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Abstract

The current thesis deals with the investigation of the grain boundary

cavitation in polycrystalline aggregates. The main idea is to perform

the simulation with just some micromechanisms directly influencing the

cavitation process. These are the power law creep in the grain interior,

the grain boundary sliding and the growth of grain boundary cavities. This

assumption is taken on the one hand due to complexity of the mechanisms

taking place in real polycrystals during creep and on the other hand in order

to investigate the pure contribution of chosen mechanisms.

To achieve this aim the numerical procedure is developed allowing to

construct the geometry of a polycrystalline aggregate by means of the unit

cell. The anisotropic nature of the grain interior material is introduced by

the randomly oriented coordinate system for each grain. The special grain

boundary region represents the sliding of mutual grains. The grain boundary

sliding leads to the significant stress concentrations, which force the cavity

growth. The following observation within the numerical simulation is fully

consistent with the experimental one. Both the cavitation and stiffness

reduction models are introduced for the grain boundary region to simulate

grain boundary damage.

The contribution of the above mentioned mechanisms to each of three

creep stages is analyzed. Additionally the case of non-proportional loading is

analyzed. The creep strain rate reduction after the principal stresses rotation

is observed, leading to the prolongation of the time to rupture.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Untersuchungen zur Kavitation an

Korngrenzen in Polykristallen. Das Hauptaugenmerk liegt auf Simulationen

unter Berücksichtigung von nur einigen Mikromechanismen, die den Kavit-

ationsprozess direkt beeinflussen. Diese sind das Potenzgesetz–Kriechen

im Korninneren, das Gleiten der Korngrenzen und das Anwachsen der

Korngrenzhohlräume. Diese Annahme wird getroffen, einerseits aufgrund der

Komplexität der während des Kriechens auftretenden Mechanismen in realen

Polykristallen und anderseits um den Einfluss der gewählten Mechanismen

zu untersuchen.

Um dieses Ziel zu erreichen wird ein numerisches Verfahren, welches

die Konstruktion von Polykristallen mit Hilfe einer Einheitszelle erlaubt,

entwickelt. Die anisotrope Natur des Korninneren wird über ein zufällig

orientiertes Koordinatensystem für jedes Korn eingeführt. Die spezielle

Korngrenzenregion stellt das gegenseitige Verschieben der Körner dar. Die

Korngrenzverschiebung führt zu signifikanten Spannungskonzentrationen,

welche Hohlraumwachstum erzwingen. Dieses Phänomen wurde sowohl

in der numerischen Simulation, als auch im Experiment beobachtet. Für

die Simulation von Korngrenzenschäden in der Korngrenzenregion werden

sowohl Kavitations- als auch Steifigkeitsreduktionsmodelle eingeführt.

Die Beiträge der oben genannten Mechanismen zu jedem der drei

Kriechstadien werden analysiert. Zusätzlich wird der Fall einer nicht–

proportionalen Belastung untersucht. Die Reduzierung der tertiären

Kriechrate wird bezüglich der Hauptachsenrotation untersucht, was zu einer

Verlängerung der Zeit bis zum Bruch führt.
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CHAPTER

1
Introduction and Motivation

1.1 Introduction

The description of mechanical material behavior is an important and

challenging task for engineers worldwide. The mechanical behavior of one

material can be described with the different rheological models whether

elastic, plastic or viscous, depending on the operation conditions of the

construction, such as applied load and ambient temperature. Another

important factor influencing almost every material object and phenomena

is time. In the creep process this factor plays the key role as well. So, if

the structure operates under moderate constant load and high temperature

T /Tm ∼ 0.3−0.5 [62, 89], where Tm is the melting temperature of the material,

the strains develop with the time and they are called creep strains. In the

literature it is common to determine the temperature level as a ratio to the

melting temperature, the same notation is used in the current work.

In contrast to the creep at ambient temperature T /Tm ∼ 0.1− 0.3 [62],

the high–temperature creep is the most important for the engineering

investigations due to the high order of the resultant deformations. In this

case from the rheological point of view inelastic viscous strains should be

considered. The phenomenological statement of the creep law is given

through the description of the creep strain evolution with time in the

dependence on the applied stress.

The well–known constructions undergoing creep are boilers and power

plant components. The examples of such power plant components are:

rotors, shells, steam chests and casings. Their lifetime is usually counted
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a)

b)

Figure 1.1 Examples of constructions, fractured due to creep: a) the blade

failure due to many processes including creep cavitation (taken

from http://www.atslab.com/); b) creep fracture of a superheater

(taken from http://www.surescreen.com/scientifics/)

by many decades and the creep strains, exceeding the admissible limits are

often the reason of accidents or failures. One important engineering task is

to predict the time to rupture of such constructions. The examples of the

components after creep fracture are illustrated in Fig. 1.1.

With the measurements of the specimen elongation over time the creep

process can be described. For the phenomenological description the set of

such uniaxial creep tests is needed. An example of the uniaxial creep tension

specimen after fracture is illustrated in Fig. 1.2a). The plotted creep data is

called the creep curve, where the evolution of the strain over time or the strain

rate vs. strain are plotted. For both cases the typical creep curve shows three

regions of the creep strain rate change. The first or primary creep stage is

characterized by the decrease of the creep strain rate due to the hardening

processes. The secondary or steady–state creep stage is observed when the

creep strain rate decreases to some minimal value and does not change over

time or with forthcoming deformation. Already during the steady–state creep

stage the nucleation and growth of cavities on the grain boundaries of the

material takes place. During the tertiary creep stage the interlinkage and the
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a)

b)

Figure 1.2 Examples of the creep fracture at different scales:

a) creep specimen after fracture; b) micrograph of the

copper specimen, tested at 550 ◦C and 25 MPa within

2 hours

coalescence of cavities into cracks leads to the increase of the creep strain

rate and the subsequent fracture. The polycrystal microstructure after creep

fracture is illustrated in Fig. 1.2b).

For many engineering materials the steady–state creep stage lasts the

major part of the life time, and due to this, the minimum creep strain rate

can be used for the time to rupture determination. The expression, for the

dependence between the time to rupture of the material and the secondary

creep strain rate is well-known as a Monkman–Grant relationship [82] and is

represented as following:

ε̇m
ss tr = kMG,

where m is a material parameter, usually equal to 1, kMG is the Monkman–

Grant constant, ε̇ss is the steady–state creep strain rate and tr is time to

rupture. This expression shows good predictions of the lifetime for the

constructions, working under uniaxial constant stress conditions, based only

on one creep parameter. For the other loading cases the expression of time
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to rupture has much more complicated form and requires to determine other

quantities. The time to rupture prediction for the modern materials, working

under complex loading conditions (variational loading, varying temperature,

aggressive environment, etc.) is still open and actual task for the researchers.

1.2 Motivation

The aim of the current work is to contribute to understanding of the creep

fracture on the micro– and macrolevels. The description of the material

behavior during operation is mostly made with the phenomenological models

of the different complexity, prescribed the loading conditions and material

microstructure. The disadvantage of such approach is that creep processes

are characterized by the physically non–motivated internal variables, which

are served to describe the creep curves, but not the processes, taking place

in the material. Despite the great amount of existing works, dedicated to the

creep damage modeling on the micro scale, only few studies are related to the

simulation of creep damage for polycrystalline aggregates.

The micromechanical mechanisms, preceding creep fracture are power

law creep of the grain material, grain boundary sliding, contributing to the

creep strain and locally leading to the cavities formation on the triple points,

the cavity nucleation, growth and coalescence.

Besides the above mentioned advantages, the micromechanical approach

leads to increasing of the model complexity. The assumption of the material

homogeneity and isotropy, which one can imply for the macromaterial is not

acceptable for the model with the length scale equal to grain size. On this

level grains orientation and shape should be considered. Grain boundaries

act as separate objects, from one hand constructing the grain deformation and

leading in this way to the material hardening and from the other hand being

the source of the cavitation, leading to the material softening. The source

of the deformation in the crystalline material is the presence of the lattice

defects, called dislocations. The dislocation structure is changing during the

creep process and should be included in the model as well. For example, at

high temperature the dislocation climb between the slip planes takes place

due to diffusion processes. This process is still not reflected by the existing

models and the assumption of the slip only by the crystallographic planes

is taken. The direct modeling of the dislocations in crystalline material has

limitation from the point of view of computational power. Therefore the

current investigation has the aim to make the bridge between several main
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mechanisms, taking place on microlevel and the behavior of the creep curve,

corresponding to the macromaterial.

One of the possible model application is the simulation of material

behavior under non–proportional loading, when the principal stresses

rotation over time takes place. In real operating conditions the non–

proportionality of loading is often detected. For example, in the case of power

plant components due to start ups and shut downs. The detailed observation

of the existing tests under non-proportional loading [86, 125] is presented in

Chapter 6, but for the sake of consistency the main ensuing conclusions are

shown here. Murakami and Ohno [86] discuss the results of creep tests of

the tubular copper specimens under constant tension as well as the reversed

torsion. The reversion of torsion at the same point of the test is performed

in the way to cause the principal directions rotation on the angles 30, 60

and 80°. The principal stress rotation during test leads to the significant

prolongation of the time to rupture, which increases with the increase of the

rotation angle. The source of this phenomena is found to be on the level

of grain boundaries. According to the observations of copper specimens

microstructure after creep loading, the cavities are growing on the grain

boundaries oriented perpendicularly to the maximum applied tensile stress.

Thus, after the maximum principal stress rotation another unaffected grain

boundaries are involved in the cavitation process. That grain boundaries,

which are orthogonal to the primary oriented principal stress undergo less

cavitation. By the significant principal stress rotation formerly cavitated grain

boundaries can undergo compression which leads to the material renewal.

On the macro level the tertiary creep stage is usually described by

introduction of the damage variable, which represents the material volume

affected by cracks, cavities and other defects (see Sect. 7.2.1). The influence of

the damage on the creep strain rate is usually accounted by integrating it into

constitutive equations as an internal variable.

For an isotropic material under uniaxial tension state the damage variable

can be represented through the scalar parameter, though, for the non–

proportional loading case, where the damage growth is dependent on the

varying with time direction of the principal stress, the damage variable should

be represented through the tensor of certain range. Another way to describe

the material damage under non–proportional loading is to introduce progress

of microstructural form of damage (creep cavitation for copper). In this case

the simulation becomes from the one point more complex due to the fact

that the grains orientations, grain boundary sliding, subgrains formation and

other micromechanical phenomena should be taken into account. From the
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Overmold

Silicon die

Circuit board

Figure 1.3 Typical crack through solder joint interface due to plastic and

creep deformations. Scheme of solder interconnection in an

electronic assembly [124]

other side, such representation allows to introduce creep cavitation through

the set of scalar parameters such as cavity radius, cavity spacing, area fraction

of holes etc (see Sect. 4.1). Their representation directly on the level of grain

boundaries automatically accounts the dependence on the grain boundary

orientation to the applied stress.

The aim of the current work is to perform creep damage analysis on

the microlevel in order to obtain anisotropic creep damage response on the

mesolevel. The copper is chosen as the simulated material to compare the

simulation results with the creep tests [86]. The unit cell concept is used

to build the representative volume of microstructure. Various mechanisms

are introduced for the different phases of the unit cell by means of the

appropriate material models. The complexity of the model for each case

is chosen from the considerations of efficiency, validity and the minimal

numerical costs. Another motivation for the current research gives the

necessity of creep fracture simulation of the microelectronic devices. Usually

the lifetime of the microelectronical assemblies is limited by the life–time of

the solders, connecting the details mechanically, thermally and electrically.

Such assemblies are widely used in the modern automotive industry and can
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undergo high temperatures due to electro power consumed, due to placement

near engines or both. The level of temperatures, registered for such solders

is near 175 ◦C. Their components have dimensions of several mm and even

less [102]. The diameter of such solders can have dimensions less than one

mm. With this the assumption of the material homogeneity is not acceptable

and existing constitutive models of macromaterial are not applicable. Due

to high operation temperature and essential mechanical loading the solder

material undergo creep deformations. In Fig. 1.3 the fracture of the solder

due to plastic and creep deformations is shown. The scheme of the electronic

assembly shows the array of solders and the localization of the probable

failure. The both motivations on the micro– and macrolevels denote the

necessity of the simulation of the creep process from the micromechanical

point of view.





9

CHAPTER

2
Constitutive modeling of a

polycrystalline material

On the microlevel metals are composed of grains. In a small material point

of a macrocontinuum the number of grains is huge and the distribution of

their orientations is random. Therefore the polycrystalline material can be

simulated as an isotropic one. But if the simulation on the level of grains is

required, then it is necessary to consider its crystalline anisotropic nature. The

crystalline structure is formed by periodical reiteration of a crystalline lattice

of a certain type. The lattice type defines the type of material anisotropy. In

pure phenomenological models [11, 76] constitutive equations for elastic and

creep strains evolution are written for an anisotropic material. Furthermore

material model parameters are identified from single crystal elastic and creep

tests. Another phenomenological approach considers anisotropic material

with crystallographical planes of preferential slip. These are planes of the

maximum atomic density. Such models describing inelastic deformation of

crystals are called crystal viscoplasticity models [6, 55, 100, 116]. Inelastic

slip in crystalline materials mainly occurs due to the presence of line defects,

which are known as dislocations. Scale dependent crystal viscoplasticity

models [5, 38, 44, 45, 68, 138] describe inelastic deformation through the

evolution of the dislocation density within the material. In the following

section an overview on these main approaches for creep modeling of a

polycrystalline material will be provided.
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2.1 Elasticity

Within the phenomenological modeling of a strain one should account

the fact that crystalline materials possess cubic symmetry type [130]. The

constitutive equations for the linear viscoelastic model are derived in [11] for

the material with cubic symmetry. The projection method is used to represent

elasticity fourth rank tensor C as followings:

C=λ1P1 +λ2P2 +λ3P3,

where

P1 =
1

3
III ⊗ III ,

P2 =
3∑

i=1

(ggg i ⊗ggg i ⊗ggg i ⊗ggg i )−P1,

P3 = I−P1 −P2,

III and I = 1
2

[
ggg p ⊗ III ⊗ggg p +ggg i ⊗ggg j ⊗ggg i ⊗ggg j

]
are the unit tensors of the second

and fourth order respectively, ⊗ denotes the dyadic product and λi are

material properties, ggg i (i = 1,2,3) are crystallographic axes. With σσσ = C ······εεεel

the constitutive relation between the stress and the elastic strain tensor for

the case of cubic symmetry takes the form:

σσσ=
1

3
λ1trεεεelIII

+λ2

[
εel

11

(
ggg 1 ⊗ggg 1 −

1

3
III

)
+εel

22

(
ggg 2 ⊗ggg 2 −

1

3
III

)
+εel

33

(
ggg 3 ⊗ggg 3 −

1

3
III

)]

+
1

2
λ3

[
γel

12

(
ggg 1 ⊗ggg 2 +ggg 2 ⊗ggg 1

)
+γel

13

(
ggg 1 ⊗ggg 3 +ggg 3 ⊗ggg 1

)

+γel
23

(
ggg 2 ⊗ggg 3 +ggg 3 ⊗ggg 2

)]
,

(2.1)

where σσσ is the stress tensor, εel
i j

= ggg i ·εεεel · ggg j (i = j ) and γel
i j

= 2ggg i ·εεεel · ggg j

(i 6= j ) are normal and shear components of the elastic strain tensor εεεel

correspondingly.

Equation (2.1) contains three elastic material parameters λ1, λ2, λ3, the

meaning of which can be explained by means of three theoretical tests

presented in Fig. 2.1. The first test in Fig. 2.1a) corresponds to the hydrostatic

compression of the cube by an applied spherical stress tensor σσσ = −p0III .

Such a loading leads to vanishing of all stress tensor components except the

spherical part, and from constitutive equation (2.1) one can determine λ1. By

the use of compression of two side faces and tension of the upper one the
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p0
p0

p0

ggg 1

ggg 3

ggg 2

a)

σ0
σ0

2σ0

b)

ggg 1

ggg 3

ggg 2

τ0
τ0

c)

Figure 2.1 Theoretical tests under single crystal copper: a) the hydrostatic

compression test; b) the shear test on the octahedral plane; c) the

shear test of the side faces.

shear on the octahedral planes of the crystal is generated. The octahedral

plane is a special plane within the crystalline body of a preferable slip due

to the higher atomic density [50]. There are eight equivalent octahedral

planes in the single crystal. As an example, one possible octahedral plane is

illustrated in Fig. 2.1b). In this case the applied stress tensor has the form

σσσ=σ0(3ggg 3 ⊗ggg 3 − III ). From this test the coefficient λ2 can be determined. The

third necessary test is one of the possible shear tests on the side faces of the

cube, for example, with σσσ= τ0(ggg 1 ⊗ggg 2 +ggg 2 ⊗ggg 1). Such shear test is illustrated

in Fig. 2.1c) and allows to determine the third coefficient λ3.

The elastic parameters for the single crystal copper can be found in the

literature. They may be obtained by measuring the wave velocity, propagating

in the different directions of the single crystal. In the current work they are

taken at the temperature ∼ 0.5Tm from [26]:

λ1 = 374 GPa, λ2 = 37 GPa, λ3 = 125 GPa. (2.2)

The constitutive relation between stresses and elastic strains in Eq. (2.1) can

be also derived through the engineering constants. In this case relations

between the parametersλ1, λ2 and λ3 and the elastic modulus E , the Poisson’s

ratio ν and the shear modulus G , determined from tensile and shear tests for

the [001]–oriented single crystal copper have the form:

λ1 =
E

1−2ν
, λ2 =

E

1+ν
, λ3 = 2G . (2.3)

The derivation of the dependencies (2.3) is given in Appendix A.

The planes and directions in cubic crystals are usually determined with the

Miller notation system, which is explained in many textbooks of the material
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[0
10]

[100]

[0
0

1
]

ggg 1ggg 2

ggg 3

Figure 2.2 Crystallographic basis in Miller and vector notations

science, for example in [121]. With the help of Miller indices (for example

abc), enclosed in brackets of the different type one can distinguish between

the following objects, used in the current work:

• [abc] – crystallographic direction;

• <abc> – crystallographic equivalent directions;

• (abc) – crystallographic plane;

• {abc} – planes of a family.

The correspondence between the crystallographic directions in the

notations of Miller indices and the vectors is illustrated in Fig. 2.2.

For the special case of isotropy:

λ2 =λ3 and G =
E

2(1+ν)
. (2.4)

Involving Eqs (2.3) and (2.4) one can rewrite the elasticity law (2.1) as follows:

σσσ=
1

3

E

1−2ν
trεεεelIII

+
E

1+ν

[
εel

11ggg 1 ⊗ggg 1 +εel
22ggg 2 ⊗ggg 2 +εel

33ggg 3 ⊗ggg 3

+εel
12

(
ggg 1 ⊗ggg 2 +ggg 2 ⊗ggg 1

)
+εel

13

(
ggg 1 ⊗ggg 3 +ggg 3 ⊗ggg 1

)

+εel
23

(
ggg 2 ⊗ggg 3 +ggg 3 ⊗ggg 2

)
−

1

3
III (εel

11 +εel
22 +εel

33)

]
.

(2.5)
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From (2.5) the elasticity law for the case of isotropy can be obtained:

σσσ=
E

1+ν
εεε+

Eν

(1+ν)(1−2ν)
trεεεIII . (2.6)

2.2 Dependence of the elastic properties on the

crystallographical orientation

In the previous subsection the dependence of the material model parameters

on the engineering constants of the [001]–oriented single crystal copper

is introduced. The task of the following subsection is to illustrate the

dependence of the engineering constants on the crystallographic orientation.

The arbitrary oriented normal mmm in the crystallographic basis ggg i , i = 1 . . .3

is considered in Fig. 2.3. One can uniquely define the normal mmm by its three

projections on the crystallographic axes:

mmm ·ggg 1 = sinαcosβ,

mmm ·ggg 2 = sinαsinβ,

mmm ·ggg 3 = cosα.

(2.7)

With the stress tensor

σσσ=σ0mmm ⊗mmm (2.8)

the elastic strain in the direction mmm can be derived from Eq. (A.1), using the

ggg 1

ggg 2

ggg 3

α

β

mmm

Figure 2.3 Arbitrary normal mmm in crystallographic basis



14

material parameters λ1, λ2 and λ3 as:

εmm =mmm ·εεε ·mmm =
1

3

1

λ1
trσσσ

+
1

λ2

{
σ11

[
(mmm ·ggg 1)2 −

1

3

]
+σ22

[
(mmm ·ggg 2)2 −

1

3

]
+σ33

[
(mmm ·ggg 3)2 −

1

3

]}

+
1

λ3

(
2τ12mmm ·ggg 1 ⊗mmm ·ggg 2 +2τ13mmm ·ggg 1 ⊗mmm ·ggg 3 +2τ23mmm ·ggg 2 ⊗mmm ·ggg 3

)
.

(2.9)

The components of the stress tensor (2.8) in the crystallographic basis are

determined in the following manner:

σ11 = ggg 1 ·σσσ ·ggg 1 =σ0(mmm ·ggg 1)2,

σ22 = ggg 2 ·σσσ ·ggg 2 =σ0(mmm ·ggg 2)2,

σ33 = ggg 3 ·σσσ ·ggg 3 =σ0(mmm ·ggg 3)2,

τ12 = ggg 1 ·σσσ ·ggg 2 =σ0(mmm ·ggg 1)(mmm ·ggg 2),

τ23 = ggg 2 ·σσσ ·ggg 3 =σ0(mmm ·ggg 2)(mmm ·ggg 3),

τ13 = ggg 1 ·σσσ ·ggg 3 =σ0(mmm ·ggg 1)(mmm ·ggg 3).

(2.10)

With Eq. (2.10), Eq. (2.9) can be rewritten as follows:

εmm

σ0
=

1

3

1

λ1
+

1

λ2

{
(mmm ·ggg 1)2

[
(mmm ·ggg 1)2 −

1

3

]
+ (mmm ·ggg 2)2

[
(mmm ·ggg 2)2 −

1

3

]

+(mmm ·ggg 3)2

[
(mmm ·ggg 3)2 −

1

3

]}

+
2

λ3

[
(mmm ·ggg 1)2(mmm ·ggg 2)2 + (mmm ·ggg 1)2(mmm ·ggg 3)2 + (mmm ·ggg 2)2(mmm ·ggg 3)2

]

=
1

E⋆(α,β)
,

(2.11)

where E⋆(α,β) is the equation of the surface, denoting the elastic modulus in

the dependence on the crystallographical orientation.

The surface E⋆(α,β) for the single crystal copper with the material model

parameters (2.2) is presented in Fig. 2.4. The built surface qualitatively

illustrates the variation of the elastic modulus of copper with crystallographic

orientation. Figure 2.4 demonstrates that the crystal behaves stiffer in the

direction, which coincides with the lattice orientation, namely 〈001〉. In

contrast to this the crystal stiffness in the octahedral directions 〈111〉 is

minimal.
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Figure 2.4 Variation of the elastic modulus of copper with crystallographic

orientation

2.3 Creep

2.3.1 General Remarks

Let us recall several assumptions usually made within the framework of

the creep mechanics [14, 89, 98]. With the assumption of infinitesimal

strains it is possible to disregard the difference between the true stresses

and strains and the engineering stresses and strains. According to the

continuum mechanics there are no differences between the Eulerian and

the Lagrangian approaches within the material description. Creep equations

in the geometrical non-linear case (finite strains) are discussed in the

monograph [16], for example. Finite strain equations based on rheological

models are presented in the monographs [32, 67, 106]. The linearized

equations of continuum creep mechanics can be used in the majority of

engineering applications because structures are usually designed such that
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the displacements and strains arising as a consequence of the applied

loading do not exceed the prescribed small values. Within the continuum

micromechanics geometrical nonlinearities cannot be disregarded in general.

Indeed, finite local strains can be usually observed within the scale of grains

and grain boundaries, in particular within the localized shear band zones. In

this work fracture modes related to localized deformation are not analyzed.

The attention here is placed on the grain boundary cavitation. This damage

mode is usually observed for moderate stress levels at high temperature. For

this regime the deformation within the grains is usually not essential such that

the linearized theory can be applied as a reasonable approximation.

The next assumption is related to the classical continuum mechanics. The

equations of motion within the continuum mechanics include the balance

of momentum and the balance of angular momentum, e.g. [36]. These

equations introduce the stress and the moment stress tensors. Polar materials

are those which are characterized by constitutive equations with respect to

both tensors (in general, they are non-symmetric). In addition, the rotation

degrees of freedom, i.e. the rotation tensor and the angular velocity, are

introduced as independent quantities. Models of polar continua found

application to granular or porous materials [31, 35, 84], fiber suspensions

[4, 37], or other media with changing microstructure. A Cosserat-type model

for crystal plasticity is presented in [40].

Creep deformation is accompanied by various microstructural changes

having different influences on the strain rate. The current state of the material

microstructure is determined by the entire previous history of the creep

process. It can be characterized by a set of additional field variables termed

as internal or hidden state variables.

Hardening processes are usually associated with interaction of moving

dislocations with obstacles (particles, grain boundaries, dislocation forest

etc.) and with the non-uniformity of inelastic deformation inside individual

grains (layered structure of slip) and in polycrystals (different deformation in

different grains).

Processes associated with hardening within the grains will be disregarded

in this work, for the sake of simplicity. Hardening variables and hardening

evolution equations are presented in [30, 39, 40, 90, 91]. Models with gradient

effects of hardening and inelastic deformation inside grains are discussed in

[9, 45, 123] among others.

Two approaches to derive creep constitutive equations will be discussed

in this work. The first one is based on the creep potential hypothesis and the

flow rule. Within the second approach the creep rate tensor is assumed to
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be the sum of contributions from slip systems in a cubic crystal. Both the

approaches will be compared based on the simulation of a uni-axial creep for

different crystallographic directions.

2.3.2 Constitutive Equations Based on Creep Potential

The associated flow rule has the origin in the engineering theory of plasticity.

The basic assumptions of this theory are:

• The existence of a yield condition (creep condition, see [13], for

example) expressed by the equation F (σσσ) = 0, where F is a scalar valued

function. In the general case one can presume that F depends not

only on the stress tensor but also on the internal state variables and the

temperature [78, 109], i.e. the yield condition has a form:

F (σσσ, Hi ,ω j ,T ) = 0, i = 1, . . . ,n, j = 1, . . . ,m. (2.12)

• The existence of a flow potential as a function of the stress tensor Φ(σσσ).

The flow rule (sometimes called the normality rule) is the following

assumption for the inelastic strain rate tensor

ε̇εεin = η̇
∂Φ

∂σσσ
, (2.13)

where η̇ is a scalar factor. In the special case that the flow potential coincides

with the yield function i.e. Φ = F , Eq. (2.13) represents the associated flow

rule. With respect to the variation of the stress tensor δσσσ one distinguishes

between the cases of elastic state, unloading from an elastic-plastic state,

neutral loading and loading, i.e.





F (σσσ) < 0, elastic state

F (σσσ) = 0, and δF = δσσσ ······
∂F

∂σσσ
< 0 unloading

F (σσσ) = 0, and δF = δσσσ ······
∂F

∂σσσ
= 0 neutral loading

F (σσσ) = 0, and δF = δσσσ ······
∂F

∂σσσ
> 0 loading

For work hardening materials η̇ > 0 is set in the case of loading/neutral

loading, otherwise η̇= 0, see e.g. [77]. Further details of the flow theory as well

as different arguments leading to (2.13) can be found in textbooks on theory

of plasticity, e.g. [51, 57, 61, 63, 77, 79, 120].
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Within the creep mechanics the flow theory is usually applied without the

concept of the yield stress or yield condition. This is motivated by the fact that

creep is a thermally activated process and the material starts to creep even

under low and moderate stresses lying below the yield limit. In monographs

[13, 14, 77, 78, 107] the flow rule is applied as follows:

ε̇εεcr = η̇
∂Φ

∂σσσ
, η̇> 0. (2.14)

Equation (2.14) states the “normality” of the creep rate tensor to the surfaces

Φ(σσσ) = const . The scalar factor η̇ is determined according to the hypothesis

of the equivalence of the dissipation power [2, 14]. The dissipation power is

defined by P = ε̇εεcr······σσσ. It is assumed that P = ε̇cr
eqσeq, where ε̇cr

eq is an equivalent

creep rate and σeq is an equivalent stress. The equivalent measures of stress

and creep rate are convenient to compare experimental data under different

stress states. From the above hypothesis follows

η̇=
P

∂Φ

∂σσσ
······σσσ

=
ε̇cr

eqσeq

∂Φ

∂σσσ
······σσσ

. (2.15)

The equivalent creep rate is defined as a function of the equivalent stress

according to the experimental data for uni-axial creep as well as creep

mechanisms operating for the given stress range. An example is the power

law stress function

ε̇cr
eq(σeq) = aσn

eq. (2.16)

Another form of the flow rule without the yield condition has been

proposed by Odqvist, [97, 99]. The steady-state creep theory by Odqvist, see

[97], p.21 is based on the variational equation δW = δσσσ······ε̇εεcr leading to the flow

rule

ε̇εεcr =
∂W

∂σσσ
, (2.17)

where the scalar valued function W (σσσ) plays the role of the creep potential.

Taking into account that W (σσσ) =W (σeq(σσσ)) the flow rule (2.17) yields

ε̇εεcr =
∂W

∂σeq

∂σeq

∂σσσ
= ε̇cr

eq

∂σeq

∂σσσ
, ε̇cr

eq ≡
∂W

∂σeq
. (2.18)

The creep potential W (σeq) is defined according to experimental data of creep

under uni-axial stress state for the given stress range. An example is the

Norton-Bailey-Odqvist creep potential

W =
σ0

n +1

(
σvM

σ0

)n+1

, (2.19)
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widely used for the description of steady-state creep of metals and alloys. In

(2.19) σ0 and n are material constants and σvM is the von Mises equivalent

stress. Below we discuss various restrictions on the potentials, e.g. the

symmetries of the creep behavior and the inelastic incompressibility.

The flow rules (2.14) and (2.17) lead to the same creep constitutive

equation if the equivalent stress satisfies the following partial differential

equation [89]
∂σeq

∂σσσ
······σσσ=σeq. (2.20)

The potential formulations originate from the works of Richard von Mises,

where the existence of variational principles is assumed in analogy to those

known from the theory of elasticity (the principle of the minimum of the

complementary elastic energy, for example) [131]. Secondary or stationary

creep is for many applications the most important approximation. After a

relatively short transient period the material creeps in such a manner that an

approximate equilibrium between hardening and recovery processes can be

assumed. This equilibrium exists for a certain time and the long term behavior

of a structure can be analyzed assuming stationary creep processes.

The classical equation for the isotropic steady-state flow is derived as

follows. Under the assumption of the isotropic creep, the creep potential must

satisfy the following restriction

W (QQQ ···σσσ···QQQT ) =W (σσσ) (2.21)

for any symmetry transformation QQQ, QQQ ···QQQT = III , detQQQ = ±1. From (2.21) it

follows that the potential depends only on the three scalar invariants of the

stress tensor. With the principal invariants

J1(σσσ) = trσσσ, J2(σσσ) =
1

2
[(tr σσσ)2 − trσσσ2],

J3(σσσ) = detσσσ=
1

6
(trσσσ)3 −

1

2
trσσσtrσσσ2 +

1

3
trσσσ3

(2.22)

the potential takes the form

W (σσσ) =W (J1, J2, J3).

The stress tensor is decomposed as follows

σσσ=σmIII +sss, tr sss = 0 ⇒ σm =
1

3
trσσσ,

where sss is the stress deviator and σm is the mean (hydrostatic) stress. With the

principal invariants of the stress deviator

J2D =−
1

2
tr sss2 =−

1

2
sss ······ sss, J3D =

1

3
tr sss3 =

1

3
(sss ···sss) ······ sss
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the potential takes the form

W =W (J1, J2D , J3D ).

From the flow rule (2.17) it follows

ε̇εεcr =
∂W

∂J1
III −

∂W

∂J2D
sss +

∂W

∂J3D

(
sss2 −

1

3
tr sss2III

)
. (2.23)

In the classical creep theory it is assumed that the inelastic deformation does

not produce a significant change in volume. The spherical part of the creep

rate tensor is neglected, i.e tr ε̇εεcr = 0. Setting the trace of (2.23) to zero results

in

tr ε̇εεcr = 3
∂W

∂J1
= 0 ⇒ W =W (J2D , J3D ).

It follows that the creep behavior is not sensitive to the hydrostatic stress state

σσσ = −pIII , where p > 0 is the hydrostatic pressure. The creep equation (2.23)

can be formulated as

ε̇εεcr =−
∂W

∂J2D
sss +

∂W

∂J3D

(
sss2 −

1

3
tr sss2III

)
. (2.24)

The last term in the right-hand side of (2.24) is non-linear with respect to

the stress deviator sss. Equations of this type are called tensorial non-linear

equations, e.g. [8, 14, 78, 109] as several non-linear (higher-order) effects

can be considered. For example, the torsion would lead to elongation creep

rate is the square of the stress deviator is considered, e. g. [89]. Within the

engineering creep mechanics such effects are usually neglected and with

W =W (J2D )

is the classical von Mises type potential [131]. In applications it is convenient

to introduce the equivalent stress to compare the creep behavior under

different stress states including the uni-axial tension. The von Mises

equivalent stress is defined as follows

σvM =
√

3

2
sss ······sss =

√
−3J2D . (2.25)

With W =W (σvM(σσσ)) the flow rule (2.17) results in

ε̇εεcr =
∂W (σvM)

∂σvM

∂σvM

∂σσσ
=

∂W (σvM)

∂σvM

3

2

sss

σvM
. (2.26)

The second invariant of ε̇εεcr can be calculated as follows

ε̇εεcr ······ ε̇εεcr =
3

2

[
∂W (σvM)

∂σvM

]2

.
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Introducing the notation ε̇2
vM

= 2
3
ε̇εεcr ······ ε̇εεcr and taking into account that

P =
∂W (σvM)

∂σvM
σvM ≥ 0

one can write

ε̇εεcr =
3

2
ε̇vM

sss

σvM
, ε̇vM =

∂W (σvM)

∂σvM
. (2.27)

With the power law type creep potential

ε̇εεcr =
3

2
aσn−1

vM sss, (2.28)

where a and n are material parameters. The constitutive equation of steady-

state creep (2.27) was proposed by Odqvist [99]. Experimental verifications

of this equation can be found, for example, in [122] for steel 45, in [94] for

titanium alloy Ti-6Al-4V and in [105] for alloys Al-Si, Fe-Co-V and XC 48. This

model is widely used in estimations of steady-state creep in structures, e.g.

[19, 21, 89, 99, 107, 109].

For anisotropic materials this theory is extended as follows. The creep

potential is assumed to be an isotropic function of the stress tensor and a

system of direction tensors associated with the orientation of the materials

microstructure. For example, for the point group Oh (the symmetry group

of the FCC lattice) the creep potential should be formulated as an isotropic

function of the following two arguments

W =W (σσσ,O), O=
3∑

i=1

ggg i ⊗ggg i ⊗ggg i ⊗ggg i , (2.29)

where the fourth-rank tensor O is called the structure tensor, e.g. [17]. With

the theory of isotropic scalar-valued tensor functions it is possible to derive a

system of independent arguments of W corresponding to the given symmetry

group, e.g. [89]. Here we limit ourselves to the quadratic form of the creep

potential. The most general quadratic form can be formulated as follows

σ2
eq =

3

2
σσσ ······B ······σσσ, (2.30)

where σeq is the equivalent stress. The fourth rank tensor B contains the

material parameters and has the same structure as the elasticity or the

compliance tensor.

The flow rule (2.18) provides the following generalized anisotropic creep

equation

ε̇εεcr =
3

2

ε̇cr
eq

σeq
B ······σσσ, ε̇cr

eq ≡
∂W

∂σeq
. (2.31)
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For materials with the cubic symmetry the tensor B has the same structure as

the tensor C, that is

B=α1P1 +α2P2 +α3P3, (2.32)

where αi are material parameters. Inserting Eq. (2.32) into Eq. (2.31) we

obtain

ε̇εεcr =
3

2

ε̇cr
eq

σeq

(
3∑

i=1

αiPi

)
······σσσ. (2.33)

With tr ε̇εεcr = 0 it follows that α1 = 0 and (2.33) simplifies to

ε̇εεcr =
3

2

ε̇cr
eq

σeq

(
2∑

i=1

αiPi

)
······σσσ, σ2

eq =
3

2
σσσ ······

(
2∑

i=1

αiPi

)
······σσσ. (2.34)

In (2.34) assuming the power law creep and with ξ=α3/α2, Eqs (2.34) can also

be given as follows

ε̇εεcr =
3

2
aα1σ

n
eq (P1 +ξP2) ······σσσ, σ2

eq =
3

2
α1σσσ ······ (P1 +ξP2) ······σσσ, (2.35)

where a and n are material parameters. The parameter α1 can be selected

arbitrarily. Below we set α1 = 1. One may verify that for ξ = 1 Eq. (2.31)

provides the classical isotropic creep constitutive equation (2.28). Equation

(2.35) can also be written as follows

ε̇̇ε̇εc =
3

2
aσn−1

eq

{
σ11

(
ggg 1 ⊗ggg 1 −

1

3
III

)
+σ22

(
ggg 2 ⊗ggg 2 −

1

3
III

)
+σ33

(
ggg 3 ⊗ggg 3 −

1

3
III

)

+ξ
[
τ12

(
ggg 1 ⊗ggg 2 +ggg 2 ⊗ggg 1

)
+τ13

(
ggg 1 ⊗ggg 3 +ggg 3 ⊗ggg 1

)
+τ23

(
ggg 2 ⊗ggg 3 +ggg 3 ⊗ggg 2

)]}
,

(2.36)

where

σeq =
√

1

2

[
(σ11 −σ22)2 + (σ11 −σ33)2 + (σ22 −σ33)2 +6ξ

(
τ2

12 +τ2
23 +τ2

13

)]
.

(2.37)

2.3.3 Identification of creep parameters for the model based

on potential

To complete modeling of the crystalline material parameters should be

identified. In the current work model-based material is pure copper at the

level of single crystal. For the elastic deformation region material parameters

are reported in the literature as it is mentioned in Sect. 2.1.

For the inelastic region material model parameters a, ξ and n should

be determined from the creep tests under single crystal copper. For the



23

polycrystalline copper the power law exponent n is usually determined from

the curve, showing dependence of minimum strain rate on stress at one

temperature. The procedure is well known and in details described in many

textbooks, for instance, in the textbook of Naumenko and Altenbach [89]. In

this case tensile creep curves in a wide stress range are required.

Copper is one of the most popular materials used in academical research

for the simulation. That is why many experimental data are reported in

the literature starting from the middle of the last century. Orlova and

Kucharova [104] performed compression tests of the double-notched single

crystal specimen in order to realize shear strain on a range of crystal planes.

The tests were performed at temperatures of 773 and 783 K and applied

compression stress ranged between 5 and 20 MPa. In the work detailed creep

curves are presented. Strain rate vs. strain curves of [001]–oriented single

crystal specimen under constant shear conditions are reported in the paper

of Borbely et al. [18]. The specimens were tested at 293 and 527 K and applied

shear stress 60 and 54.7 MPa, correspondingly. In the following tests minimum

creep strain rate was reached. A series of results from tensile tests under single

crystal copper is published within the last decades, see [43, 103, 137] among

others.

For the accurate and reliable material model parameters identification the

set of the creep curves in [100] and [111] crystallographic directions at one

temperature is required. Any of the tests mentioned above contain such data.

So, in the current work creep data, obtained in a private communication is

used, which is recently published in [132]. One of the authors performed

tensile creep tests under [100] and [111]–oriented single crystal copper at

550 ◦C and of 10, 15 and 20 MPa of applied stress.

Power exponents for single crystal copper were determined from these

tests for the creep curves of the crystals at [001] and [111] orientations at 2 and

3 stress levels, respectively. The power law exponents for the current modeling

were taken as the average between 2 curves. These values are equal 9.25. The

scattering from the average value is around 15%.

To determine the rest of the parameters tensile creep tests of [001]– and

[111]–oriented single crystal are needed. The creep strain tensor expression

of the [001]– oriented material under applied stress σ0 reduces from Eq. (2.36)

to the following form:

ε̇cr
[001] = aσn

0 .
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From this test the material parameter a can be determined as

a =
ε̇cr

[001]

σn
0

.

The parameter ξ can be determined from the tensile test of [111]–oriented

crystal. The resulting expression for the creep strain rate has the form:

ε̇cr
[111] = aσn

0ξ
n+1

2 .

From the above formula the expression for ξ is obtained as:

ξ=
(
ε̇cr

[111]

aσn
0

) 2
n+1

, (2.38)

where ε̇cr
[001]

and ε̇cr
[111]

are creep strains taken from the correspondent

experimental data. Model material parameters determined for single crystal

copper based on the experimental data of O. Frederik are:

a = 1.96 ·10−15 (MPa)−n

h
, n = 9.4, ξ= 0.026.

2.3.4 Crystallographic approach

In the current work polycrystalline materials are described by the model,

based on the creep potential. Though for the sake of completeness a short

overview on a crystallographic modeling is presented.

Power plant components design is an important branch of the engineering

simulations during the last 50 years. Widely used materials for the power

plants blades are Ni-based single crystal alloys. Their microstructure

corresponds to the structure of the material within one grain. That is why

research of the Ni-based alloys leaded to the progress in the crystallographic

modeling. The crystallographic approach is based on the fact that the energy,

which is necessary for the atom slip in the crystal lattice is not the same for

every direction and there are plains of preferential slip. It is well known from

the literature for instance Smith [121] that the lattice of certain type has its

own slip systems. In FCC crystal there are 4 independent slip planes with 3

slip directions within each plain, what results in 12 slip systems. However,

experiments show that it is possible to activate other slip systems with the

higher critical resolved shear stress value during creep [117]. Usually these are

the cubic system and non-classical directions within the octahedral plains.

Thus, slip will occur on the active planes due to presence of dislocations in
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the single crystal material. For the slip system activation it is necessary that

applied resolved shear stress acting on the slip plane exceed a critical value.

This condition of slip is well known as Schmid’s law. The value of critical

resolved shear stress can be obtained experimentally. Resolved shear stress

can be recalculated by multiplying magnitude of the applied stress on the

orientational cosines of the normal to the slip plane and slip direction [115].

Contribution to the overall deformation of the single crystal gives the sum of

slips from all active slip systems.

For example, the crystal creep theory proposed in [100] describes the

secondary creep stage with the usage of the power law. As operating

during creep {111}〈110〉 octahedral, {111}〈112〉 octahedral and {100}〈110〉
cubic slip-systems were considered. Nevertheless the microstructure of a

pure crystalline material differs from the microstructure of single crystal

superalloys, for example, by the presence in the last one so called γ or

γ′ phases, which impede dislocation motion and consequently lead to the

strengthening during creep. Thus, advanced constitutive models, taking into

account this phenomenon [116], are not sufficient to describe the pure single

crystal material.

Hutchinson [55] describes the creep of FCC and ionic polycrystals.

Constitutive equations for the shear rate on every slip system are based on

power law creep. In addition, the way of calculation of average strain and

stress fields is proposed. Based on the minimum principle for the strain rates

proposed in [53] the upper bounds for the average strain in polycrystal are

estimated. As a result, a self–consistent theory for the secondary creep is

proposed, evaluating overall polycrystal deformation based on the single slip

within the individual grain.

More enhanced crystal plasticity models consider dislocations in the

intragranular material and within the grain interior. For such a model the

primary length parameter is the length of the Burgers vector.

The conventional crystal plasticity model of Asaro and Needleman [6]

is extended in [68] to account dislocation dynamics. Two possibilities to

introduce the scale dependence in the viscoelastic constitutive equations are

represented. The first one consists in the representation of the slip resistance

parameter in the way proposed by Han et al. [45], where it depends on

the dislocation densities of different types. The second opportunity is the

introduction of a gradient back stress, depending on the spatial gradient of the

density of geometrically necessary dislocations. An overview on the existing

scale dependent models is provided in [5, 38, 44, 138] among others.

In [38] a scale dependent crystal plasticity model in the finite strain
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framework is presented. The slip resistance parameter is assumed to

be dependent on dislocation densities. In addition, this work offers an

explanation of dislocations nature and their type.

2.3.5 Comparison of both approaches

2.3.5.1 Comparison by the predicted creep strain rate level

Currently both ways of creep modeling (crystallographic and based on

creep potential) are used to describe inelastic deformation of a crystalline

material. In the previous Sects. 2.3.2 and 2.3.4 a brief overview on the

existing models is given. The aim of the current section is to compare both

models, representing two different ways of simulation. Han et al. [46, 47]

compared pure phenomenological (the model, based on creep potential) and

crystallographic models for the case of plasticity. The pure phenomenological

model is based on the viscoplastic constitutive equations of Chaboche [25]

for isotropic materials. The extension for the anisotropic case is done by

introducing the yield criterion, the back stress and the kinematic hardening in

the anisotropic form. For the crystallographic model constitutive equations

[25] are adopted for every of 18 slip systems, which possesses nickel base

single crystal superalloy material. The procedure to identify material model

parameters is developed and applied for the same experimental data in order

to enable results comparison for both models.

After the comparison, the authors conclude that model, based on creep

potential and crystallographic model have strong similarities. Significant

differences appear after a direct comparison of the results at various

orientations. To check this the peak stresses corresponding to the total strain

of 1.2% were compared. The results of both models for the crystals near

[001] and [111] orientations correspond well while the maximum relative error

near [011] orientation was found around 17%. This can be partly explained

by the fact that the total inelastic strain of the crystal near [001] orientation

is dominated by the octahedral slip and of the [111] oriented crystal by the

cubic slip. The total inelastic strain of the [011] oriented crystal consists of the

contribution of both slip systems. The diagrams of the relative errors between

these two models shows significant peaks at the orientations, where both slip

systems interaction takes place. Thus the better representation of the slip

systems interaction during creep of crystal is required.

In the current work the aim is set to perform similar comparison for both

approaches for the creep models based on the same constitutive law of strain
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rate evolution. The total amount of creep strain for the crystals of various

orientations, predicted separately by each model, as a comparison criteria is

used. As far as simulations are performed with the help of Mathcad software,

the estimation of the computational time is difficult. The simulation will

include a material parameter identification for both models, and numerical

tests in some characteristic directions to evaluate the strain rate at every

separate slip system.

For the comparison with the anisotropic model, based on creep potential,

described in Sect. 2.1, crystal viscoplasticity model, proposed in [100], is used.

Both models are based on the power law creep and are relatively simple in

implementation.

According to the model of Ohno et al. [100] the total creep strain rate tensor

is built as a sum of slip rates from every slip system along every kth direction

multiplied by the orientation tensor:

ε̇εεcr =
12∑

k=1

γ̇(k)
oct1ααα

(k)
oct1 +

12∑

k=1

γ̇(k)
oct2ααα

(k)
oct2 +

6∑

k=1

γ̇(k)
cub

ααα(k)
cub

. (2.39)

The orientation tensor ααα(k)
s can be expressed through the unit vectors,

defining the slip direction bbbk
s and normal to the slip plane νννk

s in the following

form:

ααα(k)
s =

1

2

(
bbbk

s ⊗νννk
s +νννk

s ⊗bbbk
s

)
, (2.40)

where s = oct1,oct2,cub. The values of the vectors bbbk
s and νννk

s used in the

current calculation are given in Appendix C.

The slip rate in its turn, as it was mentioned above, is developed by power

law according to the shear stress of the kth slip system:

γ̇(k)
s = Kssign[τ(k)

s ][τ(k)
s ]ns . (2.41)

If σσσ is the applied stress tensor to the crystalline body, then:

τ(k)
s = tr

(
σσσ ·ααα(k)

s

)
. (2.42)

In general, to identify material model parameters for the single crystal FCC

material tensile tests in 2 directions are used. These are tests on [001] and

[111] oriented single crystal specimens. Tension in these directions is used

for the activation of only one of the slip systems. For instance, in the [001]–

oriented crystal only octahedral system operates, whereas in [111]–oriented

crystal only the cubic one [29].
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In the reference article of Ohno et al. [100] creep constants for different slip

systems in a directionally solidified alloy IN738LC are presented:

Koct1 = 1.07 ·10−23 (MPa)−n

h
, Koct2 = 4.91 ·10−23 (MPa)−n

h
,

Kcub = 1.41 ·10−24 (MPa)−n

h
.

(2.43)

The power law exponent n = 9.2 is similar for every slip system. The

following assumption is often used for the materials with different origins

of anisotropy, for example, the case of weld metals is discussed in [56]. The

difficulties in individual determination of n for every slip system can be

connected with the lack of experimental data. For its determination it is

necessary to have tensile tests for all characteristic directions under wide

range of applied stresses. Nevertheless the aim of the current simulation

is to compare two approaches. The precise simulation of definite material

behavior is not required and the assumption of equal power law exponent

for every slip system is acceptable. Also the same power law exponent for

the anisotropic creep model is assumed. Other material parameters a and

ξ can be determined numerically, following the procedure derived in Sect.

2.3.3. Only the longitudinal strains ε̇cr
[001]

and ε̇cr
[111]

should be taken not as

experimental data, but that one calculated in Mathcad for the crystallographic

model in the directions [001] and [111], correspondingly. The parameters

determined in this way are:

a = 2.019 ·10−25 (MPa)−n

h
, ξ= 0.508.

In this way one material by means of two different models is presented. To

evaluate creep response of these models three tests are performed. These are

[011] – tensile test, shear test and the test, activating slip of the octahedral

plane, already described above and illustrated in Fig. 2.1.

For every tests creep strain rates are plotted in the most characteristic

directions. They are calculated in the following way:

ε̇cr
[011] =nnn[011] ·ε̇εε̇εεε̇εεεcr ·nnn⊤

[011],

ε̇cr
shear = ggg 2 ·ε̇εε̇εεε̇εεεcr ·ggg⊤

3 ,

ε̇cr
oct =nnnoct ·ε̇εε̇εεε̇εεεcr ·nnn⊤

oct,

(2.44)

where nnn[011] =
1
p

2
(ggg 2 +ggg 3) and nnnoct =

1
p

6
(−ggg 1 −ggg 2 +2ggg 3).

In Fig. 2.5 the creep strain rate evolution with respect to the applied

stress is demonstrated. In octahedral slip test there is a good correlation of
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both models. The shear and tensile at [011] oriented crystal tests show a

big difference. The recalculation of ξ parameter taking into account only the

second octahedral slip system improves significantly the agreement between

both models at shear test.

2.3.5.2 Creep properties variation with the crystallographic orientation

In order to illustrate the symmetry type of the creep strain rate tensor (2.36)

derived for the model, based on the creep potential its dependence on the

crystallographic directions is defined. Using the notations, introduced in Sect.

2.2, the projection operators are:

mmm⊗mmm ······P2 ······mmm ⊗mmm =α−
1

3
,

mmm ⊗mmm ······P3 ······mmm ⊗mmm = 1−α,

where

α=
3∑

l=1

(mmm ·ggg l )4.

With this operators the expression for the equivalent stress (2.37) can be

rewritten as follows:

σ2
eq =

3

2
σ2

0

(
α−

1

3
+ξ(1−α)

)

=σ2
0

(
3

2
α−

1

2
+

3

2
ξ(1−α)

)
.

(2.45)

Introducing the notation:

ω=
√

1

2
[3α−1+3ξ(1−α)],

we obtain:

σeq = σ0ω. (2.46)

Substituting the obtained expression for the equivalent stress in Eq. (2.36) for

the creep strain rate tensor the expression for the resultant creep strain rate in

the arbitrary direction mmm is obtained:

ε̇cr
mm =

3

2
a(σ0ω)n−1σ0

[
α−

1

3
+ξ(1−α)

]

= aωn+1σn
0 .

(2.47)
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Figure 2.5 Value of creep strain rate in crystalline calculated with both

models at different loadings: a) tension in [011] direction; b) shear

test; c) octahedral slip
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After normalizing this expression on the value of the magnitude of the

applied stress as in the case of elasticity, presented in Sect. 2.2, the

equation of the surface, characterizing change of the creep strain rate with

the crystallographic orientation is obtained:

ε̇cr
mm

σn
0

= aωn+1. (2.48)

To perform the comparison of the symmetry types, prescribed by both

creep models, the following surface with the material model parameters,

determined in Sect. 2.3.5 for the model, based on the creep potential, is built

and presented in Fig. 2.6.

To investigate the variation of the creep properties in the crystalline

material, predicted by the crystallographic model [100], the expression for the

creep strain rate acting on the plane with the arbitrary normal mmm (Fig. 2.3)

should be derived. The creep strain rate tensor is presented in Eq. (2.39),

where the shear strain rate, corresponding to the kth slip system is shown in

Eq. (2.41). The resolved shear stress, corresponding to the sth slip system and

Figure 2.6 Variation of the normalized creep strain rate with the crystallo-

graphic orientation, predicted by the model based on the creep

potential
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kth slip direction can be expressed as follows:

τ(k)
s =bbbk

s ·σσσ ·νννk
s , (2.49)

where bbbk
s are the slip directions and νννk

s are the normals to the slip planes

in the of crystallographic basis ggg i , i = 1 . . .3, represented in Fig. 2.3. In the

component form both vectors can be expressed as:

bbbk
s = (bk

s )i ggg i ,

νννk
s = (νk

s )i ggg i ,

where (bk
s )i and (νk

s )i , are coordinates of the correspondent vectors.

For the stress tensorσσσ=σ0mmm⊗mmm Eq. (2.49) takes the form:

τ(k)
s =σ0(mmm ·bbbk

s )(mmm ·νννk
s ). (2.50)

Denotation of the scalar product of the slip direction vector on the normal mmm

as Ω and of the scalar product of the normal to the slip plane on the normal mmm

as Γ results in:

Ω
k
s = mmm ·bbbk

s =
3∑

j=1

(bk
s )i mmm ·ggg j ,

Γ
k
s = mmm ·νννk

s =
3∑

j=1

(νk
s )immm ·ggg j ,

where mmm ·ggg j are projections of the normal mmm on the crystallographic basis,

formerly defined in Eq. (2.7). With this, the expression for the shear stress can

be rewritten in the form:

τ(k)
s =σ0Ω

k
s Γ

k
s . (2.51)

Substituting (2.51) in (2.39) one can obtain:

ε̇cr
mm = 2σn

0

∑

s

Ks(ΩsΓs )n+1sign(ΩsΓs ),

with the notation

Zs = (ΩsΓs )n+1sign(ΩsΓs )

one can finally get the expression of the creep strain rate evolving in the

direction mmm:

ε̇cr
mm = 2σn

0 (Koct1Zoct1 +Koct2Zoct2 +KcubZcub) . (2.52)
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Normalizing the expression for the creep strain rate tensor to the

power law constant of the first octahedral system one can obtain the

equation, qualitatively characterizing change of the creep properties with the

crystallographic direction:

ε̇cr
mm

2Koct1σ
n
0

= Zoct1 +
Koct2

Koct1
Zoct2 +

Kcub

Koct1
Zcub. (2.53)

The surface, corresponding to Eq. (2.53), with the material model parameters

(2.43) is presented in Fig. 2.7.

Comparing Figs. 2.6 and 2.7 one can see that both figures have similar

symmetries. The values of the creep strain rates have maximum in the

directions 〈001〉 for both models. In Fig. 2.7 some additional convex sections

in the central region can be observed, which are completely absent in the

surface in Fig. 2.6. Due to their small magnitude their contribution to the

results discrepancy of two models is small. More pronounced distinction lies

in the volume of the 〈001〉–oriented sections. The volume of the surface,

correspondent to the material with the cubic symmetry is influenced by

ξ coefficient. The optimal value is found close to 0.75 and the corrected

surface is presented in Fig. 2.8. The following value of ξ improves the result

Figure 2.7 Variation of the normalized creep strain rate, predicted by the

crystal plasticity model
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Figure 2.8 Variation of the normalized creep strain rate, predicted by the

model based on creep potential for ξ= 0.75

discrepancies between both models for the tension test of [011]–oriented

crystal. The conclusion arises that the determination of ξ coefficient by

Eq. (2.38) leads to its significant underestimation and should be taken into

account during the further calculations.
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CHAPTER

3
Grain boundary sliding

The main mechanisms leading to the creep fracture are found to be

dislocation creep within the grain, diffusion transport of matter from the grain

boundaries or interior and grain boundary sliding (GBS). If one performs the

creep simulation up to fracture on the microlevel all these processes should

be reflected as resulting in the material softening during the tertiary creep.

Therefore the aim of this chapter is to introduce constitutive equations for the

grain boundary sliding and to show its contribution during the secondary and

the tertiary creep stages.

3.1 Nature of the grain boundary sliding

The grain boundary sliding in a polycrystalline material is not an independent

process and does not occur in the polycrystalline material instantly after

applying the load. It occurs owing to the intragranular deformation and in this

way contributes to the total creep strain. Thus, the diffusion creep [22, 111],

the dislocation creep [42] or both processes occurring in the grain interior can

generate the grain boundary sliding. Different grain boundary sliding models

are presented in the literature starting from the pioneering work [10].

The source of diffusion creep is the presence of vacancies or in other words

point defects in a crystalline material. Under conditions of high temperature

the applied stress activates vacancies diffusion from the compressed grain

boundaries to that one, undergoing tension. This process is followed then

by diffusion in the opposite direction. The phenomena of diffusion transport

of matter in the material is described e.g., Poirier [108]. Such type of
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intergranular deformation activates diffusion near the grain boundaries and

leads to the sliding of mutual grains. In this case the grain boundary sliding

is geometrically characterized by elongation of grains along the specimen,

meanwhile the number of grains along the specimen length stays the same.

This type of GBS is called Lifshitz sliding [72].

The description of the grain sliding rate accumulated due to diffusion

creep is made through the material parameters such as grain-boundary

diffusivity, grain boundary width, average grain size, besides the driving forces

for the GBS such as applied stress and temperature. At first the model of such

type was introduced in [111] and then improved in [42].

Dislocation based creep leads to another type of the GBS, so called

Rachinger type [110] of sliding, which is characterized by an increased grain

number along the specimen, but mostly does not influence the grain shape.

The slip within the grain interior leads to accumulation of dislocations on

the grain boundaries. The sliding occurs because the continuity between the

mutual grains should be held. As a consequence the high–angle boundaries

have a higher tendency to sliding, because the dislocations within low–angle

boundaries can freely slide under applied stress, not causing the displacement

of grain boundaries. In Fig. 3.1 the micrograph of OFHC copper, tested at

creep conditions at 676 ◦C is shown. The GBS is estimated by measurement of

Figure 3.1 Manifestation of GBS in copper at 676 ◦C, after [133]. The grain

boundary irregularities: bend (A) and island grain (B).
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the offset of transversal marker line, traced on the specimen surface before

testing. As a result for the current example the cavity formation due to

interaction of the grain boundary irregularities and grain boundary sliding is

observed.

3.2 Grain boundary sliding modeling

A widely used way of the polycrystalline geometry representation is the two–

dimensional massive of equal size hexagons. Such geometry is considered

in [28] in order to simulate grain boundary sliding. The problem is solved

with assumptions of a plane strain under applied shear stress. Grain elements

are prescribed to deform inelastically by power law. The grains are connected

by thin layers of grain boundary elements, which are prescribed to shear in a

Newtonian viscous manner. Different ways of viscosity coefficient derivation

are proposed depending on the grain boundary geometry.

Van der Giessen and Tvergaard [129] supplement [28] with a grain

boundary cavitation model. The axisymmetric problem is analyzed under

constant tension conditions.

In [42] the improved geometry of a grain is considered as a core with

a conventional single crystal behavior and a mantel, possessing additional

slip systems. The mantel, as a creep softer region is used to introduce

grain boundary sliding. The material response of the set of alloys during

superplasticity and creep is considered. Under this condition the author

accounts the fold formation, dislocation motion and pure diffusion as

mechanisms relevant at grain boundary sliding. The comparison of simulated

strain rate – stress curves with experimental data is presented.

In the current research grain boundary sliding due to dislocation creep

in grains is simulated. As far as the microstructure of the polycrystal is

directly considered, GBS can be represented by direct displacement of mutual

grains, which should occur on some dependence on the applied shear stress.

In the unit cell without grain boundary layer grain boundary sliding can

be implemented by introducing special kind of interactions or boundary

conditions between grains, for instance, by defining the traction–separation

law available in Abaqus Standard. But such approach would lead to significant

model complication and would increase calculation time.

In order to avoid these difficulties the so called grain boundary layer is

introduced. It is designed as a separate part object in Abaqus and consists

of plane regions of a non-zero thickness, connecting grains. The discussion of
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ggg 1 ggg 2

ggg 3

Figure 3.2 Schematic representation of two grains connected by the grain

boundary region with the specific material orientation

the detailed procedure of the layer construction is held in Chapter 5.1. Two

grains of a random shape connected by grain boundary region are presented

in Fig. 3.2. The thickness of this region is a pure phenomenological value and

for this example taken by the illustrative reason.

For the grain boundary sliding representation the shear and the normal

deformation of the grain boundary should be distinguished. To this purpose

an individual local coordinate system is determined for every plane region of

the grain boundary region. An example of such coordinate system is shown

in the right–hand side of Fig. 3.2. In this case the direction ggg 3 is set as a

normal to the grain boundary and the other two directions ggg 1 and ggg 2 are in the

grain boundary plane. In the regions of grain boundaries junction the smooth

transition from one coordinate system to another is automatically performed

by Abaqus.

The material model implementation in Abaqus is done by the usage

of user defined material. Within the UMAT (User Material) program the

description of only one material behavior is possible. The different response

of grain boundary material in different directions induces a higher level of

symmetry than cubic, namely orthotropic. The constitutive equations for

the cubic symmetry, presented in Sect. (2.1), should be rewritten for the

case of orthotropy. The procedure of derivation of creep strain rate evolution

equation for the material with different types of anisotropy is standard and

presented, for instance, in [89].

The six orthotropic invariants of the elastic strain tensor can be introduced



39

in the following form:

In1n1 =nnn1 ·εεεel ·nnn1 = ε11,

In2n2 =nnn2 ·εεεel ·nnn2 = ε22,

In3n3 =nnn3 ·εεεel ·nnn3 = ε33,

In1n2 =nnn1 ·εεεel ·nnn2 = ε12,

In1n3 =nnn1 ·εεεel ·nnn3 = ε13,

In2n3 =nnn2 ·εεεel ·nnn3 = ε23,

(3.1)

where nnni , i = 1 . . .3 are unit vectors, characterizing three planes of material

symmetry. The elastic strain energy is a quadratic form constructed on (3.1)

and for the orthotropic case can be written as:

U =
1

2

[(
α1In1n1 +α2In2n2 +α3In3n3

)2 +β2

(
In1n1 − In3n3

)2

+ β3

(
In2n2 − In3n3

)2 +β1

(
In1n1 − In2n3

)2
]
+β12I 2

n1n2
+β13I 2

n1n3
+β23I 2

n2n3
,

(3.2)

where α1, α2, α3, β1, β2, β3, β12, β13, β23 are material parameters. To

obtain the dependence of the stress tensor on the elastic strain tensor the well

known Green’s formula for the elastic strain energy can be used:

σσσ=
∂U

∂εεεel
=

∂U

∂Ini n j

∂Ini n j

∂εεεel
, i , j = 1..3,

where Ini n j
is the invariant’s set (3.1).

For the case of elasticity we assume that all elastic normal strains equally

contribute to the stress tensor, it means that we can make the simplification

α1 = α2 = α3. After some algebraical operations we obtain the stress–strain

dependence for the case of orthotropy

σσσ=α2
1 (ε11 +ε22 +ε33) (nnn1 ⊗nnn1 +nnn2 ⊗nnn2 +nnn3 ⊗nnn3)

+ [β1(ε11 −ε22)+β2(ε11 −ε33)]nnn1 ⊗nnn1 + [β1(ε22 −ε11)+β3(ε22 −ε33)]nnn2 ⊗nnn2

+ [β2(ε33 −ε11)+β3(ε33 −ε22)]nnn3 ⊗nnn3 +2β12ε12(nnn1 ⊗nnn2 +nnn2 ⊗nnn1)

+2β13ε13(nnn1 ⊗nnn3 +nnn3 ⊗nnn1)+2β23ε23(nnn2 ⊗nnn3 +nnn3 ⊗nnn2).

(3.3)

Through the following parameters set:

α1 =

√
λ1

3
, β1 =β2 =β3 =

λ2

3
, β12 =β13 =β23 =

λ3

2

equation (3.3) reduces to the cubic symmetry case (2.1).
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The equation for the creep strain rate could be derived from the flow

rule (2.17) [97]: where W is the creep potential, which is a function of the

equivalent stress W (σσσ) = W (σeq(σσσ)), [89]. With this (2.17) could be rewritten

as:

ε̇̇ε̇εcr =
∂W

∂σeq

∂σeq

∂σσσ
= ε̇cr

eq

∂σeq

∂σσσ
, ε̇cr

eq ≡
∂W

∂σeq
. (3.4)

In order to introduce the equivalent stress in form valid for both orthotropic

and cubic symmetry cases, let us introduce 6 invariants of the stress tensor,

which satisfy the incompressibility condition:

Ĩn1n1 =nnn1 ·σσσ ·nnn1 −
1

3
trσσσ,

Ĩn2n2 =nnn2 ·σσσ ·nnn2 −
1

3
trσσσ,

Ĩn3n3 =nnn3 ·σσσ ·nnn3 −
1

3
trσσσ,

Ĩn1n2 =nnn1 ·σσσ ·nnn2 = τ12,

Ĩn1n3 =nnn1 ·σσσ ·nnn3 = τ13,

Ĩn2n3 =nnn2 ·σσσ ·nnn3 = τ23.

(3.5)

Then the expression for the equivalent stress can be written in the following

form:

σ2
eq =

1

2
µ2

(
Ĩn2n2 − Ĩn3n3

)2 +
1

2
µ3

(
Ĩn3n3 − Ĩn1n1

)2 +
1

2
µ1

(
Ĩn1n1 − Ĩn2n2

)2

+3µ12 Ĩ 2
n1n2

+3µ13 Ĩ 2
n1n3

+3µ23 Ĩ 2
n2n3

,

(3.6)

where µ1, µ2, µ3, µ12, µ13 and µ23 are material model parameters, which

should be determined from the creep curves. Using the flow rule (2.17) and

the expression for the equivalent stress (3.6) the following dependence can be
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derived:

ε̇̇ε̇εcr =
ε̇cr

eq

2σeq

(
∂σeq

∂Ĩn1n1

∂Ĩn1n1

∂σσσ
+

∂σeq

∂Ĩn2n2

∂Ĩn2n2

∂σσσ
+

∂σeq

∂Ĩn3n3

∂Ĩn3n3

∂σσσ

+
∂σeq

∂Ĩn1n2

∂Ĩn1n2

∂σσσ
+

∂σeq

∂Ĩn1n3

∂Ĩn1n3

∂σσσ
+

∂σeq

∂Ĩn2n3

∂Ĩn2n3

∂σσσ

)

=
ε̇cr

eq

2σeq

(
µ3(Ĩn1n1 − Ĩn3n3 )

∂Ĩn1n1

∂σσσ
+µ1(Ĩn1n1 − Ĩn2n2 )

∂Ĩn1n1

∂σσσ

+µ2(Ĩn2n2 − Ĩn3n3 )
∂Ĩn2n2

∂σσσ
+µ1(Ĩn2n2 − Ĩn1n1 )

∂Ĩn2n2

∂σσσ

+µ2(Ĩn3n3 − Ĩn2n2 )
∂Ĩn3n3

∂σσσ
+µ3(Ĩn3n3 − Ĩn1n1 )

∂Ĩn3n3

∂σσσ

+ 6µ12 Ĩn1n2

∂Ĩn1n2

∂σσσ
+6µ13 Ĩn1n3

∂Ĩn1n3

∂σσσ
+6µ23 Ĩn2n3

∂Ĩn2n3

∂σσσ

)
.

(3.7)

After calculation the partial derivations of the stress invariants with respect to

the stress tensor

∂Ĩn1n1

∂σσσ
= nnn1 ⊗nnn1 −

1

3
III ,

∂Ĩn2n2

∂σσσ
= nnn2 ⊗nnn2 −

1

3
III ,

∂Ĩn3n3

∂σσσ
= nnn3 ⊗nnn3 −

1

3
III ,

∂Ĩn1n2

∂σσσ
= nnn1 ⊗nnn2 +nnn2 ⊗nnn1,

∂Ĩn1n3

∂σσσ
= nnn1 ⊗nnn3 +nnn3 ⊗nnn1,

∂Ĩn2n3

∂σσσ
= nnn2 ⊗nnn3 +nnn3 ⊗nnn2

we obtain after some algebra the expression for the creep strain rate in the
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following form:

ε̇̇ε̇εcr =
ε̇cr

eq

2σeq

[(
nnn1 ⊗nnn1 −

1

3
III

)(
µ3(σ11 −σ33)+µ1(σ11 −σ22)

)

+
(
nnn2 ⊗nnn2 −

1

3
III

)(
µ2(σ22 −σ33)+µ1(σ22 −σ11)

)

+
(
nnn3 ⊗nnn3 −

1

3
III

)(
µ2(σ33 −σ22)+µ3(σ33 −σ11)

)

+6µ12τ12(nnn1 ⊗nnn2 +nnn2 ⊗nnn1)+6µ13τ13(nnn1 ⊗nnn3 +nnn3 ⊗nnn1)

+6µ23τ23(nnn2 ⊗nnn3 +nnn3 ⊗nnn2)

]
.

(3.8)

The sliding deformation is assumed to occur also by power law and the

expression for the equivalent creep strain rate ε̇cr
eq for this case takes the form:

ε̇cr
eq = aσn

eq . (3.9)

The expression for the equivalent stress (3.6) can be written through the stress

tensor components as:

σ2
eq =

1

2
µ2 (σ22 −σ33)2 +

1

2
µ3 (σ33 −σ11)2 +

1

2
µ1 (σ11 −σ22)2

+3µ12τ
2
12 +3µ13τ

2
13 +3µ23τ

2
23.

(3.10)

Written in this form Eqs. (3.10) and (3.8) allow transition to the correspondent

Eqs. (2.37) and (2.36) for the cubic symmetry case by the following set of

material model parameters:

µ1 =µ2 =µ3 = 1, µ12 =µ13 =µ23 = ξ. (3.11)

As it was mentioned above only shear strain components should contribute

to the overall deformation of the grain boundary region. In the elastic

deformation region it leads to the assumption that the boundary region

possesses higher stiffness in normal directions, in comparison to grain

material. In creep deformation region the contribution of the normal stress

components to the creep strain rate is minimized by setting in Eq. (3.8)

µ1 = µ2 = µ3 = 0. Other material parameters are determined from numerical

tests and comparison with experimental data [7].
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CHAPTER

4
Creep cavitation

The following chapter is dedicated to the description of the tertiary creep

stage in a polycrystalline material, where the fracture occurs due to the

grain boundary cavitation. The way of cavitation depends on the processes

accommodating creep during the first two stages. For example, under lower

applied stress the diffusion of matter leads to the intensive cavity nucleation

on the entire surface of grain boundary. When the processes of the dislocation

slip are dominant within the grain interior, the fracture occurs due to the

cavity growth, their coalescence and consequently macrocrack formation.

The grain boundary cavitation due to creep was studied by many authors

and detailed classification of the approaches in modeling is given in textbooks

[62, 113]. The aim of this chapter is to make a state of the art report and to

ground the model choice for the current research.

4.1 Overview of existing models

4.1.1 Cavitation due to diffusion processes

When the diffusion process is dominant in the material, the fracture occurs

due to cavity nucleation. The brittle fracture occurs at the material point,

when the entire grain boundary appear to be seeded by cavities. In this

case the cavitation model should describe nucleation and diffusion controlled

cavity growth processes. High temperature regimes and rather moderate

external load initiate vacancy diffusion along the grain boundaries. It leads

to vacancy transport and accumulation with subsequent cavity formation.
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In the pioneering work of Hull and Rimmer [54] the cavity growth

by grain boundary diffusion is examined, the contribution of the lattice

diffusion is estimated to be around 6% of total diffusion and assumed to be

negligible during cavitation. The classical equation of cavity radius growth

is derived through the definition of the vacancy flux potential through the

grain boundary. The cavitation is assumed to occur on the grain boundaries

orthogonal to the applied tensile stress, as it was confirmed by many

experiments, for instance [125]. This fact requires the introduction of the

normal stress in the constitutive equation of cavity radius growth. The normal

stress should operate as a driving force of the cavity nucleation and growth.

The work of Hull and Rimmer [54] is extended in [112].

In [135] the variational approach in diffusion cavity growth is proposed. In

contrast to Hull and Rimmer [54] the grain boundary and surface diffusion are

assumed to be relevant during cavity formation and growth. To determine the

flux of vacancies for a single cavity the minimum principle to the functional

is applied. The vacancy flux for the multiple cavities is calculated by simple

summation of single fluxes. For the finite element representation the cavity

element is used, consisting of a grain boundary and two circular arcs,

which intersect each other at the cavity tips. The validity of this scheme

is formerly proved in [136]. In addition to the cavity growth the presented

model is supplemented with the nucleation and coalescence by involving

the remeshing rule. So, when a nucleation condition is held, the new cavity

appears by addition of a new cavity element. And in opposite, the two cavity

elements are substituted by one, when the coalescence of two cavities takes

place. The results comparison with models of Tvergaard [127] and Onck

and van der Giessen [101] is performed. In the real operating conditions the

combined action of both vacancy diffusion and dislocation pile ups lead to

cavitation. The models including both these processes are described in the

further subsections.

4.1.2 Cavitation models based on dislocation creep

At lower temperature and higher magnitudes of loading the higher strain

rates are revealed, initiating the slip within grain interior. The slip induces

dislocations accommodation on the grain boundaries, which leads to cavity

formation. In this case the cavitation modeling approach should base on the

power law mechanism as the driving force to cavity nucleation and growth.

In [27] the approximate derivation of the creep cavity growth equation

due to the power law creep is given. The extension to the multiaxial stress
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state is presented by introducing only the influence of the hydrostatic pressure

or tension. The equation of the rate of growth of the area fraction of holes

is derived in the dependence on the steady state creep rate. The evolution

equation of an axial strain rate of a cylinder with the damage parameter is

given.

In [34] the validation of the model of Cocks and Ashby [27] is performed

with the experimental data of cavitation in pure copper. The authors obtain

the area fraction of voids from tomographic slices and perform comparison

between the experiments and the model. In the work it is reported that

the model underestimates the damage parameter value and more than twice

overestimates the time to rupture. As a possible reason for this the absence

in model of the continuous cavity nucleation due to diffusion creep is

mentioned.

4.1.3 Cavitation due to various mechanisms

The enhanced models, which can predict the time to rupture due to cavitation

for a wider temperature and stress range should account for as much

as possible microprocesses occurring in the polycrystal. In the model

of Tvergaard [127] the cavity radius growth rate is described through the

contribution of diffusion and dislocation creep parts and this model is used

in the current work. The continuous cavity nucleation is assumed. In [74]

the fracture modeling in a copper polycrystal is performed. In contrast to

the conventional phenomenological damage variable the damage variable,

based on a microcavitation model of Tvergaard [127], is involved to introduce

the cavitation on the macrolevel. The 2D geometrical model based on

Voronoi tessellation for the representation of a polycrystalline microstructure

is used. The tertiary creep stage of the polycrystalline material is represented

introducing the dependence of the creep strain rate on the micromechanical

state variables, notably cavity radius and cavity spacing.

4.2 Tvergaard’s cavitation model

4.2.1 Cavity nucleation and growth equations

In the current work the cavitation model, derived by Tvergaard [127] for

the cavity growth due to both diffusion and power law creep is used. The

schematic geometry of a grain boundary with cavities is presented in Fig. 4.1.

The cavities of an average diameter 2a are uniformly distributed with an
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Figure 4.1 Schematic representation of a cavitated grain boundary

average spacing 2b on the grain boundary. The spherical–cup shaped cavities

are considered, the cavity tip angle, characterizing the geometry, is assumed

to be constant during cavity growth and equal 2ψ≈ 75◦. σn is a normal tensile

stress acting on the grain boundary. The cavity radius growth rate equation is

assumed to consist of the diffusion V̇1 and creep deformation V̇2 parts:

ȧ =
(
V̇1 + V̇2

)/[
4πa2h(ψ)

]
, (4.1)

where h(ψ) =
[
(1+cosψ)−1 −0.5 cosψ

]/
sinψ . The cavity volume growth

parts due to diffusion and dislocation creep are described as following:

V̇1 = 4πD
σn

ln(1
/

f ) − (3− f )(1− f )
/

2
,

V̇2 =





±2πε̇cr
eqa3h(ψ)

(
3

2n

∣∣∣∣
σm

σeq

∣∣∣∣+
(n −1)(n +0.4319)

n2

)n

for ±
σm

σeq
> 1,

2πε̇cr
eqa3h(ψ)

(
3

2n
+

(n −1)(n +0.4319)

n2

)n σm

σeq
for

∣∣∣∣
σm

σeq

∣∣∣∣≤ 1.

The expression of the creep deformation cavity radius growth rate V̇2 is written

for the cases of low– and high–triaxiality of loading. The criteria, switching

between these two cases, is the ratio of the mean and the equivalent stresses.

D is a model parameter, related to the material diffusion, ε̇cr
eq is already defined

in Eq. (3.9). f serves as a length scale parameter, governing the rate of

contribution of diffusion and power law creep to the cavity growth. According

to [92] it is provided as follows:

f = max
{

(a
/

b)2,
[
a
/

(a+1.5L)
]2

}
,

L =
(
Dσeq

/
ε̇cr

eq

)1/3
.
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In the current research the cavitation is prescribed to occur within the grain

boundary region, therefore the equivalent stress σeq should be taken for the

case of orthotropy as it is presented in Eq. (3.6). The normal stress σn is

determined in Abaqus as the stress tensor component, acting in the normal

direction ggg 3, defined for the grain boundary region. σm is a mean stress

applied to the grain boundary (see Fig. 3.2):

σm =
3∑

k=1

σkk

3
.

The stress tensor components σkk , k = 1,2,3, are given for every element

of the grain boundary region. Under the assumption of continuous cavity

nucleation during creep, which is the case for the most engineering alloys, the

equation of cavity spacing decrease rate can be expressed in the form:

ḃ =−
π

2
b3βσ2

n ε̇
cr
eq, (4.2)

where β is a material parameter.

4.2.2 Creep strain rate evolution due to cavitation

To describe the creep strain rate change due to the presence of cavities the

constitutive equations of Cocks and Ashby [27] are involved. The proposed

model describes the creep strain rate increase as a result of material softening

during tertiary creep stage. The evolution equation of the creep strain rate is

derived for a cylinder, loaded by a multiaxial traction. The proposed equation

for the strain rate change in the axial direction of the cylinder has the form:

dεa

d t
= ε̇ss

{
1+

2rh

αd

(
1

(1− fh)n
−1

)}
. (4.3)

The εa is a strain in the axial direction of the cylinder, rh is a radius of a circular

hole, analogous to cavity radius a, described in Sect. 4.2.1, d is the grain size.

ε̇ss is the steady state strain rate in absence of voids defined in the current work

in Eq. (3.9). The area fraction of holes on grain boundary fh is determined in

notations, used in previous subsection as:

fh =
a2

b2
.

The quantity α has the form:

α=
1

sinh
{
−2

(n−0.5)p

(n+0.5)σeq

} ,
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where p =−
1

3
trσσσ.

Thus the constitutive equations of grain boundary cavitation consist in

multiplying the creep strain rate tensor (3.8) on the coefficient in front of creep

strain rate in Eq. (4.3). The exact form of this coefficient depends on the shape

of inclusion and, for instance, is derived for a solid with crack inclusion in

[114]. The evolution equation of cavity radius growth (4.1) and cavity spacing

decrease (4.2) are taken from the model of Tvergaard [127].

4.3 Influence of cavities on the material behavior

The cavitation in a material is an indicator of forthcoming softening and the

tertiary stage of the creep curve. Nevertheless many engineering materials

spend during the tertiary creep stage the significant period of the lifetime and

to improve the time to rupture prediction this period of the material lifetime

should be simulated as more detailed as possible.

The influence of the appeared cavity on the creep deformation rate is

described according to Cocks and Ashby [27] by dependence (4.3). But this

model does not account for the stress redistribution within the material

surrounding the cavity. On the macrolevel this task is successfully solved,

for example, with the theory of M. Kachanov [59], representing the concept

of an effective undamaged surface and acting on it an effective stress. This

theory implies the introduction of the continuum damage variable, which

is characterized by the occupied by voids and cracks surface, not resisting

the applied load. On the microlevel one can introduce the elastic stiffness

reduction due to voids, which accounts for the reduction of the surface,

carrying the load.

The definition of the effective moduli of a solid with an inclusion has been

an actual task for the scientist during the last decades. In most cases this

task is solved with the application of the Eshelby tensor. The problem in this

case consists in the consideration of an inhomogeneity, possessing different

elastic properties, than surrounding it matrix. The solution of the Eshelby

problem consists in the definition of the elastic fields, generated by, firstly,

remotely applied stresses or strains and, secondly, prescribed eigenstrains in

the inclusion domain. The solution of this problem for inclusions and holes

of different shapes is discussed in details in [60, 93] for the case of an isotropic

body.

The case of an orthotropic body with cylindrical cracks is considered in

Monchiet et al. [81]. The homogenization scheme, based on the classical
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Figure 4.2 Orientation of elliptical hole axes nnn,ttt with respect to the

orthotropy axes xxx1,xxx2

inclusion equivalent method is used to derive the effective stiffness tensor.

The important task in the linkage of the micro– and macrolevels consists in

the finding of the fourth–order localization tensor, relating the microscopic

strain field to the macroscopic one. In [81] two ways of solution are proposed,

depending on the concentration of the inhomogeneous inclusions. If the

concentration of inclusions in the homogeneous matrix is assumed to be

infinitesimal, the dilute scheme can be efficient. If the number of inclusions

is high enough and interaction effects should be taken into account, the

application of the Mori–Tanaka homogenization scheme is recommended

[83].

The obtained solution is used to develop a micromechanical damage

model for initially orthotropic materials such as unidirectional composites.

The effective moduli for an orthotropic solid with elliptical voids in plane

stress formulation were firstly published by Tsukrov and Kachanov [126]. The

theory is derived also for other special cases of inclusions such as circles and

cracks with various orientations relatively to the orthotropy axes. The elliptic

hole with the axes 2a and 2b is considered in the orthotropic matrix with the

orientation axes x1x1x1 and x2x2x2 as it is presented in Fig. 4.2. The compliance tensor

of the solid with elliptical holes is considered as a sum of the compliance

tensor of a matrix material and the compliance tensor of the hole H=H
matrix+

H
hole. The axes, defining the orientation of the hole in the matrix, are located

along the hole axes and denoted as ttt and nnn. The hole compliance tensor is
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derived as follows:

Ht t t tt t t tt t t t =
πb

A

{
a

E 0
t

+b
[
C (1−D cos2ϕ)

]}
,

Ht t tntt tntt tn =
πb

4A

{
a

[
1

E 0
2

−
1

E 0
1

−F cos2ϕ

]
+2bC D

}
sin2ϕ,

Ht tnnttnnttnn =
πab

4A


F sin2 2ϕ−

4
√

E 0
1E 0

2


 ,

Htntntntntntn =
πa2

4A
C (1−D cos2ϕ)+

πb2

4A
C (1+Dcos2ϕ)

+
πab

4A

[(
1

E 0
1

+
1

E 0
2

)2

−F cos2 2ϕ

]
,

Htnnntnnntnnn =
πa

4A

{
2aC D +b

[
1

E 0
2

−
1

E 0
1

+F cos2ϕ

]}
sin2ϕ,

Hnnnnnnnnnnnn =
πa

A

{
a

[
C (1+D cos2ϕ)

]
+

b

E 0
n

}
.

(4.4)

From the consideration that the cavities are growing on the grain boundary

plane, we can assume that cavity axes coincide with the symmetry axes of the

grain boundary region, so ϕ = 0◦. With this assumption the components of

the compliance tensor Ht t tntt tntt tn and Htnnntnnntnnn are zero. The constants C , D and F

are expressed through the engineering constants of the matrix material in the

following from:

C =
1

2

√
E 0

1 +
√

E 0
2

√
E 0

1E 0
2

√√√√√
1

G0
12

−
2ν0

12

E 0
1

+
2

√
E 0

1E 0
2

,

D =

√
E 0

1 −
√

E 0
2

√
E 0

1 +
√

E 0
2

,

F =
1+ν0

12

E 0
1

+
1+ν0

21

E 0
2

−
1

G0
12

.

In the case when the void orientation coincides with the orientation of the

matrix the Young’s moduli in the following directions are equal E 0
t = E 0

1 and

E 0
n = E 0

2 . The values of the engineering constants of the matrix E 0
1 , E 0

2 , G0
12,

ν0
12 and ν0

21 are derived from the stiffness tensor components, calculated in

Abaqus. The moduliν0
i j

characterize the transverse strain in the j th direction,
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when the material is tensed in the i th direction. With the above mentioned

assumptions the non–zero components of Eqs. (4.4) can be rewritten in the

notations of matrix orthotropy axes in a following manner:

H1111 =
πb

A

{
a

E 0
1

+b [C (1−D)]

}
,

H1122 =−
πab

A

1
√

E 0
1E 0

2

,

H1212 =
πa2

4A
C (1−D)+

πb2

4A
C (1+D)+

πab

4A

[(
1

E 0
1

+
1

E 0
2

)2

−F

]
,

H2222 =
πa

A

{
a [C (1+D)]+

b

E 0
2

}
.

(4.5)

The parameter A is the representative area and is set phenomenologically in

the current research.

In the chosen cavity growth model of Tvergaard [127] the spherical–cap cavity

is considered. From the geometrical considerations the cavity high b can be

derived as follows:

b = a
1−cosψ

sinψ
.

In the current research the difference between the geometry of the spherical–

cup and elliptical cavity is neglected. The inaccuracy related to this

assumption is considered in the set of parameter A.
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CHAPTER

5
Numerical implementation

In the current chapter details of the numerical implementation of the

problem, stated in previous chapters, are given. An overview of possible

geometrical representations of polycrystalline materials is presented. Voronoi

tessellation algorithm is chosen to generate random grain cores of the three

dimensional polycrystal. Based on that approach, the algorithm of unit cell

construction is described. Details of the user defined material behavior

implementation in Abaqus are discussed as well as the procedure of averaging

of stress and strain fields within the unit cell. With the help of elaborated

procedure a statistical analysis of the unit cell is performed in dependence

on number of grains, randomness of geometry, etc.

5.1 Geometrical representation of polycrystal

An overview of the current state of art in the polycrystalline microstructure

modeling is given, in [96, 118] among others. Some very simplified models

represent two dimensional grain geometry by arrays of hexagons [128] and

hexagons with additional grain boundary elements [101]. In [48] three

dimensional array of truncated octahedrons is used to represent large array

of polycrystal.

Other more complex models present microstructure of polycrystalline

materials by Voronoi tessellation with a random distribution of grain cores

and random grain shapes. For two dimensional problems planar Voronoi

tessellation is used. Description of the idea of planar Voronoi tessellation is

given, for example, in [74, 75]. An example of a three dimensional grain unit
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cell, constructed with the help of Voronoi tessellation, is described in [41]. In

[88] zircaloy material is simulated by means of two and three dimensional

Voronoi tessellation. Additionally, an improved algorithm with repulsion

distance is used in order to control minimum grain size and to obtain regular

grain size distribution within the unit cell. Grain boundaries are constructed

with an additional element layer on the surface of grains. Additional grain

boundary elements are used to represent transgranular cracking of zicraloy.

In [30] an analogous polycrystalline unit cell is meshed with the special

programm, allowing the regular and free space meshing. Influence of finite

element type and size on the unit cell response are discussed within the

work. In [96] a rectangular region of the polycrystal is generated by packing

of spherical particles of different volume. The number of particles of the

specific volume is defined by the user. The particle packing is done by

two different techniques, involving molecular dynamics and discrete element

method. Both techniques generate interaction forces between particles,

condensing them to the chosen simulated region. With the particles packing

and subsequent space decomposition by interconnected polyhedrons with

the help of Voronoi tessellation, a polycrystalline geometry is generated,

consisting of grains, grain boundaries and interface regions. Above described

geometry is used to represent a three dimensional polycrystal model of the

dual phase steel.

Most advanced models [118] deal with reproduction of real polycrystalline

geometry, which is obtained by use of the X–ray diffraction contrast

tomography. In addition to the realistic geometry information about grain

orientations is also added. Despite their realistic polycrystal representations,

such models require an unreasonable amount of computational costs.

Within the current work a Python script is developed, which allows to

design an analogous unit cell in Abaqus. In the developed model the

following input parameters are defined: number of grains, average grain size,

material properties, and grain boundary thickness. Dimensions of the cells

are calculated from grain size and grain number. Grain boundary thickness

corresponds to the thickness of the plane, separating the neighboring grains.

Figure 5.1a) shows an unit cell consisting of 50 grains with zero grain boundary

thickness.

Planar defects between the grains, known as grain boundaries, occur

due to lattices incompatibilities of the neighboring grains. This region,

surrounding the connection of 2 grains, possesses a less ordered crystalline

structure in comparison to the grain interior. A description of grain

boundaries of the crystalline copper is given in [95]. Due to non–perfect
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a) b)

Figure 5.1 Geometrical representation of a polycrystal: a) unit cell with

zero grain boundary thickness; b) unit cell with non-zero grain

boundary thickness

ggg 1

ggg 1
ggg 2

ggg 2

ggg 3

ggg 3

Figure 5.2 Grain boundary region with discrete material orientation

arrangement of atoms in the vicinity of a grain boundary every atom in it

occupies larger volume in comparison to perfect packing. Description of

this phenomena requires introduction of a specific region, which possesses

different behavior than grain interior. Its atomistic structure prescribes creep

softer material behavior during creep. For this purpose a unit cell with grain

boundary region is constructed 5.1b).

An important step in the simulation of the polycrystalline body is the set

of material orientation. To this end local coordinate systems are used. In

every grain local cartesian coordinates are specified, which are rotated by a

random angle relatively to the global coordinate system of the unit cell. With

this a random crystallographical orientation is reflected, which is naturally

observed in a polycrystal. For the grain boundary sliding representation one

should distinguish between the shear and the normal deformation of the grain

boundary. Therefore an individual local coordinate system is determined for

every plane of the grain boundary region. An example of such coordinate
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system one can see in Fig. 5.2. In this case the direction ggg 3 is set as a normal

to the grain boundary and the other two directions ggg 1 and ggg 2 lie in the grain

boundary plane. In regions of grain boundary junctions smooth transition

from one coordinate system to another is automatically performed by Abaqus.

5.2 Material model implementation

For the description of anisotropic creep in Abaqus/Standard Hill’s potential

function is utilized [52], allowing the description of the materials possessing

different types of symmetry, including orthotropic as the highest one.

Potential functions of Hill’s type correspond to the yield criteria in the case

of plasticity and are used to build the equivalent stress expression, defining

flow stress limit in the case of creep. The micromechanically based damage

model of Tvergaard [127] is not presented in the standard version of Abaqus

and that is the reason to develop the user defined material behavior in the

current research. The user defined material behavior in Abaqus enables a

formulation of any constitutive law for the calculation of stresses, elastic

and inelastic strains. The Abaqus interface for the UMAT (user material)

subroutine requires to give the code in the programming language Fortran.

Stresses at every iteration are calculated based on the explicit Euler integration

scheme. This method is widely used for the creep analysis due to its simplicity.

The stability of the method depends on the time step size, which should be

limited by some critical value ∆ts. The time step size should be set manually

in Abaqus/CAE for the whole analysis. Then the step size is calculated in

the subroutine at every increment and compared with the set in Abaqus/CAE

value. For the integration step the smallest one is chosen, what increase

the numerical stability of the solution. In [1] the stability of the solution is

proposed to be estimated by the criteria that the creep strain rate should not

exceed the total elastic strain. The leading from this criteria formula has the

look:

∆ts = 0.5
1

ε̇cr
eq

σeq

E
,

where E is an effective elastic modulus and σeq is the von Mises equivalent

stress, which in the current work is substituted by the expression for the

equivalent stress of material with cubic symmetry (2.37) or orthotropic one

(3.6). The effective elastic modulus E is chosen from considerations of

analysis stability for the general case of anisotropic material. In the current
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work it is proposed as follows:

E = 3λ3
λ3 +λ1 −λ2

3λ3 +2λ1 −2λ2
.

The values of material parameters λi are given in Table 7.1.

The represented unit cell consists of two phases: grain and grain boundary.

The different material behavior should be assigned to each phase. At the same

time the mechanical behavior of both phases should be written in one UMAT.

The material model parameters, which are set is the Abaqus/CAE, prescribe

whether orthotropic or cubic symmetry to the material. An additional

material model parameter corresponding to possibility of damage evolution

in the material is represented. The same parameter activates stiffness matrix

reduction due to damage. Summary of features prescribed for the materials

of the unit cell is given in Table 5.1. Solution–dependent variables STATEV are

Table 5.1 Prescribed features to the unit cell’s materials

Feature Grain interior

material

Grain boundary

material

Symmetry type cubic orthotropic

Damage evolution - +

Stiffness matrix reduction - +

used to store and update damage variables at every integration step.

5.3 Calculation of averaged fields in the unit cell

For the averaged fields calculation the subroutine UVARM is used. It is called

by Abaqus at every iteration and executed parallel to the UMAT subroutine,

which allows to decrease the solution time. In addition to decrease the

postprocessing time the multithreading is used. The averaged fields of stresses

and strains within the unit cells are calculated by involving the simple rule:

σσσ=
1

V

∫

V
σσσdV ,

εεε=
1

V

∫

V
εεεdV ,

where the bar quantities are averaged values within the grains, grain boundary

region or the whole unit cell’s volume. Before the averaging the creep, the total
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strain tensor and the stress tensor is rotated to the global coordinate system.

It is done by involving the routine ROTSIG, which performs the multiplication

of stress and stain tensor with an orientation tensor. Following this procedure

the next averaged quantities are obtained:

• creep strain tensor components;

• total strain tensor components;

• stress tensor components;

• creep strain and stress tensor components, averaged within the grains;

• creep strain and stress tensor components, averaged within the grain

boundary region;

• value of the equivalent stress, averaged within the whole unit cell (grains

and grain boundary region).

The obtained values are printed to the file for the consequent processing and

visualization of the results.

5.4 Statistical analysis of the unit cell

The unit cell with the grains of random geometry and random orientation

is used to represent a material point of the macromaterial, considered on

the microlevel. For correct prediction of the material macroproperties the

response of the unit cell should be as much as possible independent of

geometrical features of a certain realization. In order to consider an averaged

response of the unit cell as a representative one, dependence on the number

of grains, the element size and the model parameters should be studied.

The first validation criteria is the scatter of the averaged creep strain within

the unit cells with completely identical material parameters. For this purpose

55 realizations of the unit cell with zero grain boundary thickness, consisting

of 40 grains, are built. Taking into account that the grain boundary thickness

is set as zero only the grain material is presented in the unit cell. The aim

of the current analysis not the investigation of mechanical behavior of the

real material, but the investigation of the influence of the grains geometry

and orientations on the averaged creep response of the unit cell. That is why

the model parameters for some abstract material with the cubic symmetry are

taken as follows:

λ1 = 410 GPa, λ2 = 47 GPa, λ3 = 150 GPa,
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a = 8.928 ·10−12 (MPa)−n

s
, n = 5.69, ξ= 0.05.

The obtained unit cells are tested under applied tensile pressure of 52 MPa

during 100 hours. With the help of UVARM subroutine the averaged creep

strain field is calculated. The creep strain in the loading direction for the every

55 realizations is presented in Fig. 5.3.
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Figure 5.3 Creep curves scatter for 55 realizations of the unit cells

To evaluate the scatter of creep curves the arithmetic mean and bounds of

the confidence interval are calculated with involving the well known formulas

of probability theory. The standard deviation σ under assumption of normal

(Gaussian) distribution is determined as follows:

σ=

√
n∑

i=0

(Xi −X ∗)2
/

n,

where n is the number of samples, Xi is the value of a certain random variable.

X ∗ is the arithmetic mean:

X ∗ =
n∑

i=0

Xi

/
n.

According to the rule of ’three sigma’ for the random variable [134], the

probability that the random realization lies outside of the three standard

deviations from the expectation value is significantly smaller than 1/9.

For example, for the random values, distributed by the normal law, this

probability equals to 0.0027. This rule is widely applicable for the cases, where
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Figure 5.4 Creep curves scatter for 55 realizations of the unit cells
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Figure 5.5 Arithmetic mean of creep strain for unit cells with different

number of grains

the law of the random value distribution is unknown and only the expectation

value and the standard deviation are known. According to this rule we take

the confidence interval equal 3σ from the both sides of the arithmetic mean

value.

The creep tests of 55 realizations of the unit cell require a lot of

computational effort. If we accept the mean value of certain number of
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realizations as a representative one, the analysis of the dependence on the

certain model parameter demands number of parameters meaning× number

of realizations of the unit cell, which can be a huge number. To optimize this

value additional 5 realizations are generated and their mean value and bounds

of confidence interval are compared with those for 55 realizations.

In Fig. 5.4 one can see that the confidence intervals for 5 and 55

realizations lie very close. From Fig. 5.3 one can notice that the lower bound of

the confidence interval almost two times overestimate the deviation from the

averaged value. Therefore the relative error only between the upper bounds of

the confidence intervals is estimated and it does not exceed 10%. Thus, for the

further analysis, we can take 5 realizations as acceptable value for statistical

representation.

5.5 Choice of the representative number of grains

In the real polycrystalline microstructure the grain boundaries play the role

of defects, holding back the slip between the neighboring grains. Within the

simulation under equal applied stress on the unit cell, the level of deformation

in it will be different in dependence on the number of such planar defects.

Thus, the unit cell with 10 grains possesses much less grain boundaries as

that one consisting of 100. As a consequence the deformation field in the

unit cell with 10 grains is much higher. The important task is to determine

the saturated value of the grains number in a polycrystalline unit cell, where

the obtained averaged strain field is not dependent on the grain number. The

unit cells with the number of grains in range from 20 to 200 are tested under

constant tensile stress of 40 MPa during 20 hours. The grain size is set equal

to 0.21 mm. The following material parameters are used:

λ1 = 374 GPa, λ2 = 37 GPa, λ3 = 125 GPa,

a = 1.96 ·10−15 (MPa)−n

s
, n = 9.4, ξ= 0.026.

The material model parameters are set from the same considerations as in

previous section. For every number of grains 5 realizations of the unit cell

are built. The arithmetic means of the averaged creep curves for every 5

realizations are calculated. The scatter of the obtained curves is shown in

Fig. 5.5.

As one can see from the represented graph, the tendency of decrease of

the averaged creep strain with the increase of the number of grains is held for

the unit cells consisting of less than 80 grains. Starting from this number the
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averaged creep curves are fluctuating in the narrow interval. The conclusion

arises, that 80 is a minimum representative number of grains in the unit cell.

5.6 Choice of the grain boundary region thickness

The grain boundary region in the current model is responsible for the grain

boundary sliding modeling (see Sect. 3.2). The thickness of this region is

a pure phenomenological value and should be chosen from the numerical

considerations. For this purpose the unit cells with different values of

grain boundary thickness should be tested. In the developed Python code

the possibility to rebuild the Voronoi tessellation with the same number

and shape of grains, but different value of the grain boundary thickness is

included. With this we can investigate the pure dependence on the grain

boundary thickness without construction of many realizations. In Fig. 5.6 the

normalized creep curves of the unit cell consisting of 80 grains with different

thickness of the grain boundary is represented. The averaged creep strains are

normalized to the elastic strain.
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Figure 5.6 Normalized creep curves for unit cell with different grain

boundary thickness

As far as to the grain boundary region the much softer creep behavior

as to the grain interior material is prescribed, the overall response of the

unit cell will be softer with the increase of the grain boundary thickness.

The grain boundary region is a complex geometrical structure and can be

meshed only with tetragonal finite elements. And as smaller the width of this
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region, then the more distorted elements would be generated, especially in

the junction zones. The presence of such elements will lead to the problems

with convergence of analysis and will lead to the significant increase of the

computational time. From these reasons it is recommended to set the grain

boundary thickness value higher than 5% of the grain boundary size.
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CHAPTER

6
Tensile creep tests for

polycrystalline copper at 550 ◦C

In the following chapter the analysis of the experimental data carried out

under polycrystalline copper at 550 ◦C is provided. The experimentally

obtained data are compared with the other creep data available in the

literature. The temperature choice is conditioned by the previously used

experimental data on single crystal copper [132]. The procedure of the

experimental creep test is presented and the description of the inelastic

strains measurement is discussed. The aim of the following chapter is to

observe the described in the model mechanisms and to investigate their

influence on the resulting creep curve.

6.1 Choice of the specimen and test conditions

The uniaxial tensile creep tests under polycrystalline copper are performed

in the creep laboratory of the Mechanical Engineering Department at the

Politechnico di Milano (Italy). Experimental tests are carried out in air,

under constant load conditions on two classical lever–arm machines and on

a computer load controlled machine, designed for creep tests. The load in

the lever–arm machine is applied by means of weights, connected with the

specimen holder by the system of levers (see Fig. 6.1a)). The minimum

possible applied load is limited by the weight of the platform, holding the

weights. By this reason low stress tests, notably below the 10 MPa limit, are

performed on the computer–controlled tensile testing machine. This type of

machine is shown in Fig. 6.1b). The cylindrical specimens with the gauge

diameter 6 mm and gauge length 30 mm were machined from Electrolytic–
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Tough–Pitch (ETP) polycrystalline copper of 99.9% purity with the P content

lower than 0.03%. The machined specimens are supplied as end items. This

is the reason of the lack of information about the material processing and

specimen’s manufacturing. Drawing of the specimen, of the standard ridged

type for the placement at the extensometer system, is presented in Fig. 6.2.

The magnitude of the applied stress is ranged between 4.8 and 30 MPa in

order to obtain the creep curves in the region of the diffusion and power law

creep, to have the possibility of comparison with the other experimental data,

presented in the literature [137], and to obtain the rupture times in the wide

range of stresses.

6.2 Experimental procedure

The procedure of the creep test is elaborated in accordance to EN ISO 204:2009

standard [20], taking into account ECCC (European Creep Collaborative

Committee)1 recommendations to obtain the comparable data through the

experiments of the similar class. For every specimen the measurements of the

actual diameter and the gauge length are made before the testing, they are

kept as initial values for the further calculations of the initial stress, applied

load, strain and ductility indices: elongation and reduction of area at rupture.

To measure the elongation of the specimen contact type extensometers,

designed for high temperature creep testing, are used. The displacement

between ridge can be read by a couple of Linear Variable Differential

Transformers (LVDT) placed at the expound end of the extensometer system.

The strain is then calculated on the basis of the average of the displacement

records (i.e. average change of length of specimen gauge length). The actual

temperature of the specimen is controlled with the 3 S–type thermocouples,

directly placed on the bottom, middle and top parts with the help of special

tins (see Fig. 6.1c)). The single wire thermocouples made of the Pt/Pt–

10%Rh alloy are used. The sensitivity of these thermocouples is low, therefore

their preferential application lies rather in the high temperature range. The

detected variation of temperature during the test does not exceed 1%. After

attaching the thermocouples and extensometers to the specimen it is screwed

into the holders of the loading machine and the test can be started.

The possible presence of bending (to be kept < 20%) is checked by means

of loading–unloading cycle carried at room temperature before heating at the

beginning of the test. The stress magnitude should be well below the yield

1http://www.ommi.co.uk/etd/eccc/
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Figure 6.1 Experimental setup: a) Lever–arm machine; b) Computer–

controlled machine; c) Placement of the specimen with thermo-

couples

Figure 6.2 Geometry of the specimen

limit of the specimen’s material in order to prevent plastic prestraining. In

addition, the room temperature tests are used to calculate the actual Young’s

modulus of the material. During the test both specimen elongation and

temperature are registered at regular time step in order to derive creep strain
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rate. At the end of the test the plastic strains are analyzed.

6.3 Experimental results

In total 12 specimens are tested until rupture, the life time is varying from 1

to 220 hours. The minimum creep strain rates corresponding to the applied

stresses are reported in Table 6.1.

The set of creep curves for the stress level from 10 to 30 MPa are depicted

in terms of creep strain rate vs. creep strain, Fig. 6.3. At several stress levels,

for example, 10 MPa and 30 MPa no evident primary creep stage is observed.
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Figure 6.3 Experimental creep curves of copper tested at 550 ◦C at different

stresses

6.4 Validation of the secondary creep stage

The comparison of the experimental data with the data of Wilshire and

Palmer [137], obtained for the pure copper with the grain size of 30 µm at

the temperatures 450 and 455 ◦C is presented. To avoid the temperature

dependence and to follow the pure influence of the minimum creep strain

rate on the applied stress the Arrhenius normalization rule is used. The

normalized coefficients are determined as follows:

ε̇cr = a0 exp

(
−

Q

RT

)(σ
G

)n
= exp

(
−
α

T

)(σ
G

)n
, (6.1)
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Table 6.1 Summarized data of the experimental creep tests, carried at 550 ◦C,

showing the varying test parameters (applied stress, σ) and creep

test results (minimum creep strain rate, ε̇cr and time to rupture, tr)

Specimen σσσ, MPa ε̇crε̇crε̇cr, s−1 trtrtr, h

1 4.8 1.04×10−8 220

2 5 3.61×10−8 166

3 10 2.78×10−7 20

4 10 8.89×10−7 20

5 10 3.22×10−7 30

6 15 6.62×10−5 0.4

7 15 1.22×10−7 9

8 15 1.79×10−6 7

9 20 4.44×10−6 3

10 25 1.01×10−5 2

11 30 1.39×10−5 0.72

12 30 1.82×10−5 0.67

where Q is the activation energy, R is the Boltzmann constant and T is the

reference temperature.

The parameter α is defined from the literature [137] and experimental

creep strain rate data at the same stress and different temperature levels.

Equation (6.1) in this case can be rewritten in the following manner:

ε̇cr
1 = f1(T1) f2(σ0),

ε̇cr
2 = f1(T2) f2(σ0).

After some algebra:
ε̇cr

1

f1(T1)
=

ε̇cr
2

f1(T2)
,

ε̇cr
1

ε̇cr
2

=
f1(T1)

f1(T2)
=

exp
(
− α

T1

)

exp
(
− α

T2

) = exp

(
−α

(
1

T1
−

1

T2

))
,

one can obtain

α=−
ln

(
ε̇cr

1 /ε̇cr
2

)

1
T1

− 1
T2

.

The values of the shear modulus G used to normalize the applied stress levels

are taken from the work of Chang and Himmel [26]. To get the values of
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the shear modulus corresponding to the necessary temperature levels, linear

interpolation of data [26] is used. The values are provided below:

G450 = 64388 MPa, G455 = 64252 MPa, G550 = 61676 MPa.

Experimental (see Table 6.1) and literature creep data, normalized either in

terms of strain rate and of stress, are presented in Fig. 6.4. As one can see,

the normalized creep strain rate, obtained from the experimental tests, shows

good agreement with the data, published by Wilshire and Palmer [137]. A

progressive reduction of the slope with the applied stress can be observed.

This could be correlated to a change in the creep strain mechanism from

dislocation to diffusion as assumed by Wilshire and Palmer [137].
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Figure 6.4 Normalized minimum creep strain rate vs. normalized stress

6.5 Micrographs of copper under different applied

stresses

In order to check the creep damage type for the experimentally measured

microstructure and to observe its evolution during creep testing, the gauge

length of crept samples is longitudinally cut for metallographic observations.

The slices are prepared in uniform manner so that it is possible to acquire
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the comparable micrographs. The preliminarily polished specimens are

immersed in the etching solution for 5 seconds. The solution composition

is 50 ml of HCl, 5 g of FeCl3 and 100 ml of H2O.

The micrographs2 of the specimens in initial state and after testing under

10 and 30 MPa are presented in Figs. 6.5, 6.6, 6.7 at 200x magnification.

Additional micrographs at lower magnification 50 and 100x are given in

Appendix B. The micrographs at lower magnification show the homogeneity

of the material features either before and after creep.

a) b)

Figure 6.5 Micrographs of the specimen in the initial state (original

magnification 200x): a) longitudinal section; b) cross–section

a) b)

Figure 6.6 Micrographs of the specimen 11, tested 1 hour at 30 MPa (original

magnification 200x): a) longitudinal section; b) cross–section

2The micrographs of slices are made at the Institute of Materials and Joining Technology

at the Otto-von-Guericke-University Magdeburg
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a) b)

Figure 6.7 Micrographs of the specimen 4, tested 20 hours at 10 MPa

(original magnification 200x): a) longitudinal section; b) cross–

section

On the micrographs of the material in initial state (see Fig. 6.5) one can

observe grains of elongated shape, which indicates the possibility that the

material was not annealed before the machining. As it is known from the

literature the annealing of cold–worked parts causes grain recrystallization,

leading to the grain size refinement and decrease of material anisotropy [64].

The loading direction, parallel to that of elongated grains, is horizontal in

the micrographs. The evident cavitation of the grain boundaries orthogonal

to the maximum tensile stress is noticed. In Figs. 6.6a) and 6.7a) one can see

the perceptible difference in the damage. In both cases damage is manifested

by the cavitation of the grain boundaries, but the size of cavities and the

occupation of the surface of the micrograph manifest some distinctions. On

the micrograph of the specimen, tested at 10 MPa (see Fig. 6.7a)) the large

number of single cavities is evidently presented. At the same time some

grain boundaries already possess micro cracks. The edges of the microcracks

are rounded, with the discernible shape of former microcavities. Such

microstructure of damage is characteristic for the active diffusion. On the

micrograph of the specimen, tested at 30 MPa (see Fig. 6.6a)), one can observe

the microcracks with already sharper edges and the lower number of single

cavities. Such microstructure of damage is characteristic for the power law

creep mechanism. The same tendency one can follow at lower magnifications

(see Figs. B.3a), B.4a), B.5a), B.6a)).
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CHAPTER

7
Model application

In the current chapter analysis of the averaged creep curve of the unit cell is

performed. The influence of the represented in the model micromechanisms

on the creep curve regions is investigated. In addition, the description of

the existing tests under non–proportional loading is given. The possibilities

of their modeling by means of the phenomenological continuum damage

models are presented. For this purpose the short introduction to continuum

damage theory is given. The results of non–proportional loading simulation

with the unit cell model are given and discussed.

7.1 Verification of the model by the separate creep

region

The purpose of the current section is to bring in correspondence the phe-

nomenological creep curve micromechanical processes, exerting influence

on it. The current model is constructed in such a way, that certain

micromechanism corresponds to a set of material parameters. Some of them

have direct physical meaning and the other one should be set, in dependence

on their contribution to the averaged creep curve of the macromaterial.

7.1.1 Primary creep stage validation

At the beginning of the creep deformation process the rearrangement of

the dislocations occurs within the material of the single grain, leading to

subgrains’ formation. The material model parameter ξ, which is included in
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the expression for the equivalent stress (2.37) and creep strain rate (2.36) for

the material with the cubic symmetry case, represents the level of anisotropy

of the single crystal material. If one assumes this parameter equal to 1, the

above mentioned equations reduce to the isotropic case and the unit cell,

consisting of grains made of such material, gives the homogeneous material

response. In other words the interaction between the grains is ignored. To the

ξ= 1 case corresponds the highest creep curve in Fig. 7.1a), showing the linear

dependence on time.
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Figure 7.1 Averaged creep strain variation with the change of ξ parameter:

a) ξ= 0.1−1; b) ξ= 0.01−0.1
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In the diagram are presented the averaged creep strains in the loading

direction of the unit cells, numerically tested under tension of 52 MPa during

30 hours. All material model parameters are kept the same except ξ. With

the decrease of the ξ value the strain level also decreases. It is caused by the

fact that the material orientation becomes essential and some regions of the

unit cell get less preferential orientation to the applied stress. Nevertheless

until the ξ value approaches 0.1 the influence of the material orientation is

not enough to cause the hardening in the averaged response of the unit cell.

In Fig. 7.1b) one can see the variation of the averaged creep strain for the

parameter ξ below 0.01. Such level of the anisotropy in grains leads to strain

level decrease into 2 orders in comparison to the isotropic grain properties.

With this the creep curves show the evident hardening and the primary creep

stage. Thus the value of ξ parameter should be chosen in the range from 0.1

till 0.01, the lower value leads to problems with convergence.

7.1.2 Secondary creep stage verification

The group of user defined material model parameters of the grain boundary

region, which can influence the secondary creep stage are the grain boundary

thickness and the parameters µ1, µ2 and µ3 related to the definition of the

creep strain rate for the material with orthotropic symmetry, presented in

Eq. (3.8). The model verification with respect to the grain boundary thickness

is presented in Sect. 5.6. In the following subsection the influence of the grain

boundary region parameters µ1, µ2 and µ3 on the averaged creep curve of the

unit cell is investigated.

In the grain boundary region these parameters are used to vary the

contribution of the normal strain to the total deformation. With this the

material reveals the different stiffness in normal and tangential direction to

the grain boundary.

Thus, the verification of the secondary creep stage consists in the

definition of the material model parameters for the grain boundary region in

order to represent the grain boundary sliding. The material model parameters

from the point of view of the physical considerations and comparison with the

experimental data [7].

The material parameters µ1, µ2 and µ3 for the grain interior material are

set to 1 in order to reduce Eq. (3.8) to the cubic symmetry case (see Eq. (3.11)).

According to the test, published in [7], the contribution of the sliding

strain to the total strain in polycrystal is ∼ 10%. Thus, within the current

simulation the response of the unit cell with the grain boundary region, should
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Figure 7.2 Variation of the sliding strain and total strain in the unit cell

consisting of 80 grains

be approximately 10% softer in comparison to the unit cell without the grain

boundary region. In order to represent the dependence between the sliding

strain and the total strain, two unit cells with the identical number, geometry

and orientation of grains are constructed. The sliding strain is calculated as

the difference between the averaged total strain of the unit cells with and

without grain boundary region. In Fig. 7.2 one can see the relation of the

sliding strain to the total strain for the unit cells with the material parameter

set, presented in Table 7.1.

In addition, the local stresses concentrations are observed in the grain

boundary region after creep testing. These stress peaks act as the driving

forces for the creep cavity growth. The observed during simulation

phenomena is consistent with the experimental observations in [7].

7.1.3 Tertiary creep stage verification

For the tertiary creep stage description the cavitation model of Tvergaard and

the stiffness matrix reduction models are involved, described in Chapter 4.

The driving force for the cavity growth is the normal stress, acting on the

grain boundary. In order to verify the stress redistribution between the grain

interior and the grain boundary region two identical models with different

material parameters for the grain interior, responsible for the softer and

harder behavior, are tested. The material parameters are set according to
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Table 7.1 Material model parameters

Parameter Grain interior Grain boundary

λ1,GPa 374 600

λ2,GPa 37 37

λ3,GPa 125 125

A, (MPa)−n/s 4 ·10−15 6 ·10−8

n 9.4 4

µ1,µ2,µ3 1 0.2

µ12,µ23,µ13 0.2 0.3
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Figure 7.3 Equivalent stress variation with time for the unit cells with the

different creep constant A of the grain interior

Table 7.1. The different creep behavior of the grain interior is varied by

change of the creep parameter A for the correspondent region. The resulting

equivalent stresses redistribution one can see in Fig. 7.3.

On the diagram the evolution of the averaged value of the equivalent stress

(see Eq. (3.6)) with time within the unit cell, grains and grain boundary

region is presented. As one can see the averaged level of the equivalent stress

within the unit cell is almost equal for the analysis, which is consistent with

the equilibrium condition. But the averaged stresses redistribution within

the grains and the grain boundary region is different. The unit cell with

softer creep behavior reveals smaller stress level in comparison to the harder
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unit cell. This leads to higher stresses accumulation in the grain boundary

region and faster tertiary stage initiation. In addition, one can consider the

equivalent stress drop within the grain boundary region after approximately

the half of the deformation time which corresponds to the creep strain rate

increase due to the damage accumulation in the material.

7.2 Non–proportional loading test

7.2.1 Continuum damage mechanics approach

7.2.1.1 Isotropic damage

Despite the creep fracture modeling on the level of grains is performed,

where the damage variable has a direct physical nature, an overview on

the possible ways of the continuum creep damage representation for the

sake of completeness,is given. In many textbooks and articles, one can

find an extended overview and comparison of the models, for example

in [71, 80, 85, 89, 119]. The damage variable is introduced to present

the increase of the creep strain rate, denoting the tertiary creep stage.

The continuum damage theories, representing damage through the scalar

parameter are called isotropic damage theories. Such theories are applicable

under assumptions of constant loading and material isotropy.

First Kachanov [58] represents damage as the scalar variable, developing

in time by the following law:

ψ̇=−B(
σmax

ψ
)κ,

where B and κ are material parameters and σmax is the maximum tensile

stress, acting at the body point. According to this definition the initial material

state condition is ψ= 1 and the fracture condition ψ= 0. The variable ψ itself

is named continuity.

This idea was evolved by Rabotnov [109]. The damage parameter ω is now

defined as follows:

ω= 1−ψ.

The damage evolution equation depends on the applied stress and the

accumulated level of damage:

ω̇=
Bσκ

(1−ω)µ
. (7.1)
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Rabotnov supplements this equation with the creep strain rate evolution

equation for the uniaxial loading case in the following form:

ε̇cr =
Aσκ

(1−ω)m
, (7.2)

where A, m, n and µ are additional material parameters. Equation (7.2)

corresponds to the power law creep for undamaged material (ω = 0). The

author supposed that the applied stress and accumulated damage contribute

to the creep strain rate with different power law exponents. Such a

representation in some cases gives higher correspondence between the model

and the experimental data, but leads to additional complications in the

material parameters identification.

The Rabotnov parameterω is related to the reduction of cross–section area

due to defects (voids, cracks). Following from this expression

S =
σ

(1−ω)

receives the meaning of the net stress, increasing with the decrease of the

area, bearing the applied load. For the multiaxial loading case the model

was extended by Leckie and Hayhurst [49, 70]. The stress state effect on

the fracture within the phenomenological modeling is usually represented

through the isochronous surface. This surface is obtained as the depiction

of the loci of constant stress states, leading to the same times to fracture.

The authors firstly represent the isochronous equi–damage surface for the

multi–axial state of stress in the following manner:

σ∗(σσσ) =ασ1 +βI1(σσσ)+ (1−α−β)σvM, (7.3)

where σ1 is the first principal stress, σvM is the von Mises equivalent stress

(see Eq. (2.25)) and I1 is the first invariants of the stress tensor, defined as the

hydrostatic stress:

I1(σσσ) = tr(σσσ).

The material model parameters α and β in Eq. (7.3) allow to distinguish

between two types of rupture, which are inherent to metallic materials [49].

For example, the cavity growth in copper is governed by the maximum tensile

stress, which corresponds to α → 1, at the same time for aluminium it is

mostly affected by the effective stress. For some steels, which exhibit the

mixed rupture mode, the certain combination of these parameters should be

determined from the experiments fitting.
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For the multiaxial stress state the creep strain rate tensor is proposed to

have the following form:

ε̇εεcr =
3A

2

[
σvM

(1−ω)

]n (
sss

σvM

)
,

where sss is the stress deviator. The generalized damage evolution equation

depends on the isochronous equi–damage surface, analogously to Eq. (7.1):

ω̇= B
(σ∗)κ

(1−ω)µ
.

In addition to the interpretation of the scalar damage parameter D as a

material deterioration, Chaboche [23] presents the possibility to describe the

coupled damage evolution due to different processes, such as plasticity, creep

and fatigue:

dD1 = f1(φ,α,D1,D2,D3, ...)dσ,

dD2 = f2(φ,α,D1,D2,D3, ...)d t ,

dD3 = f3(φ,α,D1,D2,D3, ...)d N ,

where φ is the so called forcing variable, which has the meaning of stress or

inelastic strain, depending on the described process.

7.2.1.2 Anisotropic damage

If the non–proportionality of loading takes place, the damaged state in the

material becomes anisotropic. It requires anisotropic continuum damage

theory. Such theories are basically built as the generalization of the isotropic

theories, with the introduction of damage as the vectorial or tensorial variable.

The anisotropic theory of Murakami and Ohno [86] interprets the material

damage as the reduction of the effective area due to cavity formation and

the stress concentration at the cavities. The second–rank tensorial damage

variable in the unit volume is defined as follows:

ΩΩΩ=
1

Sg(V )/3

N∑

k=1

∫[
nnn(k) ⊗nnn(k)

]
dS(k)

g , (7.4)

where dS(k)
g and nnn(k) with (k = 1 . . . N ) denote the area of grain boundary,

occupied by the kth cavity and the vector, normal to the grain boundary,

respectively. Sg(V ) is the total area of the grain boundaries in V . If Ω j are

the principal values and nnn j are the principal directions, Eq. (7.4) reduces to

ΩΩΩ=Ω j nnn j ⊗nnn j ,
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where Ω j is specified as the cavity density in three principal directions.

The evolution equation of the tensorial damage variable is written in the

following form:

Ω̇ΩΩ=
〈
χ(σσσ)⋆

A

〉r [
γIII + (1−γ)nnn(1) ⊗nnn(1)

]
,

where χ(σ)⋆ is the invariant, describing the isochronous surface analogous to

presented in Eq. (7.3), nnn(1) is the direction of the maximum principal stress, A,

r and γ are material parameters. The effective stress in this case is represented

as:

S̃SS =
1

2

[
ΓΓΓ :σσσ+ (ΓΓΓ :σσσ)T

]
,

where the asymmetrical fourth–order tensor ΓΓΓ is constructed on the damage

tensorΩΩΩ. The constitutive equations of viscoplasticity are obtained involving

the effective stress concept and are written as:

ε̇εεp =
3

2
Ṗ

S̃SS
′

J2(S̃SS)
,

with the evolution equation for the isotropic hardening

Ṗ =
[

J2(S̃SS)

K

]n

P−n/m ,

where S̃SS
′

is the deviator of S̃SS and K , n, m are material model parameters.

Chaboche [24] improves the following theory by additional description of

elastic region for damaged material and equivalent equations of viscoplas-

ticity for undamaged and damaged materials. An asymmetrical fourth–order

damage tensor DDD is described through the characterization of effective elastic

modulus for damaged and undamaged states:

DDD = III − Λ̃̃Λ̃Λ :ΛΛΛ−1.

The stress in damaged material in the elastic region can be expressed as

follows:

σσσ= (III −DDD) :ΛΛΛ :εεεel.

With the representation of the effective stress

σ̃σσ= (III −DDD)−1 :σσσ,

the law of viscoplastic flow is written as:

ε̇̇ε̇εp =
3

2

[
σ̃vM

K

]n

P−n/m (III −DDD)−1 : σ̃σσ′

σ̃vM
,
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where σ̃vM =
√

3

2
s̃ss ······ s̃ss and s̃ss is the deviatoric part of the effective stress σ̃σσ.

Another important aspect in damage modeling is the crack closure effect

under compression. An overview on this phenomena is given, for example, in

[12] and is determined as the damage deactivation. For the isotropic damage

case Lemaitre [71] proposed to stop the damage growth by introducing the

parameter h in front of the scalar damage variable in the expression for the

effective principal stress in the case of compression:

σ̃1 =
σ1

1−hD
, if σ1 < 0.

The parameter h is usually taken around 0.2, so the accumulated damage

during compression still gives a small contribution. For the multiaxial state of

the stress this approach is extended through the decomposition of the stress

tensor on the positive and negative parts. In terms of the principal stress

directions the spectral decomposition has the form [71]:

σσσ=
3∑

i=1

σinnni ⊗nnni ,

σσσ+ =
3∑

i=1

H(σi )σinnni ⊗nnni , σσσ− =
3∑

i=1

H(−σi )σinnni ⊗nnni ,

where H is the Heaviside’s function of the principal stress component.

Another possibility to account damage activation and deactivation by means

of the Heaviside’s function is described in [3].

For the anisotropic damage case the accounting of the different damage

effect in tension and compression leads to the serious complications and

model sophistication. For the non–proportional loading case such theories

can lead to the discontinuities in the stress–strain response [65, 66, 139].

7.2.2 Non–proportional loading experiments

For the first time the results of the non-proportional creep tests were

published by Trampczynski et al. [125]. The authors tested tubular specimen

made of aluminium alloy and pure copper. These two materials are

specifically chosen due to their different rupture behavior under the multi–

axial state of stress. As it was already mentioned in Sect. 7.2.1.1 the rupture in

copper is governed by the maximum principal tensile stress, at the same time

for aluminium the rupture criteria is the maximum effective stress. Thus, the

non–proportionality of the loading leads to the change of magnitude and the

direction of whether the principal or the effective stress.
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Figure 7.4 Creep curves of the axial and torsional strains of the non-

proportional loading tests [87] with the principal stress direction

rotation at : a) 30◦; b) 60◦; c) 80◦.
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The experimental conditions were chosen according to this phenomena.

The authors performed the test under constant tension and reversed torsion,

leading to the main stress direction rotation at 33.7◦. The obtained creep

curve revealed significant creep strain rate decrease after the reversion of

torsion. In addition, the prolongation of time to rupture in comparison to

the tests without reversion of torsion was observed. In order to confirm and

to extend results of [125] the analogous tests were performed by Murakami

and Sanomura [87] with the principal stress rotation at 30◦, 60◦ and 80◦. The

reported creep curves are depicted in Fig. 7.4. The non–proportional loading

tests of 304 type steel at 593 ◦C are given in [69]. The axial and torsional strain

evolution over time of the aluminium alloy are published in [15].

An attempt to predict the time to rupture of the non–proportional loading

tests Murakami and Sanomura [87] is made in [3, 73] among others. In [73] the

constitutive model of the material includes the second–order damage tensor,

introduced in Murakami and Ohno [86]. The evolution equation of the creep

damage is written in terms of a so called modified stress tensor, in which the

compressive principal stresses are replaced by zeroes. The time to ruptures

are calculated based of the failure criterion, written in the form of a scalar–

valued function of the stress tensor, the stress deviator and the parameter,

defining the ultimate strength of the undamaged material. The calculated

time to rupture is overestimated the experimental one for the cases of the

principal stress rotation on the 30◦ and 60◦ and underestimated for the case

of 80◦ principal stress rotation.

7.2.3 Description of the non–proportional loading test with

unit cell model

The unit cell, consisting of 80 grains and the grain size 210 µm is built. The

grain boundary region thickness ratio to the grain size is set equal to 0.1

in order to avoid stress peaks due to distorted element’s geometry, as it is

recommended in Sect. 5.6. The represented unit cell is tested with the

material model parameters set, presented in Table 7.1.

The tensile loading of the unit cell is performed in different directions and

magnitudes. The tension in xxx direction is constant during the whole test for

both loading variants. For the case of proportional loading the tension in yyy

direction is added in order to represent the multiaxial state of stress. The

non–proportional loading is represented by the change at the time 5 hours the

tension from yyy to zzz direction. For both loading regimes the magnitude of the
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Table 7.2 Scheme of the applied loading

Non-proportional loading Proportional loading

Loading

direction

Stress,

[MPa]

Time,

[h]

Loading

direction

Stress,

[MPa]

Time,

[h]

xxx 30 0–12 xxx 30 0–12

yyy 15 0–5 yyy 15 0–12

zzz 15 5–12 zzz 15 ——

principal stresses is kept the same. The loading conditions are summarized in

Table 7.2.

In Fig. 7.5 the evolution with time of the averaged total strain in the xxx

direction is shown. The evident time to rupture prolongation after the non–

proportional loading test is observed as well as the creep strain rate decrease

after the principal stress rotation.

In order to confirm the influence of the grain boundary damage on the

time to rupture prolongation, the cross–sections of the unit cell after 9 hours

of testing under proportional and non–proportional loadings are plotted. In

Fig. 7.6 one can see the damaged state within the cross–section of the unit
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Figure 7.5 Simulated creep curves for proportional and non-proportional

tests. For the non–proportional loading test the stress rotation

occurs after 5 hours of loading
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cells described above. Under the damaged state the coefficient in front of the

steady–state creep strain rate in Eq. (4.3) is understood, defining the influence

of the cavitation on the creep strain rate. In the diagram, corresponding to the

non-proportional loading case the area of damaged grain boundaries if lower

than in the case of proportional one. It means that the principal stress rotation

stops damage growth in some grain boundaries and activates it in another

one, which were undamaged before. In general the material of the unit cell

behaves as the less damaged under the new applied stress, which leads to the

prolongation of the time to rupture.

Thus, the influence of the grain boundary damage on the prolongation

of time to rupture for the non-proportional loading case is confirmed by the

performed tests under polycrystalline unit cells.

a) b)

damaged material

undamaged material

Figure 7.6 Damage distribution within the cross section of the unit cell

after 9 hours of creep test: a) non–proportional loading; b)

proportional loading
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CHAPTER

8
Conclusions and outlook

The current thesis deals with the investigation of the grain boundary

cavitation in polycrystalline aggregates. The main idea was to perform the

simulation in the following manner that only some micromechanisms directly

influencing the cavitation process are included. These are power law creep

in the grain interior, grain boundary sliding and growth of grain boundary

cavities. Other phenomena, which take place during creep and influence the

creep curve, such as dislocations and vacancies movement, subgrains and slip

bands formation etc. are not analyzed. This assumption is taken on the one

hand due to complexity of these mechanisms and on the other hand in order

to investigate the pure contribution of chosen mechanisms.

To achieve this aim the numerical procedure is developed allowing to

construct the geometry of a polycrystalline aggregate by means of the unit

cell. The anisotropic nature of the grain interior material is introduced by the

randomly oriented coordinate system for each grain.

The contribution of the above mentioned mechanisms on each of three

creep stages is analyzed. The decrease of the creep strain rate at the beginning

of the creep deformation, denoting the primary creep stage takes place due

to hardening. The hardening in the polycrystalline material occurs due to

microstructural change in dislocation density, their interaction with obstacles,

etc. (see Sect. 2.3.1). After applying of load on the unit cell grains start to

deform with the different magnitude. This occurs due to the fact, that some of

them have more preferable orientation to the applied stress that others. The

following from it heterogeneity in deformations leads to the hardening of the

unit cell. The analysis of the averaged creep response of the unit cell during
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the primary creep stage is discussed in Sect. 7.1.1. The direct dependence of

the deformation level and presence of the primary creep stage on the level of

material anisotropy is shown. The represented in the current work hardening

due to interaction of grains usually gives around 1/10 to the total hardening

observed in polycrystal. To improve the current model the hardening due to

dislocation rearrangement should be included in the the evolution equation

for the creep strain rate (2.36).

In the current work the deformation of the polycrystal is simulated by

the power law creep of the grain interior material and the grain boundary

sliding. On the averaged creep curve of the unit cell the secondary stage

is characterized by the minimum creep strain rate, which is held during

significant life time.

The value of minimum creep strain rate is characterized by the material

parameter set for the grain interior material such as power law constant and

power law exponent, determined in Sect. 2.3.3. Another factor, showing the

influence on the value of minimum creep strain rate is the grain size and

shape. This belongs to the investigation of statistical representability of the

unit cell and is in details discussed in Sects. 5.4, 5.4.

The special grain boundary region represents the sliding of mutual grains.

The grain boundary sliding by itself leads to the minimum creep strain rate

increase by 10% for copper [7], which is by itself insufficient for the cavitation

acceleration. Nevertheless the presents of the grain boundary region, with

the described in Sect. 3.2 material behavior, leads to the significant stress

concentrations, which force the cavity growth. The following observation

within the numerical simulation if fully consistent with the experimental one

[7]. The modeling of the secondary creep stage is discussed in Sects. 3.2, 7.1.2.

The tertiary creep stage is characterized by the creep strain rate increase,

which can be caused by both grain material softening and grain boundary

cavitation. It is known that, depending of the actual material properties and

deformation mechanism, the softening in the polycrystalline material can

occur due to subgrain coarsening, precipitate coarsening and decrease in

dislocation density [33]. In these cases a smooth increase of the minimum

creep strain rate, denoting beginning of the tertiary stage can be observed.

The cavities growth and subsequent interlinkage leads to the material

degradation and the rapid strain rate increase. The averaged creep curves of

the tensile tested unit cells are presented and discussed in Sect. 7.2.3. The

smoother tertiary stage as it can be observed in the experimental data (see

Sect. 6.3) can be obtained by introduction of softening mechanism in the

material model.
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The case of non-proportional loading is analyzed. The creep strain rate

reduction after the principal stresses rotation is observed, leading to the

prolongation of the time to rupture. The dependence of the time to rupture on

the direction of the cavitated grain boundaries is proved. Thus, the complex

of processes, occurring in the material during non-proportional loading is

qualitatively reproduced with the developed polycrystal model.
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APPENDIX

A
Derivation of elasticity

equations in engineering

constants

One can rewrite Eq. (2.1) in the inverse form, representing the dependence of

the elastic strain tensor on the stress tensor components:

εεεel =
1

3
α1trσσσIII

+α2

[
σ11

(
ggg 1 ⊗ggg 1 −

1

3
III

)
+σ22

(
ggg 2 ⊗ggg 2 −

1

3
III

)
+σ33

(
ggg 3 ⊗ggg 3 −

1

3
III

)]

+α3

[
τ12

(
ggg 1 ⊗ggg 2 +ggg 2 ⊗ggg 1

)
+τ13

(
ggg 1 ⊗ggg 3 +ggg 3 ⊗ggg 1

)

+τ23

(
ggg 2 ⊗ggg 3 +ggg 3 ⊗ggg 2

)]
,

(A.1)

where α1 = 1/λ1, α2 = 1/λ2, α3 = 1/λ3 are new material model parameters. If

one performs the tensile test in the direction ggg 1 with the stress magnitude σ0,

the elasticity law (A.1) reduces to the following formula:

εεεel = ggg 1 ⊗ggg 1

(
1

3
α1σ0 +

2

3
α2σ0

)
−ggg 2 ⊗ggg 2

(
1

3
α2σ0 −

1

3
α1σ0

)

− ggg 3 ⊗ggg 3

(
1

3
α2σ0 −

1

3
α1σ0

)
.

The value of the normal strain is determined as the strain tensor projection on

the direction g1g1g1:

εn =σ0
1

3
(α1 +2α2) (A.2)

and the values of the transverse strains are determined as projections of the

strain tensor on the directions ggg 2 and ggg 3:

εt =−σ0
1

3
(α2 −α1) . (A.3)
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From the definition of the elastic modulus and Poisson’s ratio one can write:

σ0 = Eεn, εt =−νεn. (A.4)

Combining Eqs. (A.4) and (A.2), (A.3) one can express the material parameters

α1 and α2 through the engineering constants in the following form:

α1 =
1−2ν

E
, α2 =

1+ν

E
. (A.5)

The elastic properties of the crystals depend on their orientation, so it is

necessary to mention, that in the present derivation the elastic modulus E

and the Poisson’s ratioν in the [001] crystallographic direction are understood.

This is illustrated in Fig. 2.4.

If one performs the shear test in the plane with normal ggg 1 in the direction

ggg 2 with the stress magnitude τ12 the elastic stress tensor has the form:

εεε=α3τ12(ggg 1 ⊗ggg 2 +ggg 2 ⊗ggg 1). (A.6)

From the definition of the shear modulus as

γ12 =
1

G
τ12

it follows:

α3 =
1

2G
, (A.7)

where G is the shear modulus of the single crystal copper in the [001]

crystallographic direction.

The next task is to obtain the dependencies between parametersα1, α2, α1

and λ1, λ2 and λ3. Let us represent the traces of both the strain and the stress

tensors:

trσσσ=λ1trεεε, trεεε=α1trσσσ. (A.8)

From this one can easily determine:

λ1 =
1

α1
=

E

1−2ν
. (A.9)

Let us consider some calculations:

σσσ ······
(
ggg 1 ⊗ggg 1 −

1

3
III

)
= ggg 1 ·σσσ ·ggg 1 −

1

3
trσσσ,

ggg 1 ·σσσ ·ggg 1 =
1

3
λ1trεεε+

2

3
λ2ε11,
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σσσ ······
(
ggg 1 ⊗ggg 1 −

1

3
III

)
=

2

3
λ2ε11,

σ11 −
1

3
trσσσ=

2

3
λ2ε11.

The expression σ11 − 1
3

trσσσ can be calculated from Eq. (2.1) as follows:

σ11 −
1

3
trσσσ=λ2

(
ε11 −

1

3
trεεε

)
. (A.10)

The analogous derivations for the elasticity law in the inverse form Eq.(A.1)

lead to the formula:

εεε ······
(
ggg 1 ⊗ggg 1 −

1

3
III

)
=

[
1

3
α1trσσσ+α2σ11

(
1−

1

3

)
−

1

3
trεεε

]
=

2

3
α2σ11,

ε11 −
1

3
trεεε=

2

3
α2σ11,

and finally:

ε11 −
1

3
trεεε=

1+ν

E

(
σ11 −

1

3
trσσσ

)
. (A.11)

Substituting Eq. (A.10) in Eq. (A.11) one can get the expression of λ2 in

engineering constants:

λ2 =
E

1+ν
. (A.12)

From Eq. (2.1) the shear stress σ12 follows as:

τ12 = ggg 1 ·σσσ ·ggg 2 =
1

2
λ3γ12. (A.13)

From Eq. (A.1) the correspondent shear strain is γ12 = 2α3τ12 and

consequently the shear stress:

τ12 =
λ3

2
γ12. (A.14)

By combination of the Eqs. (A.13), (A.14) and (A.7) one can get the expression

for λ3:

λ3 = 2G . (A.15)
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APPENDIX

B
Micrographs of the copper

specimens

a) b)

Figure B.1 Micrographs of the specimen in the initial state (original

magnification 50x): a) longitudinal section; b) cross–section

Figure B.2 Micrographs of longitudinal section of the specimen in the initial

state (original magnification 100x)
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a) b)

Figure B.3 Micrographs of the specimen 11, tested 1 hour at 30 MPa (original

magnification 50x): a) longitudinal section; b) cross–section

a) b)

Figure B.4 Micrographs of the specimen 11, tested 1 hour at 30 MPa (original

magnification 100x): a) longitudinal section; b) cross–section

a) b)

Figure B.5 Micrographs of the specimen 4, tested 20 hours at 10 MPa

(original magnification 500x): a) longitudinal section; b) cross–

section
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a) b)

Figure B.6 Micrographs of the specimen 4, tested 20 hours at 10 MPa

(original magnification 100x): a) longitudinal section; b) cross–

section
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APPENDIX

C
Crystallographic planes and

directions in copper crystal

Table C.1 First octahedral slip system

k Slip direction, bbbk
oct1 Normal to the slip plane,νννk

oct1

1 1p
2

(ggg 2 −ggg 3)

2 1p
2

(−ggg 1 +ggg 3) 1p
3

(ggg 1 +ggg 2 +ggg 3)

3 1p
2

(ggg 1 −ggg 2)

4 1p
2

(ggg 2 −ggg 3)

5 1p
2

(ggg 1 +ggg 3) 1p
3

(−ggg 1 +ggg 2 +ggg 3)

6 1p
2

(−ggg 1 −ggg 2)

7 1p
2

(ggg 2 +ggg 3)

8 1p
2

(ggg 1 −ggg 3) 1p
3

(−ggg 1 +ggg 2 −ggg 3)

9 1p
2

(−ggg 1 −ggg 2)

10 1p
2

(ggg 2 +ggg 3)

11 1p
2

(ggg 1 −ggg 2) 1p
3

(ggg 1 +ggg 2 −ggg 3)

12 1p
2

(ggg 1 +ggg 3)



100

Table C.2 Second octahedral slip system

k Slip direction, bbbk
oct2 Normal to the slip plane,νννk

oct2

1 1p
6

(ggg 1 −2ggg 2 +ggg 3)

2 1p
6

(ggg 1 +ggg 2 −2ggg 3) 1p
3

(ggg 1 +ggg 2 +ggg 3)

3 1p
6

(−2ggg 1 +ggg 2 +ggg 3)

4 1p
6

(−ggg 1 −2ggg 2 +ggg 3)

5 1p
6

(2ggg 1 +ggg 2 +ggg 3) 1p
3

(−ggg 1 +ggg 2 +ggg 3)

6 1p
6

(−ggg 1 +ggg 2 −2ggg 3)

7 1p
6

(−2ggg 1 −ggg 2 +ggg 3)

8 1p
6

(ggg 1 −ggg 2 −2ggg 3) 1p
3

(−ggg 1 +ggg 2 −ggg 3)

9 1p
6

(ggg 1 +2ggg 2 +ggg 3)

10 1p
6

(2ggg 1 −ggg 2 +ggg 3)

11 1p
6

(−ggg 1 −ggg 2 −2ggg 3) 1p
3

(ggg 1 +ggg 2 −ggg 3)

12 1p
6

(−ggg 1 +2ggg 2 +ggg 3)

Table C.3 Cubic slip system

k Slip direction, bbbk
cub

Normal to the slip plane, νννk
cub

1 1p
2

(−ggg 2 +ggg 3)
ggg 1

2 1p
2

(ggg 2 +ggg 3)

3 1p
2

(−ggg 1 +ggg 3)
ggg 2

4 1p
2

(ggg 1 +ggg 3)

5 1p
2

(ggg 1 +ggg 2)
ggg 3

6 1p
2

(ggg 1 −ggg 2)
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