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Preface

The origin of group theory is closely related to permutation groups, and hence the
action of a group always played a role in the study of groups. On the other hand,
in finite group theory, and in this thesis all groups are finite if not otherwise stated,
the study of the structure of a group is a key element. Therefore, it is natural to
investigate which properties of the action influence which structural properties of the
group. This thesis deals with one specific aspect of this interplay. Its objective is
the determination and description of groups in which all non-trivial elements fix at
most four points and that contain an element with exactly four fixed points. These
groups act with the so-called fixity 4.

The thesis is part of a project that has its origin in a question asked by Kay
Magaard. He and Rebecca Waldecker started the project in 2012. Motivated by
the study of Riemann surfaces, one central question of their project is what can
be said about groups that act faithfully, transitively, and such that all elements fix
at most k points, and what are the finite simple groups with this property, where
k ∈ {2, 3, 4}. Kay Magaard and Rebecca Waldecker answered the question in 2015
for k ∈ {2, 3}. The project was later joined by Barbara Baumeister, and the thesis of
Patrick Salfeld also belongs in this context and relates the group-theoretic question
back to Riemann surfaces.

Answering the question for k = 4 is a joint effort by the aforementioned and myself.
The submitted paper [7] classifies all finite simple groups acting with fixity 4, and
is therefore closely related to Chapter 3 of this thesis. On the one hand, results
of the paper are used as described in Chapter 3. On the other hand, the analysis
of Chapter 3 resulted in parts of the paper. This thesis contains more results on
the way to answering the original question for k = 4. They are positioned after
Chapter 3. This work uses the classification theorem of finite simple groups directly
and indirectly, and it is an integral component of the proof.

The ultimate aim of this thesis is to gain information about the structure of a
group G acting with fixity 4 on some set. One of the subgroups capturing a lot of
this information of G is the generalised Fitting subgroup F∗(G) of G, because G can
be described as a subgroup of the semi-direct product of the automorphism group
of F∗(G) and F∗(G) itself. Thus, the objective of the Main Theorem (Theorem 7.7)
of this thesis is to give a detailed description of F∗(G). To understand F∗(G), both
parts of it, the Fitting subgroup of G and the product of the components of G, have
to be studied. Since the components are quasi-simple groups, to do so, quasi-simple
groups acting with fixity 4 have to be analysed. Finally, for this, simple groups have
to be understood, because every non-abelian simple group is quasi-simple. This
thesis is structured in the opposite direction, and its outline is as follows.
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Preface

In the first two chapters the fundamentals are laid out. They contain, in Sec-
tion 2.5, an explanation of the usage of GAP, and the role of computer code in the
proofs. This part might also be used as a reference resource.

Then in Chapter 3, the first step of the strategy towards the proof of the Main
Theorem is done by dealing with the simple groups. In its first section, Lie type
groups of small dimension, namely PSL(2, q), PSL(3, q), PSU(3, q), and Sz(q), are
analysed regarding their possible fixity-4 actions. Section 3.2 restricts to the case
that the point stabilisers have odd order divisible by 3, and the strategy in this
section is structured alongside different subcases. The section afterwards analyses
the case that the point stabilisers have order coprime to 6, and its structure is divided
among the families of the simple groups as they are described in the classification
of finite simple groups. The last section of this chapter bundles together the results
of the chapter, the classification of finite simple groups, Theorem 1.2 in [7], and
the necessary results published elsewhere in the literature. The result is stated in
Theorem 3.56, and classifies all finite simple groups that act transitively and with
fixity 4 on some set. It is the first milestone in this thesis.

The next chapter deals with quasi-simple groups and, contrary to most of the
other chapters, it contains a section about groups acting with fixity 2 and 3. The
final result of the fourth chapter is a list of all quasi-simple non-simple groups that
act transitively and with fixity 4.

Then the fifth chapter focuses on components of a group acting with fixity 4. It
starts with an excursion about centralisers of involutory automorphisms of simple
groups in Section 5.1. Then the first step towards the proof of Theorem 5.6 is to
show that under some conditions, each component contains a non-trivial element
that fixes some point, or is isomorphic to A5 or SL(2, 5). This is done in Section 5.2,
before the next section first establishes that every group acting with fixity 4 can have
at most one component, and then finishes the proof of Theorem 5.6. The content of
this theorem is detailed information about the structure of the unique component of
a group acting with fixity 4, if it exists.

It remains to analyse the Fitting subgroup of a group acting with fixity 4. This is
done in Chapter 6. First, a general investigation about nilpotent groups acting with
fixity at most 4 is done. Afterwards, the analysis is split according to whether the
Fitting subgroup contains an element with fixed points or not.

All parts are put together in Chapter 7, where first the interplay between the
Fitting subgroup and the components is looked at under some condition. Afterwards
the Main Theorem is proven by joining together the above-mentioned results.

This thesis finishes with some closing remarks in Chapter 8.
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1 Introduction

Two important ways of describing a group are by its action and by its inner structure.
Therefore, one fundamental research interest in group theory is to determine the
connection between these two ways of describing a group. This leads to the question
of which information about the inner structure of a group is encoded in its action or
even just in partial information about its action. One such partial description of a
group action is the behaviour of fixed points.

In this context, the work of Frobenius is remarkable. He analysed transitive permu-
tation groups in which no non-trivial element fixes two or more points and the point
stabilisers are non-trivial. These groups are now named Frobenius groups. Let G
be a Frobenius group, and let K be the subset of G that consists of the identity
element together with those elements that do not fix any points. Then Frobenius
showed in 1901 in [33] that K is a subgroup of G, known as the Frobenius kernel, thus
revealing structural information about G. A consequence is that Frobenius groups
cannot be simple, because the Frobenius kernel of a Frobenius group is a proper
non-trivial normal subgroup. This illustrates that even limited information about
the number of points which are fixed by an element of a group gives rise to funda-
mental structural properties of this group. However, the understanding of Frobenius
groups did not stop with Frobenius’ result.

Later, in 1959, Thompson showed in [98] that the Frobenius kernel of a group is
nilpotent, revealing even more inner structure of the group. Nowadays, even the
structure of the point stabilisers of Frobenius groups is well understood (see for
example Theorem 10.3.1 in [38]). These examples imply that even a seemingly small
restriction of the action can have a huge influence on the structure of the group.
Thus, generalising this concept might be a fruitful way of gaining information in
group theory, and understanding the connection between groups and their actions
even better.

There are different ways of generalising the definition of Frobenius groups and ask-
ing the same question, namely which inner structure of the group can be determined
from its action. One way uses the notion of fixity, first introduced by Ronse in 1980
in [84], which is the central concern of this thesis. The definition is as follows.

Definition 1.1
Let k be a non-negative integer and G a finite group acting on a set Ω. Then G acts
with fixity k on Ω if and only if all non-trivial elements of G have at most k fixed
points in Ω and there exists a non-trivial element with exactly k fixed points in Ω.

In most situations the definition is joined with the assumption of transitivity. Ad-
ditionally, a faithful action is often taken as granted. Instead of using the latter
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1 Introduction

hypothesis directly, that a group G acts faithfully and with fixity k on some set Ω,
it suffices to assume that G acts with fixity k on Ω and that Ω has at least k + 1
elements. This is, because in that case, no non-trivial element of G can fix all points
in Ω, since it otherwise would fix more than k points, violating the fixity-k assump-
tion. Throughout this thesis, either faithfulness or a restriction on the size of the set
is used, depending on what is convenient in each particular situation. On the other
hand, transitivity is almost always assumed.

In terms of fixity, Frobenius groups are exactly those groups acting transitively
and with fixity 1 on a set of size at least 2. Groups acting transitively and with
fixity 0 are regular groups, and an example of a group acting with fixity 4 is the
symmetric group S6 acting in its natural action on a set of size 6. More generally, for
every integer n ≥ 3, the symmetric group Sn acting in its natural action on a set of
size n is an example for a group acting with fixity n−2. In particular, groups acting
with fixity at most 4 form a larger class of groups than that of Frobenius groups.
Thus, the concept of fixity is indeed a way of generalising Frobenius groups. Now
the question about the connection between the inner structure and the action of a
group can be asked again by restricting to groups acting with fixity at most 4.

The question is not purely of theoretical interest in its own right, but additionally,
it has implications in other areas of group theory. One example is [22], where results
about groups acting transitively and with fixity 2 or 3 are used to calculate the
independence number of the Saxl graph of a finite almost simple primitive base-two
group with soluble point stabilisers (see Theorem 1.5 in [22]).

Related to the notion of fixity, there are also other ways of generalising the concept
of a Frobenius group, which lead and have led to diverse research interests into the
connections between the number of fixed points of elements of a group and structural
properties of this group. This started soon after Frobenius’ result, and continued
both before and after Ronse introduced the term fixity.

One of the first generalisations of Frobenius groups are the so-called Zassenhaus
groups. These are the groups that act with fixity at most 2 but with the additional
condition that the action is 2-transitive (see p. 341 in [58]). The first step towards a
classification of these groups was done by Zassenhaus in 1935 in [107], in which he
classified all sharply 3-transitive groups. In 1960, Suzuki discovered in [94] a family
of groups that are Zassenhaus groups but are not sharply 3-transitive. They are now
called Suzuki groups and represent a family of finite simple groups. The classification
of Zassenhaus groups continued in 1960, when Feit showed in Theorem 1 in [31]
that every Zassenhaus group acts on a set of size q + 1, where q is a power of a
prime p, or contains a normal subgroup of order q + 1. In 1962, Suzuki classified all
simple Zassenhaus groups in Theorem 15 in [96] for all even q, and Ito proved in [58]
that if q is odd, then the Sylow p-subgroups of the Zassenhaus group are abelian,
finishing the classification of simple Zassenhaus groups (see Chapter XI in [55]).
Later, Glauberman gave in [37] a more direct proof of Ito’s result.

The study of Zassenhaus groups set a new direction in the development of research
in group theory (cf. [9]), showing how fruitful the analysis of the connection between
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the action of a group and its structure can be. The idea of Frobenius groups was even
further generalised, when after 1962, both Ito and Suzuki generalised the concept
of Zassenhaus groups in different ways in [57] and [97], respectively. In addition,
Frobenius groups have been generalised in other directions since Zassenhaus started
his investigations.

An example of such a different direction was described by Pretzel and Schleier-
macher in 1975 in [79]. They defined, for a positive integer n and non-negative
integers a1, a2, . . . , an with the condition that a1 < a2 < . . . < an, an (a1, a2, . . . , an)-
group to be a group acting on a set in such a way that a1, a2, . . . , an are exactly
the numbers of fixed points of the non-trivial group elements. In this notation,
Frobenius groups are the transitive (0, 1)-groups. This took up an idea by Iwahori,
who in 1964 in [59] introduced classes of groups that, in the notation of Pretzel
and Schleiermacher, are the (k)-groups, for each positive integer k. Iwahori also
classified in Theorem III in [59] the (2)-groups, and in 2001 Cameron continued the
study of (k)-groups in [25], while Pretzel and Schleiermacher concentrated on faithful
and transitive (0, k)-groups. More precisely, in [79], they analysed, for a prime p,
the faithful and transitive (0, p)-groups, after first giving some general information
about arbitrary (0, k)-groups. Using these results, they classified in [81] all faithful
and transitive (0, 3)-groups where the point stabilisers are not so-called TI-subgroups
of the group. A group H is called a TI-subgroup (trivial intersection subgroup) of
a group G if H ≤ G and, for all g ∈ G, Hg ∩ H = 1 unless Hg = H. Motivated
by the consequence of 1.3. in [79] that the point stabilisers in a (0, 2)-group are
TI-subgroups of the group, they further studied structural properties of groups in
this context in [80]. Likewise, the definition of a Frobenius group implies that the
point stabilisers are TI-subgroups of the group. Again generalising this idea, Hale
established in 1971 in [49] conditions that guarantee that the point stabilisers of a
transitive permutation group are TI-subgroups of this group.

In addition to results that aim to classify groups with certain properties of their
action, of which we have seen a few, there are also other research interests on the
connection of the action of a group and its structure that are centred on the notion
of fixity. One such interest is to give bounds of structural quantities in terms of a size
related to the action, like for instance the fixity a group is acting with. An example
of such research is [90] by Saxl and Shalev, who identified quantifiable properties of
a transitive solvable group that are bounded by the fixity the group is acting with.
Among the properties they determined is the order of a point stabiliser if the group
is nilpotent (see Theorem 1.1 in [90]). Saxl and Shalev also determined conditions
that guarantee that the fixity is bounded, and they applied their results to groups
acting as automorphism groups of another group. Their proofs give a deeper insight
into the concept of fixity. An good overview of this research direction of restricting
structural quantities is given in [20] by Burness, which centres on the fixed point ratio
of group elements, and considers, amongst other things, the relation to the notion of
fixity. The publication by Burness demonstrates how strong the connection between
the study of fixity and other research areas is. The notion of the minimal degree of a
group especially stands out as being closely related to the fixity a group is acting with,
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1 Introduction

because the minimal degree of a transitive group G acting on a set is the minimal
number of points moved by any non-trivial element of G, and hence the sum of the
minimal degree and the fixity of G equals the size of the set. As a consequence, a
lower bound on the minimal degree determines an upper bound on the fixity, and
vice versa. The study of bounds for the minimal degree of a permutation group dates
back to at least 1870, when Jordan in [60] analysed the minimal degree of multiply
transitive groups in Théorème 83 and the subsequent corollaries, and has been a
research interest later on (see § 15 in [103]). The structure of these results is to give
a list of exceptions and a general bound for the remaining groups. Without the use
of the classification theorem of finite simple groups, Theorem 0.3 in [5], proven by
Babai in 1981, was the best known lower bound of the minimal degree of primitive
permutation groups that do not act 2-transitively. Using the classification theorem
of finite simple groups, the result was improved in 1984 by Liebeck in the corollary
in [67], and in 1991 by Liebeck and Saxl in Theorem 6.1 in [68], with different
lists of exceptions. In the latter publication, also an application of the result to
monodromy groups of covers of compact Riemann surfaces is described, proving a
conjecture in [48]. The list of exceptions by Liebeck and Saxl was studied even
further by Guralnick and Magaard in 1998 in [46], using the fixed point ratio, and
again having the connection to Riemann surfaces in mind. Outside of group theory,
these bounds are not only used in the context of Riemann surfaces but also have
other applications, as for instance in [78]. These are results concentrating on lower
bounds on the minimal degree, and thus on upper bounds on the fixity, whereas [70]
concentrates on lower bounds on the fixity, and hence establishing even more insights
into the notion of fixity.

Instead of looking at the number of fixed points of all elements, it is also interesting
to restrict the condition to some class of group elements, for example the involutions.
One result in this context was gained by Bender in 1971 in [11], in which he analysed
transitive groups in which all involutions fix exactly one point. The paper is a
fundamental contribution to the understanding of the inner structure of groups, and
introduces the notion of strongly embedded subgroups (see Definition 2.6). This shows
once more that the question about the link between the action of a group and its
inner structure is a driving force in group theory research. Therefore it is unsurprising
that many researchers have looked into the connection between the number of fixed
points of involutions and the group structure. Among them is Hering, who studied
in 1968 in [50] 2-transitive groups in which the maximal number of fixed points of
involutions is 2. His analysis is supplemented by [10], in which Bender concentrated
on 2-transitive groups in which no involution fixes a point. Then in 1971, Satz 3
in the aforementioned publication [11] complemented the analysis. Continuing the
investigation of 2-transitive groups in which the maximal number µ of fixed points
of involutions is small, King published results for µ = 3 in [61], and for µ = 4
the analysis was started by Noda in [75] and continued by Bueckenhout in [16].
Similarly, the same structural questions arise for transitive groups in the same way
as for 2-transitive groups, and hence trying to classify all transitive groups in which
the maximal number µ of fixed points of involutions is small is a research interest.
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Again, the remarkable publication [11] gives insights and an answer for µ = 1 in this
context. In [17], Bueckenhout looked into the situation for µ = 3, and in a series
of three papers ([85], [18], and [19]), Rowlinson and Bueckenhout settled results for
µ = 4. Additionally, in [87] Rowlinson started the analysis for the case that µ ≤ 5,
and continued it in [88] for µ ≤ 7. The investigation for µ = 5 was supplemented by
Hirmanine in [51], in which he concentrated on primitive groups in which the maximal
number of fixed points of involutions is 5. For µ = 6, again Rowlinson continued the
analysis in [86]. Their results were summarised and generalised in 1982 in [83] by
Ronse, in which he described the situation for µ ≤ 15. More recently, Burness and
Covato in [21] and Burness and Thomas in [23] have taken up this topic again. As
seen earlier, even though it can be formulated as a purely group-theoretic question, it
has application beyond finite group theory. For example, [6] describes an application
at the interface of finite geometry and permutation group theory. One more note
on the result of Buekenhout and Rowlinson, as written in Table 1 in [19], has to be
made, since it is of direct use for this thesis, because in a transitive group that acts
with fixity 4, every involution can fix at most four points. The result was reviewed by
Salfeld in [89] under the additional hypothesis that the group itself acts with fixity 4.
This revealed that Table 1 in [19] is missing the fact that the group PSL(2, 9) can
act transitively and such that the maximal number of fixed points of involutions is 4
if the point stabilisers are dihedral groups of order 6. Therefore his result, instead
of that of Buekenhout and Rowlinson, is cited when needed.

Besides [89], there are other results aiming to classify transitive groups acting with
small fixity where the notion of fixity as given in Definition 1.1 is used. Magaard
and Waldecker list all simple groups acting with fixity 2 and 3 in [71] and [72],
respectively. Both publications also give, in different degrees of detail, information
about the general structure of groups acting with fixity 2 and 3. They started a
project (see [100]), of which this thesis is a part. Thus, these papers also motivate the
strategy and aim of this thesis, especially in the amount of detail that is reasonably
provable in a general structure result. Later, in [8], Baumeister joint Magaard and
Waldecker to additionally give an insight into the Sylow structure of transitive groups
acting with fixity 4. The motivation of Magaard and Waldecker for the project comes
from Riemann surfaces.

Riemann surfaces are complex analytic manifolds (see Definition 3.0.4 in [27]).
Their study is used and has applications in different parts of mathematics and even
physics. The origin of the concept of Riemann surfaces dates back to Riemann and
his analysis of complex functions in [82], and was set on new foundations by Weyl
in his lectures [102]. One of the fields of interest in the research topic of Riemann
surfaces, more precisely compact Riemann surfaces of genus at least 2, are Weier-
strass points (see III.5.9 on page 87 in [30] for a description) because they “carry
a lot of information about the surface” (page 8 in [30]). Additionally, Weierstrass
points have influence on the automorphism group of compact Riemann surfaces of
genus at least 2. This can be seen for example in section V.1.2 in [30], where the
interplay between the Weierstrass points and the automorphism group is explained.
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There, two proofs for results about the finiteness of the automorphism group of a
compact Riemann surfaces of genus g at least 2 are described. One of them was first
given by Schwarz in [92], and states that the automorphism group of such a Rie-
mann surface is finite. It was later improved by the result by Hurwitz on page 424
in [56] that gives an explicit bound of the automorphism group of such a Riemann
surface, namely 84(g − 1), and this bound is sharp. This is the second result proven
in section V.1.2 in [30], which shows a connection between the theory of Riemann
surfaces (and Weierstrass points) with finite group theory. Another connection was
found by Schoeneberg in [91], implying that if a non-trivial automorphism of a Rie-
mann surface has more than four fixed points, then each of these fixed points is a
Weierstrass point, and hence contains analytic information.

To fill the gap and also gain information in the case that there do not exist Weier-
strass points, Magaard asked what can be achieved by looking at this case group-
theoretically, and initiated together with Waldecker the aforementioned project to
study the problem. Since the automorphism group of a compact Riemann surface
of genus at least 2 is finite, the question translates to finite groups in which each
non-trivial element has at most four fixed points in its action on the surface. Re-
stricting to the action on orbits rather than the whole surface does not exclude any
automorphism groups, because if every element has in total at most four fixed points
on the whole surface, then it also has at most four fixed points on each orbit. Thus,
the question translates to all groups acting transitively and with fixity at most 4 on
some set, and hence to a purely group-theoretic question, which can be studied with
the methods of finite group theory. In this general setup, two special kinds of orbits
can be identified. The first one is characterised by the condition that the group
acts regularly on it and the second is characterised by the condition that the group
does not act faithfully on it. In the first case, the study of the notion of fixity will
not give further insights, whereas the fact that the group acts with fixity 4 on the
whole set implies that each orbit fulfilling the second condition contains at most four
elements (and there exists at most four of them). In particular, leaving these two
kinds of orbits aside, on each remaining orbit the group acts transitively, faithfully,
and with fixity at least 1 and at most 4. Otherwise, if all orbits of the group action
belong to one of the two special kinds, then this fact gives additional information
of a different variety. Therefore, it is reasonable to restrict the group-theoretical
study to transitive and faithful groups acting with fixity at most 4 on some set. As
mentioned earlier, there are results about groups acting with fixity 1 (those about
Frobenius groups), 2 and 3. Thus, the remaining question concerns finite, transitive,
and faithful groups acting with fixity 4, and these groups are the central concern of
this thesis.

One step in the project by Magaard and Waldecker is to identify all finite simple
groups that act transitively and with fixity 2, 3, or 4. Note that fixity 1 is missing
in this list because non-trivial transitive groups acting with fixity 1 are Frobenius
groups, which are not simple. There have been different achievements towards a
classification. In the first phase of the project by Magaard and Waldecker, they
determined all finite simple groups acting transitively and with fixity 2 and 3. Later,
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some first results for the classification of finite simple groups acting with fixity 4
regarding the Sylow 2- and 3-subgroup structure were done by Baumeister, Magaard
and Waldecker. Afterwards, all finite simple groups acting transitively and with
fixity 4 and such that an involution fixes exactly four points were identified by Salfeld.
However, the classification for fixity 4 remained incomplete until this thesis, and is
now part of the joint publication [7]. The publication also contains an analysis of
the 3-structure of a finite group acting with fixity 4 done by Baumeister, Magaard,
and Waldecker, which exceeds the results in [8].

In addition to its group-theoretic implications, the answer can be related back to
the context of Riemann surfaces. There, the question of whether or not a group,
or more concretely a simple group, can actually act as an automorphism group of a
Riemann surface and with fixity at most 4 is interesting. Patrick Salfeld addressed
this question for simple groups in his thesis [89]. Since, at the time of his writing,
a result was not known, he used a conjecture of which finite simple groups can act
with fixity 4. This thesis also proves that this conjecture was correct, thus achieving
that all simple non-abelian automorphism groups of compact Riemann surfaces of
genus at least two that act with fixity at most 4 are classified.
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2 Preliminaries

This chapter contains concepts and initial results that will be used in the subsequent
chapters. Most of these can be found in [65], for example, along with other funda-
mental group-theoretic terms. This chapter also establishes the notation that will
be used throughout.

If a notion can have different meanings, then in most cases a definition is given for
reference, either in this chapter, or when the notion is first used. Alternatively, the
meaning becomes clear from the context, and no definition will be given explicitly.

2.1 Notation

The notation usually follows [65] and [105], with a few exceptions. One of the
exceptions is the notation of the finite simple classical groups of Lie type, for which
the notation in [54] is used. For the purpose of this section let n always be a positive
integer, let q always be a prime power, and let p always be a prime. The symmetric
group acting on the set {1, . . . , n} is denoted by Sn and the alternating group acting
on {1, . . . , n} is denoted by An. They both have degree n. In general, a permutation
group is a group acting faithfully on a set Ω, and has degree |Ω|.

There exist different notations for the structure of a group. Usually an isomorphism
type is described by specifying a concrete group of that type. Thus a group of
type PSL(2, 5) × PSL(2, 5) is some group that is isomorphic to the permutation
group ⟨(1, 2, 3), (3, 4, 5), (6, 7, 8), (8, 9, 10)⟩ ≤ S10. Furthermore, Dn always denotes
a dihedral group of order n, Eq denotes an elementary abelian group of order q,
and Cn denotes a cyclic group of order n. Moreover, Q2n denotes a generalised
quaternion group of order 2n and SD2n denotes a semi-dihedral group of order 2n. If
the structure of a group is not specified further, then the order is written in square
brackets. Thus, for example, a group of type [4] can be of type E4 or C4.

For the extension of one group by another group, the notation in Section 5.2
in [28] is used, except in the case of a central product of two groups A and B, which
is denoted by A ∗B.

While describing groups, their orders are often of importance. Thus, some notation
to specify and relate group orders is needed. The order of a single group element x
will be denoted by o(x). Furthermore, the highest positive integer k such that n is
divisible by pk will be denoted by |n|p.

We will see one last notation, which will be useful in the context of fixed points
of a group G that acts on a set Ω. For a subset X of G, the set fixΩ(X) contains
exactly those points in Ω that are fixed by all elements in X. If X contains only

9



2 Preliminaries

one element x, then fixΩ(x) is an abbreviation for fixΩ(X). Using this notation, a
non-trivial group G acting on a set Ω acts with fixity max

x∈G\{1}
|fixΩ(x)|.

2.2 Groups, Subgroups, and Actions

The following two lemmas state basic properties about subgroups and normal sub-
groups, and will normally be used without citing. Nevertheless proofs are given.

Lemma 2.1
Let G be a finite group and let A, B, and C be subgroups of G such that A ≥ B.
Then |A ∩ C : B ∩ C| ≤ |A : B|.
Proof:

The order formula for products of groups yields that

|A ∩ C : B ∩ C| = |A| · |C| · |BC|
|AC| · |B| · |C|

≤ |A| · |BC|
|BC| · |B|

= |A : B| .

Lemma 2.2
Let G be a finite group acting transitively and faithfully on a set Ω. Let N be a
normal subgroup of G and let α ∈ Ω.

Then for all β ∈ Ω, there is a one-to-one correspondence between the action of N
on αN and the action of N on βN . More precisely, for every β ∈ Ω, there exists an
element g ∈ G and an automorphism ψ of N such that for all ω ∈ αN and all h ∈ N ,
ωg ∈ βN and (ωh)g = (ωg)h

ψ . In particular, for all β ∈ Ω, the following hold:

(a) |Nα| = |Nβ| and |αN | = |βN |.

(b) N acts faithfully on αN if and only if N acts faithfully on βN.

(c) If k is a non-negative integer, then N acts with fixity k on αN if and only if
N acts with fixity k on βN.

Proof:
Let β ∈ Ω. Since G acts transitively on Ω, there exists an element g ∈ G such
that αg = β. Let ψ denote the function on N defined by conjugation by g. Then
ψ is an automorphism on N .

Let ω ∈ αN and h ∈ N . Then there exists an element a ∈ N such that ω = αa.
Hence, ωg = αag = αgg−1ag = (αg)a

g ∈ βN and (ωh)g = (ωg)h
g
= (ωg)h

ψ.
All other statements in the lemma are direct consequences.

Another theorem whose statement will normally be used without referencing it is the
Theorem in [32], known as the Feit-Thompson Theorem. It is a fundamental result
and states that every group of odd order is solvable.

One of the use cases of the Feit-Thompson Theorem is in the context of coprime
action. Some results are summarised in the next lemma.
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2.2 Groups, Subgroups, and Actions

Lemma 2.3
Let G be a finite group. Let A and K be subgroups of G such that A acts by
conjugation on K and such that |A| and |K| are coprime. Then the following hold:

(a) If K ⊴ G, then NG/K(AK/K) = NG(A)K/K.

(b) If A is non-cyclic abelian, then K = ⟨CK(a) | a ∈ A \ {1}⟩.

(c) If K is a p-group for some odd prime p and A acts trivially on Ω1(K), then A
acts trivially on K.

Proof:
For part (a), suppose that K ⊴ G. Then NG(A)K/K ≤ NG(AK)K/K ≤
NG/K(AK/K). Let g ∈ G be such that Kg ∈ NG/K(AK/K). Then for all
a ∈ AK, it follows that Kag = (Ka)Kg ∈ AK. In particular, ag ∈ AK and
hence Kg ∈ NG(AK)K/K. Thus, NG(AK)K/K = NG/K(AK/K). The Schur-
Zassenhaus Theorem (see 6.2.1 in [65]) applied to the group AK yields that K
has complements in AK (one of them is A) and that AK acts transitively on
the set of these complements. Then by a Frattini argument (see 3.1.4 in [65]),
NG(AK) = NNG(AK)(A) ·AK = NNG(AK)(A)K. As a consequence,

NG(AK)K/K = NNG(AK)(A)K/K ≤ NG(A)K/K ≤ NG/K(AK/K) ,

thus (a) is true.
Part (b) holds by 8.3.4 in [65] and part (c) follows directly from Theorem 5.3.10

in [38].

In the previous lemma, we have seen the use of one version of a Frattini argument.
In the next lemma, a different version gives us information about the orders of
normalisers in normal subgroups of a group.

Lemma 2.4
Let G be a finite group with a normal subgroup N of index m. Let p ∈ π(N) and
P ∈ Sylp(N). Then |NG(P )| = m · |NN (P )|.
Proof:

By a Frattini argument (see 3.2.7 in [65]), G = N · NG(P ). Then

m · |N | = |G| = |N · NG(P )| =
|N | · |NG(P )|
|NG(P ) ∩N |

=
|N | · |NG(P )|

|NN (P )|
and the lemma follows.

We have seen an example of how information about a normal subgroup can give
rise to information about the group. Likewise, the absence of normal subgroups can
have significant implications. One example is the following result about the indices
of subgroups in quasi-simple groups.

Lemma 2.5
Let E be a quasi-simple group and U a proper subgroup of E. Then |E : U | > 4.

11
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Proof:
Assume, for a contradiction, that |E : U | ≤ 4. Then E acts transitively on E/U .
Let K be the normal subgroup of E that fixes all elements in E/U . Since E
is quasi-simple, either E = K or K ≤ Z(E). The first case contradicts the
transitive action of E. Thus, K ≤ Z(E) and E/Z(E) acts faithfully on E/U .
Therefore, E/Z(E) is isomorphic to a subgroup of S4. Since E/Z(E) is non-
abelian simple, this is a contradiction.

A quasi-simple group E that acts transitively and with fixity 4 contains an element x
that has exactly four fixed points. Thus, the previous result can be strengthened for
the point stabilisers. The fact that the index of a point stabiliser of E in E is at
least 5 implies that E acts on a set with at least five elements but x fixes exactly
four points, and hence moves a fifth point to a sixth. In particular, E acts on a set
of size at least 6, the index of each point stabiliser of E in E is at least 6, and since
E does not contain non-trivial elements with more than four fixed points, E acts
faithfully. The latter is true for every transitive quasi-simple group acting with fixity
at most 4, in general. In other words, by Lemma 2.5, a quasi-simple group that acts
transitively and with fixity at most 4 additionally acts faithfully.

In the context of subgroups that give additional information, there is another im-
portant concept that will be used frequently, namely that of a strongly p-embedded
subgroup. We will first see the definition and afterwards some equivalent character-
isations.

Definition 2.6
Let G be a finite group, H a proper subgroup of G, and p a prime divisor of |H|.
Then H is strongly p-embedded in G if and only if for all g ∈ G \ H the order of
H ∩Hg is not divisible by p.

Usually the term strongly 2-embedded is abbreviated as strongly embedded.

Using this definition as the point of reference, the following lemma will state the
equivalence to some other definitions in the literature.

Lemma 2.7
Let G be a finite group, H a proper subgroup of G, p a prime divisor of |H|, and
P ∈ Sylp(H). Then the following statements are equivalent.

(1) H is strongly p-embedded in G.

(2) NG(P ) ≤ H, and for every element y of P of order p, CG(y) ≤ H.

(3) For every non-trivial subgroup Q of P , NG(Q) ≤ H.

Proof:
This follows from Proposition 17.11 in [42] together with Definition 17.1 in [42].
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2.3 Counting Arguments for Fixed Points and Number Theory

The next lemma states a sufficient condition for a group to contain a strongly
p-embedded subgroup. The proof also gives some understanding of strongly p-embed-
ded subgroups.

Lemma 2.8
Let G be a finite group and let p be a prime dividing |G|. Suppose that G has cyclic
Sylow p-subgroups. Then either every subgroup of order p of G is normal in G or
G has a strongly p-embedded subgroup.
Proof:

Suppose that there exists a subgroup U of order p of G that is not normal
in G. Let P ∈ Sylp(G) and H = NG(Ω1(P )). We will see that H is strongly
p-embedded in G. Since U is conjugate to Ω1(P ), the only subgroup of order p
of P , it follows that |H| = |NG(Ω1(P ))| = |NG(U)| < |G|. Furthermore, the
order of H is divisible by p.

Let y ∈ P be of order p. Then by Lemma 2.7, the only two assertions left to be
shown are that CG(y) ≤ H and that NG(P ) ≤ H. Since ⟨y⟩ = Ω1(P ), it follows
that CG(y) ≤ NG(Ω1(P )) = H. The remaining statement that NG(P ) ≤ H
follows from the fact that Ω1(P ) is a characteristic subgroup of P .

The previous lemma can be rephrased for odd primes p using the notion of the p-rank
of a group. In the literature, there exist different notions for the p-rank of a group.
Here we follow the definition in [2] on page 5. Hence, for a prime p the p-rank of a
group G is always the largest integer k such that a Sylow p-subgroup of G contains
an elementary abelian group of order pk. Similarly the sectional p-rank of a group G
is the largest integer k such that there exists two subgroups K and L of G such that
K ⊴ L and that L/K is elementary abelian of order pk. For every odd prime p, all
p-groups of p-rank 1 are cyclic (see 5.3.8 in [65]). As a consequence, the previous
lemma shows that a simple non-abelian group G contains a strongly p-embedded
subgroup if p is an odd prime and the p-rank of G is 1.

2.3 Counting Arguments for Fixed Points and Number
Theory

In different situations, it will be quite useful to determine the number of fixed points
of an element. The most common situations are dealt with in the next few lemmas.

Lemma 2.9
Let G be a finite group acting transitively on a set Ω. Let α ∈ Ω. Then the number
of fixed points of an element x ∈ Gα is

|{⟨x⟩g | g ∈ G and ⟨x⟩g ≤ Gα}| · |NG(⟨x⟩)|
|Gα|

.
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Proof:
Let y ∈ G. Then Gαy is a fixed point of x under its action on G/Gα if and only
if xy−1 ∈ Gα. Therefore, the number of fixed points of x is

|{y ∈ G | xy−1 ∈ Gα}|
|Gα|

=
|{g ∈ G | xg ∈ Gα}|

|Gα|
=

|{⟨x⟩g ≤ Gα | g ∈ G}| · |NG(⟨x⟩)|
|Gα|

.

A special case of the previous lemma is when a point stabiliser is cyclic. This is the
situation studied in the following corollary.

Corollary 2.10
Let G be a finite group acting transitively on a set Ω. Let α ∈ Ω. If Gα is cyclic
then the number of fixed points of an element x ∈ Gα is |NG(⟨x⟩)|

|Gα| .
Proof:

Suppose Gα is cyclic and let x ∈ Gα. Then ⟨x⟩ is the only subgroup of Gα with
order o(x), hence |{⟨x⟩g ≤ Gα | g ∈ G}| = 1. Thus, by Lemma 2.9, the number
of fixed points of x is |{⟨x⟩g≤Gα|g∈G}|·|NG(⟨x⟩)|

|Gα| = |NG(⟨x⟩)|
|Gα| .

Another special case is that the point stabilisers are Frobenius groups with cyclic
Frobenius complements. In this case the next lemma provides a way to count the
number of fixed points of elements in the Frobenius complements.

Lemma 2.11
Let G be a group acting transitively on a set Ω. Let α ∈ Ω. Suppose that Gα is
a Frobenius group with cyclic Frobenius complement and with Frobenius kernel K.
If x is an element of a Frobenius complement of Gα, then x has exactly |K|·|NG(⟨x⟩)|

|Gα|
fixed points on Ω.
Proof:

Let Gα be a Frobenius group with Frobenius kernel K and cyclic Frobenius
complement C. Then Gα = KC.

Let c ∈ C be non-trivial. Since C is cyclic, C has only one subgroup of order
o(c), and hence |{⟨c⟩g ≤ Gα | g ∈ G}| = |{Cg ≤ Gα | g ∈ G}|. Let g ∈ G be
such that Cg ≤ Gα. Then Cg is also a Frobenius complement of Gα. By 8.3.7
in [65], all Frobenius complements are conjugate in a Frobenius group. Thus, the
number |{Cg ≤ Gα | g ∈ G}| is exactly the number of Frobenius complements
in KC. By the calculation on page 79 in [65], this number is (|KC|−1)−(|K|−1)

|C|−1 =
|K|·|C|−|K|

|C|−1 = |K|. Therefore by Lemma 2.9 the number of fixed points of c is
|{⟨c⟩g≤Gα|g∈G}|·|NG(⟨c⟩)|

|Gα| = |{Cg≤Gα|g∈G}|·|NG(⟨c⟩)|
|Gα| = |K|·|NG(⟨c⟩)|

|Gα| . Since all Frobe-
nius complements are conjugated, the result follows.

At one point we will need the following number-theoretic result. It can be stated
without any group-theoretic context, and the arguments used are of a different nature
than in the place the result is used. Therefore it is stated here.
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2.4 Some Properties of Groups Acting with Low Fixity

Lemma 2.12
The only pairs (k, l) of non-negative integers with the property that 2k + 1 = 3l are
(1, 1) and (3, 2).
Proof:

Let (k, l) be a pair of non-negative integers such that 2k + 1 = 3l. Then 2k =
3l − 1.

First suppose that l is odd. We can factorise 3l − 1 such that 2k = 3l − 1 =
(3− 1)(3l−1+3l−2+ . . .+3+1). Since the last factor has l odd summands, it is
odd. Hence, to be a divisor of 2k, it must be 1 and therefore l = 1. Thus, k = 1
and (k, l) = (1, 1).

Suppose instead that l is even. Then there exists a non-negative integer m
such that l = 2m. Thus, 2k = 3l − 1 = (3m − 1)(3m + 1). Hence, both
factors are powers of 2. Assume for a contradiction, that m is even. Then
3m + 1 ≡ (−1)m + 1 ≡ 1 + 1 ≡ 2 mod 4. Hence, 3m + 1 = 2 and therefore
m = 0. However, it is not possible that 2k = 30 − 1 = 0 for any non-negative
integer k. Therefore m is odd, and the same calculation as at the beginning of
the proof shows that m = 1. Thus, l = 2 and hence k = 3. Then (k, l) = (3, 2)
and the lemma follows.

2.4 Some Properties of Groups Acting with Low Fixity

There are some direct consequences that can be drawn if a group acts with some
fixity. In this section we collect and prove some of them. They will be highly useful
in the following analysis.

Lemma 2.13
Let k be a positive integer, let G be a finite group acting with fixity k on a set Ω,
let α ∈ Ω, and let X be a non-trivial subgroup of Gα. Then |NG(X) : NGα(X)| ≤
| fixΩ(X)| ≤ k.
Proof:

The normaliser of X acts on the set of orbits of X and hence leaves the set of
fixed points of X invariant. Since α is one of the fixed points of X, it follows
that αNG(X) ⊆ fixΩ(X). Then |NG(X) : NGα(X)| = |αNG(X)| ≤ |fixΩ(X)| ≤ k.

The previous lemma is most useful in combination with Lemma 2.1 because for a
positive integer k, a group G acting with fixity k on a set Ω, a non-trivial sub-
group X of Gα, and an arbitrary subgroup A of G, the lemmas together imply that
|NG(X) ∩A : NGα(X) ∩A| ≤ |NG(X) : NGα(X)| ≤ k. In particular, since CG(X) ≤
NG(X), it holds that |CG(X) : CGα(X)| ≤ k. Throughout this thesis, in most sit-
uations Lemma 2.13 will be used not directly for the normaliser itself but for its
intersection with a subgroup, implicitly applying Lemma 2.1 without stating it. Ad-
ditionally, the previous lemma has an influence on the Sylow subgroup structure, as
we will see in the next corollary.
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Corollary 2.14
Let k be a positive integer, let G be a finite group acting with fixity k on a set Ω,
let α ∈ Ω, and let p be a prime dividing |Gα| such that p > k. Then Gα contains a
Sylow p-subgroup of G.
Proof:

Let Q ∈ Sylp(Gα) and let P ∈ Sylp(G) such that Q ≤ P . Then by Lemma 2.13,
|NP (Q) : Q| = |NP (Q) : NP∩Gα(Q)| ≤ |NG(Q) : NGα(Q)| ≤ k < p. Hence
Q = P .

After looking at the point stabilisers, the next lemma concentrates on four-point
stabilisers of groups acting with fixity 4. They will play an important role, especially
for point stabilisers with order coprime to 6, but the next result does not need this
additional hypothesis.

Lemma 2.15
Let G be a finite group acting transitively and faithfully on a set Ω and let H be the
element-wise stabiliser of a set of size 4. Then the following hold:

(a) If g ∈ G acts on fixΩ(H), then g ∈ NG(H).

(b) For all g ∈ G, either H ∩Hg = H or H ∩Hg = 1.

Proof:
Let g ∈ G act on fixΩ(H), let h ∈ H, and let δ ∈ fixΩ(H). Then δhg = (δg

−1
)hg.

Since δg−1 ∈ fixΩ(H), it follows that δhg = (δg
−1
)g = δ and therefore hg fixes all

points in fixΩ(H). Hence hg ∈ H and g ∈ NG(H). This is part (a).
For part (b) let g ∈ G and h ∈ H ∩Hg. Then h fixes all elements in fixΩ(H)

and in fixΩ(H
g) = fixΩ(H)g. If h is non-trivial, then h has at most four fixed

points, hence fixΩ(H) = fixΩ(H)g. In particular, g acts on the set of fixed points
of H. Thus, by part (a), g ∈ NG(H) and therefore H = Hg.

From looking at Lemma 2.13, it is apparent that there are restrictions on the centre
of a group acting with small fixity. The next two lemmas formalise this.

Lemma 2.16
Let G be a group acting transitively and faithfully on a set Ω. Then for all α ∈ Ω,
Z(G)α = 1.
Proof:

Assume otherwise. Then there exists an element α ∈ Ω such that Z(G)α contains
a non-trivial element a. Then ⟨a⟩ ⊴ G and ⟨a⟩ is a subgroup of Gα. Since G acts
transitively, it follows that ⟨a⟩ fixes all points in Ω, contradicting the faithfulness
of the action of G.

Lemma 2.17
Let k be a positive integer and G be a finite group acting transitively and faithfully
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on a set Ω. If there exists a subgroup U ≤ G that fixes exactly k points, then |Z(G)|
is a divisor of k. In particular, if G acts with fixity k, then |Z(G)| is a divisor of k.
Proof:

Let U ≤ G be such that U fixes exactly k points. Let α1, α2, . . . , αk ∈ Ω be
the k distinct points that are fixed by U . Since Z(G) ≤ CG(U), Z(G) acts
on fixΩ(U). Let i ∈ {1, 2, . . . , k}. Then |αi

Z(G)| = |Z(G)|
|Z(G)αi |

= |Z(G)|, because
Z(G)αi is trivial by Lemma 2.16. Since fixΩ(U) is a disjoint union of all its Z(G)-
orbits, each of them having length |Z(G)|, it follows that |Z(G)| is a divisor of
|fixΩ(U)| = k.

If G acts with fixity k, then by definition there exists an element x in G with
exactly k fixed points, hence ⟨x⟩ ≤ G is a subgroup that fixes exactly k points.
Then the first part implies the rest of the lemma.

2.5 GAP

In some proofs and examples, GAP [36], a system for computational discrete algebra,
will be used. In some cases, the motivation is to shorten calculations for groups of
small order that in principle could be carried out by hand. In other cases, some of
GAP’s data libraries such as the Primitive Permutation Groups Library [53] will be
used because GAP, or the corresponding package, provides an interface to access this
research data. Whenever there is code printed it will be GAP code, even if it is not
specified as such.

The output will always be suppressed, usually because it is long and unreasonable
to print. For example, sometimes it is a long list of groups in GAP’s own notation,
depending on the package used. Thus, the notation might vary and be inconsistent.
Therefore unique identifiers like the group ID in the Small Groups Library [13] or
the number in the Transitive Groups Library [52] are used when applicable. Other-
wise an isomorphism test can answer the question of what group GAP returned.
Additionally, the command StructureDescription(G); can be used carefully for a
group G to help determine some of its structure. When GAP is used in an example
or proof and the result is a group or a list of groups, the isomorphism types will be
specified if they are needed, but the code to obtain these types will be suppressed.
For checking the correctness of the specified isomorphism type for a group G, the
command IsomorphismGroups(G,h); can be used, where h is any group of the stated
isomorphism type. If an isomorphism is returned, then the group has the stated
isomorphism type, and otherwise fail is returned. However, since the notation of
an isomorphism type can be inconclusive, it is necessary to check for each option
that fits the description whether or not some group h of this type is isomorphic to
the returned group G. An inconclusive notation of an isomorphism type happens
especially for products of groups, for instance, if a semi-direct product is denoted,
then usually the action on the normal subgroup is not specified, thus the structure
of different non-isomorphic groups can be denoted in the same way.

A GAP session could look like the following.
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gap> li:=AllTransitiveGroups(NrMovedPoints, [4]);
[ C(4) = 4, E(4) = 2[x]2, D(4), A4, S4 ]
gap> h:=Group((1,2),(3,4));;
gap> List(li,x->IsomorphismGroups(x,h));
[ fail, [ (1,4)(2,3), (1,2)(3,4) ] -> [ (1,2), (3,4) ], fail, fail,

fail ]↪→

Thereby all transitive groups of degree 4 are determined and only the second is
of isomorphism type E4. The corresponding GAP code as printed for example in
a proof would only contain the line AllTransitiveGroups(NrMovedPoints, [4]);
and everything else would not be printed.

One frequent usage of GAP is to test whether or not a group acts with fixity 4. A
first naive way is described in the following remark, and determines for a permutation
group G that acts on a set whether or not this action is a faithful fixity-k action for
a positive integer k.

Remark 2.18
The GAP function in Program Code 2.1 takes as input a group G, a set set on
which the group acts transitively, and a positive integer k. It returns true or false
according to whether the group acts faithfully and with the specified fixity k on the
given set.

To see the correctness of the Program Code 2.1, first suppose that a group G acts
faithfully and with fixity k on the given set. Then G contains a non-trivial element
with exactly k fixed points. As a consequence, the size of the set is at least k + 2.
In particular, the condition in line 3 is not fulfilled. Then in line 7 all non-trivial
elements of the group are determined. Each of them has at most k fixed points,
and hence the condition in line 10 is not fulfilled. Since there exists an element
with exactly k fixed points, the code in lines 13–15 sets exactly to true, and since
this cannot be overwritten by another value, it follows that the code returns true in
line 17. Therefore it correctly returns true if a group acts faithfully and with fixity k
on the given set.

On the other hand, if the code returns true, then the value of exactly is true.
Therefore, line 14 is executed. Thus, the condition in line 13 was fulfilled for some
non-trivial element. In particular, the group contains a non-trivial element with
exactly k fixed points. Another consequence of the fact that true is returned is that
line 11 had not been executed, and hence the condition in line 10 did not hold for
any non-trivial element. Thus, every non-trivial element has at most k fixed points.
Similarly, line 4 implies that the condition in line 3 did not hold. Therefore the set
contains at least k + 1 elements. Since none of the non-trivial elements fixes more
than k points, this implies, that the action of the group is faithful. As a consequence,
the group acts with fixity k and faithfully on the given set if the code returns true.

Thus, after implementing the function, we can use TestFixity(G,set,k); to de-
termine whether G acts faithfully and with fixity k on a set set.

The GAP program in the previous remark is especially useful in combination with
the Transitive Groups Library [52] because in this library for small degrees (only
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1 TestFixity:=function(G,set,k)
2 local elements, g, fixnr, exactly;
3 if Length(set)<=k
4 then return false;
5 fi;
6 exactly:= false;
7 elements:=Difference(Elements(G),[Identity(G)]);
8 for g in elements do
9 fixnr:=Length(Difference(set,MovedPoints(g)));

10 if fixnr>k
11 then return false;
12 fi;
13 if fixnr=k
14 then exactly:=true;
15 fi;
16 od;
17 return exactly;
18 end;

Program Code 2.1: TestFixity

degrees up to 28 and degree 40 will be needed later), all transitive groups are listed.
Thus, with the help of the function in the previous remark, we can, for instance,
determine all groups that act transitively, faithfully, and with fixity 4 on a set of size
at most 28.

However, to use the function in Program Code 2.1, we need the set, and hence
the specific action of a group. Since every transitive action is equivalent to a coset
action, we can look at all transitive actions of a group by looking at its subgroups
and the actions of the group on the cosets of its subgroups. Some information about
these actions is covered by the so-called table of marks. We will first see a definition
and afterwards in Lemma 2.20 how information about the action, especially about
the fixity, is encoded in the table of marks.

The definition of the table of marks is derived from Definition 1.1 and Proposi-
tion 1.2 in [77].

Definition 2.19
Let G be a finite group, let n be a positive integer, and let {G1, . . . , Gn} be a
system of representatives of the conjugacy classes of subgroups of G. Then a table of
marks M of G is an n×n-matrix, where for all i, j ∈ {1, . . . , n} the j-th entry in the
i-th row is the number of elements in {Gig | g ∈ G and for all h ∈ Gj , Gigh = Gig}.

The order of the entries in a table of marks depends on the ordering of the represen-
tatives of the conjugacy classes of subgroups of G and we say that U ≤ G corresponds
to the i-th row (and i-th column) of M if and only if U is in the conjugacy class
of Gi.
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In the following lemma some properties of tables of marks are presented. They will
be used afterwards to describe a GAP program that determines for a table of marks
of a group G and for a positive integer k all transitive and faithful fixity-k actions
of G.

Lemma 2.20
Let G be a finite group, let M be a table of marks of G, let U be a non-trivial
subgroup of G, let x ∈ U , and let k be a positive integer. Furthermore let i be such
that U corresponds to the i-th row of M . Then the following hold:

(a) If j is such that ⟨x⟩ corresponds to the j-th row of M , then the j-th entry in
the i-th row of M is the number of fixed points of x in G/U .

(b) If H is a subgroup of G containing x, and if j is such that H corresponds to
the j-th row of M , then the j-th entry in the i-th row of M is at most the
number of fixed points of x in G/U .

(c) G acts faithfully on G/U if and only if all entries in the i-th row of M , except
for the entry in the column corresponding to the trivial group, are smaller
than |G : U |.

(d) G acts with fixity k on G/U if and only if k is the highest entry in the i-th
row, except for the entry in the column corresponding to the trivial group.

Proof:
For part (a), suppose that j is such that ⟨x⟩ corresponds to the j-th row of M .
Then by the definition of the table of marks, there exist v and y in G such that
the j-th entry in the i-th row of M is the number m of elements in {Uvg | g ∈
G and for all h ∈ ⟨x⟩y, Uvgh = Uvg}. Then m = |{g∈G|hg−1∈Uv for all h∈⟨x⟩y}|

|Uv | .

Since xyg−1 ∈ Uv if and only if for all h ∈ ⟨x⟩y, hg−1 ∈ Uv, it follows that
{g ∈ G | hg−1 ∈ Uv for all h ∈ ⟨x⟩y} = {g ∈ G | xyg−1 ∈ Uv}. We recall that y
and v are fixed, and hence |{g ∈ G | xyg−1 ∈ Uv}| = |{g ∈ G | xyg−1v−1 ∈ U}| =
|{g ∈ G | xg−1 ∈ U}|. Thus, m = |{g∈G|xg−1∈U}|

|U | = {Ug | g ∈ G and Ugx =

Ug}|. In particular, m is the number of fixed points of x in G/U .
For part (b), suppose that H is a subgroup of G containing x, and that j is

such thatH corresponds to the j-th row ofM . Then there exist v and y inG such
that the j-th entry in the i-th row of M is m := |{Uvg | g ∈ G and for all h ∈
Hy, Uvgh = Uvg}| = |{Uvg | g ∈ G and for all h ∈ Hy, Uvgh = Uvg}| = |{Ug |
g ∈ G and for all h ∈ Hy, Ugh = Ug}|. Since xy ∈ Hy, this number is at most
|{Ug | g ∈ G and Ugxy = Ug}|. In particular, xy fixes in its action on G/U at
least m points. Since conjugation does not change the number of fixed points
of an element, m is at most the number of fixed point of x.

For the first direction of (c), suppose that G acts faithfully on G/U . Assume
for a contradiction that there exists a non-trivial group H such that H cor-
responds to a column j such that the j-th entry in the i-th row of M is not
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smaller than |G : U |. Let h be a non-trivial element of H. By part (b), the
number of fixed points of h is at least |G : U | and hence h fixes all elements
in G/U , contrary to the assumption that G acts faithfully on G/U . For the
other direction of (c), suppose that all entries of M except for the entry in the
column corresponding to the trivial group are smaller than |G : U |. Let g ∈ G
be such that g fixes all elements in G/U . Then g has exactly |G : U | fixed
points. By (a), the entry of M in the i-th row and the column corresponding
to ⟨g⟩ is |G : U |. Then the condition on the i-th row implies that g is the trivial
element. As a consequence, G acts faithfully on G/U . This finishes the proof of
part (c).

It remains to prove (d). Suppose that G acts with fixity k on G/U . Then
there exists a non-trivial element g ∈ G with exactly k fixed points, and by (a),
the entry in the column corresponding to ⟨g⟩ of the i-th row of M is k. Assume
for a contradiction that there exists a non-trivial subgroup H such that the
entry in the column corresponding to H in the i-th row of M is greater than k.
Let h ∈ H be non-trivial. Then by (b), h fixes more than k points, contrary
to the fact that G acts with fixity k on G/U . This proves the first direction
of (d). For the other direction, suppose that k is the highest entry in the i-th
row except for the entry in the column corresponding to the trivial group. Since
k is the highest entry, there exists a non-trivial subgroup H corresponding to
the column that has the entry k in the i-th row. Let h be a non-trivial element
of H. Then by (b), h fixes at least k elements. Thus by part (a), the entry
in the i-th row of M in the column corresponding to ⟨h⟩ is at least k. Since
it is also at most k, part (a) implies that h fixes exactly k points. Assume for
a contradiction that there exists a non-trivial element with more than k fixed
points. Then by (a), the i-th row contains an entry greater than k. Since this
is not possible, part (d) follows.

In GAP, for a group G, a system {G1, . . . , Gn} of representatives of the conjugacy
classes of subgroups of G is normally sorted in a way such that if Gj is contained
in a conjugate of Gi, then j ≤ i. As a consequence, the table of marks M of G is
a lower triangle matrix, because if i and j are such that the j-th entry in the i-th
row of M is non-zero, then by the definition of the table of marks, there exists an
element g ∈ G such that Gj

g−1 ≤ Gi, and hence j ≤ i.
The purpose of the following example it to demonstrate how a table of marks can

be understood in GAP. As noted earlier, in the subsequent chapters the output will
normally be suppressed. Therefore, the example also explains how a table of marks
displayed in GAP can be read and interpreted in general, because later on only the
consequences will be stated.

Example 2.21
We look at the table of marks of the group A6. It is part of the GAP package
TomLib [74], which contains numerous precomputed tables of marks, and which will
be used frequently in this thesis.
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gap> Display(TableOfMarks("a6"));
1: 360
2: 180 4
3: 120 . 6
4: 120 . . 6
5: 72 . . . 2
6: 90 2 . . . 2
7: 90 6 . . . . 6
8: 90 6 . . . . . 6
9: 60 4 3 . . . . . 1

10: 60 4 . 3 . . . . . 1
11: 45 5 . . . 1 3 3 . . 1
12: 40 . 4 4 . . . . . . . 4
13: 36 4 . . 1 . . . . . . . 1
14: 30 2 6 . . . . 2 . . . . . 2
15: 30 2 . 6 . . 2 . . . . . . . 2
16: 20 4 2 2 . . . . 2 2 . 2 . . . 2
17: 15 3 3 . . 1 3 1 1 . 1 . . 1 . . 1
18: 15 3 . 3 . 1 1 3 . 1 1 . . . 1 . . 1
19: 10 2 1 1 . 2 . . 1 1 . 1 . . . 1 . . 1
20: 6 2 3 . 1 . . 2 1 . . . 1 2 . . . . . 1
21: 6 2 . 3 1 . 2 . . 1 . . 1 . 2 . . . . . 1
22: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The first line of the table of marks corresponds to the trivial group, and hence there
is only one entry, the order of the group. We see that there is only one conjugacy
class of subgroups of index 180. Thus, A6 contains a unique conjugacy class of
involutions and every subgroup of A6 generated by an involution corresponds to the
second row and second column of the table of marks. Therefore the table of marks
implies that every involution t in A6 fixes four points in A6/⟨t⟩. In particular, this
action is a fixity-4 action. We can see in row 9 of the table of marks that there exists
a subgroup U of index 60 in A6 such that every involution fixes four points in A6/U .
Since the third entry in row 9 is 3, since the subgroup corresponding to column 3 is
the subgroup corresponding to row 3, and since this subgroup has index 120 in A6,
some elements of order 3 have three fixed points in A6/U . Since row 4 and column 4
also correspond to subgroups of order 3, there additionally exist elements of order 3
that do not fix any points in A6/U because the fourth entry in row 9 is 0. Inspecting
the whole row, we see that A6 acts with fixity 4 on A6/U .

This way of determining fixity-4 actions can be automated, as we will see in the next
remark.

Remark 2.22
The GAP function in Program Code 2.2 takes as an input a table of marks t of
a group G and a positive integer k. It returns a list of lists. Each of the lists
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1 TestTom:=function(t,k)
2 local marks,g,fin;
3 marks:=MarksTom(t);;
4 fin:=[];;
5 for g in [1..Length(marks)] do
6 if ForAll([2..Length(marks[g])],i->marks[g][i]<k+1)
7 and (k in marks[g])
8 and marks[g][1]>k
9 then Add(fin,[StructureDescription(RepresentativeTom(t,g)),

marks[g]]);↪→

10 fi;
11 od;
12 return fin;
13 end;

Program Code 2.2: TestTom

corresponds to one transitive and faithful fixity-k action of G and has as a first entry
some information about the structure of the point stabiliser, that is the subgroup
corresponding to the row of the table of marks, and then a list of all non-zero entries
of the row in the table of marks follows. In particular, if an empty list is returned,
then G cannot act transitively, faithfully, and with fixity k on any set.

Since in GAP the trivial group always corresponds to the first row and column, the
first entry in every row is the size of the set on which G acts. By construction, the
table of marks contains information exactly about the transitive actions. Therefore
it remains to show that the program in Program Code 2.2 determines correctly the
faithful fixity-k actions among them. The beginning of the loop in line 5 ensures
that all rows of the table of marks are looked at. Line 6 checks that all entries in
a row, except the first one, which corresponds to the trivial group, are at most k.
Then line 7 tests whether or not k appears in the row, and line 8 tests whether or
not this occurrence is in the first entry. Hence, by Lemma 2.20 (d), G acts with
fixity k if all three conditions are satisfied. By Lemma 2.20 (c), G acts faithfully if
and only if all entries in a row are smaller than the first entry. This is checked by
line 8 in Program Code 2.2, because line 6 already tested that all entries except for
the first one are at most k. In particular, if G acts faithfully and with fixity k, then
the condition in line 8 is satisfied, and by Lemma 2.20 (d), the conditions in line 6
and 7 are additionally fulfilled. Therefore, the program executes line 9 if and only if
G acts faithfully and with fixity k on the cosets of G modulo the subgroup U that
corresponds to the row under consideration. Thus the resulting list only contains
entries of transitive and faithful fixity-k actions.

Computing all conjugacy classes of all subgroups can be quite computationally
expensive. Therefore it is useful that some of the tables of marks are already pre-
computed in the TomLib package [74]. The groups can be accessed by their names
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in the package AtlasRep [104]. This package contains information about most of the
finite simple groups, their coverings, and outer automorphism groups, which are also
part of [28]. The package [104] gives an interface to access this information and to
be able to compute with those groups.

Similarly to the function in Remark 2.18, the function in Remark 2.22 is not part
of GAP. Hence it has to be implemented before it can be used. Whenever one of
these functions is used in one of the examples or proofs, it will be referenced. In
the same way, normally, if a package is used, it is referenced but maybe some of the
package dependencies are not mentioned, because the referenced package contains
the information about its dependencies.

All other specificities in the context of the usage of GAP will be explained when
they appear.

24



3 Simple Groups

This chapter addresses the question which finite simple groups act transitively and
with fixity 4. The general strategy was developed by Barbara Baumeister, Kay
Magaard and Rebecca Waldecker. They analysed the Sylow 2- and Sylow 3-subgroup
structure of finite groups acting with fixity 4 in general before restricting to finite
simple groups. Their analysis reveals a case distinction (see Lemma 3.1) and is part
of [7]. Therefore, to prove Theorem 3.56, the classification of finite simple groups
acting transitively and with fixity 4, we have to consider each of these cases and
determine in each case all finite simple groups that fulfil the hypothesis of the case
and act with fixity 4.

The paper [7] contains, amongst the mentioned general analysis, the full classifi-
cation of finite simple groups that act transitively and with fixity 4. Many of the
cases were analysed by Patrick Salfeld and myself and some version of our proofs
became part of [7]. Therefore, the list of authors is Barbara Baumeister, myself, Kay
Magaard, Patrick Salfeld, and Rebecca Waldecker. The content of this chapter here
is my main contribution to the paper, in particular the analysis of the case that point
stabilisers have odd order divisible by 3, and the analysis of the case that the group
is a finite simple group of Lie type and the point stabilisers have order coprime to 6.
In the paper [7] the proofs stand in a greater context and were jointly rewritten. In
particular, they use far more details of the analysis of the Sylow 3-structure. In this
chapter here, the proofs are self-contained in the sense that except for Lemma 3.1
(respectively Theorem 1.2 in [7]) nothing else of [7] is needed.

Some of the proofs in this chapter are similar to the version in [7] and some differ
more. This is caused by the fact that the reader of the following sections is not
expected to have read and understood the analysis in [7]. The only result needed is
the following.

Lemma 3.1
Let G be a finite simple group that acts transitively and with fixity 4 on a set Ω.
Let P ∈ Syl3(G), let S ∈ Syl2(G), and let f denote the maximum number of fixed
points of involutions in G.

Then one of the following holds.

(1) f ≥ 1 and G has a strongly embedded subgroup.

(2) 1 ≤ f ≤ 3 and S is dihedral or semi-dihedral.

(3) f = 4 and G has sectional 2-rank at most 4.
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(4) The order of the point stabilisers is odd and divisible by 3. One of the following
occurs:

(a) G has a strongly 3-embedded subgroup.

(b) P is elementary abelian of order 9.

(c) P is extra-special of exponent 3 and order 27.

(d) P ∼= C3 ≀ C3.

(5) The point stabilisers have order coprime to 6.

Proof:
If G is abelian, then the point stabilisers of G are either trivial, contradicting
the assumption that G acts with fixity 4, or the whole group, contradicting the
transitivity of G. Consequently, G is non-abelian. Then Lemma 2.5 implies
that |Ω| ≥ 5, and hence, G acts faithfully on Ω. Therefore, the hypotheses of
Theorem 1.2 in [7] are fulfilled. If case (4) (b) in Theorem 1.2 in [7] holds, then
|P | = 3. Thus, P is cyclic and, as G is simple, Lemma 2.8 proves that G contains
a strongly 3-embedded subgroup. Hence, case (4) (a) holds. All other cases of
Theorem 1.2 in [7] correspond directly to one of the cases in this lemma.

In each case of the previous lemma we need as a first step a list of all simple groups
that fulfil the hypothesis of the case. In some cases, such as (1)-(3), there already
exists such a classification for finite simple groups. In other cases we first have to use
the classification of finite simple groups to obtain this list. Afterwards we have to
determine for every group of these lists whether or not the group can act transitively
and with fixity 4.

The case (3) of the previous lemma was analysed by Patrick Salfeld in his PhD
thesis [89]. Therefore, the remainder of this chapter deals with the remaining cases
before in Section 3.4 all parts are put together to prove Theorem 3.56.

3.1 Some Small Cases

Some groups appear in many cases of this strategy. Instead of dealing with them
separately in each case, we look at them once. This makes the later steps of the
classification much easier because these cases normally cause problems in general
results.

The families of groups we deal with in the next sections are PSL(2, q), PSL(3, q),
PSU(3, q), and Sz(q). All of them are of Lie type and act on a vector space of small
dimension. For each family of groups, we will determine all the fixity-4 actions in a
single lemma. In each lemma, the strategy will be quite similar to the general strategy
for proving the classification of finite simple groups acting with fixity 4. However,
some parts of the proofs are shorter because the groups are well understood and
therefore the arguments are more concrete.
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3.1.1 PSL(2,q)

In some sense PSL(2, q) is special. Since the subgroup structure is quite restricted,
many arguments can be used more directly than for other families of groups, and
therefore the proof can be structured differently. Additionally, this family has a quite
rich series of fixity-4 actions. However, the used arguments will again appear in later
proofs. Therefore it is useful to see them applied in Lemma 3.2, and thus a proof is
stated, even though Patrick Salfeld already analysed the situation for PSL(2, q) in
Lemma 2.19 and Lemma 2.30 in his PhD thesis [89]. His strategy differs from the
one presented here. Nevertheless, our proofs are highly influenced by each other, due
to the many conversations we had about the problem.

Lemma 3.2
Let q ≥ 4 be a prime power and let G = PSL(2, q). Suppose that G acts transitively
on a set Ω. Then G acts with fixity 4 on Ω if and only if one of the following holds.

(1) G = PSL(2, 7) and the point stabilisers are of type C2 or S3.

(2) G = PSL(2, 8) and the point stabilisers are of type C2, S3, D14, or D18.

(3) G = PSL(2, 9) and the point stabilisers are of type C2, S3, D10, E9, or E9 : C2.

(4) G = PSL(2, 11) and the point stabilisers are of type C3 or A4.

(5) G = PSL(2, 13) and the point stabilisers are of type C3, C13 : C3, or A4.

(6) q ≥ 17 is odd. If q ≡ 1 mod 4, then the point stabilisers are either cyclic of
order q−1

4 or the semi-direct product of an elementary abelian group of order q
with a cyclic group of order q−1

4 . If q ≡ −1 mod 4, then the point stabilisers
are cyclic of order q+1

4 .

Proof:
Using the GAP package TomLib [74] through the algorithm in Remark 2.22,
the answer to the following command proves the statement of the lemma for all
q ≤ 41.

List([4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41],
x->TestTom(TableOfMarks(Concatenation("L2(",String(x),")")),
4));

↪→

↪→

Therefore, throughout the rest of the proof, suppose that q ≥ 43.
The order of G is q · q2−1

gcd(2,q−1) . Detailed information about the subgroup
structure of G is stated in Hauptsatz II 8.27 in [54]. First we look at some more
properties of G.

Let p be the prime dividing q and let P ∈ Sylp(G). Then P is elementary
abelian of order q and, by Theorem 6.5.1 in [43], NG(P ) is a Frobenius group of
order q · q−1

gcd(2,q−1) . The Frobenius kernel of NG(P ) is P . If p = 2, then every non-
trivial element in NG(P ) of odd order lies in a Frobenius complement of NG(P ),
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hence does not centralise any element of P . Therefore, if p = 2, then for every
element t ∈ P , |tNG(P )| = |NG(P ) : CNG(P )(t)| =

q(q−1)
q = q − 1 = |P | − 1.

Thus, all non-trivial elements of P are conjugate. Hence, all involutions in G
are conjugate if p = 2.

By Satz II 8.5 in [54], a non-trivial element of G either lies in a Sylow p-sub-
group of G, in a cyclic group of order q−1

gcd(2,q−1) , or in a cyclic group of order
q+1

gcd(2,q−1) . Each of these groups is conjugate to all other groups of the same
order and any two different conjugates have trivial intersection. Let g ∈ G and
let ε ∈ {−1, 1} be such that the order of g divides q − ε. Then by Satz II 8.3
and Satz II 8.4 in [54], NG(⟨g⟩) is a dihedral group of order 2 · q−ε

gcd(2,q−1) .
All of these properties will be used without further reference.

For the first direction of the lemma, suppose that G acts with fixity 4 on Ω.
Let α ∈ Ω. We will make a case distinction depending on whether q and |Gα|
are coprime or not.

First suppose that q and |Gα| have a common prime divisor p. Let x ∈ Gα be
of order p. Let Q ∈ Sylp(G) be such that x ∈ Q and Qα ∈ Sylp(Gα). Then Q is
elementary abelian and therefore Q ≤ NG(⟨x⟩). By Lemma 2.13, this implies
that |Q : Qα| ≤ |NG(⟨x⟩) : NGα(⟨x⟩)| ≤ 4. Let f be a positive integer such that
pf = q. If p = 2, then the order of Gα is divisible by q

4 = 2f−2, and f ≥ 5 thus
f − 2 > f

2 . If p = 3, then the order of Gα is divisible by q
3 = 3f−1, and f ≥ 3

thus f − 1 > f
2 . Finally, if p ≥ 5, then the order of Gα is divisible by q. In

particular, |Qα| > pf/2 and |Qα| ≥ q
4 ≥ 43

4 > 10.
We now show that Gα cannot be a p-group. The strategy is different depend-

ing on whether q is even or odd.
Suppose that q is odd. Assume for a contradiction that Gα is a p-group.

Then there exists an element a ∈ Gα of order p with exactly four fixed points.
By Lemma 2.9, the number of fixed points of a is |{⟨a⟩g≤Gα|g∈G}|·|NG(⟨a⟩)|

|Gα| = 4.
Since |NG(⟨a⟩)| is divisible by q and since 4 is coprime to q, |Gα| is divisible
by q and hence Gα = Qα = Q. Then Lemma 2.13 gives the contradiction that
4 ≥ |NG(Q) : NGα(Q)| = q· q−1

2
q = q−1

2 ≥ 42
2 = 21. Hence, Gα is not a p-group if

q is odd.
Suppose that q is even. Since all involutions in PSL(2, q) are conjugate,

the size of {⟨x⟩g ≤ Qα | g ∈ G} is the number of involutions in Qα and
equals |Qα| − 1. Then Lemma 2.9 implies that the number of fixed points
of x is |{⟨x⟩g≤Gα|g∈G}|·|NG(⟨x⟩)|

|Gα| ≥ |{⟨x⟩g≤Qα|g∈G}|·|NG(⟨x⟩)|
|Gα| = (|Qα|−1)·|NG(⟨x⟩)|

|Gα| ≥
(|Qα|−1)·q

|Gα| . Since x fixes at most four points, |Gα| ≥ q·(|Qα|−1)
4 and since q ≥ 64,

it follows that |Gα| ≥ q·(|Qα|−1)
4 ≥ q ·

q
4
−1

4 ≥ q · 154 > q. Thus, the point stabilisers
cannot be p-groups.

Therefore the information about the order of Qα together with an inspection
of the list of subgroups of PSL(2, q) reveals that Gα is a subgroup of a Frobenius
group of order q · q−1

gcd(2,q−1) , hence, Gα itself is a Frobenius group. The Frobenius
kernel is Qα, the unique Sylow p-subgroup of Gα. Let y ∈ Gα have prime order
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and such that o(y) divides q−1
gcd(2,q−1) . Then by Lemma 2.11, the number of fixed

points of y is |Qα|·|NG(⟨y⟩)|
|Gα| =

|Qα|·2· q−1
gcd(2,q−1)

|Gα| . By Lemma 2.9, x fixes exactly
|{⟨x⟩g≤Gα|g∈G}|·|NG(⟨x⟩)|

|Gα| points. Since all p-elements of Gα lie in Qα, this number

coincides with |{⟨x⟩g≤Qα|g∈G}|·|NG(⟨x⟩)|
|Gα| . The number |{⟨x⟩g ≤ Qα | g ∈ G}| is

bounded above by the number of distinct subgroups of order p of Qα and the
order of NG(⟨x⟩) is bounded above by |CG(x)| · |Aut(⟨x⟩)| = q · (p − 1). Thus

x fixes at most
|Qα|−1
p−1

·q·(p−1)

|Gα| = q(|Qα|−1)
|Gα| points in Ω. Hence the number of fixed

points of x is at most the number of points that are fixed by y. Since the maximal
number of fixed points of non-trivial elements in Gα is reached by an element of
prime order, an element of prime order dividing q−1

gcd(2,q−1) fixes four points. By
the calculation above, it follows that |Gα| = |Qα| · q−1

2·gcd(2,q−1) . This implies that
q−1

2·gcd(2,q−1) is an integer. Thus, q is odd, more precisely, q ≡ 1 mod 4. Since Gα

is a Frobenius group with Frobenius kernel Qα, |Qα| ≡ 1 mod q−1
4 , implying

that |Qα| = q because q−1
4 ≥ 42

4 > 10, |Qα| ∈ {q, q2 ,
q
3 ,

q
4} and q ≡ 1 mod q−1

4 .
Hence, |Gα| = q · q−1

4 . This case is listed as part of statement (6). This finishes
the analysis in the case that q and |Gα| have a common prime factor.

Therefore now instead suppose that q and |Gα| are coprime. Then |Gα| divides
q2−1. Let x ∈ Gα be of prime order r such that x fixes exactly four points. Then
r divides q − 1 or q + 1. Let ε ∈ {−1, 1} be such that r divides q−ε

gcd(2,q−1) . The
normaliser of ⟨x⟩ is a dihedral group of order 2 · q−ε

gcd(2,q−1) . Let C be the cyclic
subgroup of order q−ε

gcd(2,q−1) of that normaliser. Then Lemma 2.13 yield that
|C : Cα| ≤ |NG(⟨x⟩) : NGα(⟨x⟩)| ≤ 4. Hence, Gα contains a cyclic subgroup of
order at least q−ε

4·gcd(2,q−1) ≥
42
8 > 5. Since |Gα| and q are coprime, an inspection

of the list of subgroups of G shows that Gα either is cyclic of order dividing
q−ε

gcd(2,q−1) or a dihedral group.
For a contradiction, assume that Gα is a dihedral group. Then there is an

involution t ∈ Gα outside the cyclic subgroup Cα of Gα. Since |Gα| and q
are coprime, this implies that q is odd. Then t lies in a cyclic group D of
order q−δ

2 , where δ ∈ {−1, 1}. Thus, D has trivial intersection with Cα because
otherwise Cα ≤ D and hence C = D contradicting the fact that t /∈ Cα = Dα.
Therefore, by Lemma 2.13, |D : Dα| ≤ |NG(t) : NGα(t)| ≤ 4. On the other
hand, |D : Dα| = |D|

2 = q−δ
4 ≥ 42

4 > 4. This contradiction shows that Gα is not
a dihedral group.

Therefore Gα is cyclic. Then by Corollary 2.10, the number of fixed points

of a non-trivial element c of Gα is |NG(⟨c⟩)|
|Gα| =

2· q−ε
gcd(2,q−1)

|Gα| . Since Gα contains
non-trivial elements that fix exactly four points, now every element in Gα fixes
exactly four points and |Gα| = q−ε

2·gcd(2,q−1) . Since q − ε is only divisible by 2 if
q is odd, gcd(2, q − 1) = 2 and hence |Gα| = q−ε

4 . Thus, q − ε is divisible by 4
and hence q ≡ ε mod 4. This case is listed as part of statement (6).
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For the other direction of the lemma, suppose that q is odd. First suppose
that q ≡ 1 mod 4 and suppose that U ≤ G is the semi-direct product of an
elementary abelian group K of order q with a cyclic group of order q−1

4 . Then
U is a Frobenius group with Frobenius kernel K. Let x ∈ U be non-trivial.
Since all powers of x fix the same points as x, in order to identify the fixity with
which G is acting on G/U , it suffices to determine the number of fixed points
of all elements of U that have prime order. Let u ∈ U be of prime order r. If
r divides q, then u ∈ K. Let y ∈ G be such that Uy ∈ G/U is fixed by u.
Then uy

−1 ∈ U is an r-element, and hence uy−1 ∈ K. Thus, u ∈ K ∩ Ky.
Since different conjugates of K have trivial intersection, y ∈ NG(K). Thus,

u fixes at most |NG(K)|
|U | =

q· q−1
2

q· q−1
4

= 2 points in G/U . If r does not divide q,
then r divides q − 1 and by Lemma 2.11, the number of fixed points of u is
|K|·|NG(u)|

|U | =
q·2· q−1

2

q· q−1
4

= 4. Thus, G acts with fixity 4 on G/U .

Therefore, now suppose that there exists ε ∈ {−1, 1} such that U is cyclic
of order q−ε

4 . Let x ∈ U . By Lemma 2.10, the number of fixed points of x is
|NG(⟨x⟩)|

|U | =
2· q−1

2
q−1
4

= 4 and hence G acts with fixity 4 on G/U . This finishes the
proof.

3.1.2 PSL(3,q) and PSU(3,q)

The groups PSL(3, q) and PSU(3, q) have a lot of structural properties in common.
Thus, instead of dealing with them separately, we look at their possible fixity-4
actions simultaneously and only distinguish at certain parts of the proof when their
structures differ. We will see that, with the exception of PSL(3, 2) ∼= PSL(2, 7) and
PSU(3, 3), none of the simple groups PSLε(3, q) exhibits a fixity-4 action.

For the special case that an involution fixes exactly four points, Patrick Salfeld
states in Lemma 2.21 in [89] that PSU(3, 2f ) cannot act with fixity 4 under this
hypothesis if f ≥ 2. His proof is a specialisation of the strategy of the first part of
the analysis in Lemma 3.4. In his Section 2.4, he also analysed for every odd prime
power q whether PSLε(3, q) can act with fixity 4 and such that involutions fix exactly
four points. His approach is more general and written in the context of simple groups
of Lie type in odd characteristic. For the purpose of Lemma 3.4, we can use a more
direct approach, using the structure information about PSLε(3, q) and analysing all
fixity-4 actions without restriction on the number of fixed points of involutions.

Since PSL(3, 2) ∼= PSL(2, 7) was dealt with in the previous section and since
PSU(3, 2) is not simple, the analysis in Lemma 3.4 is restricted to q ≥ 3.

However, first we need some properties of PSLε(3, q) regarding elements of order 3,
when 3 divides q − ε.

Lemma 3.3
Let q ≥ 2 be a prime power, let ε ∈ {−1, 1} be such that 3 divides q − ε, and let
G = PSLε(3, q). If g ∈ G has order 3, then |NG(⟨g⟩)| is even.
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Proof:
Since 3 divides q− ε, |Z(SLε(3, q))| = gcd(3, q− ε) = 3. We will use the generic
character table of PSLε(3, q), see Table 2 in [93] with the notation given there
in Section 7. Then δ = ε, d = 3, r = q − ε, r′ = q−ε

3 , s = q + ε, t = q2 + εq + 1,
and t′ = q2+εq+1

3 . In particular, t′ is not divisible by 3. For every conjugacy
class of G a representative in SLε(3, q) is given in Table 2 in [93]. We will now
go through the conjugacy classes of G and determine if they contain elements
of order 3 and if they do, we will also look at the order of the normaliser in G.

The conjugacy class C1 contains only the trivial element. Since 3 does not
divide q, the third power of the representative of conjugacy class C2 does not
lie in Z(SLε(3, q)). The same is true for the representatives of the conjugacy
classes C(k)

3 . Therefore neither C1, C2 nor C(k)
3 contain elements of order 3 of G.

The centraliser order of elements of the conjugacy classes C(k)
4 is qr′rs =

r′q(q − ε)(q + ε), an even number. Thus, for every element g contained in one
of these conjugacy classes, |NG(⟨g⟩)| is even.

For the representatives of the conjugacy classes C(k)
5 , their third power lies

outside of Z(SLε(3, q)), again implying that C(k)
5 does not contain elements of

order 3 of G.

The subgroup generated by the representative

1 0 0
0 ω 0
0 0 ω2

 of the conjugacy

class C′
6 where ω is a primitive third root of unity is normalised by the involution−1 0 0

0 0 ω
0 ω2 0

 ∈ SLε(3, q) \ Z(SLε(3, q)). Hence, for every g ∈ C′
6 the order of

NG(⟨g⟩) is even.

The matrix

ρk 0 0
0 ρl 0
0 0 ρm

 where ρ is a primitive r-th root of unity is a

representative of conjugacy class C(k,l,m)
6 . The third power is in Z(SLε(3, q)) if

and only if ρ3k = ρ3l = ρ3m, thus if r divides 3k − 3l. This is the case when
r′ = r

3 divides k− l, but this is not possible by the condition that 1 ≤ k < l ≤ r′.
Therefore, the conjugacy classes C(k,l,m)

6 do not contain elements of order 3 of G.
The third power of an element in the conjugacy class C(k)

7 is described by the

matrix

ρ3k 0 0
0 σ−3εk 0
0 0 σ−3qk

 where σ is a primitive rs-th root of unity and

ρ is again a primitive r-th root of unity. If this element is in Z(SLε(3, q)), then
σ−9εk = 1, and hence rs divides 9k. Since s is not divisible by 3, this implies
that s must divide k contradicting the condition that k ̸≡ 0 mod s. Therefore,
the conjugacy classes C(k)

7 do not contain elements of order 3.
The remaining classes C(k)

8 contain elements with centraliser order t′. Since t′

is not divisible by 3, they do not contain elements of order 3.
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As a result, either a conjugacy class does not contain elements of order 3 or
the normaliser of every element of the conjugacy class in G has even order.

Lemma 3.4
Let q ≥ 3 be a prime power, let ε ∈ {−1, 1}, and let G = PSLε(3, q). Suppose
that G acts transitively on a set Ω. Then G acts with fixity 4 on Ω if and only if
G = PSU(3, 3) and the point stabilisers are of type (E9 : C3) : C8.
Proof:

Using the GAP package TomLib [74] through the algorithm in Remark 2.22, the
answers to the following commands prove the statement of the lemma for all
q ≤ 11.
List([3,4,5,7,8,9,11], x->TestTom(

TableOfMarks(Concatenation("L3(",String(x),")")), 4 ));↪→

List([3,4,5,7,8,9,11], x->TestTom(
TableOfMarks(Concatenation("U3(",String(x),")")), 4 ));↪→

Therefore, throughout the rest of the proof, suppose that q ≥ 13.
We first collect some information about G that will be useful throughout

the proof. The order of G is q3 · (q2 + εq + 1)(q + ε) · (q−ε)2

gcd(3,q−ε) and the
maximal subgroups of SLε(3, q) are classified in Tables 8.3, 8.4, 8.5, and 8.6
in [15] including the errata. If q is odd, then also q2 + εq + 1 is odd. Since
|Z(SLε(3, q))| = gcd(3, q− ε) is odd, the Sylow 2-subgroups of G are isomorphic
to the Sylow 2-subgroups of GLε(2, q).

Let p be the prime dividing q. Then the Sylow p-subgroups of G have order q3

and contain a normal elementary abelian subgroup of order q with elementary
abelian factor group. Together with the information on page 67 in [105] and
calculations in SL(3, q), this implies that the centre of a Sylow p-subgroup of G
has order q.

To prove the lemma for q ≥ 13, assume for a contradiction that G acts with
fixity 4 on Ω. Let α ∈ Ω. We will first see that Gα has odd order before further
analysing the prime divisors of |G| that could possibly divide |Gα|.

Assume for a first contradiction that Gα has even order. Let t ∈ Gα be an
involution.

The analysis now depends on whether q is even or odd. First suppose that q
is even. Since Gα has even order, one of the cases (1)-(3) in Lemma 3.1 holds.
In case (1), Satz 1 in [11] implies that G = PSU(3, q). Theorem 2 in [45] and
the Third Main Theorem in [1] yield that case (2) does not hold under the
hypothesis that q is even and the Main Theorem in [40] shows that case (3)
is not possible for all even q ≥ 13. As a consequence, G = PSU(3, q) and
G has a strongly embedded subgroup. Let f be a positive integer such that
q = 2f . Let T ∈ Syl2(G) be such that Tα ∈ Syl2(Gα) and such that t ∈ Tα.
Then by statement (4) on page 535 in [11], t ∈ Z(T ). Since t has at most 4
fixed points, 4 ≥ |CT (t) : CTα(t)| = |T : Tα|. Hence, |Tα| is either |T | = q3,
|T |
2 = q3

2 = 23f−1, or |T |
4 = q3

4 = 23f−2. Thus, the order of Gα is divisible
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by q3

4 ≥ 210. An inspection of the maximal subgroups of SU(3, q) reveals that
Gα lies in a maximal subgroup M that has a full pre-image in SU(3, q) of type
[q3] : Cq2−1. Let I be the set of all involutions of G. Assume for a contradiction
that NG(T ) contains I. Then ⟨I⟩ ≤ NG(T ). Since G is simple and ⟨I⟩ is a
normal non-trivial subgroup of G, this implies that ⟨I⟩ = G. Thus, NG(T ) = G
but then T ⊴ G and this contradicts the fact that G is simple. Therefore, the
assumption was incorrect and there exists an involution s of G outside of NG(T ).
By statement (6) on page 534 in [11], |CG(s)| is divisible by q+1

gcd(3,q+1) .
Since by Lemma 4.1 (i) in [11], all involutions in G are conjugate, there exists

h ∈ G such that s = th ∈ (Gα)
h = Gαh . Let β = αh. Then s ∈ Gβ . Since

G acts with fixity 4, the element s has at most 4 fixed points, and therefore
|CG(s) : CGβ (s)| ≤ 4. The order of CG(s) is divisible by q+1

gcd(3,q+1) and since
q = 2f , this number is odd and only divisible by 3 if q + 1 is divisible by 9.
Thus, |CGβ (s)| is divisible by q+1

gcd(9,q+1) , and hence |Gβ| = |Gα| is divisible
by q+1

gcd(9,q+1) > 4.
If q+1

gcd(9,q+1) were a 3-power, then Lemma 2.12 would yield that f ∈ {1, 3},
implying q ∈ {2, 8}. Since we suppose that q ≥ 13, q+1

gcd(9,q+1) is not a 3-power.
Since q+1

gcd(9,q+1) is odd, it must be divisible by a prime greater than 3.
Let r ≥ 5 be a prime that divides q + 1 and |Gα|. Then Gα contains a Sylow

r-subgroup of G. Let k be the greatest positive integer such that rk divides the
order of Gα. Since |Gα| divides |M | = q3(q + 1) (q−1)

gcd(3,q+1) and since q, q − 1,
and 3 are coprime to r, it follows that rk is a divisor of q + 1. Then the fact
that |G| = q3 · (q2 − q + 1)(q − 1) · (q+1)2

gcd(3,q+1) implies that r2k is a divisor of |G|
and, as a consequence, Sylow r-subgroups of G have order at least r2k. This
contradicts the fact that Gα contains a Sylow r-subgroup. Therefore, G cannot
be PSU(3, 2f ). This was the last remaining option in the case that q is even.

Therefore suppose instead that q is odd. Then, by our observation above, the
2-rank of G equals the 2-rank of GLε(2, q) and by [26] pp. 142-143 the latter
is 2. Hence, the hypothesis of Proposition 2.1 in [44] is fulfilled. Therefore, all
involutions in G are conjugate, thus t lies inside the centre of a group U that
has a full pre-image in SLε(3, q) isomorphic to GLε(2, q). As a consequence,
|CG(t)| is divisible by q·(q−ε)2·(q+ε)

gcd(3,q−ε) . Since |CG(t) : CGα(t)| ≤ 4 and q
4 > 2, this

implies that there exists an element x ∈ Gα of order p such that p divides q.
Let Q ∈ Sylp(G) be such that x ∈ Q. Then Z(Q) ≤ CG(x) and hence |Z(Q) :
Z(Q) ∩ Gα| ≤ |CG(x) : CGα(x)| ≤ 4. Thus, the fact that |Z(Q)| = q implies
that Z(Q) ∩ Gα contains a non-trivial element z. Then Q ≤ CG(z) and hence
|Q : Qα| ≤ |CG(z) : CGα(z)| ≤ 4. As a consequence, Gα is divisible by q3

gcd(3,q) ,

because q is odd. Since |Gα| is also divisible by q·(q−ε)2·(q+ε)
gcd(3,q−ε) and q ≥ 13, an

inspection of the maximal subgroups of SLε(3, q) shows that G = PSL(3, q) and
that Gα lies in a maximal subgroup M that has a full pre-image in SL(3, q) of
type Eq2 : GL(2, q). Let E ≤M be the normal elementary abelian subgroup of
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order q2. Since |Qα| > q2, there exists a complement L of E in M that has non-
trivial intersection with Qα. Thus, there exists a non-trivial element a ∈ Qα∩L.
Since a acts non-trivially on E, |CE(a)| = q, and therefore the p-part of |CM (a)|
is q2. Since Z(L) ≤ CM (a), |CM (a)| is divisible by q−1

gcd(3,q−1) . By Table 2 in [93],
all non-trivial elements with a centraliser in G of order divisible by q2 · q−1

gcd(3,q−1)

have centraliser order q3 · q−1
gcd(3,q−1) . Thus, |CG(a)| = q3 · q−1

gcd(3,q−1) . Since
CGα(a) ≤ CM (a), it follows that q divides |CG(a) : CGα(a)|, contradicting
Lemma 2.13. Consequently, the last remaining option under the assumption
that Gα has even order is impossible. This implies that |Gα| is odd.

The order of Gα is divisible by a prime dividing at least one of the numbers
q− ε, q+ ε, q or q2+ εq+1. We will eliminate each of the possibilities one after
another.

First suppose that there exists an element x in Gα of prime order r such that
r divides q − ε. As a first step in this case, we will see that Gα contains a
Sylow r-subgroup. If r ≥ 5, this is already proven in Lemma 2.14. Therefore
suppose that r = 3. Let P be a Sylow 3-subgroup of G containing x. Since
|G| = q3 · (q2+ εq+1)(q+ ε) · (q−ε)2

gcd(3,q−ε) and q2+ εq+1 is divisible by 3, |P | ≥ 9.
Either x ∈ Z(P ) or ⟨x,Z(P )⟩ is of order at least 9. In both cases CG(x) is
divisible by 9. Then Lemma 3.3 implies that |NG(⟨x⟩)| is divisible by 18. Since
|NG(⟨x⟩) : NGα(⟨x⟩)| ≤ 4 and |Gα| is odd, this means that Gα contains a Sylow
3-subgroup of G because otherwise the index would be divisible by 3 and 2.
Therefore, the point stabiliser Gα contains a Sylow r-subgroup even if r = 3.

Then an inspection of the list of maximal subgroups of SLε(3, q) yields that
Gα contains an r-element u in the centre of a subgroup U whose pre-image in
SLε(3, q) is of type GLε(2, q). Hence, U ≤ CG(u) and |CG(u)| is divisible by
q·(q−ε)2·(q+ε)

gcd(3,q−ε) . If q is even, then q ≥ 16 and if q is odd, then (q − ε)(q + ε) is
divisible by 8. Thus, in both cases |CG(u)| is divisible by 8, and since |Gα| is
odd, this contradicts the fact that |CG(u) : CGα(u)| ≤ 4. This contradiction
shows that |Gα| and q − ε are coprime.

Next suppose that there exists an element x in Gα of prime order r such that
r divides q+ε. If r ≥ 5, then Lemma 2.14 again yields that Gα contains a Sylow
r-subgroup and, consequently, an r-element b in a subgroup U whose pre-image
in SLε(3, q) is of type GLε(2, q). If r = 3, then (10-2) in [41] shows that G has
cyclic Sylow 3-subgroups. Since all Sylow 3-subgroups are conjugate and each of
them only has one subgroup of order 3, this implies that all subgroups of order 3
are conjugate in G. Thus, Gα contains a 3-element b in a maximal subgroup U
whose pre-image in SLε(3, q) is of type GLε(2, q). Then in both cases |CG(b)|
is divisible by (q−ε)

gcd(3,q−ε) and hence the facts that |CG(b) : CGα(b)| ≤ 4 and that
|Gα| and q − ε are coprime yield that 13 − ε ≤ q − ε ≤ 4 · gcd(3, q − ε) ≤ 12.
As a consequence, q = 13 and G = PSL(3, 13). Then r = 7 and the GAP code
Order(Normalizer(PSL(3,13),SylowSubgroup(PSL(3,13),7))); implies that
|N(⟨b⟩)| is divisible by 16. This is a contradiction to the facts that |Gα| is odd
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and that |NG(⟨b⟩) : NGα(⟨b⟩)| ≤ 4. Therefore, |Gα| and (q − ε) · (q + ε) are
coprime.

Now suppose that there exists an element x in Gα of prime order r such that r
divides q. If r ≥ 5, then by Lemma 2.14, Gα contains a Sylow r-subgroupQ ofG.
SinceQ lies in a subgroup whose pre-image in SLε(3, q) is of order q3·(q−1)·(q−ε)
and has a normal subgroup of order q3, |NG(Q)| is divisible by (q−1)·(q−ε)

gcd(3,q−ε) > 4.
This is a contradiction to Lemma 2.13 and the fact that |Gα| is coprime to
(q − ε) · (q + ε). Thus, r = 3 and q ≥ 27. Let Q ∈ Sylr(G) be such that x ∈ Q.
Then |Z(Q) : Z(Q) ∩ Gα| ≤ |CG(x) : CGα(x)| ≤ 4, and since |Z(Q)| = q,
Z(Q) ∩Gα contains a non-trivial element z. Thus |C(z)| is divisible by q3, and
hence Table 2 in [93] implies that |C(z)| is in fact divisible by q3 · q−ε

gcd(3,q−ε) . Since
(q−ε)

gcd(3,q−ε) ≥ 26, the fact that |CG(z) : CGα(z)| ≤ 4 yields that Gα contains an
element of order dividing q − ε, which has proven to be impossible. Therefore,
|Gα| and q · (q − ε) · (q + ε) are coprime. In particular, |Gα| divides q2 + εq + 1
and since one of the numbers q, q− ε, and q+ ε is divisible by 3, it follows that
|Gα| is coprime to 6.

Let x ∈ Gα be of prime order r and such that x fixes exactly four points.
Then r divides q2+ εq+1. Since SLε(3, q) contains a maximal subgroup of type
Cq2+εq+1 : C3 and the image of this group in G contains a Sylow r-subgroup,
x lies in a cyclic subgroup C ≤ G of order q2+εq+1

gcd(3,q−ε) where |NG(C)| = q2+εq+1
gcd(3,q−ε) ·3

because r ≥ 5. Since ⟨x⟩ is a characteristic subgroup of C, it follows that
|NG(⟨x⟩)| is divisible by q2+εq+1

gcd(3,q−ε) · 3. Therefore, Lemma 2.9 implies that the

number of fixed points of x is divisible by |NG(⟨x⟩)|
|Gα| . Since |Gα| is not divisi-

ble by 3, the number of fixed points of x is divisible by 3, contradicting the
assumption that x has exactly 4 fixed points, completing the proof.

3.1.3 Sz(q)

The last family of groups we look at are the Suzuki groups Sz(q). Here we will again
see that it is helpful to separate the analysis according to whether point stabilisers
have even order, odd order divisible by 3, or order coprime to 6. Since the orders
of the Suzuki groups are coprime to 3, the case that point stabiliser have odd order
divisible by 3 will not occur. This makes our analysis easier. Again Patrick Salfeld
considered in [89] the situation for Sz(q) under the additional hypothesis that an
involution fixes exactly four points. The proof presented in Lemma 3.5 here differs
from the one of Lemma 2.23 in [89] because the arguments are chosen in a way such
that they do not depend on the knowledge of the number of points that are fixed by
involutions.

Lemma 3.5
Let n be a positive integer, let q = 22n+1, and let G = Sz(q). Suppose that G acts
transitively on a set Ω. Then G acts with fixity 4 on Ω if and only if the point
stabilisers are cyclic of order q +

√
2q + 1 or of order q −

√
2q + 1.
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Proof:
Information about the maximal subgroups is stated in Theorem 4.1 in [105] and
in Theorem 6.5.4 in [43] and will be used without further reference. The order
of G is (q2 + 1)q2(q − 1) (see p. 117 in [105]). In particular, Sylow 2-subgroups
have order q2, and since q = 22n+1, |G| is not divisible by 3. Using the GAP
package TomLib [74] through the algorithm in Remark 2.22, the answer to the
command TestTom(TableOfMarks("Sz(8)"),4); proves the statement of the
lemma if q = 8. Therefore, throughout the rest of the proof, suppose that
q ≥ 32.

For the first direction, additionally suppose that G acts with fixity 4 on Ω.
Let α ∈ Ω.

As a first step, we will see that Gα has odd order. Assume for a contradiction
that |Gα| is even. Let T ∈ Syl2(G) be such that Tα ∈ Syl2(Gα). Let t ∈ Tα be
an involution. Then t ∈ Ω1(T ). By Theorem 2.4 (c) in [99], Ω1(T ) = Z(T ) is
elementary abelian of order q, and by part (d), NG(T ) acts transitively on the
set of involutions of T . The first part implies, together with Theorem 2.4 (e)
in [99], that T = CG(t) and the second part implies that all involutions in G are
conjugate.

By Lemma 2.13, |T : Tα| = |CG(t) : CGα(t)| ≤ 4, hence, |Tα| is divisible
by q2

4 . By Lemma 2.9, the number of fixed points of t is |{⟨t⟩g≤Gα|g∈G}|·|NG(⟨t⟩)|
|Gα| .

Since |{⟨t⟩g ≤ Gα | g ∈ G}| is the number of involutions in Gα, it is at least
the number of involutions in Tα. Thus, |{⟨t⟩g ≤ Gα | g ∈ G}| ≥ q

4 − 1. Since

NG(⟨t⟩) = CG(t) = T , it follows that 4 ≥ | fixΩ(t)| ≥
( q
4
−1)·q2
|Gα| . If Gα were a 2-

group, then |Gα| ≤ q2 and hence 4 ≥ q
4−1 ≥ 32

4 −1 would imply a contradiction.
Therefore, Gα contains an element y ∈ Gα of odd order. Since Tα ≤ Gα has
order divisible by q2

4 = 22(2n+1)−2, Gα does not lie in a maximal subgroup
isomorphic to Sz(22m+1) where m is a non-negative integer such that 2n+1

2m+1 is
a prime r, because otherwise 2m + 1 ≥ 2(2n + 1) − 2 = 2r(2m + 1) − 2 and
hence 2 ≥ 2(r − 1)(2m+ 1), contradicting the observation that r must be odd.
Thus, Gα lies in a Frobenius group of order q2(q−1) with Frobenius kernel K of
order q2 and cyclic Frobenius complements (see Theorem 2.4 (d) in [99]). Then
Tα ≤ K, more precisely Tα = Kα by the choice of T . Hence, there exists an
integer c dividing q − 1 such that |Gα| = |Tα| · c. Since y has odd order, o(y)
divides c and y lies in a cyclic Frobenius complement. In particular, Gα is itself
a Frobenius group with Frobenius kernel Tα by 4.1.8 in [65]. Then Lemma 2.11
shows that y has exactly |Tα|·|NG(⟨y⟩)|

|Gα| fixed points. Since o(y) does not divide
q2 + 1, y lies maximal subgroup that is a dihedral group of order 2(q − 1). It
follows that |NG(⟨y⟩)| = 2 · (q−1). Then y has exactly |Tα|·2(q−1)

|Tα|·c = 2(q−1)
c fixed

points. Since c is odd and y fixes at least one and at most four points, c = q− 1
and y fixes exactly two points.

Therefore, |Tα| ≡ 1 mod q − 1 and hence |Tα| = q2 because q > 5. This
implies that |Gα| = q2(q − 1) and that T = Tα ⊴ Gα. As a consequence, all
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involutions in Gα lie in T , hence Gα has q − 1 involutions. Thus, the number
of fixed points of t is |{⟨t⟩g≤Gα|g∈G}|·|NG(⟨t⟩)|

|Gα| = (q−1)·q2
q2(q−1)

= 1. Since G acts with
fixity 4, there exists an element x ∈ Gα with four fixed points. If x has even
order, then a power of x is an involution, and hence, conjugate to t, but then it
can fix only one point and hence x can fix at most one point. If x is odd, then
x lies in a Frobenius complement and has exactly |Tα|·|NG(⟨x⟩)|

|Gα| = q2·2(q−1)
q2(q−1)

= 2

fixed points. Since x has either even or odd order, this is a contradiction. As a
result, the assumption that |Gα| is even was wrong.

This means that Gα has odd order and there exists an element x ∈ Gα of odd
prime order p that fixes exactly four points.

The three numbers (q+
√
2q+1), (q−

√
2q+1) and q−1 are pairwise coprime.

Let M0 be a maximal subgroup of G that is dihedral of order 2(q − 1) with a
cyclic subgroup C0 of order q−1 and for every ε ∈ {−1, 1} let Mε be a maximal
subgroup of order 4(q + ε

√
2q + 1) with a cyclic normal subgroup Cε of order

q+ε
√
2q+1. Each of the maximal subgroups M0,M−1,M+1 either has a trivial

Sylow p-subgroup or C0, C−1, C1, respectively, contains a Sylow p-subgroup
of G and, consequently, an element a conjugate to x. Then there exists β ∈ Ω
such that a ∈ Gβ because G acts transitively on Ω.

Assume for a contradiction that p divides q − 1. Since ⟨a⟩ charC0 ⊴ M0 and
M0 is a maximal subgroup of the simple group G, it follows that NG(⟨a⟩) =M0.
Then |M0 :M0 ∩Gβ| = |NG(⟨a⟩) : NGβ (⟨a⟩)| ≤ 4 and q − 1 is odd and coprime
to 3 because |G| is coprime to 3. Since |M0| is divisible by q − 1, the inequality
above implies that |Gβ| is divisible by q−1. An inspection of the list of maximal
subgroups shows that the only subgroups of G of odd order divisible by q−1 are
cyclic of order q − 1. Hence |Gα| = |Gβ| = q − 1. Since x has order p and four
fixed points, 4 ≡ |Ω| ≡ |G/Gα| ≡ q2(q2+1)(q−1)

q−1 ≡ q2(q2 + 1) ≡ 12 · (12 + 1) ≡ 2
mod p. Since p ≥ 5, this is a contradiction.

Therefore, there exists ε ∈ {−1, 1} such that p divides q + ε
√
2q + 1. Sim-

ilar to the previous case the facts that ⟨a⟩ charCε ⊴ Mε and that Mε is a
maximal subgroup of the simple group G implies that NG(⟨a⟩) = Mε. Then
4 ≥ |NG(⟨a⟩) : NGβ (⟨a⟩)| = |Mε : Mε ∩ Gβ| = (q+ε

√
2q+1)·4

|Mε∩Gβ | . Since |Gβ| is odd,
this yields that |Mε∩Gβ| = q+ε

√
2q+1. Thus, Gβ is divisible by q+ε

√
2q+1.

Since the only subgroups of G of odd order divisible by q + ε
√
2q + 1 are cyclic

of order q + ε
√
2q + 1, this implies the statement of the lemma.

For the other direction let ε ∈ {−1, 1} and U ≤ G be such that U is a
cyclic group of order q + ε

√
2q + 1. Then G acts transitively on the cosets of

G/U by right multiplication. Let x ∈ U be non-trivial. Let z ∈ ⟨x⟩ be of
prime order. Then the order of z divides q + ε

√
2q + 1. Therefore, G has a

maximal subgroup M of order 4(q+ ε
√
2q+1) with a cyclic normal subgroup C

of order q + ε
√
2q + 1 containing a Sylow o(z)-subgroup and, consequently, a

conjugate b of z. Then ⟨b⟩ charC ⊴M implies that M ≤ NG(⟨b⟩), and since M
is a maximal subgroup of the simple group G, this means that NG(⟨b⟩) = M .
Hence, |NG(⟨z⟩)| = |M | = 4(q + ε

√
2q + 1).
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Thus, by Lemma 2.10, the element z has exactly |NG(⟨z⟩)|
|U | = (q+ε

√
2q+1)·4

q+ε
√
2q+1

= 4

fixed points. Since all elements fixed by x are also fixed by z, the number of
fixed points of x is at most 4. Therefore, G acts on G/U transitively and with
fixity 4.

3.2 The Case that Point Stabilisers have Odd Order
Divisible by 3

We now look at case (4) of Lemma 3.1, namely at the situation that the order of a
point stabiliser is odd and divisible by 3. Lemma 3.1 states that then one of four
sub-cases holds. We will look at each of them separately.

The description of these sub-cases is in terms of some properties of the group G
and not of its action. Thus, we will first collect most of the information about the
Sylow 3-subgroup structure of finite simple groups that will us enable to determine
which finite simple groups fulfil the requirements of the sub-cases (a)-(d). For this
we will make use of the classification of finite simple groups. Afterwards in each case,
we investigate for each of the remaining groups whether or not these groups can act
transitively, with fixity 4, and such that a point stabiliser has odd order divisible
by 3 on some set.

However, beforehand we need some information about the 3-structure of SLε(3, q)
that will us enable to determine the Sylow 3-subgroup structure of PSLε(3, q). Fur-
thermore the next lemma also contains some statements that will be of use in the
analysis of the fixity-4 action of the family G2(q), which will come up in the case
that the Sylow 3-subgroups are extra-special of order 27.

Lemma 3.6
Let q be a prime power and let ε ∈ {−1, 1} be such that q ≡ ε mod 3. Let G =
SLε(3, q) and let P ∈ Syl3(G). Then Z(P ) = Z(G). If |q − ε|3 = 1, then for all
non-trivial h ∈ P , the order of h is 3 and |NG(⟨h⟩)| is divisible by 2|q−ε|2+1.
Proof:

Since 3 divides q − ε, it follows that |Z(SLε(3, q))| = gcd(3, q − ε) = 3. We
will use the generic character table of SLε(3, q), see Table 1a in [93] with the
notation given there in Section 7. Then δ = ε, d = 3, r = q − ε, s = q + ε, and
t = q2+εq+1. In Table 1a in [93], for every conjugacy class of G a representative
is given.

The information about the centraliser orders imply that central elements are
only contained in the conjugacy classes C(0)

1 , C(1)
1 , and C(2)

1 . Since none of the
other centraliser orders is divisible by 33 (or r2t), the central elements of G are
the only elements in the centre of P . Thus, Z(P ) = Z(G) and for all non-trivial
h ∈ Z(P ), the order of h is 3 and |NG(⟨h⟩)| is divisible by 2|q−ε|2+1.

From now on suppose that |q − ε|3 = 1. Let h ∈ P \ Z(G). Then the order of
CG(h) ≥ ⟨h⟩Z(G) is divisible by 9.
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3.2 The Case that Point Stabilisers have Odd Order Divisible by 3

By Table 1a in [93], h is in one of the conjugacy classes C(k)
4 or C(k,l,m)

6 . If
there exists a positive integer k < r such that k ̸≡ 0 mod r

3 and such that h is

in C(k)
4 , then h is conjugate to

ρk 0 0
0 ρk 0
0 0 ρ−2k

 where ρ is a primitive r-th root

of unity. Thus, hr is the identity matrix. Since |r|3 = 1, h has order at most 3.
Furthermore Table 1a in [93] implies that then |CG(h)| is divisible by qr2s, and
hence by 2|q−ε|2+1. Thus, the lemma holds in this case.

Therefore suppose that there exist positive integers k, l, and m, such that
k < l < m ≤ r, such that k+ l+m ≡ 0 mod r and such that h is an element of

the conjugacy class C(k,l,m)
6 . Then h is conjugate to a :=

ρk 0 0
0 ρl 0
0 0 ρm

 where ρ

is a primitive r-th root of unity. Since ar is the identity matrix and since |r|3 = 1,
h has order at most 3. More precisely, the third power of a is the identity matrix
if and only if ρ3k = ρ3l = ρ3m = 1. Since 1 ≤ k < l < m ≤ r and |r|3 = 1, this
implies that k = r

3 , l =
2r
3 , and m = r. Furthermore Table 1a in [93] implies

that then |CG(h)| is divisible by r2, and hence by 2|q−ε|2+1 if q is odd. Therefore

assume that q is even. Then the involution t :=

0 1 0
1 0 0
0 0 1

 ∈ GLε(3, q) that

inverts a has determinant 1. Therefore t ∈ SLε(3, q) = G, and hence NG(⟨h⟩)
contains an involution. Thus the lemma follows.

For the description of the Sylow 3-subgroup structure of finite simple groups, we
recall that for a positive integer n and a prime p, |n|p denotes the highest positive
integer such that n is divisible by p|n|p .

Lemma 3.7
Let G be a finite simple group, let P ∈ Syl3(G), and let k be a non-negative integer
such that |P | = 3k. Then k and the r-rank of G are as stated in Table 3.1, where
ε ∈ {−1, 1}, p is a prime, n and f are positive integers, and q = pf .
Proof:

We use the classification theorem of finite simple groups (see page 3 in [105]).
If G is cyclic, then the statement of the lemma follows directly.

Suppose that G is an alternating group. Then |G| = n!
2 . If G = A5, then

G has cyclic Sylow 3-subgroups of order 3. If G is A6, A7, or A8, then a
Sylow 3-subgroup of G is ⟨(1, 2, 3), (4, 5, 6)⟩ and we can derive the numbers in
Table 3.1 from this. If G is A9, A10, or A11, then a Sylow 3-subgroup of G
is ⟨(1, 2, 3), (1, 4, 7)(2, 5, 8)(3, 6, 9)⟩ and the lemma holds in this case. All other
alternating groups contain the 3-group ⟨(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12)⟩,
and hence have p-rank at least 4.

Next we analyse the Sylow 3-subgroups of simple groups of Lie type over a
field of order q. We will frequently use Theorem 3.3.3 in [43] in the case that
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G k 3-rank of G
C3 1 1
Cp, p ̸= 3 0 0
A5 1 1
A6,A7,A8 2 2
A9,A10,A11 4 3
An, n ≥ 12 ≥ 5 ≥ 4
PSL(2, 3f ) f f
PSL(2, q), pf = q ≥ 4, p ̸= 3 |q − 1|3 + |q + 1|3 1
PSLε(3, 3

f ) 3f 2f
PSLε(3, q), q ≡ ε mod 3 2 · |q − ε|3 2
PSLε(3, q), q ≡ −ε mod 3 |q + ε|3 1
PSLε(n, 3

f ), n ≥ 4 ≥ 6f ≥ 4f
PSLε(4, q), q ≡ ε mod 3 3 · |q − ε|3 + 1 3
PSLε(n, q), q ≡ −ε mod 3, n ∈ {4, 5} 2 · |q + ε|3 2
PSLε(n, q), q ≡ ε mod 3, n ≥ 5 ≥ 4 ≥ 4
PSLε(n, q), q ≡ −ε mod 3, n ∈ {6, 7} 3 · |q + ε|3 + 1 3
PSLε(n, q), q ≡ −ε mod 3, n ≥ 8 ≥ 5 ≥ 4
PSp(4, 3f ) 4f 3f
PSp(4, q), q = pf , p ̸= 3 2 · |q2 − 1|3 2
PSp(6, 3f ), PΩ(7, 3f ) 9f ≥ 5f
PSp(6, q), PΩ(7, q), q = pf , p ̸= 3 3 · |q2 − 1|3 + 1 3
PSp(2n, q), PΩ(2n+ 1, q), n ≥ 4, ≥ 5 ≥ 4
PΩ+(2n, q), n ≥ 4 ≥ 4 ≥ 4
PΩ−(8, q), q = pn, p ̸= 3 3 · |q2 − 1|3 + 1 3
PΩ−(8, 3

f ), PΩ−(2n, q), n ≥ 5 ≥ 4 ≥ 4
Sz(22n+1) 0 0
3D4(3

f ), G2(3
f ) ≥ 6f ≥ 4f

3D4(q), q = pf , p ̸= 3 ≥ 4 2
G2(q), q = pf , p ̸= 3 2 · |q2 − 1|3 + 1 2
2G2(3

2n+1) 3(2n+ 1) 2(2n+ 1)
2F4(2

2n+1) 2 · |22n+1 + 1|3 + 1 2
2F4(2)

′ 3 2
F4(q), E6(q), 2E6(q), E7(q), E8(q) ≥ 4 ≥ 4
M11, M22, M23, HS 2 2
M12,M24, J2, J4, He, Ru 3 2
J1 1 1
J3, Co1, Co2, Co3, McL, HN ≥ 5 ≥ 2
O’N 4 4
Suz, Ly, Fi22, Fi23, Fi′24, Th, B, M ≥ 5 ≥ 5

Table 3.1: The Order of Sylow 3-Subgroups and the 3-rank of Simple Groups
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q is a 3-power and (10-2) in [41] in the other cases. If q is not a 3-power, then
q2 ≡ 1 mod 3, and hence the mo in (10-2) in [41] is 1 or 2. More precisely,
mo is 1 if q ≡ 1 mod 3 and 2 if q ≡ −1 mod 3. Thus, we can read of the
3-rank in Table 10:1 and 10:2 in [41] but we have to take special care if 3 divides
the centre of the group X as defined in (10-2) in [41]. We will usually use
these theorems without further reference. We start by investigating the Sylow
3-subgroup structure of simple classical groups of Lie type.

Suppose that n ≥ 2 and G = PSLε(n, q). Then (by Theorem 3.3.3 in [43])
the 3-rank of PSL(2, 3f ) is f , the 3-rank of PSLε(3, 3

f ) is 2f , and for all n ≥ 4,
the 3-rank of PSLε(n, 3

f ) is at least 4f . By Table 5.1.A in [62], the order of
PSLε(n, q) is

qn(n−1)/2

gcd(n, q − ε)

n∏
i=2

(qi − εi)

and we can read of the order of a Sylow 3-subgroup of G if q is a 3-power.
This finishes the proof for PSLε(n, 3

f ). Thus, we may suppose that q is not a
3-power.

Additionally suppose that n = 2. Then G = PSL(2, q), and the unique factor
of |G| divisible by 3 is q − 1 or q + 1. Furthermore the 3-rank of G is 1 (by
(10-2) in [41]) as stated in Table 3.1.

Therefore suppose that n ≥ 3. Then PSL(n, q) and PSU(n, q) are different
groups with similar properties, and we will analyse them simultaneously. If
G = PSL(3, q) and q ≡ 1 mod 3, then 3 divides the order of Z(SL(3, q)), and
hence the 3-rank of G is 1 or 2, and |G| = q3 · (q − 1)2 · (q + 1) · q2+q+1

3 . If
G = PSU(3, q) and q ≡ −1 mod 3, then the 3-rank of G is also 1 or 2, and
|G| = q3 · (q + 1)2 · (q − 1) · q2−q+1

3 . Thus, to summarise, if G = PSLε(3, q) and
q ≡ ε mod 3, then the 3-rank of G is 1 or 2 and |G| = q3 ·(q−ε)2 ·(q+ε)· q

2+εq+1
3 .

Since q, q+ ε, and q2+εq+1
3 are not divisible by 3 if q ≡ ε mod 3, the order of a

Sylow 3-subgroup of PSLε(3, q) is 2·|q−ε|3 as stated in the lemma. If the 3-rank
of G = PSLε(3, q) were 1, then P would be cyclic. Let R be a Sylow 3-subgroup
of SLε(3, q). Then by Lemma 3.6, Z(SLε(3, q)) = Z(R). Hence R/Z(R) is cyclic,
and thus R abelian, contrary to the fact that |Z(R)| = |Z(SLε(3, q))| = 3. A
similar case distinction yields that if G = PSLε(3, q) and q ≡ −ε mod 3, then
the 3-rank of G is 1 and |G| = q3 · (q+ ε) · (q− ε)2 · (q2 + εq+1). In particular,
the lemma holds for PSLε(3, q) if q ≡ −ε mod 3.

We have seen that the cases q ≡ ε mod 3 and q ≡ −ε mod 3 behave quite
differently. Therefore we split the analyses for PSLε(n, q) with n ≥ 4 according
to whether q is congruent to ε or −ε modulo 3. First additionally suppose
that q ≡ ε mod 3. If G = PSLε(4, q), then the 3-rank of G is 3 and |G| =

q3

gcd(4,q−ε) · (q− ε)3 · (q+ ε)2 · (q2 + εq+1) · (q2+1). Since q2 + εq+1 is divisible
by 3 and not by 9 and since q3, gcd(4, q − ε), q + ε, and q2 + 1 are not divisible
by 3, k = 3 · |q − ε|3 + 1 as stated in the lemma. If n ≥ 5, then PSLε(n, q) has
3-rank at least 4. In particular, the order of the Sylow 3-subgroups is also at
least 4 and the entry in Table 3.1 is correct.
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Thus, suppose instead that q ≡ −ε mod 3. If G is PSLε(4, q) or PSLε(5, q),
then the 3-rank of G is 2 and the order formula for G yields that k = 2 · |q+ ε|3
as stated in the lemma. If G is PSLε(6, q) or PSLε(7, q), then the 3-rank of G
is 3 and the order formula for G yields that k = 3 · |q+ ε|3 +1 because q6 − 1 =
(q2 − 1) · (q4 + q2 + 1) and q4 + q2 + 1 is divisible by 3 but not by 9. If n ≥ 8,
then the 3-rank of PSLε(n, q) is at least 4 and |PSLε(n, q)| is divisible by 35.
As a consequence, if G = PSLε(n, q) the lemma holds in all cases.

Therefore suppose instead that G = PSp(2n, q). By Table 5.1.A in [62],

PSp(2n, q) =
qn

2

gcd(2, q − 1)
·

n∏
i=1

(q2i − 1) .

Thus, the order of Sylow 3-subgroups of G is qn2 if q is a 3-power. Since the
3-rank of PSp(4, 3f ) is 3f , the entries for PSp(4, 3f ) are correct. Furthermore,
the 3-rank of PSp(2n, 3f ) is at least 6f if n ≥ 3. Thus, we may suppose that
q is not a 3-power. Then the 3-rank of G is n. Since |PSp(4, q)| = q4

gcd(2,q−1) ·
(q2 − 1)2 · (q2 + 1) and the only factor of this product that is divisible by 3
is (q2 − 1)2, it follows that k = 2 · |q2 − 1|3 if G = PSp(4, q). The order of
|PSp(6, q)| is |PSp(4, q)| ·q5 ·(q2−1) ·(q4+q2+1), and hence k = 3 · |q2−1|3+1
if G = PSp(6, q). Similarly, |PSp(2n, q)| is divisible by 35 if n ≥ 4, and hence
the lemma holds for PSp(2n, q) in all cases.

Instead suppose that G = PΩ(2n + 1, q) and n ≥ 3. Then the 3-rank of
PΩ(2n + 1, 3f ) is at least 5f , and if q is not a 3-power, then the 3-rank of
PΩ(2n + 1, q) is n. Therefore it only remains to analyse the order of Sylow 3-
subgroups ofG, but by Bemerkung II 10.16 c) in [54], it holds that |PSp(2n, q)| =
|PΩ(2n+ 1, q)|, thus we can copy the entries of PSp(2n, q).

The next group we consider is PΩ+(2n, q) with n ≥ 4. The 3-rank of
PΩ+(2n, 3

f ) is at least 6f ≥ 6 and if q is not a 3-power, the 3-rank of PΩ+(2n, q)
is at least 4. In particular, the order of a Sylow 3-subgroup of PΩ+(2n, q) is at
least 34.

The last remaining classical group of Lie type is PΩ−(2n, q) with n ≥ 4. As
before, we use Theorem 3.3.3 in [43] to see that the 3-rank of PΩ−(2n, q) is at
least 6f . If q is not a 3-power, then, as in the other cases, (10-2) in [41] implies
that the 3-rank of PΩ+(8, q) is 3 and that for n ≥ 5 the 3-rank of PΩ−(2n, q) is
at least 4. In particular, if G is PΩ−(8, 3

f ) or PΩ−(2n, q) with n ≥ 5, then the
order of Sylow 3-subgroups of G is at least 34, and hence the lemma holds in
this cases. Thus, we may suppose that G = PΩ−(8, q) and q is not a 3-power.
Then by Table 5.1.A in [62], |G| = q6

gcd(4,q4+1)
(q4+1) ·(q2−1) ·(q4−1) ·(q6−1) =

(q2−1)3 ·(q4+q2+1) · q6

gcd(4,q4+1)
·(q2+1) ·(q4+1). Therefore k = 3 · |q2−1|3+1.

Since this was the last remaining simple classical group of Lie type, we can turn
our attention to the simple exceptional groups of Lie type over a field of order q.

The order of Sz(22n+1) is (24n+2 + 1)q4n+2(22n+1 − 1) by the information on
page 117 in [105]. In particular, | Sz(22n+1)| is not divisible by 3.
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Once more we use Theorem 3.3.3 in [43] and see that the 3-rank of 3D4(3
f ),

G2(3
f ), 2G2(3

2n+1), F4(3
f ), E6(3

f ), 2E6(3
f ), E7(3

f ), and E8(3
f ) is 5f , 4f ,

2(2n + 1), 9f , 16f , 12f , 27f , and 36f , respectively. In particular, their Sylow
3-subgroups have order at least 34. By Table 5.1.B in [62], the highest 3-power
dividing |G2(3

f )| is 36f and the highest 3-power dividing |3D4(3
f )| is 312f . If

G = 2G2(3
2n+1), then by Table 5.1.B in [62], the order of a Sylow 3-subgroup is

33(2n+1). In particular, the entries in Table 3.1 that correspond to exceptional
groups of Lie type over a field of characteristic 3 are correct. Therefore, we may
suppose that q is not a 3-power.

If G = 3D4(q), then as usual we can use (10-2) in [41] to see that the 3-rank
ofG is 2. Since by Table 5.1.B in [62], |G| = q12·(q8+q4+1)·(q4+q2+1)·(q2−1)2,
and since (q8 + q4 + 1), (q4 + q2 + 1), and (q2 − 1) are divisible by 3, the order
of a Sylow 3-subgroup of G is at least 34.

If G = G2(q), then Table 5.1.B in [62] shows that |G| = q6(q2−1)2(q4+q2+1).
Since q4+q2+1 is divisible by 3 but not by 9, k = 2 · |q2−1|3+1. The fact that
the 3-rank of G is 2 finishes the proof that the entries in Table 3.1 for G2(q) are
correct.

Since 2F4(2)
′ has index 2 in 2F4(2) by page 167 in [105], the Sylow 3-subgroup

of 2F4(2)
′ and 2F4(2) are isomorphic. The 3-rank of 2F4(2

2n+1) is 2. Let q =
22n+1 and G = 2F4(q). Then q ≡ −1 mod 3 and by Table 5.1.B in [62],
|G| = q12 · (q6 + 1)(q4 − 1)(q3 + 1)(q− 1). The only factors of this product that
are divisible by 3 are q4−1 = (q2+1)(q+1)(q−1) and q3+1 = (q+1)(q2−q+1).
In particular, k = 2 · |q + 1|3 + 1.

For all remaining simple groups of exceptional Lie type over a field of order
q = pf with p ̸= 3, their 3-rank is at least 4, and hence the order of their Sylow
3-subgroups is at least 34. As a consequence, the lemma holds for all simple
groups of Lie type.

Therefore finally suppose that G is a sporadic simple group. By Table 5.3a
in [43] the Sylow 3-subgroups of M11 are elementary abelian of order 9. The
information in Table 5.3b, Table 5.3e, Table 5.3g, and Table 5.3i in [43] imply
that the Sylow 3-subgroups of M12, M24, J2 and J4 have 3-rank 2 and order 33.
The Sylow 3-subgroups of M22 and M23 are elementary abelian of order 9 by
Table 5.3c and Table 5.3d in [43].

The order of J1 is divisible by 3 but not by 9 (see Table 5.3f in [43]), and
therefore the entries for J1 in Table 3.1 follow. Table 5.3h in [43] implies that
J3 has Sylow 3-subgroups of order 35 and contains a subgroup isomorphic to
C3 ×A6. Thus the 3-rank of J3 is at least 3.

Since HS has a subgroup isomorphic to M22 and the Sylow 3-subgroups of HS
have order 9 (see Table 5.3m in [43]), the Sylow 3-subgroups of HS are elementary
abelian of order 9. The information in Table 5.3j and Table 5.3k in [43] indicate
that Co3 and Co2 both have Sylow 3-subgroups of order divisible by 36 and
contain a subgroup isomorphic to HS. Therefore their Sylow 3-subgroups have
3-rank at least 2. Since by Table 5.3l in [43] the group Co1 contains a subgroup
isomorphic Co2, the entries in Table 3.1 are correct for the three Conway groups.
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For McL, Table 5.3n in [43] shows that the 3-rank of McL is at least 4 and
that the Sylow 3-subgroups of McL have order 36.

The groups Suz, Ly, and Fi22 all contain an elementary abelian group of
order 35 (see Table 5.3o, Table 5.3q, and Table 5.3t in [43]). Similarly, by
Table 5.3u, Table 5.3v, and Table 5.3x in [43], Fi23, Fi′24, and Th contains an
elementary abelian subgroup of order 36, 37, and 35, respectively.

The information in Table 5.3p and Table 5.3r in [43] indicate that He and Ru
both have Sylow 3-subgroup of order 33 and 3-rank 2. Since by Table 5.3s, O’N
has an elementary abelian subgroup of order 34, the lemma holds in this case.

By Table 5.3w in [43] the group HN contains a subgroup isomorphic A12, and
hence has 3-rank at least 4. Since 36 divides |HN|, the entries in Table 3.1 for
HN are correct.

Since B has a subgroup isomorphic to Fi23 (see Table 5.3y in [43]), it also
contains an elementary abelian 3-subgroup of order 36. The information in
Table 5.3z in [43] indicate that M has a subgroup isomorphic to Th, and hence
the Sylow 3-subgroups of M also contain an elementary abelian 3-subgroup of
order 35. Since this was the last remaining group that had to be analysed, the
entries in Table 3.1 are correct in all cases.

3.2.1 Strongly 3-embedded Subgroups

We start with the analysis of case (4) (a) of Lemma 3.1. In this case the simple
group G contains a strongly 3-embedded subgroup. By Lemma 2.8, this case contains
amongst others all non-abelian finite simple groups with cyclic non-trivial Sylow 3-
subgroups. Therefore we first determine which finite simple groups have cyclic Sylow
3-subgroups. This is a direct consequence of Lemma 3.7.

Lemma 3.8
Let G be a finite simple group. Then G has cyclic Sylow 3-subgroups if and only
if there exists a prime p and a positive integer f such that G is isomorphic to Cp,
J1, PSL(2, pf ) where pf ̸= 2 and p ̸= 3, PSLε(3, p

f ) where pf ≡ −ε mod 3, or
Sz(22f+1).
Proof:

We use Lemma 3.7 and see that for a prime p ̸= 3 and a positive integer n, Cp

and Sz(22n+1) are the only finite simple groups with trivial Sylow 3-subgroups.
Since by 5.3.8 in [65] the 3-rank of G is 1 if and only if the Sylow 3-subgroups
of G are non-trivial and cyclic, the same lemma implies that G has non-trivial
cyclic Sylow 3-subgroup if and only if there exists a prime p and an integer f such
that G is isomorphic to C3, A5, PSL(2, 3), PSL(2, pf ) where p ̸= 3, PSLε(3, p

f )
where pf ≡ −ε mod 3, or J1. Since A5

∼= PSL(2, 4) and since neither PSL(2, 3)
nor PSL(2, 2) is simple, the lemma follows.

As a next step, we will see a full list of all finite simple groups that contain a strongly
3-embedded subgroup.
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Lemma 3.9
Let G be a finite simple group that contains a strongly 3-embedded subgroup. Then
there exists a prime power q and a positive integer n such that G is isomorphic to J1,
PSL(3, 4), M11, PSL(2, q) where q ̸∈ {2, 3}, PSL(3, q) where q ≡ 2 mod 3, PSU(3, q)
where q ̸≡ 2 mod 3, or 2G2(3

2n+1).
Proof:

Since G contains a strongly 3-embedded subgroup, G is non-abelian and |G| is
divisible by 3. In particular, G can be neither cyclic nor a Suzuki group (of Lie
type). The result (24-1) in [41] implies that G has cyclic Sylow 3-subgroups or
there exists a positive integer f such that G is isomorphic to PSL(2, 3f ) with
f ≥ 3, PSU(3, 3f ), 2G2(3

2f+1), PSL(3, 4), A6
∼= PSL(2, 9), or M11. The latter

groups are all listed in the assertion and Lemma 3.8 shows that all non-abelian
simple groups with cyclic Sylow 3-subgroups of order at least 3 are also stated
in the lemma.

We have studied PSL(2, q), PSL(3, q), and PSU(3, q) in the previous section and we
have analysed all their fixity-4 actions. Therefore the next family of groups we have
to deal with is 2G(32n+1).

Lemma 3.10
Let n be a positive integer, let q = 32n+1, and let G = 2G2(q). Suppose that G acts
transitively on a set Ω. Then G acts with fixity 4 and such that the order of a point
stabiliser is odd and divisible by 3 if and only if the point stabilisers are Frobenius
groups of order q3 · q−1

2 .
Proof:

For the first direction suppose that G acts with fixity 4 and such that the order
of a point stabiliser is odd and divisible by 3. Let α ∈ Ω and let a ∈ Gα be
of order 3. Let P ∈ Syl3(G) be such that a ∈ P and Pα ∈ Syl3(Gα). By the
Theorem in [101] part (2), Z(P ) is elementary abelian of order q ≥ 27. By
Lemma 2.13, |Z(P ) : Z(P ) ∩ Gα| = |Z(P ) ∩ NG(⟨a⟩) : Z(P ) ∩ NGα(⟨a⟩)| ≤
|NG(⟨a⟩) : NGα(⟨a⟩)| ≤ 4. Therefore Gα contains an element z ∈ Z(P ) of
order 3. Then P ≤ NG(⟨z⟩), and hence |P : Pα| ≤ |NG(⟨z⟩) : NGα(⟨z⟩)| ≤ 4.
As a consequence, |P : Pα| ∈ {1, 3}.

Therefore P/Pα is abelian, and hence P ′ ≤ Pα. Since P ′ is a characteristic
subgroup of P , NG(P ) ≤ NG(P

′). By (3) of the Theorem in [101], |NG(P )|
has order q3(q − 1). Since G is simple and P ′ is non-trivial, NG(P

′) lies in a
maximal subgroup of G, and hence Theorem 6.5.5 in [43] implies that NG(P

′) =
NG(P ) is a Frobenius group of order q3(q − 1). Since q − 1 ≡ 32n+1 − 1 ≡
(−1)2n+1 − 1 ≡ 2 mod 4, the order of NG(P

′) is divisible by 2 but not by 4.
Then Lemma 2.13 proves that |NG(P

′) : NGα(P
′)| ≤ 4, and since |Gα| is odd, it

follows that |NG(P
′) : NGα(P

′)| = 2, and hence the order of NGα(P
′) is q3 · q−1

2 .
To summarise, Gα ≥ NGα(P

′) has odd order divisible by q3 · q−1
2 and lies in a

maximal subgroup of G. Then Theorem 6.5.5 in [43] again implies that Gα is a
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subgroup of a Frobenius group of order q3(q − 1) or more precisely a Frobenius
group of order q3 · q−1

2 . This finishes the first direction of the proof.

For the other direction suppose that G acts on Ω such that the point stabilisers
are Frobenius groups of order q3 · q−1

2 . Let U be one of the point stabilisers.
Then the action of G on Ω is equivalent to the action of G on G/U and |U | is
odd and divisible by 3.

Let K denote the Frobenius kernel of U . Then |K| = q3 and the Frobenius
complements are cyclic of order q−1

2 . Let x ∈ U be non-trivial. Since all powers
of x fix the same points as x, in order to identify the fixity with which G acts
on G/U , it suffices to determine the number of fixed points of all elements of U
that have prime order. Let u ∈ U be of prime order r. If r divides q, then u ∈ K.
Let y ∈ G be such that Uy ∈ G/U is fixed by u. Then uy−1 ∈ U is an r-element,
and thus uy−1 ∈ K. Hence, u ∈ K ∩Ky. Since K is a Sylow 3-subgroup of G,
(3) of the Theorem in [101] implies that different conjugates of K have trivial
intersection. Therefore y ∈ NG(K). Thus, u fixes at most |NG(K)|

|U | = q3·q−1

q3· q−1
2

= 2

points in G/U . If r does not divide q, then u lies in a Frobenius complement J of
order q−1

2 . Since then r is odd and divides q2−1, [63] p. 62 implies that u lies in
a Sylow r-subgroup that is a subgroup of a group M of type C2×PSL(2, q). Let
L ≤M be isomorphic to PSL(2, q). By Satz II 8.3 in [54], the order of NL(⟨u⟩) =
2 · q−1

2 . Therefore |NM (⟨u⟩)| = 2(q − 1). More precisely, the information on
pages 61 and 62 in [63] show that NG(⟨u⟩) is a subgroup of a maximal subgroup
of type C2 × PSL(2, q) and hence |NG(⟨u⟩)| = |NM (⟨u⟩)| = 2(q − 1). Then by
Lemma 2.11, it follows that u fixes exactly |K|·|NG(⟨u⟩)|

|U | = q3·2(q−1)

q3· q−1
2

= 4 points

in Ω. Thus, G acts with fixity 4 on G/U .

We finish this subsection by answering the question of which finite simple groups
that contain a strongly 3-embedded subgroup can act with fixity 4 but we leave out
a result for PSL(2, q) because Lemma 3.2 summarises the situation for these groups
sufficiently.

Lemma 3.11
Let G be a finite simple group that contains a strongly 3-embedded subgroup. Sup-
pose that for all prime power q, G is not isomorphic to PSL(2, q) and suppose that
G acts transitively on a set Ω. Then G acts with fixity 4 and such that the order of
a point stabiliser is odd and divisible by 3 if and only if G is isomorphic to J1 and
the point stabilisers are cyclic of order 15 or there exists a positive integer n such
that G is isomorphic to 2G2(3

2n+1) and the point stabilisers are Frobenius groups of
order 33(2n+1) · 32n+1−1

2 .
Proof:

The group G fulfils the hypothesis of Lemma 3.9, and hence G is one of the
groups listed there. For some groups of this list we can use the GAP package
TomLib [74] together with the program in Remark 2.22 to determine whether the
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group can act transitively and with fixity 4 on some set. Among those groups are
J1 and M11. The answer to the command TestTom(TableOfMarks("J1"),4);
shows that if G = J1, then G acts with fixity 4 if and only if the point sta-
bilisers are cyclic of order 15. If G = M11, then the answer to the GAP com-
mand TestTom(TableOfMarks("M11"),4); implies that G cannot act transi-
tively, with fixity 4, and such that the order of a point stabiliser is odd and
divisible by 3 on any set.

Lemma 3.4 proves that for all prime power q ≥ 3 neither PSL(3, q) nor
PSU(3, q) can act transitively, with fixity 4, and such that the order of a point
stabiliser is odd and divisible by 3 on any set. Since PSL(3, 2) ∼= PSL(2, 7), this
covers all groups of Lemma 3.9 except for 2G2(3

2n+1) where n is a positive inte-
ger. For this last remaining family of groups, Lemma 3.10 yields the correctness
of the statement of this lemma.

3.2.2 Elementary Abelian Sylow 3-Subgroups

Similarly to the previous subsection, we will also for case (4) (b) of Lemma 3.1 first
determine the finite simple groups that fulfil the conditions of this case before we
turn towards possible fixity-4 actions. The next result is Proposition (1.2) in [64]
but since there the proof is not elucidated, it is given in the following.

Lemma 3.12
Let G be a finite simple group. Then G has elementary abelian Sylow 3-subgroups
of order 9 if and only if there exists a prime power q and ε ∈ {−1, 1} such that G is
isomorphic to

1. A6, A7, M11, M22, M23, HS,

2. PSLε(3, q) where |q − ε|3 = 1 (and PSU(3, 2) is not simple),

3. PSLε(4, q) where |q + ε|3 = 1,

4. PSLε(5, q) where |q + ε|3 = 1, or

5. PSp(4, q) where |q2 − 1|3 = 1 (and PSp(4, 2) is not simple).

Proof:
Lemma 3.7 yields that G has 3-rank 2 and Sylow 3-subgroups of order 32 if and
only if there exist a prime power q and ε ∈ {−1, 1} such that G is isomorphic
to A6, A7, A8, PSL(2, 9), PSLε(3, q) where q ≡ ε mod 3 and 2 · |q − ε|3 = 2,
PSLε(4, q) where q ≡ −ε mod 3 and 2 · |q + ε|3 = 2, PSLε(5, q) where q ≡ −ε
mod 3 and 2 · |q+ε|3 = 2, PSp(4, q) where q is not a 3-power and 2 · |q2−1|3 = 2,
M11, M22, M23, or HS. The fact that |q − ε|3 = 1 is equivalent to the facts that
2 · |q − ε|3 = 2 and that q ≡ ε mod 3. A similar conclusion holds for the fact
that |q+ε|3 = 1. Analogously |q2−1|3 = 1 if and only if 2 · |q2−1|3 = 2 and q is
not a 3-power. Since A6

∼= PSL(2, 9) and A8
∼= PSL(4, 2), the lemma follows.
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In the next lemma, we will see that the existence of a subgroup of G isomorphic to
SL(2, q)×SL(2, q) under additional conditions implies that G cannot act transitively,
with fixity 4, and such that the order of a point stabiliser is odd and divisible by 3
on any set.

Lemma 3.13
Let q be a prime power such that |q2 − 1|3 = 1 and let Ĝ be a finite group that
has a subgroup U isomorphic to SL(2, q) × SL(2, q). Let Z = Z(Ĝ), d = |Z|, and
G = Ĝ/Z. Suppose that UZ/Z contains a Sylow 3-subgroup P of G and that d is
coprime to 3. Further suppose that if q is even, then d is odd and if q is odd, then
d is not divisible by 8. If q ≥ 3, then there does not exists a set Ω such that G acts
transitively, with fixity 4 on Ω, and such that the order of the point stabilisers is odd
and divisible by 3.
Proof:

Let U1 and U2 both be isomorphic to SL(2, q) and such that U = U1 × U2.
Since the order of SL(2, q) is q(q2 − 1) and since |q2 − 1|3 = 1, it follows that U
has elementary abelian Sylow 3-subgroups of order 9. As a consequence, P is
elementary abelian of order 9 because d is coprime to 3. Let ε ∈ {−1, 1} be such
that 3 divides q + ε.

Assume for a contradiction that G acts transitively, with fixity 4 on a set Ω,
and such that the order of the point stabilisers is odd and divisible by 3.

Then there exists α ∈ Ω and a non-trivial element b ∈ P such that b ∈ Pα ∈
Syl3(Gα). Since |Z| is coprime to 3, there exists an element a ∈ U of order 3 such
that Za = b. Let a1 ∈ U1 and a2 ∈ U2 be such that a = a1a2. Since a has order 3,
it follows that a1 and a2 each have order dividing 3, and hence for i ∈ {1, 2}, the
order of CUi(ai) is divisible by q + ε by Satz II. 8.3 and Satz II. 8.4 in [54] and
Lemma 2.3 (a). Then CUi(ai) ≤ CUi(a), and thus CU (a) ≥ CU1(a1) × CU2(a2).
For all i ∈ {1, 2}, let ti ∈ Ui be such that t2i ∈ Z(Ui) and that atii = a−1

i . Let
t = t1t2. Then t is an involution and at = at1a

t
2 = at11 a

t2
2 = a−1

1 a−1
2 = a−1. In

particular, t ∈ NU (⟨a⟩) \ CU (a). Therefore |NU (⟨a⟩)| is divisible by 2(q + ε)2.
As a consequence, |NG(⟨b⟩)| is divisible by 2 (q+ε)2

|Z∩U | . If q is even, then d is
odd and coprime to 3, and hence |NG(⟨b⟩)| is divisible by 2 · 32. If q is odd,
then q + ε is even, d is not divisible by 8, and d is coprime to 3. Therefore
|NG(⟨b⟩)| is again divisible by 2 · 32. On the other hand, Lemma 2.13 shows
that |NG(⟨b⟩) : NGα(⟨b⟩)| ≤ 4. Since Gα has odd order, it follows that |Gα| is
divisible by 9 because otherwise |NG(⟨b⟩) : NGα(⟨b⟩)| would be divisible by 2
and 3. As a consequence, Pα = P .

Let R ∈ Syl3(U) be such that RZ/Z = P . Since R ∩ U1 ∈ Syl3(U1), there
exists a non-trivial element u ∈ R ∩ U1. Then U2 ≤ CU (u) and once more by
Satz II. 8.3 and Satz II. 8.4 in [54] and Lemma 2.3 (a), |NU1(⟨u⟩)| = 2(q + ε).
Thus, the order of NU (⟨u⟩) ≥ NU1(⟨u⟩) × U2 is divisible by 2(q + ε)q(q2 − 1).
Therefore, |NG(⟨Zu⟩)| is divisible by 2(q−ε)q(q2−1)

|Z∩U | . If q is odd, this number is
divisible by 2·2·8

4 = 8 and if q is even and greater than 2, this number is also
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divisible by 2·4 = 8. This contradicts the facts that |NG(⟨Zu⟩) : NGα(⟨Zu⟩)| ≤ 4
and that Gα has odd order. Therefore q = 2, and the lemma follows.

Our next objective is to determine for each group of Lemma 3.12 whether or not this
group can act with fixity 4 and such that point stabilisers have odd order divisible
by 3. In most cases the previous lemma will be useful.

Lemma 3.14
Let G be a finite simple group with elementary abelian Sylow 3-subgroups of order 9.
Suppose that G acts transitively on a set Ω. Then G acts with fixity 4 on Ω and
such that the order of the point stabilisers is odd and divisible by 3 if and only if G
is isomorphic to A6 and the point stabilisers are elementary abelian of order 9.
Proof:

We go trough the list of finite simple groups in Lemma 3.12. Since A6
∼=

PSL(2, 9), Lemma 3.2 proves that the only transitive fixity-4 action of A6 where
the order of the point stabilisers is odd and divisible by 3 is when the point
stabilisers are elementary abelian of order 9.

For some of the other groups, we can use the GAP function described in Re-
mark 2.22 together with the GAP package TomLib [74]. Among them are A7 and
M11. The result of List(["a7","m11"],x->TestTom(TableOfMarks(x),4));
shows that neither A7 nor M11 can act transitively, with fixity 4 and such that
the order of the point stabilisers is odd and divisible by 3 on any set. Simi-
larly, the GAP command TestTom(TableOfMarks("m22"),4); yields that M22

does not act transitively, with fixity 4 and such that point stabilisers have order
divisible by 3 on any set. For M23 and HS the answer to the GAP command
List(["m23","HS"],x->TestTom(TableOfMarks(x),4)); implies that none of
these two groups can act transitively and with fixity 4 on any set. Similarly, we
can use List(["L4(2)","L5(2)"],x->TestTom(TableOfMarks(x),4)); to see
that neither PSL(4, 2) nor PSL(5, 2) can act transitively and with fixity 4 on
any set.

If G is isomorphic to PSLε(3, q) where |q−ε|3 = 1, then q is not a 3-power and
G is not isomorphic to PSL(3, 2). Since PSU(3, 2) is not simple, we can suppose
that q ≥ 4. Therefore Lemma 3.4 shows that G does not act transitively and
with fixity 4 on any set.

Suppose that G is isomorphic to one of the remaining groups PSLε(4, q) where
|q + ε|3 = 1, PSLε(5, q) where |q + ε|3 = 1, or PSp(4, q) where |q2 − 1|3 = 1.
Then in all cases |q2 − 1|3 = 1. Let Ĝ be the corresponding matrix group
(SLε(4, q) for PSLε(4, q), SLε(5, q) for PSLε(5, q), and Sp(4, q) for PSp(4, q)).
In particular, G = Ĝ/Z(Ĝ). Then Ĝ has a subgroup U that is isomorphic to
SL(2, q) × SL(2, q) because SL(2, q) ∼= SU(2, q) ∼= Sp(2, q). Let Z = Z(Ĝ) and
d = |Z|. Then d = gcd(4, q − ε) for PSLε(4, q), d = gcd(5, q − ε) for PSLε(5, q),
and d = gcd(2, q − 1) for PSp(4, q). In all cases d is coprime to 3 and not
divisible by 8. If q is even, then q + 1 and q − 1 are odd, and therefore d is
odd. Since |U | = q2(q2 − 1)2, since the order of Z is coprime to 3, and since
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|q2 − 1|3 = 1, it follows that U has Sylow 3-subgroups of order 9, and hence
UZ/Z contains a Sylow 3-subgroup of G = Ĝ/Z. Therefore Lemma 3.13 proves
that if q ≥ 3, then none of these groups can act transitively, with fixity 4, and
such that the order of the point stabilisers is odd and divisible by 3 on any set.
As a consequence, the only case that remains to be analysed is q = 2.

Since PSp(4, 2) is not simple and for PSU(4, 2) and PSU(5, 2), |q−1|3 = 0, the
only remaining groups are PSL(4, 2) and PSL(5, 2) but these groups have already
been excluded. Hence, the lemma follows because all groups in Lemma 3.12 have
been considered.

3.2.3 Extra-Special Sylow 3-Subgroups

The objective of this subsection is to show that none of the simple groups that fulfil
case (4) (c) of Lemma 3.1 can act transitively, with fixity 4, and such that the order
of a point stabiliser is odd and divisible by 3 on any set. We proceed as in the
previous subsection.

Lemma 3.15
Let G be a finite simple group. Suppose that G has extra-special Sylow 3-subgroups
of order 27. Then there exists a prime power q and a positive integer n such that G
is isomorphic to

1. PSL(3, 3), PSU(3, 3), M12,M24, J2, J4, He, Ru,

2. G2(q) where |q2 − 1|3 = 1,

3. 2F4(2
2n+1) where |22n+1 + 1|3 = 1, or

4. 2F4(2)
′.

Proof:
Let P be a Sylow 3-subgroup of G. Since P is extra-special of order 33, it
follows that P is non-abelian. In particular, P is neither cyclic nor elementary
abelian. Therefore the 3-rank of P (and thus of G) is 2. Then Lemma 3.7 yields
that there exist a prime power q and ε ∈ {−1, 1} such that G is isomorphic to
PSLε(3, 3), G2(q) where q is not a 3-power and 2 · |q2 − 1|3 + 1 = 3, 2F4(2

2n+1)
where 2 · |22n+1 + 1|3 + 1 = 3, 2F4(2)

′, M12, M24, J2, J4, He, or Ru. Since
2 · |q2 − 1|3 + 1 = 3 implies that |q2 − 1|3 = 1, the lemma follows.

We have a closer look at the family G2(q).

Lemma 3.16
Let q be a prime power, such that |q2 − 1|3 = 1 and let G = G2(q). Then G cannot
act transitively, with fixity 4, and such that the order of the point stabilisers is odd
and divisible by 3 on any set.
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Proof:
Assume for a contradiction that there exists a set Ω such that G acts transitively
and with fixity 4 on Ω and such that the order of the point stabilisers is odd
and divisible by 3. Let ε ∈ {−1, 1} be such that q ≡ ε mod 3.

By the information on pages 125 and 126 and by Table 4.1 in [105], G has
a subgroup Mε of type SLε(3, q) : C2. Let Nε be a subgroup of Mε of index 2
and isomorphic to SLε(3, q). Since the order of Nε is q3(q3 − ε)(q2 − 1) =
q3 ·(q−ε)2 ·(q2+εq+1)·(q+ε), it follows that Nε contains a Sylow 3-subgroup P
of G. Let α ∈ Ω be such that Pα ∈ Syl3(Gα). Then |Pα| ≥ 3.

By Lemma 3.6, Z(Nε) = Z(P ). In particular Z(P ) is a characteristic subgroup
of Nε ⊴Mε.

Assume for a contradiction that there exists a non-trivial x ∈ Z(P ) ∩ Gα.
Then ⟨x⟩ = Z(P ). Thus, NG(⟨x⟩) contains Mε and therefore a subgroup of order
q3 · (q− ε)2 · (q2+ εq+1) · (q+ ε) · 2. Independent of the parity of q this number
is divisible by 24. By Lemma 2.13, it follows that |NG(⟨x⟩) : NGα(⟨x⟩)| ≤ 4,
contradicting the fact that |Gα| is odd. As a consequence, Z(P ) ∩Gα = 1.

In particular, Pα = P ∩Gα is a non-normal subgroup of P . Since |P | = 27, it
follows that |Pα| = 3. Hence, all point stabilisers have order divisible by 3 but
not by 9.

Let y ∈ Pα \ Z(P ). Then ⟨y⟩ × Z(P ) ≤ NNε(⟨y⟩). Thus, Lemma 3.6 implies
that the order of NNε(⟨y⟩) is divisible by 2 ·9. Since |Gα| is odd and not divisible
by 9, the index |NG(⟨y⟩) : NGα(⟨y⟩)| is divisible by 6 contradicting Lemma 2.13.
This final contradiction proves the Lemma.

Lemma 3.17
Let G be a finite simple group. Suppose that G has extra-special Sylow 3-subgroups
of order 27. Then G does not act transitively, with fixity 4, and such that the order
of the point stabilisers is odd and divisible by 3 on any set.
Proof:

By Lemma 3.15, G is one of the groups mentioned there.
Lemma 3.4 proves that neither PSL(3, 3) nor PSU(3, 3) can act transitively,

with fixity 4, and such that point stabilisers have odd order on any set. For M12,
we can use the GAP program in Remark 2.22 and the GAP package Tom-
Lib [74]. Then the GAP command TestTom(TableOfMarks("m12"),4); shows
that M12 cannot act transitively, with fixity 4, and such that point stabili-
sers have odd order on any set. Similarly, the answer to the GAP command
List(["m24","J2","He","2F4(2)'"], x->TestTom(TableOfMarks(x),4));
implies that neither M24, J2, He, nor 2F4(2)

′ can act transitively and with
fixity 4 on any set.

Assume for a contradiction that G acts transitively, with fixity 4, and such
that the order of a point stabiliser is odd and divisible by 3 on a set Ω.

If G is isomorphic to J4, then by [28] p. 188, G has just one conjugacy class
of elements of order 3 and the centraliser of such an element has order 2661120,
which is divisible by 8. Since by Lemma 2.13, |CG(x) : CGα(x)| ≤ 4 and since
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the order of Gα is odd, this gives a contradiction. If G is isomorphic to Ru, then
[28] p. 127 implies that the centraliser of every 3-element has order 2160, which
is divisible by 8. Since |CG(x) : CGα(x)| ≤ 4 and the order of Gα is odd, this
again gives a contradiction.

Assume for a contradiction that G is isomorphic to 2F4(2
2n+1), where n ≥ 1.

Then there exists an element x ∈ Gα of order 3. Let q = 22n+1. By p. 54
in [73] all 3-elements in G are conjugate and the normaliser of ⟨x⟩ in G has
order | SU(3, q)| · 2 = q3(q2 − 1)(q3 + 1) · 2, hence is divisible by 8. This is
another contradiction to Lemma 2.13.

Therefore, by Lemma 3.15, G is isomorphic to G2(q), where |q2−1|3 = 1, but
this contradicts Lemma 3.16. As a consequence, the assumption that G can act
transitively, with fixity 4, and such that the order of a point stabiliser is odd
and divisible by 3 was false and the lemma holds.

3.2.4 Sylow 3-Subgroups that are a Wreath Product

We will again first classify the simple groups that have a Sylow 3-subgroup of type
C3 ≀ C3 before we will see that none of them can act transitively, with fixity 4, and
such that point stabilisers have odd order divisible by 3.

Lemma 3.18
Let G be a finite simple group. Suppose that G has Sylow 3-subgroups of type
C3 ≀ C3. Then there exists a prime power q and a positive integer n such that G is
isomorphic to

1. A9, A10, A11, PSp(4, 3),

2. PSLε(4, q) where |q − ε|3 = 1,

3. PSLε(6, q) where |q + ε|3 = 1,

4. PSLε(7, q) where |q + ε|3 = 1,

5. PSp(6, q) where |q2 − 1|3 = 1,

6. PΩ(7, q) where q is odd and |q2 − 1|3 = 1, or

7. PΩ−(8, q) where |q2 − 1|3 = 1.

Proof:
Let P be a Sylow 3-subgroup of G. Since P is of type C3 ≀ C3, it follows that
|P | = 34 and that P is non-abelian and has an elementary abelian subgroup of
order 33. Therefore the 3-rank of P (and thus of G) is 3. Then Lemma 3.7 yields
that there exist a prime power q and ε ∈ {−1, 1} such that G is isomorphic to
A9, A10, A11, PSLε(4, q) where q ≡ ε mod 3 and 3 · |q− ε|3+1 = 4, PSLε(6, q)
where q ≡ −ε mod 3 and 3 · |q + ε|3 + 1 = 4, PSLε(7, q) where q ≡ −ε mod 3
and 3 · |q + ε|3 + 1 = 4, PSp(4, 3), PSp(6, q) where q is not a 3-power and
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3 · |q2 − 1|3 + 1 = 4, PΩ(7, q) where q is not a 3-power and 3 · |q2 − 1|3 + 1 = 4,
or PΩ−(8, q) where q is not a 3-power and 3 · |q2 − 1|3 + 1 = 4. Since for every
2-power q, PSp(6, q) ∼= PΩ(7, q), all of these groups are listed in the lemma.

For proving that none of the groups in the previous lemma can act transitively,
with fixity 4, and such that point stabilisers have odd order divisible by 3, we will
determine in a sequence of two lemmas sufficient conditions. Therefore the next
lemma formulates such a condition on 3-elements of a simple group G with Sylow
3-subgroups of type. C3 ≀ C3.

Lemma 3.19
LetG be a finite simple group with Sylow 3-subgroups of type C3≀C3, let P ∈ Syl3(G),
and let Q ≤ P be elementary abelian of order 33. Suppose that there exists an
element x ∈ P \ Q of order 3 such that |NG(⟨x⟩)| is even and further suppose that
there exists a non-trivial element y ∈ P , such that |NG(⟨y⟩)| is divisible by 8. Then
G does not act transitively, with fixity 4, and such that the order of a point stabiliser
is odd and divisible by 3 on any set.
Proof:

Assume for a contradiction that there exists a set Ω such that G acts transitively,
with fixity 4, and such that the order of a point stabiliser is odd and divisible
by 3 on Ω. Let α ∈ Ω be such that Pα ∈ Syl3(Gα). The automorphism group
of P is a {2, 3}-group. (This can been seen for example by the GAP command
AutomorphismGroup(SylowSubgroup(AlternatingGroup(9),3));.) By Corol-
lary 1.2 in [47], there exists an element d ∈ NG(P ) \P CG(P ), and hence d acts
as a non-trivial automorphism on P . Therefore d acts as a {2, 3}-element, and
since d ̸∈ P ∈ Syl3(P ), the order of d is even. As a consequence, NG(P ) con-
tains an involution t. The order of Z(P ) is 3, and since Z(P ) is a characteristic
subgroup of P , t ∈ NG(Z(P )).

If Pα = P , then y ∈ Gα. Thus, by Lemma 2.13, |NG(⟨y⟩) : NGα(⟨y⟩)| ≤ 4,
contradicting the assumptions that |Gα| is odd and that |NG(⟨y⟩)| is divisible
by 8. Therefore |P : Pα| ≥ 3.

If Z(P ) fixes a point ω ∈ Ω, then Z(P ) ≤ Pω. Since NG(Z(P )) has even order
but |Gα| = |Gω| is odd, |NG(Z(P )) : NGω(Z(P ))| is divisible by 2. Thus the fact
that |NG(Z(P )) : NGω(Z(P ))| ≤ 4 implies that P ≤ Gω contrary to the facts
that |P : Pα| ≥ 3 and Pα ∈ Syl3(Gα). Thus, Z(P ) acts semi-regularly on Ω. In
particular, Z(P )∩Pα = 1, and hence Pα is not normal in P . As a consequence,
|P : Pα| ≥ 9.

Since |P | = 81, Lemma 10 in [8] implies that only case (c) of this Lemma 10
can hold and thus |Pα| = 3.

Assume for a contradiction that Q fixes a point ω ∈ Ω. Then Qω = Pω, and
hence Q ≤ NG(Pω) because Q is abelian. Therefore Lemma 2.13 implies that
|Q : Qω| ≤ |NG(Pω) : NGω(Pω)| ≤ 4. Since |Q| = 33 and Qω has order 3, this is
a contradiction. Therefore Q acts semi-regularly on Ω.
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The following GAP code shows, that P contains only one conjugacy class of
subgroups of order 3 that has trivial intersection with Q.

P:=SylowSubgroup(AlternatingGroup(9),3);;
Q:=Filtered(NormalSubgroups(P),x->IsElementaryAbelian(x) and

Order(x)=27)[1];;↪→

li:=List(ConjugacyClassesSubgroups(P),Representative);;
lf:=Filtered(li,x->Order(x)=3);;
List(lf,x->IsTrivial(Intersection(x,Q)));

Therefore the element x ∈ P \Q of order 3 is conjugate to an element in Pα.
Thus, there exists β ∈ Ω such that x ∈ Gβ . Since ⟨x⟩Z(P ) ≤ NG(⟨x⟩) and
|NG(⟨x⟩)| is even, |NG(⟨x⟩)| is divisible by 9 · 2. By Lemma 2.13, |NG(⟨x⟩) :
NGβ (⟨x⟩)| ≤ 4 but |Gβ| is odd and not divisible by 9. This final contradiction
finishes the proof.

With the previous result, it remains to show that in every group that is mentioned in
Lemma 3.18 the normalisers of certain 3-elements have order divisible by a suitable
power of 2. In the next lemma, we will determine certain subgroups that guarantee
the conditions on the 3-elements.

Lemma 3.20
Let q be a prime power and ε ∈ {−1, 1} such that |q − ε|3 = 1. Let C be cyclic
of order at most 2, let N be isomorphic to C. SLε(3, q) and let Ĝ be a finite group
that has a subgroup M such that N ⊴ M . Let Z ≤ Z(Ĝ), d = |Z|, and G = Ĝ/Z.
Suppose that MZ/Z contains a Sylow 3-subgroup of G of type C3 ≀C3 and that d is
coprime to 3. Furthermore suppose that d is not divisible by 2|q−ε|2+1. Then there
does not exists a set Ω such that G acts transitively and with fixity 4 on Ω, and such
that the order of the point stabilisers is odd and divisible by 3.
Proof:

Let P ∈ Syl3(M). Since d = |Z| is coprime to 3, PZ/Z ∼= P ∼= C3 ≀ C3

and PZ/Z ∈ Syl3(G). Let Q ≤ P be elementary abliean of order 33. Since
P∩N ∈ Syl3(N), the order of P∩N is 27. By Lemma 3.6, all non-trivial elements
in (PC/C)∩ (N/C) have order 3. As a consequence, all non-trivial elements in
P ∩N have order 3. If all of them were contained in Q, then P ∩N = Q, and
thus N and N/C would have elementary abelian Sylow 3-subgroups contrary
to Lemma 3.6. Therefore let x ∈ (P ∩ N) \ Q be of order 3. Then ⟨x⟩ acts
coprimely on C, and hence with the use of Lemma 2.3 (a), Lemma 3.6 implies
that |NN (⟨x⟩)/C| = |NN/C(⟨Cx⟩)| is divisible by 2|q−ε|2+1. As a consequence,
NG(⟨Zx⟩) ≥ NNZ/Z(⟨Zx⟩) ≥ NN (⟨x⟩)Z/Z has order divisible by 2 because d is
not divisible by 2|q−ε|2+1. Since PZ/Z is isomorphic to P , all elements of order 3
in PZ/Z that are not an element of the elementary abelian subgroup of order 27
of PZ/Z have a normaliser in G of even order.

Let y ∈ Z(N) be of order 3. Then N = NN (⟨y⟩), and hence NG(⟨Zy⟩) ≥
NNZ/Z(⟨Zy⟩) ≥ NN (⟨y⟩)Z/Z has order divisible by |N |

|N∩Z| . Since |N | is divisible
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by 8 · 2|q−ε|2 , |NG(⟨Zy⟩)| is divisible by 8. As a consequence, PZ/Z contains
an element of order 3 whose normaliser in G has order divisible by 8. Therefore
Lemma 3.19 implies that G does not act transitively, with fixity 4, and such
that the order of the point stabilisers is odd and divisible by 3 on any set.

We will see in the next lemma, that for most of the groups of Lemma 3.18, a situation
as in the previous lemma can be found.

Lemma 3.21
Let G be a finite simple group. Suppose that G has Sylow 3-subgroups of type C3 ≀C3.
Then G does not act transitively, with fixity 4, and such that the order of the point
stabilisers is odd and divisible by 3 on any set.
Proof:

For A9, A10, and A11, we can use the GAP program in Remark 2.22 to-
gether with the GAP package TomLib [74]. Then the answer to the GAP com-
mand List(["a9","a10","a11"],x->TestTom(TableOfMarks(x),4)); shows
that none of the three groups can act transitively and with fixity 4 on any
set. Similarly, the GAP command TestTom(TableOfMarks("S4(3)"),4); im-
plies that PSp(4, 3) cannot act transitively, with fixity 4, and such that point
stabiliser have order divisible by 3 on any set.

Following Lemma 3.18, suppose that there exists a prime power q and ε ∈
{−1, 1} such that |q − ε|3 = 1 and such that G is isomorphic to PSLε(4,q). Set
Ĝ = SLε(4, q) and Z = Z(Ĝ). Then |Z| = gcd(4, q − ε) and this number is not
divisible by 2|q−ε|2+1. By Table 8.8 and Table 8.10 in [15], Ĝ has a subgroup M
isomorphic to GLε(3, q). Since |GLε(3, q)| = q3(q − ε)3(q2 + εq + 1)(q + ε)
and since |Z| is coprime to 3, MZ/Z contains a Sylow 3-subgroup of G. Then
Lemma 3.20 shows that G = Ĝ/Z does not act transitively, with fixity 4, and
such that the order of a point stabiliser is odd and divisible by 3 on any set.

Therefore instead suppose that there exists a prime power q and ε ∈ {−1, 1}
such that |q + ε|3 = 1 and such that G is isomorphic to PSLε(6, q). Let Ĝ =
SLε(6, q) and let Z = Z(Ĝ). Then |Z(Ĝ)| = gcd(6, q − ε) and this number is
divisible by neither 3 nor 2|q

2−1|2+1. By Table 8.24 and Table 8.26 in [15], Ĝ
has a subgroup M isomorphic to SL(3, q2).Cq+ε. Since |M | = q6(q + ε)3(q2 −
εq + 1)(q − ε)2(q2 + 1)(q2 + εq + 1) and since |Z| is coprime to 3, it follows
that MZ/Z contains a Sylow 3-subgroup of G. Then Lemma 3.20 shows that
G = Ĝ/Z does not act transitively, with fixity 4, and such that the order of a
point stabiliser is odd and divisible by 3 on any set.

Therefore instead suppose that there exists a prime power q and ε ∈ {−1, 1}
such that |q + ε|3 = 1 and such that G is isomorphic to PSLε(7, q). Set Ĝ =
SLε(7, q) and Z = Z(Ĝ). Then |Z| = gcd(7, q − ε) and this number is coprime
to 6. Then Ĝ has a subgroup isomorphic to SLε(6, q), and hence as above Ĝ
has a subgroup M isomorphic to SL(3, q2).Cq+ε and MZ/Z contains a Sylow
3-subgroup of G. Then Lemma 3.20 again shows that G = Ĝ/Z does not act
transitively, with fixity 4, and such that the order of a point stabiliser is odd
and divisible by 3 on any set.
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Therefore instead suppose that there exists a prime power q such that G is
isomorphic to PSp(6, q) and such that |q2 − 1|3 = 1. Let Ĝ = Sp(6, q) and let
Z = Z(Ĝ). Then |Z| = gcd(2, q − 1) and this number is divisible by neither
2|q

2−1|2+1nor 3. Let ε ∈ {−1, 1} be such that |q− ε|3 = 1. Additionally suppose
that q is odd. Then by Table 8.28 in [15], Ĝ contains a subgroup isomorphic to
GLε(3, q). Then Lemma 3.20 yields that G = Ĝ/Z(Ĝ) does not act transitively,
with fixity 4, and such that the order of a point stabiliser is odd and divisible by 3
on any set. Therefore we may suppose that q is even. Then by Table 8.28 in [15],
Ĝ ∼= G contains a subgroup isomorphic to SOε(6, q), and hence a subgroup
isomorphic to Ωε(6, q). Since by Table 8.31 and Table 8.33 in [15], Ωε(6, q) ∼=
PSLε(4, q) ∼= SLε(4, q), G contains a subgroup isomorphic to GLε(3, q) and
Lemma 3.20 implies that G does not act transitively, with fixity 4, and such
that the order of a point stabiliser is odd and divisible by 3 on any set.

Therefore instead suppose that there exists an odd prime power q such that
|q2 − 1|3 = 1 and such that G is isomorphic to PΩ(7, q). Then by page 80
in [105], PΩ(7, q) ∼= Ω(7, q) and we set Ĝ = Ω(7, q). Then Z = Z(Ĝ) = 1.
Let ε ∈ {−1, 1} be such that |q − ε|3 = 1. By Table 8.39 in [15], Ĝ contains
a subgroup isomorphic to Ωε(6, q). Therefore, by Table 8.31 and Table 8.33
in [15], Ĝ contains a subgroup isomorphic to C2.GLε(3, q). Then Lemma 3.20
implies that G = Ĝ/Z does not act transitively, with fixity 4, and such that the
order of a point stabiliser is odd and divisible by 3 on any set.

Finally suppose that there exists a prime power q such that |q2 − 1|3 = 1 and
such that G is isomorphic to PΩ−(8, q). Set Ĝ = Ω−(8, q) and Z = Z(Ĝ). Then
|Z(Ĝ)| = 1 by page 80 in [105]. Let ε ∈ {−1, 1} be such that |q − ε|3 = 1.
By Table 8.52 in [15], Ĝ contains a subgroup isomorphic to PΩ(7, q). Since
this group has a subgroup isomorphic Ωε(6, q) by Table 8.39 in [15] and this
subgroup has a subgroup isomorphic to Cgcd(2,q−1).GLε(3, q) by Table 8.31 and
Table 8.33 in [15], Lemma 3.20 implies that G = Ĝ/Z does not act transitively,
with fixity 4, and such that the order of a point stabiliser is odd and divisible
by 3 on any set.

By Lemma 3.18, the statement of this lemma follows.

3.3 The Case that Point Stabilisers have Order Coprime
to 6

In the case of Lemma 3.1 that the point stabilisers have order coprime to 6 no further
information about the group structure is given. Nevertheless, we can state some
properties of subgroups of an arbitrary finite simple group G that acts transitively,
with fixity 4, and such that the point stabilisers have order coprime to 6. In contrast
to the previous sections, in which a point stabiliser was our main subgroup of interest,
in this section often some non-trivial four-point stabiliser will be most useful for the
analysis. Therefore, the next lemma contains statements related to the four-point
stabiliser that will be needed in this section but are also of general interest. The
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following lemma strengthens the results of Lemma 2.15 for groups, not necessarily
simple, that have point stabilisers of order coprime to 6. Afterwards we will use it
in Lemma 3.23 to derive structural information about G.

Lemma 3.22
Let G be a finite group acting transitively, faithfully, and with fixity 4 on a set Ω, and
such that the point stabilisers have order coprime to 6. Let H be the element-wise
stabiliser of a set of size 4 and let α ∈ fixΩ(H). Then the following hold:

(a) If X ≤ H is non-trivial, then NGα(X) = NH(X).

(b) Either Gα = H or Gα is a Frobenius group.

(c) If X ≤ Gα is non-trivial, then |NG(X)| is divisible by neither 8, 9, nor 6.

(d) If X ≤ H is non-trivial, then |NG(X) : NH(X)| ≤ 4. Furthermore, |NG(X)|
is divisible by neither 3 nor 8.

(e) If p ∈ π(H), then NG(H) is strongly p-embedded in G.

Proof:
Suppose that X ≤ H and that 1 ̸= X. Let g ∈ NGα(H). Then NGα(X) acts
on fixΩ(X) \ {α} = fixΩ(H) \ {α}, a set of size 3. Since Gα has order coprime
to 6, g fixes every element in fixΩ(H) \ {α}, and hence is an element of H. In
particular, NGα(X) ≤ NH(X) and (a) follows.

For part (b) suppose that Gα ̸= H. Let g ∈ Gα be such that H ∩Hg ̸= 1. By
Lemma 2.15 (b), g ∈ NG(H), and by part (a), NGα(H) = NH(H) = H. Since
g ∈ Gα ∩ NG(H), this implies that g ∈ H. Thus, Gα is a Frobenius group with
Frobenius complement H.

Let X ≤ Gα be non-trivial. By Lemma 2.13, |NG(X) : NGα(X)| ≤ 4. Since
|Gα| is coprime to 6, part (c) follows.

Suppose that X ≤ H and that 1 ̸= X. Then by (a), |NGα(X) : NH(X)| = 1.
Thus, |NG(X) : NH(X)| = |NG(X) : NGα(X)| · |NGα(X) : NH(X)| ≤ 4 · 1. As-
sume, for a contradiction, that |NG(X)| is divisible by 3. Then NG(X) contains
an element x of order 3. Thus, x acts on fixΩ(X) = fixΩ(H), a set of size 4.
Therefore x fixes a point, but the point stabiliser have order coprime to 6. This
proves together with part (c) the remaining statements in (d).

For part (e) suppose that p is a prime dividing |H|. Since G acts transitively,
faithfully, and with fixity 4 on Ω, there exists an element ω that is not fixed
by H and an element g ∈ G such that αg = ω. Then g ̸∈ NG(H), and thus,
NG(H) ̸= G. Let P ∈ Sylp(NG(H)) and let Q ≤ P be non-trivial. Then Q acts
on the set of fixed points of H, but since H fixes four points and every element
in Q has p-power order with p ≥ 5, every element in Q fixes all four fixed
points of H. Let y ∈ NG(Q). Then y acts on fixΩ(Q) = fixΩ(H), and hence
by Lemma 2.15 (a), y ∈ NG(H). Therefore, by Lemma 2.7, NG(H) is strongly
p-embedded in G.
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The last part in the previous lemma enables us to show that with some exceptions
the Sylow p-subgroups of G are cyclic if p divides the order of a four-point stabiliser.
The full strength of this result will be used in the later subsections about groups of
Lie type, but since it holds for all finite simple groups, it is already stated here.

Lemma 3.23
Let G be a finite simple group acting transitively and with fixity 4 on a set Ω
and such that the point stabilisers have order coprime to 6. Let p be a prime
that divides the order of the element-wise stabiliser of a set of size 4. Then G
has cyclic Sylow p-subgroups or there exists a positive integer n such that G ∈
{PSL(2, pn),PSU(3, pn),A2p, J4,Fi22}.

In particular, if G is a finite simple group of Lie type such that there does not exist
a prime power q such that G is isomorphic to PSL(2, q) or PSU(3, q), then G has
cyclic Sylow p-subgroups.
Proof:

By Lemma 3.22 (e), G contains a strongly p-embedded subgroup. Since the
hypothesis yields that p ≥ 5, (24-1) in [41] implies that G has cylcic Sylow
p-subgroups or that G ∈ {PSL(2, pn),PSU(3, pn), 2F4(2)

′,A2p,McL,Fi22, J4}.
Then the following GAP command uses the GAP package TomLib [74] through
the GAP function in Remark 2.22 and shows that both 2F4(2)

′ and McL do not
act with fixity 4 on any set.
List(["2F4(2)'","McL"],x->TestTom(TableOfMarks(x),4));

The remaining groups are listed in the lemma and except for PSL(2, q) and
PSU(3, q) none of them are of Lie type.

All fixity-4 actions of PSL(2, q) and PSU(3, q) have been determined in section 3.1.
Therefore the restriction that G is none of these groups is no obstacle in the forth-
coming analysis.

Since sporadic simple groups are fairly well analysed, there are other resources
than Lemma 3.23 to understand their structure. In particular, for J4 and Fi22,
Lemma 3.25 uses a different approach to show that these groups do not act with
fixity 4 and such that point stabilisers have order coprime to 6.

Thus, the only interesting exception in the previous lemma are the alternating
groups. They are the topic of the next subsection.

3.3.1 Alternating Groups

In the proof of Lemma 3.24, we will see how the property that the point stabilisers
have order coprime to 6 can be exploit. A key concept is to fix the smallest prime
that divides the order of a point stabiliser (or a four-point stabiliser) and derive a
contradiction by showing that the order of a point stabiliser is divisible by a smaller
prime. This idea will also be used for the other finite simple groups. Thus, the
following lemma gives a first insight in the arguments.

This is the motivation to prove the result here, even though it is, with a different
proof, part of [7].
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Lemma 3.24
Let n ≥ 5 be an integer and let G = An. Suppose that G acts transitively on a set Ω.
Then G acts with fixity 4 and such that the point stabilisers have order coprime to 6
if and only if G = A7 and the point stabilisers are cyclic of order 5.
Proof:

Using the GAP package TomLib [74] through the algorithm in Remark 2.22,
the answer to the following command proves the statement of the lemma for all
n ≤ 12.

List([5..12],x->TestTom(TableOfMarks(Concatenation( "A",String(x)
)), 4));↪→

Therefore, throughout the rest of the proof, suppose that n ≥ 13.
Assume, for a contradiction, that G acts with fixity 4 and such that the point

stabilisers have order coprime to 6. Let α ∈ Ω and let p be the smallest prime
that divides |Gα|. Thus, p ≥ 5 and hence by Lemma 2.14, Gα contains a Sylow
p-subgroup of G. Therefore, Gα also contains an element x conjugate to the
p-cycle σ := (1, 2, . . . , p).

Additionally, assume that p ≤ n − 4. Then CG(σ) contains a subgroup iso-
morphic to An−(n−4) = A4, and hence has order divisible by 12. Therefore,
NG(⟨x⟩) ≥ CG(x) has order divisible by 12 contrary to Lemma 3.22 (b). This
contradiction shows that p ≥ n− 3.

Since Sp acts transitively on the set {1, 2, . . . , p}, NSn(⟨σ⟩) contains the full
automorphism group of ⟨σ⟩, and hence has order divisible by p − 1. Since An

has index 2 in Sn, |NAn(⟨σ⟩)| = |NG(⟨x⟩)| is divisible by p−1
2 ≥ n−4

2 > 4.
By Lemma 2.13, |NG(⟨x⟩) : NGα(⟨x⟩)| ≤ 4. Thus, there exists a prime r that
divides p−1

2 and |Gα| contrary to the hypothesis that p is the smallest prime
dividing |Gα|. This final contradiction proves the lemma.

3.3.2 Sporadic Groups

Another aspect of proving that certain finite simple groups cannot act transitively,
with fixity 4, and such the that point stabilisers have order coprime to 6 can be seen
in the following lemma about the sporadic simple groups. Mainly Lemma 3.22 (c) is
exploit.

The result is part of [7] but the proof here differs from the proof given there and
contains more details.

Lemma 3.25
Let G be a sporadic finite simple group. Suppose that G acts transitively on a set Ω.
Then G acts with fixity 4 and such that the point stabilisers have order coprime to 6
if and only if one of the following holds.

(1) G = M11 and the point stabilisers are of isomorphism type C5 or C11 : C5.

(2) G = M22 and the point stabilisers are of isomorphism type C5 or C11 : C5.
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Proof:
For some sporadic simple groups, we can use the GAP package TomLib [74]
together with the GAP function in Remark 2.22 to determine all transitive
fixity-4 actions of these groups. Among them are M11, M12, M22, M23, M24, J1,
J2, and J3. The following GAP command implies that of these groups only M11,
M12, M22, and J1 can act transitively and with fixity 4.
List(["M11","M12","M22","M23","M24","J1","J2","J3"],

x->TestTom(TableOfMarks(x),4));↪→

Furthermore, the result of the command states the sizes of the point stabilisers.
The only cases where the point stabilisers have order coprime to 6 are exactly
those stated in the lemma. Therefore, suppose that G is a sporadic simple group
other than M11, M12, M22, M23, M24, J1, J2, and J3.

Assume, for a contradiction, that G acts with fixity 4 and such that the point
stabilisers have order coprime to 6. Let α ∈ Ω and let p be the smallest prime
that divides |Gα|. Then p ≥ 5 and by Lemma 2.14, Gα contains a Sylow p-
subgroup of G. Let Y be a subgroup of order p of G. Then there exists a
subgroup X ≤ Gα conjugate to Y . By Lemma 2.13, |NG(X) : NGα(X)| ≤ 4.
Thus, every prime r ≥ 5 that divides |NG(X)| additionally divides |Gα|, and
hence by the minimality of p, it follows that p ≤ r. Therefore, whenever a
prime r divides |NG(Y )|, either r ∈ {2, 3} or p ≤ r. On the other hand, by
Lemma 3.22 (b), |NG(Y )| = |NG(X)| is divisible by neither 8, 9, nor 6.

We look at all remaining sporadic simple groups and in each case we derive
a contradiction in one way or another. We also keep the notation that p is the
smallest prime dividing |Gα| and that Y denotes a subgroup of G of order p.

Suppose that G = J4. Then Table 5.3i in [43] gives information about the
normalisers of subgroups of prime order. Furthermore the table implies that
p ∈ {5, 7, 11, 23, 29, 31, 37, 43}. If p = 43, then |NG(Y )| = 43·14. Thus, |NG(Y )|
is divisible by r := 7 but r = 7 ≤ 43 = p contrary to the observation above that
either r ∈ {2, 3} or p ≤ r. Therefore, p ̸= 43. If p = 37, then |NG(Y )| = 37 · 12,
and hence |NG(Y )| is divisible by 6, giving another contradiction. If p = 31,
then we can choose Y such that |NG(Y )| = 31 · 10. Thus, 5 divides |NG(Y )|
but neither 5 ∈ {2, 3} nor p ≤ 5, contrary to our earlier observation. Similarly,
if p ∈ {29, 23, 11, 7}, then we can choose Y such that |NG(Y )| is divisible by
a prime grater than 3 and smaller than p and derive a contradiction. As a
consequence, p = 5 but then for a subgroup X ≤ Gα of order 5, |NG(X)| is
divisible by 8, giving a last contradiction in this case. Therefore, G ̸= J4.

The group Co3 is another sporadic simple group where we can use the GAP
package TomLib [74] together with the program in Remark 2.22. Then the
GAP command TestTom(TableOfMarks("Co3"),4); shows that Co3 does not
act transitively and with fixity 4 on any set.

Suppose thatG = Co2. Then we use Table 5.3k in [43]. Thus, p ∈ {5, 7, 11, 23}.
If p ∈ {23, 11}, then |NG(Y )| is divisible by a prime smaller than p and greater
than 3. Thus, p ∈ {5, 7} but in both cases we can choose Y such that |NG(Y )|
is divisible by 8 and this also gives a contradiction. Therefore, G ̸= Co2.
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Suppose that G = Co1. Then in Table 5.3l in [43], information about G are
collected. Thus, p ∈ {5, 7, 11, 13, 23}. If p ∈ {23, 11}, then |NG(Y )| is divisible
by a prime smaller than p and greater than 3. If p ∈ {13, 7}, then |NG(Y )|
is divisible by 6 and this gives a contradiction, too. Thus, p = 5 but then Gα

contains a subgroup of order p whose normaliser has order divisible by 8, giving
another contradiction. Therefore G ̸= Co1.

If G is one of the groups HS or McL, then we can use, similarly to the earlier
cases, the GAP code List(["HS","McL"],x->TestTom(TableOfMarks(x),4));
to see that G does not act transitively and with fixity 4 on any set.

Suppose that G = Suz. Then Table 5.3o in [43] gives information about G.
Thus, p ∈ {5, 7, 11, 13}. If p ∈ {13, 7, 5}, then the order of NG(Y ) is divisible
by 6. Therefore, p = 11 but then 5 divides |NG(Y )| giving a contradiction to
the minimality of p. As a consequence, G ̸= Suz.

Suppose that G = He. We can use Table 5.3p in [43] to gain information
about G. Then p ∈ {5, 7, 17}. If p ∈ {17, 5}, then |NG(Y )| is divisible by 8.
Since this is impossible, p = 7. However, then Gα contains a subgroup of
order 7 whose normaliser in G has order divisible by 6, giving a contradiction,
too. Hence, G ̸= He.

Suppose that G = Ly. We use Table 5.3q in [43] to determine the orders of
normalisers of subgroups of prime order and see that p ∈ {5, 7, 11, 31, 37, 67}. If
p = 67, then |NG(Y )| is divisible by 11 contradicting the minimality of p. In
the remaining possibilities for p, there exists a subgroup X ≤ Gα of order p such
that NG(X) has order divisible by 6, giving another contradiction. Therefore,
G ̸= Ly.

Suppose that G = Ru. Then Table 5.3r in [43] contains information regar-
ding G. Thus, p ∈ {5, 7, 13, 29}. If p = 29, then |NG(Y )| is divisible by 7,
contradicting the minimality of p. If p ∈ {7, 13} then the fact that we can
choose Y such that |NG(Y )| is divisible by 6 gives another contradiction. Thus,
p = 5 but then there is a subgroup X ≤ Gα of order 5 such that |NG(X)| is
divisible by 8. Therefore G ̸= He.

Suppose that G = O’N. We use Table 5.3s in [43]. Thus, p ∈ {5, 7, 11, 19, 31}.
If p ∈ {31, 11}, then |NG(Y )| is divisible by 5. If p ∈ {19, 7}, then NG(Y ) has
order divisible by 6. Therefore p = 5, but then the order of a normaliser of a
subgroup of order 5 is divisible by 8, giving the last contradiction in this case
and proving that G ̸= O’N.

Suppose that G = Fi22. Then we use the information in Table 5.3t in [43].
Thus, p ∈ {5, 7, 11, 13}. If p ∈ {13, 7, 5}, then |NG(Y )| is divisible by 6. There-
fore p = 11, but then |NG(Y )| is divisible by 5, contradicting the minimality
of p. Hence, G ̸= Fi22.

Suppose that G = Fi23. Then by using Table 5.3u in [43], we can derive
that p ∈ {5, 7, 11, 13, 17, 23}. If p = 23, then |NG(Y )| is divisible by 11. If
p ∈ {17, 11, 5}, then we can choose Y such that |NG(Y )| is divisible by 8. Thus
p ∈ {7, 13}, but then the order of |NG(Y )| is divisible by 6, giving another
contradiction. Therefore, G ̸= Fi23.
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Suppose that G = Fi′24. Then Table 5.3v in [43] contains information about G.
Thus, p ∈ {5, 7, 11, 13, 17, 23, 29}. If p ∈ {29, 23, 11}, then |NG(Y )| is divisible
by a prime r ≥ 5 smaller than p. If p ∈ {13, 7, 5}, then |NG(Y )| is divisible
by 6. Therefore p = 17, but then |NG(Y )| is divisible by 8, giving another
contradiction. Hence, G ̸= Fi′24.

Suppose that G = HN. We use Table 5.3w in [43]. Then p ∈ {5, 7, 11, 19}.
If p = 5, then Gα has a subgroup X of order 5 such that |NG(X)| is divisible
by 8. If p = 7, then we can choose Y such that NG(Y ) has order divisible by 6.
If p = 11, then |NG(Y )| is divisible by 5 < p. Thus, p = 19 but then |NG(Y )|
is divisible by 9 giving the last contradiction in this case. Therefore G ̸= HN.

Suppose that G = Th. Then we use the information in Table 5.3x in [43].
Thus, p ∈ {5, 7, 13, 19, 31}. If p ∈ {19, 13, 7, 5}, then we can choose Y such that
|NG(Y )| is divisible by 6. Thus p = 31, but then NG(Y ) has order divisible
by 5, contradicting the minimality of p. Hence, G ̸= Th.

Suppose that G = B. Then Table 5.3y in [43] contains information about G.
Thus, p ∈ {5, 7, 11, 13, 17, 19, 23, 31, 47}. If p ∈ {47, 31, 23, 11}, then |NG(Y )|
is divisible by a prime r ≥ 5 that is smaller than p. If p ∈ {19, 13, 7}, then we
can choose Y such that the order of NG(Y ) is divisible by 6. Thus p ∈ {17, 5},
but then Gα contains a subgroup of order p whose normaliser has order divisible
by 8. As a consequence, G ̸= B.

Therefore, we look at the last remaining sporadic simple group. Suppose
that G = M. We use the information in Table 5.3z in [43] and conclude
that p ∈ {5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}. If p is one of the primes
in {71, 59, 47, 41, 31, 29, 23, 11}, then |NG(Y )| is divisible by a prime r ≥ 5 that
is smaller than p. If p ∈ {19, 13, 7}, then Gα contains a subgroup of order p
whose normaliser has order divisible by 6. Thus, p ∈ {5, 17} but then we can
choose Y such that |NG(Y )| is divisible by 8. This last contradiction shows that
G ̸= M and finishes the proof.

3.3.3 Classical Groups of Lie Type

We will take up some of the ideas that we have seen in the previous two sections.
The general strategy is the same for all families of classical groups of Lie type. In
each case we will assume that a finite simple group G acts transitively, with fixity 4,
and such that the point stabilisers have order coprime to 6. Then we will investigate
the structure of a four-point stabiliser and derive either a concrete fixity-4 action or
a contradiction. In the latter case Lemma 3.22 (d) and the following result are of
utmost importance.

Lemma 3.26
Let G be a finite simple classical group of Lie type over a field with q elements
such that G acts transitively and with fixity 4 on a set Ω, and such that the point
stabilisers have order coprime to 6. Let H be a four-point stabiliser of G. Suppose
that G ̸∈ {PSL(2, q),PSL(3, q),PSU(3, q)}. Then the following hold:
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(a) The order of H and q · (q − 1) · (q + 1) are coprime.

(b) For every prime r that divides |H|, qr−1 − 1 is divisible by r.

Proof:
Assume for a contradiction, that there exists a prime p that divides |H| and
q · (q − 1) · (q + 1). Since |H| is coprime to 6, p ≥ 5 and p divides exactly
one of the numbers q, q − 1, and q + 1. By Lemma 3.23, G has cyclic Sylow
p-subgroups. If p divides q, then Theorem 3.3.3 in [43] shows that the p-rank
of G is at least 3, and hence G cannot have cyclic Sylow p-subgroups. Therefore,
p divides q2 − 1. Then the multiplicative order of q modulo p is 1 or 2. Thus,
(10-2) in [41] implies together with Table 10:1 in [41] that the p-rank of G is at
least 2. This contradiction shows (a).

For part (b), suppose that r is a prime that divides |H|. Since part (a) proves
that r is coprime to q, Fermat’s little theorem yields that qr−1 is divisible by r.

Since all fixity-4 actions of PSL(2, q), PSL(3, q), and PSU(3, q) have been analysed
in Section 3.1, we do not have to deal with them again. Therefore, it is no problem
to exclude them from our forthcoming results.

For every family of classical groups of Lie type, we will first analyse the structure
of a certain subgroup to determine the order of the normaliser of a p-group where
p is a well-chosen divisor of the order of a four-point stabiliser. Then we will use
this information to derive either a concrete fixity-4 action or a contradiction. Even
though this strategy works in general for all classical groups of Lie type, the choice
of p depends on the specific family of groups. More specifically, we choose a positive
integer k minimal with the property that there exists a prime divisor p of the order
of a four-point stabiliser that also divides a certain polynomial in q. This polynomial
depends on k and on the family of groups and is closely related to Zsigmondi’s poly-
nomials in [108]. However, the forthcoming proofs do not need detailed knowledge of
Zsigmondi’s theory. The strategy is probably most visible in Lemma 3.28, because
there it can be used straight forward, since both the polynomial and the subgroup
structure spare additional specifics.

However, we first collect information about the normaliser of a subgroup of order p
in PSL(n, q). For this, a cyclic subgroup of GL(n, q), which is sometimes referred to
as singer cycle, is used.

Lemma 3.27
Let n ≥ 2 be an integer, let q be a prime power, and let G = PSL(n, q). Let p be a
prime divisor of |G| that does not divide q − 1 and let k ∈ {n − 1, n} be such that
p divides qk − 1.

(a) If k = n−1, then there exists an element y ∈ G of order p such that |NG(⟨y⟩)|
is divisible by (qn−1−1)·(n−1)

gcd(n,q−1) .

(b) If k = n, then there exists an element y ∈ G of order p such that |NG(⟨y⟩)| is
divisible by qn−1

q−1 · n
gcd(q−1,n) .
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Proof:
Let Z = Z(SL(n, q)). Then G = SL(n, q)/Z and |Z| = gcd(n, q − 1). We use
Satz II 7.3 a) in [54] and get that GL(k, q) contains a cyclic subgroup T of order
qk − 1 and that |NGL(k,q)(T )/T | is cyclic of order k.

First suppose that k = n−1. Then SL(n, q) contains a subgroup U isomorphic
to GL(k, q). By the above, there exists a cyclic subgroup C of U of order qk − 1
and |NU (C)/C| = k. Let a ∈ C be of order p. Then ⟨a⟩ is a characteristic
subgroup of C, and hence NU (⟨a⟩) ≥ NU (C). As a consequence, NU (⟨a⟩) is
divisible by (qk − 1) · k. By assumption, p does not divide q − 1, and hence
Za ∈ CZ/Z has order p. Therefore, NG(⟨Za⟩) ≥ NSL(n,q)(⟨a⟩)/Z ≥ NU (⟨a⟩)/Z.

Thus, NG(⟨Za⟩) has order divisible by (qk−1)·k
gcd(n,q−1) .

Next, suppose instead, that k = n. Let T be a cyclic subgroup of GL(n, q)
of order qn − 1 and let C = T ∩ SL(n, q). By Satz II 7.3 b) in [54], C has order
qn−1
q−1 and NSL(n,q)(C) = NGL(n,q)(T ) ∩ SL(n, q). Therefore, |NSL(n,q)(C)| =
|NGL(n,q)(T )|·| SL(n,q)|
|NGL(n,q)(T )SL(n,q)| , and thus |NSL(n,q)(C)| is divisible by |NGL(n,q)(T )|·| SL(n,q)|

|GL(n,q)| =

(qn−1)n·| SL(n,q)|
(q−1)| SL(n,q)| = qn−1

q−1 ·n. Let a ∈ C be of order p. Since the order of NG(⟨Za⟩)
is again divisible by |NSL(n,q)(C)/Z|. We set y = Za and the lemma follows.

Lemma 3.28
Let n ≥ 4 be an integer, let q be a prime power, and let G = PSL(n, q). Then
G does not act transitively, with fixity 4, and such that the point stabilisers have
order coprime to 6 on any set.
Proof:

We will use that

|G| = q
n(n−1)

2

gcd(n, q − 1)

n∏
i=2

(qi − 1)

throughout the proof without further reference. First we deal with PSL(4, 2)
and PSL(4, 3) before we turn towards the general proof.

Since PSL(4, 2) ∼= A8, Lemma 3.24 implies that PSL(4, 2) does not act
transitively, with fixity 4, and such that the order of the point stabilisers is
coprime to 6 on any set. For PSL(4, 3), we can use the algorithm in Re-
mark 2.22 together with the GAP package TomLib [74]. Then the GAP com-
mand TestTom(TableOfMarks("L4(3)"),4); yields that PSL(4, 3) does not act
transitively and with fixity 4 on any set.

Assume, for a contradiction, that G acts transitively, with fixity 4, and such
that the point stabilisers have order comprime to 6 on a set Ω. Let α ∈ Ω and
let H be a non-trivial four-point stabiliser contained in Gα. We have just seen,
that if n = 4, then q ≥ 4.

By Lemma 3.26 (a), a prime that divides |H| does not divide q. Since this
prime divides the order of G, it divides a factor of |G| coprime to q, and we are
in the position to define a positive integer with some minimality condition as
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described before Lemma 3.27. For that purpose, let k be the smallest positive
integer such that there exists a prime p ∈ π(H) with the property that p divides
qk − 1. Then, by Lemma 3.26 (a), k ≥ 3.

First additionally assume, for a contradiction, that k ≤ n − 2. The group
SL(n, q) has a subgroup U1 isomorphic to SL(n − 2, q) and a subgroup U2 iso-
morphic to SL(2, q) such that U1 × U2 ≤ SL(n, q). Let Z = Z(SL(n, q)). Then
U1Z/Z × U2Z/Z ≤ G. Since 3 ≤ k ≤ n− 2, there exists an element a ∈ U1Z/Z
of order p. Then CG(a) contains U2Z/Z, and hence |CG(a)| is divisible by
q(q2−1)

gcd(n,q−1) . Since H contains a Sylow p-subgroup, it contains an element b con-
jugate to a.

If q = 2, then q(q2−1)
gcd(n,q−1) = 6, and thus |CG(b)| is divisible by 3, contradicting

Lemma 3.22 (d). If q = 3, then q(q2−1)
gcd(n,q−1) is divisible by 12, giving the same

contradiction. If q ≥ 4, then q(q2−1)
gcd(n,q−1) is divisible by q + 1 ≥ 5. Thus, the

fact that |CG(b) : CH(b)| ≤ 4 implies that |H| is divisible by a prime factor r
of q + 1, contradicting Lemma 3.26 (a).

As a consequence, k ≥ n− 1.

Next assume, for a contradiction, that k = n − 1. Then Lemma 3.27 shows
that there exists an element y ∈ G of order p such that |NG(⟨y⟩)| is divisible by
(qn−1−1)·(n−1)

gcd(n,q−1) = qn−1−1
q−1 ·(n−1)· q−1

gcd(n,q−1) . Since H contains a Sylow p-subgroup
it contains a subgroup Y conjugate to ⟨y⟩.

If n ≥ 6, then n − 1 ≥ 5, and hence |NG(Y )| is divisible by n − 1 ≥ 5. By
Lemma 3.22 (d), it follows that |H| is divisible by a prime factor r of n−1. Then
Lemma 3.26 (b) yields that qr−1−1 is divisible by r. Since r−1 ≤ n−1−1 < k,
this contradicts the minimality of k.

If n = 5, then (qn−1−1)·(n−1)
gcd(n,q−1) = (q2 +1) · (q+1) · 4 · q−1

gcd(5,q−1) . Hence |NG(Y )|
is divisible by 4(q + 1). Since |H| is odd and |NG(Y ) : CH(Y )| ≤ 4, it follows
that |H| is divisible by a prime factor r of q + 1, contradicting Lemma 3.26 (a).

Thus, n = 4. Then (qn−1−1)·(n−1)
gcd(n,q−1) = 3· (q3−1)

gcd(4,q−1) and hence |NG(Y )| is divisible
by 3. This contradicts Lemma 3.22 (d).

As a consequence, k = n.

Then Lemma 3.27 proves that there exists an element y ∈ G of order p such
that |NG(⟨y⟩)| is divisible by qn−1

q−1 · n
gcd(q−1,n) . Since H contains a Sylow p-

subgroup, it contains a subgroup Y conjugate to ⟨y⟩, and hence |NG(Y )| is
divisible by qn−1

q−1 · n
gcd(q−1,n) .

If n = 4, then |NG(Y )| is divisible by (q2 + 1) · (q + 1) · 4
gcd(q−1,4) . We recall

that, if n = 4, q ≥ 4. In particular, |NG(Y )| is divisible by q + 1 > 4. Then
the fact that |NG(Y ) : NH(Y )| ≤ 4 implies that |H| is divisible by a prime that
divides q + 1. This again contradicts Lemma 3.26 (a). Therefore, n ≥ 5. We
will spilt the analysis, according to whether n is divisible by a prime r such that
3 ≤ r < n, n is a 2-power, or n is prime.
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If n is divisible by a prime r such that 3 ≤ r < n, then qn−1
q−1 =

∏
d|n,d ̸=1Φd(q)

is divisible by Φr(q). The facts that Φr(q) ≥ q2+q+1 ≥ 22+2+1 = 7 and that
|NG(Y ) : NH(Y )| ≤ 4 together imply that |H| is divisible by a prime divisor
of Φr(q). Since this prime then also divides qr − 1 and since r < n = k, this is
a contradiction to the minimality of k.

If n is a 2-power, then qn−1
q−1 =

∏
d|n,d ̸=1Φd(q) is divisible by Φ4(q) = q2 + 1.

Thus, |NG(Y )| is divisible by q2+1 ≥ 22+1 > 4. Therefore, by Lemma 3.22 (d),
it follows that |H| is divisible by a prime dividing q2 + 1 and hence q4 − 1.
However, since 4 < n = k, this again contradicts the minimality of k.

The last case is that n is prime. Then Φk(q) = Φn(q) = 1+q+q2+ . . .+qn−1.
If q−1 is divisible by n, then Φk(q) ≡ n·1 ≡ 0 mod n. Since |NG(Y )| is divisible
by qn−1

q−1 · n
gcd(q−1,n) , which in turn is divisible by Φk(q), this implies that n ≥ 5

divides the order of NG(Y ). Therefore by Lemma 3.22 (d), |H| is divisible by n,
contradicting Lemma 3.26 (a) because n also divides q − 1. Thus, q − 1 cannot
be divisible by n. Since n is a prime, this implies that gcd(q − 1, n) = 1,
and hence |NG(Y )| is divisible by qn−1

q−1 · n. The facts that n ≥ 5 and that
|NG(Y ) : NH(Y )| ≤ 4 together imply that the order of H is divisible by n.
Then by Lemma 3.26 (b), which is applicable because n is a prime, n divides
qn−1 − 1. Since n − 1 < k, this contradicts the minimality of k for a last time
and finishes the proof.

The proof of the previous lemma not just explains the strategy that we will also use
for the other classical groups of Lie type but additionally illustrates why we have
to look at all families separately. The estimates and number-theoretic arguments
were highly dependent on PSL(n, q) and its order and cannot be conveyed directly
for the other families of classical groups of Lie type. We will see the difference more
clearly when analysing PSU(n, q) and its fixity-4 actions. However, beforehand we
investigate parts of the subgroup structure of PSU(n, q).

The subgroups of our main interest in the analysis of PSU(n, q) and the other
classical groups of Lie type arise from the Aschbacher class C3 in [3]. For a prime
power q, a positive integer n, and a prime r that divides n, the field Fqr can be
interpreted as a vector space of dimension r over Fq, and thus a vector space V
of dimension n/r over Fqr can be identified with a vector space W of dimension n
over Fq. Therefore GL(n/r, qr) is isomorphic to a subgroup of GL(n, q). This con-
struction harmonises in some way with a form attached to the vector space. Thus,
the subgroup of all elements of GL(n/r, qr) respecting this, to V attached, form (i. e.
the group of all isometries regarding this form) corresponds to a subgroup U of a
group K that is the subgroup of all elements in GL(n, q) that respects the corre-
sponding form attached to W . More details are given in section 7 in [3], especially
in (7.2) and (7.4), and in paragraph 4.3 in [62], especially in Table 4.3.A. Then the
subgroups we are interested in can be understood as the normaliser of U in K. From
this (more geometric) construction, it is clear that NK(U) exists, even though it is
not necessarily a maximal subgroup of K. However, for the remaining proofs of this
subsection we only need the existence and not the maximality. The structure and
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thus the order of NK(U) can be derived from [3] and [62]. This is done in [105], and
hence we normally consult an appropriate place there for the structure of NK(U).

Lemma 3.29
Let n ≥ 2 be an integer, let q be a prime power, and let G = GU(n, q). Let p be
a prime divisor of qn − (−1)n such that for all positive integers l < n the number
ql − (−1)l is not divisible by p. Let P ∈ Sylp(G). Then |NG(P )| is divisible by
(qn − (−1)n) · n.
Proof:

Throughout the proof, we will need the order of GU(n, q) frequently. By (3.25)

on p. 66 in [105], |G| = q
n(n−1)

2

n∏
i=1

(qi − (−1)i).

We split the analysis according to whether n is even or odd, because the sub-
groups that are used in the investigation of each case are different. First suppose
that n is even. Then GU(n, q) has a subgroup M isomorphic to GL(n/2, q2).C2

(see Theorem 3.9 (iv) in [105]). Let L ≤ M be isomorphic to GL(n/2, q2). By
Satz II 7.3 in [54], L has a cyclic subgroup T of order q2·

n
2 − 1 = qn − 1 such

that NL(T )/T is cyclic of order n/2. Since for all positive integers l < n the
number ql − (−1)l is not divisible by p, T contains a Sylow p-subgroup Q of G.
Thus, by Lemma 2.4, |NM (T )| = 2|NL(T )| = 2 · (qn − 1) · n

2 = (qn − 1) · n, and
hence |NG(T )| is divisible by (qn − 1) · n. Since Q is a characteristic subgroup
of T , it follows that the order of NG(Q) is divisible by |NG(T )|. Thus, |NG(Q)|
is divisible by (qn − 1) · n = (qn − (−1)n) · n in the case that n is even. Since P
is conjugate to Q, NG(P ) has order divisible by (qn − (−1)n) · n, too.

Now instead suppose that n is odd. Then p divides qn+1. Let d be a positive
integer that divides n. We prove the statement that the normaliser of a Sylow
p-subgroup of GU(d, qn/d) is divisible by (qn+1) ·d by induction. If d = 1, then
GU(d, qn/d) = GU(1, qn) is a cyclic group of order qn + 1. Thus, the normaliser
of a Sylow p-subgroup of GU(d, qn/d) is GU(1, qn) itself, and hence has order
qn + 1 = (qn + 1) · 1 = (qn + 1) · d. For the induction step, additionally suppose
that there exists a positive integer d that divides n such that for all e < d
that divide d, the normaliser of a Sylow p-subgroup of GU(e, qn/e) has order
divisible by (qn + 1) · e. Then by Theorem 3.9 (vii) in [105] (or section 7 in [3]),
there exists an odd prime r dividing d such that the group GU(d, qn/d) has
a subgroup M isomorphic to GU(d/r, (qn/d)r).Cr. Let U ≤ M be isomorphic
to GU(d/r, (qn/d)r). Since n is odd and for all positive integers l < n, the
number ql − (−1)l is not divisible by p, it follows that for all l1 < d the number
(qn/d)l1 − (−1)l1 is not divisible by p. Thus, U contains a Sylow p-subgroup Q
of GU(d, qn/d). Therefore Lemma 2.4 implies that |NM (Q)| = r|NU (Q)|. Then
by the induction hypothesis (for U ∼= GU(d/r, q

n
d/r )), |NU (Q)| is divisible by

(qn + 1) · (d/r). As a consequence, |NM (Q)| is divisible by r · (qn + 1) · (d/r) =
(qn + 1) · d. This proves the statement of the induction. Therefore, |NG(P )| =
|NGU(n,q)(P )| is divisible by (qn + 1) · n = (qn − (−1)n) · n in the case that n is
odd.
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Lemma 3.30
Let n ≥ 2 be an integer, let q be a prime power, and let G = PSU(n, q). Let p be a
prime and k an integer greater than 2 such that p divides qk − (−1)k and such that
for all positive integers l < k, p does not divide ql − (−1)l. Let P ∈ Sylp(G).

(a) If k = n−1, then there exists a subgroup R ≤ P such that |NG(R)| is divisible
by (qn−1−(−1)n−1)·(n−1)

gcd(n,q+1) .

(b) If k = n, then |NG(P )| is divisible by (qn−(−1)n)·n
(q+1)·gcd(n,q+1) .

Proof:
Let Z = Z(SU(n, q)). Then G = SU(n, q)/Z and |Z| = gcd(n, q + 1). Since
k ≥ 3, p does not divide q + 1.

First suppose that k = n. Let Q be a Sylow p-subgroup of the full pre-
image of P in SU(n, q). Then QZ/Z = P . Since SU(n, q) has index q + 1
in GU(n, q) and since p does not divide q + 1, Q is a Sylow p-subgoup of
GU(n, q). By Lemma 3.29, |NGU(n,q)(Q)| is divisible by (qn − (−1)n) · n.

Therefore, |NSU(n,q)(Q)| =
|NGU(n,q)(Q)|·| SU(n,q)|
|NGU(n,q)(Q)SU(n,q)| . This number is divisible by

|NGU(n,q)(Q)|·| SU(n,q)|
|GU(n,q)| and hence by (qn−(−1)n)·n

q+1 . Since NG(P ) ≥ NSU(n,q))(Q)/Z,

it follows that |NG(P )| is divisible by (qn−(−1)n)·n
(q+1)·gcd(n,q+1) .

Therefore, instead suppose that k = n − 1. Then SU(n, q) contains a sub-
group U isomorphic to GU(n− 1, q). Let Q be a Sylow p-subgroup of U . Then
by Lemma 3.29, |NU (Q)| is divisible by (qn−1 − (−1)n−1) · (n − 1). Since
NU (Q)Z/Z ≤ NSU(n,q)(Q)/Z ≤ NG(QZ/Z), this implies that |NG(QZ/Z)| is di-

visible by (qn−1−(−1)n−1)·(n−1)
gcd(n,q+1) . The lemma follows because all Sylow p-subgroups

are conjugate, and therefore P contains a subgroup conjugate to QZ/Z.

With this information collected, we can turn towards the proof of the following lemma
about the fixity-4 actions of PSU(n, q).

Lemma 3.31
Let n ≥ 4 be an integer, let q be a prime power, and let G = PSU(n, q). Suppose
that G acts transitively on a set Ω. Then G acts with fixity 4 and such that the point
stabilisers have order coprime to 6 if and only if G = PSU(4, 2) or G = PSU(4, 3)
and, in both cases, the point stabilisers are cyclic of order 5.
Proof:

For PSU(4, 2) the GAP command TestTom(TableOfMarks("U4(2)"),4); and
for PSU(4, 3) the command TestTom(TableOfMarks("U4(3)"),4); yields the
correctness of the statement. The commands use the algorithm in Remark 2.22
together with the GAP package TomLib [74].

To complete the proof, assume, for a contradiction, that G is neither PSU(4, 2)
nor PSU(4, 3) and acts with fixity 4 and such that the point stabilisers have
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order coprime to 6 on a set Ω. Let α ∈ Ω and let H be a non-trivial four-point
stabiliser contained in Gα.

Similarly to the proof of Lemma 3.28, we will define an integer with some
minimality property and in most cases derive a contradiction to the minimality.
Albeit for this purpose, we will use a family of polynomials different from the
one used in Lemma 3.28.

First we note that, by Lemma 3.26 (a), |H| and q are coprime. Then we de-
fine k to be the smallest positive integer such that there exists a prime p ∈ π(H)
with the property that p divides qk − (−1)k. By Lemma 3.26 (a), it follows that
k ≥ 3.

Let Z = Z(SU(n, q)). Then G = SU(n, q)/Z and p does not divide |Z|.

First additionally assume, for a contradiction, that k = n. Let P ∈ Sylp(H).
Then by Lemma 3.22, P ∈ Sylp(G). Therefore, by Lemma 3.30 (b), |NG(P )| is
divisible by (qn−(−1)n)·n

(q+1)·gcd(n,q+1) .
We split the analysis in this case, according to whether n is divisible by 4,

n is even but not divisible by 4, or n is odd.
Therefore, additionally assume, for a contradiction, that n is divisible by 4.

Then |NG(P )| is divisible by (qn−1)·n
(q+1)·gcd(n,q+1) = (qn/2 + 1) · (qn/2−1)·n

(q+1)·gcd(n,q+1) . Let

m = (qn/2−1)·n
(q+1)·gcd(n,q+1) . If |H| is divisible by a prime r that divides m, then r ≥ 5

and either r divides qn/2−1 = qn/2−(−1n/2), contradicting the minimality of k,
or r divides n. By Lemma 3.26 (b), qr−1−1 is divisible by r. Thus, in the latter
case that r divides n, r−1 ≤ n−1 < k, and we again get a contradiction to the
minimality of k. Therefore |H| and m are coprime. Since |NG(P ) : NH(P )| ≤ 4,
this implies that m ≤ 4.

If n = 4, thenm = (q2−1)·4
(q+1)·gcd(4,q+1) =

(q−1)·4
gcd(4,q+1) . Therefore, q−1 ≤ gcd(4, q+1).

By our assumption that G is neither PSU(4, 2) nor PSU(4, 3), q ≥ 4 and hence
q − 1 > gcd(4, q + 1). As a consequence, n > 4, and thus n ≥ 8 because of
our assumption that n is divisible by 4. Since q + 1 divides either qn/4 + 1

or qn/4 − 1, it follows that qn/2−1
q+1 = (qn/4−1)·(qn/4+1)

q+1 ≥ qn/4 − 1. Hence, m ≥
(qn/4 − 1) · n

gcd(n,q+1) ≥ qn/4 − 1. If q ≥ 3, then m ≥ qn/4 − 1 ≥ 32 − 1 = 8. If
n > 8, then m ≥ qn/4− 1 ≥ q12/4− 1 = q3− 1 ≥ 23− 1 = 7. If n = 8 and q = 2,
then m = (24−1)·8

3·gcd(8,3) = 40. Thus, in all cases m > 4. This contradiction shows
that n is not divisible by 4, in the case that k = n.

Therefore, instead assume, for a contradiction, that n is even but not di-
visible by 4. Then |NG(P )| is divisible by (qn−1)·n

(q+1)·gcd(n,q+1) = qn/2−1
q−1 · (q − 1) ·

(qn/2+1)·n
(q+1)·gcd(n,q+1) . Under this assumptions we set m = (q − 1) · (qn/2+1)·n

(q+1)·gcd(n,q+1) .
Then |NG(P )| is divisible by m. Since n ≥ 4 and n/2 is odd, n ≥ 6, and
therefore qn/2+1

q+1 = qn/2−1 − qn/2−2 + . . . − q + 1 ≥ q2 − q + 1. If q = 2, then

m = (2n/2+1)·n
(2+1)·gcd(n,2+1) ≥

(26/2+1)·6
3·3 = 6 > 4. If q ≥ 3, then m = (q − 1) · (qn/2+1)

(q+1) ·
n

gcd(n,q+1) ≥ (q − 1) · (q2 − q + 1) ≥ 2 · 7 = 14 > 4. Thus, in all cases, m > 4.
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Since |NG(P ) : NH(P )| ≤ 4, |H| and m have a common prime factor r ≥ 5.
By Lemma 3.26 (a), |H| and q − 1 are coprime, thus r divides qn/2 + 1 =
qn/2 − (−1)n/2 or n. The first case contradicts the minimality of k and in the
second case, by Lemma 3.26 (b), qr−1−1 is divisible by r. Since r−1 ≤ n−1 < k,
this is a contradiction to the minimality of k, too. Therefore, n is odd if k = n.

Then |NG(P )| is divisible by (qn+1)·n
(q+1)·gcd(n,q+1) . If n is a prime then either

gcd(n, q + 1) = 1 and hence |NG(P )| divisible by n, or n divides q + 1. In the
latter case, qn+1

q+1 ≡ qn−1− qn−2+ qn−3− . . .+ q2− q+1 ≡ (−1)n−1− (−1)n−2+

(−1)n−3−. . .+(−1)2−(−1)+1 ≡ n ≡ 0 mod n. As a consequence, if n is prime,
then n divides the order of NG(P ) and n ≥ 5. Since |NG(P ) : NH(P )| ≤ 4, this
implies that n divides |H|, but since qn−1 − 1 is divisible by n, this contradicts
the minimality of k. Therefore, n has an odd prime divisor s < n and n ≥ 9.
Then qs + 1 divides qn + 1. Thus, (qn+1)·n

(q+1)·gcd(n,q+1) = qn+1
qs+1 · (qs+1)

(q+1) · n
gcd(n,q+1) .

Let m = (qs+1)
(q+1) · n

gcd(n,q+1) . Then |NG(P )| is divisible by m. If q ≥ 3, then

m ≥ qs+1
q+1 ≥ 33+1

3+1 = 7 > 4. If q = 2, then m = (2s+1)
3 · n

gcd(n,3) ≥
(23+1)·9

3·3 = 9 > 4

because n ≥ 9. Since |NG(P ) : NH(P )| ≤ 4, it follows that there exists a prime t
that divides (qs+1)·n and |H|. The minimality of k forces t to divide n but then
qt−1 − 1 is divisible by t and this also contradicts the minimality of k, because
t− 1 is even and t− 1 ≤ n− 1 < n. This last contradiction implies that k < n.

Therefore, assume instead, for a contradiction, that k = n − 1. Let P be a
Sylow p-subgroup of H. Since P ∈ Sylp(G), Lemma 3.30 yields that there exists
a subgroup R ≤ P such that |NG(R)| is divisible by (qn−1−(−1)n−1)·(n−1)

gcd(n,q+1) . If a
prime s divides (q2 − 1) · (n − 1) and |H|, then s ≥ 5 and s divides q2 − 1 or
n − 1. By Lemma 3.26 (a), s cannot divide q2 − 1, and thus s divides n − 1.
However, by Lemma 3.26 (b), qs−1 − 1 is divisible by s and since s is odd and
s− 1 ≤ n− 1− 1 = k − 1, this also contradicts the minimality of k. Hence |H|
and (q2 − 1) · (n− 1) are coprime.

Additionally assume, for a contradiction, that n− 1 is even. Then |NG(R)| is
divisible by (qn−1−1)·(n−1)

gcd(n,q+1) = qn−1−1
q2−1

· (n−1) · (q2−1)
gcd(n,q+1) . If n ≥ 6, then n−1 > 4,

and hence, by Lemma 3.22 (d), |H| and n−1 have a common prime divisor, but
this is impossible. Thus, n − 1 = 4. If q ≥ 3, then (q2−1)·(n−1)

gcd(n,q+1) = (q2−1)·4
gcd(5,q+1) ≥

(32−1)·4
5 = 32

5 > 4. If q = 2, then (q2−1)·(n−1)
gcd(n,q+1) = (22−1)·4

gcd(5,2+1) = 12 > 4. Therefore,
by Lemma 3.22 (d), |H| and (q2−1)(n−1) have a common prime divisor. Since
this is not possible, n− 1 is odd.

Then |NG(R)| is divisible by (qn−1+1)·(n−1)
gcd(n,q+1) = qn−1+1

q+1 · (q+1)·(n−1)
gcd(n,q+1) . If n−1 ≥ 5,

then the fact that |NG(R) : NH(R)| ≤ 4 implies that n− 1 and |H| again have
a prime divisor in common. If n = 4, then, by our assumption that G is neither
PSU(4, 2) nor PSU(4, 3), q ≥ 4. If q = 4, then (q+1)·(n−1)

gcd(n,q+1) = (4+1)·3
gcd(4,4+1) = 15 > 4.

If q ≥ 5, (q+1)·(n−1)
gcd(n,q+1) ≥ (5+1)·3

gcd(4,q+1) ≥ 18
4 > 4. As a consequence, Lemma 3.22 (d)

implies that there exists a prime s dividing (q + 1) · (n− 1) and |H|. However,
as seen earlier, this is not possible. Hence, k ≤ n− 2.
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As a next step, we will determine a factor of the order of the normaliser of a Sy-
low p-subgroup of G by starting with GU(n, q) and a Sylow p-subgroup therein.
The group GU(n, q) has a subgroupM isomorphic to GU(n−2, q)×GU(2, q). Let
U ≤M be isomorphic to GU(n−2, q) and let L ≤M be isomorphic to GU(2, q)
such that U×L =M . Then U has a subgroup V isomorphic to GU(k, q) and by
Lemma 3.29, the normaliser of a Sylow p-subgroup P of V has order divisible by
(qk−(−1)k)·k. Since L ≤ CM (U), L ≤ NM (P ), and since L∩V = 1, this implies
that |NM (P )| is divisible by (qk−(−1)k)·k ·|L| = (qk−(−1)k)·k ·q(q2−1)(q+1).
By Lemma 3.26 (a), p does not divide q + 1, and thus |P ∩ SU(n, q)| = |P |, and
hence P ≤ SU(n, q). Therefore and because NGU(n,q)(P ) ≥ NM (P ), NSU(n,q)(P )

has order divisible by (qk−(−1)k)·k·q(q2−1)(q+1)
q+1 = (qk − (−1)k) · k · q(q2 − 1).

Since NSU(n,q)(P )Z/Z ≤ NG(PZ/Z), it follows that |NG(PZ/Z)| is divisible by
(qk−(−1)k)·k·q(q2−1)

gcd(n,q+1) .
Since H contains a Sylow p-subgroup of G, it contains a subgroup Q conjugate

to PZ/Z. Hence, |NG(Q)| is also divisible by (qk−(−1)k)·k·q(q2−1)
gcd(n,q+1) which in turn

is divisble by k · q. Since k ≥ 3 and q ≥ 2, k · q > 4. Then by Lemma 3.22 (d),
|H| is divisible by a prime r that divides k · q. Since |H| and q are coprime,
r divides k and Lemma 3.26 (b) implies that qr−1 − 1 is divisible by r. This
contradicts the minimality of k because r − 1 is even and r − 1 ≤ k − 1 < k.
This last contradiction finishes the proof.

The next family of classical groups of Lie type that we look at are the symplectic
groups. We will see that PSp(4, q) can act with fixity 4 and such that the point
stabilisers are cyclic of order coprime to 6. However, beforehand, we analyse some
parts of the subgroup structure similarly to Lemma 3.29.

Lemma 3.32
Let n ≥ 2 be an integer, let q be a prime power, and let G = PSp(2n, q). Let p be
a prime such that p divides q2n − 1 and such that for all positive integers l < n,
q2l − 1 is not divisible by p. Let P ∈ Sylp(G) and let ε ∈ {−1, 1} be such that
p divides qn − ε. Then |NG(P )| is divisible by (qn−ε)·2n

gcd(2,q+1) .
Proof:

At one point during the proof, we need the order of G. For convenience, we
state it here (see pp. 60-61 in [105]).

|PSp(2n, q)| = qn
2

gcd(2, q + 1)

n∏
i=1

(q2i − 1)

Let d be a positive integer dividing n. We proof the statement that (qn−ε)·2d
gcd(2,q+1)

divides the order of the normaliser of a Sylow p-subgroup of PSp(2d, qn/d) by
induction.

If d = 1, then PSp(2d, qn/d) = PSp(2, qn). Since, by Hilfssatz II 9.12 in [54],
PSp(2, qn) is isomorphic to PSL(2, qn), the normaliser of a Sylow p-subgroup
of PSp(2d, qn/d) is, by Satz II 8.3 and 8.4 in [54], a dihedral group of order
2 · qn−ε

gcd(2,q+1) =
(qn−ε)·2d
gcd(2,q+1) .
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For the induction, suppose that there exists a positive integer d such that
d divides n and such that for every positive integer e < d that divides d, the nor-
maliser of a Sylow p-subgroup of PSp(2e, qn/e) has order divisible by (qn−ε)·2e

gcd(2,q+1) .
Then Theorem 2 in [29] (cf. Theorem 3.7 (iv) and Theorem 3.8 (vi) in [105]) im-
plies that there exists a prime r that divides d and such that PSp(2d, qn/d) has
a subgroup M isomorphic to PSp(2d/r, (qn/d)r).Cr. Let U ≤ M be isomorphic
to PSp(2d/r, (qn/d)r) = PSp(2d/r, q

n
d/r ). Since for all positive integers l < n,

the number q2l − 1 is not divisible by p, it follows that for all l1 < d, p does not
divide (qn/d)2l1 − 1. Thus, U contains a Sylow p-subgroup Q of PSp(2d, qn/d).
Therefore, Q ∈ Sylp(M). By Lemma 2.4, |NM (Q)| = r · |NU (Q)|. Then by the
induction hypothesis (for U ∼= PSp(2d/r, q

n
d/r )), it follows that |NU (Q)| is divis-

ible by (qn−ε)·2(d/r)
gcd(2,q+1) . Hence, |NM (Q)| is divisible by r · (qn−ε)·2(d/r)

gcd(2,q+1) = (qn−ε)·2d
gcd(2,q+1) .

This proves the statement of the induction.
As a consequence, |NG(P )| = |NPSp(2n,q)(P )| is divisible by (qn−ε)·2n

gcd(2,q+1) .

For PSL(n, q) and PSU(n, q) we did not need any maximality information about
the used subgroups. For PSp(n, q) where we also have to prove that for n = 4 a
certain action is indeed a fixity-4 action, we need more information than stated in
the previous lemma mostly related to the maximal subgroups of PSp(4, q). The
results are collect in the next lemma.

Lemma 3.33
Let q ≥ 7 be a prime power and let G = PSp(4, q). Let U < G have order divisible
by q2+1

gcd(2,q+1) . Then either U is a maximal subgroup of G and there exists a positive
integer n such that U is isomorphic to Sz(22n+1) or U lies in a maximal subgroup
of type PSL(2, q2).C2. In particular, if U has odd order, then it is cyclic of order

q2+1
gcd(2,q+1) .
Proof:

Let Z = Z(Sp(4, q)). Then G = Sp(4, q)/Z and |Z| = gcd(2, q − 1). Let Û be
the full pre-image of U in Sp(4, q). Then Û ̸= Sp(4, q), and hence Û lies in a
maximal subgroup of Sp(4, q).

An inspection of the the tables 8.12, 8.13, and 8.14 in [15] shows that the only
maximal subgroups of Sp(4, q) with order divisible by q2+1

gcd(2,q+1) have one of the
following types (and some are only relevant under certain conditions).

Type subgroup conditions

(I) Sp(2, q2).C2

(II) [25].S5 q prime and congruent to −1 or 1 modulo 8
(III) [25].A5 q prime and congruent to −3 or 3 modulo 8
(IV) 2·A6 q ̸= 7 prime and congruent to 5 or 7 modulo 12
(V) 2·S6 q prime and congruent to 1 or 11 modulo 12
(VI) 2·A7 q = 7
(VII) SO−(4, q) q ≥ 4 even
(VIII) Sz(q) there exists an odd integer e ≥ 3 such that q = 2e
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If Û is a subgroup of a group of type (II) or (III), then the fact that q2+1
gcd(2,q+1)

is odd implies that q2+1
gcd(2,q+1) ≤ 3 · 5. Hence q < 6, but this contradicts the

hypothesis that q ≥ 7. If Û is a subgroup of a group of type (IV) or (V), then
q2+1

gcd(2,q+1) ≤ 3 · 5 · 3. Thus, q < 10. This contradicts the conditions in type (V)

and for type (IV), it implies that q = 5, contradicting the hypothesis. If Û is a
subgroup of a group of type (VI), then the condition states that q = 7. Thus,

q2+1
gcd(2,q+1) = 52, but |2·A7| is not divisible by 52, giving a contradiction.

Suppose that Û is a subgroup of a maximal subgroup ot type (VIII). Then
q is even. In particular, Sp(2n, q) ∼= G and Û ∼= U . By Table 8.16 in [15], Sz(q)
does not have a proper subgroup divisible by q2+1

gcd(2,q+1) , and hence Û ∼= U is
isomorphic to Sz(q) itself.

As a next step, we will see that if Û is a subgroup of a group M̂ of type (I)
or type (VII), then U is a subgroup of a group isomorphic to PSL(2, q2).C2.

For that purpose, first suppose that Û is a subgroup of a group of type (VII).
Then q is even, and thus G ∼= Sp(4, q) and Û ∼= U . Let M ≤ G be isomorphic to
SO−(4, q). Let L be the subgroup of index 2 in M isomorphic to Ω−(4, q) (see
p. 77 in [105]). Since q is even, L ∼= Ω−(4, q) ∼= PΩ−(4, q) ∼= PSL(2, q2) by (3.57)
on page 96 in [105]. Therefore, M is of type PSL(2, q2).C2.

Suppose instead that Û is a subgroup of a maximal subgroup M̂ of type (I).
Let L̂ ≤ M̂ be isomorphic to Sp(2, q2). Then Z = Z(L̂), and hence L := L̂/Z
is isomorphic to PSp(2, q2) and has order |L̂/Z|. Thus, M := M̂/Z has order
2 · |L| and L is normal in M . Therefore M is of type PSp(2, q2).C2. This finishes
the proof of the first part of the statement.

Finally suppose that U has odd order. Then U is not isomorphic to Sz(q), thus
U is a subgroup of a group M that is isomorphic to PSL(2, q2).C2. Hence U is a
subgroup of the subgroup of index 2 in M that is isomorphic to PSL(2, q2). By
Hauptsatz II 8.27 in [54], the only subgroups of PSL(2, q2) of odd order divisible
by q2+1

gcd(2,q+1) are cyclic of order q2+1
gcd(2,q+1) . Hence, U is cyclic of order q2+1

gcd(2,q+1) .

With the information in the previous lemma collected, we are able to determine all
fixity-4 actions of PSp(4, q). The strategy is to reduce the possibilities for point
stabilisers to situations in which the previous lemma is applicable.

Lemma 3.34
Let n ≥ 2 be an integer, let q be a prime power, and let G = PSp(2n, q). Suppose
that G acts transitively on a set Ω. Then G acts with fixity 4 and such that the
point stabilisers have order coprime to 6 if and only if G = PSp(4, q) and the point
stabilisers are cyclic of order q2+1

gcd(2,q+1) .
Proof:

For n = 2 and small values of q we can use the GAP program in Remark 2.22
to establish the correctness of the lemma. The answer to the GAP command
TestTom(TableOfMarks(PSP(4,2)),4); yields that PSp(4, 2) acts transitively,
with fixity 4, and such that the point stabiliser have order coprime to 6 if and
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only if the point stabilisers are cyclic of order 5. Since PSp(4, 3) ∼= PSU(4, 2),
Lemma 3.31 implies the statement for PSp(4, 3). For PSp(4, 4) and PSp(4, 5),
their tables of marks are provided by the GAP package TomLib [74] and thus
the results of the two commands TestTom(TableOfMarks("S4(4)"),4); and
TestTom(TableOfMarks("S4(5)"),4); show that the lemma holds for the groups
PSp(4, 4) and PSp(4, 5).

As a consequence, if n = 2, then we can suppose that q > 5.

For the first direction, suppose that G acts with fixity 4 and such that the
point stabilisers have order coprime to 6 on a set Ω. Let α ∈ Ω and let H be a
non-trivial four-point stabiliser contained in Gα.

By Lemma 3.26 (a), |H| and q · (q2 − 1) are coprime. Let k be the smallest
positive integer such that there exists a prime p ∈ π(H) with the property that
p divides q2k − 1. Then k ≥ 2.

Let Z = Z(Sp(2n, q)). Then G = Sp(2n, q)/Z and |Z| = gcd(2, q − 1).

Assume, for a contradiction, that k ≤ n − 1. If q is even, then Sp(2n, q) ∼=
PSp(2n, q) = G. Then G has a subgroup isomorphic to Sp(2, q)×Sp(2(n−1), q)
(see Theorem 3.7 (ii) in [105]). If q is odd, then PSp(2n, q) = G contains a
subgroup isomorphic to Sp(2, q) ∗ Sp(2(n− 1), q) (see Theorem 3.8 (ii) in [105]).
In both cases let M denote the described subgroup and let L ∼= Sp(2, q) and
U ∼= Sp(2(n−1), q) be such that LU =M . Let R ∈ Sylp(U). Then L ≤ NG(R),
and thus |NG(R)| is divisible by |L| = | Sp(2, q)| = q(q2 − 1).

Since by Corollary 2.14, H contains a Sylow p-subgroup of G, it contains a
subgroup Q conjugate to R. Therefore, |NG(Q)| is divisible by q(q2 − 1) ≥ 6.
Then Lemma 3.22 (d) implies that there exists a prime r that divides |H| and
q(q2 − 1). This contradiction to Lemma 3.26 (a) yields that k = n.

Since p divides (qk − 1) · (qk +1), there exists ε ∈ {−1, 1} such that p divides
qk − ε. Let P ∈ Sylp(H). Then P ∈ Sylp(G), and thus Lemma 3.32 shows that
|NG((P )| is divisible by (qn−ε)·2n

gcd(2,q+1) . In particular, |NG(P )| is divisible by 2n. If
n ≥ 3, then 2n ≥ 6. Since |NG(P ) : NH(P )| ≤ 4, this implies that there exists
a prime r dividing |H| and 2n. Then r ≥ 5 and by Lemma 3.26 (b), qr−1 − 1
is divisible by r. Since r − 1 is even, this contradicts the minimality of k. As a
consequence, n = 2 and thus q ≥ 7.

If ε = 1, then p divides q2 − 1 contradicting Lemma 3.26 (a). Hence, ε = −1
and p divides q2 + 1. By Lemma 3.32, the order of NG(P ) is divisible by
n · 2 · qn−ε

gcd(2,q−ε) = 4 · q2+1
gcd(2,q+1) . Since |NG(P ) : NH(P )| ≤ 4, this means that

|H| is divisible by q2+1
gcd(2,q+1) . Therefore, the order of Gα ≥ H is divisible by

q2+1
gcd(2,q+1) , too. Then Lemma 3.33 implies that Gα is cyclic of order q2+1

gcd(2,q+1) ,
because |Gα| is odd. This finishes the proof of the first implication of the lemma.

For the other implication suppose that G = PSp(4, q) and U ≤ G is cyclic of
order q2+1

gcd(2,q+1) . Then G acts transitively on G/U and U is a point stabiliser

under this action. Since q2 +1 is divisible by neither 3 nor 4, |U | = q2+1
gcd(2,q+1) is

coprime to 6.
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Let y ∈ U . By Lemma 2.10, y fixes exactly |NG(⟨y⟩)|
|U | points in G/U . Since U

is cyclic, NG(⟨y⟩) ≥ U , and thus |NG(⟨y⟩)| is divisible by |U | = q2+1
gcd(2,q+1) .

Let Y ≤ U be non-trivial. Since G is simple, NG(Y ) < G. Then Lemma 3.33
shows that NG(Y ) lies in a maximal subgroup of type PSL(2, q2).C2 or is a
maximal subgroup isomorphic to Sz(q). Since we can suppose that q ≥ 7, Sz(q)
is simple, and hence not the normaliser of a non-trivial group.

As a consequence, NG(Y ) lies in a maximal subgroupM of type PSL(2, q2).C2.
Let L ≤ M be isomorphic to PSL(2, q2). Since Y ≤ U has odd order, Y ≤ L.
By Satz II 8.4 in [54], NL(Y ) is a dihedral group of order 2 · q2+1

gcd(2,q+1) . Since

|M : L| = 2, it follows that |NM (Y )| ≤ 2 · |NL(Y )| = 2 · 2 · q2+1
gcd(2,q+1) = 4 · |U |.

Hence, |NG(Y )| ≤ 4 · |U |.
This also implies that for all non-trivial y ∈ U , |NG(⟨y⟩)| ≤ 4 · |U |. Therefore,

the number of fixed points of y is |NG(⟨y⟩)|
|U | ≤ 4·|U |

|U | = 4. In particular, all non-
trivial elements in U have at most 4 fixed points.

Let p be a prime dividing |U | and let P ∈ Sylp(U). Since p ≥ 5, P ∈ Sylp(G).
Let x ∈ P be of order p. Since ⟨x⟩ charP , NG(⟨x⟩) ≥ NG(P ). We have seen
above that NG(P ) lies in a maximal subgroup M of G that has a subgroup L

of index 2 such that |NL(P )| = 2 · q2+1
gcd(2,q+1) . By Lemma 2.4, 2 · |NL(P )| =

|NM (P )|. Thus, |NG(P )| = 2 · |NL(P )| = 2 · 2 · q2+1
gcd(2,q+1) = 4 · |U |, and hence

|NG(⟨x⟩)| ≥ |NG(P )| = 4 · |U |. Therefore, the number of fixed points of x is
|NG(⟨y⟩)|

|U | ≥ 4·|U |
|U | = 4. Since x is an an element of U and hence has at most four

fixed points, it has exactly four fixed points in G/U . Therefore, G acts with
fixity 4 on G/U . This completes the proof.

Finishing the symplectic groups, the only families of classical groups of Lie type left
to be analysed are the orthogonal groups.

Some parts of the analysis of the orthogonal groups work for all three families
similarly. They are fused in the next lemma. Afterwards we handle the subgroup
structure and the investigation whether the groups act with fixity 4 or not separately
for each family.

Lemma 3.35
Let n ≥ 2 be an integer, let q be a prime power, let ε ∈ {−1, 1}, and let G =
GOε(2n, q). Let p be a prime divisor of qn−ε such that for all positive integers l < n
the number q2l− 1 is not divisible by p. Let P ∈ Sylp(G). Then |NG(P )| is divisible
by (qn − ε) · 2n.
Proof:

By (3.31) and (3.32) on page 72 in [105], the order of GOε(2n, q) is

2 · qn(n−1) · (qn − ε) ·
n−1∏
i=1

(q2i − 1)

and we use this fact without further reference.
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Let d be a positive integer that divides n. We prove, by induction, the state-
ment that the order of the normaliser of a Sylow p-subgroup of GOε(2d, q

n/d) is
divisible by (qn − ε) · 2d.

If d = 1, then by p. 71 in [105], GOε(2d, q
n/d) = GOε(2, q

n) is a dihedral group
of order 2(qn− ε). Thus, the normaliser of a Sylow p-subgroup of GOε(2d, q

n/d)
is GOε(2, q

n) itself, and hence has order 2 · (qn − ε) = (qn − ε) · 2d.
Therefore, suppose that there exists a positive integer d that divides n and

such that for all positive integers e < d that divide d, the order of the normaliser
of a Sylow p-subgroup of GOε(2e, q

n/e) is divisible by (qn−ε) ·2e. Then by (7.2)
in [3] together with Proposition 4.3.8 (ii) and the proofs of Proposition 4.3.14 and
Proposition 4.3.16 in [62] (cf. Theorem 3.11 (ix) and Theorem 3.12 (xi) in [105]),
there exists a prime r that divides d and such that the group GOε(2d, q

n/d) has
a subgroup M isomorphic to GOε(2d/r, (q

n/d)r).Cr. Let U ≤M be isomorphic
to GOε(2d/r, (q

n/d)r) = GOε(2d/r, q
n
d/r ). Since for all positive integers l < n,

the number q2l − 1 is not divisible by p, it follows that for all positive integers
l1 < d, p does not divide (qn/d)2l1 − 1. Thus, U contains a Sylow p-subgroup Q
of GOε(2d, q

n/d). Therefore Q ∈ Sylp(M). Hence, by Lemma 2.4, |NM (Q)| =
r|NU (Q)|. Then the induction hypothesis (for U ∼= GOε(2d/r, q

n
d/r )) implies

that |NU (Q)| is divisible by (qn−ε)·2(d/r). Thus, |NGOε(2d,qn/d)(Q)| is divisible
by r · (qn−ε) ·2(d/r) = (qn−ε) ·2d. This proves the statement of the induction.

Therefore, |NG(P )| = |NGOε(2n,q)(P )| is divisible by (qn − ε) · 2n.

From the three families of orthogonal groups we start with the family of orthogonal
groups of odd dimension first, because these groups have a close connection to the
symplectic groups, which we analysed last.

Lemma 3.36
Let n ≥ 2 be an integer, let q be an odd prime power, and let G = Ω(2n+1, q). Let
p be a prime divisor of q2n − 1 such that for all positive integers l < n, the number
q2l − 1 is not divisible by p. Let P ∈ Sylp(G) and let ε ∈ {−1, 1} be such that
p divides qn − ε. Then |NG(P )| is divisible by (qn − ε) · n.
Proof:

The information on page 75 in [105] implies that GO(2n+ 1, q) has a subgroup
isomorphic to GOε(2n, q)×GO(1, q). LetD ∼= GOε(2n, q) and letD0

∼= GO(1, q)
be such that D × D0 ≤ GO(2n + 1, q). Let Q ∈ Sylp(D). Since by [105] p. 70
and p. 80, G = Ω(2n + 1, q) has index 4 in GO(2n + 1, q) and since p is odd,
it follows that Q ∩ Ω(2n + 1, q) = Q. By Lemma 3.35, the order of ND(Q)
is divisible by (qn − ε) · 2n, and by [105] p. 71, |D0| = |GO(1, q)| = 2. Thus,
NGO(2n+1,q)(Q) ≥ ND(Q) × D0 has order divisible by (qn − ε) · 2n · 2. As a
consequence, |NG(P )| is divisible by (qn−ε)·4n

4 = (qn − ε) · n.

Lemma 3.37
Let n ≥ 3 be an integer and let q be an odd prime power. Then PΩ(2n + 1, q)
does not act transitively, with fixity 4, and such that the point stabilisers have order
coprime to 6 on any set.
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Proof:
By [105] p. 80, PΩ(2n + 1, q) ∼= Ω(2n + 1, q), and thus instead of proving the
statement of the lemma for PΩ(2n+1, q), we can proof it for G := Ω(2n+1, q).

Assume, for a contradiction, that G acts transitively, with fixity 4, and such
that the point stabilisers have order coprime to 6 on a set Ω. Let α ∈ Ω and let
H be a non-trivial four-point stabiliser contained in Gα. By Lemma 3.26 (a),
|H| and q are coprime. Let k be the smallest positive integer such that there ex-
ists a prime p ∈ π(H) with the property that p divides q2k−1. By Lemma 3.26 (a),
k ≥ 2.

Assume, for a contradiction, that k ≤ n − 1. If k = n − 1, then p divides
q2n−2− 1 = (qn−1− 1)(qn−1+1), and thus it divides one of the two factors. Let
ε ∈ {−1, 1} be such that p divides qn−1 − ε. If k < n− 1, then set ε = 1. The
information on page 75 in [105] implies that GO(2n+ 1, q) has a subgroup that
is isomorphic to GOε(2(n − 1), q) × GO(3, q). Let A ∼= GOε(2(n − 1), q) and
B ∼= GO(3, q) such that A × B ≤ GO(2n + 1, q). Let P ∈ Sylp(A ∩ G). Then
B ≤ NGO(2n+1,q)(P ), and thus |NGO(2n+1,q)(P )| is divisible by |B| = |GO(3, q)|.
The information on pages 70 and 80 in [105] yields that |GO(2n+1, q) : G| = 4
and by (3.30) on page 72 in [105], |GO(3, q)| = 2 · q · (q2−1). Hence, |NG(P )| is
divisible by 2·q·(q2−1)

4 . SinceH contains a Sylow p-subgroup of G, it also contains
a subgroup Q conjugate to P . Thus, |NG(Q)| is divisible by q(q2−1)

2 ≥ 3·8
2 > 4.

Then Lemma 3.22 (d) implies that |H| is divisible by a prime dividing q(q2−1),
contradicting Lemma 3.26 (a). As a consequence, k = n.

Then p divides q2n − 1 = (qn − 1)(qn + 1). Let ε ∈ {−1, 1} be such that
p divides qn − ε. Let P ∈ Sylp(H). Then P ∈ Sylp(G). Thus, by Lemma 3.36,
the order of NG(P ) is divisible by (qn−ε) ·n = n ·2 · q

n−ε
2 . Since q is odd, qn−ε

is divisible by 2, and therefore |NG(P )| is divisible by n · 2.
Since n ≥ 3, it follows that n · 2 ≥ 6 > 4. Since |NG(P ) : NH(P )| ≤ 4, this

yields that there exists a prime r that divides |H| and 2n. Then r ≥ 5 and
r divides n. By Lemma 3.26 (b), qr−1 − 1 is divisible by r and since r is odd
this contradicts the minimality of k, because r − 1 ≤ n − 1 < 2k. This final
contradiction finishes the proof.

Likewise as for the orthogonal groups of odd dimension, we can again use Lemma 3.35
to derive information about some subgroups of PΩε(2n, q) before we analyse, for
PΩ+(2n, q) and PΩ−(2n, q) separately, whether some of these groups can act with
fixity 4.

Lemma 3.38
Let n ≥ 2 be an integer, let q be a prime power, let ε ∈ {−1, 1}, and let G =
PΩε(2n, q). Let p ∈ π(G) and let k ≥ 3 be an integer such that p divides q2k−1 and
such that for all positive integer l < k, p does not divide q2l − 1. Let η ∈ {−1, 1} be
such that p divides qk − η and let P ∈ Sylp(G).

(a) If k = n−1, then there exists a subgroup R ≤ P such that |NG(R)| is divisible
by (qn−1−η)·2(n−1)·(q−ε·η)

gcd(4,qn−ε) .
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(b) If k = n, then |NG(P )| is divisible by n·(qn−ε)
gcd(4,qn−ε) .

Proof:
Let Z = Z(Ωε(2n, q)). Then G = Ωε(2n, q)/Z. By the information on pages 70,
77, and 80 in [105], Z has order 2 if qn ≡ ε mod 4 and order 1 otherwise, and
|GOε(2n, q) : Ωε(2n, q)| = 2 · gcd(2, q − 1).

First suppose that k = n − 1. By the information on page 75 in [105] (cf.
Theorem 3.11 (ii) and Theorem 3.12 (ii) and (iii) in [105]), GOε(2n, q) has a
subgroup isomorphic to GOη(2(n−1), q)×GOε·η(2, q). Let D ∼= GOη(2n−2, q)
and D0

∼= GOε·η(2, q) be such that D × D0 ≤ GOε(2n, q). Let Q ∈ Sylp(D).
Then by Lemma 3.35, |ND(Q)| is divisible by (qn−1−η)·2(n−1). By [105] p. 71,
|D0| = |GOε·η(2, q)| = 2(q − ε · η). Therefore, the order of NGOε(2n,q)(Q) ≥
ND(Q) × D0 is divisible by (qn−1 − η) · 2(n − 1) · 2(q − ε · η). Since p is odd
and |GOε(2n, q) : Ωε(2n, q)| = 2 · gcd(2, q − 1), it follows that |NΩε(2n,q)(q)| is

divisible by (qn−1−η)·2(n−1)·2(q−ε·η)
2·gcd(2,q−1) = (qn−1−η)·2(n−1)·(q−ε·η)

gcd(2,q−1) . Then the facts that
NG(QZ/Z) ≥ NΩε(2n,q)(Q)Z/Z and that gcd(2, q−1) · |Z| = gcd(4, qn−ε) imply

that |NG(Q)| is divisible by (qn−1−η)·2(n−1)·(q−ε·η)
gcd(2,q−1)·|Z| = (qn−1−η)·2(n−1)·(q−ε·η)

gcd(4,qn−ε) . Since
P is a Sylow p-subgroup of G, it contains a subgroup R conjugate to Q, and the
lemma follows in the case k = n− 1.

Therefore suppose instead that k = n. Then the order formula for G yields
that η = ε. Let Q ∈ Sylp(GOε(2n, q)). Then Q ≤ Ωε(2n, q) and the order of

NΩε(2n,q)(Q) is divisible by |NGOε(2n,q)(Q)|
2·gcd(2,q−1) . By Lemma 3.35, |NGOε(2n,q)(Q)| is

divisible by (qn − ε) · 2n. Therefore, the order of NΩε(2n,q)(Q) is divisible by
2n·(qn−ε)

2·gcd(2,q−1) . Thus, |NG(QZ/Z)| is divisible by 2n·(qn−ε)
2·gcd(2,q−1)·|Z| =

n·(qn−ε)
gcd(4,qn−ε) .

Lemma 3.39
Let n ≥ 4 be an integer, let q be a prime power, and let G = PΩ+(2n, q). Then G
does not act transitively, with fixity 4, and such that the point stabilisers have order
coprime to 6 on any set.
Proof:

Let Z = Z(Ω+(2n, q)). We recall that G = Ω+(2n, q)/Z, that Z has order 2
if qn ≡ 1 mod 4 and order 1 otherwise, and that |GO+(2n, q) : Ω+(2n, q)| =
2 · gcd(2, q − 1). (See [105] pp. 70, 77, 80.)

Assume, for a contradiction, that G acts transitively, with fixity 4, and such
that the point stabilisers have order coprime to 6 on a set Ω. Let α ∈ Ω and let
H be a non-trivial four-point stabiliser contained in Gα.

By Lemma 3.26 (a), |H| and q are coprime. Let k be the smallest positive
integer such that there exists a prime p ∈ π(H) with the property that p divides
q2k − 1. Then Lemma 3.26 (a) implies that k ≥ 2.

First assume, for a contradiction, that k ≤ n− 2. If k = n− 2, then p divides
q2n−4−1 = (qn−2+1)(qn−2−1) and hence one of the two factors. Let ε ∈ {−1, 1}
be such that p divides qn−2 − ε. If k < n− 2, then set ε = −1.
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By the information on page 75 in [105] (cf. Theorem 3.12 (ii) and (iii) in [105]),
the group GO+(2n, q) has a subgroup isomorphic to GOε(2(n−2), q)×GOε(4, q).
Let A ∼= GOε(2(n − 2), q) and B ∼= GOε(4, q) such that A × B ≤ GO+(2n, q).
Let P ∈ Sylp(A ∩ Ω+(2n, q)). Then B ≤ NGO+(2n,q)(P ), thus |NGO+(2n,q)(P )|
is divisible by |B| = |GOε(4, q)|. By (3.31) and (3.32) in [105], |GOε(4, q)| =
2 · q2 · (q2 − 1) · (q2 − ε), and hence the order of NΩ+(2n,q)(P ) is divisible by
2·q2·(q2−1)·(q2−ε)

2·gcd(2,q−1) = q2·(q2−1)·(q2−ε)
gcd(2,q−1) . Since H contains a Sylow p-subgroup, it con-

tains a subgroup Q conjugate to PZ/Z in G. Then the order of NG(Q) is divis-
ible by q2·(q2−1)·(q2−ε)

gcd(2,q−1)·|Z| , because NG(PZ/Z) ≥ NΩ+(2n,q)(P )Z/Z. In particular,

|NG(Q)| is divisible by q2·(q2−1)
|Z| ≥ 22·(22−1)

2 > 4. Since |NG(Q) : NH(Q)| ≤ 4,
this implies that |H| is divisible by a prime dividing q2 · (q2 − 1) contradicting
Lemma 3.26 (a). As a consequence, k ≥ n− 1.

Next assume, for a contradiction, that k = n− 1. Then p divides q2n−2− 1 =
(qn−1 − 1)(qn−1 + 1). Let ε ∈ {−1, 1} be such that p divides qn−1 − ε.

Let P ∈ Sylp(H). Then P ∈ Sylp(G), and by Lemma 3.38, there exists a sub-
group Q ≤ P such that the order of NG(Q) is divisible by (qn−1−ε)·2(n−1)·(q−ε)

gcd(4,qn−1) =
(qn−1−ε)·2(n−1)·(q−ε)

gcd(2,q−1)·|Z| . Thus, |NG(Q)| is divisible by 2(n−1)·(q−ε)
|Z| .

If q > 2, then 2(n−1)·(q−ε)
|Z| ≥ 2(n−1)·(q−ε)

2 ≥ 2·3·(3−1)
2 > 4. If q = 2, then

|Z| = 1, and thus 2(n−1)·(q−ε)
|Z| = 2(n− 1) · (2− ε) ≥ 2 · 3 > 4. Therefore, the fact

that |NG(Q) : NH(Q)| ≤ 4 implies that there exists a prime r that divides |H|
and 2(n − 1) · (q − ε). Then r ≥ 5 and by Lemma 3.26 (a), r does not divide
q2− 1. Therefore, r divides (n− 1). Then Lemma 3.26 (b) implies that qr−1− 1
is divisible by r, contradicting the minimality of k, because r − 1 is even and
smaller than n− 1 = k. As a consequence, k = n.

Then p divides q2n − 1 = (qn − 1)(qn +1) and |H|. Since H ≤ G, this implies
that p divides qn − 1. If n is even, then this contradicts the minimality of k
because then q2·

n
2 − 1 is divisible by p and n

2 < n = k. Therefore n is odd, and
hence n ≥ 5.

Let Q ∈ Sylp(H). Since then Q ∈ Sylp(G), Lemma 3.38 implies that the order
of NG(Q) is divisible by n·(qn−1)

gcd(4,qn−1) . In particular, |NG(Q)| is divisible by n.
Since n ≥ 5, the fact that |NG(Q) : NH(Q)| ≤ 4 implies that there exists a

prime r that divides |H| and n. By Lemma 3.26 (b), qr−1 − 1 is divisible by r,
contradicting the minimality of k because r− 1 is even and r− 1 ≤ n− 1 < 2k.
This is the final contradiction and it proves that G cannot act transitively, with
fixity 4, and such that the point stabilisers have order coprime to 6 on any set.

We turn to the last family of classical groups of Lie type, namely PΩ−(2n, q). Even
though the reasonings for PΩ−(2n, q) and PΩ+(2n, q) are similar, we will see that for
n = 4, PΩ−(2n, q) can act with fixity 4 and such that the point stabilisers have order
coprime to 6. For PΩ+(8, q), the last two section of the proof of Lemma 3.39 revealed
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that there does not exists a prime that divides the order of a four-point stabiliser
and qn − 1 if n is even (because this contradicts the minimality hypothesis in the
proof). For PΩ−(2n, q) the number in this step will be qn + 1 and we cannot derive
a contradiction to the minimality, but instead we will see that indeed, for n = 4,
PΩ−(2n, q) exhibits a fixity-4 action such that the order of a non-trivial four-point
stabiliser is divisible by a prime that divides qn + 1. The details are given in the
next lemma.

Lemma 3.40
Let n ≥ 4 be an integer, let q be a prime power, and let G = PΩ−(2n, q). Suppose
that G acts transitively on a set Ω. Then G acts with fixity 4 and such that the
point stabilisers have order coprime to 6 if and only if G = PΩ−(8, q) and the point
stabilisers are cyclic of order q4+1

gcd(2,q+1) .
Proof:

Let Z = Z(Ω−(2n, q)). Then G = Ω−(2n, q)/Z. We recall that Z has order 2 if
and only if qn ≡ −1 mod 4, and that |GO−(2n, q) : Ω−(2n, q)| = 2·gcd(2, q−1).
(See [105] pp. 70, 77, 80.)

For the first direction, suppose that G acts with fixity 4 and such that the
point stabilisers have order coprime to 6. Let α ∈ Ω and let H be a non-trivial
four-point stabiliser contained in Gα. By Lemma 3.26 (a), |H| and q are coprime.
Let k be the smallest positive integer such that there exists a prime p ∈ π(H)
with the property that p divides q2k − 1. By Lemma 3.26 (a), k ≥ 2.

Assume, for a contradiction, that k ≤ n − 2. If k = n − 2, then p divides
q2n−4 − 1 = (qn−2 +1)(qn−2 − 1), and hence one of the factors. Let ε ∈ {−1, 1}
be such that p divides qn−2 − ε. If k < n− 2, then set ε = −1.

By the information on page 75 in [105] (cf. Theorem 3.11 (ii) in [105]), the
group GO−(2n, q) has a subgroup isomorphic to GOε(2(n− 2), q)×GO−ε(4, q).
Let A ∼= GOε(2(n−2), q) and B ∼= GO−ε(4, q) be such that A×B ≤ GO−(2n, q).
By (3.31) and (3.32) in [105], |B| = |GO−ε(4, q)| = 2 · q2 · (q2− 1) · (q2+ ε). Let
P ∈ Sylp(A ∩ Ω−(2n, q)). Then B ≤ NGO−(2n,q)(P ), and thus |NGO−(2n,q)(P )|
is divisible by |B|. As a consequence, the order of NΩ−(2n,q)(P ) is divisible

by 2·q2·(q2−1)·(q2+ε)
2·gcd(2,q−1) = q2·(q2−1)·(q2+ε)

gcd(2,q−1) . Since H contains a Sylow p-subgroup, it
contains a subgroup Q conjugate to PZ/Z in G. Then the order of NG(Q) is
divisible by q2·(q2−1)·(q2+ε)

gcd(2,q−1)·|Z| , because NG(PZ/Z) ≥ NΩ−(2n,q)(P )Z/Z. In partic-

ular, |NG(Q)| is divisible by q2·(q2−1)
|Z| ≥ 22·(22−1)

2 > 4. Therefore, Lemma 3.22
implies that |H| is divisible by a prime that divides q2 · (q2 − 1), contradicting
Lemma 3.26 (a). Hence, k ≥ n− 1.

Thus, assume instead that k = n− 1. Then q2n−2 − 1 = (qn−1 − 1)(qn−1 +1)
is divisible by p. Let ε ∈ {−1, 1} be such that p divides qn−1 − ε and let
P ∈ Sylp(H). Then P ∈ Sylp(G). By Lemma 3.38, there exists a subgroup Q

of P such that |NG(Q)| is divisible by (qn−1−ε)·2(n−1)·(q+ε)
gcd(4,qn+1) = (qn−1−ε)·2(n−1)·(q+ε)

gcd(2,q+1)·|Z| .
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Thus, |NG(Q)| is divisible by 2(n−1)·(q+ε)
|Z| . If q > 2, then (n−1)·2·(q+ε)

|Z| ≥
(n−1)·2·(q+ε)

2 ≥ 3·2·(3−1)
2 > 4. If q = 2, then |Z| = 1, and hence (n−1)·2·(q+ε)

|Z| ≥
(n− 1) · 2 ≥ 6 > 4. Therefore, the fact that |NG(Q) : NH(Q)| ≤ 4 implies that
there exists a prime r that divides |H| and (n− 1) · 2 · (q + ε). Then r ≥ 5 and
by Lemma 3.26 (a), r does not divide q + ε. Thus, r divides n − 1, and hence,
by Lemma 3.26 (b), qr−1 − 1 is divisible by r, contradicting the minimality of k
because r − 1 is even and r − 1 ≤ n− 2 < 2(n− 1). As a consequence, k = n.

Then p divides q2n − 1 = (qn − 1)(qn +1) and |H|. Since H ≤ G, this implies
that p divides qn + 1.

Let Q ∈ Sylp(H). Then Q ∈ Sylp(G), and by Lemma 3.38, the order of NG(Q)

is divisible by n·(qn+1)
gcd(4,qn+1) . In particular, |NG(Q)| is divisible by n.

If n ≥ 5, then the fact that |NG(Q) : NH(Q)| ≤ 4 implies that there exists a
prime r that divides |H| and n. Then r ≥ 5 and by Lemma 3.26 (b), qr−1 − 1
is divisible by r, contradicting the minimality of k because r − 1 is even and
r − 1 ≤ n− 1 < 2k. As a consequence, n = 4 and G = PΩ−(8, q).

Since q4 cannot be congruent to −1 modulo 4, it follows that |Z| = 1 and
that gcd(4, q4 + 1) = gcd(2, q + 1). Then |NG(Q)| is divisible by n·(qn+1)

gcd(4,qn+1) =
q4+1

gcd(2,q+1) · 4. Since |H| is odd and |NG(Q) : NH(Q)| ≤ 4, this implies that

|H| is divisible by q4+1
gcd(2,q+1) . Since |Z| = 1, G is isomorphic to Ω−(8, q). Then

Table 8.52 and Table 8.53 in [15] show that the only type of maximal sub-
groups of Ω−(8, q) with order divisible by q4+1

gcd(2,q+1) is Ω−(4, q
2).C2. By (3.57)

on page 96 in [105], PSL(2, q4) ∼= PΩ−(4, q
2) and since q4 ̸≡ −1 mod 4,

PΩ−(4, q
2) ∼= Ω−(4, q

2). Therefore, Gα ≥ H lies in a subgroup isomorphic
to PSL(2, q4).C2. Since Gα has odd order, Gα is isomorphic to a subgroup of
PSL(2, q4). By Hauptsatz II 8.27 in [54] the only subgroups of PSL(2, q4) of odd
order divisible by q4+1

gcd(2,q+1) are cyclic of order q4+1
gcd(2,q+1) . As a consequence, Gα

is a cyclic group of order q4+1
gcd(2,q+1) .

For the other direction suppose that G = PΩ−(8, q) ∼= Ω−(8, q) and that
U ≤ G is a cyclic group of order q4+1

gcd(2,q+1) . Then G acts by right multiplication
transitively on G/U and U is a point stabiliser under this action. Since q4+1 ≡ 2

mod 4 if q is odd and since q4+1 is not divisible by 3, |U | = q4+1
gcd(2,q+1) is coprime

to 6.
Let y ∈ U . Then, by Lemma 2.10, y fixes exactly |NG(⟨y⟩)|

|U | points in G/U .
Let Y ≤ U be non-trivial. Since G is simple NG(Y ) < G. Then we can
again use Table 8.52 and Table 8.53 in [15] to see that the subgroup NG(Y )
lies in a maximal subgroup M of type PSL(2, q4).C2. In particular, NG(Y ) =
NM (Y ). Let L ≤ M be isomorphic to PSL(2, q4). Since Y ≤ U has odd order,
Y ≤ L. By Satz II 8.4 in [54], it follows that NL(Y ) is a dihedral group of
order 2 · q4+1

gcd(2,q+1) . Since |M : L| = 2, it follows that |NG(Y )| = |NM (Y )| ≤
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2 · |NL(Y )| = 2 · 2 · q4+1
gcd(2,q+1) = 4 · |U |. Therefore, the number of fixed points

of y is |NG(⟨y⟩)|
|U | ≤ 4·|U |

|U | = 4. In particular, all elements in U have at most four
fixed points.

Let p be a prime divisor of |U | and let P ∈ Sylp(U). Then the order formula
of G implies that P ∈ Sylp(G). Let x ∈ P be of order p. Since ⟨x⟩ is a
characteristic subgroup of P , NG(⟨x⟩) ≥ NG(P ). We have just seen that NG(P )
lies in a maximal subgroup M of G that has a subgroup L of index 2 such
that |NL(P )| = 2 · q4+1

gcd(2,q+1) . By Lemma 2.4, 2 · |NL(P )| = |NM (P )|. Thus,

|NG(P )| = 2 · |NL(P )| = 2 ·2 · q4+1
gcd(2,q+1) = 4 · |U |. As a consequence, |NG(⟨x⟩)| ≥

|NG(P )| = 4 · |U |. Hence, the number of fixed points of x is |NG(⟨y⟩)|
|U | ≥ 4·|U |

|U | = 4.
Since x ∈ U , x has at most four fixed points, and therefore it has exactly four
fixed points in G/U . As a consequence, G acts with fixity 4 on G/U .

We summarise our results.

Lemma 3.41
Let G be a finite simple classical group of Lie type such that for all prime power q,
G is neither PSL(2, q), PSL(3, q), nor PSU(3, q). Suppose that G acts transitively
on a set Ω. Then G acts with fixity 4 and such the that point stabilisers have order
coprime to 6 if and only if there exists a prime power q such that G is PSU(4, 3),
PSp(4, q) with q ≥ 3, or PΩ−(8, q) and the point stabilisers are cyclic of order 5,

q2+1
gcd(2,q+1) , or q4+1

gcd(2,q+1) , respectively.
Proof:

Let n be a positive integer and q a prime power. We will use the classification
theorem of finite simple groups (see p. 3 in [105]) to restrict the possibilities of G.
If G = PSL(n, q), then the hypothesis implies that n ≥ 4. Then Lemma 3.28
proves that G does not act transitively, with fixity 4, and such that the point
stabilisers have order coprime to 6 on any set. Thus, in this case the lemma
holds. If G = PSU(n, q), then by hypothesis n ≥ 4. Thus, Lemma 3.31 proves
that only PSU(4, 2) and PSU(4, 3) can act transitively, with fixity 4, and such
that the point stabilisers have order coprime to 6. Additionally the lemma
shows that the point stabilisers in these actions are cyclic of order 5. Since
PSU(4, 2) ∼= PSp(4, 3) and 5 = 32+1

gcd(2,3+1) , both groups are mentioned in the
lemma. If G = PSp(n, q), then n ≥ 2 and G ̸= PSp(4, 2) because G is simple.
Hence, Lemma 3.34 implies the correctness of the lemma in this case. If G is
PΩ(2n+1, q), then q is odd and n ≥ 3. Thus, we can use Lemma 3.37 to see that
G cannot act transitively, with fixity 4, and such that the point stabilisers have
order coprime to 6 on any set. If G = PΩ+(2n, q), then n ≥ 4 and Lemma 3.39
implies the lemma in this case. Finally, if G = PΩ−(2n, q), then n ≥ 4. Thus,
Lemma 3.40 yields the lemma.

By the classification theorem of finite simple groups, these are the only simple
classical groups of Lie type, and hence the lemma holds.
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3.3.4 Exceptional Groups of Lie Type

For the exceptional groups of Lie type we will use a similar strategy as for the classical
groups of Lie type. Therefore, we need a result equivalent to Lemma 3.26. The next
lemma will provide such a result.

Lemma 3.42
Let G be a finite simple exceptional group of Lie type over a field with q elements
that acts transitively and with fixity 4 on a set Ω. Let α ∈ Ω, let H be a four-point
stabiliser, and let p be a prime dividing |H|. Suppose that |Gα| is coprime to 6.
Then p is a divisor of one of the following numbers in each case.

G p divides
2B2(q) = Sz(q) Φ1(q), Φ4(q)

3D4(q) Φ12(q)
G2(q) Φ3(q), Φ6(q)
2G2(q) Φ1(q), Φ2(q), Φ6(q)
F4(q) Φ8(q), Φ12(q)
2F4(q) Φ6(q), Φ12(q)
E6(q) Φ5(q), Φ8(q), Φ9(q), Φ12(q)
2E6(q) Φ8(q), Φ10(q), Φ12(q), Φ18(q)
E7(q) Φ5(q), Φ7(q), Φ8(q), Φ9(q), Φ10(q), Φ12(q), Φ14(q), Φ18(q)
E8(q) Φ7(q), Φ9(q), Φ14(q), Φ15(q), Φ18(q), Φ20(q), Φ24(q), Φ30(q)

Proof:
By Lemma 3.23, G has cyclic Sylow p-subgroups. Since |Gα| is coprime to 6,
p ≥ 5. If p divides q, then Theorem 3.3.3 in [43] implies that the p-rank of G is
at least 3. In particular, G does not have cyclic Sylow p-subgroups in this case.
As a consequence, p does not divide q.

Let k be a positive integer and minimal with the properties that p divides
Φk(q) and that Φk(q) is a divisor of |G|. By (10-2) in [41], the rank of a Sylow
p-subgroup of G is the exponent of Φk(q) in Table 10:2 in [41]. Since G has cyclic
Sylow p-subgroups, these exponents have to be 1, and hence the only options
for k are those stated in the lemma.

We go through the list of exceptional groups of Lie type, and in each case, either we
exclude the option that p divides Φk(q) or we show that under these conditions the
group has a fixity-4 action.

Since Lemma 3.5 fully analyses the situation for the family of Suzuki groups
(Sz(q) = 2B2(q)), we start with the groups 3D4(q) and first emphasis some details
about their subgroup structure.

Lemma 3.43
Let q be a prime power and G = 3D4(q). Let p be a prime divisor of q4 − q2 + 1 =
Φ12(q) and let R be a non-trivial p-subgroup of G. Then N(R) is a maximal subgroup
of type Cq4−q2+1 : [4].
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Proof:
Since q4 − q2 + 1 is odd and congruent to 1 modulo 3, p ≥ 5. By (4.67)
on page 142 in [105], the order of G is q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) =
q12(q4− q2+1)(q4+ q2+1)(q6−1)(q2−1) = q12 ·Φ12(q) · (q6−1)2. Since q2−1
and q4+ q2+1 are coprime to q4− q2+1, the only factor of |G| that is divisible
by p is q4 − q2 + 1.

By Theorem 4.3 in [105], 3D4(q) has a maximal subgroup M isomorphic to
Cq4−q2+1 : [4]. Let C ≤ M be of index 4 in M and cyclic. Then C contains a
Sylow p-subgroup P of G. In particular, P is cyclic. Since all Sylow p-subgroups
are conjugate in G, P contains a conjugate Y of R. Then Y is a characteristic
subgroup of C, and hence NM (Y ) ≥ NM (C) = M . Therefore, the fact that G
is simple implies that NG(Y ) =M , and the lemma follows.

With this knowledge of the subgroup structure of 3D4(q), we can determine all tran-
sitive fixity-4 actions of this family of groups. This will be done in the next lemma.
Afterwards in Lemma 3.45 the next family of exceptional groups of Lie type, G2(q),
is studied regarding their fixity-4 action.

Lemma 3.44
Let q be a prime power and let G = 3D4(q). Suppose that G acts transitively on
a set Ω. Then G acts with fixity 4 and such that the point stabilisers have order
coprime to 6 if and only if the point stabilisers are cyclic of order q4 − q2 + 1.
Proof:

For the first direction suppose that G acts with fixity 4 and such that the
point stabilisers have order coprime to 6 on a set Ω. Let α ∈ Ω and let H be
a non-trivial four-point stabiliser contained in Gα. Let p ∈ π(H). Then by
Lemma 3.42, p is a divisor of Φ12(q) = q4 − q2 +1. Let y ∈ H be of order p. By
Lemma 3.43, |NG(⟨y⟩)| = 4 · (q4 − q2 + 1). Since |NG(⟨y⟩) : NH(⟨y⟩)| ≤ 4 and
since |H| is odd, |NH(⟨y⟩)| = q4 − q2 + 1. Thus, Gα ≥ H has order divisible
by q4 − q2 + 1. An inspection of the list in Theorem 4.3 in [105] shows that
Cq4−q2+1 : [4] is the only type of maximal subgroups of 3D4(q) that has order
divisible by q4 − q2 +1. Since |Gα| is odd, this implies that Gα itself is cyclic of
order q4 − q2 + 1, proving the first direction.

For the other direction let U ≤ G be cyclic of order q4 − q2 + 1. Then G acts
transitively on G/U and |U | is coprime to 6. Let x ∈ U be non-trivial and let
y ∈ ⟨x⟩ be of prime order. Then every point in G/U that is fixed by x is also
fixed by y. Lemma 3.43 implies that |NG(⟨y⟩)| = 4 · (q4− q2+1). Therefore, by
Lemma 2.10, y fixes exactly |NG(⟨y⟩)|

|U | = 4·(q4−q2+1)
|U | = 4|U |

|U | = 4 points. Thus, x
can fix at most four points and G acts with fixity 4 on G/U . This finishes the
proof.

Lemma 3.45
Let q ≥ 3 be a prime power and G = G2(q). Then G does not act transitively, with
fixity 4, and such that the point stabilisers have order coprime to 6 on any set.
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Proof:
By (4.25) in [105], |G| = q6(q6−1)(q2−1) = q6 ·(q2−1)2 ·(q2+q+1) ·(q2−q+1)
and every prime greater than 3 divides at most one of the factors.

Assume, for a contradiction, that G acts transitively, with fixity 4, and such
that the point stabilisers have order coprime to 6 on a set Ω. Let α ∈ Ω and let
H be a non-trivial four-point stabiliser contained in Gα. Let p ∈ π(H). Then
p ≥ 5, and by Lemma 3.42, p is a divisor of Φ3(q) = q2+q+1 or Φ6(q) = q2−q+1.
Let ε ∈ {−1, 1} be such that p divides q2 + εq + 1. Then H contains a Sylow
p-subgroup P of G, and the analysis of the order of G yields that |P | divides
q2 + εq + 1. Thus, by Table 4.1 in [105], P lies in a maximal subgroup M of
type SLε(3, q) : C2. Let S ≤M be of index 2 in M and isomorphic to SLε(3, q).
Then P ≤ S, and hence Lemma 2.4 implies that |NM (P )| = 2 · |NS(P )|.

As a next step, we will see that |NS(P )| is divisible by 3. If Z(S) ̸= 1, then
|Z(S)| = gcd(3, q − ε) = 3, and since Z(S) ≤ NS(P ), |NS(P )| is divisible by 3.
If Z(S) = 1, then S ∼= PSLε(3, q). By Theorem 6.5.3 in [43], S has a subgroup F
such that P ≤ F and such that F is a Frobenius group with Frobenius kernel K
of order q2 + εq + 1 and Frobenius complement of order 3. Since p ≥ 5, P ≤ K
or more precisely, since Frobenius kernels are nilpotent, P = Op(K). Hence,
NF (P ) = F , and therefore |NF (P )| is divisible by 3. Thus, NS(P ) ≥ NF (P )
has order divisible by 3.

As a consequence, the order of NM (P ) is divisible by 2 and 3. Since |NG(P ) :
NH(P )| ≤ 4 and |H| is coprime to 6, this is a contradiction. Thus, G cannot act
transitively, with fixity 4, and such that the point stabilisers have order coprime
to 6 on any set.

In Lemma 3.10, we have already seen that 2G2(q) can act transitively, with fixity 4,
and such that the point stabilisers have odd order. The assumption in Lemma 3.10
was that there exists an element of order 3 that fixes a point, whereas in Lemma 3.47,
we suppose that the point stabilisers have order coprime to 6. We will see that under
the latter hypothesis 2G2(q) can act with fixity 4, too. However, beforehand we again
need some more information about the subgroup structure of 2G2(q).

Lemma 3.46
Let n be a positive integer, q = 32n+1, and G = 2G2(q). Let p be an odd prime
divisor of q − 1 and let y ∈ G be of order p. Then |NG(⟨y⟩)| = 2(q − 1).
Proof:

By the information on page 137 in [105], the order of |G| = (q3 + 1)q3(q − 1) =
q3 · (q − 1) · (q + 1) · (q2 − q + 1), and every odd prime divides at most one of
these factors. In particular, the order of a Sylow p-subgroup of G divides q− 1.

Theorem 4.2 in [105] implies that 2G2(q) has a maximal subgroup M of type
C2 ×PSL(2, q). Let C be cyclic of order 2 and let L be isomorphic to PSL(2, q)
such that C×L ≤M . Then L contains a Sylow p-subgroup P of G, because |P |
divides q − 1. By Satz II 8.3 in [54], NL(P ) is a dihedral group of order 2 · q−1

2 .
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Thus, P is cyclic and for all non-trivial elements b ∈ P , NM (⟨b⟩) = C ×NL(⟨b⟩)
has order 2 · 2 · q−1

2 .
Let a ∈ P be conjugate to y. Since ⟨a⟩ is a characteristic subgroup of P ,

NG(⟨a⟩) ≥ NG(P ) ≥ NM (P ). Thus, |NG(⟨a⟩)| is divisible by 2(q − 1) and lies
in a maximal subgroup of G because G is simple. An inspection of the maximal
subgroups in Theorem 4.2 in [105] shows that, since the order of [q3] : Cq−1 is
not divisible by 4, all maximal subgroups of G containing NG(⟨a⟩) are conjugate
to M . As a consequence, |NG(⟨a⟩)| = |NM (⟨a⟩)| = 2 · (q − 1), and hence the
lemma follows.

Lemma 3.47
Let n be a positive integer, q = 32n+1, and G = 2G2(q). Suppose that G acts
transitively on a set Ω. Then G acts with fixity 4 and such that the point stabilisers
have order coprime to 6 if and only if the point stabilisers are cyclic of order q−1

2 .
Proof:

For the first direction suppose that G acts with fixity 4 and such that the point
stabilisers have order coprime to 6. Let α ∈ Ω, let H be a non-trivial four-point
stabiliser contained in Gα, and let p ∈ π(H). Then by Lemma 3.42, p is a divisor
of Φ1(q) = q − 1, Φ2(q) = q + 1, or Φ6(q) = q2 − q + 1.

First assume that p divides q2 − q + 1 = (q +
√
3q + 1)(q −

√
3q + 1). Then

there exists ε ∈ {−1, 1} such that p divides q − ε
√
3q + 1. By Theorem 4.2

in [105], G has a subgroup M of type Cq−ε
√
3q+1 : [6]. Let C ≤ M be cyclic of

order q − ε
√
3q + 1 and let y ∈ C be of order p. Since ⟨y⟩ is a characteristic

subgroup of C, NM (⟨y⟩) ≥ NM (C) = M . Hence, NG(⟨y⟩) ≥ NM (⟨y⟩) ≥ M
has order divisible by 6. Since H contains a Sylow p-subgroup of G, it contains
an element z conjugate to y. As a consequence, |NG(⟨z⟩)| is divisible by 6,
contradicting Lemma 3.22 (d).

Therefore instead assume, for a contradiction, that p divides q + 1. By The-
orem 4.2 in [105], 2G2(q) has a subgroup A of type E4 × D(q+1/2). Let E be
elementary abelian of order 4 and D a dihedral group of order q+1

2 such that
E × D ≤ A. Let y ∈ D be of order p. Then ⟨y⟩ is normal in D, and hence
NA(⟨y⟩) = E × D = A. Therefore, |NA(⟨y⟩)| is divisible by 8, because |D|
is even. Since H contains a Sylow p-subgroup of G, it contains an element z
conjugate to y. Thus, NG(⟨z⟩) is divisible by 8 and this is again a contradiction
to Lemma 3.22 (d). As a consequence, p divides q − 1.

Let y ∈ H be of order p. By Lemma 3.46, |NG(⟨y⟩)| = 2(q − 1). Since
|NG(⟨y⟩) : NH(⟨y⟩)| ≤ 4 and since H has odd order, |H| is divisible by q−1

2 .
Therefore Gα ≥ H is divisible by q−1

2 , too. Since by Hauptsatz II 8.27 in [54]
the only subgroups of PSL(2, q) with order coprime to 6 and divisible by q−1

2 are
cyclic of order q−1

2 , an inspection of the maximal subgroups of G in Theorem 4.2
in [105] reveals that Gα is cyclic of order q−1

2 .

For the other direction, let U ≤ G be cyclic of order q−1
2 . Then every transitive

action of G with cyclic point stabilisers of order q−1
2 is equivalent to the action
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of G on G/U . Since q ≡ 32n+1 ≡ (−1)2n+1 ≡ −1 mod 4, q−1
2 = |U | is coprime

to 6, and hence the point stabilisers in the action of G on G/U have order
coprime to 6.

Let x ∈ U and let y ∈ ⟨x⟩ be of prime order p. Then y fixes every point that
is fixed by x. By Lemma 3.46, |NG(⟨y⟩)| = 2(q − 1).

Since U is cyclic, Lemma 2.10 implies that the number of fixed points of y is
|NG(⟨y⟩)|

|U | = 2·(q−1)
|U | = 4|U |

|U | = 4. Therefore there exists an element in U ≤ G with
exactly four fixed points and all non-trivial elements have at most four fixed
points. As a consequence, G acts with fixity 4 on G/U .

In a sequence of lemmas, we will see that none of the remaining simple exceptional
groups of Lie type can act transitively and with fixity 4 in such a way that the point
stabilisers have order coprime to 6.

Lemma 3.48
Let q be a prime power and G = F4(q). Then G does not act transitively, with
fixity 4, and such that the point stabilisers have order coprime to 6 on any set.
Proof:

Assume, for a contradiction, that G acts transitively, with fixity 4, and such
that the point stabilisers have order coprime to 6 on a set Ω. Let α ∈ Ω and let
H be a non-trivial four-point stabiliser contained in Gα. Let p ∈ π(H). Then
by Lemma 3.42, p is a divisor of Φ8(q) = q4 + 1 or Φ12(q) = q4 − q2 + 1.

First additionally assume, for a contradiction, that p divides q4 − q2 + 1.
Then by Table 5.1 in [69], G has a subgroup M of type 3D4(q).C3. Let D ≤M
be isomorphic to 3D4(q) and let P ∈ Sylp(D). By Lemma 2.4, |NM (P )| =
3 · |ND(P )|, and hence NG(P ) ≥ NM (P ) has order divisible by 3. Since H
contains a Sylow p-subgroup, it contains a subgroup Q conjugate to P , and
hence NG(Q) is divisible by 3, contradicting Lemma 3.22 (d). As a consequence,
p divides q4 + 1.

By Table 5.1 in [69], G has a subgroup M of type Cgcd(2,q−1).Ω(9, q). Let
P ∈ Sylp(M) and let Z be a normal subgroup of M of order gcd(2, q − 1).
Since p ≥ 5, P acts coprimely on Z. Thus, by Lemma 2.3 (a), NM/Z(PZ/Z) =
NM (P )Z/Z. Since Z ≤ NM (P ), the order of NG(P ) ≥ NM (P ) is divisible by
|NM/Z(PZ/Z)| · |Z|.

Lemma 3.23 and (10-2) in [41] together imply that for all positive integers
l < 4, p does not divide q2l − 1. If q is even, then M/Z ∼= Ω(9, q) ∼= PSp(8, q).
Therefore, Lemma 3.32 shows that the order of a normaliser of a Sylow p-
subgroup of PSp(8, q) is divisible by (q4+1)·2·4

gcd(2,q+1) = (q4 + 1) · 8. As a consequence,
|NM/Z(PZ/Z)| is divisible by 8 if q is even. If q is odd, then Lemma 3.36
shows that the order of a normaliser of a Sylow p-subgroup of Ω(9, q) is divisible
by (q4 + 1) · 4. Therefore |NM/Z(PZ/Z)| is divisible by 8 if q is odd. As a
consequence, in both cases, |NG(P )| is divisible by 8. Since H contains a Sylow
p-subgroup, it has a subgroup Q conjugate to P . Thus, |NG(Q)| is divisible
by 8, contradicting Lemma 3.22 (d). This finial contradiction proves the lemma.
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Lemma 3.49
Let n be a positive integer, let q = 22n+1, and let G = 2F4(q) or G = 2F4(2)

′. Then
G does not act transitively, with fixity 4, and such that the point stabilisers have
order coprime to 6 on any set.
Proof:

For the group 2F4(2)
′, we can use the GAP package TomLib [74] and the program

in Remark 2.22. Then the command TestTom(TableOfMarks("2F4(2)'"),4);
shows that 2F4(2)

′ does not act transitively and with fixity 4 on any set.
Assume, for a contradiction, that G = 2F4(q) acts transitively, with fixity 4

and such that a point stabiliser has order coprime to 6 on a set Ω. Let α ∈ Ω and
let H denote a non-trivial four-point stabiliser contained in Gα. Let p ∈ π(H).
Then by Lemma 3.42, p is a divisor of Φ6(q) = q2−q+1 or Φ12(q) = q4−q2+1.

First additionally assume, for a contradiction, that p divides q2 − q + 1. By
the Main Theorem in [73], the group 2F4(q) has a maximal subgroup M of type
SU(3, q) : C2. Let S ≤M be isomorphic to SU(3, q) and let Y ∈ Sylp(S). Since
q + 1 ≡ 22n+1 + 1 ≡ 0 mod 3, it follows that gcd(3, q + 1) = 3, and hence Z(S)
is cyclic of order 3. Therefore, NS(Y ) is divisible by 3. Since H contains a
Sylow p-subgroup, it contains a subgroup Z conjugate to Y , and hence |NG(Z)|
is divisible by 3 contradicting Lemma 3.22 (d). Thus, p divides q4 − q2 + 1.

Since q4 − q2 + 1 = (q2 + q + 1 +
√
2q(q + 1))(q2 + q + 1 −

√
2q(q + 1)),

there exists ε ∈ {−1, 1} such that p divides (q2 + q + 1 + ε
√
2q(q + 1)). Then

the Main Theorem in [73] shows that G has a maximal subgroup M of type
C(q2+q+1+ε

√
2q(q+1)) : [12]. Let C ⊴M be cyclic of order (q2+q+1+ε

√
2q(q+1))

and let Y ≤ C be of order p. Then NG(Y ) ≥ NM (Y ) ≥ NM (C) =M , and hence
|NG(Y )| is divisible by 12. Since H contains a subgroup conjugate to Y , this
contradicts Lemma 3.22 (d) and finishes the proof.

The groups E6(q) and 2E6(q) have a similar subgroup structure, as we will see in the
next lemma. Therefore, we analyse for both families together whether these groups
can act with fixity 4 and such that the point stabilisers have order coprime to 6 or
not. However, first we collect some information about subgroups of E6(q) and 2E6(q)
that will also be helpful for the analysis of other families of exceptional groups of Lie
type.

Lemma 3.50
Let q be a prime power, let ε ∈ {−1, 1}, and let G = Eε

6(q). Let p ≥ 5 be a prime
that divides neither q6 − 1 nor q4 − 1. Suppose that p divides one of the numbers
q4 − q2 +1 or q6 + εq3 +1, the number q4 +1, or the number q4 + εq3 + q2 + εq+1.
Then there exists a p-subgroup Q of G such that |NG(Q)| is divisible by 3, 8, or 5,
respectively.
Proof:

First suppose that p divides q4 − q2 + 1 or q6 + εq3 + 1. In both cases we
will define subgroups N and M of G. By Table 5.1 in [69], G has a subgroup
of type (3D4(q) × Cq2+εq+1).C3. If p divides q4 − q2 + 1, then we define M
to be this subgroup and fix N as a normal subgroup of M of index 3. If p
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divides q6 + εq3 + 1, we set e = gcd(3, q − 1) and by Table 5.1 in [69], G has
a subgroup M of type PSLε(3, q

3).(Ce × C3). In this case, let N ≤ M be
isomorphic to PSLε(3, q

3). Then in both cases, p divides |N | and |M : N | is
divisible by 3. Let Q ∈ Sylp(N). By Lemma 2.4, it follows that |NM (Q)| is
divisible by 3. Thus, NG(Q) ≥ NM (Q) has order divisible by 3, as stated in the
lemma.

Therefore, instead suppose that p divides q4 + 1 or q4 + εq3 + q2 + εq + 1.
Let h = gcd(4, q − 1). Then by Table 5.1 in [69], G has a subgroup M of type
Ch.(PΩε(10, q) × C(q−ε)/h). Let Y be an arbitrary p-subgroup of M and Z a
normal subgroup of M of order h. Since p ≥ 5, Y acts coprimely on Z. Thus, by
Lemma 2.3 (a), it follows that NM/Z(Y Z/Z) = NM (Y )Z/Z. As a consequence,
the order of NM (Y ) is divisible by |NM/Z(Y Z/Z)|. In particular, since M/Z
has a subgroup isomorphic to PΩε(10, q), it holds that for every p-subgroup R
of PΩε(10, q), there exists a p-subgroup Y of M such that the order of |NG(Y )|
is divisible by |NPΩε(10,q)(R)|.

Suppose that the first alternative holds, that is p divides q4 + 1. Then p
divides q8 − 1, and for all l < 4, the prime p does not divide q2l − 1 because of
the hypothesis that p divides neither q6 − 1 nor q4 − 1. Therefore, Lemma 3.38
is applicable and yields that there exists a p-subgroup R of PΩε(10, q) such that
|NPΩε(10,q)(R)| is divisible by (q4+1)·2·4·(q+ε)

gcd(4,q5−ε)
. If q is even, then (q4+1)·2·4·(q+ε)

gcd(4,q5−ε)
=

(q4+1) ·2 ·4 ·(q+ε) and this number is divisible by 8. If q is odd, then q4+1 and
q+ ε are both divisible by 2, and hence (q4+1)·2·4·(q+ε)

gcd(4,q5+ε)
is divisible by 2·2·4·2

4 = 8.
Thus, in both cases, |NPΩε(10,q)(R)| is divisible by 8, and the lemma follows if
p divides q4 + 1.

Thus, instead suppose that p divides q4 + εq3 + q2 + εq + 1. In particular,
p divides q5−ε and thus q10−1. If p divides q4+1, then p also divides q8−1 and
thus (q10− 1)− (q8− 1) = q8 · (q2− 1). Since p divides neither q6− 1 nor q4− 1,
this implies that for all l < 5, the prime p does not divide q2l − 1. Therefore,
Lemma 3.38 is applicable. Let R ∈ Sylp(PΩε(10, q)). Then |NPΩε(10,q)(R)| is

divisible by 5·(q5−ε)
gcd(4,q5−ε)

, which in turn is divisible by 5. As a consequence, the
lemma follows.

Lemma 3.51
Let q be a prime power, let ε ∈ {−1, 1}, and let G = Eε

6(q). Then G does not act
transitively, with fixity 4, and such that the point stabilisers have order coprime to 6
on any set.
Proof:

We will prove the lemma by contradiction. Therefore, assume that there exists
a set Ω such that G acts transitively, with fixity 4, and such that the point
stabilisers have order coprime to 6 on this set. Let α ∈ Ω and let H be a
non-trivial four-point stabiliser contained in Gα. Let p ∈ π(H). Since Φ10(q) =
Φ5(−q) and Φ18(q) = Φ9(−q), by Lemma 3.42, p is a divisor of Φ5(εq) =
q4+εq3+q2+εq+1, Φ8(q) = q4+1, Φ9(εq) = q6+εq3+1, or Φ12(q) = q4−q2+1.
Additionally, Lemma 3.42 implies that |H| and q are coprime.
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Assume, for a contradiction, that a prime divisor r of |H| divides q6 − 1 or
q4 − 1. Then the smallest positive integer k such that r divides Φk(q) is in
{1, 2, 3, 4, 6}. Thus, (10-2) in [41] implies that the r-rank of G is at least 2. This
contradicts Lemma 3.23. Therefore, |H| and q6 − 1 are corpime, as are |H| and
q4 − 1. In particular, the hypotheses of Lemma 3.50 are fulfilled.

If p divides q4 − q2 + 1 or q6 + εq3 + 1, then by Lemma 3.50, there exists a
p-subgroup R such that |NG(R)| is divisible by 3. Since H contains a Sylow
p-subgroup, it contains a subgroup Q conjugate to R, and hence |NG(Q)| is
divisible by 3, contradicting Lemma 3.22 (d).

If p divides q4 + 1, then Lemma 3.50 proves that there exists a p-subgroup R
of G such that |NG(R)| is divisible by 8. Similarly to the previous case, this
contradicts Lemma 3.22 (d).

As a consequence, p divides q4 + εq3 + q2 + εq + 1. Then Lemma 3.50 shows
that there exists a p-subgroup R such that |NG(R)| is divisible by 5. Since H
contains a Sylow p-subgroup, it again contains a subgroup Q conjugate to R
and hence |NG(Q)| is divisible by 5. Thus, the fact that |NG(Q) : NH(Q)| ≤ 4
implies that 5 divides |H|. Then Fermat’s litte theorem yields that q4 − 1 is
divisible by 5, but as shown above |H| and q4 − 1 are coprime. This final
contradiction finishes the proof.

Using the same strategy as before, we can gain a similar result for E7(q). Again, we
will first collect some information about the subgroup structure, before we use them
to prove that E7(q) cannot act transitively, with fixity 4, and such that the point
stabilisers have order coprime to 6 on any set.

Lemma 3.52
Let q be a prime power and G = E7(q). Let ε ∈ {−1, 1} and let p ≥ 5 be a prime
that divides neither q6 − 1 nor q4 − 1. Suppose that p divides one of the numbers
q4 − q2 + 1 or q6 + εq3 + 1, the number q4 + 1, the number q4 + εq3 + q2 + εq + 1,
or the number q6 + εq5 + q4 + εq3 + q2 + εq + 1. Then there exists a p-subgroup Q
of G such that |NG(Q)| is divisible by 3, 8, 5, or 7, respectively.
Proof:

First suppose that p divides one of the numbers q4 − q2 + 1, q4 + 1, q4 + εq3 +
q2 + εq + 1, or q6 + εq3 + 1. Let e = gcd(3, q − ε). Then by Table 5.1 in [69],
G has a subgroup M of type Ce.(Eε

6(q)×C(q−ε)/e). Let P be a p-subgroup of M
and Z a normal subgroup of M of order e. Since p ≥ 5, it follows that P acts
coprimely on Z. Thus, by Lemma 2.3 (a), NM/Z(PZ/Z) = NM (P )Z/Z. As a
consequence, the order of NM (P ) is divisible by |NM/Z(PZ/Z)|. Since M/Z
contains a subgroup isomorphic to Eε

6(q), we can use Lemma 3.50 to derive the
lemma in this case.

Therefore suppose instead that p divides q6 + εq5 + q4 + εq3 + q2 + εq + 1.
Thus, p also divides q7−ε. Since, by assumption, p does not divide q5(q2−1) =

(q7 − ε) − (q5 − ε), p does not divide q5 − ε. Let f = gcd(4,q−ε)
gcd(2,q−1) . Then by

Table 5.1 in [69], G has a subgroup M of type Cf .PSLε(8, q). Let Z be a
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normal subgroup of M of order f . Since M/Z is isomorphic to PSLε(8, q) and
since p divides neither q6 − 1, q5 − ε, nor q4 − 1, we can apply Lemma 3.27 and
Lemma 3.30 for M/Z and get that there exists a p-subgroup R of M/Z such
that the order of NM/Z(R) is divisible by (q7−ε)·7

gcd(8,q−ε) , which in turn is divisible
by 7. Let Q be a Sylow p-subgroup of the full pre-image of R in M . Since
|Z| and p are coprime, Lemma 2.3 (a) implies that |NM (Q)| is divisible by
|NM/Z(QZ/Z)| = |NM/Z(R)| and hence by 7. This finishes the proof.

Lemma 3.53
Let q be a prime power and G = E7(q). Then G does not act transitively, with
fixity 4, and such that the point stabilisers have order coprime to 6 on any set.
Proof:

As usual, assume, for a contradiction, that G acts transitively, with fixity 4, and
such that the point stabilisers have order coprime to 6 on a set Ω. Let α ∈ Ω,
let H be a non-trivial four-point stabiliser contained in Gα, and let p be the
smallest prime diving |H|. Then by Lemma 3.42, |H| and q are coprime and
there exists k ∈ {5, 7, 8, 9, 10, 12, 14, 18} such that Φk(q) is divisible by p.

Assume, for a contradiction, that p divides q6−1 or q4−1. Then the smallest
positive integer k such that p divides Φk(q) is in {1, 2, 3, 4, 6}. Thus, (10-2) in [41]
implies that the p-rank of G is at least 2. This contradicts Lemma 3.23. There-
fore, we can apply Lemma 3.52. Furthermore, since p and q are coprime, Fer-
mat’s little theorem yields that qp−1 − 1 is divisible by p. Therefore, p > 7.

If p divides Φ12(q) = q4− q2+1, Φ9(q) = q6+ q3+1, or Φ18(q) = q6− q3+1,
then Lemma 3.52 proves that there exists a p-subgroup R such that |NG(R)| is
divisible by 3. Since H contains a Sylow p-subgroup, it contains a subgroup Q
conjugate to R. Hence, |NG(Q)| is divisible by 3, contradicting Lemma 3.22 (d).

If p divides Φ8(q) = q4 +1, then by Lemma 3.52, there exists a p-subgroup R
of G such that NG(R) is divisible by 8. Since H contains a subgroup conjugate
to R, this contradicts Lemma 3.22 (d).

Assume, for a contradiction, that there exists ε ∈ {−1, 1} such that p divides
Φ5(εq) = q4 + εq3 + q2 + εq + 1 or Φ7(εq) = q6 + εq5 + q4 + εq3 + q2 + εq + 1.
We note that Φ10(q) = Φ5(−q) and Φ14(q) = Φ7(−q). Then Lemma 3.52 shows
that there exists a p-subgroup R such that |NG(R)| is divisible by r ∈ {5, 7}.
Since H contains a Sylow p-subgroup, it contains a subgroup Q conjugate to R.
Then |NG(Q)| is divisible by r, and the fact that |NG(Q) : NH(Q)| ≤ 4 yields
that |H| is divisible by r, too. This is the final contradiction because p > 7 ≥ r
is the smallest prime dividing |H|. This finial contradiction finishes the proof.

We turn to the last family of exceptional groups of Lie type. Since we do not need the
information about the subgroup structure for any other group, it is directly included
in the following lemma, in which we analyse the fixity-4 action of E8(q).

Lemma 3.54
Let q be a prime power and let G = E8(q). Then G does not act transitively, with
fixity 4, and such that the point stabilisers have order coprime to 6 on any set.
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Proof:
Assume, for a contradiction, that there exists a set Ω such that G acts transi-
tively, with fixity 4, and such that the point stabilisers have order coprime to 6
on it. Let α ∈ Ω, let H be a non-trivial four-point stabiliser contained in Gα,
and let p be the smallest prime dividing |H|. Then by Lemma 3.42, there exists
k ∈ {7, 9, 14, 15, 18, 20, 24, 30} such that Φk(q) is divisible by p. Additionally,
the lemma shows that |H| and q are coprime.

Assume, for a contradiction, that p divides q6 − 1 or q4 − 1. Then by (10-2)
in [41], the p-rank of G is at least 4. This contradicts Lemma 3.23. Thus, the
hypotheses of Lemma 3.52 are fulfilled. Furthermore, since p and q are coprime,
Fermat’s little theorem yields that qp−1 − 1 is divisible by p. Therefore, p > 7.

Assume, for a contradiction, that p divides Φ9(q) = q6+ q3+1, Φ18(q) = q6−
q3+1, Φ7(q) = q6+q5+q4+q3+q2+q+1, or Φ14(q) = q6−q5+q4−q3+q2−q+1.
Let d = gcd(2, q − 1). Then by Table 5.1 in [69], E8(q) has a subgroup M of
type Cd.(PSL(2, q) × E7(q)). Let Z be a normal subgroup of M of order d.
Since M/Z contains a subgroup isomorphic to E7(q), Lemma 3.52 yields that
M/Z contains a p-subgroup R such that |NM/Z(R)| is divisible by 3 or 7. Let
P be a Sylow p-subgroup of the full pre-image of R in M . Then Lemma 2.3 (a)
implies that |NM (P )| is divisible by |NM/Z(PZ/Z)| = |NM/Z(R)|, because P
acts corpimely on Z. Since H contains a Sylow p-subgroup of G, it contains
a subgroup Q conjugate to P . If p divides Φ9(q) or Φ18(q), then |NM (Q)|
is divisible by 3, contradicting Lemma 3.22 (d). If p divides Φ7(q) or Φ14(q),
then |NM (Q)| is divisible by 7. Therefore, the fact that |NG(Q) : NH(Q)| ≤ 4
implies that |H| is divisible by 7 contradicting the facts that p is the smallest
prime divisor of |H| and that p > 7.

Next assume, for a contradiction, that p divides Φ15(q) = q8 − q7 + q5 − q4 +
q3 − q + 1 or Φ30(q) = q8 + q7 − q5 − q4 − q3 − q + 1. Let T ≤ G be as in [69].
Then by Table 5.2 in [69], |NG(T )| is divisible by 30. Let P ∈ Sylp(T ). Then
Lemma 2.4 implies that |NG(P )| is divisible by 30. Since H contains a Sylow
p-subgroup of G, it has a subgroup Q conjugate to P . Then |NG(Q)| is divisible
by 30 contradicting Lemma 3.22 (d).

Assume, for a contradiction, that p divides Φ24(q) = q8−q4+1. By Table 5.1
in [69], there exists a subgroup M of G such that M is of type PSU(3, q4).[8].
Let U ≤M be isomorphic to PSU(3, q4) and P ∈ Sylp(U). Then by Lemma 2.4,
|NM (P )| = 8 · |NU (P )|, and hence NG(P ) ≥ NM (P ) has order divisible by 8.
Similarly to the previous case, H contains a subgroup conjugate to Q and this
contradicts Lemma 3.22 (d).

Thus, the only remaining case is that p divides Φ20(q) = q8− q6+ q4− q2+1.
By Table 5.1 in [69], E8(q) has a subgroup M of type SU(5, q2).C4. Let U ≤M
be isomorphic to SU(5, q2) and let P ∈ Sylp(U). If Z(U) ̸= 1, then |Z(U)| =
gcd(5, q2 + 1) = 5, and hence NU (P ) ≥ Z(U) has order divisible by 5. If
Z(U) = 1, then U ∼= PSU(5, q2) and if p divides q6 + 1 or q8 − 1, then (10-2)
in [41] implies that G has p-rank at least 2, contradicting Lemma 3.23. As a
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consequence, if Z(U) = 1, then the hypotheses of Lemma 3.30 are fulfilled, and
hence |NU (P )| is divisible by (q10+1)·5

(q2+1)·gcd(5,q2+1)
= 5 · q10+1

(q2+1)
. Therefore, in both

cases |NU (P )| is divisible by 5. SinceH contains a Sylow p-subgroup, it contains
a subgroup Q conjugate to P , and since |NG(Q) : NH(Q)| ≤ 4, it follows that
|H| is divisible by 5. Since p > 7 is the smallest prime divisor of |H|, this is the
final contradiction proving the lemma.

We summarise our results about exceptional groups of Lie type.

Lemma 3.55
Let G be a simple exceptional group of Lie type such that for all 2-power q, G is
not isomorphic to Sz(q). Suppose that G acts transitively on a set Ω. Then G acts
with fixity 4 and such that the point stabilisers have order coprime to 6 if and only
if there exists a prime power q such that G is isomorphic to 3D4(q) and the point
stabilisers are cyclic of order q4 − q2 + 1 or there exists a 3-power q ≥ 27 such that
G is isomorphic to 2G2(q) and the point stabiliser are cyclic of order q−1

2 .
Proof:

Let q be a prime power. If G = 3D4(q), then Lemma 3.44 implies the correctness
of the lemma in this case. If G = G2(q), then q ≥ 3 (see p. 3 in [105]), and
hence Lemma 3.45 shows that G does not act transitively, with fixity 4, and
such that the point stabilisers have order coprime to 6 on any set. If n is a
positive integer and G = 2G2(3

2n+1), then Lemma 3.47 shows that the lemma
holds in this case. If G = F4(q), then Lemma 3.48 implies that G does not act
transitively, with fixity 4, and such that the point stabilisers have order coprime
to 6. If G = 2F4(q) or G = 2F4(2)

′, then we use Lemma 3.49. For E6(q) and
2E6(q), Lemma 3.51 implies the statement in these cases. If G = E7(q), then by
Lemma 3.53, G does not act transitively, with fixity 4, and such that the point
stabilisers have order coprime to 6. Finally for G = E8(q), we use Lemma 3.54
to derive the statement of the lemma in this case.

Since G is not isomorphic to Sz(q) = 2B2(q) the classification theorem of
all finite simple groups (see p. 3 in [105]) shows that we dealt with all simple
exceptional groups of Lie type, and hence the lemma holds.

3.4 Classification Theorem

Putting together all results of this chapter, we get the following theorem, the classi-
fication of all finite simple groups that act transitively and with fixity 4.

Theorem 3.56
Let G be a finite simple group acting transitively on a set Ω. Then G acts with
fixity 4 if and only if G is isomorphic to one of the groups in Table 3.2 (under the
mentioned conditions) and the point stabilisers are as specified.
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group G condition, remark (q prime power) structure of point stabilisers
A6

∼= PSL(2, 9) C2, S3, E9, D10, E9 : C2

A7 C5, A6

PSL(2, 7) ∼= PSL(3, 2) C2, S3

PSL(2, 8) C2, S3, D14, D18

PSL(2, 11) C3, A4

PSL(2, 13) C3, C13 : C3, A4

PSL(2, q) q ≥ 17, q ≡ 1 mod 4 C q−1
4

, Eq : C q−1
4

PSL(2, q) q ≥ 19, q ≡ −1 mod 4 C q+1
4

PSU(3, 3) [33].C8

PSU(4, 3) C5

PSp(4, q) q ≥ 3, PSp(4, 3) ∼= PSU(4, 2) C q2+1
gcd(2,q+1)

PΩ−(8, q) C q4+1
gcd(2,q+1)

3D4(q) Cq4−q2+1

Sz(q) q = 22n+1, n positive integer Cq+
√
2q+1, Cq−

√
2q+1

2G2(q) q = 32n+1, n positive integer C q−1
2

, [q3].C q−1
2

M11 C5, C11 : C5, PSL(2, 11)
M12 M11

M22 C5, C11 : C5

J1 C15

Table 3.2: Classification of Finite Simple Groups Acting with Fixity 4
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Proof:
If there exists a prime power q such that G is isomorphic to one of the groups
PSL(2, q), PSL(3, q), PSU(3, q), or Sz(q), then Lemma 3.2, Lemma 3.4, and
Lemma 3.5 prove the correctness of the theorem. If G ∼= A7, then making use of
the GAP package TomLib [74] through the algorithm in Remark 2.22, the answer
to the command TestTom(TableOfMarks("A7"),4); shows that a transitive ac-
tion of A7 is a fixity-4 action if and only if the point stabilisers are isomorphic to
C5 or A6. If G = M11, then again using the GAP package TomLib [74] through
the algorithm in Remark 2.22, TestTom(TableOfMarks("M11"),4); gives that
the transitive actions of M11 are fixity-4 actions if and only if the point sta-
bilisers are isomorphic to C5, C11 : C5, or PSL(2, 11). Therefore from now on
suppose that G is none of these groups.

For the first direction of the theorem, additionally suppose that G acts with
fixity 4 on a set Ω. Then Lemma 3.1 is applicable. We go through the cases.
Let α ∈ Ω.

First suppose that |Gα| has even order. Then case (1), (2), or (3) holds. If
case (1) holds, then Satz 1 in [11] shows that there exists a 2-power q ≥ 4 such
that G is isomorphic to PSL(2, q), Sz(q), or PSU(3, q). If case (2) holds, then
Theorem 2 in [45] and the Third Main Theorem in [1] imply that G is PSL(2, q),
A7, PSL(3, q), M11, or PSU(3, q) for a suitable prime power q. We looked at all
of these groups earlier. As a consequence, the theorem is true in cases (1) and
(2) of Lemma 3.1. If case (3) holds, then an involution of G fixes four points
and Satz 2.41 in [89] gives all possibilities for G and Gα, all of them are stated
in the theorem.

Therefore, suppose instead that |Gα| is odd and divisible by 3. Then case (4)
of Lemma 3.1 holds. Hence, one of the cases (a)-(d) occurs. In case (a),
Lemma 3.11 shows that G is one of the groups in Table 3.2 and Gα is as stated.
Lemma 3.14 gives the answer in case (b) and Lemma 3.17 in case (c). For the
remaining case (d), Lemma 3.21 proves that there are no further examples.

Thus, now suppose that the last remaining case, that |Gα| is coprime to 6,
holds. Since G is non-abelian, by the classification of finite simple groups (see
p. 3 in [105]), G is an alternating group, a classical group of Lie type, an ex-
ceptional group of Lie type, or one of 26 sporadic simple groups. If G is an
alternating group, then Lemma 3.24 implies that G = A7 and Gα is cyclic of
order 5. If G is a classical group of Lie type, then Lemma 3.41 gives a list of
groups that act transitively, with fixity 4, and such that the point stabilisers
have order coprime to 6 together with the structures of their point stabilisers,
all of them are stated in Table 3.2. For the exceptional groups of Lie type,
Lemma 3.55 gives the answer, and Lemma 3.25 deals with the sporadic simple
groups.

For the other direction, we go through the given possibilities for G and show
in each case that they indeed exhibit a fixity-4 action on G/Gα. The first group
not already dealt with in the beginning of this proof is PSU(4, 3). The GAP
command TestTom(TableOfMarks("U4(3)"),4); using the GAP package Tom-
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3 Simple Groups

Lib [74] through the algorithm in Remark 2.22 gives that PSU(4, 3) acts with
fixity 4 if Gα is cyclic of order 5. If G = PSp(4, q), then Lemma 3.34 proves
that PSp(4, q) acts with fixity 4 on G/U , where U is a cyclic subgroup of G
of order q2+1

gcd(2,q+1) . If G = PΩ−(8, q), then Lemma 3.40 implies that G acts

with fixity 4 and cyclic point stabilisers of order q4+1
gcd(2,q+1) . For G = 3D4(q),

we have seen in Lemma 3.44 that G acts as described. If G = 2G(q), there
are two possible point stabiliser structures. If Gα is cyclic, then Lemma 3.47
shows that G indeed acts with fixity 4 on G/Gα. For the other possibility
for Gα, Lemma 3.10 implies that 2G2(q) has a fixity-4 action in this case.
For the remaining groups, again making use of the GAP package TomLib [74]
through the algorithm stated in Remark 2.22, the answer to the GAP com-
mand List(["M12","M22","J1"],x->TestTom(TableOfMarks(x),4)); implies
the statement in the theorem.
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Before we look into the situation for quasi-simple groups acting with fixity 2, 3, or 4,
we analyse the behaviour of groups with non-trivial centre more generally. As we
will see in the next lemma, we can describe the action of the factor group of a finite
group G modulo a subgroup Z ≤ Z(G) on the set of its Z-orbits in terms of the fixity
of G, if the set acted on is big enough. In the context of quasi-simple groups, we
can use this lemma to reduce to a situation for simple groups, and then we can use
the information we collected in the previous chapter. However, the lemma is useful
for reduction in general, because it can be used for all finite groups with non-trivial
centre.

Lemma 4.1
Let k be a positive integer and G a finite group acting transitively and with fixity k
on a set Ω. Let Z ≤ Z(G). Suppose that |Ω| > k · |Z|. Then G/Z acts transitively,
non-regularly, and with fixity at most k on the set Ω̄ := {αZ | α ∈ Ω}, which contains
|Ω|
|Z| elements. Furthermore, the point stabilisers of G in its action on Ω have the same
order as the point stabilisers of G/Z in its action on Ω̄.
Proof:

Let Ω̄ = {αZ | α ∈ Ω} and let Ḡ = G/Z. Since G acts transitively on Ω, Ḡ acts
transitively on Ω̄. By Lemma 2.17, it follows that |Z(G)| is a divisor of k,
hence |Z| is also a divisor of k, and by Lemma 2.16, every non-trivial element
of Z(G) acts fixed-point-freely on Ω. Hence, for all α ∈ Ω, |αZ | = |Z|. Therefore
|Ω̄| = |Ω|

|Z| .
Let β ∈ Ω. Since k is at least 1, there exists a non-trivial element b ∈ Gβ .

Thus, the fact that Zβ = 1 implies that b ∈ Gβ \Z. Then (βZ)Zb = (βb)Z = βZ ,
and hence Zb fixes a point in Ω̄. Therefore Ḡ does not act regularly on Ω̄.

Let g ∈ G be such that Zg has more than k fixed points in Ω̄. Let ḡ = Zg and
let ω̄1, ω̄2, . . . , ω̄k+1 be distinct fixed points of ḡ in Ω̄. Let ω1, ω2, . . . , ωk+1 ∈ Ω be
such that ωi ∈ ω̄i for all i ∈ {1, 2, . . . , k+1}. Then for every i ∈ {1, 2, . . . , k+1},
it follows that ωi

g ∈ ω̄g
i = (ωi

Z)g = (ωi
Z)Zg = ω̄ḡ

i = ω̄i = ωi
Z . Hence for every

i ∈ {1, . . . , k + 1}, there exists an element zi ∈ Z such that ωi
g = ωi

zi . Since
{ω1, ω2, . . . , ωk+1} has size k + 1, and the order of Z divides |Z(G)|, which
in turn divides k, there is an index set I ⊆ {1, 2, . . . , k + 1} of size at least
k
|Z| + 1 and an element z ∈ Z such that z = zj for every j ∈ I. Then for all

j ∈ I, it follows that ωj
gz−1

= (ωj
g)zj

−1
= (ωj

zj )zj
−1

= ωj . For all c ∈ Z,
(ωj

c)gz
−1

= ωj
cgz−1

= ωj
gz−1c = ωj

c. Thus, every element in ω̄j = ωj
Z is fixed

by gz−1. Therefore, gz−1 has |Z| · |I| ≥ |Z| · ( k
|Z| + 1) = k + |Z| > k fixed
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4 Quasi-Simple Groups

points in Ω. Since G acts with fixity k on Ω, gz−1 = 1G, and hence g ∈ Z, thus
ḡ = Zg = Z. It follows that every non-trivial element in Ḡ can have at most
k fixed points in Ω̄, hence Ḡ acts with fixity at most k on Ω̄.

Let U be a point stabiliser of G/Z in its action on Ω̄. Since |Ω| = |G : Gβ|
and |Ω|

|Z| = |Ω̄| = |G/Z : U |, we see that |U | = |G|
|Ω| = |Gβ|, proving the last part

of the lemma.

Even though the proof illustrates the situation in some detail, the fixity with which
the factor group acts is not determined exactly. This is unsurprising in light of the
next example, because different fixities of the factor group can happen for the same
group G acting with the same fixity, but permitting different actions.

Example 4.2
Let G be a finite group with a cyclic normal subgroup C of order 2 and a normal
subgroup S isomorphic to PSL(3, 2) such that G = C × S. Then Z(G) = C.

In the Small Groups Library [13] of GAP [36], the Group G is identified by
the tuple [336,209]. Thus, using the algorithm in Remark 2.22, the GAP com-
mand TestTom(TableOfMarks(SmallGroup([336,209])),4); gives all fixity-4 ac-
tions of G. The possible sizes for Ω are 112, 84, 28, 16, and 14. Therefore by
Lemma 4.1, G/Z(G) ∼= PSL(3, 2) acts with fixity at most 4 on a set Ω̄ that can have
size 56, 42, 14, 8, or 7. Since PSL(3, 2) is simple, it cannot be a Frobenius group,
and hence does not act with fixity 1. Again using the algorithm in Remark 2.22, the
following three GAP commands determine all fixity-2, fixity-3, and fixity-4 actions
of G/Z.

TestTom(TableOfMarks(PSL(3,2)),2);
TestTom(TableOfMarks(PSL(3,2)),3);
TestTom(TableOfMarks(PSL(3,2)),4);

Since the only fixity-4 actions of PSL(3, 2) are on sets of sizes 84 and 28, G/Z cannot
act with fixity 4 on Ω̄. Among the fixity-3 actions of PSL(3, 2) there is one on a set
of size 7, but none on sets of sizes 56, 42, 14, or 8. Thus, G/Z acts with fixity 2 on Ω̄
when Ω̄ ∈ {56, 42, 14, 8}. On the other hand, PSL(3, 2) does not act with fixity 2 on
a set of size 7, and therefore G/Z must act with fixity 3 on Ω̄ when |Ω̄| = 7.

In particular, the size of Ω, and therefore the concrete action of G, influences the
fixity with which G/Z is acting on Ω̄.

4.1 Fixity 2 and 3

For fixity 2 and 3, we will see in the next lemma that there do not exists quasi-simple,
non-simple groups that act transitively and with one of these fixities. In [71], where
groups acting with fixity 2 are analysed in general, the authors have also proven that
all quasi-simple groups acting with fixity 2 are simple. In [72], however, there is no
such proof. Nevertheless, the authors show many results about groups acting with
fixity 3, that will be helpful in the following proof.
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4.1 Fixity 2 and 3

Lemma 4.3
Let E be a quasi-simple group acting transitively and with fixity 2 or 3 on a set Ω
of size at least 4. Then E is simple.
Proof:

If E acts with fixity 2 on Ω, then, by Theorem 5.1 in [71], the quasi-simple
group E is in fact simple. Therefore suppose that E acts with fixity 3 on Ω.

Assume for a contradiction that E is not simple. Then Z(E) ̸= 1. Hence
by Lemma 2.17 the order of the centre divides 3. Therefore |Z(E)| = 3. Let
Ē = E/Z(E).

We first exclude some special possibilities for Ē. If Ē is A6
∼= PSL(2, 9), A7,

PSL(3, 4), or M22, then in each case there is, up to isomorphism, only one group
that E can be by the information on pages 4, 10, 23, and 39 in [28]. Making use
of the GAP package AtlasRep [104] and the GAP function in Remark 2.22, the
following commands give an empty list as output, indicating that E cannot act
with fixity 3 on any set if Ē is A6, PSL(3, 4), A7, or M22.

TestTom(TableOfMarks(AtlasGroup("3.a6")),3);
TestTom(TableOfMarks(AtlasGroup("3.a7")),3);
TestTom(TableOfMarks(AtlasGroup("3.L3(4)")),3);
TestTom(TableOfMarks(AtlasGroup("3.m22")),3);

As a consequence, whenever we reach a situation in which Ē is one of the groups
A6

∼= PSL(2, 9), A7, PSL(3, 4), or M22, then we immediately get a contradiction.
We now look at a different special situation and exclude some possibilities for

the size of |Ω|. All transitive groups up to degree 30 are listed in the Transitive
Groups Library [52] of GAP [36]. Thus, we can use GAP to generate a list of all
groups that are not simple, but quasi-simple, and that act transitively and with
fixity 3 on a set of size at most 9. Since E contains a non-trivial element with
three fixed points, Ω has at least five elements, and since no non-trivial element
in E fixes more than three points, all four-point stabilisers are trivial. Thus,
making use of the algorithm in Remark 2.18, we can formulate the following
GAP code.

AllTransitiveGroups(NrMovedPoints, [5..9], z->(not IsSimple(z))
and IsPerfect(z) and IsSimple(z/Center(z)), true,
x->IsTrivial(Stabilizer(x,[1..4],OnTuples)), true,
y->TestFixity(y, MovedPoints(y), 3), true);

↪→

↪→

↪→

The answer is an empty list. This implies that there does not exists a non-simple,
quasi-simple group that acts transitively and with fixity 3, when |Ω| ≤ 9.

It follows that |Ω| > 9. Then Lemma 4.1 shows that Ē acts with fixity 1,
2, or 3 on a set of size |Ω|

3 . Since Ē is simple, it cannot be a Frobenius group,
hence it must act with fixity 2 or 3.

Assume for a contradiction that Ē acts with fixity 2. Then by Theorem 1.2
in [71], there exists a prime power q such that Ē is isomorphic to PSL(3, 4),
PSL(2, q), or Sz(q). Given that the Schur multiplier has to be divisible by 3,
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4 Quasi-Simple Groups

a consultation of Table 4.1 in [39] reduces the options for Ē to PSL(2, 9) and
PSL(3, 4). As we noticed earlier, this gives a contradiction. Therefore Ē cannot
act with fixity 2 and hence must act with fixity 3.

Now Theorem 1.1 in [72] gives a list of all finite simple groups that act transi-
tively, faithfully, and with fixity 3. Hence, there exists a prime power q such that
Ē is isomorphic to A5,A6,A7,A8, PSL(2, 7),PSL(2, 11), PSL(3, q), PSU(3, q),
PSL(4, 3), PSU(4, 3), PSL(4, 5), M11, or M22. Again, using the information that
the Schur multiplier is divisible by 3, we see by Table 4.1 in [39] that the only
options for Ē are A6,A7, PSL(3, q) when q−1 is divisible by 3, PSU(3, q) when
q+1 is divisible by 3, PSU(4, 3), and M22. As discussed earlier, Ē can be neither
A6, A7, nor M22.

Assume that Ē is isomorphic to PSU(4, 3). Then the Schur multiplier is 48
by Table 4.1 in [39]. Let α ∈ Ω. Theorem 1.1 (ii) (d) in [72] specifies that the
order of a point stabiliser of Ē is 7. Thus, by Lemma 4.1, |Eα| = 7. Then by
Lemma 2.14 (c) in [72], Eα is a Sylow 7-subgroup of E. Thus, the GAP command
Order(Normalizer(PSU(4,3),SylowSubgroup(PSU(4,3),7))); gives that the
order of NĒ(Eα Z(E)/Z(E)) is 21. Therefore, since NĒ(Eα Z(E)/Z(E)) =
NE(Eα)Z(E)/Z(E), by Lemma 2.3 (a), it follows that |NE(Eα)| = 63 and hence
|NE(Eα) : NEα(Eα)| = |NE(Eα) : Eα| = 9, contradicting Lemma 2.13. As a
consequence, Ē cannot be isomorphic to PSU(4, 3).

Hence, there exists a prime power q and ε ∈ {−1, 1} such that Ē is isomorphic
to PSLε(3, q) and 3 divides (q − ε). Then E is SLε(3, q). Let α ∈ Ω. By
Theorem 1.1 (ii) in [72], the point stabilisers of Ē have order coprime to 6. Then
by Lemma 4.1, |Eα| is coprime to 6, too. We look at the cases of Theorem 1.3
in [72]. Since E is quasi-simple with |Z(E)| = 3, it does not contain a normal
subgroup of order 27, 9, or index 3. Therefore, only the cases (ii) (b) and
(ii) (d) of Theorem 1.3 in [72] remain. If E has a regular normal subgroup N ,
then |N | = |Ω| > 4, and hence N = E, but E does not act regularly. Thus
case (ii) (d) must hold, and hence Eα is cyclic. Let p be a prime dividing |Eα|.
Then by Theorem 1.1 (ii) (a) and (ii) (b) in [72] together with Lemma 4.1, p is
a divisor of q2+εq+1

3 , and by Lemma 2.14 (c) in [72], Eα contains a Sylow p-
subgroup R of E. By Theorem 6.5.3 in [43], Ē has a maximal subgroup Ū
of order q2 + εq + 1 that is a Frobenius group with Frobenius kernel of order
q2+εq+1

3 and a Frobenius complement of order 3. Let U be the full preimage
of Ū . Since neither q, q − 1, nor q + 1 can be divisible by p because p is
a divisor of q2 + εq + 1 and p ≥ 5, it follows that U contains a Sylow p-
subgroup P of E. Then there exists g ∈ E such that P = Rg, and hence
P = Rg ≤ (Eα)

g = Eαg . Let γ ∈ Ω be such that αg = γ. Then P ≤ Eγ .
Since p ̸= 3, and by Theorem 10.3.1 in [38], every Frobenius kernel is nilpotent,
P̄ := P Z(E)/Z(E) = Op(Ū). Since Ū is a maximal subgroup of the simple
group Ē, it follows that NĒ(P̄ ) = NŪ (P̄ ) = Ū . Since |P | and |Z(E)| are
coprime, Lemma 2.3 (a) implies that NĒ(P̄ ) = NE(P )Z(E)/Z(E). Together
with the fact that Z(E) ≤ NE(P ), this means that NE(P )/Z(E) = NĒ(P̄ ) = Ū ,
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and thus |NE(P )| = |U | = |Ū | · |Z(E)| = (q2 + εq + 1) · 3. Since q2 + εq + 1 is
divisible by 3, |NE(P )| is divisible by 9, thus the fact that |NE(P ) : NEγ (P )| ≤ 3
implies that 3 divides |Eγ | = |Eα|. This is a contradiction to the fact that |Eα|
is coprime to 6. Hence Ē is not isomorphic to PSLε(3, q), and therefore the last
remaining option is excluded. Thus, the assumption that E is not simple was
false.

4.2 Fixity 4

For fixity 4, the situation is different, because there exist non-simple, quasi-simple
groups. We will first see two special examples before we prove that the whole family
SL(2, q), where q is an odd prime power, gives examples of quasi-simple groups acting
with fixity 4.

Example 4.4
The simple group E := PSL(3, 4) acts with fixity 2 on a set of size 26 ·32 ·7 with cyclic
point stabilisers of order 5. This can be seen for example by using the GAP package
TomLib [74] together with the algorithm in Remark 2.22 and the GAP command
TestTom(TableOfMarks("L3(4)"),2);.

By the information on page 23 in [28], there is, up to isomorphism, only one quasi-
simple group G with a centre of order 2 and G/Z(G) ∼= E = PSL(3, 4). This group
is available in the GAP package AtlasRep [104]. Therefore, the GAP command
TestTom(TableOfMarks(AtlasGroup("2.L3(4)")),4); shows that G has precisely
one action with fixity 4, and this is on a set of size 27 ·32 ·7 with cyclic point stabilisers
of order 5.

Example 4.5
Similarly to the previous example, by using TestTom(TableOfMarks("Sz(8)"),2);
we see that the simple group E := Sz(8) acts with fixity 2 on a set of size 26 ·5·13 with
cyclic point stabilisers of order 7. More precisely, we see that E has two different
fixity-4 actions, but we are just interested in the described one.

Again using the information in [28], this time on page 28, we see that there is up
to isomorphism only one quasi-simple group G with a centre of order 2 and such
that G/Z(G) ∼= E = Sz(8). Using the algorithm in Remark 2.22 and [104] the GAP
command TestTom(TableOfMarks(AtlasGroup("2.Sz(8)")),4); shows that G has
precisely one action with fixity 4 and this is on a set of size 27 · 5 · 13 with cyclic
point stabilisers of order 7.

Lemma 4.6
Let q be an odd prime power and let G = SL(2, q). Suppose that G acts transitively
on a set Ω. Then G acts with fixity 4 on Ω if and only if one of the following holds.

(1) q = 5 and the point stabilisers are cyclic of order 3 or 5.

(2) q ≡ 1 mod 4 and q ≥ 9, and the point stabilisers are cyclic of order q+1
2 .
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(3) q ≡ −1 mod 4 and q ≥ 7, and the point stabilisers are cyclic of order q−1
2 ,

or the semi-direct product of an elementary abelian group of order q with a
cyclic group of order q−1

2 .

Proof:
We first collect some general information about G and G/Z(G) (see for example
II §6 in [54]). The order of G is q(q2 − 1) and since q is odd, Z(G) = 2. In
Hauptsatz II 8.27 in [54], all subgroups of G/Z(G) ∼= PSL(2, q) are described,
and in some cases the version in Theorem 6.5.1 in [43] gives additional structural
details of the subgroups. This information will be used without further reference.

For small values of q we can use the GAP code that is described in Remark 2.22
to check whether or not the lemma holds in these cases. For G = SL(2, 3) the
command TestTom(TableOfMarks(SL(2,3)),4); gives the answer that G does
not act transitively and with fixity 4 on any set, and forG = SL(2, 5) the result of
TestTom(TableOfMarks(SL(2,5)),4); shows that condition (1) of this lemma
holds. Therefore now suppose that q ≥ 7.

For the first direction of the lemma suppose that G acts transitively and with
fixity 4 on a set Ω. Let α ∈ Ω.

Let T ∈ Syl2(G). Then Z(G) ≤ T . By Satz II. 8.10 a) in [54], T is a gen-
eralised quaternion group. Therefore T contains just one involution t. Since
Z(G) ≤ T contains an involution, t ∈ Z(G). As a consequence, there exists just
the one involution t in G.

Assume for a contradiction that Gα has even order. Then Gα contains the
only involution t of G, thus t ∈ Z(G) ∩ Gα, but this contradicts Lemma 2.16.
Therefore |Gα| is odd.

To complete the proof of this direction of the lemma, we split according to
whether |Gα| and q share a prime divisor. First suppose that there exists a
prime p that divides |Gα| and q. Let X ≤ Gα be of order p and let P ∈ Sylp(G)
be such that X ≤ P . Then P is elementary abelian by Satz II. 8.10 a) in [54],
hence Z(G) and P are subgroups of NG(X). Lemma 2.13 yields that 4 ≥
|NG(X) : NGα(X)| ≥ |P Z(G) : P Z(G) ∩ Gα|. Since Gα has odd order, but
Z(G) and therefore P Z(G) have even order, the last index is divisible by 2.
Hence |P Z(G) : P Z(G) ∩ Gα| ∈ {2, 4}, and since p is odd this implies that
Gα has order divisible by q, thus it contains a Sylow p-subgroup R of G.

By Lemma 2.3 (a) together with Satz II 8.2 in [54], |NG(R)Z(G)/Z(G)| =
|NG/Z(G)(RZ(G)/Z(G))| = q · q−1

2 . Since Z(G) is a subgroup of NG(R), this
implies that the order of NG(R) is 2 · q · q−1

2 = q(q − 1).
Since G acts with fixity 4, Lemma 2.13 implies that |NG(R) : NGα(R)| ≤ 4.

Thus, |NGα(R)| ≥
|NG(R)|

4 = q(q−1)
4 . Additionally, |NGα(R)| divides q(q − 1),

and hence |NGα(R)| ∈ {q · (q − 1), q ·
(
q−1
2

)
, q ·

(
q−1
3

)
, q ·

(
q−1
4

)
}. Since q is

odd, q − 1 is even and hence NGα(R) cannot have order q(q − 1) or q · q−1
3 .

Assume that |NGα(R)| = q · q−1
4 . This implies that q−1 is divisible by 4, even

q ≡ 5 mod 8 because |Gα| is odd. Since q ≥ 7, this implies that q ≥ 13 and that
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NGα(R) contains a subgroup A of odd prime order s such that s divides q−1
4 .

By Lemma 2.3 (a) together with Satz II 8.3 c) in [54], |NG(A)Z(G)/Z(G)| =
|NG/Z(G)(AZ(G)/Z(G))| = 2 · q−1

2 . Since Z(G) is a subgroup of NG(A), this
implies that the order of NG(A) is 2 · 2 · q−1

2 = 2(q − 1). Therefore |NG(A) :
NGα(A)| is divisible by 8, because (q− 1) is divisible by 4 and |Gα| is odd. This
contradicts the inequality |NG(A) : NGα(A)| ≤ 4 of Lemma 2.13. Hence the
assumption that |NGα(R)| = q · q−1

4 was false and therefore |NGα(R)| = q · q−1
2 .

As a consequence, the order of Gα is divisible by q · q−1
2 . Since Z(G)∩Gα = 1,

Gα Z(G)/Z(G) is isomorphic to Gα. An inspection of the possible subgroups
of PSL(2, q) shows thatGα Z(G)/Z(G), and henceGα, is the semi-direct product
of an elementary abelian subgroup of order q with a cyclic subgroup of order q−1

2 ,
because q ≥ 7 and therefore q−1

2 ≥ 3, and because Gα Z(G)/Z(G) has odd order.
This implies that q−1

2 is odd, because |Gα| is odd. Hence q ≡ −1 mod 4 and
therefore case (3) of this lemma holds.

Now suppose that there does not exist a prime dividing both |Gα| and q. Let
x ∈ Gα be an element of prime order r that fixes exactly four points in Ω. Then
r divides |Gα| and |G| = q · (q− 1) · (q+1). By our assumption that r does not
divide q, there exists ε ∈ {−1, 1} such that r divides q−ε. Since r is odd, x acts
coprimely on Z(G) and therefore NG(⟨x⟩)Z(G)/Z(G) = NG/Z(G)(⟨Z(G)x⟩) by
Lemma 2.3 (a). Then Z(G)x has order r and therefore by Satz II 8.5 in [54],
it lies in a cyclic group of order q−ε

2 . By Satz II 8.3 and Satz II 8.4 in [54],
|NG/Z(G)(⟨Z(G)x⟩)| = 2 · q−ε

2 = q − ε. Thus, NG(⟨x⟩)Z(G)/Z(G) has order
q − ε and since Z(G) ≤ NG(⟨x⟩), it follows that |NG(x)| = 2(q − ε).

The group G still acts with fixity 4 and hence, by Lemma 2.13, it follows that
|NG(⟨x⟩) : NGα(⟨x⟩)| ≤ 4. Thus, |NGα(⟨x⟩)| ≥

|NG(⟨x⟩)|
4 = 2(q−ε)

4 = q−ε
2 . On

the other hand, |NGα(⟨x⟩)| must be odd and a divisor of 2(q − ε). Since q is
odd, this shows that |NGα(x)| =

q−ε
2 .

Therefore, the order of Gα is odd and divisible by q−ε
2 but not by any non-

trivial factor of q. Since Z(G) ∩ Gα = 1, Gα Z(G)/Z(G) is isomorphic to Gα.
An inspection of the possible subgroups of PSL(2, q) shows that Gα Z(G)/Z(G),
and hence Gα, is a cyclic group of order q−ε

2 . This also implies that q−ε
2 is odd.

Hence q ≡ −ε mod 4 and therefore case (2) or case (3) in the lemma holds.

For the other direction, first suppose that G is isomorphic to SL(2, q), that
ε ∈ {−1, 1}, that q ≥ 7 is congruent to ε modulo 4, that U ≤ G is a cyclic
subgroup of order q+ε

2 , and that Ω = G/U . Let g ∈ U be non-trivial. Then by
Corollary 2.10, g fixes |NG(⟨g⟩)|

|U | points in Ω. Since |NG(⟨g⟩)| is twice the order
of NG(⟨g⟩)Z(G)/Z(G) and since this order equals |NG/Z(G)(⟨g⟩Z(G)/Z(G))| =
·2 · q+ε

2 , it follows that |NG(⟨g⟩)| = 2(q+ ε). Thus, g has four fixed points on Ω.
Since all point stabilisers of G are conjugate, this means that every non-trivial

element in G either does not fix any point or has four fixed points. In particular,
G acts with fixity 4 on Ω.

Finally, suppose thatG is isomorphic to SL(2, q), that q ≥ 7 is congruent to −1
modulo 4, that U ≤ G is the semi-direct product of an elementary abelian group
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of order q with a cyclic group of order q−1
2 , and that Ω = G/U . Then G acts

transitively on Ω and U has odd order. Since Z(G) has even order, U∩Z(G) = 1.
Thus, U is isomorphic to U Z(G)/Z(G). The subgroup structure of PSL(2, q)
shows that U Z(G)/Z(G), and therefore U , is a Frobenius group. Let K be the
Frobenius kernel of U and C a Frobenius complement of U . Then C is cyclic of
order q−1

2 and K is elementary abelian of order q.
If a point is fixed by an element u of U , then all powers of u fix the same point.

Therefore, in order to determine the fixity with which G is acting, it suffices to
calculate the maximal number of fixed points of each element of prime order.
Let x ∈ U be of prime order p. Then p divides either q or q−1

2 .
If p divides q−1

2 , then x is conjugate to an element c ∈ C. By Lemma 2.11
the number of fixed points of c is |K|·|NG(⟨c⟩)|

|U | = q·|NG(⟨c⟩)|
q· q−1

2

= 2 · |NG(⟨c⟩)|
q−1 . Again

|NG(⟨c⟩)| = 2(q − 1), and hence c fixes exactly four points. As a consequence,
x fixes at most four points and there exists an element in U with exactly four
fixed points.

If p divides q, then x ∈ K, which is the only Sylow p-subgroup of U . Let
y ∈ G be such that Uy ∈ G/U is a fixed point under x. Then xy

−1 ∈ U is
a p-element, thus xy−1 ∈ K. Therefore x ∈ K ∩ Ky. Then Z(G)x lies in the
intersectionK Z(G)/Z(G)∩Ky Z(G)/Z(G), and together with Satz II 8.2 in [54],
this implies that y is an element of NG/Z(G)(K Z(G)/Z(G)). Since |K| = q is
coprime to |Z(G)|, it follows by Lemma 2.3 (a) that NG/Z(G)(K Z(G)/Z(G)) =
NG Z(G)/Z(G), and this group has order q · q−1

2 . Since Z(G) ≤ NG(K), the
order of NG(K) is q · (q− 1). Thus, the number of fixed points of x in its action
on G/U is bounded above by |NG(K) : U | = q(q−1)·2

q(q−1) = 2.
Therefore, x has at most four fixed points and there exist elements in U with

exactly four fixed points. As a consequence, G acts with fixity 4 on G/U .

After seeing these examples of non-simple, quasi-simple groups acting with fixity 4,
it remains to determine whether or not there exist further such examples. Lemma 4.8
gives the answer, but beforehand we need a more technical lemma, analysing a special
situation that will be needed frequently in the proof of Lemma 4.8.

Lemma 4.7
Let G be a finite group acting transitively and with fixity 4 on a set Ω, and let
Z = Z(G). Suppose that |Ω| > 4 · |Z| and that |Z| ∈ {2, 4}. Further suppose that
G/Z acts with fixity 4 on Γ := {αZ | α ∈ Ω}. Then G/Z does not have cyclic point
stabilisers of order coprime to 6.
Proof:

Let x ∈ G fix exactly four points in Ω and let α ∈ fixΩ(x). Assume, for a
contradiction, that the point stabilisers of G/Z are cyclic of order coprime to 6.
Then the hypotheses of Lemma 4.1 are fulfilled. Therefore, |Gα| is coprime
to 6, and hence x has odd order. As a consequence, x acts coprimely on Z and
Zx ̸= Z. Thus, Lemma 2.3 (a) shows that NG(⟨x⟩)Z/Z = NG/Z(⟨Zx⟩). Since
Z is a subgroup of NG(⟨x⟩), this means that |NG(⟨x⟩)| = |Z| · |NG(⟨x⟩)Z/Z| =
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|Z| · |NG/Z(⟨Zx⟩)|. We recall that x has exactly four fixed points. Then
Lemma 2.9 implies that 4 = |{⟨x⟩g≤Gα|g∈G}|·|NG(⟨x⟩)|

|Gα| , and therefore |NG(⟨x⟩)| =
|Z| · |NG/Z(⟨Zx⟩)| is not divisible by 8 because |Gα| is odd. Thus, |NG/Z(⟨Zx⟩)|
is not divisible by 8

|Z| .
By assumption, the point stabilisers of G/Z are cyclic of order coprime to 6.

Therefore Lemma 3.22 (b) implies that every non-trivial element in a point sta-
biliser of G/Z fixes exactly four points. Since Zx fixes αZ ∈ Γ, it lies in a point
stabiliser U of G/Z, thus Zx fixes exactly four points. Then by Lemma 2.10,
Zx has exactly |NG/Z(⟨Zx⟩)|

|U | fixed points in Γ. Hence |NG/Z(⟨Zx⟩)| = 4 · |U |,
contrary to the fact that |NG/Z(⟨Zx⟩)| is not divisible by 8

|Z| .

Lemma 4.8
Let G be a finite quasi-simple group acting transitively and with fixity 4 on a set Ω.
Then eitherG is simple or there exists an odd prime power q such thatG is isomorphic
to SL(2, q), C2. Sz(8), or C2.PSL(3, 4).
Proof:

For the groups C2.A7, C2.A8, C2.M12, C2.M22, C4.M22, and E4. Sz(8) the GAP
package AtlasRep [104] together with the GAP function in Remark 2.22 and the
following commands show that none of the groups can act with fixity 4 on any
set.

TestTom(TableOfMarks(AtlasGroup("2.a7")),4);
TestTom(TableOfMarks(AtlasGroup("2.a8")),4);
TestTom(TableOfMarks(AtlasGroup("2.m12")),4);
TestTom(TableOfMarks(AtlasGroup("2.m22")),4);
TestTom(TableOfMarks(AtlasGroup("4.m22")),4);
TestTom(TableOfMarks(AtlasGroup("2^2.Sz(8)")),4);

Suppose that G is not simple. Let Z = Z(G) and Ḡ = G/Z. Then Z ̸= 1 and
by Lemma 2.17, |Z| ∈ {2, 4}.

In the Transitive Groups Library [52] of GAP [36], all transitive groups up to
degree 30 are listed. Then we can use GAP to generate a list of all groups that
are quasi-simple, but not simple and that act transitively and with fixity 4 on
a set of size at most 16. Since G contains a non-trivial element with four fixed
points, Ω has at least six elements, and since no non-trivial element in G fixes
more than four points, all five-point stabilisers are trivial. Thus, making use of
the program in Remark 2.18, we can formulate the following GAP code.

AllTransitiveGroups(NrMovedPoints, [6..16], z->(not IsSimple(z))
and IsPerfect(z) and IsSimple(z/Center(z)), true,
x->IsTrivial(Stabilizer(x,[1..5],OnTuples)), true,
y->TestFixity(y, MovedPoints(y), 4), true);

↪→

↪→

↪→

This shows that the only such group is SL(2, 7). Hence, we can suppose that
|Ω| > 16 ≥ 4 · |Z|. By Lemma 4.1, the simple group Ḡ acts non-regularly and
with fixity at most 4 on Γ := {αZ | α ∈ Ω}, and the order of a point stabiliser

105



4 Quasi-Simple Groups

of G in its action on Ω is the same as the order of a point stabiliser of Ḡ in its
action on Γ.

Since Ḡ is simple, it cannot act as a Frobenius group, and therefore Ḡ acts
with fixity 2, 3, or 4 on Γ. We look at the different possibilities one after the
other. Let α ∈ Ω and let x ∈ Gα fix exactly four points.

First suppose that Ḡ acts with fixity 4 on Γ. Then Ḡ is one of the groups in
Theorem 3.56. Since |Z| is divisible by 2, the Schur multiplier of Ḡ has to be
divisible by 2. By Table 4.1 in [39], this leads to the following list of options
for Ḡ, where the order of Z is as specified and q is a prime power: A7 with
|Z| = 2, PSL(2, q) with |Z| = 2, PSU(4, 3) with |Z| ∈ {2, 4}, PSp(4, q) with
|Z| = 2 and q odd, PΩ−(8, q) with |Z| = 2 and q odd, Sz(8) with |Z| ∈ {2, 4},
M12 with |Z| = 2, and M22 with |Z| ∈ {2, 4}. If Ḡ is isomorphic to A7, M12, or
M22, then there is up to isomorphism just one group for each option for |Z| by
the information on pages 10, 31, and 39 in [28]. For each of these groups, we have
seen at the beginning of this proof that it cannot act transitively and with fixity 4
on any set. If Ḡ is isomorphic to Sz(8), then by the information on page 28
in [28], the only options for G, up to isomorphism, are C2. Sz(8) and E4. Sz(8).
The first case is listed in the lemma and the second case is already excluded. If
Ḡ is isomorphic to PSL(2, q) and |Z| = 2, then since PSL(2, 4) ∼= PSL(2, 5), the
prime power q is 4 or odd by Table 4.1 in [39], and G is isomorphic to SL(2, q)
listed in the lemma. Thus, for Ḡ there remain PSU(4, 3) with |Z| ∈ {2, 4},
PSp(4, q) with |Z| = 2, and PΩ−(8, q) with |Z| = 2. If Ḡ = PSU(4, 3), then by
Theorem 3.56, all point stabilisers of Ḡ in its action on Γ are cyclic of order 5,
and hence have order coprime to 6, contrary to Lemma 4.7. If Ḡ = PSp(4, q),
then again by Theorem 3.56, a point stabiliser of Ḡ in its action on Γ is cyclic
of order q2+1

2 , and hence has order coprime to 6, contrary to Lemma 4.7. If
Ḡ = PΩ−(8, q), then once more by Theorem 3.56, a point stabiliser of Ḡ in its
action on Γ is cyclic of order q4+1

2 , and hence has order coprime to 6, and again
Lemma 4.7 gives a contradiction. This was the last remaining option in the case
that Ḡ acts with fixity 4 on Γ.

Therefore now instead suppose that Ḡ acts with fixity 3 on Γ. Then Ḡ is
one of the groups in Theorem 1.1 in [72]. Since |Z| is divisible by 2, the Schur
multiplier of Ḡ has to be even. By Table 4.1 in [39], this leads to the following
list of options for Ḡ, where the order of Z is as specified: A5

∼= PSL(2, 5) with
|Z| = 2, A6

∼= PSL(2, 9) with |Z| = 2, PSL(2, 7) ∼= PSL(3, 2) with |Z| = 2, A7

with |Z| = 2, PSL(2, 11) with |Z| = 2, PSL(3, 4) with |Z| ∈ {2, 4}, PSL(4, 3)
with |Z| = 2, PSU(4, 3) with |Z| ∈ {2, 4}, PSL(4, 5) with |Z| ∈ {2, 4}, A8 with
|Z| = 2, and M22 with |Z| ∈ {2, 4}. If Ḡ is isomorphic to PSL(2, 5), PSL(2, 7),
PSL(2, 9), or PSL(2, 11), then because in all cases |Z| = 2, G is a special linear
group listed in the lemma. If Ḡ is isomorphic to A7, A8, or M22, there is up to
isomorphism just one group for each option for |Z| by the information on pages
10, 22, and 39 in [28], and as seen earlier, these groups cannot act transitively and
with fixity 4 on any set. As a consequence, the only options for Ḡ that remain
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are PSL(3, 4), PSL(4, 3), PSU(4, 3), and PSL(4, 5). In each case, Theorem 1.1
in [72] also proves that the order of a point stabiliser Ū of Ḡ in its action on Γ
is coprime to 6, and that Ū is cyclic. Let ū ∈ Ū be of prime order p ≥ 5 and
such that ū fixes exactly three points in Γ. Let Y be the full pre-image of ⟨ū⟩
in G and X ∈ Sylp(Y ). Then X is cyclic of order p and XZ/Z = ⟨ū⟩. Let
y ∈ X be non-trivial. Then y has order p ≥ 5, and leaves three orbits of size |Z|
invariant, because Zy fixes three points in Γ, the set of Z-orbits in Ω. Since
|Z| ≤ 4 < 5 ≤ p, this implies that y fixes every element in an orbit of size |Z|,
and hence fixes 3 · |Z| ≥ 3 · 2 = 6 points in Ω. This contradicts the fact that
G acts with fixity 4 on Ω. This excludes the last remaining options in the case
that Ḡ acts with fixity 3 on Γ.

Finally, suppose that Ḡ acts with fixity 2 on Γ. Then Ḡ is one of the groups
in Theorem 1.2 in [71]. Thus, there exists a prime power q such that Ḡ is
isomorphic to either PSL(2, q), Sz(8), or PSL(3, 4). If Ḡ ∼= PSL(2, q), then
Table 4.1 in [39] together with the facts that |Z| ∈ {2, 4} and that PSL(2, 4) ∼=
PSL(2, 5) shows that q is 4 or an odd prime power and that G = SL(2, q). If Ḡ
is isomorphic to Sz(8), then by the information on page 28 in [28] there are, up
to isomorphism, only the options C2. Sz(8) and E4. Sz(8) for G. The first case is
listed in the lemma and the second already excluded. Therefore, suppose that
Ḡ = PSL(3, 4). Then with the use of the GAP function in Remark 2.22, the
command TestTom(TableOfMarks(PSL(3,4)),2); shows that the only action
of Ḡ with fixity 2 is on a set of size 26 · 32 · 7 with a point stabiliser of order 5.
Then |Gα| = 5 and |Ω| = |G|

5 = |Z|·|PSL(3,4)|
5 = |Z| · 26 · 32 · 7. Since |Z| ∈ {2, 4},

it follows that |Ω| ∈ {27 · 32 · 7, 28 · 32 · 7}. Since 28 · 32 · 7 ≡ 32 · 2 ≡ 3 mod 5,
no element of order 5 can have exactly four fixed points. Therefore |Z| = 4 is
not possible and hence |Z| = 2. Then the information on page 23 in [28] shows
that G = C2.PSL(3, 4), and this group is already listed in the lemma. This
completes the analysis of the last remaining case.

Lemmas 4.6 and 4.8 and the two examples above give a full classification of all non-
simple, quasi-simple groups acting with fixity 4, and together with Theorem 3.56
they give a full classification of all quasi-simple groups acting transitively and with
fixity 4.

The result of this classification suggests that there is more underlying structure
than the previous proof revealed. This is made more explicit in the next corollary.

Corollary 4.9
Let G be a finite quasi-simple group acting transitively and with fixity 4 on a set Ω.
If G is not simple, then Z(G) has order 2 and G/Z(G) acts with fixity 2 on a set of
size |Ω|

2 .
Proof:

Suppose that G is not simple. Then by Lemma 4.8, there exists an odd prime
power q such that G is isomorphic to SL(2, q), C2. Sz(8), or C2.PSL(3, 4). In all
cases Z(G) has order 2. Let Z = Z(G). IfG/Z ∼= PSL(3, 4) orG/Z ∼= Sz(8), then
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Example 4.4 and Example 4.5, respectively, show that G/Z acts with fixity 2
on a set half the size of Ω.

Therefore suppose that G = SL(2, q). Let Ḡ = G/Z(G).
If q = 5, then |G| = | SL(2, 5)| = 120. By Lemma 4.6, |Ω| ∈ {120

3 ,
120
5 } =

{40, 24}. Using the GAP function in Remark 2.22 through the GAP code
TestTom(TableOfMarks(PSL(2,5)),2); gives that Ḡ ∼= PSL(2, 5) acts (among
other actions) transitively and with fixity 2 on sets of order 20 and 12, proving
the corollary in this case. Therefore additionally suppose that q ≥ 7.

By Lemma 4.6, there are two possibilities for the structure of point stabilisers
of G. Either they are cyclic, or the semidirect product of an elementary abelian
group of order q with a cyclic group of order q−1

2 . In the first case let ε ∈ {−1, 1}
be such that q ≡ ε mod 4. Then the point stabilisers of G are cyclic of order
q+ε
2 . Hence |Ω| = |G|

q+ε
2

= 2 · q(q2−1)
q+ε = 2q(q− ε). In the latter case |Ω| = |G|

q· q−1
2

=

2 · q(q2−1)
q(q−1) = 2(q + 1).

It remains to prove that Ḡ has a transitive action with fixity 2 on sets of size
q(q − 1), q(q + 1), and q + 1 in these cases. The argumentation is quite similar
to the argument in the last part of Lemma 4.6. Therefore let ε ∈ {−1, 1} be
such that q ≡ ε mod 4. By Hauptsatz II 8.27 in [54], the group Ḡ ∼= PSL(2, q)
has a cyclic subgroup Ū of order q+ε

2 . Then Ḡ acts transitively on Ḡ/Ū and
by Lemma 2.10, every non-trivial element x̄ ∈ Ū has |NḠ(⟨x̄⟩)|

|Ū | fixed points. By

Satz II 8.3 c) and Satz II 8.4 c) in [54], the order of NḠ(⟨x̄⟩) is 2 · q+ε
2 = q + ε.

Therefore x̄ has exactly two fixed points, thus Ḡ acts with fixity 2 on Ḡ/Ū and

|Ḡ/Ū | = q· q
2−1
2

q+ε
2

= q(q − ε). In addition, by Hauptsatz II 8.27 in [54], the group

Ḡ ∼= PSL(2, q) has a subgroup Ū that is a Frobenius group of order q · q−1
2 .

Let K̄ be the Frobenius kernel of Ū and let C̄ be a Frobenius complement
of Ū . Then C̄ is cyclic of order q−1

2 and K is elementary abelian of order q. In
order to determine the fixity with which Ḡ is acting, it suffices to calculate the
maximal number of fixed points of each element of prime order. Let x̄ ∈ U be
of prime order p. Then p divides either q or q−1

2 . If p divides q−1
2 , then x̄ is

conjugate to an element c̄ ∈ C̄. By Lemma 2.11, the number of fixed points of c̄
is |K̄|·|NḠ(⟨c̄⟩)|

|Ū | =
q·|NḠ(⟨c̄⟩)|

q· q−1
2

= 2 · |NḠ(⟨c̄⟩)|q−1 . Again the fact that |NḠ(⟨c̄⟩)| = 2 · q−1
2

implies that c̄ fixes exactly two points. Thus, x̄ fixes at most two points. If
p divides q, then x̄ ∈ K̄. Let ȳ ∈ Ḡ be such that Ū ȳ ∈ Ḡ/Ū is a fixed point
under x̄. Then x̄ȳ

−1 ∈ Ū is a p-element, and hence x̄ȳ
−1 ∈ K̄. Therefore

x̄ ∈ K̄ ∩ K̄ ȳ. By Satz II 8.2 in [54], it follows that ȳ is an element of NḠ(K̄),
and this group has order q · q−1

2 . Thus, the number of fixed points of x̄ in its

action on Ḡ/Ū is bounded above by |NḠ(K̄) : Ū | = q· q−1
2

q· q−1
2

= 1. Therefore Ḡ acts

with fixity 2 on Ḡ/Ū and |Ḡ/Ū | = q· q
2−1
2

q· q−1
2

= q + 1. As a consequence, Ḡ acts

transitively and with fixity 2 on sets of size q(q − 1), q(q + 1), and q + 1.
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In this chapter we will see that a group G that acts with fixity 4 can have at most
one component. Since components are quasi-simple, we can then use the information
that we gained in the previous chapter to describe the unique component of G. In
some cases, we can say even more about G or at least about the point stabilisers
of G. However, knowing E(G) takes us one step forward in understanding F∗(G),
and thus in understanding the structure of G.

5.1 Centralisers of Involutory Automorphisms of Simple
Groups

In the previous two chapters we have seen that Lemma 2.13 used for the normaliser
or the centraliser of a subgroup of a point stabiliser is most useful. Thus, it is
unsurprising that the size of a centraliser will again play a key role in the analysis of
the components structure. Therefore, we first look at the centralisers of involutory
automorphisms of simple groups before we use this result for quasi-simple groups,
or more precisely for components of groups that act with fixity 4. The result of
Lemma 5.1 is interesting in its own right and does not need the context of fixity in
which we use it.

The idea for the proof is due to Gernot Stroth who suggested to use a version of
the Brauer-Fowler Theorem (see [14]) together with a library of primitive groups.

Lemma 5.1
Let E be a non-abelian simple group. Let x be an involution and an automorphism
of E. If E is not isomorphic to A5, then |CE(x)| > 4.
Proof:

Assume, for a contradiction, that E is not isomorphic to A5 and that the order
of CE(x) is at most 4.

We first will exclude some finite simple groups that otherwise would appear
later on in this proof and have to be dealt with at some point.

Therefore, assume that E = PSL(2, 7) ∼= PSL(3, 2). Then the table on page 3
in [28] shows that for every involution t ∈ E, |CE(t)| = 8. The table also shows
that the outer automorphism group has order 2 and that for every involution s
in E.C2 that is not in E, |CE(s)| = 6. Since x has order 2, it lies in one
of the conjugacy classes of involutions of E.C2 or centralises E, and therefore
|CE(x)| ≥ 6. This contradicts the assumption.
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Similarly, we can check the tables in [28] to see that neither M11, M12, M22,
M23, M24, PSL(2, q) where q ∈ {8, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31}, PSL(3, q)
where q ∈ {3, 4, 5}, PSL(5, 2), PSU(3, 3), PSU(4, 2), nor PSp(6, 2) fulfils our
assumptions.

Therefore instead assume that E is an alternating group. Let n be a positive
integer such that E = An. Then by our assumptions, n ≥ 6. If n = 6, then the
table on page 4 in [28] implies the contradiction that |CE(x)| ≥ 8. Thus, n ≥ 7.
By Theorem 2.3 in [105], Aut(An) ∼= Sn. In Sn an involution t can be written
as the product of disjoint transpositions. If t is the product of at most two
transpositions, it moves at most four points, and hence centralises a subgroup
of Sn isomorphic to Sn−4 acting on the remaining n − 4 ≥ 3 points. Thus,
|CSn(t)| is divisible by |S3| · |⟨t⟩| = 12, and hence the order of CAn(t) is divisible
by 6. If t is the product of at least three disjoint transpositions then there
are six distinct elements a1, a2, a3, a4, a5, a6 ∈ {1, . . . , n} and a permutation τ
such that τ fixes the six points a1, . . . , a6 and such that t is the product of
(a1, a2)(a3, a4)(a5, a6) and τ . Then (a1, a2), (a3, a4), (a5, a6), (a1, a3)(a2, a4) ∈
CSn(t), and hence 24 = 16 divides the order of CSn(t). Therefore |CAn(t)| is
divisible by 8. As a consequence, |CE(x)| = |CAn(t)| ≥ 6 contradicting our
assumptions. Thus, E is not an alternating group.

As a consequence, we can suppose that E is none of the described groups.

Let H = E⟨x⟩. Then |CH(x)| ≤ 8. By Theorem 1.5 in Chapter 5 of [95]
(using the method of Brauer-Fowler), there exists a non-trivial element w ∈ H

such that |H : CH(w)| = |H|
|CH(w)| ≤ |CH(x)|2 ≤ 82 = 64.

As an intermediate step, we will see that Z(H) = 1. For a contradiction,
assume that there exists a non-trivial element z ∈ Z(H). Then Z(H) ∩ E = 1,
and this implies that |Z(H)| = 2. In particular, z is an involution. Let u ∈ E be
such that z = ux. Then u is an involution. For all elements g ∈ E, gu = gzx

−1
=

gzx = gx, and hence |CE(u)| = |CE(x)| ≤ 4. Thus, Theorem 1.5 in Chapter 5
of [95] now used for E implies that there exists a non-trivial element b ∈ E

such that |E : CE(b)| = |E|
|CE(b)| ≤ |CE(u)|2 ≤ 42 = 16. Then E is non-abelian

simple and acts transitively and faithfully on a set of size at most 16. The
following GAP command uses the Transitive Groups Library [52] and shows
that E is either An where n is a positive integer such that 5 ≤ n ≤ 16, M11,
M12, PSL(2, q) where q ∈ {7, 8, 11, 13}, or PSL(3, 3).
AllTransitiveGroups(NrMovedPoints, [1..16], IsSimple, true,

IsAbelian, false);↪→

All of these groups have been excluded earlier, either by the assumption that
E ̸∼= A5 or by the arguments at the beginning of this proof. Therefore Z(H) = 1.

As a next step, we will see that H or E acts transitively, faithfully, and
primitively on a set of size at most 64 and such that a point stabiliser contains
the centraliser of w, but beforehand we need some information about CH(w).

Assume, for a contradiction, that E ≤ CH(w). If w ∈ E, then w ∈ Z(E) = 1,
contradicting the fact that w is non-trivial. Hence, w ∈ H \ E and H =
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⟨w,E⟩ ≤ CH(w). Thus, w ∈ Z(H), contradicting the fact that Z(H) = 1. As a
consequence, E ≰ CH(w).

Then there exists a maximal subgroup M of H that contains CH(w). We will
establish that there exists a non-abelian group G containing E with index at
most 2 and a maximal subgroup U ofG containing w and CG(w) such thatG acts
transitively, faithfully, and primitively on G/U , a set of size at most 64. IfH acts
faithfully on H/M , then we set G = H and U =M . Therefore, suppose that H
does not act faithfully on H/M . Since M contains all elements that act trivially
on H/M , it hence follows that M contains a non-trivial normal subgroup N
of H. Thus, N ∩E ⊴ E. If N ∩E = 1, then |N | = 2. Since N ⊴ H, H contains
a central element. As seen earlier this is impossible. Therefore and because E
is simple, N ∩ E = E, and hence M ≥ E. In particular, M = E, w ∈ E and
|E : CE(w)| ≤ |H : CH(w)| ≤ 64. We set G = E. Let U be a maximal subgroup
of E that contains CE(w). Then G acts transitively, faithfully, and primitively
on G/U = E/U , a set of size |E : U | ≤ |E : CE(w)| ≤ 64.

For a contradiction, assume that U = CG(w). Then all point stabilisers are
isomorphic to CG(w). Since w ∈ Z(CG(w)), all point stabilisers have non-trivial
centre. Using the Primitive Permutation Groups Library [53], the first line of
the following GAP code creates a list of all non-abelian primitive groups G that
act on a set of size at most 64. The next line reduces this list to all groups that
additionally have point stabilisers with non-trivial centre. Then the next line
makes sure that G has a subgroup of index at most 2 that is non-abelian simple,
and hence could possibly be E. The last line returns a list of lists of groups that
E possibly could be.
li:=AllPrimitiveGroups(NrMovedPoints, [1..64], IsAbelian, false);;
li:=Filtered(li, x-> not IsTrivial(Center(Stabilizer(x,1))));;
li:=Filtered(li, x->true in List(LowIndexSubgroups(x,2),

y->(IsSimple(y) and not(IsAbelian(y)))));;↪→

List(li, x->Filtered(LowIndexSubgroups(x,2),IsSimple));
The result is that E is either An where n is a positive integer such that 5 ≤
n ≤ 11, PSL(2, 11), PSL(3, 2), PSU(3, 3), PSU(4, 2), or PSp(6, 2). All of these
groups have been dealt with earlier, implying in every case a contradiction.

Thus, U ≩ CG(w) and |CG(w)| ≤ |U |
2 . Hence |G/U | ≤ |G|

2·|CG(w)| =
|G/CG(w)|

2 ≤
64
2 = 32. Then we can again use GAP together with the library [53]. The fol-
lowing GAP code shows that E is isomorphic to either An where n is a posi-
tive integer such that 5 ≤ n ≤ 32, M11, M12, M23, M24, PSL(2, q) where q ∈
{7, 8, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31}, PSL(3, q) where q ∈ {3, 4, 5}, PSL(5, 2),
PSU(3, 3), PSU(4, 2), or PSp(6, 2).
li:=AllPrimitiveGroups(NrMovedPoints, [1..32], IsAbelian, false);;
li:=Filtered(li, x->true in List(LowIndexSubgroups(x,2),

y->(IsSimple(y) and not(IsAbelian(y)))));;↪→

List(li, x->Filtered(LowIndexSubgroups(x,2),IsSimple));
We again see that we excluded all of these groups earlier. This final contradiction
finishes the proof.
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5.2 Semi-Regular Actions of Components

We will now use Lemma 5.1 to see that the components of a group that acts with
fixity 4 can only act semi-regularly if they are isomorphic to A5 or SL(2, 5). Since
most of the implications of a fixity-4 action are not needed to prove this, the formu-
lation of the following lemma is slightly more general and such that it can easily be
used in Lemma 5.3.

Lemma 5.2
Let E be a finite quasi-simple group acting on a set Ω. Let x be an involution that
normalises E, that acts on Ω and that fixes at least one and at most four points in its
action on Ω. If E acts semi-regularly on Ω, then E is isomorphic to A5 or SL(2, 5).
Proof:

Assume that the lemma is false and let (E,Ω, x) be a minimal counterexample
(regarding |E|). Then for every triple (L,Γ, v) where L is a quasi-simple group
acting on the set Γ, where v is an involution that normalises L, that acts on Γ,
and that fixes at most four points in Γ, and such that |L| < |E|, L is isomorphic
to A5 or SL(2, 5) if L acts semi-regularly on Ω. Additionally, E acts semi-
regularly and is isomorphic to neither A5 nor SL(2, 5). Then CE(x) acts semi-
regularly on fixΩ(x), a set with at most four elements, and hence |CE(x)| ≤ 4.

Let α ∈ Ω be fixed by x. Let y ∈ E⟨x⟩ be such that y fixes a point in
αE⟨x⟩ = α⟨x⟩E = αE . Since E⟨x⟩ acts transitively on αE, y is conjugate to an
element in (E⟨x⟩)α = ⟨x⟩Eα = ⟨x⟩, and hence y fixes at most four points. Thus,
there exists k ∈ {1, 2, 3, 4} such that E⟨x⟩ acts transitively, faithfully, and with
fixity k on αE .

Assume, for a contradiction, that |Z(E)| is even. Since Z(E) is a characteristic
subgroup of E and x normalises E, x acts on Z(E) by conjugation. Thus the
2-element x acts on the group Z(E) which has even order, and hence by 8.1.4
in [65], CZ(E)(x) ̸= 1. Let Z = CZ(E)(x). Then Z ≤ Z(E) and Z ⊴ E⟨x⟩. By
Lemma 4.1 and the fact that |αE | = |E| = |E/Z(E)| · |Z(E)| ≥ |E/Z(E)| · |Z| ≥
60|Z| > 4|Z|, the group (E⟨x⟩)/Z acts transitively, non-regularly, and with fixity
at most k on Γ := {αZ | α ∈ αE}. Then Zx fixes αZ , acts on Γ, has at most k ≤ 4
fixed points in Γ, normalises E/Z, and is an involution. Additionally Z(E/Z) =
Z(E)/Z and (E/Z)/Z(E/Z) = (E/Z)/(Z(E)/Z) ∼= E/Z(E). In particular,
E/Z is quasi-simple and isomorphic to neither A5 nor SL(2, 5) because E is
isomorphic to neither A5 nor SL(2, 5). Thus, the fact that (E,Ω, x) is a minimal
counterexample implies for (E/Z,Γ, Zx) that there exists a non-trivial element
in Zg ∈ E/Z that fixes a point ωZ ∈ Γ. Then ωZ = (ωZ)Zg = (ωg)Z , and hence
ωg ∈ ωZ . This implies that there exists an element z ∈ Z such that ωg = ωz.
Then gz−1 ∈ Eω = 1. Thus g ∈ Z, and hence Zg = Z contradicting the fact
that Zg is non-trivial. This contradiction yields that |Z(E)| is odd.

Therefore, x acts coprimely on Z(E) and it follows that CE/Z(E)(Z(E)x) =

CE(x)Z(E)/Z(E). Thus, |CE/Z(E)(Z(E)x)| = |CE(x)Z(E)|
|Z(E)| ≤ |CE(x)|·|Z(E)|

|Z(E)| =

|CE(x)| ≤ 4. Then Z(E)x has order 2 and is an automorphism of the non-
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abelian simple group E/Z(E) and |CE/Z(E)(Z(E)x)| ≤ 4. By Lemma 5.1, it
follows that E/Z(E) is isomorphic to A5. As a consequence, E is either A5 or
SL(2, 5) contrary to our assumption that (E,Ω, x) is a counter example.

The assumption that all components act semi-regularly is a strong restriction and
leads to a number of conclusions. They are collected in Lemma 5.3. The lemma
is slightly more technical but summarises a situation that will appear a number of
times in the proofs afterwards.

The first section of the following proof is based on unpublished work by Barbara
Baumeister that also inspired parts of Lemma 5.4. She additionally influenced the de-
velopment process of Lemma 5.2 by pointing out that SL(2, 5) can act semi-regularly
and be a component of a group acting transitively and with fixity 4, after the same
was already established for A5.

Lemma 5.3
Let G be a finite group acting transitively, faithfully, and with fixity 4 on a set Ω.
Let n be a positive integer and let L1, . . . , Ln be components of G such that E(G) =
L1 ∗ . . . ∗ Ln. Suppose that for all i ∈ {1, . . . , n}, Li acts semi-regularly on Ω. Let
j ∈ {1, . . . , n} and x ∈ G of prime order such that x fixes a point in Ω. Then the
following hold:

(a) The point stabilisers are {2, 3}-groups.

(b) Lj/Z(Lj) ∼= A5.

(c) x ∈ NG(Lj) and |CLj (x)| ≤ 4.

(d) If x fixes exactly four points in Ω, then x is an involution.

Proof:
Let j ∈ {1, . . . , n} and let x be an element of G of prime order and such
that x fixes a point α ∈ Ω. Assume, for a contradiction, that x /∈ NG(Lj).
Let L = {llxlx2

. . . lx
p−1 | l ∈ Lj}. Since p is a prime, all elements in the set

{Lj , L
x
j , . . . , L

xp−1

j } are pairwise distinct components of G. Thus they centralise
each other, and hence most properties of Lj are conveyed to L, in particular L
is a subgroup of G, quasi-simple, and centralised by x. Thus, L acts on fixΩ(x),
a set of size at most 4. If L ≰ Gα, then 1 < |αL| ≤ |fixΩ(x)| ≤ 4, and hence L
has a proper subgroup of index at most 4 contradicting Lemma 2.5. As a con-
sequence, L ≤ Gα. Since L is not solvable, there exists a prime r ≥ 5 such that
r divides the order of L. Hence r divides |E(G)| and |Gα|. By Corollary 2.14,
Gα contains a Sylow r-subgroup R of G. Then R ∩ E(G) ∈ Sylr(E(G)), and
hence R∩E(G) is non-trivial. Additionally, for all i ∈ {1, . . . , n}, it follows that
R ∩ Li ∈ Sylr(Li) because Li ⊴ E(G). Since |E(G)| = |L1 ∗ . . . ∗ Ln| and this
number divides |L1| · . . . · |Ln|, there exists i ∈ {1, . . . , n} such that r is a divisor
of |Li|. Hence 1 ̸= R∩Li ≤ Gα contradicting the fact that Li ∩Gα = 1. So the
assumption that x /∈ NG(Lj) was incorrect.
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By Lemma 2.13, for all j ∈ {1, . . . , n}, |CLj (x)| = |CLj (x) : CLj (x) ∩Gα| ≤
|CG(x) : CGα(x)| ≤ 4.

Assume, for a contradiction, that Gα is not a {2, 3}-group. Let y ∈ Gα be of
prime order p ≥ 5. Then |CL1(y)| ≤ 4 and y acts as an automorphism of prime
order p ≥ 5 on L1. Thus, the theorem in [34] together with the fact that L1 is
quasi-simple, and hence not solvable, implies that CL1(y) is not a 3-group. Thus
|CL1(y)| ∈ {2, 4}, and therefore CL1(y) is an abelian 2-group. However, this is
a contradiction to the theorem in [35]. As a consequence, Gα is a {2, 3}-group.

Let j ∈ {1, . . . , n} and let z ∈ Gα be of prime order and such that z fixes
exactly four points in Ω. Then the earlier proven implies that z has order 2
or 3 and that z ∈ NG(Lj). First assume z has order 3. Then by the theorem
in [35] and the fact that Lj is not solvable, |CLj (z)| = 3. Thus, Lj has an order
divisible by 3. Let h ∈ CLj (z) be of order 3. Then h acts on fixΩ(z), a set
of size 4. On the other hand, h does not fix any points in Ω because Lj acts
semi-regular on Ω. This is a contradiction. Therefore z is an involution. Then
Lemma 5.2 shows that Lj

∼= A5 or that Lj
∼= SL(2, 5).

5.3 The Structure of the Product of the Components

Now we have all results together such that we can prove that a group that acts with
fixity 4 has at most one component. Afterwards we can determine the structure of
this component even further.

Lemma 5.4
Let G be a finite group that acts transitively, faithfully, and with fixity 4 on a set Ω.
Suppose that E(G) is non-trivial. Then E(G) is quasi-simple.
Proof:

Assume, for a contradiction, that E(G) is not quasi-simple. Then there exists
a positive integer n ≥ 2 and components L1, . . . , Ln of G such that E(G) =
L1 ∗ L2 ∗ . . . ∗ Ln.

First we will prove that all components act semi-regularly on Ω. For a contra-
diction, assume that there exists i ∈ {1, . . . , n} and ω ∈ Ω such that Li∩Gω ̸= 1.
Let yi ∈ Li ∩Gω be non-trivial. Then for all j ∈ {1, . . . , n} \ {i}, it follows that
[Li, Lj ] = 1, and hence Lj ≤ CG(yi). Thus, Lj acts on fixΩ(yi). If Lj ≰ Gω,
then 1 < |ωLj | ≤ | fixΩ(yi)| ≤ 4 and hence Lj ∩ Gω is a proper subgroup of
the quasi-simple group Lj of index at most 4, contradicting Lemma 2.5. As a
consequence, Lj ≤ Gω. On the other hand, Li ≤ CG(Lj). Then Lemma 2.13
implies that |Li : Li∩Gω| ≤ |CG(Lj) : CGω(Lj)| ≤ 4, and hence by Lemma 2.5,
Li ≤ Gω. Therefore E(G) = L1 ∗ . . . ∗ Ln ≤ Gω, contradicting the assumptions
that E(G) ̸= 1 and that G acts faithfully and transitively. As a consequence, all
components act semi-regularly.

Let α ∈ Ω and let x ∈ Gα be such that x has prime order and fixes exactly
four points in Ω. Then Lemma 5.3 proves that Gα is a {2, 3}-group and that
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for all j ∈ {1, . . . , n}, Lj/Z(Lj) ∼= A5, x ∈ NG(Lj), |CLj (x)| ≤ 4, and that x is
an involution.

Let j ∈ {1, . . . , n}. Since x acts on Lj/Z(Lj) ∼= A5, either x fixes all elements
or it acts as an automorphism of order 2 on the simple group Lj/Z(Lj). Then
the table on page 2 in [28] implies that |CLj/Z(Lj)(x)| ≥ 4 and that |CLj (x)| ≥ 4.
Since |CLj (x)| ≤ 4, it follows that |CLj (x)| = 4.

Since L1∩L2 ≤ Z(L1) has order at most 2, |CL1(x)∗CL2(x)| =
|CL1

(x)|·|CL2
(x)|

|CL1
(x)∩CL2

(x)|

is divisible by |CL1
(x)|·|CL2

(x)|
2 = 8. On the other hand, since CL1(x) ∗CL2(x) ≤

CL1∗L2(x), it Lemma 2.13 yields that |CL1(x)∗CL2(x) : (CL1(x)∗CL2(x))∩Gα| ≤
|CL1∗L2(x) : CL1∗L2(x)∩Gα| ≤ 4. Therefore (CL1(x)∗CL2(x))∩Gα has an order
divisible by 2, and hence there exists an involution t ∈ (CL1(x) ∗ CL2(x)) ∩Gα.
Then Lemma 5.3 (c) proves that CL1(t) and CL2(t) both have order at most 4.
Since t acts as an automorphism on L1 and L2, the table on page 2 in [28]
again shows that |CL1(t)| = 4 = |CL2(t)|. Let t1 ∈ L1 and t2 ∈ L2 be such
that t = t1t2. Then CL1(t) = CL1(t1) and CL2(t) = CL2(t2). Since L1 ∩ Gα =
1 = L2 ∩ Gα, both t1 and t2 are non-trivial. Then 1 = t2 = (t1t2)

2 = t21t
2
2,

and hence t21 = t−2
2 ∈ L1 ∩ L2 ≤ Z(L1) ∩ Z(L2). Thus, either t1 and t2 are

involutions or t21 and t22 are involutions. In the first case L1
∼= A5

∼= L2 because
otherwise t1 and t2 would each be the central involution of SL(2, 5) contradicting
|CL1(t1)| = 4 = |CL2(t2)|. In the second case t1 and t2 both have order 4 and
L1

∼= SL(2, 5) ∼= L2 and L1 ∩ L2 = Z(L1) = Z(L2).
Calculations in A5 × A5 and SL(2, 5) ∗ SL(2, 5) done by hand or with the

use of lines 10–12 and 23–25 of the GAP code 5.1 imply that |CL1∗L2(t)| = 16.
Thus by Lemma 2.13, 16

|CL1∗L2
(t)∩Gα| = |CL1∗L2(t) : (CL1∗L2(t)) ∩Gα| ≤ 4, and

hence |(L1 ∗ L2) ∩ Gα| is divisible by 4. Then the results of lines 14–16 and
27–29 of the GAP code 5.1, after defining the groups in lines 2–8 and 20–21,
respectively, show that (L1∗L2)∩Gα is isomorphic to E4, A4, or A5. Therefore,
L1 ∗L2 contains an elementary abelian group V of order 4. Together with lines
17 and 30 of Program Code 5.1, it follows that |N(L1∗L2)(V )| is divisible by 24.

If 3 does not divide |(L1 ∗ L2) ∩ Gα|, then (L1 ∗ L2) ∩ Gα = V , and hence
|NL1∗L2(V ) : N(L1∗L2)∩Gα(V )| = |NL1∗L2(V ) : V | ≥ 24

4 = 6. On the other hand
by Lemma 2.13, 4 ≥ |NL1∗L2(V ) : N(L1∗L2)∩Gα(V )|. This contradiction yields
that (L1 ∗ L2) ∩ Gα contains an element a of order 3. Then (L1 × L2) ∩ Gα is
isomorphic to either A4 or A5. Since Gα is a {2, 3}-group, (L1 × L2) ∩ Gα is
isomorphic to A4, in particular it does not have a subgroup isomorphic to S3.

Since a fixes α and L1 and L2 act semi-regularly on Ω and since Z(L1) = Z(L2)
has order at most 2, there exists a1 ∈ L1 and a2 ∈ L2 of order 3 such that
a = a1a2. Let i ∈ {1, 2}. Then ⟨ai⟩ is a Sylow 3-subgroup of Li and there
exists an element bi ∈ Li that inverts ai and such that b2i ∈ Z(Li). Let b = b1b2.
Then b is an involution in L1 ∗L2 and ab = (a1a2)

b1b2 = a1
b1a2

b2 = a1
−1a2

−1 =
(a1a2)

−1 = a−1. Thus, ⟨a, b⟩ is isomorphic to S3. Since |L1 ∗ L2| is divisible
by 9 but (L1 ∗ L2) ∩ Gα

∼= A4, it follows that αL1∗L2 has a size divisible by 3.
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1 #SL(2,5)*SL(2,5)
2 D:=DirectProduct(SL(IsPermGroup,2,5),SL(IsPermGroup,2,5));;
3 li:=Filtered(AllSubgroups(Center(D)), x->Order(x)=2);
4 z:=li[3];; #depending on the output of the last line
5 L1L2:=D/z;;
6 li:=Filtered(List(ConjugacyClassesSubgroups(L1L2),Representative),

x->Order(x)=120);;↪→

7 li:=Filtered(li, x->IdGroup(x)=IdGroup(SL(2,5)));
8 L1:=li[1]; L2:=li[2];
9

10 li:=Filtered(List(ConjugacyClasses(L1L2),Representative),
x->Order(x)=2);;↪→

11 li:=Filtered(li,x->(not x in L1) and (not x in L2));;
12 List(li,x->Order(Centralizer(L1L2,x)));
13

14 li:=List(ConjugacyClassesSubgroups(L1L2),Representative);;
15 li:=Filtered(li, x->IsTrivial(Intersection(x,L1)) and

IsTrivial(Intersection(x,L2)));;↪→

16 li:=Filtered(li, x->Order(x) mod 4 =0);
17 List(Filtered(li, x->Order(x)=4), x->Order(Normalizer(L1L2,x)));
18

19 #A5*A5
20 L1:=AlternatingGroup(5);; L2:=Group((6,7,8,9,10),(6,7,8));
21 L1L2:=DirectProduct(L1,L2);
22

23 li:=Filtered(List(ConjugacyClasses(L1L2),Representative),
x->Order(x)=2);;↪→

24 li:=Filtered(li,x->(not x in L1) and (not x in L2));;
25 List(li,x->Order(Centralizer(L1L2,x)));
26

27 li:=List(ConjugacyClassesSubgroups(L1L2),Representative);;
28 li:=Filtered(li, x->IsTrivial(Intersection(x,L1)) and

IsTrivial(Intersection(x,L2)));;↪→

29 li:=Filtered(li, x->Order(x) mod 4 =0);
30 List(Filtered(li, x->Order(x)=4), x->Order(Normalizer(L1L2,x)));

Program Code 5.1: Structure Details of L1 ∗ L2
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Then the fact, that G acts with fixity 4 implies that every non-trivial 3-element
in L1 ∗ L2 has either none or three fixed points in αL1∗L2 . In particular, a fixes
exactly three points in αL1∗L2 . Since b ∈ L1∗L2 is an involution that acts on ⟨a⟩,
it leaves the set of fixed points of a invariant. Thus b fixes a point β ∈ αL1∗L2

that is also fixed by a, and hence ⟨a, b⟩ ≤ (L1 ∗L2)∩Gβ . By the choice of β, the
groups (L1 ∗ L2) ∩ Gα and (L1 ∗ L2) ∩ Gβ are conjugate in L1 ∗ L2. Therefore
A4

∼= (L1 ∗ L2) ∩ Gα also contains a subgroup isomorphic to ⟨a, b⟩ ∼= S3. This
final contradiction proves that E(G) cannot have more than one component, and
hence is quasi-simple.

Lemma 5.5
Let G be a finite group that acts transitively, faithfully, and with fixity 4 on a
set Ω and let α ∈ Ω. Suppose that E(G) is non-trivial. Then E(G) ∩ Gα ̸= 1 or
E(G)/Z(E(G)) ∼= A5.
Proof:

Suppose that E(G) ∩Gα = 1. Since E(G) ⊴ G, it follows that E(G) acts semi-
regularly on Ω. By Lemma 5.4, E(G) is quasi simple. Thus, G has a unique
component. Then by Lemma 5.3 (b), E(G)/Z(E(G)) ∼= A5.

If G is a group that acts transitively, faithfully, and with fixity 4, then every element
in E(G) can fix at most four points. Depending on the number of fixed points
that non-trivial elements in E(G) have, we can give further details of the structure
of E(G). This is done in Theorem 5.6.

Theorem 5.6
Let G be a finite group acting faithfully, transitively, and with fixity 4 on a set Ω.
Let E = E(G) and let α ∈ Ω. Suppose that E is non-trivial. Then E is quasi-simple
and one of the following holds.

(1) E is isomorphic to A5 or to SL(2, 5) and acts semi-regularly on Ω.

(2) E is simple and acts with fixity 2 on αE . In particular, there exists a prime
power q such that E is isomorphic to PSL(3, 4), PSL(2, q), or Sz(q).

(3) E is isomorphic to A6 and acts with fixity 3 on αE . In particular, |Ω| ∈ {6, 12}
and one of the following is true.

(a) If |Ω| = 6, then G is isomorphic to S6.

(b) If |Ω| = 12, then G is isomorphic to one of the following groups:

(I) M10

(II) PGL(2, 9)

(III) Aut(A6)

(4) E acts transitively, faithfully, and with fixity 4 on αE .

117



5 The Components

Proof:
By Lemma 5.4, E is quasi-simple. Suppose that E acts semi-regularly on Ω.
Then Lemma 5.5 proves that E/Z(E) ∼= A5, and hence E is isomorphic to A5

or SL(2, 5). This is part (1). Therefore, from now on, suppose that E does not
act semi-regularly. Since E = E(G) is a characteristic subgroup of G, Eα ̸= 1.
Thus, E acts transitively, non-regularly, and with fixity at most 4 on αE . If
αE had less then five elements, then by Lemma 2.5, E ≤ Gα contradicting the
faithful action of G. Thus |αE | ≥ 5, and hence E acts faithfully on αE .

Assume, for a contradiction, that E(G) acts with fixity 1 on αE . Then E is
a Frobenius group, and hence has a non-trivial Frobenius kernel K ⊴ E. Then
K = E or K ≤ Z(E). In the latter case, E ≤ CE(K). Thus by 8.1.12 in [65],
E ≤ K. As a consequence, in both cases E = K and E does not have a Frobenius
complement. This contradiction implies that E acts transitively, faithfully, and
with fixity 2, 3 or 4 on αE . Then the last case yields statement (4) in this
lemma.

Suppose that E acts with fixity 2 on αE . Then Lemma 4.3 states that E is
a simple group. Thus by Theorem 1.2 in [71] there exists a prime power q
such that E/Z(E) is isomorphic to PSL(3, 4), PSL(2, q), or Sz(q). This shows
statement (2).

Therefore, the only case remaining to be analysed is that E acts with fixity 3
on αE . Then by Lemma 4.3, the quasi-simple group E is in fact simple. By
Lemma 2.2, all E-orbits in Ω have the same size.

Let a ∈ Eα be of prime order p and such that it fixes exactly three points
in αE . Then |αE | ≡ 3 mod p. We will make a case distinction on whether
αE = Ω or not.

First suppose that αE ̸= Ω. Then a can fix up to four points in Ω, because
G acts with fixity 4. However, we will first see that a fixes exactly three points
in Ω. For a contradiction, assume that a fixes δ ∈ Ω\αE . Then fixΩ\αE (a) = {δ},
and hence 1 ≡ |δE | = |αE | ≡ 3 mod p. Therefore p = 2, a is an involution,
|Eα| is even, and |αE | is odd. By Theorem 1.1 in [72], one of the following
cases holds: E ∼= A5 and |αE | = 15, E ∼= A6 and |αE | = 15, E ∼= PSL(2, 7)
and |αE | = 7, E ∼= A7 and |αE | = 15, E ∼= PSL(2, 11) and |αE | = 11, or
E ∼= M11 and |αE | = 11. Then the following GAP commands return the table
of marks stored in [74] and we can read off that all of these groups have just one
conjugacy class of involutions and that all involutions have always exactly three
fixed points when E acts on a set of the specified size. Hence no involution can
have exactly one fixed point on δE . This is a contradiction.

Display(TableOfMarks("A5"));
Display(TableOfMarks("A6"));
Display(TableOfMarks("L2(7)"));
Display(TableOfMarks("A7"));
Display(TableOfMarks("L2(11)"));
Display(TableOfMarks("M11"));
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As a consequence, a fixes exactly three points in Ω. We still suppose αE ̸= Ω.
Thus, there exists a point δ ∈ Ω \ αE . Hence, 0 ≡ |δE | = |αE | ≡ 3 mod p.
Therefore, p = 3 and |Eα| and |αE | are both divisible by 3. By Theorem 1.1
in [72] the group E is isomorphic to A6 and |αE | ∈ {6, 15} or A7 and |αE | = 15.
If |αE | = 15, then the GAP commands Display(TableOfMarks("A6")); and
Display(TableOfMarks("A7")); again reveal that in both cases an involution
t ∈ E has three fixed points in αE and three fixed points in δE . Since these
E-orbits do not have a point in common, t ∈ E ≤ G has six fixed points
contradicting the fact that G acts with fixity 4. As a consequence, |αE | = 6 and
E is isomorphic to A6. Then the command Display(TableOfMarks("A6"));
shows that every involution t ∈ E has exactly two fixed points on αE and
therefore on every E-orbit in Ω. Since G acts with fixity 4 on Ω, every involution
t ∈ E ≤ G can have at most four fixed points, and hence Ω has at most two
E-orbits. Therefore, |Ω| = 2 · |αE | = 2 · 6 = 12. Using the Transitive Groups
Library [52] together with Remark 2.18, the following GAP code implies that
G is isomorphic to M10, PGL(2, 9), or Aut(A6), implying (3) (b). It tests for
all transitive groups whether or not they act with fixity 4. Since this implies
that all five-point stabilisers are trivial, the additional filter does not change the
result. The same holds for the condition that the size of G is at least 360 because
E ∼= A6 is a normal subgroup of G. This also justifies the second command.

li:=AllTransitiveGroups(NrMovedPoints, 12,
x->IsTrivial(Stabilizer(x,[1..5],OnTuples)), true,
z->Order(z)>=360, true, y->TestFixity(y,MovedPoints(y),4),
true);;

↪→

↪→

↪→

Filtered(li, x->360 in List(NormalSubgroups(x),Order));

Therefore instead suppose that αE = Ω. Thus, E acts transitively on Ω.
Using Theorem 1.1 in [72], we see that there is a distinction on whether Eα is
cyclic or not. Therefore we show, as an intermediate step, that Eα is not cyclic
and then a short GAP program will help us to derive (3) (a).

For a contradiction, assume that Eα is cyclic. Thus, by Theorem 1.1 in [72],
the order of Eα is coprime to 6. Since every element in b ∈ Eα centralises a,
it stabilises the set of fixed points of a. Thus, the fact that | fixΩ(a)| = 3
implies that b fixes all elements in fixΩ(a). As a consequence, Eα is a three-
point stabiliser. Then by Corollary 2.10, for every non-trivial element b ∈ Eα

the number of fixed points in Ω is 3 = |NE(⟨b⟩)|
|Eα| . Thus, for all non-trivial

b ∈ Eα, |NE(⟨b⟩)| = 3|Eα|. In particular, all normalisers of non-trivial sub-
groups of Eα in E have the same size 3|Eα|. By Corollary 2.14, Eα contains
a Sylow p-subgroup P of E, and hence |NE(P )| = 3|Eα|. Since Eα is cyclic,
Eα ≤ CE(P ) ≤ NE(P ). If CE(P ) = NE(P ), then Burnside’s p-complement
theorem (see for example 7.2.1 in [65]) implies that the simple group E contains
a normal p-complement. This contradiction shows that CE(P ) ≨ NE(P ). As
a consequence, CE(P ) = Eα. Assume for a contradiction that CE(a) ̸= Eα.
Since Eα ≤ CE(a) and |NE(⟨a⟩)| = 3 · |Eα|, this implies that NE(⟨a⟩) = CE(a)
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has an element d of order 3. Since ⟨a⟩ = Ω1(P ), this element d acts triv-
ially on Ω1(P ). Thus, Lemma 2.3 (c) yields that d acts trivially on P . Hence
d ∈ CE(P ), contradicting the fact that CE(P ) = Eα has order coprime to 6.
Therefore CE(a) = Eα.

Let x ∈ Gα be of prime order and such that x fixes exactly four points in Ω.
Then x ∈ NG(Eα). Let c ∈ NE(⟨a⟩) be of order 3. Then both c and x map
a to some power of a. Therefore a[c,x] = a. Since E ⊴ G, cx ∈ E, and thus
[c, x] = c−1cx ∈ CE(a) = Eα.

The element c has order 3 and therefore does not fix a point in Ω because
otherwise it would lie in a point stabiliser, but their orders are coprime to 6. Let
β = αc and let γ = βc. Since c ∈ NE(⟨a⟩) acts on the set of orbits of ⟨a⟩ in Ω, it
follows that fixΩ(a) = {α, β, γ} and γc = α. Then γx

−1cx = α[c,x] = α because
[c, x] ∈ CE(a) = Eα. Since x ∈ Gα, it follows that γx−1

= αx−1c−1
= αc−1

= γ.
Thus, x fixes γ. Then x acts on fixΩ(a) = {α, β, γ}, because x normalises ⟨a⟩,
and x fixes α and γ. Therefore x also fixes β.

Since x has four fixed points there exists δ ∈ Ω \ fixΩ(a) such that δx = δ.
Now (δc)x = δx

−1cx = δcc
−1x−1cx = (δc)[c,x] ∈ (δc)Eα . Therefore x leaves the

Eα-orbit (δc)Eα invariant. Since x has order coprime to |Eα|, this implies that
x fixes a point ϑ in (δc)Eα . Since (δc)Eα and fixΩ(a) do not have a point in
common, the fact that x fixes four points yields that ϑ = δ. Thus, (δc)Eα = δEα

and c leaves this orbit invariant. This is impossible because c acts fixed-point-
freely on Ω and has order 3 coprime to |Eα|. As a consequence, the assumption
that Eα is cyclic was false.

Therefore, by Theorem 1.1 in [72], the size of Ω is 15, 6, 7, or 11. Then
the following GAP code uses the Transitive Groups Library [52] together with
Remark 2.18 and shows that the only non-solvable groups that act with fixity 4
on a set of size 15, 6, 7, or 11 are S6 and A7.
li:=AllTransitiveGroups(NrMovedPoints, [15,6,7,11],

x->IsTrivial(Stabilizer(x,[1..5],OnTuples)), true, IsSolvable,
false, y->TestFixity(y,MovedPoints(y),4), true);

↪→

↪→

NrMovedPoints(li[1]);

Since A7 is itself simple, this case implies E = G, contradicting the facts that
G acts with fixity 4 on Ω but E acts with fixity 3 on Ω. Hence, G = S6 and
|Ω| = 6, implying case (3) (a).

Each of the cases in the previous theorem is necessary and groups that demonstrate
this are mostly stated in Chapter 7. There the cases will reappear as cases of the
Main Theorem (Theorem 7.7) and they will be accompanied by instructive examples.

However, in the case that the unique component acts semi-regularly, a few more
information can be proven regarding the structure of the point stabilisers. This is
done in the following lemma and will be illustrated by some examples afterwards.

Lemma 5.7
Let G be a finite group acting transitively, faithfully, and with fixity 4 on a set Ω.
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5.3 The Structure of the Product of the Components

Let E(G) act semi-regularly on Ω. If E(G) ∼= A5, then the point stabilisers of G
are of isomorphism type C2, E4, C4,S3, or A4. If E(G) ∼= SL(2, 5), then the point
stabilisers of G are of isomorphim type C2, E4, or C4.
Proof:

Suppose that E(G) is isomorphic to either A5 or SL(2, 5). Let α ∈ Ω. Since
E(G) ⊴ G, the point stabiliser Gα acts on E(G). Let a ∈ CGα(E(G)). Then an
element h ∈ E(G) of order 5 centralises a, hence acts on the fixed points of a. If
a is non-trivial, then a fixes at least one and at most four points. Then h must
fix all elements in fixΩ(a) contradicting the semi-regular action of E(G). Thus,
CGα(E(G)) = 1 and Gα can be identified with a subgroup of the automorphism
group of E(G). Moreover, by Lemma 5.3, Gα is a {2, 3}-group. Since by page 2
in [28], Aut(E(G)) ∼= S5, the point stabilisers are isomorphic to C2, C3, E4, C4,
S3, C6, D8, A4, D12, or S4.

Let x ∈ Gα be of prime order and such that x fixes exactly four points in Ω.
Assume, for a contradiction, that x has order 3. Then |Ω| ≡ 4 ≡ 1 mod 3.
Thus, Gα contains a Sylow 3-subgroup P of G, but then the semi-regular action
of E(G) implies that 1 = Gα ∩ E(G) ≥ P ∩ E(G) ∈ Syl3(E(G)) and gives a
contradiction. Therefore, x has order 2 and Gα has even order excluding the
option C3.

If an element g ∈ Gα of order 2 acts as an outer automorphism on E(G),
then by the table on page 2 (or page xxix) in [28], |CE(G)(g)| is divisible by 6
contradicting Lemma 5.3.

Assume, for a contradiction, that Gα contains an element c of order 6. Then
c3 can be identified as a transposition in S5 \ A5. In particular, c3 acts as an
outer automorphism on E(G) and has order 2. As shown above, this implies a
contradiction. Therefore, Gα is isomorphic to neither C6 nor D12.

If Gα is isomorphic to D8 or S4, then Gα contains a Sylow 2-subgroup of
S5. However, then Gα also contains an outer automorphism of order 2 of E(G),
giving a contradiction, too.

As a consequence, Gα is isomorphic to C2, E4, C4,S3, or A4. This implies the
statement of this lemma for E(G) ∼= A5.

Therefore, suppose that E(G) ∼= SL(2, 5). Assume for a contradiction that
Gα is isomorphic to S3. Let y ∈ Gα be of order 3. Then there exists an
involution t ∈ Gα that inverts y. Since Z(G) ∩ Gα = 1, ⟨t⟩Z(G) has order 4,
and hence NG(⟨y⟩) is divisible by 4. On the other hand, the Sylow 3-subgroups
of G have order at least 9, and hence |CG(y)| is also divisible by 9. Thus, the
index |NG(⟨y⟩) : NGα(⟨y⟩)| is divisible by 4·9

6 = 6, contradicting Lemma 2.13.
Therefore Gα is not isomorphic to S3 if E(G) ∼= SL(2, 5).

Assume for a contradiction that Gα is isomorphic to A4. Let y ∈ Gα be
of order 3. Since the Sylow 3-subgroups of G have order at least 9, the order
of CG(y) is divisible by 9. Therefore, the fact that Z(G) ≤ CG(y) implies that
|CG(y)| is divisible by 18. The structure of Gα yields that NGα(⟨y⟩) has order 3,
and hence |⟨y⟩Gα | = 12

3 = 4 and equals the number of 3-subgroups of Gα. As a
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consequence, Lemma 2.9 implies that y fixes exactly |{⟨y⟩g≤Gα|g∈G}|·|NG(⟨y⟩)|
|Gα| =

4·|NG(⟨y⟩)|
12 points. This is not possible because y can fix at most four points but

this number is divisible by 6. As a consequence, Gα cannot be isomorphic to A4

if E(G) ∼= SL(2, 5), and thus the lemma follows.

The following examples will show that all of the cases in the previous lemma do
indeed occur.

Example 5.8
Let E = A5, F = E4, andG = E×F . As described in Lemma 2.20 and Example 2.21,
the table of marks of G contains information about all transitive actions of G. The
following GAP code uses the table of marks.

G:=DirectProduct(AlternatingGroup(5),Group((1,2),(3,4)));;
t:=TableOfMarks(G);; Display(t);
e:=RepresentativeTom(t,67);
U:=[RepresentativeTom(t,12), RepresentativeTom(t,13)];
List(U, x-> IsTrivial(Intersection(e,x)) and

IsTrivial(Intersection(FittingSubgroup(G),x)));↪→

We find the component E of G in line 67 of the table of marks because E is the unique
group of index 4 in G. Additionally, the entries in the table of marks, in particularly
in lines 12 and 13, imply by Lemma 2.20 that the only fixity-4 actions of G are
decoded in lines 12 and 13. For both actions the point stabilisers are elementary
abelian of order 4 and E and F have trivial intersection with a point stabiliser in
each case. As a consequence, there exists a set Ω such that G acts with fixity 4 on Ω,
|Ω| = 60, E and F act semi-regularly on Ω and for all α ∈ Ω, Gα is elementary
abliean of order 4.

Example 5.9
Similarly to Example 5.8, we can look at a group isomorphic to C2×A5. A group G
identified by [120,35] in the Small Groups Library [13] is such a group. Then
E(G) ∼= A5 and we can use the table of marks as in the previous example.

G:=SmallGroup([120,35]); t:=TableOfMarks(G);;
Display(t);
e:=RepresentativeTom(t,21); U:=RepresentativeTom(t,4);
Intersection(e,U);

The code first defines G and then creates the table of marks of G. Since E(G) has
index 2 in G, we find E(G) in line 21 of the table of marks. Additionally, we see
a fixity-4 action of G in line 4 and define U to be a corresponding point stabiliser.
Then U is cyclic of order 2. Since E(G) ⊴ G, the fact that U ∩E(G) is trivial implies
that E(G) acts semi-regularly on G/U . Therefore, C2×A5 is an example of a group
that acts transitively and with fixity 4, such that the component is isomorphic to A5

and acts semi-regularly, and such that the point stabilisers are isomorphic to C2.
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We can adjust the previous GAP code for the group with ID [240,91] which is
isomorphic to A5 : C4. Then it reveals that line 33 of the table of marks corresponds
to the component of the group and that line 10 gives a fixity-4 action. In this actions
the point stabilisers are cyclic of order 4 and the component is isomorphic to A5 and
has trivial intersection with a point stabiliser.

For the next example, let G be the group with ID [360,121]. Then G ∼= S3 ×A5

and we can use GAP in a similar way, this time E(G) corresponds to line 42 and
we look at a point stabiliser U corresponding to line 18. The action of G on G/U
is transitive, with fixity 4, such that E(G) ∼= A5 acts semi-regularly, and such that
U is isomorphic to S3.

For the last example with a component isomorphic to A5, we can use the following
GAP code.

G:=SmallGroup([720,768]); t:=TableOfMarks(G);;
Display(t);
e:=RepresentativeTom(t,55); U:=RepresentativeTom(t,36);
Intersection(e,U);

It implies that there exists a group G such that G acts transitively and with fixity 4
on some set, such that E(G) ∼= A5 acts semi-regularly on this set, and such that the
point stabilisers are isomorphic to A4.

For examples in which the components are isomorphic to SL(2, 5), we can use GAP
in a similar way. Let G be the group with ID [240,93]. Then G ∼= SL(2, 5) : C2 and
this time in the table of marks E(G) corresponds to line 29 and a point stabiliser U to
line 3. The action ofG onG/U is transitively, with fixity 4, such that E(G) ∼= SL(2, 5)
acts semi-regularly, and such that U is isomorphic to C2.

The group GL(2, 5) can be identified with ID [480,218] in the Small Groups Li-
brary [13]. Then line 46 of the table of marks corresponds to the component SL(2, 5)
and in line 8 we see a fixity-4 action with cyclic point stabiliser of order 4. In this
action the component acts semi-regularly.

Finally the group identified with [480,959] reveals a fixity-4 action in line 14 of
its table of marks. The point stabilisers in this action are elementary abelian of
order 4 and the component, which corresponds to line 81 of the table of marks, acts
semi-regularly. The group is isomorphic to SL(2, 5) : E4.
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After analysing the situation for the components, in order to totally understand the
situation for the generalised Fitting subgroup of a group that acts with fixity 4, we
have to study the Fitting subgroup of this group. However, first we will look at
nilpotent groups in general. On the one hand because studying them gives a first
impression of the analysis of the Fitting subgroup, on the other hand we will need
the result of Lemma 6.1 in the proofs concerning the Fitting subgroup.

Afterwards, the analysis depends on whether there exists a non-trivial element in
the Fitting subgroup that fixes a point or not. In the first case, we will see that with
some exceptions the Fitting subgroup itself acts with fixity 4 on one of its orbits. In
the latter case, Lemma 6.9 gives some information.

6.1 Nilpotent Groups Acting with Low Fixity

We collect some information about nilpotent groups that act with fixity at most 4
and we will see that the centre plays an important role.

Lemma 6.1
Let k be a positive integer and letG be a nilpotent group such thatG acts transitively,
faithfully, and with fixity k on a set Ω such that 1 ≤ k ≤ 4. Then one of the following
holds.

(1) k = 2 and G is a dihedral or semi-dihedral 2-group.

(2) k = 3 and G is a 3-group of maximal class.

(3) k = 4 and G is a 2-group of sectional 2-rank at most 4.

Proof:
Since G is nilpotent, Z(G) is non-trivial and |Z(G)| is divisible by every prime
divisor of |G|. By Lemma 2.17, |Z(G)| divides k, in particular k > 1. Let α ∈ Ω.

First suppose that k = 2. Then G is a 2-group. Since there exists a non-
trivial element in G with exactly two fixed points, |G : Gα| = |Ω| ≥ 4. Then by
Lemma 2.11 (b) in [71], G is dihedral or semi-dihedral.

Next suppose that k = 3. Then G is a 3-group. Therefore both Gα and
|Ω| = |G : Gα| are divisible by 3. Even more, since G contains a non-trivial
element with three fixed points |Ω| > 3, and hence |Ω| is divisible by 9. Following
the idea of the proof of Lemma 2.20 in [72], we look at Gα and its normaliser
in G. Since Ω is the disjunct union of all Gα-orbits and Ω and Gα are non-trivial
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3-powers, fixΩ(Gα) contains exactly three elements. Therefore Gα acts semi-
regularly on Ω\fixΩ(Gα). If |Gα| is divisible by 9, then 0 ≡ |Ω| ≡ |fixΩ(Gα)| = 3
mod 9. As a consequence, |Gα| = 3. By Lemma 2.13, |NG(Gα) : NGα(Gα)| ≤ 3,
and hence |NG(Gα)| = 9. Then Satz III 14.23 in [54] implies thatG is of maximal
class.

Finally, suppose that k = 4. ThenG is a 2-group and there exists an involution
t ∈ G with exactly 4 fixed points. Since no subgroup of G is strongly embedded
in any other subgroup of G the Theorem in [83] proves that G has sectional
2-rank at most 4.

6.2 The Fitting Subgroup and Non-Regular Orbits

The main concern of this section are groups acting with fixity 4 and such that the
Fitting subgroup contains a non-trivial element that fixes a point. Assuming such a
situation, the following two results show that then the group does not contain any
components and that the Fitting subgroup either is a 2-group or a 3-group.

Lemma 6.2
Let G act transitively, faithfully, and with fixity 4 on a set Ω. Let α ∈ Ω and suppose
that F(G) ∩Gα ̸= 1. Then E(G) = 1.
Proof:

Let b ∈ F(G) ∩ Gα be non-trivial. Since E(G) ≤ CG(b), Lemma 2.13 implies
that |E(G) : E(G)α| ≤ |CG(b) : CGα(b)| ≤ 4. Thus by Lemma 2.5, E(G) ≤ Gα.
Then the faithful and transitive action of G implies that E(G) = 1.

Lemma 6.3
Let G act transitively, faithfully, and with fixity 4 on a set Ω. Let α ∈ Ω and suppose
that F(G) ∩Gα ̸= 1. Then F(G) is either a 2-group or a 3-group.
Proof:

Since F(G)∩Gα ̸= 1, there exists a non-trivial element d ∈ F(G) such that α is
fixed by d.

In a first step, we will see that F(G) is a {2, 3}-group. For a contradiction,
assume that |F(G)| is divisible by a prime r > 3. Let b ∈ Z(F(G)) be of or-
der r. Since b ∈ CG(d), by Lemma 2.13, |⟨b⟩ : ⟨b⟩ ∩Gα| ≤ |CG(d) : CGα(d)| ≤ 4.
Hence, b ∈ Gα because b has prime order r ≥ 5. Therefore, Ω1(Or(Z(F(G))))
is a non-trivial subgroup of Gα. Since Ω1(Or(Z(F(G)))) is additionally normal
in G, this contradicts the transitive and faithful action of G.

Thus, F(G) is a {2, 3}-group and the only part left to prove is that |F(G)| is
not divisible by both primes. Therefore, for a contradiction, assume that |F(G)|
is divisible by 6. Then |Z(F(G))| is divisible by 6, too. Since Lemma 2.13 implies
that |Z(F(G)) : Z(F(G)) ∩Gα| ≤ |CG(d) : CGα(d)| ≤ 4, Z(F(G)) ∩Gα contains
a non-trivial element z. Thus, |F(G) : F(G) ∩Gα| ≤ |CG(z) : CGα(z)| ≤ 4 and
|F(G) : F(G)∩Gα| cannot be divisible by both 2 and 3. If |F(G) : F(G)∩Gα| is
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not divisible by 3, then Gα contains O3(G), and hence the transitive and faithful
action of G implies that |F(G)| is not divisible by 3, giving a contradiction. If
|F(G) : F(G) ∩ Gα| is not divisible by 2, then Gα contains O2(G), and hence
|F(G)| is not divisible by 2, giving a contradiction as well. Thus, F(G) is either
a 2-group or a 3-group.

We will further analyse the structure of the Fitting subgroup of a group G that acts
with fixity 4. As a next step, we will study the centre of F(G). In Lemma 2.16, we
have seen that the centre of G acts semi-regularly. Even though the centre of F(G)
can contain more elements than the centre of G, its action has under some conditions
the same property. More precisely, we will see in the next lemma that if the set on
which G acts is large enough, then the centre of the Fitting subgroup acts semi-
regularly on it.

Lemma 6.4
Let G act transitively and with fixity 4 on a set Ω and let α ∈ Ω. Suppose that
|Ω| > 28. Then Z(F(G)) ∩Gα = 1.
Proof:

Since |Ω| > 4, the hypothesis that G acts with fixity 4 also implies that G acts
faithfully on Ω.

For a contradiction, assume that Z(F(G)) ∩ Gα is non-trivial. Then there
exists an element a ∈ Z(F(G)) ∩ Gα of prime order. By Lemma 6.3, F(G) is
a 2- or a 3-group. In particular, V := Ω1(Z(F(G))) is elementary abelian and
a ∈ Vα. Then the fact that V ≤ CG(Vα) implies together with Lemma 2.13
that |αV | = |V : Vα| ≤ |CG(Vα) : CG(Vα)| ≤ 4. If α is a fixed point of V , then
V ≤ Gα. Since V is normal in G, this contradicts the transitive and faithful
action of G. Hence |αV | ∈ {2, 3, 4}.

We first look at the elements of Vα and their fixed points. Let v ∈ Vα and
β ∈ αV . Then there exists u ∈ V such that β = αu. Since V is abelian,
βv = (αu)v = αvu = αu = β. Thus, all elements in αV are fixed by all elements
in Vα. Since V is a normal subgroup of G, by Lemma 2.2, this behaviour is not
restricted to the orbit αV but holds for all orbits of V in Ω. As a consequence,
every non-trivial element in V that fixes a point, fixes the same set of points
as |Vα| − 2 other elements of V . Each of these fixed point sets has size at
most 4. Therefore elements of V can only fix points in a subset of Ω of size
at most m := |V |−1

|Vα|−1 · 4. Since |V | = |V : Vα| · |Vα| = |αV | · |Vα|, it follows

that m = 4 · (|αV | + |αV |−1
|Vα|−1 ). If |αV | ≤ |Vα|, then m ≤ 4 ·

(
|αV |+ |αV |−1

|αV |−1

)
≤

4 · (4+1) = 20 because |αV | ∈ {2, 3, 4}. Otherwise |αV | > |Vα|. Since Vα is non-
trivial and |αV | and |Vα| are powers of the same prime, it follows that |αV | = 4
and |Vα| = 2. Thus, m = 4 · (4 + 4−1

2−1) = 28. Therefore, in all cases, m ≤ 28.
Since |Ω| > 28, there exists an element ϑ not fixed by any non-trivial element
of V . Hence, |ϑV | = |V |. This is a contradiction because, by Lemma 2.2 (a),
|V | = |ϑV | = |αV | = |V : Vα| and |Vα| is non-trivial.
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Remark 6.5
The bound for |Ω| in Lemma 6.4 is sharp because there exist groups that act tran-
sitively and with fixity 4 on a set Ω of size 28 and such that a non-trivial element of
Z(F(G)) fixes a point.

Let G be the semi-direct product of an elementary abelian group F of order 8 with
a cyclic group of order 7. Let U ≤ G be cyclic of order 2. All involutions in G are
conjugate by any of the cyclic groups acting on F . Then G/U has size 28. Since U is
cyclic the number of fixed points of the non-trivial element x ∈ U is, by Lemma 2.10,
|NG(⟨x⟩)|

|U | = |F |
2 = 4. Hence, G acts with fixity 4 on G/U . Then the fact that F is

the Fitting subgroup of G implies that U ≤ F(G) = Z(F(G)). As a consequence,
|Z(F(G)) ∩ U | = 2.

The following GAP commands use the algorithm in Remark 2.22 and show that
the group G with ID [168,43] in the Small Groups Library [13] acts transitively
and with fixity 4 on a set of size 28 and such that a non-trivial element of Z(F(G))
fixes a point.

G:=SmallGroup([168,43]);
TestTom(TableOfMarks(G),4);
Order(FittingSubgroup(G)); IsElementaryAbelian(FittingSubgroup(G));

The group G is of isomorphism type E8 : (C7 : C3), the Fitting subgroup is elemen-
tary abelian of order 8 and the point stabilisers are cyclic of order 6. In particular,
the intersection of the Fitting subgroup and any point stabiliser is of order 2 and
since F(G) is abelian, Z(F(G)) = F(G).

Both groups are examples which prove that the condition |Ω| > 28 in Lemma 6.4
is necessary and that this bound cannot be improved.

We will look further into the situation that some non-trivial element of the Fitting
subgroup fixes a point and the set has size at least 29. Under this hypothesis the
next lemma shows that the Fitting subgroup itself acts with fixity 4 on some set.
This further restricts the structure of the Fitting subgroup.

Lemma 6.6
Let G be a finite group acting transitively and with fixity 4 on a set Ω and let α ∈ Ω.
Suppose that |Ω| > 28 and that F(G) ∩ Gα ̸= 1. Then E(G) = 1 and F(G) acts
faithfully and with fixity 4 on αF(G). In particular, F(G) is a 2-group of sectional
2-rank at most 4.
Proof:

Let F = F(G). Since |Ω| > 4 and G acts with fixity 4, the action of G is faithful.
By Lemma 6.2, E(G) = 1. Thus by Theorem 6.5.8 in [65], CG(F ) ≤ F , and
hence G/F is isomorphic to a subgroup of the automorphism group of F .

Lemma 6.3 yields that F is either a 2- or a 3-group. Let p ∈ {2, 3} be such
that F is a p-group. Together with Lemma 6.4 our hypothesis implies that
Z(F ) ∩ Fα = Z(F ) ∩Gα = 1. Therefore, Fα is not a normal subgroup of F and
F is not abelian. In particular, |F : Fα| ≥ 4 and |F | ≥ p3.
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6.2 The Fitting Subgroup and Non-Regular Orbits

Assume, for a contradiction, that 4 = |F : Fα| = |αF |. Then p = 2 and F is a
2-group. Since |Ω| > 16 = 4 · |αF |, by Lemma 2.2, there exists an element ω ∈ Ω
such that Fα acts semi-regularly on ωF . Thus |Fα| ≤ |ωF | = 4. In particular,
Fα is abelian, and hence Fα Z(F ) is also abelian. Therefore, Fα Z(F ) ̸= F . Since
|F : Fα| = 4 and Z(F )∩Fα = 1, it follows that Fα Z(F ) is a subgroup of index 2
in F and that |Z(F )| = 2. Let s ∈ F \ Fα Z(F ) and let a ∈ CFα(s). Then
a centralises Fα, s, and Z(F ), and hence a is central in Fα Z(F )⟨s⟩ = F . Thus,
a = 1, and therefore CFα(s) = 1. Since |CF (s) : CFα(s)| ≤ |F : Fα| = 4, by
Satz II 14.23 in [54], F is of maximal class, and hence by Satz III 11.9 in [54]
the group F is dihedral, semi-dihedral, or a generalised quaternion group. The
only group of one of these types that has a subgroup of index 4 that has trivial
intersection with the centre of the group is D8. Since the automorphism group
of D8 is of order 8 (see for example Theorem 34.8 (a) in [12]), it follows that G
is a 2-group. However, then G = F and |Ω| = |G : Gα| = |F : Fα| = 4. This
contradiction implies that |αF | > 4, and hence F acts faithfully on αF .

In summary, F acts transitively, faithfully, non-regularly, and with fixity at
most 4 on αF . Since F is p-group, it cannot act as a Frobenius group, and thus
F acts with fixity at least 2 on αF .

Assume for a contradiction that F acts with fixity 2 on αF . Then Lemma 6.1
yields that F is a dihedral or semi-dihedral 2-group. In particular, the automor-
phism group of F is also a 2-group (see Theorem 34.8 in [12]). However, then G
is a 2-group and hence G = F , contradicting the fact that G acts with fixity 4
but F acts with fixity 2 on αF = αG = Ω.

Next assume for a contradiction that F acts with fixity 3 on αF . Then by
Lemma 6.1, F is a 3-group of maximal class. If |F | ≥ 35, then Proposition 3.3
in [76] shows that G is a {2, 3}-group and that 8 does not divide |G| because G/F
is isomorphic to a subgroup of the automorphism group of F . If |F | ∈ {33, 34},
then the result of the following GAP commands, using the Small Groups Li-
brary [13], also implies that G is a {2, 3}-group and that G is extra-special of
order 27 and exponent 3 if 8 divides |G|.
li:=Concatenation(AllSmallGroups(Size,[3^3],

NilpotencyClassOfGroup,[2]), AllSmallGroups(Size,[3^4],
NilpotencyClassOfGroup,[3]));;

↪→

↪→

List(li,x->PrimeDivisors(Order(AutomorphismGroup(x))));
li:=Filtered(li,x->Order(AutomorphismGroup(x)) mod 8 =0);
IdGroup(li[1]);

Assume, for a contradiction, that |G| is divisible by 8. Then the last line of
the above GAP code returns an up to isomorphism unique identifier of F . More
precisely, the ID in the Small Groups Library [13] is returned. It is [27,3]. By
Theorem 1 in [106], the order of Out(F ) is 2 · 3 · (32 − 1) = 24 · 3. Thus, |G|
divides |Out(F )| · |F | = 24 · 34. Since we assume that G has order divisible
by 8 and that F ≤ G, |G| ∈ {23 · 34, 24 · 34, 23 · 33, 24 · 33}. The first line of the
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6 The Fitting Subgroup

following GAP code determines all groups of these orders that have a Fitting
subgroup with the same ID as F . The second line uses the code in Remark 2.22
and shows that none of these groups can act transitively, faithfully, and with
fixity 4 on any set.
li:=AllSmallGroups(Size, [2^3*3^4,2^4*3^4,2^3*3^3,2^4*3^3],

x->IdGroup(FittingSubgroup(x)), [[27,3]]);;↪→

List(li,x->TestTom(TableOfMarks(x),4));
Since G must be one of these groups and by hypothesis acts with fixity 4, it
follows that |G| cannot be divisible by 8.

Let P ∈ Syl3(G) be such that Pα ∈ Syl3(Gα). Since F ≤ P , 1 ̸= Fα, and
|F | ≥ 33, it follows that |Gα| is divisible by 3 and |P | > 9. In particular,
neither case (a) nor case (b) of Lemma 10 in [8] holds. If case (d) holds, then
there exists a unique P -orbit of length 3 and all other orbits are regular. Since
|αP | ≥ |αF | > 4, αP is not the unique orbit of length 3. Thus αP is a regular
orbit, but this contradicts the fact that Pα ≥ Fα > 1. Therefore case (d) in
Lemma 10 in [8] cannot hold. If case (e) holds, then P lies in a point stabiliser
of G. However, then F ≤ P is also a non-trivial subgroup of a point stabiliser,
contradicting the transitive and faithful action of G. Thus, the only remaining
case (c) holds, and hence P is of maximal class and since αP is a non-regular
P -orbit, |Pα| = 3. Then Fα = Pα and |Z(P )| = 3. Since F ⊴ P , it follows that
Z(P ) ∩ F ̸= 1. As a consequence, Z(P ) ≤ Z(F ). Let z ∈ Z(P ) be of order 3.
If z fixes a point ω ∈ Ω, then 1 < |Z(F )ω| = |Z(F )α| and this contradicts
Lemma 6.4. Therefore z acts fix-point-freely on Ω.

Let x ∈ Gα be of prime order and such that x fixes exactly four points in Ω.
Then x acts on Z(F ). If zx = z, z acts on fixΩ(x) a set of size 4 but z acts
fix-point-freely and has order 3. This contradiction implies that x inverts z, and
hence x has order 2. In particular, |Ω| ≡ 4 mod 2. Thus, |Ω| = |G : Gα| is even
and Gα does not contain a Sylow 2-subgroup of G, but it does contain x. Since
8 does not divide |G|, it follows that |Gα| = 2 and that the Sylow 2-subgroups
of G have order 4. We recall that Pα ∈ Syl3(Pα) has order 3 and that G is a
{2, 3}-group. As a consequence, |Gα| = 6. Therefore G has either exactly three
or exactly one subgroup of order 2, one of them is ⟨x⟩. Hence by Lemma 2.9,

4 = |fixΩ(x)| =
|{⟨x⟩g ≤ Gα | g ∈ G}| · |NG(⟨x⟩)|

|Gα|

and thus 24 = 4 · |Gα| = |{⟨x⟩g ≤ Gα | g ∈ G}| · |NG(⟨x⟩)|. Since the number
|{⟨x⟩g ≤ Gα | g ∈ G}| is odd, this implies that |NG(⟨x⟩)| is divisible by 8.
However, then |G| is divisible by 8. This contradiction shows that F cannot act
with fixity 3 on αF . Therefore, F acts with fixity 4 on αF and by Lemma 6.1,
F is a 2-group of sectional 2-rank at most 4.

The situation of the previous lemma happens especially when G itself is already a
2-group. However, it can also happen in other instances as the following example
shows.
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6.2 The Fitting Subgroup and Non-Regular Orbits

Example 6.7
The group G that is identified by [192,185] in the Small Groups Library [13] has
a Fitting subgroup of structure (C4 × C4) : C2 and ID [32,34]. Making use of
the GAP package TomLib [74] through the code in Remark 2.22, the GAP com-
mand TestTom(TableOfMarks(SmallGroup([192,185])),4); implies that G acts
with fixity 4 on a set of size 48. More precisely the command returns all three
faithful fixity-4 action of G but we are only interested in the one on a set of size 48
because under this action F(G) has non-trivial intersection with a point stabiliser.

Under the assumption that there exists a non-trivial element in the Fitting subgroup
that fixes a point, only the situation that the group acts on a set of size at most 28 is
left to be analysed. Since in the Transitive Groups Library [52] all transitive groups
that act on a set of size at most 28 are listed, we can use GAP and the algorithm
in Remark 2.18 to determine not only the structure of the Fitting subgroup but the
structure of the group itself.

Lemma 6.8
Let G be a finite group acting transitively, faithfully, and with fixity 4 on a set Ω.
Let α ∈ Ω. Suppose that F(G) ∩Gα ̸= 1 and that F(G) does not act faithfully and
with fixity 4 on αF(G). Then either F(G) is non-cyclic, elementary abelian, and of
order at most 16 or F(G) is of isomorphism type C4×C4 or (C4×C4) : C2. Moreover,
Table 6.1 lists all groups G that fulfil the hypothesis together with all possible point
stabiliser structures in each case.
Proof:

By Lemma 6.6, |Ω| ≤ 28. Since G acts with fixity 4, no element in G fixes five
points, and thus all five-point stabiliser are trivial. Hence, the filter in the GAP
program below does not change the result. By Lemma 2.2, the action of F(G) on
αF(G) is in one-to-one correspondence to the action of F(G) on ωF(G) for every
ω ∈ Ω. Therefore the calculation is independent of α and we can use the point 1
for our calculations without loss of generality. The following GAP code uses the
GAP program in Remark 2.18 together with the Transitive Groups Library [52]
and returns a list. This list contains information about ever group G that acts
transitively and with fixity 4 on a set of size at most 28, for which F(G)∩G1 is
non-trivial, and F(G) acts faithfully and with fixity 4 on 1F(G). The information
provided for each group is a list of three IDs in the Small Groups Library [13].
The first entry represents the group itself, the second entry represents its Fitting
subgroup, and the third entry represents a point stabiliser.
li:=AllTransitiveGroups(NrMovedPoints, [1..28],

x->IsTrivial(Stabilizer(x,[1..5],OnTuples)), true,
y->TestFixity(y,MovedPoints(y),4), true,
z->IsTrivial(Intersection(FittingSubgroup(z),Stabilizer(z,1))),
false, w->TestFixity( w, Orbits(FittingSubgroup(w),
MovedPoints(w) )[1], 4 ), false);;

↪→

↪→

↪→

↪→

↪→

Set(List(li, x->[IdGroup(x), IdGroup(FittingSubgroup(x)),
IdGroup(Stabilizer(x,1))]));↪→
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ID in [13] group G F(G) Gα

[ 24, 12] S4 E4 C2

[ 24, 13] C2 ×A4 E8 C2, E4

[ 48, 3] (C4 × C4) : C3 C4 × C4 C4

[ 48, 30] C2
·S4 E8 C4

[ 48, 48] C2 × S4 E8 C4, E4, D8

[ 48, 49] E4 ×A4 E16 E4

[ 48, 50] (E4 × E4) : C3 E16 E4

[ 56, 11] E8 : C7 E8 C2

[ 72, 39] E9 : C8 E9 S3

[ 72, 40] S3 ≀ C2 E9 D12

[ 72, 41] E9 : Q8 E9 S3

[ 80, 49] E16 : C5 E16 E4

[ 96, 64] (C4 × C4) : S3 C4 × C4 C8, C4 × C2, D8, Q8

[ 96, 72] E8
·A4 (C4 × C4) : C2 D8

[ 96, 195] C2
·(C2 × S4) E16 D8

[ 96, 227] (E4 × E4) : S3 E16 C4 × C2, D8, E8, A4

[ 144, 182] E9 : SD16 E9 D12

[ 144, 184] A4 ×A4 E16 A4

[ 160, 234] E16 : D10 E16 C4 × C2, E8

[ 168, 43] E8 : (C7 : C3) E8 C6

[ 192, 956] E8
·S4 (C4 × C4) : C2 D16, SD16

[ 216, 153] E9 : SL(2, 3) E9 C3 × S3

[ 288, 1025] A4 ≀ C2 E16 C2 ×A4

[ 288, 1026] (A4 ×A4) : C2 E16 S4

[ 320, 1635] E16 : (C5 : C4) E16 E4 : C4, C8 : C2

[ 432, 734] E9 : GL(2, 3) E9 S3 × S3

[ 960,11357] (E4 × E4) : SL(2, 4) E16 (C4 × C4) : C3,
(E4 × E4) : C3

[1344, 814] E8
· PSL(3, 2) E8 GL(2, 3)

Table 6.1: Groups Acting Transitively, Faithfully, with Fixity 4, and such that F (G)
does not act Faithfully, Semi-Regularly, and with Fixity 4 on αF(G)
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Since the IDs are up to isomorphism unique, they can be used as a basis to
determine the isomorphism types of the groups they represent. For Table 6.1,
the results are sorted in a way that isomorphic groups just appear once but with
all their actions that fulfil the hypothesis of this lemma, and the structure of the
Fitting subgroup with ID [32,34] in the Small Groups Library [13] is denoted
by (C4 × C4) : C2.

6.3 The Fitting Subgroup and Regular Orbits

After analysing the Fitting subgroup of a group G that acts with fixity 4 under the
condition that some non-trivial element of F(G) fixes a point, we will now see some
information in the case that the Fitting subgroup acts semi-regularly.

Lemma 6.9
Let G be a finite group that acts transitively, faithfully, and with fixity 4 on a set Ω.
Let α ∈ Ω. Suppose that F(G) acts semi-regularly. Then for every non-trivial
element a that fixes a point, |CF(G)(a)| ≤ 4. Additionally one of the following holds.

(1) For all p ∈ π(Gα), the Sylow p-subgroups of Gα have p-rank 1.

(2) F(G) = O2(G)× O3(G).

Proof:
Let a ∈ G be non-trivial and such that a fixes a point ω ∈ Ω. Then F(G)ω = 1,
and hence by Lemma 2.13, |CF(G)(a)| = |CF(G)(a) : CF(G)ω(a)| ≤ 4.

Suppose that (1) does not hold. Then there exists r ∈ π(Gα) such that Gα

contains an elementary abelian subgroupX of order r2. Assume that there exists
a prime p ∈ π(F(G)) such that p ≥ 5. If p = r, then by Corollary 2.14, Gα con-
tains a Sylow p-subgroup, and hence the point stabiliser also contains Op(G) ̸= 1,
contradicting the transitive and faithful action of G. Therefore, X acts coprime
on Op(G). Then Lemma 2.3 (b) implies that Op(G) = ⟨COp(G)(a) | a ∈ X \{1}⟩.
Since for all non-trivial a ∈ X, 4 ≥ |CF(G)(a)| ≥ |COp(G)(a)| and p ≥ 5,
it follows that COp(G)(a) = 1. Thus, Op(G) = 1 contrary to the fact that
p ∈ π(F(G)).

A finite group G that acts transitively, faithfully, and with fixity 4 fulfils either the
conditions of Lemma 6.3 or of Lemma 6.9. In both cases, it holds that F(G) =
O2(G)×O3(G) or that for all p ∈ π(Gα) the Sylow p-subgroups of a point stabiliser
have p-rank 1.
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In the previous two chapters, we have analysed the components and the Fitting
subgroup of a group that acts with fixity 4, separately. Therefore, we can turn
our attention in this chapter to their interplay. As a consequence, a description of
the generalised Fitting subgroup, the product of the components and the Fitting
subgroup, is within reach. Since the generalised Fitting subgroups of a group G
controls the structure of G, the Main Theorem (Theorem 7.7) not only gives details
about the structure of the generalised Fitting subgroup of a group that acts with
fixity 4 but also about the group itself.

When we look at Example 5.8 from the perspective of the generalised Fitting
subgroup, we see that it gives an example of a group G that acts transitively and
with fixity 4 on a set Ω and such that both E(G) and F(G) act semi-regularly on Ω but
F∗(G) = E(G) ∗F(G) does not. This will be part of one of the cases in Theorem 7.7.
However, there are more cases that we have to study. Following Theorem 5.6 we also
look at the situation where some non-trivial element of a component fixes a point,
and thus we have to consider the cases where the component acts with fixity 2, 3,
or 4 on one of its orbits. In each case, we want to derive information about the
Fitting subgroup before we collect all results in Theorem 7.7.

7.1 Constraints on the Action of the Fitting Subgroup
and Components

The next three lemmas analyse the structure of the Fitting subgroup of a group
under the condition that a component of this group acts with fixity 2 on one of its
orbits. By Lemma 4.3, in this case, it is sufficient to restrict our study to simple
components.

As a first step, in a slightly more general setting, we will see that if the Fitting
subgroup stabilises an orbit of the component, then with some exceptions the Fitting
subgroup is trivial. Afterwards we will look at these exceptions.

Lemma 7.1
Let E and F be two groups acting faithfully on a set Γ such that [E,F ] = 1, that
|F | ≤ 4, and that E is non-abelian simple. Suppose that EF acts with fixity at
most 4 on Γ, that E acts with fixity 2 on αE , and that αE = αEF. If F ̸= 1, then E
is isomorphic to A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 11), or PSL(2, 13).
Proof:

Let G = EF and Ω = αEF. Then, since F is abelian and E is non-abelian
simple, Z(G) = F = F(G). We want to use Lemma 4.1 and therefore we have
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to ensure that |Ω| > 2 · |F |. By Lemma 2.5, |Ω| = |αE | ≥ 5. As a consequence,
|Ω| > 2·|F | if |F | ≤ 2. If |F | > 2, then we use the Transitive Groups Library [52]
together with the following GAP command.

AllTransitiveGroups(NrMovedPoints, [5..8],
x->Order(x)>=60, [true], y->Order(FittingSubgroup(y)), [3,4]);↪→

Since E is non-abelian simple, the order of E is at least 60. Thus, the GAP
command returns all groups G that could contain a simple group E, that can
act faithfully and transitively on some set of size at least 5 and at most 8, and
that have a Fitting subgroup of order 3 or 4. Since no such group is returned,
|Ω| > 8 if |F | > 2.

Then Lemma 4.1 yields that EF/F ∼= E acts non-regularly and with fixity at
most 4 on a set Ω̄ of size |Ω|

|F | . Since E is simple, it cannot act as a Frobenius
group, and hence it acts with fixity 2, 3, or 4 on Ω̄. In particular, E acts both
with fixity 2 on a set of size |Ω| and with fixity 2, 3, or 4 on a set of size |Ω|

|F | .
By Theorem 1.2 in [71], E ∼= PSL(3, 4) or there exists a prime power q such

that E ∼= PSL(2, q) or such that E ∼= Sz(q).
If E ∼= PSL(3, 4), then the command TestTom(TableOfMarks("L3(4)"),2);

uses the GAP package TomLib [74] and the program in Remark 2.22 and shows
that E has a unique fixity-2 action, namely on a set of size 4032. Thus, if
|F | ≠ 1, then EF/F ∼= E cannot act with fixity 2. Since by Theorem 3.56,
PSL(3, 4) does not act with fixity 4 on any set, EF/F acts with fixity 3 on a set
of size 4032

|F | . This is a contradiction to Theorem 1.1 in [72], and hence, if F ̸= 1,
then E is not isomorphic to PSL(3, 4).

If E ∼= Sz(q), then q ≥ 8 and Lemma 3.12 in [71] proves that E can act
with fixity 2 only on a set of size q2 + 1 and on a set of size q2(q2 + 1). As a
consequence, if F ̸= 1 and EF/F acts with fixity 2, then |F | = q2 ≥ 64 > 4.
This contradicts the hypothesis and since by Theorem 1.1 in [72], Sz(q) cannot
act with fixity 3, EF/F acts with fixity 4 on a set of size q2+1

|F | or q2(q2+1)
|F | . Then

this is a contradiction to Theorem 3.56, and therefore, if F ̸= 1, then E is not
isomorphic to Sz(q).

Therefore suppose that E is isomorphic to PSL(2, q) but not to any of the
groups A5

∼= PSL(2, 4) ∼= PSL(2, 5), PSL(2, 7), PSL(2, 8), A6
∼= PSL(2, 9),

PSL(2, 11), and PSL(2, 13). Then q ≥ 16 and by Lemma 3.11 in [71], E acts
with fixity 2 on a set of size q+1, q(q−1), or q(q+1). If EF/F acts with fixity 4
on Ω̄, then by Theorem 3.56, q is odd and |Ω̄| ∈ {2q(q+ 1), 2(q+ 1), 2q(q− 1)}.
Thus |Ω| ∈ {2q(q + 1)|F |, 2(q + 1)|F |, 2q(q − 1)|F |} ∩ {q + 1, q(q − 1), q(q + 1)}.
Since |F | ≤ 4 and q ≥ 16, this is impossible. If EF/F acts with fixity 3 on Ω̄,
then Theorem 1.1 in [72] yields a contradiction. Thus EF/F acts with fixity 2
on Ω̄. Then the size of Ω and of Ω̄ are both in {q + 1, q(q − 1), q(q + 1)}. Since
q ≥ 16 and since 4 ≥ |F | = |Ω|/|Ω̄|, it follows that |F | = 1. This proves the
lemma.
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As a next step, we look at the groups that are explicitly mentioned in the previous
lemma. They will appear when we try to apply the result. Since the nature of the
arguments in the next proof do not depend on the fixity with which a component
acts, we include all three possible fixities in one lemma. This has the advantage that
once the statement is established, we have dealt with all upcoming exceptions.

Lemma 7.2
Let G be a finite group acting transitively and with fixity 4 on a set Ω. Let α ∈ Ω.
Suppose that E(G) acts with fixity at least 2 on αE(G), that |F(G)| = 4, and that
F(G) acts semi-regularly on Ω. Then E(G) is isomorphic to neither A5, A6, PSL(2, 7),
PSL(2, 8), PSL(2, 11), nor PSL(2, 13).
Proof:

The hypotheses imply that F(G) ∼= C4 or F(G) ∼= E4 and that E(G)F(G) acts
transitively and with fixity at least 2 and at most 4 on αE(G)F(G).

Assume, for a contradiction, that E ∼= A5. If F(G) is elementary abelian of
order 4, then Example 5.8 shows that E(G)F(G) cannot act transitively, with
fixity 4, and such that E(G) has a non-trivial element that fixes a point. There-
fore, F(G) is isomorphic to C4. We will use the GAP function in Remark 2.22.
The following GAP commands show that then E(G)F(G) does not act transi-
tively and with fixity 2, 3, or 4 on any set.
G:=DirectProduct(AlternatingGroup(5), Group((1,2,3,4)));;
List([2..4],x->TestTom(TableOfMarks(G),x));

This contradiction implies that E(G) is not isomorphic to A5.
Similarly, the following GAP code implies that neither for F(G) ∼= C4 nor

for F(G) ∼= E4, E(G) can be isomorphic to any of the groups A6
∼= PSL(2, 9),

PSL(2, 7), PSL(2, 8), PSL(2, 11), and PSL(2, 13).
li:=[AlternatingGroup(6), PSL(2,7), PSL(2,8), PSL(2,11),

PSL(2,13)];;↪→

liC4:=List(li,x->DirectProduct(x,Group((1,2,3,4))));;
liE4:=List(li,x->DirectProduct(x,Group((1,2),(3,4))));;
List(liC4, x->[TestTom(TableOfMarks(x),2),

TestTom(TableOfMarks(x),3), TestTom(TableOfMarks(x),4)]);↪→

List(liE4, x->[TestTom(TableOfMarks(x),2),
TestTom(TableOfMarks(x),3), TestTom(TableOfMarks(x),4)]);↪→

The previous two lemmas together imply the following result which restricts the
order of a Fitting subgroup of a group that has a component acting with fixity 2 on
one of its orbits.

Lemma 7.3
Let G be a finite group acting transitively and with fixity 4 on a set Ω. Let α ∈ Ω.
Suppose that E(G) acts with fixity 2 on αE(G), that E(G) is simple, and that F(G)
acts semi-regularly. Then |F(G)| ≤ 2.
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Proof:
Let x ∈ E(G)α be such that x fixes exactly two points in αE(G). Since E(G)
and F(G) centralise each other, F(G) acts on the set of fixed points of x. In
particular, x fixes every element in αF(G). Then the fixity-4 action of G implies
that x can fix at most four points in Ω, and hence |αF(G)| ≤ 4. Since Lemma 2.2
yields that x fixes exactly two points in every E(G)-orbit in αE(G)F(G), the
fixity-4 action of G additionally implies that there are at most two E(G)-orbits
in αE(G)F(G). As a consequence, |αF(G)| ∈ {1, 2, 4}. Since F(G) acts semi-
regularly, it follows that |F(G)| ∈ {1, 2, 4}.

Assume for a contradiction that |F(G)| = 4. Then αE(G)F(G) contains exactly
two E(G)-orbits. Let F = {f ∈ F(G) | αE(G)f = αE(G)}. Then |F | = 2. Since
F acts semi-regularly and by Lemma 2.5, E(G) acts faithfully, E(G) and F fulfil
the hypotheses of Lemma 7.1. Thus, E(G) is isomorphic to A5, A6, PSL(2, 7),
PSL(2, 8), PSL(2, 11), or PSL(2, 13), but then Lemma 7.2 yields a contradiction.
As a consequence, |F(G)| ≤ 2.

We turn our attention towards the case that a component acts with fixity 4 on one
of its orbits. Similarly to Lemma 7.1, we will look at the orbits of a component
and the orbit of the generalised Fitting subgroup. In the setups of Lemma 7.5 and
Lemma 7.6, both orbits will have the same length. The next lemma proves this in
a more general situation such that it can be applied by both lemmas and possibly
even outside the context of this chapter.

Lemma 7.4
Let E and F be two groups acting on a set Γ such that [E,F ] = 1 and such that
E ∩ F = Z(E). Let α ∈ Γ. Suppose that there exists an element x ∈ E such that
|fixαE (x)| = | fixαEF (x)| ≠ 0. Then αE = αEF.
Proof:

Let G = EF and β ∈ fixαE (x). Then by Lemma 2.9, |{⟨x⟩g≤Eβ |g∈E}|·|NE(⟨x⟩)|
|Eβ | =

|fixαE (x)| = | fixαG(x)| =
|{⟨x⟩g≤Gβ |g∈G}|·|NG(⟨x⟩)|

|Gβ | . Let ME denote the set
{⟨x⟩g ≤ Eβ | g ∈ E} and let MG denote {⟨x⟩g ≤ Gβ | g ∈ G}. Then
|Gβ| · |ME | · |NE(⟨x⟩)| = |Eβ| · |MG| · |NG(⟨x⟩)|.

We have a closer look at the sets ME and MG. Let Y ∈MG. Then there exists
g ∈ G such that Y = ⟨x⟩g ≤ Gβ . Let e ∈ E and f ∈ F be such that ef = g.
Then Y = ⟨x⟩e. Since ⟨x⟩e ≤ E, it follows that Y = ⟨x⟩e ≤ E ∩ Gβ = Eβ . In
particular, Y ∈ ME . Since ME ⊆ MG, it follows that ME = MG, and hence
|Gβ| · |NE(⟨x⟩)| = |Eβ| · |NG(⟨x⟩)|.

Since F centralises x, NG(⟨x⟩) = NG(⟨x⟩)∩EF = F (E∩NG(⟨x⟩) = F NE(⟨x⟩).
In particular, |NG(⟨x⟩)| = |F |·|NE(⟨x⟩)|

|F∩NE(⟨x⟩)| = |F |·|NE(⟨x⟩)|
|Z(E)| .

As a consequence, |Gβ| · |NE(⟨x⟩)| = |Eβ| · |F |·|NE(⟨x⟩)|
|Z(E)| . Thus, |Gβ| =

|Eβ |·|F |
|Z(E)| ,

hence |αEF | = |βEF | = |G : Gβ| = |EF |
|Gβ | = |E|·|F |·|Z(E)|

|E∩F |·|Eβ |·|F | =
|E|
|Eβ | = |βE | = |αE |.

Since αE ⊆ αEF, the lemma follows.
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7.1 Constraints on the Action of the Fitting Subgroup and Components

The situation of the previous lemma especially happens when a group G acts with
fixity 4 and has a component E that contains an element with exactly four fixed
points. This will be used in the next lemma for a simple component and in Lemma 7.6
for a non-simple component.

Lemma 7.5
Let G be a finite group acting transitively and with fixity 4 on a set Ω. Let α ∈ Ω.
Suppose that E(G) acts with fixity 4 on αE(G), that E(G) is simple, and that F(G)
acts semi-regularly on Ω. Then |F(G)| ≤ 2.
Proof:

Let E = E(G) and F = F(G). Let x ∈ E be such that x fixes exactly four points
in αE. Since F centralises x, it stabilises the set of fixed points, and hence the
semi-regular action of F yields that |F | ∈ {1, 2, 4}. Assume, for a contradiction,
that |F | = 4.

Since G acts with fixity 4, x can fix at most four points in Ω and thus no points
outside of αE . Therefore Lemma 7.4 implies that αE = αEF. Let Γ = αEF.

Since F is abelian and E is non-abelian simple, Z(EF ) = F = F(G). We want
to use Lemma 4.1 and therefore we have to ensure that |Γ| > 4 · |F | = 16. By
Lemma 2.5, |Γ| = |αE | ≥ 5. We use the Transitive Groups Library [52] together
with the following GAP command.

AllTransitiveGroups(NrMovedPoints, [5..16],
x->Order(x)>=60, [true], y->Order(FittingSubgroup(y)), [4]);↪→

Since E is non-abelian simple, the order of E is at least 60. Thus, the GAP
command returns all groups EF that could contain a simple group E, that can
act faithfully and transitively on some set of size at least 5 and at most 16,
and that have a Fitting subgroup of order 4. Since no such group is returned,
|Γ| > 16.

Then Lemma 4.1 yields that EF/F ∼= E acts non-regularly and with fixity at
most 4 on a set Γ̄ of size |Γ|

|F | . Since E is simple, EF/F cannot act as Frobenius
group, and hence acts with fixity 2, 3, or 4 on Γ̄. In particular, E acts both on
a set of size |Γ| with fixity 4 and on a set of size |Γ̄| = |Γ|

|F | = |Γ|/4 with fixity 2,
3, or 4. Thus, in the latter action, the point stabilisers have order divisible by 4.

First additionally assume, for a contradiction, that E acts with fixity 4 on
a set of size |Γ|/4. In particular, E acts with fixity 4 both on a set of size |Γ|
and |Γ|/4. Then Theorem 3.56 implies that E is isomorphic to PSL(2, 11) or
PSL(2, 13). This is a contradiction to Lemma 7.2.

Therefore instead assume, for a contradiction, that E acts with fixity 3 on a set
of size |Γ|/4. Then E is a group that occurs both in the list of Theorem 1.1 in [72]
and in the list of Theorem 3.56. Additionally, in the fixity-3 action, the order
of a point stabiliser of E is divisible by 4. As a consequence, E is isomorphic
to A6, PSL(2, 7), A7, PSL(2, 11), or M11. For E ∼= A6 and for E ∼= PSL(2, 7),
Lemma 7.2 yields a contradiction. If E ∼= A7, then |Γ| ∈ {23 · 32 · 7, 7}. Thus,
it follows that |Γ̄| = 2 · 32 · 7 = 126, but according to Theorem 1.1 in [72],
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7 The Generalised Fitting Subgroup

A7 does not act with fixity 3 on a set with 126 elements. If E ∼= PSL(2, 11),
then Lemma 7.2 again implies a contradiction. Thus, E ∼= M11. Then by
Theorem 1.1 in [72], |Γ̄| = 11, and hence |Γ| = 44. However, according to
Theorem 3.56, M11 does not act with fixity 4 on a set of size 44.

As a consequence, E acts with fixity 2 on Γ̄. Then Theorem 1.2 in [71] implies
that E is isomorphic to PSL(3, 4) or there exists a prime power q such that E is
isomorphic to Sz(q) or PSL(2, q). Since, by Theorem 3.56, PSL(3, 4) cannot
act transitively and with fixity 4, there exists a prime power q such that E is
isomorphic to Sz(q) or PSL(2, q). If E ∼= Sz(q), then by Lemma 3.12 in [71],
|Γ̄| ∈ {q2 + 1, q2(q2 + 1)}. Therefore, |Γ| ∈ {4(q2 + 1), 4q2(q2 + 1)} but this
contradicts Theorem 3.56. Thus, E ∼= PSL(2, q). By Lemma 7.2, q ≥ 16, and
hence by Theorem 3.56, q is odd and |Γ| ∈ {2q(q + 1), 2(q + 1), 2q(q − 1)}.
Then |Γ̄| ∈ {q(q+1)/2, (q+1)/2, q(q−1)/2}, contradicting Lemma 3.11 in [71].
Therefore the last remaining possibility was excluded, and hence the assumption
that |F | = 4 was false. Thus, |F | ∈ {1, 2} and the lemma holds.

Lemma 7.6
Let G be a finite group acting transitively and with fixity 4 on a set Ω. Let α ∈ Ω.
Suppose that E(G) acts with fixity 4 on αE(G), that E(G) is quasi-simple but not
simple, and that F(G) acts semi-regularly. Then F(G) is cyclic of order 2 or 4.
Proof:

As in Lemma 7.5, let E = E(G), let F = F(G), and let x ∈ E be such that
x fixes exactly four points in αE. Since F centralises x, it stabilises the set of
fixed points, and hence the semi-regular action of F and the fact that Z(E) ≤ F
yield that |F | ∈ {2, 4}. Assume, for a contradiction, that F is not cyclic. Then
F ∼= E4.

By Lemma 4.8, there exists an odd prime power q such that E ∼= SL(2, q),
E ∼= C2. Sz(8), or E ∼= C2.PSL(3, 4). In particular, |Z(E)| = 2, and hence
there exists a subgroup C of F such that Z(E) × C = F . As a consequence,
EF = E × C.

As in the previous lemma, x can fix at most four points in Ω and thus no points
outside of αE , and hence Lemma 7.4 implies that αE = αEF. Let Γ = αEF. We
use [52] together with the following command to ensure that |Γ| > 4 · |C| = 8.

AllTransitiveGroups(NrMovedPoints, [5..8],
x->Order(x)>=60, [true], y->Order(FittingSubgroup(y)), [4]);↪→

Since E is quasi-simple, the order of E is at least 60. Thus, the GAP command
returns all groups EF that could contain a quasi-simple group E, that can act
faithfully and transitively on some set of size at least 5 and at most 8, and that
have a Fitting subgroup of order 4. Since no such group is returned and since
by Lemma 2.5, |Γ| = |αE | ≥ 5, it follows that |Γ| > 8.

Then Lemma 4.1 yields that EC/C ∼= E acts non-regularly and with fixity at
most 4 on a set Γ̄ of size |Γ|

|C| . Since E is quasi-simple but not simple, Lemma 4.3
implies that EC/C cannot act with fixity 2 or 3 on Γ̄. Then the fact that
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7.2 The Main Theorem

quasi-simple groups cannot act as Frobenius groups implies that EC/C acts
with fixity 4 on Γ̄. In particular, E acts with fixity 4 both on a set of size |Γ|
and |Γ̄| = |Γ|

|C| = |Γ|/2.
Since by Example 4.5, C2. Sz(8) has exactly one transitive fixity-4 action, it

cannot act with fixity 4 on two sets of different sizes. Similarly by Example 4.4,
C2.PSL(3, 4) has only one fixity-4 action. As a consequence, there exists an odd
prime power q such that E ∼= SL(2, q). However, then Lemma 4.6 proves that
E cannot act on two sets such that one has twice the size of the other. This
contradiction shows that our assumption that |F | is not cyclic was false.

The only case that we have not analysed in this section is when a component acts
with fixity 3 on one of its orbits, but unlike for fixity 2 and 4, Theorem 5.6 gives
detailed information in this case. In particular, the structure of the Fitting subgroup
is a direct consequence of the theorem and will be drawn directly in the proof of
Theorem 7.7.

7.2 The Main Theorem

The Main Theorem summarises all the results of the previous section and chapters. It
gives detailed information about the generalised Fitting subgroup of a group that acts
transitively, faithfully, and with fixity 4. In particular, with this result, important
structural information about the group itself are established.

7.2.1 Statement

Theorem 7.7 (Main Theorem)
Let G be a finite group acting transitively, faithfully, and with fixity 4 on a set Ω.
Let α ∈ Ω. Then one of the following cases holds.

(1) F(G) ∩Gα ̸= 1 and E(G) = 1. Furthermore, one of the following holds.

(a) F(G) is a 2-group with sectional 2-rank at most 4 that acts faithfully and
with fixity 4 on αF(G).

(b) G is one of the groups under column group in Table 6.1, |Ω| ≤ 28 and
F(G) is either non-cyclic elementary abelian of order at most 16 or of
isomorphism type C4 × C4 or (C4 × C4) : C2.

(2) F(G) acts semi-regularly on Ω. Furthermore, for all p ∈ π(Gα), the Sylow
p-subgroups of G have p-rank 1 or F(G) = O2(G)× O3(G). Additionally, one
of the following holds.

(a) E(G) = 1

(b) E(G)/Z(E(G)) ∼= A5, E(G) acts semi-regularly on Ω and if E(G) ∼= A5,
then Gα is of isomorphism type C2, E4, C4, S3, or A4 and if E(G) ∼=
SL(2, 5), then Gα is of isomorphism type C2, E4, or C4.
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(c) E(G) is isomorphic to PSL(3, 4), PSL(2, q), or Sz(q), where q is a suitable
prime power, E(G) acts with fixity 2 on αE(G), and |F(G)| ≤ 2.

(d) E(G) ∼= A6 acts with fixity 3 on αE(G), F(G) = 1, and one of the following
holds.

(i) |Ω| = 6 and G ∼= S6.

(ii) |Ω| = 12 and G is isomorphic to M10, PGL(2, 9), or Aut(A6).

(e) E(G) acts with fixity 4 on αE(G) and additionally one of the following
holds.

(i) E(G) is isomorphic to one of the groups under column group in Ta-
ble 3.2 and |F(G)| ≤ 2.

(ii) E(G) is isomorphic to SL(2, q), where q is an odd prime power, to
C2. Sz(8), or to C2.PSL(3, 4), |Z(E(G))| = 2, and F(G) is cyclic of
order 2 or 4.

Proof:
First suppose that F(G) ∩Gα ̸= 1. Then by Lemma 6.2, E(G) = 1. If Ω has at
least 29 elements, then Lemma 6.6 implies that F(G) acts with fixity 4 on αF(G).
Thus, Lemma 6.1 proves that F(G) is a 2-group with sectional 2-rank at most 4
showing case (1) (a). If |Ω| ≤ 28, then Lemma 6.8 lists all of these groups and
shows also the information about F(G) in (1) (b).

Therefore, from now on suppose that F(G) acts semi-regularly. If F(G) ̸=
O2(G)× O3(G), then by Lemma 6.9, for all p ∈ π(Gα), the Sylow p-subgroups
of G have rank 1. Thus, it remains to proof that one of the cases (a) – (e) of (2)
holds.

Suppose additionally that (2) (a) does not hold. Then Theorem 5.6 proves
that E(G) is quasi-simple and states that one of four cases happens. If E(G)
acts semi-regularly on Ω, then case (1) of Theorem 5.6 shows together with
Lemma 5.7 statement (2) (b) of this theorem.

Thus, suppose that E(G) fixes a point in Ω. Since E(G) is a normal subgroup
of G and G acts transitively on Ω, we can suppose that E(G) ∩Gα ̸= 1.

Case (2) in Theorem 5.6 implies that E(G) acts with fixity 2 on αE , that E(G)
is simple and one of the specified groups. Then Lemma 7.3 proves that F(G)
contains at most two elements.

Case (3) in Theorem 5.6 gives all information in case (2) (d) except for the
size of the Fitting subgroup of G, but knowing G in all cases yields F(G) = 1.

Hence, the last remaining option for E(G) is case (4) of Theorem 5.6, and thus
E(G) acts transitively, faithfully, and with fixity 4 on αE . If E(G) is simple, then
Theorem 3.56 proves that E(G) is one of the groups described in (2) (e) (i) and
Lemma 7.5 shows that F(G) contains at most two elements. Otherwise E(G) is
quasi-simple and non-simple. Then Lemma 4.8 proves that E(G) is one of the
groups described in (2) (e) (ii) and Lemma 7.6 shows the remaining statements.
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7.2.2 Examples

It remains the question whether all of these cases can indeed occur. For some cases
we have already seen examples in the previous chapters. Therefore we look at the
remaining cases.

In particular, in case 2 (a) of Theorem 7.7, the restriction on the structure allows
a wide range of groups. The next example illustrates the situation by stating one
group that falls in this case.

Example 7.8
Let G = ⟨(1, 2, 3, 4), (5, 6, 7), (5, 6)⟩ ≤ S7. Then G ∼= C4 × S3. In particular G is
solvable, and hence E(G) = 1. The Fitting subgroup of G is ⟨(1, 2, 3, 4), (5, 6, 7)⟩.
Let U = ⟨(5, 6)⟩. Then G acts transitively on G/U . Since U is a point stabiliser in
this action and since F(G) ∩ U = 1, the Fitting subgroup of G acts semi-regularly
on G/U .

Since |NG(⟨(5, 6)⟩)| = 8, Lemma 2.10 implies that (5, 6) fixes exactly four points
in G/U . As a consequence, G acts transitively, faithfully, and with fixity 4 on G/U .
In particular, G is an example for case (2) (a) in Theorem 7.7.

We now turn our attention towards case 2 (c) of Theorem 7.7. If the Fitting subgroup
is trivial, then the following example gives an instance of this case. If the Fitting
subgroup has order 2, then we can use Lemma 7.10 to create examples. More gener-
ally, the lemma shows a way to construct, for two positive integers r and k, a group
acting with fixity r · k out of a group acting with fixity k.

Example 7.9
Let G be the 62nd transitive group of degree 40 in the Transitive Groups Library [52].
Then G ∼= S5 and G acts transitively on a set Ω of size 40. Thus, E(G) ∼= A5 and
E(G) has index 2 in G. The following GAP code uses the program in Remark 2.18
and shows that G acts with fixity 4 on Ω and that there exists α ∈ Ω such that E(G)
acts with fixity 2 on αE(G).

G:=TransitiveGroup(40,62);;
e:=Filtered(NormalSubgroups(G),x->Index(G,x)=2)[1];;
TestFixity(G,MovedPoints(G),4);
TestFixity(e,Orbit(e,1),2);

Thus, G is an example of case (2) (c), where F(G) = 1.

Lemma 7.10
Let k be a positive integer and E be a finite group acting faithfully, transitively, and
with fixity k on a set ∆. Let r be a positive integer and c be an element of order r
such that G := E × ⟨c⟩ is a group. Then G acts faithfully, transitively, and with
fixity r · k on a set of size r · |∆|.
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Proof:
Let U be a point stabiliser of E under its action on ∆. Then U ≤ E ≤ G
and G acts transitively on Ω := G/U . Let x ∈ U . By Lemma 2.9, |fixΩ(x)| =
|{⟨x⟩g≤U |g∈G}|·|NG(⟨x⟩)|

|U | . Since ⟨c⟩ centralises E ≥ U , it follows that NG(⟨x⟩) =

NE×⟨c⟩(⟨x⟩) = NE(⟨x⟩)×⟨c⟩ and that {⟨x⟩g ≤ U | g ∈ G} = {⟨x⟩g ≤ U | g ∈ E}.
Therefore |fixΩ(x)| = |{⟨x⟩g≤U |g∈E}|·|NE(⟨x⟩)×⟨c⟩|

|U | = |{⟨x⟩g≤U |g∈E}|·|NE(⟨x⟩)|·|⟨c⟩|
|U | =

r · |{⟨x⟩g≤U |g∈E}|·|NE(⟨x⟩)|
|U | = r · | fix∆(x)|. Since | fix∆(x)| ≤ k, every non-trivial

element in G can fix at most r ·k elements in Ω, and since E contains an element
y with exactly k fixed points in ∆, |fixΩ(y)| = r · k. Thus, G acts with fixity
r · k on Ω.

The size of ∆ is the number of fixed points of the trivial element of E, and
hence |Ω| = |fixΩ(1G)| = r · | fix∆(1G)| = r · |∆|.

Since E acts faithfully on ∆, it follows that |∆| ≥ k + 2 and hence Ω has at
least r · (k + 2) > r · k elements. Therefore, G acts faithfully on Ω.

When we use the previous lemma for r = 2 and a simple group E that acts with
fixity 2 on some set, then we can construct a group G such that E(G) = E, such that
|F(G)| = r = 2, and such that G acts with fixity 4. This is an example of case (2) (c)
of Theorem 7.7.

For case (2) (e) on the other hand, we cannot use this construction because in
this case the component itself acts with fixity 4. Nevertheless, there are instances of
cases (2) (e) (i) and (ii) of Theorem 7.7 with non-trivial Fitting subgroup. We will
see some of them in the next two examples.

Example 7.11
Let G be a group that is identified by [336,209] in the Small Groups Library [13].
Then G ∼= C2×PSL(2, 7), and hence E(G) ∼= PSL(2, 7) and F(G) ∼= C2. As described
in Lemma 2.20, the table of marks of G contains information about all transitive
actions of G. The following GAP code uses the table of marks.
G:=SmallGroup([336,209]);
t:=TableOfMarks(G);;
e:=RepresentativeTom(t,39);
U:=RepresentativeTom(t,12);
hom:=FactorCosetAction(G,U);; Gh:=Image(hom,G); eh:=Image(hom,e);
TestFixity(Gh,MovedPoints(Gh),4); TestFixity(eh,Orbit(eh,1),4);

The code first defines G and then creates the table of marks of G. Since E(G) has
index 2 in G, we find E(G) in line 39 of the table of marks. Additionally we see a
fixity-4 actions of G in line 12 and define U to be a corresponding point stabiliser.
Afterwards the code uses the program in Remark 2.18 to test whether G acts with
fixity 4 on G/U or not and also shows that there exists an element α ∈ G/U such that
E(G) acts with fixity 4 on αE. As a consequence, G is an example of case (2) (e) (i)
in Theorem 7.7 where F(G) ∼= C2.
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Example 7.12
LetG be the 576th transitive group of degree 24 in the Transitive Groups Library [52].
Then G ∼= SL(2, 5) : C2 and G acts transitively on a set Ω of size 24. Thus, E(G) ∼=
SL(2, 5) and E(G) has index 2 in G. The following GAP code uses the program in
Remark 2.18 and shows that G acts with fixity 4 on Ω and that there exists α ∈ Ω
such that E(G) acts with fixity 4 on αE(G).

G:=TransitiveGroup(24,576);;
e:=Filtered(NormalSubgroups(G),x->Index(G,x)=2)[1];;
TestFixity(G,MovedPoints(G),4);
TestFixity(e,Orbit(e,1),4);

Thus, G is an example of case (2) (e) (ii), where F(G) ∼= C4.
Similarly, the 1353rd transitive group of degree 24 provides such an example. This

group is isomorphic to GL(2, 5). When we replace the first line of the GAP code
above by G:=TransitiveGroup(24,1353);;, we can use the GAP commands to see
that GL(2, 5) has a fixity-4 action such that SL(2, 5) acts with fixity 4 on one of its
orbits.

7.2.3 Remark

Examples have been given throughout this thesis to demonstrate that no case of
Theorem 7.7 is superfluous. These examples are collected in the following remark.

Remark 7.13
Example 6.7 together with Lemma 6.6 gives an instance of case (1) (a) of Theorem 7.7.
Additionally, every 2-group that acts with fixity 4 falls in this case. One of them is
⟨(2, 6)(5, 8), (1, 2, 3, 5, 4, 6, 7, 8)⟩ ≤ S8. In part (b) of case (1) all groups that belong
to this case are stated and Lemma 6.8 implies that each of these groups indeed
exhibits a fixity-4 action on some set that fulfils the requirements of the case.

Thus, it remains to further investigate the situation of case (2). One instance of
case (2) (a) is given in Example 7.8. In part (b) a number of constellations for the
component and the point stabiliser are described and Example 5.8 and Example 5.9
show that each of these constellations can indeed occur. Example 7.9 names an
instance of case (2) (c) with trivial Fitting subgroup and Lemma 7.10 implies that for
instance PSL(3, 4)×C2 has a fixity-4 action with Fitting subgroup of order 2. Thus,
both orders of the Fitting subgroup in case (2) (c) are possible. Part (d) comprises
exactly four groups and the following GAP code uses the program in Remark 2.18
and shows that all of them indeed fulfil the requirements of the case.

li:=Concatenation([TransitiveGroup(6,16)],List([181,182,220],
x->TransitiveGroup(12,x)));;↪→

comp:=List( li, x->Filtered(LowIndexSubgroups(x,2),y->Index(x,y)=2
)[1]);;↪→

comp[4]:=Filtered( LowIndexSubgroups(comp[4],2),
y->Index(comp[4],y)=2 )[1];;↪→
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List(li,x->TestFixity(x,MovedPoints(x),4));
List(comp,x->TestFixity(x,Orbit(x,1),3));

In case (2) (e) (i) of Theorem 7.7 all stated types of components are possible be-
cause by Theorem 3.56 all of these simple groups act with fixity 4 on some set
(and with trivial Fitting subgroup). Additionally, Example 7.11 gives an instance of
case (2) (e) (i) where the Fitting subgroup has order 2. Similarly, Lemma 4.6, Exam-
ple 4.5, and Example 4.4 show that all quasi-simple groups named in case (2) (e) (ii)
can act with fixity 4 and all of these groups have a cyclic Fitting subgroup of or-
der 2. That the Fitting subgroup could also be cyclic of order 4 is illustrated by
Example 7.12.

As a consequence, we have seen for each of the cases of Theorem 7.7 an example
of a group that fulfils the requirements of the case.
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8 Closing Remarks

This thesis gives detailed information about the generalised Fitting subgroup of a
faithful and transitive group G that acts with fixity 4, and hence about the structure
ofG itself. By doing so, it contributes to the understanding of the connection between
the action of a group and its structure.

Additionally, it closes an open question in the project started by Magaard and
Waldecker that is motivated by the study of automorphism groups of Riemann sur-
faces. More precisely, since one of the consequences of Theorem 3.56 is that Vermu-
tung 3.16 in [89] holds, the conclusions in [89] drawn with the use of that assumption
are true, and hence the classification of all simple non-abelian automorphism groups
of compact Riemann surfaces of genus at least two that act with fixity at most 4 is
achieved. However, the results of this thesis go beyond the study of simple groups in
this setting, and therefore a future point of study could be to use the results to gain
information about more than the simple non-abelian automorphism groups of com-
pact Riemann surfaces. As described in the introduction, one aspect of the original
project in the study of Riemann surfaces is the case that Schoeneberg’s result, which
states that all fixed points of a non-trivial automorphism of a Riemann surface that
fixes at least five points are Weierstrass points, is not applicable. Therefore, a next
step could be to use the information in [89] for finding all Weierstrass points for the
examples in which Schoenebergs’s result does not give further information. Addi-
tionally, in the scope of the project, there are other open problems (see for example
pp. 186–196 in [89] for an overview) that possibly could be answered with the results
of this thesis. The results can maybe even help to push forward the investigations
in other topics connected to Riemann surfaces and groups such as the conjectures
in [48] about monodromy groups. On the other hand, in the group-theoretic per-
spective of the project, this thesis finishes off the first step of understanding groups
acting with fixity at most 4.

Even though the Main Theorem of this thesis gives detailed insights into the
generalised Fitting subgroup of a finite, faithful, and transitive group acting with
fixity 4, the degree of detail in the different cases differs. The information is especially
limited in case (2) (a), although the fact that the group does not contain components
is a strong restriction. Further studies of this case seem promising. Additionally,
the consequences derived in a series of lemmas in Chapter 7 ending in Lemma 7.3,
Lemma 7.5, and Lemma 7.6 and their proofs suggest that there is a more fundamental
connection between the structure of an (abelian) group F centralising a group E and
the different fixities with which the groups EF and E can act. Lemma 7.4 gives a
first impression of how this relation could be investigated. The behaviour observed
for fixity 4, in comparison to the behaviours for fixity 2 and 3, suggests that the
connection could be related to the fact that 4 is not a prime, and that hence a
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fixity-2 action can be extended to a fixity-4 action in a product with another group.
However, the exact relation which also takes higher fixities into account remains to
be revealed, and generalises beyond the need of Theorem 7.7. Similarly, in Chapter 4,
Corollary 4.9 might be provable without the use of the classification theorem of finite
simple groups, and therefore without the use of Lemma 4.8. In both cases this would
give an even deeper understanding of the influence that the fixity a group is acting
with has on the structure of the group. The behaviour seen is different from what
was found for fixity 2 and 3 in [71] and [72], already indicating that the number 4,
and the fact that it is not a prime, broadens the structural possibilities of groups
acting with fixity 4 compared to smaller fixities.

A natural next step is to ask the same question for fixity 5. However, there
arise some difficulties. On the one hand, for the original context of the project and
its application to Riemann surfaces the question is not relevant, because if a non-
trivial group element (and hence a non-trivial automorphism) fixes five points, these
points are by Schoeneberg’s result (see [91]) Weierstrass points, and hence contain
analytic information. On the other hand, as a group-theoretic research question it is
still interesting to ask what can be said about finite, faithful, and transitive groups
acting with fixity 5. As indicated earlier, the amount of work needed to understand
groups acting with small fixity increased with the fixity, thus analysing the situation
for fixity 5 will be even harder than the analysis of groups acting with fixity 4. There
are different reasons for this. One of them is that in the analysis, in some cases the
setup is reduced to a situation where a group acts with smaller fixity on some set, and
thus for each smaller fixity the knowledge of the structure of groups acting with that
fixity is needed. Another reason is that, with 5, a third prime has to be taken into
account, and hence the analysis of the 2- and 3-structure has to be accompanied by
an analysis of the 5-structure, adding another degree of difficulty to it. In light of the
study of the 3-structure in [7], the importance of understanding 3-groups of maximal
class in the analysis, and the absence of a comparable easily accessible result for 5-
groups of maximal class (see [66] for an impression), it currently seems unreasonable
to hope for a similar result for fixity 5. However, without such a result, a new
strategy for a proof of a classification of all finite simple groups acting transitively
and with fixity 5 is needed. A naive way would be to go through the classification
of finite simple groups and decide for each group in it whether or not the group acts
with fixity 5, but on the one hand, the list has infinite length, and on the other hand,
Chapters 3 and 4 of this thesis show how complicated it is to prove that a group can
act with a certain fixity. Therefore, a more advanced strategy is indeed needed to
make progress in that direction. Even if such a classification could be reached, there
are further difficulties for a general structure result. One of these difficulties is that
Lemma 5.4 is false if the hypothesis that the group acts with fixity 4 is replaced by
the assumption that it acts with fixity 5. The prototypical counterexample is the
group A5 × A5 which can act with fixity 5 on a set of size 60. To see this, we can
use the GAP program in Remark 2.22 one last time, together with the commands
G:=AlternatingGroup(5);;
TestTom(TableOfMarks(DirectProduct(G,G)),5);
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and get as result that A5 × A5 can act transitively and with fixity 5 in two ways
and that both of the actions are faithful and on sets of size 60. As a consequence,
an equivalent of Theorem 5.6 for fixity 5 would be more complicated, because the
analysis cannot be derived out of the current proof by just adding the case that the
component can act with fixity 4 but must contain a strategy for dealing with multiple
components. Thus, in comparison to the analysis for fixity 3, both the possibility
that a component can act semi-regularly and that the group has more than one
component have to be taken into account. Alternatively, a totally new approach is
needed. Independently of how an alternative for Theorem 5.6 for fixity 5 can be
reached, it adds even more complications to a proof of a general structural result.
To sum up, trying to answer the question about the structure of groups acting with
fixity 5 needs new ideas and might not be as fruitful as desired.

Changing the point of view, instead of asking which groups can act with a certain
fixity, another approach is to determine the fixities with which a certain family of
groups can act, or at least a bound for them. For example, does there exist a
positive integer k such that, for all prime powers q, the group PSL(4, q) can act
transitively and with fixity at most k on some set. The analysis in Section 3.3 seems
to be a good starting point to tackle the problem. An answer would give an even
deeper understanding of the notion of fixity. Similarly, a generalisation of fixity
would also give additional insights. For instance, there are groups that almost act
with a certain fixity but have one conjugacy class of non-trivial elements that have
more fixed points. A prominent example is A8 in its natural action, where only the
elements conjugate to (1, 2, 3) have five fixed points, and all non-trivial elements in
all other conjugacy classes have four or fewer fixed points, making it a group that
almost acts with fixity 4. This generalisation raises questions about the structure
of those groups, which results about fixity can be adapted (and how), and whether
there is a restriction on the number of fixed points of the elements in the exceptional
conjugacy class. The study of these and other problems can be supported by GAP,
and even more so if the results in [71], [72], [89] and this thesis were directly accessible
from inside GAP, like in a package or library.

Another further research direction could be to focus on primitive groups acting
with fixity 4. This is a slightly different approach than that of the Main Theorem
(Theorem 7.7) of this thesis which concentrates on the generalised fitting subgroup.
For the analysis of primitive groups, using the O’Nan-Scott Theorem (see [4] or
Theorem 4.1 in [24] for a version of the statement) is a key strategy. The theorem
gives different reduction steps in which some information about the action of the
group is described, and ends with the situation of an almost simple group, in which
case Theorem 7.7 is especially useful. The reason for this is that in the case of
an almost simple group G, the product of the components E(G) is non-trivial, and
hence only cases (2) (b)-(e) of Theorem 7.7 can occur, and in all of these cases E(G) is
known. However, to be of even more use, it has to be understood how the properties
of a group acting with some fixity can be beneficial throughout the different reduction
steps of the O’Nan-Scott Theorem. Since the notation of fixity is already a way of
describing some part of the action of a group, it is reasonable to assume that it can
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be combined with other information about the action, and hence with the notion
of a primitive action (as a reduction step) and the further reductions of the O’Nan-
Scott Theorem. This is also a reason why primitive groups play an important role
in the study of permutation groups, and therefore applying the results of this thesis
to primitive groups seems to be the most promising next step.

Additionally, since the results for fixity 2 and 3 are already used as a basis for
insights into other studies, the results for fixity 4 can probably support research in a
similar way. For example, in light of [22], or more precisely the proof of Theorem 1.5
therein, the results of this thesis might be useful for pushing the boundary of the
independence number of the Saxl graph of a permutation group G (denoted by α(G))
under certain conditions and with a list of exceptions to α(G) ≥ 5. Further con-
nections of the notion of fixity to other research areas in group theory and outside
were stated in the introduction. Having these connections in mind, it seems con-
ceivable that the results of this thesis can have more applications in future research.
Together with the aforementioned possible next steps, there are many interesting
further research questions.
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