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Abstract: This study presents a robust approach to predicting solar irradiation in the challenging climatic conditions of 

Tomsk using LASSO regression, with a particular emphasis on interpretability and climatic variability. Two 

distinct models were developed: Model 1, integrating specific humidity at 2 meters, and Model 2, excluding 

this variable to assess the impact of a wider range of meteorological factors. The comprehensive 

meteorological dataset from NASA’s POWER database underpinned the analysis. The models' efficacy was 

demonstrated by impressive R-squared values: 0.843 for Model 1 and 0.813 for Model 2, indicating a 

substantial proportion of variance in solar irradiation was captured. Notably, Model 1's RMSE of 0.0353 and 

Model 2's RMSE of 0.0386 affirm the precision of the predictions. The study advances the predictive 

modeling of solar power output, offering valuable contributions to renewable energy forecasting literature 

and operational practices by providing a methodological framework that is both accurate and comprehensible, 

even amidst the complexities of extreme weather patterns.  

1 INTRODUCTION 

In the wake of pressing global challenges such as 

climate change and resource scarcity, the United 

Nations' Sustainable Development Goal 7 (SDG7) 

underscores the imperative of universal access to 

sustainable energy, emphasizing renewable sources 

and energy efficiency as pivotal elements in the 

achievement of this goal [1].  

Concurrently, transition engineering emerges as a 

crucial discipline, orchestrating the shift towards 

sustainability in energy systems [2]. This field 

meticulously blends engineering principles with 

long-term strategic planning to ensure that future 

energy demands are met in harmony with the 

environment, thus facilitating a robust and sustainable 

societal infrastructure [3]. 

The intersection of SDG7 and transition 

engineering’s targets encapsulates the essence of 

modern energy strategies that are environmentally 

sound, economically feasible, and socially 

inclusive [4], [5]. 

Against the current backdrop, the utilisation of 

advanced machine learning techniques, particularly 

LASSO (Least Absolute Shrinkage and Selection 

Operator), marks a notable advancement in the field 

of predictive analytics for photovoltaic (PV) power 

generation. This paper introduces a pioneering case 

study in Tomsk, leveraging these sophisticated 

methods to enhance the accuracy of PV power 

predictions. LASSO, with its proven effectiveness in 

feature selection and its ability to manage overfitting 

in complex datasets, provides a robust analytical 

framework. This approach adeptly addresses the 

challenges associated with the variability and 

complexity of PV power output, thereby facilitating 

more precise and reliable solar energy forecasting. 

This methodological choice is especially pertinent in 

contexts requiring clear and transparent model-driven 

decisions, aligning with the increasing need for 

comprehensible and accountable predictive models in 

various sectors. 

The purpose of this study is to showcase the 

efficacy of LASSO in precisely predicting PV power 

generation [6]. The use of LASSO, an interpretable 
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model, is particularly significant in contexts where 

legal considerations demand transparency and 

justification in decision-making processes. By 

employing LASSO, this research not only adheres to 

the core principles of SDG7 but also aligns with the 

objectives of transition engineering. This alignment 

enhances the reliability and efficiency of renewable 

energy resources, ensuring that the methods used for 

forecasting and analysis are both legally compliant 

and transparent. The importance of such interpretable 

models is underscored in environments where the 

decisions and predictions of AI-driven models must 

be clear and justifiable, especially in light of 

increasing regulatory scrutiny in the use of complex 

algorithms in various sectors. 

The future scope of this research is expansive. It 

will delve into the integration of real-time data feeds 

to enhance model responsiveness, the exploration 

Explainable Artificial Intelligence (XAI) tools for 

broader interpretability spectrum, and the scalability 

of the proposed framework to other regions and 

renewable energy forms. By doing so, it aims to 

contribute significantly to the literature on renewable 

energy forecasting and the operational optimization 

of PV systems, thereby supporting the global 

endeavour towards a sustainable and resilient energy 

future. 

2 METHODOLOGY 

2.1 General Methods 

In the field of photovoltaic power prediction, various 

methods are commonly used, each, with its strengths 

and weaknesses. Statistical techniques like the 

integrated moving average (ARIMA) model are 

known for their ability to estimate solar power 

effectively by examining the linear relationships in 

past data [7]. However, these approaches may not 

fully grasp the complexities in solar energy data. To 

address this, machine and deep learning methods 

have been increasingly applied, with a focus on data 

processing, feature extraction, and uncertainty 

evaluation[12], [13]. 

Machine learning methods such as Random 

Forest (RF) and Support Vector Machines (SVM) are 

lauded for their capability to identify linear 

connections between multiple input variables and 

solar energy production [8]. These algorithms excel 

at handling datasets with numerous variables, 

offering a deeper understanding of solar energy 

systems [14]. 

Nevertheless, their performance relies heavily on 

the quality and quantity of training data available 

which can be a limitation. Artificial Neural Networks 

(ANNs) including variants, like Convolutional 

Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) have emerged as tools in solar 

power forecasting [9]. Their ability to model patterns 

and adapt to forecasting tasks is unmatched. 

However, the lack of transparency, in Artificial 

Neural Networks (ANNs) can make it difficult for 

practitioners to understand how the models make 

decisions. Physical models, which are based on 

photovoltaic principles and solar geometry use 

factors like irradiance, panel positioning and 

temperature to predict energy output [10]. 

While these models provide insights into power 

generation, they may not be able to account for all 

real-world variables accurately leading to potential 

prediction errors. Hybrid models aim to combine the 

strengths of modeling approaches by integrating 

machine learning with methods. This combination 

seeks to improve prediction accuracy by harnessing 

the capabilities of machine learning and the 

foundational principles of physical models [11]. 

Although hybrid models show promise in 

enhancing forecasting accuracy, their complexity and 

reliance on data sources can be challenging. 

Ultimately choosing a power forecasting method 

depends on balancing factors like accuracy, 

interpretability and computational requirements 

based on task needs. The ongoing advancements in 

techniques and data availability are driving the 

improvement of these methodologies, for more 

reliable and efficient solar power forecasting. 

2.2 LASSO Framework 

The approach followed in this work focuses on two 

models, Model 1 and Model 2, for predicting solar 

irradiation in Tomsk using LASSO regression. Model 

1 examines the relationship between all-sky surface 

UVB irradiance (allsky_sfc_uvb) and various 

independent meteorological variables. It highlights 

the significant influence of specific humidity at 2 

meters (qv2m) on the predictive model. The 

performance of Model 1 is evaluated using metrics 

like RMSE, MSE, and R-squared, indicating a strong 

predictive capability. 

Model 2, in contrast, explores the same dependent 

variable (allsky_sfc_uvb) but excludes the qv2m 

variable from its analysis. This model assesses the 

impact of other meteorological variables, including 

wind direction at 10 meters (wd10m) and wind speed 

at 10 meters (ws10m), on solar irradiation 
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predictions. Similar to Model 1, Model 2's 

effectiveness is gauged using RMSE, MSE, and R-

squared metrics, which provide insights into its 

predictive accuracy. Both models demonstrate the 

utility of LASSO regression in handling complex 

datasets for solar irradiation forecasting, emphasizing 

the importance of specific meteorological factors in 

predicting solar power output. The flow diagram of 

the process can be seen in Figure 1.  

Figure 1: Flow diagram of the approach. 

Loss function = OLS loss function 

+ .     (1) 

Equation (1) describes the loss function used in 

LASSO regression. It consists of two parts: the 

Ordinary Least Squares (OLS) loss function, which is 

the sum of the squared differences between the 

observed and predicted values, and a penalty term. 

The penalty is applied to the absolute values of the 

regression coefficients (represented by ai), summed 

up across all coefficients (from i=1 to i=n). The term 

𝜆 is a non-negative regularization parameter that 

controls the strength of the penalty. By increasing 𝜆, 

the LASSO method can shrink less important 

coefficients to zero, effectively performing feature 

selection. This penalty encourages the model to 

maintain simplicity and prevent overfitting, leading to 

more interpretable models. 

2.3 Data Source 

Data for this work was accessed from NASA’s 

POWER (Prediction of Worldwide Energy 

Resources) database. Monthly meteorological data 

for Tomsk from January 2001 to December 2020 was 

collected and prepared for input in the LASSO 

models. Tomsk, a city in Siberia, with the 

coordinates, approximately 56.5010 degrees latitude 

North and 84.9924 degrees longitude East was chosen 

as the case study location due to its distinctive 

climatic and geographical characteristics, which 

present a unique opportunity to study solar irradiation 

patterns in a region with significant seasonal 

variations. The choice of Tomsk adds to the diversity 

and comprehensiveness of solar irradiation research, 

particularly in areas with extreme climatic conditions. 

2.4 Feature Selection Analysis 

In our research we conducted a feature selection 

analysis to identify the variables that impact how well 

our predictive model works. We looked at the dataset 

sourced from NASA POWER, with 260 data points 

across 9 variables as outlined in Table 1. This 

thorough examination was crucial in capturing the 

essence of our dataset, ensuring that only important 

variables with significant predictive power were 

included in the model. Our goal with this feature 

selection process was to improve the accuracy and 

clarity of the model setting a groundwork, for further 

analysis. 

3 RESULTS AND DISCUSSION 

3.1 Model 1 

In Model 1, we analysed allsky_sfc_uvb vs other 

independent variables. The model shows in Figures 2 

and 3 that qv2m was the most influential variable, 

followed by y2m. 

Figures 4 and 5 are plots for visualisation of the 

results. Normal Q-Q (Quantile-Quantile) plots are 

graphical tools used to assess if a dataset follows a 

particular distribution, usually a normal distribution. 

If the points in the plot fall approximately along a 

straight line, it suggests the data are normally 

distributed. Series residual plots are used in 

regression analysis to visualize the residuals 

(differences between observed and predicted values) 

across the data series. These plots help to identify any 

patterns in the residuals, suggesting issues with the 

model, such as non-linearity, heteroscedasticity, or 

outliers. 

The metrics used to evaluate the performance of a 

LASSO regression model are usually the root mean 

squared error (RMSE), the mean squared error (MSE) 

and the r squared (r2). Here's an interpretation of each 

metric: 

Delving into the performance of our Lasso 

regression model, we observe that it boasts a 

promising precision in its predictions. An RMSE of 

0.0353 suggests that our model's forecasts are, on 
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average, only a small fraction off from the actual 

figures, which is quite commendable. 

Further affirming its accuracy, the MSE stands at 

a minimal 0.00125, reflecting minor average errors in 

the predictions squared. Moreover, an R-squared 

value of 0.843 is noteworthy, indicating that the 

model can explain over 84% of the variability in the 

dependent variable—pointing to a robust model that 

captures the essence of the data well. These indicators 

collectively point towards a model that performs 

reliably and can be trusted for its predictive insights 

even in extreme weather climates like Tomsk. 

Figure 2: LASSO analysis from model 1. 

Figure 3: LASSO coefficient paths for model 1. 

Figure 4: Normal Q-Q plot of model 1. 

Figure 5: Series residual plot of model 1. 

3.2 Model 2  

In model 2 we excluded the specific humidity at 2 

meters (qv2m) from the analysis and instead assessed 

the impact of other variables such as the temperature 

in degrees Celsius at 2 meters, wind direction at 10 

meters (wd10m), and wind speed at 10 meters 

(ws10m) on solar irradiation forecasts. Computations 

were done for allsky_sfc_uvb vs other independent 

variables except qv2m. The model shows that y2m 

was the most influential variable, followed by ws10m 

and wd10m. The effectiveness of model 2 is 

evaluated using RMSE, MSE, and R-squared metrics, 

which provide insights into its predictive accuracy. 

Table 1: Characteristics and description of data set. 

Short name Unit Type 

y2m merra-2 temperature at 2 meters (c) Independent 

qv2m merra-2 specific humidity at 2 meters (g/kg) Independent 

rh2m merra-2 relative humidity at 2 meters (%) Independent 

wd10m merra-2 wind direction at 10 meters (degrees) Independent 

ws10m merra-2 wind speed at 10 meters (m/s) Independent 

allsky_sfc_uvb ceres syn1deg all sky surface uvb irradiance (w/m^2) Dependent 

clrsky_sfc_par_tot ceres syn1deg clear sky surface par total (w/m^2) Dependent 
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Figure 6: LASSO analysis from model 2. 

In Figure 6, using LASSO regression we highlight 

the most important meteorological factors required 

for predicting power output. We can see the 

coefficients assigned to four variables: y2m, rh2m, 

wd10m and ws10m. The y axis displays the 

coefficient values selected by the LASSO model. 

This plot illustrates how each variable influences the 

prediction outcome. Specifically, the positive impact 

of temperature (y2m) on the prediction is evident. 

However, relative humidity at 2 meters (rh2m) does 

not strongly predict outcomes in this model. The 

small coefficient for wind direction at 10 meters 

(wd10m) suggests a minor relationship with the 

predicted value. Conversely a substantial negative 

coefficient for wind speed at 10 meters (ws10m) 

indicates an inverse relationship with the target 

variable. 

Figure 7: LASSO coefficient paths for model 2. 

Figure 7 illustrates the LASSO coefficient paths 

for model 2, providing insight into the feature 

selection process as regularization is applied. Here, 

the x-axis, which represents the logarithm of lambda 

(the regularization parameter), shows the trajectory of 

each feature's coefficient as the model complexity is 

varied. LASSO simultaneously performs feature 

selection and regularization to enhance the prediction 

model's robustness, particularly under conditions of 

multicollinearity or when a parsimonious model is 

desired [15]. 

The plot shows several paths corresponding to 

different coefficients, with their values converging 

towards zero as the log lambda increases. This 

convergence is indicative of the LASSO method's 

ability to shrink less important coefficients down to 

zero, effectively eliminating them from the model. 

Notably, the coefficient paths can also inform us 

about the relative importance and stability of the 

features across different regularization strengths; 

features with paths that quickly converge to zero are 

less robust, whereas those that remain non-zero at 

higher lambda values are more influential. 

For a renewable energy application, such as solar 

irradiation prediction, the interpretability of this 

model is crucial. Figure 7 suggests that some features 

have a more consistent influence on the model's 

predictions, maintaining a non-zero coefficient across 

a range of lambda values. In contrast, features whose 

coefficients drop to zero more quickly are deemed 

less relevant. The key advantage of this approach is 

that it reduces the model's complexity and potential 

overfitting, leading to a model that is both 

interpretable and generalizable. 

Figure 8: Normal Q-Q plot of model 2. 

Figure 8 shows the Normal Q-Q plot of model 1 

which, as mentioned earlier, is a tool used to check 

the normality of residuals, in regression analysis. This 

plot compares the quantiles to a standard normal 

distribution with the theoretical quantiles of the 

normal distribution on one axis and the sample 

quantiles of residuals on another. In a situation where 
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residuals follow a distribution the data points should 

align closely with a reference line. The alignment of 

points in Figure 8, along the line indicates that model 

2’s residuals adhere closely to a distribution 

suggesting that the model is well tuned, and its 

predictions are trustworthy. 

Figure 9: Series residual plot of model 2. 

Figure 9 is the Autocorrelation Function (ACF) 

plot, for the residuals from model 2. It illustrates how 

the series correlates with itself at time lags. In a 

scenario where the model fits well, we would 

anticipate the autocorrelations at all lag points to fall 

within the confidence bounds (indicated by the 

dashed lines). This indicates no autocorrelation. It 

also shows that the model's residuals are random. The 

randomness signifies that the model has effectively 

captured all information from the data. 

Our LASSO regression model's predictive 

accuracy is quantified through several statistical 

measures. The RMSE of 0.0386 highlights that our 

predictions deviate from the actual values by this 

small margin, indicating a tightly fitted model. The 

MSE, at 0.00149, reaffirms this, showing a minimal 

average of squared errors. 

Impressively, the model accounts for 

approximately 81.3% of the variability in the target 

variable, as suggested by an R-squared of 0.813. Such 

a high R-squared value reflects the model's 

robustness in capturing the underlying data patterns. 

To round up, these metrics underscore a strong 

predictive capability, suggesting the model is well-

tuned to the nuances of our data. 

4 CONCLUSIONS 

The aim of the study was achieved through a 

systematic approach involving LASSO regression to 

forecast solar irradiation in Tomsk, which is a method 

particularly well-suited to handle the challenges 

posed by climatic variability. The study created two 

distinct models to interpret the complex relationships 

between meteorological factors and solar power 

output. Model 1 included specific humidity at 2 

meters as an independent variable, while Model 2 

excluded it, thus allowing for the analysis of other 

significant meteorological factors. 

The effectiveness of these models was 

demonstrated by robust statistical metrics: Model 1 

showed an R-squared value of 0.843, indicating that 

it could explain over 84% of the variability in the 

dependent variable, while Model 2 had an R-squared 

value of 0.813, accounting for approximately 81.3% 

of the variability in the target variable. These high R-

squared values signify that both models have strong 

predictive capabilities and can reliably capture the 

underlying data patterns. 

Furthermore, the use of the NASA POWER 

database provided a comprehensive set of 

meteorological variables, ensuring that the models 

had a solid data foundation to work from. The choice 

of Tomsk, with its distinctive climate, offered a 

unique case for examining solar irradiation patterns, 

contributing to the literature on renewable energy 

forecasting and the operational practices in the field. 

In essence, the study succeeded in contributing to 

predictive modeling by developing interpretable 

models that effectively address climatic variability 

and demonstrate strong predictive performance, thus 

advancing the field of solar power output forecasting. 

To further enhance the research presented, one 

could explore the integration of real-time data feeds 

to improve model responsiveness, use Explainable 

Artificial Intelligence (XAI) tools to broaden the 

interpretability spectrum, and test the scalability of 

the proposed framework across different regions and 

forms of renewable energy. 
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