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Abstract: Aquatic ecosystems are crucial in maintaining environmental equilibrium and sustaining human well-being. 

However, the traditional manual methods used in hydrobiological research have limitations in providing a 

far-reaching understanding of these intricate ecosystems. Data science, machine learning, and deep learning 

techniques offer a variety of opportunities to overcome these limitations and unlock new insights into aquatic 

environments. This study highlights the impact of computational tools in areas such as taxonomic 

identification, metagenomic sequence analysis, and water quality prediction. Deep learning techniques have 

demonstrated superior accuracy in classifying organisms, including those previously unidentified by 

conventional methods. In metagenomic sequence analysis, machine learning aids in effectively assembling 

DNA sequences, aligning them with known databases, and addressing challenges related to sequence repeats, 

errors, and missing data. Furthermore, predictive models have been developed to provide insights into water 

quality parameters, such as eutrophication events and heavy metal concentrations. These advancements lead 

to informed conservation measures and a deep understanding of the intricate relationships within aquatic 

ecosystems. However, challenges persist, including data quality issues, model interpretability, and the need 

for robust training datasets. Thus, data integration strategies designed specifically for environmental and 

genomic studies are necessary. Data fusion and imputation can help address data scarcity and provide a 

comprehensive view of hydrobiological processes. As the study of aquatic ecosystems continues to evolve, 

the synergy between computational methods and traditional hydrobiological techniques holds immense 

potential. By leveraging the power of data science and cutting-edge technologies, researchers can gain a deep 

understanding of aquatic environments, monitor changes in biodiversity, and develop informed strategies for 

sustainable management amidst global environmental shifts. 

1 INTRODUCTION 

Hydrobiological research stands as a cornerstone in 

the comprehensive understanding of aquatic 

ecosystems, which are critical to both environmental 

equilibrium and human sustenance [1]. Historically, 

hydrobiological inquiries were primarily anchored in 

manual sampling techniques and observational 

methodologies, offering insights that were often 

limited by the scope and resolution of available tools. 
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With the advent of modern technologies, there has 

been an exponential surge in the volume and 

granularity of data obtainable from aquatic 

environments, necessitating the integration of more 

sophisticated analytical tools [2]. 

The taxonomic identification of organisms within 

aquatic ecosystems is of paramount importance in 

hydrobiological research [3]. It serves as a 

fundamental pillar in assessing the health and 

biodiversity of these ecosystems, which in turn 

impacts their ecological functions and resilience to 

environmental changes. Accurate taxonomic 

identification allows scientists to monitor the 

presence of indicator species, assess shifts in 

community composition, and detect potential 

invasive species that can disrupt the balance of 

aquatic ecosystems [4]. However, the field of 

taxonomic identification faces common challenges, 

including the vast diversity of aquatic organisms, 

taxonomic ambiguities, and the need for rapid and 

cost-effective identification methods [5]. 

Additionally, environmental stressors such as climate 

change and pollution further underscore the 

importance of robust taxonomic identification to 

monitor and mitigate their effects on aquatic 

ecosystems [6]. 

Furthermore, global environmental challenges, 

including climate change, pose significant threats to 

aquatic ecosystems. Climate-related shifts in 

temperature, precipitation, and water chemistry 

impact species distributions, increase the prevalence 

of cyanobacterial blooms with toxic effects, disrupt 

hydrological patterns, and lead to ocean acidification 

and glacial retreat [7, 8]. These global issues, while 

vast in their implications, are intricately linked to the 

microcosmic interactions occurring within water 

bodies. 

The integration of data science, machine learning, 

and deep learning into hydrobiological research 

offers an unprecedented opportunity to decipher these 

complex interactions, predict future trends, and 

formulate strategies for sustainable management and 

conservation [9]. The sheer volume, complexity, and 

multidimensionality of data sourced from aquatic 

ecosystems have transcended the analytical 

capabilities of conventional methods. Data science, 

machine learning, and deep learning offer 

sophisticated frameworks that can seamlessly 

process, analyze, and interpret this deluge of 

information, enabling researchers to glean deeper 

insights and uncover subtle patterns that were 

previously elusive. These computational tools not 

only enhance the precision and accuracy of analyses 

but also empower researchers to model intricate 

ecological interactions, forecast environmental shifts, 

and optimize interventions for aquatic conservation 

[10]. In a realm as dynamic and intricate as 

hydrobiology, the fusion of computational prowess 

with biological inquiry heralds a new era of informed 

decision-making and robust ecosystem management.

2 ADDRESSING COMMON 

CHALLENGES IN 

METAGENOMIC ANALYZES 

In recent years, the biotechnological landscape has 

undergone a huge transformation. Traditionally, 

DNA sequencing was predominantly executed on 

either cultivated cells or genetic material derived 

from a specific organism with known taxonomic 

classification. That is to say, homology-based 

approaches for sequence analysis have emerged as a 

popular solution for taxonomic classification [11]. 

They are grounded in the principle that sequences 

sharing a common ancestry will exhibit similarities. 

These approaches compare a query sequence against 

a database of known sequences, seeking matches or 

alignments that indicate a common typology. These 

methods are characterized by the very high strength 

and precision, especially when the genome is already 

cataloged in the database. 

However, a significant challenge arises from the 

vast number of sequences that remain unclassified. 

Estimates suggest that at most, only 9% of ocean 

species have been described [12]. Furthermore, the 

effectiveness of taxonomic classification varies 

depending on factors like the sample origin, desired 

taxonomic level, and database specifics. Such 

limitation became even more evident with the rise of 

DNA sequence assembly aims at reconstructing the 

original structure of the DNA in question, by alig-

ning [13] and merging fragments of a DNA sequence. 

Sequence assembly, the process of reconstructing 

full DNA sequences from fragmented reads, relies 

heavily on advanced computational algorithms and 

specialized software [14]. While these tools offer 

precision, technical challenges, such as missing data 

and genomic intricacies like sequence repeats and 

heterozygosity, can impede accurate reconstruction. 

Such oversights can compromise the assembly's 

integrity [15]. As the demand for computational 

efficiency and optimal resource utilization 

grows [16], the integration of data science techniques 

becomes increasingly crucial, promising improved 

accuracy and streamlined assembly workflows 

(Figure 1). 
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Figure 1: Schematic workflow for metagenomic sequences analysis. The workflow depicts the journey from raw sequence 

data acquisition, through preprocessing and quality control, to assembly and annotation.

The development of graph algorithms has brought 

significant advancements to the field, with three 

primary categories traditionally employed: 

Overlap/Layout/Consensus (OLC), de Bruijn Graph, 

and greedy graph methods [13]. In classic computer 

science terminology, a graph is an abstraction 

comprising nodes interconnected by edges. Within 

the overlap graph approach, sequencing reads are 

depicted as nodes, while their overlaps are 

represented by edges. This graph can also be 

equipped with additional attributes to differentiate 

between the 5′ and 3′ ends of reads, forward and 

reverse complement sequences, read lengths, overlap 

lengths, and overlap types (either suffix-to-prefix 

containment [17]). Researchers at Leiden University 

have explored the use of overlap graphs for 

assembling genome sequences from Ciliates found in 

water bodies. While their findings underscored the 

potential of this approach for genome assembly, they 

also suggested refinements to enhance its efficiency 

and accuracy. One such refinement was the 

introduction of a 'partial' model, characterized by 

specific forbidden induced subgraphs. Notably, this 

model does not have a counterpart for the simple 

double string rule in graph rules [18]. Furthermore, 

the team introduced a method to directly construct the 

reduction graph from its overlap graph, emphasizing 

the capability to recover structural information 

seemingly lost in the overlap graph [19] . While these 

results are promising, further investigations are 

needed to determine the consistency of this method's 

effectiveness across various overlap graphs and 

organism genera. 
De Bruijn approach for sequence assembly 

introduced great advancements in the field and 
underlied the development of a number of modern 
sequence assembly approaches [20]. In this approach, 
the nodes represent all possible fixed-length strings 
and the edges represent suffix-to-prefix perfect 
overlaps. One of the important forms of de Bruijn 

graphs is the K-mer graph (Figure 2a). Its edges 
represent all the fixed-length overlaps between 
subsequences that were consecutive in the larger 
sequence. According to one approach, each K-mer 
starting at a base corresponds to an edge, with nodes 
representing overlaps of K-1 bases [21]. In contrast, 
each K-mer starting at a base is depicted as a node, 
while edges signify overlaps of K-1 bases [22]. In the 
realm of WGS assembly, K-mer graphs can depict 
multiple sequences, with each read represented as a 
distinct path. When reads perfectly overlap, they 
share a common path, allowing the implicit detection 
of these overlaps without the necessity for pair-wise 
sequence alignment calculations (Figure 2b). While 
overlap graphs merge paths at longer repeats within a 
read, K-mer graphs do so at perfect repeats with a 
length of K or more, given that K is shorter than the 
read length. This makes K-mer graphs particularly 
susceptible to sequencing errors and repeats. A 
singular sequencing error can generate up to K 
incorrect nodes in the K-mer graph. Consequently, 
these erroneous nodes might align with other nodes, 
leading to unintended path convergences [13].   

A number of approaches incorporate de Bru 
graphs to the sequence assembly with positive 
outcomes. For instance, Velvet stands out as a 
widely-used de novo assembler, tailored specifically 
for short-read sequencing data from next-generation 
sequencing platforms [22]. Thanks to its mechanism, 
Velvet is capable of managing exceptionally short 
reads and read pairs, facilitating the construction of 
meaningful genomes. Its versatility is evident from its 
widespread application across diverse genomic 
investigations, often juxtaposed with other assembly 
tools to gauge its competence [23]. On the other hand, 
Velvet's single-threaded design restricts its operation 
to a single processor, potentially curtailing its 
scalability with expansive datasets that are common 
in environmental and water body research [24]. That 
is to say, the application relies on an in-memory 
representation of the de Bruijn graph, which can be 
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memory-intensive for larger genomes [25]. Other 
common de Bruijn graph-based assemblers include, 
ALLPATHS, HaVec, ABySS, MEGAHIT, 
SOAPdenovo , and YAGA. 

The challenge of handling high-dimensional data 
is recurrent across various methods. Consequently, 
several strategies have been developed to address this 
concern. Among these, DBGPS, which employs the 
de Bruijn graph combined with a greedy path search, 
stands out. This approach not only effectively 
manages high-dimensional data, demonstrated by its 
successful handling of 6.8 MB of data, but also 
adeptly addresses issues related to DNA breaks, 
rearrangements, and indels [26]. 

Next important step of the analysis of sequenced 
data is the alignment. Alignment involves matching 
the sequenced data to a reference genome or other 
sequences, a process fraught with challenges. 
Common difficulties [27] include handling 
mismatches due to genetic variations, dealing with 
gaps or insertions, and navigating through repetitive 
regions that can confound traditional alignment 
algorithms [28]. Metagenomic samples add layers of 
complexity to the analysis, amplifying the inherent 
challenges. Due to the vast diversity of microbial 
species in a single sample, distinguishing between 
closely related organisms can be problematic [29]. 
The presence of rare species means reference 
genomes might be absent, making traditional 

alignment methods inadequate [30]. Moreover, 
horizontal gene transfer events, common in microbial 
communities, can create chimeric sequences, 
complicating alignment  [31]. 

There were several approaches that tried to solve 
the issues of conventional alignment methods. One of 
those is the greedy x-drop algorithm that performs 
sequence alignment by making locally optimal 
choices at each stage with the hope of finding a global 
optimum. While it is generally quicker than other 
conventional alignment algorithms, its primary 
disadvantage is that it doesn't always guarantee an 
optimal global alignment. However, due to its 
efficiency, it remains a popular choice in scenarios 
where approximate alignments are acceptable or 
when dealing with shorter DNA sequences [32]. 
Several other attempts existed to incorporate machine 
learning algorithms to optimise the alignment 
process. 

Recent research underscores the promise of 
reinforcement learning algorithms in tackling key 
challenges associated with sequence alignment, 
demonstrating encouraging results.  Specifically, 
these algorithms have demonstrated superior 
performance compared to conventional matrix-based 
tools, such as ClustalW and MAFFT, especially when 
applied to multiple sequence alignments of several 
benchmark datasets [33]. 

Figure 2: De Bruijn approach: a) a single read is mapped using two K-mer graph models to highlight the node-edge 
relationship for overlapping K-mers. Ideal for depicting simple paths due to minimal repeats. b) Pair-wise Overlap via K-mer 
Graph demonstrates error-free overlap of two reads and their unified representation in a K=4 K-mer graph, facilitating 
straightforward consensus sequence reconstruction through a simple path. 
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However, a prevalent constraint among these 
methods is their tendency to align sequences of a 
particular length, a limitation stemming from fixed 
input and network dimensions. To surmount this 
obstacle, Song and Cho (2021) integrated the 
DQNalign approach with the x-drop algorithm [34]. 
This amalgamation enhanced alignment 
performance, reduced complexity, and minimized 
computational time. Notably, when employed in the 
alignment of the E. coli genome, this method's 
accuracy paralleled that of conventional techniques. 
Another notable reinforcement learning-based 
solution is EdgeAlign, strategically tailored for the 
effective alignment of DNA sequences on edge 
devices. This innovative approach showcases the 
integration of a highly compact yet robust deep Q-
network (DQN) agent, akin to the previously 
described method, ensuring a uniform hardware 
resource footprint regardless of sequence  
lengths [35]. 

In summary, recent advancements in genomics 
have ushered in a new era of metagenomics and DNA 
sequence analyses, challenging traditional 
methodologies. The integration of data science 
approaches, exemplified by use of machine learning 
methods, promises to enhance sequence alignment 
efficiency and accuracy. Altogether, it will speed-up 
advances in the hydrobiology due to high processing 
throughput of these systems. The automation of time-
consuming and routine activities will contribute to 
high-quality data-driven approaches to tackle urgent 
climate change issues and its impact on water 
ecosystems and resources. 

3 COMPUTATIONAL ADVANCES 

IN THE AQUATIC TAXONOMY 

The taxonomic classification of organisms within 
water bodies plays a crucial role in ecological 
research and environmental monitoring [36]. Over 
time, this classification has progressed significantly, 
from traditional homology-based methods to the 
adoption of advanced deep learning techniques. 
Understanding the composition and dynamics of 
aquatic ecosystems is essential for assessing water 
quality, tracking changes in biodiversity, and 
studying the impact of environmental factors, such as 
climate change and pollution, on aquatic 
habitats [37]. 

From a technical standpoint, most classification 

tools hinge on the similar methodologies as described 

above, namely local alignments, k-mers, Burrow–

Wheeler transformations, minimizers, or hybrid 

methodologies [38]. For instance, the discriminative 

k-mers method has been applied to classify

metagenomic sequences, demonstrating remarkable 

accuracy, especially for short metagenomic reads. 

Notably, this algorithm exhibited impressive speed, 

capable of processing up to 32 million metagenomic 

short reads per minute [38]. Its performance aligns 

with other k-mer-based tools known for their 

accuracy, speed, and minimal memory 

requirements [39]. However, it's important to note 

that these methods primarily focus on the genus 

and/or species levels, with limited evaluation at 

higher taxonomic ranks. Overall,  k-mer-based 

approaches excel in terms of speed, but their recall 

and precision may exhibit variability. On the 

contrary, local alignments, while highly precise, can 

be computationally intensive and may yield restricted 

recall rates. 

To address these challenges, deep neural network 

(DNN) approaches have emerged as a promising 

solution. These deep learning techniques, rather than 

merely relying on database similarities, model 

intricate relationships between DNA sequences and 

their taxonomic classes. An example of such an 

algorithm is a recently developed model called 

BERTax, that is based on the state-of-the-art natural 

language processing architecture BERT 

(bidirectional encoder representations from 

transformers) updated with additional layers. 

BERTax is able to classify the sequences in question 

on 3 taxonomic levels (superkingdom,  phylum and 

genus). A notable advantage of such methods 

compared to the conventional approaches is that it 

does not focus on local similarity, but on the overall 

image and, therefore, is not subjected to the common 

restrictions of comparable tools. As a result of such 

novelty, the tool was able to deal with novel 

organisms, not existing in the initial databases, which 

still remained a challenge for similar tools [40]. 

DNA barcoding, another widely-adopted genomic 

approach for taxonomic classification, owes its 

popularity to several key attributes [41]. This method 

utilizes a standardized region of DNA, enabling 

efficient species identification, insights into 

molecular lineage, and applications in conservation 

biology [42]. Traditionally, DNA barcoding relied on 

similarity-, character-, and tree-based methodologies. 

However, as computational capabilities have 

advanced, the integration of machine and deep 

learning techniques has emerged as a transformative 

approach. The evaluation of various algorithms using 

both empirical and synthetic datasets has 

demonstrated the remarkable efficacy of the k-nearest 

neighbors algorithm in addressing these tasks, 

outperforming other techniques such as Naive Bayes, 

Random Tree, and SVM [43]. While these algorithms 
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exhibit high performance on synthetic datasets, real-

world data introduces additional challenges, 

including the high dimensionality of DNA barcode 

sequences, limited interspecific sequence variation, 

and numerical constraints due to the diversity of 

species. Consequently, a recent study has employed a 

sophisticated deep learning model to tackle these 

complexities in classifying fish from different 

families. This novel approach combines an Elastic 

Net-Stacked Autoencoder (EN-SAE) with Kernel 

Density Estimation (KDE), effectively mitigating the 

aforementioned challenges and enhancing 

classification accuracy [44]. 

Computer vision techniques have also been 

effectively employed in the taxonomic detection and 

classification of aquatic organisms. A noteworthy 

study utilised the Faster Region-based Convolutional 

Neural Network (R-CNN) extended with a 

supplementary classification branch.  Remarkably, 

the model posted mean average precision scores of 

74.64% at the genus level and 81.17% at the class 

level source, however the dataset's uneven 

distribution, with varying instance percentages of 

specific genera and biological classes, influences the 

model's efficacy. This limitation underscores the 

impending need for well-balanced, high-quality 

datasets for the algorithm training, as this step directly 

influences the model’s performance [45]. Another 

successful application of taxonomy in aquatic 

habitats is exemplified by the work of Memmolo et 

al. (2020), where they conducted algorithm training 

using diatom test slides. Leveraging a substantial 

dataset comprising 8,731,800 elements, an average of 

174.636 augmented phase-contrast images were 

generated from a single hologram record. This 

extensive dataset contributed to training a model that 

achieved an impressive classification accuracy of 

98% [46]. These findings underscore the practicality 

and cost-effectiveness of utilizing species test slides 

as a valuable approach for training classification 

models in taxonomic studies. 

In conclusion, the adoption of advanced 

computational methods, including deep learning and 

DNA barcoding, holds significant promise for 

enhancing aquatic taxonomic classification. These 

approaches offer notable advantages, such as 

improved accuracy and scalability, enabling more 

precise species identification and ecological analysis. 

However, challenges related to data quality, model 

interpretability, and the need for robust training 

datasets remain. Despite these obstacles, the potential 

benefits for biodiversity assessment, environmental 

monitoring, and conservation efforts are substantial. 

Further research and refinement of these 

methodologies are essential to unlock their full 

potential in advancing our understanding of aquatic 

ecosystems. 

4 CONCLUSIONS AND FUTURE 

The intersection of machine learning and 

hydrobiological research has opened doors to a 

plethora of possibilities in understanding aquatic 

ecosystems. These computational tools offer a 

sophisticated framework for handling the increasing 

volume and complexity of aquatic data, making 

previously elusive patterns more discernible. The 

taxonomic identification of organisms, a pivotal 

aspect of hydrobiological research, has seen 

remarkable advancements with the integration of 

deep learning techniques, improving precision and 

enabling detection of novel organisms. Furthermore, 

in the domain of metagenomic sequences analysis, 

machine learning has addressed challenges related to 

sequence assembly, alignment, and taxonomy, paving 

the way for more efficient and accurate methods. 

However, despite the significant strides made, 

challenges persist. The quality of data, model 

interpretability, and the need for robust training 

datasets are among the hurdles faced. Therefore, there 

is a need for developing robust data integration and 

augmentation strategies, custom-tailored specifically 

for environmental and genomic studies. Most of the 

studies utilize common practices, such as image 

rotation and cropping, synthetic data generation, and 

manual modification. To overcome the data scarcity, 

usage of data fusion techniques can become helpful, 

however such approaches are not precisely studied in 

terms of hydrobiological research. Additionally, 

utilization of data imputation might fill gaps in the 

datasets and provide a precise view of the explored 

hydrobiological processes.  Furthermore, while 

computational models offer enhanced accuracy and 

efficiency, their real-world application necessitates a 

comprehensive understanding of local aquatic 

nuances and characteristics. 

However, the main challenges and opportunities 

for future studies in this area include high complexity 

and non-linearity of the data, noise, lack of covariates, 

and compositionality. This particular problem can be 

solved with a large model well-versed in the specifics 

of the domain area, similarly the way large language 

models are trained. 

In essence, the fusion of computational 

methodologies with traditional hydrobiological 

techniques holds immense potential. As research 

continues and technologies evolve, the synergy of 
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these domains will undoubtedly lead to more 

informed strategies for the preservation and 

understanding of aquatic ecosystems. The emerging 

developments of data science in hydrobiology are 

mainly in their early stages and are becoming a 

powerful  assistance tool for regular research 

activities. Their applications are vital for water 

quality monitoring,  environment and climate change 

processes modeling. We expect the number of data 

science models and tools to grow in the incoming 

years with improvements in predictive performance 

and data quality. It is worth preparing solid data 

resources to make such studies possible and 

consolidate the available knowledge into a high-

quality model. 

The leveraged data and machine learning 

technologies are offering a significant boost to the 

development of specific areas of hydrobiology and 

aquatic environment modeling. The reviewed studies 

explore usage  models and algorithms with a varying 

level of complexity depending on the input 

requirements. We consider that despite the 

exponential growth and usage of deep learning 

technologies, classical linear- and tree-based machine 

learning algorithms provide enough efficiency, 

flexibility, and accuracy to assist with modeling of 

hydrobiological properties and characteristics. 

We observe a rising number of deep learning 

applications for unstructured data classification. It is 

worth mentioning that such an approach is very 

robust when dealing with image, sensor or text data 

formats. Nevertheless, the usage of deep learning 

networks requires large amounts of data in order to be 

efficient, which is the primary issue of the reviewed 

studies. Data collection for these research areas is still 

a major challenge due to a number of factors: sensor 

design and technologies, their deployment and high 

costs associated with them, a need for appropriate 

equipment and computational resources. From a 

hydrobiological perspective the following difficulties 

arise during data assemblage: vast diversity of 

unclassified microbes; heterogeneity, repeats, and 

duplications; quick genetic changes complicate the 

clarity of taxonomic categorization; external impact 

(environment or reagents contamination). 
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