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Abstract: The field of robotics and autonomous systems has witnessed significant advancements in recent years, with 

an increasing focus on enhancing the capabilities of robotic agents through RL. This project centres around 

applying Reinforcement Learning techniques to do object manipulation tasks with a specific focus on making 

a robot arm reach a target object. Using a combination of Gazebo and Robot Operating System (ROS) 

environments, the robot arm is trained using custom OpenAI Gym environments to simulate the task. The 

primary objective involves positioning the end-effector of the robot arm close to a designated object and 

overcoming challenges such as self-collisions during movements. Various iterations of RL training, including 

different reward logics, curriculum learning approaches, and fine-tuning parameters, are explored to refine 

the decision-making capabilities of the agent. The training process of Curriculum Learning involves a phased 

approach, starting with basic movements and progressing to more complex tasks, demonstrating improved 

performance. However, challenges such as prolonged training times and uncertainties in arm behaviour 

persist. The project highlights the complexities inherent in designing effective RL strategies for robotic 

systems and stresses the need for further research to enhance computational efficiency and reliability in real-

world applications. 

1 INTRODUCTION 

1.1 Motivation 

Over the years, machines have played a significant 

role in reducing human workload. With technological 

advancements like artificial intelligence, machines 

have become more efficient and intelligent. Exploring 

the broad spectrum of applications, robots, especially 

robotic arms, hold immense potential in transforming 

various industries. This project aims to leverage 

Reinforcement Learning (RL) fundamentally based 

on [1], a machine learning technique facilitating 

experiential learning for robots, to enhance object 

manipulation capabilities, unlocking diverse 

possibilities for applying robotic arms across 

industries. 

1.2 Problem Statement 

The effectiveness of robotic systems often relies on 

their ability to perform tasks with precision [2]. This 

project aims to teach a robot arm to reach for an object 

using RL. The primary objective involves positioning 

the end-effector of the robot arm close to a designated 

object and overcoming challenges such as self-

collisions during movements. The idea is to start with 

a simpler goal, like reaching the object, and later 

move to more complex tasks, like grabbing. The 

model's performance can be initially refined through 

simulation. In the future, this can be applied to a real 

robot arm. Continuous adjustments and fine-tuning 

based on simulation outcomes are crucial for 

achieving the best results in practical situations. This 

approach leads to a robot system that can apply 

knowledge because it already learned how to do it 

(in a virtual environment/ OpenAI Gym) [3]. 
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2 LITERATURE REVIEW 

2.1 Reinforcement Learning 

In simple terms, RL is the study of agents and how 

they learn from their interaction with the environment 

to fulfil desired goals by trial and error. As shown in 

Figure 1, based on the action (at) and reward (rt) 

hypothesis, calculated by comparing the desired goal 

and observed state (St), facilitates learning the desired 

outcome. The Environment is the world where the 

agent resides and interacts. After each interaction, the 

agent gets information about the environment's new 

State. Based on this new state, it decides its next step. 

A Reward is a signal that an agent gets from the 

environment which tells how good or bad the state is 

and successful the goal is [4]. The goal of the agent is 

to maximize these rewards called “return”. So, using 

RL methods the agent can learn to achieve its goal [5]. 

In our case, the robot arm (Agent) will decide on its 

next best joint angles (Action at) to reach a desired 

end effector location based on Reward rt, which is 

calculated using the distance between the previous 

end effector location (State St) and the desired 

location. This is repeated until a satisfactory level of 

rewards is achieved which corresponds to a high 

success rate or accuracy of the robot arm reaching the 

desired end effector location.   

Figure 1: RL Agent-Environment interaction loop. 

 Mapping the states to the actions are called 

policies. These policies optimize themselves by 

choosing actions that maximize the rewards. These 

policies are categorized as value, policy, and model- 

based algorithms. In value-based algorithms such as 

Deep Q-Networks (DQN), policies are derived 

indirectly by learning the value function [6]. In 

policy-based algorithms such as   Proximal Policy 

Optimization (PPO), the policies are directly 

improved [7]. While model-based algorithms such as

Dyna-Q focus on learning the model of the 

environmental dynamics and thereby being able to 

learn policy functions [8]. 

2.2 Robot Arm Manipulation 

A few research studies have been reviewed. It gave 

insight into different reinforcement methods. Open-

World Object Manipulation using Pre-Trained 

Vision-Language Models [9]: The researchers utilize 

pre-trained vision-language models to extract object-

related details from the textual instructions and 

images. By leveraging this information, the robot 

becomes capable of identifying unknown objects and 

performing the required task, such as picking up the 

object. A Survey on Deep RL Algorithms for Robotic 

Manipulation [10]: This review provides an overview 

of recent advancements in deep RL for robotic 

manipulation tasks. Review papers [11-16] provided 

applications in environmental perception, path 

planning, behaviour decision and path planning. This 

provided a good idea of the potential of RL when 

applied appropriately specific to the domain. In 

addition, it provided a good overview of the available 

state-of-the-art RL algorithms. 

2.3 Limitation 

Implementation based on RL in robotics is mostly 

implemented on simulation and then transferred to the 

real hardware via transfer learning. In simulation, the 

environment can be reset easily, but on real hardware, 

human intervention is necessary to reset the 

environment [17]. Utilizing RL algorithms also has 

the potential to learn much faster and more efficiently 

in solving real-world problems [18, 19] 

However, to address these limitations, it is 

important to develop a robotics RL platform that 

provides flexibility and appropriate evaluation 

criteria, with which integration and experimentation 

with available state-of-the-art or new novel 

algorithms with various robots can be done. During 

the literature review, we only identified platforms that 

are general to reinforcement learning or specific to 

certain robots. 
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3 DEVELOPMENT PLATFORM 

After the literature review, it became evident that the 

ROS is the primary choice for robot control. When it 

comes to RL, OpenAI Gym [20] is a widely adopted 

framework. However, OpenAI Gym is designed for 

general RL and lacks specific features required for 

robotics applications. Bridging the gap between these 

two systems posed a significant challenge. The final 

goal is to combine all these, creating a stable training 

environment for our RL agent. 

Figure 2: Platform architecture for robotics. 

Figure 2, shows the overview and interconnection 

of the developed robotic RL platform.  

3.1 Integrating OpenAI Gym and ROS 

The initial step involves the comprehensive analysis 

of translating the problem statement into Python code 

while considering the integration of Gym and ROS. 

The logical step is to develop a custom environment 

class using OpenAI Gym's APIs for path planning, 

employing RL to guide the robot arm to desired 

locations. Within this environment, integrate ROS to 

manage the arm's initialization, control, and feedback 

acquisition. The computation of rewards is based on 

the feedback generated by various ROS nodes, which 

are continually publishing data. The core framework 

for the reward system, data gathering from sensors, 

and state management are encapsulated within the 

step function of this custom OpenAI Gym 

environment. Additionally, the procedures to be 

executed at the end of each episode, such as resetting 

variables and the robot's state, are delineated in the 

reset function of the custom OpenAI Gym 

environment. 

Integrating OpenAI Gym and ROS provides a 

robust solution for robot arm manipulation, 

combining their strengths to develop and train RL 

agents for precise and effective movements. 

3.2 Designing a Custom OpenAI Gym 
Environment 

OpenAI Gym package provides templates for 

creating a custom environment which should mirror 

the real-world application. Understanding the real 

world provides insights into the factors influencing 

the model and this can define how the agent can 

predict the actions that can be taken by the model. 

Then, we need to calculate rewards based on how the 

environment changes due to the agent's actions. ROS 

APIs can be used to read the environment state like 

the robot's joint positions. The reward calculation is 

crucial because it tells the agent if it’s actions are 

good or bad. The reward system inherently steers the 

learning process of the agent, shaping its 

understanding of the optimal course of action in 

pursuit of the defined objectives. 

To create a custom OpenAI Gym environment, we 

need to define several key functions required by the 

class template. These functions include: 

1) __init__: This function initializes the 

environment and sets up any necessary 

parameters. 

2) step: It defines what happens during each step in

the environment. It calculates the next state,

reward, and whether the episode is done.

3) reset: This function resets the environment to its

initial state at the beginning of each episode.

4) render: If necessary, this function can be used to

visualize the environment.

3.3 Robot Arm Models 

During the initial phase, a simple robot arm model 

was custom-designed using the Unified Robot 

Description Format (URDF) [21]. This model 

consisted of three cylinders stacked on top of each 

other, with two movable joints of type ‘revolute’. In 

this early stage, our primary goal was to control these 

joints using ROS from Python, and subsequently and 

subsequently integrating it with OpenAI Gym to 

utilize RL. 

The initial ROS and OpenAI Gym framework was 

established using this basic three-cylinder model 

shown on the left side of Figure 3. A CAD model can 

be converted to URDF format using the 

"sw_urdf_exporter" plugin in SolidWorks. Our robot 

arm features five revolute joints for arm movement 

and two prismatic joints for the end effector, as shown 

on the right side of Figure 3.  
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Figure 3: Initial simple cylindrical model (left) and CAD to 

URDF model (right). 

Figure 4: Dobot Magician robot arm. 

The next step was get insights into the 

performance difference between the simulation and 

the real world. For this purpose, we chose Dobot 

Magician robotic arm available at our laboratory and 

its URDF model was obtained from the 

manufacturer's website as shown in Figure 4. This 

URDF model would be used for further training and 

experimentation. The model featured four revolute 

joints for arm movement, with no end effector. One 

notable issue encountered with the URDF of the 

Dobot Magician is its lack of self-collision 

constraints, that’s why we implemented 

“selfCollision” tags and a contact sensor, working 

together to detect self-collisions. 

4 TRAINING OF THE RL AGENT 

During the training process, we aim to refine the RL 

Agent's performance. This involves adjusting 

simulations and enhancing the reward logic, all to 

improve the agent's decision-making capabilities. 

4.1 Varying Simulation Parameters 

In our simulation setup, the parameters 

`<max_step_size>`, `<real_time_factor>`, and 

`<real_time_update_rate>` in the <physics> tag of 

world file play crucial roles in controlling the 

dynamics of the simulation. The `<max_step_size>` 

determines the maximum time step for simulation 

updates, influencing the trade-off between accuracy 

and speed. The `<real_time_factor>` sets the ratio of 

simulation time to real-world time, allowing for 

control over the simulation's temporal behaviour. 

Finally, `<real_time_update_rate>` dictates how 

frequently the simulation updates in real-time, 

influencing responsiveness and computational load. 

Fine-tuning these parameters is essential to achieve 

the desired balance between simulation fidelity and 

computational efficiency in our experimentation. 

The optimal simulation rate parameters are found 

out to be 0.01 for MSS and 1000 for 

real_time_update_rate. 

4.2 Varying Environment Parameters 

4.2.1 Scaling Episode Iteration Steps 

For each training episode, the maximum number of 

tries or episode length can be configured. 

Table 1: Training results after varying the Episode Length. 

Episode 

Length 

TT 

(s) 
C/E/BF AS/ AU ELM ERM 

G

R 

50 1860 3337/0/103 930/5415 44.3 -901 0 

75 1859 4222/0/111 724/4776 51.3 -1440 0 

100 2082 5072/0/134 646/4001 48.5 -1750 1 

Table 1 consists of TT (Time Taken), 

Collisions/Errors/Bottle Fell (C/E/BF), Episode 

Length Mean (ELM), Episode Reward Mean (ERM) 

and Goal Reached (GR) of the experiment. Based on 

the obtained results, setting the episode length to no 

more than 50 yields better outcomes in terms of 

performance and stability. This is seen in Table 1 at 

the BF for the Episode Length of 50. 

4.2.2 Observation Space 

Exploring an alternative approach is to expand the 

observation space by adding the positions of both the 

object and the robot arm end effector. While it 

remains experimental, this adjustment aims to 

evaluate the impact on the learning process and 

determine if a more comprehensive observation space 

enhances the agent's understanding of the 

environment. 
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Table 2: Training results with different Observation Space 

(OS). D – Distance, OP – Object Distance and GP – Gripper 

Distance. 

OS C/E/BF AS/ AU ERM GR 

D 3337/0/103 930/5415 -901 0 

D + OP 2398/0/94 934/6375 -818 1 

D + OP + GP 2787/0/111 953/5942 -876 2 

Table 2 consists of Collisions/Errors/Bottle Fell 

(C/E/BF), Action Success/ Action Unsuccess 

(AS/AU), Episode Reward Mean (ERM), and Goal 

Reached (GR) of this experiment. As can be seen in 

above Table 2, the goal is reached when the OS is 

more comprehensive and hence is the better 

approach. 

4.3 Varying Reward Logic 

4.3.1 Reward Logic v1 

In defining the reward strategy, the central objective 

is to guide the robot arm toward the object while 

steering clear of collisions. The proposed approach 

involves assigning an exponentially increasing 

penalty for consecutive collisions, focusing on the 

impact of repeated impacts. Conversely, as the robot 

arm approaches the object, the reward scales 

proportionally, underlining the importance of 

proximity. To provide a stronger incentive, the 

reward for nearing the object is intentionally set 

slightly higher. Importantly, a distinct reward is 

introduced for transitioning from a collision state to a 

favourable movement state, emphasizing the priority 

of avoiding collisions over mere distance alterations. 

The reward system guides the agent to minimize the 

distance to the object while avoiding collisions 

effectively. Adjusting these reward components will 

be crucial for shaping the agent's behaviour for 

optimal task performance. Table 3 below illustrates 

the results after training, where the Iteration Per 

Episode (IPE) is assigned in the first column. 

Table 3: Training results of the Reward Logic v1. 

IPE TT (s) C/E (%) AS/ AU ELM ERM GR 

50k 8953 0/2.45 
11.93/5

2.29% 
28.8 -414 66 

50k 8635 0/2.21 
11.57/5

5.86% 
20.4 -89600 117 

The obtained results fell short of perfection, 

revealing a notable issue in the potential for rewards 

to exhibit significant fluctuations, particularly with 

very high negative values attributed to penalties for 

self-collisions. The learning process of the agent 

lacks stability, evident in the mean reward that varies 

sporadically between negative hundreds and 

occasional spikes into the thousands. 

Figure 5: Number of Successful Training Actions with 

Reward Logic v1. 

Furthermore, the number of actions 

demonstrating improvement has not shown any 

significant enhancement as seen in Figure 5. Looking 

at the average reward in Figure 6, we see that it often 

goes up and down a lot. This is mainly because of the 

harsh penalty for consecutive collisions. While this 

penalty is needed, we should adjust the rewards to 

avoid extremely negative values. This should help 

stabilize the learning process. 

Figure 6: Reward Mean with Reward Logic v1. 

4.3.2 Reward Logic v2 

The updated logic adopts a human-centric approach, 

aligning with how a person would be motivated and 

penalized in reaching the object. This strategy aims to 
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create a more realistic and balanced learning 

experience. The key considerations for this version 

reward system are as follows: 

1) Max Steps and Object Reach Reward: The

highest reward should occur when the robot

reaches the object in the fewest steps, with

diminishing rewards as the step count increases.

Even if the maximum steps are taken, a positive

but reduced reward should encourage continued

attempts.

2) Collision Penalties: The penalty for collisions

should be set in a way that, while giving higher

penalties for discouraging continuous collisions,

it does not plunge into extremely negative values.

This ensures that the agent perceives the task as

challenging but not impossible.

3) Safe Movement Reward: Transitioning from a

collision to a safe movement should be positively

rewarded. However, this reward should not be

too high to discourage frequent switching

between collision and safe movements.

4) Distance-Based Rewards and Penalties:

Penalties for moving away from the object and

rewards for proximity should be balanced to

motivate the agent without overly emphasizing

proximity.

5) Balanced Reward Values: Reward values for

positive and negative actions must be finely

tuned to motivate goal achievement while

discouraging collisions and moving away from

the object. Striking a balance ensures that the

agent remains engaged and does not lean towards

inactivity due to disproportionately high

penalties.

This approach mirrors human motivation and 

helps stabilize the learning process for the agent. 

Below Table 4 shows the comparison among 

versions. 

Table 4: Training results with Reward Logic v2. 

Version TT (s) C/E/BF AS/AU ELM GR 

v1 8953 15465/0/1223 5965/26143 28.8 66 

v2 10319 17807/0/2004 6907/22086 10.6 129 

Upon comparing the plots of the two versions in 

Figure 7, a significant improvement is observed in the 

number of successful episodes where the robot arm 

successfully reached the target. 

Figure 7: Successful Training Episodes with Reward Logic 

v2. 

Other parameters such as the number of collisions 

and successful training steps don't show a significant 

improvement in the observed results as seen in 

Figure 8 below. 

Figure 8: Reward Logic v2 indicating no improvement in 

Collisions and Successful Training Action. 

As seen in Figure 9, the rewards appear to be 

within an acceptable range, steadily increasing with 

no irregular negative peaks. 

Figure 9: Reward Mean with the Reward Logic v2. 
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To gain further insights, we conducted testing for 

250,000 steps in both versions, and the results are as 

follows in Table 5. 

Table 5: Training results with Reward Logic v2 (250k IPE 

steps). 

Ver TT (s) C/E/BF (%) AS/AU (%) ELM GR 

v1 44111 20.78/0/3.01 12.99/59.03 -168000
100

3 

v2 47154 34.69/0/2.91 12.53/46.69 -11.2 497 

Surprisingly, the improvement in the number of 

successful episodes is not as significant as in 

version 1. Additionally, the number of collisions 

continues to increase. Analyzing the mean reward 

plot in Figure 10 reveals prominent negative peaks at 

multiple points. This problem emerged when the 

bottle was thrown far away, leading to an excessively 

high distance calculation and subsequently resulting 

in a very negative reward based on distance. 

Figure 10: Reward Mean with Reward Logic v2 after 

running for 250k IPE steps. 

4.3.3 Reward Logic v3 

To address the excessive negative values of reward in 

v2, extra safeguards have been incorporated in this 

version. If collisions persist beyond a certain 

threshold, the training is terminated with a penalty. 

Additionally, a check has been implemented to ensure 

the bottle's proximity, accounting for scenarios of 

potential displacement due to rapid arm movements. 

Upon analyzing Table 6, a decline in performance 

is seen. The current threshold for successive 

collisions is set at 5, potentially terminating many 

training episodes prematurely and limiting the agent's 

learning. In the next training iteration (version 3.1), 

the self-collision threshold will be increased to 10. 

However, there is no apparent improvement, and the 

results even show a slight negative trend. The mean 

reward exhibits no occurrence of negative peaks, 

suggesting the success of safeguard mechanisms. 

Table 6: Training results with Reward Logic v3. 

Version TT (s) C/E/BF AS/AU ELM GR 

v1 8953 15465/0/1223 5965/26143 28.8 66 

v2 10319 17807/0/2004 6907/22086 10.6 129 

v3 9298 17376/0/746 6004/24022 26.6 38 

v3.1 10472 19693/0/751 5563/22697 33.5 13 

4.3.4 Reward Logic v4 

Despite numerous iterations, most versions of the 

reward logic performed poorly compared to the initial 

one. To enhance the reward system, reward shaping 

was considered, in which rewards are based on the 

quality of action by evaluating deviations from ideal 

actions. Consequently, penalties are applied, 

providing the agent with feedback and influencing its 

behaviour. This strategy aims to guide the agent 

towards actions that align more closely with the 

desired outcomes, potentially accelerating the 

learning process and improving overall task 

performance. The collision threshold also has been 

updated to 25. The shaping reward based on the 

action is implemented specifically whenever the valid 

distance measured is not improved. The training has 

been executed for 50,000 steps, and the outcomes are 

presented in Table 7 below. The successful training 

episode is also shown in Figure 11. 

Figure 11: Successful Training Episode with the Reward 

Logic v4 (50k IPE steps). 

There is also a reduction in the number of 

collisions, and successful actions show a slight 

improvement as seen in Figure 12. 
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Table 7: Training results with Reward Logic v4 after 

executing for 50k steps. 

Version TT (s) C/E/BF AS/AU ELM GR 

v1 8953 15465/0/1223 5965/26143 28.8 66 

v2 10319 17807/0/2004 6907/22086 10.6 129 

v3 10472 19693/0/751 5563/22697 33.5 13 

v4 9301 12640/0/1583 6782/27941 - 135 

v4 8799 12967/0/1238 6266/28488 -192 79 

Figure 12: Plots of Self-Collision Count and Successful 

Training Action with Reward Logic v4. 

Table 8: Training results of Training with Reward Logic v4 

after running 250k IPE steps. Ver stands for Version. 

Ver TT (s) C/E/BF (%) AS/AU (%) GR 

v1 44111 20.78/0.0012/3.0 12.99/59.03 1003 

v4 45692 21.92/0/3.25% 14.11/58.07 1069 

Figure 13: Self-Collision Count with Reward Logic v4 

running for 250k IPE steps. 

To delve deeper, additional testing was conducted 

for 250,000 steps and summarized in Table 8. A 

noticeable improvement in the number of successful 

episodes is evident, and there is a decreasing trend in 

the number of collisions toward the end of training as 

seen in Figure 13. Overall, this version exhibits 

slightly better performance than the initial reward 

logic and will be used for further testing.  

4.4 Varying Policies 

Stable Baselines provides a diverse range of RL 

policies such as Proximal Policy Optimization (PPO), 

Deep Deterministic Policy Gradients (DDPG), Trust 

Region Policy Optimization (TRPO), and more. The 

applicability of each policy depends on the action and 

observation types specific to the environment. The 

possible policies for the current task are tried. These 

are Advantage Actor-Critic (A2C), Deep 

Deterministic Policy Gradient (DDPG), Proximal 

Policy Optimization (PPO), Soft Actor-Critic (SAC) 

and Twin Delayed DDPG (TD3).  

4.4.1 Advantage Actor-Critic Policy 

Up to this point, all training sessions have been 

conducted using this A2C policy. The results are 

summarized below in Table 9. 

Table 9: Training results with A2C Policy. 

TT (s) C/E/BF (%) AS/AU (%) GR 

8799 

(50k steps) 
25.93/0/2.48 12.53/56.98 79 

45692 

(250k steps) 
21.92/0/3.25 14.11/58.07 1069 

4.4.2 Policy Comparison 

Results obtained with DDPG, PPO and SAC policies 

highlight a much lower number of successful 

episodes as can be seen in Table 10. This is also 

evident in Figure 14 when DDPG is compared with 

A2C. 

Table 10: Training results with PPO Policy. 

RL TT (s) C/E/BF (%) AS/AU (%) GR 

DDPG 8995 16.97/0/1.73 11.48/67.74 16 

PPO 8697 24.63/0/0.87 9.58/62.80 5 

SAC 11884 15.51/0/1.09 11.26/67.44 4 
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Figure 14: Comparison of Successful Training Episode 

between A2C and DDPG Policies. 

4.4.3 Comparison of TD3 and A2C Policy 

The TD3 policy has demonstrated a notable number 

of successful actions and achieved goals as shown in 

Table 11. 

Table 11: Training results with TD3 Policy. 

TT (s) C/E/BF AS/AU GR 

10274 

(50k steps) 

8476/0/1860 

16.95/0/3.72% 

7083/31565 

14.17/63.13% 
45 

50951 

(250k steps) 

43062/0/10308 

17.22/0/4.12% 

45894/144635 

18.36/57.86% 
785 

Figure 15: Plot of Self-Collisions Count and Successful 

Training Actions with A2C and TD3 Policies. 

To further assess its performance, it was executed 

for 250,000 steps, and the results are detailed in 

Table 11. Upon analyzing the plots, it is evident that 

the TD3 Policy exhibits fewer collisions compared to 

the A2C policy. Additionally, the number of 

successful actions is higher as seen in Figure 15. 

Although the A2C policy achieves more goals, the 

TD3 policy shows an exponential increase in 

successful goals towards the end of training, 

indicating a potential for superior performance as 

shown in Figure 16.  

Figure 16: Plot of Successful Training Episodes with A2C 

and TD3 Policies. 

Based on these findings, the decision has been made 

to proceed with the TD3 policy for subsequent 

testing. 

4.5 Curriculum Learning 

Curriculum learning is a training strategy in machine 

learning where the model is exposed to a series of 

tasks or goals of increasing complexity. The approach 

gradually introduces more challenging scenarios, 

mirroring human learning by starting with simpler 

concepts before advancing to more intricate ones. 

Curriculum learning can enhance the overall learning 

efficiency and generalization capabilities of a model, 

enabling it to better handle a diverse range of 

situations. An initial experiment involved breaking 

down the task into two stages. In the first stage, the 

robot was trained to reach a specific point instead of 

the bottle, overlooking the scenario where the bottle 

might fall. Following this, the model was loaded and 

retrained with the comprehensive goal of reaching the 

bottle. 

In Figure 17 above, it is evident that the process 

of retraining the model is functioning effectively. The 

loaded model retains and builds upon previous 

training knowledge, resulting in improved 

performance during subsequent training sessions. 

Given the objective of having the robot arm reach the 

bottle, we encounter two primary challenges: 

collisions between the arm and the risk of the bottle 

toppling. To systematically address these challenges 

at different stages, the task is partitioned into three 

distinct goals, each trained separately: 
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 The primary objective is to guide the robot arm

to move without collisions. Penalties are given

exclusively for collisions, while all valid

movements receive rewards, with greater weight

assigned to getting closer to the fixed point.

 In this stage, additional penalties are introduced

for movements that take the robot farther away

from the fixed point. There is no condition check

for the possibility of the bottle falling.

 The final stage involves the robot attempting to

reach the bottle. Extra penalties are imposed if

the bottle falls during this stage.

Figure 17: Training the agent in two stages. 

Figures 18 and 19 below illustrate the successful 

episodes and self-collisions. Each stage undergoes 

training for a duration of 100,000 steps. 

Figure 18: Plot of Successful Training Episodes with 

Curriculum Learning. 

As seen in Figure 19, the total count of self-

collisions has considerably decreased. The stage with 

the highest number of successful episodes is stage 2, 

where the objective is to move to a fixed point without 

considering the possibility of the bottle toppling over 

while penalizing collisions and movements away 

from the designated point. However, once it moves to 

stage 3, the rate of successful episodes is reduced 

significantly. But the total number of successful 

episodes is still good as seen in Table 12. Table 12 

consists of Collisions/Errors/Bottle Fell (C/E/BF), 

Action Successful/ Action Unsuccessful (AS/AU) 

and Goal Reached (GR) of the experiment. 

Figure 19: Plot of Total Self-Collision Count with 

Curriculum Learning. 

Table 12: Training results with Curriculum Learning. 

Stage C/E/BF (%) AS/AU (%) GR 

1 1.03/0/0 10.72/85.32 1275 

2 5.42/0/0 26.74/57.69 9253 

3 12.23/48.75 16.85/63.33 501 

The understanding from this curriculum learning 

is that the robot can be trained initially for simple 

goals and then trained on top of this for sophisticated 

goals. 

4.6 Results 

In all experiments, total training time emerges as the 

key factor influencing performance. Regardless of 

policy and parameters, better results are consistently 

observed with increased training steps for both A2C 

and TD3 algorithms. The introduction of curriculum 

learning indicates potential for enhanced 

performance. The extended training duration for each 

stage facilitates better learning by the robot. 

However, inherent variability in machine learning 

outcomes presents a challenge to achieving consistent 

results across trials. The best model obtained through 

the Curriculum-based approach is evaluated in two 

scenarios. In the first approach, the final position is 

fixed, without any condition regarding the bottle 

getting toppled. In the second approach, the condition 

of the bottle getting toppled is considered. Two trials 

are conducted for each approach, and the results are 
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presented in Tables 13 and 14 below. The observed 

trend reveals that the robot arm tends to topple the 

bottle during its attempts to reach it, resulting in a 

lower success rate. However, when tasked with 

reaching a fixed point without considering the risk of 

the bottle falling, the success rate is notably higher. 

Table 13: Testing of the best model with a Scenario of fixed 

position. 

Scenario 1: 

Fixed 

Position 

Count of final states [Episode Counts: 50] 

BottleFell End_Success End_NoSuccess 

Trial 1 0 32 18 

Trial 2 0 22 28 

Table 14: Testing of the best model with a Scenario of 

reaching a bottle. 

Scenario 2: 

Bottle 

Position 

Count of final states [Episode Counts: 50] 

BottleFell End_Success End_NoSuccess 

Trial 1 43 3 4 

Trial 2 34 11 5 

Moreover, the variation in outcomes between the 

two trials in both scenarios underscores the dynamic 

nature of the model's performance across different 

instances. This highlights the importance of assessing 

the confidence level of the model for real-life 

scenarios. 

5 LIMITATIONS 

Executing the project posed a significant time 

challenge, with optimal results achieved through 

extended training steps, but with the trade-off of 

higher execution time. Training for 50k steps alone 

took approximately 2.5 hours, while the 

recommended training times for better performance 

range from 500k to 3000k steps. Attempts to run for 

such prolonged durations were also hindered by 

computational constraints, occasionally resulting in 

script stalling. The current agent predicts actions 

within the motion range, occasionally leading to 

abrupt arm movements, causing objects in its path to 

topple. An incremental update to actions could 

mitigate this issue, with the initial action being 

randomly predicted and subsequent actions featuring 

incremental changes. This approach aims to prevent 

sudden, unpredictable movements. Despite extended 

training durations, the performance of the arm cannot 

be guaranteed or predicted with absolute confidence. 

Occasional collisions and abrupt arm movements 

persist, posing challenges when transferring the 

learned behaviour to real hardware. Rigorous analysis 

of results after extended training periods is essential 

to reaffirm confidence in the model's performance. 

6 CONCLUSIONS 

This project has explored the application of RL in the 

domain of object manipulation. As the field of 

artificial intelligence continues to evolve, the 

integration of advanced RL techniques in object 

manipulation will undoubtedly play a pivotal role in 

shaping the future of automation and robotics. 

The successful integration of Gazebo, ROS, and 

custom OpenAI Gym environments provided an 

efficient development environment for simulating 

realistic robotic tasks. The primary goal of 

positioning the robot arm near the target object 

involved distance calculation and collision 

management within the robot arm simulation, 

utilizing Gazebo plugins and Python scripts. 

Throughout the training process, we optimized 

environment parameters and iteratively refined 

reward logic, transitioning from basic logic to more 

sophisticated versions, and incorporating reward 

shaping and tuning approaches. The improvement of 

the reward system, especially the shift towards a more 

human-centric approach, highlighted the complexity 

and challenges inherent in designing effective RL 

strategies. Implementing curriculum learning, 

mirroring human learning progression significantly 

enhanced the model's efficiency. This is a promising 

approach and better results are expected when 

executed for more training steps. However, 

computational limitations were observed, suggesting 

the need for more powerful devices in future research 

for enhanced performance. The project deepened our 

understanding of object manipulation with RL, 

emphasizing the intricate dynamics in robotic 

systems. 
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