
to assign edge costs wi by (76) (middle, low costs •, high costs •). A simple
path of minimal costs computed using simulated annealing then yields a seed
structure of the optimal stream surface (right).

10.5 automatic seed curve selection

Using the stream surface quality measures we continue to present our stream
surface selection strategy. The algorithm consists of the following major steps
that are executed automatically for a user-provided flow domain and a set of
parameters. See Figure 69 for an overview of the method. First, we create a
spatial graph that densely covers the domain. Then, a stream ribbon integration
is performed for each edge of this graph. The quality of each stream ribbon
defines a cost value for each grid edge. We then perform a global optimization
for paths of approximate minimal costs using a simulated annealing algorithm.
In a final smoothing step on the resulting path, we obtain the seed curve for the
integration of the resulting stream surface.

domain graph . In order to perform a global optimization on the space of
stream surfaces we need a suitable discretization of this space or equivalently of
the space of seed curves. For this discretization we use the following inclusion
property for seed curves of stream surface:

Given a seed curve s(s), s0 ≤ s ≤ s1, of a stream surface x, this curve can
be subdivided at a point s(ss) into two curves sa(sa), s0 ≤ sa ≤ ss and sb(sb),
ss ≤ sb ≤ s1, such that s ≡ sa ∪ sb holds. Likewise, if sa and sb are used
as seed curves for new stream surfaces xa and xb, then also x ≡ xa ∪ xb holds
because both xa and xb share the unique stream line starting at s(ss). One can
therefore always extend a stream surface with another stream surface if their
corresponding seed curves connect in a common point.

This allows a domain discretization with short curve segments that join at com-
mon points. We use linear curve segments and the following subdivision scheme:

172 automatic global selection of stream surfaces

we first create a grid of uniform cubic cells that covers the whole domain. The
edges of these cells are all axis-aligned. In order to provide more directional de-
grees of freedom, each cell is subdivided by inserting vertices at the six face cen-
ters and the cell center, which are connected by face diagonals and cell diagonals,
respectively. Then each cell consists of 15 vertices and 44 edges, which are shared
with neighboring cells. Figure 69 (left) shows our discretization scheme.

The sets of all vertices V and all edges E ⊂ V2 define an undirected domain graph
G = (V , E) with vertices embedded in D. Let P be the set of all simple paths
in G, i.e., paths with no vertex repetitions. We use simple paths to approximate
the seed curves: any simple sequence of edges yields a piecewise linear seed
structure candidate. Possible candidates are evaluated w.r.t. the quality of the
stream surfaces that they define. The quality measure can be evaluated for each
edge independently to define edge costs. Due to the inclusion property, the
quality or equally the costs of a path results in a summation of associated edge
costs.

edge costs . The cost wi > 0 of each edge i ∈ E aggregates intrinsic prop-
erties of narrow stream ribbons xi ⊂ D (i.e., of stream surface with short seed
curves). We calculate each xi by performing a stream surface integration us-
ing each edge as the seed geometry. Integration is performed for a predefined
maximum time range and is stopped at the domain boundary. There are no
special requirements at this stage: we use Hultquist’s algorithm [Hul92]; any
other adaptive method for stream surface integration is applicable as well. A
stream ribbon is integrated for each edge of the domain graph. This is the most
time-consuming step of our method (see Section 10.6.4). However, this way edge
costs are based on truly nonlocal features of the vector field.

There are two remarks on this step that are worth noting: as ribbons are inte-
grated independently, we use a parallelized computation. Also, we observe that
reliable edge costs generally do not require ribbons of high resolution. Therefore,
a relatively coarse tessellation of the stream surface meshes is sufficient.

Edge costs are modeled as weighted combinations of the quality measures de-
fined in Section 10.4, which are evaluated on each stream ribbon xi. Edge costs
shall be minimal if a linear combination of quality measures is minimized.

We compute a discrete approximation of the surface integrals (72) and (74) by
quadrature, which samples local values of ea and κn at each triangle center and
weights samples by triangle area. This yields values Ei

a and Ki
n for the ribbon xi

with surface area Ai. Similarly, Ei
p is an approximation to the line integral (75),

which is also evaluated by quadrature along the domain graph edge.

The absolute values of these measures differ and cannot be compared between
data sets. In order to obtain parameters that are independent of the data, a
measure normalization is required that yields relative values. We normalize Ei

a,

10.5 automatic seed curve selection 173

Ki
n, Ei

p, and Ai to the range [0, 1] to obtain Ēi
a, K̄i

n, Ēi
p, and Āi. For the curvature-

based measures Ei
a and Ki

n we apply an additional log-transformation. This is
due to the fact that curvatures are not bounded and can become very large.
Moreover, they are not equally distributed, meaning that only in small regions
large values appear, while large regions have rather small values for ea and κn.

We model the final cost for an edge i of length `i by weighted quadratic contri-
butions as

wi = `i ∑
c∈{a,n,p,A}

βc

(
Fi

c

)2
(76)

with Fi
a = Ēi

a, Fi
n = K̄i

n − τ, Fi
p = Ēi

p, and Fi
A = 1− Āi. Cost minima of wi mini-

mize the alignment error (72). Moreover, higher costs are assigned to edges that
are aligned with the flow and whose stream ribbons have a smaller surface area.
The weights βx, x ∈ {a, n, p, A} define the relative weighting of cost components.
Generally, a good choice is an uniform weighting by βx = 1: we use this setting
unless stated otherwise for some experiments in Section 10.7. Then τ ∈ [0, 1]
remains the only parameter provided by the user: it steers the desired amount
of average normal curvature in flow direction with τ = 1 for higher and τ = 0
for lower values. Essentially, τ captures the prescribed average squared normal
curvature K0 (see Section 10.4) after normalization. If an edge is aligned with
the flow, i.e., Ēi

p > δ (we use δ = 0.8), we ignore its weight and discard the edge
from further processing by setting wi = ∞. Figure 69 (middle) shows a graph
with color-coded costs for each edge.

path costs . We define the total costs of a path pk ∈ P as

cγ(pk) = (1− γ) ∑
i∈Ek

wi + γ κ(pk) .

Ek ⊂ E is the set of edges of pk. This is a linear blend between edge costs and a
normalized measure of discrete polyline curvature κ. We include the additional
path curvature term to penalize undesirable “space-filling” paths in areas of
constant low edge costs (e.g., in laminar flow areas). The weight 0 ≤ γ < 1 is
a user parameter that trades minimal edge costs versus straightest seed curves
(see Section 10.6.1 for results of different choices for γ). A simple estimation of
the (normalized) curvature of the polyline is sufficient, we use

κ(pk) =
1
π ∑

ei , ei+1∈Ek

π −^(ei, ei+1) .

Here, ^(ei, ei+1) denotes the angle between two consecutive edges on pk.

174 automatic global selection of stream surfaces

global optimization problem . Our goal is to find a seed curve of the
best stream surface w.r.t. the defined quality measure, i.e., most importantly,
we prefer surfaces in which stream lines are aligned with lines of curvature.
This requires searching for the globally best seed curve in the entire domain.
We formulate this global optimization problem as a combinatorial problem: the
space of seed curves is discretized as the space of simple paths in the domain
graph, which covers the domain densely. The quality of a seed curve is evaluated
as the sum of edge costs in a path. The prescribed arc length ` of seed curves is
measured as the number of edges in a path, giving n = b`/`e

avge for an average
graph edge length `e

avg, which depends on the domain dimension and graph
resolution. Formally, we want to optimize

p? = argmin
pk∈P

{
cγ(pk)

∣∣ |Ek| = n
}

(77)

for an optimal simple path p? of length n. This is a combinatorial assignment
problem on a large finite search space P . In the literature the dual problem
is called the Heavy Path Problem [KBL12]. It is known to be NP-hard, i.e., it
is practically infeasible to compute the exact solution for large n. Instead, we
present an algorithm for computing an approximate solution in the following
sections.

local minimal paths . A key idea for a practical solution of (77) is to prune
the search space. Instead of all simple paths of length n in P , we consider only
a subset Q ⊂ P that only includes the simple minimal path starting in v of
length n for each vertex v ∈ V . This implies |Q| = |V|, where the paths in Q are
determined by a local minimization. This pruning step is justified by the fact that
any other paths p /∈ Q do not even constitute local minima and are therefore not
considered as candidates for a global minimum.

The locally minimal paths can be computed for each vertex using, e.g., Dynamic
Programming, an algorithmic standard technique that was recently used for find-
ing Heavy Paths [KBL12]. However, in practice this is only feasible for n ≤ 6 due
to the exponential combination complexity, which results from the high branch-
ing factor of our used domain graph (most vertices have 16 neighbors). We
therefore approximate Q with a greedy iterative deepening depth-first search
[Kor85], which restarts a depth-first search phase after each d steps from the cur-
rent optimal solution. This is justified by the fact that edges of minimal costs are
generally distributed along line structures in the graph – hence the depth-first
search phase – due to the penalization of flow-aligned edges. We use d = 5 in
all our experiments. This allows computing approximate local minimal paths of
length n > 15 efficiently. We implemented a lazy evaluation of Q, i.e., locally
minimal paths are computed only on demand and then stored for subsequent
evaluations.

10.5 automatic seed curve selection 175

10.5.1 Global Path Optimization by Simulated Annealing

Hard combinatorial problem similar to (77) are often encountered in many ap-
plications [HB10]. Different classes of algorithms exists that find approximate
solutions, e.g., genetic algorithms [Gol89]. An often successfully used meta-
heuristic to approximately solve similar problems is the Simulated Annealing (SA)
algorithm. It is a physically inspired algorithm that models the controlled slow
cooling of heated materials. Slow cooling reduces defects in the crystal-like struc-
ture of the material, which can be interpreted as a form of internal energy that
is optimized. The SA algorithm was introduced by Kirkpatrick et al. [KGV83]
as a general heuristic global optimization tool for hard problems. For instance,
SA was recently used in the visualization community by Sigg et al. to solve the
NP-hard problem of generating optimal cutaway illustrations [SFCP12]. Further
applications of SA can be found in the survey of Suman and Kumar [SK06]. We
briefly describe the SA algorithm in the context of our problem and refer to the
survey for more details on the method.

The SA algorithm introduces a system temperature T > 0 that serves as a control
parameter. A candidate solution is iteratively improved (the amount of change
depends on T), and T is slowly decreased following a temperature schedule.

single optimization step. We use the SA algorithm for an iterative up-
date of a candidate path that starts at the current vertex vc, which is initialized
randomly. A new candidate path is randomly sampled in the domain by select-
ing a new starting vertex vn in the Euclidean neighborhood of vc according to
a normal distribution with mean xc and variance

√
T/2, weighted by the length

of the diagonal of the domain bounding box. Higher temperatures increase the
probability for selecting distant candidate vertices, while at lower temperatures
variations are more local. The probability that vn is accepted for the next itera-
tion depends on the cost difference d = cγ(vc)− cγ(vn). Here, cγ(v) denotes the
cost of the minimal simple path pv ∈ Q that starts in vertex v. The probability
is given by the Metropolis transition probability Pvc→vn = min

{
1, ed/T

}
proposed

by Metropolis et al. [MRR∗53] (we omit the Boltzmann constant of the original
formulation). Pvc→vn guarantees that better solutions (d > 0) are always accepted.
Likewise, worse solutions (d < 0) can also be accepted, as Pvc→vn > 0 still holds,
and the probability for these events is enlarged for higher temperatures T. This
property enables SA to not get stuck in local minima but eventually leave them
once entered.

temperature schedule . The classic SA algorithm consists of a heating (an-
nealing) and a cooling phase that schedule the temperature [KGV83]. We found
the heating phase results in almost equal initial temperatures in all our exper-
iments – we therefore usually skip heating and start the cooling phase with a

176 automatic global selection of stream surfaces

fixed initial temperature value T0. In the cooling phase multiple optimization
steps are performed at a fixed temperature, and we count the number of ac-
cepted steps ma. If ma > ms for a fixed value ms, the temperature is lowered by
multiplying it with a constant factor 0 < λ < 1. The scaling of the temperature
by λ is also performed if the number of total steps exceeds a maximum value
mmax > ms. This scheme results in an exponential temperature decay. We stop
the iteration if mmax is not reached for three consecutive times and consider the
solution to be converged to the optimal path p?. We used the constant factors
T0 = 1/2 and λ = 0.9 that performed well in all our experiments. We analyze
choices for ms and mmax in Section 10.6.3.

10.5.2 Seed Curve Generation

The path p? represents a piecewise linear seed curve. We interpret this as an
approximation to a smooth, C2-continuous, seed curve s? that is obtained by
smoothing p? using an univariate subdivision scheme. Due to the close proxim-
ity of the spatial locations and tangential directions of p? and s?, we expect the
resulting stream surfaces to have similar behavior.

We use a simple corner cutting scheme that yields C2-continuous cubic splines
in the limit (see, e.g., Sabin [Sab10]) with an additional endpoint interpolation
rule. In each iteration, the scheme generates new points by the rules

yk+1
2i = 1

2 yk
i +

1
2 yk

i+1

yk+1
2i+1 = 1

8 yk
i +

6
8 yk

i+1 +
1
8 yk

i+2 .

Typically, three subdivisions provide a sufficiently close approximation to the
smooth curve. We obtain the resulting optimal stream surface x? by starting an
integration from s?.

10.6 results

We evaluate our method by a parameter description and present results of apply-
ing our approach to both analytical and real world vector fields. Additionally, we
provide a quantitative analysis of the convergence behavior of the optimization
and timings of our method.

10.6 results 177

γ = 0 γ = 0.4 γ = 0.9

Figure 70: Path Curvature Parameter γ. The curves are generated from minimal paths
(•) at the same highlighted vertex with different γ. Shown stream surfaces (•)
are the local optima of cγ given these curvature constraints in the DeltaWing

flow.

10.6.1 Parameters

Our method requires specification of the domain graph resolution. It strongly
influences the runtime of the method, as it prescribes the number of grid edges
and therefore the number of stream ribbon integrations and the size of the search
space of the optimization. However, we found that even relatively low resolu-
tions yield sound results, e.g., all the analytical examples have a graph resolution
of 203 cells. The highest resolution used in this work was a 20× 40× 15 cells
graph for the ACOutlet data set shown in Figure 72. In general, we observe
that a good default value for the resolution is given by the length ratio of vector
field grid cell diagonal to domain graph cell diagonal (DR) around five (see the
DR column of the table in Section 10.6.4). We evaluate the influence of different
resolutions in Section 10.7.

Also, depending on the concrete vector field characteristics, the integration direc-
tion (i.e., forward only or forward and backward) and the maximum integration
time should be specified. For vector fields with an inflow / outflow area (e.g., in
the Cylinder data set) we integrate in forward direction only until the integra-
tion reaches the boundary. In all other cases we integrate into both directions.

The number of edges n of the optimized paths dictates the total length of the
optimized seed curve. It is related to the graph resolution, which specifies the
range of edge lengths, and it influences the performance of the optimization, as
local minimal path computations are cheaper for smaller n. We require the user
to supply a value for n. Note that once the edge costs are computed, the less
time-consuming path optimization step can be redone with a different n and γ,
as required (see Section 10.6.4).

For different path curvature parameters γ we illustrate resulting minimal paths
that start at the same vertex in Figure 70. All paths respect the local edge cost
distribution (e.g., they still have the orthogonal-optimal property by lying in
a plane orthogonal to the flow). Increasing values of γ come with increased

178 automatic global selection of stream surfaces

Tornado [4]

Spiral

v(x) = (1, −z, y)T

Saddle

v(x) = (−x, y, z)T

Figure 71: Automatic Selection Results for Synthetic Vector Fields. Alignment optimal
stream surfaces selected by our method for n = 7 and integrated from the
optimized seed curves (•) in the synthetic fields. Surfaces x?τ=0 (•) minimize
and surfaces x?τ=1 (•) maximize mean normal curvature, respectively. The
local alignment quality of the x?τ=1 results is shown in Figure 73.

edge costs and therefore less optimal resulting stream surfaces. However, the
minimal path in terms of path costs only might not always be the most desirable:
for example, in areas of constant low edge costs the minimal path would be a
space-filling path with high curvature, which we found to be a spurious result.
In all our experiments we observed that using a value of γ = 0.2 avoids this
issue and yields all results presented in this work.

10.6.2 Stream Surface Selection Results

We continue to present results of our approach and refer to video accompanying
[MSRT13a] for more examples 2.

synthetic data sets . Figure 71 shows a series of automatically selected
stream surfaces in well-known simple analytic vector fields. These synthetic
vector fields are well-suited to exemplify our quality concept of alignment (see
Figures 68 and the closeups in Figure 73), combined with a variable prescribed
mean normal curvature. To do so, we show results that minimize (τ = 0) and
maximize (τ = 1) mean normal curvature while still optimizing the other quality

2 The video is located in the additional material folder addmaterial/surfsel.

10.6 results 179

measures (cf. Equation (76)). We call the resulting optimal surfaces x?τ=0 and x?τ=1.
In the Saddle field the optimal stream surface x?τ=0 (with βn = 1) is planar. In
fact, it is exactly the same solution that is obtained for βn = 0 in (76), i.e., if
the mean normal curvature is ignored in the optimization. This confirms our
theoretical proposition that the alignment measure is minimized by surfaces of
vanishing curvature. Naturally, the absolute alignment measure Ea is higher for
x?τ=1. Still, the surface is the best-aligned solution given the additional mean
normal curvature constraint.

Note that the optimized seed structures are not necessarily straight line segments
only. We also note that these simple linear vector fields exhibit a high degree of
symmetry and that the same optimal solutions can be generated by different
seed structures. Moreover, a given solution might not be the unique globally
optimal solution. Our algorithm selects one of the possible minimal solutions.
As practical problems do in general not have such perfect symmetries, we expect
to find unique solutions in these kinds of data sets.

real world data sets . We apply our selection method to a number of
complex vector fields of different domains and varying characteristics. The re-
sulting stream surfaces are shown in Figure 72. Again the optimal seed struc-
tures are general curves. The Cylinder vector field represents the flow around
a square cylinder [CSBI05]. It is a well-known and extensively studied phe-
nomenon [BFTW09, ELM∗12, SRGT12] (see also Figure 60). As we choose to in-
tegrate in forward direction only, both stream surfaces x?τ=0 and x?τ=1 are seeded
at the boundary of the inflow area to maximize the area constraint. Additionally,
both surfaces conform to the chosen τ parameter (low and high mean normal
curvature) while still minimizing the alignment error. This property does also
hold for the DeltaWing data set. It is a flow simulation around a triangle-
shaped airplane (see [BWF∗10, GKT∗08, GTS∗04, HGH∗10, SRWS10, SRGT12]
and Figures 60 and 63 for other approaches and results using a similar data set).
Here, the mean normal curvature of x?τ=0 vanishes. In contrast, the x?τ=1 stream
surface is well aligned with the two dominant vortex features. It is a single
stream surface where both vortical parts are connected by laminar flow areas
above and beneath the airplane. The ACOutlet data set represents the flow in
the outlet area of an air conditioning unit. It is used to predict the degeneration
of filters in the dissipation grid layer (not shown in the rendering). With a reso-
lution of 1.6 · 107 grid cells it is the largest data set we tested. Our method is able
to select a curved seed structure of a stream surface with a high outflow rate.
The outlet area of a hydroelectric turbine is simulated in the Turbine data set
where the flow is split at a bifurcation. Here, x?τ=1 is a stream surface leaving the
domain on both sides of the bifurcation. The Aneurysm is a blood flow simula-
tion at a human cerebral aneurysm, which is a weakness of the vessel wall that
potentially leads to rupture and life-threatening bleeding. The selected stream
surface x?τ=1 is clinically relevant as it covers a large fraction of the volume of the

180 automatic global selection of stream surfaces

Cylinder n = 8

CylinderHigh n = 14

ACOutlet n = 6

Turbine n = 13

Aneurysm n = 5

DeltaWing n = 8

BubbleChamber n = 8

Figure 72: Automatic Selection Results for Simulated Vector Fields. Surfaces x?τ=0 are
colored •, surfaces x?τ=1 are colored •, and the computed optimal seed curves
are colored •. The • stream surface in CylinderHigh is x?τ=1 extracted from
a domain graph of higher resolution compared to Cylinder. The closeups in
Figure 73 show the local alignment quality of the x?τ=1 results.

10.6 results 181

Saddle Spiral Tornado DeltaWing

BubbleChamber ACOutlet Turbine Aneurysm

Figure 73: Alignment Measure. The closeups show the local alignment error e2
a (low

error •, high error •), and scaled principal directions (cf. Figure 68) of the
optimal x?τ=1 solutions, which are shown in the Figures 71 and 72. Large
surface regions are well-aligned to the flow.

aneurysm. The flow of the measured BubbleChamber data set of a bioreactor
(see, e.g., [SWH05]) has different flow characteristics compared to the previous
in / out-flow dominant examples. Nevertheless, the selected x?τ=0 and x?τ=1 are
still similar to the previous examples concerning the planarity of x?τ=0 and the
more feature capturing property of x?τ=1. The alignment measure visualizations
in Figure 73 illustrate the local quality of the selected globally optimal solutions.
In all examples the largest portion of the principal directions are well-aligned
with the flow as prescribed by the alignment measure and optimized by our
selection algorithm.

Our method optimizes for flow alignment of the shape of stream surfaces in com-
bination with additional intrinsic stream surface properties. We expect our auto-
matically selected globally optimal results computed this way to be relevant for
the shown application areas. This is indicated by the fact that the stream surfaces
we find are very close to the stream surfaces presented in other approaches. See,
e.g., the related work on the DeltaWing data set, for which our automatically
selected stream surface is very similar to the manually selected stream surfaces in
[BWF∗10, GKT∗08, GTS∗04, HGH∗10, SWS09, SRWS10]. Additionally, the same
stream surface is very close to the characteristic stream surface in a similar flow
that is hand-drawn by Dallmann [Dal83] and shown in Figure 65 (left).

10.6.3 Simulated Annealing Convergence

For optimization we apply a heuristic search in form of the SA algorithm, which
is a randomized method. It is therefore mandatory to analyze the quality and
optimality of the results of this algorithm: we performed an evaluation run of
our method on a synthetic and a simulated data set. Given a domain graph
we find the ground truth optimal minimal path p? using a naïve search and

182 automatic global selection of stream surfaces

p?

p? Ti
m

e
(s

)
Ti

m
e

(s
)

c γ
c γ

mmax mmax

mmax mmax

p?

p?

Figure 74: SA Convergence. For the Spiral (top) and DeltaWing (bottom) data sets we
perform 100 SA optimizations per mmax and fixed n = 4. Graphs show the
mean path costs and optimization times (•) and the 95% confidence interval
(•). SA optimization converges to the globally optimal path p? (shown right)
for both data sets. Ground truth solution of p? are found in 55s (Spiral) and
61s (DeltaWing), respectively, by a naïve search.

exact minimal path computations using full depth-first search. Due to the high
branching factor of the graph this can only be done for a low number of edges
– we use n = 4 in this experiment. As proposed by Sigg et al. [SFCP12], we
use a fixed iteration number ratio of mmax/ms = 10 and perform multiple SA
optimizations per mmax. The results in Figure 74 show that the SA optimization
does converge to a single cost minimum for high enough mmax. Moreover, the
selected solutions are indeed global minima in the graph and are found in a
fraction of the time required by naïve search. We use mmax = 200 in all given
examples.

10.6.4 Timings

To evaluate the performance of our algorithm we measure the amount of time
required for each step of our method on an Intel Core i7-2600 3.4GHz Linux PC
with eight logical CPU cores and 16GB of main memory. The resulting timings
for different data sets and different graph resolutions are given in the following
table. For each data set the table shows grid cell to graph cell diagonal length
ratio (DR) 3, the total number of graph edges, and the total computation time (in
seconds) of each phase of our algorithm: stream ribbon integration (SR), edge

3 The DR value is not available for the Aneurysm flow because the data is not sampled on a regular
grid.

10.7 discussion 183

Data set DR |E | SR EC SA
n = 4

SA
n = 8

SA
n = 16

Tornado 2.0 ≈ 2 · 105 43 11 0.7 1.1 2.2

ACOutlet 7.2 ≈ 2.5 · 105 308 80 1.6 2.3 3.1

Aneurysm na ≈ 2.2 · 105 270 71 1.7 2.5 4.7

BubbleChamber 0.5 ≈ 1.1 · 105 60 17 0.9 2.8 6.3

Cylinder 5.9 ≈ 7 · 104 179 45 0.7 1.6 3.1

CylinderHigh 4.4 ≈ 3 · 105 406 103 1.9 2.8 3.3

DeltaWing 4.0 ≈ 1.4 · 105 170 44 0.6 1.0 2.1

Turbine 5.7 ≈ 1.8 · 105 253 66 1.4 2.1 2.8

costs computation (EC), and simulated annealing optimization applied to three
target edge numbers n (SA). Our method is not able to produce results instan-
taneously. However, as no user interaction is required, we consider our method
to be an offline process for global data analysis. Still, all results in this work are
computed within a few minutes by our method that has no previous knowledge
of the given data set. Although we parallelize its computation, it is obvious
that the full stream ribbon integration is the most time-consuming part of our
method. It depends on both the graph resolution and data set characteristics.
For example, integration in the simple Tornado field (2.5 · 107 triangles on all
ribbons) can be done in a fraction of the time required for the Cylinder (1.1 · 108

triangles on all ribbons) data set, although the total number of ribbons is three
times higher. Also, edge costs computations are proportional to both the num-
ber of stream ribbons and the number of total triangles, but in general they are
cheaper than integration. The optimization using the SA algorithm turns out to
be the fastest part of our algorithm. This is because the SA optimization reuses
the results of previous computations in a highly condensed way in form of edge
costs. Moreover, the whole graph is not necessarily visited in the optimization
due to the stochastic nature of the algorithm. In the same way our algorithm
can be further optimized: surface integration can be deferred by combining the
SA optimization with edge cost computations and only needs to be performed
when edge costs are evaluated for the first time. This lazy on demand surface
integration then only has to be performed for a fraction of the whole domain.

10.7 discussion

We discretize the search space of seed structure candidates by edges of the do-
main graph. We will therefore only find solutions that are contained in the graph.
We observe that increasing the domain graph resolution does only lead to locally
finer solutions in the neighborhood of the coarser solutions. The global location
of the optimum does not change as long as the domain is not undersampled.

184 automatic global selection of stream surfaces

Consider the CylinderHigh surface in Figure 72 as an example for an optimum
with increased graph resolution of the Cylinder data set. Both surfaces have
very similar position and shape, although the seed geometry changed slightly.
However, the improvements in quality come at a linear expense of performance
(see Section 10.6.4). We observed that the used graph resolutions are sufficient
to find curves that are close to continuous seed structures of globally optimal
stream surfaces. An explanation is that for each edge we obtain a global optimal-
ity estimation due to stream ribbon integration and stream ribbon evaluation.
The change in global estimation for a higher graph resolution will only be large
at the boundary of separating flow structures, such that in the majority of the do-
main the estimations stay similar. Therefore, the location of the optimal solution
is also unlikely to change due to the higher domain graph resolution.

limitations . We optimize for a single stream surface that strives to describe
a data set best. This can also be seen as a limitation of our current approach,
which is not optimizing for multiple distinct and “distant” stream surfaces simul-
taneously. A simple greedy adaption of our method is to apply the optimization
iteratively and modify edge costs according to a distance measure of ribbons to
already found optimal solutions. Still, our experience is that multiple stream
surfaces quickly tend to occlude each other. Even with additional advanced ren-
dering techniques the resulting visualizations become much harder to interpret
compared to a single, globally optimal surface. We regard this problem as fu-
ture research. Additionally, we note that our method will not always converge
to a single distinct optimal stream surface in highly turbulent flows. However, it
is well-known that surface-based approaches are not suitable to visualize these
types of data sets.

10.8 summary

In this chapter, we presented a novel automatic approach for the selection of
stream surfaces defined in 3d vector fields. Instead of using local flow properties
for the selection, our method evaluates global surface-based quality measures
on integrated stream surfaces. We showed that our new stream surface qual-
ity measure, which is based on flow alignment of principal directions, yields
competitive results in a variety of data sets.

Until now we have only used intrinsic surface-based properties to define quality.
Investigation of view- and application-dependent surface qualities is an inter-
esting direction for future work, as our selection algorithm can handle different
cost functions without modification. We would also like to extend our method to
optimize the global solutions found in the discretized space locally in the neigh-
borhood of this solution. Doing so would “polish” our solutions to optima in
the continuous space.

11
C O N C L U S I O N S

In this thesis, we studied various aspects of the relation between geometric
shapes and vector fields. Shape manipulation is a broad field in digital geometry
processing, and in the first part of the thesis we identify specific problems of this
field that we approach using vector field-based methods: different types of con-
tinuous deformations are proposed to manipulate geometric shapes of varying
type and representation. In the flow visualization field, on the other hand, geo-
metric shapes are considered that are defined by vector fields. In the second part
of the thesis we propose interactive and automatic surface-based visualization
techniques that are based on geometry processing concepts. Complementing
the summaries on the individual contributions, we conclude this thesis with a
short summary of both parts and a brief discussion of promising open research
directions.

In the first part of this thesis, we applied kinematic vector fields for the compu-
tation of continuous shape manipulations in different contexts and applications.
These include user-defined planar, volumetric, and surface deformations of both
explicit and implicit shape representations, as well as vector field-based pose cor-
rections. We showed that vector field-based approaches are well-suited to solve
nonlinear problems that are generally considered hard to compute by single-step
methods, e.g., near-isometric and volume-preserving shape deformations. In
general, global deformation vector fields are efficient to compute as the solutions
of linear systems or even as closed-form representations. Moreover, our results
demonstrate that our vector field-based methods are on par or even outperform
other nonlinear approaches in terms of deformation quality. The deformation
quality is high as no search space reduction by, e.g., subspace or multiresolution
techniques is performed. Also, no additional guiding structures like embedded
skeletons or enclosing control cages are required by our continuous methods. In
addition, they directly provide parameterized animations of shapes. In contrast
to most other nonlinear deformation approaches, our vector field-based meth-
ods also guarantee certain desirable deformation properties by construction, e.g.,
volume-preservation or the prevention of local self-intersections. In conclusion,
we contributed to the theory of vector field-based shape manipulation and pre-
sented a number of applications with a focus on digital geometry processing.

185

186 conclusions

Certainly, the optimization of nonlinear measures stays a delicate problem, and
most of our continuous methods focus on balancing accuracy and stability in
favor of highest efficiency. We achieve accuracy and stability by using ODE
integrators of high approximation order and adaptive step size control. In par-
ticular, this way we avoid iteratively computed solutions that are only locally
minimal and which cannot be avoided by generic nonlinear solvers. Although
we performed suitable accelerations in form of, e.g., GPU-based implementa-
tion wherever possible, integration-based methods tend to be computationally
expensive. It is therefore an interesting challenge for further research to develop
algorithms and concepts like specialized integrators and shape representations
that accelerate vector field-based deformations without spoiling or derogating
their quality. Beyond that, in the near future we also expect vector field-based
deformations to become even more attractive with the advent of more efficient
computational devices.

Additionally, we proposed the following general computational techniques that
are independent of vector field-based shape manipulation and can also be ap-
plied to various other approaches of different fields:

• Our GPU-accelerated linear system setup in Chapters 3 and 4 can be used
to speed up any cell-based energy operator assembly. A prominent ex-
ample is stiffness matrix assembly of FEM deformation or fluid simulation
methods. In fact, every energy discussed in Chapter 7 (and even the energy
regularization itself) can be accelerated by a similar framework.

• Our backward Lagrangian integration scheme in Chapter 5 can be advan-
tageous to solve advection problems for which the advecting flow is inde-
pendent of the advected quantity.

• Our RBF center selection and partially GPU-based factorization update
scheme in Chapter 6 can be used to improve both computation times and
numerical stability of any mesh-less scattered data approximation using ra-
dial basis functions. The independence of the scheme of a specific function
domain and data range make it applicable to a variety of different function
reconstruction problems.

• In Chapter 7, we already demonstrated a wide range of geometry process-
ing methods that can be enhanced by our energy regularization technique.
Due to the generality and simplicity of the energy regularization concept,
we expect it to be beneficial for various other variational problems.

In the second part of the thesis, we considered problems in which different types
of geometric shapes are defined by flow vector fields. We applied concepts,
which are well-known in geometry processing, to flow visualization tasks with
a focus on surface-based visualizations. Contrary to, e.g., integral line-based
methods, surface-based techniques are currently seldom used in practice. To
facilitate the application of surface-based flow visualizations, we proposed two

conclusions 187

diametral approaches: interactive specification and automatic selection methods.
In contrast to integration-based methods, our interactive approach offers a new
modality in that users are able to directly interact with complete flow-aligned
surfaces. The proposed deformation-based method uses Poisson-type optimiza-
tions of generalized flux-based criteria that do not only yield flow-tangential
but also flow-orthogonal surfaces. We showed that the latter are particularly
well suited for seed structure definition. Illustrative surface-based visualizations
are efficiently computed in the same framework. Still, time-consuming manual
user interaction is often not desired or even impossible in automated flow anal-
ysis pipelines, and automatic surface selection methods are required. To solve
this issue, we presented an automatic selection method for flow-relevant stream
surfaces, which requires no user-interaction. Contrary to existing limited local
approaches, our method is first to apply a global intrinsic surface-based quality
criterion. Our method can be interpreted as selecting geometrically fair stream
surfaces, whereas in geometry processing surfaces are optimized to be fair. For
a number of different data sets we showed that our automatically selected re-
sults are very similar to relevant stream surfaces selected by flow visualization
experts.

We demonstrated that our surface-based flow visualization approaches provide
convincing results for a variety of data sets. Still, so far most of our proposed
methods are designed to only handle steady 3d flows. It is an interesting direc-
tion for further research to extend the proposed concepts to more general flow
types that might be more common in practice. Certainly, unsteady 3d flows are
of major practical importance. Here, for automatic surface selection the major
challenge is to shown that our stream surface quality measures are also appli-
cable or extendible to this case. With acceptance of higher computational costs,
our selection algorithm can certainly be applied to unsteady flows, although fur-
ther performance enhancements are preferable. Recently, also uncertain flows
received increased attention. This type of flow requires novel shape extraction
approaches because integration is hardly possible or very expensive. We believe
that our deformation-based surface extraction approach can be extended in this
direction in a straightforward way by using weighted least-squares gradient fit-
ting that respects local vector field uncertainties.

188 conclusions

In summary, the approaches proposed in this thesis can be classified into the
following important general aspects:

vector field-based methods .
We used kinematic vector fields as a general tool to solve a number of ge-
ometry processing problems in a continuous way. Examples include con-
tinuous deformations of explicit shapes (Chapters 3, 4, and 6) and implicit
isosurfaces (Chapter 5). Certainly, every flow visualization technique is
also vector field-based (Chapters 9 and 10).

generalizations .
We showed that the generalization of certain problem properties provides
interesting new solutions and unified interpretations. Most notable, this
includes a complete description of all possible vector field-based deforma-
tion types (Chapter 3), the computation of different types of characteris-
tic surfaces by flux-optimization criteria (Chapter 9), as well as a unified
enhancement of energy-based geometry processing approaches by energy
regularization (Chapter 7).

global variational optimization.
A variety of our solutions are modeled by global variational energy mini-
mization (Chapter 7). Examples include vector field optimization in each
integration step (Chapters 3 and 4) and iterative deformation optimization
(Chapter 9).

discretizations of continuous energies .
Our proposed energies are generally defined as integrated quantities on
continuous domains. Suitable discretizations of these measures yield tes-
sellation-insensitive results (Chapters 3, 4, 7, and 9) as well as computation-
ally feasible search spaces (Chapter 10).

smoothness .
We identify smoothness of energies (Chapters 3, 4, 7, and 9) and vector
fields (Chapters 5 and 6) to be critical for a number of our approaches.

gpu-acceleration.
We used GPU-based parallel computations whenever necessary and appli-
cable (Chapters 3, 4, 5, and 6).

Part III

A P P E N D I X

A
D I F F E R E N T I A L O P E R AT O R S O F L I N E A R F U N C T I O N S O N
S I M P L I C E S

A d-dimensional simplex Ωd (d > 0) is the convex hull of its d+ 1 vertices i in Rd.
In this work, we primarily study two- and three-dimensional simplices, i.e., trian-
gles and tetraheda. In this section, we present differential operators to perform
differentiation and integration of linear functions on simplices of any dimension.
These operators have special cases for the low-dimensional simplices considered
in this work. A linear function fd : Ωd → Rm on Ωd (d > 0) with m-dimensional
range (m > 0) can be defined by the linear interpolation of coefficients ui ∈ Rm

at its vertices with coordinates xi ∈ Rd as

fd(x) =
d

∑
i=0

φi(x)ui , (78)

where the basis functions (or linear barycentric coordinates) φi : Ωd → R are the
unique linear functions on Ωd that fulfill the Lagrange property φi(xj) = δij and
the partition of unity property φd(x) = 1− ∑d−1

i=0 φi(x). The union of multiple
simplices to (pure) simplical complexes yields piecewise linear functions, e.g.,
the coordinate functions of triangular meshes. All operations on simplices pre-
sented in this section can be performed element-wise on simplical complexes.
We continue to present differential operators to perform differentiation and inte-
gration of linear functions on simplices.

a.1 gradient operators of linear functions on simplices

The spatial gradient of the linear function is constant on each simplex. W.l.o.g.
in this section we concentrate on scalar functions (m = 1), which generalize to
higher-dimensional functions in a simple component-wise way. The function
gradient on a simplex Ωd is given by

∇ fd =
d

∑
i=0
∇φi ui ,

191

192 differential operators of linear functions on simplices

i.e., as the linear combination of (constant) basis function gradients ∇φi ∈ Rd.
Expressions for basis function gradients can be obtained explicitly for each sim-
plex type (see, e.g., Botsch et al. [BKP∗10, Section 3.3.3] for a derivation of basis
function gradients on triangles).

Alternatively, we provide defining conditions that directly extend to any sim-
plex dimensionality: we define basis function gradients ∇φi on d-dimensional
simplices generically as the solution of the linear system[

∇φ0 · · · ∇φd

]
︸ ︷︷ ︸

Gd

=
[
x1 − x0 · · · xd − x0

]−T [
−1d Id

]
, (79)

with a d-dimensional vector of ones 1d and identity matrix Id on the right hand
side. Gd is the d × (d + 1) linear gradient operator that is of fundamental im-
portance as it is used in many approaches throughout this work. It does only
depend on the geometry of the simplex. The gradient operator performs the
linear combination of basis function gradients for the function gradient:

∇ fd = Gd (u0, . . . , ud)
T .

For m > 1, the same operator Gd is used to compute the m component-wise
function gradients ∇fj

d, j = 1, . . . , m:[
∇f1

d · · · ∇fm
d

]
= Gd

[
u0 · · · ud

]T
.

The system (79) for Gd can be derived by using a close relation of the gradient
operator to deformation gradients. Specifically, let a linear deformation of a
simplex be given by u(x) = Dd x + td, x ∈ Ωd that maps vertex coordinates to
new positions: u(xi) = x′i. The constant translational part of the deformation td
can be removed by performing pairwise subtraction giving Dd (xi − xj) = x′i − x′j.
This conditions corresponds to a property of the deformation gradient Dd, which
maps edge vectors of the simplex to edge vectors of the deformed simplex. As
Dd is the gradient of the deformation u, it can be computed component-wise
by Gd: Dd = Gd [x′0 ··· x′d]

T. It is straightforward to obtain the system (79) for
any simplex dimension d by combining these two properties using d pairwise
subtractions.

For piecewise linear functions on (pure) simplical complexes defined by a set
of |T | simplices and |V| vertices, all coefficients ui can be stacked in a vector u.
With appropriate permutations a global d |T | × |V| gradient operator matrix G
is assembled from the basis function gradients Gd on each simplex, such that
G u is the vector of stacked constant gradients on each simplex.

A.1 gradient operators of linear functions on simplices 193

If simplices are embedded into spaces of higher dimension, e.g., triangle meshes
representing surfaces in 3d with triangle normal n, the basis function gradients
can be constrained to the linear subspace spanned by the simplex:

Gd =
[
x1 − x0 · · · xd − x0 n

]−T
[
−1d Id

0 0d
T

]
.

Here, the gradient operator Gd is (d + 1)× (d + 1) with a kernel spanned by n.
Additional kernel dimensions might be added for, e.g., gradient computations
on polylines embedded in 3d.

The following important special case are derived from the generic description:

line segment (d = 1). Line segment in 1d:

(x1 − x0) G1 =
(
−1 1

)
Line segment embedded in 2d with normal n:[

(x1 − x0)
T

nT

]
G1 =

(
−1 1

0 0

)
Line segment embedded in 3d with normal n and binormal m:(x1 − x0)

T

nT

mT

 G1 =

−1 1

0 0

0 0

Note that these systems always yield a line-based gradient operator of the form

G1 =
[

x0−x1
‖x1−x0‖2

x1−x0
‖x1−x0‖2

]
in any dimension.

triangle (d = 2). Triangle in 2d:[
(x1 − x0)

T

(x2 − x0)
T

]
G2 =

(
−1 1 0

−1 0 1

)
Triangle embedded in 3d with normal n:(x1 − x0)

T

(x2 − x0)
T

nT

 G2 =

−1 1 0

−1 0 1

0 0 0

(an equivalent system was derived by Botsch et al. [BSPG06] using trigonometric
arguments, which do not directly extend to higher simplex dimensions).

194 differential operators of linear functions on simplices

tetrahedron (d = 3). Tetrahedron in 3d:(x1 − x0)
T

(x2 − x0)
T

(x3 − x0)
T

 G3 =

−1 1 0 0

−1 0 1 0

−1 0 0 1

a.2 integration operators of linear functions on simplices

In the context of least-squares optimization the integration of the squared norm
of linear functions∫

Ωd

‖fd(x)‖2 dx

on simplices Ωd is of special interest. This integration can be described by a
quadratic form in the function coefficients ui, see (78). We define the standard
L2-inner product of two functions over Ωd as〈

φi, φj
〉

Ωd
=
∫

Ωd

φi(x) φj(x)dx .

As ‖fd‖2 = fd
T fd = ∑d

i,j=0 φi φj ui
T uj holds point-wise, due to linearity we have

that the integral of squared norms is given by

∫
Ωd

fd
T fd dx =

d

∑
i,j=0

〈
φi, φj

〉
ui

T uj .

This integral can be written as the component-wise quadratic form Nd,m∫
Ωd

fd
T fd dx = uT PT(Hd ⊗ Im) P︸ ︷︷ ︸

Nd,m

u = ‖u‖2
Nd,m

where Hd is a (d + 1)× (d + 1) matrix with Hd,ij =
〈
φi, φj

〉
, u =

(
u0

T, . . . , ud
T)T

is the m (d + 1)-dimensional vector of “stacked” function coefficients, and P is
the m (d + 1) × m (d + 1) permutation matrix that reorders the coefficients of
u component-wise, i.e., the permutation is described by the mapping πi =

b i
d+1c + (i mod d + 1)m for i = 0, . . . , m (d + 1). We denote by Hd ⊗ Im the

Kronecker product of Hd with the m-dimensional identity matrix Im that results
in the component-wise application of Hd. The matrix Nd,m is symmetric positive-
definite and does only depend on the geometry of Ωd and not on the coefficients
ui. From hereon, we will omit the dimensional subscripts d and m when the
context is unambiguous.

To determine the coefficients of H in practice, it is most convenient to first de-
termine a constant quadratic form N0 for parametric unit simplices Ω0 that are

A.2 integration operators of linear functions on simplices 195

aligned to unit axis. Then the integral on a concrete simplex can be reduced
to the integration on unit simplices with an appropriate subsequent transforma-
tion.

On a d-dimensional unit simplex Ω0 that has axis aligned edges and x0 coin-
ciding with the origin, the inner products

〈
φi, φj

〉
have the particularly simple

form 〈
φi, φj

〉0
d =

∫
Ω0

φi(y) φj(y)dy

=
∫ 1

0

∫ 1−α1

0
. . .
∫ 1−∑d−1

k=1 αk

0
αi αj dα0 dα1 . . . dαd−1

with αn = 1− ∑d−1
k=0 αk. Each αi corresponds to an evaluated basis function φi

along the unit simplex.

For instance, on a triangular simplex (d = 2), the inner products evaluate to

〈
φi, φj

〉0
2 =

∫ 1

0

∫ 1−α1

0
αi αj dα0 dα1 =

 1
12 i = j
1

24 i 6= j
.

In general,
〈
φi, φj

〉0
d = 1

2 〈φi, φi〉0d for i 6= j, and for any d the quadratic integrals
〈φi, φi〉0d evaluate to 1

〈φi, φi〉0d =
1
3

d−1

∏
i=1

1
i + 3

.

For the first three unit simplices the matrices H0
d are therefore given by

H0
1 =

(
1
3

1
6

1
6

1
3

)
, H0

2 =

(1
12

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
12

)
, and H0

3 =

1
60

1
120

1
120

1
120

1
120

1
60

1
120

1
120

1
120

1
120

1
60

1
120

1
120

1
120

1
120

1
60

 .

For general, non-degenerate simplices Ω, let Φ : Ω0 → Ω be the differentiable
affine map from the unit simplex to the concrete simplex. The transformation of
the basis function integrals by Φ is determined by multi-dimensional integration
by substitution:〈

φi, φj
〉
=
∫

Ω=Φ(Ω0)
φi(x) φj(x)dx =

∫
Ω0

φi(y) φj(y) |det(∇Φ(y))| dy .

As the gradient of an affine map Φ is constant, it follows that〈
φi, φj

〉
= |det(∇Φ)|

〈
φi, φj

〉0
d .

1 Interestingly,
(
〈φi, φi〉0d

)−1
is equal to the number of even permutations of n letters (see, e.g.,

http://oeis.org/A001710).

http://oeis.org/A001710

196 differential operators of linear functions on simplices

Using multi-dimensional integration by substitution once again, it can be shown
that the determinant of the gradient ∇Φ of this affine map is given by

det(∇Φ) =
vol(Ω)

vol(Ω0)
= d! vol(Ω) ,

with the unsigned volume vol(Ω) =
∫

Ω 1 dx, and because the unit simplex vol-
ume is given by vol

(
Ω0) = 1

d! .

The final quadratic form N for the integration of the squared norm of a m-
dimensional linear function on any simplex Ω of dimension d can therefore be
written as

N = d! vol(Ω) PT(H0
d ⊗ Im

)
P

= d! vol(Ω) N0 .

The integral operator of the squared norms of piecewise linear functions on
a simplical complex is obtained by assembling the quadratic forms N of each
simplex in an element-wise way into an operator M on the whole simplical com-
plex.

For discretized surfaces (n = 2) and volumes (n = 3) this L2-product operator is
known as the mass matrix M in the Finite Element literature [Bra07]. Our formu-
lation extends to any simplex dimension. Note that, to facilitate computations,
the FEM mass matrix is commonly approximated by a uniform lumped diagonal
mass matrix where the diagonal elements are 1

d+1 of the combined volumes at
each vertex. The lumped mass matrix is also frequently used by the geometric
modeling community, e.g., for spectral-based shape analysis and deformations
[ZvKD10, HSvTP10, HSTP11] and FEM-based geometric modeling [JTSZ10]. A
more geometry-aware non-uniform discretization of a lumped diagonal mass
matrix uses the Voronoi areas at each vertex instead of the uniform neighbor
contribution [MDSB03, JBPS11]. In this work, we indicate which integration op-
erator is applied in the context of the corresponding approach.

B
M E T R I C D E F O R M AT I O N E R R O R S

A non-rigid single-step (i.e., not time-dependent) deformation f(x) : D0
d → Rd

(see Section 3.2.1) induces distortions of the initial d-dimensional shape D0
d.

Distortions can be measured by different types of deformation errors that are
characterized by the singular values σi, i = 1, . . . , d of the deformation gradient
D = ∇f. Let D = U Σ VT be the singular value decomposition of D with
Σ = diag(σ1, . . . , σd). We assume that det(D) > 0, i.e., f is orientation-preserving.
Hence, U and V represent rotations and no reflections, i.e., det(U) = det(V) = 1.
We measure the L2 deviation from prototype deformation gradients M = U K VT

that are factored using the same orthonormal matrices U, V, but by using differ-
ent target singular values ki: K = diag(k1, . . . , kd). This factorization is sound
because it is known that the closest deformation gradient M to D of both isomet-
ric and conformal maps f can be factored this way (see, e.g., [LZX∗08]).

Then a generic squared local deformation error that depends on the prototype
singular values σi and is parameterized by the prototype singular values ki is
given by

e(x) = ‖D−M(D)‖2
F = ‖U Σ VT −U K VT‖2

F (80)

= Tr
(

V Σ U U Σ VT − 2 V Σ U U K VT + V K U U K VT
)

= Tr
(

V
(
Σ2 − 2 Σ K + K2) VT

)
= Tr

(
Σ2 − 2 Σ K + K2)

= ∑
i
(σi − ki)

2 .

The total normalized deformation error of the whole map f is then given by

E =
1

vol
(
D0

d

) ∫
D0

d

e(x)dx .

We use a normalization by the shape volume vol
(
D0

d

)
to obtain measures that

are comparable between different shapes. For discretizations of the shape D0
d

by piecewise linear (pure) simplical complexes with n elements Ωk, k = 1, . . . , n,

197

198 metric deformation errors

the deformation gradients are constant on each simplex. Hence, the normalized
integrated error simplifies to the weighted sum

E =
1

vol
(
D0

d

) ∑
k

vol(Ωk) e(Ωk),

where e(Ωk) is the constant error in every point of Ωk, and vol(Ωk) is the simplex
volume, e.g., triangle area or tetrahedron volume. This generic deformation error
has the following special cases:

isometric error . The closest isometric deformation gradient M to D is
given by ki = 1, i.e., M has no scaling component and is a pure rotation. There-
fore, the d-dimensional local isometric deformation error is given by

eisom = ∑
i
(σi − 1)2 . (81)

eisom vanishes in any dimension for deformations that are (locally) rigid. This
error has the important special cases

e2d
isom = (σ1 − 1)2 + (σ2 − 1)2

and

e3d
isom = (σ1 − 1)2 + (σ2 − 1)2 + (σ3 − 1)2

that define the total isometric deformation errors E2d
isom and E3d

isom, respectively.

conformal error . The closest conformal deformation gradient M to D is
given by ki =

1
d ∑j σj, i.e., M only scales isotropically and is a similarity trans-

formation. The d-dimensional local conformal deformation error can then be
expressed in the following ways:

econ f = ∑
i

(
σi −∑

j

σj

d

)2

=
1
d ∑

(i,j)∈Pd

(
σi − σj

)2 (82)

=

σ1
...

σd

T

d−1
d

−1
d · · · −1

d
−1
d

d−1
d · · · −1

d
...

...
. . .

...
−1
d

−1
d · · · d−1

d

︸ ︷︷ ︸

Cd

σ1
...

σd

 .

Here, Pd is the set of tuples of pairwise permutations of {1, . . . , d}, e.g., P3 =

{(1, 2) , (2, 3) , (3, 1) }. Moreover, and in contrast to the isometric error, the con-
formal error can completely be described by the positive-semi-definite quadratic

metric deformation errors 199

forms Cd. Cd has a one-dimensional kernel that is spanned by the constant func-
tions with the basis 1d. Hence, econ f vanishes in any dimension for deformations
that (locally) scale uniformly. Important special cases are then given by

e2d
con f =

1
2
(σ1 − σ2)

2

and

e3d
con f =

1
3

(
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
)

that define the total conformal deformation errors E2d
con f and E3d

con f , respectively.

authalic error . The authalic error that measures local volume variation
cannot be written in the form of (80), because the singular value decomposition
of the closest deformation gradient M to D that is authalic must not have the
same orthonormal factors U and V of D. Hence, we define the local squared
authalic deformation error directly using the determinant of D by

eauth =

(
∏

i
σi − 1

)2

,

from which the total authalic deformation errors E2d
auth and E3d

auth follow.

Note that in the literature a number of alternative variants of these errors were
introduced. For instance, Liu et al. [LZX∗08] measure the same errors that we
derived but restrict their analysis to the 2d case only. Also for 2d only, Hormann
and Greiner [HG99] use the isometric measure e2d

isom = σ1
σ2
+ σ2

σ1
, which is derived

from the Frobenius norm-based condition number of D. Their error is called
most isometric and measures errors symmetrically around the origin σ1 = σ2 = 1.
Interestingly, Solomon et al. [SBBG11a] use the most isometric error to measure
conformality, i.e., e2d

con f = σ1
σ2
+ σ2

σ1
. Additionally, they measure a symmetric ver-

sion of area distortion e2d
auth = σ1σ2 +

1
σ1σ2

. Lipman [Lip12] defines conformal
distortion in 2d as e2d

con f =
σ1
σ2

with σ1 > σ2.

This variety of error measures indicates that there is no consensus on a single
error definition, and the different definitions lead to various related error expres-
sions. Throughout this work, we prefer the L2 deviation of deformation gradi-
ents to closest prototype deformation gradients as described above. Although
the absolute error values are not symmetric w.r.t. the origin σi = 1, we use these
errors because they are precisely the terms that are minimized by a number of
single-step deformation approaches. For example, as-rigid-as-possible (ARAP)
deformations and least-squares conformal maps (LSCM) (see Chapter 7) exactly
minimize the energies described by our error definitions of Eisom and Econ f .

A C R O N Y M S

akvf Approximate Killing vector field

amvf Approximate metric vector field

acvf Approximate conformal vector field

aavf Approximate authalic vector field

assvf Approximate skew-symmetric vector field

akap As-Killing-as-possible deformation

arap As-rigid-as-possible deformation

asap As-similar-as-possible deformation

lscm Least-squares conformal map

bd-map Bounded distortion map

apap As-perpendicular-as-possible surface

lic Line integral convolution

ode Ordinary differential equation

svd Singular value decomposition

B I B L I O G R A P H Y

[ACL00] Alexa M., Cohen-Or D., Levin D.: As-rigid-as-possible shape interpola-
tion. In Proc. SIGGRAPH (2000), pp. 157–164. (Cited on page 13.)

[ACSTD07] Alliez P., Cohen-Steiner D., Tong Y., Desbrun M.: Voronoi-based varia-
tional reconstruction of unoriented point sets. In Proc. SGP (2007), pp. 39–
48. (Cited on page 107.)

[ACWK04] Angelidis A., Cani M.-P., Wyvill G., King S.: Swirling-sweepers: Con-
stant volume modeling. In Proc. Pacific Graphics (2004), pp. 10–15. (Cited
on page 13.)

[AMR88] Abraham R., Marsden J., Ratiu T.: Manifolds, Tensor Analysis, and Appli-
cations. Springer, 1988. (Cited on page 142.)

201

202 bibliography

[AS92] Abraham, Shaw: Dynamics, the geometry of behavior, 2nd ed. Addison-
Wesley, 1992. (Cited on page 165.)

[AS05] Alexandrov O., Santosa F.: A topology-preserving level set method for
shape optimization. J. Comput. Phys. 204, 1 (2005), 121–130. (Cited on
page 16.)

[AW11] Alexa M., Wardetzky M.: Discrete laplacians on general polygonal
meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 102:1–102:10.
(Cited on page 106.)

[AWC04] Angelidis A., Wyvill G., Cani M.-P.: Sweepers: Swept user-defined tools
for modeling by deformation. In Proc. SMI (2004), pp. 63–73. (Cited on
page 13.)

[Bar84] Barr A. H.: Global and local deformations of solid primitives. In Proc.
SIGGRAPH (1984), pp. 21–30. (Cited on page 13.)

[BAV∗10] Bergou M., Audoly B., Vouga E., Wardetzky M., Grinspun E.: Discrete
viscous threads. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4 (2010), 116:1–
116:10. (Cited on page 14.)

[BBK05a] Botsch M., Bommes D., Kobbelt L.: Efficient linear system solvers for
mesh processing. In Proc. Mathematics of Surfaces (2005), LNCS, pp. 62–83.
(Cited on pages 37, 60, and 156.)

[BBK05b] Bronstein A. M., Bronstein M. M., Kimmel R.: Isometric embedding of
facial surfaces into S3. In Proc. Scale-Space (2005), pp. 622–631. (Cited on
page 9.)

[BBSG09] Ben-Chen M., Butscher A., Solomon J., Guibas L.: On discrete killing
vector fields and patterns on surfaces. Comput. Graph. Forum (Proc. SGP)
29, 5 (2009), 1701–1711. (Cited on page 15.)

[BDK98] Barequet G., Duncan C., Kumar S.: RSVP: a geometric toolkit for con-
trolled repair of solid models. IEEE TVCG 4, 2 (1998), 162 –177. (Cited on
page 86.)

[BDS∗12] Bouaziz S., Deuss M., Schwartzburg Y., Weise T., Pauly M.: Shape-up:
Shaping discrete geometry with projections. Comput. Graph. Forum (Proc.
SGP) 31, 5 (2012), 1657–1667. (Cited on page 13.)

[BFTW09] Bürger K., Ferstl F., Theisel H., Westermann R.: Interactive streak
surface visualization on the gpu. IEEE TVCG (Proc. Vis) 15, 6 (2009), 1259–
1266. (Cited on pages 137, 153, and 179.)

[BK03] Botsch M., Kobbelt L.: Multiresolution surface representation based on
displacement volumes. Comput. Graph. Forum (Proc. Eurographics) 22, 3

(2003), 483–491. (Cited on page 87.)
[BK04] Botsch M., Kobbelt L.: An intuitive framework for real-time freeform

modeling. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3 (2004), 630–634.
(Cited on page 12.)

[BK05a] Bischoff S., Kobbelt L.: Structure preserving CAD model repair. Comput.
Graph. Forum (Proc. Eurographics) 24, 3 (2005), 527–536. (Cited on page 87.)

[BK05b] Botsch M., Kobbelt L.: Real-time shape editing using radial basis func-
tions. Comput. Graph. Forum (Proc. Eurographics) 24, 3 (2005), 611–622.
(Cited on pages 13, 87, and 94.)

[BKP∗10] Botsch M., Kobbelt L., Pauly M., Alliez P., Levy B.: Polygon Mesh Pro-
cessing. AK Peters, 2010. (Cited on pages 1, 110, 120, 168, 170, and 192.)

[BMF03] Bridson R., Marino S., Fedkiw R.: Simulation of clothing with folds and
wrinkles. In Proc. SCA (2003), pp. 28–36. (Cited on page 14.)

bibliography 203

[BMWG07] Bergou M., Mathur S., Wardetzky M., Grinspun E.: Tracks: toward
directable thin shells. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007),
50:1–50:10. (Cited on page 14.)

[BO05] Boissonnat J.-D., Oudot S.: Provably good sampling and meshing of
surfaces. Graph. Models 67, 5 (2005), 405–451. (Cited on pages 78 and 80.)

[Boh93] Bohn J. H.: Automatic CAD-model repair. PhD thesis, Rensselaer, Polytech-
nic Institute, 1993. (Cited on page 86.)

[BPGK06] Botsch M., Pauly M., Gross M., Kobbelt L.: PriMo: coupled prisms
for intuitive surface modeling. In Proc. SGP (2006), pp. 11–20. (Cited on
pages 10, 13, 56, and 61.)

[BPK05] Bischoff S., Pavic D., Kobbelt L.: Automatic restoration of polygon mod-
els. ACM Trans. Graph. 24, 4 (2005), 1332–1352. (Cited on page 87.)

[BPWG07] Botsch M., Pauly M., Wicke M., Gross M.: Adaptive space deformations
based on rigid cells. Comput. Graph. Forum (Proc. Eurographics) 26, 3 (2007),
339–347. (Cited on page 13.)

[Bra07] Braess D.: Finite Elements - Theory, Fast Solvers, and Applications in Solid
Mechanics, 3rd ed. Cambridge University Press, 2007. (Cited on pages 45

and 196.)
[BS08] Botsch M., Sorkine O.: On linear variational surface deformation meth-

ods. IEEE TVCG 14, 1 (2008), 213–230. (Cited on pages 9, 13, 61, 62, 69,
107, 115, 143, and 219.)

[BSK∗13] Barton M., Shi L., Kilian M., Wallner J., Pottmann H.: Circular arc
snakes and kinematic surface generation. Comput. Graph. Forum (Proc. Eu-
rographics) 32, 2 (2013), 1–10. (Cited on page 15.)

[BSPG06] Botsch M., Sumner R., Pauly M., Gross M.: Deformation transfer for
detail-preserving surface editing. In Proc. VMV (2006), pp. 357–364. (Cited
on pages 12, 61, and 193.)

[BVGP09] Baran I., Vlasic D., Grinspun E., Popović J.: Semantic deformation trans-
fer. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009), 36:1–36:6. (Cited on
page 14.)

[BW08] Bachthaler S., Weiskopf D.: Animation of orthogonal texture patterns
for vector field visualization. IEEE TVCG 14, 4 (2008), 741–755. (Cited on
page 138.)

[BWF∗10] Born S., Wiebel A., Friedrich J., Scheuermann G., Bartz D.: Illustra-
tive stream surfaces. TVCG (Proc. Vis) 16, 6 (2010), 1329–1338. (Cited on
pages 138, 154, 167, 179, and 181.)

[BWG09] Ben-Chen M., Weber O., Gotsman C.: Variational harmonic maps for
space deformation. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009), 34:1–
34:11. (Cited on pages 13 and 46.)

[BWK03] Baraff D., Witkin A., Kass M.: Untangling cloth. ACM Trans. Graph.
(Proc. SIGGRAPH) 22, 3 (2003), 862–870. (Cited on page 87.)

[BWR∗08] Bergou M., Wardetzky M., Robinson S., Audoly B., Grinspun E.: Dis-
crete elastic rods. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3 (2008), 63:1–
63:12. (Cited on page 14.)

[BWSK12] Bokeloh M., Wand M., Seidel H.-P., Koltun V.: An algebraic model for
parameterized shape editing. ACM Trans. Graph. 31, 4 (2012), 78:1–78:10.
(Cited on page 14.)

[BZK09] Bommes D., Zimmer H., Kobbelt L.: Mixed-integer quadrangulation.
ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009), 78–87. (Cited on

204 bibliography

page 150.)
[CA06] Cani M.-P., Angelidis A.: Towards virtual clay. In ACM SIGGRAPH

Courses (2006), pp. 67–83. (Cited on pages 16 and 83.)
[CBC∗01] Carr J. C., Beatson R. K., Cherrie J. B., Mitchell T. J., Fright W. R.,

McCallum B. C., Evans T. R.: Reconstruction and representation of 3D
objects with radial basis functions. In Proc. SIGGRAPH (2001), pp. 67–76.
(Cited on pages 87, 89, 93, 94, and 100.)

[CCI∗07] Chen M., Correa C. D., Islam S., Jones M. W., Shen P.-Y., Silver D., Wal-
ton S. J., Willis P. J.: Manipulating, deforming and animating sampled
object representations. Comput. Graph. Forum 26, 4 (2007), 824–852. (Cited
on page 15.)

[CDHR08] Chen Y., Davis T. A., Hager W. W., Rajamanickam S.: Algorithm 887:
Cholmod, supernodal sparse cholesky factorization and update/down-
date. ACM Trans. Math. Softw. 35, 3 (2008), 22:1–22:14. (Cited on pages 37,
60, and 156.)

[CH97] Cai W., Heng P.-A.: Principal stream surfaces. In Proc. Vis (1997), pp. 75–
81. (Cited on page 164.)

[CH12] Cashman T. J., Hormann K.: A continuous, editable representation for
deforming mesh sequences with separate signals for time, pose and shape.
Comput. Graph. Forum (Proc. Eurographics) 31, 2 (2012), 735–744. (Cited on
pages 14 and 48.)

[CK10] Campen M., Kobbelt L.: Exact and robust (self-)intersections for polygo-
nal meshes. Comput. Graph. Forum (Proc. Eurographics) 29, 2 (2010), 397–406.
(Cited on pages 87 and 89.)

[CL93] Cabral B., Leedom L. C.: Imaging vector fields using line integral convo-
lution. In Proc. SIGGRAPH (1993), pp. 263–270. (Cited on page 138.)

[CLL07] Chang J. Y., Lee K. M., Lee S. U.: Multiview normal field integration using
level set methods. In Proc. CVPR (2007), pp. 1–8. (Cited on page 138.)

[CMT∗12] Coros S., Martin S., Thomaszewski B., Schumacher C., Sumner R.,
Gross M.: Deformable objects alive! ACM Trans. Graph. (Proc. SIGGRAPH)
31, 4 (2012), 69:1–69:9. (Cited on page 14.)

[Coh09] Cohen-Or D.: Space deformations, surface deformations and the oppor-
tunities in-between. J. Comput. Sci. Technol. 24, 1 (2009), 2–5. (Cited on
page 13.)

[CPSS10] Chao I., Pinkall U., Sanan P., Schröder P.: A simple geometric model
for elastic deformations. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4 (2010),
38:1–38:6. (Cited on pages 10, 13, and 116.)

[CSBI05] Camarri S., Salvetti M.-V., Buffoni M., Iollo A.: Simulation of the
three-dimensional flow around a square cylinder between parallel walls at
moderate Reynolds numbers. In AIMETA XVII (2005). (Cited on pages 153

and 179.)
[CWW13] Crane K., Weischedel C., Wardetzky M.: Geodesics in heat. ACM Trans.

Graph. (2013), (to appear). (Cited on pages 152 and 156.)
[CYY∗11] Chen C.-K., Yan S., Yu H., Max N., , Ma K.-L.: An illustrative visualiza-

tion framework for 3d vector fields. Comput. Graph. Forum (Proc. PG) 30, 7

(2011), 1941–1951. (Cited on page 164.)
[Dal83] Dallmann U.: Topological structures of three-dimensional flow separations.

Tech. rep., German Aerospace Center (DLR), 1983. (Cited on pages 154,
165, and 181.)

bibliography 205

[Dav67] Davis H.: Introduction to vector analysis. Allyn and Bacon, Inc., 1967. (Cited
on pages 74 and 75.)

[DBD∗13] Deng B., Bouaziz S., Deuss M., Zhang J., Schwartzburg Y., Pauly M.: Ex-
ploring local modifications for constrained meshes. Comput. Graph. Forum
(Proc. Eurographics) 32, 2 (2013), 11–20. (Cited on page 15.)

[DC90] Dooley D., Cohen M. F.: Automatic illustration of 3d geometric models:
Lines. In Proc. i3D (1990), pp. 77–82. (Cited on page 167.)

[dC92] do Carmo M. P.: Riemannian Geometry. Birkhäuser Boston, 1992. (Cited
on page 12.)

[DCG98] Desbrun M., Cani-Gascuel M.-P.: Active implicit surface for animation.
In Proc. GI (1998), pp. 143–150. (Cited on page 16.)

[DG95] Desbrun M., Gascuel M.: Animating soft substances with implicit sur-
faces. In Proc. SIGGRAPH (1995), pp. 287–290. (Cited on page 16.)

[DMA02] Desbrun M., Meyer M., Alliez P.: Intrinsic parameterizations of surface
meshes. Comput. Graph. Forum (Proc. Eurographics) 21, 3 (2002), 209–218.
(Cited on page 120.)

[DMSB99] Desbrun M., Meyer M., Schröder P., Barr A. H.: Implicit fairing of
irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH
(1999), pp. 317–324. (Cited on page 15.)

[DSP06] Der K. G., Sumner R. W., Popović J.: Inverse kinematics for reduced
deformable models. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006),
1174–1179. (Cited on page 14.)

[DZTS08] Dyken C., Ziegler G., Theobalt C., Seidel H.-P.: High-speed marching
cubes using histogram pyramids. Comput. Graph. Forum 27, 8 (2008), 2028–
2039. (Cited on page 77.)

[EB08] English E., Bridson R.: Animating developable surfaces using noncon-
forming elements. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3 (2008), 66:1–
66:5. (Cited on page 14.)

[Efi57] Efimow N.: Flaechenverbiegungen in Großen. Akadmie-Verlag, 1957. (Ger-
man). (Cited on pages 12 and 52.)

[ELC∗12] Edmunds M., Laramee R. S., Chen G., Max N., Zhang E., Ware C.:
Surface-based flow visualization. Comput. Graph. 36, 8 (2012), 974–990.
(Cited on page 137.)

[ELM∗12] Edmunds M., Laramee R. S., Malki R., Masters I., Croft T. N., Chen

G., Zhang E.: Automatic stream surface seeding: A feature-centered ap-
proach. Comput. Graph. Forum (Proc. EuroVis) 31, 3 (2012), 1095–1104. (Cited
on pages 153, 164, 165, and 179.)

[EML∗12] Edmunds M., McLoughlin T., Laramee R. S., Chen G., Zhang E., Max

N.: Advanced, automatic stream surface seeding and filtering. In Proc.
TPCG (2012), pp. 53–60. (Cited on page 164.)

[EPT∗07] Eckstein I., Pons J.-P., Tong Y., Kuo C.-C. J., Desbrun M.: Generalized
surface flows for mesh processing. In Proc. SGP (2007), pp. 183–192. (Cited
on pages 15, 54, 67, 107, and 129.)

[Eul67] Euler L.: Recherches sur la courbure des surfaces. Opera Omnia 2, 1 (1767),
1 – 22. (French). (Cited on page 168.)

[FB11] Fröhlich S., Botsch M.: Example-driven deformations based on discrete
shells. Comput. Graph. Forum 30, 8 (2011), 2246–2257. (Cited on pages 14,
47, 70, 85, 100, and 101.)

206 bibliography

[FH05] Floater M. S., Hormann K.: Surface parameterization: a tutorial and sur-
vey. In Advances in Multiresolution for Geometric Modelling. Springer, 2005,
pp. 157–186. (Cited on page 19.)

[FKY08] Feng W.-W., Kim B.-U., Yu Y.: Real-time data-driven deformation using
kernel canonical correlation analysis. ACM Trans. Graph. (Proc. SIGGRAPH)
27, 3 (2008), 91:1–91:9. (Cited on pages 14 and 85.)

[FPRJ00] Frisken S. F., Perry R. N., Rockwood A. P., Jones T. R.: Adaptively
sampled distance fields: A general representation of shape for computer
graphics. In Proc. SIGGRAPH (2000), pp. 249–254. (Cited on page 16.)

[FYK10] Feng W.-W., Yu Y., Kim B.-U.: A deformation transformer for real-time
cloth animation. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4 (2010), 108:1–
108:9. (Cited on pages 14 and 85.)

[GB08] Gain J., Bechmann D.: A survey of spatial deformation from a user-
centered perspective. ACM Trans. Graph. 27, 4 (2008), 1–21. (Cited on
page 13.)

[GBWT11] Günther T., Bürger K., Westermann R., Theisel H.: A view-dependent
and inter-frame coherent visualization of integral lines using screen con-
tribution. In Proc. VMV (2011), pp. 215–222. (Cited on page 138.)

[GHDS03] Grinspun E., Hirani A., Desbrun M., Schröder P.: Discrete shells. In
Proc. SCA (2003), pp. 62–67. (Cited on page 14.)

[GHF∗07] Goldenthal R., Harmon D., Fattal R., Bercovier M., Grinspun E.:
Efficient simulation of inextensible cloth. ACM Trans. Graph. (Proc. SIG-
GRAPH) 26, 3 (2007), 49:1–49:7. (Cited on page 14.)

[Gib97] Gibson S. F. F.: 3D chainmail: A fast algorithm for deforming volumetric
objects. In Proc. SI3D (1997), pp. 149–154. (Cited on page 16.)

[GIHL00] Girshick A., Interrante V., Haker S., Lemoine T.: Line direction mat-
ters: an argument for the use of principal directions in 3d line drawings.
In Proc. NPAR (2000), pp. 43–52. (Cited on page 168.)

[GKT∗08] Garth C., Krishnan H., Tricoche X., Bobach T., Joy K.: Generation of
accurate integral surfaces in time-dependent vector fields. IEEE TVCG 14,
6 (2008), 1404–1411. (Cited on pages 137, 154, 179, and 181.)

[Gol89] Goldberg E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, 1st ed. Addison-Wesley, 1989. (Cited on page 175.)

[GRT13] Günther T., Rössl C., Theisel H.: Opacity optimization for 3d line
fields. ACM Trans. Graph. (Proc. SIGGRAPH) (2013), (to appear). (Cited
on pages 138 and 164.)

[GSMCO09] Gal R., Sorkine O., Mitra N. J., Cohen-Or D.: iWIRES: an analyze-
and-edit approach to shape manipulation. ACM Trans. Graph. (Proc. SIG-
GRAPH) 28, 3 (2009), 33:1–33:10. (Cited on page 14.)

[GTS∗04] Garth C., Tricoche X., Salzbrunn T., Bobach T., Scheuermann G.: Sur-
face techniques for vortex visualization. In Proc. VisSym (2004), pp. 155–
164. (Cited on pages 137, 179, and 181.)

[GVL96] Golub G., Van Loan C.: Matrix Computations. Johns Hopkins University
Press, 1996. (Cited on page 96.)

[GW01] Guskov I., Wood Z. J.: Topological noise removal. In Proc. GI (2001),
pp. 19–26. (Cited on page 87.)

[GW06] Georgii J., Westermann R.: A multigrid framework for real-time simula-
tion of deformable bodies. Comput. Graph. 30, 3 (2006), 408–415. (Cited on
page 16.)

bibliography 207

[Han10] Hansen P. C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, 2010.
(Cited on pages 106, 108, and 130.)

[HAW07] Huang Q.-X., Adams B., Wand M.: Bayesian surface reconstruction via
iterative scan alignment to an optimized prototype. In Proc. SGP (2007),
pp. 213–223. (Cited on page 107.)

[HB10] Hendrix E., Boglárka G.-T.: Introduction to Nonlinear and Global Optimiza-
tion. Springer, 2010. (Cited on page 175.)

[HF06] Hormann K., Floater M. S.: Mean value coordinates for arbitrary planar
polygons. ACM Trans. Graph. 25, 4 (2006), 1424–1441. (Cited on page 13.)

[HG99] Hormann K., Greiner G.: MIPS: An efficient global parametrization
method. In Proc. Curves and Surfaces (1999), pp. 153–162. (Cited on pages 12

and 199.)
[HGH∗10] Hummel M., Garth C., Hamann B., Hagen H., Joy K.: IRIS: Illustrative

rendering for integral surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1319–
1328. (Cited on pages 138, 151, 154, 161, 168, 179, and 181.)

[HJW87] Higham N. J., James I., Wiikinson H.: Computing real square roots of a
real matrix. Linear Algebra Appl. 88, 1 (1987), 405–430. (Cited on page 120.)

[HKRW06] Hadwiger M., Kniss J. M., Rezk-Salama C., Weiskopf D.: Real-time Vol-
ume Graphics. A.K. Peters, 2006. (Cited on pages 16 and 77.)

[HL93] Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design.
A. K. Peters, 1993. (Cited on page 107.)

[HMT∗12] Hahn F., Martin S., Thomaszewski B., Sumner R., Coros S., Gross M.:
Rig-space physics. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (2012), 72:1–
72:8. (Cited on page 14.)

[HPS08] Hormann K., Polthier K., Sheffer A.: Mesh parameterization: Theory
and practice. In ACM SIGGRAPH Asia Courses (2008). (Cited on page 12.)

[HPW∗12] Huang J., Pei W., Wen C., Chen G., Chen W., Bao H.: Output-coherent
image-space lic for surface flow visualization. In Proc. PacificVis (2012),
pp. 137–144. (Cited on pages 138 and 152.)

[HRWW12] Heeren B., Rumpf M., Wardetzky M., Wirth B.: Time-discrete geodesics
in the space of shells. Comput. Graph. Forum (Proc. SGP) 31, 5 (2012), 1755–
1764. (Cited on pages 15 and 48.)

[HSL∗06] Huang J., Shi X., Liu X., Zhou K., Wei L.-Y., Teng S.-H., Bao H., Guo B.,
Shum H.-Y.: Subspace gradient domain mesh deformation. ACM Trans.
Graph. (Proc. SIGGRAPH) 25, 3 (2006), 1126–1134. (Cited on page 13.)

[HSTP11] Hildebrandt K., Schulz C., Tycowicz C. V., Polthier K.: Interactive
surface modeling using modal analysis. ACM Trans. Graph. 30, 5 (2011),
119:1–119:11. (Cited on pages 13 and 196.)

[HSvTP10] Hildebrandt K., Schulz C., von Tycowicz C., Polthier K.: Eigenmodes
of surface energies for shape analysis. In Proc. GMP (2010), pp. 296–314.
(Cited on pages 9 and 196.)

[HSvTP12] Hildebrandt K., Schulz C., von Tycowicz C., Polthier K.: Interactive
spacetime control of deformable objects. ACM Trans. Graph. 31, 4 (2012),
71:1–71:8. (Cited on page 14.)

[Hul92] Hultquist J. P. M.: Constructing stream surfaces in steady 3d vector
fields. In Proc. Vis (1992), pp. 171–178. (Cited on pages 137, 149, 150, 151,
and 172.)

[HWAG09] Huang Q., Wicke M., Adams B., Guibas L.: Shape decomposition using
modal analysis. Comput. Graph. Forum (Proc. Eurographics) 28, 2 (2009), 407–

208 bibliography

416. (Cited on page 66.)
[IMH05] Igarashi T., Moscovich T., Hughes J. F.: As-rigid-as-possible shape ma-

nipulation. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005), 1134–1141.
(Cited on pages 13, 31, 46, and 116.)

[Int97] Interrante V.: Illustrating surface shape in volume data via principal
direction-driven 3d line integral convolution. In Proc. SIGGRAPH (1997),
pp. 109–116. (Cited on page 168.)

[JBK∗12] Jacobson A., Baran I., Kavan L., Popović J., Sorkine O.: Fast auto-
matic skinning transformations. ACM Trans. Graph. (Proc. SIGGRAPH) 31,
4 (2012), 77:1–77:10. (Cited on pages 13, 14, 70, and 121.)

[JBPS11] Jacobson A., Baran I., Popović J., Sorkine O.: Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph. (Proc. SIGGRAPH)
30, 4 (2011), 78:1–78:8. (Cited on pages 13 and 196.)

[JL97] Jobard B., Lefer W.: Creating evenly-spaced streamlines of arbitrary den-
sity. In Proc. VisSci (1997), pp. 43–56. (Cited on page 164.)

[JL00] Jobard B., Lefer W.: Unsteady flow visualization by animating evenly-
spaced streamlines. Comput. Graph. Forum (Proc. Eurographics) 19, 3 (2000),
31–39. (Cited on page 164.)

[JMD∗07] Joshi P., Meyer M., DeRose T., Green B., Sanocki T.: Harmonic coordi-
nates for character articulation. ACM Trans. Graph. (Proc. SIGGRAPH) 26,
3 (2007), 71:1–71:10. (Cited on page 13.)

[JS11] Jacobson A., Sorkine O.: Stretchable and twistable bones for skeletal
shape deformation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6 (2011),
165:1–165:8. (Cited on page 14.)

[JSW05] Ju T., Schaefer S., Warren J.: Mean value coordinates for closed trian-
gular meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005), 561–566.
(Cited on page 13.)

[JTSZ10] Jacobson A., Tosun E., Sorkine O., Zorin D.: Mixed finite elements
for variational surface modeling. Comput. Graph. Forum (Proc. SGP) 29, 5

(2010), 1565–1574. (Cited on page 196.)
[Ju04] Ju T.: Robust repair of polygonal models. ACM Trans. Graph. (Proc. SIG-

GRAPH) 23, 3 (2004), 888–895. (Cited on page 87.)
[Ju09] Ju T.: Fixing geometric errors on polygonal models: A survey. J. Comput.

Sci. Technol. 24, 1 (2009), 19–29. (Cited on pages 86 and 102.)
[JWS12] Jacobson A., Weinkauf T., Sorkine O.: Smooth shape-aware functions

with controlled extrema. Comput. Graph. Forum (Proc. SGP) 31, 5 (2012),
1577–1586. (Cited on page 13.)

[KBH06] Kazhdan M., Bolitho M., Hoppe H.: Poisson surface reconstruction. In
Proc. SGP (2006), pp. 61–70. (Cited on page 142.)

[KBL12] Khabbaz M., Bhagat S., Lakshmanan L. V. S.: Finding heavy paths in
graphs: A rank join approach. CoRR 1112, 1117 (2012), 1–16. (Cited on
page 174.)

[KCATLF06] Kin-Chung Au O., Tai C.-L., Liu L., Fu H.: Dual laplacian editing for
meshes. IEEE TVCG 12, 3 (2006), 386–395. (Cited on page 13.)

[KCvO08] Kavan L., Collins S., Žára J., O’Sullivan C.: Geometric skinning with
approximate dual quaternion blending. ACM Trans. Graph. 27, 4 (2008),
105:1–105:23. (Cited on page 14.)

[KCVS98] Kobbelt L., Campagna S., Vorsatz J., Seidel H.-P.: Interactive multi-
resolution modeling on arbitrary meshes. In Proc. SIGGRAPH (1998),

bibliography 209

pp. 105–114. (Cited on page 12.)
[KFC∗08] Kilian M., Flöry S., Chen Z., Mitra N. J., Sheffer A., Pottmann H.:

Curved folding. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3 (2008), 75:1–
75:9. (Cited on pages 9 and 55.)

[KFG09] Karni Z., Freedman D., Gotsman C.: Energy-based image deforma-
tion. Comput. Graph. Forum (Proc. SGP) 28, 5 (2009), 1257–1268. (Cited on
page 13.)

[KG08] Kircher S., Garland M.: Free-form motion processing. ACM Trans.
Graph. 27, 2 (2008), 12:1–12:13. (Cited on pages 12, 14, 85, and 90.)

[KGBS11] Kavan L., Gerszewski D., Bargteil A. W., Sloan P.-P.: Physics-inspired
upsampling for cloth simulation in games. ACM Trans. Graph. (Proc. SIG-
GRAPH) 30, 4 (2011), 93:1–93:10. (Cited on page 107.)

[KGJ09] Krishnan H., Garth C., Joy K.: Time and streak surfaces for flow visual-
ization in large time-varying data sets. IEEE TVCG (Proc. Vis) 15, 6 (2009),
1267–1274. (Cited on page 137.)

[KGV83] Kirkpatrick S., Gelatt C. D., Vecchi M. P.: Optimization by simulated
annealing. Science 220, 4598 (1983), 671–680. (Cited on page 175.)

[KHSI04a] Kim S., Hagh-Shenas H., Interrante V.: Conveying shape with tex-
ture: experimental investigations of texture’s effects on shape categoriza-
tion judgments. IEEE TVCG 10, 4 (2004), 471 –483. (Cited on page 168.)

[KHSI04b] Kim S., Hagh-Shenas H., Interrante V.: Conveying three-dimensional
shape with texture. In Proc. APGV (2004), pp. 119–122. (Cited on page 168.)

[Kil88] Killing W.: Die Zusammensetzung der stetigen endlichen
Transformations-Gruppen. Mathematische Annalen 31 (1888), 252–290. (Ger-
man). (Cited on page 15.)

[KJ00] Kaltenbach H.-J., Janke G.: Direct numerical simulation of flow separa-
tion behind a swept, rearward-facing step at ReH = 3000. POF 12, 9 (2000),
2320–2337. (Cited on page 154.)

[KKKW05] Krüger J., Kipfer P., Kondratieva P., Westermann R.: A particle system
for interactive visualization of 3D flows. IEEE TVCG 11, 6 (2005), 744–756.
(Cited on page 138.)

[KMBG08] Kaufmann P., Martin S., Botsch M., Gross M.: Flexible simulation of
deformable models using discontinuous galerkin fem. In Proc. SCA (2008),
pp. 105–115. (Cited on page 14.)

[KMP07] Kilian M., Mitra N. J., Pottmann H.: Geometric modeling in shape
space. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007), 64:1–64:8. (Cited
on pages 9, 11, 15, 17, 35, 46, 48, 52, 54, 67, 70, and 85.)

[KOD∗05] Krauskopf B., Osinga H. M., Doedel E. J., Henderson M. E., Gucken-
heimer J., Vladimirsky A., Dellnitz M., Junge O.: A survey of methods
for computing (un)stable manifolds of vector fields. IJBC 15, 3 (2005), 763–
791. (Cited on page 138.)

[Kor85] Korf R. E.: Depth-first iterative-deepening: An optimal admissible tree
search. AI 27, 1 (1985), 97–109. (Cited on page 174.)

[KS98] Kimmel R., Sethian J.: Fast marching methods on triangulated domains.
In Proc. Nat. Acad. Sci. (1998), pp. 8341–8435. (Cited on page 151.)

[KS12] Kavan L., Sorkine O.: Elasticity-inspired deformers for character articu-
lation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6 (2012), 196:1–196:8.
(Cited on page 14.)

210 bibliography

[LCF00] Lewis J. P., Cordner M., Fong N.: Pose space deformation: a unified
approach to shape interpolation and skeleton-driven deformation. In Proc.
SIGGRAPH (2000), pp. 165–172. (Cited on pages 14 and 85.)

[LGSH06] Laramee R. S., Garth C., Schneider J., Hauser H.: Texture advection on
stream surfaces: A novel hybrid visualization applied to CFD simulation
results. In Proc. EuroVis (2006), pp. 155–162. (Cited on pages 138 and 152.)

[LHD∗04] Laramee R. S., Hauser H., Doleisch H., Vrolijk B., Post F. H., Weiskopf

D.: The state of the art in flow visualization: Dense and texture-based tech-
niques. Comput. Graph. Forum 23, 2 (2004), 203–221. (Cited on pages 138,
152, and 167.)

[LHZP05] Laramee R. S., Hauser H., Zhao L., Post F. H.: Topology-based flow
visualization, the state of the art. In Proc. TIV (2005), pp. 1–19. (Cited on
page 137.)

[Lip12] Lipman Y.: Bounded distortion mapping spaces for triangular meshes.
ACM Trans. Graph. 31, 4 (2012), 108:1–108:13. (Cited on pages 10, 13, 31, 43,
116, 126, 127, 129, and 199.)

[LLC08] Lipman Y., Levin D., Cohen-Or D.: Green coordinates. ACM Trans. Graph.
(Proc. SIGGRAPH) 27, 3 (2008), 78:1–78:10. (Cited on page 13.)

[LPRM02] Lévy B., Petitjean S., Ray N., Maillot J.: Least squares conformal
maps for automatic texture atlas generation. ACM Trans. Graph. (Proc. SIG-
GRAPH) 21, 3 (2002), 362–371. (Cited on pages 120 and 142.)

[LSLCO05] Lipman Y., Sorkine O., Levin D., Cohen-Or D.: Linear rotation-invariant
coordinates for meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005),
479–487. (Cited on pages 12, 61, and 85.)

[LTWH08] Li G.-S., Tricoche X., Weiskopf D., Hansen C.: Flow charts: Visualization
of vector fields on arbitrary surfaces. IEEE TVCG 14, 5 (2008), 1067–1080.
(Cited on pages 138, 152, and 160.)

[LWP10] Li H., Weise T., Pauly M.: Example-based facial rigging. ACM Trans.
Graph. (Proc. SIGGRAPH) 29, 4 (2010), 32:1–32:6. (Cited on page 14.)

[LZX∗08] Liu L., Zhang L., Xu Y., Gotsman C., Gortler S. J.: A local/global
approach to mesh parameterization. Comput. Graph. Forum (Proc. SGP) 27,
5 (2008), 1495–1504. (Cited on pages 10, 12, 13, 46, 47, 115, 116, 121, 123,
142, 147, 197, and 199.)

[MBWB02] Museth K., Breen D. E., Whitaker R. T., Barr A. H.: Level set sur-
face editing operators. In Proc. SIGGRAPH (2002), pp. 330–338. (Cited on
pages 15 and 83.)

[MCHM10] Marchesin S., Chen C.-K., Ho C., Ma K.-L.: View-dependent streamlines
for 3d vector fields. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1578 –1586. (Cited
on page 164.)

[MDM∗02] Müller M., Dorsey J., McMillan L., Jagnow R., Cutler B.: Stable real-
time deformations. In Proc. SCA (2002), pp. 49–54. (Cited on pages 14

and 46.)
[MDSB03] Meyer M., Desbrun M., Schröder P., Barr A. H.: Discrete differential-

geometry operators for triangulated 2-manifolds. In Visualization and Math-
ematics III. Springer, 2003, pp. 35–57. (Cited on page 196.)

[Min01] Minka T. P.: Old and New Matrix Algebra Useful for Statistics. Tech. rep.,
MIT Media Lab, 2001. (Cited on page 19.)

[MIW13] Mattausch O., Igarashi T., Wimmer M.: Freeform shadow boundary
editing. Comput. Graph. Forum (Proc. Eurographics) (2013), (to appear).

bibliography 211

(Cited on page 14.)
[MJBF02] Milliron T., Jensen R. J., Barzel R., Finkelstein A.: A framework for

geometric warps and deformations. ACM Trans. Graph. 21, 1 (2002), 20–51.
(Cited on page 13.)

[MKB∗08] Martin S., Kaufmann P., Botsch M., Wicke M., Gross M.: Polyhedral
finite elements using harmonic basis functions. Comput. Graph. Forum (Proc.
SGP) 27, 5 (2008), 1521–1529. (Cited on pages 14 and 87.)

[MKB∗10] Martin S., Kaufmann P., Botsch M., Grinspun E., Gross M.: Unified
simulation of elastic rods, shells, and solids. ACM Trans. Graph. (Proc.
SIGGRAPH) 29, 4 (2010), 39:1–39:10. (Cited on page 14.)

[MLP∗10] McLoughlin T., Laramee R. S., Peikert R., Post F. H., Chen M.: Over
two decades of integration-based, geometric flow visualization. Comput.
Graph. Forum 29, 6 (2010), 1807–1829. (Cited on pages 136, 137, 144, 145,
151, and 164.)

[MMTD07] Mullen P., McKenzie A., Tong Y., Desbrun M.: A variational approach
to eulerian geometry processing. ACM Trans. Graph. (Proc. SIGGRAPH) 26,
3 (2007), 66–74. (Cited on page 16.)

[MN07] Magnus J., Neudecker H.: Matrix differential calculus with applications in
statistics and econometrics, 3rd ed. Wiley, 2007. (Cited on page 29.)

[MQW01] McDonnell K. T., Qin H., Wlodarczyk R. A.: Virtual clay: a real-time
sculpting system with haptic toolkits. In Proc. I3D (2001), pp. 179–190.
(Cited on page 16.)

[MRR∗53] Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E.:
Equation of state calculations by fast computing machines. JCP 21, 6 (1953),
1087–1092. (Cited on page 175.)

[MS92] Moreton H. P., Séquin C. H.: Functional optimization for fair surface
design. Proc. SIGGRAPH 26, 2 (1992), 167–176. (Cited on page 168.)

[MS04] Mémoli F., Sapiro G.: Comparing point clouds. In Proc. SGP (2004),
pp. 32–40. (Cited on page 9.)

[MS11] Manson J., Schaefer S.: Hierarchical deformation of locally rigid meshes.
Comput. Graph. Forum 30, 8 (2011), 2387–2396. (Cited on page 13.)

[MTGG11] Martin S., Thomaszewski B., Grinspun E., Gross M.: Example-based
elastic materials. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 72:1–
72:8. (Cited on page 14.)

[MTLT88] Magnenat-Thalmann N., Laperrière R., Thalmann D.: Joint-
dependent local deformations for hand animation and object grasping. In
Proc. GI (1988), pp. 26–33. (Cited on page 85.)

[MTPS08] Mezger J., Thomaszewski B., Pabst S., Straßer W.: Interactive
physically-based shape editing. In Proc. SPM (2008), pp. 79–89. (Cited
on page 14.)

[MWCS13] Milliez A., Wand M., Cani M.-P., Seidel H.-P.: Mutable elastic models
for sculpting structured shapes. Comput. Graph. Forum (Proc. Eurographics)
32, 2 (2013), 21–30. (Cited on page 13.)

[MWZ∗13] Mitra N. J., Wand M., Zhang H., Cohen-Or D., Bokeloh M.: Structure-
aware shape processing. In Eurographics STARs. 2013, p. (to appear). (Cited
on page 14.)

[MYC∗01] Morse B. S., Yoo T. S., Chen D. T., Rheingans P., Subramanian K. R.:
Interpolating implicit surfaces from scattered surface data using compactly
supported radial basis functions. In Proc. SMI (2001). (Cited on page 87.)

212 bibliography

[MZS∗11] McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis

E.: Efficient elasticity for character skinning with contact and collisions.
ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 37:1–37:12. (Cited on
pages 14 and 45.)

[NMK∗06] Nealen A., Mueller M., Keiser R., Boxerman E., Carlson M.:
Physically-based deformable models in computer graphics. Comput. Graph.
Forum 25, 4 (2006), 809–836. (Cited on pages 14 and 54.)

[NSACO05] Nealen A., Sorkine O., Alexa M., Cohen-Or D.: A sketch-based in-
terface for detail-preserving mesh editing. ACM Trans. Graph. (Proc. SIG-
GRAPH) 24, 3 (2005), 1142–1147. (Cited on page 12.)

[NT03] Nooruddin F., Turk G.: Simplification and repair of polygonal models
using volumetric techniques. IEEE TVCG 9, 2 (2003), 191 – 205. (Cited on
page 87.)

[OBS05] Ohtake Y., Belyaev A., Seidel H.-P.: 3D scattered data interpolation and
approximation with multilevel compactly supported RBFs. Graph. Models
67, 3 (2005), 150–165. (Cited on page 87.)

[OBW∗08] Orzan A., Bousseau A., Winnemöller H., Barla P., Thollot J., Salesin

D.: Diffusion curves: a vector representation for smooth-shaded images.
ACM Trans. Graph. 27, 3 (2008), 92:1–92:8. (Cited on page 142.)

[OF01] Osher S., Fedkiw R. P.: Level set methods: An overview and some recent
results. J. Comput. Phys. 169, 2 (2001), 463–502. (Cited on pages 15 and 72.)

[OF02] Osher S. J., Fedkiw R. P.: Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2002. (Cited on pages 72 and 74.)

[PCY09] Palmerius K. L., Cooper M., Ynnerman A.: Flow field visualization
using vector field perpendicular surfaces. In Proc. SCCG (2009), pp. 27–34.
(Cited on pages 138, 145, and 156.)

[PF01] Perry R. N., Frisken S. F.: Kizamu: A system for sculpting digital charac-
ters. In Proc. SIGGRAPH (2001), pp. 47–56. (Cited on pages 16 and 83.)

[PGB03] Pérez P., Gangnet M., Blake A.: Poisson image editing. ACM Trans.
Graph. (Proc. SIGGRAPH) 22, 3 (2003), 313–318. (Cited on page 142.)

[PGL∗12] Peng Z., Grundy E., Laramee R. S., Chen G., Croft N.: Mesh-driven
vector field clustering and visualization: An image-based approach. IEEE
TVCG 18, 2 (2012), 283–298. (Cited on page 167.)

[PJS06] Popa T., Julius D., Sheffer A.: Material-aware mesh deformations. In
Proc. SMI (2006), pp. 141–152. (Cited on pages 14 and 85.)

[PP93] Pinkall U., Polthier K.: Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics 2, 1 (1993), 15–36. (Cited on pages 106

and 143.)
[PPF∗11] Pobitzer A., Peikert R., Fuchs R., Schindler B., Kuhn A., Theisel H.,

Matkovic K., Hauser H.: The state of the art in topology-based visualiza-
tion of unsteady flow. Comput. Graph. Forum 30, 6 (2011), 1789–1811. (Cited
on page 137.)

[PS09] Peikert R., Sadlo F.: Topologically relevant stream surfaces for flow visu-
alization. In Proc. SCCG (2009), pp. 43–50. (Cited on pages 137 and 164.)

[PTVF07] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.: Numer-
ical Recipes: The Art of Scientific Computing. Cambridge University Press,
2007. (Cited on pages 37, 60, 77, and 97.)

[PVH∗02] Post F. H., Vrolijk B., Hauser H., Laramee R. S., Doleisch H.: Feature
extraction and visualisation of flow fields. In Eurographics STARs. 2002,

bibliography 213

pp. 69–100. (Cited on page 137.)
[PVH∗03] Post F., Vrolijk B., Hauser H., Laramee R., Doleisch H.: The state

of the art in flow visualization: Feature extraction and tracking. Comput.
Graph. Forum 22, 4 (2003), 775–792. (Cited on page 137.)

[PW89] Pentland A., Williams J.: Good vibrations: modal dynamics for graphics
and animation. In Proc. SIGGRAPH (1989), pp. 215–222. (Cited on page 14.)

[RKS00] Rössl C., Kobbelt L., Seidel H.-P.: Line art rendering of triangulated
surfaces using discrete lines of curvature. In Proc. WSCG (2000), pp. 168–
175. (Cited on page 167.)

[RPP∗09] Rosanwo O., Petz C., Prohaska S., Hotz I., Hege H.-C.: Dual streamline
seeding. In Proc. PacificVis (2009), pp. 9–16. (Cited on page 138.)

[RSSG01] Rezk-Salama C., Scheuering M., Soza G., Greiner G.: Fast volumetric
deformation on general purpose hardware. In Proc. GH (2001), pp. 17–24.
(Cited on pages 16 and 83.)

[RTD∗10] Ritschel T., Thormählen T., Dachsbacher C., Kautz J., Seidel H.-P.:
Interactive on-surface signal deformation. ACM Trans. Graph. (Proc. SIG-
GRAPH) 29, 4 (2010), 36:1–36:8. (Cited on page 14.)

[RV11] Rossignac J., Vinacua A.: Steady affine motions and morphs. ACM Trans.
Graph. 30, 5 (2011), 116:1–116:16. (Cited on page 14.)

[RWE08] Rößler F., Wolff T., Ertl T.: Direct GPU-based volume deformation. In
Proc. CURAC (2008), pp. 65–68. (Cited on page 16.)

[SA07] Sorkine O., Alexa M.: As-rigid-as-possible surface modeling. In Proc.
SGP (2007), pp. 109–116. (Cited on pages 13, 31, 46, 51, 68, 116, 118, 142,
and 147.)

[Sab10] Sabin M.: Analysis and Design of Univariate Subdivision Schemes. Springer,
2010. (Cited on page 176.)

[SBBG11a] Solomon J., Ben-Chen M., Butscher A., Guibas L.: As-killing-as-
possible vector fields for planar deformation. Comput. Graph. Forum (Proc.
SGP) 30, 5 (2011), 1543–1552. (Cited on pages 9, 11, 15, 17, 20, 31, 33, 35,
40, 41, 46, 47, 52, 119, 124, 128, and 199.)

[SBBG11b] Solomon J., Ben-Chen M., Butscher A., Guibas L.: Discovery of intrinsic
primitives on triangle meshes. Comput. Graph. Forum (Proc. SGP) 30, 2

(2011), 365–374. (Cited on page 48.)
[SBH∗01] Scheuermann G., Bobach T., Hagen H., Mahrous K., Hamann B., Joy

K. I., Kollmann W.: A tetrahedra-based stream surface algorithm. In
Proc. VIS (2001), pp. 151–158. (Cited on page 137.)

[SBH07] Schulze F., Bühler K., Hadwiger M.: Interactive deformation and vi-
sualization of large volume datasets. In Proc. GRAPP (2007). (Cited on
pages 16 and 83.)

[SCL∗04] Sorkine O., Cohen-Or D., Lipman Y., Alexa M., Rössl C., Seidel H.-P.:
Laplacian surface editing. In Proc. SGP (2004), pp. 175–184. (Cited on
pages 12 and 61.)

[SDC09] Sýkora D., Dingliana J., Collins S.: As-rigid-as-possible image registra-
tion for hand-drawn cartoon animations. In Proc. NPAR (2009), pp. 25–33.
(Cited on page 13.)

[SFCP12] Sigg S., Fuchs R., Carnecky R., Peikert R.: Intelligent cutaway illustra-
tions. In Proc. PacificVis (2012), pp. 185–192. (Cited on pages 175 and 182.)

[SGRT12] Schulze M., Germer T., Rössl C., Theisel H.: Stream surface
parametrization by flow-orthogonal front lines. Comput. Graph. Forum

214 bibliography

(Proc. SGP) 31, 5 (2012), 1725–1734. (Cited on pages 137, 149, 153, 154,
and 155.)

[SH95] Stalling D., Hege H.-C.: Fast and resolution independent line integral
convolution. In Proc. SIGGRAPH (1995), pp. 249–256. (Cited on page 138.)

[SHZO07] Sengupta S., Harris M., Zhang Y., Owens J. D.: Scan primitives for gpu
computing. In Proc. GH (2007). (Cited on page 60.)

[SK06] Suman B., Kumar P.: A survey of simulated annealing as a tool for single
and multiobjective optimization. JORS 57, 1 (2006), 1143–1160. (Cited on
page 175.)

[SLCZ09] Spencer B., Laramee R. S., Chen G., Zhang E.: Evenly spaced stream-
lines for surfaces: An image-based approach. Comput. Graph. Forum 28, 6

(2009), 1618–1631. (Cited on page 167.)
[SM00] Shi J., Malik J.: Normalized cuts and image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell. 22, 8 (2000), 888–905. (Cited on page 66.)
[SMW06] Schaefer S., McPhail T., Warren J.: Image deformation using moving

least squares. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006), 533–540.
(Cited on pages 13 and 47.)

[SP86] Sederberg T. W., Parry S. R.: Free-form deformation of solid geomet-
ric models. In Proc. SIGGRAPH (1986), vol. 20, pp. 151–160. (Cited on
page 13.)

[SP04] Sumner R. W., Popović J.: Deformation transfer for triangle meshes.
ACM Trans. Graph. 23, 3 (2004), 399–405. (Cited on pages 12, 90, 101, 142,
and 144.)

[SRGT12] Schulze M., Rössl C., Germer T., Theisel H.: As-perpendicular-as-
possible surfaces for flow visualization. In Proc. PacificVis (2012), pp. 153–
160. (Cited on pages 138, 145, 146, 148, 153, 158, and 179.)

[SRWS10] Schneider D., Reich W., Wiebel A., Scheuermann G.: Topology aware
stream surfaces. Comput. Graph. Forum (Proc. EuroVis) 29, 3 (2010), 1153–
1161. (Cited on pages 137, 179, and 181.)

[SS02] Strothotte T., Schlechtweg S.: Non-photorealistic computer graphics:
modeling, rendering, and animation. Morgan Kaufmann, 2002. (Cited on
page 167.)

[SS08] Schultz T., Seidel H.-P.: Estimating crossing fibers: A tensor decompo-
sition approach. IEEE TVCG (Proc. Vis) 14, 6 (2008), 1635–1642. (Cited on
page 161.)

[SSP07] Sumner R. W., Schmid J., Pauly M.: Embedded deformation for shape
manipulation. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007). (Cited
on page 13.)

[Sta98] Stalling D.: Fast Texture-Based Algorithms for Vector Field Visualization.
PhD thesis, ZIB, 1998. (Cited on pages 137 and 153.)

[Sta99] Stam J.: Stable fluids. In Proc. SIGGRAPH (1999), pp. 121–128. (Cited on
page 73.)

[STC∗12] Schumacher C., Thomaszewski B., Coros S., Martin S., Sumner R.,
Gross M.: Efficient simulation of example-based materials. In Proc. SCA
(2012), pp. 1–8. (Cited on page 14.)

[STWE07] Schafhitzel T., Tejada E., Weiskopf D., Ertl T.: Point-based stream
surfaces and path surfaces. In Proc. GI (2007), pp. 289–296. (Cited on
page 137.)

bibliography 215

[SVWG12] Solomon J., Vouga E., Wardetzky M., Grinspun E.: Flexible developable
surfaces. Comput. Graph. Forum (Proc. SGP) 31, 5 (2012), 1567–1576. (Cited
on pages 9 and 55.)

[SW04] Sweet G., Ware C.: View direction, surface orientation and texture ori-
entation for perception of surface shape. In Proc. GI (2004), pp. 97–106.
(Cited on page 168.)

[SWH05] Sahner J., Weinkauf T., Hege H.-C.: Galilean invariant extraction and
iconic representation of vortex core lines. In Proc. EuroVis (2005), pp. 151–
160. (Cited on page 181.)

[SWS09] Schneider D., Wiebel A., Scheuermann G.: Smooth stream surfaces of
fourth order precision. Comput. Graph. Forum (Proc. EuroVis) 28, 3 (2009),
871–878. (Cited on pages 137 and 181.)

[SWST12] Stöter T., Weinkauf T., Seidel H.-P., Theisel H.: Implicit integral sur-
faces. In Proc. VMV (2012), pp. 127–134. (Cited on page 137.)

[SZGP05] Sumner R. W., Zwicker M., Gotsman C., Popović J.: Mesh-based inverse
kinematics. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005), 488–495.
(Cited on pages 14 and 85.)

[SZT∗07] Shi X., Zhou K., Tong Y., Desbrun M., Bao H., Guo B.: Mesh pup-
petry: cascading optimization of mesh deformation with inverse kinemat-
ics. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007), 81:1–81:10. (Cited
on page 13.)

[TB96] Turk G., Banks D.: Image-guided streamline placement. In Proc.
GRAPHITE (1996), pp. 453–460. (Cited on page 164.)

[TWHS03] Theisel H., Weinkauf T., Hege H.-C., Seidel H.-P.: Saddle connectors -
an approach to visualizing the topological skeleton of complex 3d vector
fields. In Proc. Vis (2003), pp. 225–232. (Cited on page 164.)

[TWHS05] Theisel H., Weinkauf T., Hege H.-C., Seidel H.-P.: Topological methods
for 2D time-dependent vector fields based on stream lines and path lines.
IEEE TVCG 11, 4 (2005), 383–394. (Cited on pages 86, 88, and 89.)

[Vax12] Vaxman A.: Modeling polyhedral meshes with affine maps. Comput.
Graph. Forum (Proc. SGP) 31, 5 (2012), 1647–1656. (Cited on page 14.)

[vFTS06] von Funck W., Theisel H., Seidel H.-P.: Vector field based shape de-
formations. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006), 1118–1125.
(Cited on pages 15, 74, 75, 83, and 100.)

[vFTS07a] von Funck W., Theisel H., Seidel H.-P.: Elastic secondary deformations
by vector field integration. In Proc. SGP (2007), pp. 99–108. (Cited on
page 15.)

[vFTS07b] von Funck W., Theisel H., Seidel H.-P.: Explicit control of vector field
based shape deformations. In Proc. Pacific Graphics (2007), pp. 291–300.
(Cited on pages 15, 36, 69, 75, and 83.)

[vFTS07c] von Funck W., Theisel H., Seidel H.-P.: Implicit boundary control of
vector field based shape deformations. In Proc. Mathematics of Surfaces
(2007), LNCS, pp. 154–165. (Cited on page 15.)

[vFTS08] von Funck W., Theisel H., Seidel H.-P.: Volume-preserving mesh skin-
ning. In Proc. VMV (2008), pp. 407–414. (Cited on page 79.)

[vFWTS08] von Funck W., Weinkauf T., Theisel H., Seidel H.-P.: Smoke surfaces:
An interactive flow visualization technique inspired by real-world flow
experiments. IEEE TVCG (Proc. Vis) 14, 6 (2008), 1396–1403. (Cited on
page 137.)

216 bibliography

[vW91] van Wijk J. J.: Spot noise texture synthesis for data visualization. In Proc.
SIGGRAPH (1991), pp. 309–318. (Cited on page 138.)

[vW93] van Wijk J. J.: Implicit stream surfaces. In Proc. Vis (1993), pp. 245–252.
(Cited on page 137.)

[WBCG09] Weber O., Ben-Chen M., Gotsman C.: Complex barycentric coordinates
with applications to planar shape deformation. Comput. Graph. Forum (Proc.
Eurographics) 28, 2 (2009), 587–597. (Cited on pages 13 and 47.)

[WBG07] Wicke M., Botsch M., Gross M.: A finite element method on convex
polyhedra. Comput. Graph. Forum (Proc. Eurographics) 26, 3 (2007), 355–364.
(Cited on page 14.)

[WBGH11] Weber O., Ben-Chen M., Gotsman C., Hormann K.: A complex view
of barycentric mappings. Comput. Graph. Forum (Proc. SGP) 30, 5 (2011),
1533–1542. (Cited on pages 13 and 46.)

[WBRS09] Wirth B., Bar L., Rumpf M., Sapiro G.: Geodesics in shape space via
variational time discretization. LNCS 5681, 1 (2009), 288–302. (Cited on
page 15.)

[WDAH10] Winkler T., Drieseberg J., Alexa M., Hormann K.: Multi-scale geometry
interpolation. Comput. Graph. Forum (Proc. Eurographics) 29, 2 (2010), 309–
318. (Cited on pages 14, 70, 85, and 90.)

[Wen04] Wendland H.: Scattered Data Approximation. Cambridge University Press,
2004. (Cited on pages 87 and 92.)

[WHT12] Weinkauf T., Hege H.-C., Theisel H.: Advected tangent curves: A general
scheme for characteristic curves of flow fields. Comput. Graph. Forum (Proc.
Eurographics) 31, 2 (2012), 825–834. (Cited on pages 135 and 137.)

[WK88] Witkin A., Kass M.: Spacetime constraints. In Proc. SIGGRAPH (1988),
pp. 159–168. (Cited on page 14.)

[WMKG07] Wardetzky M., Mathur S., Kaelberer F., Grinspun E.: Discrete laplace
operators: No free lunch. In Proc. SGP (2007), pp. 33–37. (Cited on
page 106.)

[WMZ12] Weber O., Myles A., Zorin D.: Computing extremal quasiconformal
maps. Comput. Graph. Forum (Proc. SGP) 31, 5 (2012), 1679–1689. (Cited on
pages 13 and 46.)

[WPP07] Wang R. Y., Pulli K., Popović J.: Real-time enveloping with rotational
regression. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007), 73:1–73:10.
(Cited on pages 14 and 85.)

[WR01] Westermann R., Rezk-Salama C.: Real-time volume deformation. Com-
put. Graph. Forum (Proc. Eurographics) 20, 3 (2001), 443—-451. (Cited on
pages 16 and 83.)

[WSLG07] Weber O., Sorkine O., Lipman Y., Gotsman C.: Context-aware skeletal
shape deformation. Comput. Graph. Forum (Proc. Eurographics) 26, 3 (2007),
265–273. (Cited on pages 14 and 85.)

[WTHS04] Weinkauf T., Theisel H., Hege H.-C., Seidel H.-P.: Boundary switch
connectors for topological visualization of complex 3d vector fields. In
Proc. VisSym (2004), pp. 183–192. (Cited on page 164.)

[WW92] Welch W., Witkin A.: Variational surface modeling. Proc. SIGGRAPH 26,
2 (1992), 157–166. (Cited on page 168.)

[WXXC08] Wang Y., Xu K., Xiong Y., Cheng Z.-Q.: 2d shape deformation based on
rigid square matching. Comput. Animat. Virtual Worlds 19, 3 (2008), 411–420.
(Cited on page 13.)

bibliography 217

[XWY∗09] Xu W., Wang J., Yin K., Zhou K., van de Panne M., Chen F., Guo B.:
Joint-aware manipulation of deformable models. ACM Trans. Graph. (Proc.
SIGGRAPH) 28, 3 (2009), 35:1–35:9. (Cited on page 14.)

[XZWB06] Xu D., Zhang H., Wang Q., Bao H.: Poisson shape interpolation. Graph.
Models 68, 3 (2006), 268–281. (Cited on pages 85, 90, 102, 142, and 144.)

[XZY∗07] Xu W., Zhou K., Yu Y., Tan Q., Peng Q., Guo B.: Gradient domain editing
of deforming mesh sequences. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3

(2007), 84:1–84:10. (Cited on page 12.)
[YYPM11] Yang Y.-L., Yang Y.-J., Pottmann H., Mitra N. J.: Shape space explo-

ration of constrained meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 6

(2011), 124:1–124:12. (Cited on page 15.)
[YZX∗04] Yu Y., Zhou K., Xu D., Shi X., Bao H., Guo B., Shum H.-Y.: Mesh editing

with poisson-based gradient field manipulation. ACM Trans. Graph. (Proc.
SIGGRAPH) 23, 3 (2004), 644–651. (Cited on pages 12, 142, and 144.)

[ZG07] Zhu Y., Gortler S.: 3D Deformation Using Moving Least Squares. Tech. rep.,
Harvard University, 2007. (Cited on page 13.)

[ZGHG10] Zhou K., Gong M., Huang X., Guo B.: Data-parallel octrees for surface
reconstruction. IEEE TVCG 17, 5 (2010), 669–681. (Cited on page 142.)

[ZRKS05] Zayer R., Rössl C., Karni Z., Seidel H.-P.: Harmonic guidance for sur-
face deformation. Comput. Graph. Forum (Proc. Eurographics) 24, 3 (2005),
601–609. (Cited on pages 12, 61, 142, and 144.)

[ZRS05] Zayer R., Rössl C., Seidel H.-P.: Discrete tensorial quasi-harmonic maps.
In Proc. SMI (2005), pp. 278–287. (Cited on pages 142 and 147.)

[ZvKD10] Zhang H., van Kaick O., Dyer R.: Spectral mesh processing. Comput.
Graph. Forum 29, 6 (2010), 1865–1894. (Cited on pages 65 and 196.)

A D D I T I O N A L R E F E R E N C E S

[1] ANN. ANN: A library for approximate nearest neighbor searching, 2010. Version
1.1.2 cs.umd.edu/~mount/ANN. (Cited on page 94.)

[2] ANSYS Inc. CFD-Post, 2012. Version 12.1 ansys.com. (Cited on page 136.)
[3] CGAL. Computational Geometry Algorithms Library, 2013. www.cgal.org. (Cited

on pages 78 and 90.)
[4] Roger A. Crawfis. Tornado flow field, 1995. cse.ohio-state.edu/~crawfis/Data/

Tornado. (Cited on page 178.)
[5] Jared Hoberock and Nathan Bell. NVIDIA Thrust: A parallel template library,

2012. Version 1.6.0, thrust.github.com. (Cited on pages 37, 60, and 97.)
[6] Intel. Math kernel library MKL, 2013. Version 11.0 software.intel.com/en-us/

intel-mkl. (Cited on page 96.)
[7] NVIDIA. CUDA basic linear algebra subroutines (cuBLAS), 2013. Version 5.0

developer.nvidia.com/cublas. (Cited on page 96.)
[8] K. B. Petersen and M. S. Pedersen. The matrix cookbook. DTU, 2008. (Cited on

page 95.)
[9] Pixologic. Zbrush, 2012. Version 4R5, pixologic.com/zbrush. (Cited on page 36.)

[10] VSG. Amira, 2013. vsg3d.com/amira. (Cited on page 219.)

218

cs.umd.edu/~mount/ANN
ansys.com
cse.ohio-state.edu/~crawfis/Data/Tornado
cse.ohio-state.edu/~crawfis/Data/Tornado
thrust.github.com
software.intel.com/en-us/intel-mkl
software.intel.com/en-us/intel-mkl
developer.nvidia.com/cublas
pixologic.com/zbrush
vsg3d.com/amira

D ATA A C K N O W L E D G M E N T S

The physical Otto-von-Guericke bust in Figure 1 is courtesy of Thorsten Grosch,
the scanned mesh was optimized by Maik Schulze. The crocodile mummy of the
same Figure was scanned by Rebecca Fahrig. We thank Mario Botsch and Olga
Sorkine for providing benchmark deformation shapes in their survey [BS08]. The
bonsai data set shown in Figure 36 is courtesy of Stefan Röttger. The lion, cat,
and horse poses used in Chapter 6 were kindly provided by Robert Sumner. We
thank Tino Weinkauf for resampling the Cylinder data set used in the second
part of this thesis. Gábor Janiga simulated the Aneurysm flow. The DeltaWing

and ACOutlet data sets is courtesy of Markus Rütten. We thank Axel Seeger
and Klaus Affold for providing the BubbleChamber data set. The Turbine flow
is part of the visualization system AMIRA [10]. The hand-drawn flow illustrations
by Uwe Dallmann that are shown in Figure 65 were included with the kind
permission of the DLR Göttingen.

219

D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe; verwendete fremde und eigene Quellen sind als solche kenntlich gemacht.
Insbesondere habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in
Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar
geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem
Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertig-
ter Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Scha-
densersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch
die Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder
im Inland noch im Ausland in gleicher oder ähnlicher Form als Dissertation
eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

Magdeburg, Dezember 2013

Janick Martinez Esturo

	Acknowledgments
	Abstract
	Publications
	Contents
	1 Introduction
	1.1 Thesis Structure
	1.2 Notation

	Shapes Manipulated by Vector Fields
	2 Overview of Continuous Deformations
	2.1 Related Work

	3 Vector Field-based Continuous Deformation Energies
	3.1 Continuous Shape Deformations
	3.2 Continuous Metric Energies
	3.3 A Generalized Family of Energies
	3.4 Discrete Setting
	3.5 Implementation
	3.6 Analysis and Results
	3.7 Relation to Linear Elasticity
	3.8 Discussion
	3.9 Summary

	4 Isometric Surface Integration
	4.1 Near-Isometric Surface Energy
	4.2 Implementation
	4.3 Analysis and Results
	4.4 Spectral Energy Properties
	4.5 Discussion
	4.6 Summary

	5 Continuous Deformations of Implicit Surfaces
	5.1 Continuous Isosurface Deformations
	5.2 Implementation
	5.3 Analysis
	5.4 Applications
	5.5 Discussion
	5.6 Summary

	6 Pose Correction by Space-Time Integration
	6.1 Background
	6.2 General Idea and Overview
	6.3 Algorithmic Details
	6.4 Analysis and Results
	6.5 Discussion
	6.6 Summary

	7 Smoothed Energies for Geometry Processing
	7.1 Background
	7.2 Smoothed Energies
	7.3 Discretization
	7.4 Applications
	7.5 Results
	7.6 Discussion
	7.7 Summary

	Shapes Defined by Vector Fields
	8 Overview of Surface-Based Flow Visualization
	8.1 Related Work
	8.2 Definitions and Notation

	9 Interactive Surface-based Flow Visualization using Poisson-based Tools
	9.1 Poisson-based Optimization and Modeling
	9.2 Interactive Deformation-based Flow Alignment
	9.3 Surface Parametrization for Seed Extraction
	9.4 Parametrization-based LIC-like Visualization
	9.5 Results
	9.6 Discussion
	9.7 Summary

	10 Automatic Global Selection of Stream Surfaces
	10.1 Background
	10.2 Desiderata
	10.3 On the Complexity of the Search Space
	10.4 Quality Measures for Stream Surfaces
	10.5 Automatic Seed Curve Selection
	10.6 Results
	10.7 Discussion
	10.8 Summary

	11 Conclusions

	Appendix
	A Differential Operators of Linear Functions on Simplices
	A.1 Gradient Operators of Linear Functions on Simplices
	A.2 Integration Operators of Linear Functions on Simplices

	B Metric Deformation Errors
	Acronyms
	Bibliography
	Additional References
	Data Acknowledgments
	Declaration

