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Abstract

In this work we investigate the problem of characterizing optimal experimental designs for a wide
class of multivariate statistical models. In particular, we consider SUR models of seemingly unrelated
regression, which describe models for multivariate observations, where the components do not seem
to have anything in common at a �rst sight. However these observations are indirectly related to
each other by a correlation structure between the components. These SUR models were originally
introduced in economic applications, but may nowadays also be used in other practical problems for
example in the biosciences, when several processes like pharmacokinetics and pharmacodynamics may
be measured at di�erent time points at the same individuals. For the control variables (e.g. measure-
ment times) of the observations the settings of the single components (processes) may vary across the
components within each individual. The aim of our investigation is now to determine the best settings
for each component within each individual, if the correlation structure between the components is
incorporated in the statistical analysis.
In contrast to a primary guess experimental conditions according to a MANOVA structure of multi-
variate regression, for which the settings coincide for all components, are optimal only in the case of
uncorrelated observations. In all other cases under mild regularity conditions product type designs
turn out to be better, which contain all possible combination of those settings, which are optimal in
the corresponding univariate models.
For a more detailed characterization we �rst introduce the basics of optimal design theory for univari-
ate linear models and specify the SUR models considered. It is then shown that product type designs
are optimal with regard to the D-criterion of minimizing the determinant of the variance covariance
matrix or to the IMSE-criterion of minimizing the mean expected quadratic deviation of the estimated
response function, as long as the marginal models contain an intercept. This result will be extended
to more general SUR models containing nested multiplicative or additive structures.
Additionally di�erent variants are proposed for a G-criterion of minimizing the maximal expected de-
viation of the estimated response function and are investigated for MANOVA and SUR models. Also
the e�ciency of the OLS estimator is compared with the optimal Gauÿ-Markov estimator, if product
type designs are used.
Finally, a consideration of univariate marginal models without intercepts yields the unexpected result
that product type designs retain their optimality only for small to moderate correlations, whereas
they may lose their optimality in the presence of larger correlations.with depended components and
individuals to the corresponding problem for univariate models with correlated observations.
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Zusammenfassung

In dieser Arbeit untersuchen wir das Problem der Charakterisierung optimaler Versuchspläne für
eine weite Klasse von multivariaten statistischen Beobachtungsmodellen. Speziell betrachten wir Mod-
elle für scheinbar unverbundene Regression, d.h. für multivariate Beobachtungen, die auf den ersten
Blick nichts mit einander zu tun haben, aber durch in denen die Beobachtungen durch eine Korre-
lationsstruktur miteinander verbunden sind. Diese sogenannten SUR-Modelle wurden ursprünglich
in ökonomischen Anwendungen eingeführt, können aber auch in anderen praktischen Problemen z.B.
in den Biowissenschaften eingesetzt werden, wenn mehrere Prozesse wie Pharmakokinetik und Phar-
makodynamik zu unterschiedlichen Zeitpunkten an denselben Individuen beobachtet werden können.
Die Kontrollvariablen (z.B. Messzeitpunkte) für die Beobachtungen der verschiedenen Komponenten
(Prozesse) können dabei innerhalb eines Individuums von Komponente zu Komponente variieren. Ziel
ist es nun, die besten Einstellungen für die einzelnen Komponenten zu bestimmen, wobei bei der Anal-
yse der Beobachtungen die Korrelation zwischen den Beobachtungen ausgenutzt werden soll.
Entgegen einer ersten Vermutung sind Versuchseinstellungen mit einer MANOVA-Struktur der mul-
tivariaten Regression, bei denen die Einstellungen für alle Komponenten übereinstimmen, nur bei
Unkorreliertheit der Komponenten optimal. In allen anderen Fällen erweisen sich unter Regularitätsvo-
raussetzungen an die Modelle sogenannte produktartige Versuchseinstellungen als besser, bei denen alle
Versuchseinstellungen von Designs, die optimal in den zugehörigen univariaten Marginalmodellen sind,
miteinander kombiniert werden.
Um dies genauer zu charakterisieren, werden zuerst die Grundlagen der Theorie optimaler Versuch-
splanung für univariate lineare Modelle vorgestellt und die betrachteten multivariaten SUR-Modelle
spezi�ziert. Es wird dann generell gezeigt, dass bezüglich üblicher Kriterien wie des D-Kriteriums
zur Minimierung der Determinante der Varianz-Kovarianzmatrix oder des IMSE-Kriteriums zur Min-
imierung der gemittelten erwarteten quadratischen Abweichungen der geschätzten Wirkungsfunktionen
produktartige Pläne optimal sind, sofern die univariaten marginalen Modelle Achsenabschnitte enthal-
ten. Dies wird auf SUR-Modellen mit verschiedenen geschachtelten, multiplikativen oder additiven
Strukturen verallgemeinert.
Weiterhin werden einerseits verschiedene G-Optimalitätskriterien zur Minimierung der maximalen
erwarteten Abweichung der geschätzten Wirkungsfunktionen vorgeschlagen und beim Einsatz von
MANOVA- und SUR-Modellen untersucht und andererseits die E�zienz des OLS-Schätzers gegenüber
dem optimalen Gauÿ-Markov-Schätzer bei der Verwendung von produktartigen Plänen untersucht.
Bei der Betrachtung von marginalen Modellen ohne Achsenabschnitt ergibt sich schlieÿlich das uner-
wartete Ergebnis, dass produktartige Pläne nur für moderate Korrelationen optimal sind und diese
Optimalität für starke Korrelationen verlieren können.
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1 Introduction

When a phenomena or process is described by a statistical model, which is assumed to be correct,
then the optimal design theory can play a roll by improving the performance of the experiment The
work of ( Smith (1918)) was the entrance to this area of research , where the maximal variance for the
prediction resp. the G- or global optimal design criterion had been discussed, then followed by many
works about optimal designs in the univariate case.
The optimal design theory in the multivariate case was brought to light extensively by the work of
(Fedorov (1972)), where the multivariate version of the equivalence theorems for D- and linear criteria
were derived. After that, there are many works in the multivariate case, such as multivariate linear
models, their components are hierarchically nested and are considered by the work of ( Kra�t and
Schaefer (1992)), and resulted in the usage of a method, which was developed by ( Dette (1990)),
that the D-optimal designs for these kind of models is the joint D-optimal design for the corresponding
marginal univariate models.
The MANOVA-models or homogeneous multivariate linear models are considered in the work of (
Chang (1994)) and the result was, that the reduction of the D-optimal design problem for these type
of models on the corresponding univariate problem is possible, so the D-optimal designs for one of the
homogeneous univariate linear models is the D-optimal for the MANOVA-model.
An Extension to both works ( Kra�t and Schaefer (1992)) and ( Chang (1994)) was the work of (
Kurotschka and Schwabe (1996)), where the Result of ( Chang (1994)) is extended for the A-, c- and
E-optimality criteria and the result of ( Kra�t and Schaefer (1992)) is proven by another technique and
broaded for multivariate linear models with heterogeneous marginal components under the condition
of the block diagonal form of the information matrices.
Bivariate linear models with multi-factor marginal models by Kronecker product form for the variance
covariance matrix of the error variables are discussed in the work of ( Schwabe (1996)) and it is shown,
that the reduction of the bivariate problem on its corresponding univariate problems by the optimality
of the product type designs is possible.
A special bivariate linear model with heterogeneous marginal components, where there are some joint
parameters by both components is considered in the work of ( Changa et al. (2001)) and it is shown by
some examples, that the D-optimality for some designs by use of the equivalence theorem is restricted
to intervals for the correlation term.
Dealing with the optimal design problem in the multivariate case is explored through algorithms or
optimization methods as the positive de�nite programming, see for example the works of ( Wijesinha
and Khuri (1987) ) and ( Atashgah and Sei� (2009)).
SUR models with di�erent marginal structures are considered in this work and it is proven based on
the equivalence theorems for D- and linear criteria, that the product type designs are D- and linear
optimal if the weight matrix is block diagonal(4.1), for SUR models with intercepts by the marginals
with one-factor marginal components, multiplicative marginal components by di�erent nesting cases
for general form for the information matrices, and for additive marginal components by di�erent nest-
ing cases as the hierarchical form of ( Kra�t and Schaefer (1992)), for SUR models without intercepts
by the marginal components for block diagonal form of the information matrices. Where a practical
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example for SUR models without intercepts by the marginals, which have block diagonal or non block
diagonal form can be respectively the multivariate chemical and spring balance regression models.
These results hold for general structure for the variance covariance matrix of the error variables ana-
lytically and asymptotically under the condition of normality, because of the block diagonal form of
the Fisher-information matrix.
D-optimality for the product type designs for SUR models without intercepts by the marginal com-
ponents is restricted by non block diagonal form for the information matrix and for homogeneous
correlation structure, so the product type designs are D-optimal for some intervals for the correlation
terms as in the examples of ( Changa et al. (2001)), which include zero and their lengths are less than
one in the absolute value, where the lengths for these intervals will be closer for growing number of
components m. A theoretical background and justi�cation for these restrictions on the D-optimality
for some designs in the multivariate case, with respect to the correlation term for homogeneous cor-
relation structure are generally enriched, with many simulations for di�erent models and this result
is valid for all multivariate problems, by which just the correlation term is included in the sensitivity
functions for the D-optimality, i.e. that is valid just by homogeneous correlation structure and may be
locally for heterogeneous structure.
IMSE-optimality criteria is determined in the multivariate case and the result of ( Kurotschka and
Schwabe (1996)) due to the MANOVA-model is extended for it. The counterpart of D-optimality
in the multivariate equivalence theorem is a weighted G-optimality due to the trace, so the D- and
G-optimal design are not identical in the multivariate case and there is a covariance matrix for the pre-
diction and no longer a variance function, therewith some G-optimal design criteria are suggested as the
trace, maximal eigenvalue and the determinant, so the �rst step in this direction was the determining
the upper bounds for these functions from the multivariate equivalence theorem for the D-optimality
based on some inequality from the matrix theory for the product of the positive de�nite matrices,
then these upper bounds are calculated for the MANOVA-models by the evaluation of the MANOVA-
design and for SUR models by the evaluation of the product type designs due to the Gauÿ and OLS
estimators. The OLS estimator is a limited-information estimator in many multivariate cases, see for
example ( Amemiya (1985)), but its advantage is, that it can be used, when the variance covariance
matrix of the error variables is unknown, so the e�ciencies for it vs the BLUE Gauÿ estimator with
respect to the product type designs and D- and linear criteria in 4.1 are calculated, as well as the
e�ciencies for MANOVA-design vs product type designs due to the D- and linear criteria in 4.1 for
the OLS and Gauÿ estimators. The reduction of the multivariate design problem for MANOVA-model
with correlated components and individuals resp. observations on its corresponding problem for the
corresponding univariate model with correlated observation is possible.
A short introduction for optimal design theory in the univariate case based on the one-factor linear
models is introduced in the second chapter as well as some results for the optimal designs for uni-
variate multi-factor models, which have been discussed by ( Schwabe (1996)). The SUR model as
general multivariate linear models and some related models as the homogeneous multivariate linear
models (MANOVA), and heterogeneous multivariate linear models are presented in chapter three and
in addition to that the correlation matrix and some of its prosperities and some estimators and their
asymptotic properties are illustrated. Then some fundamentals of the optimal design theory in the
multivariate case as the derivation of the IMSE-criterion are interpreted in chapter four and the op-
timal designs for SUR models with intercepts by the marginal components for general known and
unknown variance covariance matrix of the error variables are explored. G-optimal designs and the
e�ciency of the OLS estimator are the main topics of the �fth chapter. Optimal designs for multi-
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variate multi-factor models with and without nesting structure or for SUR models with multi-factor
marginal components are discussed in chapter six. Optimal designs for SUR models without intercepts
by the marginals as the multivariate version of the spring and chemical balance models are explored
extensively in chapter seven. The work is then concluded with a Discussion, some extensions and
possible future research.
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2 Optimal Designs for Univariate Linear Regression

Models

The necessary fundamentals and tools of the optimal design theory for this work are presented in
this chapter based on an univariate linear, one-factor regression model. The most published books on
the optimal design theory were introduced based on the univariate linear case and in the simplest case
see for example (Fedorov (1972)), ( Pázman (1986)), ( Bandemer and Bellmann (1994)) or ( Silvey
(1980)). This theory was introduced in some books for di�erent estimators and with more details and
examples in the approximate and exact cases, see for example ( Bandemer (1977) and ( Bandemer and
Näther(1980). There are many theoretical results with respect to the approximate design in the works
(Kiefer (1959), (1961), (1974) and (1975) ) and of ( Kiefer and Wolfowitz (1959) and (1960) ). The
work ( ( Schwabe (2008)) can be also a very good short introduction for the optimal design theory.
This chapter is ordered as follows, the univariate linear, one-factor regression models have been in-
troduced in the �rst section , some fundamentals for the optimal design theory are de�ned based on
the univariate case and in addition some useful examples in the second section. The univariate linear,
multi-factor regression models are introduced and the most important results for optimal designs for
these kinds of models from the work of ( Schwabe (1996)) summarized and supported with two clear
examples in the last section.

2.1 The Univariate Linear One-Factor Regression Model

The univariate linear regression model can be derived from an experiment based on the possible
relationship between two variables, the �rst one is in�uenced by the second one linearly, thus the �rst
one is called the response, dependent, outcome, or goal variable and the second one is the control,
independent, income, explanatory, setting, or predictor variable. This relationship is weighted with
parameters and bound with an error variable, which is uncorrelated for multiple observations. Thus,
the model for one observation can look for the response function η (xi) as follows

Yi = η (xi) + εi, , i = 1, ..., n

for linear factorization of the response function η (xi) = f(xi)
>β, where f(xi)

> = (f1(x1), ..., fp((xn))
is the known regression function and β = (β1, ..., βp)

> is the unknown parameter vector for the model,
the regression model is given as follows

Yi = f(xi)
>β + εi, i = 1, ..., n

With the speci�cations E(εi) = 0, Var(εi) = σ2, where σ > 0 and known, and Cov (εi, εk) = 0; i 6= k.
We can introduce the compact model in a vector form

Y = Fβ + ε, E(ε) = 0, Cov (ε) = σ2In×n
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Where x = (x1, ..., xn) is the experimental setting, F = (f(x1), ..., f(xn))> is the design matrix, which
is assumed to be of the rank p, and the experimental setting xi may be chosen from an experimental
region X . Denote by Y = (Y1, ..., Yn)>, ε = (ε1, ..., εn)> the vectors of observations and error terms,
and In×n is the identity matrix.
We can use the Gauÿ Markov theorem, see ( Rao et al. (2007)), to estimate the parameter of the
univariate regression model by the second order speci�cations and thus we get the Gauÿ Markov
estimator which has the same form of the ordinary least square estimator (OLS) in the univariate case.
When the error variable are normally distributed, then we can use the Maximum Likelihood estimator
(ML), see ( Casella and Lehmann (1998)). For the univariate case the three estimators are BLUE. lso,
the three estimators (Gauÿ), (OLS) and (ML) are identical and have the next form

β̂ = (F>F)−1F>Y

The variance covariance matrix of those estimators are given in the next form

Cov (β̂) = σ2(F>F)−1 (2.1)

We call the inverse of the variance covariance matrix for BLUE estimators the information matrix
because of the BLUE property for the considered estimators, which has the next form

M(x) =
1

σ2
F>(x)F(x) =

1

σ2

n∑
i=1

f(xi)f(xi)
> (2.2)

The minimal loss of the information is given by the variance covariance matrix (2.1) resp. the maximum
pro�t of the informations is given by the information matrix of (2.2) by the theory of the mathematical
statistics. That is enough for some areas of science as the econometrics, because the analysis of the
collected data is in focus. But it is an advantage to minimize the loss of the information resp. to
maximize the pro�t of information with respect to the estimator, or in other words to determine the
optimal control variables and observe the response variable by it for some technical areas of science,
such as the pharmaceutical, resp. chemical industry or neuroscience, and that is the goal of the optimal
design theory.

2.2 Optimal Design Theory's Fundamentals in the Univariate Case

The information matrix resp. the variance covariance matrix for an estimator can not be directly
maximized resp. minimized generally, thus we have to apply some functions to it and then optimize
it with respect to the control variables. also, a tuple of control variables (x1, ..., xn) may be as equal
form an exact design, other interpretations of the exact design can be formed based on q. Di�erent
design points and their corresponding frequencies or the weights of the design points as follows

dn = { x1, . . . , xq
w1, . . . , wq

} = [xi, wi]
q
i=1;wi =

ni
n
, ni integer and

q∑
i=1

ni = n

In dealing with the exact or discrete designs, are in many cases di�cult because of combinatorial
problems, which are the problems by the discrete optimization,also, by generalization of the exact
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design by accepting real values of wi we get the approximate resp. normalized design, which can be
de�ned as follows

ξ = { x1, . . . , xq
w1, . . . , wq

} = [xi, wi]
q
i=1; wi > 0,

q∑
i=1

wi = 1

When the wi are real positive values and the design points xi are called the support points of the
design, they belong to the experimental region X . The approximate design ξ can be interpreted too
as a probability measure and therefor is sometimes called in literature the continuous design. The
information matrix with respect to the design ξ is called the standardized information matrix, which
can be de�ned as follows

M(ξ) =

q∑
i=1

wif(xi)f(xi)
>, resp. M(ξ) =

∫
X

f(x)f(x)>ξ(dx)

The set of all possible approximate designs ξ in an experimental region X is Ξ and the corresponding
set of all information matrices for the ξ are formed by the setM, i.e. mathematically

M = M(ξ), ξ ∈ Ξ

The set of information matricesM corresponding to all possible approximate designs is convex, where
the information matrix is positive semi de�nite see (Fedorov (1972)).

Remark 2.1. Only positive de�nite and regular information matrices are considered in this work.

2.2.1 Some Optimality criteria

To make the optimization on the convex set M convex, we have to apply to it convex functions
as the − log det or trace of the inverse of the information matrix , such functions Φ are called the
optimality criteria and are used to minimize the variance covariance matrix of the estimator for the
parameter Cov (β̂) resp. M−1(ξ). For a good description of the geometrical meaning of the optimality
criteria see (Fedorov (1972)), (Pukelsheim (1993)) or ( Myers et al. (2010 )).

Def 2.1 (D-optimal criterion). An approximate design ξ∗D is called D-optimal design, if it minimizes
the determinant of the variance covariance matrix resp. maximizes the determinant of the information
matrix or

− log(det M(ξ∗D)) = min
ξ∈Ξ

[− log(det M(ξ))]

Some criteria can be de�ned as linear criteria

Def 2.2. A linear Criterion Φ :M(Ξ) −→ R is de�ned as follows

Φ(M(ξ)) = trace [LM−1(ξ)]

Where L is a positive semi de�nite Matrix and multipliable with M(ξ) .

for example the A- and IMSE-criteria, which will be de�ned soon

Def 2.3 (A-optimal criterion). An approximate design ξ∗A is called A-optimal design, if it minimizes
the trace of the variance covariance matrix, i.e.

trace (M−1(ξ∗A)) = min
ξ∈Ξ

[trace (M−1(ξ))]

11



Def 2.4 (E-optimal criterion). An approximate design ξ∗E is called E-optimal design, if it minimizes
the largest eigenvalue of the variance covariance matrix, i.e.

λmaxM−1(ξ∗E) = min
ξ∈Ξ

[λmaxM−1(ξ)]

Another interpretation with some geometrical meaning for the D-, A- and E-optimality criteria can
be found in ( Kiefer (1975)).
Not all optimal design criteria are implemented to improve the quality by estimating the parameters,
rather, some optimality criteria are applied to improve the quality of the predictions or to minimize
the variance of it, as the following two criteria show

Def 2.5 (G-optimal criterion in the univariate case). An approximate design ξ∗G is called G-optimal
design, if it minimizes the maximum of the variance of the prediction in the design region X , i.e.

max
x∈X

(
f(x)>M−1(ξ∗G)f(x)

)
= min

ξ∈Ξ
[max
x∈X

(f(x)>M−1(ξ)f(x))]

Def 2.6 (IMSE in the Univariate Case). The integrated mean square error is the integrated predictive
variance with respect to the uniform measure µ(dx) and is de�ned as follows

IMSE =

∫
X
Var

(
f(x)>β̂

)
µ(dx) =

∫
E ‖

(
f(x)>(β̂ − β)

)
‖2µ(dx)

Where ‖.‖ denotes the Euclidean norm.

Def 2.7 (IMSE-optimal criterion). An approximate design ξ∗IMSE is called IMSE-optimal design, if it
minimizes the integrated predictive variance with respect to the uniform measure µ(dx) in the design
region X , i.e. ∫

X
f(x)>M−1(ξ∗IMSE)f(x) µ(dx) = min

ξ∈Ξ
[

∫
X

f(x)>M−1(ξ)f(x) µ(dx)]

Remark 2.2. The IMSE-optimal criterion can be interpreted due to the weight matrix for the linear
criteria L as follows

trace (LM−1(ξ∗IMSE)) = min
ξ∈Ξ

[trace (LM−1(ξ))], L =

∫
X

f(x)f(x)> µ(dx)

2.2.2 Some Tools by the Approximate Design Theory

Dealing with the optimality criteria is di�cult in many situations, so some instruments can be
developed based on the direction resp. Fréchet derivative as the equivalence theorem and
coe�cients to check the optimality or the e�ciency of a design with respect to a criterion Φ.

Def 2.8 (The directional Derivative ). Let M(ξ) be the information matrix for a design ξ and φ a
criterion, then the directional derivative of it by M(ξ) in the direction of M(ξ́) is

FΦ(M(ξ); M(ξ́)) = lim
α↓0

1

α
(Φ[(1− α)M(ξ) + αM(ξ́)]− Φ[M(ξ)])

12



Thus FΦ(M(ξ); M(ξ)) = 0.
The negative signed direction derivative in the direction of the one-point design with weight equal to

one, resp. ξ = { x
1
} and the corresponding information matrix M(x) = f(x)f(x)> is

a useful term for the equivalence theorem, so the sensitivity function can be de�ned as follows based
on it

Def 2.9 (The Sensitivity Function ). The sensitivity function for di�erentiable criteria Φ is given with
respect to one-point design as follows

ϕ Φ(x; ξ) = −FΦ(M(ξ); M(x))

which shows which experimental settings are �most informative�.

The next form of the equivalence theorem is given generally in the concave case by ( Silvey (1980)),
thus because of the duality between the concavity and convexity it can be reformulated as follows

Theorem 2.1 (The General Equivalence Theorem ). Let ξ∗Φ be Φ-optimal design and Φ convex and
di�erentiable onM, then ξ∗Φ minimizes the function Φ(M(ξ)) if and only if

FΦ(M(ξ∗Φ); M(x)) ≥ 0, resp. ϕ Φ(x; ξ∗Φ) ≤ 0, ∀x ∈ X

Graphically, it means that, the design ξ is Φ-optimal, when we can not improve it, wherever the
direction for the derivative is. In �gure 2.1, for the the direction derivative of the convex function
x2 + y2 on [−1, 1]2 is clear, that the direction derivative by the minimum (0, 0) is still up.
In the work of (Kiefer and Wolfowitz (1959)) is a common version of the equivalence theorem for the
D- and G-optimality development , which have the following context

Theorem 2.2 (The Equivalence Theorem for the G- and D-Optimality). The approximate design ξ∗

is D-optimal or G-optimal in the univariate linear model if and only if

ϕD(x; ξ∗D) = f(x)>M−1(ξ∗D)f(x) ≤ p

for all x ∈ X , where p is the number of parameters in the model, and the maximum for the sensitivity
function for the D-optimality by ξ∗D is given as follows

max
x∈X

f(x)>M−1(ξ∗D)f(x) = p

and that occurs by the support points of the optimal design.

A linear function Φ :M(Ξ) −→ R has the following property

Φ[γ1M(ξ1) + γ2M(ξ2)] = γ1Φ[M(ξ1)] + γ2Φ[M(ξ2)]

This is the equivalence theorem for the linear criteria developed in the work of (Fedorov (1972) )

Theorem 2.3. The approximate design ξ∗L is linear optimal in the univariate linear model if and only
if

ϕL(x; ξ∗L) = f(x)>M(ξ∗)−1L M(ξ∗L)−1f(x) ≤ trace
(
L M(ξ∗L)−1

)
for all x ∈ X .

13



Figure 2.1: The directional Derivative for x2 + y2 by min = (0, 0) in the direction of (1, 1) is up

1. For the A-optimality L = Ip, where Ip is the p× p identity matrix.

2. For the IMSE-optimality L =
∫
X f(x)f(x)>µ(dx).

The quality of a competing approximate design ξ with respect to an Φ-optimality criteria can be
measured in terms of its e�ciency compared to the Φ- optimal design ξ∗Φ.
So the D-e�ciency for a design ξ is given as follows

e�D(ξ) =

(
det M(ξ)

det M(ξ∗D)

)1/p

=

(
det M−1(ξ∗D)

det M−1(ξ)

)1/p

The G-e�ciency is given as follows

e�G(ξ) =
p

maxx∈X
(
f(x)>M−1(ξ∗G)f(x)

)
And the e�ciency for the linear criteria is given as follows

e�L(ξ) =
trace

(
L M−1(ξ∗L)

)
trace (L M−1(ξ))

For the A-optimality L = Ip, where Ip is the p × p identity matrix and for the IMSE-optimality
L =

∫
X f(x)f(x)>µ(dx). The e�ciency states, how much less observations are required, when the

Φ-optimal design ξ∗Φ is used instead of ξ.
It is valid for the following examples, that E(εi) = 0, var(εi) = σ2, σ2 = constant, Cov (εi, εk) =

0; i 6= k.
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Example 2.1. It is useful to learn, how the weights for the Φ-optimal designs can be determined, which
is the topic for this example. Here is the simple regression model

Yi(xi) = β1 + β2xi + εi, xi ∈ X = [0, 1]

let the design be

ξ =

(
0 1

1− w w

)
,

2∑
i=1

wi = 1

The regression function is
f(x)> =

(
1 x

)
and including the information matrix for the one-point design is given as follows

M(x) = f(x)f(x)> =

(
1 x
x x2

)
The standardized information matrix for ξ is

M(ξ) =
2∑
i=1

wif(xi)f(xi)
> =

(
1− w 0

0 0

)
+

(
w w
w w

)
=

(
1 1− w

1− w 1− w

)
Then

M−1(ξ∗) =
1

w

(
1 −1
−1 1

1−w

)
So the weights for the D-optimal design can be determined by minimizing the convex function
− log det M(ξ), i.e.

− log det M(ξ) = − log (w − w2) 7−→ min

Thus the resulted minimum is w∗D = 1
2 , so the D- resp. G-optimal design is given as follows

ξ∗D;G =

(
0 1
1
2

1
2

)
For the A-optimal design the weights can be determined by minimizing the convex function
trace

(
M−1(ξ)

)
, i.e.

trace
(
M−1(ξ)

)
=

2− w
w(1− w)

7−→ min

Thus the resulting minimum is w∗A = 2−
√

2, so the A-optimal design is given as follows

ξ∗A =

(
0 1

2−
√

2
√

2− 1

)
(check the A-optimality equivalence theorem 2.3 as in example 2.3 ).
For the IMSE-optimal design the weights can be determined by minimizing the convex function
trace

(
L M−1(ξ∗)

)
, where

L =

∫ 1

0
f(x)f(x)>dx =

∫ 1

0

(
1 x
x x2

)
dx =

(
1 1

2
1
2

1
3

)
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So

trace
(
L M−1(ξ∗)

)
=

1

3w(1− w)
7−→ min

Thus the resulting minimum is w∗IMSE = 1
2 , so the IMSE-optimal design is given as follows

ξ∗IMSE =

(
0 1
1
2

1
2

)
By a similar process we can illustrate, that the D- resp. G-optimal, A-optimal and IMSE-optimal
designs for the same model in the design region X = [−1, 1] are given as follows

ξ∗D;G;A;IMSE =

(
−1 1

1
2

1
2

)
Example 2.2. It is also useful to learn, how the design points can be determined, so the boundary
points should be considered as well as a kind of symmetry, may be just for univariate linear models
with intercepts. For the cubic regression model

Yi(xi) = β1 + β2xi + β3x
2
i + β4x

3
i + εi, xi ∈ X = [−1, 1]

a candidate design with respect to the D-optimality could be as follows

ξ =

(
−1 −x x 1
w
2

(1−w)
2

(1−w)
2

w
2

)
Thus the information matrix for one-point design has the following form

M(x) = f(x)f(x)> =


1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6


Then the standardized information matrix with respect to the four point design ξ is

M(ξ∗) =

4∑
i=1

wif(xi)f(xi)
> =

w

2


1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

+
(1− w)

2


1 −x x2 −x3

−x x2 −x3 x4

x2 −x3 x4 −x5

−x3 x4 −x5 x6



+
(1− w)

2


1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

+
w

2


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


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=


1 0 w + (1− w)x2 0

0 w + (1− w)x2 0 w + (1− w)x4

w + (1− w)x2 0 w + (1− w)x4 0

0 w + (1− w)x4 0 w + (1− w)x6


So the points and the weights for the D-optimal design can be determined by minimizing the convex
function
− log det M(ξ) Thus the resulting minimum is x = 1√

5
' 0.45, w = 1

4 , so the resulting design is

ξ∗D =

(
−1 − 1√

5
1√
5

1
1
4

1
4

1
4

1
4

)
which is D- resp. G-optimal design.
To determine the support points of the A- and IMSE-optimal designs, we have to minimize resp.
trace

(
M(ξ)−1

)
and trace

(
L M(ξ)−1

)
with respect ot w and x, so we get di�erent design points and

weights for the both designs, so

ξ∗A =

(
−1 −x x 1
w
2

1−w
2

1−w
2

w
2

)
, x ' 0.46, w ' 0.3

ξ∗IMSE =

(
−1 −x x 1
w
2

1−w
2

1−w
2

w
2

)
, x ' 0.44, w ' 0.31

where the weight matrix has the following form for this model

L =


2 0 2/3 0

0 2/3 0 2/5

2/3 0 2/5 0

0 2/5 0 2/7


Example 2.3. For the quadratic regression model

Yi(xi) = β1 + β2xi + β3x
2
i + εi, xi ∈ X = [−1, 1]

the design

ξ∗D;G =

(
−1 0 1

1
3

1
3

1
3

)
satis�es the conditions of the corresponding equivalence theorem 2.2 and therewith it is D- resp. G-
optimal design for this model, and that is illustrated by the �gure 2.2 for the related following sensitivity
function resp. the variance function

ϕD(x; ξ∗D) = f(x)>M−1(ξ∗D;G)f(x) =
3

2
(2− 3x2 + 3x4)

The next design is A- and IMSE-optimal

ξ∗A;IMSE =

(
−1 0 1

1
4

1
2

1
4

)
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Figure 2.2: The D-
sensitivity: 3

2(2− 3x2 + 3x4)
Figure 2.3: A-optimality: 1−
5
2x

2(1− x2)

Figure 2.4: IMSE-optimality:
1− 7

8x
2(1− x2)

satis�es the conditions of the corresponding equivalence theorem 2.3 and therewith it is A-optimal and
that is illustrated by �gure 2.3 for the function

ϕA(x; ξ∗A)

trace
(

M(ξ∗A)−1
) =

f(x)>M−2(ξ∗A)f(x)

trace
(

M(ξ∗A)−1
) = 1− 5

2
x2(1− x2)

The weight matrix for this model due to the IMSE-optimality has the following form

L =


2 0 2/3

0 2/3 0

2/3 0 2/5


�gure 2.4 for the next function illustrate, that the candidate design satis�es the conditions of the
equivalence theorem for the IMSE-optimality

ϕIMSE(x; ξ∗IMSE)

trace
(
L M(ξ∗IMSE)−1

) =
f(x)>M(ξ∗IMSE)−1L M(ξ∗IMSE)−1f(x)

trace
(
L M(ξ∗IMSE)−1

) = 1− 7

8
x2(1− x2)

By similar process we can illustrate, that the D- resp. G-optimal, A-optimal and IMSE-optimal
designs for the same model in the design region X = [0, 1] are given as follows

ξ∗ =

(
0 1

2 1
w0 w 1

2
w1

)
Where the weights w0 = w 1

2
= w1 = 1

3 for the D- resp. G-optimality, w0 = .322, w 1
2

= 0.486, w1 = 0.192

for the A-optimality and w0 = w1 = 1
4 , w 1

2
= 1

2 for the IMSE-optimality.
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2.3 The Univariate Linear Multi-Factor Regression Models

The most famous types of these models are the multiplicative resp. product type and additive
models, where interactions between the di�erent factors of the model exist through the multiplicative
models, which do not exist for the additive models. May be under the multi-factor regression models
can be understood, that many factors in�uence the response variable, which can be directly illustrated
by the variance analysis models but within regression models meaning, that there is more than one
input resp. control variable, which can belong to di�erent experimental or design regions, e�ecting the
response variable may be, with or without interactions. For example modeling the in�uence of two
fever reducers with or without interactions between each other by the temperature of a patient. We
will de�ne the multiplicative models as well as the additive models as in ( Schwabe (1996)).

Remark 2.3. It is assumed in this section, that E(εi) = 0, V ar(εi) = σ2, where σ > 0 and is known,
and Cov (εi, εk) = 0; i 6= k, xj ∈ Xj, j = 1, ...,m.

Def 2.10 (The Multiplicative Models). ( Schwabe (1996)) The multiplicative regression model can be
de�ned as a regression model with more than one control variable, when its regression is the Kronecker
product of two or more marginal regression functions. Them marginal single factor models are described
by the corresponding marginal response functions as follows

η j(xj) = f (j)(xj)
>β(j)

where f (j)(xj) : Xj −→ <pj , β(j) ∈ <pj , j = 1, ...,m. The response function for the resulting multi-
plicative model with j-factor is given as follows

η (x1, ..., xm) =

p1∑
k1=1

...

pm∑
km=1

f
(1)
k1

(x1)...f
(m)
km

(xm)βk1,...,km (2.3)

The form 2.3 may be rewritten in a more intelligible way by use of the notation of Kronecker
products, for the more informations about the Kronecker product see (Zhang (1999))

η (x1, ..., xm) = (f (1)(x1)> ⊗ ...⊗ f (m)(xm)>)β = (⊗mj=1f
(j)(xj)

>)β (2.4)

where β ∈ <p with p =
∏m
j=1 pj . Hence β collects the unknown parameters βk1,...,km , kj = 1, ..., pj ,

j = 1, ...,m, in lexicographic order β = (β1,...,1,1,β1,...,1,2, ...,β1,...,1,pj ,β1,...,2,1, ...,βp1,...,pj−1,pj ) and the
response function (2.4) is parametrized by the regression function f : X1 × X2... × Xm −→ <p with
f(x1, ..., xm) = ⊗mj=1f

(j)(xj). So the multiplicative regression model for one observation is speci�ed as
follows

Y (x1, ..., xm) = (⊗mj=1f
(j)(xj)

>)β + ε (2.5)

Def 2.11 (The Additive Models ). ( Schwabe (1996)) The additive regression model can be de�ned as
a regression model with an intercept, which its regression is the intercept plus the union of two or more
regression functions. With this restriction the response function of the additive model with m-factor is
given by

η (x1, ..., xm) = f(x1, ..., xm)>β = β0 +
m∑
j=1

gj(xj)
>βj
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x = (x1, ..., xm) ∈ X = X1 × X2... × Xm, such that f(x1, ..., xm)> = (1,g1(x1)>, ...,gm(xm)>)> ,
βj ∈ <pj−1, and β = (β0,β

>
1 , ...,β

>
m) ∈ <p with p =

∑m
j=1 pj −m + 1. The corresponding regression

functions for the marginal models have the forms f (j)(xj) =

(
1

gj(xj)

)
, and response functions are

given as follows

η j(xj) = f (j)(xj)
>β(j) = β0 + gj(xj)

>βj , β
(j) = (β0,β

>
j )> ∈ <pj

So the additive regression model for one observation is speci�ed as follows

Y (x1, ..., xm) = β0 +

m∑
j=1

gj(xj)
>βj + εi (2.6)

2.3.1 Optimal Designs for Multi-Factor Models

Optimal designs for multi-factor models were extensively explored and determined in the work of
( Schwabe (1996)) and it has been proven, that the product type designs are D-optimal for the mul-
tiplicative and additive models, and linear optimal for multiplicative models without conditions and
for additive models by block-diagonal information matrices. That means, we can reduce the problem
of �nding optimal designs for a multi-factor model on the problem of �nding optimal designs for the
corresponding one-factor models, which reformulate the multi-factor models.

Def 2.12 (The Product Type Design ). The support points for the product type design is the Cartesian
product of the support points of approximate designs and its weights are the product of their weights,
so it means that, for ξ1, ξ2, . . . , ξm, which are de�ned as follows

ξ1 =

(
x11 . . . x1N1

w11 . . . w1N1

)
, x1i ∈ X1, i1 = 1, . . . , N1

ξ2 =

(
x21 . . . x2N2

w21 . . . w2N2

)
, x2i ∈ X2, i2 = 1, . . . , N2

...

ξm =

(
xm1 . . . xmNm
wm1 . . . wmNm

)
, xmi ∈ Xm, im = 1, . . . , Nm

The product type design has the form

ξ = ξ1 ⊗ ξ2 ⊗ . . .⊗ ξm =

(
(x1i1 , x2i2 , . . . , xmim)
w1i1 · w2i2 · . . . · wmim

)
i1=1,...,N1,i2=1,...,N2,im=1,...,Nm

Where ⊗ denotes the product measure operator and (x1i1 , x2i2 , . . . , xmim) ∈ X = X1×X2× . . .×Xm,
i.e. the product type design as measure ξ splits as product of the measures ξ1, . . . , ξm.

Remark 2.4. The most important property of the product type design resp. the product measure is
the topic of Fubini's theorem, which mainly emphasizes, that the computing of a double integral for an
integrable function can be evaluated by iterated integrals and the order of integration can be changed,
as follows∫
X1×X2

fd(ξ1⊗ξ2) =

∫
X2

(∫
X1

f(x1, x2)ξ1(dx1)

)
ξ2(dx2) =

∫
X1

(∫
X2

f(x1, x2)ξ2(dx2)

)
ξ1(dx1) (2.7)
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If f(x1, x2) = f(x1)f(x2), then the form (2.7) can be reduced as follows∫
X1×X2

fd(ξ1 ⊗ ξ2) =

∫
X1

f(x1)ξ1(dx1)

∫
X2

f(x2)ξ2(dx2) (2.8)

For more information see for example ( Durrett (2010)) or ( Ga�ke (2009/ 2010).
Now some important results for optimal designs for multiplicative and additive models can be sum-
marized by the following theorems. The considered linear criteria are the A- or the IMSE-criterion by
the following theorems.

Theorem 2.4. ( Schwabe (1996)) Let ξ∗j D- resp. G-optimal designs for the marginal model with the

response function η j(xj) = f (j)(xj)
>β(j) in the design region , then ξ∗ = ⊗mj=1ξ

∗
j is D- resp. G-optimal

design for the product-type model given in ( 2.5) in the design region X = ×mj=1Xj.

Theorem 2.5. ( Schwabe (1996)) Let ξ∗j linear optimal designs for the marginal model with the response

function η j(xj) = f (j)(xj)
>β(j) in the design region Xj, with weight matrix Lj, then ξ

∗ = ⊗mj=1ξ
∗
j is

linear optimal design for the product-type model given in ( 2.5) in the design region X = ×mj=1Xj, with
weight matrix L = ⊗mj=1Lj.

Theorem 2.6. ( Schwabe (1996)) Let ξ∗j D- resp. G-optimal designs designs for the marginal model

with the response function η j(xj) = β0 + gj(xj)
>βj in the design region Xj, then ξ∗ = ⊗mj=1ξ

∗
j is D-

resp. G-optimal design for the additive model given in ( 2.6) in the design region X = ×mj=1Xj.

Theorem 2.7. ( Schwabe (1996)) Let ξ∗j linear optimal designs for the marginal model with the response

function η j(xj) = β0 + gj(xj)
>βj in the design region Xj, with weight matrix Lj =

∫
X f (j) >f (j)d(µ),

and if
∫
Xj gj(xj) ξ

∗
j (dxj) = 0, j = 2, . . . ,m, then ξ∗ = ⊗mj=1ξ

∗
j is linear optimal design for the additive

model given in ( 2.6) in the design region X = ×mj=1Xj, with weight matrix

L =
∫

(1,g>1 , ...,g
>
m)> (1,g>1 , ...,g

>
m)d(µm), where µm is the m-dimensional uniform measure.

Example 2.5. We have two univariate linear one-factor quadratic regression models of the following
form

Yij = β0 + βj1xij + βj2x
2
ij + εi, j = 1, 2

Where the design regions are Xj = [−1,+1], thus from example 2.3 the D- resp. G-, A- and IMSE-
optimal designs for those models are given as follows

ξ∗1;D = ξ∗2;D =

(
−1 0 1

1
3

1
3

1
3

)
, ξ∗1;A = ξ∗2;A =

(
−1 0 1

1
4

1
2

1
4

)
ξ∗1;IMSE = ξ∗2;IMSE =

(
−1 0 1

1
4

1
2

1
4

)
then for the multiplicative model

Yi = β0 + β1xi2 + β2x
2
i2 + β3xi1 + β4xi1xi2 + β5xi1x

2
i2 + β6x

2
i1 + β7x

2
i1xi2 + β8x

2
i1x

2
i2 + εi,

the following product type designs are resp. D- resp. G-optimal and A- or IMSE-optimal designs
because of theorems 2.4 and 2.5 respectively

ξ∗D = ξ∗1;D ⊗ ξ∗2;D =

 (
1
1

)
· · ·

(
1
−1

) (
0
0

) (
−1
0

)
· · ·

(
0
1

)
1
9 · · · 1

9
1
9

1
9 · · · 1

9


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ξ∗A,IMSE = ξ∗1;A,IMSE ⊗ ξ∗2;A,IMSE = (
1
1

) (
1
−1

) (
−1
1

) (
−1
−1

) (
0
0

) (
−1
0

) (
1
0

) (
0
1

) (
0
−1

)
1
16

1
16

1
16

1
16

1
4

1
8

1
8

1
8

1
8


where the weight matrix due to IMSE-optimality has the following form for this model

L =



4 0 4
3 0 0 0 4

3 0 4
9

0 4
3 0 0 0 0 0 4

9 0

4
3 0 4

5 0 0 0 4
9 0 4

15

0 0 0 4
3 0 4

9 0 0 0

0 0 0 0 4
9 0 0 0 0

0 0 0 4
9 0 4

15 0 0 0

4
3 0 4

9 0 0 0 4
5 0 4

15

0 4
9 0 0 0 0 0 4

15 0

4
9 0 4

15 0 0 0 4
15 0 4

25


on X = ×2

j=1Xj = ×2
j=1[−1,+1].

So, the conditions of the equivalence theorem for the D- resp. G-optimality are satis�ed by evaluating
ξ∗D = ξ∗1;D ⊗ ξ∗2;D as we can see by the �gure 2.5 for the sensitivity function

ϕD = f(x1, x2)>M−1(ξ∗D)f(x1, x2) =
81

4
(
2

3
− x2

1 + x4
1)(

2

3
− x2

2 + x4
2) ≤ 9

The conditions of the equivalence theorem for A-optimality are satis�ed by evaluating ξ∗A = ξ∗1;A⊗ξ∗2;A,
as it is illustrated by �gure 2.6 for the following function

ϕA

trace
(
M(ξ∗A)−1

) =
f(x1, x2)>M−2(ξ∗A)f(x1, x2)

trace
(
M(ξ∗A)−1

) =
25

4
(
2

5
− x2

1 + x4
1)(

2

5
− x2

2 + x4
2) ≤ 1

The conditions of the equivalence theorem for IMSE-optimality are satis�ed by evaluating
ξ∗IMSE = ξ∗1;IMSE ⊗ ξ∗2;IMSE, as it is illustrated by �gure 2.7 for the following function

ϕIMSE

trace
(
L M(ξ∗IMSE)−1

) =
f(x1, x2)>M−1(ξ∗IMSE) L M−1(ξ∗IMSE)f(x1, x2)

trace
(
L M−1(ξ∗IMSE)

)
=

49

64
(
8

7
− x2

1 + x4
1)(

8

7
− x2

2 + x4
2) ≤ 1

Example 2.6. We have two univariate linear one-factor quadratic regression models of the following
form

Yij = β0 + βj1xij + βj2x
2
ij + εi, j = 1, 2
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Figure 2.5: D-optimality:
Multiplicative

Figure 2.6: A-optimality :
Multiplicative

Figure 2.7: IMSE-optimality :
Multiplicative

where the design regions are Xj = [−1,+1], thus from example 2.3 the D- resp. G-, A- and IMSE-
optimal designs for those models are given as follows

ξ∗1;D = ξ∗2;D =

(
−1 0 1

1
3

1
3

1
3

)
, ξ∗1;A = ξ∗2;A =

(
−1 0 1

1
4

1
2

1
4

)
ξ∗1;IMSE = ξ∗2;IMSE =

(
−1 0 1

1
4

1
2

1
4

)
then for the additive model

Yi = β0 + xi1β11 + x2
i1β12 + xi2β21 + x2

i2β22 + εi,

the following product type designs are D- resp. G-optimal designs but not A- or IMSE-optimal designs
because of theorems 2.6 and 2.7

ξ∗D = ξ∗1;D ⊗ ξ∗2;D =

 (
1
1

)
· · ·

(
1
−1

) (
0
0

) (
−1
0

)
· · ·

(
0
1

)
1
9 · · · 1

9
1
9

1
9 · · · 1

9


ξA,IMSE = ξ∗1;A,IMSE ⊗ ξ∗2;A,IMSE = (

1
1

) (
1
−1

) (
−1
1

) (
−1
−1

) (
0
0

) (
−1
0

) (
1
0

) (
0
1

) (
0
−1

)
1
16

1
16

1
16

1
16

1
4

1
8

1
8

1
8

1
8


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Where the weight matrix for this model due to IMSE-optimality has the form

L =



4 0 4
3 0 4

3

0 4
3 0 0 0

4
3 0 4

5 0 4
9

0 0 0 4
3 0

4
3 0 4

9 0 4
5


So, the conditions of the equivalence theorem for D- resp. G-optimality are satis�ed by evaluating the
product type design ξ∗D = ξ∗1;D ⊗ ξ∗2;D, as it is illustrated by �gure 2.8 for the sensitivity function

ϕD = f(x1, x2)>M−1(ξ∗D)f(x1, x2) = 5− 9

2
(x2

1(1− x2
1)− x2

2(1− x2
2)) ≤ 5

But the conditions of the conditions of the equivalence theorem for A-optimality are not satis�ed by
evaluating the product type design ξIMSE = ξ∗1;IMSE ⊗ ξ∗2;IMSE, as it is illustrated by �gure 2.9 for the
following function

ϕA

trace
(
M(ξ∗A)−1

) =
f(x1, x2)>M−2(ξA)f(x1, x2)

trace (M(ξA)−1)
=

17

15
+

4

3
(·x4

1 + x4
2)− 8

5
(x2

1 + x2
2) +

8

15
x2

1x
2
2 > 1 for (x1, x2) = (0, 0)

and the conditions of the equivalence theorem for IMSE-optimality are not satis�ed by evaluating the
product type design ξA = ξ∗1;A ⊗ ξ∗2;A, as it is illustrated by the �gure 2.10 for the following function

ϕIMSE

trace
(
LM(ξ∗IMSE)−1

) =
f(x1, x2)>M−1(ξIMSE) L M−1(ξIMSE)f(x1, x2)

trace (L M−1(ξIMSE))

=
157

147
+

4

7
(x4

1 + x4
2)− 157

147
(x2

1 + x2
2) +

40

147
· x2

1x
2
2 > 1 for (x1, x2) = (0, 0)

It may be useful to mention, that the product type designs are linear optimal for additive models,
which are reformulated from the simple linear regression models in the experimental region
X = [−1,+1].

24



Figure 2.8: D-optimality :
Additive

Figure 2.9: A-optimality :
Additive Figure 2.10: IMSE-optimality

: Additive
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3 The Seemingly Unrelated Regression (SUR) Models

The model of seemingly unrelated regression or the SUR model was introduced by (Zellner (1962))
for modeling and analysis of a general multivariate linear regression model, and since then various
types of it have played an important role in many areas of science. For more information and to have
a deeper look into these kinds of models see ( Amemiya (1985)), ( Hackl (2008)) and ( Srivastava and
Giles (1987)). These works can be also be useful, if one is interested in many resp. multi processes,
which verify by the same subject and can model by many resp. multi equation models, where the time
points resp. the control variables need not be identical for the measurements of the multi quantities
within one subject. As the observations will be correlated within one unit, the data may be described
by a multivariate linear model, which has the structure of a seemingly unrelated regression.
This chapter is organized as follows, the SUR model is interpreted in the �rst section, di�erent esti-
mators for the regression coe�cients by known and unknown variance covariance matrix of the error
variables, and the Fisher-information matrix are interpreted in the second section. The correlation
matrix with some of its properties is interpreted in the third section. Other related multivariate linear
models to the SUR models, such as the heterogeneous or homogeneous (MANOVA) multivariate linear
models are illustrated in the fourth section . The Pharmacokinetic and Pharmacodynamic processes
are modeled as a bivariate SUR model in the last section.

3.1 Model speci�cation

This model is based on m-dimensional multivariate observations for n individuals. The components
of the multivariate observations can be heterogeneous, which means that the response can be described
by di�erent regression functions and di�erent experimental settings, which may be chosen from di�erent
experimental regions. Then the observation of the j-th component of individual i can be described by

Yij = fj(xij)
>βj + εij =

pj∑
l=1

fjl(xij)βjl + εij , j = 1, ...,m

where fj = (fj1, ..., fjpj )
> are the known regression functions and βj = (βj1, ..., βjpj )

> the unknown
parameter vectors for the j-th component and the experimental setting xij may be chosen from an
experimental region Xj . Denoted by Yi = (Yi1, ..., Yim)> and εi = (εi1, ..., εim)> the multivariate
vectors of observations and error terms, respectively, for individual i and correspondingly the block
diagonal multivariate regression function

f(x) = diag (fj(xj))j=1,...,m =

 f1(x1) · · · 0
...

. . .
...

0 · · · fm(xm)

 (3.1)

for the multivariate experimental setting x = (x1, ..., xm)> ∈ X = ×mj=1Xj , which is di�erent from the
setting in the last chapter. Then the individual observation vector can be written as

Yi = f(xi)
>β + εi , (3.2)
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where β = (β>1 , ...,β
>
m)> is the complete stacked parameter vector for all components. For the error

vectors εi it is assumed that they have zero mean, are uncorrelated across the individuals and that they
have a common positive de�nite variance covariance matrix of the error variables Cov (εi) = Σ, and
therefor Cov (Yi) = Σ, within the individuals, and their correlation components are heterogeneous.
Finally, denoted by Y = (Y>1 , ...,Y

>
n )> and ε = (ε>1 , ..., ε

>
n )> the stacked vectors of all observations

and all error terms, respectively. Then we can write the complete observation vector as

Y = Fβ + ε , (3.3)

where F = (f(x1), ..., f(xn))> is the complete experiment design matrix. The complete observational
error ε, then its covariance matrix is V = Cov(ε) = In ⊗Σ, where In is the n× n identity matrix.

Remark 3.1. The univariate marginal models of the components have the following form

Y(j) = F(j)βj + ε(j) , j = 1, ...,m (3.4)

where Y(j) = (Y1j , ..., Ynj)
> and ε(j) = (ε1j , ..., εnj)

> are vectors of observations and errors for the j-th
component, respectively, and F(j) = (fj(x1j), ..., fj(xnj))

> is the design matrix for the j-th marginal
model. The corresponding error terms are uncorrelated and homoscedastic, Cov (ε(j)) = σ2

j In, where

σ2
j = σjj is the j-th diagonal entry of Σ.

For more information about writing multivariate models in the individual or component approaches
see ( Muller and Stewart (2006)).

3.2 Estimating the parameter β with known and unknown variance

covariance matrix

If we assume the variance covariance matrix of the error Σ and, hence V are known, we can estimate
the parameter β e�ciently by the Gauÿ-Markov estimator

β̂GM = (F>V−1F)−1F>V−1Y

where its variance covariance matrix is equal to the inverse of the corresponding following information
matrix

M = F>V−1F =

n∑
i=1

f(xi)Σ
−1f(xi)

> (3.5)

which is the sum of the individual informations.
Alternatively, we can estimate the parameter β with less e�ciency by the ordinary least squares
estimator even in the case of unknown variance covariance matrix of the error variables

β̂OLS =
(
F>F

)−1
F>Y

Which is minimizes the least squares

(Y − Fβ)> (Y − Fβ)

The corresponding variance covariance matrix for this estimator has the following form

cov(β̂OLS) =
(
F>F

)−1 (
F>VF

)(
F>F

)−1
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Remark 3.2. If V · F = F · U, for some U, then the estimators β̂GM and β̂OLS are identical.
This is valid at least for uncorrelated components, i.e. when the variance covariance matrix of the
error Σ is diagonal, and for identical (fj(xj))j=1,...,m, i.e. when we have multivariate regression model
(MANOVA). For more informations see for example ( Baltagi (2011).

The general least squares estimator is given as follows

β̂GLS = (F>V−1F)−1F>V−1Y

Which minimizes the weighted least squares, resp. the following term

(Y − Fβ)> V−1(Y − Fβ)

Remark 3.3. The goal of the following discussion is to show, that the asymptotic information matrix
is block diagonal with unknown variance covariance matrix, which is useful for a result in the next
chapter.

We can estimate the parameter β asymptotically e�cient for unknown variance covariance matrix by
the feasible general least squares estimator (FGLS) through replacing the variance covariance matrix
of the error variables with the following estimator

V̂ =
1

n
(Y − Fβ̂OLS)> (Y − Fβ̂OLS) (3.6)

and estimating the parameterβ by

β̂FGLS = (F>V̂−1F)−1F>V̂−1Y (3.7)

see ( Magnus (1978)), ( Amemiya (1985)), or ( Srivastava and Giles (1987)). The parameter β can
be estimated too by the maximum likelihood method, when the error components underlie the normal
distribution through replacing the variance covariance matrix of the error variables in the log-likelihood
function with the following term

V =
1

n
(Y − Fβ)> (Y − Fβ)

and maximizing it for the parameter β and then replacing it with β̂ML in (3.8) and therewith estimating
V renewed. Where the likelihood function has the following form

` = (2π)−
nm
2 (det V−

1
2 ) exp (−1

2
(Y − Fβ)>V−1(Y − Fβ))

And respectively the log-likelihood function as follows

log ` = −nm
2

log(2π) − 1

2
log det V − 1

2
((Y − Fβ)>V−1(Y − Fβ)) (3.8)

When the variance covariance matrix of the error variables is known, then β̂ML , β̂GLS and βGM
coincide with each other. The Use of β̂ML and β̂FGLS have the advantage of asymptomatic e�ciency
for big n √

n(θ̂ − θ) ∼ N(0,M−1

θ
), θ = (β; V)
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Where Mθ is the Fisher information matrix, which exists, is �nite, regulare and can be calculated by
the expression

E

(
∂ log `

∂θ
.
∂ log `

∂θ

>
)
, and its corresponding elements by E

(
∂ log `

∂θ
.
∂ log `

∂θq

>
)

Where , q = 1, ..., r and r = p + m(m + 1)/2 is the dimension of the Fisher information matrix,
respectively the dimension of the parameter θ. The Fisher information matrix has the following form
for the SUR model for ν = vec(Σ) = vec((ujj́)j,j́=1,...,m), where the vec(Σ) is a column vector of the
columns of Σ.

Mβ;V =

(
Mβ 0

0 MV

)
; Mβ = F>V−1F; MV =

1

2

∂vecΣ
∂ν

> (
Σ−1 ⊗Σ−1

) ∂vecΣ
∂ν

(3.9)

Where V = In×n ⊗Σ.
The qth elements of the matrix MV has the following forms because of symmetry(

vec
∂Σ

∂u

)> (
Σ−1 ⊗Σ−1

)(
vec

∂Σ

∂uq

)
= trace

(
∂Σ

∂u
Σ−1 ∂Σ

δuq
Σ−1

)
Where u interprets the di�erent terms of the variances and correlations of the variance covariance
matrix of the error variables.
We can calculate the elements of the Fisher-information matrix for η = Fβ by the next simple form

(Mθ)q = E

(
∂ηθ
∂θ

>
V−1.

∂ηθ
∂θq

)
+

1

2
trace

(
∂Σ

∂u
Σ−1 ∂Σ

δuq
Σ−1

)
Similarly, the Fisher information matrix for one individual model (3.2) looks as follows

Mθ =

(
Mβ 0

0 MV

)
; Mβ =

n∑
i=1

f(xi)Σ
−1f(xi)

>; MV =
1

2

∂vecΣ
∂ν

> (
Σ−1 ⊗Σ−1

) ∂vecΣ
∂ν

(3.10)

For more information see ( Turkington (2002)), (Rao (1973)), ( Magnus (1978)), ( Amemiya (1985)),
or ( Srivastava and Giles (1987)).

3.3 The correlation matrix and its properties

Remark 3.4. When the variance covariance matrix of the error variables Σ is given as follows

Σ =

 σ2
1 · · · σ1σmρ1m
...

. . .
...

σ1σmρ1m · · · σ2
m

 (3.11)

then we can deduce the corresponding correlation matrix from the variance covariance matrix of the
error variables Σ as follows

cor = diag (
1

σj
)j=1,...,m Σ diag (

1

σj
)j=1,...,m =

 1 · · · ρ1m
...

. . .
...

ρ1m · · · 1

 (3.12)
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Figure 3.1: The determinant of the
matrix R for ρ12 = 0.99 and ρ23 = 0. Figure 3.2: The determinant of

the matrix R forρ13 = 0.01 and
ρ23 = −0.8.

To estimate the parameter by the Gauÿ-Markov estimator, the variance covariance matrix of the
error variables should be regular, i.e. that all σ2

j > 0 and the correlation matrix positive de�nite

Theorem 3.1 ( (Zhang (1999)), (6.2)). Let H be an m−square symmetrical matrix. Then

1. H is positive de�nite if and only if the determinant of every leading principal submatrix (i.e.,
Minor) of H is positive.

2. H is positive de�nite if and only if the determinant of every (not only leading) principal submatrix
of H is nonnegative.

Theorem 3.2 ( ( Peterson and Pederson (2008)) ). Let H be an m−square complex matrix. Then A
is positive de�nite if and only if all eigenvalues of it, λ are positive, i.e. λi > 0, where i = 1 . . .m.

Example 3.1. Let R =

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


3×3

then the determinant leading Minor are positive, if det(1) = 1 > 0, det

(
1 ρ12

ρ12 1

)
= 1−ρ2

12 > 0⇒

ρ2
12 < 1, det

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 = 1− ρ2
12 − ρ2

13 − ρ2
23 + 2 · ρ12 · ρ13 · ρ23 > 0

Thus for ρ13 = 0.01, ρ23 = −0.8 must be −0.61 < ρ12 < 0.59 and therewith the correlation matrix is
positive de�nite. For ρ12 = 0.99, ρ23 = 0, if −0.14 ≤ ρ13 ≤ 0.14 then the matrix R is a correlation
matrix. The next graphics illustrate the curves for the determinant of the correlation matrix

Remark 3.5. We can remark by the example of ( 3.1) that the determinant of the correlation matrix is
less than or equal to the determinants for the corresponding submatrices with diagonal elements equal
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to 1, also, for c = det(R), c12 = det

(
1 ρ12

ρ12 1

)
= 1 − ρ2

12, c13 = det

(
1 ρ13

ρ13 1

)
= 1 − ρ2

13 and

c23 = det

(
1 ρ23

ρ23 1

)
= 1− ρ2

23, we have

c = 1− ρ2
12 − ρ2

13 − ρ2
23 + 2 · ρ12 · ρ13 · ρ23 = c12 + c13 + c23 − 2(1− ρ12ρ13ρ23) > 0 then

0 <
c

c12
= 1 +

c13

c12
+
c23

c12
− 2

(1− ρ12ρ13ρ23)

c12
then

c

c12
≤ max(1 +

c13

c12
+
c23

c12
− 2

(1− ρ12ρ13ρ23)

c12
) then

0 <
c

c12
≤ 1 thus by the same method 0 <

c

c13
≤ 1, 0 <

c

c23
≤ 1 where max is the maximum.

(3.13)

That is valid in general.

3.4 The Derivation of Some Multivariate Linear Models from The

SUR Models

The SUR models are general multivariate linear models with di�erent regression functions and con-
trol variables for the marginal components see ( Reinsel and Velu (1998)), so for di�erent regression
functions with the same control variables for the marginal components we get the so called hetero-
geneous multivariate linear models see ( Kurotschka and Schwabe (1996)) or ( Kra�t and Schaefer
(1992)), thus the block diagonal multivariate regression function for such models has the special form
of 6.1 in the following form

f(x) = diag (fj(x))j=1,...,m =

 f1(x) · · · 0
...

. . .
...

0 · · · fm(x)

 (3.14)

The so called homogeneous multivariate linear models or (MANOVA) can be held from the SUR model
for same regression functions and control variables for the marginal components see ( Kurotschka and
Schwabe (1996)), ( Chang (1994)) or ( Christensen (2001)), thus the block diagonal multivariate
regression function for such models has the special form of 6.1 in the following form

f(x) = diag (f0(x))j=1,...,m =

 f0(x) · · · 0
...

. . .
...

0 · · · f0(x)

 = Im ⊗ f0(x) (3.15)

And it is known, that the OLS and Gauÿ estimator are identical for this multivariate linear model and
the variance covariance matrices for both estimators are identical and have the following form

Cov =
(
F>V−1F

)−1
where

(
F>V−1F

)−1
=(

(Im ⊗ f0(x1), ..., Im ⊗ f0(xn))(In ⊗ Σ−1)(Im ⊗ f0(x1), ..., Im ⊗ f0(xn))>
)−1

= Σ⊗

(
n∑
i=1

f0(xi)f0(xi)
>

)−1

then
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Figure 3.3: The logarithmic
concentration

Figure 3.4: The logarithmic
e�ciency

Figure 3.5: The both pro-
cesses

Cov = Σ⊗M−1
0 (x), M0(x) =

n∑
i=1

f0(xi)f0(xi)
> (3.16)

and the information matrix has the next form

M(x) = Σ−1 ⊗M0(x) (3.17)

3.5 The Modeling of Pharmacokinetic and Pharmacodynamic

Processes as a SUR Model

If one is interested in both pharmacokinetics and pharmacodynamics, where the pharmacokinetics
(PK) is the study of the in�uence of body on the drug resp. the study of the concentration and the
pharmacodynamics (PD) is the study of the in�uence of the drug on the body resp. the e�ciency of it,
the time points need not be identical for the measurements of the two quantities within one subject.
As the observations will be correlated within one unit, the data may be described by a bivariate
model, which has the structure of a bivariate seemingly unrelated regression. A simple example for
such modeling by one dose can be found in the work of ( Bertrand and Mentré (2008) ) in the
exponential form, thus after linearizing both equations by applying the logarithmic functions to them
a bivariate SUR model or a bivariate straight line regression models with di�erent control variables
can be obtained, i.e. the model has the following form for n observations

Yij = βj0 + βj1tij + εij , Cov (εij , εik) = ρjkσjσk, j 6= k, j, k = 1, 2, j = 1→ PK, j = 2→ PD.

So if we assume that the estimated logarithmic predictions for PK is ln(Y1) = 2− t1 and for PD the
form ln(Y2) = −1 + t2, the both processes and the paradox of both marginal models are respectively
illustrated by �gures (3.3), (3.4) and (3.5).
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4 Optimal Designs for SUR Models wih One-Factor and

Intercepts in their Components

The optimal design theory in the multivariate case has been well developed, as (Fedorov (1972))
established the equivalence theorem in the multivariate case for the D- and linear optimality. There
were di�erent works in this research area, so the D-optimality for a kind of heterogeneous multivariate
linear model with grown hierarchical nesting components was explored in the work of ( Kra�t and
Schaefer (1992)). And it is shown , that a jointly D-optimal design for all marginal components
models is D-optimal design for the reformulated multivariate model. Where these D-optimal designs
can be determined by a developed method in the work of ( Dette (1990)). It has been found in the
work of ( Chang (1994)), that the D-optimal design's problem for the homogeneous multivariate linear
models (MANOVA) can be reduced to their corresponding univariate marginal component models. I.e.
the D-optimal design for one of the marginal components is the D-optimal design for the reformulated
MANOVA-model by those components. Both these results have been generalized by the work of (
Kurotschka and Schwabe (1996)), so the result of ( Chang (1994)) were extended for A-, C- and E-
optimality. And another proof for the result of ( Kra�t and Schaefer (1992)) were illustrated. The same
result due to D-optimality was enhanced for heterogeneous multivariate linear models with di�erent
marginal components under strict conditions, which made the corresponding information matrix block-
diagonal. There are di�erent control variables for the considered SUR models and therewith the
property (2.8) due to Fubini's theorem resp. the corresponding remark 2.4 are valid, and the strict
conditions for the heterogeneous multivariate linear models are disappeared for SUR models with
intercepts by the corresponding marginal models, and made the optimal design problem for SUR
models much easier.
The optimal design theory in the multivariate case, as the IMSE-criterion are introduced in the �rst
section. The D- and some linear optimal as the A- and IMSE-optimal designs for the considered SUR
models are established in the second section. And it has been shown, that the product type designs
are D-, A-, IMSE-optimal designs as well as linear optimal if the weight matrix is block diagonal(4.1)
, for the SUR models with marginal components, which have one-factor resp. one control variable and
an intercept by each component. These results are valid for a known variance covariance matrix of
the error variables. The optimality of the product type designs is to be held but asymptoticly for an
unknown variance covariance matrix of the error variables. That is the mean topic of this chapter.
The results are illustrated by a clear example at the end of this chapter.

4.1 Optimal Design Theory in the Multivariate Case

We can de�ne an experimental design in the multivariate case with support points as vectors as

follows ξ =

(
x1 . . . xk
w1 . . . wk

)
by the set of all di�erent experimental settings xi = (xi1, . . . , xim),

i = 1, ..., k, which belong to the design region X = ×mj=1Xj , with the corresponding relative frequencies
wi = ki

k , where ki is the number of replications at xi. When wi, i = 1, ...k do't depend on the sample
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size k and are just real numbers between zero and one, then the exact and approximative design are
not identical. The corresponding standardized information matrix resp. the variance covariance matrix
for the Gauÿ estimator for the SUR models can be obtained as

M(ξ) =
k∑
i=1

wif(xi)Σ
−1f(xi)

>, Cov(β̂) = M−1(ξ).

and respectively the limited information matrix for the OLS estimator has the following form

MOLS(ξ) =

(
k∑
i=1

wif(xi)f(xi)
>

)(
k∑
i=1

wif(xi)Σf(xi)
>

)−1( k∑
i=1

wif(xi)f(xi)
>

)
.

We consider approximate designs for analytical purposes , see for example ( Kiefer (1974), for which
the weights wi ≥ 0 need not be multiples of 1

n , but only have to satisfy
∑k

i=1wi = 1.

4.1.1 A-, D- and IMSE Criteria in the Multivariate Case

The A- and D-optimality criteria is de�ned similarly to the univariate case, as well as the IMSE-
criterion, which can be illustrated by the following lemma

Def 4.1 (IMSE). The integrated mean square error is the integrated predictive covariance with respect
to the uniform measure µ(dx) and de�ned as follows

IMSE =

∫
X
trace (Cov

(
f(x)>β̂

)
)µ(dx) =

∫
X

E(‖f(x)>(β̂ − β)‖2)µ(dx)

Where ‖.‖ denotes the euclidean norm.

Lemma 4.1. An approximate design ξ∗IMSE is called IMSE-optimal design in the multivariate case,
if it minimizes the integrated predictive variance with respect to the uniform measure µ(dx) and is
equivalent to

trace (LM−1(ξ∗IMSE)) = min
ξ∈Ξ

[trace (LM−1(ξ))], L =

∫
X

f(x)f(x)> µ(dx) (4.1)

Proof:

IMSE =

∫
X

E(‖f(x)>(β̂ − β)‖2)µ(dx)

=

∫
X

E(trace
(

(f(x)>(β̂ − β))>f(x)>(β̂ − β)
)
µ(dx)

=

∫
X

E(trace
(
f(x)f(x)>(β̂ − β)(β̂ − β)>

)
)µ(dx)

=

∫
X
trace

(
E[f(x)f(x)>]Cov(β̂)

)
µ(dx)

=

∫
X
trace

(
f(x)f(x)>M(ξ)−1)

)
µ(dx)

= trace
(
L M(ξ)−1

)
, L =

∫
X

f(x)f(x)> µ(dx)

Thus the IMSE-criterion in the multivariate case is given in (4.1).
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4.1.2 The Equivalence Theorems for D- and Linear-Optimality in the Multivariate
Case

Useful tools for checking the performance of a given candidate design are the multivariate equivalence
theorems for the D- and linear criteria see (Fedorov (1972)), theorems 5.2.1, 5.3.1):

Theorem 4.1. The approximate design ξ∗ is D-optimal in the multivariate linear model if and only if

trace
(
Σ−1f(x)>M(ξ∗)−1f(x)

)
≤ p (4.2)

for all x ∈ X , where p =
∑m

j=1 pj is the number of parameters in the model.

Theorem 4.2. The approximate design ξ∗ is linear optimal in the multivariate linear model if and
only if

ϕL(x; ξ∗L) = trace
(
Σ−1f(x)>M(ξ∗)−1L M(ξ∗)−1f(x)

)
≤ trace

(
L M(ξ∗)−1

)
(4.3)

for all x ∈ X .

1. For A-optimality L = Ip, where Ip is the p× p identity matrix.

2. For IMSE-optimality L =
∫
X f(x)>f(x)µ(dx).

4.2 D- and Linear-Optimal Designs for SUR Models

Remark 4.1. The considered linear optimal designs in this work are A-, IMSE- and special linear
optimal designs by block diagonal form of the weight matrix L, where its diagonal blocks are the weight
matrices for the marginal components Lj , j = 1, ...,m, i.e. L = block− diag (Lj)j=1,...,m in general.
For A-optimality the weight matrix L is equal to the identity matrix with the dimension p L = Ip =
block− diag (Ipj )j=1,...,m, Ipj is the identity matrix with the dimension pj, and for IMSE-optimality
L =

∫
X f(x)>f(x)µ(dx) = block− diag (

∫
Xj f(xj)

>f(xj)µ(dxj))j=1,...,m. The same meaning can be

extended for the univariate case.

To obtain a complete characterization of the D-optimal and linear optimal designs in 4.1 we have
to require that all marginal models related to the components contain an intercept, fj1(xj) ≡ 1. And
some auxiliary lemmas are to be introduced before the main results

Lemma 4.2. The information matrix for one-point designs ξ =

(
x
1

)
for the SUR model (3.3) has

the following form

M(x) =
[
σ(kj)fk(xk)fj(xj)

>
]

(k,j=1,...,m)
, where

(
σ

(kj)
k,j=1,...,m = Σ−1

)
(4.4)

Proof: Because of the form of the regression function in ( 3.14) for the considered SUR model (3.3)
the information matrix for a one-point design has the following form

M(x) = f(x)Σ−1f(x)> = block− diag (fk(xk)) Σ−1 block− diag (fj(xj)
>)

=
[
σ(kj)fk(xk)fj(xj)

>
]

(k,j=1,...,m)

and therewith the lemma has been proven.
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Lemma 4.3. The information matrix for the SUR model (3.3) by the product design ξ = ⊗mj=1ξj in
the design region X = ×mj=1Xj has the following form

M(ξ) = block− diag (σ(jj) M̆j(ξj)) + m(ξ) Σ−1 m(ξ)> (4.5)

where M̆j(ξj) = Mj(ξj)−mj(ξj)mj(ξj)
>, Mj(ξj) =

∫
Xj

fj(xj)fj(xj)
>ξj(dxj) (4.6)

mj(ξj) =

∫
Xj

fj(xj)ξj(dxj), m(ξ) = block− diag (mj(ξj)) (4.7)

and j = 1, ...,m,
(
σ

(kj)
k,j=1,...,m = Σ−1

)
Proof: the proof can be implemented by the integral of the information matrix for the one-point

design due to the product type design ξ = ⊗mj=1ξj in the design region X = ×mj=1Xj so

M(ξ) =

∫
X

M(x)ξ(dx) =

∫
X

f(x)Σ−1f(x)>ξ(dx)

=

[
σ(kj)

∫
Xk×Xj

fk(xk)fj(xj)
>(ξk(dxk)⊗ ξj(dxj))

]
(k,j=1,...,m)

= block− diag (σ(jj)(Mj(ξj)−mj(ξj)mj(ξj)
>)j=1,...,m +

[
σ(kj)mk(ξk)mj(ξj)

>
]

(k,j=1,...,m)

= block− diag (σ(jj)(Mj(ξj)−mj(ξj)mj(ξj)
>))

+block− diag (mj(ξj)) Σ−1 block− diag (mj(ξj)
>)

= block− diag (σ(jj) M̆j(ξj)) + m(ξ) Σ−1 m(ξ)>

and therewith the lemma has been proven. 2

Remark 4.2. Just regular information and positive de�nite variance covariance matrices of the error
variables are considered by this work, i.e. Mj(ξ), j = 1, ...,, resp. M−1(ξ) are regular and Σ > 0.

The next results are to hold, if all marginal models related to the components contain an intercept,
i.e fj1 ≡ 1, or

fj(xj) =

(
1

gj(xj)

)
(4.8)

Lemma 4.4. The inverse of the information matrix for the SUR model (3.3), which marginal regression
functions contain constant terms, i.e. fj1 ≡ 1 for j = 1, ...,m, by the product design ξ = ⊗mj=1ξj in the
design region X = ×mj=1Xj has the following form

M−1(ξ) = block− diag (
1

σ(jj)
(M−1

j (ξj)− eje
>
j )) + e Σ e> (4.9)

e = block− diag (ej), ej is the (pj × 1) �rst identity vector, j = 1, ...,m
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Proof: the proof can be implemented by the multiplication of the information matrix in (4.5) and
its inverse in (4.9), so the identity matrix is obtained

M(ξ) M−1(ξ)

=
(

block− diag (σ(jj)M̆j(ξj)) + m(ξ) Σ−1 m(ξ)>
) (

block− diag (
1

σ(jj)
(M−1

j (ξj)− eje
>
j )) + e Σ e>

)
= A1 + A2 + A3 + A4

where

A1 =

(
block− diag (σ(jj)(Mj(ξj)−mj(ξj)mj(ξj)

>)) block− diag (
1

σ(jj)
(M−1

j (ξj)− eje
>
j ))

)
A2 =

(
block− diag (σ(jj)(Mj(ξj)−mj(ξj)mj(ξj)

>)) block− diag (ej) Σ block− diag (e>j )
)

A3 =

(
block− diag (mj(ξj)) Σ−1 block− diag (mj(ξj)

>) block− diag (
1

σ(jj)
(M−1

j (ξj)− eje
>
j ))

)
A4 =

(
m(ξ) Σ−1 m(ξ)> e Σ e>

)
then because of Mj(ξj)ej = mj(ξj), mj(ξj)

>ej = e>j ej = 1

M−1
j (ξj)mj(ξj) = ej , because mj is the �rst column of Mj , j = 1, ...,m

the four terms by the last sum have ordered the four next forms

A1 = block− diag (Ipj −mj(ξj)e
>
j −mj(ξj)mj(ξj)

>M−1
j (ξj) + mj(ξj)e

>
j )

= block− diag (Ipj −mj(ξj)mj(ξj)
>M−1

j (ξj)) = block− diag (Ipj −mj(ξj)e
>
j )

A2 = 0, because of (Mj(ξj)−mj(ξj)mj(ξj)
>) ej = mj(ξj)−mj(ξj) = 0

A3 = 0, because of mj(ξj)
> (M−1

j (ξj)− eje
>
j ) = e>j − e>j = 0

A4 = m(ξ) e> (4.10)

therewith M(ξ) M−1(ξ) = Ip and the lemma has been proven. 2

Now, the D- and linear -optimality in 4.1 of the product type designs can be proven based on the
calculation of the inverse of the information matrix for the SUR model (3.3) for the product type
design 2.

Theorem 4.3. Let ξ∗j be D-optimal for the j-th marginal component (3.4) in the marginal design region
Xj with an intercept included, j = 1, ...,m, then the product type design

ξ∗ = ⊗mj=1ξ
∗
j

is D-optimal for the SUR model (3.3) in the design region X = ×mj=1Xj.
The sensitivity function ϕD does not depend on Σ.

Proof: the proof can be implemented by the equivalence theorem (4.1), where the terms of the
equivalence theorem are calculated by the help lemmas 4.2 and 4.4, so because of (4.4) and (4.9 ) has
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the sensitivity function for the D-optimality in (4.2) the following form

trace
(
Σ−1 f(x)> M−1(ξ∗) f(x)

)
= trace

(
Σ−1 f(x)> block− diag (

1

σ(jj)
(M−1

j (ξ∗j )− eje
>
j )) f(x)

)
+trace

(
Σ−1 f(x)> e Σ e> f(x)

)
(4.11)

so because of

fj(xj)
>ej = e>j fj(xj) ≡ 1 then f(x)> e = e> f(x) = Im (4.12)

we obtain

trace
(
Σ−1 f(x)> M−1(ξ∗) f(x)

)
= trace

(
Σ−1 block− diag (

1

σ(jj)
fj(xj)

> M−1
j (ξ∗j )fj(xj))

)
−trace

(
Σ−1 block− diag (

1

σ(jj)
)

)
+ trace(Im)

=
m∑
j=1

fj(xj)
> M−1

j (ξ∗j )fj(xj) ≤
m∑
j=1

pj = p (4.13)

and therewith the theorem has been proven. 2

Theorem 4.4. Let ξ∗j be linear optimal designs with the weight matrix Lj for the j-th marginal com-
ponent (3.4) in the marginal design region Xj with an intercept included, j = 1, ...,m, then the product
type design

ξ∗ = ⊗mj=1ξ
∗
j

is linear optimal design for the SUR model (3.3) in the design region X = ×mj=1Xj, if the weight matrix
L = block− diag (Lj) (4.1).

Proof: The weight matrix for the considered linear criteria is block diagonal and have the next form

L = block− diag (Lj), where because of (4.8) Lj =

(
Lj11 L>j12

Lj12 Lj22

)
, j = 1, ...,m (4.14)

So because of (4.9) and (4.12)

M(ξ∗)−1f(x) = block− diag (
1

σ(jj)
(M−1

j (ξ∗j )f(xj)− ej)) + eΣ

= block− diag (
1

σ(jj)
M−1

j (ξ∗j )f(xj)) + e

(
Σ− block− diag (

1

σ(jj)
)

)
(4.15)

Then

f(x)>M(ξ∗)−1 = block− diag (
1

σ(jj)
f(xj)

>M−1
j (ξ∗j )) +

(
Σ− block− diag (

1

σ(jj)
)

)
e>
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So the the left side of the equivalence theorem for the linear criteria has the following form

trace
(
Σ−1 f(x)>M(ξ∗)−1L M(ξ∗)−1f(x)

)
=

trace

(
Σ−1 block− diag (

1

(σ(jj))2
fj(xj)

> M−1
j (ξ∗j ) Lj M−1

j (ξ∗j )) fj(xj)

)
+ a1 + a2 where

a1 = trace

(
Σ−1

(
Σ− block− diag (

1

σ(jj)
)

)
e> L e

(
Σ− block− diag (

1

σ(jj)
)

))
a2 = 2trace

(
Σ−1

(
Σ− block− diag (

1

σ(jj)
)

)
e> block− diag (

1

σ(jj)
LjM

−1
j (ξ∗j )fj(xj))

)
So because of the diagonal entries of the matrix Σ−1

(
Σ− block− diag (

1

σ(jj)
)

)
are equal to zero

a1 = trace

((
Σ− block− diag (

1

σ(jj)
)

)(
Im −Σ−1 block− diag (

1

σ(jj)
)

))
block− diag (Lj11)

= trace

(
Σ .block− diag (Lj11)− block− diag (

2

σ(jj)
) .block− diag (Lj11)

)
+trace

(
block− diag (

1

σ(jj)
) .Σ−1 . block− diag (

1

σ(jj)
) .block− diag (Lj11)

)
=

m∑
j=1

Lj11(σ2
j −

1

σ(jj)
) (4.16)

and the term a2 = 0 and therewith

trace
(
Σ−1 f(x)>M(ξ∗)−1L M(ξ∗)−1f(x)

)
=

m∑
j=1

1

σ(jj)
fj(xj)

>M−1
j (ξ∗j )LjM

−1
j (ξ∗j )fj(xj) +

m∑
j=1

Lj11(σ2
j −

1

σ(jj)
) (4.17)

The right side of the equivalence theorem for the Linear criteria can be calculated by integral the right
side due to the optimal design ξ∗, so∫

X
M(x)M(ξ∗)−1L M(ξ∗)−1ξ∗(dx) = M(ξ∗)M(ξ∗)−1L M(ξ∗)−1 = L M(ξ∗)−1

Also,

trace
(
L M(ξ∗)−1

)
=

m∑
j=1

1

σ(jj)
LjM

−1
j (ξ∗j ) +

m∑
j=1

Lj11(σ2
j −

1

σ(jj)
) (4.18)

It is shown by comparing (4.17) and (4.18) that

trace
(
Σ−1 f(x)>M(ξ∗)−1L M(ξ∗)−1f(x)

)
≤ trace

(
L M(ξ∗)−1

)
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And therewith the theorem has been proven. 2

The next result is about the asymptotic (i.e. for n → ∞ and normality) D- and linear optimality
by block diagonal weight matrix L of the product designs for the SUR model (3.3) with respect to
estimators by unknown variance covariance matrix of the error variables as the Maximum Likelihood
and the feasible general least squares estimators by the normal distribution of the error variables.

Lemma 4.5. Theorems 4.3 and 4.4 are asymptotically valid, under the asymptotic normality and
regularity conditions as the convergence of the information matrix to an existend, �nite and regulare
information matrx, by unknown variance covariance matrix of the error variables with respect to pro-
pitious estimators as the Maximum Likelihood and feasible general least squares estimators.

Proof: The validity of theorem 4.3 follows from the independence between the parameter β and Σ
and subsequently because of the block-diagonal form of the Fisher-information matrix M(β,V) in (3.9)
and the independence of MV of the control variables (x). The validity of theorem 4.4 follows from the
independence between the parameter β and Σ and subsequently because of the block diagonal form of
the inverse Fisher-information matrix res. the variance covariance matrix of the considered estimators
.
This lemma is valid for SUR models with multi-factorial marginal regression functions as in chapter
six or marginal regression functions without intercepts as in chapter seven. 2

4.3 Example: SUR model with three components

To illustrate the results we consider the SUR model with simple straight line, quadratic, and cubic
regression models, for the components,

Yi1 = β10 + β11xi1 + εi1

Yi2 = β20 + β21xi2 + β22x
2
i2 + εi2

Yi3 = β30 + β31xi3 + β32x
2
i3 + β33x

3
i3 + εi3 (4.19)

in the unit intervals X1 = [0, 1], X2 = X3 = [−1, 1] as experimental regions. Then it is well-known or
see the examples in the second chapter, that the D-and IMSE-optimal designs for the �rst marginal

model are ξ∗D;IMSE,1 =

(
0 1

1/2 1/2

)
, which assign equal weights to each of the endpoint of the

interval. The A-optimal design for the �rst marginal model is ξ∗A,1 =

(
0 1

2−
√

2
√

2− 1

)
The D-optimal designs for the second marginal model is ξ∗D,2 =

(
−1 0 1
1/3 1/3 1/3

)
, which assign

equal weights to each of the design points. The A-and IMSE-optimal design for the second marginal

model are ξ∗A;IMSE,2 =

(
−1 0 1
1/4 1/2 1/4

)
The D-optimal designs for the third marginal model is ξ∗D,3 =

(
−1 −1/

√
5 1/

√
5 1

1/4 1/4 1/4 1/4

)
assign equal weights to each of the design points.
The IMSE-optimal design for the third marginal model is

ξ∗IMSE,3 =

(
−1 −x x 1
wI/2 (1− wI)/2 (1− wI)/2 wI/2

)
where x ' 0.44, wI ' 0.31
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The A-optimal design for the third marginal model is

ξ∗A,3 =

(
−1 −x x 1
wA/2 (1− wA)/2 (1− wA)/2 wA/2

)
where x ' 0.46, wA = 0.3.

Then By Theorem 4.3 the product type design

ξ∗D = ξ∗D,1 ⊗ ξ∗D,2 ⊗ ξ∗D,3
is D-optimal for the SUR model (4.19) in X = [0, 1]× [−1, 1]2.
By the Theorem 4.4 the product type design

ξ∗IMSE = ξ∗IMSE,1 ⊗ ξ∗IMSE,2 ⊗ ξ∗IMSE,3

is IMSE-optimal for the SUR model (4.19) in X = [0, 1]× [−1, 1]2.
And by the Theorem 4.4 the product type design

ξ∗A = ξ∗A,1 ⊗ ξ∗A,2 ⊗ ξ∗A,3
is A-optimal for the SUR model (4.19) in X = [0, 1]× [−1, 1]2.
The corresponding sensitivity function for the D-optimality by x1 = 1

ϕD(x; ξ∗D) = trace(Σ−1f(x)>M(ξ∗D)−1f(x))

=
3

2
(
11

2
− 3 x2

2 + 3 x2
4 +

11

2
x3

2 − 35

2
x3

4 +
25

2
x3

6) (4.20)

is plotted in �gure 4.1.
It can be easily seen that the sensitivity function is independent on Σ and satis�es the condition
ϕD(x; ξ∗D) ≤ p = 4 for all x ∈ X .
The corresponding sensitivity function for IMSE-optimality is equal or smaller than
trace(LM(ξ∗IMSE)−1) and the function

ϕIMSE(x; ξ∗IMSE)

trace
(
L M(ξ∗IMSE)−1

) =
trace(Σ−1f(x)>M(ξ∗IMSE)−1LM(ξ∗IMSE)−1f(x))

trace(LM(ξ∗IMSE)−1)
(4.21)

is plotted in �gure 4.2, for σ1 = σ2 = σ3 = 1, ρ12 = 0.99, ρ13 = 0.14, ρ23 = 0.
It can be easily seen that the sensitivity function for the IMSE-optimality satis�es the condition
ϕIMSE(x; ξ∗IMSE) ≤ trace(LM(ξ∗IMSE)−1) for all x ∈ X . The corresponding sensitivity function for
A-optimality is equal to or less than
trace(M(ξ∗A)−1) and the function

ϕA(x; ξ∗A)

trace
(
M(ξ∗A)−1

) =
trace(Σ−1f(x)>M(ξ∗A)−1M(ξ∗A)−1f(x))

trace(M(ξ∗A)−1)
(4.22)

is plotted in �gure 4.3, for σ1 = σ2 = σ3 = 1, ρ12 = 0.58, ρ13 = 0.01 and ρ23 = −0.8.
It can be easily seen that the sensitivity function for the A-optimality satis�es the condition ϕA(x; ξ∗) ≤
trace(M(ξ∗A)−1) for all x ∈ X . The product designs ξ∗D, ξ

∗
IMSE and ξ∗A are asymptotic optimal for

the SUR model (6.34) because of lemma (4.5) and the asymptotic Fisher Information matrix has the
following form for the given inverse of the variance covariance matrix of the error variables in ( 5.9)

M(β,Σ) =

(
Mβ 0

0 MΣ

)
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Figure 4.1: Function 4.20
for ξ∗D (SUR with one-factor
marginals )

Figure 4.2: Function 4.21 for
ξ∗IMSE (SUR with one-factor
marginals )

Figure 4.3: Function 4.22
for ξ∗A (SUR with one-factor
marginals )
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5 G-Optimal Designs and Some Design E�ciencies for

Multivariate Linear Models

The G-optimal design criterion in the univariate case was the entrance for the optimal design theory
by the work of ( Smith (1918)). The equivalence between the approximate optimality for D- and
G-designs under some conditions have been proven in the work of ( Kiefer and Wolfowitz (1960)).
The equivalence between G- and D-optimality have been discussed in the works of ( Wong (1993),
(1994) and (1995)), ( King, Wong (1998)), ( Brown and Wong (2000)) and ( Chen et al. (2008)) in
more generalized cases . The multivariate equivalence theorem for D-optimality by (Fedorov (1972))
supplies a standardized or weighted G-optimal design due to the trace of the inverse of the variance
covariance matrix for the error variables multiplied with the covariance matrix for the prediction. That
was positively assessed and may be logic in the multivariate sense, however the research of the non-
weighted G-optimal design problem in the multivariate case can not be loss. The G-optimal designs
problem in the multivariate case are brought to light in this work, so di�erent function as the trace,
maximum eigenvalue and the determinant are applied to the covariance matrix for the prediction and
the upper bounds for the applied functions on the covariance matrix of the prediction for multivariate
linear models in general are determined with respect to the D- resp. weighted G-optimal design and
due to some inequalities for the multiplication of the positive de�nite matrices. Upper bounds for the
applied functions on the covariance matrix of the prediction for the SUR models with respect to the
product type designs are determined too due to the Gauÿ and OLS estimator as well as the upper
bounds for MANOVA-models by the MANOVA-design.
The convex optimal design theory for limited information resp. non e�cient estimators such as the
OLS estimator has not been established, but the OLS estimator can be used by an unknown variance
covariance matrix of the error variables, so it is useful, to calculate the e�ciency of the OLS estimator
for product type design and MANOVA-design in comparison to the BLUE Gauÿ Markov estimator for
di�erent optimality criteria, which are the topics of the second part of this chapter.
It has been shown, that the the reduction of the IMSE-optimal design problem for MANOVA-model
is possible as in the work of ( Kurotschka and Schwabe (1996)) for other criteria.
Three di�erent G-optimal design's criteria are introduced and their upper boundaries for D- resp.
weighted G-optimal determined for the multivariate models in general, for SUR models by Gauÿ and
OLS estimator and for MANOVA-models by MANOVA-design in the �rst section. The e�ciency for
the OLS estimator against the Gauÿ estimator by the product type design and the e�ciency of the
MANOVA-design against the product type design by the Gauÿ and OLS estimator for D- and linear
criteria in 4.1 are determined in the second section. There is a clear example in the bivariate case for
illustrating the theoretical results in the last section.

5.1 G-Optimal Designs for Multivariate Linear Models

The approximate D-optimal design is G-optimal in the univariate case because of the equivalence
theorem (2.2 ), but the equivalence theorem for D-optimality in the multivariate case (4.1 ) supplies
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a weighted G-optimal design with the inverse of the variance covariance matrix of the error variables,
so there is no longer elementary variance function but a covariance matrix for the prediction estimate,
thus some convex function are to apply on this matrix to de�ne the min max criterion, so we get
di�erent G-optimal criteria according to the implemented functions, for example the trace, det or λmax

can be applied to the covariance matrix Cov
(
f(x)>β̂

)
, so the G-optimal design criteria can be de�ned

as follows

Def 5.1 (G-optimal Criteria in the Multivariate Case). For the following de�ned covariance matrix
for the prediction estimate

COV(x; ξ) = Cov
(
f(x)>β̂

)
= f(x)> M−1 (ξ) f(x) (5.1)

the min max criterion can have the following three di�erent types

min
ξ∈Ξ

[
max
x∈X

trace (COV(x; ξ))

]

min
ξ∈Ξ

[
max
x∈X

λ max (COV(x; ξ))

]
min
ξ∈Ξ

[
max
x∈X

det (COV(x; ξ))

]
Some additional reforms to the equivalence theorem 4.1 are done as a �rst step to apply the suggested

G-optimal criteria based on some inequalities for the product of positive de�nite matrices, which are
applied to the trace, determinant, and the maximum eigenvalue for the product of the inverse of the
variance covariance matrix of the error variables multiplied with the covariance of the prediction, also,
at �rst we want to present these inequalities and their proofs, which are located in the solution manual
of (Zhang (1999)) or in (Yang (2000)) and ( YANG and FENG (2002)), and then the equivalence
theorem with the bounds for the suggested G-optimal design criterion in the multivariate case due to
the D-optimal design.

Lemma 5.1. When the matrices Hq×q and Bq×q are respectively positive semi de�nite and positive
de�nite, then

trace
(
B−1H

)
≥ trace (H)

trace (B)
(5.2)

[det (H)]
1
q ≤ trace (H)

q
(5.3)

Proof: The proof of (5.2 ) is as follows: Suppose B = Udiag(λ1...λq)U
> for some unitary matrix

U, where λ are the eigenvalues of B . Denote the diagonal entries of U>HU by h1...hq, each hi ≥ 0.
Then

trace
(
B−1H

)
= trace

(
Udiag(λ−1

1 ...λ−1
q )U>H

)
= trace

(
diag(λ−1

1 ...λ−1
q )U>HU

)
= λ−1

1 h1 + ...+ λ−1
q hq ≥ (λmax(B))−1(h1 + ...+ hq) =

trace
(
U>HU

)
λmax(B)

=
trace (H)

trace (B)
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The proof of (5.3 ) is as follows: Let the eigenvalues of H be λ1, . . . , λq. Then all λ are nonnegative.
By the arithmetic mean-geometric inequality, we have

[det (H)]
1
q = (λ1...λq)

1
q ≤ λ1 + . . .+ λq

q
=

trace (H)

q
2

The next theorem gives upper bounds for the trace, the maximum eigenvalue and the determinant for
the covariance matrix of the prediction due to the D-optimal resp. the weighted G-optimal design in
the general multivariate case

Theorem 5.1. The following three statements are equivalent :

1. ξ∗D minimizes det
(
M−1(ξ)

)
2. ξ∗D minimizes maxx∈X trace

(
Σ−1 f(x)> M−1 (ξ) f(x)

)
3. minξ∈Ξ

[
maxx∈X trace

(
Σ−1 COV(x; ξ)

)]
= p

And because of lemma (5.1) [3] =⇒

min
ξ∈Ξ

[
max
x∈X

trace (COV(x; ξ))

]
≤ p trace (Σ) (5.4)

min
ξ∈Ξ

[
max
x∈X

λ max (COV(x; ξ))

]
< p trace (Σ) (5.5)

min
ξ∈Ξ

[
max
x∈X

det (COV(x; ξ))

]
≤
[ p
m
trace (Σ)

]m
(5.6)

where the covariance matrix for the prediction COV(x; ξ) is given in (5.1)

Proof: (5.4) follows from [3] due to (5.2) by replacing B = Σ and H = COV(x; ξ), (5.5) follows
from (5.4), because the maximum eigenvalue of a positive de�nite matrix less than its trace, and (5.6)
follows from (5.4) due to (5.3). 2

Lemma 5.2. The design ξ = ξ∗0;D gives the next upper bounds respectively according to the trace, the
maximum eigenvalue and the determinant for the covariance matrix of the prediction for the MANOVA-
model (introduced in 3.4) with the regression function (3.15) on the design region X0

1. minξ∈Ξ [maxx∈X0 trace (COV(x; ξ))] = p0 trace (Σ) ≤ p trace (Σ)

2. minξ∈Ξ [maxx∈X0 λ max (COV(x; ξ))] = p0 λ max (Σ) < p trace (Σ)

3. minξ∈Ξ [maxx∈X0 det (COV(x; ξ))] = [ (p0 )m det Σ] ≤ [p0 trace (Σ)]m

Where p0 = p
m is the number of the parameter by one univariate component model.

Proof: the information matrix has for an approximate design ξ0, because of (3.16) the form
M(ξ0) = Σ−1 ⊗

(∫
f0(x0)f0(x0)>dξ0

)
= Σ−1 ⊗M0(ξ0)

i.e the inverse of it is as follows
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M−1(ξ0) = Σ⊗M−1
0 (ξ0)

Then the covariance matrix for the prediction with respect to ξ0 has for this model the following form

COV(x; ξ0) =
(
Im×m ⊗ f0(x)>

) [
Σ⊗M−1

0 (ξ0)
]

(Im×m ⊗ f0(x))

= Σ⊗
[
f0(x)>M−1

0 (ξ0)f0(x)
]

= Σ⊗Var(x; ξ0) (5.7)

where Var(x; ξ) = f(x)>M−1(ξ)f(x) (5.8)

is the variance function for the prediction due to the design ξ in the univariate case.

The upper bound for the trace as function has the following form for ξD∗0 and because of (5.7) and
some properties of the Kronecker product

min
ξ∈Ξ

[
max
x∈X0

trace (COV(x; ξ))

]
= max

x∈X0

trace
(
Σ⊗Var(x; ξD∗0 )

)
trace (Σ) .max

x∈X0

trace
(
Var(x; ξD∗0 )

)
= traceΣ.max

x∈X0

Var(x; ξD∗0 )

= p0 trace (Σ) ≤ p traceΣ

Where the equality occurs by Σ = Im, because of traceΣ = trace(Im) = m and p = mp0.
for the maximum eigenvalue

min
ξ∈Ξ

[
max
x∈X0

λ max (COV(x; ξ))

]
= max

x∈X0

λ max

(
Σ⊗Var(x; ξD∗0 )

)
λ max (Σ) .max

x∈X0

λ max

(
Var(x; ξD∗0 )

)
= λ max (Σ) .max

x∈X0

Var(x; ξD∗0 )

= p0 λ max (Σ) < p λ max (Σ)

and in the same way for the determinant and due to the inequality (5.3 ), we have

min
ξ∈Ξ

[
max
x∈X0

det (COV(x; ξ))

]
= max

x∈X0

det
(
Σ⊗Var(x; ξD∗0 )

)
det Σ.max

x∈X0

(
detVar(x; ξD∗0 )

)p0
= det Σ.max

x∈X0

(
Var(x; ξD∗0 )

)m
= (p0)m det Σ ≤ (p0)m (traceΣ)m < (po traceΣ)m 2

Lemma 5.3. The linear optimal design ξ = ξ∗0;L for one of the corresponding marginal models with the
regression function f0(x0) is linear optimal design by block diagonal weight matrix L = block− diag (Lj)
(4.1), for the MANOVA-model with the regression function (3.15) on the design region X0 .

Proof: The proof is included in the proof of theorem 5.5 .
It have been proven in chapter three, that the product designs of the D- resp. weighted G- and linear
optimal designs for the marginal components are the linear optimal in 4.1 designs for the SUR models,
which their marginal components related to the components contain an intercept, fj1(x) ≡ 1, also,
for the same SUR models and under the class of product designs we want present the next theorems,
which illustrate that the bounds due to the product type designs less than the resulted bounds by the
theorem 5.1 for general multivariate linear models. 2
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Remark 5.1. For example the inverse of the variance covariance matrix of the error variables Σ3×3

is given because of remark 3.5 as follows

Σ−1 =

 σ(11) σ(12) σ(13)

σ(12) σ(22) σ(23)

σ(13) σ(23) σ(33)

 =


c1

σ2
1c

−ρ12−ρ13ρ23
σ1σ2c

ρ12ρ23−ρ13
σ1σ3c

−ρ12−ρ13ρ23
σ1σ2c

c2

σ2
2c

ρ12ρ13−ρ23
σ2σ3c

ρ12ρ23−ρ13
σ1σ3c

ρ12ρ13−ρ23
σ2σ3c

c3

σ2
3c

 (5.9)

where

cj = c`q, `, q 6= j, `, q = 1, 2, 3 (5.10)

is the determinant for the minor of the correlation matrix, which do not contains the column and line
j.
So similarly and without loss of generality the diagonal entries of the inverse of the variance covariance
matrix of the error variables Σ have the forms

σ(jj) =
cj
σ2
j c

, j = 1, ...,m (5.11)

Lemma 5.4. By considering SUR model (3.3). The covariance matrix for the prediction with respect
to the Gauÿ estimator and the product type design ξ = ⊗mj=1ξj has the following form

COV(x; ξ) = block− diag (
σ2
j c

cj
(Var(xj ; ξj)− 1)) + Σ (5.12)

where cj is the determinant for the minor of the correlation matrix, which do not contains the column
and line j.

Proof: because of form of the inverse of the information matrix 4.9 due to the Gauÿ estimator with
respect to the product type design by the lemma 4.4 has the covariance matrix for the prediction the
following form

COV(x; ξ) = block− diag (fj(xj)
>)[

block− diag (
1

σ(jj)
(M−1

j (ξj)− eje
>
j ) + block− diag (ej) Σ block− diag (e>j )

]
block− diag (fj(xj))

= block− diag (
1

σ(jj)
(fj(xj)

> M−1
j (ξj) fj(xj)− fj(xj)

> ej e>j fj(xj)))

+ block− diag (fj(xj)
> ej) Σ block− diag (e>j fj(xj))

Then because of fj(ξj)
> ej = e>j fj(ξj) = 1, j = 1, ...,m, then block− diag (fj(xj)

> ej) = Im, thus

COV(x; ξ) = block− diag (
1

σ(jj)
(fj(xj)

> M−1
j (ξj) fj(xj)− 1)) + Σ

And because of (5.11)
1

σ(jj)
=
σ2
j c

cj
and (5.8)

COV(x; ξ) = block− diag (
σ2
j c

cj
(Var(xj ; ξj)− 1)) + Σ

where cj is the determinant for the minor of the correlation matrix, which do not contains the column
and line j. 2
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Lemma 5.5. By considering SUR model (3.3). The min max covariance matrix for the prediction
with respect to the Gauÿ estimator and the product type design of the D- resp. G- optimal designs for
the corresponding marginal components models , i.e. ξ∗D = ⊗mj=1ξ

∗
D,j has the following form

min
ξ∈Ξ

[
max
x∈X

COV(x; ξ)

]
= block− diag (

σ2
j c

cj
(pj − 1)) + Σ (5.13)

Proof: because of (5.12)

min
ξ∈Ξ

[
max
x∈X

COV(x; ξ)

]
= min

ξj∈Ξj

[
max
xj∈Xj

block− diag (
σ2
j c

cj
(Var(xj ; ξj)− 1)) + Σ

]

= max
xj∈Xj

[
block− diag (

σ2
j c

cj
(Var(xj ; ξ

∗
D,j)− 1)) + Σ

]
= block− diag (

σ2
j c

cj
(pj − 1)) + Σ

The matrix in (5.13) has the form block− diag (pj) for Σ = Im. 2

Remark 5.2. For SUR model (3.3). The min max for the trace, maximum eigenvalue, determinant
of the covariance matrix for the prediction with respect to the Gauÿ estimator and the product type
design of the D- resp. G- optimal designs for the corresponding marginal components models , i.e.
ξ∗D = ⊗mj=1ξ

∗
D,j have because of the form (5.13) by the lemma 5.5 the following forms

min
ξ∈Ξ

[
max
x∈X

trace (COV(x; ξ))

]
= trace

(
block− diag (

σ2
j c

cj
(pj − 1)) + Σ

)
(5.14)

min
ξ∈Ξ

[
max
x∈X

λ max (COV(x; ξ))

]
= λ max

(
block− diag (

σ2
j c

cj
(pj − 1)) + Σ

)
(5.15)

min
ξ∈Ξ

[
max
x∈X

det (COV(x; ξ))

]
= det

(
block− diag (

σ2
j c

cj
(pj − 1)) + Σ

)
(5.16)

For Σ = Im, minξ∈Ξ [maxx∈X trace (COV(x; ξ))] =
∑m

j=1 pj = p.

Theorem 5.2. Let ξ∗j;D be D- resp. G-optimal for the j-th marginal component (3.4) on the marginal
design region Xj with an intercept included, j = 1, ...,m, then the product type design

ξ∗ = ⊗mj=1ξ
∗
j,D

gives according to the trace, the maximum eigenvalue and the determinant for the covariance matrix
of the prediction for the SUR model (3.3) on the design region X = ×mj=1Xj with respect to the Gauÿ
estimator, respectively the next upper boundaries

1. minξ∈Ξ [maxx∈X trace (COV(x; ξ))] =
∑m

j=1 σ
2
j TCj ≤ p trace (Σ)

2. minξ∈Ξ [maxx∈X λ max (COV(x; ξ))] <
∑m

j=1 σ
2
j TCj < p trace (Σ)

3. minξ∈Ξ [maxx∈X det (COV(x; ξ))] ≤
[∑m

j=1 σ
2
j TCj
m

]m
<
[ p
mtrace (Σ)

]m
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Where
TCj = 1 + (pj − 1) · c

cj

where cj is the determinant for the minor of the correlation matrix, which do not contains the column
and line j.

Proof: The trace of the covariance matrix for the prediction due to ⊗mj=1ξ
∗
j,D and the Gauÿ estimator

because of the form (5.14) by the remark 5.2 the following form

min
ξ∈Ξ

[
max
x∈X

trace
(
f(x)>M(ξ)−1f(x)

)]
= trace

(
block− diag (

σ2
j c

cj
(pj − 1))

)
+ trace ( Σ)

m∑
j=1

σ2
j c

cj
(pj − 1) +

m∑
j=1

σ2
j =

m∑
j=1

σ2
j TCj , TCj = 1 + (pj − 1)

c

cj

Thus min
ξ∈Ξ

[
max
x∈X

trace
(
f(x)>M(ξ)−1f(x)

)]
=

3∑
j=1

σ2
j TCj ≤

m∑
j=1

σ2
j pj ≤ p traceΣ (5.17)

Where the equality occurs by Σ = Im, because of trace(Im) = m and p = mp0. and therewith we have
proven part (1) of the theorem.
The proof the part (2) of the theorem follows from applying the inequality with respect to the positive
de�nite matrices, that the maximum eigenvalue of a positive de�nite matrix is less than its trace, on
(5.17) , i.e.

min
ξ∈Ξ

[
max
x∈X

λ max

(
f(x)>M(ξ)−1f(x)

)]
<

m∑
j=1

σ2
j TCj ≤

m∑
j=1

σ2
j pj < p traceΣ (5.18)

Due to applying the inequality (5.3) on (5.17) follows the proof of the part (3) of the theorem, i.e.

min
ξ∈Ξ

[
max
x∈X

det
(
f(x)>M(ξ)−1f(x)

)]
≤

[∑m
j=1 σ

2
jTCj

m

]m
<
[ p
m

trace (Σ)
]m

2 (5.19)

Before we determine the upper bounds for the applied functions to the covariance matrix for the
prediction due to the ⊗mj=1ξ

∗
j,D and the limited information OLS estimator, we need th form of the

covariance matrix of it due to the product type design, so that is the topics of the next lemmas, which
can be proved similarly their contraries for the Gauÿ estimator.

Lemma 5.6. The covariance matrix for one-point designs x for the SUR model (3.3) due to the OLS
estimator has the following form

CovOLS(x) =
[
σjk M−1

k (xk)(fk(xk)fj(xj)
>) M−1

j (xj)
]

(j,k=1,...,m)
, ((σjk)j,k=1,...,m = Σ) (5.20)

and the block diagonal of it have the following form

[CovOLS(x)]jj =
[
σjj M−1

j (xj)
]

(j=1,...,m)
=
[
σ2
j M−1

j (xj)
]

(j=1,...,m)
(5.21)
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Proof: Because of the form of the regression function in ( 3.14) for the considered SUR model (3.3)
has the information matrix for one-point design the following form

CovOLS(x) =
(
f(x)f(x)>

)−1 (
f(x)Σf(x)>

) (
f(x)f(x)>

)−1

=
(

block− diag (fj(xj))block− diag (fj(xj)
>)
)−1 (

block− diag (fj(xj))Σblock− diag (fj(xj)
>
)

(
block− diag (fj(xj))block− diag (fj(xj)

>)
)−1

= block− diag (M−1
j (xj))

[
σjk fk(xk)fj(xj)

>
]

block− diag (M−1
j (xj))

=
[
σjk M−1

k (xk)(fk(xk)fj(xj)
>) M−1

j (xj)
]

(j,k=1,...,m)

So for j = k or the the diagonal blocks have the following form

[CovOLS(x)]jj =
[
σjj M−1

j (xj)(fj(xj)fj(xj)
>) M−1

j (xj)
]

(j=1,...,m)
=
[
σ2
j M−1

j (xj)
]

(j=1,...,m)

and therewith the lemma has been proven. 2

Lemma 5.7. For SUR model (3.3). The covariance matrix for the product type design ξ = ⊗mj=1ξj
due to the OLS estimator has the following form

CovOLS(ξ) =
[
σjk M−1

k (ξk)(mk(ξk)mj(ξj))
> M−1

j (ξj)
]

(j,k=1,...,m)
, mj(ξj) =

∫
Xj

fj(xj)ξj(dxj)

(5.22)

and the block diagonal of it have the following form

[CovOLS(ξ)]jj =
[
σjj M−1

j (ξj)
]

(j=1,...,m)
=
[
σ2
j M−1

j (ξj)
]

(j=1,...,m)
(5.23)

Proof: By integral of the variance covariance matrix for one-point design with respect to the product
type design on the design region X = ×mj=1Xj in the form (5.20) by the lemma 5.6

CovOLS(ξ) =

∫
X

CovOLS(x)ξ(dx)

=

[
σjk

∫
Xk×Xj

M−1
k (xk)(fk(xk)fj(xj)

>) M−1
j (xj)d(ξk ⊗ ξj)

]
(j,k=1,...,m)

then because of Fubini's theorem resp. (2.8)

CovOLS(ξ) =

[
σjk

∫
Xk

M−1
k (xk) dξk(

∫
Xk

fk(xk) dξk

∫
Xj

fj(xj)
> dξj)

∫
Xj

M−1
j (xj) dξj

]
(j,k=1,...,m)

(5.24)

=
[
σjk M−1

k (ξk)(mk(ξk)mj(ξj)
>) M−1

j (ξj)
]

(j,k=1,...,m)
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So the diagonal blocks have the following form

[CovOLS(ξ)]jj =

=

[
σjj

∫
Xj

M−1
j (xj)(fj(xj)fj(xj)

>) M−1
j (xj)d(ξj)

]
(j=1,...,m)

=
[
σjj M−1

j (ξj)Mj(ξj) M−1
j (ξj)

]
(j=1,...,m)

=
[
σjj M−1

j (ξj)
]

(j=1,...,m)
=
[
σ2
j M−1

j (ξj)
]

(j=1,...,m)
(5.25)

and therewith the lemma has been proven. 2

Theorem 5.3. Let ξ∗j;D be D- resp. G-optimal for the j-th marginal component (3.4) on the marginal
design region Xj with an intercept included, j = 1, ...,m, then the product type design

ξ∗D = ⊗mj=1ξ
∗
j,D

gives according to the trace, the maximum eigenvalue and the determinant for the covariance matrix
of the prediction for the SUR model (3.3) on the design region X = ×mj=1Xj with respect to the OLS-
estimator, respectively the next upper boundaries

1. minξ∈Ξ [maxx∈X trace (COV(x; ξ))] =
∑m

j=1 σ
2
j pj ≤ p trace (Σ)

2. minξ∈Ξ [maxx∈X λ max (COV(x; ξ))] <
∑m

j=1 σ
2
j pj < p trace (Σ)

3. minξ∈Ξ [maxx∈X det (COV(x; ξ))] ≤
[∑m

j=1 σ
2
j pj

m

]m
<
[ p
m trace (Σ)

]m
Proof: the covariance matrix for the prediction has due to the ξ∗D = ⊗mj=1ξ

∗
j,D and to the OLS-

estimator because of (5.22) and (5.23) by the lemma 5.6

f(x)>CovOLS(ξ)f(x) = block− diag (fj(xj)
>)(j=1,...,m)[

σjk M−1
k (ξk)(mk(ξk)mj(ξj)

>) M−1
j (ξj)

]
(j,k=1,...,m)

block− diag (fj(xj))(j=1,...,m)

Then because of (5.23) min
ξ∈Ξ

[
max
x∈X

trace
(
f(x)>CovOLS(ξ)f(x)

)]
=

m∑
j=1

σ2
j min
ξj∈Ξ

[
max
xj∈X j

(
fj(xj)

> M−1
j (ξj) fj(xj)

>
)]

=

m∑
j=1

σ2
j max
xj∈X j

[
fj(xj)

> M−1
j (ξ∗j,D) fj(xj)

>
]

=

m∑
j=1

σ2
j pj (5.26)

and therewith we have proven part (1) of the theorem.
The proof for part (2) of the theorem follows from applying the inequality with respect to the positive
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de�nite matrices, that the maximum eigenvalue of a positive de�nite matrix is less than its trace, on
(5.17) , i.e.

min
ξ∈Ξ

[
max
x∈X

λ max

(
f(x)>CovOLS(ξ∗)f(x)

)]
<

3∑
j=1

σ2
j pj < p traceΣ (5.27)

Due to applying of the inequality (5.3) on (5.17) follows the proof for part (3) of the theorem, i.e.

min
ξ∈Ξ

[
max
x∈X

det
(
f(x)>CovOLS(ξ∗)f(x)

)]
≤

[∑3
j=1 σ

2
j pj

m

]m
<
[ p
m

trace (Σ)
]m

(5.28)

( 5.26), ( 5.27) and (5.28) can be generalized similarly for arbitrary m and therewith the theorem has
been proven. 2

Remark 5.3. For Σ = Im,
∑m

j=1 σ
2
j pj = p, so in this case minξ∈Ξ [maxx∈X trace (COV(x; ξ))] = p.

Remark 5.4. We can remark by lemmas 5.1, 5.2, 5.3 and 5.2, that the upper bounds of the trace
for the covariance matrix of the prediction are equal to the number of parameters p, if the variance
covariance matrix is equal to the identity matrix, but that is not the situation for the determinant, thus
may be the G-criterion due to the determinant should be standardized as follows

min
ξ∈Ξ

[
max
x∈X

det (mCOV(x; ξ))
1
m

]
(5.29)

So this standardized criterion have the same upper bound by applying the trace on the covariance matrix
of the prediction, because of the inequality of (5.3).

5.2 E�ciency of the OLS Estimator and the MANOVA-Design

The e�ciencies for the OLS estimator against the Gauÿ estimator due to the product type designs
for the SUR models with respect to D- and linear optimal in 4.1 have been measured by theorem 5.4.
As well as the e�ciencies for the MANOVA-design against the product type design for the SUR models
with respect to D- and linear optimal in 4.1 due to the Gauÿ estimator and OLS estimator respectively
by theorems 5.5 and 5.6 in this section.
Another interpretations of variance covariance matrices for the Gauÿ and OLS estimators are helpful
by calculating resp. determination the e�ciencies with respect to the D-optimality, and that is the
topics of the next lemmas. So the next lemma supplies the form of the transformed variance covariance
matrix for the Gauÿ estimator with respect to the product design, and illustrates the invariance of this
linear transformation with respect to the Determinant resp. the D-optimality.

Lemma 5.8. The D-optimal criterion is invariant against the linear transformation for the SUR model
(3.3), which regression functions for the corresponding marginal components models have the forms
(4.8), with respect to the product type design and the Gauÿ estimator on the design region X = ×mj=1Xj
, if the transformations matrix have the form

A(ξ) = block− diag (Aj(ξj))j=1,...,m, Aj(ξj) =

(
1 0
−aj Ipj−1

)
, aj =

∫
gj(xj)ξj(dxj) (5.30)
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And the inverse for the transformed information matrix has the form

M̃−1
GM (ξ) =

(
Σ 0

0 block− diag ( 1
σ(jj) Q

−1
j (ξj))j=1,...,m

)
, Qj =

∫
gj(xj)gj(xj)

>ξj(dxj)− aja
>
j

(5.31)

Proof: The information matrix in (4.4) by lemma 4.2 with respect to the product design ξk ⊗ ξj on
the design region Xk ×Xj , k, j = 1, ...,m can be seen as follows

M(ξ) =

[
σ(kj)

∫
Xk×Xj

fk(xk)fj(xj)
>d(ξk ⊗ ξj)

]
(k,j=1,...,m)

So for the transformed regression function by the multiplication with the following transformation
matrix of the form

Aj(ξj) =

(
1 0
−aj Ipj−1

)
, aj =

∫
gj(xj)ξj(dxj)

can we orthogonalized the regression functions gj for a given design ξj with respect to fj1 = 1, so that
g̃j(xj) = gj(xj)−

∫
Xj gjξj(dxj), Also, for one component look the orthogonalized regression function

for aj(ξj) =
∫
Xj gjdxij as follows

f̃j(xj) = Aj(ξj)fj(xj) =

(
1 0

−aj(ξj) Ipj−1

)
· fj(xj) =

(
1

g̃j(xj)

)
Then the diagonal blocks for the transformed information matrix for the corresponding SUR model
with respect to the product type design have the following form because of

∫
Xj g̃j(xj) = 0, j = 1, ...,m

block− diag (σ(jj)

∫
Xj

f̃j(xj)f̃j(xj)
>ξj(dxj))(j=1,...,m)

= block− diag

(
σ(jj)

∫
Xj

(
1

g̃j(xj)

)(
1 (g̃j(xj))

>
)
d(ξj)

)
(j=1,...,m)

= block− diag

(
σ(jj)

∫
Xj

(
1 g̃j(xj)

>

g̃j(xj) g̃j(xj) g̃j(xj)
>

)
d(ξj)

)
(j=1,...,m)

= block− diag

(
σ(jj)

(
1

∫
Xj g̃j(xj)

>d(ξj)∫
Xj g̃j(xj)d(ξj)

∫
Xj g̃j(xj) g̃j(xj)

>d(ξj)

))
(j=1,...,m)

= block− diag

(
σ(jj)

(
1 0
0
∫
Xj gj(xj)gj(xj)

>dξj − aj(ξj)aj(ξj)
>

))
(j=1,...,m)

= block− diag

(
σ(jj)

(
1 0
0 Qj(ξj)

))
(j=1,...,m)

= block− diag
(
σ(jj)M̃j(ξj)

)
(j=1,...,m)

(5.32)

And the non-diagonal blocks, i.e. k 6= j, k, j = 1, ...,m have the following form
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block− diag (σ(kj)

∫
Xk×Xj

f̃k(xk)f̃j(xj)
>d(ξk ⊗ ξj))(k,j=1,...,m)

= block− diag

(
σ(kj)

∫
Xk×Xj

(
1

g̃k(xk)

)(
1 (g̃j(xj))

>
)
d(ξk ⊗ ξj)

)
(k,j=1,...,m)

= block− diag

(
σ(kj)

∫
Xk×Xj

(
1 g̃j(xj)

>

g̃k(xk) g̃k(xk) g̃j(xj)
>

)
d(ξk ⊗ ξj)

)
(k,j=1,...,m)

= block− diag

(
σ(kj)

(
1

∫
Xj g̃j(xj)

>d(ξj)∫
Xk g̃k(xk)d(ξk)

∫
Xk g̃k(xk)

∫
Xj g̃j(xj)

>

))
(k,j=1,...,m)

= block− diag

((
σ(kj) 0

0 0

))
(k,j=1,...,m)

(5.33)

So the transformed information matrix by applying some rows and columns change can be seen because
of (5.32) and (5.33) as follows

M̃(ξ) =

(
Σ−1 0

0 block− diag (σ(jj)Qj(ξj))j=1,...,m

)
, Qj =

∫
gj(xj)gj(xj)

>ξj(dxj)− aja
>
j

and therewith

M̃−1
GM (ξ) =

(
Σ 0

0 block− diag ( 1
σ(jj) Q

−1
j (ξj))j=1,...,m

)
And because of M̃(ξ) = A(ξ) M(ξ) A>(ξ) then det M̃(ξ) = det A(ξ) det M(ξ) det A(ξ)> so because
of det A(ξ) = 1 then det M̃(ξ) = det M(ξ) and therewith the D-optimal design is invariant against
the applied transformation and the lemma has been proven. 2

The next lemma supplies the form of the transformed variance covariance matrix for the OLS estimator
with respect to the product design, and illustrates the invariance of this linear transformation with
respect to the Determinant resp. the D-optimality.

Lemma 5.9. The D-optimal criterion is invariant against the linear transformation for the SUR model
(3.3), which regression functions for the corresponding marginal components models have the forms
(4.8), with respect to the product type design and the OLS estimator on the design region X = ×mj=1Xj
, if the transformations matrix have the form

A(ξ) = block− diag (Aj(ξj))j=1,...,m, Aj(ξj) =

(
1 0
−aj Ipj−1

)
, aj =

∫
gj(xj)ξj(dxj) (5.34)

And the transformed variance covariance matrix due to the OLS estimator have the form

˜CovOLS(ξ) =

(
Σ 0

0 block− diag (σ2
jQ
−1
j (ξj))j=1,...,m

)
, Qj =

∫
gj(xj)gj(xj)

>dξj − aja
>
j (5.35)

Proof: The diagonal blocks for the variance covariance matrix with respect to the product type
design ξ = ⊗mj=1ξj for the SUR model (3.3) due to the OLS estimator are given in the form ( 5.23) so
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the diagonal blocks for the transformed covariance matrix have because of (5.32) the following forms[
˜CovOLS(ξ)

]
jj

= block− diag (σ2
j M̃−1

j (ξj))(j=1,...,m)

=

[(
σ2
j 0

0 block− diag (σ2
jQ
−1
j (ξj))j=1,...,m

)]
(j=1,...,m)

(5.36)

The non-diagonal blocks for the transformed variance covariance matrix can be seen with respect to
the OLS estimator in (5.24) by lemma 5.7 with respect to the product design ξk ⊗ ξj on the design
region Xk ×Xj , k 6= j, k, j = 1, ...,m, as follows

[
˜CovOLS(ξ)

]
k,j,k 6=j

=[
σjk

∫
Xk×Xj

M̃−1
k (xk)(f̃k(xk)f̃j(xj))

> M̃−1
j (xj)d(ξk ⊗ ξj)

]
(j,k=1,...,m)

=

[
σjk

∫
Xk

M̃−1
k (xk)d(ξk)(

∫
Xk

f̃k(xk)d(ξk)

∫
Xj

f̃j(xj)
>d(ξj))

∫
Xj

M̃−1
j (xj)d(ξj)d(ξj)

]
Then because of (5.32) and (5.33)[

˜CovOLS(ξ)
]
k,j, k 6=j

=

[
σjk

(
1 0

0 Q−1
j (ξj)

)(
1 0
0 0

)(
1 0

0 Q−1
k (ξk)

)]
=

[
σjk

(
1 0
0 0

)]
(j,k=1,...,m)

(5.37)

So the transformed variance covariance matrix for the OLS estimator can be seen, by applying some
rows and columns change, because of (5.36) and (5.37) as follows

˜CovOLS(ξ) =

(
Σ 0

0 block− diag (σ2
jQ
−1
j (ξj))j=1,...,m

)
and therewith the limited information matrix for the OLS estimator has the following form

M̃OLS(ξ) =

(
Σ−1 0
0 block− diag ( 1

σ2
j
Qj(ξj))j=1,...,m

)

And because of M̃OLS(ξ) = A(ξ) MOLS(ξ) A(ξ)> then det M̃OLS(ξ) = det A(ξ) det MOLS(ξ) det A(ξ)>

so because of det A(ξ) = 1 then det M̃OLS(ξ) = det MOLS(ξ) and therewith the D-optimal design is
invariant against the applied transformation with respect to the OLS estimator and the lemma has
been proven. 2

Theorem 5.4. The e�ciencies of the OLS estimator versus the Gauÿ estimator for the SUR model
(3.3) in the design region X = ×mj=1Xj for ξ = ⊗mj=1ξj are according to D-, IMSE- and A-optimal
criteria respectively as follows
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• e�D(β̂OLS(ξ)) =
(

cm∏m
j=1 c

j

)1/p

• e�IMSE(β̂OLS(ξ)) =

∑m
j=1 σ

2
j (1− c

cj
)Lj11+σ2

j
c
cj
trace(LjM−1

j (ξ∗j ))∑m
j=1 σ

2
j trace(LjM−1(ξj))

• e�A(β̂OLS(ξ)) =

∑m
j=1 σ

2
j (1− c

cj
)+σ2

j
c
cj
trace(M−1

j (ξ∗j ))∑m
j=1 σ

2
j traceM(ξj)−1

Where ξ = ⊗mj=1ξj and cj is the determinant for the minor of the correlation matrix, which do not
contains the column and line j.

Proof: the D-e�ciency for the OLS estimator versus the Gauÿ estimator has the following form
for ξ = ⊗mj=1ξj , because of the forms of the transformed variance covariance matrices for the Gauÿ
estimator in (5.31) and the OLS estimator in (5.35)

e�D(β̂OLS(ξ)) =

(
det M−1

GM (ξ)

det M−1
OLS(ξ)

)1/p

=

(
det Σ

∏m
j=1

1
σ(jj) det Q−1

j (ξj)

det Σ
∏m
j=1 σ

2
j det Q−1

j (ξj)

)1/p

=

(
1∏m

j=1 σ
2
jσ

(jj)

)1/p

so because of (5.11 )

Then

e�D(β̂OLS(ξ)) =

 1

(σ2
1 ...σ

2
mc

1...cm)
(σ2

1 ...σ
2
m(c)m)


1/p

=

(
cm∏m
j=1 c

j

)1/p

The e�ciencies according to linear criteria with respect to the Gauÿ estimator because of ( 4.18 ) have
the form trace

(
L M(ξ∗)−1

GM

)
=
∑m

j=1
1

σ(jj) LjM
−1
j (ξj) +

∑m
j=1 Lj11(σ2

j − 1
σ(jj) ) We have the following

term, because of the block diagonal form of the weight matrix L given in (4.14) and the form of the
diagonal blocks of the variance covariance matrix for the OLS estimator given in (5.21)

trace
(
L M−1

OLS(ξ)
)

= trace
(
block− diag (Lj)(j=1,...,m) M−1

OLS(ξ)
)

=

m∑
j=1

σj Lj M−1
j (ξj) (5.38)

Know, we can calculate the IMSE-optimality e�ciency for the OLS estimator versus the Gauÿ estimator
with respect to the product type designs, due to (4.18) and (5.38), as follows

e�IMSE(β̂OLS(ξ)) =
trace

(
L M−1

GM (ξ)
)

trace
(
L M−1

OLS(ξ)
) =

∑m
j=1 σ

2
j (1− c

cj
)Lj11 + σ2

j
c
cj
trace

(
LjM

−1
j (ξ∗j )

)
∑m

j=1 σ
2
j trace (LjM−1(ξj))

(5.39)

we can obtain the A-optimality e�ciency for the OLS estimator versus the Gauÿ estimator, due to
replacing Lj = Ipj×pj and Lj11 = 1 by (5.39), as follows

e�A(β̂OLS(ξ)) =
traceM−1

GM (ξ)

traceM−1
OLS(ξ)

=

∑m
j=1 σ

2
j (1− c

cj
) + σ2

j
c
cj
trace

(
M−1

j (ξ∗j )
)

∑m
j=1 σ

2
j traceM(ξj)−1
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The product type designs for SUR models with intercepts by the marginal models are D- and linear
optimal in 4.1, as it has been proven in chapter four. So the next result illustrates the e�ciencies for
the MANOVA-design vs the product type design due to the Gauÿ estimator and with respect to the
D- and linear criteria in 4.1

Def 5.2. ξMANOV A(x) = ξ0(x) for x = (x, ..., x) [all components are equal] and ξMANOV A(x) = 0
else.

Theorem 5.5. Let fj,j=1,...,m = f0 be the marginal regression functions for the components for the
SUR model (3.3) , which coincide with the regression function for one component of the MANOVA
model see (3.4), in the design region X = ×mj=1X0, then the e�ciencies of the MANOVA-design ξ0 in
the design region X versus the Product type design ξ = ⊗mj=1ξj = ⊗mj=1ξ0, according to D-, IMSE- and
A-optimal criteria and due to the Gauÿ estimator are respectively as follows

• e�D(ξ0) =
(c)

m(m+1)−p
pm (

∏m
j=1 σ

2
j )

2m−p
pm

(
∏m
j=1 cj)

1/p

• e�IMSE(ξ0) =

∑m
j=1 σ

2
j (1− c

cj
)L011+σ2

j
c
cj
trace(L0M

−1
0 (ξ∗0))

traceΣ trace(L0 M−1
0 (ξ0))

• e�A(ξ0) =

∑m
j=1 σ

2
j (1− c

cj
)+σ2

j
c
cj
trace(M−1

0 (ξ∗0))

traceΣ trace M−1
0 (ξ0)

Where M0 =
∫

f0f
>
0 dξ0, L0 =

∫
X0

f0(x)f0(x)>µ(dx) and L011 is the �rst diagonal element of the matrix
L0. And cj is the determinant for the minor of the correlation matrix, which do not contains the column
and line j.

Proof: The variance covariance matrix for the MANOVA-model resp. for MANOVA-design ξ0 for
regression function with intercept, i.e.

f0(x0) =

(
1

g0(x0)

)
can be calculated by the integral of the information matrix for the one-point design in ( 3.17) with
respect to design ξ0 so

M(ξ0) = Σ−1 ⊗M0(ξ0) (5.40)

Then

M−1(ξ0) = Σ⊗M−1
0 (ξ0) (5.41)

then because of (5.31)

M̃−1(ξ0) = Σ⊗
(

1 0

0 Q−1
0 (ξ0)

)
, Where Q0(ξ0) =

∫
g0(x0)g0(x0)>ξ0(dx0)− a0a

>
0 (5.42)

Also, for SUR model with the control variables xj,j=1,...,m = x0 and the marginal regression functions
for the components, which are fj,j=1,...,m = f0 has the transformed covariance matrix for the Gauÿ
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estimator with respect to the product design ξ = ⊗mj=1ξj = ⊗mj=1ξ0 because of (5.31) the following
form

M̃−1
GM (ξ) =

(
Σ 0

0 block− diag ( 1
σ(jj) Q

−1
0 (ξ0))j=1,...,m

)
, Q0 =

∫
g0(x0)g0(x0)>ξ0(dx0)− a0a

>
0

(5.43)
and the variance covariance matrix for it because of the form (4.9) has the following form

M−1
GM (ξ) = block− diag (

1

σ(jj)
(M−1

j (ξ0)− eje
>
j ) + e Σ e> (5.44)

So because of ( 5.9) and (5.11) 1
σ(jj) =

σ2
j detC

cj
, and because of det Σ =

∏m
j=1 σ

2
j c, and because of

(5.42) and ( 5.43) have the D-e�ciency for the MANVOVA-design against the product type design
with respect to the Gauÿ estimator the following form

e�D(ξ0) =

(
det M−1

GM (ξ)

det M−1(ξ0)

)1/p

=

(
det M̃−1

GM (ξ)

det M̃−1(ξ0)

)1/p

=

(
det Σ

∏m
j=1

1
σ(jj) det Q−1

0 (ξ0)

(det Σ)
p
m
(
det Q−1

0 (ξ0)
)m

)1/p

=

c
(∏m

j=1 σ
2
j

)∏m
j=1

σ2
j c

cj
det Q−1

0 (ξ0)(
c
∏m
j=1 σ

2
j

) p
m (

det Q−1
0 (ξ0)

)m


1/p

=

(c)m+1 (det Q−1
0 (ξ0)

)m (∏m
j=1 σ

2
j

)2∏m
j=1

1
cj

(c)
p
m

(∏m
j=1 σ

2
j

) p
m (

det Q−1
0 (ξ0)

)m


1/p

=

 (c)m+1
(∏m

j=1 σ
2
j

)2

(∏m
j=1 cj

)
(c)

p
m

(∏m
j=1 σ

2
j

) p
m


1/p

=

(c)
m(m+1)−p

m

(∏m
j=1 σ

2
j

) 2m−p
m∏m

j=1 cj


1/p

=
(c)

m(m+1)−p
pm

(∏m
j=1 σ

2
j

) 2m−p
pm(∏m

j=1 cj

)1/p

Also, for m = 2, c1 = c2 = 1, e�D(ξ0) = (c)
6−p
2p

(∏2
j=1 σ

2
j

) 4−p
2p

To calculate the IMSE-e�ciency for the MANOVA-design ξ0, we should calculate the matrix L for the
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MANOVA-model, also

L = Im×m ⊗
∫
X0

f0(x0)f0(x0)>µ(dx0) = Im×m ⊗ L0 , L0 =

(
L011 L>012

L012 L022

)
(5.45)

We get the next term because of (5.41) and by replacing Lj = L0 by (4.14)

trace
(
LM−1(ξ0)

)
= trace

(
(Im×m ⊗ L0)

(
Σ⊗M−1

0 (ξ0)
))

= trace
(
Σ⊗ L0M

−1
0 (ξ0)

)
= traceΣ trace

(
L0M

−1
0 (ξ0)

)
(5.46)

For SUR model with respect to Gauÿ estimator has the term trace
(
LM−1

GM (⊗mj=1ξ0)
)
, where L =

diag (L0)j=1,...,m and L0 is de�ned in (5.45) and because of ( 4.18)

trace
(
L M(ξ)−1

)
=

m∑
j=1

1

σ(jj)
L0M

−1
0 (ξ0) +

m∑
j=1

L011(σ2
j −

1

σ(jj)
) (5.47)

then because of (5.46 ) and (5.47)

e�IMSE(ξ0) =

∑m
j=1 σ

2
j (1− c

cj
)L011 + σ2

j
c
cj
trace

(
L0M

−1
0 (ξ∗0)

)
traceΣ trace

(
L0 M−1

0 (ξ0)
) (5.48)

Due to replacing L0 = I p
m
× p
m
and L011 = 1 by (5.48) we can obtain the A-optimality e�ciency for ξ0

versus the product design ⊗mj=1ξ0 with respect to the Gauÿ estimator as follows

e�A(ξ0) =

∑m
j=1 σ

2
j (1− c

cj
) + σ2

j
c
cj
trace

(
M−1

0 (ξ∗0)
)

traceΣ trace M−1
0 (ξ0)

and therewith we have ended the proof. 2

By the next theorem can be shown, that the MANOVA-design is more e�cient than the product type
design due to the OLS estimator with respect to the D-optimality, and the both designs have the same
e�ciency for the linear optimality in 4.1 due to the OLS-estimator.

Theorem 5.6. Let fj,j=1,...,m = f0 be the marginal regression functions for the components for the SUR
model (3.3) , which coincide with the regression function for one component of the MANOVA model, in
the design region X = ×mj=1X0, then the e�ciencies of the MANOVA-design ξ0 in the design region X0

versus the Product type design ξ = ⊗mj=1ξj = ⊗mj=1ξ0, according to D-, IMSE- and A-optimal criteria
and due to the OLS estimator are respectively as follows

• e�D(ξ0) =
(∏m

j=1 σ
2
j

) 2m−p
pm

(c)
m−p
pm

• e�IMSE(ξ0) = 1

• e�A(ξ0) = 1
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Proof: The proof of the theorem 5.6 is analogous to the proof of theorem 5.5 with the distinction
by the terms of the variance covariance matrices for OLS estimator and the Gauÿ estimator, also, for
the product design ξ = ⊗mj=1ξj = ⊗mj=1ξ0 the transformed variance covariance matrix for the OLS
estimator has the following form, because of (5.35)

˜CovOLS(ξ) =

(
Σ 0

0 block− diag (σ2
jQ
−1
0 (ξ0))j=1,...,m

)
then

det ˜Cov
−1
OLS(ξ) = det Σ

(
det Q−1

0 (ξ0)
)m m∏

j=1

σ2
j (5.49)

Then because of (5.43), ( 5.49) and (5.9 ) has the e�ciency of ξ0 versus the product design
ξ = ⊗mj=1ξj = ⊗mj=1ξ0 with respect to the OLS-estimator the next form

e�D(ξ0) =

(
det Cov−1

OLS(ξ)

det M−1(ξ0)

)1/p

=

(
det ˜Cov

−1
OLS(ξ)

det M̃−1(ξ0)

)1/p

=

(
det Σ

(
det Q−1

0 (ξ0)
)m∏m

j=1 σ
2
j

(det Σ)
p
m
(
det Q−1

0 (ξ0)
)m

)1/p

=

( ∏m
j=1 σ

2
j

(det Σ)
p−m
m

)1/p

=


∏m
j=1 σ

2
j(

c
∏m
j=1 σ

2
j

) p−m
m


1/p

=


(∏m

j=1 σ
2
j

) 2m−p
m

(c)
p−m
m


1/p

=

 m∏
j=1

σ2
j


2m−p
pm

(c)
m−p
pm

Also, for m = 2, e�D(ξ0) =

 2∏
j=1

σ2
j


4−p
2p

(c)
2−p
2p

To calculate the IMSE-e�ciency for the MANOVA-design ξ0 versus the product design ⊗mj=1ξ0, we

have for the SUR model with respect to the OLS estimator the term trace
(
LM−1

OLS(⊗mj=1ξ0)
)
, where

L = diag (L0)j=1,...,m and L0 is de�ned in (5.45) because of (5.38) and (5.46 ) the following form

trace
(
L Cov−1

OLS(ξ)
)

=

m∑
j=1

σ2
j trace

(
L0M

−1
0 (ξ0)

)
= traceΣ trace

(
L0M

−1
0 (ξ0)

)
(5.50)

then because of (5.46 ) and (5.50)

e�IMSE(ξ0) =
traceΣ trace

(
L0M0(ξ0)−1

)
traceΣ trace (L0M0(ξ0)−1)

= 1 (5.51)
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By replacing L0 = I p
m
× p
m

by (5.51), we obtain the A-optimality e�ciency for ξ0 versus the product
design ⊗mj=1ξ0 with respect to the OLS estimator as follows

e�A(ξ0) =
trace M−1

0 (ξ0)

trace M−1
0 (ξ0)

= 1

and therewith we have ended the proof. 2

Remark 5.5. The results for the IMSE-optimality can be extended for linear optimality in 4.1.

Remark 5.6. The MANOVA-design ξ0 is more e�cient than product type design ⊗mj=1ξ0 with respect

to the OLS estimator according to the D-criterion, for example, by m = p = 2 and σ2
j = 4 and

ρ = 0 then c = 1 has the e�ciency the next term e�D(ξ0) = (4)
1
2 = 2. And that is logic, because the

OLS estimator is limited information or limited e�cient estimator. But the both estimators are equal
e�cient with respect to the linear criteria in 4.1.

5.3 Example: Bivariate straight line regression

To illustrate the results, we can consider the SUR model with simple straight line regression models
for the components,

Yij = βj0 + βj1xij + εij . (5.52)

in the unit interval X1 = X2 = [0, 1] as experimental regions. Then it is well-known that the D-,

IMSE- and A-optimal designs for the marginal models ξ∗1 = ξ∗2 =

(
0 1
w1 w2

)
where the weights

w1 = w2 = 1/2 for the D- and IMSE-optimal designs and w1 = 2 −
√

2, w2 = 1/2 for the A-optimal
design. Because of the theorems 4.3 and 4.4 in the previous chapter, the product type designs

ξ∗ = ξ∗1 ⊗ ξ∗2 =

(
(1, 1) (0, 0) (1, 0) (0, 1)
w2

1 w1.w2 w1.w2 w2
2

)
are D-, IMSE-, and A-optimal designs for the SUR model (6.34) on X = [0, 1]2.
An obvious alternative for the product type design would be a multivariate linear regression design

ξ0 =

(
(1, 1) (0, 0)
w1 w2

)
,

where the weights w1 = w2 = 1/2 for the D- and IMSE-optimal designs and w1 = 2 −
√

2, w2 = 1/2
for the A-optimal design and x1 = x2 are required and the corresponding marginals of ξ0 are optimal
in the marginal models. The statistical analysis is simpli�ed for such a design, because the Gauÿ-
Markov estimator reduces to ordinary least squares for any Σ. At �rst we want to illustrate the results
for the upper bounds of the variance covariance matrix for the prediction by Lemma (5.2) and the
theorems (5.2) and (5.3), where in the bivariate case c1 = c2 = 1 and also for Lemma (5.2) the graphics
for the next functions, which are on the left side

1.
maxx∈X trace(COV(x;ξ∗0;D))

p
m
trace(Σ)

≤ 1 for σ1 = σ2 = 5
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Figure 5.1: Max.= 1 with re-
spect to the trace (MANOVA)

Figure 5.2: Max.= 1 with re-
spect to the maximum eigen-
value (MANOVA)

Figure 5.3: Max.= 1 with
respect to the determinant
(MANOVA)

2.
maxx∈X0 λ max(COV(x;ξ∗0;D))

p
m
λ max(Σ)

≤ 1 for σ1 = 0.1, σ2 = 10

3.
maxx∈X0 det(COV(x;ξ∗0;D))

( pm)
m

detΣ
=(

−4 ρ2 + 4
)
x4 +

(
8 ρ2 − 8

)
x3 +

(
−6 ρ2 + 8

)
x2 +

(
2 ρ2 − 4

)
x− 1/4 ρ2 + 1 ≤ 1

have respectively a maximum of 1, by which can be illustrated by �gures 5.1, 5.2 and 5.3. respectively
the graphics for the next functions with respect to the theorem (5.2) , which are on the left side

1.
maxx∈X trace(COV(x;ξ∗D))∑m

j=1 σ
2
jTCj

≤ 1 for x2 = 1, σ1 = 0.1, σ2 = 10

2.
maxx∈X λ max(COV(x;ξ∗D))∑m

j=1 σ
2
jTCj

< 1 for ρ = 0.99, σ1 = 0.1, σ2 = 10

3.
maxx∈X det(COV(x;ξ∗D))[∑m

j=1
σ2
j
TCj

m

]m ≤ 1 for x2 = 1, σ1 = 5, σ2 = 5

have respectively a maximum of 1, by which can be illustrated by the �gures 5.4, 5.5 and 5.6.
respectively the graphics for the next functions with respect to the theorem (5.3), which are on the
left side

1.
maxx∈X trace(COV(x;ξ∗D))∑m

j=1 σ
2
j pj

≤ 1 for ρ = 0, σ1 = σ2 = 5

2.
maxx∈X λ max(COV(x;ξ∗D))∑m

j=1 σ
2
j pj

< 1 for ρ = 0, σ1 = 10, σ2 = 0.1

3.
maxx∈X det(COV(x;ξ∗D))

[
∑m
j=1 σ

2
j pj]

m ≤ 1 for ρ = 0, σ1 = σ2 = 5
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Figure 5.4: Max.= 1 with
respect to the trace (Product
type design by Gauÿ Markov)

Figure 5.5: Max.< 1 with re-
spect to the maximum eigen-
value (Product type design by
Gauÿ Markov )

Figure 5.6: Max.= 1 with
respect to the determinant
(Product type design by Gauÿ
Markov )

Figure 5.7: Max.= 1 with
respect to the trace (Product
type design by OLS)

Figure 5.8: Max.< 1 with re-
spect to the maximum eigen-
value (Product type design by
OLS )

Figure 5.9: Max.= 1 with
respect to the determinant
(Product type design by OLS)
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Figure 5.10: The e�ciency
for OLS vs Gauÿ Markov with
respect to the D-optimality by
product type design

Figure 5.11: The e�ciency for
OLS vs Gauÿ Markov with re-
spect to the A-optimality by
product type design

Figure 5.12: The e�ciency
for OLS vs Gauÿ Markov
with respect to the IMSE-
optimality by product type
design

have respectively a maximum of 1, by which can be illustrated the �gures 5.7, 5.8 and 5.9. respectively
the terms of the e�ciency for the OLS versus the Gauÿ Markov by the theorem 5.4 have under the
class of product type designs the following forms e�D(β̂OLS(ξ)) = (1 − ρ2)1/2 , e�A(β̂OLS(ξ)) =
1.000019570− 0.8284433380 ρ2 and e�IMSE(β̂OLS(ξ)) = 1− 1/4 ρ2 where the corresponding behaviors
are respectively depicted in the �gures 5.10, 5.11 and 5.12. the terms of the e�ciency for MANOVA-
desgin versus the product type design with respect to the Gauÿ Markov estimator by the theorem
(5.5) have the following forms e�D(ξ0) = (1− ρ2)1/4 , e�A(ξ0) = 1 + 2(1 −

√
2) ρ2 and e�IMSE(ξ0) =

1 − 1/4 ρ2 where the corresponding behaviors are respectively depicted in the �gures 5.13, 5.14 and
5.15. respectively the terms of the e�ciency for MANOVA-desgin versus the product type design with
respect to the OLS estimator by the theorem (5.6) have the following forms e�D(ξ0) = (1− ρ2)−1/4 ,
e�A(ξ0) = 1 and e�IMSE(ξ0) = 1 where the corresponding behavior for the D-optimality is depicted
in the �gure 5.16 and illustrates the topics of the remark 5.6.
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Figure 5.13: The e�ciency for
MANOVA vs product type de-
sign due to D-optimality by
Gauÿ Markov

Figure 5.14: The e�ciency
for MANOVA vs product type
design due to A-optimality by
Gauÿ Markov

Figure 5.15: The e�-
ciency for MANOVA vs prod-
uct type design due to IMSE-
optimality by Gauÿ Markov

Figure 5.16: The e�ciency for MANOVA vs. product type design due to D-optimality by OLS
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6 Optimal Designs for SUR Models with Multi-Factor

and Nested Components

The multi-factor experiments similar to additive models and product-type models have many ap-
plications as well as their multivariate version, which can be presented as general multivariate linear
models resp. as SUR models with multi-factor models nested or not as marginals. The �rst one
who spoke about SUR models was (Zellner (1962)), where he used a bivariate additive model, their
marginals had the same additive regression functions and the same control variables, which belonged
to the same design region that analyzed annual investment data, between 1935-1954, for two �rms.
Optimal designs for multivariate multi-factor models by a Kronecker product form for the variance
covariance matrix of the error were explored in the work of ( Schwabe (1996)).
Optimal designs for di�erent multivariate linear multi-factor models by di�erent nesting forms are ex-
plored in this work. So, D- and some linear optimal designs for multivariate multi-factor models with
a nesting structure are explored in the �rst section, where one marginal component is nested multi-
plicatively or additively in the other marginal components, and shows, that the product type designs
are D- and linear optimal in 4.1, for the SUR model with the multiplicative nesting case, D-optimal
for the SUR model with the the additively nesting case without conditions and linear optimal in 4.1
by block diagonal information matrices. For growing complexity or hierarchically nesting multi-factor
models, where the �rst component is nested in the second multiplicatively or additively, and the sec-
ond in the third, and so on are the results in the �rst section valid. When a new component is nested
multiplicatively or additively in all components of the SUR-model with one-factor marginals or a new
di�erent component is nested in each component of the SUR model with one-factor marginals stay the
results in the �rst section valid, under similar conditions, that is shown in the third section. There are
two clear examples at the end of this chapter, which illustrate the theoretical results.

6.1 Optimal Designs for Multivariate Multi-Factor Models for the

Simplest Nesting form

The multivariate multi-factor models can be presented as SUR models by the same assumption
as the presented SUR model (3.3) in chapter two, but with a di�erent forms for the block diagonal
regression function, which can be seen in one of the nesting form, where the �rst component is nested
in the other components, generally as follows

f(x) =


f1(x1) 0 · · · 0

0 f2(x1, x2) · · · 0
... · · · . . .

...
0 · · · 0 fm(x1, xm)

 (6.1)

for the multivariate experimental setting x = (x1, ..., xm)> ∈ X = ×nj=1Xj .
To obtain a complete characterization of D- and linear optimal designs 4.1, it is required that all
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marginal models related to the components contain an intercept, fj1(x) ≡ 1, with respect to SUR
models with marginals as additive models as well as product-type models. We will sort the results
according to the models, and to the structures of nesting.

6.1.1 Optimal Designs for Multiplicative Nesting

The topics of the next two results are the D- and linear optimality in 4.1 of the product type designs
for the SUR model with multiplicative marginal components models by regression functions for the
components have the next forms

fj(x1, xj)j=2,...,m = f1(x1)⊗ fj(xj) (6.2)

i.e. the regression function for the considered SUR model has the following form

f(x) =


f1(x1) 0 · · · 0

0 f1(x1)⊗ f2(x2) · · · 0
... · · · . . .

...
0 · · · 0 f1(x1)⊗ fm(xm)

 (6.3)

Theorem 6.1. Let ξ∗j be D-optimal for the j-th marginal component with the regression function given
in (6.2) in the marginal design region Xj , j = 1, ...,m, then the product type design

ξ∗ = ⊗mj=1ξ
∗
j

is D-optimal for the SUR model (3.3) in the design region X = ×mj=1Xj, where the block diagonal
multivariate regression function for the considered SUR model is given in (6.3).
The sensitivity function ϕD does not depend on Σ.

Theorem 6.2. Let ξ∗j be linear optimal with weight matrix Lj, for the j-th marginal component with
the regression function given in (6.2) in the marginal design region Xj , j = 1, ...,m, then the product
type design

ξ∗ = ⊗mj=1ξ
∗
j

is linear optimal for the SUR model (3.3) in the design region X = ×mj=1Xj , if the weight matrix
L = block− diag (Lj) (4.1), where the block diagonal multivariate regression function for the considered
SUR model is given in (6.3).

Proof: With respect to the nesting structure for the regression function of the SUR model given in
(6.3) has the block regression function for the SUR model the following form

f(x) = f1(x1)⊗


1 0 · · · 0
0 f2(x2) · · · 0
... · · · . . .

...
0 · · · 0 fm(xm)

 , and suppose, that Σ−1 =

 σ(11) · · · σ(1m)

...
. . .

...
σ(1m) · · · σ(mm)


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Then the information matrix for one-point design has the following form for the considered SUR model

M(x) = f(x)Σ−1f(x)> = f1(x1)⊗


1 0 · · · 0
0 f2(x2) · · · 0
... · · · . . .

...
0 · · · 0 fm(xm)


 σ(11) · · · σ(1m)

...
. . .

...
σ(1m) · · · σ(mm)

 f>1 (x1)⊗


1 0 · · · 0
0 f2(x2)> · · · 0
... · · · . . .

...
0 · · · 0 fm(xm)>


Then

M(x) = f1(x1)f1(x1)> ⊗


σ(11) σ(12)f2(x2) · · · σ(1m)f1(x1)

σ(12)f2(x2) σ(22)f2(x2) · · · σ(2m)f2(x2)
...

...
. . .

...
σ(1m)fm(xm) σ(2m)fm(xm) · · · σ(mm)fm(xm)




1 0 · · · 0
0 f2(x2)> · · · 0
... · · · . . .

...
0 · · · 0 fm(xm)>


Also, the information matrix for the considered SUR model has the following form for j = 1, ...,m,
Mj(xj) = fj(xj)fj(xj)

> and

M(x) = M1(x1)⊗


σ(11) σ(12)f2(x2)> · · · σ(1m)fm(xm)>

σ(12)f2(x2) σ(22)M2(x2) · · · σ(2m)f2(x2)>fm(xm)>

... · · · . . .
...

σ(1m)fm(xm) · · · · · · σ(mm)Mm(xm)

 (6.4)

Then the information matrix for ξ = ⊗mj=1ξj , is Mj(xj) =

∫
fj(xj)fj(xj)

>ξj(dxj)

mj(ξj) =

∫
fj(xj)ξj(dxj)

M(ξ) = M1(ξ1)⊗


σ(11) σ(12)m2(ξ2)> · · · σ(1m)mm(ξm)>

σ(12)m2(ξ2) σ(22)M2(ξ2) · · · σ(2m)m2(ξ2)>mm(ξm)>

... · · · . . .
...

σ(1m)mm(ξm) · · · · · · σ(mm)Mm(ξm)


= M1(ξ1)⊗ (Mjk(ξj ⊗ ξk))j,k=1,...,m (6.5)

The second part of the information matrix in (6.5) is an information matrix for a SUR model with m
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components and the block regression function of it is given as follows

f(x) =


1 0 0
0 f2(x2) 0
...

. . .
...

0 · · · fm(xm)


where their D- and linear optimal in 4.1 designs are discussed explicitly in chapter three of this work,
and it is shown, that the product type designs are D- and linear optimal in 4.1 for these kinds of SUR
models, when its marginal regression function contains an intercept, So the equivalence theorem for
the D-optimal design ξ∗ = ⊗mj=1ξ

∗
j because of theorem (4.3) has the following form

trace
(
M(x) M−1(ξ∗D)

)
= trace

((
M1(x1)⊗Mjk(xj , xk) M−1

1 (ξ∗1)⊗M−1
jk (ξ∗j ⊗ ξ∗k)

)
j,k=1,...,m

)
= trace

(
M1(x1) M−1

1 (ξ∗1) ⊗
(
Mjk(xj , xk) M−1

jk (ξ∗j ⊗ ξ∗k)
)
j,k=1,...,m

)
= trace

(
M1(x1) M−1

1 (ξ∗1)
)
trace

((
Mjk(xj ⊗ xk) M−1

jk (ξ∗j ⊗ ξ∗k)
)
j,k=1,...,m

)
≤ p1 (1 +

m∑
j=2

pj) = p

And for positive de�nite block diagonal matrix L, where for j, k = 1, ...,m, L =
∫
X f(x) f(x)>µ(dx) =

L1 ⊗ Ljk

Lj =

(
L111 L>j12

Lj12 Lj22

)
, Ljk =


L111 · · · 0

0 L2 0
...

. . .
...

0 · · · Lm


also, the left side of the equivalence theorem for linear criteria has the following form, because of the
form of the matrix L and the information matrices in (6.4) and (6.5)

trace
(
M(x) M−1(ξ∗L) L M−1(ξ∗L)

)
= trace

(
M1(x1)⊗Mjk(xj ⊗ xk) M−1

1 (ξ∗1)⊗M−1
jk (ξ∗j ⊗ ξ∗k)L1 ⊗ LjkM

−1
1 (ξ∗1)⊗M−1

jk (ξ∗j ⊗ ξ∗k)
)

= trace
((

M1(x1) M−1
1 (ξ∗1)L1 M−1

1 (ξ∗1)
)
⊗
(
Mjk(xj ⊗ xk) M−1

jk (ξ∗j ⊗ ξ∗k)LjkM
−1
jk (ξ∗j ⊗ ξ∗k)

))
= trace

(
M1(x1) M−1

1 (ξ∗1)L1 M−1
1 (ξ∗1)

)
trace

(
Mjk(xj ⊗ xk) M−1

jk (ξ∗j ⊗ ξ∗k)LjkM
−1
jk (ξ∗j ⊗ ξ∗k)

)
So because of theorem (4.4)

trace
(
M1(x1) M−1

1 (ξ∗1)L1 M−1
1 (ξ∗1)

)
trace

(
Mjk(xj ⊗ xk) M−1

jk (ξ∗j ⊗ ξ∗k)LjkM
−1
jk (ξ∗j ⊗ ξ∗k)

)
≤ trace

(
L1M

−1
1 (ξ∗1)

)
trace

(
Ljk M−1

jk (ξ∗j ⊗ ξ∗k)
)

And therewith the product type designs are linear optimal in 4.1 and the theorem has been proven.
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6.1.2 Optimal Designs for Additive Nesting

The product type designs are D-optimal without conditions and linear optimal in 4.1, by block
diagonal information matrices, or when the product type designs optimal for the univariate additive
models. These results are valid for the multivariate additive linear models with the next forms of the

regression functions for the components f1(x1) =

(
1

g1(x1)

)
, fj(x1, xj)j=2,...,m =

 1
g1(x1)
gj(xj)

 i.e.

the regression function for the considered SUR model has the following form

f(x) =



(
1

g1(x1)

)
· · · 0

0

 1
g1(x1)
g2(x2)

 0

...
. . .

...

0 · · ·

 1
g1(x1)
gm(xm)




(6.6)

Theorem 6.3. Let ξ∗j be D-optimal for the j-th marginal component with the regression function

f1(x1) =

(
1

g1(x1)

)
, fj(x1, xj)j=2,...,m =

 1
g1(x1)
gj(xj)

 (6.7)

in the marginal design region Xj , j = 1, ...,m, then the product type design

ξ∗ = ⊗mj=1ξ
∗
j

is D-optimal for the SUR model (3.3) in the design region X = ×mj=1Xj, where the block diagonal
multivariate regression function for the considered SUR model is given in (6.6).
The sensitivity function ϕD does not depend on Σ.

Proof: the proof can be implemented step by step by some auxiliary lemmas and theorems as follows

Lemma 6.1. The D-criterion is invariant by application a linear transformation.

Proof: the transformed regression function has the form f̃ = Af for a constant and regular matrix
Ap×p, and resp. the transformed information matrix has the form

M̃(ξ∗) =

∫
f̃(x)Σ−1f̃(x)>ξ∗(dx) = A

∫
f(x)Σ−1f(x)>ξ∗(dx)A> = AM(ξ∗)A> (6.8)

So the left side of the multivariate equivalence theorem for the D-optimality 4.1 by the transformed
regression function and resp. information matrix has the following form

trace
(
Σ−1f̃(x)>M̃(ξ∗)−1f̃(x)

)
= trace

(
Σ−1f(x)>A>A−>M(ξ∗)−1A−1Af(x)

)
= trace

(
Σ−1f(x)>M(ξ∗)−1f(x)

)

70



i.e. the D-criterion due to its equivalence theorem is invariant to the applied linear transformation.
The next theorem is a help tool and it have the same topic of the goal result, but it is proven for a special
case, which is the block diagonal form of the information matrix for the corresponding SUR model. 2

Theorem 6.4. Let ξ∗j be D-optimal for the j-th marginal component (6.7) in the marginal design region
Xj with an intercept included, j = 1, ...,m, if∫

Xj
gj(xj)ξ

∗
j (dxj) = 0, j = 1, ...,m (6.9)

then the product type design
ξ∗ = ⊗mj=1ξ

∗
j (6.10)

is D-optimal for the SUR model (3.3) in the design region X = ×mj=1Xj , where the block diagonal
multivariate regression function for the considered SUR model is given in (6.6).
The sensitivity function ϕD does not depend on Σ.

Proof: The diagonal blocks of the information matrix for one-point design have the following form
because of the form of the block diagonal form for the multivariate regression function, given in the
form (6.6 )

M(x)jj = (f(x)Σ−1f(x)>)jj = block− diag (σ(11)M1(x1), σ(jj)M1j(x1, xj))j=1,...,m (6.11)

where M1j(xj) = fj(x1, xj)fj(x1, xj)
>

Then the information matrix with respect to the product type design ξ∗D = ⊗mj=1ξ
∗
j,D in the design

region X = ×mj=1Xj has the next block diagonal form because of 6.9

M(ξ∗D) =

∫
X

f(x)Σ−1f(x)>ξ∗D(dx) =


σ(11)M1(ξ∗1) · · · 0

0 σ(22)M12(ξ∗1 ⊗ ξ∗2) 0
...

. . .
...

0 · · · σ(mm)M1m(ξ∗1 ⊗ ξ∗m)


M1j(ξ

∗
1 ⊗ ξ∗m) =

∫
X1×Xj

fj(x1, xj)fj(x1, xj)
>d(ξ∗1 ⊗ ξ∗j ) =

 1 0 0
0 G1(ξ∗1) 0
0 0 Gj(ξ

∗
j )


Gj(ξ

∗
j ) =

∫
Xj

gj(xj)gj(xj)
>d(ξ∗j ) j = 1, ...,m

So the inverse of the information matrix has the next form

M−1(ξ∗D) =


1

σ(11) M
−1
1 (ξ∗1) · · · 0

0 1
σ(22) M

−1
12 (ξ∗1 ⊗ ξ∗2) 0

...
. . .

...
0 · · · 1

σ(mm) M
−1
1m(ξ∗1 ⊗ ξ∗m)

 (6.12)
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Thus the next terms are to be hold by replacing (6.11) and (6.12) int the multivariate equivalence
theorem for D-optimality 4.1, so

M(x)M(ξ∗)−1 =


σ(11)M1(x1) · · · .

. σ(22)M12(x1, x2) · · ·

...
. . .

...
. · · · σ(mm)M1m(x1, xm)




1
σ(11) M

−1
1 (ξ∗1) · · · 0

0 1
σ(22) M

−1
12 (ξ∗1 ⊗ ξ∗2) 0

...
. . .

...
0 · · · 1

σ(mm) M
−1
1m(ξ∗1 ⊗ ξ∗m)


Thus trace (M(x)M−1(ξ∗D)) =

trace (M1(x1)M−1
1 (ξ∗1)) + trace (M12(x1, x2)M−1

12 (ξ∗1 ⊗ ξ∗2))

+ ...+ trace (M1m(x1, xm)M−1
1m(ξ∗1 ⊗ ξ∗m))

≤ p1 + (p1 + p2 − 1) + ....+ (p1 + pm − 1) = mp1 + p2 + ....+ pm − (m− 1) = p

So the conditions of the equivalence theorem are valid and the product type design ξ∗D = ⊗mj=1ξ
∗
j,D

is D-optimal by block diagonal information matrix. And the sensitivity function for D-optimality is
independent on the variance covariance terms. 2

By the next help lemma can be illustrated, that the D-optimal design for a SUR model is the same for
the transformed SUR model.

Lemma 6.2. The D-optimal design for the SUR model stays D-optimal for the linearly transformed
SUR model.

Proof: The transformation matrix and its diagonal block matrices for j = 1, ...,m have the next
forms

A =


A1 · · · 0
0 A12 0
...

. . .
...

0 · · · A1m

 (6.13)

A1 =

(
1 0
−b1 I(p1−1)×(p1−1)

)
, A1j =

 1 0 0
−b1 Ip1−1 0
−bj 0 Ipj−1

 , bj =

∫
gj(xj)ξj(dxj) (6.14)

i.e., the transformed regression function seems for the �rst component as follows

f̃1(x1) = A1(ξ1)f1(x1) =

(
1 0

−b1(ξ1) Ip1−1

)
f1(x1) =

(
1

g1(x1)− b1

)
and respectively for the m− 1 other components

f̃j(x1, xj) =

 1
g1(x1)− b1

gj(xj)− bj


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So for g̃j = gj −
∫

gjξj(dxj) then
∫

g̃jdξj =
∫

gjξj(dxj)−
∫

gjξj(dxj) = 0, and therewith

∫
f̃j(x1)dξ1 =

(
1
0

)
,

∫
f̃j(x1, xj)d(ξ1 ⊗ ξj) =

 1
0
0


And the information matrix for the transformed model has the following block diagonal form for the
product type design ξ∗ = ⊗mj=1ξ

∗
j

M̃(ξ∗) =


1

σ(11) M̃
−1
1 (ξ∗1) · · · 0

0 1
σ(22) M̃

−1
12 (ξ∗1 ⊗ ξ∗2) 0

...
. . .

...
0 · · · 1

σ(mm) M̃
−1
1m(ξ∗1 ⊗ ξ∗m)


Where the transformed regression function has the following form

f̃(x) =


A1 · · · 0
0 A12 0
...

. . .
...

0 · · · A1m





(
1

g1(x1)

)
· · · 0

0

 1
g1(x1)
g2(x2)

 0

...
. . .

...

0 · · ·

 1
g1(x1)
gm(xm)





=



(
1

g̃1(x1)

)
· · · 0

0

 1
g̃1(x1)
g̃2(x2)

 0

...
. . .

...

0 · · ·

 1
g̃1(x1)
g̃m(xm)




So that is the same special case of theorem 6.4, by it the product type design is D-optimal for the
considered SUR model for block diagonal information matrix. Then the product type design ξ∗D =
⊗mj=1ξ

∗
j,D is D-optimal for the SUR model by the following non transformed regression function because
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of the

f(x) =


A−1

1 · · · 0

0 A−1
12 0

...
. . .

...
0 · · · A−1

1m





(
1

g̃1(x1)

)
· · · 0

0

 1
g̃1(x1)
g̃2(x2)

 0

...
. . .

...

0 · · ·

 1
g̃1(x1)
g̃m(xm)




2 (6.15)

because of lemma 6.1 and theorem 6.4, the D-optimality of the product type design as well as the
independence of the corresponding sensitivity function on the variance covariance matrix of the error
variables and the theorem 4.3 has been proven. 2

Theorem 6.5. Let ξ∗j be linear optimal, by block diagonal weight matrix Lj, for the j-th marginal
component (3.4) in the marginal design region Xj , j = 1, ...,m. If∫

Xj
gj(xj)ξ

∗
j (dxj) = 0, j = 2, ...,m (6.16)

then the product type design
ξ∗ = ⊗mj=1ξ

∗
j

is linear optimal, if the weight matrix L = block− diag (Lj) (4.1), for the SUR model (3.3) in the
design region X = ×mj=1Xj, where the block diagonal multivariate regression function for the considered
SUR model is given in (6.6).

Proof: the weight matrix for the considered SUR model has the following matrix

L =

∫
X

f(x)f(x)>µ(dx) =


L1 · · · 0
0 L12 0
...

. . .
...

0 · · · L1m

 (6.17)

L1 =

(
L111 L>112

L112 L122

)
, L1j =

 L111 L>112 L>j13

L112 L122 L>j23

Lj13 Lj23 Lj33


The inverse of the information matrix has the following block diagonal form for the product type design
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ξ∗L = ⊗mj=1ξ
∗
j;L , under the conditions (6.28 )

M−1(ξ∗L) =


1

σ(11) M
−1
1 (ξ∗1) · · · 0

0 1
σ(22) M

−1
12 (ξ∗1 ⊗ ξ∗2) 0

...
. . .

...
0 · · · 1

σ(mm) M
−1
1m(ξ∗1 ⊗ ξ∗m)

 , Where (6.18)

M−1
1j (ξ∗1 ⊗ ξ∗j ) =

(
M−1

1 (ξ∗1) 0

0 G−1
j (ξ∗j )

)
,

M−1
1 (ξ∗1) =

∫
f1(x1)f1(x1)>ξ∗1(dx1), G−1

j (ξ∗j ) =

∫
g1(xj)gj(xj)

>ξ∗j (dxj) (6.19)

Then because of ( 6.17) and (6.18)

M−1(ξ∗L) L M−1(ξ∗L) =
1

(σ(11))2
M−1

1 L1M
−1
1 · · · 0

0 1
(σ(22))2

M−1
12 (ξ∗1 ⊗ ξ∗2)L12M

−1
12 (ξ∗1 ⊗ ξ∗2) 0

...
. . .

...
0 · · · 1

(σ(mm))2
M−1

1mL1mM−1
1m

 (6.20)

So the sensitivity function for linear optimality has the following form because of ( 6.11) and because
of theorem 2.7

trace
(
M(x) M−1(ξ∗L) L M−1(ξ∗L)

)
=

1

σ(11)
trace

(
M1(x1)M−1

1 (ξ∗1)L1M
−1
1 (ξ∗1)

)
+

1

σ(22)
trace

(
M12(x1, x2)M−1

12 (ξ∗1 ⊗ ξ∗2)L12M
−1
12 (ξ∗1 ⊗ ξ∗2)

)
+

...

+
1

σ(mm)
trace

(
M1m(x1, xm)M−1

1m(ξ∗1 ⊗ ξ∗m)L1mM−1
1m(ξ∗1 ⊗ ξ∗m)

)
≤ 1

σ(11)
trace

(
L1M

−1
1 (ξ∗1)

)
+

1

σ(22)
trace

(
L12M

−1
12 (ξ∗1 ⊗ ξ∗2)

)
+...+

1

σ(mm)
trace

(
L1mM−1

1m(ξ∗1 ⊗ ξ∗m)
)

= trace
(
L M−1(ξ∗L)

)
And therewith, the product type design ξ∗L = ⊗mj=1ξ

∗
j;L , is linear optimal in 4.1 for the considered

SUR model and the theorem has been proven. 2

6.2 Optimal Designs for Multivariate Multi-Factor Models with

Growing Hierarchically Nesting

theorems 6.1, 6.2, 6.3) and 6.5 can be generalized, when we consider the multivariate linear model
with growing nesting of the components additively and multiplicatively, i.e the �rst component is
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nested through the second, and the second through the third, etc., for di�erent control variables for
the di�erent components. The D-optimal design was founded for one control variables for the di�erent
components, i.e. for a special kind of heterogeneous multivariate model by ( Kra�t and Schaefer
(1992)) , and later by ( Kurotschka and Schwabe (1996)), only in the additive case.

Theorem 6.6. Theorems 6.1 and 6.2 are valid for the SUR models, which their components have
the regression functions of the form

f1(x1), f2(x1, x2) = f1(x1)⊗ f2(x2), . . . , fm(x1, . . . , xm) = f1(x1)⊗ ... ⊗ fm(xm)

Proof: the proof can be implemented totally analogous to the proofs of theorems 6.1 and 6.2 by
replacing the following calculated quantities with their counterparts there.
The multivariate regression function has in this case the following form

f(x) =


f1(x1) 0 · · · 0

0 f1(x1)⊗ f2(x2) · · · 0
... · · · . . .

...
0 · · · 0 f1(x1)⊗ ... ⊗ fm(xm)



= f1(x1)⊗


1 0 · · · 0
0 f2(x2) · · · 0
... · · · . . .

...
0 · · · 0 f2(x2)

⊗ ...⊗


1 0 · · · 0
0 1 · · · 0
... · · · . . .

...
0 · · · 0 fm(xm)


then the information matrix has the following form for the one-point design

M(x) = f(x)Σ−1f(x)>

= f1(x1)⊗


1 0 · · · 0
0 f2(x2) · · · 0
... · · · . . .

...
0 · · · 0 f2(x2)

⊗ ...⊗


1 0 · · · 0
0 1 · · · 0
... · · · . . .

...
0 · · · 0 fm(xm)


 σ(11) · · · σ(1m)

...
. . .

...
σ(1m) · · · σ(1m)



f1(x1)> ⊗


1 0 · · · 0
0 f>2 (x2) · · · 0
... · · · . . .

...
0 · · · 0 f>2 (x2)

⊗ ...⊗


1 0 · · · 0
0 1 · · · 0
... · · · . . .

...
0 · · · 0 f>m(xm)


= M1(x1)⊗M12(x1, x2)⊗ ...⊗M1m(x1, ..., xm)

Thus the information matrix has the following form for the product type design ξ = ⊗mj=1ξj

M(ξ) =

∫
M1(x1)⊗M12(x1, x2)⊗ ...⊗M1m(x1, ..., xm)ξ(dx1, ...,dxm)

= M1(ξ1)⊗M12(ξ2)⊗ ...⊗M1m(⊗ξm)

76



where

M1(ξ1) =

∫
f1f
>
1 dξ1

M12(ξ2) =

∫ 
1 0 · · · 0
0 f2 · · · 0
... · · · . . .

...
0 · · · 0 f2




1 0 · · · 0
0 f>2 · · · 0
... · · · . . .

...
0 · · · 0 f>2

 d(ξ1 ⊗ ξ2)

...

M1m(ξm) =

∫ 
1 0 · · · 0
0 1 · · · 0
... · · · . . .

...
0 · · · 0 fm


 σ(11) · · · σ(1m)

...
. . .

...
σ(1m) · · · σ(mm)




1 0 · · · 0
0 1 · · · 0
... · · · . . .

...
0 · · · 0 f>m

dξ

The weight matrix can be calculated similarly, so it is the Kronecker product of the m block diagonal
weight matrices for the marginals and has the following form

L =

∫
f(x)f(x)>µ(dx) = L1 ⊗ L12 ⊗ ...⊗ L1m

Where

L1 =

(
L111 L>112

L112 L122

)
, L12 =


L111 · · · 0

0 L2 0
...

. . .
...

0 · · · L2

 , ..., L1m =


L111 · · · 0

0 Lm 0
...

. . .
...

0 · · · Lm

 2

Theorem 6.7. Theorem 6.3 is valid for the SUR models, which their components have the regression
functions of the form

fj(xj) = Cj · fj+1(xj ,xj+1), Cj ∈ Rpj×pj+1 , Cj =
(

Ipj×pj 0
)
, j = 1, . . . ,m− 1 (6.21)

Or more explicitly

f1(x1) =

(
1

g1(x1)

)
, f2(x1, x2) =

 1
g1(x1)
g2(x2)

 , . . . , fm(x1, . . . , xm) =


1

g1(x1)
...

gm(xm)

 (6.22)

Theorem 6.8. If ∫
Xj

gj(xj)ξ
∗
j (dxj) = 0, j = 2, ...,m (6.23)

then theorem 6.5 is valid for the SUR model, its components have the regression functions given in
(6.21) or (6.22).
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Proof: The proofs of theorems 6.7 and 6.8 can be implemented similarly to the proofs of theorems 6.3
and 6.5. The di�erence by the proof is caused by the di�erent nesting form and resp. marginal
regression functions, thus we have to use other transformation matrices for the marginal models resp.
another transformation matrix for the corresponding SUR model, other information matrix and weight
matrix , which are given respectively as follows

f(x) = diag (f1(x1), f2(x1, x2), ..., fm(x1, . . . , xm))

And therewith the corresponding transformation matrix has the following form for j = 2, ...,m

A = block− diag (A1,A2, ...,Am), where for j = 2, ...,m

bj =

∫
gj(xj)ξj(dxj), Gj(ξj) =

∫
gj(xj)gj(xj)

>ξj(dxj)

A1 = Ip1 , Aj =

(
1 0

−bjbj−1 G−1
j−1(ξj−1) Ipj−pj−1−1

)
The diagonal blocks for the information matrix for the one-point design have the following forms

M(x)jj =

block− diag (σ(11)M1(x1), σ(22)M1(x1), σ(22)G2(x2), ..., σ(mm)M1(x1), σ(mm)G2(x2), ..., σ(mm)Gm(xm))

M1(x1) = f1(x1)f1(x1)>, Gj(xj) = gj(xj)gj(xj)
>, j = 1, ...,m

The information matrix for the product type design has the following block diagonal form under
conditions (6.23)

M(ξ) =

block− diag (σ(11)M1(ξ1), σ(22)M1(ξ1), σ(22)G2(ξ2), ..., σ(mm)M1(ξ1), σ(mm)G2(ξ2), ..., σ(mm)Gm(ξm))

M1(ξ1) =

∫
f1(x1)f1(x1)>ξ1(dx1)

And the weight matrix has the following block diagonal form

L = block− diag (L1, L1, L2, ..., L1, L2, ..., Lm)

Thus, theorem (6.8) can be proven analogous to theorems 6.3 and 6.5, by replacing these quantities
with their counterparts there. 2

6.3 Optimal Designs for More General Nesting Structures

6.3.1 Nesting of a New Component in all Other Components Simultaneously

When we have a nested SUR model, where a new di�erent component is nested through all m
components of the SUR model then the regression function of the SUR model given in (6.1) has the
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following form

f(x) = block− diag (fj(xj , xm+1))j=1,...,m =

 f1(x1, xm+1) · · · 0
...

. . .
...

0 · · · fm(xm, xm+1)

 (6.24)

Where the regression functions for the marginal nested components have in general the next form for
product-type models

fj(xj , xm+1)j=1,...,m = fm+1(xm+1)⊗ fj(xj) (6.25)

And respectively for additive models, where the regression functions must have intercepts

fj(xj , xm+1)j=1,...,m =

 1
gj(xj)

gm+1(xm+1)

 (6.26)

Theorem 6.9. Let ξ∗j be D- or linear optimal by block diagonal weight matrix Lj, for the j-th marginal
component with the regression function given in (6.25) in the marginal design region Xj , j = 1, ...,m+1,
then the product type design

ξ∗ = ⊗m+1
j=1 ξ

∗
j

is D- or linear optimal, if the weight matrix L = block− diag (Lj) ( 4.1), for SUR model (3.3) with
the following regression function

f(x) = fm+1(xm+1) ⊗ block− diag (fj(xj))j=1,...,m

in the design region X = ×m+1
j=1 Xj.

The sensitivity function ϕD does not depend on Σ.

Proof: D- or linear optimality in 4.1 of the product type design ⊗m+1
j=1 ξj can be proven similarly to

the proof of theorems 6.2 and 6.1, because of theorems 2.4, 2.5, by replacing the following di�erent
quantities with their counterparts.
The information matrix has the following form for one-point design and SUR model with the multi-
plicative marginals given in the form (6.25)

M1(x) = Mm+1(xm+1) ⊗ (Mjk(xj ⊗ xk))j,k=1,...,m

The information matrix has with respect to the product type design ⊗m+1
j=1 ξj the following form

M1(ξ) = Mm+1(ξm+1) ⊗ (Mjk(ξj ⊗ ξk))j,k=1,...,m

The weight matrix has the following form

L = Lm+1 ⊗ block− diag (Lj)j=1,...,m

Theorem 6.10. Let ξ∗j be D-optimal for the j-th marginal component with the regression function
given in (6.26) in the marginal design region Xj , j = 1, ...,m+ 1, then the product type design

ξ∗ = ⊗m+1
j=1 ξ

∗
j
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is D-optimal for the SUR model (3.3) with the following regression function given

f(x) = block− diag

 1
gj(xj)

gm+1(xm+1)


j=1,...,m

(6.27)

in the design region X = ×m+1
j=1 Xj.

The sensitivity function ϕD does not depend on Σ.

Theorem 6.11. Let ξ∗j be linear optimal by block diagonal weight matrix Lj for the j-th marginal
component with the regression function given in (6.26) in the marginal design region Xj , j = 1, ...,m+1.
If ∫

Xj
gj(xj)ξ

∗
j (dxj) = 0, j = 1, 2, ...,m (6.28)

the product type design
ξ∗ = ⊗m+1

j=1 ξ
∗
j

is linear optimal, if the weight matrix L = block− diag (Lj) (4.1), for the SUR model (3.3) with the
regression function given in (6.27) in the design region X = ×m+1

j=1 Xj.

Proof: D- and linear optimality in 4.1 of the product type design ⊗m+1
j=1 ξj can be proven similarly

to the proof of theorems 6.2 and 6.1, by replacing the the following di�erent quantities with their
counterparts there. 2

The corresponding transformation matrix has the following form for j = 2, ...,m

A = block− diag (Aj(m+1))j=1, ..., m, where

Aj(m+1) =

 1 0 0
−bj Ipj−1 0
−bm+1 0 Ipm+1−1

 , bj =

∫
gj(xj)ξj(dxj), j = 1, ..., m+ 1

The diagonal blocks for the information matrix for the one-point design have the following forms

M(x)jj = block− diag (σ(11)M1(x1, xm+1), σ(22)M12(x2, xm+1), ..., σ(mm)M1m(xm, xm+1))

Mjm(xj , xm+1) = fj(xj , xm+1)fj(xj , xm+1)>, j = 1, ...,m

The information matrix for the product type design has the following block diagonal form under the
conditions 6.28

M(ξ) = block− diag (σ(11)M1(ξ1, ξm+1), σ(22)M12(ξ2, ξm+1), ..., σ(mm)M1m(ξm, ξm+1))

Mjm(ξj , ξm+1) =

∫
f1(xj , xm+1)f1(xj , xm+1)>(ξj(dxj)⊗ ξm+1(dxm+1)), j = 1, ...,m

And the weight matrix has the following block diagonal form

L = block− diag (L1(m+1), L2(m+1), ..., Lm(m+1)), Lj(m+1) =

 Lj11 L>j12 L>(m+1)13

Lj12 Lj22 L>(m+1)23

L(m+1)13 L(m+1)23 L(m+1)33

 2

80



6.3.2 Nesting of a New Di�erent Component in each Component

When we have a nested SUR model, where a new di�erent component is nested through each
component of the SUR model then the regression function of the SUR model given in (6.1) has the
following form

f(x) = block− diag (fj(xj , xkj ))j=1,...,m =

 f1(x1, xk1) · · · 0
...

. . .
...

0 · · · fm(xm, xkm)

 (6.29)

Where the regression functions for the marginal nested components have in general the next form for
product-type models

fj(xj , xkj )j=1,...,m = fj(xj)⊗ fkj (xkj ) (6.30)

And respectively for additive models, where the regression functions must have intercepts

fj(xj , xkj )j=1,...,m =

 1
gj(xj)

gkj (xkj )

 (6.31)

Corollary 6.1. Let ξ∗j ⊗ ξ∗kj be D- or linear optimal, by block diagonal weight matrix Lj, for the j th

marginal component (6.30) in the marginal design region Xj ×Xkj , j = 1, ...,m, then the product type
design

ξ∗ = ⊗mj=1ξ
∗
j ⊗ ξ∗kj

is D- or linear optimal , if the weight matrix L = block− diag (Lj) (4.1), for SUR model (3.3) with
the following regression function

f(x) = block− diag
(
fj(xj)⊗ fkj (xkj )

)
j=1,...,m

(6.32)

in the design region X = ×mj=1Xj ×Xkj .
The sensitivity function ϕD does not depend on Σ.

Corollary 6.2. Let ξ∗j ⊗ ξ∗kj be D- or linear optimal, by block diagonal weight matrix Lj for the j-th

marginal component with the regression function given in (6.31) in the marginal design region Xj×Xkj
, j = 1, ...,m, then the product type design

ξ∗ = ⊗mj=1ξ
∗
j ⊗ ξ∗kj

is D- or linear optimal , if the weight matrix L = block− diag (Lj) (4.1), for SUR model (3.3) with
the following regression function

f(x) = block− diag

 1
gj(xj)

gkj (xkj )


j=1,...,m

(6.33)

in the design region X = ×mj=1Xj ×Xkj .
The sensitivity function ϕD does not depend on Σ.
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Proof: The considered marginals are multi-factor but di�erent for each components, so that can
be considered as a special case of the topics of theorems 4.3 and 4.4 but with di�erent multi-factor
marginals, as follows xj = (xj , xkj )j=1,...,m ∈ Xj = Xj × Xkj , so the regression function for the
considered SUR model has the form block− diag (fj(xj))j=1,...,m, thus the proofs can be implemented
analogous to the proofs of theorems 4.3 and 4.4 in the third chapter about the D- and linear optimality
in 4.1 of the product type designs for the considered SUR model and because of theorems 2.4, 2.5,
2.6 and 2.7, the corollaries 6.1, and 6.2 are proven. 2

The regression functions for the SUR model (6.1) with the marginal regression functions given in (6.2)
and (6.7) and the corresponding results can be generalized complicatedly but analogous, so more than
one component is nested through the other components and we can do that analogous for the regression
functions for the SUR model (6.24) and resp. (6.25) and (6.26) and the regression functions for the
SUR model (6.29) and resp. (6.30) and (6.31).

Remark 6.1. Theorems 6.1, 6.2 , 6.3, 6.5, 6.6, 6.8, 6.9, and 6.10 , and corollaries 6.1, and 6.2
may fail to hold, if the regression functions of the marginal components do not contain an intercept.

Remark 6.2. When all regression functions and the experiments regions are equal for all components,
then the designs problem for these kinds of multivariate linear models by known variance covariance
matrices of the error variables are the same in the corresponding univariate multi-factor models. The
proof is fully analogous to the proof of the reduction the problem with respect to homogeneous components
(MANOVA) in the work of ( Kurotschka and Schwabe (1996)).

Example 6.3 (A Multiplicative SURModel). To illustrate the results for SUR models, which are nested
through product-type models we consider the SUR model with nested product-type models through the
same factor for the components,

Yij = βj0 + βj1xij + βj2xi3 + βj3xijxi3 + εij . (6.34)

in the unit intervals X1 = X2 = [0, 1],X3 = [−1, 1] as experimental regions. Then the IMSE- and
D-optimal designs for the product-type marginal models 1, 2 are the product designs of the IMSE- and
D-optimal designs of the corresponding one-factor models because of theorems 2.4 and 2.5

ξ∗D;IMSE,1 ⊗ ξ∗D;IMSE,3 = ξ∗2 ⊗ ξ∗3 =

(
(1, 1) (1,−1) (0, 1) (0,−1)
1/4 1/4 1/4 1/4

)
And the A-optimal design

ξ∗A,1 ⊗ ξ∗A,2 =

(
(1, 1) (1,−1) (0, 1) (0,−1)√

2−1
2

√
2−1
2

2−
√

2
2

2−
√

2
2

)
Also, the product designs of the following form are respectively D-, IMSE-, and A-optimal for the
considered model, because of theorems 6.1 and 6.2, i.e. ξ∗D;IMSE = ξ∗D;IMSE,1⊗ξ∗D;IMSE,2⊗ξ∗D;IMSE,3,
or

ξ∗D;IMSE =


 1

1
1

  1
1
−1

  1
0
1

  1
1
−1

  0
1
−1

  0
1
1

  0
0
−1

  0
0
1


1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8


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For A-optimality

ξ∗A =


 1

1
1

  1
1
−1

  1
0
1

  1
1
−1

  0
1
−1

  0
1
1

  0
0
−1

  0
0
1


w2

1/4 w2
1/4 w3/4 w3/4 w3/4 w3/4 w2

2/4 w2
2/4


Where w1 =

√
2− 1, w2 = 2−

√
2 and w3 = w1.w2 are respectively D- resp. IMSE- and A-optimal.

The corresponding sensitivity function for D-optimality

ϕD(x; ξ∗D) = trace(Σ−1f(x)>M(ξ∗D)−1f(x)) = 4(1 + x2
3)(1 + x2

1 − x1 + x2
2 − x2) (6.35)

is plotted for x2 = 1 in �gure 6.1. It can be easily seen that the sensitivity function is independent on
Σ and satis�es the condition ϕD(x; ξ∗D) ≤ p = 8 for all x ∈ X .
The corresponding sensitivity function for IMSE-optimality is equal to or less than
trace(LM(ξ∗IMSE)−1)

ϕIMSE(x; ξ∗IMSE) = trace(Σ−1f(x)>M(ξ∗IMSE)−1LM(ξ∗IMSE)−1f(x)) ≤ trace(LM(ξ∗IMSE)−1)

and the function

ϕIMSE(x; ξ∗IMSE)

trace
(
L M(ξ∗IMSE)−1

) =
trace(Σ−1f(x)>M(ξ∗IMSE)−1LM(ξ∗IMSE)−1f(x))

trace(LM(ξ∗IMSE)−1)
=

1

4
(x2

3 + 3) (6.36)

for σ1 = σ2 = 1, ρ = 0.99, x2 = 1 and it is plotted in �gure 6.2. It can be easily seen that the sensitivity
function for IMSE-optimality satis�es the condition ϕIMSE(x; ξ∗IMSE) ≤ trace(LM(ξ∗IMSE)−1) for all
x ∈ X . The corresponding sensitivity function for A-optimality is equal to or less than trace(M(ξ∗A)−1)

ϕA(x; ξ∗A) = trace(Σ−1f(x)>M(ξ∗A)−1M(ξ∗A)−1f(x)) ≤ trace(M(ξ∗A)−1) (6.37)

and the function

ϕA(x; ξ∗A)

trace
(
M(ξ∗A)−1

) =
trace(Σ−1f(x)>M(ξ∗A)−1M(ξ∗A)−1f(x))

trace(M(ξ∗A)−1)
(6.38)

for σ1 = 0.1, σ2 = 10, ρ = 0.2, x2 = 1 is plotted in �gure 6.3. It can be easily seen that the sensitivity
function for A-optimality satis�es the condition ϕA(x; ξ∗A) ≤ trace(M(ξ∗A)−1) for all x ∈ X .

Example 6.4 (An Additive SUR Model). To illustrate the results for SUR models, which are nested
through additive models we consider the SUR model with two components, where one of the components
is nested through the second components as an additive model

Yi1 = β10 + β11xi1 + β22x
2
i2 + εi1

Yi2 = β20 + β21x
2
i2 + εi2 (6.39)

in the unit intervals X1 = X2 = [0, 1] as experimental regions. Then the D-optimal design for the
additive model 1 is the product design of the D-optimal designs of the corresponding one-factor models
because of theorem 2.6 , but that is not the case for A- and IMSE-Optimality because of theorem 2.7

ξ∗ = ξ∗1 ⊗ ξ∗2 =


Points (1, 1) (1, 0) (0, 1) (0, 0)
D 1/4 1/4 1/4 1/4

IMSE 1/4 1/4 1/4 1/4

A (
√

2− 1)2 (
√

2− 1)(2−
√

2) (
√

2− 1)(2−
√

2) (2−
√

2)2


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Figure 6.1: Function 6.35
for ξ∗D (SUR with multiplica-
tive marginals )

Figure 6.2: Function 6.36 for
ξ∗IMSE (SUR with multiplica-
tive marginals )

Figure 6.3: Function 6.38
for ξ∗A (SUR with multiplica-
tive marginals )

Also, the product designs ξ with the corresponding weights are respectively D- but not A- and IMSE-
optimal for the considered SUR model because of theorems 6.3 and 6.5.
The corresponding sensitivity function for D-optimality

ϕD(x; ξ∗D) = trace(Σ−1f(x)>M(ξ∗D)−1f(x)) = 5− 4x1 − 8x2
2 + 4x1

2 + 8x2
4 (6.40)

is plotted in �gure 6.4. It can be easily seen that the sensitivity function is independent on Σ and
satis�es the condition ϕ(x; ξ∗D) ≤ p = 5 for all x ∈ X .
The corresponding sensitivity function for IMSE-optimality is in some cases bigger than
trace(LM(ξ∗IMSE)−1)

ϕIMSE(x; ξ∗IMSE) = trace(Σ−1f(x)>M(ξ∗IMSE)−1LM(ξ∗IMSE)−1f(x)) 6≤ trace(LM(ξ∗IMSE)−1)

and the function

trace(Σ−1f(x)>M(ξ∗IMSE)−1LM(ξ∗IMSE)−1f(x))

trace(LM(ξ∗IMSE)−1)
=

1.454545249 + 0.000001808909177x1
2 − 0.000001808909177x1 + 1.272726697x2

4 − 2.181817195x2
2

(6.41)

for σ1 = 0.1, σ2 = 10, ρ = 0.99 and it is plotted in �gure 6.5. It can be easily seen that the sensitiv-
ity function for the product design of the marginal doesn,t satisfy the condition ϕIMSE(x; ξ∗IMSE) ≤
trace(LM(ξ∗)−1) , also, ξ1;IMSE⊗ξ2;IMSE is not IMSE-optimal. The corresponding sensitivity function
for A-optimality is equal to or less than trace(M(ξ∗IMSE)−1)

ϕA(x; ξ∗A) = trace(Σ−1f(x)>M(ξ∗A)−1M(ξ∗A)−1f(x)) 6≤ trace(M(ξ∗A)−1) (6.42)

and the function

trace(Σ−1f(x)>M(ξ∗A)−1M(ξ∗A)−1f(x))

trace(M(ξ)−1)
=

1.0610 + 0.35366x1x2
2 − 1.3537x1 − 2.5606x2

2 + 1.2073x1
2 + 2.4146x2

4 (6.43)
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Figure 6.4: Function 6.40
for ξ∗D (SUR with additive
marginals )

Figure 6.5: Function 6.41
for ξIMSE (SUR with additive
marginals )

Figure 6.6: Function 6.43
for ξA (SUR with additive
marginals )

for σ1 = σ2 = 5, ρ = 0 is plotted in �gure 6.6. It can be easily seen that the sensitivity function for
A-optimality doesn,t satisfy the condition ϕA(x; ξ∗A) 6≤ trace(M(ξ∗A)−1) for all x ∈ X .
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7 Optimal Designs for Some SUR Models without

Intercepts in their Components

Univariate linear regression models without intercepts are explored in many works see ( Eisenhauer
(2003)) and ( Casella (1983)), as well as their multivariate versions in the work ( Peng et al. (2010)).
Optimal designs for univariate linear models without intercepts are explored for example in ( Huang
et al. (1995)) and ( Chang and Heiligers (1996)). The practical model used in these works was a
regression equation without an intercept for the speed of a car with respect to the distance needed
to stop. Another physical or mechanical model is the equation for the speed of the car with respect
to the time. Thus, if the both equations are to be observed for a car by the distance as a control
variable for the �rst marginal model and the time as a control variable for the second marginal model
, then they follow a bivariate SUR model without intercepts by the components. The optimal designs
for such SUR models resp. multivariate linear models without intercepts in their components are not
explored in the literature for correlated components, but this problem is explored for multivariate
linear models by correlated observations for practical cases as the spring weighing resp. chemical
balance regression models see for example ( Ceranka and Katulska (1987)). Additional problems like
the multi or multivariate spring resp. chemical balance weighing can be modeled as SUR models, where
the marginal models are univariate spring resp. chemical balance weighing for di�erent objects resp.
di�erent number of it. Optimal designs for such univariate models have been discussed, for example
by ( Huda and Mukerjee (1988)) or ( Schwabe (1996)).
This chapter is organized as follows, the D- and linear optimal designs in 4.1 for SUR models with
di�erent marginal models by non and block diagonal information matrices are explored in the �rst
section. It is shown, that the product type designs are D- and linear optimal designs in 4.1 for block
diagonal information matrices, and the multivariate chemical balance regression models are a practical
case for such models. Where there is a relationship between the chemical balance designs and and the
balance incomplete block designs see ( Ceranka and Katulska (1987)). It is concluded, that the product
type designs are D-optimal for SUR models without intercepts by the marginals for non block diagonal
or arbitrary form of the information matrices, , when the correlation term belongs to an interval around
zero and the interval length is monotonously falling due to the number of the components of the model
m, i.e. the D-optimality for the product type designs in this situation are restricted. Such intervals
for the correlation term are explored for optimal designs for a bivariate multivariate linear model by
some examples in the work of ( Changa et al. (2001)). A practical case for such SUR models are the
multivariate spring weighing regression models, where there are local couplings between the D-optimal
designs for the SUR models without intercepts by the marginals and the multi-factor (additively )
or without interactions univariate model, which are formulated from the same marginal models of
the SUR models, because of the relationship between the information matrices resp. the sensitivity
functions due to D-optimality for the both models. The results of the �rst section are illustrated and
supported by many simulations and examples in the second section . So the reduction of the optimal
design problem from the multivariate case for SUR models without intercepts, to its corresponding
univariate case by the optimality of the product type design is restricted for D-optimality by non block
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diagonal information matrix, but by a simple example can be shown, that the product type designs are
not linear optimal in 4.1 designs for SUR models without intercepts by non block diagonal information
matrices.

7.1 Optimal Designs for Spring Weighing and Chemical Balance

Regression Models

The multiple regression model is a special case of the additive models, and multiple regression
without an intercept can be de�ned as the spring weighing regression model when the control variables
take the values 0, 1 and as chemical balance regression model when the control variables take the values
−1, 0, 1. It is assumed for the next two de�nitions, that E(ε) = 0, V ar(ε) = σ2, where σ > 0 and is
known, and Cov (εi, εk) = 0; i 6= k, xj ∈ Xj .

Def 7.1 (The Spring weighing regression Models ). ( Schwabe (1996)) The spring weighing regression
model describes the weighing m objects on an unbiased spring balance. If we denote the weight of the
j-th object by βj, j = 1, ...,m, the experiment can be modeled according to

η (x1, ..., xm) =
m∑
j=1

xjβj

xj ∈ {0, 1}, j = 1, ...,m, where xj equals one or zero corresponding to whether the j-th object lies on
the pan or not. As the balance is assumed to be unbiased no constant term occurs.

The marginal models are all identical

η j(xj) = xjβj (7.1)

xj ∈ {0, 1}, and represent the experimental situation for weighing one object on a spring balance.
So the Spring weighing regression model for for m−objects is speci�ed as follows

Y (x1, ..., xm) =

m∑
j=1

xjβj + ε (7.2)

Def 7.2 (The Chemical Balance regression Models ). ( Schwabe (1996)) The chemical balance regres-
sion models can be de�ned similarly to ( 7.1), but now on an unbiased chemical balance. If βj denotes
again the weight of the j-th object , j = 1, ...,m, the experiment can be modeled according to

η (x1, ..., xm) =
m∑
j=1

xjβj

as in the de�nition ( 7.1) for the spring balance, but with a di�erent design space Xj = {−1, 0, 1},
j = 1, ...,m.

The design points have the following interpretation: xj equals to 1 if the j-th object is in the left
pan, to -1 if it is in the right pan, and to 0 if it is not present in the weighing arrangement. Again
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no constant term occurs since the balance is assumed to be unbiased. The marginal models are all
identical

η j(xj) = xjβj , i = 1, ..., n

xj ∈ {−1, 0, 1}, and represent the experimental situation for weighing one object on a chemical balance.
So the Spring weighing regression model for m−objects is speci�ed as follows

Y (x1, ..., xm) =
m∑
j=1

xjβj + ε (7.3)

The spring weighing resp. the chemical balance regression models were considered foremost in the
discrete resp. exact case, but dealing with the approximate case is easier, see ( Huda and Mukerjee
(1988)) or ( Schwabe (1996)). For the spring weighing regression models the product type designs are
not D- resp. G- or linear optimal even for the simplest example for two objects because the information
matrix is non-diagonal. But the product type designs are D- resp. G- and linear optimal because of
the block diagonal form of the corresponding information matrix for the chemical balance regression
models, see ( Schwabe (1996)).

7.2 The Theoretical Results and Practical Cases

The proofs of the following results depend on the validity of the conditions of the corresponding
equivalence theorem and some techniques from the matrix theory

Theorem 7.1. Let ξ∗j be Φ-optimal for the j-th marginal component with or without intercepts in the
marginal design region Xj, j = 1, ...,m. If the marginal components are independedet, ie. all correlation
terms ρjj́ = 0, j, j́ = 1, ...,m, or the regression functions are orthogonal to a constant with respect to
the Φ-optimal design, i.e. ∫

Xj
fj(xj)ξ

∗
j (dxj) = 0, j = 1, ...,m (7.4)

then the product type design
ξ∗ = ⊗mj=1ξ

∗
j

is Φ -optimal for SUR model (3.3) in the design region X = ×mj=1Xj. Where Φ-optimal can be D- or
linear optimal criterion by block diagonal weight matrix L = block− diag (Lj) (4.1).
The sensitivity function ϕD does not depend on Σ.

Proof: If ρjj́ = 0, j, j́ = 1, ...,m or
∫
Xj fj(xj)ξ

∗
j (dxj) = 0, j = 1, ...,m, the information matrix has

the following block diagonal form under the conditions (7.4)

M(ξ∗) =

 σ(11)M1(ξ∗1) · · · 0
...

. . .
...

0 · · · σ(mm)Mm(ξ∗m)


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Then the inverse of the information matrix has the following block-diagonal form, for j = 1, ...,m

M−1(ξ∗) =


1

σ(11) M
−1
1 (ξ∗1) · · · 0
...

. . .
...

0 · · · 1
σ(mm) M

−1
m (ξ∗m)

 (7.5)

And resp. the equivalence theorem for D-optimality has the following form

trace
(

Σ−1f(x)>M(ξ∗)−1f(x)
)

= trace

 σ(11) · · · σ(1m)

...
. . .

...
σ(1m) · · · σ(mm)


 f1(x1)> · · · 0

...
. . .

...
0 · · · fm(xm)>




1
σ(11) M

−1
1 (ξ∗1) · · · 0
...

. . .
...

0 · · · 1
σ(mm) M

−1
m (ξ∗m)


 f1(x1) · · · 0

...
. . .

...
0 · · · fm(xm)


= trace

 σ(11)f1(x1)> · · · σ(1m)fm(xm)>

...
. . .

...
σ(1m)f1(x1)> · · · σ(mm)fm(xm)>




1
σ(11) M

−1
1 (ξ∗1)f1(x1) · · · 0
...

. . .
...

0 · · · 1
σ(mm) M

−1
m (ξ∗m)fm(xm)


= trace

 f1(x1)>M−1
1 (ξ∗1)f1(x1) · · · 0
...

. . .
...

0 · · · f2(x2)>M−1
2 (ξ∗2)f2(x2)


= f1(x1)>M−1

1 (ξ∗1)f1(x1) + · · ·+ fm(xm)>M−1
m (ξ∗m)fm(xm) ≤ p1 + · · ·+ pm = p (7.6)

And with there the product type design are D-optimal and the sensitivity function for the D-optimality
does not contain any covariance terms.
The equivalence theorem for linear optimality in 4.1 has the following form for arbitrary variance
covariance matrix of the error variables.

trace
(

Σ−1f(x)>M(ξ∗)−1LM(ξ∗)−1f(x)
)

= trace

 σ(11) · · · σ(1m)

...
. . .

...
σ(1m) · · · σ(mm)


 f1(x1)> · · · 0

...
. . .

...
0 · · · fm(xm)>




1
σ(11) M

−1
1 (ξ∗1) · · · 0
...

. . .
...

0 · · · 1
σ(mm) M

−1
m (ξ∗m)


 L1 · · · 0

...
. . .

...
0 · · · Lm




1
σ(11) M

−1
1 (ξ∗1) · · · 0
...

. . .
...

0 · · · 1
σ(mm) M

−1
m (ξ∗m)


 f1(x1) · · · 0

...
. . .

...
0 · · · fm(xm)

 = trace

 σ(11)f1(x1)> · · · σ(1m)fm(xm)>

...
. . .

...
σ(1m)f1(x1)> · · · σ(mm)fm(xm)>

 . (7.7)
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
1

(σ(11))2
M−1

1 (ξ∗1)L1M
−1
1 (ξ∗1)f1(x1) · · · 0

...
. . .

...
0 · · · 1

(σ(mm))2
M−1

m (ξ∗m)LmM−1
m (ξ∗m)fm(xm)


=

1

σ(11)
f1(x1)>M−1

1 (ξ∗1)L1M
−1
1 (ξ∗1)f1(x1) + · · ·+ 1

σ(mm)
fm(xm)>M−1

m (ξ∗m)LmM−1
m (ξ∗m)fm(xm)

(7.8)

The left side of the equivalence theorem for the linear criteria in 4.1 has the following form

trace
(
LM(ξ∗)−1

)
= trace


 L1 · · · 0

...
. . .

...
0 · · · Lm




1
σ(11) M

−1
1 (ξ∗1) · · · 0
...

. . .
...

0 · · · 1
σ(mm) M

−1
m (ξ∗m)




=
1

σ(11)
trace

(
L1M

−1
1 (ξ∗1)

)
+ · · ·+ 1

σ(mm)
trace

(
LmM−1

m (ξ∗m)
)

(7.9)

the conditions of the equivalence theorem for the linear optimality in 4.1 are satis�ed, by comparing
of (7.8) with (7.9), and therewith the product type designs are linear optimal in 4.1. 2

With respect to the theorem (7.1) , when the correlation is non Zero or the conditions (7.4) are not valid,
then the product type designs may be D-optimal designs for SUR models without intercepts by the
marginal components. The correlation term plays also a main role by the D-optimality of the product-
type-designs. The product type designs are not D-optimal for correlation term in absolute terms close
to one, but they are D-optimal for correlation term in an interval containing zero as [αm, γm], where
−1 < αm < 0 < γm < 1. This role of the correlation term derived from the dependency of the
sensitivity function with respect to the equivalence theorem for D-optimality on the correlation term.
We have considered homogeneous correlation structure by the next results to research the intervals of
the correlation term, by which the product-type-designs are D-optimal.
We can derive the correlation matrix as shown in the following remark.

Remark 7.1. The correlation matrix is given as follows

Cm =


1 ρ · · · ρ
ρ 1 · · · ρ
...

. . .
. . .

...
ρ · · · ρ 1

 (7.10)

this matrix is positive de�nite, when − 1
m−1 < ρ < 1. It is not di�cult to show, that for the larger

dimension m became the lesser determinant of the correlation matrix, also det C3×3 ≤ det C2×2 and
so on.

The next lemma supplies the inverse of the correlation matrix by the homogeneous structure, and
we can remark, that the determinant of the correlation matrix is det Cm = (1− ρ)m−1((m− 1)ρ+ 1).

Lemma 7.1. The inverse of the correlation matrix 7.10 has the next form

C−1
m =

(1− ρ)m−2

(1− ρ)m−1((m− 1)ρ+ 1)


((m− 2)ρ+ 1) −ρ · · · −ρ

−ρ (m− 2)ρ+ 1 · · · −ρ
...

...
. . .

...
−ρ · · · −ρ (m− 2)ρ+ 1


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or

invcorC−1
m =

1

(1− ρ)((m− 1)ρ+ 1)


(m− 2)ρ+ 1 −ρ · · · −ρ

−ρ (m− 2)ρ+ 1 · · · −ρ
...

...
. . .

...
−ρ · · · −ρ (m− 2)ρ+ 1

 (7.11)

Proof: to prove the lemma, should the multiplication of the matices in 7.10 and 7.11 equal to the
identity matrix, so

1 ρ · · · ρ
ρ 1 · · · ρ
...

. . . . . .
...

ρ · · · ρ 1

 .
1

(1− ρ)((m− 1)ρ+ 1)


(m− 2)ρ+ 1 −ρ · · · −ρ

−ρ (m− 2)ρ+ 1 · · · −ρ
...

...
. . .

...
−ρ · · · −ρ (m− 2)ρ+ 1


the diagonal elements of the resulted matrix are equal to

(m− 2)ρ+ 1− (m− 1)ρ

(1− ρ)((m− 1)ρ+ 1)
=

(1− ρ)((m− 1)ρ+ 1)

(1− ρ)((m− 1)ρ+ 1)
= 1

the non-diagonal elements of the resulted matrix are equal to

−ρ+ (m− 2)ρ2 + ρ− (m− 2)2ρ2

(1− ρ)((m− 1)ρ+ 1)
= 0

and therewith the lemma is proven. 2

The following conjecture is discussed in the bivariate case to overcome the calculating the inverse of the
information matrix in the multivariate case, so the determinant of the correlation matrix is just a scaler
by the form of the information matrxi and therewith the sensitivit function for the D-optimaltiy do
not content it. The illustrated examples for m ≥ 2 in the next section do not contrast this Conjecture.

Conjecture 7.1. Let ξ∗j,D be D-optimal for the j-th marginal component without an intercept included
in the marginal design region Xj, j = 1, ...,m.
The product type design

ξ∗D = ⊗mj=1ξ
∗
j,D (7.12)

is D-optimal for the SUR model (3.3) in the design region X = ×mj=1Xj.
If and only if α ≤ ρ ≤ γ, where −1 < αm < 0 < γm < 1

Proof: to prove the optimality of the product-designs corresponding to theorems (7.1) and (7.1)
for the SUR model, we need the form of the information matrices for marginal models, also, the
information matrix for the univariate marginal models has the following form Mj(ξj) =

∫
fjf
>
j ξ
∗
j (dxj).

The regression function of the SUR model in the individual approach has the following form for m = 2
because of 6.1

f(x) =

(
f1(x1) 0

0 f2(x2)

)
(7.13)

then the information matrix with respect to the product type design ξ = ⊗2
j=1ξj has the following form

M(ξ) =

∫
fΣ−1f>dξ =

(
σ(11)

∫
f1 f>1 dξ1 σ(12)

∫
f1dξ1 ·

∫
f>2 dξ2

σ(12)
∫

f2dξ2 ·
∫

f>1 dξ1 σ(22)
∫

f2 f>2 dξ2

)
(7.14)
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where σ(jk) are the elements of U = Σ−1. And for Mj(ξj) =
∫

fj f>j dξj and mj(ξj) =
∫

fjdξj , jk = 1, 2,
the information matrix has the summarized form

M(ξ) =

∫
fΣ−1f>dξ =

(
σ(11)M1(ξ1) σ(12)m1(ξ1)m2(ξ2)>

σ(12)m2(ξ2)m1(ξ1)> σ(22)M2(ξ2)

)
(7.15)

the form of the inverse of the block matrices is to be used, to invert the information matrix, see for
example ( Peterson and Pederson (2008), so the inverse of a block matrix is given as follows(

B11 B12

B21 B22

)−1

=

(
S11 S12

S21 S22

)
(7.16)

where S11 =
(
B11 −B12B

−1
22 B21

)−1
, S22 =

(
B22 −B21B

−1
11 B12

)−1

S12 = −B−1
11 B12

(
B22 −B21B

−1
11 B12

)−1
= −B−1

11 B12S22

S21 = −B−1
22 B21

(
B11 −B12B

−1
22 B21

)−1
= −B−1

22 B21S11

So the inverse of the information matrix has the following form because of (7.16)

M−1(ξ) =

(
σ(11)Z11(ξ1, ξ2) −σ(12)Z12(ξ1, ξ2)

−σ(12)Z21(ξ1, ξ2) σ(22)Z2(ξ1, ξ2)

)
(7.17)

where Z11(ξ1, ξ2) =
(
σ(11)σ(22)M1(ξ1)− (σ(12))2m1(ξ1)m2(ξ2)>M−1

2 (ξ2)m2(ξ2)m1(ξ1)>
)−1

(7.18)

Z22(ξ1, ξ2) =
(
σ(11)σ(22)M2(ξ2)− (σ(12))2m2(ξ2)m1(ξ1)>M−1

1 (ξ1)m1(ξ1)m2(ξ2)>
)−1

(7.19)

Z12(ξ1, ξ2) = M−1
1 (ξ1)m1(ξ1)m2(ξ2)>Z22(ξ1, ξ2) (7.20)

Z21(ξ1, ξ2) = M−1
2 (ξ2)m2(ξ2)m1(ξ1)>Z11(ξ1, ξ2) (7.21)

To prove the theorem (7.1) we calculate the right side of the equivalence theorem for D-optimality,
where the inverse of the information matrix is given in (7.17), also, when the product type design
ξ∗ = ⊗2

j=1ξ
∗ is D-optimal, then

trace
(

Σ−1f(x)>M(ξ∗)−1f(x)
)

= trace

(
σ(11) σ(12)

σ(12) σ(22)

)(
f1(x1)> 0

0 f2(x2)>

)
.

(
σ(11)Z−1

11 (ξ∗1 , ξ
∗
2) −σ(12)Z−>12 (ξ∗1 , ξ

∗
2)

−σ(12)Z−1
21 (ξ∗1 , ξ

∗
2) σ(22)Z−1

22 (ξ∗1 , ξ
∗
2)

)(
f1(x1) 0

0 f2(x2)

)
= trace

(
σ(11)f1(x1)> σ(12)f2(x2)>

σ(12)f1(x1)> σ(22)f2(x2)>

)(
σ(11)Z−1

11 (ξ∗1 , ξ
∗
2)f1(x1) −σ(12)Z−>12 (ξ∗1 , ξ

∗
2)f2(x2)

−σ(12)Z−1
12 (ξ∗1 , ξ

∗
2)f1(x1) σ(12)Z−1

22 (ξ∗1 , ξ
∗
2)f2(x2)

)
= trace

(
(σ(11))2f1(x1)>Z−1

11 (ξ∗1 , ξ
∗
2)f1(x1)− (σ(12))2f2(x2)>Z−1

12 (ξ∗1 , ξ
∗
2)>f1(x1)

)
+trace

(
−(σ(12))2f1(x1)>Z−1

21 (ξ∗1 , ξ
∗
2)f2(x2) + σ(11)σ(22)f2(x2)>Z−1

22 (ξ∗1 , ξ
∗
2)f2(x2)

)
(7.22)

Then because of σ(11) = σ22
σ11σ22−σ2

12
= 1

σ2
1(1−ρ2)

, σ(22) = σ11
σ11σ22−σ2

12
= 1

σ2
2(1−ρ2)

σ(12) = −σ12
σ11σ22−σ2

12
=
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−ρ
σ1σ2(1−ρ2)

the terms in (7.18), (7.19),(7.20) and (7.21) have the following forms

Z11(ξ1, ξ2) = σ2
1σ

2
2(1− ρ2)

(
M1(ξ1)− ρ2m1(ξ1)m2(ξ2)>M−1

2 (ξ2)m2(ξ2)m1(ξ1)>
)−1

Z22(ξ1, ξ2) = σ2
1σ

2
2(1− ρ2)

(
M2(ξ2)− ρ2m2(ξ2)m1(ξ1)>M−1

1 (ξ1)m1(ξ1)m2(ξ2)>
)−1

Z12(ξ1, ξ2) =

σ2
1σ

2
2(1− ρ2)M−1

1 (ξ1)m1(ξ1)m2(ξ2)>
(
M2(ξ2)− ρ2m2(ξ2)m1(ξ1)>M−1

1 (ξ1)m1(ξ1)m2(ξ2)>
)−1

Z21(ξ1, ξ2) =

σ2
1σ

2
2(1− ρ2)M−1

2 (ξ2)m2(ξ2)m1(ξ1)>
(
M1(ξ1)− ρ2m1(ξ1)m2(ξ2)>M−1

2 (ξ2)m2(ξ2)m1(ξ1)>
)−1

Then

trace
(

Σ−1f(x)>M(ξ∗)−1f(x)
)

=

f1(x1)>
(
M1(ξ1)− ρ2m1(ξ1)m2(ξ2)>M−1

2 (ξ2)m2(ξ2)m1(ξ1)>
)−1

f1(x1)

− ρ2f1(x1)>M−1
2 (ξ2)m2(ξ2)m1(ξ1)>

(
M1(ξ1)− ρ2m1(ξ1)m2(ξ2)>M−1

2 (ξ2)m2(ξ2)m1(ξ1)>
)−1

f2(x2)

− ρ2f2(x2)>M−1
2 (ξ2)m2(ξ2)m1(ξ1)>

(
M1(ξ1)− ρ2m1(ξ1)m2(ξ2)>M−1

2 (ξ2)m2(ξ2)m1(ξ1)>
)−1

f1(x1)

+ f2(x2)>
(
M2(ξ2)− ρ2m2(ξ2)m1(ξ1)>M−1

1 (ξ1)m1(ξ1)m2(ξ2)>
)−1

f2(x2) (7.23)

We can remark, that the conditions maxϕD(x, ξ∗) = p could be rewritten as an equality h(ρ) = 0,
where h is a quadratic function in ρ, then there exist αm and γm such that maxϕD(x, ξ∗) = p for all
ρ ∈ [αm, γm] and maxϕD(x, ξ∗) > p for ρ 6∈ [αm, γm].the constants αm and γm are dependent on the
model, because we have to maximize maxϕD(x, ξ∗) with respect to control variables x and the form of
the sensitivity function is for each model di�erent with respect to x, but the equation stays quadratic
in ρ because of the form of the inverse of the correlation matrix 7.11 by the lemma 7.1. 2

The next corollary could give the reader an simple possible explanation about the role of the number
of components of the SUR model m resp. the dimension of the correlation matrix by the inversely
proportionality property of m to the ρ -intervals length as well as the form of the marginal regression
functions , which is to remark in (7.1).

Corollary 7.1. For the SUR models without an intercept included by the marginals and for the product
type design has the sensitivity function for the D-optimality the following form

ϕD(x; ξ) = trace (C−1f(x)>(M(ξ))−1
C f(x)); (M(ξ))C =

k∑
i=1

wif(xi)C
−1f(xi)

>

Thus
trace (f(x)>(M(ξ∗))−1

C f(x)) ≤ pm; ξ∗ = ⊗mj=1ξ
∗
j
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Thus the determinant of the correlation matrix has the upper bounds

det C ≤ pm(1− ρ)m−2((m− 2)ρ+ 1) min
xj∈Xj

∑m
j=1 traceMj(ξ

∗
j )∑m

j=1 traceMj(xj)
(7.24)

= pm(1− ρ)m−2((m− 2)ρ+ 1)

∑m
j=1 traceMj(ξ

∗
j )

maxxj∈Xj
∑m

j=1 traceMj(xj)
(7.25)

Proof: To prove the �rst part of corollary (7.1), it is enough to look at the form of the sensitivity
function for D-optimality with respect to the product type design in (7.23), i.e
ϕD(x; ξ) = trace (C−1f(x)>(M(ξ))−1

C f(x)) and because of the lemma 5.1 in chapter three

trace
(
B−1A

)
≥ trace (A)

trace (B)

for the matrices Aq×q and Bq×q respectively positive semi de�nite and positive de�nite. Then, for
A = f(x)>(M(ξ∗))−1

C f(x) and B = C, thus

trace (f(x)>(M(ξ∗))−1
C f(x)) ≤ pm; ξ∗ = ⊗mj=1ξ

∗
j (7.26)

because of trace (C) = m and therewith we have proven the second part of the corrolary.
From (7.26) we have

trace (f(x)f(x)>(M(ξ∗))−1
C ) ≤ pm

Also, for A = f(x)f(x)> and B = (M(ξ∗))−1
C =⇒

trace (f(x)f(x)>)

trace (M(ξ∗)C)
≤ trace (f(x)f(x)>(M(ξ∗))−1

C ) ≤ pm

then
trace (f(x)f(x)>) ≤ pm trace (M(ξ∗)C) (7.27)

so

trace (f(x)f(x)>) =

 f1(x1) · · · 0
...

. . .
...

0 · · · fm(xm)


 f1(x1)> · · · 0

...
. . .

...
0 · · · fm(xm)>

 =
m=2∑
j=1

traceMj(xj)

(7.28)
And because of 7.11

M(ξ∗)C =
(1− ρ)m−2

det C

∫  f1(x1) · · · 0
...

. . .
...

0 · · · fm(xm)



.


(m− 2)ρ+ 1 −ρ · · · −ρ

−ρ (m− 2)ρ+ 1 · · · −ρ
...

...
. . .

...
−ρ · · · −ρ (m− 2)ρ+ 1


 f1(x1)> · · · 0

...
. . .

...
0 · · · fm(xm)>

 d(⊗mj=1ξ
∗
m)
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then

trace (M(ξ∗)C) =
(1− ρ)m−2((m− 2)ρ+ 1)

det C

m∑
j=1

traceMj(ξ
∗
j )

=
(1− ρ)m−2((m− 2)ρ+ 1)

det C

m∑
j=1

traceMj(ξ
∗
j ) (7.29)

By replacing (7.28) and (7.29) in (7.27) we obtain

m∑
j=1

traceMj(xj) ≤
pm(1− ρ)m−2((m− 2)ρ+ 1)

det C

m∑
j=1

traceMj(ξ
∗
j )

=⇒ det C ≤ pm(1− ρ)m−2((m− 2)ρ+ 1)

∑m
j=1 traceMj(ξ

∗
j )∑m

j=1 traceMj(xj)

Thus

det C ≤ pm(1− ρ)m−2((m− 2)ρ+ 1) min
xj∈Xj

∑m
j=1 traceMj(ξ

∗
j )∑m

j=1 traceMj(xj)

= pm(1− ρ)m−2((m− 2)ρ+ 1)

∑m
j=1 traceMj(ξ

∗
j )

maxxj∈Xj
∑m

j=1 traceMj(xj)

And therewith the corollary is proven. 2.
The next theorem presents the optimality of the product type designs for di�erent criteria for SUR
models with hierarchical nested marginals, also, the regression function for j−th marginal component
contains the regression function for the j−1−th marginal components, where this kind of multivariate
linear models is in the works of ( Kra�t and Schaefer (1992)) and ( Kurotschka and Schwabe (1996))
but for the same control variables for the di�erent marginal regression functions of the components

Theorem 7.2. Let ξ∗j be Φ-optimal for the j-th marginal component without intercepts included, in
the marginal design region Xj, j = 1, ...,m and the regression functions of the marginal components
have the following form

f1(x1) = g1(x1), f2(x1, x2) =

(
g1(x1)
g2(x2)

)
, ..., fm(x1, ..., xm) =

 g1(x1)
...

gm(xm)

 , j = 1, . . . ,m (7.30)

Or
fj(xj) = Cj · fj+1(xj ,xj+1), Cj ∈ Rrj×rj+1 , j = 1, . . . ,m− 1 (7.31)

where
Cj =

(
Irj×rj 0

)
, j = 1, . . . ,m− 1 (7.32)

if ∫
Xj

gj(xj)ξ
∗
j (dxj) = 0, j = 2, . . . ,m (7.33)
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then the product type design
ξ∗ = ⊗mj=1ξ

∗
j

is Φ -optimal for SUR model (3.3) in the design region X = ×mj=1Xj. Where Φ-optimal can be D- or
linear optimal criterion by block diagonal weight matrix L = block− diag (Lj).
The sensitivity function ϕD does not depend on Σ.

Proof: To prove the optimality of the product-designs corresponding the theorems (7.2) for the SUR
model, we need the form of the information matrices for marginal models, also, the information matrix
for the univariate marginal models has the following form Mj(ξj) =

∫
fjf
>
j dξj . For the SUR model,

We implement the proofs for arbitrary m, where the regression function for the model in the individual
approach has the following form

f(x) =


f1(x1) · · · 0

0 f2(x1, x2) 0
...

. . .
...

0 · · · fm(x1, ..., xm)

 =



g1(x1) · · · 0

0

(
g1(x1)
g2(x2)

)
0

...
. . .

...

0 · · ·

 g1(x1)
...

gm(xm)




then the diagonal blocks of the information matrix for one-point design and has the following form for
j = 1, ...,m

(M(x))jj =


σ(11)M1(x1) · · · .

. σ(22)M12(x1, x2) · · ·

...
. . .

...
. · · · σ(mm)M1m(x1, ..., xm)

 (7.34)

M1j(xj) = fj(x1, ..., xj)fj(x1, ..., xj)
> (7.35)

So, the information matrix for the product type design ξ = ⊗mj=1ξj has the following block diagonal
form because of the condition (7.41) and by integral the information matrix for the one-point design
in (7.34)

M(ξ) =

∫
f Σ−1 f>dξ =

σ(11)M1(ξ1) · · · 0

0 σ(22)M12(ξ1 ⊗ ξ2) · · ·
...

. . .
...

0 · · · σ(mm)M1m(⊗mj=1ξj)

 (7.36)

where the block diagonal because of 7.41

M1j(ξ) =


G1(ξ1) · · · 0

0 σ(22)G2(ξ2) · · ·
...

. . .
...

0 · · · Gj(ξj)

 ,Gj(ξj) =

∫
gj g>j dξj (7.37)
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The resulted sensitivity function has the following form, by replacing the both matrices in (7.34) and
the inverse of the information matrix (7.36) in the equivalence theorem for D-optimality (4.1)

trace (M(x)M−1(ξ∗D))

= m trace (G1(x1)G−1
1 (ξ∗1)) + (m− 1) trace (G2(x2)G−1

2 (ξ∗2)) + ...+ trace (Gm(xm)G−1
m (ξ∗m))

≤ mp1 + (m− 1)p2 + ....+ pm = p

By similar way to the proof of the D-optimality in this case or to the proof of theorem 7.1 , the linear
optimality in 4.1 of the product type designs can be proven because of theorem 2.7, where the weight
matrix has the following form in this case

L =


L1 · · · 0
0 L12 0
...

. . .
...

0 · · · L1m

 , L1m =

∫
X

fj(x1, ..., xj)fj(x1, ..., xj)
>µ(dx1, ...,dxj) 2

Remark 7.2. The product type designs may be not D-optimal for SUR models with the nested form of
the regression functions in (7.30), for the non-block diagonal form of the information matrix, if ρ = 0,
because the diagonal block information matrices for the marginal components given in (7.37) are no
longer block diagonal.

A direct corollary of theorems 7.2 is the optimality of the product type designs for the multivariate
hierarchical nesting chemical balance models resp. multiple or multivariate chemical balance models,
when the functions gjhj ≡ 1 are the identity functions, that means the control variables from the
experimental region Xj = [−1, 1], j = 1, ...,m.

Corollary 7.2 (Optimal multivariate chemical balance designs ). Let ξ∗j be Φ-optimal for the j-th
marginal component without intercepts included, in the marginal design region Xhj , j = 1, ...,m and
the regression functions of the marginal components have the following form

f1(x1) = x1, f2(x1, x2) =

(
x1

x2

)
, ..., fm(x1, ..., xm) =

 x1
...
xm

 , j = 1, . . . ,m (7.38)

if ∫
Xj
xjξ
∗
j (dxj) = 0, j = 2, . . . ,m (7.39)

hen the product type design
ξ∗ = ⊗mj=1ξ

∗
j

is Φ -optimal for SUR model (3.3) in the design region X = ×mj=1Xhj . Where Φ-optimal can be D- or
linear optimal criterion by block diagonal weight matrix L = block− diag (Lj).
The sensitivity function ϕD does not depend on Σ.
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Proof: this corollary is a special case of theorem 7.2, also, it can be proven analogous to the proofs
of theorems 7.2. 2

The topics of the next theorems are the optimal designs for a multivariate chemical balance regression
model with hj−objects by each marginal component, j = 1, ...,m

Corollary 7.3. Let ξ∗k be Φ-optimal for the marginal univariate one factor regression model with
the response function given in (7.1) in the marginal design region Xk = [−1, 1], k = 1, ..., h1, h1 +
1, ..., h2, ..., hm−1 + 1, ..., hm and the regression functions of the m− marginal components have the
following form

f1(x11, ..., x1h1) =

 x11
...

x1h1

 , ..., fm(xm1, ..., xmhm) =

 xm1
...

xmhm

 (7.40)

and if ∫
[−1,1]

x1kdξk = 0, k = 1, ..., h1, h1 + 1, ..., h2, ..., hm−1 + 1, ..., hm (7.41)

the product type design
ξ∗ = ⊗hmk=1ξ

∗
k

is Φ -optimal for the considered SUR model with the marginal regression functions is (7.40) in the
design region X = ×hmk=1Xk. Where Φ-optimal can be D- or linear optimal criterion by block diagonal
weight matrix L = block− diag (Lj).
The sensitivity function ϕD does not depend on Σ.

The proofs of corollary 7.3 can be similarly implemented to the proofs of theorems 7.1 resp. 7.2,
because of the diagonal form of the corresponding information matrix under the conditions ( 7.41).
Where the weight matrix has the following block diagonal form for this model

L = block− diag (Lj)j=1,...,m , Lj = block− diag (Lk11)k=1,...,hj 2

Remark 7.3 (Optimal multivariate spring balance designs ). When the the conditions by theorem 7.3
and the corollary 7.2 are invalid, then the sensitivity function for the D-optimality depends on the
correlation ρ, thus we can proof the D-optimality of the product type design for the multivariate spring
balance models for some intervals or values of ρ's similarly to the proof of 7.1.

Remark 7.4 (Optimal designs for SUR models without intercepts for more generalized nesting struc-
tures). Some results due to optimal designs for the considered SUR models in chapter six can be gen-
eralized for SUR models without intercepts by the marginal regression functions, i.e. fj1(x) 6≡ 1. So
when the �rst component is nested multiplicatively through the other components as in ( 6.2), then if∫

Xj
fj(xj)ξ

∗
j (dxj) = 0, j = 2, . . . ,m

then theorems 6.1 and 6.2 are valid for the SUR model with the regression function given in ( 6.3), but
fj1(x) 6≡ 1.
When the �rst component is nested additive -wise through the other components as in ( 6.6), and if∫

Xj
fj(xj)ξ

∗
j (dxj) = 0, j = 2, . . . ,m
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then theorems 6.3 and 6.5 are valid for the SUR model with the regression function given in ( 6.6), but
fj1(x) 6≡ 1.
When a new component is nested multiplicatively through all other m−components as in ( 6.25), and
if ∫

Xj
fj(xj)ξ

∗
j (dxj) = 0, j = 1, . . . ,m

then theorem 6.9 is valid for the SUR model with the regression function given in ( 6.25), but
fj1(x) 6≡ 1.
When a new component is nested additive -wise through all other m−components as in ( 6.26), and if∫

Xj
fj(xj)ξ

∗
j (dxj) = 0, j = 1, . . . ,m

theorems 6.10 and 6.11 are valid for the SUR model with the regression function given in ( 6.27), but
fj1(x) 6≡ 1.
When a new di�erent component is nested multiplicatively through each j−component, j = 1, ...,m as
in ( 6.30), then corollary 6.1 is valid for the SUR model with the regression function given in ( 6.32),
but fj1(x) 6≡ 1.
When a new di�erent component is nested additive -wise through each j−component, j = 1, ...,m as
in ( 6.31), then corollary 6.2 is valid for the SUR model with the regression function given in ( 6.33),
but fj1(x) 6≡ 1.

Remark 7.5. The inverse of the information matrix with respect to the product type design has under
conditions 7.4 for SUR models without intercepts by the one-factor marginal regression functions the
block diagonal form in 7.5, so the covariance matrix for prediction has the following block diagonal
form due to the Gauÿ estimator

f(x)>M−1
GM (ξ)f(x) =


1

σ(11) f1(x1)>M−1
1 (ξ1)f1(x1) · · · 0

...
. . .

...
0 · · · 1

σ(mm) fm(xm)>M−1
m (ξm)fm(xm)


the variance covariance matrix for the OLS estimator can be similarly calculated under conditions 7.4,
so it has the following form

f(x)>M−1
OLS(ξ)f(x) =

 σ2
1f1(x1)>M−1

1 (ξ1)f1(x1) · · · 0
...

. . .
...

0 · · · σ2
mfm(xm)>M−1

m (ξm)fm(xm)


So the upper bounds of the trace, maximum eigenvalue, and the determinant for the covariance matrix
for the prediction due to the product type design, as well as some of the considered e�ciencies in
chapter �ve can be calculated similarly to their counterparts there.

7.3 Examples, Simulations and Discussions

Remark 7.6 (The Restriction for Heterogeneous Correlation Structure ). If the correlation matrix
has heterogeneous structure then theorem 7.1 is to be hold just locally, because there are di�erent
correlation terms.
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Example 7.1 (The D-optimality of the product designs). The D-optimality of the product type design
for the SUR model with the same, and di�erent regression functions without intercepts for the marginals
has been introduced in this example for three models in the same experiment regions [0, 1]. The �rst
model has the marginals Yij = βj1xij + εij and the product type designs are D-optimal for intervals for
ρ,s as given in the following tabular. Figure 7.1 illustrates the D-optimality of the product type design

for the bivariate SUR model Yij = βj1xij + εij , ϕD(⊗2
j=1ξ

∗
0) =

x21−2ρx1x2+x22
1−ρ2 , x2 = 1.

m p ξ∗ det C1/p -I I-L ρ∗ - I I-L

1 1 ξ∗0 =

(
1
1

)
- - - -

2 2 ⊗2
j=1ξ

∗
0 [0.707, 1.000] 0.293 [−0.707, 0.707] 1.414

3 3 ⊗3
j=1ξ

∗
0 [0.666, 0.752] 0.086 [−0.390, 0.640] 1.030

4 4 ⊗4
j=1ξ

∗
0 [0.643, 0.779] 0.136 [−0.274, 0.607] 0.881

5 5 ⊗5
j=1ξ

∗
0 [0.628, 0.800] 0.172 [−0.212, 0.587] 0.799

6 6 ⊗6
j=1ξ

∗
0 [0.615, 0.813] 0.198 [−0.174, 0.574] 0.748

7 7 ⊗7
j=1ξ

∗
0 [0.606, 0.823] 0.217 [−0.148, 0.564] 0.712

8 8 ⊗8
j=1ξ

∗
0 [0.599, 0.837] 0.238 [−0.128, 0.556] 0.684

9 9 ⊗9
j=1ξ

∗
0 [0.593, 0.848] 0.255 [−0.113, 0.550] 0.663

10 10 ⊗10
j=1ξ

∗
0 [0.587, 0.858] 0.271 [−0.101, 0.546] 0.647

11 11 ⊗11
j=1ξ

∗
0 [0.582, 0.861] 0.279 [−0.092, 0.542] 0.634

12 12 ⊗12
j=1ξ

∗
0 [0.579, 0.869] 0.290 [−0.084, 0.538] 0.622

The second model has the marginals Yij = βj1xij + βj2x
2
ij + εij and the product type designs are

D-optimal

m p ξ∗ det C1/p -L I-L ρ∗ -I I-L

1 2 ξ∗0 =

(
1
2 1
1
2

1
2

)
- - - -

2 4 ⊗2
j=1ξ

∗
0 [0.760, 1.000] 0.240 [−0.816, 0.816] 1.632

3 6 ⊗3
j=1ξ

∗
0 [0.718, 0.805] 0.087 [−0.434, 0.767] 1.201

4 8 ⊗4
j=1ξ

∗
0 [0.696, 0.833] 0.137 [−0.298, 0.743] 1.041

5 10 ⊗5
j=1ξ

∗
0 [0.681, 0.851] 0.170 [−0.212, 0.728] 0.940

The third model consists of di�erent marginals, where the marginals have the form Yij = βj1xij +
βj2x

2
ij + εij for odd j and Yij = βj1xij + εij for even j and for odd m the information matrices for

product type design singular. Thus for ξ∗0 =

(
1
2 1
1
2

1
2

)
⊗
(

1
1

)
, the product type designs are D-optimal

for intervals for ρ,s as follos

m p ξ∗ det C1/p -I I-L ρ∗ -I I-L

2 3 ξ∗0 [0.578, 1.000] 0.422 [−0.816, 0.816] 1.632

4 6 ⊗2
j=1ξ

∗
0 [0.745, 0.847] 0.102 [−0.274, 0.607] 0.881

6 9 ⊗4
j=1ξ

∗
0 [0.723, 0.871] 0.148 [−0.174, 0.574] 0.748

By comparing the results of the implemented examples and simulations it can be said, that m the number
of components of the SUR model plays a mean role by the length of the ρ∗ -interval, also, the intervals
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length is monotonically decreasing in m. The three di�erent SUR models illustrate, that the forms of
the marginal regression functions play a role too,
but these simulations have illustrated that the number of parameters p for the SUR model do not

have the mean in�uence on the ρ∗ -intervals length.
A possible argument for the role of m is the di�erent dimensions and structure of the correlation matrix
for grown m and m is inversely proportional to the determinants value of the correlation matrix as we
have cleared in remark (7.1). Another weak argument could be developed and reinforced also, from the
third part of the corollary (7.1)

det C ≤ pm
∑m

j=1 traceMj(ξ
∗
j )

maxxj∈Xj
∑m

j=1 traceMj(xj)

For m = 2, p = 2 in the desgin region [0, 1], we have from the �rst tabular and the remark (7.1)
det Cq×q ≤ ...C3×3 ≤ det C2×2 ≤ 42

2 = 4, i.e. 1− ρ2 ≤ 4, and it is known, that the det C ∈ [0, 1] and
we have equality just for p = m = 1 and ρ = 0, which is the weakness of this argument.
By investigating the in�uence of m on the p-square root for the determinant values of the correlation
matrix for the di�erent implemented examples, we can remark, that the upper and lower bounds of the
det C1/p -interval, for m > 2 because of symmetry by m = 2, are ordered monotonically increasing
and decreasing in m and therewith the length of the det C1/p -intervals are monotonically increasing in
m and that illustrates the inequality (7.25) of the determinant for the correlation matrix by corollary
(7.1).

Example 7.2 (When the product designs are not D-optimal). By this example we will consider the
model with the marginals Yij = βj1xij + εij for di�erent numbers of components m = 2, 3, 4, 5, also,
for m = 2 the D-optimal design

ξ∗D =

 (
1
1

) (
1
0

) (
0
1

)
1− 2.w∗ w∗ w∗

 , w∗ =
1− 2ρ2

1− 4ρ2
, | ρ |>

√
2

2
= 0.707

For ρ = ±1, w∗ = 1/3, we get the same D-optimal design for the spring weighing model for two objects

ξ∗2 =

 (
1
1

) (
1
0

) (
0
1

)
1
3

1
3

1
3

 (7.42)

For m = 3 the D-optimal design is

ξ∗D =


 1

1
1

  1
1
0

  1
0
1

  0
1
1


1− 3.w∗ w∗ w∗ w∗

 , w∗ =
1 + ρ− 4ρ2

1− 9ρ2
, ρ > 0.64 & ρ < −0.39

Or

ξ∗D =


 0

1
0

  0
0
1

  1
0
0

  1
1
0

  1
0
1

  0
1
1


1−w∗

3
1−w∗

3
1−w∗

3
w∗

3
w∗

3
w∗

3

 (7.43)
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where w∗ = 1+2ρ+ρ2

2ρ2−ρ−1
, ρ = −0.56 i.e. 1−w∗

3 = 0, w∗

3 = 1
3 or the design, where the last three points

have weights equal to 1/3 for ρ = −0.56, i.e. the D-optimal design for spring weighing model for three
objects

ξ∗3 =


 1

1
0

  0
1
1

  1
0
1


1
3

1
3

1
3

 (7.44)

For m = 4 the D-optimal designs are

ξ∗D =




1
1
1
1




1
1
1
0




1
1
0
1




1
0
1
1




0
1
1
1


1− 4.w∗ w∗ w∗ w∗ w∗

 , w∗ =
1 + 2ρ− 6ρ2

1− 16ρ2
, ρ > 0.607 & ρ < −0.274

Or

ξ∗D =




1
1
1
0




1
1
0
1




1
0
1
1




0
1
1
1




0
0
1
1




1
1
0
0




0
1
0
1




1
0
1
0




0
1
1
0




1
0
0
1


1−w∗

4
1−w∗

4
1−w∗

4
1−w∗

4
w∗

6
w∗

6
w∗

6
w∗

6
w∗

6
w∗

6


(7.45)

Where w∗ = 3(4ρ2−8ρ−3)
20ρ2−4ρ−3

, ρ = −1
3 i.e. 1−w∗

4 = w∗

6 = 1
10 or the same design with the weights equal to

1/10 for ρ = −1
3 , i.e. the D-optimal design for the spring weighing model for four objects

ξ∗4 =




1
1
1
0




1
1
0
1




1
0
1
1




0
1
1
1




0
0
1
1




1
1
0
0




0
1
0
1




1
0
1
0




0
1
1
0




1
0
0
1


1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10


(7.46)

When m = 5 the optimal designs are

ξ∗D =




1
1
1
1
1




1
1
1
1
0




1
1
1
0
1




1
1
0
1
1




1
0
1
1
1




0
1
1
1
1


1− 5.w∗ w∗ w∗ w∗ w∗ w∗


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Where w∗ = 1+3ρ−8ρ2

1−25ρ2
, ρ > 0.587 & ρ < −0.212 Or the 15-point design

ξ∗D =




1
1
1
1
0

 . . .


0
1
1
1
1




1
1
1
0
0

 . . .


0
0
1
1
1


1−w∗

5 . . . 1−w∗
5

w∗

10 . . . w∗

10

 (7.47)

where the weight 1−w∗
5 is related to the design points with four ones and one zero, and the weight w

∗

10 is

related to the design points with three ones and two zeros. w∗ = 2(9ρ2−15ρ−4)
27ρ2−3ρ−2

, ρ = −1
4 i.e. 1−w∗

5 = 0

and w∗

10 = 1
10 or the design where the last ten points have weights equal to 1/10 for ρ = −1

4 , i.e. the
D-optimal design for spring weighing model for �ve objects

ξ∗5 =




1
1
1
0
0




1
1
0
1
0




1
0
1
1
0




0
1
1
1
0




0
0
1
1
1




1
1
0
0
1




0
1
0
1
1




1
0
1
0
1




0
1
1
0
1




1
0
0
1
1


1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10


(7.48)

Figure 7.2 illustrates the D-optimality of design (7.42) for the bivariate SUR model Yij = βj1xij + εij ,
ϕD(ξ∗ρ) = 2(x2

1 − x1x2 + x2
2).

Example 7.3 ( Approximative D-optimality for the univariate spring weighing models). We can
remark, that the D-optimal designs (7.42), (7.43), (7.45) and (7.47) for the considered SUR models
in example(7.3) are respectively D-optimal designs for the univariate spring weighing models for two,
three, four and �ve objects, i.e. for

Yi = β1xi1 + β2xi2 + εi

Yi = β1xi1 + β2xi2 + β3xi3 + εi

Yi = β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi

Yi = β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi

Where for all models E (εi) = 0, Cov (εi, εk) = 0,Var (εi) = σ2, i, k = 1, ..., n and n is the number
of weighing. To prove that, we just have to check the satisfaction of the conditions of the equivalence
theorem in the univariate case for D-optimality for more information see ( Schwabe (1996)) or ( Huda
and Mukerjee (1988)).
To justify the equality of the local D-optimal designs for the SUR models and the D-optimal designs for
their counterparts by the univariate spring weighing models, we can remark, that this equality occurs at
most by the correlation terms ρ's, which make the correlation matrix non-positiver de�nite, i.e. it is not
more a correlation matrix and the information matrices for the considered SUR models singular, i.e. the
determinant of it is equal to zero, thus statistically we can see, when we can not get any information with
respect to D-optimality because of unreality of the variance covariance matrix of the error variables, then
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we have no di�erence between the obtained informations from the multivariate case and the counterpart
in the univariate case, i.e. by the SUR model and in the counterpart by the univariate spring weighing
models. Mathematically, we can check the information matrices for the both models, for example for
the SUR model with �ve components their forms Yij = βj1xij + εij j = 1, ..., 5 and these marginal
can formulate a spring weighing regression for �ve objects, also, the univariate counterpart the spring
weighing regression for �ve objects of this SUR model is Yi = β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +εi,
also by σ2

1 = σ2
2 = σ2

3 = σ2
4 = σ2

5 = 1 we have not lost the generality, because they are just scaled terms,
thus

MSUR(X) =
1

1 + 3ρ− 4ρ2


(1 + 3ρ)x2

1 −ρx1x2 −ρx1x3 −ρx1x4 −ρx1x5

−ρx1x2 (1 + 3ρ)x2
2 −ρx2x3 −ρx2x4 −ρx2x5

−ρx1x3 −ρx2x3 (1 + 3ρ)x2
3 −ρx3x4 −ρx3x5

−ρx1x4 −ρx2x4 −ρx3x4 (1 + 3ρ)x2
4 −ρx4x5

−ρx1x5 −ρx2x5 −ρx3x5 −ρx4x5 (1 + 3ρ)x2
5

 =

1

1 + 3ρ− 4ρ2


x2

1 x1x2 x1x3 x1x4 x1x5

x1x2 x2
2 x2x3 x2x4 x2x5

x1x3 x2x3 x2
3 x3x4 x3x5

x1x4 x2x4 x3x4 x2
4 x4x5

x1x5 x2x5 x3x5 x4x5 x2
5


univariate

+

1

1 + 3ρ− 4ρ2


3ρx2

1 −(1 + ρ)x1x2 −(1 + ρ)x1x3 −(1 + ρ)x1x4 −(1 + ρ)x1x5

−(1 + ρ)x1x2 3ρx2
2 −(1 + ρ)x2x3 −(1 + ρ)x2x4 −(1 + ρ)x2x5

−(1 + ρ)x1x3 −(1 + ρ)x2x3 3ρx2
3 −(1 + ρ)x3x4 −(1 + ρ)x3x5

−(1 + ρ)x1x4 −(1 + ρ)x2x4 −(1 + ρ)x3x4 3ρx2
4 −(1 + ρ)x4x5

−(1 + ρ)x1x5 −(1 + ρ)x2x5 −(1 + ρ)x3x5 −(1 + ρ)x4x5 3ρx2
5


residue

i.e. Munivariate(X) = (1 + 3ρ− 4ρ2)(MSUR −Mresidue)

And because of det Munivariate = 0, then (1 + 3ρ− 4ρ2)5 det(MSUR(X)−Mresidue(X)) = 0

The solutions of this equation with respect to ρ for x1 = x2 = x3 = x4 = x5 = 1

are ρ = 1, ρ = −1/4

also, for ρ = −1/4 was the design 7.47 local D-optimal for the considered SUR model.
We have identity for the D-optimal designs for the considered SUR models and respectively the formu-
lated univariate spring weighing models from the same components of the SUR models form = 2,m = 4,
and m = 5 respectively by ρ = ±1, ρ = −1/3 and ρ = −1/4, and they are the solutions with respect to
the determinants. But for m = 3 the identity occurs for ρ = −0.56 the variance covariance matrix of
the error variables is not positive de�nite but regular, and therewith the corresponding information is
not positive de�nite , but that is not the obtained solution with respect to the determinant by checking
the identity of the D-optimal design. Because of this contradiction, we can not take the relationship
between the information matrices for both models with respect to their determinants calculation as an
acceptable argument for all cases, but it clears at least the relationship between both models, which are
formulated from the same marginal models. Also, by comparing the sensitivity functions with respect to
D-optimality for the SUR model with three components and the counterpart univariate spring weighing

model for three objects, for the design (7.43) with w∗ = 1+2ρ+ρ2

2ρ2−ρ−1
, ρ = −0.56 i.e. 1−w∗

3 = 0, w∗

3 = 1
3 or
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the design with the last three points by weights equal to 1/3 for ρ = −0.56, we get the same sensitivity
functions, which are equal to 2(x2

1 + x2
2 + x2

3) − (x1x2 + x2x3 + x1x3). The same justi�cation can be
ensued for the other models, i.e. for other values of m. Thus for m = 2, m = 4, and m = 5 the
identity for the D-optimal designs for the SUR models and their counterpart by the spring weighing
models, i.e. the both models have the same marginal model, occurs ordered by ρ = ±1, ρ = −1/3 and
ρ = −1/4, also, when the information matrix for the SUR models are singular, i.e. the the determinant
of them are equal to zero, and the correlation matrix inde�nite. For m = 3 occurs the identity for the
D-optimal designs for the SUR model and their counterpart by the spring weighing model with three
objects by ρ = −0.56, also, when the correlation matrix inde�nite resp. the information matrices for
the considered SUR model inde�nite, but regular.

Remark 7.7. We can generalize the discussion in the last example for arbitrary regression functions
fj(xj) by the components of the SUR model resp. by their corresponding multi-factor univariate model,
which regression function has the form ∩mj fj(xj), the information matrix for the SUR model has with
respect to the product type design because of (7.15) the following form

MSUR = Munivariate +

(
(σ(11) − 1)M1 (σ(12) − 1)m1 ·m>2

(σ(12) − 1)m2 ·m>1 (σ(22) − 1)M2

)
(7.49)

Thus by calculating the sensitivity functions for both models and solving the equality of them for the
same design with respect to the correlation, then we can get the value of the correlation, which makes
the D-optimal design for the univariate model local D-optimal for the corresponding SUR model.

Example 7.4 (Approximate D-optimality for the multivariate spring weighing models). Another ap-
plication of theorem (7.1) can be the determination of the D-optimal designs for the multivariate spring
weighing models, where the multivariate word is used in this work for describing correlated components,
and not correlated observations, as it is usually presented in the literature. Thus we can imagine the
modeled problem through the algebraical balance in �gure 7.3. We can also imagine, that some exper-
iments in pharmaceutical industry can be modeled by the multivariate spring weighing models at least
in the nesting form. Another problems such as Fitness studies or calculating calories in meals can
be described with these models, see ( Eisenhauer (2003)). It may also be useful, to study the optimal
weighing designs in the multivariate case, because there is a relationship between it and the balance
incomplete block designs, see ( Ceranka and Katulska (1987)).
In this example, we will present at �rst di�erent regression functions for the bivariate components,

i.e. the number of components is constant for all considered models m = 2, and spring weighing models
with equal and unequal numbers of objects for each components, i.e. we have models with p1 = p2,
p1 6= p2 and p = p1 + p2. Thus for ξ

∗
11 = (1, 1);w = 1 and ξ∗q = ξ∗ ⊗ ξ∗q for q,  = 2, 3, 4, 5 the product

type designs are D-optimal for the considered bivariate spring weighing models for the given intervals
for ρ,s as follows
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Figure 7.1: ϕD(⊗2
j=1ξ

∗
0) for

SUR model without intercept

Figure 7.2: ϕD(ξ∗ρ) for SUR
model without intercept

Figure 7.3: Four-Pan Alge-
bra Balance

p1 p2 p ξ∗ det C1/p det C1/p -I ρ∗ -I I-L

1 1 2 ξ∗11 [0.670, 1.000] 0.330 [−0.707, 0.707] 1.414

1 2 3 ξ∗12 [0.630, 1.000] 0.370 [−0.866, 0.866] 1.732

1 3 4 ξ∗13 [0.867, 1.000] 0.133 [−0.660, 0.660] 1.320

1 4 5 ξ∗14 [0.898, 1.000] 0.102 [−0.645, 0.645] 1.290

1 5 6 ξ∗15 [0.900, 1.000] 0.100 [−0.683, 0.683] 1.366

2 2 4 ξ∗22 [0.000, 1.000] 1.000 [0] 0.000

2 3 5 ξ∗23 [0.848, 1.000] 0.152 [−0.750, 0.750] 1.500

2 4 6 ξ∗24 [0.850, 1.000] 0.150 [−0.790, 0.790] 1.580

3 3 6 ξ∗33 [0.859, 1.000] 0.141 [−0.774, 0.774] 1.548

3 4 7 ξ∗34 [0.870, 1.000] 0.130 [−0.79, 0.79] 1.580

4 4 8 ξ∗44 [0.000, 1.000] 1.000 [0] 0.000

this simulation illustrates, that for a �xed number of components m = 2, the total number of parameters
for the SUR model p do not play any roll by the length of the ρ∗ -Interval resp. det C1/p -Interval, which
have been illustrated by the �rst simulation of the �rst example for grown m. However we can remark,
that for a �xed number of parameters for the �rst marginal model p1 and grown number of parameters
for the second marginal model p2, we get longer ρ

∗ -Intervals resp. shorter det C1/p -Intervals. We can
remark too, that the product type designs are D-optimal only for the bivariate weighing models with two
or four objects, if ρ = 0, which means that the inequality maxx∈X ϕD(x, ξ∗, ρ∗) ≤ p by theorem (7.1)
is valid just for one value, ρ∗ = 0.
In the next example we will consider the multivariate spring weighing model for three objects by each
marginal model, also, the product type designs are D-optimal for intervals for ρ's as follows

m p ξ∗ det C1/p -I I-L ρ∗ -I I-L

2 6 ⊗2
j=1ξ

∗
3 [0.859, 1.000] 0.141 [−0.774, 0.774] 1.548

3 9 ⊗3
j=1ξ

∗
3 [0.802, 0.865] 0.063 [−0.434, 0.767] 1.201

4 12 ⊗4
j=1ξ

∗
3 [0.770, 0.877] 0.107 [−0.302, 0.763] 1.065

Thus this simulation gives the same result from the �rst example, also, for grown m we have to have
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shorter ρ∗ -Intervals and respectively longer det C1/p -Intervals for the D-optimality of the product type
designs ab m > 2.

Example 7.5 (Approximate multivariate D-optimal chemical balance designs). It is important to
remark, that in the �rst tabula all intervals contains the value zero for ρ, also the product type designs
are always D-optimal for ρ = 0. When we implemented the example in the experiments region [−1, 1],
then the product type designs

⊗mj=1ξ
∗
0 = ⊗mj=1

(
−1 1

1
2

1
2

)
(7.50)

are A-, D- and IMSE-optimal for the SUR models with the marginals Yij = βj1xij + εij j = 1, ...,m, as
it has been mentioned in theorem ( 7.1).
The same result is to be held for example (7.4) in the experiments region [−1, 1]. Thus by considering
the bivariate model

Yi1 = β11xi11 + β12xi12 + εi1

Yi2 = β21xi21 + β22xi22 + β23xi23 + εi2 (7.51)

Then the product type designs of the form (7.50), also ⊗2
j=1ξ

∗
0 and ⊗2

j=1ξ
∗
0 are ordered A-, D-, and

IMSE-optimal for the marginal models in (7.51), thus the product type design ⊗5
j=1ξ

∗
0 is A-, D-, and

IMSE-optimal for the SUR model resp. chemical balance model with the marginal models in (7.51).
Figure 7.4 illustrates the D-optimality of the product type design ⊗5

j=1ξ
∗
0 resp. the graphic of the

sensitivity function
ϕD(x;⊗5

j=1ξ
∗
0) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5

for x3 = x4 = x5 = 1. Figure 7.5 illustrates the A-optimality of the product type design ⊗5
j=1ξ

∗
0 resp.

the graphic of the function

ϕA(x; ξ∗A)

trace
(
M(ξ∗A)−1

) =
σ2

1x
2
1 + σ2

1x
2
2 + σ2

2x
2
3 + σ2

2x
2
4 + σ2

2x
2
5

2σ2
1 + 3σ2

2

, x3 = x4 = x5 = 1, σ1 = σ2 = 1

Figure 7.6 illustrates the IMSE-optimality of the product type design ⊗5
j=1ξ

∗
0 resp. the graphic of the

function

ϕIMSE(x; ξ∗IMSE)

trace
(
L M(ξ∗IMSE)−1

) =
σ2

1x
2
1 + σ2

1x
2
2 + σ2

2x
2
3 + σ2

2x
2
4 + σ2

2x
2
5

2σ2
1 + 3σ2

2

, x3 = x4 = x5 = 1, σ1 = 10, σ2 = 0.1

Example 7.6 (The linear optimal design for general information matrix). We will consider the simplest
bivariate model with the marginals Yij = βj1xij + εij for j = 1, 2, also, the product type design

ξ =

 (
1
1

)
1


is not A- nor IMSE-optimal for ρ 6= 0, even locally. The following A- and IMSE-optimal designs for
the corresponding multi-factor (additively) model or the spring weighing model for two objects are not
A- and IMSE-optimal designs for the considered bivariate SUR model.

ξ =

 (
1
1

) (
1
0

) (
0
1

)
1− 2.w w w

 , wA ' 0.422, wIMSE ' 0.264,
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Figure 7.4: D-optimality for
SUR model as Chemical bal-
ance model

Figure 7.5: A-optimality for
SUR model as Chemical bal-
ance model

Figure 7.6: IMSE-optimality
for SUR model as Chemical
balance model
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8 Discussion and Future Research

Finding optimal designs for multivariate linear models analytically is not easy but possible, and
this work can be a positive signal by that, where algorithms are not the only method to overcome
the complexity, which appear because of the di�erent covariance resp. correlation structures, see for
example ( Wijesinha and Khuri (1987).

8.1 Conclusion

D- and linear optimal in 4.1 designs are determined for SUR models with di�erent structures for the
one- and multi-factor-marginal components, where the product type designs are D- and linear optimal
in 4.1 designs for SUR models with intercepts by the one-factor and multiplicative marginals with
di�erent nesting forms, and by additive marginals with di�erent nesting forms except for block diagonal
information matrices. For SUR models without intercepts by the marginal components the product
type designs are D- and linear optimal in 4.1 for the block diagonal form of the information matrices,
as practical example for such models are the multivariate chemical balance regression models. These
results can be held for a known covariance matrix for the error variables due to the Gauÿ Markov
estimator and asymptotically for an unknown variance covariance matrix of the error variables, when
the error variable is normally distributed. The D-optimality for the product type designs is restricted
to the general form of the information matrix for SUR models without intercepts by the marginals and
depended on the value of the correlation term, so for intervals, which include zero and their sides less
than one in absolute value the product type designs can be D-optimal and these intervals will be closer
for grown components numbers m, where the multivariate spring balance regression models can be a
good example or a special case for such SUR models.
G-optimal criteria for the multivariate case were discussed and their upper bounds due to the D-optimal
design resp. weighted G-optimal design, were determined by some inequalities from the Matrix theory
for the product of the positive de�nite matrices, for general multivariate linear models, for MANOVA-
models by the MANOVA-design, and SUR models due to the Gauÿ and OLS estimators by the product
type designs. E�ciencies for the OLS estimator vs the Gauÿ Markov estimator for SUR models with
respect to the product type designs, and due to D- and linear optimal criteria in 4.1 were determined,
as well as the e�ciencies for the MANOVA-design vs the product type designs due to the Gauÿ and
OLS estimators. It is shown, that the MANOVA-designs are more e�cient than the product type
designs with respect to the OLS estimator due to the D-optimality, and the MANOVA-designs, and
the product type designs, that have the same e�ciency with respect to the OLS-estimator, and due
to the linear optimality in 4.1. Integrated mean square error in the multivariate case as well as the
IMSE-criterion were de�ned and derived, which is a type of the considered linear optimal criteria
in 4.1. By implementing the IMSE-optimal criterion on the MANOVA-model, it is shown, that the
reduction of IMSE-optimality for the MANOVA-model to the corresponding univariate problem of the
marginal models as in ( Kurotschka and Schwabe (1996) is possible.
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8.1.1 Extensions

Through this work, it can be concluded, that the research of optimal designs for multivariate linear
models are analytically not very restricted and can be reduced to the corresponding univariate case in
many cases, where by an extension of the results for this work is possible. SUR models with �xed block
e�ects can be a special case of the considered model by the dissertation of my college Jesus Alonso
Cabrera, where optimal designs for models with random and �xed e�ects are explored.
When the sensitivity functions in the multivariate case due to D-optimality in general are independent
on the variance terms and dependent only on the correlation term, then theorem 7.1 is valid and the
D-optimal designs can be similarly restricted by some intervals of the correlation terms for di�erent
multivariate linear models.
The orthogonality conditions for the SUR models without intercepts by the corresponding marginal
components, which makes the non block diagonal information matrix block diagonal, can be relieved
for the nearest neighbor correlation structure.
Exploring the optimal designs for multivariate linear models through a more complex covariance struc-
ture, such as the Kronecker product covariance structure resp. when not only the components but the
individual resp. observations are correlated, so the variance covariance matrix of the error variables
for the multivariate model has the form V = Σ1 ⊗ Σ2, so the product type designs are no longer
optimal for the simplest example for the considered SUR models, and the information matrix is no
longer the sum of the information matrices for the individual. For the MANOVA-model the reduction
of the optimal design problem to the corresponding univariate problem is impossible in this structure
of V as in the work of ( Kurotschka and Schwabe (1996). However it can be reduced to the problem
for �nding optimal designs for univariate models with correlated observations, because the variance
covariance matrix of the Gauÿ estimator has instead of (3.16) the following form

Cov =
(
F>V−1F

)−1
=(

(Im×m ⊗ f0(x1), ..., Im×m ⊗ f0(xn))(Σ−1
1 ⊗Σ−1

2 )(Im×m ⊗ f0(x1), ..., Im×m ⊗ f0(xn))>
)−1

= Σ1 ⊗

(
n∑
i=1

f0(xi)Σ
−1
2 f0(xi)

>

)−1

(8.1)

Then the results due to optimal designs for models with correlated observations in the works of Bischo�
(1992), (1993), and (1995) and others are valid for these models for known Σ1.
The reduction of the optimal design problem for Growth curve models in ( Reinsel and Velu (1998)
to the optimal design for models with correlated observations is possible, if we are interested in the
optimization of the time points for the observations t and not in the optimization of the number
of subjects n, because of the form of information matrix, which is the Kronecker product for two
information matrices, the �rst one is dependent on the numbers of subjects n and the second one
dependent on the time points t, i.e.

M = F1(n)>F1(n)⊗ F2(t)>Σ−1F2(t) = M1(sn)⊗M2(t)

So in general the information matrix for time points M2(t) has the structure of the information matrix
for models with correlated observations, and the considered regression functions by ( Reinsel and Velu
(1998) are polynomial regression function, so the design matrix F2(t) is quadratic for equal numbers
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of observations and polynomial degrees resp. numbers of parameters , so the reduction of the D-
optimality problem for correlated observations in the regular univariate problem for known variance
covariance matrix of the error variables in this case is possible, because of the following form

det M2(t) = det
(
F2(t)>Σ−1F2(t)

)
= det F2(t)> det Σ−1 det F2(t)

thus det M2(t) = det Σ−1 det
(
F2(t)>F2(t)

)
8.2 Possible Research

Much research in this region can be done, so the following research will be considered in the future

• Exploring further optimality criteria for the considered SUR models as the C-, E-, Ds- and linear
optimal criteria, by non block diagonal weight matrix L.

• Exploring the optimal designs for the considered SUR models by limited information estimators
as the the feasible General least square estimator, as the two or three stage GLS, OLS-or ML-
estimators in some cases see ( Amemiya (1985) or (Anderson (2005). The big problem by dealing
with such estimators is the non-equality between the inverse of their variance covariance matrices
and the information matrices and therewith it is to prove the convexity for the set of the variance
covariance matrices for such estimators to build the convex theory due to them.

• Usage of the results of the analytical optimal designs for the considered SUR models to test
the e�ciency for the developed algorithms or other optimization methods as the positive semi-
de�nite programming ( Atashgah and Sei� (2009) by �nding optimal designs for multivariate
linear models by their application to the considered SUR models.

• Exploring the optimality of the product type designs and the restrictions on D-optimality for
the considered SUR models without intercepts for some special correlation structures as the
autoregressive and the nearest neighbor correlation structures.

• Determining the e�ciency bounds for product designs by the considered SUR models, where
their marginals are additive models or multi-factor models, which can be formed additively but
without intercepts in hierarchically and other nesting forms, similar to the work of ( Schwabe
and Wong (1999).

• Exploring the optimal designs for multivariate linear models through a more complex covariance
structure, as the Kronecker product covariance structure resp. when not only the components
but the individual resp. observations are correlated so the variance covariance matrix of the error
variables for the multivariate model has the form V = Σ1 ⊗Σ2.

• Finding optimal designs for the considered growth curve models by ( Reinsel and Velu (1998)
for non quadratic design matrix F2(t).

• Investigating the optimal designs for the considered SUR models and other multivariate linear
models but by other structures for the marginal regression functions resp. the parameter.
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