
Modular Robotic Reinforcement Learning Platform for

Object Manipulation

Vishnudev Kurumbaparambil, Subashkumar Rajanayagam and Stefan Twieg
Department of Electrical, Mechanical and Industrial Engineering, Anhalt University of Applied Sciences,

Bernburger Str. 55, 06366 Köthen, Germany

vishnudev.kurumbaparambil@student.hs-anhalt.de, subashkumar.rajanayagam@hs-anhalt.de, stefan.twieg@hs-anhalt.de

Keywords: Reinforcement Learning, Robot Arm, Object Manipulation, OpenAI Gym, Stable Baselines,

Robot Operating System.

Abstract: The field of robotics and autonomous systems has witnessed significant advancements in recent years, with

an increasing focus on enhancing the capabilities of robotic agents through RL. This project centres around

applying Reinforcement Learning techniques to do object manipulation tasks with a specific focus on making

a robot arm reach a target object. Using a combination of Gazebo and Robot Operating System (ROS)

environments, the robot arm is trained using custom OpenAI Gym environments to simulate the task. The

primary objective involves positioning the end-effector of the robot arm close to a designated object and

overcoming challenges such as self-collisions during movements. Various iterations of RL training, including

different reward logics, curriculum learning approaches, and fine-tuning parameters, are explored to refine

the decision-making capabilities of the agent. The training process of Curriculum Learning involves a phased

approach, starting with basic movements and progressing to more complex tasks, demonstrating improved

performance. However, challenges such as prolonged training times and uncertainties in arm behaviour

persist. The project highlights the complexities inherent in designing effective RL strategies for robotic

systems and stresses the need for further research to enhance computational efficiency and reliability in real-

world applications.

1 INTRODUCTION

1.1 Motivation

Over the years, machines have played a significant

role in reducing human workload. With technological

advancements like artificial intelligence, machines

have become more efficient and intelligent. Exploring

the broad spectrum of applications, robots, especially

robotic arms, hold immense potential in transforming

various industries. This project aims to leverage

Reinforcement Learning (RL) fundamentally based

on [1], a machine learning technique facilitating

experiential learning for robots, to enhance object

manipulation capabilities, unlocking diverse

possibilities for applying robotic arms across

industries.

1.2 Problem Statement

The effectiveness of robotic systems often relies on

their ability to perform tasks with precision [2]. This

project aims to teach a robot arm to reach for an object

using RL. The primary objective involves positioning

the end-effector of the robot arm close to a designated

object and overcoming challenges such as self-

collisions during movements. The idea is to start with

a simpler goal, like reaching the object, and later

move to more complex tasks, like grabbing. The

model's performance can be initially refined through

simulation. In the future, this can be applied to a real

robot arm. Continuous adjustments and fine-tuning

based on simulation outcomes are crucial for

achieving the best results in practical situations. This

approach leads to a robot system that can apply

knowledge because it already learned how to do it

(in a virtual environment/ OpenAI Gym) [3].

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

213

2 LITERATURE REVIEW

2.1 Reinforcement Learning

In simple terms, RL is the study of agents and how

they learn from their interaction with the environment

to fulfil desired goals by trial and error. As shown in

Figure 1, based on the action (at) and reward (rt)

hypothesis, calculated by comparing the desired goal

and observed state (St), facilitates learning the desired

outcome. The Environment is the world where the

agent resides and interacts. After each interaction, the

agent gets information about the environment's new

State. Based on this new state, it decides its next step.

A Reward is a signal that an agent gets from the

environment which tells how good or bad the state is

and successful the goal is [4]. The goal of the agent is

to maximize these rewards called “return”. So, using

RL methods the agent can learn to achieve its goal [5].

In our case, the robot arm (Agent) will decide on its

next best joint angles (Action at) to reach a desired

end effector location based on Reward rt, which is

calculated using the distance between the previous

end effector location (State St) and the desired

location. This is repeated until a satisfactory level of

rewards is achieved which corresponds to a high

success rate or accuracy of the robot arm reaching the

desired end effector location.

Figure 1: RL Agent-Environment interaction loop.

 Mapping the states to the actions are called

policies. These policies optimize themselves by

choosing actions that maximize the rewards. These

policies are categorized as value, policy, and model-

based algorithms. In value-based algorithms such as

Deep Q-Networks (DQN), policies are derived

indirectly by learning the value function [6]. In

policy-based algorithms such as Proximal Policy

Optimization (PPO), the policies are directly

improved [7]. While model-based algorithms such as

Dyna-Q focus on learning the model of the

environmental dynamics and thereby being able to

learn policy functions [8].

2.2 Robot Arm Manipulation

A few research studies have been reviewed. It gave

insight into different reinforcement methods. Open-

World Object Manipulation using Pre-Trained

Vision-Language Models [9]: The researchers utilize

pre-trained vision-language models to extract object-

related details from the textual instructions and

images. By leveraging this information, the robot

becomes capable of identifying unknown objects and

performing the required task, such as picking up the

object. A Survey on Deep RL Algorithms for Robotic

Manipulation [10]: This review provides an overview

of recent advancements in deep RL for robotic

manipulation tasks. Review papers [11-16] provided

applications in environmental perception, path

planning, behaviour decision and path planning. This

provided a good idea of the potential of RL when

applied appropriately specific to the domain. In

addition, it provided a good overview of the available

state-of-the-art RL algorithms.

2.3 Limitation

Implementation based on RL in robotics is mostly

implemented on simulation and then transferred to the

real hardware via transfer learning. In simulation, the

environment can be reset easily, but on real hardware,

human intervention is necessary to reset the

environment [17]. Utilizing RL algorithms also has

the potential to learn much faster and more efficiently

in solving real-world problems [18, 19]

However, to address these limitations, it is

important to develop a robotics RL platform that

provides flexibility and appropriate evaluation

criteria, with which integration and experimentation

with available state-of-the-art or new novel

algorithms with various robots can be done. During

the literature review, we only identified platforms that

are general to reinforcement learning or specific to

certain robots.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

214

3 DEVELOPMENT PLATFORM

After the literature review, it became evident that the

ROS is the primary choice for robot control. When it

comes to RL, OpenAI Gym [20] is a widely adopted

framework. However, OpenAI Gym is designed for

general RL and lacks specific features required for

robotics applications. Bridging the gap between these

two systems posed a significant challenge. The final

goal is to combine all these, creating a stable training

environment for our RL agent.

Figure 2: Platform architecture for robotics.

Figure 2, shows the overview and interconnection

of the developed robotic RL platform.

3.1 Integrating OpenAI Gym and ROS

The initial step involves the comprehensive analysis

of translating the problem statement into Python code

while considering the integration of Gym and ROS.

The logical step is to develop a custom environment

class using OpenAI Gym's APIs for path planning,

employing RL to guide the robot arm to desired

locations. Within this environment, integrate ROS to

manage the arm's initialization, control, and feedback

acquisition. The computation of rewards is based on

the feedback generated by various ROS nodes, which

are continually publishing data. The core framework

for the reward system, data gathering from sensors,

and state management are encapsulated within the

step function of this custom OpenAI Gym

environment. Additionally, the procedures to be

executed at the end of each episode, such as resetting

variables and the robot's state, are delineated in the

reset function of the custom OpenAI Gym

environment.

Integrating OpenAI Gym and ROS provides a

robust solution for robot arm manipulation,

combining their strengths to develop and train RL

agents for precise and effective movements.

3.2 Designing a Custom OpenAI Gym
Environment

OpenAI Gym package provides templates for

creating a custom environment which should mirror

the real-world application. Understanding the real

world provides insights into the factors influencing

the model and this can define how the agent can

predict the actions that can be taken by the model.

Then, we need to calculate rewards based on how the

environment changes due to the agent's actions. ROS

APIs can be used to read the environment state like

the robot's joint positions. The reward calculation is

crucial because it tells the agent if it’s actions are

good or bad. The reward system inherently steers the

learning process of the agent, shaping its

understanding of the optimal course of action in

pursuit of the defined objectives.

To create a custom OpenAI Gym environment, we

need to define several key functions required by the

class template. These functions include:

1) __init__: This function initializes the

environment and sets up any necessary

parameters.

2) step: It defines what happens during each step in

the environment. It calculates the next state,

reward, and whether the episode is done.

3) reset: This function resets the environment to its

initial state at the beginning of each episode.

4) render: If necessary, this function can be used to

visualize the environment.

3.3 Robot Arm Models

During the initial phase, a simple robot arm model

was custom-designed using the Unified Robot

Description Format (URDF) [21]. This model

consisted of three cylinders stacked on top of each

other, with two movable joints of type ‘revolute’. In

this early stage, our primary goal was to control these

joints using ROS from Python, and subsequently and

subsequently integrating it with OpenAI Gym to

utilize RL.

The initial ROS and OpenAI Gym framework was

established using this basic three-cylinder model

shown on the left side of Figure 3. A CAD model can

be converted to URDF format using the

"sw_urdf_exporter" plugin in SolidWorks. Our robot

arm features five revolute joints for arm movement

and two prismatic joints for the end effector, as shown

on the right side of Figure 3.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

215

Figure 3: Initial simple cylindrical model (left) and CAD to

URDF model (right).

Figure 4: Dobot Magician robot arm.

The next step was get insights into the

performance difference between the simulation and

the real world. For this purpose, we chose Dobot

Magician robotic arm available at our laboratory and

its URDF model was obtained from the

manufacturer's website as shown in Figure 4. This

URDF model would be used for further training and

experimentation. The model featured four revolute

joints for arm movement, with no end effector. One

notable issue encountered with the URDF of the

Dobot Magician is its lack of self-collision

constraints, that’s why we implemented

“selfCollision” tags and a contact sensor, working

together to detect self-collisions.

4 TRAINING OF THE RL AGENT

During the training process, we aim to refine the RL

Agent's performance. This involves adjusting

simulations and enhancing the reward logic, all to

improve the agent's decision-making capabilities.

4.1 Varying Simulation Parameters

In our simulation setup, the parameters

`<max_step_size>`, `<real_time_factor>`, and

`<real_time_update_rate>` in the <physics> tag of

world file play crucial roles in controlling the

dynamics of the simulation. The `<max_step_size>`

determines the maximum time step for simulation

updates, influencing the trade-off between accuracy

and speed. The `<real_time_factor>` sets the ratio of

simulation time to real-world time, allowing for

control over the simulation's temporal behaviour.

Finally, `<real_time_update_rate>` dictates how

frequently the simulation updates in real-time,

influencing responsiveness and computational load.

Fine-tuning these parameters is essential to achieve

the desired balance between simulation fidelity and

computational efficiency in our experimentation.

The optimal simulation rate parameters are found

out to be 0.01 for MSS and 1000 for

real_time_update_rate.

4.2 Varying Environment Parameters

4.2.1 Scaling Episode Iteration Steps

For each training episode, the maximum number of

tries or episode length can be configured.

Table 1: Training results after varying the Episode Length.

Episode

Length

TT

(s)
C/E/BF AS/ AU ELM ERM

G

R

50 1860 3337/0/103 930/5415 44.3 -901 0

75 1859 4222/0/111 724/4776 51.3 -1440 0

100 2082 5072/0/134 646/4001 48.5 -1750 1

Table 1 consists of TT (Time Taken),

Collisions/Errors/Bottle Fell (C/E/BF), Episode

Length Mean (ELM), Episode Reward Mean (ERM)

and Goal Reached (GR) of the experiment. Based on

the obtained results, setting the episode length to no

more than 50 yields better outcomes in terms of

performance and stability. This is seen in Table 1 at

the BF for the Episode Length of 50.

4.2.2 Observation Space

Exploring an alternative approach is to expand the

observation space by adding the positions of both the

object and the robot arm end effector. While it

remains experimental, this adjustment aims to

evaluate the impact on the learning process and

determine if a more comprehensive observation space

enhances the agent's understanding of the

environment.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

216

Table 2: Training results with different Observation Space

(OS). D – Distance, OP – Object Distance and GP – Gripper

Distance.

OS C/E/BF AS/ AU ERM GR

D 3337/0/103 930/5415 -901 0

D + OP 2398/0/94 934/6375 -818 1

D + OP + GP 2787/0/111 953/5942 -876 2

Table 2 consists of Collisions/Errors/Bottle Fell

(C/E/BF), Action Success/ Action Unsuccess

(AS/AU), Episode Reward Mean (ERM), and Goal

Reached (GR) of this experiment. As can be seen in

above Table 2, the goal is reached when the OS is

more comprehensive and hence is the better

approach.

4.3 Varying Reward Logic

4.3.1 Reward Logic v1

In defining the reward strategy, the central objective

is to guide the robot arm toward the object while

steering clear of collisions. The proposed approach

involves assigning an exponentially increasing

penalty for consecutive collisions, focusing on the

impact of repeated impacts. Conversely, as the robot

arm approaches the object, the reward scales

proportionally, underlining the importance of

proximity. To provide a stronger incentive, the

reward for nearing the object is intentionally set

slightly higher. Importantly, a distinct reward is

introduced for transitioning from a collision state to a

favourable movement state, emphasizing the priority

of avoiding collisions over mere distance alterations.

The reward system guides the agent to minimize the

distance to the object while avoiding collisions

effectively. Adjusting these reward components will

be crucial for shaping the agent's behaviour for

optimal task performance. Table 3 below illustrates

the results after training, where the Iteration Per

Episode (IPE) is assigned in the first column.

Table 3: Training results of the Reward Logic v1.

IPE TT (s) C/E (%) AS/ AU ELM ERM GR

50k 8953 0/2.45
11.93/5

2.29%
28.8 -414 66

50k 8635 0/2.21
11.57/5

5.86%
20.4 -89600 117

The obtained results fell short of perfection,

revealing a notable issue in the potential for rewards

to exhibit significant fluctuations, particularly with

very high negative values attributed to penalties for

self-collisions. The learning process of the agent

lacks stability, evident in the mean reward that varies

sporadically between negative hundreds and

occasional spikes into the thousands.

Figure 5: Number of Successful Training Actions with

Reward Logic v1.

Furthermore, the number of actions

demonstrating improvement has not shown any

significant enhancement as seen in Figure 5. Looking

at the average reward in Figure 6, we see that it often

goes up and down a lot. This is mainly because of the

harsh penalty for consecutive collisions. While this

penalty is needed, we should adjust the rewards to

avoid extremely negative values. This should help

stabilize the learning process.

Figure 6: Reward Mean with Reward Logic v1.

4.3.2 Reward Logic v2

The updated logic adopts a human-centric approach,

aligning with how a person would be motivated and

penalized in reaching the object. This strategy aims to

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

217

create a more realistic and balanced learning

experience. The key considerations for this version

reward system are as follows:

1) Max Steps and Object Reach Reward: The

highest reward should occur when the robot

reaches the object in the fewest steps, with

diminishing rewards as the step count increases.

Even if the maximum steps are taken, a positive

but reduced reward should encourage continued

attempts.

2) Collision Penalties: The penalty for collisions

should be set in a way that, while giving higher

penalties for discouraging continuous collisions,

it does not plunge into extremely negative values.

This ensures that the agent perceives the task as

challenging but not impossible.

3) Safe Movement Reward: Transitioning from a

collision to a safe movement should be positively

rewarded. However, this reward should not be

too high to discourage frequent switching

between collision and safe movements.

4) Distance-Based Rewards and Penalties:

Penalties for moving away from the object and

rewards for proximity should be balanced to

motivate the agent without overly emphasizing

proximity.

5) Balanced Reward Values: Reward values for

positive and negative actions must be finely

tuned to motivate goal achievement while

discouraging collisions and moving away from

the object. Striking a balance ensures that the

agent remains engaged and does not lean towards

inactivity due to disproportionately high

penalties.

This approach mirrors human motivation and

helps stabilize the learning process for the agent.

Below Table 4 shows the comparison among

versions.

Table 4: Training results with Reward Logic v2.

Version TT (s) C/E/BF AS/AU ELM GR

v1 8953 15465/0/1223 5965/26143 28.8 66

v2 10319 17807/0/2004 6907/22086 10.6 129

Upon comparing the plots of the two versions in

Figure 7, a significant improvement is observed in the

number of successful episodes where the robot arm

successfully reached the target.

Figure 7: Successful Training Episodes with Reward Logic

v2.

Other parameters such as the number of collisions

and successful training steps don't show a significant

improvement in the observed results as seen in

Figure 8 below.

Figure 8: Reward Logic v2 indicating no improvement in

Collisions and Successful Training Action.

As seen in Figure 9, the rewards appear to be

within an acceptable range, steadily increasing with

no irregular negative peaks.

Figure 9: Reward Mean with the Reward Logic v2.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

218

To gain further insights, we conducted testing for

250,000 steps in both versions, and the results are as

follows in Table 5.

Table 5: Training results with Reward Logic v2 (250k IPE

steps).

Ver TT (s) C/E/BF (%) AS/AU (%) ELM GR

v1 44111 20.78/0/3.01 12.99/59.03 -168000
100

3

v2 47154 34.69/0/2.91 12.53/46.69 -11.2 497

Surprisingly, the improvement in the number of

successful episodes is not as significant as in

version 1. Additionally, the number of collisions

continues to increase. Analyzing the mean reward

plot in Figure 10 reveals prominent negative peaks at

multiple points. This problem emerged when the

bottle was thrown far away, leading to an excessively

high distance calculation and subsequently resulting

in a very negative reward based on distance.

Figure 10: Reward Mean with Reward Logic v2 after

running for 250k IPE steps.

4.3.3 Reward Logic v3

To address the excessive negative values of reward in

v2, extra safeguards have been incorporated in this

version. If collisions persist beyond a certain

threshold, the training is terminated with a penalty.

Additionally, a check has been implemented to ensure

the bottle's proximity, accounting for scenarios of

potential displacement due to rapid arm movements.

Upon analyzing Table 6, a decline in performance

is seen. The current threshold for successive

collisions is set at 5, potentially terminating many

training episodes prematurely and limiting the agent's

learning. In the next training iteration (version 3.1),

the self-collision threshold will be increased to 10.

However, there is no apparent improvement, and the

results even show a slight negative trend. The mean

reward exhibits no occurrence of negative peaks,

suggesting the success of safeguard mechanisms.

Table 6: Training results with Reward Logic v3.

Version TT (s) C/E/BF AS/AU ELM GR

v1 8953 15465/0/1223 5965/26143 28.8 66

v2 10319 17807/0/2004 6907/22086 10.6 129

v3 9298 17376/0/746 6004/24022 26.6 38

v3.1 10472 19693/0/751 5563/22697 33.5 13

4.3.4 Reward Logic v4

Despite numerous iterations, most versions of the

reward logic performed poorly compared to the initial

one. To enhance the reward system, reward shaping

was considered, in which rewards are based on the

quality of action by evaluating deviations from ideal

actions. Consequently, penalties are applied,

providing the agent with feedback and influencing its

behaviour. This strategy aims to guide the agent

towards actions that align more closely with the

desired outcomes, potentially accelerating the

learning process and improving overall task

performance. The collision threshold also has been

updated to 25. The shaping reward based on the

action is implemented specifically whenever the valid

distance measured is not improved. The training has

been executed for 50,000 steps, and the outcomes are

presented in Table 7 below. The successful training

episode is also shown in Figure 11.

Figure 11: Successful Training Episode with the Reward

Logic v4 (50k IPE steps).

There is also a reduction in the number of

collisions, and successful actions show a slight

improvement as seen in Figure 12.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

219

Table 7: Training results with Reward Logic v4 after

executing for 50k steps.

Version TT (s) C/E/BF AS/AU ELM GR

v1 8953 15465/0/1223 5965/26143 28.8 66

v2 10319 17807/0/2004 6907/22086 10.6 129

v3 10472 19693/0/751 5563/22697 33.5 13

v4 9301 12640/0/1583 6782/27941 - 135

v4 8799 12967/0/1238 6266/28488 -192 79

Figure 12: Plots of Self-Collision Count and Successful

Training Action with Reward Logic v4.

Table 8: Training results of Training with Reward Logic v4

after running 250k IPE steps. Ver stands for Version.

Ver TT (s) C/E/BF (%) AS/AU (%) GR

v1 44111 20.78/0.0012/3.0 12.99/59.03 1003

v4 45692 21.92/0/3.25% 14.11/58.07 1069

Figure 13: Self-Collision Count with Reward Logic v4

running for 250k IPE steps.

To delve deeper, additional testing was conducted

for 250,000 steps and summarized in Table 8. A

noticeable improvement in the number of successful

episodes is evident, and there is a decreasing trend in

the number of collisions toward the end of training as

seen in Figure 13. Overall, this version exhibits

slightly better performance than the initial reward

logic and will be used for further testing.

4.4 Varying Policies

Stable Baselines provides a diverse range of RL

policies such as Proximal Policy Optimization (PPO),

Deep Deterministic Policy Gradients (DDPG), Trust

Region Policy Optimization (TRPO), and more. The

applicability of each policy depends on the action and

observation types specific to the environment. The

possible policies for the current task are tried. These

are Advantage Actor-Critic (A2C), Deep

Deterministic Policy Gradient (DDPG), Proximal

Policy Optimization (PPO), Soft Actor-Critic (SAC)

and Twin Delayed DDPG (TD3).

4.4.1 Advantage Actor-Critic Policy

Up to this point, all training sessions have been

conducted using this A2C policy. The results are

summarized below in Table 9.

Table 9: Training results with A2C Policy.

TT (s) C/E/BF (%) AS/AU (%) GR

8799

(50k steps)
25.93/0/2.48 12.53/56.98 79

45692

(250k steps)
21.92/0/3.25 14.11/58.07 1069

4.4.2 Policy Comparison

Results obtained with DDPG, PPO and SAC policies

highlight a much lower number of successful

episodes as can be seen in Table 10. This is also

evident in Figure 14 when DDPG is compared with

A2C.

Table 10: Training results with PPO Policy.

RL TT (s) C/E/BF (%) AS/AU (%) GR

DDPG 8995 16.97/0/1.73 11.48/67.74 16

PPO 8697 24.63/0/0.87 9.58/62.80 5

SAC 11884 15.51/0/1.09 11.26/67.44 4

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

220

Figure 14: Comparison of Successful Training Episode

between A2C and DDPG Policies.

4.4.3 Comparison of TD3 and A2C Policy

The TD3 policy has demonstrated a notable number

of successful actions and achieved goals as shown in

Table 11.

Table 11: Training results with TD3 Policy.

TT (s) C/E/BF AS/AU GR

10274

(50k steps)

8476/0/1860

16.95/0/3.72%

7083/31565

14.17/63.13%
45

50951

(250k steps)

43062/0/10308

17.22/0/4.12%

45894/144635

18.36/57.86%
785

Figure 15: Plot of Self-Collisions Count and Successful

Training Actions with A2C and TD3 Policies.

To further assess its performance, it was executed

for 250,000 steps, and the results are detailed in

Table 11. Upon analyzing the plots, it is evident that

the TD3 Policy exhibits fewer collisions compared to

the A2C policy. Additionally, the number of

successful actions is higher as seen in Figure 15.

Although the A2C policy achieves more goals, the

TD3 policy shows an exponential increase in

successful goals towards the end of training,

indicating a potential for superior performance as

shown in Figure 16.

Figure 16: Plot of Successful Training Episodes with A2C

and TD3 Policies.

Based on these findings, the decision has been made

to proceed with the TD3 policy for subsequent

testing.

4.5 Curriculum Learning

Curriculum learning is a training strategy in machine

learning where the model is exposed to a series of

tasks or goals of increasing complexity. The approach

gradually introduces more challenging scenarios,

mirroring human learning by starting with simpler

concepts before advancing to more intricate ones.

Curriculum learning can enhance the overall learning

efficiency and generalization capabilities of a model,

enabling it to better handle a diverse range of

situations. An initial experiment involved breaking

down the task into two stages. In the first stage, the

robot was trained to reach a specific point instead of

the bottle, overlooking the scenario where the bottle

might fall. Following this, the model was loaded and

retrained with the comprehensive goal of reaching the

bottle.

In Figure 17 above, it is evident that the process

of retraining the model is functioning effectively. The

loaded model retains and builds upon previous

training knowledge, resulting in improved

performance during subsequent training sessions.

Given the objective of having the robot arm reach the

bottle, we encounter two primary challenges:

collisions between the arm and the risk of the bottle

toppling. To systematically address these challenges

at different stages, the task is partitioned into three

distinct goals, each trained separately:

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

221

 The primary objective is to guide the robot arm

to move without collisions. Penalties are given

exclusively for collisions, while all valid

movements receive rewards, with greater weight

assigned to getting closer to the fixed point.

 In this stage, additional penalties are introduced

for movements that take the robot farther away

from the fixed point. There is no condition check

for the possibility of the bottle falling.

 The final stage involves the robot attempting to

reach the bottle. Extra penalties are imposed if

the bottle falls during this stage.

Figure 17: Training the agent in two stages.

Figures 18 and 19 below illustrate the successful

episodes and self-collisions. Each stage undergoes

training for a duration of 100,000 steps.

Figure 18: Plot of Successful Training Episodes with

Curriculum Learning.

As seen in Figure 19, the total count of self-

collisions has considerably decreased. The stage with

the highest number of successful episodes is stage 2,

where the objective is to move to a fixed point without

considering the possibility of the bottle toppling over

while penalizing collisions and movements away

from the designated point. However, once it moves to

stage 3, the rate of successful episodes is reduced

significantly. But the total number of successful

episodes is still good as seen in Table 12. Table 12

consists of Collisions/Errors/Bottle Fell (C/E/BF),

Action Successful/ Action Unsuccessful (AS/AU)

and Goal Reached (GR) of the experiment.

Figure 19: Plot of Total Self-Collision Count with

Curriculum Learning.

Table 12: Training results with Curriculum Learning.

Stage C/E/BF (%) AS/AU (%) GR

1 1.03/0/0 10.72/85.32 1275

2 5.42/0/0 26.74/57.69 9253

3 12.23/48.75 16.85/63.33 501

The understanding from this curriculum learning

is that the robot can be trained initially for simple

goals and then trained on top of this for sophisticated

goals.

4.6 Results

In all experiments, total training time emerges as the

key factor influencing performance. Regardless of

policy and parameters, better results are consistently

observed with increased training steps for both A2C

and TD3 algorithms. The introduction of curriculum

learning indicates potential for enhanced

performance. The extended training duration for each

stage facilitates better learning by the robot.

However, inherent variability in machine learning

outcomes presents a challenge to achieving consistent

results across trials. The best model obtained through

the Curriculum-based approach is evaluated in two

scenarios. In the first approach, the final position is

fixed, without any condition regarding the bottle

getting toppled. In the second approach, the condition

of the bottle getting toppled is considered. Two trials

are conducted for each approach, and the results are

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

222

presented in Tables 13 and 14 below. The observed

trend reveals that the robot arm tends to topple the

bottle during its attempts to reach it, resulting in a

lower success rate. However, when tasked with

reaching a fixed point without considering the risk of

the bottle falling, the success rate is notably higher.

Table 13: Testing of the best model with a Scenario of fixed

position.

Scenario 1:

Fixed

Position

Count of final states [Episode Counts: 50]

BottleFell End_Success End_NoSuccess

Trial 1 0 32 18

Trial 2 0 22 28

Table 14: Testing of the best model with a Scenario of

reaching a bottle.

Scenario 2:

Bottle

Position

Count of final states [Episode Counts: 50]

BottleFell End_Success End_NoSuccess

Trial 1 43 3 4

Trial 2 34 11 5

Moreover, the variation in outcomes between the

two trials in both scenarios underscores the dynamic

nature of the model's performance across different

instances. This highlights the importance of assessing

the confidence level of the model for real-life

scenarios.

5 LIMITATIONS

Executing the project posed a significant time

challenge, with optimal results achieved through

extended training steps, but with the trade-off of

higher execution time. Training for 50k steps alone

took approximately 2.5 hours, while the

recommended training times for better performance

range from 500k to 3000k steps. Attempts to run for

such prolonged durations were also hindered by

computational constraints, occasionally resulting in

script stalling. The current agent predicts actions

within the motion range, occasionally leading to

abrupt arm movements, causing objects in its path to

topple. An incremental update to actions could

mitigate this issue, with the initial action being

randomly predicted and subsequent actions featuring

incremental changes. This approach aims to prevent

sudden, unpredictable movements. Despite extended

training durations, the performance of the arm cannot

be guaranteed or predicted with absolute confidence.

Occasional collisions and abrupt arm movements

persist, posing challenges when transferring the

learned behaviour to real hardware. Rigorous analysis

of results after extended training periods is essential

to reaffirm confidence in the model's performance.

6 CONCLUSIONS

This project has explored the application of RL in the

domain of object manipulation. As the field of

artificial intelligence continues to evolve, the

integration of advanced RL techniques in object

manipulation will undoubtedly play a pivotal role in

shaping the future of automation and robotics.

The successful integration of Gazebo, ROS, and

custom OpenAI Gym environments provided an

efficient development environment for simulating

realistic robotic tasks. The primary goal of

positioning the robot arm near the target object

involved distance calculation and collision

management within the robot arm simulation,

utilizing Gazebo plugins and Python scripts.

Throughout the training process, we optimized

environment parameters and iteratively refined

reward logic, transitioning from basic logic to more

sophisticated versions, and incorporating reward

shaping and tuning approaches. The improvement of

the reward system, especially the shift towards a more

human-centric approach, highlighted the complexity

and challenges inherent in designing effective RL

strategies. Implementing curriculum learning,

mirroring human learning progression significantly

enhanced the model's efficiency. This is a promising

approach and better results are expected when

executed for more training steps. However,

computational limitations were observed, suggesting

the need for more powerful devices in future research

for enhanced performance. The project deepened our

understanding of object manipulation with RL,

emphasizing the intricate dynamics in robotic

systems.

ACKNOWLEDGMENTS

We acknowledge support by the German Research
Foundation (Deutsche Forschungsgemeinschaft
DFG) - and the Open Access Publishing Fund of
Anhalt University of Applied Sciences.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

223

REFERENCES

[1] R.S. Sutton and A.G. Barto, "Reinforcement Learning:
An Introduction," IEEE Transactions on Neural
Networks, vol. 9, no. 5, pp. 1054-1054, 1998, doi:
10.1109/TNN.1998.712192.

[2] Z. Zhu et al., "High precision and efficiency robotic
milling of complex parts: Challenges, approaches and
trends," Chinese Journal of Aeronautics, vol. 35, no. 2,
pp. 22-46, 2022, doi: 10.1016/j.cja.2020.12.030.

[3] H. Ju et al., "Transferring policy of deep reinforcement
learning from simulation to reality for robotics," Nat
Mach Intell, vol. 4, pp. 1077-1087, 2022, doi:
10.1038/s42256-022-00573-6.

[4] A. K. Shakya et al., "Reinforcement learning
algorithms: A brief survey," Expert Systems with
Applications, vol. 231, p. 120495, 2023, doi:
10.1016/j.eswa.2023.120495.

[5] A. Ray et al., "Spinning Up OpenAI," 2018, [Online].
Available:
https://spinningup.openai.com/en/latest/spinningup/rl
_intro.html#.

[6] V. Mnih et al., "Human-level control through deep
reinforcement learning," 2015.

[7] J. Schulman et al., "Proximal Policy Optimization
Algorithms," 2017.

[8] A. Plaat, "Model-Based Reinforcement Learning,"
2022.

[9] A. Stone et al., "Open-World Object Manipulation
using Pre-trained Vision-Language Models," ArXiv,
/abs/2303.00905, 2023.

[10] D. Han et al., "A Survey on Deep Reinforcement
Learning Algorithms for Robotic Manipulation,"
Sensors, 2023, doi: 10.3390/s23073762.

[11] S. Chen and Y. Li, "Active vision in robotic systems:
a survey of recent developments," The International
Journal of Robotics Research, vol. 30, no. 11, pp.
1343-1377, 2011, doi: 10.1177/0278364911410755.

[12] R. S. Pol and M. Murugan, "A review on indoor human
aware autonomous mobile robot navigation through a
dynamic environment: survey of different path
planning algorithm and methods," 2015 International
Conference on Industrial Instrumentation and Control
(ICIC), IEEE, 2015.

[13] M. Foukarakis et al., "Combining finite state machine
and decision-making tools for adaptable robot
behavior," International conference on universal
access in human-computer interaction, Heraklion,
Crete, Greece, pp. 625–635, Springer, 2-27 June 2014.

[14] R.-E. Precup and H. Hellendoorn, "A survey on
industrial applications of fuzzy control," Computers in
Industry, vol. 62, no. 3, pp. 213-226, 2011.

[15] O. Boubaker, "The inverted pendulum benchmark in
nonlinear control theory," International Journal of
Advanced Robot Systems, vol. 10, no. 233, pp. 1-9,
2013.

[16] L. Sciavicco and B. Siciliano, "Modelling and control
of robot manipulators," Springer Science & Business
Media, Berlin/Heidelberg, 2012.

[17] A. Sharma et al., "Autonomous Reinforcement
Learning: Formalism and Benchmarking," 2021.

[18] H. Nguyen and H. La, "Review of Deep
Reinforcement Learning for Robot Manipulation,"
2019.

[19] M. Towers et al., "Gymnasium," 2023.

[20] Stanford Artificial Intelligence Laboratory et al.,
"Robotic Operating System, Noetic," 2018, [Online].
Available: https://www.ros.org.

[21] Ageofrobotics, "urdf_tutorial," 2023. [Online].
Available:
https://github.com/ageofrobotics/urdf_tutorial.

Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), March 2024

224

