
An Innovative Approach of API Automation Testing Implemented on

Cloud Environments Using Container Management Services

Tanja Dimova1, Igor Kalendar1, Daniel Denkovski2, Danijela Efnusheva2 and Marija Kalendar2
1MIR! Software Solutions, Londonska Str. 6, 1000 Skopje, N. Macedonia

2Computer Technologies and Engineering Department, Faculty of Electrical Engineering and Infomation Technologies,

University “SS. Cyril and Methodius” in Skopje, Rugjer Boshkovikj Str. 18, 1000 Skopje, N. Macedonia

{tanjadimova8, igor.kalendar}@gmail.com,{danield, danijela,marijaka}@feit.ukim.edu.mk

Keywords: Automation Testing, Cloud Platforms, Container Services, Docker, Kubernetes, Google Cloud Platform,

Services Monitoring.

Abstract: This research paper focuses on developing a complete system for daily automation testing of comprehensive

web applications implemented on cloud environments, encompassing the execution of automated API tests,

real-time monitoring and results visualization of the testing environments. Despite the tools for developing

automated API tests, the study uses containerization tools as Docker and Kubernetes, showcasing their

integration into a cohesive testing framework. Furthermore, the implementation leverages the potential of the

Google Cloud Platform (GCP) to demonstrate the usage of cloud computing services, emphasizing scalability

and efficiency. Additionally, the paper details the integration of monitoring tools, specifically Elasticsearch,

to assess and visualize the health and performance of the underlying Kubernetes cluster. Through a

comprehensive approach, encompassing a wide variety of tools, the research establishes a continuous and

automated testing environment essential for cutting-edge software applications. Results showcase the

successful orchestration of all the technologies, highlighting their collective impact on achieving a robust and

efficient system for continuous automation testing and monitoring.

1 INTRODUCTION

In today’s world of technology, every successful

organization needs to be connected and accessible

over the Internet. This would require setting-up an

organizational data center. The traditional data center

is on-premises, performing all of its functions in a

physical location within the enterprise's office space,

and usually managed by an in-house IT team. Thus,

the digitalization of business processes in a traditional

way would entail: a physical data center, buying and

managing hardware (servers), software and licenses,

creating a physical network, building the entire

infrastructure and hiring a team of experts to manage

or maintain this data center.

On the other hand, cloud computing is the current

state-of-the-art technology for delivery of computing

resources and services such as servers, data storage,

databases, networking, software, analytics, and

intelligence over the Internet to offer flexible

resources, faster innovation, and economies of scale.

Using this paradigm, instead of owning data centers,

organizations can rent access to the service provider

infrastructure (storage, computer servers, databases,

networks) and pay only for the resources they use.

Consequently, the transition from traditional to

cloud computing data centers is a very current topic.

Our research focuses on a very specific topic,

automation of API testing of a modern web-based

application in a cloud environment, encompassing,

researching and evaluating all aspects of building a

complete, comprehensive, scalable and manageable

automation testing cloud solution.

The rest of the paper is organized as follows.

Section 2 elaborates the related work in the area of

cloud computing and automation testing. Section 3

elaborates the design of the system for automated API

testing. Section 4 presents the container elements

incorporated into the automated testing environment,

while Section 5 considers the cloud elements

comprising the system. Section 6 showcases the

performance characteristics of the Kubernetes cluster

system deployment in the cloud, thus comparing all

system elements and technologies. Section 7

concludes the paper pointing out the main results and

benefits of the system.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

205

2 RELATED WORK

Research in the domain of automated API testing,

containerization, and cloud computing has provided

valuable insights that enhance the understanding of

these technologies. Authors in [1] examine DevOps

technologies, offering perspectives on continuous

integration and deployment, laying a foundation for

our research on automating testing services. The

research on API testing using Postman [2] contributes

insights into automated API tests execution, while [3]

presents considerations for secure implementation of

the automated testing processes. Authors in [4] offer

insights into building modern clouds by integrating

Docker, Kubernetes, and cloud platforms, aligning

with our research context. Additionally, [5] presents

a study on the Grafana visualization tool, using an

Influx DB data source. The authors in [6] provide a

foundation for understanding the role of monitoring

tools in the system health and performance

evaluation, while the study on observability using

Kubernetes operators [7] complements our goal of

improving system monitoring and visualization by

automating deployment, visualization, and

monitoring within the cloud system and the

Kubernetes cluster.

Our research builds upon these foundations,

introducing a novel approach that integrates

regression end-to-end API testing, containerization,

and cloud computing. The solution optimizes daily

testing processes, improves test coverage, and

ensures quick error detection, making it a significant

advancement in the field of automated testing. The

comprehensive integration of these technologies

positions our system as a more scalable, reliable, and

efficient solution for automated testing services in

modern cloud environments.

3 DESIGNING AN INNOVATIVE

SYSTEM FOR AUTOMATED

API TESTING

Automation testing is crucial in the process of modern

software development for its efficiency, accuracy,

and speed. It ensures comprehensive test coverage,

particularly for regression testing, and integrates

seamlessly into Continuous Integration/Continuous

Deployment pipelines. By leveraging new tools and

optimizing the testing ecosystem, automatic testing

facilitates early bug detection and reduces overall

testing costs for the software development company.

Illustrated in Figure 1 is the proposed design of an

innovative holistic system enabling automated API

testing utilizing cloud computing resources and

advanced containerization technologies.

Figure 1: Components of an automated API testing system using containers and cloud computing.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

206

The innovative system comprises many elements

to achieve the goals for automation API testing in the

cloud, managed by container orchestration:

1) Postman - a tool for testing API access points

and creating and documenting automated tests.

2) Newman - command line tool allowing

collections to be executed directly from

Postman.

3) InfluxDB – a time series database used to store

time-stamped sub-data (e.g. the execution time

of a single query).

4) Grafana – a tool for visualization and analysis

of data stored in the InfluxDB database.

5) Docker – system automation component (using

Docker images and containers for Newman,

Grafana and InfluxDB).

6) Kubernetes – an open source container

orchestration system for automating software

deployment, scaling and management.

7) Google Cloud Platform (GCP) - cloud

computing services available and managed by

Google.

The backend application intended to be tested can be

represented as a group of API access points. Postman

tool enables the environment for creating and saving

simple and complex HTTP/s requests, as well as for

reading their responses. Each application module is

represented in Postman as a collection of requests

(tests) organized as multiple folders that correspond

to specific API access points.

A general scenario for testing the functionality of

an API usually consists of the following steps:

1) Create Object (POST).

2) Verify previously created object (GET by ID).

3) Update object (PUT).

4) Get a list of all existing objects and check if the

newly created object is in the list (GET All).

5) Delete object (DELETE).

6) Get a list of all objects again and verify that the

deleted object is no longer in the list (GET All,

deleted object not present).

The test script associated with a request will be

executed after the request has been sent and a

response has arrived. These tests verify that the APIs

work as expected, determine that integrations

between services work reliably, and that new changes

have not broken the existing functionality.

Newman is the next (command line) tool in the

toolchain, used after the Postman collections are set-

up and configured. It allows collections to be

executed directly using scripting. Its extensibility

enables easy integration with continuous integration

servers, and at the same time providing a rich suite of

performance customization options.

 InfluxDB, a time series database, is the next tool

of choice that enables storing the reports and obtained

test results using the influxDB Newman

report tool. This database enables storing detailed

statistical information and results from each test run.

To visualize the gathered data, the system uses

Grafana, an open-source platform used for visualiza-

tion, monitoring and analysis of data from the Influx

DB database. Grafana enables creating dashboards

with panels, each representing specific metrics over a

specific time frame, thus presenting visual interpreta-

tion of the test runs, and the occurring failed tests.

The entire process presented in Figure 2 allows a

well-defined and mostly automated process for API

access points testing, and enables a simple further

analysis and diagnostics from the saved data.

Upon detecting errors by the automated system,

final check needs to be done manually, with two

possibilities:

1) Either there was a change in the API not

reflected into the test (the test needs to be

corrected-fixed).

2) Or, the error cannot be detected into the test

itself, thus the API request is broken, and an

actual bug in the code has been detected.

Figure 2: Analysis and diagnostics of test results.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

207

4 CONTAINER TECHNOLOGIES

FOR AUTOMATION TESTING

Today, containerization plays a crucial role in

software development due to its efficiency,

portability, and scalability. By using tools like

Kubernetes, Docker, and GCP services, the testing

workflow is streamlined, scalability is enhanced, and

resource management is optimized. Figure 1

illustrates the core tools essential for automating

testing processes and achieving efficient and reliable

testing outcomes.

4.1 Containers for Automation Testing

Container technology presents an advantageous

choice for integration within automation systems due

to its inherent characteristics: lightweight design,

minimal memory footprint, and efficient resource

utilization, thus offering unparalleled portability and

scalability. Furthermore, their isolation properties

ensure secure deployment, and parallel coexistence

on a single server without interference. The swift

creation and destruction of containers, enhance

operational speed, supporting dynamic workloads.

Leveraging containerization facilitates seamless

software deployment and management in cloud

environments, abstracting applications from their

underlying infrastructure.

Docker technology simplifies software delivery

by providing a universal tool for creating, deploying,

and running applications using containers, ensuring

portability and consistency across different

environments.

Four services are established using Docker

container technology. The first service, InfluxDB’s

setup includes a Docker image, container name, and

a port. Additionally a database and user are

configured. However, the creation of the service

alone does not facilitate storing of Newman results to

the database, prompting the establishment of a second

service to notify InfluxDB when it becomes

operational. Similarly, Grafana is configured with its

image, port, and container name.

The services defined with docker-compose need

to be connected to enable data exchange and

communication among themselves in order to provide

a seamless system pipeline. Configuring Grafana to

use InfluxDB data enables visual representation

additionally facilitating analysis through preconfi-

gured and modified dashboards and panels.

4.2 Orchestration of Container

Services

In order to enable a more suitable usage of resources,

and to simplify the management of the elements, the

proposed systems encompasses the most widely used

Kubernetes service orchestration tools. Kubernetes

provides a highly elastic infrastructure with zero

downtime deployment, automatic rollback, self-

healing, and container scaling features, enabling

seamless management of the entire lifecycle.

Before transitioning to cloud computing, the

initial step involves setting up a local cluster. This is

accomplished by utilizing Minikube, a lightweight

implementation of Kubernetes. Compatible with all

major OSs, Minikube aims to excel as a development

tool for Kubernetes applications, ensuring

comprehensive support for all Kubernetes features.

4.2.1 Establishing a Kubernetes Cluster

Establishing a Kubernetes cluster incorporating

InfluxDB and Grafana involves several key steps.

First, configuration files must be created for

InfluxDB deployment, service, secret, and persistent

volume claim. These files, specify essential details

like the Docker image, exposed ports, and

environment variables needed for database

configuration. For instance, the deployment file

outlines metadata and specifications, including the

image source and container port, while the service file

connects the service to the deployment through

selectors. Additionally, a secret configuration file is

essential for securely storing sensitive data, such as

passwords, required for database configuration. This

secret file uses Kubernetes secrets to securely store

and inject the necessary data into the deployment as

environment variables.

Moreover, enabling persistent storage for the

InfluxDB database requires a persistent volume claim

(PVC) configuration file. This file describes the type

and details of the storage space required by InfluxDB,

enabling Kubernetes to allocate or provision the

appropriate volume to meet the database's storage

needs. Setting up Grafana components follows a

similar process to InfluxDB. ConfigMaps, serving a

similar purpose to Secrets, are utilized to add

configuration files to pod containers. Grafana

requires three configuration files to be written to the

running container. These files are added to a

ConfigMap and mounted in different locations within

the container for proper configuration.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

208

This ample setup ensures proper functioning and

configuration of both InfluxDB and Grafana,

facilitating efficient data storage, management, and

access within the Kubernetes environment.

4.2.2 Test Execution Schedule

The Kubernetes CronJob acts like a traditional cron

utility, scheduling tasks within containers. Its purpose

in the system is orchestrating API collection tests

with Newman and sending results to InfluxDB. By

setting a daily schedule, Kubernetes automates these

tests.

As Minikube clusters lack access to local images,

image construction takes place directly within the

cluster using Minikube based command. Following

image construction, the CronJob specification is cre-

ated, including a jobTemplate that outlines the execu-

ting task. The schedule parameter dictates the recu-

rring execution of tasks, ensuring periodic test runs.

After each run, the associated pod terminates until

the next scheduled execution, allowing test results to

be displayed in Grafana within a 24-hour window.

Although Minikube deployments do not

inherently assign external IP addresses, accessing the

Grafana service is made feasible via Minikube

command, which seamlessly integrates with

InfluxDB and automatically presents test results for

analysis.

5 CLOUD IMPLEMENTATION

Introducing our system's move to the cloud involves

tapping into the powerful advantages of cloud

technology for refining our testing infrastructure. By

transitioning to the cloud, scalability, reliability, and

resource management are optimized. Cloud

technology enables flexible scaling of testing

resources, ensuring top-notch performance during

peak demand. Furthermore, cloud platforms provide

robust infrastructure, built-in security, and global

accessibility, bolstering the resilience and efficiency

of our testing environment.

5.1 Choosing Google Cloud Platform

Google Cloud Platform (GCP) is selected as the

platform for several reasons. Firstly, it offers a

comprehensive suite of cloud computing services

integrated with Google's global network infra-

structure. Additionally, GCP seamlessly integrates

with the existing container technologies ecosystem,

simplifying Docker and Kubernetes management. Its

commitment to innovation, reliability, and security

aligns with the system's requirements, making it an

ideal choice for the cloud implementation for the

automated testing system deployment.

5.2 Kubernetes as a Service

Kubernetes as a Service (KaaS) provides a

streamlined approach to managing Kubernetes

clusters in the public cloud, with Google Kubernetes

Engine (GKE) being a prominent solution within

GCP. The setup of a Kubernetes cluster on GCP is

initiated through the user-friendly interface of the

Google Cloud console's Kubernetes Engine section.

Utilizing Cloud Shell, a versatile tool provided by

GCP, a seamless connection is established between

the Google Cloud console and the Kubernetes cluster.

This connection is pivotal for effectively managing

and overseeing the cluster's operations, including

deployment, monitoring, and maintenance tasks.

To deploy containerized applications on GCP, we

use Google Container Registry (GCR). Storing

Docker images in GCR ensures they are accessible

and available across different platforms and

environments.

With the foundational setup in place, the

necessary components for applications are created

and managed using familiar Kubernetes

configuration files. These configurations are applied

through standard procedures, orchestrating the

deployment and scaling of applications on the

Kubernetes cluster within GCP.

The seamless integration of Kubernetes with GCP

empowers users to harness the scalability, reliability,

and flexibility of cloud-native technologies for their

applications and services. Through intuitive

interfaces and robust infrastructure, GCP simplifies

the complexities of managing Kubernetes clusters,

enabling efficient and effective cloud operations.

6 PERFORMANCE

CHARACTERISTICS OF THE

KUBERNETES CLUSTER

SYSTEM DEPLOYMENT

Finally, exploring the performance characteristics of

the final Kubernetes cluster deployment for the

system is crucial for ensuring the reliability and

efficiency of the automated testing processes.

Monitoring and analyzing the performance of the

Kubernetes cluster within the system plays a pivotal

role in optimizing resource utilization, identifying

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

209

potential bottlenecks, and enhancing overall

performance. Through the examination of key metrics

and the implementation of monitoring solutions, the

objective is to achieve optimal performance and

reliability.

6.1 Kubernetes Cluster Monitoring

Operating a Kubernetes cluster introduces comple-

xities due to the distributed nature of its components

and the vast array of available metrics. One crucial

aspect of monitoring Kubernetes clusters is tracking

the state of objects within the cluster, including

deployments, nodes, and pods. kube-state-metrics

(KSM) addresses this need by providing a simple, yet

effective, mechanism for generating metrics directly

from the Kubernetes server API.

KSM offers insights into the current state of the

Kubernetes objects, enabling a detailed assessment of

the health and performance of the cluster. Unlike

traditional monitoring tools focusing on individual

components, KSM collects various metrics related to

the state and resource usage of objects within the

cluster: the number of running pods, the available

CPU and memory resources, and the overall health

status. These metrics are crucial for delivering the

operational efficiency and performance of the cluster.

Figure 3: Kubernetes cluster health state.

Deploying KSM within the Kubernetes cluster

involves creating essential Kubernetes objects, such

as Service accounts, Cluster Roles, and Cluster Role

Bindings, along with the kube-state-metrics deploy-

ment itself. These objects are crucial for enabling

KSM to access and monitor Kubernetes API objects

seamlessly. KSM exposes metrics via the HTTP

/metrics endpoint, providing real-time visibility into

the cluster's state. By analyzing these metrics,

valuable insights into anomalies, resource utilization,

and cluster performance can be gained as illustrated

in Figure 3.

6.2 Cloud Environments Log
Management

The ELK Stack, comprising Elasticsearch, Logstash,

and Kibana tools, plays an important role in log

management within cloud-based environments. It

offers a centralized way for tracking and analyzing

various issues across system infrastructure, including

performance monitoring and node failure detection.

Elasticsearch, serving as the storage engine,

efficiently stores and retrieves log data. Logstash

handles log delivery, processing, and storage,

ensuring seamless data handling. Kibana, the

visualization tool, provides an intuitive interface for

visualizing log data and conducting advanced data

analysis.

Deploying ELK Stack involves creating essential

Kubernetes objects and resources: Elasticsearch

clusters and Logstash configurations. These compo-

nents aggregate, process, and visualize log data,

helping effective monitoring and analysis. Kibana

completes the ELK Stack with visualization features,

empowering users to gain insights into system

performance and troubleshoot issues efficiently.

6.3 Results from Kubernetes
Monitoring

In the deployed system, the Elastic Stack serves as a

fundamental component for Kubernetes monitoring,

offering essential tools such as Filebeat and

Metricbeat to collect monitoring data. These

lightweight agents, deployed as Daemon Sets in

Kubernetes, capture both system and application-

level metrics and logs. Filebeat is responsible for

collecting logs from pods, containers, and

applications running on Kubernetes.

Filebeat dynamically detects components within

pods and applies logging modules accordingly, thus

providing real-time access to log data, enabling

efficient log analysis and troubleshooting.

Metricbeat, on the other hand, collects and

preprocesses system and service metrics, including

CPU, memory, disk, and network data. Deployed on

each node in the cluster, Metricbeat gathers metrics

from the Kubelet API, offering insights into the state

of nodes, pods, containers, and other Kubernetes

resources. Additionally, Metricbeat accesses cluster-

wide metrics directly from the kube-state-metrics

service.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

210

Deployment of Filebeat and Metricbeat in our

Kubernetes cluster involves configuring YAML files

provided by Elastic. These files define deployment

settings and specify connection details, ensuring

seamless integration with existing Elasticsearch dep-

loyments and Kubernetes environments. Connecting

Filebeat to Elasticsearch entails configuring index

patterns to define indexed data for efficient retrieval

and visualization in Kibana. Filebeat utilizes

predefined index patterns to seamlessly transmit data

to an existing Elasticsearch deployment, establishing

direct integration. Address specification and TLS

certificate inclusion in the Filebeat configuration

ensure secure communication with Elasticsearch. For

effective container log collection, Filebeat instances

require access to the local log path mounted by the

host, enabling comprehensive log data collection

from Kubernetes pods, containers, and applications.

Once deployed and configured, Filebeat's

integration with Elasticsearch and Kibana facilitates

efficient log analysis and troubleshooting, empow-

ering users with valuable insights into system perfor-

mance and health. Accessing log data collected by

Filebeat is straightforward, as it automatically

becomes available for exploration in Kibana's Logs

application, as demonstrated in Figure 4.

Figure 4: Collecting Kubernetes logs using filebeat.

In the Kibana Logs Stream captured from the

Kubernetes cluster logs, we observe a real-time

display of log events, including timestamps, log

messages, and associated metadata. These may

include error messages related to failed deployments,

application crashes, resource constraints, network

issues, security breaches, and other operational

challenges. Additionally, anomalies such as sudden

spikes or drops in log activity, unusual patterns in

resource consumption, or unexpected behavior in

application logs may indicate underlying issues

requiring investigation and remediation.

Similarly, Figure 5 illustrates the performance

and health metrics collected by Metricbeat,

showcased in Kibana's Observability > Metrics

section, providing an overview of the containers and

pods within the Kubernetes environment.

Figure 5: Overview of pods and containers.

The configuration of Filebeat and Metricbeat

deployments within our Kubernetes cluster allows for

the direct visualization of our Kubernetes resources.

The use of ready-made panels is highlighted, which

inherently pull information about our configured

Kubernetes resources, as shown in Figure 6.

Figure 6: Kubernetes cluster overview.

Utilizing pre-built Kibana dashboards provided

by Metricbeat, we gain insights into various aspects

of our Kubernetes environment, including node,

deployment, and pod overviews. These dashboards,

shown in Figure 6, offer valuable insights into the

performance and health of our Kubernetes cluster,

enabling us to identify potential issues, optimize

resource utilization, and ensure the reliability and

efficiency of our system.

For instance, if the dashboard indicates a sudden

increase in CPU usage across multiple pods, we

promptly investigate potential resource bottlenecks

and scale up affected pods to ensure optimal

performance. Similarly, consistent patterns of pod

failures within a deployment prompt analysis of root

causes, adjustments to configurations, or implement-

tation of auto-recovery mechanisms to enhance

system reliability. This approach, facilitated by com-

prehensive insights from Metricbeat dashboards,

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

211

allows us to effectively address issues, optimize re-

source allocation, and sustain overall cluster

efficiency.

7 CONCLUSIONS

This research paper explores the development of an

automated API testing system with a focus on real-

time monitoring and visualization. By integrating

containerization tools like Docker and Kubernetes,

the study establishes a cohesive testing framework for

efficiency and scalability. Using Google Cloud

Platform (GCP) further enhances the system's

scalability and performance. Additionally, the

integration of monitoring tools, particularly

Elasticsearch, enables the assessment and

visualization of the health and performance of the

Kubernetes cluster underlying the testing

environment.

By adopting a continuous and automated

approach, the research successfully orchestrates these

technologies to create a robust and efficient system

for daily automation testing. The results highlight the

collective impact of these integrated technologies in

achieving reliable and effective automated testing

processes, ultimately contributing to the advancement

of software development.

REFERENCES

[1] P. Agrawal and N. Rawat, “Devops, ‘A New Approach
To Cloud Development & Testing’,” Proceedings of
the 2019 Int. Conf. on Issues and Challenges in
Intelligent Computing Techniques (ICICT), India, 27-
28 Sep. 2019, pp. 1-4.

[2] P.P. Kore, M.J. Lohar, M.T. Surve, and S. Jadhav,
“API Testing Using Postman Tool,” Int. Journal for
Research in Applied Science & Engineering Tech.
(IJRASET), 2022, doi: 10.22214/ijraset.2022.48030.

[3] Dh.K. Sharma, “Security Testing of API using
Postman and Swagger tools and its use in Internet of
Things (IOT),” Journal of Emerging Technologies and
Innovative Research, Feb. 2019, vol. 6, no. 2.

[4] J. Shah and D. Dubaria, “Building Modern Clouds:
Using Docker, Kubernetes & Google Cloud Platform,”
IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), 2019,
doi: 10.1109/ccwc.2019.8666479.

[5] S. Kumar and C. Saravanan, “A Comprehensive study
on Data Visualization tool - Grafana,” Journal of
Emerging Technologies and Innovative Research,
ISSN:2349-5162, vol.8, no. 5, page no.f908-f914,
May-2021.

[6] N. Kathare, O.V. Reddy, and V. Prabhu, “A
Comprehensive Study of Elasticsearch,” International
Journal of Science and Research (IJSR), vol. 10, no. 6,
June 2021, doi: 10.21275/SR21529233126.

[7] P. Shenoy, S.V. Soudri, R. Kumar, and
S. Bailuguttu, “Enhancement of observability using
Kubernetes operator,” Indonesian Journal of Electrical
Engineering and Computer Science, 2022,
doi: 10.11591/ijeecs.v25.i1, pp. 496-503.

[8] S. Kaiser, M.S. Haq, A. Tosun, and T. Korkmaz,
“Container technologies for ARM architecture: a
comprehensive survey of the state-of-the-art,” IEEE
Access, 2022, doi: 10.1109/ACCESS.2022.3197151.

[9] G. Ambrosino, G.B. Fioccola, R. Canonico, and
G. Ventre, “Container mapping and its impact on
performance in containerized Cloud environments,”
IEEE Int. Conf. on Service Oriented Systems
Engineering (SOSE), 2020,
doi: 10.1109/SOSE49046.2020.00014.

[10] S. Garg and S. Garg, “Automated Cloud
Infrastructure, Continuous Integration and Continuous
Delivery using Docker with Robust Container
Security,” Conference: 2019 IEEE Conference on
Multimedia Information Processing and Retrieval
(MIPR), 2019, doi: 10.1109/MIPR.2019.00094.

[11] A.M. Potdar, D.G. Narayan, S. Kengond, and
M.M. Mulla, “Performance Evaluation of Docker
Container and Virtual Machine,” Third
International Conference on Computing and
Network Communications, 2020,
doi: 10.1016/j.procs.2020.04.152.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

212

