
Method of Grouping Complementary Microservices Using

Fuzzy Lattice Theory

Oleksandra Dmytrenko1 and Mariia Skulysh1,2
1Institute of Telecommunication Systems, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic

Institute", Beresteiskyi Avenue 37, 03056 Kyiv, Ukraine
2Anhalt University of Applied Sciences, Bernburger Str. 57, 06366 Köthen, Germany

olexandra.dmytrenko@gmail.com, mskulysh@gmail.com

Keywords: Microservices, Cloud Energy Efficiency, Fault Tolerance, Shared Instance Group, Cluster.

Abstract: This paper contains ideas on how to optimize the costs of running a microservice system. Currently, there is
much done to provide high fault tolerance of a microservice and a system as a whole. Cloud providers come
up with new ways to guarantee the high speed of newly launched instances. This leads to a ubiquitous run of
redundant servers with possible cold or hot standby mode. This is often crucial because the ability to use some
applications quickly and on time can be important to many users, potentially saving lives. At the same time,
it's important to prioritize ecological preservation and minimize overuse of the Earth's resources. In the context
of cloud, and specifically, server computing, that would involve using resources in a way that extends their
lifespan, minimizing the creation of slowly decomposing waste, and avoiding excessive energy consumption.
Cloud providers, such as Amazon, Google, and Azure, discard millions of underused hardware units due to
the necessity of ensuring service guarantees to their customers. In the article, method to optimize the usage of
servers by organizing microservices in complementary sets are described. As a result, server resources will
be used most efficiently. The method of grouping the microservices can be likened to the principles of lattice
theory. The ideas in the article could be useful for the systems like Kubernetes scheduler in the stage of picking
the right set of instances to run a new microservice, or to cloud providers. As a result, less energy and hardware
resources will be used to provide the same quality of fault tolerance.

1 INTRODUCTION

These days, many businesses try to make their

program products scalable in order to handle high

loads efficiently. That’s why designing a program as

a group of microservices that can be replicated across

multiple instances is becoming increasingly popular.

To support this kind of structure, a microservice

manager platform is needed. Docker, Kubernetes, and

different cloud platforms offer assistance in managing

load and scalability by deploying new microservice

instances that could help overcome the limitations of

a single instance.

In most cases, application loads are predictable.

The impact of sudden load surges has a significant

influence on system stability. The main idea is to

distribute microservices among server groups first

taking into account prioritizes balancing the overall

load of the group, then followed by predictability and

ensuring that a certain bearable maximum that the

server group can provide is not exceeded.

2 GROUPING COMPLEMEN-

TARY MICROSERVICES

ACCORDING TO PRINCIPLES

OF FUZZY LATTICE THEORY

2.1 Fuzzy Lattice Theory in Relation to

Microservices

In this paper, the complementarity of microservices

and demonstrate how their coordinated utilization can

significantly reduce wasteful resource usage will be

discussed. Let’s consider a definition of

complementary objects from the lattice theory. A

lattice b is complemented to lattice a is a bounded

lattice that satisfies

 a ∨ b = 1 and a ∧ b = 0 (1)

In linguistic terms, the initial formula can be

interpreted to signify the absence of overlapping

resource utilization, wherein concurrent usage of a

single resource by both microservices does not occur.

Simultaneously, both microservices collectively

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

11

leverage all available resources during operation. A

complementary lattice need not necessarily be

unique. A bounded lattice means that the minimal

element is 0 and the maximal element is 1 [1]. The

lattice theory contains definitions of a relatively

complemented lattice and orthocomplementation,

which could also be useful in showing the parallelism

with the idea of organizing microservices into groups.

Let us expand this idea to microservices running

on a single resource group, or simplifying, on one

server. It means that the microservices are

complementary when, if running together, they fully

utilize the server's capacity, and if they are off, the

server remains idle.

To generalize, taking in consideration that it might

be difficult to find an ideal complementary type of

microservice, let’s assume that b can be recursively

replaced with a set of two other microservices, c and

d, that follow the same rule as in (1) by sharing the

total load in proportions that will never exceed 1 and

that won’t fully interact with a:

 a ∨ (c ∨ d) = 1, c ∧ d = 0, a ∧ d = 0, a ∧ c = 0 (2)

This kind of recursion can occur multiple times,

meaning there is no limit to how many microservices

a resource group can contain. The main principle is to

achieve the efficient usage of the group.

2.1.1 Adding Fuzziness

When dealing with resource load, incorporating

fuzziness can be more appropriate. To that end, we

modify the definition of the microservices to allow

partial resource load. It can be proportional or not, but

the total load at any moment won’t exceed the full

possible load.

Let us define the following terms:

 C: a certain processor characteristic, such as

processor load, channel throughput, user

number, or memory usage;

 Tj: a certain time interval, e.g. an hour or

“morning”, during which C is measured. The

cycles are repeated every 24 hours. Certain

differences can be also made for holidays and

weekends;

 j: a time unit. We consider that time is divided

into reasonable units. For example, what

interests us are the hourly measurements during

the day or fuzzy definitions of “morning”,

“day”, “evening” and “night” time.

 i: an index of a microprocessor that runs from 1

to some positive integer N.

 𝜇T(Ci): the degree of a certain characteristic C

of the microprocessor i during time T.

If microservices 1 and 2 are the two

complementary microservices, then 𝜇T(C1) and

𝜇T(C2) are the degrees of presence of a given

characteristics C during a selected time T. Together

they should form a load of a server resource

approaching to a full possible load. Based on given

definitions above, we can rewrite a formula of fuzzy

complementation presented in [2] in the following

way:

𝜇Tj(C2) = 1 - 𝜇Tj(C1) (3)

Every microservice has its usual, average,

minimal, and maximal loads. When referring to (2) it

means that disregarding the exact load of one

microprocessor, the load of the second one should be

adopted. The complementation should be based using

the definition: maximal intersecting load at any same

time should not exceed full load. In the words of

formulas, that is:

 max(𝜇Tj(C1), 𝜇Tj(C2)) < 1 (4)

Till now, we have spoken about having 2

complementary microservices. With the same

success, we can extrapolate the formulas to more

elements. To bound N - the maximal number of the

microservice instances that could run on one server

group, let us take into consideration a number of

threads K on the group processor(s). Then i ∈ [1, K].

Making generalization, the formulas (3) and (4)

would be the following:

 𝜇Tj(CN) = 1 - 𝜇Tj(C1) - 𝜇Tj(C2) -...-𝜇Tj(CN-1) (5)

 max(𝜇Tj(C1), 𝜇Tj(C2),..., 𝜇Tj(CN-1), 𝜇Tj(CN)) < 1 (6)

2.1.2 Illustration of an Idea

To illustrate the idea of creating balanced resource

groups, consider a simple example. Suppose there are

2 companies with private hostings: a ticket company,

which experiences a high load during the daytime,

and an online casino, whose main activity takes place

at night. To optimize the number of hardware

resources spent for hosting these 2 enterprises, a

common hosting could be considered. The same

servers would be reused by an application that has to

handle more load at a particular moment. The total

common load remains the same, but fewer resources

for running both programs are used. The transition in

resource usage by a specific application would be

relatively gradual.

Potential spikes in load for each application

during non-standard times could occur due to sales

and special offers, as well as unpredictable sudden

events, such as heavy weather conditions and

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

12

https://www.zotero.org/google-docs/?0c9D6A
https://www.zotero.org/google-docs/?KQk9qB

disasters. If the applications provide services in the

same region, evidently, in the second case people

would be more likely to prioritize buying tickets and

saving their lives over playing in casinos, both during

the day and at night.

On the other hand, the first case is more difficult,

necessitating either a localized or a comprehensive

resolution. A potential local resolution involves

negotiating between companies regarding staggered

timing for special offers. This possibility is unlikely,

as it would require the companies to be managed by

friends or the same person. This approach also entails

considering the risk of one or both companies having

their income undermined. A general resolution

implies providing additional resources that are rarely

used, but which are crucial for safe and stable

working conditions. Such resources would also be

useful when components of the hardware degrade.

Greater hardware durability can be anticipated when

operating below maximum capacity. Additional

resources would also serve to provide longer life

expectancy for the servers.

Increased resource allocation and simultaneous

higher loads for both applications could raise

concerns about profitability of shared hardware. This

is where the concept of dividing an application into

microservices would act as a resource optimizer.

Every microservice has different tasks and different

general loads in the same period compared to other

microservices of the same application. In online

stores, people spend significantly more time on

product selection than on ordering and payment

procedures. As a result, much fewer login activities

are to be expected than filtering goods activities.

Hence, combining low-load microservices from one

application with high-load microservices from

another application is essential for achieving a

balanced group.

As a result, when having high activities in both

applications at the same moment, a balanced group of

microservices will not require a substantial amount of

resources. As a consequence, a general margin of

safety for a shared space among several microservice

applications will be reduced compared to using

private spaces. At the same time, general fault

tolerance will be higher [3].

2.1.3 Comparison of the Example with the
Fuzzy Lattice Theory

In the context of lattice theory, a complementary

microservice that achieves the same maximum state

of processor usage should be identified, ensuring that

only one microservice is active at any given moment.

Let us denote by a a microservice of the ticket

company that works in the daytime, and by b, a

microservice of the casino that works at night. Let us

also denote by 1 a capacity of the

server/cluster/resource group that runs both

microservices and at the same time is a potential

maximal safe capacity of one of the microservices.

Likewise, let 0 denote a state when everything is idle

or which should not happen.

Following (1) and its fuzzy counterpart (3), we

can say that we want to achieve state 1 when either a

or b is working. The state of partial load is also

acceptable: if it’s 80% of a, then it’s no more than

20% of b, and similarly for (4) and (6). States where

one is 60% loaded and the other one is 10% loaded

are also acceptable, as they comply with the formulas

for fuzzy sets. In that case, a server could run

something else in addition during this time.

The maximum resource capacity is designed only

to support partial load. In case when both

microservices need more resources, then replication

should be activated and a state of 0 must be prevented.

Taking into consideration that there may be

several complementary paths, it is worth mentioning

that a microservice that could fit as a dual pair to the

first one is not unique. Not only ticket companies

work at night. A bank microservice could similarly fit

the casino one in this regard.

2.2 Grouping Strategies

The example provided is reasonable, however, having

a standard set of rules or considerations for grouping

microservices would be beneficial. A group by itself

implies that the physical servers are located as close

as possible and are connected in a local group via

wires, or this is a single supercomputer with plenty

of resources. Below, we list criteria that may

influence decision-making.

2.2.1 Security or Multi-Tenancy

Microservices can be grouped by security reasons or

user access rights. This is the most secure way of

grouping. However, the challenges posed by multi-

tenancy can be solved in several ways, depending on

specific needs and risks.

1) Strong division of common space among several

running applications can be performed by

virtualization.

2) Containerization can be used in addition to an

already running operating system.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

13

https://www.zotero.org/google-docs/?fHQ39b

3) One can launch applications from different users

in terms of one operating system, where every

user has its predefined space.

4) In a public cloud environment, it is possible to

segregate the same physical server into secure

logical spaces for every user or tenant, thereby

ensuring a high level of security.

5) Single tenancy, which requires separate

microservices for separate user groups or users,

can also be provided in terms of one group.

At the same time, extremely stringent security

requirements are relatively uncommon. To provide an

adequate level of security, it is not necessary to launch

microservices that require the same user access rights

in the same group. Unless it is required, it would be

more effective to base the division on alternative

guidelines, from a resource efficiency perspective.

In Kubernetes, multi-tenancy often involves many

teams sharing the same cluster. It also has a so-called

SaaS tenancy, where multiple clusters with different

applications are provided to a single user team [4].

2.2.2 Shared Resources

Most applications are not standalone but have

separate resources such as databases. In a

microservice architecture, it is common to have a

shared schema registry, DTO classes, domains,

libraries, and protocols that are stored separately,

exclusively for use by two or more microservices.

Grouping can also be based on using the same shared

resource.

If several microservices communicate with each

other often, it is beneficial to have a system design

with a focus on maximal failure prevention,

particularly during data transmission. Data

inconsistencies caused by partially sent and processed

data can be challenging to roll back. Addressing such

inconsistencies may necessitate actions from each

microservice that processed the information. This is

described in the SAGA pattern. Alternatively,

creating specialized clean-up procedures could be an

option. These procedures would know all potential

failure scenarios and would be capable of making

manual rollbacks, fetching information from the

backup files, or recalculating updated values and

writing previous consistent values.

Rollback procedures in a microservice

architecture are risky. There is no guarantee that some

part of the application won’t read temporary incorrect

values. Both strategies are time-consuming and

include multiple operations, rather than completing

everything in a single step. The human factor is also

present because when the code is updated, a

developer might forget to accordingly modify the

rollback procedure. The whole process is complicated

by communication problems. If the communication

issue happens on the forward path, it may also happen

in the reverse direction. Therefore, eliminating the

problem is more beneficial than solving it.

In a microservice architecture, the following

problems are possible: latencies, outages in one part

of the system, failure to establish the connection

because of the connecting hardware or its settings

updates, limitations of queues and their operational

peculiarities, and other physical or logical issues. It is

always better to eliminate as many potential failures

as possible and increase fault tolerance, as long as it

does not affect the quality of work and does not

increase the downsides of a software product

dramatically. Grouping by shared resources will

reduce many possible issues related to connectivity

problems. In case of outages, a whole group will fail,

which will keep the information in the database

consistent with a higher probability. At the same time,

a downside of such grouping is not being able to

respect the load of microservices and to provide

effective usage of the resources.

2.2.3 Channel Throughput

There are cases when the most busy resource is the

channel resource, when a microservice needs to

handle massive and/or very frequent data chunks.

This may not produce a high processor load but

requires many threads to be able to pick up the

incoming information. If the activity for such a

microservice increases, scaling becomes necessary.

Supporting such a microservice requires a

significant amount of resources. The best option

would be to combine it with other microservices that

would either accept rare requests and possibly have

high processor load, or function similarly, but during

different hours. Needless to say, such microservices

are risky, and if possible, it is advisable to avoid

heavy traffic between application components by

redesigning the system and the purpose of

microservices. There are techniques to prevent it.

Introducing an additional stage of data preprocessing

or storing intermediary results in the database could

be beneficial. Data could undergo primary filtering

and be routed in several directions.

2.2.4 Time and State of Processor Load

There are microservices designed specifically for data

processing, such as machine learning routines, which

require many computational resources [5]. Such

tasks may be time-consuming and require high load

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

14

https://www.zotero.org/google-docs/?2B9GaV
https://www.zotero.org/google-docs/?xa4RG1

on the processor. It might be possible to split high

processor-load microservices into several ones to

reduce the amount of operations they have to perform.

Consequently, this will reduce the time of processing

a single request and accordingly increase the

throughput of a single instance of such a

microservice. In many cases, though, researchers and

engineers prefer having all logic in one place and

reusing its components in various places, rather than

dispersing it across multiple microservices, thus

duplicating the code or increasing the traffic between

the application components [6].

This kind of microservice would normally be the

heart of the application and would receive fewer

requests compared to the other components. This

stems from preceding procedures of filtering

erroneous data and data aggregating activities, which

reduce the number of initial requests. To create a

resource optimizing group, such microservices could

be paired with others that process their tasks quickly

and do not experience heavy traffic concurrently with

the active phase of the first set. Complementary

microservices should not tie up threads for extended

periods, allowing them to quickly become available

for new tasks. In other words, we should combine the

microservices when one needs 2 seconds to process

one request, while its counterpart processes 10

requests in 1 second.

2.2.5 Geographical and Active Time
Reasoning

The speed of user response decreases as the distance

to the processing server increases. Hence, globally

distributed applications would prefer to run separate

instances of their applications on regional servers or

cloud centres to provide the best user experience [7].

For example, Amazon servers are currently located in

32 geographical regions [8]. Consider, on the other

hand, a company that is present on one continent, e.g.

North America, and also has a presence on another

continent where working hours do not significantly

overlap, e.g. Europe. Depending on the goals of the

company and the most likely sources of its profit,

there might be no compelling reasons to establish

costly hosting on several continents. People using the

services in unpopular locations would agree to wait

for a response from a distant server and would stay

loyal to the service provider they use.

As an example, consider cell phone providers

working in a certain county. When their customers

travel, the calling services are provided by local

providers instead, but the mobile application should

work regardless of the user's current location. When

on a tourist trip to another country and waiting for

information updates in a mobile app, a user may be

more ready to receive a delayed response than usual.

This response time will not influence his choice of a

cell phone provider when he comes back. Awareness

of the existence of companies and applications that

operate in this manner gives us reasons to plan for the

more optimal utilization of shared space.

In terms of grouping, this implies that we could

combine microservices to provide services not only at

different times for the same region but also for

different geographical regions, whose time zones can

be considered opposed due to their lack of overlap in

active usage times. In the above example, it could be

convenient to make one logical and possibly physical

group of servers as a set of instances hosting the same

microservices, with each one providing services to

the opposite geographical regions with low user

intensity.

Table 1 and Figure 1 presents an outline of all

reasonable ways of combining microservices,

allowing them to form a complementary group and be

collocated within a single server group.

2.3 Existing Solutions

To understand the existing research in this area, we

performed a basic review of the most popular designs

of microservice resource usage optimization.

2.3.1 What are the Kubernetes Scheduling
Solutions?

In Kubernetes documentation, it is mentioned that

there are many factors to determine the server for

running a new instance and that is the most feasible.

The major ones include individual and collective

resource requirements, hardware/software/policy

constraints, affinity and anti-affinity specifications,

data locality, and inter-workload interference [9].

These approaches are based on physical abilities and

the best possible speed of intercommunication. That

doesn’t include the optimal solution from the

economic or ecological points of view, which are of

high importance these days.

2.3.2 How Amazon Cloud Manages the
Load Balancing?

Amazon Cloud has its Elastic Load Balancing (ELB)

which includes three elements. The first one is the

Application Load Balancer. It supports host-based

and path-based routing, meaning that the traffic is

routed based on its content or its headers, the domain

name. This idea is not unlike geographical grouping,

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

15

https://www.zotero.org/google-docs/?BiRJjM
https://www.zotero.org/google-docs/?p3hTNu
https://www.zotero.org/google-docs/?iYptd2
https://www.zotero.org/google-docs/?mUvHtu

Table 1: The grouping possibilities to optimize resources usage.

Figure 1: Possible strategies of organizing servers into groups mentioned in the Table 1.

Group

Name

Primary (problematic)

microservice

Complementary

microservice

When to use Problems

Security A microservice with

certain security standards.

Other microservices with

the same security

standards.

To manage multi-tenant

access to a shared

resource.

Might not respect the load

of microprocessors and

the group won’t optimally

use resources.

Shared

resource

A microservice that uses a

certain external resource

that is launched on the

same subcluster.

Other microservices that

use the same shared

resource.

When there is a need to

have maximal speed of

communication between

external resources and

microservice.

Might not respect the

balance of microservice

group load, and might not

provide effective usage of

the resources.

Heavy

channel

throughput

Massive and/or very

frequent chunks of data

should pass through a

microservice.

Microservices that would

either accept rare requests

and possibly have high

processor load, or work

in a similar way, but in

the other daytime.

When many threads are

needed to pick up the

incoming information.

Heavy traffic

microservices are risky

because of possible lack

of space in the queues,

more often failing to send

the information and delays

in processing.

Heavy

processor

load

Tasks that are

implemented during a

long time and/or heavily

load the processor.

Complementary

microservices should not

hold threads for a long

time and so let them be

ready for new tasks

quickly.

When not many threads

are needed, but high

processor capacity is

called for.

Time of returning

response can be a problem

in real-time applications.

Geographi

cally

separated

Applications handling a

large number of

concurrent connections

resulting in high load by

channel throughput and/or

processor load.

Microservice that has a

high load of a similar

type but which working

hours are not intersecting.

When the time of heavy

load is stable and limited

to a certain part of the

day,

Problems may arise if the

complementary

microservices have

sudden unexpected picks

of activity in the

intersecting time.

Group 1 - a security group of microservices that share the same
server resource (supercomputer, cloud group)

Group 2 - a group for
microservices that share the
same DB, libraries of files,
and/or communicated with
each other

Groups 3, 4, 5 - High Channel
Throughput, processor load or
geographically separated
microservices

Shared server that runs all the
microservices (e.g. supercomputer, local,

cloud server group)

LAN Cloude

Microservice 1 Microservice 1 Microservice 2

Microservice 2

Microservice 2

Microservice 3

Microservice 3

Microservice 3

Microservice 3

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

16

but in fact is opposite in spirit. Groupings are done by

close locations rather than the opposite ones.

The second one is the Network Load Balancer. Its

purpose is to prevent connection draining before a

target is considered unhealthy and evenly distribute

the traffic in a cross-zone mode which makes the

optimal resource utilization. The flow-based

distribution algorithm is used to make the network

load balancing particularly suitable for applications

that benefit from predictable and consistent

connection handling, making it well-suited for a

variety of use cases, including those with stateful and

connection-oriented requirements

The third element is the combination of the two

mentioned ones, called a Classic Load

Balancer [10], [11].

The methods of load balancing are very well-

thought-out and are meticulously designed and

organized to serve users in the most effective manner

possible. The techniques are also formulated to ensure

equitable sharing of resources, thereby extending the

longevity of the last serve [12]. The resources are

turned off as soon as they are not needed, which

prevents wasteful energy consumption. Nevertheless,

in Cloud management theory, there is not information

on how to reduce the number of needed servers in

order to optimize the cloud activity. The methods

described in Table 1 could help to achieve this.

Google Cloud [11] offers similar functionality.

3 CONCLUSIONS

Running multiple microservices and scaling them to

ensure fault tolerance for the entire application, as

well as its ability to effectively handle any number of

users, is a critically important task. When choosing

the right node, cluster, or instance group to run a

certain instance of the microservice at cloud and

Kubernetes, one of the many criteria to be taken into

account is the ecological component. This means

fullutilization of resources of one server, reducing

their number to an absolute minimum. Such an

approach also helps minimize electricity bills, which

can be huge for constantly operating machine loads.

The article proposes forming instance groups of

complementary microservices using the rules of a

complemented lattice in fuzzy logic. The most

efficient can be the groupings based on

▪ Difference in the time zones.

▪ Difference in the style of work of the

applications.

▪ Balance between high or long processor load

and amount of fast requests that the application

handles.

At present, such criteria are not included in the list

of factors that Kubernetes and popular cloud services

use to decide on which server to run an instance.

REFERENCES

[1] G. A. Gratzer, "General lattice theory." Pure and
Applied Mathematics: A Series of Monographs and
Textbooks, no. 75, Academic Press, New York, 1978.

[2] N. Ajmal and K. V. Thomas, "Fuzzy lattices,"
Information Sciences, vol. 79, no. 3-4, pp. 271-291,
Jul. 1994, doi: 10.1016/0020-0255(94)90124-4.

[3] O. Dmytrenko and M. Skulysh, "Fault Tolerance
Redundancy Methods for IoT Devices,"
Infocommunication Comput. Technol., vol. 2, no. 04,
University "Ukraine," pp. 59-65, Dec. 2022.

[4] Kubernetes Team, "Multi-tenancy in Kubernetes,"
Kubernetes, [Online]. Available: https://kubernetes.io/
docs/concepts/security/multi-tenancy/, [Accessed:
23 Dec 2023].

[5] "A review of in-memory computing for machine
learning: architectures, options," International Journal
of Web Information Systems, Dec. 2023,
doi: 10.1108/IJWIS-08-2023-0131.

[6] F. Wilhelmi, D. Salami, G. Fontanesi, L. Galati
Giordano, and M. Kasslin, "AI/ML-based Load
Prediction in IEEE 802.11 Enterprise Networks,"
2023.

[7] A. Meir, "Does Location Matter In Cloud
Computing?," Ridge Cloud, [Online]. Available:
https://www.ridge.co/blog/location-in-cloud-
computing/, [Accessed: 23 Dec 2023].

[8] Amazon Team, "AWS Global Infrastructure".
[Online]. Available: https://aws.amazon.com/about-
aws/global-infrastructure/?nc1=h_ls, [Accessed:
22 Dec 2023].

[9] Kubernetes Team, "Kubernetes Scheduler." [Online].
Available: https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/, [Accessed:
14 Dec 2023].

[10] Y. Sharma, "Key Strategies for Implementing AWS
Network Load Balancer." Sep. 27, 2023. [Online].
Available: https://dev.to/aws-builders/key-strategies-
for-implementing-aws-network-load-balancer-35fc.

[11] S. Al-Raheym, S. C. Açan, and Ö. T. Pusatli,
"Investigation Of Amazon And Google For Fault
Tolerance Strategies In Cloud Computing Services,"
AJIT-E Online Acad. J. Inf. Technol., vol. 7, no. 23,
pp. 7-22, Nov. 2016, doi: 10.5824/1309-
1581.2016.4.001.x.

[12] L. Globa, M. Skulysh, and A. Zastavenko, "The
method of resources allocation for processing requests
in online charging system," in The Experience of
Designing and Application of CAD Systems in
Microelectronics, 2015, pp. 211-213,
doi: 10.1109/CADSM.2015.7230838.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

17

https://www.zotero.org/google-docs/?Qe63I1
https://www.zotero.org/google-docs/?paVUPd
https://www.zotero.org/google-docs/?zSH0t3
https://www.zotero.org/google-docs/?nrJAu4

