
Practical Experience in DevOps Implementation

Liliia Bodnar1, Mykola Bodnar2, Kateryna Shulakova3,4, Oksana Vasylenko4, Roman Tsarov3,

and Eduard Siemens4
1South Ukrainian National Pedagogical University, Staroportofrankyvska Str. 26, 65020 Odesa, Ukraine

2 LLC B&B Solutions, Dukivska Str. 5, 65000 Odesa, Ukraine
3State University of Intelligent Technologies and Telecommunications, Kuznechna Str. 1, 65023 Odesa, Ukraine

4Anhalt University of Applied Sciences, Bernburger Str. 57, 06366 Köthen, Germany

bodnarl79@pdpu.edu.ua, katejojo29@gmail.com, oksana.vasylenko@hs-anhalt.de, rcarev@gmail.com,

eduard.siemens@hs-anhalt.de

Keywords: DevOps, CI/CD, Commercial Experience, Educational Resources, IT Professionals.

Abstract: This scientific article serves as a comprehensive exploration of the amalgamated technical expertise derived

from hands-on involvement in commercial projects. Its primary objective is to harmonize the training of

upcoming DevOps engineers with the dynamic demands of the real-world market. The focus of our

investigation lies in the intricate stages of сontinuous integration (CI) processes, meticulously shaped by the

practical experiences of seasoned DevOps engineers. Delving into these stages, we unveil invaluable insights

that extend their applicability to benefit both IT instructors and active DevOps practitioners. The elucidation

of these stages is firmly grounded in the pragmatic utilization of a diverse array of DevOps practices. By

drawing from the multifaceted experiences encountered in real-world scenarios, our article presents a nuanced

understanding of the challenges and triumphs that permeate the field of DevOps. This nuanced approach not

only enhances the theoretical knowledge imparted to future engineers but also provides a reservoir of practical

wisdom that can be readily applied in professional settings. That is, оur undertaking encapsulates the core

objective of bridging the disjunction between theoretical knowledge and practical application within the

domain of DevOps.

1 INTRODUCTION

In recent years, DevOps has emerged as one of the
most popular methodologies that bridges the gap
between software development and operations. The
DevOps methodology involves the collaboration of
development teams and operational specialists to
create software with the goal of swiftly deploying IT
solutions to the market. Research [1] has determined
that the primary objective of DevOps is efficient
implementation of new features and reduction of time
frames from development to production. These
findings underscore the impact of this aspect on
improving software development outcomes.
However, DevOps is more than just a methodology;
it is a culture of collaboration and automation that
contributes to reduced burnout and enhanced
productivity [2]. Research involving over 36,000
professionals worldwide regarding DevOps practices
[3] supports successful software delivery and
operational efficiency. Automation, in particular,
helps ensure code quality and reduces the number of

defects [4]. Additionally, a systematic literature
review [5, 6] emphasizes the importance of
integrating security into the DevOps process to ensure
secure development and effective product delivery.
This highlights how modern enterprises in the digital
transformation era face new challenges, compelling
IT teams to adapt to emerging technologies and
embrace customer-centric approaches. Consequently,
traditional software development models like the
Waterfall Model and Spiral Model have given way to
agile practices such as Kanban and Scrum [7].
DevOps has become the most relevant approach in
software development, leading to an increased
demand for individual IT solutions. Rapid software
deployment is no longer just a competitive advantage;
it’s a survival requirement in today’s market. The
demand for DevOps specialists has steadily grown
over the past few years, and this trend is expected to
continue. Alongside demand, the responsibilities of
DevOps engineers have expanded. Today, they are
not only responsible for process automation and
infrastructure configuration but also collaborate with

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

33

mailto:bodnarl79@pdpu.edu.

developers, testers, and system administrators.
DevOps engineers are highly sought after in the job
market, yet existing educational programs don’t
always provide them with the necessary up-to-date
knowledge and skills.

In this study, we explore key technical

competencies and practical experience that make

DevOps engineers marketable. Our research aims to

provide recommendations for preparing DevOps

professionals who meet modern requirements. By

analyzing current trends and drawing from the

practical experience of DevOps engineers, we

identify the essential components that contribute to a

successful CI process. Understanding these stages

and their nuances empowers aspiring DevOps

specialists to navigate the complexities of CI

effectively.

2 ANALYZE THE STATE OF THE

PROBLEM

As a result of our analysis, we’ve identified key

components that make DevOps engineers highly

sought after in the job market (Figure 1), considering

both recent trends [8] and practical insights [9-11]:

 Deep understanding of Software Development

Life Cycle (SDLC). A DevOps professional

must have a clear understanding of all SDLC

stages, from planning and design to testing and

deployment. This understanding enables

effective collaboration with development, QA,

and operations teams to ensure a smooth and

efficient software development and release

process.

 Proficiency in Infrastructure as Code (IaC)

рrinciples. DevOps engineers should be able to

describe and manage infrastructure using code,

leveraging tools like Ansible, Puppet, Chef, or

Terraform. IaC allows for automated

infrastructure creation and configuration,

making it more efficient, reliable, and scalable.

 Thorough configuration management

knowledge. DevOps experts need to grasp

configuration management principles and

utilize tools such as CMDB, Puppet, Chef, or

Ansible for centralized configuration

management of infrastructure and software.

This ensures consistent and coordinated

configuration across all systems, reducing the

risk of errors and improving reliability.

 Confident mastery of Continuous Integration

and Continuous Delivery/Deployment

(CI/CD). DevOps professionals should be

adept at setting up CI/CD processes, which

automate software build, testing, and release.

CI/CD significantly reduces software release

time and enhances its quality.

These skills and competencies complement the key components and make
a DevOps engineer successful

Deep
understanding of

SDLC

Proficient
knowledge of IaC

Solid knowledge in
configuration
management

Proficient
knowledge of CI/CD

Strong analytical
and problem-
solving skills

Effective
communication and

teamwork skills

Ability to self-learn
and adapt to new
technologies and

tools

The effective work of a DevOps engineer depends on their ability to integrate
and use these components

Business knowledge

Soft skills

Technical skills

Figure 1: Components of a successful DevOps engineer.

In addition to these key components, a successful

DevOps engineer should also possess [12]:

 Strong analytical and problem-solving skills.

 Effective communication and teamwork

abilities.

 Adaptability to learn and embrace new

technologies and tools.

Mastering these knowledge areas, skills, and

competencies makes a DevOps professional a

valuable asset for any organization striving to

successfully implement DevOps practices.

Currently, information about DevOps specialists

is scattered across the internet, and there is no single

guide that describes best practices and offers

solutions for effectively combining them to achieve

optimal results. In light of this, we have decided to

create recommendations that allow us to consolidate

our experience and catalogs, showcasing a systematic

approach to problem-solving. From Figure 1, it is

evident that describing all components is a rather

labor-intensive process. Therefore, within the scope

of this article, we have developed an approach for one

of the CI/CD (Continuous Integration/Continuous

Delivery/Continuous Deployment) components:

continuous deployment. CI/CD represents the

practice of automatically delivering and deploying

applications to the production environment after

successfully passing all CI stages (Figure 2). One of

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

34

its distinguishing features is that continuous delivery

deploys code continuously using manual triggers,

while continuous deployment automates deployment

without human intervention. While continuous

delivery and deployment processes do not require

special approaches, continuous integration involves

developing a more detailed strategy.

Figure 2: CI/CD basic workflow.

The core idea of CI is to automate the code build

process, verify code compliance with application

standards, assess security factors, prepare code for

delivery, package it, and publish it. Imagine

assembling a car. Each developer creates individual

components, such as the engine or doors. CI acts as

the conveyor belt that brings these components

together. It automatically “transfers” them from one

stage to another as soon as they are ready. This

approach allows for early error detection and

correction during development, ensuring swift and

reliable delivery of new features. By reducing the

time between developing new functionality and

putting it in users’ hands, CI also minimizes the risk

of deployment issues.

Analyzing works [13-14], we can identify key

aspects of CI:

 Automated Builds. Developers commit their

code changes frequently, triggering automated

builds. These builds compile the code, run code

quality tests, and generate deployable artifacts.

 Unit Testing. CI systems execute unit tests to

validate individual components of the

codebase. Early detection of defects helps

maintain code quality.

 Quality Assurance Testing. CI ensures that

code changes integrate seamlessly with

existing code.

 Artifact Generation. The CI process produces

deployable artifacts (e.g., binaries, containers)

ready for deployment.

 Feedback Loop. Developers receive immediate

feedback about their code changes, allowing

them to address issues promptly.

3 DEVELOPMENT OF A

SYSTEMATIC METHOD OF

SOLUTION

Despite the fact that the CI workflow shares

commonalities with Agile methodologies, it has its

specific elements. While there isn’t a universal

algorithm for CI processes, we can identify a general

structure for the workflow. Figure 3 illustrates the six

stages involved:

1) Source code build stage. This initial step

involves compiling and building the source

code.

2) Self-test stage. Automated tests are executed to

validate the functionality of the code. These

tests cover unit testing, code quality testing, and

other quality checks. It ensures that the code

adheres to coding standards and conventions.

3) Artifact preparation stage. Here, the code is

packaged into deployable artifacts. These

artifacts can be binaries, containers, or other

forms suitable for deployment.

4) Quality Assurance (QA) stage. QA processes,

including manual testing and user acceptance

testing, ensure that the artifacts meet the desired

quality standards.

5) Security checking stage. Security scans and

vulnerability assessments are performed to

identify and address any security risks.

6) Artifact publishing stage. Finally, the validated

and secure artifacts are published to the

appropriate environment (e.g., staging or

production).

CI is a cornerstone of successful DevOps

practices, enabling faster development cycles,

improved collaboration, and higher-quality software

delivery.

Let's analyze each stage of CI and formulate a

systematic approach for each stage.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

35

Figure 3: The general structure of the workflow CI.

3.1 Source Code Build Stage

In software development pipelines, the build stage is

crucial for transforming source code into executable

artifacts. While developers often handle this stage, a

proficient DevOps Engineer should also understand

the process thoroughly. After all, the DevOps

Engineer will be responsible for configuring and

maintaining this critical step in the pipeline.

The primary challenge lies in the fact that each

programming language has its own specific build

tools. For instance:

 .NET: Uses the dotnet builder.

 Java: Relies on the Maven build system.

 React (JavaScript): Requires its own set of

build tools.

However, there are broader solutions that can

simplify the process by taking a more universal

approach. Examples include Gradle and NPM. These

tools cater to specific domains: NPM is excellent for

building web user interface (UI) components based

on JavaScript frameworks like Angular and React,

while Gradle serves as a versatile solution for Java-

related applications (including Kotlin, Groovy, and

Android). Unfortunately, neither Gradle nor NPM is

suitable for building .NET applications.

So, how does a DevOps Engineer navigate this

challenge? Let’s explore some strategies:

A) Developer Responsibility Approach:

1) Some DevOps teams consider the build

stage purely a developer’s responsibility.

They allow developers to configure the build

process locally, assuming it will work

seamlessly in a multiuser environment.

2) However, this approach has limitations.

Developers often tailor their local setups to

specific use cases, which may not translate

well to a shared pipeline. This can lead to

instability and friction between developers

and DevOps engineers.

B) Universal Builders Approach:

1) A more pragmatic solution involves using

universal builders. DevOps Engineers create

general build configurations based on these

tools.

2) Developers then describe their specific build

processes within these universal solutions.

For example:

 The DevOps Engineer ensures the correct

execution of the builder (e.g., Gradle or

NPM).

 Developers focus on defining the build

steps and dependencies within the chosen

tool.

3) This compromise streamlines the DevOps

part, making it more predictable, easier to

manage, and stable.

4) It also clarifies the division of

responsibilities: DevOps handles the

orchestration, while developers focus on the

specifics of their application builds.

In summary, a collaborative approach that

leverages universal builders strikes a balance between

stability, flexibility, and clear responsibilities in the

build process. DevOps Engineers play a crucial role

in ensuring smooth execution, while developers

contribute their domain-specific knowledge to the

configuration.

3.2 Self-Test Stage

In software development pipelines, the build stage

plays a critical role. It serves as the last checkpoint

where developers can review their code before it

proceeds to subsequent stages. These subsequent

stages are beyond their control, as they fall outside the

developers’ direct responsibility.

The build stage is an ideal place to execute unit

tests, lint checks, and other validations. These tests

are typically short and efficient, minimizing the time

spent in this phase. However, the main challenge lies

in the human factor. Writing comprehensive unit tests

requires disciplined processes and a strong

commitment, which developers may not always

prioritize. Common reasons include a lack of clear

code standards and insufficient requirements for

adhering to those standards.

While this leniency might be acceptable in startup

environments, it becomes unacceptable for stable

projects. In mature projects, where the codebase is

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

36

well-established, any deviation from coding

standards can lead to unpredictable outcomes.

Another challenge in this stage pertains to

reporting and handling failures. CI pipelines often run

in the background, lacking the UI where developers

can directly view test results. Additionally, when

multiple pipeline runs occur concurrently, the

previous results may get overwritten by the current

run. To address this, we rely on middleware tools

such as SonarQube or SonarCloud. These tools

integrate seamlessly with CI platforms and serve as

repositories for test reports.

However, merely collecting reports isn’t

sufficient. We also need mechanisms to halt the

pipeline when tests fail. This functionality is typically

implemented within the chosen middleware.

Here are two trade-offs to consider for this step:

1) Base Code Formation. If the base code is still

evolving, and the development team lacks

strict code standards, you might choose to

omit this stage initially. However, it’s

essential to add it as the team matures and

establishes clearer guidelines.

2) Middleware Integration. For projects with

well-defined standards, integrate middleware

tools like SonarQube or SonarCloud into your

CI process. These tools not only store reports

but also provide stop triggers to prevent

pipeline progression upon test failures.

In summary, striking a balance between flexibility

and stability ensures that the DevOps role remains

effective in managing the build process. Developers

contribute their expertise within the universal

framework, while DevOps Engineers orchestrate the

overall pipeline execution.

3.3 Artifact Preparation Stage

The stage is optional, but in line with the modern

trend of creating platforms based on microservices,

the importance of stages is growing. These stages

serve as containers for microservices, where each

microservice can reside. The use of Docker

containers for this purpose is particularly

advantageous. By preparing a standardized

environment for each service within a container, you

can ensure that the application will function

consistently from scratch.

Additionally, there are significant benefits for

DevOps engineers. Working with Docker containers,

rather than independent applications, allows for the

unification and automation of the delivery and

runtime processes. However, a key challenge arises

during the CI/CD pipeline: how to package an

application into a Docker image. When using a virtual

machine (VM) as a build server, installing the Docker

daemon and running the docker build command with

a prepared Dockerfile is straightforward. But what if

your CI/CD pipeline relies on Docker containers as

build servers, as is the case with GitHub Actions,

GitLab CI/CD, or Jenkins with Kubernetes plugins?

In such scenarios, you must address several issues,

including providing the Docker daemon inside a

Docker container with access to the Linux socket.

To tackle this problem, the Google team

developed an application called ‘Kaniko.’ Kaniko can

create a Docker image based on a Dockerfile without

requiring the Docker daemon. Instead, it treats the

Docker image as a simple archive with a specific

internal structure. Kaniko parses the Dockerfile based

on the defined run points, creates the archive package

(Docker image), and pushes it to any Docker registry.

Kaniko strikes an ideal compromise for this stage of

the process.

3.4 QA Stage

The stage is ideal for running short-lived quality

assurance tests. Specifically, we focus on tests like

smoke tests, rather than larger ones such as

performance or integration tests.

However, the main challenge with using a stage is

that some teams treat the CI tool as the primary

environment for running all tests conducted by QA

engineers. This approach is fundamentally flawed

because CI tools serve multiple purposes. While one

of their functions is to execute scripts triggered by

events, this functionality is primarily suited for

running automatic test scripts.

Unfortunately, CI tools cannot fully provide the

range of QA functionality required. For instance, they

may lack proper mechanisms for collecting and

viewing test reports or adjusting the runtime

environment to consistently run the same set of tests

automatically and manually.

To strike a balance, consider splitting your test

suite into two groups:

1) Short-lived tests. These can be seamlessly

integrated into CI pipelines.

2) Independent tests. These should be executed

using dedicated QA tools like TestKube or

similar alternatives.

When integrating QA tools with CI/CD pipelines,

choose wisely. For instance:

 CI integration makes sense for controlling and

automatically running short-lived, CI-

compatible tests.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

37

 CD integration is more suitable for other types

of tests, as it accommodates specific triggers

that may only be available during CD pipelines.

Selecting the right integration ensures correct

automation and flexibility.

3.5 Security Checking Stage

The stage is optional, but in recent times, its

importance has been growing. First and foremost,

security considerations need to be defined. The field

of security testing is vast, with multiple levels, each

having its own penetration goals and scenarios. While

it’s not feasible to run the entire spectrum of security

tests during the continuous integration (CI) pipeline

due to various constraints (such as context or the

inability to accurately assess application status),

certain types of tests can indeed be executed within

this pipeline.

Specifically, let’s focus on vulnerability tests for

applications. The goal of these tests is to identify

security vulnerabilities in the code before it reaches

the production stage. Scanning code for

vulnerabilities is a challenging task that demands

extensive knowledge not only about potential

weaknesses in your application but also in the

dependencies it relies upon.

The primary challenge with this stage lies in the

lack of a universally understood approach. Engineers

often seek the simplest solution—one that works out

of the box without requiring deep dives into complex

configurations. Unfortunately, such one-size-fits-all

solutions don’t exist.

A reasonable compromise is to explore the

various CI plugins available in the market. By delving

into these options, you can select the most suitable

solution for your project, covering at least 50% of

your security needs.

In different projects with varying requirements,

we’ve encountered solutions like BlackDuck, which

is intricate to understand and may not always provide

stable results. On the other hand, X-Ray scanning,

integrated into JFrog Artifactory, offers a simpler

experience. JFrog takes care of X-Ray’s

functionality, although it might be less powerful in

terms of where scanning results are visible.

Given the abundance of solutions in the global

market, it’s essential to find the one that best fits your

project’s specific context.

3.6 Artifact Publishing Stage

The stage is the finishing stage. The appearance and

functionality of this stage are determined by the

programming language used. Each language has its

own build process and produces specific types of

artifacts. An artifact is a compiled and packaged file

ready for deployment within the application process.

For instance, in Java, artifacts could be JAR files,

application packages, WAR files, or even Docker

image files.

However, a critical challenge arises: how to

manage these artifacts effectively. Each type of

artifact requires storage in a specific registry. While

some artifacts (like JAR, WAR, and application files)

can share a common repository (such as Maven or

Gradle), others (like .NET artifacts) necessitate

separate repositories (e.g., NuGet for .NET or npm

for JavaScript).

To address this, consider using universal storage

solutions like Sonatype Nexus Repository or JFrog

Artifactory. These platforms offer a wide range of

repository types, allowing you to create storage

tailored to your project’s needs. By integrating just

one solution with your CI/CD tools, you simplify

artifact management.

Beyond this primary compromise, there are

additional tips to reduce repository complexity. For

example:

 Microservices and Docker. If you’re building a

microservices platform based on Docker

containers, you don’t need to store individual

application artifacts. Instead, focus on storing

Docker images containing the application

artifacts. This approach streamlines

repositories within a single Docker registry.

 Helm Chart Repositories. Helm can utilize a

Docker registry as a Helm chart repository.

While this approach has limitations, it’s worth

considering if needed.

In summary, aim for a repository setup that aligns

with your project’s requirements while minimizing

unnecessary complexity. However, native

repositories offer features that can be highly

beneficial for the CI/CD process. If you have the

opportunity to use them, it’s advisable to do so.

4 CONCLUSIONS

In our research, we delved into the key components

that make DevOps engineers highly sought-after in

the job market. Despite widespread adoption, there

remains a scarcity of comprehensive resources that

consolidate practical knowledge for aspiring DevOps

professionals. Our study aims to bridge this gap by

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

38

offering a holistic view of DevOps practices based on

real-world commercial experience.

Our primary focus was on CI. We developed

recommendations outlining six approaches for

implementing CI. Additionally, we provided

examples and approaches for applying these practices

in real-world projects.

By considering these critical factors, IT

companies can strengthen their position in the

international market by hiring skilled DevOps

engineers, thereby creating a dynamic environment

that encourages growth, innovation, and sustainable

global collaboration.

Our research contributes to the existing body of

knowledge by providing a comprehensive overview

of DevOps practices and their associated benefits.

These findings can be leveraged by:

 Universities: To develop and implement

effective DevOps education programs.

 IT companies: To recruit and train skilled

DevOps engineers.

 DevOps engineers: To enhance their skills and

knowledge.

Future research directions include:

 Investigating other key components of

DevOps, such as infrastructure as code (IaC)

and containerization.

 Developing case studies on the successful

implementation of DevOps practices in

different industries.

We believe that this research will help to advance

the field of DevOps and make a contribution to the IT

industry.

ACKNOWLEDGMENTS

We acknowledge support by the German Research
Foundation (Deutsche Forschungsgemeinschaft
DFG) - and the Open Access Publishing Fund of
Anhalt University of Applied Sciences.

REFERENCES

[1] L.E. Lwakatare, P. Kuvaja, and M. Oivo,
"Relationship of DevOps to Agile, Lean and
Continuous Deployment," in P. Abrahamsson et al.
(eds), Product-Focused Software Process
Improvement. PROFES 2016. Lecture Notes in
Computer Science, vol 10027, pp 399-415, Springer,
Cham, 2016, [Online]. Available:
https://doi.org/10.1007/978-3-319-49094-6_27.

[2] M. Sánchez-Gordón and R. Colomo-Palacios,
"Characterizing DevOps Culture: A Systematic
Literature Review," in I. Stamelos et al. (eds),
Software Process Improvement and Capability
Determination. SPICE 2018. Communications in
Computer and Information Science, vol. 918, pp. 3-15,
Springer, Cham, 2018, [Online]. Available:
https://doi.org/10.1007/978-3-030-00623-5_1.

[3] "2023 State of DevOps Report," [Online]. Available:
https://cloud.google.com/devops/state-of-devops,
[Accessed: 28 Dec 2023].

[4] D. Belcher, "Three Trends That Will Transform
DevOps in 2023," 2023, [Online]. Available:
https://devops.com/three-trends-that-will-transform-
devops-in-2023, [Accessed: 28 Dec 2023].

[5] M. Gasparaite, K. Naudziunaite, and S. Ragaisis,
"Systematic Literature Review of DevOps Models," in
M. Shepperd et al. (eds), Quality of Information and
Communications Technology. QUATIC 2020.
Communications in Computer and Information
Science, vol. 1266, pp. 184-198, Springer, Cham,
2020, [Online]. Available:
https://doi.org/10.1007/978-3-030-58793-2_15.

[6] T. Leppаnen, A. Honkaranta, and A. Costin, "Trends
for the DevOps Security. A Systematic Literature
Review," in B. Shishkov (eds), Business Modeling and
Software Design. BMSD 2022. Lecture Notes in
Business Information Processing, vol. 453, pp. 200–
217, Springer, Cham, 2022, [Online]. Available:
https://doi.org/10.1007/978-3-031-11510-3_12.

[7] M. Rütz, "DevOps: A Systematic Literature Review,"
Twenty-Seventh European Conference on Information
Systems (ECIS2019), Stockholm-Uppsala, Sweden,
2019, pp. 1-16, [Online]. Available:
https://www.researchgate.net/publication/335243102
_DEVOPS_A_SYSTEMATIC_LITERATURE_REV
IEW.

[8] M. Modi, "The Future of DevOps: 2024 and Beyond,"
2023, [Online]. Available:
https://www.knowledgehut.com/blog/devops/future-
of-devops, [Accessed: 29 Dec 2023].

[9] "DevOps practice in Ukraine, 2024," [Online].
Available: https://bandbsolution.com.ua/en,
[Accessed: 11 Jan 2024].

[10] "DevOps practice in Germany, 2024," [Online].
Available: https://www.fme.de/dienstleistungen/
technology-services, [Accessed: 10 Jan 2024].

[11] "DevOps practice in USA, 2024," [Online]. Available:
https://www.fme-us.com. [Accessed: 10 Jan 2024].

[12] G.B. Ghantous and A. Gill, "DevOps: Concepts,
Practices, Tools, Benefits and Challenges," PACIS
2017 Proceedings, pp. 1-13, 2017, [Online].
Available: http://aisel.aisnet.org/pacis2017/96.

[13] L. Gryzun, V. Pikalova, and L. Bodnar, "Issues of
Selecting an Instrument of Continuous Integration for
Software Automated Testing," International Scientific
and Practical Forum «Digital Reality» 2023
[«FDR2023»]: Cybersecurity and information
technologies in the hybrid wars conditions, [Accessed:
2 Dec 2023].

[14] "DevOps Tools - GitLab CI/CD," [Online]. Available:
https://digitize01.com/devops-tools-gitlab-ci-cd,
[Accessed: 29 Dec 2023].

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

39

