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Zusammenfassung 

Die Jobsuche stellt für Menschen einen schwierigen Entscheidungsprozess dar, bei 

der aktuelle Optionen verglichen, potentielle zukünftige Angebote berücksichtigt und 

aus Erfahrungen gelernt werden muss um letztlich die richtige Wahl zu treffen. Das 

Verständnis solch komplexer Entscheidungsfindungsprozesse und Feedback-

Mechanismen, die den Erfahrungen im wirklichen Leben ähneln, ist jedoch noch 

unvollständig. Die sequenzielle Entscheidungsfindung beim Menschen wurde bisher nur 

begrenzt untersucht. Außerdem gibt es widersprüchliche Erkenntnisse über die 

zugrunde liegende neuronale Dynamik im Zusammenhang mit Feedbackverarbeitung. 

Diese Arbeit umfasst zwei Untersuchungen zur Entscheidungsfindung und 

Feedback-Verarbeitung. Die erste Studie befasst sich mit dem Explorations-

/Exploitationsdilemma und untersucht das Gleichgewicht zwischen der Nutzung 

vorhandener und der Suche nach neuen Ressourcen. Sie konzentriert sich insbesondere 

auf Entscheidungen zum sogenannten Foraging, bei denen Individuen eine aktuelle Option 

ausschöpfen und dabei den richtigen Zeitpunkt für die Erkundung neuer Ressourcen 

bestimmen müssen. Dabei war die Hypothese, dass Individuen sich normativen 

Vorhersagen über optimales Verhalten in dieser Foraging-Umgebung annähern. 

Weiterhin wurde erwartet, dass sich das adaptive Entscheidungsverhalten in neuronalen 

Korrelaten widerspiegelt, die den zeitlichen Verlauf dieser Entscheidung beschreiben. 

Die zweite Studie befasst sich mit typischen Performanz-rückmeldungsbezogenen 

elektrophysiologischen Korrelaten (Feedback-related negativity: FRN; P3) und ihrer 

Kodierungsspezifität in Bezug auf Feedback-Valenz und Erwartbarkeit. Hier lautete die 

Hypothese, dass sich Belohnungsvorhersagefehler (RPE) im neuronalen Signal nach der 

Rückmeldung widerspiegeln. Außerdem wurde erwartet, dass der FRN-Latenzbereich 

einen vorzeichenbehafteten RPE kodiert, der Valenz und Unerwartbarkeit einschließt. 

Das Signal sollte sich dementsprechend zwischen Feedback, welches besser oder 

schlechter als erwartet ist, unterscheiden. Das Signal im P3-Latenzbereich sollte 

hauptsächlich durch Überraschung beeinflusst sein. Darüber hinaus wurde angenommen, 

dass die Verhaltensanpassung nach Feedback mit dem Signal im FRN-Latenzbereich 

assoziiert ist. 
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Um diese Hypothesen zu testen, wurden zwei kognitive Experimente mit großen 

Stichproben gesunder Teilnehmer durchgeführt und 64-Kanal-EEG-Daten aufgezeichnet. 

Das erste Experiment beinhaltete eine Aufgabe, bei der die Teilnehmer den 

Belohnungsgewinn innerhalb eines bestimmten Zeitrahmens maximieren sollten, indem 

sie Entscheidungen darüber trafen, wann sie die aktuellen Optionen zugunsten von 

potenziell lohnenderen Alternativen verlassen. Im zweiten Experiment nahmen die 

Teilnehmer an einer Zeitschätzungsaufgabe teil, bei der sie auf der Grundlage von 

manipulierten Zeitfenstern für richtige Antworten ein erwartetes oder unerwartetes 

Feedback erhielten.  

Anhand von Regressionsanalysen wurde festgestellt, dass die Teilnehmer sich 

normativen Entscheidungen bei der Nahrungssuche annäherten, aber systematische 

Verzerrungen aufwiesen. Es wurden unterschiedliche Frequenzmuster in den Delta-, 

Theta- und Beta-Bändern identifiziert, die mit Explorations- und 

Exploitationsmechanismen in Foraging-Paradigmen verbunden sind. In Bezug auf 

rückmeldungsbezogene Prozesse wurden bestehende Befunde im FRN-Latenzbereich 

repliziert, die einen vorzeichenbehafteten RPE widerspiegeln, während der P3-

Latenzbereich mit Überraschung und positivem Feedback in Verbindung gebracht wurde. 

Bemerkenswerterweise korrelierte der P3-Latenzbereich, und nicht die FRN, mit 

Verhaltensanpassungen nach dem Feedback. 

Insgesamt deuten diese Ergebnisse auf ein komplexes Zusammenspiel 

verschiedener neuronaler Oszillationen hin, die für die sequenzielle 

Entscheidungsfindung verantwortlich sind. Der Entscheidungsprozess beginnt früh in der 

Foraging-Phase und kumuliert möglicherweise, bis ein Schwellenwert erreicht wird, der 

zu einer Entscheidung führt. In künftigen Studien könnte die Untersuchung der Rolle 

etablierter rückmeldungsbezogener Korrelate für das Lernen in diesen 

Entscheidungsprozessen wertvolle Erkenntnisse liefern. 

  



 
 

IV 
 

Abstract 

Job search represents a difficult decision-making process for people, where current 

options have to be compared, potential future offers have to be considered, and learning 

from experience is necessary to ultimately make the right choice. However, the 

understanding of such complex decision-making processes and feedback mechanisms 

similar to real-life experiences remains incomplete. Sequential decision-making in 

humans has received limited attention, and there is conflicting evidence regarding the 

underlying neuronal dynamics related to feedback. 

This work aims to address this issue within two investigations on decision-making 

and feedback processing. The first study addressed the exploration-exploitation 

dilemma. Specifically, it focused on foraging decisions, where individuals must exploit a 

current option while determining the right time to explore new resources. I expected 

that individuals approximate normative predictions of optimal behavior within this 

foraging environment, reflected in neural correlates that describe the temporal 

progression of this decision. The second study delved into typical feedback-related 

electrophysiological correlates (Feedback-related negativity: FRN; P3) and their 

encoding specificity concerning feedback valence and expectedness. The hypothesis 

suggested that reward prediction errors (RPE) are coded in the neural signal post-

feedback. The FRN latency range was thought to encode a signed RPE, incorporating 

valence and unexpectedness, whereas the P3 should mainly be influenced by surprise. 

Moreover, behavioral adaptation was expected to be associated with the signal in the 

FRN latency range. 

To test these hypotheses, two cognitive experiments were conducted with large 

samples of healthy participants, recording 64-channel EEG data. The first experiment 

involved a patch-leaving task, where participants aimed to maximize reward gain within 

a certain time frame, making decisions on when to leave current options for potentially 

more rewarding alternatives. In the second experiment, participants engaged in a time 

estimation task, receiving feedback based on manipulated correct answer time windows 

to introduce expected or unexpected feedback. 
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Results show that participants approximated normative foraging decisions but 

exhibited systematic biases. Through single-trial regression analyses, I identified distinct 

frequency patterns in the delta, theta, and beta bands, linked to exploration and 

exploitation mechanisms in patch-leaving paradigms. Concerning feedback-related 

processes, existing findings of the EEG signal in the FRN latency range reflecting a signed 

RPE were replicated, while the P3 latency range was associated with surprise and positive 

valence feedback. Notably, the P3 latency range, rather than the FRN, correlated with 

post-feedback behavioral adjustments. 

Overall, these results indicate a complex interplay of various neural oscillations 

responsible for sequential decision-making, starting early in the foraging phase and 

possibly accumulating until a threshold is reached, leading to a decision. In future studies, 

exploring the role of established feedback-related correlates on learning in these 

decision-making processes could yield valuable insights.  
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1 Introduction 

Decision-making involves the cognitive process of selecting a course of action from 

various alternatives. It encompasses the evaluation of options based on their potential 

outcomes and choosing the option that is most likely to achieve a desired result. This 

fundamental aspect of human behavior is present in numerous daily life situations, ranging 

from simple choices like what to have for breakfast to complex decisions such as career 

paths or purchasing a house.  

Rangel et al. (2008) proposed a decision-making cycle comprising several stages 

(Figure 1-1). Initially, potential actions are represented in relation to internal and 

external states. These actions are then evaluated given the specific states, and their 

values are compared to make a decision on an action. Once a decision is made, the 

desirability of the outcome is assessed by experiencing its consequences and calculating 

prediction errors. In this work, various aspects of this decision-making cycle are 

investigated in the context of two studies, aiming to enhance our understanding of the 

cognitive processes involved in decision-making among healthy adults. 

 The first study primarily focuses on examining the stages of valuation and 

decision-making, specifically within the context of a sequential decision-making task 

known as foraging. The second study explores outcome evaluation and, to some extent, 

learning processes. It particularly investigates how individuals respond to feedback and 

engage in feedback-based learning. In the subsequent chapters, I provide the theoretical 

background for both the valuation and decision-making study and the evaluation and 

learning study. 
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Figure 1-1. The cycle of decision-making. Adaptive behavior comprises five consecutive 
steps: representation, valuation, decision-making, outcome evaluation, and learning. Initially, the 
agent forms representations of feasible actions (e.g., continue eating from the current berry bush 
vs. switching a berry bush) and environmental (e.g., availability of berry bushes) or internal states 
(e.g. feeling hungry). Valuation involves assigning expected values to actions (e.g., high vs. low 
expected reward and effort of staying vs. switching to a far bush). Decision making entails 
comparing the values of actions and selecting the one with the highest value (e.g., staying at the 
current bush, because value of staying outweighs value of switching in terms of energy). Outcome 
evaluation assesses received outcomes compared to expected values (e.g., comparison of 
expected reward gain from staying with actual gain), driving learning (e.g., adjust behavior and 
switch if the reward obtained from current bush diminishes) and updates to representations, 
expected values, and decision-making strategies (e.g., exploration-exploitation trade-off). This 
iterative process enables the agent to adapt its behavior based on experience and feedback, 
promoting effective interaction with the environment. This scheme is adapted from Rangel et al. 
(2008). 

1.1 Optimal sequential decision making 

As mentioned earlier, decision-making is usually described as the ability to learn 

about the relative value of various available options, draw conclusions from this and 

choose the best option (Jocham et al., 2011). This gave rise to many studies that 

investigated decision-making represented by the choice between two or more distinct 

options and outlined neural correlates for it (Busemeyer et al., 2019; Frömer et al., 2019; 

Gluth et al., 2014; Lee et al., 2021; Polanía et al., 2014). However, decisions in the daily 

life are usually much more complex than the choice between two more or less rewarding 

options (Kolling & O'Reilly, 2018). Individuals often face decisions with far-reaching 

consequences without knowing possible future developments. This type of decision-

making comes with the necessity of planning ahead and prospect, but has been largely 

neglected by previous research (Hunt et al., 2021). Sequential and temporal extended 

choice paradigms such as foraging paradigms (sometimes also called patch-leaving 
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decision paradigms) are novel, biology inspired approaches to better understand more 

complex decisions. Originally, the term foraging refers to the behavior of animals. 

Imagine a bird searching for grains in a certain meadow. At the beginning there are plenty 

of grains, but after some time of searching and eating, there are only few grains left. Now 

the bird has to expend a lot of energy by running around to find the remaining grains. 

This is when the bird decides to incur the cost of flying to the next meadow to have 

easier access to new grains again. Additional aspects such as the presence of a possible 

predator (e.g., a cat) or competition from other birds must be considered by the animal.  

It is a challenge to find a balance between the energy gained from resources and the 

energy expended to acquire them in a changing environment. Optimal decision making 

in such a scenario will ensure the survival of the animal. Indeed, humans also rely on 

foraging decisions in various aspects of their daily lives. Consider a scenario where you 

find yourself in a garden with several berry bushes, aiming to maximize your berry 

harvest within a one-hour time frame. To accomplish this, you must decide on the ideal 

duration to spend at each bush before transitioning to the next, which is again full of 

berries. A more complex example is the process of job applications and deciding when 

to accept an offer without knowing what future opportunities may arise. Achieving 

satisfactory results here requires the ability to make optimal decisions in volatile 

environments. 

1.1.1 Classification and distinction of decision-making 

The following section will illuminate different types and aspects of decision-making 

and distinguish them from each other.  

Value-based decisions are often represented as choices between simultaneously 

presented concrete offers. Foraging decision-making goes beyond this approach by 

considering the environmental value, i.e., the value of the entire surroundings, not just 

the action value of current options. A notable characteristic of foraging is its sequential 

nature, where individuals encounter specific opportunities and make decisions to accept 

or reject them. These decisions are based on a comparison between the presented offer 

and the individual's prediction of what the current or future environments have to offer. 
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Barack and Gold (2016) suggested different trade-offs that make up the decision-

making process: sensitivity to stability versus change for past information, speed versus 

accuracy for current information, and exploitation versus exploration for future goals. 

While all aspects can play a crucial role in foraging decisions, the aim of foraging decisions 

is to minimize energy, time, and costs while maximizing reward in the long term and can 

therefore be seen as a form of an exploitation-exploration dilemma (Addicott et al., 

2017). In the short term, exploitation of current resources maximizes rewards, 

however, the information obtained during exploration can later be used in the long term. 

Referring to the aforementioned example, individuals aim to strike a balance between 

exploring different bushes for berries and exploiting the current bush. Achieving optimal 

decision-making typically involves an adaptive strategy that combines both exploration 

and exploitation. In terms of the foraging approach, an exploitation bias could mean 

staying too long on current and known options while missing out on potentially superior 

options. An exploration bias on the other hand is characterized by leaving current 

options too early looking for better options to come.  

In some ways, foraging decisions are comparable to perceptual evidence 

accumulation. Nevertheless, both processes have substantial differences (Polanía et al., 

2014). Perceptual evidence accumulation focuses on the integration of sensory 

information by continuously sampling and accumulating sensory evidence until a decision 

threshold is reached (Brosnan et al., 2020; T. Liu & Pleskac, 2011; Pereira et al., 2021; 

Ploran et al., 2007). Here, attentional and action related processes seem to have 

dissociable roles (Shenhav et al., 2018). Foraging decision-making refers to a broader 

concept that involves strategic top-down processing on higher levels and encompasses 

the decisions individuals make to optimize resource acquisition and dynamically adapt to 

the changing environment. While accumulating evidence might also be a part of the 

foraging decision process (Davidson & El Hady, 2019; Kristjánsson et al., 2020), there 

are more complex processes that use evidence accumulation only under certain 

conditions, and possibly asymmetrically. 

To gain insights into human cognition and decision-making, ecological models of 

animal behavior provide effective tools for describing behavioral adaptations related to 

optimizing behavior and ensuring survival. Given that humans, like animals, have evolved 
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to tackle such problems, it is logical to assume that this approach can assist in uncovering 

the fundamental elements of human foraging functions, especially in the realm of adaptive 

decision-making. I will discuss this in more detail in the next section. 

1.1.2 Optimal foraging theory 

The most famous approach in optimal foraging is the Marginal-value-theorem 

(MVT, Charnov, 1976). It states that the ideal time to leave a current option is when a 

particular threshold is reached: when the instant reward intake of the current option 

falls below the average reward intake of the environment (Kolling & Akam, 2017). Here, 

the instant reward intake of the current option per time is also called foreground reward 

rate (FRR), while the average intake of the environment per time is called background 

reward rate (BRR, Gabay & Apps, 2021; Le Heron et al., 2020). Within this framework, 

the calculation of action utility in energy units is based on the following equation ((1-1): 

the energy expended to acquire the reward (e) is subtracted from the energy gained 

from the reward (α), divided by total time T spent acquiring the reward (Shadmehr & 

Ahmed, 2020). 

 𝑈𝑈 =
𝛼𝛼 −  𝑒𝑒
𝑇𝑇

 
(1-1) 

 

This theorem makes specific predictions about the ideal leaving time in order to 

maximize reward (Figure 1-2).  Various factors can influence the FRR, and among them 

is the quality of the patch, referring to the yield of available rewards. When the patch 

offers a higher yield, it results in an initially higher rate of reward acquisition. 

Consequently, the FRR will take a longer time to reach the background reward rate. 

Thus, when a patch yields a high reward, staying longer on this patch is beneficial 

compared to a patch yielding low reward. Contrarily, when the reward history is high, 

or in other words, the environment is full of rich options, it is beneficial to leave 

individual patches earlier to exploit as many options as possible compared to a poor 

environment, where the reward history is low. In that way, instantaneous and average 

reward rate (FRR and BRR, respectively) independently impact when to leave (Le Heron 

et al., 2020).   
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Figure 1-2. Predictions of the Marginal Value Theorem (MVT). In the left figure, it 
demonstrates that the optimal time to leave a patch with lower rewards is shorter compared to 
a patch with higher rewards. On the right figure, it reveals that the ideal time to leave the same 
patch is shorter in a high average reward rate scenario (rich environment) compared to a low 
average reward rate scenario (poor environment). This scheme is adapted from Shadmehr & 
Ahmed (2020). 

In simple foraging tasks, human behavior aligns closely with the predictions of the 

MVT. However, ambiguities arise when tasks become more complex, such as situations 

where reward rates within patches do not consistently decline but can also increase 

(Kolling & Akam, 2017; Wittmann et al., 2016). In such cases, the optimal strategy may 

vary, necessitating a stronger weighting of either the past reward rate or the recent 

reward rate based on the circumstances. Kolling and Akam (2017) argue that to 

comprehensively capture human foraging behavior in complex environments, a model-

free estimation of the overall environmental quality, as suggested by MVT, must be 

combined with a model-based prediction of forthcoming rewards (see 2.2 for more 

details). It is still not fully understood, how reward rates are represented in humans, and 

thus they are often modelled differently. MVT assumes complete information of the 

environment, therefore the average reward rate is, for example, often defined as the 

average reward rate of all patches in the environment or as the extrapolated future 

reward rate. On the other hand, because it is impossible in reality to know the 

environment completely (environmental quality is a probability function and therefore 

uncertain), the average reward rate is usually approximated by the average rate of the 

patches that have been foraged so far. Additionally, the MVT uses objective values and 

assumes that humans always stop exploiting the current patch, as soon as the threshold 
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is reached. In that way, subjective values and interindividual biases such as risk sensitivity 

are neglected. 

Nevertheless, it has been shown that the MVT model is a good approximation of 

human behavior and therefore a powerful framework for understanding aspects of patch 

leaving decisions. The next sections, I will describe in detail the findings to date and what 

limitations remain. 

1.1.3 Foraging decisions in humans 

In a patch-leaving paradigm that involved harvesting depleting apple trees through 

distinct choices, Constantino and Daw (2015) demonstrated that a learning rule 

proposed by the MVT provided a better explanation of human foraging behavior 

compared to temporal-difference-error learning. In a study by Wittmann et al. (2016), 

participants engaged in a task where they repeatedly encountered a patch characterized 

by stochastic outcomes with an underlying trend of either increasing or decreasing 

rewards. Results showed that rewards acquired shortly prior to the decision to leave 

the patch encouraged participants to remain, whereas rewards obtained well in advance 

of the decision promoted patch leaving. An advanced reinforcement learning model, 

which estimated reward rate gradients through averaging reward prediction errors, 

adeptly predicted participants' choices to leave while encompassing these opposing 

effects of reward trends. The authors showed that a model-free reinforcement learning 

approach is insufficient for comprehensively explaining adaptable foraging behavior. 

Instead, it becomes evident that more intricate models must encompass a representation 

of the environmental value and its dynamic alterations to effectively capture the 

complexities of such behavior (Kolling & Akam, 2017; Steixner-Kumar & Gläscher, 

2020). Le Heron et al. (2020) introduced a continuous patch-leaving paradigm, where 

participants pressed a button until they decided to leave the current patch. Patches 

delivered rewards at an exponentially decreasing rate (FRR), varying between patches. 

The environmental value (BRR) was adjusted by altering the occurrence probabilities of 

different patch qualities. While manipulations of the FRR und BRR have been shown to 

independently influence participants’ behavior, individuals generally show a tendency to 

stay longer than an optimal MVT-agent would predict (Hutchinson et al., 2008; Le Heron 

et al., 2020). Harhen and Bornstein (2023) investigated this bias with the help of a serial 
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stay-switch task. Their findings suggest that participants learn a representation of the 

environmental structure through individual patch experiences. The authors argue that 

uncertainty in environmental structure leads to adaptive discounting of future rewards, 

resulting in this phenomenon referred to as “overharvesting”. Moreover, an asymmetric 

effect of the BRR was identified: individuals fail to adjust when the environment 

deteriorates compared to when it improves, leading to suboptimal choices (Garrett & 

Daw, 2020). In a task where reward magnitude and reward time delay were manipulated, 

the authors identified the presence of an optimism bias: in deteriorating environments, 

options that were valuable given the environmental conditions were prematurely 

discarded in the false anticipation that better options would emerge. While evidence for 

human foraging behavior and underlying representations is growing, the exact neuro-

computational mechanisms that facilitate these foraging choices remain poorly 

understood. In the next section, I describe neural correlates of decision-making. 

1.1.4 Neural correlates and methods of investigating decision-

making 

Distinct neural mechanisms are present for different types of decision-making 

processes, such as foraging or the comparison and selection among a limited set of 

distinct options. The latter has been associated with activity in the ventromedial 

prefrontal cortex (vmPFC) related to tracking the value of available options (Jocham et 

al., 2011). In the same study, also striatal prediction error coding predicted the choice 

performance of participants (Figure 1-3). 
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Figure 1-3. Brain regions associated with decision-making. Results of an association test 
for an automated meta-analysis of value-based decision-making studies provided by the 
Neurosynth platform are shown. Key regions highlighted include the ventral striatum (VS), 
ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), posterior 
cingulate cortex (PCC), and anterior insula (aIns).  Wiley Interdisciplinary Reviews, Dennison, J. B., 
Sazhin, D., & Smith, D. V., Cognitive Science, Decision neuroscience and neuroeconomics: Recent 
progress and ongoing challenges, 13(3), e1589, 2021, reproduced with permission from WILEY. 

When it comes to the exploration-exploitation trade-off, there are many studies 

trying to map neuronal areas to specific responsibilities (for a review, see Mansouri et 

al., 2017). Opponent processes in frontoparietal regions for undirected and directed 

exploration, and exploitation are suggested (Figure 1-4). While the medial part of the 

frontopolar region is proposed to be responsible for monitoring the relevance of the 

current goal and eventually desist from this when the environment is changing, the lateral 

part is associated with a more elaborated exploration monitoring alternative goals and 

redirecting cognitive resources to new goals. The posterior prefrontal cortex is 

supposed to execute the current task, optimizing performance, and thus exploit the 

current goal. An alternative approach suggests the cooperation of a network of neural 

regions including the anterior midcingulate cortex (aMCC; sometimes also called dorsal 

anterior cingulate cortex, dACC) to perform explore-exploit decisions (Figure 1-3; 

Dennison et al., 2022; Donoso et al., 2014). Domenech et al. (2020) was able to study 

single unit recordings from the prefrontal cortices of epilepsy patients in a volatile 

environment. Activity in the high-gamma frequency band was found to be responsible 

for arbitration between exploiting and exploring, while feedback processes associated 

with exploration showed an increase in the activity in the beta frequency band and a 

decrease in the theta frequency band and alpha frequency band. Nevertheless, it is 

important to note that the paradigm employed in this study differed from the typical 
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foraging paradigm (patch-leaving approach), as it did not require making time-sensitive 

decisions. Furthermore, the authors of the study focused on investigating feedback-

related processes related to the exploration-exploitation dilemma, which diverges from 

the approach we have taken in our research. 

 

Figure 1-4. Functional model of the frontopolar cortex in humans. The medial 
frontopolar cortex is responsible for undirected exploration, which involves monitoring the 
current goal and potentially reallocating resources to other goals. In contrast, the lateral 
frontopolar cortex is responsible for directed exploration, simultaneously monitoring alternative 
goals with the potential for replacement. On the other hand, the posterior prefrontal cortex 
optimizes the performance of the current goal and primarily engages in exploitation. pSMA=pre-
supplementary motor area. Nature Reviews, Mansouri, F. A., Koechlin, E., Rosa, M. G. P., & 
Buckley, M. J., Neuroscience, Managing competing goals - a key role for the frontopolar cortex, 18(11), 
2017, reproduced with permission from Springer Nature (SNCSC). 

Moreover, the neurotransmitter dopamine has been associated with exploration-

exploitation decisions. Elevated levels of dopamine in the striatum were found to 

enhance exploratory behavior, as indicated by Verharen et al. (2019). On the other hand, 

decreased dopamine levels primarily dampened directed exploration compared to 

random exploration (Chakroun et al., 2020). These findings suggest that the effects of 

dopamine modulation may differ depending on the specific exploration strategy 

employed. In a foraging task, Le Heron et al. (2020) showed that dopamine specifically 
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modulates the influence of BRR but not FRR, while signaling the opportunity cost of 

rewards, i.e., the lost value of alternatives when an option is chosen. 

Specifically, for foraging decisions, the aMCC was identified to play a key role in 

tracking the average value of the foraging environment (search value) and the costs of 

foraging (Kolling et al., 2012). Beyond that, opposing reward trends (average reward rate 

and recent reward rate), as well as expected future rewards have been associated with 

aMCC activity before the decision to leave (Wittmann et al., 2016). Contrarily, McGuire 

and Kable (2015) were not able to identify encoding of the value of quitting within the 

aMCC, rather, the vmPFC and the striatum reflected a dynamic reassessment of 

subjective value. While for most of the aforementioned evidence, functional magnetic 

resonance imaging (fMRI) was used, Hayden et al. (2011) was able to show that the cells 

in the ACC in macaques exhibited a rise-to-threshold signal in foraging decisions. 

Specifically, this study was the first attempt to demonstrate a temporal resolution of the 

foraging process in primates. The firing rate of neurons in this region gradually increased 

over time within a patch until the moment the monkey decided to leave. Specifically, 

neurons reached the firing threshold more quickly on trials where the monkey left the 

patch earlier. 

In summary, some efforts have been made so far to find neural representations of 

foraging behavior and to parse out the role of dopamine in this process. However, there 

is an important gap in the literature because the foraging process is a “when decision” 

and thus highly temporally resolved (Kolling & O'Reilly, 2018). This process, which 

changes dynamically over time, cannot be imaged with sufficient resolution by fMRI. 

Therefore, it is necessary to use high temporal resolution methods like EEG in humans 

to map the exact neuronal processes in the course of the decision process. 

1.1.5 Research questions and hypotheses 

In conclusion, novel approaches try to illustrate more complex decision-making in 

humans, yet the evidence is sparse and there is a particular lack of studies investigating 

the temporal process of exploration-exploitation decisions. On a behavioral level, there 

are individual findings that people approach MVT in their behavior, albeit to certain 

constraints and biases. These studies show that participants tend to stay longer in 
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patches of higher yield than lower yield (FRR) and stay shorter in an overall rich 

environment than in a poor one (BRR). Nevertheless, these adaptations are often 

insufficient in magnitude to match the predictions of a normative model. There is still 

little evidence that examines human foraging behavior in comparison to a normative 

model and describes biases in this framework. There is also a need to replicate the 

limited evidence to date in different foraging paradigm contexts. This gives rise to several 

research questions for this thesis: How do people decide to leave a current option? How 

do people adapt to different contexts? How well do humans perform compared to an 

optimal MVT-inspired policy? To investigate these issues, we conducted two 

manipulations in a foraging paradigm with a continuous harvest phase. The manipulation 

of FRR involved altering reward decay across patches, while the manipulation of BRR 

involved varying the environment's quality through distinct patch probabilities and time 

costs during foraging. Based on the research questions and the literature reviewed 

above, I propose the following hypotheses:   

In a foraging task with different reward environment, I expect individuals to adapt their 

decision to leave according to the change in FRR and BRR independently and thus mimic 

the behavior of an MVT-inspired optimal agent. As previous literature suggests, subjects 

will adapt to manipulations in the direction that MVT would predict, but not to a 

sufficient degree. Specifically, I hypothesize that participants will stay longer in patches 

with higher yields, while staying shorter in patches in a rich environment. While 

generically “overharvesting“ (staying longer than optimal), participants will adjust their 

behavior better to a rich than to a poor environment.  

On a neuronal level, very little is known about foraging-like decision processes so 

far. Although the role of the aMCC and of dopamine in the foraging context have been 

emphasized, there is a lack of temporally resolved imaging data on this decision process. 

The aim of the present work is to address this gap. Is there a specific neural mechanism 

underlying foraging decisions tracking different reward rates of foreground and 

background decisions? If such a mechanism exists, at what specific moments are these 

signals represented and how do they manifest? There are some options, how such a 

process might be represented in a neuronal signal. If, as the MVT suggests, a threshold 

must be reached to find the optimal time to leave, I might expect a signal representing 

an increase from initial foraging to reaching that threshold that determines patch leaving 
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decision. Another possibility is that the decision to leave the current patch is made fairly 

early in the foraging process, immediately after an initial phase, by participants 

extrapolating the decay function of the current patch. A third possibility is that individuals 

use simple heuristics that may lead to a signal associated with leaving immediately before 

the decision is executed (or at other times), without performing complex threshold 

calculations. While behavioral results can provide initial insights into addressing this 

question, a comprehensive and descriptive solution requires uncovering the underlying 

neural processes. Regarding the manifestation of the signals, there are some findings that 

associated activity in the theta frequency range in central regions with decision-making 

(Cortes et al., 2021; Jacobs et al., 2006), but there are no such findings yet in a specific 

foraging environment. 

An intriguing finding by Cavanagh et al. (2012) revealed an increase in midfrontal 

theta activity in exploration-associated response-locked data, indicating that theta-band 

activity may signify the urge to reduce uncertainty and exercise strategic control during 

exploratory choices. Conversely, in exploitation-associated data, negative correlations 

were observed for medio/lateral/frontal theta and beta power. As a result, theta activity 

emerges as a potential candidate for representing a tracking signal in exploration-

exploitation-related foraging decisions, although it should be noted that this hypothesis 

is highly exploratory in nature. Regarding the observed changes in beta activity, there is 

additional evidence linking beta signals to decision thresholds. Specifically, beta power 

lateralization reflects the state of evidence accumulation during decision formation, with 

its peak serving as a neural indicator of the decision threshold (Fischer et al., 2018; 

Kirschner et al., 2023; Rogge et al., 2022). As a result, it can be hypothesized that beta 

and theta band activity are associated with the decision to abandon the current patch in 

favor of a potentially more rewarding resource within a foraging paradigm. 
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1.2 Feedback processing 

The decision-making process consists of multiple stages (Figure 1-1). The initial 

part of this thesis focuses on the valuation and choice phase within this cycle. In contrast, 

the objective of the second study is to explore how humans evaluate their actions and 

adapt to the consequences once a choice has been made. 

Goal-directed behavior and performance monitoring encompass a range of 

processes that facilitate flexible adaptations. This can be visualized as a feedback loop, 

where the weighted differences between expected and actual action outcomes are 

utilized to initiate appropriate adjustments and improve outcome prediction (Ullsperger, 

Danielmeier, & Jocham, 2014). It involves comparing the anticipated outcome with the 

observed outcome by calculating prediction errors and modifying behavior to reduce 

these errors through a learning process. Consequently, reward learning plays a vital role 

in value-based decision-making, where feedback is employed through positive and 

negative reinforcement. Monitoring behavior can involve learning from deliberate errors 

that are internally processed or through external feedback. External feedback is 

particularly important to assess one's own performance when errors are not consciously 

recognized. The second study focuses on the processing of external feedback and the 

subsequent behavioral adaptations that ensue. 

There are a lot of theories concerning how feedback is integrated in evaluation 

and learning. For a comprehensive overview, please see Ullsperger, Danielmeier, and 

Jocham (2014). In the following sections, I will focus on the most influential theories and 

their electrophysiological and behavioral evidence and describe open questions.  

1.2.1 Theoretical and electrophysiological basics of feedback 

processing and performance monitoring 

There are two main event-related potentials (ERP) associated with feedback 

processing: the feedback-related negativity (FRN) and the P300. The FRN is 

characterized by a negative deflection peaking around 200-300ms after feedback 

originating in frontocentral areas (Gehring & Willoughby, 2002; Miltner et al., 1997). 

Historically, the FRN has been assumed to be larger (i.e., more negative-going) for 
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negative compared to positive feedback (Miltner et al., 1997). The P300 (or P3, 

respectively) refers to a family of positive ERP deflections elicited by action-related 

stimuli around 300ms after presentation. There is the sharp and early P3a originating in 

more frontocentral areas responsible for attentional processes, while the more 

sustained P3b in parietal areas is associated with updating memory (Courchesne et al., 

1977; Polich, 2007). Moreover, the P3b is associated with uninformative surprise coding 

(Donchin & Coles, 1998; Mars et al., 2008) in a way that it is larger (i.e., more positive-

going) for unexpected or infrequent than expected/frequent events (Johnson & Donchin, 

1980; Polich, 2007). Furthermore, the P3b seems to be involved in action-value updating 

(Ullsperger, 2017; Ullsperger, Fischer, et al., 2014) and acts as a bidirectional learning 

signal (Nassar et al., 2019). While the FRN seems to be responsible for early evaluation 

processes, the P3 reflects the transformation of these information into attentional, 

motivational, and working memory processes (Huvermann et al., 2021). This gives 

reason to believe that both ERP components represent different aspects of information 

processing. 

One of the most important models in this area, which has been heavily debated 

over the past 20 years, is the reinforcement learning theory (RFL) of error and feedback 

processing proposed by Holroyd and Coles (2002). The model suggests that the FRN, 

like the error-related negativity (ERN), is an electrophysiological phenomenon of neural 

activity originating from the aMCC. According to this model, the FRN reflects a reward 

prediction error (RPE) that represents the discrepancy between an expected and an 

observed outcome. Thus, the FRN is supposed to scale with the size of the RPE being 

larger for unexpected outcomes (Holroyd & Krigolson, 2007; Weismüller & Bellebaum, 

2016). Hajcak et al. (2005) investigated this phenomenon using a guessing task in which 

the expectation of the outcome was manipulated by changing the probability of winning. 

Contrary to the model’s prediction, the FRN was not affected by the manipulation of 

expectancy, while the P3 increased as a function of unexpectedness. Since then, many 

studies have attempted to clarify what internal processes the FRN reflects (for a detailed 

overview, please see section 4.1). One of the proposed theories states that the FRN 

changes both as a function of valence and as a function of expectancy, representing a so-

called signed prediction error (PE). A large FRN is elicited, when the feedback is worse 

than expected (negative RPE), whereas a smaller FRN is elicited, when the feedback is 
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better than expected (positive RPE; Fischer & Ullsperger, 2013; Hajcak et al., 2007; 

Walsh & Anderson, 2012). However, new approaches indicate that the FRN signal may 

in fact be a product of a superimposed positive-going deflection, the reward positivity 

(RewP), driven by better-than-expected outcomes (Baker & Holroyd, 2011; Krigolson, 

2018; Proudfit, 2015). Recent research suggests that these are, however, independent 

processes corresponding to the representation of the positive and negative prediction 

error (Bernat et al., 2015; Cavanagh, 2015; Hoy et al., 2021; Zheng & Mei, 2023). In this 

context, it is important to highlight that the interpretation of results relies on how the 

FRN is defined and quantified. Different approaches exist, such as quantifying the FRN 

as the difference wave between losses and wins or as a distinct component resembling 

the N2 wave following feedback. The use of different paradigms and methods to 

represent the FRN makes results difficult to generalize. There continues to be a lack of 

studies that attempt to resolve this confound.  

Regarding the P3 component, there is supporting evidence that indicates its 

association with unexpectedness (Fischer & Ullsperger, 2013; Hajcak et al., 2007; 

Walentowska et al., 2016). However, when considering the effects of valence, the results 

are still mixed and unclear (Severo et al., 2018; Yeung & Sanfey, 2004). 

1.2.2 Adaptive behavior after feedback 

To effectively monitor our performance, it is crucial to continuously evaluate 

feedback on our actions and, if necessary, respond by adjusting our behavior. Several 

phenomena can indicate behavioral adjustments following an error, including post-error 

slowing (PES; Debener et al., 2005), post-error reduction of interference (PERI; King et 

al., 2010), and post-error improvements in accuracy (PIA; Marco-Pallarés et al., 2008). 

For a comprehensive review, please refer to Danielmeier and Ullsperger (2011). 

However, these phenomena are typically observed in the context of aware errors that 

are promptly corrected. The evidence becomes less clear when considering unaware 

errors that require external feedback for detection. Several studies suggest that activity 

in the anterior midcingulate cortex (aMCC) is associated with behavioral adjustments 

after errors, serving as a mediator for translating changes in action outcomes into the 

necessity for adaptive behavior (Danielmeier et al., 2011; Ullsperger, Danielmeier, & 

Jocham, 2014). Behavioral adaptations appear to depend on the valence of feedback and 
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its interaction with expectedness, with corresponding correlations to the amplitude of 

the FRN. Specifically, larger behavioral adaptations were shown after unexpected 

negative feedback (Holroyd & Krigolson, 2007). Recent evidence also indicates that the 

amplitude of the RewP predicts timing behavior for subsequent trials (Yan et al., 2023). 

Despite this progress, our understanding of the processing and execution of adaptive 

behavior after feedback, as well as the underlying neuronal mechanisms, remains limited. 

1.2.3 Research questions and hypotheses 

Despite extensive research in this area, numerous unanswered questions remain. 

There are conflicting findings as to whether, and if so, what types of RPE the FRN 

represents. Additionally, discrepancies in the quantification of FRN/RewP as an ERP 

component have yielded non-comparable and divergent results. It is crucial to adopt a 

quantification-independent approach that accurately represents post-feedback neuronal 

processes while independently capturing the influences of valence and expectedness on 

the neuronal signal. The P3 component appears to reflect unexpectedness, but its 

relationship with the valence of feedback is still ambiguous and requires further 

clarification. Scant findings exist regarding adaptive behavior after feedback, necessitating 

additional research that explores the association between feedback-processing FRN and 

P3 signals and behavioral adaptations. In light of these gaps, this thesis aims to address 

the existing issues by employing a novel methodology that can describe the influences of 

external factors on the neuronal signal without relying on specific ERP quantification. 

This will be achieved through a single-trial regression approach. The research questions 

to be addressed are as follows: Which type of RPE is reflected in the neuronal signal 

during the FRN period - signed or unsigned? Does the neuronal signal during the P3 

timeframe solely reflect unexpectedness, or does it also incorporate the valence of 

feedback? Is the neural signal during the FRN and P3 periods associated with behavioral 

adaptations to feedback? Based on previous findings, the following hypotheses can be 

formulated: Firstly, an interaction effect of expectedness and valence on the neural signal 

within the FRN timeframe is expected, supporting the notion of a signed RPE. 

Furthermore, I anticipate a significant impact of unexpectedness on the neuronal signal 

during the P3 latency. Additionally, it is expected that the neuronal signal within the FRN 
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latency correlates with behavioral adjustments after feedback, with larger adjustments 

and increased neuronal activity following negative feedback. 
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2 General methodology 

The following section provides a short overview and description of the key 

experimental and analysis methods that were used in the present dissertation. A more 

detailed description can be found in the methods sections of the empirical studies in 

section 3 and 4. 

2.1 Experimental paradigms 

In a broader sense, foraging consists of searching, locating, and collecting resources 

across multiple patches with the main goal of maximizing the overall rate of resource 

intake within a given time. As a subcategory, patch-leaving paradigms focus specifically 

on the decision of when to leave a resource patch, considering factors related to 

resource depletion and opportunity costs. The goal of developing the paradigm used in 

the first experiment was to map the entire decision-making process as described in 

Figure 1-1. That’s why, a binary value-based decision was combined with a patch-leaving 

decision. The present work focuses on the part of this process that involves patch-

leaving decisions. 

Currently, there is a lack of established foraging paradigms. Constantino and Daw 

(2015) employed a paradigm in which participants harvested trees and made distinct 

choices regarding whether to continue harvesting a particular tree or travel to another 

one. However, the present study focused on investigating the continuous foraging process 

using EEG. To achieve this, we implemented a continuous patch-leaving phase. In this 

phase, participants determined their foraging duration on a patch based on the desired 

reward threshold, as the reward continuously diminished over time. Moreover, 

environmental differences can be manipulated by varying the average patch quality and 

travel time between environments (Gabay & Apps, 2021). In our study, we presented 

these variations in a block-wise manner with fixed time periods for participants. This 

approach allowed us to effectively utilize EEG as a research method and address our 

research questions. 

In study II, to specifically generate certain EEG signals, we employed an established 

task called the time estimation task. In this task, participants were required to estimate 
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the duration of one second by pressing a key, and they received feedback indicating 

whether their estimation was accurate (positive feedback) or not (negative feedback). 

Outcome expectancy was manipulated by adjusting the target time window around one 

second, either increasing or decreasing, within which participants' responses were 

considered correct. For instance, if a response was marked as incorrect in an 

environment with a wide target time window (making it easier to hit), it was regarded 

as an unexpected outcome. It's important to note that learning in this task was limited 

since the feedback provided did not specify the direction in which participants should 

adjust their behavior to provide accurate estimations. This distinction sets it apart from 

probabilistic learning paradigms commonly utilized in investigating feedback processing. 

2.2 Computational modeling of behavioral data 

As mentioned earlier, computational modeling can greatly enhance decision 

research by creating models that reveal the underlying computational processes and 

latent variables influencing decision-making behavior. Ideally, one can then identify a 

neural signal that represents these decision variables. 

Previous findings (Harhen & Bornstein, 2023; Kolling & Akam, 2017; Steixner-

Kumar & Gläscher, 2020; Wittmann et al., 2016) indicated that an optimal fit to 

participants' behavior is achieved through a combination of model-based and model-free 

approaches. In this context, the term "model-based" typically denotes a sophisticated 

reinforcement learning approach leveraging prediction errors for anticipating future 

experiences. Conversely, the "model-free" approach is often linked to a straightforward 

MVT-like learning rule featuring an exit threshold. However, recent perspectives 

challenge the oversimplified categorization of model-based and model-free approaches 

(Collins & Cockburn, 2020). 

In this context, it is necessary to distinguish between normative approaches and 

models that fit parameters to an individual's behavior. The latter helps to depict 

individual variations, biases, etc. via these parameters. Normative approaches involve 

mathematically solving decision problems optimally, such as the MVT within the foraging 

context. Utilizing a normative model allows us to explore deviations from optimal 

decision strategies and their mechanisms. Therefore, the main focus in study I was to 
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develop an optimal agent inspired by the MVT framework. This agent utilized each 

participant's specific environment to determine the ideal patch-leaving solution. On the 

one hand, this model demonstrates the generalizability of a continuous patch-leaving 

paradigm to the MVT approach. On the other hand, this individual optimum served as a 

reference for comparing the observed behavior of participants and describing deviations 

from the optimal strategy. Subsequently, these deviations were associated with neuronal 

signals extracted from EEG data in order to explore the neural correlates of behavior. 

2.3 Regression models for EEG data 

As previously mentioned, the high temporal resolution of EEG makes it well-suited 

for studying continuous foraging processes and feedback processing. To disentangle 

various influences on the neuronal signal, I employed a robust single-trial regression 

approach (Fischer et al., 2016; Fischer & Ullsperger, 2013) to analyze the EEG data. 

Single-trial EEG activity at each electrode and time point was regressed against 

experimental and behavioral parameters. The models, which are little susceptible to 

outliers, were employed in the time- and the time-frequency domain, first within and 

then across subjects in the following linear equation ((2-1):  

 
𝑌𝑌 =  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽1𝑅𝑅𝑅𝑅𝑅𝑅1  + 𝛽𝛽2𝑅𝑅𝑅𝑅𝑅𝑅2 +  … +  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

(2-1) 

 

This mass univariate approach yields individual b values for each electrode and 

time point for each subject. To ensure comparability of predictors within and between 

subjects and to address multicollinearity, the b values were standardized by their 

standard deviations before averaging across subjects. This approach allows to investigate 

simultaneous influences of multiple independent variables while preserving the high 

temporal resolution of the EEG.  
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3 Study I: Temporal EEG dynamics of foraging 
decisions in humans 

3.1 Introduction 
During the search for a new job, individuals must consider various factors: 

comparing alternative options to the current job, contemplating potential future offers, 

and determining the opportune moment to change jobs depending on labor market 

conditions. This challenging decision-making process in volatile environments can be 

described by the term “Foraging decision”. This type of decision-making involves 

deciding whether and for how long to continue exploiting a rewarding patch or to 

explore new opportunities – a challenge referred to as the exploitation-exploration 

dilemma. Humans face a trade-off between the benefits of acquiring reward and the costs 

associated with foraging, such as time and energy expended, as well as potential risks. 

As resources become depleted, it becomes less and less efficient to continue exploiting 

the current patch, and the costs of moving to a new patch may become outweighed by 

the benefits of finding a new resource. The marginal value theorem (MVT; first proposed 

by Charnov, 1976) provides a normative framework for understanding how humans 

achieve this balance and find the ideal leaving time: one should stay in a patch of 

resources until the rate of energy gain (i.e., the amount of resources obtained per unit 

time) in the current patch falls below the average rate of energy gain across all available 

patches in a specific environment. The former is also often described as foreground 

reward rate (FRR), the latter as background reward rate (BRR). This theory suggests 

that a longer stay in richer patches is beneficial compared to poorer patches, while a 

shorter stay on patches in an overall rich environment consisting of multiple rich patches 

is beneficial compared to a poor environment. This phenomenon has already been 

demonstrated in several studies in humans (Constantino & Daw, 2015; Le Heron et al., 

2020; Wolfe, 2013) and primates (Hayden et al., 2011), sometimes with restrictions 

(Garrett & Daw, 2020; Wittmann et al., 2016; Wolfe, 2013). Recent evidence examines 

the “overharvesting” (staying too long) of participants that is sometimes observed and 

reveals that MVT is insufficient to explain behavior because it does not account for 

uncertainty as a function of task complexity (Harhen & Bornstein, 2023). In addition, one 

study showed that participants do not adequately adjust their expectations when the 
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environment worsens, leading to suboptimal decisions (Garrett & Daw, 2020). On a 

neurobiological level, the average value of the foraging environment, the cost of foraging, 

and expected future rewards were associated with the aMCC (Hayden et al., 2011; 

Kaiser et al., 2021; Kennerley et al., 2006; Kolling et al., 2012; Kolling et al., 2016; 

Wittmann et al., 2016). Others (McGuire & Kable, 2015) additionally showed an 

involvement of the ventromedial prefrontal cortex (vmPFC) in the foraging process, as 

it is associated with the comparison of the values of different options. Moreover, Le 

Heron et al. (2020) found that dopamine specifically modulated how sensitive people 

were to the richness of the environment.   

While evidence is growing that human foraging decisions can be well described, at 

least at a conceptual level, by previous models such as the MVT with certain additions, 

many questions still remain open. It is unclear in what way which information is used by 

subjects to make an informed foraging decision. Moreover, neurobiological insights into 

this process are still sparse, and so far, fMRI has been used significantly to draw 

conclusions about localization. As a consequence, there is yet little knowledge about the 

timing of neurological dynamics of this process, although it is a "when decision". Thus, 

an important component for understanding foraging decisions is missing at this point. 

EEG is a highly suitable approach for addressing this research question but has not been 

used to investigate foraging decisions in patch-leaving paradigms so far. To bridge this 

gap, the purpose of this paper is to explore the temporal component by introducing a 

novel foraging paradigm coupled with concurrent EEG recording. At the behavioral level, 

we expect participants to approximate in their behavior an ideal agent as proposed by 

MVT, in terms of close-to-optimal adaptation to changes in FRR and BRR. Specifically, 

we anticipate that participants spend more time on patches with higher quality and to 

prolong their stay on patches within a poor environment. Building on previous evidence, 

we generally predict overharvesting and poorer adaptation in poor compared to rich 

environments.  

At the neurobiological level, we expect to see foraging-related dynamics of neural 

activity that track changes in FFR and BRR. Such decision signals could initially occur at 

the beginning of a harvest phase on a particular patch and already prime the ideal leaving 

time. Alternatively, such a signal could also occur as a persistent tracking signal leading 

up to the decision, possibly indicating some sort of upramping to a calculated threshold 
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that needs to be crossed. Hayden et al. (2011) provides initial evidence for this in a 

foraging study with macaques: neurons firing in the primate dACC predicted when 

monkeys left a patch, and these responses increased with the time spent in the current 

patch until neural responses reached a threshold. It is still unknown, how a tracking 

signal might look like in humans. Because midfrontal theta has been associated with 

cognitive control (Cavanagh & Frank, 2014) and strategic control during exploratory 

choices (Cavanagh et al., 2012), while previous evidence has linked foraging decisions to 

the aMCC, theta tracking signals in frontal areas could represent such a marker. 

Moreover, pre-response reduction in beta power over the contralateral motor cortex 

has been demonstrated to reflect decision-related variables (Donner et al., 2009; Fischer 

et al., 2018; Pape & Siegel, 2016). Activity in the beta band can serve as a proxy for 

response thresholds (Kirschner et al., 2023) and signifies integration of decision evidence 

(Rogge et al., 2022).  Hence, a decrease in beta activity not only signals motor action 

preparation, rather it provides a readout of action selection. In conclusion, we expect 

activity in the theta band and a reduction in beta power to encode the decision to leave 

in patch-leaving environments.   
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3.2 Methods 

3.2.1 Participants 
N = 137 healthy participants were recruited at the Otto-von-Guericke University 

Magdeburg (11/2020-04/2022). Exclusion criteria were any present or past psychiatric 

or neurological disorders, drug abuse, alcohol intake at day of study, and use of 

neurological-acting medication. 3 participants had to be excluded due to an interruption 

of task execution, therefore these subjects did not complete all conditions equally. The 

final sample for the analysis of behavioral data consists of 81 female, 52 male and 1 

diverse participants between 18-40 years (M = 23.37; SD = 4.99). The study was 

approved by the Institutional Review Board/Ethics Committee the University of Leipzig 

(285-09-141209) and written informed consent was obtained from all participants after 

briefing prior to study enrolment. The study was conducted in accordance with the 

Declaration of Helsinki. For their participation, the subjects received a payment of 8 

euros per hour or credit points for their studies. In addition, all participants were able 

to earn a bonus of 0.02 euros per point won in the paradigm. 

3.2.2 Experimental paradigm 
We have developed a novel patch-leaving task (Figure 3-1) where the main goal 

of the participants is to gain as much reward (gold) as possible within a given time. Each 

trial starts with a value-based binary choice between two options (islands). The objective 

value of the options is defined by the possible gain of the option (green bar), the possible 

loss (red bar), and the probability of loss (number of pirate symbols above: 1=25%; 

2=50%; 3=75%). In addition, information is given about the accumulated reward won 

(blue bar at the top; in points) and the time remaining for foraging (sun; in days). 

Participants decide which option to select by pressing a button with their left or right 

thumb. This is followed by a varying travel time to the chosen option (continuously filling 

blue bar), with time lost to foraging. During the harvesting phase, a filling green circle is 

displayed, which represents the reward collected by the participants. The filling circle is 

based on 9 different decay functions (PatchScaler; Figure 3-1 Bi and Bii), so that the 

circle fills up more and more slowly over time. By pressing the button with the right 

thumb, the participants decide to leave the option (patch) to search for more reward 

elsewhere, and thus the harvesting phase is terminated. At the end of the trial, 
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participants receive feedback on the reward they collected during the harvesting phase 

and, in a second step, on whether and how much of that reward they lost again (due to 

a pirate attack). The feedback was displayed for 7 sec on average. Throughout the trial, 

except during the binary decision, time is lost to foraging.  

 

Figure 3-1. Task Design. 137 healthy volunteers had 30min (illustrated by the sun and the 
yellow bar; 100 days) to harvest as much reward as possible while EEG (64 equidistant 
electrodes, sampling rate of 500Hz) was recorded (A). They started with a value-based choice 
between two options varying in value (1), had to wait in a travel phase (2), decide how long to 
stay and harvest the chosen patch (filling circle, 3) and received feedback at the end about the 
reward gained (4a) and what was left of it after a possible loss (4b). For 15 min, the environment 
was rich with more valuable options to choose from and a shorter varying travel time, while for 
the other 15 min, the environment was poor. The patches were defined by different decay 
functions (Bi). Bii shows the accumulated reward of the patches. The more transparent the line, 
the higher the quality of the patch. The rich environment consisted of the 6 patches with the 
highest quality (green), in the poor environment all 9 patches could occur (red and green). 

A total 30min (100 days) is available, including 15min for each of two conditions. 

Participants are presented with a rich (summer) and a poor (winter) environment, with 

options with higher objective value (gain – loss*probability) available in the rich 

environment and shorter average travel time (M = 2 sec) than in the poor environment 

(M = 5 sec). Participants went through each condition once (counterbalanced over 

participants) knowing which environment they are in by the instruction. Due to task 

design, in the rich environment occurred only the 6 highest quality patches (Figure 3-1 
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Bi; Bii green), while in the poor environment, all of the 9 patches, with higher probability 

for low quality patches (Figure 3-1 Bi and Bii red and green), could occur. Based on a 

collection of predefined trials, specific trials were randomly drawn and presented until 

the time to forage expired, so that each participant experienced an individual 

environment (mean number of trials = 116; SD = 11). Before the experiment, 

participants undergo a training session to ensure they understand the complex 

instructions and objective of the task.  

In order to disentangle neural correlates uniquely attributable to cognitive foraging 

processes from motor-related processes, we added a control paradigm very similar to 

the main task to compare the results of both versions with respect to their different 

demands at the end of each session: while the patch-leaving task requires intensive top-

down involvement to determine the optimal time to leave in a given environment, the 

motor task was very simple and mainly requires a motor response at a specific time. It 

consists of 50 trials randomly selected from the previous task (10% of the longest leaving 

times, 10% of the shortest, rest randomly), in which participants are presented with 

filling green circle indicating their previous leaving time with a black marker. Their task 

is to press the button when the circle reaches the marker. All preprocessing and analysis 

steps are congruent with the main task. Results can be found in the supplement 

information. 

3.2.3 EEG acquisition and preprocessing 
Electroencephalic signals were continuously recorded at 500 Hz sampling rate with 

BrainAmp MR plus amplifiers (Brain Products) from 64 Ag/AgCl sintered electrodes, 

which were mounted in an elastic cap according to the extended 10-20 system with 

impedances kept below 5kΩ. The ground electrode was placed at the sternum. 

Electrodes to capture horizontal and vertical eye movements were mounted next to 

both eyes and above and below the left eye. The signal was online referenced to the left 

mastoid. The recorded data was high (0.3Hz) - and low (42Hz) -pass filtered and re-

referenced to common average. In the present study, we focus on the harvest phase. 

Response-locked data (decision to leave the patch) was epoched from -3000 to 500ms 

after response, whereas stimulus-locked data (start of the green circle) was epoched 

from -500 to 3000ms after stimulus onset. Artifacts were excluded based on an 
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automated algorithm that rejected at least 5 epochs and no more than 10% of the trials, 

while the rejection criterion for signal outliers was a deviation of more than 5 SD from 

the mean probability distribution of the EEG signal (Delorme et al., 2007) and could be 

adaptively adjusted to meet the previously mentioned criteria. In addition, epochs were 

demeaned and submitted to adaptive mixture independent component analysis (AMICA, 

Palmer et al., 2012). We used a combination of automated procedures (Corrmap-

approach, Viola et al., 2009) and the rating of two independent raters to exclude 

artifactual components from the data. For the analyses of the behavioral and EEG data, 

we calculated multiple robust regressions (Fischer et al., 2016; Fischer & Ullsperger, 

2013). A baseline of -300 until 0ms prior to stimulus onset was used and subtracted 

from the signal. EEG datasets for which ICA did not converge or too few trials for 

specific regressors existed were excluded (3 subjects), resulting in a final EEG sample of 

131 participants. For EEG and behavioral analysis, EEGLab v2021.0 toolbox (Delorme & 

Makeig, 2004) and customized code written in MATLAB R2019b version 9.7.0.1586710 

Update 8 (MathWorks) was used. 

3.2.4 Data analysis 
3.2.4.1 Analyses of behavioral data 

As mentioned before, we focused on the harvest phase of the paradigm, because 

we were interested in patch-leaving decisions. The instantaneous reward rate at leave 

time (iRR) served as the outcome variable, as we were interested in the influence of 

several task-specific characteristics on the time-reward ratio at which participants exit 

the current patch. This parameter was calculated by subtracting the accumulated reward 

at the timepoint before the decision to leave from the accumulated reward at the time 

of the decision to leave, relative to the time resolution. Highly correlated with this 

outcome measure is patch leaving time (PLT), which describes the time spent on the 

current patch. Several regressors of interest complemented the regression analyses: the 

type of environment (rich/poor; Environment); quality of the patch (9 different decay 

functions of reward development; PatchScaler); pirate raid/loss in previous trial (y/n; 

Pirates); the time left in the current environment (DaysLeftB); the average of the amount 

of the last 5 rewards participants have received (Last5); the duration of the travel time 
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prior to the harvest phase relative to the mean travel time of the other environment 

(relSailing). The overall model was defined as:  

𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +  𝛽𝛽2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝛽𝛽3 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +
 𝛽𝛽4 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 +  𝛽𝛽5 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿5 +  𝛽𝛽6 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  𝜀𝜀           (3-1) 

The type of environment was represented by the BRR, whereas the FRR was 

operationalized as PatchScaler. In the context of MVT, an ideal agent would spend less 

time on each patch if the background reward rate (rich environment) is high, while a 

high foreground reward rate should result in an increase in time spent on the patch. 

Therefore, the iRR is supposed to be stable across different PatchScalers, however the 

iRR should be higher in rich environments for optimal success. We expect no or minor 

influence of other regressors onto the iRR. To quantify participants’ performance on the 

task, we used a measure of negative efficiency by comparing participants average reward 

rate of leave to an ideal agent and calculating the percentage deviation from the optimum. 

We linked this measure to the EEG signal during the harvest phase, described in more 

detail in 3.2.4.3. 

All parameters were normalized, and reaction times were log-scaled. To compare 

participants’ behavior with an ideal policy, we simulated an optimal agent, which is 

described in the following section. 

3.2.4.2 Computational Modeling 

We developed a model that mimics each participant’s individual environment while 

maximizing rewards under time pressure. The optimal agent used participants’ choices 

in the binary choice phase to determine the optimal time to stay on a particular patch 

in a given environment. According to MVT, the optimal leave time on each patch was 

defined as the time point when the change of reward over time (FRR) exceeds the 

average reward rate (BRR). Separately for each environment and based on individual 

participants’ environment and binary choices (cp), the constant average reward rate (en) 

was fitted in an iterative process until it reached a negative local minimum indicative of 

the maximum reward per unit time. The optimization was executed employing the 

Matlab function "patternsearch," guided by Eq. (3-2). Within this equation, the variable 

tleave symbolized the ideal leave time based on the exponential function f (Eq. 3-3). This 

function was randomly selected from a predefined set k of options contingent on the 
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environment (env, Eq. 3-4). N represented the trial count, TT stood for the averaged 

travel time depending on the environment, loss denoted possible loss, and lp indicated 

loss probability. It follows that the total payout per unit time (Loss) was defined as the 

cumulative amount of reward earned upon leaving at the time of an MVT-derived 

threshold, minus the potential loss of the chosen option, divided by the time required 

to obtain this reward. Subsequently, the fitted average reward rate corresponding to the 

maximum payout was employed to solve the rich/poor environment, resulting in optimal 

leaving times/ iRR for the nine patches (six in poor environment) in each participant’s 

unique environment. The results were used to confirm the assumptions of the MVT in 

the context of our task and to identify participant deviations from ideal behavior when 

compared to empirical data. 

   ∀𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:𝑓𝑓𝑘𝑘′(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑒𝑒𝑒𝑒   𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒  = −
� ((𝑓𝑓𝑘𝑘(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒𝑒𝑒) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑘𝑘)∙ 𝑐𝑐𝑐𝑐𝑛𝑛)𝑁𝑁

𝑛𝑛=1
𝑁𝑁 ∙ 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 + ∑ (𝑁𝑁

𝑛𝑛=1 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙𝑐𝑐𝑐𝑐𝑛𝑛)
            (3-2) 

𝑓𝑓𝑘𝑘(𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑒𝑒
−𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1

5            (3-3) 

𝑘𝑘~𝑈𝑈(𝑒𝑒𝑒𝑒𝑒𝑒)             (3-4) 

 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟ℎ ∈  {4.99, 5.83, 6.75, 7.63, 8.48, 9.36} 

𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈  {2.34, 3.25 , 4.11, 4.99, 5.83, 6.75, 7.63, 8.48, 9.36}  

3.2.4.3 Analyses of EEG data 

For the raw time-frequency decomposition, we analyzed 80 frequencies between 

1 and 30 Hz with the help of Morlet wavelet cycles between 4 and 10. A baseline of -

300ms to stimulus onset was used for the harvest-onset-locked data, while -2800 to -

2600ms before response served as baseline for response-locked data. Results are 

converted to changes in decibels from baseline. 

We employed multiple robust regression analyses within (1st level) and across 

subjects (2nd level) in both the time domain and time-frequency space (see Eq. 3-1; 

Fischer et al., 2016; Fischer & Ullsperger, 2013) with the same parameters as described 

above. Regression was applied to -2500 to 300ms relative to foraging response, whereas 

regression of stimulus-locked data was applied -300 to 2500ms relative to harvest 

stimulus onset. To eliminate the possibility of other events confounding the analyses, we 

included only trials with a minimum time of 2500ms remaining on the patch (mean trials 

left = 101; SD = 10). For the time-frequency decomposition within the regression, 
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complex Morlet wavelets between 1 and 30 Hz in 20 logarithmically steps were used. 

The number of wavelet cycles was 4.5 and changed as a function of frequency. This 

resulted in maps of beta weights at each electrode and time point (and frequency) across 

participants. 

Beta weight maps were thresholded (threshold for clustering: p=.05, one tailed). 

Clusters were identified as temporally contiguous signals that shared a common effect 

sign and exceeded the threshold. Cluster mass was calculated as the average absolute 

beta weight within a cluster times its size (number of timepoints or timepoints x 

frequencies contained in the cluster). To correct for multiple comparisons, the cluster 

mass for each cluster was compared to a permutation distribution generated by 

iteratively flipping the sign (1000 permutations for time-domain data; 10000 for time-

frequency data; Nichols & Holmes, 2002). 

 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 / 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +  𝛽𝛽2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +
 𝛽𝛽3 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝛽𝛽4 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 +  𝛽𝛽5 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿5 +  𝛽𝛽6 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  𝜀𝜀    (3-5) 

To calculate beta activity, the time-frequency decomposition was computed for 

different trial clusters according to the corresponding PatchScaler, depending on how 

much reward they provide, and averaged across participants. Subsequently, the time-

frequency decomposed data from frequencies 13 to 30 Hz were extracted and averaged. 

To show beta activity for differentially efficient participants, the extracted beta signals 

were averaged across performers with good and poor efficiency, which were 

determined by a median split of the participant group based on their efficiency.  
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3.3 Results 

3.3.1 Behavioral Results 
Results of the overall behavioral regression (Eq. 3-1) show that the PatchScaler has 

the greatest influence on iRR (Figure 3-2 A, mean beta = 0.42, t(133) = 15.32, p < .001 

(bonf cor), 95% CI [0.37, 0.48]). The better the current patch is (or the more reward it 

yields over time) that participants are on, the higher the iRR at the time of leaving. The 

environment where participants are located seems to play a less important role, yet 

participants tend to leave at a higher iRR in the rich environment compared to the poor 

environment (mean beta = -0.27, t(133) = -3.13, p < .05 (bonf cor), 95% CI [-0.49, -0.04]). 

Figure 3-2 B shows the distribution of negative efficiency as a measure of performance 

representing the deviation from an optimal agent for each participant in percent. The 

majority of subjects deviate from the ideal by only about 6%, with some deviating by as 

much as about 27%.  

 

Figure 3-2. The effect of Environment and PatchScaler onto the instantaneous 
reward rate at leave time (iRR) and comparison of empirical with model data. 
Environment and PatchScaler have a significant influence onto iRR (A). Most participants deviate 
in their efficiency by about 5-10% from the optimum (B). Participants adjust the iRR depending 
on PatchScaler, while the optimal agent would propose a stable iRR that only differs between 
environments (Ci). Participants adapt to the patch leaving time (PLT; blue), but not to a sufficient 
degree as would be predicted be the agent (green, Cii). 
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Figure 3-2 Ci and Cii show the averaged data of an agent behaving ideally in the 

individual environments of the participants (green). As the MVT would predict, the iRR 

should remain stable between different PatchScalers, while it should be higher in rich 

environments than in poor ones. In contrast, the more reward the patch yields 

(PatchScaler), the longer the PLT should be, and it should be higher in poor 

environments than in rich ones. In comparison, participants actually show higher PLTs 

the higher the PatchScaler (blue), but not to the extent predicted from the normative 

model. At the same time, this means they leave the patch at suboptimally higher iRRs 

the higher the PatchScaler. Participants show a tendency to adapt to the environment in 

an optimal direction, but not to the sufficient extent that the agent would suggest. 

Overall, participants spend too little time on patches.  

3.3.2 Electrophysiological Results 
3.3.2.1 Stimulus-locked data 

Results of robust single-trial regression on the EEG signal around the harvest onset 

reveal two periods where PatchScaler has a significant influence, namely a wide range 

from about 200ms to 1200ms after stimulus onset at frontocentral sites and a later 

period around 2400ms at centro-parietal sites (Figure 3-3 Ai; Bi). The sign of the beta 

weights reverses within the first period, so that the EEG signal is initially more positive 

the better the patch, and from 1000ms after the onset of harvest, the signal is more 

negative the better the patch quality. Starting at 2400ms, there is a positive shift in the 

signal that becomes more pronounced with improved patch quality again. The 

environment also influences the EEG signal in a more sustained fashion: from around 

500ms on, there is an increase in the EEG signal with a more positive signal in the poor 

environment compared to the rich one (Figure 3-4 Ai; Bi).   

We computed the same regression analysis as above using the time-frequency 

decomposed data. After cluster-based correction of the results (Figure 3-3 Di), we find 

a significant influence of PatchScaler in the form of a decrease in the frequency range of 

delta and theta starting 1500ms after stimulus onset in fronto-central regions. The better 

the quality of the patch becomes, the less of delta/theta activity occurs. Additionally, a 

decrease in the frequency range of beta differentiates between patches in more parietal 

areas from 600ms to 1600ms after stimulus onset.  
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Figure 3-3. Effect of PatchScaler onto the EEG signal and raw time-frequency 
decomposed data. The left part of the figure shows the stimulus-onset locked results, while 
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(Figure 3-3 continued) the right part shows the response-locked results of the regressor 
PatchScaler. While the signal is more positive the better the patch quality already in the initial 
harvest phase in more frontal areas, this effect reverses just before the decision to leave is 
executed (Ai, Aii, Bi, Bii). Ci and Cii show the raw time-frequency decomposed data of the 
stimulus-locked and response-locked time window. There is an initial increase in theta power 
followed by a broad decrease in delta and beta frequency range until the decision is made. Results 
of the regression in the time-frequency space show decreases in the frequency range of beta, 
theta, and delta depending on PatchScaler that are most pronounced in the period before the 
decision to leave is executed (Di, Dii). Gray areas and black contours show significant clusters 
after permutation-based correction for multiple comparisons. 

Due to environmental changes, there is a decrease in the beta frequency range for 

the maintained effect of the environment as well, while an increase in the frequency 

range of delta occurs right after stimulus onset in midfrontal areas. This is followed by a 

broad decrease in the theta frequency range (Figure 3-4 Ci). 

3.3.2.2 Response-locked data 

Results of robust single-trial regression on the EEG signal around the response 

when leaving the patch reveal two periods before the button press in which PatchScaler 

has a significant influence, namely earlier around -1800ms and immediately before button 

press from -500ms (Figure 3-3 Aii; Bii). In the first period, the beta weights have a 

positive sign, assuming a more positive EEG signal the better the patch, whereas the 

period immediately before leave decision suggests a more negative signal for better 

patches. Unexpectedly, both effects occur in more parietal areas. Again, the environment 

has a sustained influence onto the EEG signal with a more positive signal for the poor 

environment compared to the rich (Figure 3-4 Aii; Bii).  

In terms of the time-frequency decomposed data, PatchScaler causes a broad decrease 

in beta frequency range before button press in midfrontal and parietal areas (Figure 3-3 

Cii; Dii). Additionally, there are decreases in the frequency range of delta and theta that 

start in the early phase and last until the button is pressed. The effects mentioned before 

are most pronounced in fronto-central to parietal regions and contralateral to motion. 

Furthermore, the environment affects the EEG signal over parietal areas from around 

2000ms to 1000ms before the decision to leave in the form of a decrease in the delta 

frequency range (Figure 3-4 Cii). 
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Figure 3-4. Effect of Environment onto the EEG signal. The left part of the figure shows 
the stimulus-onset locked results, while the right part shows the response-locked results of the 
regressor Environment. The signal is more positive in a poor compared to a rich environment 
and this effect is most pronounced in the period before the decision to leave in parietal areas 
(Ai, Aii, Bi, Bii). An initial increase in delta power shortly after stimulus onset, due to the 
environment, can be observed, followed by decreases in the frequency range of theta and beta. 
Between 2000 and 800ms before the decision to leave, there is a decrease in delta power (Ci, 
Cii). Gray areas and black contours show significant clusters after permutation-based correction 
for multiple comparisons. 

3.3.2.3 Beta ramps 

Because we saw a decrease in beta activity the better the patch was from both the 

stimulus-onset perspective and the response-locked perspective, we averaged the beta 

frequencies of the raw time-frequency data and plotted them in patch clusters (Figure 

3-5 Ai; Aii). Effects were most pronounced in the parietal areas and contralateral to 

motion, so here we show electrodes Pz and C3. From 500ms after stimulus onset, high-
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reward patches show a stronger decrease in beta power compared to low-reward 

patches, whereas this effect seems to change direction as the decision to leave 

approaches, with a stronger decrease for low-reward patches. However, we cannot 

prove that this stimulus-onset-locked beta represents the same phenomenon as the 

response-locked beta. Furthermore, we split the group in participants with good and 

poor efficiency based on their deviation from optimum and plot the averaged beta 

frequencies for both groups (Figure 3-5 Bi; Bii). Participants with poor efficiency seem 

to have a stronger decrease in the beta frequency range both, after stimulus onset and 

close to the decision to leave.  These results are rather exploratory in nature and serve 

to better describe the effect found in the beta frequency range, as we did not have strong 

prior hypotheses about an association between midfrontal beta and foraging. 

 

Figure 3-5. Raw beta signaling due to quality of patch and efficiency of participants. 
The left part of the figure shows the stimulus-onset locked results, while the right part shows 
the response-locked results. Beta power appears to be lower for patches yielding less reward 
compared to higher quality patches starting 500ms after the onset of harvesting (Ai). This effect 
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(Figure 3-5 continued) seems to reverse just before the decision to leave is executed (Aii). 
Beta power appears to be lower in participants showing poor efficiency compared to high-
performing participants, especially in the initial harvest phase (Bi, Bii). 
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3.4 Discussion 
The aim of the present study was to examine the temporal neurophysiological 

dynamics underlying decision-making during foraging in humans. Consistent with 

expectations, the behavioral results demonstrated that participants' behavior 

approximated that of an optimal agent, as proposed by the MVT. However, participants' 

performance deviated from the optimal behavior by a certain extent, and they displayed 

systematic biases when adapting to specific manipulations. We observed suboptimal 

adaptation to a resource-poor environment compared to a resource-rich one, 

consistent with previous evidence (Garrett & Daw, 2020). In contrast to prior findings 

(Constantino & Daw, 2015; Harhen & Bornstein, 2023), participants in this study 

generally “underharvested” the available options. This discrepancy may be attributed to 

the nature of the paradigm, which induced a sense of urgency with time-related 

information, unlike other paradigms that operate differently. In alternative patch-leaving 

paradigms (Constantino & Daw, 2015; Harhen & Bornstein, 2023; Wittmann et al., 

2016), the decision to stay/leave did not disrupt the continuous harvest, as seen in our 

study, where the decision timing did influence the harvesting duration itself. Instead, the 

stay/leave choice occurred sequentially after the harvest phase was completed. While 

participants exhibited stronger sensitivity to changes in the foreground reward rate 

(FRR) and adapted their choices on a trial-by-trial basis accordingly, they did not 

adequately consider changes in the background reward rate (BRR) associated with 

changes of the environment. Notably, the adaptations to changes in the FRR were 

insufficient in magnitude. Participants viewed the accumulated reward on the screen and 

had to compute the derivative of this value to determine the optimal time to stop 

foraging (iRR). This complex task could have contributed to suboptimal behavior. 

Alternatively, it is plausible that the optimal adaptive approach proposed by the MVT is 

too complex and inefficient for humans. Instead, humans may rely on simpler heuristics 

to make decisions that align with a basic cost-benefit calculation (Findling et al., 2021). 

On the physiological level, we were able to identify distinct signals for different 

aspects of the foraging decision. The BRR operationalized as a change of environment 

has a sustained impact, because it does not change on a trial-by-trial basis. The signal 

tracking the BRR is represented in form of a more positive EEG amplitude when the 
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environment is poor compared to rich and an increase in the frequency range of delta 

when the harvest phase begins, which turns into a decrease approximately 2 to 1 sec 

before the decision to leave is executed. Cavanagh (2015) has already proposed a 

mechanistic role for delta band activities in motivating action selection. Moreover, 

synchronous activity in the delta frequency band was associated with the coordination 

of distant cortical networks during decision-making (Nácher et al., 2013). If that is true 

for the present delta activities, this result could indicate that a network that goes beyond 

the aMCC is involved in foraging decisions. This would also explain why, contrary to 

assumptions, we found a strong association with parietal activities in addition to frontal 

activations.   

After one second post stimulus onset, the delta increase is alternated by a decrease in 

the theta frequency range. A decrease in theta seems to represent a shared component, 

which plays a role for tracking the BRR as well as the FRR. Here, we see a decrease in 

the theta frequency range 1500ms after stimulus onset and again early, about 2.5 sec 

before, until the decision to leave is executed. This reduction in midfrontal to parietal 

theta activity is associated with both the environment and the trial or patch-related scale. 

This finding is consistent with Jacobs et al. (2006), who found a relationship between 

midfrontal theta and decision-making, showing a decrease in preresponse theta power. 

We expected to find theta band oscillations involved in foraging decisions, since previous 

evidence associated it with strategic cognitive control in order to reduce uncertainty 

(Cavanagh et al., 2012; Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015). 

Consistent with our expectations, we observe broad decreases in beta activity 

over parietal and contralateral regions, mainly as a function of the FRR, starting from 

500ms after the onset of the harvest phase and persisting until the decision to leave is 

made. Notably, the higher the patch quality becomes, the less beta activity occurs, and 

the later the participants leave the patch. Usually, decreases in beta power are related 

to motor preparation (Khanna & Carmena, 2015). However, in this context, the 

decreasing beta activity linked to improved patch quality appears to be intricately tied 

to decision processes rather than being solely a motor-related phenomenon. This leads 

us to the conclusion that the reduction in beta power does not merely reflect motor 

preparation but indeed encapsulates a decision variable (Fischer et al., 2018; Rogge et 

al., 2022). Specifically, within the patch-leaving framework, the variable corresponds to 
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patch quality, directly determining the timing of leaving. This conclusion gains further 

support when comparing results with a task similar to the present paradigm, but without 

a foraging requirement – purely motor. In this task, a pre-response reduction in beta 

power is also evident, but it is not correlated with patch quality (Figure 3-6 Di; Dii).  

Beta  and theta signaling have previously been shown to be associated with the 

accumulation of information until a response threshold is crossed (Donner et al., 2009; 

Fischer et al., 2018; Guan et al., 2023; O'Connell & Kelly, 2021; Pape & Siegel, 2016; 

Rogge et al., 2022). Moreover, MVT predicts the ideal time to leave a particular option 

when the FRR falls below the BRR, thus defining a threshold. The FRR-associated 

reduction in beta and theta activity suggests that these neuronal signals serve as 

inhibitory signals until a certain threshold is reached. This interpretation is supported by 

the finding that beta signals are most negative at the onset of harvest for high-reward 

patches, whereas a reversal occurs just before the decision to leave, with the beta signal 

most negative for low-reward patches, thus possibly marking a threshold. It remains 

unclear whether the slope leading up to the threshold becomes less steep when patch 

quality is better compared to worse or whether the threshold itself increases as a 

function of a peak in beta or theta reduction.   

Enhanced patches necessitate longer periods of exploitation. As patch quality improves, 

participants indeed tend to extend their stay, but this adaptive response is not 

proportionate, resulting in more suboptimal behavior as patch quality increases. This 

phenomenon of less-optimal behavior in correlation with higher patch quality might find 

its explanation in the context of collapsing decision thresholds as time elapses, as 

recently proposed by Kirschner et al. (2023). Furthermore, we found evidence of a 

relationship between the beta signal and participants’ efficiency, i.e., how close they 

approach the optimum of a model. Poor efficiency could be related to a smaller decrease 

in the beta signal, which would imply lower inhibition or a lower threshold, resulting in 

an earlier departure than the optimum suggested by the model. The extent and 

mechanisms through which the reduction in beta and theta power impacts foraging 

decision-making by affecting decision thresholds warrant further investigation in 

subsequent studies. Replication of the findings presented in this work is essential to 

validate these relationships. 
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As mentioned above, to better distinguish between neuronal phenomena related 

to purely motor processes and more cognitive processes inherent in foraging decision-

making, we used a very similar task to our paradigm. This control task was designed to 

emphasize more execution rather than foraging demands. As illustrated in the 

supplementary material (Figure 3-6), in the time-frequency decomposition of the raw 

data reveals notable activations at the onset of the harvest phase and before the 

keystroke occurs. Increased activity in the frequency range of delta and theta emerges 

at the beginning of the harvest phase, which could be interpreted within the context of 

a P300. However, the signal pattern of this motor-related task differs significantly from 

that observed in the foraging paradigm, particularly concerning the reflection of decision-

related variables. Remarkably, there is no longer a reduction in theta or beta power 

associated with patch quality. In essence, this comparison supports the interpretation 

that the observed phenomena are neural processes closely tied to foraging decision-

making, rather than being predominantly influenced by motor-associated factors. 

In conclusion, the aim of the present study was to investigate the temporal 

neurophysiological dynamics of foraging decisions in humans. Our findings are the first 

to describe distinct patterns of beta, theta, and delta oscillations that relate to foraging 

behavior. Delta band activities appear as a unique signal of BRR with a maintained impact. 

Theta band activities represent a shared component, reflecting both FRR and BRR. Theta 

and beta band activities seem to continuously track the foraging process, beginning as 

early as the initial harvest phase leading up to the decision to leave a particular patch. 

Future studies should focus on continuous mapping of the foraging process, examining 

the nature of any threshold or slope adaptation. The use of electrophysiological signals 

is an eminently suitable approach to better describe foraging decisions, and we 

encourage further research to contribute to this still highly neglected opportunity to 

improve the understanding of neuronal mechanisms of complex human decision-making.  
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3.5 Supplemental Information 

 

Figure 3-6. Effect of PatchScaler onto the EEG signal for the motor task and raw 
time-frequency decomposed data. The left part of the figure shows the stimulus-onset 
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(Figure 3-6 continued) locked results, while the right part shows the response-locked results 
of the regressor PatchScaler. The signal is more positive, the better the patch quality mostly in 
the beginning of the harvest phase (Ai, Aii, Bi, Bii). Time-frequency decomposed data shows 
an initial increase in theta power followed by a sustained decrease in beta power (Ci). Before 
the decision to leave is executed, a sustained decrease in delta power can be observed, before 
this effect reverses just before the decision is made (Cii). Regression in time-frequency space 
reveals a broad increase in lower frequencies in the initial harvest phase (Di), while a decrease 
in delta/theta power before the decision to leave is observed (Dii). Gray areas and black 
contours show significant clusters after permutation-based correction for multiple comparisons. 
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The following chapter is based on an article published in NeuroImage: 

Kirsch, F.1, Kirschner, H.1, Fischer, A. G., Klein, T. A.2, & Ullsperger, M.2 (2022). 
Disentangling performance-monitoring signals encoded in feedback-related EEG 
dynamics. NeuroImage, 257, 119322. 
https://doi.org/10.1016/j.neuroimage.2022.119322 

 1 These authors contributed equally to this work. 
 2 TK and MU should be considered joint senior author. 

4 Study II: Disentangling performance-
monitoring signals encoded in feedback-related 
EEG dynamics 

4.1 Introduction 
In general, feedback is important for learning and adaptive, goal-directed behavior. 

When feedback informs about an action outcome, a feedback-locked sequence of EEG-

components consisting of a frontocentrally distributed feedback-related negativity (FRN; 

Miltner et al., 1997), the frontocentral P3a, and a parietal P3b can be observed 

(Ullsperger, Fischer, et al., 2014). The reinforcement learning (RL) theory of Holroyd 

and Coles (2002) states that the amplitude of the FRN correlates with the reward 

prediction error (RPE). Indeed, it is proposed by several researchers that the FRN 

encodes an RPE (Chase et al., 2011; Cohen & Ranganath, 2007; Holroyd & Coles, 2002; 

Holroyd & Krigolson, 2007; Nieuwenhuis et al., 2004; Sambrook & Goslin, 2015; 

Ullsperger, Danielmeier, & Jocham, 2014), having a stronger deflection when outcome 

expectation is violated (Chase et al., 2011; Holroyd & Krigolson, 2007; Walsh & 

Anderson, 2012). More negative RPEs are suggested to be associated with a stronger 

posterior mesial frontal cortex (pMFC) response (Jocham et al., 2009) and a larger FRN. 

According to the RL-theory, unexpected negative outcomes should elicit larger FRNs 

than expected negative outcomes (San Martín, 2012). Numerous studies have indicated 

that the FRN amplitude scales with a “signed” RPE: In the case of a worse-than-expected 

outcome (negative RPE), a strong FRN is elicited, whereas a smaller and weaker FRN is 

observed after better-than-expected outcomes (positive RPE; Fischer & Ullsperger, 

2013; Hajcak et al., 2007; Holroyd & Coles, 2002; Walsh & Anderson, 2012). 

Expectations are generated by experience and incorporate global values 

(frequent/infrequent) but can dynamically adjust to recent events, such as local surprise 
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generated by trial micro-structures (Holroyd & Coles, 2002).   

Beyond the RL-account, there are alternative approaches suggesting the FRN 

corresponds to an unsigned RPE signal which is sensitive to unlikely and therefore salient 

events indicating surprise (independent of the direction of the expectedness violation, 

Alexander & Brown, 2011; Donkers & van Boxtel, 2005; Ferdinand et al., 2012; Hauser 

et al., 2014; Talmi et al., 2013; Walentowska et al., 2019; Yeung et al., 2005). In contrast, 

some studies show a dependence of the FRN amplitude on valence and postulate that 

the magnitude of probability is represented later in more parietal components like the 

P3b (Kamarajan et al., 2009; Sato et al., 2005; Toyomaki & Murohashi, 2005; Yeung & 

Sanfey, 2004). Since the P3 complex is increased upon low probability events (Johnson, 

1986), FRN and P3 correlate with the common factor surprise and therefore, it is 

possible that the FRN could be overlapped by the P3 (Walsh & Anderson, 2012). 

Recently, it has been proposed that the FRN effect of being larger for negative as 

compared to positive feedback is actually driven by a positive deflection following 

positive outcomes (RewP; Baker & Holroyd, 2011; Foti & Weinberg, 2018; Holroyd et 

al., 2008; Krigolson, 2018; Proudfit, 2015). Unexpected outcomes are supposed to elicit 

the ERP component N200, while trials with unexpected rewards elicit a feedback-related 

positivity (RewP) and, in consequence, the RewP overshadows the effect of the N200. 

However, given that the positive (RewP) and negative (FRN) deflections overlap in time, 

it remains unclear which of them captures systematic changes in reward processing best 

(Gheza et al., 2018). Some authors, in fact, seem to suggest that FRN and RewP 

represent the same EEG phenomenon, just with opposite sign (Krigolson, 2018; Proudfit, 

2015). In this context, we would like to emphasize that the interpretation of results 

depends on the definition and quantification of the FRN. While some authors quantify 

the FRN as the loss-minus-win difference wave or the N2-like component following 

feedback, others suggest a difference between feedback condition-specific components 

to loss and gain (Cavanagh et al., 2019). In the present study, we are interested in factors 

that independently influence feedback-related EEG dynamics in the latency range of the 

FRN (and P300). Therefore, we applied a single-trial regression approach instead of using 

an ERP quantification method to avoid interpretation issues arising from different 

approaches. We merely refer to the FRN and P3a/b to guide the reader in terms of 

latency and topography during which variables of interest modulate the stereotypical 
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ERP sequence after visual feedback (Ullsperger, Fischer, et al., 2014).  

Concerning learning from feedback, larger behavioral adjustments were found after 

participants received negative compared to positive feedback, which was also reflected 

in the amplitude of the FRN (Holroyd & Krigolson, 2007). In the same study, the 

interaction of expectedness and valence of feedback was associated with the extent of 

behavioral adaptation. 

Whereas the FRN is suggested to reflect an early evaluation process involving the 

calculation of a prediction error, the P3 has been proposed to translate this information 

into attentional and working memory processes, and to initiate behavioral adaptation 

(Donchin & Coles, 1998; Polich, 2007; Verleger, 1997; Verleger et al., 1994). The P3 

complex consists of two positive ERP deflections, P3a and P3b, which are elicited by 

potentially action-related stimuli (Ullsperger, Fischer, et al., 2014). The early 

frontocentral P3a seems to reflect fast orienting and stimulus-driven attention 

mechanisms (Kirschner et al., 2022; Ullsperger, Fischer, et al., 2014), whereas the more 

sustained parietal P3b has been proposed to be associated with surprise (Donchin & 

Coles, 1998; Mars et al., 2008) and action value updating (Ullsperger, 2017; Ullsperger, 

Fischer, et al., 2014). It is typically found that unexpectedness or negative valence of the 

feedback give rise to a larger P3b than expected or positive feedback (de Bruijn et al., 

2004; Fischer & Ullsperger, 2013; Walentowska et al., 2016). Nevertheless, some 

sources report no valence effects (Yeung & Sanfey, 2004) or even reverse findings 

concerning valence (Hajcak et al., 2007; Severo et al., 2018). 

Since there is inconsistent evidence about the influence of valence and 

expectedness (San Martín, 2012) and their interaction on the neural response to 

outcome processing, we approached this question differently from former studies, many 

of which used difference waves (Glazer & Nusslock, 2021; Hajcak et al., 2007; Holroyd 

& Coles, 2002; Holroyd & Krigolson, 2007; Holroyd et al., 2008; Talmi et al., 2013; van 

Boxtel, 2004; Walsh & Anderson, 2012). In the present study, we aimed at giving a 

holistic perspective on feedback processing. As noted above, previous work has hinted 

that both surprise and valence contribute to feedback related EEG dynamics, but the 

precise nature of their interaction remains elusive. Here, we leveraged single trial 

regression and the power of a large sample to parse out the contributions of these 
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factors on the EEG signal. While we have previously used instrumental learning tasks 

(Burnside et al., 2019; Fischer & Ullsperger, 2013; Kirschner et al., 2022), we exclude 

this learning aspect here. Moreover, when we use the term “FRN” in the context of the 

present work, we mean modulations of the EEG signal in a latency range of 200 to 300ms 

over frontocentral regions, and do not refer to any particular ERP quantification. 

Our goal was to differentiate changes of the FRN amplitude and the P3 complex as a 

function of valence and expectedness within a large sample. We therefore systematically 

manipulated valence and expectedness of the outcome to investigate the influence on 

the neuronal signal with the help of a single-trial regression approach. Feedback valence 

was either positive or negative. Outcome expectedness was conceptualized as global 

surprise. Here, the level of task difficulty was manipulated between blocks by increasing 

the expectancy of positive feedback or increasing the expectancy of negative feedback 

without the subjects' knowledge. Additionally, we investigated local surprise by 

examining the influence of the recent trial history on the feedback-locked neuronal 

signal. If the FRN reflects mere surprise, a response to salience in the form of an unsigned 

RPE, the component should be insensitive to valence. Therefore, a component within 

the timeframe of the FRN should show no main effect of valence and no interaction of 

expectedness and valence, but a strong main effect of unsigned RPE size involving 

outcome probability (Sambrook & Goslin, 2015). In consequence, the FRN should be 

equally large for worse-than-expected and better-than-expected outcomes 

(Walentowska et al., 2019). Contrarily, if the FRN encodes signed RPEs, we would 

expect a valence x expectedness interaction, where the FRN for unexpected events 

differs between worse-than-expected and better-than-expected events. A sole main 

effect of valence would mean that the FRN represents the outcome itself and does not 

encode any RPE. Two non-interacting main effects of valence and expectedness would 

indicate two independent processes influencing the neuronal signal in the FRN latency 

range. Hypotheses are visualized in Figure 4-1 C. Concerning the P3 complex, we 

expect a clear effect of expectedness: unexpected outcomes should induce a larger P3b 

than expected outcomes.   

To elaborate on the topic of behavioral adaptations following feedback, we used an 

advanced measure of change in response time between two consecutive trials, which 

reflects improvement or deterioration in task performance from one trial to the next. 
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Since previous research has found that the type and expectedness of feedback could 

affect the extent of adaptation and that this adaptation has correlates in the neuronal 

signal (Holroyd & Krigolson, 2007), we considered the influence of the change in 

response time on the neuronal signal as a function of the valence and expectedness of 

the feedback. Specifically, we expected larger adaptations after negative feedback. 

Exploratorily, this adaptation could be affected by outcome expectancies, whereby 

unexpected negative feedback should be accompanied by larger and expected negative 

feedback by smaller behavioral adjustments. 
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4.2 Methods 

4.2.1 Participants 
1000 young, healthy participants were recruited at the Radboud University of 

Nijmegen, Netherlands (388 datasets; 03/2011-06/2011) and at the Max Planck Institute 

for Human Cognitive and Brain Sciences in Leipzig, Germany (all remaining; 05/2012-

03/2016). Screened via interview, exclusion criteria were: any present or past psychiatric 

or neurological disorders, regular use of medication, drug abuse, alcohol intake at day 

of study. 8 subjects had to be excluded due to recording failures or poor data quality 

(see 2.3 for details). The sample consists of 493 female and 499 male subjects between 

18 - 40 years (M = 24.22; SD = 4.03). The majority of the participants were right-handed 

(N = 914), 44 were left-handed, and 33 ambidextrous or retrained (1 not reported). 

The study was approved by the Institutional Review Board/Ethics Committee of the 

Radboud University of Nijmegen (ECG04032011) and the University of Leipzig (285-09-

141209) and written informed consent was obtained from all participants after briefing 

prior to study enrolment. The study was conducted in accordance with the Declaration 

of Helsinki. 

4.2.2 Experimental paradigm 
We used a modified version of a time estimation task, where the participants had 

to estimate the duration of one second by keystroke with a fixation cross as onset time 

point (Gruendler et al., 2011; Holroyd & Krigolson, 2007, Figure 4-1 Ai). Positive 

Feedback for a correct response (i.e. responding in a time window of 1000ms ± 100ms 

initially) was given in form of a green smiley, negative feedback for an incorrect response 

was visualized with a red frowny. Within the experiment, every subject underwent three 

conditions, where the time window (TW) for correct responses was adapted differently 

such that negative feedback was more likely than positive feedback (“difficult”), negative 

and positive feedback were equally likely (“control”), and negative feedback was less 

likely than positive feedback (“easy”), respectively. Within the control condition, the 

TW for positive feedback increased by 10ms on error trials and decreased by 10ms on 

correct trials symmetrically. In the easy condition, the window size increased by 12ms 

on error trials and decreased by 4ms on correct trials. In the difficult condition, 

adaptation reversed compared to the easy condition, so that the TW narrowed faster 
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on correct responses (-12ms) than it grew after incorrect responses (+4ms; Figure 4-1 

Aii). Participants always started with the control condition, where a TW for positive 

feedback was initialized at 1000ms ± 100ms (positive feedback was given when the 

response fell between 900 and 1100ms). They then continued with either the easy or 

the difficult condition and went through each condition once, counterbalanced over 

participants. The time window to start with in the first trial of a new block was equal to 

the time window resulting from the last trial of the preceding block. The control 

condition only served to intercept initial adaptation processes and to define the initial 

time window and was therefore not equivalent to the other conditions, which is why it 

was excluded from analysis. The task consists of 450 trials in total, 50 trials in the control 

condition, 200 trials each in the difficult and easy conditions. The inter-trial interval 

(feedback-cue interval, FCI) varied between 750ms and 1250ms. Figure 4-1 B shows 

the conceptual mapping of the task blocks (easy/difficult) to the associated size of the 

RPE and the valence of the outcome.  
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Figure 4-1. Illustration of the task design and theoretical hypotheses on task factors 
on the FRN signal. (Ai) Timeline of a single trial. Each trial starts with a cue represented by a 
fixation cross. From cue onset on, participants are instructed to estimate one second and to 
indicate the end of the estimated time interval by button press. The time window for a correct 
response is adaptive and differs between conditions (control, easy, difficult). A reaction feedback 
interval (RFI) of 600ms follows the response. Participants then receive either positive or negative 
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(Figure 4-1 continued) feedback in the form of a green smiley for correct response and a red 
frowny for incorrect response, which is displayed for 350ms. This is followed by a variable 
feedback cue interval (FCI) of 750-1250ms before the next trial starts. (Aii) Target interval 
distributions for the different task states (easy and difficult). (B) Experimental conditions and 
their respective correspondences to a reward prediction error (RPE) as a function of the valence 
of the feedback. (C) Illustration of theoretical hypotheses for FRN signals. Left: FRN reflects 
valence. FRN is larger (e.g., more negative) on all negative outcomes. When comparing positive 
vs. negative feedback, this should be reflected in frontocentral negativity as depicted in the 
respective topography plot. Middle: If the FRN is reflecting mere surprise, the FRN should be 
larger for unexpected feedback (positive outcomes in the difficult task state and negative 
outcomes in the easy task state). Right: The FRN reflects "valenced surprise" (e.g., prediction 
errors). Larger FRN in negative outcomes (reflected in a frontocentral negativity), more so when 
they are less expected than when they are common. 

4.2.3 EEG acquisition and processing 
Electroencephalic signals were continuously recorded at 500Hz sampling rate with 

BrainAmp MR plus amplifiers (Brain Products) from 64 Ag/AgCl sintered electrodes, 

which were mounted in an elastic cap according to the extended 10-20 system with 

impedances kept below 5kΩ. The ground electrode was placed at the sternum. 

Electrodes to capture horizontal and vertical eye movements were mounted next to 

both eyes and above and below the left eye. The signal was online referenced to A1 (left 

mastoid). The recorded data was high (0.5Hz) - and low (30Hz) -pass filtered, re-

referenced to common average, and epoched from - 400ms to 1500ms locked to 

feedback onset. Artifactual epochs were automatically rejected based on signal outliers. 

Epochs that deviate over 5 SD from the mean probability distribution of the EEG signal 

were excluded (Delorme et al., 2007). We specified that a minimum of 10 trials but no 

more than 10% of the trials (N = max. 45) should be rejected. Therefore, the initial 

threshold of 5 SD was adaptively increased or decreased with a step size of 0.1 SD. This 

resulted in an average rejection of 20 epochs across all participants (range N = 10-44). 

Epochs were then demeaned and submitted to adaptive mixture independent 

component analysis (AMICA, Palmer et al., 2012). Independent components including 

artifactual signals (i.e. eye blinks) were rejected with the help of sample-based ratings of 

two EEG-experienced researchers in combination with a correlation-based approach 

(inspired by the Corrmap approach; Viola et al., 2009). A baseline of − 350ms until 0ms 

prior to feedback onset was used. The data was then analyzed with multiple robust 

single-trial regression analyses (see Fischer & Ullsperger, 2013 for details). EEG datasets 

for which ICA did not converge or too less trials for specific regressors existed were 
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excluded (8 subjects), resulting in a final sample of 992 participants. For EEG and 

behavioral analysis, EEGLab 13.5 toolbox (Delorme & Makeig, 2004) and customized 

code written in MATLAB R2019b version 9.7.0.1190202 (MathWorks) was used. 

4.2.4 Data analysis 
4.2.4.1 Behavioral analyses 

Data for building behavioral regressors were either directly derived from the 

behavioral data or, in some cases, calculated from combinations of other behavioral 

variables. Valence (Val) represents the qualitative direction of the feedback, either 

positive (=0) or negative (=1). The regressor expectedness (Exp) is a dichotomous 

variable, where unexpected events (=0) indicate trials with negative feedback during the 

easy condition and trials with positive feedback during the difficult condition. Expected 

events (=1) are coded vice versa (positive feedback in easy condition; negative feedback 

in difficult condition). Reaction time (RT) reflects the absolute reaction time from fixation 

cross onset until button press. The following variables reflect local surprise: the number 

of trials since the last negative or positive event (TrialsSinceNeg/Pos) indicates how long ago 

the last event of the same valence occurred. The longer it has been, the bigger the local 

surprise. For these two variables, corresponding trials are cumulated separately for 

negative and positive events. In addition, if participants build up an internal 

representation of the target time, another form of local surprise can be conceptualized 

as the absolute difference between 1000ms (the target time) and trial-based reaction 

time. This variable is represented by the parametric regressor reaction time deviation 

(RT_dev; unsigned). The closer the participant is to 1000ms and still receives negative 

feedback, the bigger the local surprise. Reaction time change (RT_change) was calculated 

(Equation 1) by subtracting the absolute reaction time difference of the following trial 

from the absolute reaction time difference of the current trial and therefore, represents 

a measure of performance adaptation. The results of this calculation (see Equation 4-1) 

could either take on positive values, which represent performance improvement (i.e. 

coming closer to 1000ms), or negative values, which represent performance 

deterioration (increasing distance to 1000ms): 

𝑅𝑅𝑅𝑅_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = |(𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  1000𝑚𝑚𝑚𝑚)| − |(𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 1000𝑚𝑚𝑚𝑚)|    (4-1) 
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As noise regressors without interest, logarithm of the trial number in the current 

block (BlockTr) and inter-trial interval (FCI) were included in all regression models. The 

parameters BlockTr, FCI, RT, RT_dev, TrialsSinceNeg/Pos, and RT_change were z-

standardised. 

We calculated a robust multiple regression with behavioral adjustment (absolute 

difference between two consecutive trials in ms) as the outcome. Valence, expectedness, 

their interaction, as well as BlockTr and FCI served as predictors: 

𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝑉𝑉𝑉𝑉𝑉𝑉 + 𝛽𝛽2 ×  𝐸𝐸𝐸𝐸𝐸𝐸 +  𝛽𝛽3 ×  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +
 𝛽𝛽4 × 𝐹𝐹𝐹𝐹𝐹𝐹 +  𝛽𝛽5 × 𝑉𝑉𝑉𝑉𝑉𝑉 × 𝐸𝐸𝐸𝐸𝐸𝐸 +  𝜀𝜀          (4-2) 

4.2.4.2 Grand averages 

We calculated grand average ERPs at two electrodes for crossed conditions 

(negative feedback-expected; negative feedback-unexpected; positive feedback-

expected; positive feedback-unexpected) by averaging across all subjects. The site of 

maximal FRN activity is, according to the literature (Williams et al., 2021), electrode 

FCz and the site of maximal P3b activity is, according to the literature (Intriligator & 

Polich, 1994; Polich, 2007), electrode Pz. Therefore, we chose FCz and Pz to visualize 

the neuronal signal depending on feedback. 

4.2.4.3 Single-trial EEG analyses 

We furthermore employed several multiple robust regressions, within (1st level) 

and across subjects (2nd level; (Fischer et al., 2016; Fischer & Ullsperger, 2013). General 

linear models (GLM) were built to regress single-trial EEG activity at each electrode and 

time point against behavioral parameters. The regressions were performed on 59 

electrodes in a time window from -200ms to 1000ms, feedback-locked. The output of 

these analyses was in the form of regression coefficients revealing the time course and 

scalp topographies of the relationship between each predictor and neuronal activity. 

Standardized beta-values can be tested via two-tailed one-sample t-tests, which were 

done separately at each data point in a whole-brain approach across subjects. To account 

for multiple comparisons, p-values within one model were corrected using false 

discovery rate (FDR). Trials of the control condition were excluded from regression 

analyses. 
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Within the first GLM (1a), we were interested in the influences of valence of 

feedback, expectedness, and the interaction of both on the neuronal signal: 

GLM 1a: 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝑉𝑉𝑉𝑉𝑉𝑉 +  𝛽𝛽2 ×  𝐸𝐸𝐸𝐸𝐸𝐸 +  𝛽𝛽3 ×  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +
 𝛽𝛽4 × 𝐹𝐹𝐹𝐹𝐹𝐹 +  𝛽𝛽5 × 𝑉𝑉𝑉𝑉𝑉𝑉 × 𝐸𝐸𝐸𝐸𝐸𝐸 +  𝜀𝜀                  (4-3) 

To further disentangle the results revealed in the first GLM, we split the data in 

expected and unexpected trials within a subordinate GLM (1b). This enables us to have 

a more detailed look on the effect of valence comparing negative- and positive-feedback-

trials for expected and unexpected trials separately: 

GLM 1b: 𝐸𝐸𝐸𝐸𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝑉𝑉𝑉𝑉𝑉𝑉 + 𝛽𝛽2 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +  𝛽𝛽3 ×  𝐹𝐹𝐹𝐹𝐹𝐹 +
 𝜀𝜀              (4-4) 
(ran separately for expected and unexpected outcomes) 

By building a second main GLM and splitting the data in positive- and negative-

feedback trials, it was possible to resolve the interaction between valence and 

expectedness and to further investigate the differential effects of expectedness or global 

surprise, respectively. Additionally, we included further variables, which give information 

on local surprise, like TrialsSinceNeg/Pos and RT_dev: 

GLM 2: 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝐸𝐸𝐸𝐸𝐸𝐸 +  𝛽𝛽2 ×  𝑅𝑅𝑅𝑅 +  𝛽𝛽3 ×
 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇/𝑃𝑃𝑃𝑃𝑃𝑃 +  𝛽𝛽4 × 𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑 +  𝛽𝛽5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽6 × 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝜀𝜀   (4-5) 
(ran separately for trials with negative and positive feedback) 

In the last GLM 3, we were interested in the neuronal signal changes due to 

performance adaptation. Therefore, we created main GLM 3a including the regressor 

RT_change, which reflects performance improvement or deterioration between the 

current and the consecutive trial. The interaction of feedback valence and RT_change 

served as a predictor as well (Eq. 4-6). In a subordinate GLM 3b, we disentangled this 

interaction by running separate regressions for trials with negative and positive feedback 

(Eq. 4-7). Because the participants tend to adjust their RT more after negative feedback, 

we calculated another subordinate GLM 3c for negative-feedback trials to examine the 

interaction between expectedness and behavioral adaptation exploratorily (Eq. 4-8). 

GLM 3a: 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝑉𝑉𝑉𝑉𝑉𝑉 +  𝛽𝛽2 ×  𝑅𝑅𝑅𝑅_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +
 𝛽𝛽3 ×  𝐸𝐸𝐸𝐸𝐸𝐸 +  𝛽𝛽4 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +  𝛽𝛽5 × 𝐹𝐹𝐹𝐹𝐹𝐹 +  𝛽𝛽6 × 𝑉𝑉𝑉𝑉𝑉𝑉 × 𝑅𝑅𝑅𝑅_𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 +  𝜀𝜀           (4-6) 
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GLM 3b:  𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝑅𝑅𝑅𝑅_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽2 ×  𝐸𝐸𝐸𝐸𝐸𝐸 +
 𝛽𝛽3 ×  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +  𝛽𝛽4 × 𝐹𝐹𝐹𝐹𝐹𝐹 +  𝜀𝜀          (4-7) 
(ran separately for trials with negative and positive feedback) 

GLM 3c:  𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛽𝛽0  +  𝛽𝛽1 ×  𝑅𝑅𝑅𝑅_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  𝛽𝛽2 ×  𝐸𝐸𝐸𝐸𝐸𝐸 +
 𝛽𝛽3 ×  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +  𝛽𝛽4 × 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛽𝛽5 × 𝐸𝐸𝐸𝐸𝐸𝐸 × 𝑅𝑅𝑅𝑅_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  𝜀𝜀      (4-8) 
(ran for trials with negative feedback) 

We were particularly interested in beta-value peaks approximately in the latency 

ranges (FRN: 200-300ms; P3a/P3b: 300-600ms; P3a usually earlier) and topographic 

locations (FRN/P3a: frontocentral; P3b: centroparietal) of FRN, P3a and P3b as reported 

in the literature (Polich, 2007; Sambrook & Goslin, 2015; San Martín, 2012; Ullsperger, 

Fischer, et al., 2014), because these are components that typically occur following 

feedback. Thus, for post-hoc t-tests after regression analysis, we derived latencies of 

local beta-value peaks of the predictors in FRN- or P3-time windows based on visual 

inspection and comparing with the respective ERP. Individual beta-value peak time points 

(not all shown in Figure 4-4) were extended by including beta-values in a time window 

of ±20ms around the peak and using the average of them. The indicated electrodes 

usually include the electrode with the strongest effect, otherwise they represent strong 

local effects. 

4.2.5 Data and code availability 
The conditions of our informed consent form do not permit public archiving of 

the raw data because participants did not provide sufficient consent. Researchers who 

wish to access processed and anonymized data from a reasonable perspective should 

contact the corresponding author. Data will be released to researchers if it is possible 

under the terms of the GDPR (General Data Protection Regulation). 

The code of the toolbox we used for the regression analysis can be found here: 

http://www.adrianfischer.de/teaching.html. 
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4.3 Results 

4.3.1 Behavioral results 
Overall, the participants performed well in the task, the mean reaction time across 

all conditions was 1032.10ms ± 218.21ms (Figure 4-2 A). Manipulation of difficulty by 

different task states was successful: within the easy condition, participants received 

positive feedback in 70.27% (SDeasy = 3.98%) of the trials, while in the difficult condition, 

only 29.62% (SDdifficult = 2.50%; Mcontrol = 41.70%; SDcontrol = 8.18%) of the trials were 

followed by positive feedback (Figure 4-2 B).  

 

Figure 4-2. Frequencies of reaction times and behavioral adjustments and 
influencing factors. (A) Frequencies of response times (in ms) of all trials across all 
participants. (B) shows the percentage of positive feedback received for both conditions across 
all participants. The dark orange box represents the easy condition and light orange the difficult 
condition. (Ci) Multiple robust regression with behavioral adjustment from current to the 
consecutive trial (change in reaction times in ms) as outcome. Valence, expectedness, and their 
interaction significantly predict behavioral adjustment. To correct for multiple comparisons 
Bonferroni correction was used. (Cii) Unexpected negative feedback elicits the largest  
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(Figure 4-2 continued) behavioral adjustment. (Di) Frequencies of absolute behavioral 
adjustment from current to the consecutive trial (change in reaction times in ms) after negative 
(red colour bars) and positive feedback (blue colour bars). (Dii) Frequencies of behavioral 
adjustment (change in reaction time in ms) after unexpected (red) and expected (blue) feedback. 

In Figure 4-2 D, the absolute frequencies of averaged reaction time changes after 

negative/positive feedback (Di) and after expected/unexpected feedback (Dii) overall 

participants can be seen. Behavioral adjustments after negative feedback are bigger 

(Mneg= 230.39ms; Mpos= 145.06ms; t(1982) = -42, p < .001, d = 1.89) and within-subject 

more widely distributed (SDneg= 180.20ms; SDpos= 120.68ms; t(1982) = -37, p < .001, d 

= 1.68) than after positive feedback. Adjustments differ slightly with bigger adjustments 

and wider distributions within-subject for unexpected events (Munexp= 197.52ms; Mexp= 

180.53ms; t(1982) = -8, p < .001, d = 0.36; SDunexp= 163.85ms; SDexp= 152.02ms; t(1982) 

= -7, p < .001, d = 0.29). These results indicate that feedback valence and expectedness 

differentially affect subsequent behavior. To parse behavioral adjustments at finer levels 

of detail, we analyzed behavioral adjustments using multiple robust regression (Figure 

4-2 C). Predictors included expectedness (expected vs. unexpected feedback), valence 

(positive vs. negative feedback), and the interaction between these factors. In addition, 

we included FCI and trial number as regressors of no interest. The results confirmed a 

main effect of expectedness (mean t = 0.10, t(991) = 2.62, p < .05 (bonf cor), d = 0.08, 

95% CI [0.02, 0.17]) and valence (mean t = 3.89, t(990) = 74.18, p < .001 (bonf cor), d = 

2.36, 95% CI [3.79, 4.00]; Figure 4-2 Ci). Critically, the interaction between 

expectedness and valence showed that behavioral adaptations after negative feedback 

were larger, when negative feedback was less expected (mean t = -1.17, t(990) = -18.65, 

p < .001 (bonf cor), d = -0.59, 95% CI [-1.29, -1.05]; Figure 4-2 Cii). This may suggest, 

that participants adjust their behavior more after negative feedback during broader 

target windows. In contrast, they adjusted their behavior after negative feedback less, 

when the target window was narrow (i.e., during the difficult task state). In other words, 

surprise had a reinforcing effect on behavioral adjustments when feedback was negative. 

We took this as motivation for further analyses trying to disentangle the differential 

influences of valence and expectedness on behavior and EEG correlates. As the absolute 

change in RT between two consecutive trials does not allow direct evaluation of the 

adaptivity of the behavioral adjustment, we calculated the variable RT_change as a 
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measure of performance adaptation for subsequent analyses investigating the association 

between feedback-related behavioral adaptions and EEG activity. 

4.3.2 Electrophysiological Results 
4.3.2.1 Event-related potentials 

To gain a first impression of the EEG-data and to see, whether or not our paradigm 

evokes the expected ERP results, we show the averaged ERP waves for the crossed 

conditions, expected/negative, unexpected/negative, expected/positive, and 

unexpected/positive for two electrodes, FCz and Pz (Figure 4-3). At FCz (Figure 4-3 

Ai), the amplitude during the time window of the FRN seems to be more pronounced 

when participants received negative (yellow and red) rather than positive feedback. 

When rewards were less expected (green line), the FRN signal was more positive than 

in the other condition (expected rewards, blue line), whereas the FRN on negative trials 

was similar for expected (yellow) and unexpected (red) feedback. The amplitude during 

the time window of the P3b component seems larger for unexpected events (green and 

red) than for expected events (blue and yellow). Visually comparing unexpected negative 

(red) and unexpected positive feedback (green) in the time window of the P3 complex, 

P3 amplitude seems to be affected by valence as well, as negative feedback increases the 

amplitude.  

The EEG data in the time window of the P3 complex looks slightly different at 

electrode Pz (Figure 4-3 Bi) compared to FCz. The waveforms start do differ at around 

200ms after feedback onset. Unexpected positive feedback (green) seems to be 

associated with the most positive signal from 220ms on. Nevertheless, the grand average 

ERP approach does not allow a temporally and spatially accurate determination of 

independent contributions to the neuronal signal: to investigate when and where which 

factors influence the neuronal signal and how they interact, it is essential to use other 

methods. The beta-value courses of the main predictors (Figure 4-3 Aii; Bii) are 

described in the context of the regression analysis (see 4.3.2.2). 

The visual inspection of the grand average EEG activity supported our initial 

hypotheses concerning the influence of expectedness, valence, and their interaction on 

the feedback-locked EEG signal. For rigorous statistical testing and in order to 

disentangle this modulation of the signal temporally and spatially, and in dependence of 
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possible confounding factors, we applied a multiple robust single-trial regressions 

approach (Fischer et al., 2016; Fischer & Ullsperger, 2013).  

 

Figure 4-3. Grand average feedback-locked ERPs of the crossed conditions and beta-
value courses of the main regressors in GLM 1a. (Ai) The averaged feedback-locked ERPs 
across participants at electrode FCz. The table in (Bi) shows the task design including the matrix 
of different task stages. Different colors represent the crossed conditions: expected negative 
feedback (yellow); unexpected negative (red); expected positive feedback (blue); unexpected 
positive feedback (green). Shades represent SEM (very small and therefore barely visible). 
Regression weight topographies of the regressors valence, expectedness, and their interaction 
are shown at 250ms after feedback. (Aii) The course of the beta-values from GLM1a of the 
regressors valence, expectedness, and their interaction at FCz are shown below. (Bi) The 
averaged feedback-locked ERPs across participants at electrode Pz. Regression weight 
topographies of the regressors valence, expectedness, and their interaction averaged across 
latencies from 350 to 500ms after feedback are shown. Regression weights in the topoplots are 
fdr (false discovery rate)-corrected and nonsignificant electrodes are masked in white. (Bii) The 
course of the beta-values from GLM1a of the regressors valence, expectedness, and their 
interaction at Pz are shown below. 

4.3.2.2 Modulation of EEG signal by valence and expectedness of feedback 

GLM 1a examined the effects of feedback valence, expectedness, and their interaction 

on neuronal EEG activity (Figure 4-3 Aii, Bii and Figure 4-4 row 1-3). From 

approximately 130ms until 300ms, there was a sustained negative effect of the valence 

regressor, that spanned over frontocentral electrode sites (Figure 4-3 Aii; Figure 4-4, 

row 1, shown from 200ms onwards). Thus, EEG amplitudes were more negative 

following negative feedback (most pronounced at FCz, peak @ 250ms, b = -2.63, t(991) 
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= -48.10, p = 1.81 x 10-261, d = -1.52, 99% CI [-2.74 -2.53], crit p = 0.035), which indicates 

that valence coding is present in the typical latency range and topography of the FRN. 

Furthermore, there is another valence-specific but more parietal negative effect starting 

at 260ms until 340ms (Figure 4-3 Bii; Figure 4-4 row 1). This negative covariation was 

followed by a frontocentral positive covariation between 320 and 480ms (most 

pronounced at FCz, peak @ 380ms, b = 3.35, t(991) = 46.44, p = 6.47 x 10-251, d = 1.48, 

99% CI [3.21 3.49], crit p = 0.035; Figure 4-4, row 1). Topography and latency suggest 

that it is a major contributor to the P3a.  

Within GLM 1a, we also tested the influence of expectedness on the EEG signal. 

This regressor shows a sustained and spatially broader fronto-centro-parietal effect on 

the P2/P3 complex between 240 and 530ms (most pronounced at Cz, peak @ 350ms, 

b = -3.26, t(991) = -60.32, p < 0.0001, d = -1.92, 99% CI [-3.37, -3.15], crit p: 0.0001; 

Figure 4-4, row 2). The signal is more positive for unexpected compared to expected 

outcomes. However, the effect of expectedness prior to 240ms seems to be less 

pronounced and more frontally distributed (Cz, smaller peak @ 190ms, b = -0.91, t(991) 

= -34.42, p = 1.93 x 10-171, d = -1.09, 99% CI [-0.96, -0.86], crit p = 0.0001). Taken 

together, the FRN amplitude is influenced by valence, but is less affected by expectedness 

(between 200 and 300ms; meanval = -0.21 ± 0.004 vs. mexp = -0.03 ± 0.003; t(991) = -

41.46, p = 1.14 x 10-218, d = 1.82). Valence and expectedness (i.e. global surprise, resp.) 

seem to influence the P2/P3 complex. Whereas the valence effect appears to be 

frontocentral, violation of expectedness shows a broader effect from frontocentral to 

parietal areas.  

Additionally, we were interested in whether and how both regressors interact with each 

other as an interaction would be predicted for an RPE signal. Derived from the course 

of beta-values, from approximately 230ms on, the valence x expectedness regressor 

covaried positively with the neuronal activity (FCz, peak @ 280ms, b = 1.81, t(991) = 

17.10, p = 1.28 x 10-57, d = 0.54, 99% CI [1.60, 2.01], crit p = 0.032; Figure 4-4, row 3). 

By visual inspection, this broad frontocentral positive covariation extends to parietal 

areas over time. To summarize, the interaction of valence and expectedness shows a 

strong significant effect during the FRN latency range for both the early FRN-peak and 

for the later part of the FRN on fronto-centro-parietal electrodes. This underlines that 

the FRN encodes an RPE signal. To disentangle the interaction between valence and 
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expectedness, we conducted separate regression models by splitting the data in 

expected and unexpected trials (GLM 1b).  

 

Figure 4-4. Multiple single-trial robust regression results for feedback-locked 
epochs. Feedback-locked regression weight (beta) topographies in 20ms time steps spanning 
from 200ms to 400ms are shown. The corresponding GLM and predictors are listed on the left. 
Blue colors are associated with negative covariations, red colors with positive covariations. 
Interpretation of the polarity depends on the coding of the predictor (see methods section 
2.4.1). Scaling can be seen on the right and differs between regressors. For corrections of 
multiple comparisons, false discovery rate (FDR) was used. Nonsignificant (p<.01) data points 
are masked in white. 
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In GLM 1b, we found a negative covariation of valence with the neuronal signal 

from 160ms to 310ms in both, unexpected (FCz, peak @ 260ms, b = -3.55, t(991) = -

41.95, p = 6.64 x 10-222, d = -1.33, 99% CI [-3.72, -3.39], crit p = 0.036; Figure 4-4, row 

5) and expected trials (FCz, peak @ 240ms, b = -2.41, t(991) = -37.89, p = 6.14 x 10-195, 

d = -1.20, 99% CI [-2.53, -2.28], crit p = 0.033; Figure 4-4, row 4). Comparing the 

regression weights at their respective peaks, the valence effect during the time window 

of the FRN is more pronounced in unexpected trials (munexp = -3.55 ± 0.08 vs. mexp = -

2.41 ± 0.06; t(991) = -11.49, p = 8.63 x 10-29, d = 0.5). To formally test for spatiotemporal 

differences of valence coding between expected and unexpected feedback in the FRN 

time window, we extracted averaged b-values at FCz and Pz and at the latencies 200ms 

(± 20ms) and 260ms (± 20ms) from the valence regressor of the respective GLM 1b. 

These data were then analyzed in a three-way ANOVA with the factors latency, location, 

and expectedness. Results show a significant three-way interaction of expectedness x 

location x latency (F(1,991) = 122.39, p < .001, ƞ2 = .11) indicating that for expected 

events, valence is coded earlier (200ms) and more frontally (FCz), whereas for 

unexpected events, valence is processed later (260ms) and with parietal involvement 

(Pz). 

Afterwards, until approximately 450ms, the signal covaries positively with valence in 

both, unexpected (FCz, peak @ 380ms, b = 3.57, t(991) = 30.53, p = 8.39 x 10-145, d = 

0.97, 99% CI [3.34, 3.80], crit p = 0.036; Figure 4-4, row 5) and expected trials (FCz, 

peak @ 380ms, b = 3.27, t(991) = 41.67, p = 4.33 x 10-220, d = 1.32, 99% CI [3.11, 3.42], 

crit p = 0.033; Figure 4-4, row 4). Comparing the regression weights at their peak at 

380ms, the effect is more pronounced in unexpected trials compared to expected trials 

(munexp = 3.57 ± 0.12 vs. mexp = 3.27 ± 0.08; t(991) = 2.40, p = 0.02, d = 0.10). This result 

illustrates the involvement of surprise: if the event is unexpected, the positive-going 

valence effect on the P3b is stronger.  

Taken together results from GLM 1b, aiming to disentangle the interaction of 

valence and expectedness of feedback, we found an effect of valence on the neuronal 

signal during the time windows of the FRN and the P3 for expected and unexpected 

events. In both, the time window of the FRN and the P3, the effect of feedback valence 

was more pronounced in unexpected events.  
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To directly compare the neuronal activity of expected and unexpected events in 

dependence of valence, we conducted GLM 2 on positive- and negative feedback trials 

separately. As can be seen in Figure 4-4, row 6, there was an influence of expectedness 

for positive-feedback trials at frontal and frontocentral electrodes starting before the 

FRN (90ms; FCz, peak @ 160ms, b = -0.56, t(991) = -11.75, p = 6.10 x 10-30, d = -0.37, 

99% CI [-0.65, -0.47], crit p = 0.029; Figure 4-4, row 6) and spanning the entire FRN 

latency range. For negative-feedback trials, there is a small negative covariation of 

expectedness with the neuronal signal at frontal and frontocentral electrodes starting 

early around 160ms (FCz, peak @ 200ms, b = -0.86, t(991) = -16.09, p = 6.47 x 10-52, d 

= -0.51, 99% CI [-0.96, -0.75], crit p = 0.027; Figure 4-4, row 9). In contrast to the 

expectedness effect in positive-feedback trials, in negative-feedback trials there seems 

to be a weaker frontocentral effect in the second half of FRN latency ranges between 

240ms and 280ms. In other words, for negative outcomes, the FRN is nearly 

unmodulated by expectedness. In contrast, for positive outcomes, the positive-going 

shift of the waveform is significantly pronounced when the outcome is unexpected. A 

stronger modulation on trials with positive feedback also applies to the later ERP 

components. During the time window of the P3, results show a significant negative 

covariation at central and centroparietal electrodes for the regressor expectedness for 

trials with positive feedback (Cz, peak @ 330ms, b = -2.49, t(991) = -34.73, p = 1.51 x 

10-173, d = -1.10, 99% CI [-2.63, -2.35], crit p = 0.029; Figure 4-4, row 6), but also for 

trials with negative feedback (FCz, peak @  360ms, b = -2.06, t(991) = -22.04, p = 6.11 

x 10-88, d = -0.70, 99% CI [-2.25, -1.88], crit p = 0.027; Figure 4-4, row 9).  

4.3.2.3 Modulation of EEG signal by local surprise 

Next, we investigated neural coding of local surprise, that was reflected in two 

regressors within GLM 2, the number of preceding trials since the last negative or positive 

trial appeared and reaction time deviation from the target time of 1000ms. The results 

indicate that the longer it has been since the current feedback was last seen (i.e., the 

bigger the local surprise), the more positive the P3b. On frontal electrodes, the first 

predictor covaried positively with the neuronal signal in both positive- (Fz, @ 220ms, b 

= 0.62, t(991) = 23.13, p = 5.57 x 10-95, d = 0.73, 99% CI [0.56, 0.67], crit p = 0.031; 

Figure 4-4, row 7) and negative-feedback trials (Fz, @ 220ms, b = 0.82, t(991) = 30.43, 

p = 3.81 x 10-144, d = 0.97, 99% CI [0.77, 0.88], crit p = 0.033; Figure 4-4, row 10). This 
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effect is stronger in negative-feedback trials between 200 and 240ms (mpos = 0.62 ± 0.03 

vs. mneg = 0.82 ± 0.03; t(991) = -5.71, p = 1.46 x 10-8, d = 0.25). From 280ms on, this 

predictor covaried positively with the neuronal signal in both positive- (FCz, peak @ 

340ms, b = 2.07, t(991) = 43.49, p = 5.48 x 10-232, d = 1.38, 99% CI [1.97, 2.16], crit p = 

0.031; Figure 4-4, row 7) and negative-feedback trials (FCz, peak @ 360ms, b = 1.96, 

t(991) = 42.52, p = 1.19 x 10-225, d = 1.35, 99% CI [1.87, 2.05], crit p = 0.033; Figure 4-4, 

row 10). 

For the predictor reaction time deviation from the target time of 1000ms, there is a 

negative covariation within the time frame of P3 only in negative trials (FCz, peak @ 

370ms, b = -0.67, t(991) = -24.60, p = 1.19 x 10-104, d = -0.78, 99% CI [-0.72, -0.62], crit 

p = 0.023; Figure 4-4, row 11). If the participant was close to 1sec, but negative feedback 

followed, subjective surprise might be enhanced and in consequence, P3 is more positive. 

This does not apply for the positive prediction error, considering only a small parietal 

to occipital activation can be found in positive-feedback trials between 240 and 340 ms 

(Figure 4-4, row 8). In conclusion, the present data (GLM 2) indicate that the P3 

complex is driven by global and local surprise.  

In GLM 2, we found that expectedness of feedback has only a small effect on the neuronal 

signal during the time window of the FRN. Meanwhile, global surprise during the P3 time 

window influences the neuronal signal in positive-feedback and negative-feedback trials. 

Furthermore, we found evidence for a positive covariation of local surprise and the P3.   

4.3.2.4 Adaptation 

We were interested in how the EEG signal, and especially, the FRN is associated 

with behavioral adaptations after making a false response. Therefore, we implemented 

another behavioral predictor in GLM 3, reaction time change (RT_change). It represents 

feedback adaptation in the consecutive trial, while positive values imply improvement 

(i.e. getting closer to 1sec) and negative values decline (further away from 1sec) in 

performance. Furthermore, we included the interaction of valence and adaptation, 

because we assume a stronger influence of adaptation after negative-feedback trials. 

Surprisingly, we only see a very small association between RT_change and the neuronal 

activity from 130ms on (CPz, peak @ 220ms, b = -0.04, t(991) = -3.39, p = 0.001, d = -

0.11, 99% CI [-0.06, -0.02], crit p = 0.047; Figure 4-4, row 12). However, there is a 
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negative covariation between RT_change at centroparietal electrodes (CPz, peak @ 

320ms, b = -0.17, t(991) = -12.61, p = 6.36 x 10-34, d = -0.40, 99% CI [-0.19, -0.14], crit p 

= 0.047; Figure 4-4, row 12) and the interaction of feedback valence x RT_change at 

frontal electrodes with the neuronal signal around 350 ms after feedback (FCz, peak @ 

370ms, b = -0.22, t(991) = -7.58, p = 7.80 x 10-14, d = -0.24, 99% CI [-0.28, -0.17], crit p 

= 0.008; Figure 4-4, row 13). These counterintuitive findings imply that an improvement 

in the consecutive trial is associated with a smaller P3a amplitude. To disentangle the 

effects of the significant interaction between valence and behavioral adaptation, we split 

the data into negative- and positive-feedback-trials and used RT_change as a regressor 

of interest (GLM 3b). Within positive-feedback trials, RT_change does not seem to have 

a systematic influence on neuronal signals contributing to the FRN or P3 complex 

(Figure 4-4, row 14). For negative trials, there is a small negative covariation of 

RT_change with the neuronal signal at parietal electrodes in the time frame of the early 

FRN (Pz, @ 200ms, b = -0.15, t(991) = -10.88, p = 4.18 x 10-26, d = -0.35, 99% CI [-0.18, 

-0.13], crit p = 0.011; Figure 4-4, row 15). Additionally, results show a negative 

covariation of RT_change with the neuronal signal in the time window of the P3 for 

negative-feedback trials (FC2, peak @ 360ms, b = -0.21, t(991) = -13.00, p = 8.59 x 10-

36, d = -0.41, 99% CI [-0.24, -0.18], crit p = 0.011; Figure 4-4, row 15). Because 

participants adjusted their behavior depending on the expectancy of negative feedback, 

we investigated the influence of the interaction of expectedness and RT_change after 

negative feedback on the neuronal signal in GLM 3c. Indeed, a frontoparietal negative 

covariation between 240ms and 280ms occurs in negative-feedback trials (FCz, peak @ 

260ms, b = -0.19, t(991) = -4.99, p = 7.14 x 10-7, d = -0.16, 99% CI [-0.27, -0.12], crit p 

= 0.0004; Figure 4-4, row 16).  
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4.4 Discussion 

4.4.1 Factors influencing the early feedback-related neuronal 
signal 

The current study found, based on a large sample of 992 participants, that valence 

and expectedness influence the neuronal signal and behavioral adjustments after 

feedback. Figure 4-5 summarizes the contributions of feedback-related performance 

monitoring components to feedback-locked EEG dynamics in a schematic sketch. As can 

be seen, the effect of valence starts early around 180ms at frontoparietal areas. Another 

negative covariation joins in from 260ms on at centroparietal electrodes. This second, 

more parietal valence-specific effect was already reported in other studies (Gentsch et 

al., 2009; Ullsperger, Danielmeier, & Jocham, 2014) and appeared independently from 

frontocentral parts (Gentsch et al., 2009). Since the classification of the signal is still 

unclear, future research should address the origin of this phenomenon. With respect to 

global surprise or expectedness, we see a weaker frontal effect starting at an early 

latency even before 180ms (Figure 4-5). The interaction of valence and surprise evokes 

a broad and sustained frontocentral effect from 230ms on and it extends to parietal 

areas over time. 

Negative feedback was associated with a sustained negativity in the FRN latency 

range. In the same time window, we found a negative covariation of the feedback-locked 

EEG activity for the expectedness regressor. These findings go in line with previous 

research (Holroyd & Krigolson, 2007) and support the RL-account in a way, that the 

FRN is not only driven by mere surprise. Moreover, we found an interaction of 

expectedness and valence affecting the EEG signal in the latency range of the FRN. This 

result supports the RL theory that the FRN is affected by a signed RPE signal. The FRN 

modulation by expectedness was stronger after positive feedback than after negative 

feedback. Hence, one could also interpret the present findings in the context of a RewP. 

Since this valence-specific effect occurs only in interaction with expectedness, this 

interpretation does not seem straight forward to us. In other words, EEG dynamics in 

the time range of the FRN are more modulated by outcome expectancy after positive 

compared to negative feedback. RPEs are therefore stronger represented and have a 

larger “dynamic range” during positive events than during negative events. In this case, 
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the RPE appears to be driven by surprise. In contrast, when the RPE is driven by valence, 

we found a stronger, later, and more parietal modulation of the FRN by valence for 

unexpected events than for expected events. This finding rather supports recent 

evidence suggesting that the FRN reflects some combination of reward- and salience-

prediction error encoding (Glazer & Nusslock, 2021). In line with that, new studies state 

that the signal in the latency range of the FRN reflects independent processing of both 

better-than-expected and worse-than-expected outcomes (Bernat et al., 2015; Bernat 

et al., 2008; Foti et al., 2015; Hoy et al., 2021). The FRN is proposed to reflect the neural 

response to a negative RPE (losses) associated with theta band oscillatory perturbations 

(Cavanagh et al., 2012; Cavanagh & Frank, 2014; Cavanagh et al., 2010; Cavanagh & 

Shackman, 2015), whereas the RewP is proposed to reflect the neural response to a 

positive RPE (wins) associated with delta band activities (Cavanagh, 2015). Unfortunately, 

in the present study, there are some limitations that restrict the interpretation of the 

RPE, particularly the differentiation into positive and negative RPEs. Due to the task 

design, the probability and valence of the feedback are intertwined. 

Figure 4-5. Schematic representation of influencing factors and their manifestation 
in the neuronal signal and ERPs after feedback. ERP = event-related potential; FC = 
frontocentral; CP = centroparietal. 

4.4.2 Factors influencing the later feedback-related neuronal 
signal 

Results for the neuronal signal at later latencies show also an influence of 

expectedness and valence. Regarding surprise, there is a sustained centroparietal effect 
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from around 300ms on (Figure 4-5). From 340ms after feedback, a valence-specific 

frontoparietal positive covariation appears and finds its peak at 380ms. 

Concerning the P3 complex, the influence of global surprise could be replicated (de 

Bruijn et al., 2004; Fischer & Ullsperger, 2013; Mars et al., 2008): we showed a 

dependence of the neuronal signal during the time window of the P3b at centroparietal 

areas on expectedness. Valence elicited a frontoparietal effect from 340ms on. This P3a-

pattern could therefore represent a stimulus-driven attention mechanism. Furthermore, 

the P3 complex was most positive for unexpected positive-feedback outcomes. This 

finding is consistent with the results of Hajcak et al. (2007) and Severo et al. (2018). 

Walentowska et al. (2019) had similar findings: the P3b amplitude was larger for positive 

than negative feedback in unexpected events. Because surprising positive events can be 

very helpful in increasing the performance, this phenomenon could be interpreted as a 

goal-relevant action-value-updating of this specific feedback. Additionally, we addressed 

surprise on a more trial-by-trial basis and examined the impact of a locally surprising 

event. In line with previous evidence (Mars et al., 2008; Nieuwenhuis et al., 2005; Squires 

et al., 1976), results show a dependence of the P3 complex to local surprise in a way, 

that the P3 is more positive when local deviants appear. 

4.4.3 Link between FRN and behavioral adaptation 
Concerning behavioral adaptation, an association between the size of the FRN and 

the amount of behavioral adjustment in the following trial in combination with feedback 

valence was assumed: after negative feedback, a stronger effect on the neuronal signal in 

the time window of the FRN is expected to be associated with a bigger change in 

reaction time than after positive feedback. In a more exploratory way, we created a 

measure for behavioral adaptation that also depicts performance improvement and 

decline. Results show only a small association between adaptation after feedback and the 

neuronal signal during the time window of the FRN both overall trials and for trials with 

negative feedback, mostly at parietal electrodes. Previous research was able to link the 

FRN to behavioral adaptations depending on feedback valence and expectedness (Arbel 

et al., 2013; Cavanagh, 2015; Holroyd & Krigolson, 2007). One reason why we could not 

reproduce these findings is the nature of the feedback used in the present task. The 

feedback contained information about the correctness of the response but did not tell 
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the participants in which direction to adjust their behavior in order to improve their 

performance in the upcoming trial. At the same time, our measure of behavioral 

adaptation did contain directional information about whether one is getting closer or 

further away from the correct response, and thus did not correspond to the information 

content of the feedback itself. In order to use feedback profitably, the information 

content is crucial. It has already been shown that this also affects the neuronal signal 

(Cockburn & Holroyd, 2018). Future experiments should therefore work with 

differentially informative feedback and corresponding outcome measures to more 

specifically capture the relationship between the feedback-processing neuronal signals 

and behavioral consequences. The unspecific association between behavioral adaptations 

and feedback-related EEG activity in our task might reflect participants’ attempt to adjust 

their behavior in an exploratory manner following negative feedback. The dependence 

of behavioral adaptation on both feedback valence and expectedness might suggest that 

participants infer that it is adaptive to adjust their behavior more after unexpected 

negative feedback. In this task-state, the target time window is wider, hence larger 

adjustments are more likely to improve behavior. Because participants are not told 

whether their time estimation was too fast or too slow, they are forced to randomly 

adjust their behavior after negative feedback and try to memorize their time estimation 

after positive feedback. This process could be reflected in the sustained parietal positive 

response seen after positive feedback. For the present study, however, this assumption 

has to remain a tentative explanation. 

In line with the findings mentioned above (4.1), adaptive behavior and learning after 

feedback can have different functions depending on the type of RPE: an unsigned PE may 

enhance selective attention based on known task rules (Danielmeier et al., 2015; 

Danielmeier et al., 2011; King et al., 2010), while a signed PE determines the direction 

of reinforcement learning, that is, to repeat or avoid an action (Ullsperger, Fischer, et 

al., 2014). Arbel et al. (2013) showed that the FRN elicited by negative feedback was not 

correlated with long-term learning outcomes, whereas positive-feedback-associated 

FRN was correlated with the learning outcomes. In contrast, Cavanagh (2015) 

hypothesized a differentiation in hierarchically distinct types of prediction error, where 

delta band activity linked to a rewarding event motivates immediate behaviors, while 

theta band activity linked to punishing events initiates long-term behavioral adjustments 
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(Cavanagh & Shackman, 2015). In the present study, we demonstrate a small effect of 

the interaction of consecutive behavioral adaptation with outcome expectedness on the 

neuronal signal between 240 and 280ms for trials with negative feedback. This may 

provide evidence for the connection between negative RPE and behavioral adjustments. 

Nevertheless, the FRN varies due to different feedback characteristics and the amount 

of feedback information (Cockburn & Holroyd, 2018) and is therefore highly task 

dependent. This could be one reason for inconsistencies in existing evidence. Studies 

finding inter-individual differences (van Noordt & Segalowitz, 2012) or studies related to 

mental disorders (Endrass et al., 2013; Keren et al., 2018; Webb et al., 2017) also show 

that the FRN does not reflect a monolithic block with only one unique functional 

interpretation. Rather, the task, context, etc., must be considered to characterize the 

factors that contribute to the FRN. These contributions and their representations may 

vary independently (Stewardson & Sambrook, 2021), leading to variations in ERPs. This 

can even lead to latency shifts in the individual effects, making it difficult to unambiguously 

assign FRN and P3. Therefore, the task should always be considered when interpreting 

different findings concerning the FRN and adaptive behavior. 

4.4.4 Link between P3 and behavioral adaptation 
Since the feedback-related P3 had been associated with behavioral adaptation 

(Fischer & Ullsperger, 2013; Jepma et al., 2018; Jepma et al., 2016), the P3 amplitude 

could be expected to correlate positively with changes in behavioral performance after 

feedback. Surprisingly, there was a contrarian association between behavioral adaptation 

and the neuronal signal in the P3 time frame at frontoparietal areas (Figure 4-5): the 

neuronal signal appears less positive when behavioral adaptation to the next trial is 

greater, i.e. that performance has improved. Nassar et al. (2019) and Kirschner et al. 

(2022) predicted adjustments in behavior based on the amplitude of the P3, but as a 

function of the source of surprise. If the surprise was uninformative, the P3 negatively 

predicted learning. As mentioned earlier, the feedback in the present study was 

uninformative in a way that it was not directional. Thus, it can be concluded that the 

counterintuitive association between P3 and behavioral adjustment in the present study 

may reflect the negative prediction from above (Kirschner et al., 2022; Nassar et al., 

2019). Additionally, Cavanagh (2015) found an association between the P3 complex and 
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behavioral adaptation: delta band phase dynamics observed in the P3 appear to be 

involved in strategic behavioral adjustments like the degree of response time speeding. 

Interpretation of the authors suggests that the processes underlying FRN and P3 reflect 

hierarchically different levels of prediction errors, reward and state prediction errors, 

respectively. Whereas reward prediction errors give information to a model-free 

learner on a trial-and-error basis, state prediction errors inform model-based systems 

by more complex forward predictions. If the P3 is modulated by state prediction errors 

and therefore depends on an agents’ decision-making policy, a richer learning 

environment may be needed to reveal the relationship between behavioral adaptation 

and the neuronal signal during the corresponding time frame (like Chase et al., 2011). 

Taken together, the investigated ERP deflections are not only due to single 

influencing factors, but are complex representations composed of several influencing 

components. As Figure 4-5 clearly shows, even within FRN latency ranges there are 

temporally and spatially distinguishable effects that are difficult to characterize using an 

ERP averaging approach. Also, previous methodological considerations (Glazer et al., 

2018; Williams et al., 2021) indicate the difficulty to isolate the FRN and confounds 

arising from component overlap. Therefore, they underline the importance of teasing 

apart the stages of feedback processing to integrate individual reward-related ERPs in a 

more holistic view and to capture the broader temporal dynamics (Foti & Weinberg, 

2018; Glazer et al., 2018). There are already some attempts to do so (Gheza et al., 2018; 

Sambrook & Goslin, 2016). Moreover, time-frequency analysis could help future 

research identify and differentiate cognitive processes underlying different types of RPE 

and their roles in behavioral adjustments to improve performance. 

4.4.5 Limitations 
Methodological limitations include that feedback-related EEG dynamics may have 

been modulated by offset-related visual ERPs after 350ms past feedback, but it is unlikely 

to affect our results with respect to the regressors of interest. Additionally, previous 

findings have shown an influence of valence effects on the amplitude of the FRN 

depending on the perceptual salience of the feedback stimuli (Y. Liu et al., 2014). In the 

present study, we cannot rule out this effect because feedback color was not 

counterbalanced across participants. 
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4.4.6 Conclusion 
In the present study, we disentangled the functional relevance of independent 

contributions to electrophysiological correlates of feedback processing in a big sample 

of N=992 participants by using a novel approach in EEG analysis and a time estimation 

paradigm. While we have previously used instrumental learning tasks (Burnside et al., 

2019; Fischer & Ullsperger, 2013; Kirschner et al., 2022), we were able to replicate 

typical feedback-related components with the present task despite it involves less 

opportunities to adapt behavior. The results of the present study support the view that 

the FRN is driven by a signed RPE and furthermore influenced by global surprise. 

Depending on what drives the RPE most –expected value or obtained outcome–, 

different modulations of the FRN are possible. Whereas the FRN was less influenced by 

global and local surprise, unexpected events elicited a larger P3b. An association 

between behavioral adjustments and the P3 might indicate a representation of different 

RPE levels and types within the components involved in feedback processing. With the 

help of a big sample size and a regression approach that allows the simultaneous 

investigation of multiple independent variables, we obtain information on the temporal 

and spatial variance of the contributing effects on the neuronal signal. 

  



General Discussion - Discussion 
 

75 
 

5 General Discussion 

The presented work aimed to enhance our understanding of human foraging 

decision-making mechanisms and feedback processing. It focuses on investigating how 

people make foraging-decisions in a patch-leaving environment, their adaptation to 

different reward rates, and their performance compared to an optimal MVT-inspired 

policy. Additionally, the studies explore potential neural correlates associated with 

continuous foraging-decisions and how they manifest. Regarding feedback processing, 

this research studied the type of RPE reflected in the neuronal signal during the latency 

of the FRN. Furthermore, it investigated factors influencing the latency of the P3, 

specifically the role of unexpectedness and valence. I also explored whether the neural 

signal during the FRN and P3 is associated with adaptive behavior after feedback.  

To achieve these objectives, two experiments were conducted, recording EEG 

data while participants performed a foraging-decision task and a feedback-related 

paradigm. EEG was chosen for its high temporal resolution. Both studies utilized a robust 

single-trial regression approach to analyze independent contribution of task 

manipulations to the EEG signal and avoid reliance on specific ERP quantifications, 

allowing for a descriptive examination of the effects.  

As hypothesized, participants in study I adapt their patch-leaving decisions in the 

direction an MVT-inspired optimal agent suggests, but not to a sufficient degree. The 

adaptation to the FRR was closer to the optimum than the adaptation to the BRR. 

Simultaneously, participants were closer to the optimum in a rich than in a poor 

environment, while generally staying shorter than optimal. On a neuronal level, results 

show a sustained impact of activity in the delta frequency range reflecting the BRR, while 

decreases in beta power before the response to leave is executed, reflect changes in 

local reward rates. Activity in the theta frequency range appears to represent a common 

component associated with both environmental changes as well as foreground reward 

rates. 

Regarding the processing of feedback, the results provide evidence supporting the 

notion that the FRN is influenced by a signed RPE. Depending on the predominant driver 

of the RPE – whether it is the expected value or the obtained outcome – various 
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modulations in the time frame of the FRN can be observed. Additionally, the P3 complex 

is influenced by both surprise and valence. Interestingly, at the FRN level, only weak 

correlations with behavioral adaptations were found. Conversely, a negative correlation 

was found for the P3, suggesting that this component may be more closely associated 

with certain behavioral changes in response to feedback. 

In light of these findings, I will discuss implications, the connection between 

decision-making and feedback processing, and speculate about future perspectives in the 

following sections. 

5.1 Human foraging behavior compared to a normative 

agent 

The ability to make foraging-decisions empowers individuals to navigate complex 

decision scenarios and make choices that optimize their desired outcomes, even in 

situations where future prospects are uncertain. Humans are often expected to behave 

optimally, efficiently utilizing time to maximize output while minimizing energy 

expenditure. Neuroscientific research aims to construct models to understand and 

replicate human decision-making. However, when comparing these models to actual 

human behavior, it is evident that individuals approximate optimal adaptive behavior but 

often deviate from the predicted optimum. One possible reason for this deviation is that 

the computational models involve complex and effortful calculations, which may not align 

with the brain's preference for efficiency and energy conservation. Humans may rely on 

simpler heuristics, leading to solid but less than perfect solutions that adhere to the 

principle of cost-benefit trade-offs (Findling et al., 2021). In recent research, a combined 

approach that integrates RFL models with complementary parameters or heuristic 

mechanisms provide the most accurate fit to human behavior in various exploration-

exploitation scenarios (Brands et al., 2023; Cogliati Dezza et al., 2017). Additionally, the 

assumptions made within the computational models do not reflect the reality of 

individuals and often overlook human biases. For example, the phenomenon of 

overharvesting in foraging paradigms, as suggested by Harhen and Bornstein (2023), 

could result from a lack of complete environmental knowledge, leading humans to work 

with available information and experiences at a given time. This scenario may also apply 
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to our current Study I: the model assumes a consistent average reward rate within a 

single environment. However, especially initially, the environment is highly uncertain to 

participants. Consequently, the representation of the environment's average rate adapts 

dynamically with each encountered patch. We also incorporated a model 

accommodating this dynamic adaptation. Interestingly, in this specific instance, the 

predictions of both models exhibited minimal divergence, leading us to favor the simpler 

model. Other research (Acuña & Schrater, 2010; Busemeyer et al., 2019; Kilpatrick et 

al., 2021; Sims et al., 2013) has indicated that accounting for this dynamic evolution, e.g., 

using Bayesian updating, demonstrates that individuals' foraging behavior is not irrational 

but instead reflects optimal choices under uncertainty. 

The main goal of this work, however, was not to find the best model to explain 

participants' behavior but rather to create a normative agent inspired by the widely used 

MVT approach to compare predicted and observed results and correlate them with the 

neuronal signal. By doing so, study I aimed to reveal neural correlates of optimal or 

suboptimal behavior. The initial hypotheses regarding the behavioral data were largely 

confirmed, revealing independent adaptations to variations in the FRR and BRR in the 

direction suggested by the MVT. However, this adaptation was not sufficient, and 

participants tended to adjust their behavior less effectively to higher-quality patches. 

Higher-quality patches in foraging scenarios are associated with longer stay/leave times, 

implying a more delayed reward. The bias towards leaving higher-quality patches 

prematurely could be attributed to temporal discounting, where distant rewards are 

devalued, leading individuals to prioritize smaller but more immediate rewards (Odum, 

2011; Peters & Büchel, 2009). Consequently, participants may exhibit a preference for 

leaving high-quality patches too early, thereby potentially missing out on even greater 

rewards that could have been obtained with more extended stays. Moreover, 

participants performed worse when they were situated in the poor compared to the 

rich environment. Their behavior deviated significantly from the optimum in the poor 

environment, indicating challenges in optimizing decisions under unfavorable conditions. 

The phenomenon of an optimism bias, in which positive PEs are more heavily weighted 

(Sharot et al., 2012), could make it more difficult to adapt to resource-poor 

environments that are more likely associated with negative PEs. This bias towards 

favoring positive outcomes could prevent individuals from accurately assessing the true 
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costs and risks associated with foraging decisions in challenging or less rewarding 

environments. As a result, individuals may be less inclined to adjust their behavior 

appropriately. A surprising finding emerged, contrary to what the literature might have 

assumed: across conditions, participants actually stayed for shorter durations than 

optimal. As discussed earlier, this might be a paradigm-specific effect: A sense of urgency 

is created by emphasizing time costs, which leads to leaving options early to save time. 

These results shed light on the complexities of human decision-making during foraging 

tasks, highlighting the challenges individuals face in achieving optimal strategies, especially 

in changing and unfavorable environments. Both the computational models and observed 

behavior emphasize the importance of an agent’s current foreground i.e. currently 

experienced reward rates (FRR) being compared to the longer running or assumed BRR. 

Returning to the model introduced at the beginning of this thesis, foraging 

decisions involve the stages valuation and decision-making based on Rangel et al.’s (2008) 

cycle of decision-making. Within this framework, the values to compare are the value of 

an option encountered (to decide whether to engage with it) and the average value of 

the environment (to determine whether the environment is sufficiently rich to forego 

the encountered option and continue searching for better alternatives elsewhere). For 

a model of sequential decision-making with continuous harvest phases, these two stages 

need to loop multiple times within an encountered option until the decision to leave is 

made, allowing for an evaluation of this action. To evaluate the entire environment, one 

would need to loop through the entire process multiple times to estimate its overall 

quality. This assumption suggests that there are different mechanisms guiding decision-

making between options within an environment and between different environments 

themselves. The complexity of this task raises the question of whether there is a specific, 

or perhaps multiple, neural mechanism optimized to solve this unique and ecologically 

significant challenge. The next section will address the contribution that this thesis can 

make to answering this question. 

5.2 Neuronal dynamics of the human foraging process 

The concurrently assessed electrophysiological data yielded significant results, 

providing neural representations of participants’ choice strategies for adjustments to 
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both BRR and FRR during a foraging task. As expected, theta and beta activity play a role 

in the decision to leave a patch within a foraging scenario. Moreover, changes in the 

frequency range of delta appear to be associated with the specific environment in which 

participants are engaged. This sustained impact is observed from the beginning of the 

harvest phase until the decision to leave is executed. Therefore, delta oscillations might 

track broader contextual changes in the environment. Furthermore, reductions in 

midfrontal theta power are indicative of a shared component that tracks trial-by-trial 

variations in FRR and environmental changes. On the other hand, time-frequency 

analyses showed that decreases in beta activity are linked to variations in FRR. The 

results suggest that both beta and theta activity might inhibit the execution of the 

decision to leave until a certain threshold is met. It seems that participants delay their 

decision to leave until the representation of a current reward rate equals the average 

reward rate of the environment. These findings suggest that the neural representation 

of a foraging decision as an ongoing process, initiated at the start of a harvest phase, 

ramping up to a specific threshold, and ultimately culminating in the execution of the 

leaving decision when that threshold is met. The neural activity observed throughout 

the foraging process highlights the complexity and dynamic of decision-making during 

foraging tasks, providing valuable insights into the underlying mechanisms that guide our 

choices in such adaptive scenarios. The present work is the first utilizing 

electrophysiological data to illustrate the temporal dynamics of foraging decisions. 

However, many questions remain unanswered. Therefore, this thesis should motivate 

future work to determine the robustness and comprehensiveness of these findings. 

Given the high temporal resolution of EEG, it proves to be a suitable method to map 

this complex interplay of different processes. The interaction of different frequency 

activities proves insightful in illustrating these dynamics. It has also been suggested that 

certain frequencies, such as theta, are responsible for specific processes and coupling 

with another frequency, like gamma, which ‘sits on top’ and is possibly synchronized with 

the phase of theta, reflects the unique decision mechanism that distinguishes between 

exploiting and exploring (Domenech et al., 2020). 

Due to previous literature linking the foraging process with the aMCC (Kolling et 

al., 2012; Wittmann et al., 2016), our analyses focused on frontocentral and central 

topographies. As expected, we found frontocentral electrophysiological dynamics, 
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supporting existing evidence. However, a surprising discovery was the presence of 

effects on electrodes in a more parietal position of the scalp. While the low spatial 

resolution of EEG could potentially account for these distortions, it is also plausible that 

these results indicate the involvement of a broader neural network cooperating during 

the process of making foraging decisions. In addition, the occurrence of activity in the 

delta frequency range argues for this, as oscillations in the low frequency range are 

commonly associated with coordination of larger-scale networks. The encoding of the 

leave decision was reflected in large-scale oscillatory power changes, possibly controlling 

a network of entire circuits responsible for context changes, since monitoring reward 

rates is relevant to many different decision processes such as vigour and willingness to 

exert effort. Findings of Laureiro-Martínez et al. (2015) support this hypothesis by 

discussing the involvement of various known brain circuits in the exploration-

exploitation dilemma. Future research should delve into this indication further and 

explore the collaboration of the aMCC with other brain regions like the vmPFC to 

unravel the complexity of this decision-making process. By investigating the interactions 

and functional connectivity between various brain regions, we can gain a deeper 

understanding of how different neural networks work together to facilitate optimal 

decision-making during foraging tasks. 

In the present study, participants were aware of the type of environment they 

were in (rich or poor). However, the precise representation of the current 

environmental value remains uncertain. Referring to the discussion on the 

operationalization of the average reward rate (see 1.1.2), understanding how the value 

of the environment is conceptually and neuronally reflected, as well as how possible 

future encounters are represented, is crucial. Addressing this question, Wittmann et al. 

(2016) made partial strides by modeling an expectation of prediction errors and linking 

it to activity in the anterior midcingulate cortex (aMCC). Their findings revealed that 

reward representations in the aMCC played a predictive role in individuals' decisions for 

exploitative or explorative behavior. While this provides valuable insights, further 

research is warranted to refine the neuronal representation of environmental value. 
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5.3 Independent contributions to neural correlates of 

feedback processing  

The results of study II revealed independent effects of valence and expectedness 

on the electrophysiological signal following feedback. Moreover, the interaction of 

valence and expectedness influenced the signal in the latency range of the FRN, 

supporting the notion that the FRN reflects a signed RPE. In this respect, the hypothesis 

can be confirmed. Interestingly, depending on what drives the RPE – salience or reward 

– distinct effects were observed on the EEG signal, suggesting a combination of reward- 

and salience-based prediction error encoding in the FRN. This aligns with recent 

evidence proposing that the FRN measures the difference between two independent 

cognitive processes (Bernat et al., 2015; Foti et al., 2015; Hoy et al., 2021). Time-

frequency analyses have garnered increasing interest in the field of feedback processing, 

offering valuable insights into the neural correlates of positive and negative prediction 

errors (Bernat et al., 2011; Cavanagh et al., 2010; Zheng & Mei, 2023). Delta activity is 

thought to reflect the processing of rewarding events to motivate related behavioral 

adjustments (Cavanagh, 2015), while frontal theta activity is associated with neural signals 

of surprise and uncertainty (Cavanagh et al., 2012; Cavanagh & Frank, 2014). As a next 

step, spatiotemporal processes are worth exploring further to gain a comprehensive 

understanding of feedback-related neural dynamics. 

Furthermore, the study successfully replicated previous evidence linking the P3 

complex to surprise, and results indicated an effect of valence on the signal during the 

latency range of the P3: a more positive signal when the feedback was unexpected and 

positive. Thereby the second hypotheses of this study can be confirmed. 

Regarding learning from feedback and its neural correlates, the initial expectation 

was to find an association with the EEG signal in the latency range of the FRN. However, 

the results did not confirm this hypothesis, as the association in the FRN range was 

found to be weak. Instead, a less pronounced signal in the latency range of the P3 was 

observed in conjunction with greater behavioral adaptation in the upcoming trial and 

improved performance. This suggests that the P3 may play a more prominent role in the 

learning and adaptation processes following feedback, compared to the FRN. Contrarily, 
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Yan et al. (2023) found that the RewP amplitude predicted timing behavior for the 

upcoming trial. The relationship between the P3 and delta activity, which is associated 

with the motivation of action selection (Cavanagh, 2015), remains to be clarified. 

Additionally, while Cavanagh et al. (2010) linked also frontal theta activity to behavioral 

adaptation, the evidence on neural correlates of learning from feedback is still sparse. 

Consequently, more studies are required to gain a better understanding of the 

underlying electrophysiological processes and how individuals adapt their behavior based 

on RPEs. 

Ultimately, it is essential to acknowledge that results on neural mechanisms for 

feedback processing heavily depend on the quantification of feedback-related signals and 

task context. To gain a comprehensive understanding of these processes, it is crucial to 

thoroughly investigate these influences, and fortunately, some studies addressing these 

aspects. For instance, Williams et al. (2021) conducted a comparison of different 

quantification methods and recommended to consider both ERPs and time-frequency 

analyses to provide a comprehensive picture. Furthermore, various studies explored the 

impact of contextual factors on the EEG signal during feedback processing, such as 

reward magnitude (e.g., Bellebaum et al., 2010), feedback delay (e.g., Weismüller & 

Bellebaum, 2016), motivation (e.g., Overmeyer et al., 2023), learning (e.g., Bellebaum & 

Daum, 2008), and memory (e.g., Albrecht et al., 2023). However, despite the progress 

made, many questions in this field remain unanswered. To facilitate a more 

comprehensive understanding and integration of findings, systematizations in the form 

of meta-analyses are necessary. Such meta-analyses can help identify common trends, 

establish robust patterns, and reveal potential discrepancies across studies. Additionally, 

examining and comparing data from different tasks will further enhance our knowledge 

of the generalizability and reliability of neural mechanisms underlying feedback 

processing.  

5.4 The cycle of foraging decision-making and feedback 

processing 

Revisiting the cycle of decision-making as proposed by Rangel et al. (2008), we can 

now explore how this process incorporates foraging decisions and connect it with the 
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findings of the present work. The evidence from our and other studies suggests that the 

foraging decision-making process involves some form of evidence accumulation during 

the foraging phase, beginning early during harvest and leading up to a threshold that 

triggers a specific action and outcome. This outcome is then compared to an 

expectation, and prediction errors are calculated, aligning with the principles of the RFL 

model. In Wittmann et al.’s (2016) study, the average reward rate is considered as the 

long-term average value of the currently exploited option instead of the value of 

concurrently alternative options. Comparing this average to the recent value of the 

option yields a measure of reward rate change, a PE. Since we already know quite a bit 

about how PEs are used as feedback and learning signals, this provides an opportunity 

to investigate both foraging decision-making and feedback processing together and 

uncover their interrelationships. A close linkage of these two processes is also evident 

from the fact that both foraging decisions and the need for behavioral adaptation are 

represented in aMCC (Clairis & Lopez-Persem, 2023). In our foraging paradigm, 

participants receive feedback after making a decision to leave, presenting an avenue for 

further exploration. Future research could investigate how reward rates, especially the 

average reward rate of the environment as a value representation, are updated during 

the feedback phase. During value-based decision-making, specific expectations are 

formed, which later influence PEs and the updating of reward rate representations. 

Exploring whether the knowledge of the value of options and related value-based choices 

between distinct options may predict the decision to leave could offer valuable insights 

for a cycle of sequential decision-making. Hassall and Krigolson (2020) offers insights 

into the connection between decision-making and feedback processing within 

continuous environments. The enhancement of the feedback-locked P300 following 

exploration, suggests its role in managing the explore-exploit trade-off. 

The degree to which the cycle of decision-making generalizes from discrete to 

continuous tasks is not yet entirely clear. It is conceivable that the same cycle operates 

at various levels. Kolling and O'Reilly (2018) propose a differentiation between within-

state and state-change decisions. Within-state decisions involve selecting the optimal 

course of action within a given environment, whereas state-change decisions entail 

comparing currently available options with potential alternatives upon a state transition. 

This framework indeed treats reward rate as a function of continuous time. Further 
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studies are needed to extend and better understand the cycle of decision making and 

feedback processing to more complex, everyday scenarios with sequential decision 

steps. 

5.5 Future research 

On a conceptual level, there remains uncertainty about the generalizability of MVT-

type models to different types of foraging choices. Although the present work provides 

evidence by offering results on a foraging paradigm employing a continuous harvest 

phase, there is still a need for converging evidence across various types of tasks 

(Helversen et al., 2018). Moreover, a lack of ecological validity arises due to 

dissimilarities between these tasks and real-life foraging scenarios (Mobbs et al., 2018). 

Furthermore, decision neuroscience has yielded intriguing findings on inter-individual 

differences and the well-established phenomenon of risk aversion (Khaw et al., 2021). 

However, when it comes to foraging decisions, these topics have been largely neglected, 

leaving ample room for future studies to investigate in order to further the 

understanding of how individuals differ in their decision-making strategies and the role 

of risk aversion in foraging choices. 

From a methodological point of view, the cluster-based permutation analyses used 

to correct for multiple comparisons in study 1 is a conservative method to extract 

significant regions in the time-frequency space. Moreover, cluster-based permutation 

analyses are dependent on the time window on which we focus. Because we focus on 

fairly large time windows within the foraging study, whereas the cluster-based 

permutation analyses being dependent on the time window, we cannot rule out the 

possibility of missing smaller effects and effects that fall outside the time window we 

examined. In addition, we used two different perspectives: stimulus-locked to represent 

foraging initiation phase and response-locked to represent the decision to leave. Since 

foraging decisions naturally take different lengths of time, it would be interesting in future 

projects to map the entire foraging process by either breaking down each foraging 

decision into individual reward steps or by using scaling techniques (Hassall et al., 2022) 

that stretch and compress the EEG signal to compare different trial lengths. When it 

comes to defining values related to a foraging decision, future studies should consider 
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the differentiation between the value of switching to a new patch versus the conflict 

experienced between choosing to stay or leave (Fontanesi et al., 2022). Simulations 

suggest that both processes provide distinct functions within anterior cingulate cortex 

(ACC; Brown & Alexander, 2017). 

Apart from methodological considerations aimed at enhancing the understanding 

of decision-making and feedback processing, investigating the behavior of individuals with 

psychiatric disorders could provide valuable insights. Addicott et al. (2017) have 

highlighted the potential relevance of studying explore/exploit decision-making in such 

populations. Some psychiatric disorders may impact optimal foraging behavior. For 

example, patients with OCD tend to exhibit behavioral inflexibility, prioritize immediate 

rewards over long-term rewards (Cavedini et al., 2006), and require more information 

before making decisions (Foa et al., 2003). These traits suggest that individuals with OCD 

might display overexploitation of current options while neglecting long-term goals. 

Moreover, the assumed underlying neurological basis of OCD, the cortico-striato-

thalamo-cortical circuit imbalance, which involves the posterior medial frontal cortex 

(pMFC), supports the hypothesis of the presence of impairments in foraging decisions. 

A study by Scholl et al. (2022) found that compulsivity was associated with searching for 

too long in the hope of getting a better offer due to insensitivity to costs, which lead to 

avoidance of situations where this bias could manifest. Further research is required to 

elucidate whether and how impairments in foraging choices manifest in patients with 

OCD. By studying how psychiatric disorders affect foraging decisions, we can gain a 

deeper understanding of decision-making processes in these populations and their 

potential neural correlates. By examining the neural correlates of feedback processing, 

which have already been extensively studied in psychiatric samples (Bellato et al., 2021; 

Endrass et al., 2013), we can effectively assess the efficacy of this approach. Impairments 

and biases in decision making can pose significant problems for those affected in their 

daily lives and make recovery difficult, so it is important to identify these, which 

consequently allows for the development of interventions. 

Monitoring multiple reward rates at varying temporal scales (e.g., FRR and BRR), 

updating internal states through feedback, and adapting to a volatile environment pose a 

challenging and complex task. Current research, as noted by Grossman and Cohen 
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(2022), may not yet fully capture these dynamics, particularly those occurring on 

intermediate timescales. This also includes foraging decisions, which involve processes 

that occur "slowly" over seconds to minutes. Decision-making and learning are often 

continuous processes that operate within this middle timescale. Neuromodulators may 

play a crucial role in supporting and modifying activity within this timescale. Neurons can 

exhibit multiple timescales through synaptic and extrasynaptic neurotransmitter release, 

presenting an opportunity to tease apart the tracking of different time scales such as the 

FRR and BRR and to learn more about neuronal representation. Therefore, a topic 

worthy of expansion is the involvement of neuromodulators like dopamine in 

explore/exploit decisions, as has been addressed in some studies (Chakroun et al., 2020; 

Chakroun et al., 2022; Le Heron et al., 2020). 

5.6 Conclusion 

Previous research has demonstrated that animals efficiently navigate the 

exploration-exploitation dilemma while foraging for food in volatile environments, 

seeking to maximize rewards and minimize energy expenditure. Similarly, humans face 

such foraging decisions in real-life scenarios and learn from the outcomes. However, our 

understanding of the underlying mechanisms driving these processes and their neural 

correlates remains limited. 

This thesis sheds light on how individuals explore and allocate resources in 

uncertain and dynamic environments, process feedback, and the corresponding neural 

correlates. Rather than limiting our perspective to simple decisions between distinct 

options, we must consider complex, sequential decisions that reflect real-world 

scenarios. The evidence presented here shows that environmental and current value 

representations manifest as distinct patterns of neuronal oscillations, tracking signals 

until a certain threshold is reached, aligning with normative foraging models. Moreover, 

neuronal feedback-related processes are influenced by the unexpectedness and valence 

of the feedback while representing various prediction errors.  

By comprehending this decision-making cycle and adaptive behavior through 

feedback, we gain the ability to predict human choices and biases, enabling interventions 

to enhance decision-making and learning.  
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