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Abstract: Background: Multiple organ dysfunction syndrome (MODS) is common in intensive care
units (ICUs) and is associated with high mortality. Although there have been multiple investigations
into a multitude of organ dysfunctions, little is known about the role of liver dysfunction. In addition,
clinical and laboratory findings of liver dysfunction may occur with a significant delay. Therefore,
the aim of this study was to investigate whether a liver function test, based on indocyanine green
(ICG)-clearance, contains prognostic information for patients in the early phase of MODS. Methods:
The data of this analysis were based on the MODIFY study, which included 70 critically ill patients
of a tertiary medical ICU in the early phase of MODS (≤24 h after diagnosis by an APACHE II
score ≥ 20 and a sinus rhythm ≥ 90 beats per minute, with the following subgroups: cardiogenic
(cMODS) and septic MODS (sMODS)) over a period of 18 months. ICG clearance was characterized
by plasma disappearance rate = PDR (%/min); it was measured non-invasively by using the LiMON
system (PULSION Medical Systems, Feldkirchen, Germany). The PDR was determined on the day of
study inclusion (baseline) and after 96 h. The primary endpoint of this analysis was 28-day mortality.
Results: ICG clearance was measured in 44 patients of the MODIFY trial cohort, of which 9 patients
had cMODS (20%) and 35 patients had sMODS (80%). Mean age: 59.7 ± 16.5 years; 31 patients were
men; mean APACHE II score: 33.6 ± 6.3; 28-day mortality was 47.7%. Liver function was reduced
in the total cohort as measured by a PDR of 13.4 ± 6.3%/min At baseline, there were no relevant
differences between survivors and non-survivors regarding ICG clearance (PDR: 14.6 ± 6.1%/min
vs. 12.1 ± 6.5%/min; p = 0.21). However, survivors showed better liver function than non-survivors
after 96 h (PDR: 21.9 ± 6.3%/min vs. 9.2 ± 6.3%/min, p < 0.05). Consistent with these findings,
survivors but not non-survivors show a significant improvement in the PDR (7.3 ± 6.3%/min vs.
−2.9 ± 2.6%/min; p < 0.01) within 96 h. In accordance, receiver-operating characteristic curves
(ROCs) at 96 h but not at baseline show a link between the PDR and 28-day mortality (PDR at 96 h:
AUC: 0.87, 95% CI: 0.76–0.98; p < 0.01. Conclusions: In our study, we found that ICG clearance at
baseline did not provide prognostic information in patients in the early stages of MODS despite being
reduced in the total cohort. However, improvement of ICG clearance 96 h after ICU admission is
associated with reduced 28-day mortality.
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1. Introduction

Acute liver failure is a serious feature of multi-organ dysfunction syndrome (MODS)
and continues to pose a significant diagnostic and therapeutic challenge. The sudden
onset of liver impairment is commonly seen in critically ill patients, particularly those with
sepsis, and the impact of liver dysfunction on clinical outcomes has been a topic of ongoing
debate [1].

The liver, the largest gland in the human body, plays a crucial role in maintaining
metabolic and immunological balance. It is responsible for over 200 functions, such as
detoxification, storage, energy production, nutrient conversion, hormonal regulation, and
coagulation. These functions make the liver a vital organ, and evidence has shown that
liver dysfunction and failure, particularly in sepsis, can significantly contribute to disease
progression and death [2].

Assessing liver impairment can be challenging due to the many functions of this organ
and the numerous parameters that can be measured. Static tests such as laboratory markers
(ASAT = Aspartate transaminase; ALAT = Alanine transaminase etc.) can track chronic
and acute impairments separately but cannot predict the quality or extent of functional
recovery. Dynamic tests, on the other hand, provide functional information on the liver’s
metabolism and clearance capacity (Figure 1) [3]. Indocyanine green (ICG) clearance is the
most widely used dynamic test in clinical practice. ICG is a near-infrared fluorescent dye
that is almost entirely eliminated by the liver and is not reabsorbed or metabolized [4]. It
can be used to diagnose liver dysfunction, especially in pre- and post-operative patients
undergoing hepatic surgery as well as in critical and non-critical patients in an ICU [1,5–9].
This method characterizes dynamic liver function as it depends on several factors such as
liver blood flow, liver cell function, and biliary excretion [10–14].
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Figure 1. Comparison between dynamic and static liver function tests and a respective selection
of test examples, modified according to Sakka et al. [15]. ICG = indocyanine green; AP = alkaline
phosphatase, γ GT = gamma-glutamyltransferase; ASAT = aspartate transaminase; ALAT = alanine
transaminase; GLDH = glutamate dehydrogenase (figure generated using BioRender©).
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Aim of the Study

The main objective of this study is to investigate the relationship between ICG clear-
ance, as an indicator of liver function, and the clinical outcomes of patients in the early
stages of MODS.

2. Methods
2.1. Patients

The actual population was part of the prospective randomized controlled MODIfY-
trial population (EudraCT-Nr.: 2009-015499-88) that included critically ill patients with
newly diagnosed MODS (inclusion ≤ 24 h of diagnosis by APACHE II—score ≥ 20) over
a period of 18 months [15]. The study protocol of the MODIfY trial was approved by
the ethics committee of the Martin-Luther-University Halle (Saale), Germany [15]. The
patients that were included had a study-independent indication for invasive hemodynamic
monitoring, a sinus rhythm with a heart rate ≥ 90/min, pre-existing contraindications to
beta blockers, and a signed declaration of informed consent. Exclusion criteria were as
follows: age < 18 years, pregnancy or lactation, patients with chronic renal insufficiency
(GFR < 30 mL/min), malignant hyperthermia, burns, acute rejection after organ transplan-
tation, sick sinus syndrome, sinuatrial or atrioventricular block III◦, cardiac pacemaker,
high-grade valvular heart disease, severe hepatic failure, or suspected hypoxic brain dam-
age after resuscitation. The included patients were prospectively stratified into cardiogenic
(cMODS) and septic MODS (sMODS).

For our considerations, patients were examined twice over a period of 4 days. The ICU
admission day corresponded to the day of the initial examination. A follow-up examination
was carried out after 96 h. Pseudonymized demographic data, previous illnesses, vital and
laboratory parameters, as well as clinical parameters were collected from all patients.

2.2. Study Endpoint

The primary clinical endpoint of this post hoc analysis was mortality within 28 days
after ICU admission.

2.3. Conventional Parameters of Liver Function

Selected values of established parameters were study-independent routine clinical
parameters collected post hoc outside of the MODIfY study protocol and included the
following: GGT = gamma-glutamyl-transferase (µmol/L·s); ASAT = aspartate transaminase
(µmol/L·s); ALAT = alanine transaminase (µmol/L·s); INR = international normalized
ratio; TB = total bilirubin (µmol/L).

2.4. Scoring Systems

To quantify the disease severity of the study population, we employed the Acute
Physiology and Chronic Health Evaluation (APACHE) II score, which is designed to
provide a morbidity score for ICU patients. Additionally, we utilized the Model of End-
Stage Liver Disease (MELD) and MELD-NA scores to assess the severity of liver disease.

2.5. Indocyanine Green (ICG) Clearance

ICG is a tricarbocyanine, fluorescent dye that has a high hepatic extraction rate of
70–80% (Figure 2) [16]. The liver extracts almost all of the ICG and transports it into
the liver cells using transporting polypeptides (ATP-dependent export pump, multidrug
resistance-associated protein 2 (MDRP2) and multidrug resistance P-glycoprotein (MDR3));
thus, ICG clearance reflects hepatic uptake/excretory function and energy status [17–20].
The ICG dilution curve after intravenous bolus administration shows a primary peak,
which can be used to calculate cardiac output, a second elimination peak, also called the
recirculation phase, which is sometimes followed by smaller peaks and is used to estimate
circulating blood volume, and a hepatic elimination phase, lasting 10–20 min [5].
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Figure 2. Study setup. Indocyanine green (ICG) is injected intravenously. After hepatic uptake, 
clearance takes place via biliary excretion through ATP-dependent pumps, involving multidrug re-
sistance-associated protein 2 (MDRP 2) and multidrug resistance protein 3 (MDR3). Clearance is 
measured non-invasively using a probe with two light-emitting diodes (LEDs) with a wavelength 
of 805 nm and 905 nm. The relationship between the ICG concentration (CICG) and the plasma dis-
appearance rate (ICG-PDR) is described by the following equation: CICG(t) = C0 × e−PDR × t (figure gen-
erated using BioRender© and material from PULSION Medical Systems AG (Feldkirchen, Ger-
many)). 
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used in this study is approximately at a wavelength of 805 nm, which is also the isosbestic 
point of hemoglobin, where oxygenated and deoxygenated hemoglobin have the same 
extinction [22]. Therefore, the extinction of hemoglobin is neglected when measuring ICG 
clearance. The second LED serves as a reference in the near-infrared range, where ICG, 
unlike hemoglobin and other plasma components, has no absorbance.  

In this study, the ICG substance used was ICG-PULSION (PULSION Medical Sys-
tems AG, Feldkirchen, Germany), which is stored in a vial as a dark green powder. To 
preserve the ICG, it was kept under air conditioning at room temperature and protected 
from direct light exposure. A prerequisite for the measurement was venous access, such 
as a central venous catheter or venous cannula, which was checked for proper function 
before each measurement.  

The measurement of ICG clearance was performed at the patient�s bedside according 
to the manufacturer�s instructions. The technical setup involved a probe (LiMON, PUL-
SION Medical Systems AG, Feldkirchen, Germany) and monitor (PiCCO2TM, PULSION 
Medical Systems AG, Feldkirchen, Germany).  

The ICG probe was placed on the patient�s finger via a clip and connected to the 
monitor. The next step was to administer an intravenous bolus (0.5 mg/kg body weight) 
of the ICG test substance dissolved in 10 mL of aqua ad injectabilia (Ampuwa®, Fresenius 

Figure 2. Study setup. Indocyanine green (ICG) is injected intravenously. After hepatic uptake, clear-
ance takes place via biliary excretion through ATP-dependent pumps, involving multidrug resistance-
associated protein 2 (MDRP 2) and multidrug resistance protein 3 (MDR3). Clearance is measured
non-invasively using a probe with two light-emitting diodes (LEDs) with a wavelength of 805 nm and
905 nm. The relationship between the ICG concentration (CICG) and the plasma disappearance rate
(ICG-PDR) is described by the following equation: CICG(t) = C0 × e−PDR × t (figure generated using
BioRender© and material from PULSION Medical Systems AG (Feldkirchen, Germany)).

2.6. Global Liver Function Test via Non-Invasive Determination of ICG Clearance

The method used in this study to determine ICG clearance is based on the principle
of pulse dye densitometry, which is similar to pulse oximetry [21]. Non-pulsatile and
pulsatile readings are measured non-invasively through the skin, and the absorption ratios
at corresponding wavelengths are calculated [21].

Pulse dye densitometry involves two light-emitting diodes (LEDs) [22]. One LED
emits monochromatic light (red light), and the other LED emits light with a wavelength in
the near-infrared range [22]. The absorption maximum for the dissolved ICG substance
used in this study is approximately at a wavelength of 805 nm, which is also the isosbestic
point of hemoglobin, where oxygenated and deoxygenated hemoglobin have the same
extinction [22]. Therefore, the extinction of hemoglobin is neglected when measuring ICG
clearance. The second LED serves as a reference in the near-infrared range, where ICG,
unlike hemoglobin and other plasma components, has no absorbance.

In this study, the ICG substance used was ICG-PULSION (PULSION Medical Systems
AG, Feldkirchen, Germany), which is stored in a vial as a dark green powder. To preserve
the ICG, it was kept under air conditioning at room temperature and protected from
direct light exposure. A prerequisite for the measurement was venous access, such as a
central venous catheter or venous cannula, which was checked for proper function before
each measurement.

The measurement of ICG clearance was performed at the patient’s bedside according to
the manufacturer’s instructions. The technical setup involved a probe (LiMON, PULSION
Medical Systems AG, Feldkirchen, Germany) and monitor (PiCCO2TM, PULSION Medical
Systems AG, Feldkirchen, Germany).

The ICG probe was placed on the patient’s finger via a clip and connected to the
monitor. The next step was to administer an intravenous bolus (0.5 mg/kg body weight) of
the ICG test substance dissolved in 10 mL of aqua ad injectabilia (Ampuwa®, Fresenius
Kabi, Bad Homburg, Germany) followed by the administration of 20 mL of a 0.9% NaCl
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solution. After a few seconds, the curve of the ICG concentration (mg/L) versus time was
displayed on the monitor, and results were obtained after approx. 20–25 min.

2.7. Statistical Analysis

The data analysis and graph generation for this study was carried out using SPSS
Statistics (version 26.0; SPSS Inc., IBM, Armonk, NY, USA) and GraphPad Prism 7.0
(GraphPad Software, La Jolla, CA, USA). The distribution of the data was analyzed using the
Kolmogorov–Smirnov test and was presented as either the mean with standard deviation
in case of normal distribution (mean ± SD) or the median with interquartile range in
case of non-normal distribution (median (IQR, 25–75 percentiles)). For comparison of
data with normal distribution, the Student’s t-test was used, while the non-normally
distributed values were analyzed using the Mann–Whitney U-test. Differences between
nominal scale variables were compared using the Chi2 test. The impact of ICG clearance on
28-day mortality was assessed using logistic regression and the respective odds ratios
(ORs) including a 95% confidence interval (CI), both unadjusted and adjusted, as well as
the area under the curve (AUC) values from the receiver operating characteristics (ROC)
analysis. We derived changes in the PDR by computing the difference between the PDR
measured after 96 h and the baseline PDR. A p-value of less than 0.05 was considered
statistically significant.

3. Results
3.1. Patients

During a period of 18 months, 70 patients with MODS were enrolled in the MOD-
IFY study at a tertiary medical 12-bed ICU. ICG clearance parameters were obtained in
44 patients. Table 1 lists the baseline characteristics of the study population according to
the patient’s survival/ICG clearance status.

Table 1. Baseline data of the total study population.

28-Day Mortality ICG Clearance

Total Study
Population

[n = 44]
Survivors

[n = 23]
Non-

Survivors
[n = 21]

p-Value
Normal
(PDR >

18%/min)
[n = 11]

Impaired
(PDR <

18%/min)
[n = 33]

p-Value

Demographics
Age [years, mean ± SD] 59.7 ± 16.5 58.4 ± 18.5 61.1 ± 14.3 n.s. 58.1 ± 16.5 60.2 ± 16.7 n.s.

<70 years [n (%)] 29 (66) 14 (61) 15 (71) n.s. 8 (73) 21 (64) n.s.
Male [n (%)] 31 (71) 17 (74) 13 (67) n.s. 10 (91) 21 (64) n.s.

BMI [kg/m2, mean ± SD] 26.1 ± 4.9 26.1 ± 4.8 26.9 ± 5.1 n.s. 26.7 ± 5.1 25.8 ± 4.9 n.s.
Type of MODS at ICU

admission
Cardiogenic MODS [n (%)] 9 (21) 6 (26) 3 (14) n.s. 5 (45) 4 (12) <0.05

Septic MODS [n (%)] 35 (79) 17 (74) 18 (86) 6 (55) 29 (88)
ICG clearance parameter
PDR [%/min, mean ± SD] 13.4 ± 6.3 14.6 ± 6.1 12.1 ± 6.5 n.s. 20.9 ± 3.1 10.9 ± 4.9 <0.01

Clinical features
and scores

APACHE II score
[mean ± SD] 33.6 ± 6.3 31.9 ± 6.6 35.4 ± 5.5 n.s. 30.8 ± 4.9 34.5 ± 6.5 n.s.

MELD [mean ± SD] 18.9 ± 7.4 17.1 ± 6.9 20.5 ± 7.5 n.s. 12.9 ± 4.9 19.7 ± 7.1 <0.01
MELD-Na [mean ± SD] 18.5 ± 8.4 16.8 ± 7.7 19.7 ± 8.8 n.s. 12.3 ± 5.8 19.3 ± 8.6 <0.02

Creatinine level [µmol/L,
mean ± SD] 178.3 ± 121.2 195.5 ± 139.3 149.7 ± 82.9 0.19 148.1 ± 107.6 182.2 ± 120.2 n.s.

eGFR [mL/min/1.73 m2,
mean ± SD] 47.1 ± 32.6 41.3 ± 27,9 53.5 ± 36.7 0.22 56.6 ± 31.2 43.9 ± 32.9 n.s.

pH [mean ± SD] 7.30 ± 0.1 7.39 ± 0.1 7.27 ± 0.1 <0.01 7.35 ± 0.1 7.29 ± 0.9 n.s.
Body temperature
[◦C, mean ± SD] 36.8 ± 1.5 36.9 ± 1.5 36.7 ± 1.6 n.s. 36.8 ± 1.3 36.5 ± 1.5 n.s.
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Table 1. Cont.

28-Day Mortality ICG Clearance

Total Study
Population

[n = 44]
Survivors

[n = 23]
Non-

Survivors
[n = 21]

p-Value
Normal
(PDR >

18%/min)
[n = 11]

Impaired
(PDR <

18%/min)
[n = 33]

p-Value

CRP [mg/L, mean ± SD] 211.9 ± 161.1 183.3 ± 139.7 243.4 ± 179.7 n.s. 146.4 ± 98.9 233.8 ± 172.6 n.s.
Leucocytes [Gpt/L,

mean ± SD] 16.9 ± 13.4 19.1 ± 13.9 14.3 ± 12.6 n.s. 12.3 ± 5.6 18.4 ± 14.8 n.s.

Albumin [g/L, mean ± SD] 21.1 ± 7.6 23.7 ± 7.5 18.1 ± 6.9 <0.02 29.4 ± 3.4 18.3 ± 6.6 <0.01
ASAT [µmol/L·s, median

(IQR)] 1.4 (0.7–3.5 0.9 (0.6–3.9) 1.5 (1.0–3.4) n.s. 0.75 (0.4–4.1) 1.5 (0.9–3.4) n.s.

ALAT [µmol/L·s, median
(IQR)] 0.7 (0.3–1.6) 0.5 (0.3–1.4) 0.9 (0.3–1.8) n.s. 0.4 (0.2–2.1) 0.8 (0.3–1.6) n.s.

INR [mean ± SD] 1.4 ± 0.7 1.4 ± 0.8 1.4 ± 0.5 n.s. 1.1 ± 0.1 1.5 ± 0.8 n.s.
GGT [µmol/L, median

(IQR)] 1.2 (0.6–2.5) 0.9 (0.5–1.7) 1.7 (0.8–3.2) n.s. 0.6 (0.3–2.2) 1.5 (0.9–3.5) <0.02

Bilirubin [µmol/L, median
(IQR)] 16.5 (11.3–26.3) 13.0

(11.0–21.0)) 22.0 (11.5–37.1) n.s. 15.1 ± 9.2 32.5 ± 41.5 n.s.

Lactate [mmol/L, median
(IQR)] 1.8 (0.9–2.8) 1.7 (0.9–2.6) 1.9 (0.9–7.5) n.s. 1.0 (0.8–1.7) 2.0 (1.1–5.4) <0.05

PCT [µg/L, median (IQR)] 3.7 (1.1–8.1) 2.1 (0.4–4.9) 5.1 (1.4–9.3) n.s. 1.4 (0.9–3.9) 4.8 (1.4–11.9) <0.05
IL-6 [pg/mL, median

(IQR)]
230

(83.4–1375.5)
180.2

(78.6–704.5)
1357.5

(97.0–2562.6) n.s. 154.1
(74.5–705.3)

524.3
(76.2–2601.2) n.s.

Invasive mechanical
ventilation [n (%)] 40 (91) 19 (83) 21 (100) n.s. 11 (100) 29 (87.9) n.s.

Time of MODS diagnosis
relative to ICU admission

[hours, mean ± SD]
22.2 ± 19.1 19.9 ± 18.1 20.7 ± 20.4 n.s. 24.8 ± 18.2 21.3 ± 19.5 n.s.

Hemoglobin [mmol/L,
mean ± SD] 6.6 ± 1.3 6.8 ± 1.3 6.4 ± 1.3 n.s. 7.5 ± 1.3 6.3 ± 1.2 <0.02

Norepinephrine dose
[µg/kg/min, median

(IQR)]
0.2 (0.03–0.6) 0.2 (0.07–0.6) 0.1 (0.07–0.4) n.s. 0.1 (0.01–0.3) 0.4 (0.03–0.61) n.s.

Epinephrine dose
[µg/kg/min, median

(IQR)]
0.018 (0.0–0.07) 0.01 (0.0–0.013) 0.03 (0.0–0.05) n.s. 0 0.004 (0.0–0.14) n.s.

Dobutamine dose
[µg/kg/min, median

(IQR)]
1.9 (0.0–4.04) 1.7 (0.01–3.33) 2.2 (0.0–4.86) n.s. 1.4 (0.0–3.9) 2.6 (0.0–3.1) n.s.

MAP [mmHg, mean ± SD] 77.3 ± 11.7 77.4 ± 12.1 77.2 ± 11.7 n.s. 73.7 ± 12.1 78.5 ± 11.5 n.s.
Heart rate [BPM,

mean ± SD] 104.6 ± 16.8 104.2 ± 15.9 104.9 ± 18.1 n.s. 104.5 ± 16.1 104.6 ± 17.2 n.s.

LVEF [%, mean ± SD] 51.1 ± 12.8 53.8 ± 11.9 48.1 ± 13.4 n.s. 51.8 ± 11.8 49.5 ± 15.5 n.s.
Comorbidities

Hypertension [n (%)] 20 (45) 10 (44) 10 (48) n.s. 6 (55) 14 (42) n.s.
Diabetes [n (%)] 13 (29) 8 (35) 5 (24) n.s. 7 (64) 6 (18) n.s.

CKD [n (%)] 5 (11) 3 (13) 2 (9) n.s. 2 (18) 3 (10) n.s.
Past myocardial infarction

[n (%)] 11 (25) 6 (26) 5 (24) n.s. 3 (27) 8 (24) n.s.

Past stroke [n (%)] 1 (2) 1 (4) 21 (100) n.s. 1 (9) 0 n.s.
COPD [n (%)] 8 (18) 2 (9) 6 (30) n.s. 3 (27) 5 (16) n.s.

AF [n (%)] 14 (32) 5 (23) 9 (45) n.s. 4 (36) 10 (32) n.s.
CAD [n (%)] 16 (36) 8 (35) 8 (38) n.s. 6 (55) 10 (32) n.s.

Past LTX [n (%)] 0 0 0 n.s. 0 0 n.s.
Chronic pancreatitis [n (%)] 1 (2) 1 (4) 0 n.s. 0 1 (3) n.s.
Active alcohol abuse [n (%)] 8 (18) 5 (22) 3 (14) n.s. 3 (27) 5 (16) n.s.

Current Smoker [n (%)] 5 (11) 1 (4) 4 (19) n.s. 2 (18) 3 (10) n.s.
History of liver cirrhosis

[n (%)] 6 (4) 3 (13) 3 (14) n.s. 1 (9) 5 (16) n.s.

Steatosis hepatis [n (%)] 6 (14) 3 (13) 3 (14) n.s. 1 (9) 5 (16) n.s.
Active malignancy [n (%)] 8 (18) 2 (9) 6 (29) n.s. 1 (9) 7 (21) n.s.

APACHE II-Score = Acute Physiology and Chronic Health Evaluation II-Score; BMI = body mass index;
CRP = C-reactive protein; MODS = multiorgan dysfunction syndrome; CKD = chronic kidney disease; ICU
= intensive care unit; PCT = procalcitonin; n = number of patients; n.s. = not significant; eGFR = estimated
glomerular filtration rate; BPM = beats per minute; p < 0.05 = statistically significant, IQR = interquartile range,
ICG = indocyanine green; LTX = liver transplantation; CAD = coronary artery disease; AF = atrial fibrillation;
MAP = mean arterial pressure; COPD = chronic obstructive pulmonary disease; INR = international normalized
ratio; ASAT = aspartate aminotransferase; ALAT = alanine aminotransferase; GGT = gamma-glutamyl-transferase;
MELD = model for end-stage liver disease; Na = sodium.
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3.2. Demographic Data and Clinical Parameters at the Time of Hospital Admission

Data are given in Table 1. When comparing surviving and non-surviving patients,
it is evident that neither demographic characteristics, such as age and gender, etc., nor
clinical features, APACHE II score, MELD and MELD-Na scores, estimated glomerular
filtration rate (eGFR), C-reactive protein (CRP), etc., show any significant differences.
The only significant difference observed between the two groups were the albumin level
(23.7 ± 7.5 g/L vs. 18.1 ± 6.9 g/L; p < 0.02) and the pH level (7.39 ± 0.1 vs. 7.27 ± 0.1;
p < 0.01).

Table 1 also displays data regarding the study population categorized by their ICG
clearance into normal (PDR > 18%/min) and impaired (PDR < 18%/min) subgroups,
respectively. Both groups were similar in demographics including gender distribution and
body mass index (BMI). Per definition, individuals with normal ICG clearance showed
significantly higher PDR values (20.9 ± 3.1%/min) than those with impaired clearance
(10.9 ± 4.9%/min, p < 0.01). MELD/MELD-Na scores, albumin levels, lactate, PCT, and
γGT were in favor of the normal ICG clearance group. Additionally, those with normal ICG
clearance displayed higher hemoglobin levels (7.5 ± 1.3 mmol/L vs. 6.3 ± 1.2 mmol/L,
p < 0.02). However, there were no notable differences in inotropes and vasopressor doses
or comorbidities.

3.3. Characterization of Liver Function

Liver function as measured by ICG clearance was pathologically diminished in the
studied population: mean PDR of 13.4 ± 6.3%/min at baseline. Although mean values
are morbidly deranged, 11 patients (25%) could be identified to be in the adequate ICG
clearance group (PDR > 18%/min) at baseline (Figure 3). Furthermore, 96 h after study
inclusion, the number of patients with adequate ICG clearance increased to 22 patients
(Figure 3).
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3.4. Association between ICG Clearance and 28-Day Mortality

Significant differences between the survivors and non-survivors regarding their mean
values could be found after 96 h: survivors had a higher PDR (21.9 ± 6.3%/min vs.
9.2 ± 6.3%/min; p < 0.05) than non-survivors. Survivors showed a significant improvement
of ICG clearance within 96 h after baseline: PDR (+7.3 ± 6.3%/min vs. −2.9 ± 2.6%/min;
p < 0.01) (Figure 4).
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Additionally, a binary logistic regression model was used to calculate the odds ratios
regarding 28-day mortality; results are shown in Figure 5. For the PDR, a significant
association can be obtained from a regression model after 96 h.
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Figure 5. Forrest plot of binary logistic regression at baseline and after 96 h regarding the prediction
of 28-day mortality. The following cut-offs were used for calculation: Acute Physiology and Chronic
Health Evaluation (APACHE) II score: 33 points, Model of End Stage Liver Disease (MELD) score:
15 points; MELD-Na score: 17 points. Adjusted for APACHE II and MELD and MELD-Na scores at
baseline or 96 h, respectively (* unadjusted; † adjusted).
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Using ROC curves (Figure 6), relevant prognostic information regarding 28-day mor-
tality can be found for the PDR and changes in the PDR as well as for the APACHE II score
after 96 h.
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Physiology and Chronic Health Evaluation II.
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4. Discussion

The extent to which early changes in liver function in patients with new onset MODS
can be detected and whether they have prognostic significance has not yet been studied
sufficiently. The present study aimed to investigate whether the non-invasive determi-
nation of ICG clearance in patients with MODS is a suitable prognostic predictor for
clinical endpoints.

Sepsis-induced liver dysfunction plays a critical role in the progression of disease
severity, as the liver is responsible for clearing infectious agents and products [23,24]. The
main cause of the development of MODS in the present study population, with a proportion
of 79%, is sepsis, contrasting past studies with heterogeneous populations encompassing
surgical and medical patients [1,5–9].

The ICG clearance expressed as the PDR determined within 24 h after ICU admis-
sion is unsuitable for predicting 28-day mortality for MODS patients, according to our
results. Findings from earlier studies suggest a relevant predictive potential either at study
inclusion or ICU admission: Oellerich et al. [25] observed effective survival prediction
in severe liver cirrhosis using ICG clearance at study inclusion. Similarly, Qui et al. [26]
linked ICG clearance with post-hepatectomy liver failure (PHLF), correlating the test with
PHLF occurrence and severity. Ishikawa et al. [27] demonstrated its predictive ability
for post-operative complications in patients with hepatocellular carcinoma undergoing
hepatectomy. However, a systematic review by Granieri et al. [28] noted variable sensitiv-
ity and specificity for ICG clearance in predicting PHLF, suggesting its limited reliability
when used alone. Studies beyond liver-related diseases have also shown the predictive
potential of ICG clearance. Weis et al. [29] found a strong correlation between pre-operative
PDRs and mortality rates among cardiac surgery patients. Notably, investigations in septic
patients have suggested ICG clearance as a potential prognostic marker. Inal et al. [6]
identified the PDR as an effective predictor of mortality in septic patients in a surgical ICU.
Similarly, Sakka et al. [30] and Kimura et al. [31] observed the PDR’s discriminative power
in predicting ICU survival.

We were unable to replicate these findings, and this discrepancy could be partly ex-
plained by the notion that the initial insult during MODS may not have induced significant
and measurable acute liver damage in our cohort. Other reasons could be attributed
to the smaller patient number in our study. Also, our investigated population carries a
relatively lower incidence of pre-existing liver dysfunctions/diseases than some of the
aforementioned studies.

Our approach to liver function testing included a follow-up ICG clearance mea-
surement after 96 h, and the corresponding improvement was notably associated with
the prediction of reduced mortality. We interpret this reversal of liver dysfunction as a
consequence of the supportive treatment. Especially interventions aimed at sustaining
adequate blood pressure (primarily through vasopressors), promoting effective cardiac
output (mainly through inotropes, particularly dobutamine), and volume resuscitation
help to address supporting liver perfusion/metabolism, while resolving the decline of
a systemic, superior mesenteric artery and microcirculatory liver flow in the context of
shock [32]. Our data suggest that liver function expressed through ICG clearance after 96 h
has an independent effect on mortality as the corresponding odds ratios remain significant
even after adjustment for the APACHE II and MELD/MELD-Na scores.

However, the clinical consequences of impaired liver function need to be carefully
considered and judgment cannot rely on one parameter alone, such as the ICG clearance.
Regarding a future aspect of ICG clearance, and though not performed in a MODS cohort,
the PDR has been incorporated into an existing score (Model for End-Stage Liver Disease,
MELD) in a previous study by Zipprich et al. with 604 patients [33]. The inclusion of ICG
clearance into the MELD score (MELD-ICG) demonstrated improved discrimination in
cases of intermediate to advanced cirrhosis (MELD score between 10 and 30) and allowed
better prediction of survival in these patients than the MELD and MELD-Na scores alone,
respectively. This is not surprising, as the MELD/MELD-Na scores themselves incorporate
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various serum parameters that do not represent real-time hepatic or kidney function. Serum
creatine for example carries as a significant limitation a none-instantaneous reflecting of
renal function: it can take 24–36 h to rise after a definite renal insult [34]. Furthermore, it
has the tendency to overestimate renal function due to secretion in the proximal tubule [34].
Additionally, the administration of medications inhibiting tubular secretion can lead to an
increase in creatinine levels, even in the absence of any actual change in renal function [34].
ICG clearance in this regard only represents hepatic blood flow and liver metabolism. ICG
is entirely eliminated by the liver and is not reabsorbed or otherwise metabolized.

Limitations of This Study

We acknowledge the inherent limitations of this retrospective analysis. Due to the
design of the MODIFY study, all data were derived from patients with MODS so that no
comparison with healthy controls can be given. Our study encompassed a diverse range of
MODS patients, suggesting a multifactorial etiology for liver failure development. However,
due to its small scale, this study lacks the statistical power necessary to comprehensively
assess independent associations while adjusting for numerous factors.

5. Conclusions

Early liver dysfunction associated with MODS is difficult to detect either by using
conventional, static parameters or dynamic tests such as ICG clearance. Our data suggest
that liver dysfunction manifests later during MODS, and then has a prognostic impact
on the clinical outcome of these patients. The results presented provide evidence that a
single measurement of ICG clearance at baseline carries no prognostic information in the
early phase of MODS, but the PDR measurement after 96 h as well as the change of ICG
clearance within 4 days of MODS are associated with 28-day mortality. At that time point,
ICG clearance carries better prognostic information than standard liver blood tests or the
MELD/MELD-Na score.
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