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Abstract
1. The United Nations has declared 2021–2030 the decade on ecosystem restora-

tion with the aim of preventing, stopping and reversing the degradation of the 
ecosystems of the world, often caused by the fragmentation of natural land-
scapes. Human activities separate and surround habitats, making them too small 
to sustain viable animal populations or too far apart to enable foraging and gene 
flow. Despite the need for strategies to solve fragmentation, it remains unclear 
how to efficiently reconnect nature. In this paper, we illustrate the potential of 
deep reinforcement learning (DRL) to tackle the spatial optimisation aspect of 
connectivity conservation planning.

2. The propensity of spatial optimisation problems to explode in complexity de-
pending on the number of input variables and their states is and will continue to 
be one of its most serious obstacles. DRL is an emerging class of methods focused 
on training deep neural networks to solve decision- making tasks and has been 
used to learn good heuristics for complex optimisation problems. While the po-
tential of DRL to optimise conservation decisions seems huge, only few examples 
of its application exist.

3. We applied DRL to two real- world raster datasets in a connectivity planning set-
ting, targeting graph- based connectivity indices for optimisation. We show that 
DRL converges to the known optimums in a small example where the objective 
is the overall improvement of the Integral Index of Connectivity and the only 
constraint is the budget. We also show that DRL approximates high- quality solu-
tions on a large example with additional cost and spatial configuration constraints 
where the more complex Probability of Connectivity Index is targeted. To the 
best of our knowledge, there is no software that can target this index for optimi-
sation on raster data of this size.

4. DRL can be used to approximate good solutions in complex spatial optimisation 
problems even when the conservation feature is non- linear like graph- based indi-
ces. Furthermore, our methodology decouples the optimisation process and the 
index calculation, so it can potentially target any other conservation feature im-
plemented in current or future software.
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1  |  INTRODUC TION

Currently, 40% of all land has been transformed into agriculture 
(UN, 2022), accounting for 88% of global deforestation (FAO, 2022), 
devastating or starkly modifying the habitats where many species live. 
Habitat areas become separated and surrounded, making them too small 
to sustain viable animal populations or too far apart to move between 
them to feed and reproduce, eventually capping gene flow (Schlaepfer 
et al., 2018). The grave harm fragmentation causes on so many levels is 
clear; the United Nations has declared 2021 to 2030 the decade on eco-
system restoration, which must evidently aspire, among other things, to 
reconnect nature (Pimm et al., 2021). Despite global urgency, it remains 
unclear how to execute the measures needed to achieve this goal in an 
effective way. Analyses that resort to spatial optimisation in order to in-
form where and how to implement conservation actions are considered 
systematic conservation planning (SCP). SCP can be traced back to the 
works of Jamie Kirkpatrick (Kirkpatrick, 1983, 1986) in which a system-
atic method was first presented to identify priority conservation areas 
for species. Now SCP comprises a whole body of research mostly aimed 
at establishing and extending reserves for the direct protection of eco-
systems, biological assemblages, species and populations (Margules & 
Pressey, 2000). Naturally it is possible and important to complement 
these conservation objectives with other measures, which has given 
rise to other planning problems, such as ecological restoration planning 
(Justeau- Allaire et al., 2021) or recently connectivity conservation, de-
fined by Keeley et al. (2019) as ‘an emergent approach to counteracting 
landscape fragmentation and enhancing resilience to climate change at 
local, national, and global scales’. We refer to the methods that inform 
on how and where to stop or reduce fragmentation by preserving corri-
dors or reconnecting habitats with stepping stones (Keeley et al., 2019) 
as connectivity conservation planning (CCP).

An SCP optimisation problem formulation starts by selecting a re-
gion and designing a conservation feature to target. Then, the actual 
conservation objective is formulated; this defines the way that decisions 
on parcels or the so- called planning units located in the region affect the 
conservation feature. A given set of decisions on the planning units is 
called a solution to its SCP problem. The mathematical nature of these 
decisions defines how the problem itself can be approached. In its sim-
plest form, each planning unit is either selected or not, and thus solutions 
are expressed as sums of binary variables also called integer programs 
(Sierra- Altamiranda et al., 2020). Such problems belong to the domain of 
integer linear programming (ILP). The decisions can also be continuous; 
for example, proportions pf planning units may be selected, making the 
problem of the domain of linear programming. There is a wide variety of 
SCP goals that can be tackled; we refer to Billionnet (2013) and Hanson 
et al. (2023) for a good overview of many problems, their mathematical 
formulations and solutions using ILP. In most of these examples, planning 
units can only either be selected or not. Even if each decision variable 

comprises only two states, the number of possible solutions grows expo-
nentially despite the number of units increasing linearly.1 ILP problems 
tend to be NP- hard (Sierra- Altamiranda et al., 2020). This is a specific 
example of an incredibly widespread issue that comes in many flavours: 
the combinatorial explosion problem (Schuster, 2000) and state- space 
explosion (Clarke et al., 2012), which are manifestations of the curse of 
dimensionality (Alagador & Cerdeira, 2022). For optimisation, it boils 
down to the polynomial or even exponential growth of problem com-
plexity, depending on the number of input variables and their states. In 
SCP, this is only exacerbated by the rapid increase in the quantity and 
resolution of spatial data coupled by advances in ecological knowledge 
that result in more elaborate conservation features. The propensity of 
optimisation problems in SCP to explode in complexity is and will con-
tinue to be one of its most serious obstacles.

In this paper, we explore the potential of an emerging field of 
artificial intelligence, deep reinforcement learning (DRL), for SCP. 
We illustrate this by using DRL to approximate good solutions to 
spatial optimisation problems in a CCP setting. DRL has attracted 
enormous attention because of its potential to excel in complex se-
quential decision- making tasks. DRL was first put in the public spot-
light for models that exceed human performance in board and video 
games (Silver et al., 2016; Vinyals et al., 2019); it has gone on to en-
able the discovery of faster matrix multiplication algorithms (Fawzi 
et al., 2022), the design of optimal tax policies (Zheng et al., 2022) and 
constitutes part of ChatGPT's training process (Christiano et al., 2017; 
OpenAI, 2023). The central idea of DRL is to incrementally train a deep 
neural network to achieve a goal by exploring sequences of actions 
within a virtual environment, and the potential to tackle conservation 
problems is only beginning to be explored (Lapeyrolerie et al., 2022; 
Silvestro et al., 2022; Turchetta et al., 2022). It should be considered as 
an additional toolkit for SCP for a number of reasons:

1. DRL has proven to overcome the curse of dimensionality in 
many cases (Arulkumaran et al., 2017). It has been specifically 
used to learn good heuristics for traditional NP- hard combina-
torial optimisation problems like the travelling salesman (Bello 
et al., 2017; Li et al., 2022).

2. DRL it is suitable for solving problems with little prior knowledge 
and high uncertainty (Francois- Lavet et al., 2018).

3. Since DRL environments themselves are highly customisable 
software, they can access data of any kind and also interact with 
any other model or method (Lapeyrolerie et al., 2022).

4. DRL models problems as games. This can encourage the defini-
tion of intuitive objectives, focusing on what to achieve instead of 
the formal problem formulation (Degrave et al., 2022).

 12N where N = 1, 2, 3, … is the number of planning units.

K E Y W O R D S
connectivity conservation planning, deep reinforcement learning, ecological restoration, 
machine learning, spatial optimisation, systematic conservation planning
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The increasing importance habitat connectivity plays in con-
servation efforts is clear. It underlays the UN decade on ecosys-
tem restoration and the Convention on Biological Diversity (CBD) 
(Keeley et al., 2019), namely of the recent Kunming- Montreal 
Global Biodiversity Framework (section H) targets 1, 2, 3, 12 and 
13 (Biosafety Unit, 2023). However, the most recent connectivity 
metrics have seldom been used to formulate spatially explicit opti-
misation problems for CCP. There are many proposed methods to 
assess the degree of connectedness of a landscape. A popular class 
of indices considers habitat patches as nodes and the degree of ac-
cessibility between them as edges of a graph. The Integral Index of 
Connectivity (IIC; Pascual- Hortal & Saura, 2006) and the Probability 
of Connectivity Index (PCI; Saura & Pascual- Hortal, 2007) are the 
graph- based indices used the most to analyse structural and func-
tional connectivity (Hashemi & Darabi, 2022; Keeley et al., 2021). 
They have been proven to be good predictors of, among other things, 
species occupancy and occurrence patterns (Awade et al., 2012; 
Pereira et al., 2011); designed to be sensitive to even subtle land-
scape changes, both of which provide a basis for quantifying the 
importance of landscape elements (Bodin & Saura, 2010); and 
therefore used for scenario analyses for CCP (Engelhard et al., 2017, 
Martinez Pardo et al., 2023). However, it can be especially daunting 
to target them in spatial optimisation problems, as they are nonlinear 
and computationally costly (Justeau- Allaire et al., 2021). To the best 
of our knowledge, there are only four previous works in which either 
the IIC or PCI are targeted for optimisation. In Rubio et al. (2015), a 
brute force approach was proposed, testing all possible combina-
tions of potential patch removals and their effect on both IIC and 
PC. Xue et al. (2017) proposed a classical mixed integer program 
formulation to optimise PCI on a general graph; they chose a set of 
edges to protect in order to best maintain connectivity. In Hamonic 
et al. (2023) the problem of optimising the PCI of a landscape was 
considered under a restricted budget. This was modelled as a dis-
crete optimisation problem directly on graph representations. Their 
formulation starts on a landscape assumed to be degraded and aims 
to improve the size/quality of existing patches or create stepping 
stones, here modelled as new links, from a set of predetermined fea-
sible options. Justeau- Allaire et al. (2021) considered a forest/non- 
forest raster map: non- forest cells were taken as planning units and 
thus restorable. Constrained programming (CP) was used to find a 
set of these cells whose restoration resulted in a maximal improve-
ment of the IIC while also satisfying some landscape configuration 
constraints. Built upon this, they have also developed the restoptr 
R package, a flexible framework for ecological restoration planning 
that leverages the Choco- solver CP library for optimisation (Justeau- 
Allaire et al., 2023).

As an alternative approach, here we will show how to specify 
custom spatial environments to optimise the IIC and PCI using cur-
rent DRL software and standards. Based on our findings we sug-
gest future research perspectives to explore increasingly complex 
datasets and goals using natural modifications of the methodology 
proposed here.

2  |  MATERIAL S AND METHODS

2.1  |  The IIC and the PCI

The rapid development of sensors amounts to an increasing number of es-
sential biodiversity variables that can be measured from space (Skidmore 
et al., 2015, 2021). Naturally, land cover and thus fragmentation are among 
them. The nature of data produced by earth observation means that most 
products that become available will have a gridded format. Therefore, we 
will focus on raster inputs when seeking optimal landscape configurations 
that yield a maximal improvement in IIC and PCI. Although the formulas of 
the IIC and PCI are not particularly complex, it should be noted that they 
require several computationally intensive steps to calculate. From an input 
raster, they first require a segmentation process in which adjacent habitat 
pixels are clumped into single patches and then all the pairwise distances 
between them are calculated. After that, they require successive applica-
tion of a shortest- path algorithm to calculate the least- cost path between 
each of the pairs of patches; a path consists of a sequence of steps in 
which no patch is visited more than once (Pascual- Hortal & Saura, 2006). 
Any change in the landscape raster of interest results in the need to up-
date its number of patches and/or their sizes. As well as potentially many 
connection paths in which they participate.

The IIC ranges from 0 to 1, where 1 means that a landscape is 
fully occupied by habitat. It is built upon a binary connection model. 
This means that two distinct habitat patches are only directly reach-
able from one another if they are closer than a predefined distance 
threshold. They could still be reachable by a path that crosses other 
patches. The IIC is given by

where ai and aj are the areas of the habitat patches i  and j, AL is the 
total landscape area, and nlij is the number of links in the shortest path 
between i  and j.

The PCI is a natural extension of the IIC and is defined as the 
probability that two animals randomly placed within a landscape fall 
into interconnected habitat areas. As its name suggests, it assumes 
a probabilistic connection model. It uses probability to express the 
feasibility of movement between habitat nodes. For example, calcu-
lated using a decreasing exponential function of the inter- patch dis-
tance, pij = e−k×dij, where dij is the distance between the patches i  and 
j, and k is chosen so that the function matches a desired probability 
distance value. The PCI is given by

where ai and aj are the areas of the habitat patches i and j, AL is the total 
landscape area, and p∗

ij
 is then defined as the maximum product probability 

of all possible paths between patches i and j. The product probability is the 
multiplication of all pij belonging to each step on the corresponding path.

(1)IIC =
1

A2

L

n∑

i=1

n∑

j=1

aiaj

1 + nlij
,

(2)PCI =
1

A2

L

n∑

i=1

n∑

j=1

aiajp
∗

ij
,
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To illustrate the binary and probabilistic connection models, we will 
use a dataset found in restoptr.2 This raster data refers to a mining area 
located in the north of the main island of New Caledonia, Mount Kaala. 
It comprises binary values, where zero refers to non- habitat and one to 
habitat pixels. We took a small subset of 11 × 11 pixels from the raster. 
These have an 85 m spatial resolution; we chose a distance threshold of 
171 m, slightly larger than two pixels. For the probabilistic connection, 
we chose a decreasing exponential function in which the previous dis-
tance matches a probability of 0.5, Figure 1.

Proponents of the IIC and PCI developed software, Conefor 
Sensinode 2.2, in the c++ programming language for their efficient 
calculation. We will take advantage of the customisability of DRL 
environments in order to illustrate the fact that we can leverage ex-
ternal software for our purposes, for example, to produce the signal 
we are interested in optimising.

2.2  |  The reinforcement learning problem

Reinforcement learning (RL) comprises a class of solutions for se-
quential decision- making tasks. There are many works that can 

serve as an introduction to RL, Sutton and Barto (2018) is the ger-
minal book on RL in general, Lapeyrolerie et al. (2022) is a great 
overview of DRL aimed at ecologists. For the reminder of this sec-
tion, we will mostly follow Francois- Lavet et al. (2018). The main 
idea of RL is to learn the best way to achieve a goal through trial 
and error by interacting with an environment. The learner in this 
iterative process is an artificial agent which starts by receiving a 
(potentially partial) observation, w0 ∈ W, of the initial state of an 
environment, s0 ∈ S. Subsequently, it will take an action at ∈ A,  
which results in a reward rt ∈ R, and makes the environment tran-
sition to the next state st ∈ S , which in turn emits an updated ob-
servation to the agent, wt ∈ W  . This loop occurs for every time 
step t = 1, 2, 3, … , n until a user- defined stopping criterion is met, 
then the process starts over. The agent is seeking to maximise the 
sum of the received rewards, and it is in this replaying of episodes 
that the agent devises a better strategy. This strategy is encoded 
in a policy, � ∈ Π, which defines how an agent, given an observa-
tion, will decide on an action. One way to model the reinforce-
ment problem is to utilise a finite Markov decision process (MDP), 
a mathematical framework for modelling decision making in dis-
crete time. It was introduced in the 1950's (Bellman, 1957) and 
was first used to model dynamic programming problems. We refer 
to (Marescot et al., 2013) for an introduction to MDPs. An MDP  2See the vignette: using historical data to set ecological restoration targets.

F I G U R E  1  (a) The ground truth terrain is sampled in some way, for example by earth observation. Satellite imagery is used in supervised 
classifications to produce land cover cartography. (b) Land cover rasters are segmented in order to delineate distinct habitat patches. (c) 
From here, a landscape can be modelled as a graph, the extension of the habitat patches become the node sizes and the distance between 
them the edge weights. (d) With a distance threshold of 171 m the binary connection model, some habitat patches are considered directly 
connected, :=1, and some not, :=0. (e) In the probabilistic connection model and fixing a 171 m distance to match a probability of 0.5, all 
patches are reachable from one another albeit sometimes with a small probability.
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provides a natural way to model the three components of an RL 
problem: environment, agent and reward. Formally, it is a 5- tuple 
(S,A, T ,R, �), where

• S is the state space,
• A is the action space,
• T : S × A × S →

[
0, 1

]
 is the transition function (set of conditional 

transition probabilities between states),
• R: S × A × S → ℝ is the reward function, where R is a continuous 

set of possible rewards in a range, and
• � ∈

[
0, 1

]
 is a discount factor, which controls if emphasis is imme-

diate rewards (0) or future rewards,

in which the Markov property holds; this is so that the future of the 
process only depends on the current observation. If the state of the 
environment is fully observable, then the states and the observations 
are always the same.

RL considers the problem of finding a policy �(s, a) ∈ Π, which 
maximises the expected return (value function) V�(s): S → ℝ with

where rt = �
a∼ (�st , ⋅ )

R
(
st , a, st+1

), IP(st+1| st , at
)
= T

(
st , at , st+1

) with at ∼ �

(
st , ⋅

)
.

The policy is a function from observations to actions. Since its 
goal is to distinguish good actions, it must depend in some way on a 
value function. It is learnt through the reward in multiple ways. For 
example, seeking immediate rewards is not always the best way to 
achieve a future goal. It may be more advantageous to learn an esti-
mator of the cumulative reward that can be obtained from each of the 
possible states the environment can be in and to take action based 
on these valuations. Methods that learn the value function and base 
their policies directly on it are referred to as value- based. It is also 
possible to learn a direct parametrisation of the policy. For example, 
actor- critics learn both functions but are considered policy- based 

methods. The policy is the actor, and the value function critiques the 
policy in order to improve it. Classical RL is limited by the curse of 
dimensionality because the value and/or policy functions are exhaus-
tively constructed in tabular form. DRL replaces this with deep neural 
networks, as they have proven to be excellent function approxima-
tors (Elbrächter et al., 2021; Hornik et al., 1989), thus making DRL 
applicable to problems with large state and action spaces.

DRL is arguably still in its early stages. Its software ecosystem is 
not as mature as others, and it is still in process of standardisation. For 
DRL applications developed in the python programming language, a 
notable standard is the Gymnasium toolkit (Gym), which offers a stan-
dard API to communicate between models and environments. Of the 
elements of the general RL problem, Gym encompasses the environ-
ment states, the reward, and the actions the agent can perform. For 
model training, one must draw on one of a multitude of packages with 
different implementations of learning algorithms. We opted for using 
Stable- Baselines3 (SB3) as it is, in our opinion, one of the simpler to use 
packages with which to develop DRL applications. One additional ad-
vantage of DRL is that it has naturally built on advances in other areas 
of machine learning like computer vision in order to learn good repre-
sentations of environment states. For example, in Mnih et al. (2015), 
multiple atari games were mastered by feeding crude frames (images) 
into deep convolutional neural networks (CNNs) in order to approxi-
mate optimal value functions, effectively learning how to play ‘directly 
from pixels'. In SB3, the policies by default are coupled with some fea-
ture extractor, for example a CNN for images. In Table 1, we present 
a schematic of the required software components from both Gym and 
SB3 in order to specify a full custom DRL training environment.

2.3  |  A custom environment to target the IIC for 
spatial optimisation on a small landscape

We developed two examples of custom geospatial Gym environ-
ments for solving CCP problems. Both read in land- cover rasters 

(3)V�(s) = �

[
∞∑

k=0

�
krt+k| st = s,�

]
,

TA B L E  1  The necessary components from Gym and SB3 for a custom deep reinforcement learning (DRL) application.

Software component Description Package DRL component

The general environment class, gym.Env A subclass must be created for a custom environment. Requires 
several methods and two spaces

Gym Environment

The init() method To initialise the training environment

The observation space Required by init(). One of the gymnasium.spaces

The close() method Handles how to close the environment, important when external 
software is used

The step() method How an agent performs an action, updates the environment, delivers 
the reward and a new observation

Environment 
and Agent

The reset() method Restarts the environment for a new episode and returns an initial 
observation

The render() method Visualisation of the learning process and environment states

The action space Required by init(). One of the gymnasium.spaces Agent

Reinforcement learning algorithms One of many on or off- policy learning algorithms SB3

Policy networks One of three default feature extractors or a user- defined network
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to serve as their state spaces. We first present an environment 
to maximise the IIC of the simple landscape of size (11 × 11) that 
was used to illustrate the binary and probabilistic connection mod-
els. It includes only two classes, habitat and nonhabitat, and has a 
spatial resolution of 85 m. We used the restoptr (Justeau- Allaire 
et al., 2023) package to verify the optimality of our solutions. We 
kept the default threshold of the edge- to- edge distance of at most 
one pixel (Justeau- Allaire et al., 2021) to parameterise the IIC. This 
means that only habitat pixels that directly touch (rook neighbour-
hood) will be considered connected and simultaneously part of the 
same habitat patch. This encourages solutions that directly con-
nect habitat patches, knowledge that we used to design our reward. 
Using domain knowledge to increase the sample efficiency of DRL or 
to get it to work altogether is commonly known as reward shaping; 
designing good rewards can be a feat.

We first formulated the connectivity planning problem as an 
MDP in order to solve it using DRL. The way the learning proce-
dure unfolds is as follows: At each time step, the agent receives 
the current state of the landscape raster as an observation (the 
state is fully observable, wt = st). It performs an action that con-
sists of warping to a location on the landscape, virtually restoring 
a nonhabitat pixel to natural habitat and subtracting from the 
restoration budget. This continues until a predetermined budget 
is spent, with which the episode ends. The agent receives a re-
ward of 0 at every step except at the end of the episode in which 
it receives the IIC value of the final landscape divided by the 
number of distinct habitat patches.3 The IIC is calculated by call-
ing Conefor Sensinode 2.2. This type of reward, which is seldom 
informative, is called a sparse reward. DRL is known to overcome 

the sparse reward problem to some extent, although since explo-
ration commonly beings at random, it can fail for problems with 
very large state spaces and very sparse rewards. For example, in 
the Montezuma Revenge Atari 2600 game, initial random explo-
ration translates into an informative reward about every half- 
million steps (Salimans & Chen, 2018). In our example, the state 
space is modest and the time horizon in which an informative 
reward is emitted is short due to the limited restoration budget. 
The computational cost of calculating the IIC in each time step 
greatly outweighs the sparsity of the reward. This reward also 
alleviates the fact that the order of patch placements is irrelevant 
for the final IIC value. As a final detail, the episode is terminated 
if the agent repeats an action with the aim of discouraging such 
behaviour. In Figure 2, we provide a schematic of the DRL train-
ing loop.

We selected the proximal policy optimisation (PPO) learning al-
gorithm to train the agent, a policy- based learning algorithm popular 
due to its broad applicability and usually requiring little hyperpa-
rameter tuning (Schulman et al., 2017). We chose hyperparameters 
by trial and error and by studying tuned benchmark environments 
in the RL Baselines3 Zoo. We developed methods to visualise the 
training process and behaviour of trained agents, which is necessary 
to tune the performance of DRL models. We trained two separate 
agents for 60,000 time steps, one with a budget of 6 habitat pixels 
and the other of 5 habitat pixels. The training process for each takes 
around 4 min on an AMD Ryzen 55600X 6- Core Processor 3.70 GHz 
with 32 GB of RAM. For a complete description of DRL Model 1, see 
Table 2.

Furthermore, we used restoptr (Justeau- Allaire et al., 2023) 
to optimise the same raster landscape subject to the same bud-
gets. CP is an exact constrained optimisation technique based on  3Must be greater than 0 so a non- empty landscape.

F I G U R E  2  The training loop starts with a certain budget of habitat pixels to be placed, and then (a) the (Gym) environment emits an 
observation, the state of the landscape raster, to the agent. (b) The agent processes the observation (SB3) and decides where on the 
landscape to move and place a vegetation patch; the budget is reduced by 1. (c) The environment emits a reward to the agent, if budget = 0 
the reward is the Integral Index of Connectivity (IIC) value of the current landscape divided by N, the number of vegetation patches. It is 0 in 
any other case. When the reward requires the IIC, the environment makes a call to the Conefor software for its calculation.
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automated reasoning, meaning that if enough runtime is available, 
it guarantees global optimality, which is not the case for DRL. This 
allowed us to compare the solution to which DRL arrives against 
the known best.

2.4  |  A custom environment to target the PCI 
for spatial optimisation on a large landscape with 
additional cost and spatial configuration constraints

We applied the previous methodology to a much larger real- world 
dataset. First, we obtained the official vector layer of vegetation 
and land use in Mexico (1:250,000) from the National Institute of 
Statistics and Geography (INEGI), also known as Series VII. This 
layer includes 220 classes of land cover and land use that include 
agriculture, urban, and primary and secondary natural vegetation. 
Subsequently, these classes were remapped to refer only to seven 
fundamental classes of interest: natural forests (including man-
groves, rainforests and temperate forests), grasslands (including all 
natural grassy vegetation), bare ground, urban settlements, water 
bodies, agriculture (including human- induced grasslands) and sec-
ondary herbaceous vegetation. This layer was rasterised at a spatial 
resolution of 250 m. Finally, Mexico's road network from the Digital 
Map of the World, available as a line vector layer, was rasterised 
at the same spatial resolution and added to the map as an addi-
tional class (roads). We selected a landscape (249 × 249) in size and 

assigned costs to the restoration of each non- forest class to natural 
forests. Another difference from the previous environment is that 
the agent can now choose the size of the patch to “restore” from a 
selection of square patches originating from the range 2 × 2 to 8 × 8 . 
The reward function is no longer sparse; each training step, the 
agent receives as feedback the percentage change in PCI. Between 
time steps n and n + 1, it is given by

At the end of the episode, it receives the total percentage change 
in PCI. Naturally, these rewards have a high degree of redundancy, 
but since the state space is so large, it makes sense to provide infor-
mation at each time step in order to estimate the value function. The 
∆PCI's are influenced by the order of patch placements, allowing the 
collection of more diverse data. But in the end, the most important 
thing is the total gain which, as in the previous example, is not influ-
enced by the order of placements.

The learning algorithm also consisted of PPO and its complete 
description is in Table 2. In this example, the agent receives the 
observations as RGB images. Their first channel contains the ini-
tial landscape raster, where the pixels are the land cover resto-
ration costs. The second channel is a raster where the evolution 
of the placement of vegetation patches is recorded. The third 
channel consists of the remaining budget located only on pixels, 
which are still subject to restoration. These image observations 

(4)ΔPCI = 100 ×
PCI

n+1
− PCI

n

PCI
n

.

TA B L E  2  Summary of the characteristics of deep reinforcement learning Models 1 and 2.

Environment Model 1 Model 2 Observations

Connection model Binary Probabilistic

Distance threshold 85 m 2000 m

Observations Landscape raster RGB image: initial landscape, patch 
placements, decreasing budget 
on remaining restorable pixels

Actions Agent movement Agent movement and patch size 
(two dimensions)

Reward (sparse) Integral Index of 
Connectivity/N, N the number of 
distinct patches

Probability of Connectivity Index (%)

Budget 5 and 6 pixels 20,000 units Episode ends when budget reaches 0

Learning algorithm Proximal policy optimisation (PPO) PPO PPO

Learning algorithm

Feature extractor MlpPolicy CNNPolicy

Training steps 60,000 300,000

Learning rate 0.001 0.001

Gamma 0.99 0.99 Discount factor for rewards

Entropy coefficient 0.01 0 Can encourage exploration (although it has 
been shown empirically that this is not 
always the case)

Clip range 0.2 0.2 Roughly the probability that an action 
cannot change by more than factor 
1 + clip range

Random seed 7 666
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are processed by a CNN feature extractor for the policy neural 
network. The training process in this case took a total of 28 h on 
the same hardware.

3  |  RESULTS

We presented two examples of how to tackle CCP problems using 
DRL. The first was on an arguably small and simple raster land-
scape in which the IIC was targeted and in which the reward for 
the DRL agent was sparse (only emitted at the end of a training 
episode). The second, targeting the PCI on a larger raster land-
scape, with different costs associated with restoring each land use 
class, additional spatial configuration constraints, and a cumulative 
reward (sequentially emitted after each habitat patch placement). 
After training, the best models were deployed on the landscape 
rasters to obtain final solution landscapes. For the first example, 
we know the optimum. Using restoptr, we can be sure of the level 
of IIC achieved by a global optimum solution to each problem. Even 
slight modifications of spatial optimisation problems can yield un-
expected changes in the complexity of the problem. For example, 
the simple example with a budget of six habitat pixels is optimised 
by restoptr in around 10 min. But the case with a budget of five only 
takes 1 min. DRL takes around 4 min in both cases, beating restoptr 
in the first, even with the well- known sample inefficiency of DRL. 
Although this is probably very specific to this problem and to the 
fact that we shaped the reward function in order to aggressively 
seek less and larger habitat patches which could make the compari-
son unfair. It is also clear that for the case in which the budget is 
five a multitude of global optimums exist. Once the patches in the 
lower part of the map are connected, which only requires four habi-
tat pixels, the remaining one can be placed anywhere connected to 
the large resulting habitat patch to achieve the maximum IIC level. 
In the case of a budget of 6, only two global optium solutions exist, 
Figure 3a. Our DRL models converge to only one of the globally 
optimal solutions. One advantage of restoptr is that it can find all 
of them, given enough runtime.

The objective of Model 2 was to optimise a large landscape 
in order to achieve a maximal improvement in its PCI value. 
Unfortunately, there is no way to assess how close our final solu-
tion is to a global optimum as there simply is not any readily avail-
able software that can target the PCI for optimisation on a raster of 
this size and nature. In the absence of an exact solver with which 
to benchmark, one possibility is to compare a solution with a large 
amount of random ones or with those produced by a multi- armed 
bandit model when appropriate (Haj- Ali et al., 2019). It can be seen 
that this DRL model performs much better than what was achieved 
by mere chance in the same number of episodes, with still room for 
improvement after 28 training hours, Figure 3b. The final solution 
achieves an increase of 66% in the overall forest connectivity mea-
sured by the PCI. It does so by restoring 0.2% of the restorable ex-
tension and spending 20,000 units, which represents 0.1% of what 
would be spent restoring the entire landscape.

In the DRL environments we developed, some constraints are 
analogous to what is encountered, for example, in linear program-
ming. Budget and cost constraints act in the same way. But DRL 
environments allow for a multitude of ways in which to guide the 
exploration of solutions. For example, in our first case study, en-
forcing an episode reset if the agent repeated an action made the 
agents quickly learn they should not do that. This sort of punish-
ment can be softer, for example multiplying the current reward 
by some quantity smaller than 1. Since solutions that consist of 
sparse individual pixels may be undesirable, different mathemat-
ical constraints have been devised to avoid them (Justeau- Allaire 
et al., 2021). We proposed actively targeting solutions that consist 
of connected and clumped- up pixels by allowing the agent to only 
choose between a minimum and maximum size for restored forest 
patches. It can be seen that the agent prefers vegetation patches of 
the maximum allowed size of 8 × 8 pixels, but, in the special case in 
which it targets roads to reconnect forests, it sometimes chooses 
smaller patches to restore.

4  |  DISCUSSION

We have shown that DRL can be leveraged to optimise complex con-
nectivity indices over raster landscapes of varying sizes and com-
plexity. Since our methodology decouples the optimisation process 
and the index calculation, it can potentially target any other con-
servation feature implemented in current or future software with 
relative ease.

We stress that exact optimisation methods should be used when-
ever feasible. Unfortunately, intractable problems will continue to 
appear in spatial optimisation analyses for SCP. We mentioned four 
works in which either the IIC or PC are targeted for optimisation. As 
mentioned in Hamonic et al. (2023), the brute- force approach pro-
posed in Rubio et al. (2015) would naturally eventually find global 
optimums but was shown to be impractical for landscapes with more 
than 20 habitat patches, and the mixed integer approach proposed 
in Xue et al. (2017) did not scale to landscapes with more than a few 
hundred pixels on a grid dataset. In Hamonic et al. (2023), the PC was 
targeted by modelling the problem with discrete optimisation di-
rectly on graph representations. They propose an ingenious problem 
simplification, which allows the approximation of good solutions to 
even large problems. Unfortunately, these solutions are not spatially 
explicit; they can inform where a reconnection is optimal on a graph 
but not the actual geographical location or size of the habitat patch 
to achieve it, for example when working with land cover maps. For 
this purpose, the most promising of these exact methods is the CP 
approach proposed in Justeau- Allaire et al. (2021) although, for now, 
restricted to the indices incorporated by the authors into restoptr. 
CP guarantees global optimality, which DRL simply cannot. An op-
timal policy is guaranteed to exist (Sutton & Barto, 2018). From the 
value function (Equation 3), this optimal policy �∗ satisfies

(5)V
�
∗

(s) ≥ V
�(s),
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for any state s and any other policy �. But DRL cannot always man-
age to learn the optimal policy, it can be difficult to know if DRL 
has converged at all. This can be highly dependent on hyperparam-
eter selection and even on the initial random seed; in general, DRL 
models have been shown to be notoriously unstable during training 
(Nikishin et al., 2018). To make matters worse, it is not always clear 
if the reward that is provided to the agent motivates the desired be-
haviour, there are many examples of seemingly reasonable reward 
functions that end up being grossly misaligned in respect to the true 
optimisation objective, this issue has been called specification gam-
ing (Krakovna et al., 2020). Since DRL comes with no guarantees, 
the best bet is to produce a large amount of diverse experiments, 
ideally in combination with automated hyperparameter tuning for 
which there are software like Ray and Optuna. However, as we have 
shown in Model 2, DRL has a tendency towards overlong training 
times. Its use for larger problems is really only possible with high 

performance computing as deep neural networks can be trained in 
parallel. For this reason, many other DRL packages, such as RLlib 
or Tianshou, focus on the scalability of their software frameworks 
and their learning algorithm implementations but at the cost of being 
less amicable to the user. The adoption of DRL for serious applica-
tions can feel overwhelming as the mathematical and technological 
background that is required to do so can be imposing. However, due 
to the current speed and breadth of artificial intelligence research, 
DRL is achieving milestones that can eventually prove singular for 
biodiversity conservation. We end with five paths in which DRL can 
continue to address major issues in SCP.

1. We developed our examples using components that are available 
out- of- the box in DRL software. For example, the default feature 
extractors in SB3. These were not developed to process geo-
spatial data so it may be advantageous to build upon network 

F I G U R E  3  Performance of Models 1 and 2. (a) Training process for Model 1. Top left: The agents steadily learn over a span of 10,000 episodes 
and converge to an optimum solution. Top right: Only one of multiple optimum solutions for each of the budgets is attained. (b) Training process 
for Model 2. Top left: The DRL agent beats a random strategy after around 6000 training episodes, at 14,000 it is well away from what was 
achieved by chance. The model is beginning to plateau at 28 h of training but could still reach a better performance albeit with diminishing 
returns. Top right: The final solution that corresponds to an overall increment in the Probability of Connectivity Index of 66%.

(a)

(b)
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architectures that have proven useful in remote sensing, such 
as U- Net (Ronneberger et al., 2015).

2. SCP is evidently subject to conflicting goals. Multi- objective DRL 
is an active research area (Hayes et al., 2022) that may enable 
even more realistic applications to SCP.

3. DRL is well- suited for mixing and combining with other methods. 
This allows the possibility of integrating exact and incomplete al-
gorithms. For example, DRL can be used to design the branch-
ing strategy, which is the workhorse of CP methods. Designing 
a branching strategy is a fundamental and non- trivial issue in CP, 
as it defines how the space of the problem is explored (Cappart 
et al., 2020).

4. In this work, we have modelled SCP problems as sequential deci-
sion making tasks and solved them using DRL. The DRL agents re-
store habitat patches sequentially, but in addition to these patch 
placements, the landscapes are static. In the real world, conserva-
tion efforts are embedded in dynamic and uncertain processes 
such as a changing climate and deforestation. The challenge of 
overcoming system uncertainty is one of the key promises of 
DRL, as it arises in many sequential decision- making problems 
(Lockwood & Si, 2022). The incorporation of recurrent deep 
learning models into DRL has shown potential to solve partially 
observable MDPs with greater success than more complicated 
methods (Ni et al., 2022). Partially observable MDPs not only re-
quire good actions but the prediction of states in order to decide 
on such actions. A first example of this in a SCP setting is Silvestro 
et al. (2022), in which optimal protected areas are designated in a 
dynamic and uncertain simulated landscape.

5. There is general consensus that other heuristics, such as evo-
lutionary strategies, do not partake in learning, in the machine 
learning sense of the word. Learning in DRL provides estimates 
of the value of individual states and actions, allowing DRL models 
to plan and come up with surprising strategies to solve problems 
(Sutton & Barto, 2018). It also arms DRL with the potential to 
generalise to unforeseen scenarios. This can eventually produce 
foundation models that can be applied to a wide range of tasks 
with little retraining, as has happened in computer vision and with 
large language models. Examples of this in DRL are beginning to 
be found, such as AdA by DeepMind. Perhaps one day we will 
have foundation models for conservation planning.

In this paper, we have elaborated a starting point with which we 
hope to spark interest in the development of DRL applications for 
SCP. It is one of two examples in this realm. It is known that there 
are no one- size- fits all solutions to SCP problems and DRL shows 
grand potential to solve particularly complex and large problems, 
especially if paired with high performance computing. For this to 
happen, the usual route other approaches have followed must be 
paved. We outlined how to specify a SCP problem using an MDP 
and solve it using DRL as well as how to impose some additional con-
straints to the problem. However, many other constraints must be 
devised, as well as other conservation objectives, which boil down 
to designing the appropriate environments and rewards. Numerous 

things must still be developed for DRL to address a wider array of 
SCP problems and will require a whole new body of work. We will 
continue to work on maturing the approach presented here as well 
as studying the potential and limitations of DRL for other common 
SCP problems in static and dynamic, fully observable and uncertain 
settings. Although DRL opens up the possibility of tackling SCP 
problems that we thought were intractable with current technolo-
gies, it also opens up new concerns. For example, and as happens 
with any other approach based on deep neural networks, the solu-
tions it offers are difficult or impossible to explain. A very justified 
concern especially in high- stakes decision making (Rudin, 2019) such 
as those in conservation. Another point of concern is that the most 
impressive achievements of DRL have been produced by big tech 
companies (Meta, Google, Microsoft, Amazon, Baidu, Alibaba, etc.). 
As discussed in Lapeyrolerie et al. (2022), this shows that the bleed-
ing edge of AI research is in the private sector and the understanding 
of the capabilities of such technologies is in danger of moving out of 
grasp of traditional academia. We believe that ecologists and aca-
demics in general should be aware of these developments not only 
to take advantage of their great potential but also to remain vigilant 
about them.
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