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Abstract: This research paper focuses on developing a complete system for daily automation testing of comprehensive 

web applications implemented on cloud environments, encompassing the execution of automated API tests, 

real-time monitoring and results visualization of the testing environments. Despite the tools for developing 

automated API tests, the study uses containerization tools as Docker and Kubernetes, showcasing their 

integration into a cohesive testing framework. Furthermore, the implementation leverages the potential of the 

Google Cloud Platform (GCP) to demonstrate the usage of cloud computing services, emphasizing scalability 

and efficiency. Additionally, the paper details the integration of monitoring tools, specifically Elasticsearch, 

to assess and visualize the health and performance of the underlying Kubernetes cluster. Through a 

comprehensive approach, encompassing a wide variety of tools, the research establishes a continuous and 

automated testing environment essential for cutting-edge software applications. Results showcase the 

successful orchestration of all the technologies, highlighting their collective impact on achieving a robust and 

efficient system for continuous automation testing and monitoring. 

1 INTRODUCTION 

In today’s world of technology, every successful 

organization needs to be connected and accessible 

over the Internet. This would require setting-up an 

organizational data center. The traditional data center 

is on-premises, performing all of its functions in a 

physical location within the enterprise's office space, 

and usually managed by an in-house IT team. Thus, 

the digitalization of business processes in a traditional 

way would entail: a physical data center, buying and 

managing hardware (servers), software and licenses, 

creating a physical network, building the entire 

infrastructure and hiring a team of experts to manage 

or maintain this data center.  

On the other hand, cloud computing is the current 

state-of-the-art technology for delivery of computing 

resources and services such as servers, data storage, 

databases, networking, software, analytics, and 

intelligence over the Internet to offer flexible 

resources, faster innovation, and economies of scale. 

Using this paradigm, instead of owning data centers, 

organizations can rent access to the service provider 

infrastructure (storage, computer servers, databases, 

networks) and pay only for the resources they use.  

Consequently, the transition from traditional to 

cloud computing data centers is a very current topic. 

Our research focuses on a very specific topic, 

automation of API testing of a modern web-based 

application in a cloud environment, encompassing, 

researching and evaluating all aspects of building a 

complete, comprehensive, scalable and manageable 

automation testing cloud solution.  

The rest of the paper is organized as follows. 

Section 2 elaborates the related work in the area of 

cloud computing and automation testing. Section 3 

elaborates the design of the system for automated API 

testing. Section 4 presents the container elements 

incorporated into the automated testing environment, 

while Section 5 considers the cloud elements 

comprising the system. Section 6 showcases the 

performance characteristics of the Kubernetes cluster 

system deployment in the cloud, thus comparing all 

system elements and technologies. Section 7 

concludes the paper pointing out the main results and 

benefits of the system. 
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2 RELATED WORK 

Research in the domain of automated API testing, 

containerization, and cloud computing has provided 

valuable insights that enhance the understanding of 

these technologies. Authors in [1] examine DevOps 

technologies, offering perspectives on continuous 

integration and deployment, laying a foundation for 

our research on automating testing services. The 

research on API testing using Postman [2] contributes 

insights into automated API tests execution, while [3] 

presents considerations for secure implementation of 

the automated testing processes. Authors in [4] offer 

insights into building modern clouds by integrating 

Docker, Kubernetes, and cloud platforms, aligning 

with our research context. Additionally, [5] presents 

a study on the Grafana visualization tool, using an 

Influx DB data source. The authors in [6] provide a 

foundation for understanding the role of monitoring 

tools in the system health and performance 

evaluation, while the study on observability using 

Kubernetes operators [7] complements our goal of 

improving system monitoring and visualization by 

automating deployment, visualization, and 

monitoring within the cloud system and the 

Kubernetes cluster. 

Our research builds upon these foundations, 

introducing a novel approach that integrates 

regression end-to-end API testing, containerization, 

and cloud computing. The solution optimizes daily 

testing processes, improves test coverage, and 

ensures quick error detection, making it a significant 

advancement in the field of automated testing. The 

comprehensive integration of these technologies 

positions our system as a more scalable, reliable, and 

efficient solution for automated testing services in 

modern cloud environments. 

3 DESIGNING AN INNOVATIVE 

SYSTEM FOR AUTOMATED 

API TESTING 

Automation testing is crucial in the process of modern 

software development for its efficiency, accuracy, 

and speed. It ensures comprehensive test coverage, 

particularly for regression testing, and integrates 

seamlessly into Continuous Integration/Continuous 

Deployment pipelines. By leveraging new tools and 

optimizing the testing ecosystem, automatic testing 

facilitates early bug detection and reduces overall 

testing costs for the software development company. 

Illustrated in Figure 1 is the proposed design of an 

innovative holistic system enabling automated API 

testing utilizing cloud computing resources and 

advanced containerization technologies.   

Figure 1: Components of an automated API testing system using containers and cloud computing. 
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The innovative system comprises many elements 

to achieve the goals for automation API testing in the 

cloud, managed by container orchestration: 

1) Postman - a tool for testing API access points

and creating and documenting automated tests.

2) Newman - command line tool allowing

collections to be executed directly from

Postman.

3) InfluxDB – a time series database used to store

time-stamped sub-data (e.g. the execution time

of a single query).

4) Grafana – a tool for visualization and analysis

of data stored in the InfluxDB database.

5) Docker – system automation component (using

Docker images and containers for Newman,

Grafana and InfluxDB).

6) Kubernetes – an open source container

orchestration system for automating software

deployment, scaling and management.

7) Google Cloud Platform (GCP) - cloud

computing services available and managed by

Google.

The backend application intended to be tested can be 

represented as a group of API access points. Postman 

tool enables the environment for creating and saving 

simple and complex HTTP/s requests, as well as for 

reading their responses. Each application module is 

represented in Postman as a collection of requests 

(tests) organized as multiple folders that correspond 

to specific API access points. 

A general scenario for testing the functionality of 

an API usually consists of the following steps: 

1) Create Object (POST).

2) Verify previously created object (GET by ID).

3) Update object (PUT).

4) Get a list of all existing objects and check if the

newly created object is in the list (GET All).

5) Delete object (DELETE).

6) Get a list of all objects again and verify that the

deleted object is no longer in the list (GET All,

deleted object not present).

The test script associated with a request will be 

executed after the request has been sent and a 

response has arrived. These tests verify that the APIs 

work as expected, determine that integrations 

between services work reliably, and that new changes 

have not broken the existing functionality. 

Newman is the next (command line) tool in the 

toolchain, used after the Postman collections are set-

up and configured. It allows collections to be 

executed directly using scripting. Its extensibility 

enables easy integration with continuous integration 

servers, and at the same time providing a rich suite of 

performance customization options. 

 InfluxDB, a time series database, is the next tool 

of choice that enables storing the reports and obtained 

test results using the influxDB Newman 

report tool. This database enables storing detailed 

statistical information and results from each test run.  

To visualize the gathered data, the system uses 

Grafana, an open-source platform used for visualiza-

tion, monitoring and analysis of data from the Influx 

DB database. Grafana enables creating dashboards 

with panels, each representing specific metrics over a 

specific time frame, thus presenting visual interpreta-

tion of the test runs, and the occurring failed tests.  

The entire process presented in Figure 2 allows a 

well-defined and mostly automated process for API 

access points testing, and enables a simple further 

analysis and diagnostics from the saved data.  

Upon detecting errors by the automated system, 

final check needs to be done manually, with two 

possibilities: 

1) Either there was a change in the API not

reflected into the test (the test needs to be

corrected-fixed).

2) Or, the error cannot be detected into the test

itself, thus the API request is broken, and an

actual bug in the code has been detected.

Figure 2: Analysis and diagnostics of test results. 
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4 CONTAINER TECHNOLOGIES 

FOR AUTOMATION TESTING 

Today, containerization plays a crucial role in 

software development due to its efficiency, 

portability, and scalability. By using tools like 

Kubernetes, Docker, and GCP services, the testing 

workflow is streamlined, scalability is enhanced, and 

resource management is optimized. Figure 1 

illustrates the core tools essential for automating 

testing processes and achieving efficient and reliable 

testing outcomes. 

4.1 Containers for Automation Testing 

Container technology presents an advantageous 

choice for integration within automation systems due 

to its inherent characteristics: lightweight design, 

minimal memory footprint, and efficient resource 

utilization, thus offering unparalleled portability and 

scalability. Furthermore, their isolation properties 

ensure secure deployment, and parallel coexistence 

on a single server without interference. The swift 

creation and destruction of containers, enhance 

operational speed, supporting dynamic workloads. 

Leveraging containerization facilitates seamless 

software deployment and management in cloud 

environments, abstracting applications from their 

underlying infrastructure. 

Docker technology simplifies software delivery 

by providing a universal tool for creating, deploying, 

and running applications using containers, ensuring 

portability and consistency across different 

environments.  

Four services are established using Docker 

container technology. The first service, InfluxDB’s 

setup includes a Docker image, container name, and 

a port. Additionally a database and user are 

configured. However, the creation of the service 

alone does not facilitate storing of Newman results to 

the database, prompting the establishment of a second 

service to notify InfluxDB when it becomes 

operational. Similarly, Grafana is configured with its 

image, port, and container name. 

The services defined with docker-compose need 

to be connected to enable data exchange and 

communication among themselves in order to provide 

a seamless system pipeline. Configuring Grafana to 

use InfluxDB data enables visual representation 

additionally facilitating analysis through preconfi-

gured and modified dashboards and panels. 

4.2 Orchestration of Container 

Services  

In order to enable a more suitable usage of resources, 

and to simplify the management of the elements, the 

proposed systems encompasses the most widely used 

Kubernetes service orchestration tools. Kubernetes 

provides a highly elastic infrastructure with zero 

downtime deployment, automatic rollback, self-

healing, and container scaling features, enabling 

seamless management of the entire lifecycle.  

Before transitioning to cloud computing, the 

initial step involves setting up a local cluster. This is 

accomplished by utilizing Minikube, a lightweight 

implementation of Kubernetes. Compatible with all 

major OSs, Minikube aims to excel as a development 

tool for Kubernetes applications, ensuring 

comprehensive support for all Kubernetes features. 

4.2.1 Establishing a Kubernetes Cluster 

Establishing a Kubernetes cluster incorporating 

InfluxDB and Grafana involves several key steps. 

First, configuration files must be created for 

InfluxDB deployment, service, secret, and persistent 

volume claim. These files, specify essential details 

like the Docker image, exposed ports, and 

environment variables needed for database 

configuration. For instance, the deployment file 

outlines metadata and specifications, including the 

image source and container port, while the service file 

connects the service to the deployment through 

selectors. Additionally, a secret configuration file is 

essential for securely storing sensitive data, such as 

passwords, required for database configuration. This 

secret file uses Kubernetes secrets to securely store 

and inject the necessary data into the deployment as 

environment variables.  

Moreover, enabling persistent storage for the 

InfluxDB database requires a persistent volume claim 

(PVC) configuration file. This file describes the type 

and details of the storage space required by InfluxDB, 

enabling Kubernetes to allocate or provision the 

appropriate volume to meet the database's storage 

needs. Setting up Grafana components follows a 

similar process to InfluxDB. ConfigMaps, serving a 

similar purpose to Secrets, are utilized to add 

configuration files to pod containers. Grafana 

requires three configuration files to be written to the 

running container. These files are added to a 

ConfigMap and mounted in different locations within 

the container for proper configuration. 
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This ample setup ensures proper functioning and 

configuration of both InfluxDB and Grafana, 

facilitating efficient data storage, management, and 

access within the Kubernetes environment. 

4.2.2 Test Execution Schedule 

The Kubernetes CronJob acts like a traditional cron 

utility, scheduling tasks within containers. Its purpose 

in the system is orchestrating API collection tests 

with Newman and sending results to InfluxDB. By 

setting a daily schedule, Kubernetes automates these 

tests. 

As Minikube clusters lack access to local images, 

image construction takes place directly within the 

cluster using Minikube based command. Following 

image construction, the CronJob specification is cre-

ated, including a jobTemplate that outlines the execu-

ting task. The schedule parameter dictates the recu-

rring execution of tasks, ensuring periodic test runs. 

After each run, the associated pod terminates until 

the next scheduled execution, allowing test results to 

be displayed in Grafana within a 24-hour window.  

Although Minikube deployments do not 

inherently assign external IP addresses, accessing the 

Grafana service is made feasible via Minikube 

command, which seamlessly integrates with 

InfluxDB and automatically presents test results for 

analysis. 

5 CLOUD IMPLEMENTATION  

Introducing our system's move to the cloud involves 

tapping into the powerful advantages of cloud 

technology for refining our testing infrastructure. By 

transitioning to the cloud, scalability, reliability, and 

resource management are optimized. Cloud 

technology enables flexible scaling of testing 

resources, ensuring top-notch performance during 

peak demand. Furthermore, cloud platforms provide 

robust infrastructure, built-in security, and global 

accessibility, bolstering the resilience and efficiency 

of our testing environment. 

5.1 Choosing Google Cloud Platform 

Google Cloud Platform (GCP) is selected as the 

platform for several reasons. Firstly, it offers a 

comprehensive suite of cloud computing services 

integrated with Google's global network infra-

structure. Additionally, GCP seamlessly integrates 

with the existing container technologies ecosystem, 

simplifying Docker and Kubernetes management. Its 

commitment to innovation, reliability, and security 

aligns with the system's requirements, making it an 

ideal choice for the cloud implementation for the 

automated testing system deployment.  

5.2 Kubernetes as a Service 

Kubernetes as a Service (KaaS) provides a 

streamlined approach to managing Kubernetes 

clusters in the public cloud, with Google Kubernetes 

Engine (GKE) being a prominent solution within 

GCP. The setup of a Kubernetes cluster on GCP is 

initiated through the user-friendly interface of the 

Google Cloud console's Kubernetes Engine section. 

Utilizing Cloud Shell, a versatile tool provided by 

GCP, a seamless connection is established between 

the Google Cloud console and the Kubernetes cluster. 

This connection is pivotal for effectively managing 

and overseeing the cluster's operations, including 

deployment, monitoring, and maintenance tasks. 

To deploy containerized applications on GCP, we 

use Google Container Registry (GCR). Storing 

Docker images in GCR ensures they are accessible 

and available across different platforms and 

environments. 

With the foundational setup in place, the 

necessary components for applications are created 

and managed using familiar Kubernetes 

configuration files. These configurations are applied 

through standard procedures, orchestrating the 

deployment and scaling of applications on the 

Kubernetes cluster within GCP.  

The seamless integration of Kubernetes with GCP 

empowers users to harness the scalability, reliability, 

and flexibility of cloud-native technologies for their 

applications and services. Through intuitive 

interfaces and robust infrastructure, GCP simplifies 

the complexities of managing Kubernetes clusters, 

enabling efficient and effective cloud operations. 

6 PERFORMANCE 

CHARACTERISTICS OF THE 

KUBERNETES CLUSTER 

SYSTEM DEPLOYMENT 

Finally, exploring the performance characteristics of 

the final Kubernetes cluster deployment for the 

system is crucial for ensuring the reliability and 

efficiency of the automated testing processes. 

Monitoring and analyzing the performance of the 

Kubernetes cluster within the system plays a pivotal 

role in optimizing resource utilization, identifying 
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potential bottlenecks, and enhancing overall 

performance. Through the examination of key metrics 

and the implementation of monitoring solutions, the 

objective is to achieve optimal performance and 

reliability. 

6.1 Kubernetes Cluster Monitoring 

Operating a Kubernetes cluster introduces comple-

xities due to the distributed nature of its components 

and the vast array of available metrics. One crucial 

aspect of monitoring Kubernetes clusters is tracking 

the state of objects within the cluster, including 

deployments, nodes, and pods. kube-state-metrics 

(KSM) addresses this need by providing a simple, yet 

effective, mechanism for generating metrics directly 

from the Kubernetes server API.  

KSM offers insights into the current state of the 

Kubernetes objects, enabling a detailed assessment of 

the health and performance of the cluster. Unlike 

traditional monitoring tools focusing on individual 

components, KSM collects various metrics related to 

the state and resource usage of objects within the 

cluster: the number of running pods, the available 

CPU and memory resources, and the overall health 

status. These metrics are crucial for delivering the 

operational efficiency and performance of the cluster. 

Figure 3: Kubernetes cluster health state. 

Deploying KSM within the Kubernetes cluster 

involves creating essential Kubernetes objects, such 

as Service accounts, Cluster Roles, and Cluster Role 

Bindings, along with the kube-state-metrics deploy-

ment itself. These objects are crucial for enabling 

KSM to access and monitor Kubernetes API objects 

seamlessly. KSM exposes metrics via the HTTP 

/metrics endpoint, providing real-time visibility into 

the cluster's state. By analyzing these metrics, 

valuable insights into anomalies, resource utilization, 

and cluster performance can be gained as illustrated 

in Figure 3.   

6.2 Cloud Environments Log 
Management 

The ELK Stack, comprising Elasticsearch, Logstash, 

and Kibana tools, plays an important role in log 

management within cloud-based environments. It 

offers a centralized way for tracking and analyzing 

various issues across system infrastructure, including 

performance monitoring and node failure detection.  

Elasticsearch, serving as the storage engine, 

efficiently stores and retrieves log data. Logstash 

handles log delivery, processing, and storage, 

ensuring seamless data handling. Kibana, the 

visualization tool, provides an intuitive interface for 

visualizing log data and conducting advanced data 

analysis. 

Deploying ELK Stack involves creating essential 

Kubernetes objects and resources: Elasticsearch 

clusters and Logstash configurations. These compo-

nents aggregate, process, and visualize log data, 

helping effective monitoring and analysis. Kibana 

completes the ELK Stack with visualization features, 

empowering users to gain insights into system 

performance and troubleshoot issues efficiently. 

6.3 Results from Kubernetes 
Monitoring 

In the deployed system, the Elastic Stack serves as a 

fundamental component for Kubernetes monitoring, 

offering essential tools such as Filebeat and 

Metricbeat to collect monitoring data. These 

lightweight agents, deployed as Daemon Sets in 

Kubernetes, capture both system and application-

level metrics and logs. Filebeat is responsible for 

collecting logs from pods, containers, and 

applications running on Kubernetes.  

Filebeat dynamically detects components within 

pods and applies logging modules accordingly, thus 

providing real-time access to log data, enabling 

efficient log analysis and troubleshooting. 

Metricbeat, on the other hand, collects and 

preprocesses system and service metrics, including 

CPU, memory, disk, and network data. Deployed on 

each node in the cluster, Metricbeat gathers metrics 

from the Kubelet API, offering insights into the state 

of nodes, pods, containers, and other Kubernetes 

resources. Additionally, Metricbeat accesses cluster-

wide metrics directly from the kube-state-metrics 

service.  
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Deployment of Filebeat and Metricbeat in our 

Kubernetes cluster involves configuring YAML files 

provided by Elastic. These files define deployment 

settings and specify connection details, ensuring 

seamless integration with existing Elasticsearch dep-

loyments and Kubernetes environments. Connecting 

Filebeat to Elasticsearch entails configuring index 

patterns to define indexed data for efficient retrieval 

and visualization in Kibana. Filebeat utilizes 

predefined index patterns to seamlessly transmit data 

to an existing Elasticsearch deployment, establishing 

direct integration. Address specification and TLS 

certificate inclusion in the Filebeat configuration 

ensure secure communication with Elasticsearch. For 

effective container log collection, Filebeat instances 

require access to the local log path mounted by the 

host, enabling comprehensive log data collection 

from Kubernetes pods, containers, and applications.  

Once deployed and configured, Filebeat's 

integration with Elasticsearch and Kibana facilitates 

efficient log analysis and troubleshooting, empow-

ering users with valuable insights into system perfor-

mance and health. Accessing log data collected by 

Filebeat is straightforward, as it automatically 

becomes available for exploration in Kibana's Logs 

application, as demonstrated in Figure 4. 

Figure 4: Collecting Kubernetes logs using filebeat. 

In the Kibana Logs Stream captured from the 

Kubernetes cluster logs, we observe a real-time 

display of log events, including timestamps, log 

messages, and associated metadata. These may 

include error messages related to failed deployments, 

application crashes, resource constraints, network 

issues, security breaches, and other operational 

challenges. Additionally, anomalies such as sudden 

spikes or drops in log activity, unusual patterns in 

resource consumption, or unexpected behavior in 

application logs may indicate underlying issues 

requiring investigation and remediation. 

Similarly, Figure 5 illustrates the performance 

and health metrics collected by Metricbeat, 

showcased in Kibana's Observability > Metrics 

section, providing an overview of the containers and 

pods within the Kubernetes environment. 

Figure 5: Overview of pods and containers. 

The configuration of Filebeat and Metricbeat 

deployments within our Kubernetes cluster allows for 

the direct visualization of our Kubernetes resources. 

The use of ready-made panels is highlighted, which 

inherently pull information about our configured 

Kubernetes resources, as shown in Figure 6. 

Figure 6: Kubernetes cluster overview. 

Utilizing pre-built Kibana dashboards provided 

by Metricbeat, we gain insights into various aspects 

of our Kubernetes environment, including node, 

deployment, and pod overviews. These dashboards, 

shown in Figure 6, offer valuable insights into the 

performance and health of our Kubernetes cluster, 

enabling us to identify potential issues, optimize 

resource utilization, and ensure the reliability and 

efficiency of our system. 

For instance, if the dashboard indicates a sudden 

increase in CPU usage across multiple pods, we 

promptly investigate potential resource bottlenecks 

and scale up affected pods to ensure optimal 

performance. Similarly, consistent patterns of pod 

failures within a deployment prompt analysis of root 

causes, adjustments to configurations, or implement-

tation of auto-recovery mechanisms to enhance 

system reliability. This approach, facilitated by com-

prehensive insights from Metricbeat dashboards, 
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allows us to effectively address issues, optimize re-

source allocation, and sustain overall cluster 

efficiency. 

7 CONCLUSIONS 

This research paper explores the development of an 

automated API testing system with a focus on real-

time monitoring and visualization. By integrating 

containerization tools like Docker and Kubernetes, 

the study establishes a cohesive testing framework for 

efficiency and scalability. Using Google Cloud 

Platform (GCP) further enhances the system's 

scalability and performance. Additionally, the 

integration of monitoring tools, particularly 

Elasticsearch, enables the assessment and 

visualization of the health and performance of the 

Kubernetes cluster underlying the testing 

environment. 

By adopting a continuous and automated 

approach, the research successfully orchestrates these 

technologies to create a robust and efficient system 

for daily automation testing. The results highlight the 

collective impact of these integrated technologies in 

achieving reliable and effective automated testing 

processes, ultimately contributing to the advancement 

of software development. 
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