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Zusammenfassung

Mit seinen 85 Milliarden Neuronen und 150 Billionen Synapsen ist das menschliche Gehirn imstan-
de, ziemlich erstaunliche Kunststücke zu vollführen. Hinsichtlich der Frage, wie es in Wirklichkeit
agiert, beginnen wir—trotz all der Fortschritte in den theoretischen Neurowissenschaften und der
Computertechnologie—gerade erst an der Oberfläche zu kratzen.

Die hier vorliegende Dissertation nimmt an, dass Attraktor-Dynamiken eine der zentralen
funktionalen Grundlagen der Gehirnfunktion darstellen. Bei einem neuronalen Netzwerk mit
ausreichend großen Anteil an rekursiven Verbindungen, kann man die synaptischen Gewichte,
welche die Konnektivitätsmatrix bilden, so wählen, dass sich bestimmte Muster gemeinsamer
neuronaler Aktivitäten stabilisieren. Diese stabilen Aktivitätszustände, beziehungsweise „Attraktor-
Zustände“, stellen Erinnerungen dar, welche im Netzwerk mithilfe der synaptischen Verbindungen
eingespeichert sind. Ihre Existenz beeinflusst die spontane Dynamik der Netzaktivität tiefgehend.
Von überragender Bedeutung ist auch, dass die einzelnen „Attraktor-Zustände“ durch externen
Inputs angeschaltet, ausgeschaltet, geändert oder verformt werden können.

Das Grundprinzip von Attraktor-Dynamiken ist also die Existenz von (möglicherweise vie-
len) stereotypischen Aktivitäts-Zuständen denen sich die Netzaktivität während ihrer sponta-
nen Entwicklung immer wieder nähern und die durch externe Inputs gestaltet und kontrolliert
werden können. Man geht davon aus, dass im Kortex von Säugetieren eine sehr große Anzahl
von sich überlappenden und miteinander verflochtenen „Attraktor-Zuständen“ auf vielen Raum-
und Zeitskalen gleichzeitig existieren. Vermutlich liegt die Kanalisierung der Netzaktivität durch
Attraktor-Zustände (die ihrerseits von externem Input abhängen) zahlreichen kognitiven Funktio-
nen zugrunde, unter anderem der Klassifizierung von Wahrnehmungen, dem Arbeitsgedächtnis,
der Aufmerksamkeits- und exekutiven Kontrolle, der Planung der Motorik, und vielem mehr.

Ziel der vorliegendenDissertation war es, in einemNetzwerk aus spikendenNeuronen, welches
durch eine neuromorphe VLSI Hardware realisiert ist, eine stochastische Attraktor-Dynamik mit



fein abgestimmter externer Kontrolle zu implementieren. Mit diesem Ziel vor Augen entwickelte
ich einen neuromorphen analogen VLSI-Chip (auch als F-LANN bezeichnet), bestehend aus 128
leaky-integrate-and-fire Neuronen mit Feuerratenadaption und 16,384 plastischen, bistabilen und
stochastischen Synapsen. Das konkrete Ziel war das Erstellen und kontrollieren einer bistabilen
Dynamik zwischen zwei verschiedenen Zuständen von asynchroner Aktivität in einem spikendem
neuronalen Netzwerk mit starken rekurrenten Verbindungen. Die so entstandene und gewollte
Funktionalität unterscheidet sich also erheblich von den klassischen Netzwerk-Architekturen,
zum Beispiel Netzwerke mit reinen Feed-Forward Verbindungen, oder Netzwerke mit determi-
nistischen Dynamiken, welche eine kompetitive „Winner-take-All“ Dynamik oder „zentralen
Mustergeneratoren“ implementieren.

Im Verlauf dieser Arbeit erläutere ich Schritt für Schritt, wie ein kleines neuromorphes Netz-
werk ausgestattet werden muss, damit es die gewünschten Dynamiken und Kontrolleigenschaften
enthält. Weiterhin werde ich nachweisen, dass alle wichtigen Charakteristiken einer bistabilen
Dynamik („asynchrone unregelmäßige Aktivität“, „Punkt-Attraktor“, „Arbeitsgedächtnis“, „Attrak-
torbecken“) selbst in vergleichsweise kleinen Netzwerken mit und gerade trotz der beträchtlichen
Inhomogenität der Komponenten neuromorpher Schaltkreise erhalten bleiben. Darüber hinaus
zeige ich, wie die Kontrolle über diese Dynamiken fein abgestimmt werden kann und wie man die
Übergangswahrscheinlichkeiten für eine große Bandbreite von Zeitskalen justieren kann—bis zu
drei Größenordnungen langsamer als die Zeitskalen der Komponenten neuromorpher Schaltkreise.

Die hier vorliegende Arbeit stellt einen bedeutenden Schritt in Richtung des finalen Ziels
dar, eine biomimetische neuronale Hardware zu entwickeln, welche funktionell und physisch in
biologischem neuronalem Gewebe integriert werden kann. Die vorgesehene Anwendung einer
solchen Hardware wäre ein Gehirn-Maschinen-Interface, das die komplexen Aktivitäts-Zustände
des neuronalen Gewebes „sanft“ zu steuern vermag. Eine solche Schnittstelle würde eine „nahtlose
und symmetrische“ Integration von biologischen und elektronischen Aktivitäts-Status bewerk-
stelligen. Zudem würde sich diese Schnittstelle auf die normalen fortlaufenden Dynamiken des
neuronalen Gewebes grundsätzlich nicht störend auswirken.

ImHinblick auf das eben genannte finale Ziel, liefert neuromorpheVLSI einHardware-Konzept,
was sowohl innerhalb der Zeitskala von biologischem neuronalem Gewebe agiert, als auch hin-
reichend eigenständig, kompakt und energieeffizient ist, um möglicherweise implantiert werden
zu können. Das Beibehalten von biologischen Zeitskalen bei gleichzeitigem Schritt halten mit
der digitalen CMOS-Technologie stellt eine fortlaufende Herausforderung dar, welche innovative
Lösungskonzepte verlangt.



Abstract

The human brain, with its 85 billion neurons and 150 trillion synapses, is capable of some pretty
amazing feats. As to how it actually operates, we are just beginning to scratch the surface, in spite
of all the advances of theoretical neuroscience and computer technology.

The premise of the present thesis is that attractor dynamics is a key functional primitive of brain
operation. Given a neuronal network with a sufficiently high proportion of recurrent connections,
the synaptic weights shaping the matrix of connectivity can be chosen to stabilize certain patterns
of collective neuronal activity. These stable activity states, or “attractor states”, constitute memories
inscribed into the network by virtue of the synaptic connectivity and their existence profoundly
influences the spontaneous evolution of network activity. Importantly, “attractor” states can be
enabled, disabled, altered, or deformed by external input. Accordingly, the unifying principle
of attractor dynamics is the existence of (possibly many) stereotypical activity states, which are
approached again and again during the spontaneous evolution of network activity and which can
be shaped and controlled by external inputs to the network.

In mammalian cortex, a huge number of overlapping and interwoven “attractor states” are
thought to exist simultaneously atmultiple spatial and temporal scales. By channeling network activ-
ity in a conditional manner (i.e., depending on external inputs), these “attractor states” are thought
to underlie cognitive functions such as perceptual classification, working memory, attention and
executive control, motor planning, and many others.

The goal of the present thesis was to implement stochastic attractor dynamics with delicate
external control in a network of spiking neurons realized with neuromorphic VLSI hardware. With
this goal in mind, I developed a neuromorphic, analog VLSI chip (termed F-LANN) hosting 128
leaky integrate-and-fire neurons with spike-frequency adaptation, and 16,384 plastic, bistable, and
stochastic synapses. The specific goal was to obtain and to control a bistable dynamics between
two distinct states of stochastic asynchronous activity in a spiking neural network with massive



recurrent connectivity. Thus, the desired functionality was quite different from more typical
network architectures, such as networks with purely feed-forward connectivity, or networks with
deterministic dynamics implementing “winner-take-all” or “central pattern generator” functions.

Over the course of this thesis, I illustrate step-by-step how a small neuromorphic network
can be endowed with the desired dynamics and degree of control. I demonstrate that all salient
characteristics of bistable dynamics (“asynchronous irregular activity”, “point attractors”, “working
memory”, “basin of attraction”) are robustly obtained even in a comparatively small network with
and in spite of the considerable inhomogeneity of neuromorphic circuit components. Moreover,
I demonstrate how to finely control this dynamics and how to tune transition probabilities over
a wide range of time scales, up to three orders of magnitude slower than the time scales of the
neuromorphic circuit components.

The present thesis represents an important step towards the ultimate goal of creating biomimetic
neural hardware that can be functionally and physically integrated within biological neural tissues.
The envisioned application would be brain–machine interfaces that can “gently steer” complex
activity states of neural tissues. Such interfaces would accomplish a “seamless and symmetric”
integration of biological and electronic activity states and, importantly, would be inherently non-
disruptive with respect to the normal, ongoing dynamics of neural tissues.

In view of this ultimate goal, neuromorphic VLSI provides a hardware solution which both
operates at the time scales of biological neural tissues and is sufficiently stand-alone, compact, and
energy efficient to be potentially implantable. Maintaining biological time scales while keeping pace
with digital CMOS technologies presents an ongoing challenge requiring numerous innovative
solutions.
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Chapter

1
Introduction

1.1 Neuromorphic Engineering
The pioneering work of Carver Mead (Mead, 1989) has introduced the term “neuromorphic en-
gineering” for a growing family of analog, subthreshold circuits, which implement the accepted
equivalent circuits of biological neurons and synapses in VLSI technology. Neuromorphic engineer-
ing is a new interdisciplinary discipline that takes inspiration from biology, physics, mathematics,
computer science and engineering to design artificial neural systems, such as vision systems, head-
eye systems, auditory processors, and autonomous robots, whose physical architecture and design
principles are based on those of biological nervous systems. A key aspect of neuromorphic engineer-
ing is understanding how the morphology of individual neurons, circuits and overall architectures
create desirable computations, affect how information is represented, influences robustness to
damage, incorporates learning and development, adapts to local change (plasticity), and facilitates
evolutionary change. The ultimate aim of neuromorphic engineering is to mimic the capabilities
of biological perception and information processing with a compact and energy-efficient platform.

1.2 Motivation
Neuromorphic chips, purporting to emulate the principles of information processing in the nervous
system, have been largely devoted to duplicate in silicon the operation of sensory systems, such
as retina (Lichtsteiner et al., 2008) or cochlea (Chan et al., 2007), and sometimes to implement
simple, general purpose computational elements presumably at work in a variety of neural circuits,
such as winner-take-all networks (Indiveri, 2001; Abrahamsen et al., 2004).

In many instances, the chosen network architecture is either essentially feedforward (Mitra
et al., 2009), or it includes simple feedback mechanisms, as in winner-take-all or Central Pattern
Generator (CPG) networks (Vogelstein et al., 2008). In the present work I take a step towards



1. Introduction

the silicon implementation of recurrent neural networks with massive feedback and stochastic
asynchronous activity, resulting in bistable attractor behavior. The main motivation is the belief
that attractor networks should be considered as key building blocks of systems effecting a variety of
functions, including classifying sensory input or accumulating information about it for a decision
to be taken (Marti et al., 2008). It has long been recognized that for recurrent networks with high
levels of feedback the strength of the synaptic connections can be chosen such that the network
can store and retrieve prescribed patterns of collective activation as “memories” (Amit, 1995, 1989).
Also, neural activity in mammalian cortex appears to be characterized by these “attractor states” at
multiple spatial and temporal scales (Grinvald et al., 2003; Fox and Raichle, 2007; Ringach, 2009;
Shu et al., 2003;Holcman andTsodyks, 2006). Moreover, the activity dynamics of attractor networks
is thought to provide a common mechanism for numerous cognitive functions, including working
memory (Amit and Brunel, 1997b; Mongillo et al., 2003; Del Giudice et al., 2003), attentional
selection (Deco and Rolls, 2005), sensory inference (Gigante et al., 2009; Braun and Mattia, 2010),
choice behavior (Wang, 2002; Wong et al., 2007; Furman and Wang, 2008; Marti et al., 2008), and
motor planning (Mattia et al., 2010; Lukashin et al., 1996). Thus, the unifying principle of attractor
networks is the existence of (one or more) stereotypical activity states, which are approached again
and again during the spontaneous evolution of collective activity.

In addition to the above list of biological parallels, attractor networks of spiking neurons are
also suited to provide a dynamic correlate of the persistent neural activity observed in cortex, e.g.,
in inferotemporal cortex (Fuster and Jervey., 1981) and in prefrontal cortex (Fuster and Alexander,
1971), in tasks requiring information about a stimulus to be held active in working memory after
the stimulus has been removed for later use in the task. Standard examples include Delayed Match-
to-Sample (DMS) tasks (Miyashita, 1988), in which the subject is required to report if a briefly
shown sample image is the same as a match image shown after a delay, or Pair Association tasks
(Sakai and Miyashita, 1991), in which one of two images shown after the delay has to be chosen,
according to a prescribed correspondence to the one shown before the delay.

All of the above seem to point to the fact that attractor networks could be considered as general-
purpose processing elements, worth the effort to implement them in silicon, in view of complex
neuromorphic systems.

1.2.1 How do attractor networks work?

Given the initial state of the network, meant to reflect an external stimulus, the network dynamics
relax to the closest fixed point attractor (stored representation), up to small fluctuations: the
network works as an “associative memory”, retrieving a prototypical memorized representation
for a whole class of stimuli which define the “basin of attraction”. If a stimulus is applied and then
released, the attractor property of the stored patterns allows the network to sustain a persistent
activity pattern which is selective for the stimulus (if it is close enough to a stored memory) and
stable in its absence. The network behaves essentially as a bistable system, with two stationary

2



1.3. Implementation

states of low and elevated firing activity, to be associated with the “spontaneous” activity state
and a selective state triggered by the stimulus. Besides being evoked by stimulation, transitions
between attractor states may also occur spontaneously, driven by intrinsic activity fluctuations.
Spontaneous activity fluctuations ensure that the energetically accessible parts of state space are
exhaustively explored.

1.3 Implementation
In this thesis I present how the F-LANN chip—a chip comprised of 128 integrate-and-fire (IF)
neurons with spike-frequency adaptation and 16,384 plastic bistable stochastic synapses—is used
to demonstrate bistable attractor behavior together with their stochastic statistical properties.
The unsupervised buildup of stimulus-driven synaptic modifications, which leads the network to
support attractor states, is not considered, rather, values are assigned to the synaptic efficacies such
that the resulting neural dynamics exhibit attractor behavior, and check its match with theoretical
predictions. The reasons for not making use of the plastic synapses to “learn” the attractor are
two-fold. The first reason being that it’s already extremely difficult to find the correct parameters
(chip bias voltages) when dealing with subthreshold neuromorphic components to obtain attractor
dynamics, and secondly because the theory that governs such processes is not yet sufficiently
mature to permit a seamless hardware implementation.

To date, surprisingly few studies have sought to tap the computational potential of attractor
dynamics for neuromorphic devices (Massoud and Horiuchi, 2011; Neftci et al., 2010; Camilleri
et al., 2010). Although attractor dynamics in networks of biologically realistic (spiking) neurons
is well understood in theory and in simulation (Amit, 1995, 1989; Fusi and Mattia, 1999; Renart
et al., 2004), it still proved to be a great challenge to find the correct set of chip parameters to steer
the chip in the correct operating regime to produce bistable attractor activity. The reason this
proved so difficult is that stochastic dynamics is an emergent property that depends on numerous
aspects of circuit components, such as the threshold, the synaptic efficacy, the drift, and the pulse
width amongst others, all of which interact non-linearly and recurrently and are subject to device
mismatch in analog subthreshold CMOS hardware. This renders useless the standard theoretical
approach of computing average properties over arbitrarily precise circuit components (“mean-field
theories”). Even if the parameters of all components could be established with arbitrary precision
(which is of course impossible with analog circuits), neither theory nor simulation could forecast
their collective behavior with the desired accuracy.

To overcome this difficulty, a combined experimental-theoretical approach was developed, in
which the collective response function of a neuronal population (interacting with several other
populations) was determined experimentally and which then served as the basis for theoretical
extrapolations. In this way, precise theoretical predictions for the collective stochastic dynamics
became possible, allowing for the fine-tuning of the dynamics to functional specifications. This
effectively extended the applicability of mean-field theories of spiking neuronal populations into

3



1. Introduction

uncharted territory. Whereas such theories apply, strictly speaking, only to networks with idealized
components and (asynchronous irregular) activity, I successfully established heuristic methods for
extending the benefits of theoretical guidance to poorly defined, heterogeneous, and far from ideal
components and activity.

It was only due to this theoretical understanding, that I was able to shape the bistable attractor
dynamics. By sculpting the effective energy landscape and by adjusting the amount of noise
(spontaneous activity fluctuations), it was possible to control how the network explored its phase
space and how it responded to external stimulation (Marti et al., 2008; Mattia and Del Giudice,
2004). The kinetics of network dynamics, including response latencies to external stimulation, can
be adjusted over several orders of magnitude over and above the intrinsic time-scale of neurons
and synapses (Braun and Mattia, 2010).

Throughout the thesis, I demonstrate step-by-step how to build a small neuromorphic network
with a desired dynamics. I show that the characteristics of bistable attractor dynamics (“asyn-
chronous irregular activity”, “point attractors”, “working memory”, “basin of attraction”) are robust,
in spite of the small network size and the considerable inhomogeneity of neuromorphic compo-
nents. Moreover, I demonstrate tunable response kinetics up to three orders of magnitude slower
(1 s vs. 1ms) than the time-constants that are expressly implemented in the neuromorphic circuits.

The ultimate goal of this effort is biomimetic neural hardware that can be physically integrated
within biological neural tissues. The intended applications are interfaces with neural tissues that
can both “read out” and “gently steer” complex activity states on the neural side. Such interfaces
would accomplish a “seamless and symmetric” integration of biological and electronic activity
states. Importantly, this approach is inherently non-disruptive with respect to the normal, ongoing
dynamics of neural tissues (unlike all current bidirectional interfaces). It is thus of paramount
importance that knowledge is gained in building hardware solutions that operate on the time-scales
of biological neural tissues and that are sufficiently stand-alone, compact, and energy-efficient
to be potentially implantable. Maintaining biological time-scales while keeping pace with digital
CMOS technologies presents a challenge requiring numerous innovative solutions.

To the best of my knowledge this is the first demonstration of controlled stochastic transitions
between asynchronous irregular activity states in hardware networks, meaning that I was able to
fine-tune the statistics of the stochastic transitions to predetermined functional specifications.

1.4 Additional features
Even though the current work does not take advantage of the “learning” capabilities of the neu-
romorphic chip here presented, I would like to spare a few words regarding the “plastic” bistable
properties of the bistable synapses implemented. Since one of the aims of neuromorphic engi-
neering is to mimic the capabilities of biological perception, it is widely believed that this goal
necessitates from the outset some mechanisms of “learning” that enables neuromorphic devices to
adapt (or reconfigure) themselves while interacting with the environment.
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1.5. Thesis organization

Emulating the example of biological neurons and synapses, the F-LANN chip attains an ability
for “learning” by incorporating “Hebbian-like” mechanisms of synaptic plasticity. In the “Hebbian”
scenario adopted here, the efficacy of a synapse is enhanced (i.e., its impact on the postsynaptic
neuron is increased), when both the pre- and postsynaptic neurons are simultaneously highly active
on a suitable time-scale, and reduced if the presynaptic neuron is active while the postsynaptic
is not. It is still a matter of debate whether “Hebbian” learning is based on average firing rates or
on individual spikes, i.e., “spike-time-dependent plasticity” (STDP) and clearly this choice has a
strong impact on the choice of alternative designs of neuromorphic synapse circuits. The synapses
implemented in the F-LANN chip are spike-driven and implement a rate-based Hebbian learning,
being, at the same time compatible with some aspects of STDP.

Associative learning in networks of spiking integrate-and-fire (IF) neurons with stochastic
synapses has been studied both in simulation (Amit and Mongillo, 2003; Fusi, 2002; Del Giudice
et al., 2003) and in neuromorphic realizations (Chicca et al., 2003; Fusi et al., 2000). However, these
first efforts were limited to artificially simplistic stimulus sets (e.g., strictly non-overlapping neural
representations). To extend associative learning to more stimulus sets, a further modification of the
synaptic rule has been proposed, informally known as “stop-learning” (Brader et al., 2007). In this
modification, synaptic changes are additionally conditioned on average postsynaptic activity being
neither too high nor too low: synapses targeting too-active neurons are not further strengthened
and synapses targeting too-inactive neurons are not further weakened. This additional condition
becomes crucial when partially overlapping patterns of activity are to be distinguished, as it
prevents excessive potentiation of synapses in the overlapping parts, which would otherwise spoil
the network’s ability to distinguish these patterns. The suitability of this learning strategy was
demonstrated in a Perceptron-like network for linearly separable patterns (Senn and Fusi, 2005).
A preliminary version of the “stop-learning” synapse was implemented in Badoni et al. (2006)
and a synaptic design inspired by the same “stop-learning” principles was proposed in Mitra et al.
(2006).

The F-LANN chip, besides improving on several synaptic design issues, offers a wider range
of collective dynamics through a more flexibly reconfigurable architecture. By taking advantage
of the plastic, stop-learning mechanism the dynamic generation of attractor states will hopefully
become a reality in a future work.

1.5 Thesis organization

1.5.1 Introduction and background information

This thesis is split into 9 chapters. Chapter 1 serves as a general introduction to the thesis and
Chapter 2 describes the functioning of biological neurons and synapses and how one can model
them successfully for the implementation in neuromorphic microchips. Chapter 3 introduces
various kinds of artificial neural networks, with a strong emphasis on the role and function of
attractor neural networks and goes on to describe how mean-field theory can be used to quickly
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1. Introduction

determine whether a certain set of parameters will lead to the creation of attractor dynamics.
Chapter 4 introduces the basic semiconductor building blocks necessary to build integrated
circuits.

1.5.2 Methods and Results

Chapter 5 talks about the F-LANN chip architecture and its basic building blocks. Chapter 6
contains characterization plots regarding the behavior and performance of the F-LANN chip.
Chapter 7 describes the first successful on-chip attractor network implementation. Chapter 8 is a
continuation of the previous chapter with the basic two-population attractor network augmented
by a background population. Additional experiments testing the robustness of the network in the
face of additional noise as well as the error-correction capabilities of such attractor networks are
presented.

1.5.3 Conclusion

Chapter 9 concludes the thesis by elaborating on the wider objectives, the current state of the field,
and the future prospects of such a neuromorphic technology. Possible improvements that can be
done to the F-LANN chip are also detailed.

6



Chapter

2
Biological NeuronModels

2.1 Introduction
Since the neuromorphic chip that serves as the basis of the experiments in this thesis is built around
electrical circuit models of real biological neurons and synapses, it stands to reason that the actual
biological nature of the neurons and synapses themselves are first described. This chapter first
gives a brief introduction to the constituents of the neuron and is then followed by a highly abstract
model—the leaky integrate-and-fire model—used in the neuromorphic chip described in the later
chapters. The Hodgkin-Huxley neuron model, a much more realistic neuron model than the leaky
integrate-and-fire model is described. The chapter then progresses to a description of the biological
synapse, synaptic plasticity and the role of synapses in learning.

2.2 Biological neuron
A neuron is an electrically excitable cell that processes and transmits information by electrical and
chemical signaling. Neurons connect to each other to form neural networks. They are the core
components of the nervous system, which includes the brain, spinal cord, and peripheral ganglia.
A number of specialized types of neurons exist: sensory neurons respond to touch, sound, light
and numerous other stimuli affecting cells of the sensory organs which then send signals to the
spinal cord and brain. Motor neurons receive signals from the brain and spinal cord, cause muscle
contractions, and affect glands, while interneurons connect neurons to other neurons within the
same region of the brain or spinal cord.

As depicted in Figure 2.1, a typical neuron consists of a cell body (or soma), dendrites, and an
axon. Dendrites are thin structures that arise from the cell body, often extending for hundreds of
micrometers and branching multiple times, giving rise to a complex “dendritic tree”. An axon is a
special cellular extension that arises from the cell body at a site called the axon hillock and travels
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Dendrites

Nucleus Inhibitory axon terminal

Excitatory axon terminal

Axon hillock

Node of RanvierAxon

Soma

Myelin sheath

Synaptic cleft

Postsynaptic neurons

Figure 2.1: Schematic neuron that is similar in appearance to pyramidal cells in the neocortex. The structures shown
in the drawing are typical for most major neuron types. A neuron fires by transmitting electrical signals along its
axon. When signals reach the end of the axon, they trigger the release of neurotransmitters that are stored in
pouches called vesicles. Neurotransmitters bind to receptor molecules that are present on the surfaces of adjacent
neurons. The point of virtual contact is known as the synapse. Adapted from Carey (1990); Trappenberg (2010).

for a distance (as far as one meter in humans). The cell body of a neuron frequently gives rise to
multiple dendrites, but never to more than one axon. The axon on the other hand may branch
hundreds of times before it terminates. At the majority of synapses, signals are sent from the axon
of one neuron to a dendrite of another.

All neurons are electrically excitable, maintaining voltage gradients across their membranes
by means of metabolically driven ion pumps, which combine with ion channels embedded in the
membrane to generate intracellular-versus-extracellular concentration differences of ions such as
sodium, potassium, chloride, and calcium. Changes in the cross-membrane voltage can alter the
function of voltage-dependent ion channels. If the voltage changes by a large enough amount, an
all-or-none electrochemical pulse called an action potential is generated (see Figure 2.2), which
travels rapidly along the cell’s axon, and activates synaptic connections with other cells when it
arrives (Kandel et al., 2012; Dayan and Abbott, 2001; Gerstner and Kistler, 2002).
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Figure 2.2: A view of an idealized action potential showing its various phases as the action potential passes a point
on a cell membrane.

2.3 Biological neuron abstraction
A lot is known about the biophysical mechanisms responsible for generating neuronal activity. This
knowledge provides a basis for constructing neuron models, ranging from very detailed models
involving thousands of coupled differential equations to highly simplified architectures suitable for
simulating networks of neurons. The relatively simple integrate-and-fire neuron model, which is
used in our neuromorphic chip, is described in this section.

2.3.1 Single-compartment models

Models that describe the membrane potential of a neuron using a single variable V are referred to
as single-compartment models. The integrate-and-fire neuron is one such model. The equations
of single-compartment models, describe how charges flow into and out of a neuron and how its
membrane potential is affected.

s v v

V

Es EL E1 E2

gs cm g1 g2
gL

Ie

A

Ie

V

Figure 2.3: Equivalent circuit of a one-compartment neuron model. On the left the neuron is represented by a
single compartment of surface area A with a synapse and a current-injecting electrode. On the right is depicted its
equivalent circuit. Adapted from Dayan and Abbott (2001).
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2. Biological Neuron Models

Referring to Figure 2.3 the circled ‘s’ indicates a synaptic conductance that depends on the
activity of a presynaptic neuron, the circled ‘v’ shows a voltage-dependent conductance, and Ie is
the current passing through the electrodes.

The basic relationship that governs the membrane potential of a single-compartment model is
given by

Cm
dV
dt
= dQ
dt

, (2.1)

which states that the rate of change of the membrane potential is proportional to the rate at which
charge builds up inside the cell. This is in turn, equal to the total amount of current entering the
neuron which are made up from all the membrane and synaptic conductances plus any current
injected into the cell through an electrode. Dividing everything by the surface area Awe obtain:

cm
dV
dt
= −im +

Ie
A
, (2.2)

where cm = Cm/A, im the membrane current per unit area, and Ie the electrode current. An
equivalent electrical circuit for a one-compartment model is shown in Figure 2.3.

2.3.2 Integrate-and-fire neuron model

somafrom neuron j

axon

synapse

I

soma

R C θ

δ(t − tj )
α(t − tj )

R

C

δ(t − tj )

I(t)

Figure 2.4: Schematic diagram of the integrate-and-fire mode. The basic circuit is the module inside the dashed
circle on the right-hand side. Adapted from Gerstner and Kistler (2002)

If the biophysical mechanisms responsible for action potentials are not explicitly included
in the neuron models, the models can be greatly simplified enabling highly accelerated neuron
simulations. This can be achieved using an integrate-and-fire model where an action potential
occurs whenever the membrane potential of the neuron reaches a threshold Vth (see Figure 2.5).
After the action potential, the potential is reset to a value Vreset. The integrate-and-fire model
implemented in the F-LANN chip is referred to as the passive or leaky integrate-and-fire model. In
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Figure 2.5: A passive integrate-and-fire neuron model driven by a time-varying electrode current. The upper trace
is the driving current and the bottom trace depicts the membrane potential. The model parameters are
EL = Vreset = −65 mV, Vth = −50 mV, τm = 10 ms, and Rm = 10 MΩ.

the leaky integrate-and-fire model, all active membrane conductances are essentially ignored, and
the membrane conductance is modeled as a single passive leakage term, im = gL(V − EL). With
such approximations, the integrate-and-fire neuron can be modeled as an electric circuit consisting
of a resistor in parallel with a capacitor (Figure 2.4), and the membrane potential determined by,

cm
dV
dt
= −gL(V − EL) +

Ie
A
. (2.3)

Multiplying equation (2.3) by the specific membrane resistance rm = 1/gL, we obtain

τm
dV
dt
= EL − V + RmIe, (2.4)

the basic equation of the leaky integrate-and-fire model. In addition to Equation 2.4, whenever V
reaches Vth, an action potential is generated and the potential is reset to Vreset. Upon integrating
Equation 2.4 one obtains

V(tisi) = Vth = EL + RmIe + (Vreset − EL − RmIe) exp(
−tisi
τm
) , (2.5)

and is valid as long as V(t) stays below the threshold. By solving for tisi, the inter-spike time
interval, we can determine the time of the next action potential for constant Ie:

τisi = τm ln(
RmIe + EL − Vreset
RmIe + EL − Vth

) . (2.6)

Consequently the interspike-interval firing rate of the neuron risi is the inverse of tisi, i.e.,
risi = 1/τisi. Note that Equation 2.6 is only valid if RmIe > Vth − EL; otherwise risi = 0. If we
assume that Ie is large, the approximation (ln(1 + z) ≈ z for small z) can be used, which reduces
Equation 2.6 to:

risi ≈ [
EL − Vth + RmIe
τm(Vth − Vreset

]
+

. (2.7)
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2.3.3 Spike-rate adaptation

Spike-rate adaptation, a feature also implemented in our leaky integrate-and-fire neuron circuit is
illustrated in Figure 2.6. Spike-rate adaptation can be modeled by including an additional current
in the basic integrate-and-fire model of Equation 2.4,

τm
dV
dt
= EL − V − rmgsra(V − EK) + RmIe. (2.8)

The spike-rate adaptation conductance gsra is modeled as a K+ conductance, so when it is activated,
it will hyperpolarize the neuron, and thus slowing any spiking that may be occurring. It is assumed
that this conductance relaxes exponentially towards 0,

τsra
dgsra
dt
= −gsra. (2.9)

When the neuron fires a spike, gsra is increased by an amount ∆gsra, which means that during
repetitive firing, the current builds up in a sequence of steps causing the firing rate to adapt.
Figure 2.6 shows this process in action.

0 1 2

Ie [nA]

r is
i [H

z]

400

300
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0

A B

Figure 2.6: (A) Comparison of interspike-interval firing rates as a function of injected current for an
integrate-and-fire neuron model and a cortical neuron measured in vivo. (B) Membrane voltage trajectory and
spikes of an integrate-and-fire model with an added current. Adapted from Dayan and Abbott (2001).

2.3.4 Hodgkin-Huxley neuron

Another very successful and widely used neuron model is based on the Markov kinetic model
developed by Hodgkin and Huxley in 1952 on data obtained from the squid giant axon. The
Hodgkin-Huxley model is constructed by writing the membrane current of Equation 2.2 as the
sum of a leakage current, a delayed-rectified K+ current, and a transient Na+ current,

im = gL(V − EL) + gKn
4(V − EK) + gNam

3h(V − ENa). (2.10)
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Figure 2.7: The dynamics of V , the ionic currents and the gating variables (m, h, and n) in the Hodgkin-Huxley
model during the firing of an action potential. The uppermost trace is the membrane potential, the second trace
shows the ionic currents and the last plot shows the temporal evolution of m, h, and n. Current injection was
applied at t = 0 s.

Using the gating equations for n, m, and h,

C
dV
dt
= −gKn4(V − EK) − gNam3h(V − ENa) − gL(V − EL) + I(t)

τn
dn
dt
= −(n − n0(V))

τm(V)
dm
dt
= −(m −m0(V))

τh(V)
dh
dt
= −(h − h0(V)),

(2.11)

and Equation 2.10 together with Equation 2.2, we obtain the full Hodgkin-Huxley model. These
equations can be solved using numerical integration. The temporal evolution of the dynamic
variables of the Hodgkin-Huxley model during a single action potential is shown in Figure 2.7. A
positive electrode current is applied at t = 0 s which gives rise to the initial increase of themembrane
potential in the top panel of Figure 2.7. When the membrane potential goes up to about 20mV,
the variable m suddenly jumps from 0 to a value near 1. Since both m and h are significantly
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different from 0 this causes a large influx of Na+ ions, producing a sharp downward spike of Na+

current. The Na+ current pulse causes the membrane potential to rise rapidly to around 100mV.
Depolarization of the membrane potential causes m to increase, and the resulting activation of the
Na+ conductance makes the membrane potential increase. The rise in the membrane potential
causes the Na+ conductance to inactivate by driving h toward 0, which in turn shuts off the Na+

current. In addition, the rise in membrane potential activates the K+ conductance by driving n
toward 1 increasing the K+ current, which drives the membrane potential back down to negative
values. The final recovery takes place readjusting m, h, and n to their initial values (Dayan and
Abbott, 2001).

Using numerical integration to solve Equations 2.11 and using the parameters originally used
by Hodgkin and Huxley to model the axon of the giant squid results in the plots of Figure 2.8
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Figure 2.8: (A) A Hodgkin-Huxley neuron fires at constant rate when an external current of Iext = 10 mA/cm is
applied. (B) The dependence of the firing rate with the strength of the external current shows a sharp onset of
firing around Ic

ext = 6 mA/cm (solid blue line). Adding a high frequency noise component to the input current has
the effect of linearizing these response characteristics (dashed line). Adapted from Trappenberg (2010).

Various other neuron models have been proposed such as the FitzHugh-Nagumo, the Morris-
Lecar, the Hindmarsh-Rose, and the Izikevich neuron models which help to simplify the computa-
tional complexity of the Hodgkin-Huxley model while still retaining its properties.

2.4 Biological synapse
Chemical synapses (see Figure 2.9) are specialized junctions through which neurons signal to
each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow
neurons to form circuits within the central nervous system. They are crucial to the biological
computations that underlie perception and thought and allow the nervous system to connect to
and control other systems of the body.

At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the
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synaptic cleft) that is adjacent to another neuron. These molecules then bind to the neuroreceptors
on the receiving cell’s side of the synaptic cleft. Finally, the neurotransmitters must be cleared out
of the synapse efficiently so that the synapse can be ready to function again as soon as possible.

The adult human brain is estimated to contain approximately 0.15 × 1015 (150 trillion) synapses.
To put this into perspective, every cubic millimeter of cerebral cortex contains roughly a billion of
them (Pakkenberg et al., 2003).

Axon
terminal

Synaptic
cleft

Receptor

Reuptake
pump

Neurotransmitter

Synaptic
vescicle

Voltage-gated
Ca2+ channel

Postsynaptic
density

Dendrite

Figure 2.9: Structure of a typical chemical synapse. Neurons communicate with each other at specialized regions
called synapses. Chemical neurotransmitters are contained in synaptic vesicles, which can fuse with the
presynaptic membrane. They then release the transmitters into the synaptic cleft, and then bind to receptors
situated in the postsynaptic membrane. This synaptic transmission results in excitatory, inhibitory, or modulatory
effects on the target cell. Adapted from Hansen and Koeppen (2002).

2.4.1 Structure

Synapses are functional connections between neurons, or between neurons and other types of
cells (Squire et al., 2008). A typical neuron gives rise to several thousand synapses, although there
are always exceptions (Hyman and Nestler, 1993). Most synapses connect axons to dendrites,
but there are also other types of connections, including axon-to-cell-body, axon-to-axon, and
dendrite-to-dendrite (Lytton, 2002).

Chemical synapses pass information directionally from a presynaptic cell to a postsynaptic
cell and are therefore asymmetric in structure and function. The presynaptic terminal, or synaptic
bouton, is a specialized area within the axon of the presynaptic cell that contains neurotransmitters
enclosed in small membrane-bound spheres called synaptic vesicles. Synaptic vesicles are docked
at the presynaptic plasma membrane at regions called active zones.

Immediately opposite is a region of the postsynaptic cell containing neurotransmitter receptors;
for synapses between two neurons the postsynaptic region may be found on the dendrites or cell
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body. Immediately behind the postsynaptic membrane is an elaborate complex of interlinked
proteins called the postsynaptic density (PSD). Proteins in the PSD are involved in anchoring and
trafficking neurotransmitter receptors and modulating the activity of these receptors. The receptors
and PSDs are often found in specialized protrusions from the main dendritic shaft called dendritic
spines.

Synapses may be described as symmetric or asymmetric. When examined under an electron
microscope, asymmetric synapses are characterized by rounded vesicles in the presynaptic cell,
and a prominent postsynaptic density. Asymmetric synapses are typically excitatory. Symmet-
ric synapses in contrast have flattened or elongated vesicles, and do not contain a prominent
postsynaptic density. Symmetric synapses are typically inhibitory.

Between the pre- and postsynaptic cells is a gap about 20nm wide called the synaptic cleft.
The small volume of the cleft allows the neurotransmitter concentration to be raised and lowered
rapidly (Kandel et al., 2012).

2.4.2 Synaptic strength

The strength of a synapse is defined by the amplitude of the change in membrane potential as
a result of a presynaptic action potential. A “synapse” usually refers to a group of connections
(or individual synapses) from the presynaptic neuron to the postsynaptic neuron. The strength
of a synapse can be accounted for by the number and size of each of the connections from the
presynaptic neuron to the postsynaptic neuron. The amplitude of a PSP can be modulated by
neuromodulators or can change as a result of previous activity. Changes in synaptic strength can
be short-term, lasting seconds to minutes, or long-term (long-term potentiation, or LTP), lasting
hours. Learning and memory are believed to result from long-term changes in synaptic strength,
via a mechanism known as synaptic plasticity.

2.5 Neuronal dynamics
The effect of a spike on the postsynaptic neuron can be recorded with an intracellular electrode
which measures the potential difference u(t) between the interior of the cell and its surroundings
and is referred to as the membrane potential. Without any spike input, the neuron remains at
rest corresponding to a constant membrane potential of about −65mV. After a spike arrives, the
potential changes and finally decays back to the resting potential (see Figure 2.10A). If the change
is positive, the synapse is said to be excitatory, while if the change is negative, the synapse is
inhibitory.

An input at an excitatory synapse reduces the negative polarization of the membrane and is
therefore called depolarizing. If the input further increases the negative polarization, the input is
said to be hyperpolarizing.
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Figure 2.10: A postsynaptic neuron i receives input from two presynaptic neurons j = 1, 2. (A) Each presynaptic
spike evokes an excitatory postsynaptic potential (EPSP) that can be measured with an electrode as a potential
difference u i (t) − urest . (B) An input spike from a second presynaptic neuron j = 2 that arrives shortly after the spike
from neuron j = 1 causes a second postsynaptic potential that adds to the first one. (C) If u i (t) reaches the
threshold θ, an action potential is triggered and a large positive pulse is generated. After the pulse the voltage
returns to a value below the resting potential. Adapted from Gerstner and Kistler (2002).

2.5.1 Firing threshold and action potential

Let us consider two presynaptic neurons j = 1, 2, which both send spikes to the postsynaptic neuron
i. Neuron j = 1 fires spikes at t(1)1 , t(2)1 , . . . , and neuron j = 2 fires at t(1)2 , t(2)2 , . . . . Each spike evokes
a Postsynaptic Potential (PSP) єi1 or єi2, respectively. As long as there are only few input spikes, the
membrane potential responds linearly to the input spikes (see Figure 2.10B).

However, linearity breaks down if too many input spikes arrive during a short interval of time.
As soon as the membrane potential reaches a threshold θ, its trajectory shows a behavior that is
quite different from a simple summation of PSPs: the membrane potential exhibits a pulse-like
excursion (action potential) with an amplitude of about 100mV. This action potential propagates
along the axon of neuron i to the synapses of other neurons.
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After the pulse the membrane potential does not directly return to the resting potential, but
passes through a phase of hyperpolarization below the resting value. This hyperpolarization is
called “spike-afterpotential”. Single EPSPs have amplitudes in the range of 1mV and the critical
value for spike initiation is about 20–30mV above the resting potential. This implies that in reality
more than four spikes (as depicted in Figure 2.10C) are required to evoke an action potential.
About 20–50 presynaptic spikes have to arrive within a short time window before postsynaptic
action potentials are triggered.

2.6 Synaptic plasticity
Synaptic transmission can be changed by previous activity. These changes are called synaptic
plasticity and may result in either a decrease in the efficacy of the synapse, called depression, or
an increase in efficacy, called potentiation. These changes can either be long-term or short-term.
Forms of short-term plasticity include synaptic fatigue or depression and synaptic augmentation.
Forms of long-term plasticity include long-term depression (LTD) and long-term potentiation
(LTP).

2.6.1 Spike-timing-dependent plasticity (STDP)

In a typical STDP protocol (Markram and Sakmann, 1995), a synapse is activated by stimulating a
presynaptic neuron shortly before or shortly after making the postsynaptic neuron fire by injecting
a short current pulse. The pairing is repeated for 50–100 times at a fixed frequency. The weight
of the synapse is measured as the amplitude of the postsynaptic potential. The change of the
synaptic weight is then plotted as a function of the relative timing between presynaptic spike arrival
and postsynaptic firing. The resulting plot is the STDP function or learning window shown in
Figure 2.11. STDP is especially attractive since it is believed to be biologically plausible. In the
intact brain, action potentials are often quite precisely timed to stimuli in the outside world, even
though this is not true for all brain regions and cell types. Nevertheless, STDP is very likely to be
induced under such circumstances and many studies provide strong evidence that this is indeed
the case (Zhang et al., 1998).

The weight change ∆w j of a synapse from a presynaptic neuron j depends on the relative
timing between presynaptic spike arrivals and postsynaptic spikes. Referring to the presynaptic
spike arrival times at synapse j by t fj and the firing times of the postsynaptic neuron by t

n, the
total weight change ∆w j induced by a stimulation protocol with pairs of pre- and postsynaptic
spikes is given by Gerstner and Kistler (2002):

∆w j =
N
∑
f=1

N
∑
n=1

W(tni − t
f
j ), (2.12)

whereW(x) denotes one of the STDP learning windows shown in Figure 2.11. A typical learning
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window choice is:

W(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A+ exp(−x/τ+) for x > 0

A− exp(−x/τ−) for x < 0
(2.13)
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Figure 2.11: Timing requirements between pre- and postsynaptic spikes. Synaptic changes ∆w ij occur only if
presynaptic firing t(f )j and postsynaptic activity at t(f )i occur sufficiently close to each other. A positive change (LTP)
occurs if the presynaptic spike precedes the postsynaptic one. The dots show experimentally measured weight
changes as a function of t(f )j − t(f )i overlaid on a fitted (solid line) two-phase learning window. Adapted from
Gerstner and Kistler (2002).

2.6.2 Relation of STDP to Hebb’s postulate

STDP can be seen as a spike-based formulation of a Hebbian learning rule. Hebb formulated that
a synapse should be strengthened if a presynaptic neuron “repeatedly or persistently takes part in
firing” the postsynaptic one (Hebb, 1949). This formulation suggests a potential causal relation
between the firing of the two neurons. Causality requires that the presynaptic neuron fires slightly
before the postsynaptic one. Indeed, in standard STDP experiments on synapses onto pyramidal
neurons, potentiation of the synapse occurs for pre-before-post timing, in agreement with Hebb’s
postulate. Other learning rules include rate-based learning rules, the covariance rule and the BCM
rule.
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Chapter

3
Attractor Networks

3.1 Introduction
An attractor network is a network of nodes (e.g., neurons in a biological network), which are
usually recurrently connected, and whose time dynamics settle to a stable pattern. That pattern
may be stationary, time-varying (e.g., cyclic), or even stochastic-looking. The particular pattern a
network settles to is called its “attractor”. In theoretical neuroscience, different kinds of attractor
neural networks have been associated with different functions, such as memory, motor behavior,
and classification. By applying methods of dynamical systems theory, one can analyze their
characteristics, such as stability, robustness, etc.

Below is a brief overview of various types of artificial neural networks followed by different
kinds of attractor networks and their biological interpretation.

3.2 Neural Networks
The term neural network was originally used to refer to a network or circuit of biological neurons.
However, nowadays the term is often used to refer to artificial neural networks that are composed
of artificial neurons or nodes.

Artificial neural networks may either be used to gain an understanding of biological neural
networks, or for solving artificial intelligence problems. The real, biological nervous system is
highly complex, and artificial neural network algorithms attempt to abstract this complexity and
focus on what may matter most from an information processing point of view. An incentive for
these abstractions is to reduce the amount of computation required to simulate artificial neural
networks, so as to allow one to experiment with larger networks and train them on larger data sets.

A biological neural network is composed of a group or groups of chemically connected or
functionally associated neurons. A single neuron may be connected to many other neurons and
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the total number of neurons and connections in a network may be extensive. Connections, called
synapses, are usually formed from axons to dendrites.

In the artificial intelligence field, artificial neural networks have been applied successfully to
speech recognition, image analysis and adaptive control, in order to construct software agents (in
computer and video games) or autonomous robots. Most of the currently employed artificial neural
networks for artificial intelligence are based on statistical estimations, classification optimization
and control theory.

The cognitive modeling field involves the physical or mathematical modeling of the behavior
of neural systems; ranging from the individual neural level (e.g., modeling the spike response
curves of neurons to a stimulus), through the neural cluster level (e.g., modeling the release and
effects of dopamine in the basal ganglia) to the complete organism (e.g., behavioral modeling of the
organism’s response to stimuli). Artificial intelligence, cognitive modeling, and neural networks
are information processing paradigms inspired by the way biological neural systems process data.

3.2.1 Different types of artificial neural networks

There are many types of artificial neural networks (ANNs). An artificial neural network is a
computational simulation of a biological neural network which tries to mimic the real life behavior
of neurons and the electrical messages they produce between input (such as from the eyes), brain
processing and the final output from the brain (such as reacting to light). The systems can be
implemented both in hardware and software.

Feedforward neural network

The feedforward neural network was the first and arguably most simple type of artificial neural
network devised. In this network the information moves only forwards. From the input nodes
data goes through the hidden nodes and to the output nodes. Feedforward networks can be made
of up a variety of units, e.g., McCulloch-Pitts neurons.

Input
Layer

Hidden
Layer

Output
Layer

Figure 3.1: Feedforward neural network.
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Recurrent neural network

Contrary to feedforwardnetworks, recurrent neural networks (RNNs) aremodelswith bi-directional
data flow. While a feedforward network propagates data linearly from input to output, RNNs also
propagate data from later processing stages to earlier stages. RNNs can be used as general sequence
processors. The recurrent neural network was later extended to the fully-connected recurrent
neural network where each unit has a time-varying real-valued activation and each connection
has a modifiable real-valued weight. Some of the nodes are called input nodes, some output nodes,
the rest hidden nodes.

Hopfield network

A special case of the fully-recurrent neural network is the Hopfield network, invented by John
Hopfield in 1982 (Hopfield, 1982). The Hopfield network is an attractor-based network and requires
stationary inputs. This requirement makes the network unable to process sequences of patterns.
The Hopfield network guarantees that its dynamics will converge. If the connections are trained
using Hebbian learning then the Hopfield network can perform as robust content-addressable
memory, resistant to connection alteration.

Figure 3.2: Hopfield Network (Hopfield, 1982).

Another recurrent neural network of importance is the Boltzmann machine. The Boltzmann
machine can be thought of as a noisy Hopfield network. The Boltzmann machine is important
because it is one of the first neural networks to demonstrate learning of hidden units.

Spiking neural networks

Finally, the networks which are modeled and dealt with in this thesis—Spiking Neural Networks
(SNNs). SNNs are models which explicitly take into account the timing of the inputs. The network
input and output are usually represented as series of spikes. SNNs have an advantage of being able
to process information in the time domain and are often implemented as recurrent networks.
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3.3 Attractor networks

3.3.1 Overview

Because neural networks can implement any nonlinear dynamical system, they can implement
any attractor network. Of greatest interest to computational neuroscientists is determining which
attractors are relevant for understanding information processing in biological systems.

Stable, persistent activity has been thought to be important for neural computation at least since
Hebb (1949), who suggested that it may underlie short-term memory. Amit (1989), following work
on attractors in artificial neural networks, suggested that persistent neural activity in biological
networks is a result of dynamical attractors in the state space of recurrent biological networks.
This seminal work resulted in attractor networks becoming a mainstay of theoretical neuroscience.
Often, these biologically inspiredmodels have adopted non-biological nodes (e.g., sigmoid response
functions, or rate neurons). However, more recent work has relied largely on spiking models, with
varying degrees of biological plausibility.

Various types of attractors may be used to model different types of network dynamics. While
fixed-point attractor networks are the most common (direct descendants of Hopfield networks),
other types of attractor networks will also be described.

3.3.2 Types of attractor networks and their biological significance

Point attractors

The simplest attractor network is one which tends to a single stable point (fixed-point) given any
starting activity, and is called a “point attractor” (see Figure 3.3).
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Figure 3.3: An example of a point attractor embedded in a 3-dimensional network. The fixed point in the network
is labeled ‘A’. The movement of the network in its state space over time is shown by the blue arrows.

A simple example of a one-dimensional point attractor network, whose fixed-point is 0 is given
by any network described by an equation of the form:

ẋ(t) = kx(t) for∞ < k < 0.
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Evidently, any P-dimensional damped linear system will have a single fixed point at zero. This
is somewhat trivial and leads us to the more interesting case of multiple fixed points attractors (see
Figure 3.4). If an attractor network has multiple point attractors, the set of points that result in
movement to a given fixed point is called that fixed point’s basin of attraction.

Figure 3.4: The energy landscape of a network with multiple point attractors (e.g., a Hopfield network). Fixed
points are shown as red dots. A sample basin of attraction is shown as a dotted circle.

Following Hopfield (1982), many biologically inspired models have taken the fixed points of a
network to represent memories encoded in the system. Such memories have been mapped on to
biological function in a number of ways, including:

• associative memory
• pattern completion
• categorization
• noise reduction

Point attractor networks are usually considered in two regimes. In the first, input to the network is
used to change (i.e., learn) the connection weights such that the network is in a determinate, stable
state after the input is removed. In the second, learned weights remain fixed, and the network is
probed with both familiar and unfamiliar input. Familiar inputs result in an expected output (i.e.,
a trained fixed point), and unfamiliar input results in the output whose basin of attraction the
unfamiliar input is in.

If the state during and after a given input is different, then the network is said to act as an
associative memory (associating the input with the subsequent fixed point after input is removed).
If the state during and after input is the same, the network will usually act as a content addressable
memory, and can perform pattern completion. This occurs because the basins of attraction for
distinct fixed points will tend to vary smoothly between points. As a result, similar patterns will
tend to similar fixed points. In this way, such networks are also often said to categorize their
inputs, with one category for each possible fixed point. Similarly, this kind of behavior has been
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characterized as noise reduction, since, if the input is a noisy version of a familiar input, it will
often result in the fixed point associated with the original, familiar input.

Overview of line, ring, and plane attractors

Line attractors are a natural extension to point attractors. Rather than the attractive states being a
finite set of fixed points, it is an infinite set of points, all of which lie on a line in the state space.
The particular point towards which the network moves depends on the initial conditions (starting
point) of the network. The line may also not be straight as defined above. If the ends of the line
meet, the attractor is often called a ring attractor. If the attractor is allowed to be P-dimensional,
where 1 < P < N , the network is said to implement a plane attractor instead of a line attractor.

When implemented in a neural network, each of these kinds of attractors is usually approxi-
mated by a series of point attractors organized to approximate a line, ring, or plane.

Line attractor

In the biological realm line attractors have been extensively explored in the context of oculomotor
control. Of particular interest has been the activity of the nucleus prepositus hypoglossi in the
brain stem, which is involved in the control of horizontal eye position across a wide variety of
species, including fish and humans. These specific line attractors are called neural integrators.

These networks are called “integrators” because the low-dimensional variable (e.g., horizontal
eye position) x(t) describing the network’s output reflects the integration of the input signal
(e.g., eye movement velocity) v(t) to the system. This can be formally described by the following
equation:

x(t) = ∫ v(t).

With no input, the above equation produces an output that will remain constant, i.e., a network
which can be described by this equation will display persistent activity with no input, thus acting
as an attractor.

Ring attractor

Closely related to the line attractor is the ring attractor. Since the mid 1990s, ring attractors have
been proposed as a model of the rodent head direction system (Zhang, 1996). This network,
which includes several regions of the rodent limbic system, indicates the current head direction
of an animal, and receives velocity information as input. As a result, its function seems to be to
integrate the velocity command to determine (head) position, just like the neural integrator in the
oculomotor system.

There are two main differences between the head direction and oculomotor system. The first
is that head direction is a cyclic variable. As a result, the attractor is a ring, rather than a line in
the network state space. The second difference is that the neural representation is different in the
two cases. In the oculomotor integrator, neurons in the population monotonically (either positive
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Figure 3.5: Neuronal response from many hippocampal neurons in a rodent that responded to the subject’s
location in a maze. The figure shows the firing rates of the neurons in response to a particular place, whereby the
neurons were placed in the figure so that neurons with similar response properties were placed adjacent to each
other (Samsonovich and McNaughton, 1997).

or negative) change their firing rate with the represented variable (eye position). The represented
value in the population is thus taken to be the weightedmean of each neuron’s response. In the head
direction integrator, neurons have a “preferred” head direction at which they reach their maximum
firing (see Figure 3.5). The represented value of the head direction is taken to be determined by
the mean of the function determined by population firing rates. In essence, the head direction
system contains a “bump” of activity, the center of which indicates the current best estimate of
head direction.

Plane attractor

By extending the idea of the line attractor even further we get to the plane attractor. While the
oculomotor neural integrator as usually studied is sensitive to only one direction of eye movement,
eyes in most animals have more degrees of freedom. As a result, an extension of the neural
integrator to two dimensions results in a plane attractor embedded in the neural state space.

A more general interpretation of plane attractors is as function attractors: i.e., attractors for
which stable points are functions of some underlying variable. This interpretation is important
because networks that have sustained Gaussian-like bumps of activity have been found in various
neural systems, including the head direction system, frontal working memory areas, visual feature
selection areas, arm control systems, and path integration systems. In each case, the stable state is
a “hill”, “bump”, or “packet” of activity which is most naturally interpreted as a function of some
underlying variables.

Cyclic attractors

Point, line, and plane attractors all result in a network settling to a given point in state space (which
may depend on initial conditions), which it does not move from without external input. However,
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it is possible to have a set of states that a network continuously and repeatedly traverses, which is
called a limit cycle. Networks that have these kinds of attractors are called cyclic attractors.

Cyclic attractors can be observed in biological behaviors such as walking and swimming. In
short, because cyclic attractors can describe oscillators, and many neural systems exhibit oscillatory
behavior, it is natural to use cyclic attractors to describe oscillatory behavior in neural systems. The
interpretation of repetitive biological behavior in terms of oscillators is at the heart of most work
on central pattern generators (CPGs). However, even though this kind of behavior is technically
consistent with cyclic attractor behavior it is not classified as such.

Chaotic attractors

Like cyclic attractors, chaotic attractors have stable manifolds that are continuously traversed.
However, the manifolds are generally of fractional dimension, and can thus be non-repeating,
though bounded. A common example of a chaotic attractor is the Lorenz attractor shown in
Figure 3.6.
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Figure 3.6: Lorenz attractor.

It has long been suggested that chaos or chaotic attractors may be useful for describing certain
neural systems. For example, Skarda and Freeman (1987) hypothesize that the olfactory bulb,
before odor recognition, rests on a chaotic attractor. While they suggest that the fact that the
state is chaotic rather than just noisy allows more rapid convergence to limit cycles that aid in the
recognition of odors, the existence of chaos in neural systems is the subject of much debate, and
extremely difficult to verify experimentally.
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3.4 The Energy Function
One of the most important contributions of Hopfield (1982) was to introduce the idea of an energy
function into neural network theory. The central property of an energy function is that it always
decreases as the system evolves according to its dynamical rule. The term energy function comes
from a physical analogy to magnetic systems that will be explained in the next section. The energy
function is known by many different names, the most general name being, Lyapunov function
from dynamical systems theory. In statistical mechanics, the energy function is referred to as the
Hamiltonian, while in optimization theory it is known as the cost function.

It has already beenmentioned that point attractors of recurrent networks are useful asmemories,
and chaotic fluctuations in such systems are not desirable. It is thus important to understand under
what conditions point attractors can be formed. Dynamic systems theory tells us that a system
has a point attractor if a Lyapunov function exists. This can be better understood with the aid of
Figure 3.7. The “landscape” depicted in Figure 3.7 shows a ball, driven by gravity and influenced
by friction. This ball, under the force of gravity rolls down a hill into a valley, finally coming to a
stop at the bottom of the valley. The basins of attraction correspond to the valleys or catchment
areas around each minimum. Starting the system in a particular valley leads to the lowest point
of that valley. This can be formally defined by a function V(x) that never increases under the
dynamics of the system,

dV(x)
dt

≤ 0,

where x is governed by the dynamic equations of the system. If such a function exists then there
has to be a point attractor in the system corresponding to the minimum of the function V .

Basin of attraction
x

V(x)

Figure 3.7: A ball in an “energy” landscape.

For neural networks in general an energy function exists if the connection strengths are
symmetric, i.e., wij = w ji . Unfortunately this is never the case when dealing with biological
networks of neurons, but it is nevertheless useful to study the symmetric case because we gain an
extra insight that the existence of an energy function gives us. The Hebb prescription automatically
yields symmetric wij’s.
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3.5 Statistical mechanics of magnetic systems
There is a close analogy between Hopfield networks and some simple models of magnetic materials
in statistical physics. The analogy becomes particularly useful when the networks are generalized
to use stochastic units. A simple description of a magnetic material consists of a set of atomic
magnets (“spins”) arranged on a regular lattice that represents the crystal structure of the material.
The name derives from the quantum mechanical origin of the magnetic moments. The spins can
each point in various directions, with the number of possibilities depending on the type of atom
considered.

The reason magnetic spins were just introduced is because the binary states of the nodes in
recurrent network models can be directly interpreted as spins, that can have two orientations, “up”
and “down”. These “magnets” interact with all the other magnets in the network. The other magnets
would try to align a particular node in the dominant direction of the other magnets if the influence
of the other magnets were positive, which corresponds to positive weight values. In addition
to this magnetic “influence”, there is another force that tends to randomize the direction of the
spins of the nodes. This force is thermal noise, and increases with increasing temperature T . The
competition between the magnetic force, which tends to align the magnets, and the thermal force,
which tends to randomize the directions, results in a sharp transition between a paramagnetic
phase, in which there is no dominant direction of the magnets, and a ferromagnetic phase, in
which there is a dominating direction of the elementary magnets. See Figure 3.8 for a comparison
between the magnetic phases and the attractor network states. These phases have very different
physical properties, and the transition is therefore called a phase transition similar to the transition
between the liquid and vapor phase of water.

The situation is further complicated by the fact that the force between the nodes in auto-
associative networks is not consistently positive. This is because the Hebbian rule employed in
these networks has a Gaussian distribution with positive and negative weights which result in
conflicting forces that complicate the spin states of the system. These systems are usually known as
frustrated systems or spin glasses. Spin glasses are complicated systems and only partially tractable
with mean-field theory methods. However physicists such as Daniel Amit, by using the replica
method, have considerably advanced our understanding of attractor neural networks.

3.5.1 The phase diagram

Figure 3.8 tries to provide a clearer picture of the various regions or phases that are possible in the
case of an attractor network trained on a binary network with Hebbian imprinting. This phase
diagram outlines the phase boundaries as a function of two parameters—the load parameters α on
the abscissa and the temperature T (specifying the noise in the network) on the ordinate. Noise
in the network can be simulated with probabilistic updating rules for the network dynamics. For
example, the activation function:

ri(t) = sgn(hi(t)),
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can be replaced with a probabilistic version:

P(ri(t) = ±1) =
1

1 + exp(∓2hi(t)/T)

that depends on the noise parameter T . The input values to the neuron (e.g., McCulloch-Pitts) are
denoted by ri , with the net input wiri being denoted by hi . wi refers to the weight value of channel
i.
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Figure 3.8: Phase diagram of the attractor network trained on a binary pattern with Hebbian imprinting. The α-axis
represents the values of the load parameter α = Npat/C , where Npat is the number of trained patterns and C is the
number of connections per node. The T -axis represents the amount of noise in the system. The shaded region is
where point attractors proportional to the trained pattern exist. The network in this region can therefore function
as an associative memory. The dots and ripples in the phase diagram are an attempt to visualize the energy
landscape in different parts of the phase diagram. Adapted from Amit (1989); Trappenberg (2010).

Adetailed analysis of such noisy networkmodels byAmit (1989) shows that the shaded region in
the phase diagram shown in Figure 3.8 is where point attractors exist that correspond to the trained
patterns. The network in this phase is therefore useful as an associative memory corresponding
to a ferromagnetic phase in the magnet analogy. As T → 0 a transition point to another phase
occurs at around αC (T = 0) ≈ 0.138. For load parameters larger than this value the network is in a
frustrated phase, and the point attractors of trained memories become unstable. This frustrated
phase is reached for smaller values of α if noise is included in the network. If the noise is strong the
behavior of the system is mainly random, corresponding to a paramagnetic phase in the magnet
analogy. Simulations by Amit et al. (1987) have confirmed the validity of the analytical results.
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3.6 Mean-field analysis and simulation of aVLSI neurons
Themain idea of mean-field theory is to replace all interactions to any one body with an average or
effective interaction. This reduces any multi-body problem into an effective one-body problem.
The ease of solving mean-field theory problems means that some insight into the behavior of the
system can be obtained at a relatively low cost.

While brains are studied in great detail at a microscopic level, great efforts are being made at
understanding the structure and function of a living brain at the macroscopic scale. The contrast
between these two scales is very analogous to the study of condensed-matter systems, which
have also faced similar challenges of bridging our understanding of the microscopic with our
observation of the macroscopic. Mean-field theory is one of the tools that has proven invaluable
in studying condensed-matter systems in that it often allows one to obtain a quick grasp of what
macroscopic states of the systems can be expected from the set of microscopic mechanisms they
follow.

It is well understood that mean-field theories could fail to predict correct scaling behavior of
systems in critical states, where fluctuations and long-range correlations are important. However,
such models are generally adequate (and often constitute the first step) towards a qualitative
description of the structure of the phase spaces of the system, as well as the number and location
of the stable phases of the system (where fluctuations are of limited range). The latter is especially
desirable for biological systems where large numbers of empirical parameters and, consequently,
vast phase spaces are often involved in microscopic models of the systems (Mattia and Del Giudice,
2002).

This section serves to provide a theoretical framework for the experiments conducted in
Chapters 7 and 8. In the following sections, a network of integrate-and-fire (IF) neurons driven by
Poisson noise of fixed frequency for all neurons is considered. Mean-field theory is then used to
determine the self-consistent average firing rate of the neurons.

3.6.1 Introduction

The IF neuron has become popular as a simplified neural element in modeling the dynamics of
large-scale networks of spiking neurons. A simple version of an IF neuron integrates the input
current as an RC circuit (with a leakage current proportional to the depolarization) and emits
a spike when the depolarization crosses a threshold. This will be referred to as the RC neuron.
With biologically plausible time constants and synaptic efficacies, they can maintain spontaneous
activity, and when the network is subjected to Hebbian learning, it shows many stable states of
activation, each corresponding to a different attractor of the network dynamics, in coexistence with
spontaneous activity (Amit and Brunel, 1997b). These stable activity distributions are selective to
the stimuli that had been learned. When the network is presented a familiar stimulus, the network
is attracted towards the learned activity distribution most similar to the stimulus. At the end of this
relaxation process a subset of neurons cooperates to maintain elevated firing rates. This selective
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activity is sustained throughout long delay intervals, as observed in cortical recordings in monkeys
performing delay-response tasks (Miyashita and Chang, 1988; Amit et al., 1997). Also, extensive
simulations revealed that for these networks, spike time statistics and cross-correlations are quite
like in cortical recordings in vivo (Amit and Brunel, 1997a).

The IF neuron, introduced in Mead (1989), operates in current mode and therefore integrates
linearly the input current. It operates with current generators and hence very low power consump-
tion, an essential feature for integrating a large number of neurons on a single chip. It is also a
natural candidate for working with transistors in the weak-inversion regime, which brings another
significant reduction in current consumption (Mead, 1989). This is the same kind of neuron that is
implemented on the F-LANN chip used in all the hardware experiments of this thesis.

Here we will concentrate on the statistical properties of the spikes generated by an aVLSI
neuron, as a function of the statistics of the input current, and on the dynamics of networks
composed of aVLSI neurons, keeping the distributions of synaptic efficacies fixed. Even though
the depolarization dynamics of the aVLSI neuron is significantly different from that of the RC
neuron, it will be shown that the collective dynamics found in a network of RC neurons can also
be reproduced in networks of aVLSI neurons (Fusi and Mattia, 1999).

3.6.2 RC and aVLSI neuron

The RC neuron below threshold is an RC circuit that integrates the input current with a decay
proportional to the depolarization of the neuron’s membrane V(t):

dV(t)
dt

= −V(t)
τ
+ I(t), V(t) < θ , (3.1)

where I(t) is the net charging current, expressed in units of potential per unit time, produced by
afferent spikes, and τ is the integration time constant of the membrane depolarization. When V(t)
reaches the threshold θ (absorbing barrier), the neuron emits a spike, and its potential is reset to
H, following an absolute refractory period τarp.

On the other hand, the aVLSI neuron below threshold voltage θ (Volts) can be described as a
linear integrator of the input current,

dV(t)
dt

= −β + I(t), V(t) < θ , (3.2)

with the constraint that if V(t) is driven below the resting potential V = 0, it stays at 0 (reflecting
barrier). β is a linear decay rate measured in θs−1 that, in the absence of afferent currents, drives
the depolarization to the resting potential.

3.6.3 Afferent current

At any time t, we assume that the source of the afferent current I(t) is drawn randomly from a
Gaussian distribution with mean µI(t) and variance σ2I (t) per unit time, so from Equation 3.2 the
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depolarization is a stochastic process obeying:

dV = µ(t)dt + σ(t)z(t)
√
dt, (3.3)

where µ(t) = −β + µI(t) is the total mean drift at time t. σ(t) = σI(t) is the standard deviation,
and z(t) ∼ N (0, 1) is a random Gaussian process with zero-mean and unit variance (Fusi and
Mattia, 1999).

Thus, if a neuron receives Poissonian spike trains from a large number of independent input
channels, the dynamics is well approximated by Equation 3.3 (Amit and Tsodyks, 1991; Amit and
Brunel, 1997b).

3.6.4 Current-to-rate transduction function

In order to obtain the mean firing rate as a function of µ and θ in stationary conditions (current-to-
rate transduction function), we define p(v , t) as the probability density that at time t the neuron
has a depolarization v. For the diffusion process of Equation 3.3, p(v , t) obeys the Fokker-Planck
equation:

1
2
σ2(t)∂

2p
∂ν2
− µ(t)∂p

∂ν
= ∂p

∂t
. (3.4)

This equationmust be complemented by boundary conditions restricting the process to the interval
[0, θ]. Adopting stochastic process terminology at ν = 0 we have a reflecting barrier, i.e., as soon as
the depolarization reaches 0, in the next step it returns with probability 1 to the previous position.
In other words the depolarization cannot pass beyond 0. At the threshold (ν = θ), we have an
absorbing barrier, since all processes crossing the threshold are absorbed and reset to H.
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Figure 3.9: Current-to-rate transduction function Φ(µ, σ) for different variances of afferent current: (a) σ2
= 0, (b)

σ2
= 49θ2 Hz, and (c) σ2

= 144θ2 Hz. The firing rate in the region around µ = 0 is rather sensitive to changes in the
variance. Φ(µ, σ) passes from a threshold-linear function at σ = 0 to a nonlinear function when σ > 0. If µθ ≫ σ2 ,
the transduction function is almost independent of σ. Note that for large µ, Φ is nonlinear and tends to the
asymptotic frequency 1/τarp .
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3.6. Mean-field analysis and simulation of aVLSI neurons

For steady statistics of the input current and in a stationary regime (∂p/∂t = 0), we have that
ν(t) is constant, and the density function is given by solving Equation 3.4 with the boundary
conditions given in Fusi and Mattia (1999),

p(ν) = ν
µ
[1 − exp(−2 µ

σ2
(θ − ν))] . (3.5)

Using the normalization condition from Fusi and Mattia (1999) together with Equation 3.5, the
mean emission rate ν of the aVLSI neuron as a function of mean and variance of the input current
is:

ν ≡ Φ(µ, σ) =
⎡⎢⎢⎢⎣
τarp +

σ2

2µ2
(2µθ

σ2
− 1 + e

−2µθ
σ2 )
⎤⎥⎥⎥⎦

−1

. (3.6)

Figure 3.9 shows the plot of the current-to-rate transduction function given by Equation 3.6 as a
function of µ for three different values of σ .

In later chapters, the current-to-rate transduction function Φ(µ, σ) will be also referred to as
the neuron response function Φ(ν), measured in Hertz. This is because, under certain conditions,
µ, σ = f (ν) (see Equations 3.8, 3.9) and Φ(µ, σ) becomes a function of the input rate ν.

3.6.5 Noise-driven and Signal-driven regimes

If the distance H between the reset potential and the reflecting barrier is much greater than θ −H
(Gerstein andMandelbrot, 1964), then linear integrator dynamics can operate only in a positive drift
regime (µ > 0). For such a neuron, the current-to-rate transduction function depends only on the
mean drift and is linear for a wide range of positive drifts. In the absence of an absolute refractory
period, the transduction function is therefore a threshold-linear function. In the presence of
an absolute refractory period, on the other hand, neural activity saturates near the maximum
frequency (1/τarp), so that the threshold function becomes convex in the high drift regime. This is
the signal dominated (SD).

Figure 3.10 helps demonstrate the relationship between the reset potential H, the reflecting
barrier, and the absorbing barrier in the case of multiple random walks with no drift (i.e., µ = 0).
Of course in the case of the aVLSI neuron, the reflecting barrier coincides with the reset potential
H = 0.

Now, in the case of a threshold-linear transduction function (SD regime), the coexistence of
spontaneous activity with sustained activity is not possible, since we would only have one stable
fixed-point (see Section 3.6.7). For bistable activity we need a non-linearity in the transduction
function around µ = 0 which is only possible if the neuron is able to operate also in the noise-
dominated regime (ND). By moving the reflecting barrier closer to θ, the statistics of the input
current are such that the neuron operates in a different regime causing spikes to be emitted because
of large, positive fluctuations. This happens when the mean drift is small or negative and the
variability is high.

Thus, since the neuron can operate both in the SD and ND regimes, the current-to-rate
transduction function is nonlinear and mean-field theory exhibits the coexistence of two collective
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3. Attractor Networks

stable states. This is because the transduction function is convex for large drifts, and concave
for small and negative drifts. In particular, the nonlinearity due to the ND regime is a necessary
element for obtaining spontaneous and selective activity in more complex networks of excitatory
and inhibitory neurons (Amit and Brunel, 1997b).

Simulation

Figure 3.11A shows a representation of the ND regime, where the neuron spends most of the
time fluctuating near the reset potential H and emits a spike only when a large fluctuation in the
input current drives the depolarization above the threshold. Since the fluctuations are random and
uncorrelated, the neuron fires irregularly and the Inter-Spike Interval (ISI) distribution is wide (see
Section 3.6.6). In this regime the process is essentially dominated by the variance of the afferent
current.

On the other hand, if µθ/σ2 ≫ 1, the depolarization dynamics is dominated by the deterministic
part of the current and the neuron is operating in the SD regime. Figure 3.11B shows an example
of a simulated neuron operating in this regime: the depolarization grows, fluctuating around the
linear ramp determined by the constant drift, until it emits a spike. Since positive and negative
fluctuations tend to cancel, the neuron fires quite regularly, and the average ISI is θ/µ.

3.6.6 ISI distribution

The probability density of the ISI in stationary conditions with τarp = 0, is computed following
Cox and Miller (1965). The first-passage time T is a random variable with a p.d.f. g(H, T) that
depends on the initial value of the depolarization, i.e., the reset potential H. By computing the
Laplace transform γ(H, s) of g(H, T), we obtain for H = 0,

γ(0, s) = zeθC

z cosh(θz) + C sinh(θz)
, (3.7)

−70

H = 0

θ = 30

0 500 1000 1500 2000 2500
Steps

Absorbing barrier

Re�ecting barrier

Figure 3.10: Typical random walks showing the relationship between the reset potential H, the absorbing barrier θ,
and the reflecting barrier. The random walks depicted in red, represent the processes which reached the absorbing
barrier (threshold) before 2500 steps.
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3.6. Mean-field analysis and simulation of aVLSI neurons

where C ≡ µ/σ2, z ≡
√
µ2 + 2sσ2/σ2, and H = 0. Refer to Fusi and Mattia (1999) for a more

thorough explanation. Figure 3.12was then obtained by numerically evaluating the inverse Laplace
transform of γ(0, s). In the SD regime, the ISI depends essentially on the mean drift µ. As the
frequency is increased, the neuron tends to fire more regularly, and the ISI distribution tends to
peak around T = θ/µ (see Figure 3.12). On the other hand, as σ increases and µ decreases, moving
toward the ND regime, the curve spreads and the distribution extends to a wide range of ISIs which
matches with the result obtained in Figure 3.11A.

3.6.7 Network dynamics

The extended mean-field theory (Amit and Brunel, 1997b) allows us to study the dynamics of any
population of neurons randomly interconnected, provided that one knows the current-to-rate
transduction function. In the most general case, the afferent current to any neuron is composed of
two parts: one from spikes emitted by other neurons in the same population and the other from
outside. If (1) the mean number of afferent connections is large, (2) the mean charging current
produced by the arrival of a single spike (the mean synaptic efficacy) is small relative to threshold,
and (3) the emission times of different neurons can be assumed uncorrelated (these conditions are
approximately satisfied for the VLSI neuron) (Amit and Brunel, 1997a; Vreeswijk and Sompolinsky,
1996), then the current I(t) is Gaussian and µ and σ2 are linear functions of the instantaneous
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Figure 3.11: Realizations of stochastic processes representing depolarization dynamics simulated in (A) ND and (B)
SD regimes. Parameters: (A) µ = −10θ Hz, σ2

= 15.21θ Hz, mean rate ν = 8.5 Hz; (B) µ = 100θ Hz, σ2
= 30.25θ Hz,

producing a mean firing rate ν = 92.5 Hz. τarp = 2 ms in both cases. In the SD regime, the process is dominated by
the deterministic part of the input current. The noisy linear ramp is clearly visible. In the ND regime, the
depolarization fluctuates under threshold, waiting for the large, positive fluctuation of the input current to drive
V (t) above threshold.

37



3. Attractor Networks

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

20

40

60

80

100

120

140

Time [s]

g(
0,

T 
)

a

b

c

Figure 3.12: ISI distribution g(0, T ) at (a) negative, (b) intermediate, and (c) positive drift. Parameters: (a)
µ = −16θ Hz, σ2

= 16θ2 Hz; (b) µ = 16θ Hz, σ2
= 16θ2 Hz; (c) µ = 100θ Hz, σ2

= 25θ2 Hz. The ISI distribution is
widespread for negative drift and tends to a peaked distribution as µ goes to positive values.
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Figure 3.13: Fixed points of the network dynamics: graphical solution of the self-consistency equation. Solid blue
line = mean firing rate Φ(ν); dashed red line = mean firing rate obtained by means of a spiking software simulation;
dashed black line = ν. There are three intersections between Φ(ν) and ν: two correspond to stable fixed points
(ν = 0.1 Hz and 121 Hz) and one to an unstable fixed point (15 Hz).
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probability of emission ν(t):

µ(t) = aµν(t) + bµ(t) (3.8)

σ2(t) = aσν(t) + bσ(t). (3.9)

The part depending on ν(t) is due to the recurrent connections inside the population, while
the offset is generated by the spikes coming from outside and by the linear decay rate β. The a’s
and b’s are variables depending on the statistics of the connectivity, the synaptic efficacy, the decay
β, and the external afferents. Mascaro and Amit (1999) further extended the mean-field theory to
multiple populations, with the theory explained in more detail in Chapter 7.

In order to have a fixed point of the population dynamics, the rate that determines the statistics
of the afferent current must be equal to the mean emission rate. In formal terms, the following
self-consistency mean-field equation must be satisfied:

ν = Φ(µ(ν), σ(ν)). (3.10)

Having two stable fixed points in a single population of excitatory neurons requires a change
in the convexity. In the case of Φ of Equation 3.10, the two nonlinearities described in the previous
section are sufficient to allow for three fixed points (see Figure 3.13). Two of them, corresponding
to the lowest and the highest frequencies, are stable, and the one in the middle is unstable and is
the border of the two basins of attraction. In the stable state of low frequency, the neurons are
working in the ND regime, while in the state of high frequency, the signal is dominating and the
behavior of the network is almost unaffected by σ .

The example in Figure 3.13 is the resulting Effective Response Function (ERF) from a two-
population network made up of an excitatory and an inhibitory population. The details of the
network can be read off Figure 3.14. The choice of network chosen here is also very similar to the
attractor network obtained on the F-LANN chip and demonstrated in Chapter 7. Themathematical
properties of the current-to-rate transduction function make it possible to have a double fixed
point for the dynamics of the network.

In fact, the nonlinearity near zero is a sufficient condition for having in more complex networks
the coexistence of spontaneous activity and many selective delay activity states. Without it, the
low-rate fixed point corresponds to a state in which all the neurons are quiescent and the existence
of a low-rate, highly variable spontaneous activity is not possible (Vreeswijk and Sompolinsky,
1996).

3.7 Simulation of a small two population network
In order to check the assumptions of the extended mean-field theory, a simulation of a two-
population network consisting of an excitatory and an inhibitory population was conducted. The
network was composed of NE = 100 excitatory neurons and NI = 28 inhibitory neurons and the
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Figure 3.14: Network architecture.

parameters were chosen in such a way that Φ(ν) obtained is the same as in Figure 3.13. Detailed
values for all the network parameters can be seen in Figure 3.14.

Mean-field analysis is carried out as described in Amit and Brunel (1997b) and with the help
of the multiple population extension provided by Mascaro and Amit (1999). This results in the
computation of the stable stationary states of Figure 3.13. The figure also shows the estimated
fixed-points (dashed red curve) generated by means of a real-time spiking network simulation.
More details about this technique will be given in Chapter 7, where the same principle is used to
calculate the Effective Response Function (ERF) directly on the F-LANN chip. In the low-rate
state ν ≈ 0.1Hz, whereas in the high-frequency stable state ν = 121Hz. The range of variability of J
that allows for the three fixed points is larger than when the attractor is obtained with only one
population of excitatory neurons. This is due to the inhibitory population helping with the system
stabilization.

Figure 3.15 shows the results of the spiking network simulation using the Perseo simulation
software. We start with all the neurons in a quiescent state and V = 0. After a short time interval
the network relaxes into a low-rate stable state, and we start “recording” from the neurons. The
network was then stimulated for 200ms by increasing the mean and the variance of the external
current Iext to the excitatory population by a factor 1:4. This stimulation drives the dynamics of
the network to the basins of attraction of the second fixed stable point. Finally the original Iext is
restored and the network relaxes to the stable state at high frequency. The external currents in the
first interval (prestimulation) and in the last interval (poststimulation) are the same.

Figure 3.15B shows the probability of firing ν(t) per unit time (Post-Stimulus Time Histogram
or PSTH), for each of the populations. Figure 3.15A displays a raster plot of the excitatory and
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Figure 3.15: Simulation of the network dynamics described in Figure 3.14, to show the existence of two states of
activation. Blue dots/lines correspond to the excitatory population (100 neurons) and the green dots/lines
correspond to the inhibitory population (28 neurons). (A) Raster of the spikes emitted by 128 different neurons. (B)
ν(t) as a function of time. The horizontal straight lines correspond to the mean rates in the three intervals. The
simulation starts with the network that already relaxed into the low-rate fixed point. After 200 ms the network is
stimulated by increasing the external current. After another 200 ms the stimulation is removed and the network
relaxes into the high rate stable state.

inhibitory population, with each row corresponding to different neurons in the same run. In both
regimes there is no evidence that the neurons are synchronizing. Note that the mean emission
rate predicted by the mean-field theory (νth) is not exactly the same in the network simulation
(121Hz vs. 112Hz). Most probably, this is due to the finite-size effect resulting from the small
number of neurons used in the simulation. The reason the simulation was done with only 128
neurons was to be able to do a proper comparison with the F-LANN chip in later experiments.
The F-LANN chip supports only up to 128 neurons.

3.8 Conclusion
As the complexity of computational models continues to increase, attractor networks are likely to
form important sub-networks in larger models. This is because the many clear information process-
ing abilities of attractor networks (e.g., categorization, filtering noise, integration, memorization,
etc.) makes them good candidates for being some of the basic building blocks of large-scale brain
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models.
One significant challenge to understanding how such networks can be exploited by larger

biological systems is to determine how attractors can be controlled. Control may amount to simply
moving the network state to another point on an established attractor, or it may demand completely
changing the kind of attractor the network is implementing on-the-fly, by say, changing from a
point to a cyclic attractor.

42



Chapter

4
Semiconductor Technology

4.1 Introduction
Semiconductor devices are electronic components that exploit the electronic properties of semi-
conductor materials, principally silicon, germanium, and gallium arsenide, as well as organic
semiconductors.

Semiconductor devices are manufactured both as single discrete devices and as integrated
circuits (ICs), which consist of a number—from a few to billions—of devices manufactured and
interconnected on a single semiconductor substrate, or wafer.

Semiconductor materials are so useful because their behavior can be easily manipulated by
the addition of impurities, known as doping. Semiconductor conductivity can be controlled by
the introduction of an electric or magnetic field, by exposure to light or heat, or by mechanical
deformation of a doped monocrystalline grid; thus, semiconductors can make excellent sensors.
Current conduction in a semiconductor occurs via mobile or “free” electrons and holes, collectively
known as charge carriers. Doping a semiconductor such as silicon with a small amount of impurity
atoms, such as phosphorus or boron, greatly increases the number of free electrons or holes
within the semiconductor. When a doped semiconductor contains excess holes it is called p-type,
and when it contains excess free electrons it is known as n-type, where p (positive for holes) or
n (negative for electrons) is the sign of the charge of the majority mobile charge carriers. The
semiconductor material used to manufacture these devices is doped under highly controlled
conditions in a fabrication facility, or fab, to precisely control the location and concentration of
p- and n-type dopants. The junctions which form where n-type and p-type semiconductors join
together are called p-n junctions.



4. Semiconductor Technology

4.2 Basic MOS fabrication processes
Semiconductor technology is based on a number of well-established process steps, which are the
means of fabricating semiconductor components. In order to understand the fabrication process,
it is necessary to understand these steps.

All processing starts with single-crystal silicon material. The material is grown as a single
crystal and takes the shape of a solid cylinder 75–300mm in diameter and 1m in length. This crystal
is then sawed to produce wafers with a diameter of 75–300mm and a thickness of 0.5–0.7mm.
The surface of the wafer is then polished to a mirror finish. When the crystals are grown, they are
doped with either an n-type or p-type impurity to form an n or p substrate. The substrate is the
starting material in wafer form for the fabrication process.

The six basic processing steps that are applied to the doped siliconwafer to fabricate semiconduc-
tor components are (oxidation, diffusion, ion implantation, deposition, etching, and metallization)
will be described in the following paragraphs. Finally, the means of defining the area of the
semiconductor subject to processing is called photolithography.

4.2.1 Oxidation

Oxidation refers to the chemical process of silicon reacting with oxygen to form silicon dioxide. In
addition to serving as the gate dielectric, silicon dioxide can act as a protective coating in many
steps of fabrication. To speed up the reaction, it is necessary to heat the wafers to around 1000 ○C.
The rate of growth depends on the type and pressure of the atmosphere, the temperature, and the
doping level of the silicon. To avoid the introduction of even small quantities of contaminants, it is
necessary to maintain an ultra-clean environment for the processing. An ultra-clean environment
is needed for all the processing steps involved in the fabrication of an integrated circuit.

4.2.2 Diffusion

Diffusion is the process by which atoms move through the crystal lattice. In fabrication, it relates
to the introduction of impurity atoms (dopants) into silicon to change its doping. Temperature
controls the rate at which dopants diffuse in silicon and enables the introduction of impurities at a
high temperature to obtain the desired doping. Afterwards the slice is cooled to room temperature,
essentially “freezing” the impurities in position.

The two most common impurities used as dopants are boron and phosphorus. Boron is a
p-type dopant, and phosphorus is an n-type dopant. Both dopants are effectively masked by thin
SiO2 layers. By diffusing boron into an n-type substrate, a p-n junction is formed (diode). A
subsequent phosphorus diffusion produces an npn structure (transistor).

4.2.3 Ion implantation

Ion implantation works in concert with the photolithography process (next section) to create
selective processing. Following etching, the photoresist pattern would then be stripped off and the
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wafers sent on for further processing.

Introducing impurities into silicon in a controlled manner is the key to forming integrated
circuits. Ion implantation is currently the most commonly used method for introducing impurities
into silicon wafers. In an ion implanter, impurities to be introduced into silicon are ionized, giving
the impurity ion a positive charge. A high voltage electric field is then used to accelerate the ions
to a very high energy. To avoid the ions colliding with any gases during acceleration, the whole
process takes place in a vacuum. The accelerated ions are then “implanted” into the silicon surface
by virtue of their high energy.

b) Form photoresist
pattern

c) Ion implantation

Ion beam

a) Grow thin
silicon dioxide layer

d) Strip photoresist
and anneal

Figure 4.1: Ion implantation. Adapted from Jones (2012).

The Ion implantation process is made selective by using a photoresist pattern to block impurity
ions from reaching the silicon surface where no impurities are desired. The selective introduction
of impurities begins with the growth of a thin SiO2 layer. The SiO2 layer protects the silicon surface,
butmust be thin enough to allow the unhindered passage of the ions. Photoresist is then applied and
patterned as outlined in Figure 4.1, and ion implantation is performed. Following ion implantation,
the photoresist is stripped off and a high temperature furnace process is used to anneal out the
damage from the high energy ions impacting the silicon (see Figure 4.1). The “annealing” process,
unfortunately leads to diffusion of dopants, broadening the profile in all directions. The wafer is
therefore usually annealed only once, after all implantations have been completed.

4.2.4 Deposition and etching

Device fabrication requires the deposition of various materials such as polysilicon, dielectric
materials separating interconnect layers, and metal layers serving as interconnects.

Chemical Vapor Deposition (CVD) is a common method of forming polysilicon on thick
dielectric layers, whereby wafers are placed in a furnace filled with a gas that creates the desired
material through a chemical reaction. CVD is commonly performed at a low pressure to achieve
more uniformity.

a) Non-directional
silicon dioxide etch

Photoresist

Silicon dioxide

Silicon

b) Directional
silicon dioxide etch

Figure 4.2: Isotropic vs anisotropic etching. Adapted from Jones (2012).
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The etching of the materials is also a crucial step. Contact windows with very small dimensions,
e.g., 0.3 µm × 0.3 µm, and relatively large depths, e.g., 2 µm, must be etched with high precision.
Depending on the speed, accuracy, and selectivity required in the etching step, and the type of
material to be etched, one of these methods may be used: (1) “wet” etching, i.e., placing the wafer
in a chemical liquid. This results in an isotropic etch, i.e., etching in all directions at the same rate
(low precision); (2) “plasma” etching, i.e., bombarding the wafer with a plasma gas (high precision,
anisotropic etching); (3) reactive ion etching (RIE), where ions produced in a gas bombard the
wafer. Refer to Figure 4.2 for a comparison of isotropic and anisotropic etching.

4.2.5 Metallization

The purpose of the metallization process is to interconnect the various components of the inte-
grated circuit (transistors, resistors, capacitors, etc.) to form the desired circuit. Metallization
involves the deposition of a metal (aluminum) over the entire surface of the silicon. The required
interconnection pattern is then selectively etched.

4.2.6 Photolithography

At the heart of wafer fabrication technologies is photolithography. Photolithography defines the
patterns that when used in conjunction with etching can pattern deposited and grown thin films,
and combined with ion implantation can selectively change the properties of silicon.

The silicon surface is first coated with a photosensitive layer (photoresist) and then exposed to
ultraviolet light through a master pattern on a photographic plate (reticle). A reticle will typically
have the patterns for a few dies on it and will be stepped across the wafer exposing the pattern
after each step to cover the wafer with patterns. In order to ease the task of reticle fabrication and
make the process less defect sensitive, reticle patterns are either 4× or 5× the size of the desired
feature on the wafer, and the reticle pattern is optically shrunk before reaching the wafer. The layer
is then developed to reproduce the pattern on the wafer resulting in a layer that is impervious
to the chemical etchants used for SiO2 or aluminum. This allows windows to be etched in the
oxide layer in preparation for the subsequent processes which are used to define transistor regions
and to isolate one transistor from another. Figure 4.3 illustrates pattern formation on a wafer by
photolithography.

d) Develop
photoresist

b) Coat with
photoresist

a) Silicon with
silicon dioxide layer

Ultraviolet light

c) Expose photoresist
with a patterned reticle

Figure 4.3: Photolithography process. Adapted from Jones (2012).
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4.2.7 Putting everything together

The steps described above are combined with other unit steps into complex process flows with
hundreds of steps where 20 to 30 or more reticles are used to print patterns onto wafers. The end
result is a number of ICs on a single wafer that depending on the wafer size and the size of the
IC may number, tens, hundreds, thousands or ten of thousands of ICs. Each IC may have tens of
millions or even over a hundred million circuit elements.

Figure 4.4: Left: A 300 mm Intel Penryn wafer (45 nm technology). Retrieved from http://www.tomshardware.com/
reviews/intel-penryn-4ghz-air-cooling,1712-3.html. Reprinted with permission. Right: Cell processor die. Photo: Érick
L. W. Ribeiro – CC BY-SA.

Memory ICs now in production have over 1 billion transistors on a single IC. Microprocessors
have also reached and exceeded the 1 billion mark as well. The left side of Figure 4.4 illustrates a
300mm Intel Penryn wafer utilizing a 45nm technology node. Each Penryn processor is made up
of 400 million transistors. The right side of Figure 4.4 illustrates the die size of the Cell processor.

4.3 MOSFET
Themetal-oxide-semiconductor field-effect transistor (MOSFET) is a transistor used for amplifying
or switching electronic signals. Although the MOSFET is a four-terminal device (see Figure 4.5)
with source (S), gate (G), drain (D), and body (B) terminals, the body (or substrate) of theMOSFET
is often connected to the source terminal, making it a three-terminal device like other field-effect
transistors. Because these two terminals are normally connected to each other (short-circuited)
internally, only three terminals appear in electrical diagrams. The MOSFET is by far the most
common transistor in both digital and analog circuits, though the bipolar junction transistor was
at one time much more widespread.

In enhancementmodeMOSFETs, a voltage drop across the oxide induces a conducting channel
between the source and drain contacts via the field effect. The term “enhancement mode” refers
to the increase of conductivity with increase in oxide field that adds carriers to the channel, also
referred to as the inversion layer. The channel can contain electrons (nMOS), or holes (pMOS),
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Figure 4.5: A perspective view of the physical structure of an enhancement-type NMOS transistor. Adapted from
Sedra and Smith (1991).

opposite in type to the substrate, so nMOS is made with a p-type substrate, and pMOS with an
n-type substrate (see Figure 4.6). In the less common depletion mode MOSFET, the channel
consists of carriers in a surface impurity layer of opposite type to the substrate, and conductivity is
decreased by application of a field that depletes carriers from this surface layer.

The ‘metal’ in the word MOSFET is now often a misnomer because the previously metal gate
material is now often a layer of polysilicon (polycrystalline silicon). Aluminum had been the gate
material until the mid 1970s, when polysilicon became dominant, due to its capability to form
self-aligned gates. Metallic gates are regaining popularity, since it is difficult to increase the speed
of operation of transistors without metal gates.

Likewise, the ‘oxide’ in the name can be a misnomer, as different dielectric materials are used
with the aim of obtaining strong channels while applying smaller voltages.

4.3.1 Materials

Usually the semiconductor of choice is silicon, but some chipmanufacturers, most notably IBM and
Intel, recently started using a chemical compound of silicon and germanium (SiGe) in MOSFET
channels. Unfortunately, many semiconductors with better electrical properties than silicon,
such as gallium arsenide, do not form good semiconductor-to-insulator interfaces, and thus are
not suitable for MOSFETs. Research continues on creating insulators with acceptable electrical
characteristics on other semiconductor materials.

In order to overcome the increase in power consumption due to gate current leakage, a high-κ
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Figure 4.6: Cross-section of a typical CMOS integrated circuit. The NMOS transistor is formed in a separate p-type
region known as a p well. Alternatively a p-type body can also be used where the p device is then formed in an n
well. Adapted from Sedra and Smith (1991).

dielectric is used instead of silicon dioxide for the gate insulator, while polysilicon is being replaced
by metal gates (Intel, 2003).

The gate is separated from the channel by a thin insulating layer, traditionally of silicon dioxide
and later of silicon oxynitride. Some companies have started to introduce a high-κ dielectric
together with a metal gate combination in the 45nm node.

4.3.2 MOSFET operation above threshold

When a voltage is applied between the gate and body terminals, the electric field generated pene-
trates through the oxide and creates an “inversion layer” or “channel” at the semiconductor-insulator
interface. The inversion channel is of the same type, p-type or n-type, as the source and drain, thus
providing a channel through which current can pass. Varying the voltage between the gate and
body modulates the conductivity of this layer and thereby controlling the current flow between
drain and source (Figure 4.7).

n+ n+

n channel

p-type substrate

S
G

B

D

vDS

vGS

+

−
+

−iG = 0
iS = iD

iD

Figure 4.7: Operation of the enhancement NMOS transistor as vDS is increased. The induced channel acquires a
tapered shape and its resistance increases as vDS is increased. vGS is kept constant at a value > Vt . Adapted from
Sedra and Smith (1991).
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4. Semiconductor Technology

In order to have an appreciable current flowing between drain and source, vGS needs to be
greater than Vt . Vt is called the threshold voltage and is the value at which vGS causes a sufficient
number of mobile electrons to accumulate in the channel region to form a conducting channel. The
value of Vt is controlled during fabrication and typically lies between 1V and 3V. When vGS > Vt ,
the MOSFET has three regions of operation (see Figure 4.8A):

1. Off or cutoff region, where iD = 0.

2. “Triode” region, where vDS < vDS∣sat = vGS − Vt .

3. “Saturation” region, where vDS > vDS∣sat

The iD – vGS relationships for MOSFETs in the triode and saturation region can be approximated
using the following equations:

• Triode region:

iD = k′n
W
L

⎡⎢⎢⎢⎣
(vGS − Vt)vDS −

v2DS
2

⎤⎥⎥⎥⎦
(4.1)

• Saturation region:

iD =
1
2
k′n

W
L
(vGS − Vt)2 (4.2)

k′n is the process transconductance parameter [A/V2] and is equal to:

k′n = µnCox = µn
єox
tox

, (4.3)

where µn is the electron mobility of electrons in the channel, Cox is the capacitance per unit gate
area, and єox and tox are the permittivity and thickness of the gate oxide layer, respectively.
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Figure 4.8: (A) The iD – vDS characteristics for a device with Vt = 2 V and K = 0.25 mA/V2 . (B) The iD – vGS

characteristic curve for an enhancement-type NMOS transistor in saturation (Vt = 2 V, K = 0.25 mA/V). Adapted
from Sedra and Smith (1991).
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4.3. MOSFET

Figure 4.8B shows a sketch of Equation (4.2). In the saturation region the MOSFET provides
a drain current whose value is independent of the drain voltage vDS and is determined by the gate
voltage vGS according to the square-law relationship in Equation (4.2) (Sedra and Smith, 1991).

4.3.3 Subthreshold MOSFET operation

Since the neuromorphic chip described in this thesis uses subthreshold design techniques, it is
very important to understand the operation of the MOSFET device in this regime. In order to
avoid confusion with the threshold voltage Vt , UT is used to denote the thermal voltage, where
UT = kT/q ≈ 26mV at room temperature.

Depletion

vGB

|QI|

Vt

Weak
inversion

Moderate
inversion

Strong
inversion

slope = Cox

A

vGB

log |QI|

Weak
inversion

Moderate
inversion

Strong
inversionB

QI (actual)

QI ∝ −exp(vGB )

QI = −Cox (vGB − Vt )

Vt

Figure 4.9: (A) Standard plot of Q I vs. gate voltage, where Q I appears to go to zero when the gate voltage drops
below Vt . (B) Q I redrawn with a logarithmic y-axis to show that the channel charge in reality drops exponentially
with decreasing gate voltage. Adapted from Liu et al. (2002).

In strong inversion the MOSFET model makes the assumption that the inversion charge QI

goes to zero when the gate voltage drops below the threshold voltage. However this is not exactly
the case. Below threshold, the channel charge drops exponentially with decreasing gate voltage (see
Figure 4.9A). Redrawing this curve using a logarithmic y-axis we can clearly see an exponential
relationship (Figure 4.9B).

In subthreshold or weak inversion operation (vGS < Vt), and the inversion layer charge (QI)
is much less than the depletion region charge (QB). Since the substrate is weakly doped, QB is
small, and there is not enough charge in the channel to generate a significant electric field to pull
electrons from source to drain, resulting in the current flowing by diffusion, not drift. Also, since
the concentration of electrons decreases linearly from the source to the drain, i.e., the concentration
gradient is constant, the drain current can be expressed as:

ID = −WDn = −
Q′I0 − Q′IL

L
= −W

L
µnVt(Q′I0 − Q′IL), (4.4)
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which reduces to
ID = I0

W
L
exp(κVG

Vt
)
⎡⎢⎢⎢⎣
exp(−VS

Vt
) − exp(−VD

Vt
)
⎤⎥⎥⎥⎦
, (4.5)

where I0 is a process-dependent constant.
For nFETs,

I0n ≡
2µnC′oxV 2

t
κ

⋅ exp(−κVtn
Vt
) , (4.6)

with I0n varying from 10−15A to 10−12A.
The drain current expression (Equation 4.5) can be rearranged as:

ID = I0
W
L
exp(κVG − VS

Vt
)
⎡⎢⎢⎢⎣
1 − exp(−VDS

Vt
)
⎤⎥⎥⎥⎦

(4.7)

and approximated to:

ID = I0
W
L
exp(κVG − VS

Vt
) for VDS > 4Vt (saturation). (4.8)

At room temperate, 4UT ≈ 100mV, making it quite easy to keep a subthreshold MOSFET in
saturation, and the VDS required to accomplish this does not depend on VGS as is the case above
threshold (Figure 4.10). This property is very advantageous for the design of low-voltage circuits.

vDS

saturation region

iD

triode
region

vDS = Vt ≈ 100 mV

vGS = 0.40 V

vGS = 0.41 V

vGS = 0.42 V

Figure 4.10: Subthreshold MOSFET in saturation (vDS ≥ 4Vt ). Adapted from Liu et al. (2002).

In summary, weak inversion can be seen as the region where QI is an exponential function of
gate voltage, strong inversion as the region where QI is a linear function of the gate voltage, and
moderate inversion as a transition region between the two (Harrison, 2010; Liu et al., 2002).
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Chapter

5
The F-LANN Chip

5.1 Introduction
This chapter introduces the F-LANN chip, designed by the University of Magdeburg in conjunction
with ISS∗ and is the successor to the C-LANN chip. The main circuit components of the F-LANN
chip (see Figure 5.1), i.e., the integrate-and-fire neuron and the plastic bistable synapse, are then
described in detail. The PCI-AER (Address Event Representation) interface that served as the
communication interface between the spiking neural network chip and the host PC is briefly
described and finally the EDA (ElectronicDesignAutomation) software used to design the F-LANN
chip is detailed.

Figure 5.1: F-LANN photomicrograph.

∗Istituto Superiore di Sanità, Rome.



5. The F-LANN Chip

5.2 C-LANN chip overview
TheC-LANN chip designed by ISS implements in analog VLSI a network composed of 32 integrate-
and-fire (IF) neurons with firing rate adaptation (afterhyperpolarization (AHP) current), and is
endowed with both recurrent synaptic connectivity and AER-based connectivity with external,
AER-compliant devices. Synaptic connectivity can be reconfigured, allowing the user to decide
the presence and/or absence of each synaptic contact and the excitatory/inhibitory nature of each
synapse. Excitatory synapses are plastic through a spike-driven stochastic, Hebbian mechanism,
and possess a self-limiting mechanism aimed at an optimal use of synaptic resources for Hebbian
learning. The latter mechanism will be termed hereafter the “stop-learning” mechanism. The
neuron model implemented is based on the constant leakage integrate-and-fire (IF) neuron already
adopted in earlier ALAVLSI† chips. The integrate-and-fire circuit is borrowed from the low-power
IF neuron design described in Indiveri (2003).

5.3 The F-LANN chip

5.3.1 Hardware summary

The F-LANN chip (Figure 5.2) implements a reconfigurable network of 128 integrate-and-fire
neurons with spike-frequency adaptation and 16,384 (128×128) bi-stable, stochastic synapses
implementing a Hebbian rule with “stop-learning”. The chip has a total area of 68.9mm2 with
each synapse and neuron occupying 3, 200 µm2 and 2, 400 µm2 respectively. A standard 0.35 µm
CMOS technology process from austriamicrosystems (AMS) was used.

5.3.2 F-LANN improvements over the C-LANN

• Synapses not used for internal connectivity are not disabled as in C-LANN but configured
to accept AER external spikes—this allows a saving in silicon area. In particular, all-AER
connectivity can be implemented; on the other hand, the choice of keeping the possibility of
internal recurrent connectivity lightens the AER bus traffic;

• The configuration circuit has been modified: every synapse can now be independently
addressed. To this end new decoders were designed;

• It is now possible to directly set and read the state of each synapse, thanks to new dedicated
circuits. It is also possible to continuously monitor the synaptic state without affecting the
network dynamics;

• The AER input block has been completely redesigned to meet the needs of the multi-chip
M-LANN system (system that supports multiple F-LANN chips);

†Attend-to-Learn and Learn-to-Attend EU project.
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5.3. The F-LANN chip

• The decoder has been completely redesigned using Austriamicrosystems (AMS) standard
cells placed and routed with automatic tools provided by Cadence;

• Thepads used improve over those of C-LANNpads: lower noise and reduced ground bounce
and voltage drops;

• The calcium circuit has been completely redesigned using log-domain filters to obtain the
exponential decay of the calcium variable between subsequent spikes.

5.3.3 Architecture and main features

Synaptic Matrix
16384 AER/recurrent

64×64 synaptic sub-matrix

128 IF neuros
A

ER output system

AER input system and con�guration decoder

Excitatory/Inhibitory
synapses

Figure 5.2: Chip layout. Chip built using a 0.35 µm AMS CMOS process and has an area of approximately 70 mm2 .
Chip dimensions: 12.4 mm × 5.5 mm.

The synaptic matrix is configurable in such a way to support either all-to-all recurrent connec-
tivity, or exclusively external (AER-based) connectivity, or any combination of both. In addition,
the initial state of efficacy and the excitatory or inhibitory nature of synapses may be set individually
for each synapse. The synaptic matrix is arranged in four identical 64×64 sub-matrices. As every
signal entering a sub-matrix is properly buffered, these sub-matrices could in the future serve as
building blocks for considerably larger chips. The chip is compliant with the AER asynchronous
communication protocol widely used in the neuromorphic engineering community. Specifically,
AER-based communication is handled through the PCI-AER board (Chicca et al., 2007; Dante
et al., 2005), which allows four chips to be connected together (e.g., to implement a recurrent
network of 512 neurons with a uniform connectivity of 25%).

The neuron circuit (see Figure 5.4), which implements an IF neuron with a constant leakage
term and a lower bound for the membrane potential V(t), was introduced in Mead (1989) and
studied theoretically in Fusi and Mattia (1999). An additional dynamic variable associated with
the neuron reflects its recent average activity and is termed ICa(t), following Brader et al. (2007).
The variable ICa, which is incremented by each spike and decays exponentially between spikes,
is implemented by a log-domain, exponential decay circuit. For the dynamics of V and ICa, the
low-power circuits described in Indiveri (2003); Indiveri et al. (2006) were used.

55



5. The F-LANN Chip

S pike Out

Neuron St atus
S pike IN

St atus of Postsynaptic
Neuron

From Presynaptic
Neuron

To
Po

st
sy

na
pt

ic
N

eu
ro

n

Con�guration Memory
element

Synapse

A
ER

D
ec

od
er

X

AER DECODER

AC
K

R
EQAD

D

AER ARBITER

A
C

K

R
E

Q

A
D

D

Con�guration Decoder   Y

Co
n�

gu
ra

tio
n

D
ec

od
er

X

RD
WR

Da ta
AddressAER Decoder Y

Figure 5.3: F-LANN chip architecture.

The dendritic tree of each neuron is composed of 128 synapses. Each synapse accepts as input,
spikes from either internal or external neurons. In the latter case the spikes come in the form of
AER events that are addressed to the correct synapses by the X-Y decoder. Excitatory synapses are
plastic, inhibitory are fixed.

Even if in principle, recurrent connectivity can also be achieved by looping through the AER,
the ability to reconfigure synapses as either recurrent or AER-based allows adequate flexibility to
optimally balance AER bandwidth requirements and complexity of design.

Another XY-decoder allows the synapses to be independently addressed and configured. In
addition, dedicated hardware circuits have been added to directly set and read the internal state of
selected synapses.

The AER input block, responsible for the communication handshaking, was designed for a
multi-chip system. In order to avoid a single incorrect AER transaction blocking the AER bus, the
latter is released without waiting for an acknowledgment from the target synapse. To this end, a
transparent latch array stores the AER address as soon as it enters the bus. Similarly, an internal
neuron contributing a spike to the AER bus does not wait for an external acknowledgment but
resets immediately. Although this approach introduces a small possibility that some AER events
are lost, it ensures that AER delays do not disrupt internal network activity. All spikes generated
within the chip are arbitered for access to the AER bus.
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5.4 Integrate-and-fire neuron circuit
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Figure 5.4: Circuit diagram of the leaky integrate-and-fire neuron.

The low-power circuit (Indiveri, 2003) that implements the model of a leaky IF neuron is
shown in Figure 5.4. It comprises 24 transistors and one (explicit) capacitor (M25). An additional
parasitic (implicit) capacitor is exploited at node Vo2. The circuit can be subdivided into six main
blocks: a source followerM1–M2, for increasing the linear integration range and for modulating the
neuron’s threshold voltage; an inverter with positive feedback M3–M7, for reducing the switching
short-circuit currents at the input; an inverter with controllable slew-rate M8–M11, for setting
arbitrary refractory periods; a digital inverter M13–M14, for generating the fast digital pulse that
signals the occurrence of a spike; a transient current-mirror integratorM15–M18, for implementing
the spike-frequency adaptation mechanism, and a minimum size transistor M20 for implementing
a constant current leak.

5.5 Synapse and Calcium Circuit
Figures 5.5 and 5.7 illustrate the synaptic circuit and the comparator system needed to implement
the model described in Brader et al. (2007) and briefly motivated in the introduction. Following
the arrival of a presynaptic spike, X jumps upward or downward, depending on the following
conditions on the postsynaptic state: X(t) → X(t) + a if V(t) > θp and ITH1 < ICa < ITH3;
X(t)→ X(t) − b if V(t) ≤ θp and ITH1 < ICa < ITH2 where a and b are the tunable amplitudes of
the jumps. In the absence of presynaptic spikes, if X(t) > θX (X(t) < θX) X relaxes towards the
upper (lower) barrier and the efficacy of the bistable synapse is set as ‘potentiated’ (‘depressed’).
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Figure 5.5: Synapse schematic of F-LANN. The dashed red boxes show the additional circuitry of the F-LANN wrt.
the C-LANN chip.

The synaptic efficacy changes only when X(t) crosses θX .
The bistability sub-circuit (see Figure 5.5) is a wide output-range transconductance amplifier

with positive feedback: it attracts X(t) towards the upper or lower stable value depending on the
comparison with the threshold θX , which also determines, through the Clipping block (a two-stage
open-loop comparator), the efficacy value (J_ – ‘depressed’ or J_ + DJ – ‘potentiated’). The UP
and DOWN signals on the left, coming from the calcium block, exclusively enable the branches of
the Hebbian circuit and inject or subtract a current regulated by vu and vd. The dendritic branch
is triggered by the presynaptic spike and generates the up/down jump in the postsynaptic V(t)
according to the configuration bit Conf which sets the synapse as excitatory or inhibitory.

The “stop-learning” mechanism relies on the “calcium” variable of the postsynaptic neuron.
This variable, represented by the current ICa(t), is incremented by each postsynaptic spike and
decays exponentially between spikes. Accordingly, its value integrates the postsynaptic spiking
activity in the recent past. Together with suitable thresholds, it determines which synaptic changes
will be allowed to occur. For example, it can prevent an upward jump of X(t)when the postsynaptic
neuron is already very active, thus lowering the probability of synaptic potentiation.

The synapse accepts AER events (the ‘AND’ of XAER andYAER signals inFigure 5.5) or recurrent
spikes nSpikerec, depending on the configuration bit Sel. The event triggers the pulse extender
circuit which generates a pulse Spike with a duration determined by an external bias voltage Pls. In
typical conditions an AER event lasts around 200ns while the recurrent spike only 10–20ns. This
circuit equalizes the recursive and AER pulse durations extending them to a few microseconds.
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Figure 5.6: Diff-pair log-domain calcium circuit. The Mout MOSFET is part of the circuit shown in Figure 5.7.

This makes sure that the Hebbian circuit (see Figure 5.5) is enabled for the same amount of time
irrespective of whether the impinging spike was generated recursively or through the AER bus.
This “long” interval of time allows, together with parameters vu and vd a fine tuning of the amount
of charge injected or subtracted from the synaptic capacitor Csyn, giving rise to the jumps in X. The
same interval of time determines the duration of the induced synaptic current on the postsynaptic
neuron.

The circuit which generates the calcium variable ICa, (see Figure 5.6) is a diff-pair integrator
(DPI) implementing a log-domain filter. The output of this module, described in Bartolozzi and
Indiveri (2006a,b), is a current that increases suddenly upon the arrival of impinging spikes and
exponentially decays between two spikes. For constant average firing of the neuron, the average ICa
current level is proportional to the firing rate. TheMout MOSFET is part of the WTA comparators
system reported in Figure 5.7.

ICa is compared to three thresholds ITH1, ITH2, and ITH3 in themodule in Figure 5.7 to generate
the two signals UP and DOWN shared among all synapses belonging to the same dendritic tree.
The comparison is performed by three current-mode winner-take-all circuits (WTA) (Indiveri,
2001; Lazzaro et al., 1989). In parallel, the instantaneous voltage value of the postsynaptic neuron
potential V(t) is compared to a threshold θP (see Figure 5.7). Depending on the outcome of these
comparisons, the current-comparator produces either an output current ILTP = Ibias enabling an
upward jump for X(t), a current ILTD = Ibias enabling a downward jump, or no output current at all
(ILTP = ILTD = 0). Two corresponding voltages UP and DOWN are produced by current-conveyors
and broadcasted along the neuron’s dendritic tree. This system of comparators implements the
inequalities above for the dynamics of X(t).

Figure 5.8 illustrates the effect of the Calcium circuit on X(t). Thresholds were set to have
ITH3 > ITH1 = ITH2 (which for the corresponding voltages applied to the gates of the p-MOSFETs
implies VTH3 < VTH1 = VTH2 – see horizontal black lines in the figure). The synapse is initially set
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Figure 5.7: Comparator system.

depressed. The postsynaptic neuron is excited by a train of AER spikes (via a different synapse)
with increasing frequency (corresponding upward jumps are visible in the Vpost trace. As long
as ITH1 = ITH2 > ICa (VTH1 = VTH2 < VCa), i.e., the postsynaptic neuron activity is low, neither up
nor down transitions of X are allowed, and X(t) stays fixed at its lower value, until ICa crosses
ITH1 = ITH2, when upward jumps of X become allowed. Upon crossing θX , the slope of the current
attracting X towards the upper value is activated (this is when the synaptic efficacy gets potentiated
– not shown). X undergoes upward jumps until ITH3 < ICa (VTH3 > VCa). At this point X is driven
towards its upper value and stays there.

When ITH3 < ICa < ITH2 only downward jumps are allowed and X(t) is driven towards its
lower bound. When ICa > ITH2, X(t) jumps are forbidden. In Figure 5.8 we report the voltages
VTH2 and VTH3 applied to the gates of the p-MOSFETs which control ITH2 and ITH3.

5.6 Synapse Configuration
The dashed regions in Figure 5.5 highlight the main new features introduced with respect to the
previous C-LANN chip (Badoni et al., 2006). A 4-bit bus (b2, b1, b0, nWR) is used to control the
configuration and initialization of all the individual synapses. The selection of the synapses is done
with the help of the row-column selection lines Xconf, Yconf.
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threshold θ X .

The state of the selected synapse is available at the output of a tri-state buffer. The SISE (Synapse
Initialization and Setting Element) is the digital control element that contains the memory (2 bits)
for the configuration and reads the state of the synapse. The control signal nWR performs both the
loading of b0 and b1 in the respective FF (Flip-Flop) and the initialization phase of the synapse. Bit
b0 loaded in the first FF produces the Sel signal, which configures the synapse as either recurrent
or AER, through the MUX visible in the Pulse extender block in Figure 5.5. Bit b1 loaded in the
second FF produces the Conf signal which sets the synapse as excitatory or inhibitory through
the dendritic branch. Bit b2 is a global signal over the synaptic array, and it decides whether the
selected synapse is forced toward a potentiated or depressed state when nWR is enabled through
the initialization circuit. The pulse extender element regulates the duration of the spike, controlled
by the voltage Pls and triggered by the incoming spike, either AER or recurrent. It is possible to
continuously monitor the synaptic state without affecting the chip dynamics.

Decoders are used to access the synapses to configure them as excitatory or inhibitory, and
recursive or AER. Other decoders are also used when addressing the synapses in case of AER
spiking activity. 7-to-128 bit decoders were implemented to address the 128×128 synaptic matrix,
using standard cells from austriamicrosystems (AMS) and automatic place-and-route tools supplied
by Cadence. These cells should lower noise and reduce ground bounce and voltage drops.
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Figure 5.9: An excitatory synapse is set to be inhibitory. Top to bottom: Vpost , Vpre , configuration digital signal.

Figure 5.10: A potentiated synapse is set to the depressed state. Top to bottom: Vpost , X , Vpre , configuration digital
signal.

Figure 5.11: A recurrent synapse is set to be AER. Top to bottom: Vpost , AERpre , Vpre , configuration digital signal.
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5.6.1 First results

Figures 5.9, 5.10, and 5.11 illustrate the relevant aspects of synaptic configuration. Figure 5.9 shows
the effect of changing the synapse from being excitatory to inhibitory (upward to downward jumps
in the postsynaptic potential). Figure 5.10 shows the postsynaptic manifestation of a potentiated
synapse being set as depressed (larger to smaller jumps induced in the postsynaptic potential).
Figure 5.11 shows a recurrent synapse being set as AER (postsynaptic jumps are first locked to the
recurrently transmitted spikes, then become locked to the AER spikes).

5.7 Design and simulation Tools
Designing such a big chip (70mm2) has been possible only thanks to a variety of automatic tools
introduced in our standard flow. Simulation tools help prevent signal oscillations and/or crosstalk.
Automatic placement and routing software allowed us to optimize the top-level layout even in the
late design stage.

5.7.1 First Encounter

First Encounter, a tool that generates automatically placed-and-routed layouts was introduced
in our standard flow. This tool was used to generate the decoders needed for the selection of the
individual synapses in the 128×128 synaptic matrix. First Encounter was very helpful in automating
this laborious and error-prone part of the design. This tool has a lot of potential for future and
more complicated designs since it provides the direct conversion from RTL, a hardware description
language, into silicon. First Encounter makes sure that the smallest silicon area possible is used
while making sure that timing and signal integrity rules are respected.

5.7.2 Virtuoso Chip Assembly Router

Virtuoso Chip Assembly Router is a tool similar in concept to First Encounter. The difference is that
while First Encounter was used to place-and-route digital blocks such as the decoders, Virtuoso
Chip Assembly Router was used to make the interconnections between the main blocks of the
whole chip. Trying to connect by hand hundreds of connections is a very slow process and makes
the modification of the position of various parts of the chip late in the design stage very difficult.
Virtuoso Chip Assembly Router has a lot of advanced features such as complex constraint rules,
which constrain the router to route using special rules, such as crosstalk and shielding rules which
make sure that sensitive interconnects are not effected by noise.

5.7.3 Virtuoso UltraSim Full-chip Simulator

The third and last new tool introduced in our flow was Virtuoso UltraSim. Virtuoso UltraSim is a
very fast transistor-level simulator used for verifying large, custom, analog and mixed-signal chip
designs. For very accurate simulations Cadence Spectre was still used to simulate the most critical
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parts of the chip, but for simulations of big circuits (such as the simulation of several neurons
together with a few synapses) UltraSim was the only way of getting results in a reasonable amount
of time.

5.8 Experimental setup
The hardware setup (Figure 5.12) consisted of:

• a PCB hosting the chip, the AER buffer, and a USB capable ATMEL micro-controller, de-
signed and programmed by me,

• three DAC boards, provided by ETHZ‡, to set the parameters,
• a PCI-AER board to send/receive spikes to/from the chip,
• a thermal stabilization system to control the chip temperature.

The software setup was composed of:

• PCI-AER drivers,
• DAC board driver (provided by ETHZ and optimized by ISS for specific needs),
• Driver for the USB synaptic connectivity configuration,
• a MATLAB-based tool (“SpikeTools”) provided by ETHZ and optimized by the University
of Magdeburg and ISS for specific needs,

‡ETH Zürich.

Figure 5.12: F-LANN rig showing the F-LANN board with Peltier temperature stabilizing mechanism, the DAC
boards and the cable adapter board.
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• Matlab scripts and functions to automate the configuration and setting stages and run the
high level functions for the various experiments.

5.8.1 DAC boards

A total of three digital-to-analog converter boards were used to drive 64 bias voltages needed to
control the various parameters of the F-LANN chip.

Figure 5.13: DAC boards detail.

5.9 PCI-AER

5.9.1 Overview

Figure 5.14 illustrates the main components of the spike acquisition system. The system consists
of two boards: the PCI-AER board which is connected to the PCI bus of the host computer and
the Cable Adapter Board which is used to connect the PCI-AER board to the AER (Address Event
Representation) bus. This configuration simplifies the placing and the interfacing of the system
under test, allowing a friendly management of the connections. The board in the host computer
includes all the working components of the system PCI-AER and the buffers driving the internal
communication by local buses. The external board manages the signal transmission from the
chips to the cable connecting the Cable Adapter Board to the PCI-AER board. It includes 9 AER
connectors used for connecting several neuromorphic devices.
The PCI-AER board is made up of four main components:

• The Arbiter implements the arbitration of events coming from up to four different sender
chips.

• TheMonitor taps the transactions on the AER bus, appends time information to the events
and forwards the joint information to a PC via the PCI interface. Its available modes of
operation allow acquiring every event from the AER bus or selecting events associated with
a chosen subpopulation of neurons on the chips.
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Figure 5.14: Illustration of the PCI-AER system architecture to test neuromorphic chips using the AER bus.

• TheMapper essentially implements the connectivity pattern between up to four sender chips,
and up to four receiver chips.

• The Sequencer can be connected directly to the AER bus to emulate a neural chip, i.e., it allows
the communication of a pre-determined flux of spikes from a simulation, to subpopulations
of neurons on the neuromorphic chips to code the structure of ‘external stimuli’.

5.9.2 PCI-AER board architecture

Figure 5.15 illustrates the logic plan of the PCI-AER board which interfaces with the AER bus.
The highlighted parts contain the blocks implemented in each of the two Xilinx FPGA chips. The
main blocks consist of: AER clock, Time counter, Arbiter, Monitor, Sequencer, Mapper, Mapper-In,
FIFO, Mapper-Out, MMU and SRAM architecture, AER demultiplexer.

5.10 Summary
To summarize, this chapter reports an analog VLSI chip (termed F-LANN) whose main purpose
is to build a neuromorphic network for the creation of attractor networks and for associative
learning. Neuromorphic neurons and synapses feature adaptive and self-regulating properties
designed for the associative learning of complex and partly correlated patterns. Although the
F-LANN incorporates 128 neurons and 16,384 synapses, significantly greater numbers of neurons
and synapses will be needed for associative learning with natural stimulus sets. An attractive route
to larger networks is to link multiple VLSI chips via an AER-based communication infrastructure.
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Figure 5.15: PCI-AER block schematic architecture.

For this reason, the F-LANN implements an AER-compliant chip design in which each neuron
features an AER segment on its dendritic tree, which stands ready to accept spikes from external
sources.

The following chapter illustrates how the neurons and synapses of the F-LANN chip were
characterized both in simulation and by doing actual chip measurements. This was done in order
to determine the extent of the subthreshold circuit mismatch and variation so that this variability
could (in later experiments) be factored in to obtain meaningful results.
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Chapter

6
F-LANN Chip
Characterization

6.1 Thermal stabilization
As expected (and observed for most neuromorphic chips with subthreshold operation) the chip op-
erating temperature is a critical parameter. Variation in temperature during a test could completely
invalidate the test results. In Figure 6.1A the temperature influence on the neurons’ firing is illus-
trated. By applying a constant afferent current to a neuron while increasing the room temperature,
an increase in the output spiking frequency is observed (≈ 4Hz/K).
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Figure 6.1: (A) Neuron frequency variation with temperature. A constant current is injected into a neuron, and the
output spiking frequency (νpost) is recorded. (B) Output frequency variation during a LTP test due to a temperature
decrease. The experiment takes about 45 minutes.

In Figure 6.1B the behavior of the spiking frequency of a neuron during a test performed to
measure the LTP transition probability is shown. The test lasted for about 45 minutes during which
time a temperature decrease brought about a decrease in the spiking frequency. To get better control
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a temperature control system based on the Peltier principle (Figure 6.2) was constructed. An
aluminum block is positioned on the chip package and a thermocouple, inserted in the aluminum
block is connected to a temperature controller, which in turn drives the Peltier cell. A fan and a
heat sink complete the system. In this way the chip package temperature could be stabilized to
within ±0.1K, accurate enough for our purpose.

Fan

Heatsink

Peltier cell

Aluminium
block

F-LANN chip

Figure 6.2: The temperature control system.

6.2 Parameter mismatch
The effects of the inhomogeneities introduced by the fabrication process were analyzed, by compar-
ing measurements from the chip with a Montecarlo simulation of the chip. To this end, neurons
on chip were driven by the same DC signal, for zero synaptic efficacies (uncoupled neurons), the
emitted spikes were sampled, and the distribution of inter-spike intervals (ISI) across neurons was
derived. Ideally, for the same constant input all neurons are identical periodic emitters; however
they show a non-trivial ISI distribution, as shown in Figure 6.3B. The dependence of the ISI
distribution on the temperature was also checked. A Montecarlo simulation was then performed,
first at the schematics level (Figure 6.3A) and then at the post-layout level, using the Spectre
Montecarlo simulator provided by Cadence. A total of 320 iterations were performed.

The reported tests support the predictive value ofMontecarlo simulations in view of demanding
design undertakings for more complex networks.

6.3 Neuron characterization
Using the response function of the integrate-and-fire neuron, a series of calibration curves for
different parameters (mean afferent current, linear decay rate and refractory period) were obtained.
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Figure 6.3: Montecarlo simulation vs. chip measurements. (A) Simulated ISI distribution using the Montecarlo
technique. (B) Measured ISI distribution.

For instance, the graph of Figure 6.4 shows the results obtained for the refractory period τarp of
neuron 0.
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Figure 6.4: Calibration curve for the refractory period τarp . The x-axis displays the refractory bias voltage set by the
DAC board, and the y-axis shows the resulting τarp in milliseconds.

As expected, due to physical mismatch, for a chosen setting (bias voltage), different synapses
have different synaptic efficacies. The 128 AER (depressed) synapses belonging to the dendritic trees
of neurons 0, 63, 64 and 127 (the only neurons available externally via test pins) were characterized.
The resulting synaptic efficacy distribution is plotted in Figure 6.5A where each color corresponds
to a different neuron. The four measured neurons have a similar behavior which could be explained
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by imagining that the 128 synapses per neuron constitute a representative sample for themismatches.
Without grouping the various synapses with each neuron but considering all the synapses together,
the histogram in Figure 6.5B was obtained. The synaptic efficacy J is expressed as a fraction of the
dynamic range of the membrane potential (i.e., from the reset potential H to the firing threshold
θ). In the implementation θ ≈ 0.9V and H = 0V. Thus, if J = 0.01θ, 100 simultaneous spikes are
required to raise V(t) from 0 to θ.
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Figure 6.5: Synaptic efficacy distributions. (A) Synaptic efficacies of four measured neurons. (B) Synaptic efficacies
of all the 128 × 4 = 512 synapses taken as a whole. J is expressed as a fraction of the membrane potential θ.

6.4 Synaptic efficacy measurements
The next figure shows a 3D visualization of the synaptic efficacy when the pulse duration bias
(Pulse Bias) and the current amplitude bias (Efficacy Bias) are varied, i.e., the length and strength,
respectively, of the presynaptic spikes. The same 512 synapses used to generate the plot of Fig-
ure 6.5B are again used. In Figure 6.6 the top surface shows the results of the experiment when
the synapses were configured to be ‘potentiated’, while the bottom surface corresponds to the data
that was obtained with the synapses configured to be ‘depressed’. As can be noted from the surfaces
the coefficient of variation increases as the current amplitude decreases, i.e., as the Efficacy Bias
voltage increases.

A more accurate picture of the actual synaptic efficacies can be seen in Figure 6.7, where the
histograms from various points of the 3D surfaces are considered. As seen from the histograms a
large unwanted overlap between the tails of the depressed and potentiated graphs is present.

Only the most important parameters of the neurons and synapses were characterized, such as
the current/frequency relationship for the neurons and the efficacy variation for the synapses.
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Figure 6.7: Synaptic efficacy distributions obtained from the data that generated the plots of Figure 6.6. The
overlap between the potentiated and depressed synaptic efficacies is clearly visible. J is expressed as a fraction of
the membrane potential θ.
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Chapter

7
Self-Sustained Activity in the
F-LANN Chip

7.1 Introduction
As already detailed in Chapter 5, the F-LANN chip consists of a reconfigurable network of 128
integrate-and-fire (IF) neurons with spike-frequency adaptation and 16,384 (128×128) bistable,
stochastic synapses implementing a Hebbian rule with “stop-learning”. This chapter is basically a
proof of concept of how these neurons and synapses can be combined together into two populations
of excitatory and inhibitory neurons with random connectivity to demonstrate the feasibility of
obtaining self-sustaining neural firing activity. In other words I’ll be explain how the initial attractor
network behavior was obtained on the F-LANN chip, which will serve as the basis formore involved
experiments in Chapter 8.

7.2 Network Architecture
The flexibility of the synaptic matrix allows us to implement different network architectures.
One excitatory population (Echip) composed of 50 neurons and one inhibitory population (Ichip)
composed of 28 neurons are self- and reciprocally connected and both receive external stimuli
via the AER bus from three populations (E1pc, E2pc and Ipc) simulated on a PC. Intra and inter-
populations connectivity levels c are reported in Figure 7.1. c is the probability that each neuron
forms a direct synaptic contact with any other neuron of the target population. For instance, the
dendritic tree of each neuron of Echip is made up of 0.25 ⋅ 50 ≈ 13 recurrent synapses, 0.21 ⋅ 28 ≈ 6
synaptic connections from Ichip, and 70 external AER synapses. Among the AER synapses, 50
accept spikes from the E1pc excitatory neurons and the remaining 20 receive inputs from the
Ipc inhibitory neurons. Input from the PC is intended to provide both stimuli and an adequate
background activity for the on-chip populations.

Figure 7.1 reports, for each connection, the synaptic efficacy value J expressed as a fraction of
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Figure 7.1: Architecture of the network implemented on-chip: Echip consists of 50 excitatory neurons and Ichip

consists of 28 inhibitory neurons. For each connection, the synaptic efficacy (J) and the connectivity level (c) is
specified. Apart from the on-chip connections, each neuron of Echip has 50 AER excitatory synapses from E1pc and
20 AER inhibitory synapses from Ipc . The AER part of each dendritic tree of neurons in Ichip consists of 50 excitatory
synapses accepting spikes from E2pc . E1pc , E2pc and Ipc are simulated on a standard PC and consist of 2500, 1400,
and 1000 neurons respectively, each connected to one of the on-chip AER synapses.

(θ −H) as well as the connectivity level c. In this implementation θ ≈ 0.9V is the neuronal firing
threshold and H = 0V is the reset potential. As previously mentioned, an efficacy of J = 0.01θ
implies that 100 simultaneous spikes are required to raise V(t) from 0 to θ. In addition to the
synaptic efficacy and the connectivity level values, global neuron parameters β = 35θ s−1 and
τarp = 2.7ms are set. These two parameters are identical for neurons belonging to both Echip and
to Ichip, and β = 35θ s−1 implies that 1/35 s = 28.6ms are required to reduce V(t) from θ to 0.

To implement such a network in hardware, the on-chip synaptic matrix was first configured,
and then a calibration procedure was performed to set the chip bias levels for the VLSI neurons and
synapses such that they correspond to the theoretical values of J, β and τarp. Setting the synaptic
matrix presents no difficulties since the operation is based on a simple digital protocol handled by
a dedicated microcontroller. Setting biases is a more demanding task, which is described in detail
in the next section.

7.3 A theory-guided approach
Themain interest here is in attractor neural networks expressing noisy bistable dynamics. Networks
of this kind are well understood and controlled in theory and simulations. A theory-guided
approach to implementing such networks in neuromorphic VLSI hardware is described.

A compact theoretical formulation is essential to achieve the desired dynamics in hardware.

76



7.4. Mean-field theory

Such a formulation helps to validate neuron and synapse circuits, to survey the parameter space,
and to identify parameter regions of interest. In addition, a theoretical framework helps diagnose
hardware behavior that diverges from the design standard.

Stochastic activity regimes are typically not encountered in electronic devices. Boolean circuitry,
sensing amplifiers, or finite-state machines all exhibit deterministic behavior. In contrast, the
stochastic dynamical systems at issue here respond in multiple ways to identical input. Accordingly,
the behavior of neuromorphic hardware must be characterized in the fashion of neurophysiological
experiments, namely, by accumulating statistics over multiple experimental trials. Comparison
to theoretical predictions proves particularly helpful with regard to the characterization of such
stochastic behavior.

Finally, the massive positive feedback that is implemented in the network not only begets a rich
dynamics, but also amplifies spurious effects beyond the intended operating range of the circuitry.
Comparison to theory helps identify operating regimes that are not contaminated materially by
such effects.

The starting point—mean-field theory for integrate-and-fire neurons (Renart et al., 2004) with
linear decay (Fusi and Mattia, 1999)—is summarized in the next section.

7.4 Mean-field theory
Fusi and Mattia (1999) studied theoretically and in simulation networks of integrate-and-fire
neurons with linear decay and instantaneous synapses (similar to those implemented on the
F-LANN chip). Their formulation was used to explore the parameter space and to identify regions
of bistable dynamics. The dynamics that were considered for the neuronal membrane potential
V(t) (below the firing threshold θ) are described by the equation:

dV(t)
dt

= −β + I(t), V(t) < θ (7.1)

where I(t) is the net charging current produced by afferent spikes and β is a linear decay rate
that in the absence of afferent currents, drives the depolarization to the resting potential. V(t) is
constrained to vary in the interval [0, θ]. When V(t) reaches the threshold θ, it is reset to zero,
where it remains during the absolute refractory period τarp.

The authors show that, if a neuron receives a Gaussian current I(t) with constant mean µ and
variance σ2, the stationary neuronal spiking rate νout = Φ(µ, σ) has a sigmoidal shape with two
asymptotes. Given σ , for low values of µ, Φ approaches 0, while for high values of µ, Φ approaches
1/τarp. For given µ, Φ increases with increasing σ . The assumption of a Gaussian process holds if
the number of incoming spikes is large, if spike times are uncorrelated, and if each spike induces a
small change in the membrane potential. This set of assumptions is often termed the ‘diffusion
limit’.
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A neuron receiving n uncorrelated input spike trains, each with a mean rate equal to νin was
considered. In the ‘diffusion limit’ the neuron will receive an input current I(t) with mean and
variance:

µ = nJνin − β (7.2)

σ2 = nJ2(1 + ∆J2)νin, (7.3)

where J is the synaptic efficacy, ∆J2 is the variance of J, and β is the linear decay rate of the
neuron. These equations state that both µ and σ are functions of the mean input rates νin, thus the
response function Φ(µ, σ) can be written as νout = Φ(νin).

An isolated population of N identical and probabilistically interconnected neurons, with a
level of connectivity c is then considered. c is the probability for two neurons to be connected,
thus the number of inputs per neuron is cN . If one assumes that the spike trains generated by
the neurons are uncorrelated, and that all neurons have input currents with the same µ and σ
(mean-field approximation), and J is kept small and N large, then the ‘diffusion approximation’
holds and the previous equations for µ and σ (with n = cN) are still valid. Thus, for neurons in
the population, the same response function Φ defined above can be used, possibly up to terms
entering µ and σ due to external input spikes to the considered population.

In each population all the neurons are identical and hence the mean population response
function is equal to the single neuron response functionΦ(ν). Since the neurons of the population
are recurrently connected, i.e., a feedback loop exists (νin ≡ νout = ν), this results in a self-
consistency equation ν = Φ(ν) in a stationary state, whose solution(s) define the fixed point(s) of
the population dynamics.

In the more complex case of p interacting populations, the input current of each population is
characterized by a mean µ and a variance σ2, which is obtained by summing over the contributions
from all populations. The stable states of the collective dynamics may be found by solving a system
of self-consistency equations:

ν = Φ(ν), (7.4)

where ν = (ν1 . . . νp) and Φ = (Φ1 . . . Φp).

7.4.1 Effective Response Function

The solution to the self-consistency equation does not convey information with regard to the
dynamics of the system away from the equilibrium states. To study these dynamics one should
consider the open-loop response function of the system.

In the case of a single isolated population, the open-loop response function is simply Φ. It can
be computed theoretically, as has been shown in the previous section, or it can be measured directly
from the network, provided that one can ‘open the loop’. Experimentally this is a relatively simple
task: it corresponds to cutting the recurrent connections and substituting the feedback signals
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with a set of externally generated spike trains at a frequency νin. By measuring the mean output
firing rate of the population νout one can obtain, the open-loop response function νout = Φ(νin).

In Mascaro and Amit (1999), the authors extended the above approach to a multi-population
network and devised an approximation which allows, for a subset of populations ‘in focus’, to extract
an Effective Response Function (ERF) Φeff which embeds the effects of all the other populations in
the network. As will be described later on, these concepts were applied to the multi-population
hardware network. The key ideas are summarized below.

Consider a network of p interacting populations, of which one population (say, no. 1) is of
particular interest. Following Mascaro and Amit (1999), the ERF of population no. 1 may be
established by ‘cutting’ its recurrent projections and by replacing them with an external input (cf.
Figure 7.3). As before, with the isolated population, this strategy introduces a distinction between
the intrinsic activity of population no. 1 (termed νout1 ) and the extrinsic input delivered to it as a
substitute for the missing recurrent input (termed νin1 ). Next, the input activity νin1 is held constant
at a given value and the other populations are allowed to reach their equilibrium values ν∗2 , . . ., ν∗p :

ν∗2 = Φ2 (νin1 , ν∗2 , . . . , ν∗p)

⋮

ν∗p = Φp (νin1 , ν∗2 , . . . , ν∗p)

(7.5)

The new equilibrium states (ν∗2 , . . . , ν∗p) drive population no. 1 to a new rate:

νout1 = Φ1 (νin1 , ν∗2 , . . . , ν∗p) ≡ Φeff(νin1 ), (7.6)

where νout1 = Φeff(νin1 ) is the ERF of population no. 1.
By capturing the recurrent feedback from all other populations, the ERF provides a one-

dimensional reduction of the mean-field formulation of the entire network. In particular, stable
states of the full network dynamics satisfy (at least approximately) the self-consistency condition
of the ERF:

ν1 = Φeff(ν1). (7.7)

The ERF is a reliable and flexible tool for fine-tuning the system. It identifies fixed points of the
activity of population no. 1 and provides information about its dynamics (if it is ‘slow’ compared to
the dynamics of the other populations).

7.5 Measuring the Effective Response Function
To measure the ERF, a modified version of the network (see Figure 7.2) was considered, where
the recurrent connections of Echip were cut and a new external AER excitatory population EERF
was introduced. Each neuron of Echip has its alter ego in EERF and the connectivity between these
two populations exactly reproduces the severed recurrent connections. If in the original network,
neuron A of Echip is presynaptic to neurons B and C of Echip, an alter ego of neuron A will now be
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Figure 7.2: Network architecture for the computation of the effective response function.

simulated in the external population EERF and will be connected via AER to neurons B and C of
Echip. Starting from the synaptic configuration implementing the architecture shown in Figure 7.1,
the recurrent synapses of Echip were simply turned into AER synapses, with the corresponding
neurons of EERF as presynaptic neurons. All the other synaptic connections were left unchanged.
The necessary AER bandwidth was assured by the use of themapper of the PCI-AER board designed
to provide fast one-to-many connections. A spike emitted by EERF was physically generated by
the sequencer and passed onto themapper which in turn generated, at a hardware level, a burst of
spikes sent to the target neurons.
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7.6. Demonstrating the attractor states

Population EERF was simulated on a standard PC such that one can decide its firing rate νin; the
output of the system being the mean firing rate νout of the Echip neurons. Performing a sweep of νin
one obtains the ERF of the system (see Figure 7.3). The approximate equilibrium states of Echip are
found as the solutions of the self-consistency equation for Φeff. Figure 7.3 shows that the stable
points of the network dynamics are at about 0.5Hz and 160Hz. The third intersection of the ERF
with the line νin = νout at approximately 40Hz is an unstable point of the system dynamics (Fusi
and Mattia, 1999) and represents the barrier the network has to cross to jump from one stable state
to the other. It is important to note that Figure 7.3 reports an estimate of the population activity
which is in good agreement with the theoretical prediction, despite the mismatch, thanks to the
averaging taking place on the dendritic trees composed of up to 90 synapses.

To obtain the ERF for a given νin, the system was stimulated for ten seconds while monitoring
νout with the PCI-AER board. Neurons belonging to EERF emit spikes with a Gaussian ISI (Inter
Spike Interval) distribution, centered on νin with a standard deviation equal to 10% of νin. During
all the stimulations, populations E1pc, E2pc and Ipc maintained a constant firing rate of 2Hz, 3.9Hz,
and 7Hz respectively—the same rates they have during the experiment explained in the next
section.

7.6 Demonstrating the attractor states
The recurrent connections of Echip are now restored and a protocol is run to demonstrate that
different external stimuli can make the network relax to one of the two predicted stable states. The
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Figure 7.4: Profile frequency of the two on-chip populations Echip (red) and Ichip (gray). From 1 s to 2 s the network
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lines the corresponding mean-field prediction. Below the graph the frequency profile of the external population
E1pc is reported.

81



7. Self-Sustained Activity in the F-LANN Chip

stimulation protocol is divided into three phases during which everything remains unchanged
except for the mean frequency (νE1) of the spikes emitted by E1pc. In the first phase, lasting one
second, the level of external stimulation is low (νE1 = 2Hz). In the second phase lasting one second
νE1 is increased by a factor of 2.4. During the third phase the mean frequency of E1pc is restored
to its original value. The mean firing rates of E2pc and Ipc are held constant at 3.9Hz and 7Hz,
respectively throughout the three phases.

Figure 7.4 reports the frequency profile of the populations Echip (red) and Ichip (gray solid
line) during the stimulation. The increase in external frequency provided the network with the
energy needed to jump from the lower stable state, where the main contribution to the network
activity is given by the external AER populations, to the upper stable state where the mean firing
rate of Echip is about 160Hz, in agreement with the mean-field theory and with the ERF prediction.
Supported by local reverberation the network remains in this upper state during the entire duration
of the third phase, showing a persistent stable activity in the absence of the external stimulus. In
Figure 7.4 the dashed lines report the theoretical predictions.

7.7 Conclusion
The following chapter takes this idea a step further and expands the two population network
described here to a three population networkwhich allows for richer andmore interesting dynamics.
More importantly the error correction capabilities of said attractor networks will be investigated
together with other interesting features such as bistable dynamics, transition latencies, feedback
tuning and basins of attraction.

As a prelude to the error correction capabilities of attractor networks described in the coming
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Figure 7.5: Testing the ability of recruiting neurons. All the curves refer to neurons of Echip . The orange traces depict
the mean frequency profile of the Nstim neurons receiving an increased stimulus from E1pc during the second phase
of the protocol; in gray the mean frequency profile of the non-stimulated neurons in Echip .
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7.7. Conclusion

chapter, Figure 7.5 demonstrates such a property. To test this property the number of stimulated
neurons Nstim of Echip were reduced during the second phase of the protocol. Nstim = 20, and
Nstim = 26 for the left and right figures, respectively. Orange lines show the mean frequency profile
of the Nstim neurons, while in gray the mean frequency profile of the non-stimulated neurons of
Echip is reported. When the stimulated neurons are able to recruit the non-stimulated neurons the
entire network undergoes the transition to the upper stable state and the frequency fluctuations of
the two groups of neurons become more strongly correlated, demonstrating the attractor nature of
the dynamics.
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Chapter

8
Bistable Dynamics and Error
Correction in the F-LANN Chip

8.1 Introduction
Continuing from the previous chapter where sustained network activity was demonstrated on the
F-LANN chip, this chapter expands the idea by delving into the statistical properties and the error
correction capabilities of a slightly extended neural network consisting of three populations. The
same procedures covered in Chapter 7 regarding the measuring of the effective response function
(ERF) are again described due to the increase in the number of populations.

Since the number of neurons and synapses on the chip is fixed to 128, and 16,384 respectively,
introducing an extra population results in a reduction in the number of neurons per population.
This results in a slightly less stable environment for creating reliable attractor networks since the
effect of noise is more pronounced (less averaging is taking place). Thus in this chapter, extra care
is taken to make sure that the estimated theoretical parameters match the on-chip bias voltages
more accurately by characterizing the actual synaptic efficacy, the variability of the pulse length,
the accuracy of the refractory period as well as the spread of the leakage current.

8.2 The network
The architecture of the network implemented and studied in this chapter is illustrated in Figure 8.1.
It comprises several populations of neurons, some with recurrent connectivity (on-chip) and some
without (off-chip). Two excitatory populations with 48 neurons each constitute, respectively, an
“attractor population” Eatt and a “background population” Ebkg. In addition, there is one inhibitory
population I of 31 neurons. These three populations are recurrently connected and are implemented
physically on the neuromorphic chip. All on-chip neurons share the same nominal parameter
values, with a linear decay rate β = 200θ s−1 and an absolute refractory period τarp = 1.2ms. A
value of β = 200θ s−1 means that 1/200 s = 5ms are required to reduce V(t) from θ to 0. In this
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Figure 8.1: Network architecture. Each circle represents a homogeneous population of neurons. The gray oval
includes the on-chip populations: two excitatory populations Eatt and Ebkg (48 neurons each) and one inhibitory
population I (31 neurons). Off-chip populations E1AER (800 neurons), E2AER (300 neurons) and IAER (300 neurons) are
simulated in software. Connectivity is specified in terms of the fraction c of source neurons projecting to each
target neuron. Projections are drawn to identify synaptic efficacies as excitatory potentiated (Jp), excitatory
depressed (Jd), or inhibitory (Ji).

implementation the threshold voltage θ ≈ 0.9V and the reset potential H = 0V. Two additional
excitatory populations (E1AER, E2AER) and one further inhibitory population (IAER) project to the
on-chip populations in a strictly feedforward manner. These three populations are implemented
virtually (i.e., as spike fluxes delivered via the AER generated by the PCI-AER sequencer feature).

The on-chip excitatory populations Eatt and Ebkg are recurrently and reciprocally connected
with a connectivity level c = 0.6. They differ only in their degree of self-excitation: Eatt recurrent
feedback is mediated by excitatory potentiated synapses, while all the other synapses connecting
on-chip excitatory populations are set to be depressed. Due to stronger self-excitation, Eatt is
expected to respond briskly to increased external stimulation from E1AER. In contrast, Ebkg is
expected to respond more sluggishly to such stimulation. Later, in Section 8.3.4, the network
response for different levels of self-excitation is obtained by varying the fraction of potentiated
synapses per projection. The recurrent inhibition of I is fixed at c = 0.15. The excitatory projections
from Eatt and Ebkg onto the inhibitory population I are fixed at c = 0.15. In return, the inhibitory
projections of I onto Eatt and Ebkg are both set to c = 0.4.

On-chip synapses of the same kind share the same voltage biases. Thus the synaptic efficacies,
expressed as a fraction of the dynamic range of the membrane potential from H = 0V to θ, are
Jp = 0.098θ and Jd = 0.024θ for potentiated and depressed excitatory synapses, respectively, and
Ji = −0.050θ for inhibitory synapses. Therefore, if the synaptic efficacy J = 0.01θ, 100 simultaneous
spikes are required to raise V(t) from 0 to θ.
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8.2. The network

Due to the small number of neurons in each population, an asynchronous irregular firing regime
can be more easily maintained by immersing the on-chip populations in a “bath” of stochastic
activity—even if sparse synaptic connectivity can allow for irregular firing with constant external
excitation as predicted by Vreeswijk and Sompolinsky (1996) and observed in a neuromorphic
VLSI chip by D’Andreagiovanni et al. (2001). To this end, each neuron of the excitatory populations
Eatt and Ebkg receives external excitation from E1AER (840Hz = 35× 24Hz) and external inhibition
from IAER (480Hz = 20 × 24Hz). Similarly, each neuron of the inhibitory population I receives
external excitation from E2AER (700Hz = 35 × 20Hz). During various experimental protocols,
these off-chip activity levels will be modulated.

8.2.1 Mapping to neuromorphic hardware

Reiterating the procedure described in Chapter 7, to implement the target network depicted
in Figure 8.1 neuron and synapse parameters must be brought into correspondence with the
theoretical values. This is not an easy task, because analog circuits operating in a sub-threshold
regime are sensitive to semiconductor process variations, internal supply voltage drops, temperature
fluctuations, and other factors, each of which may significantly disperse the behavior of individual
neuron and synapse circuits.

To compound the problem, different parameters are coupled due to the way in which the
circuits were designed (Giulioni et al., 2008). For instance, potentiated synaptic efficacy depends
on both the depressed synaptic efficacy bias and the potentiated synaptic efficacy bias. As sub-
threshold circuits are very sensitive to drops in the supply voltage, any parameter change that results
in a slight voltage drop will also affect several other parameters. Even for the (comparatively small)
chip in question, it would not be practical to address this problem with exhaustive calibration
procedures (e.g., by sweeping through combinations of bias voltages).

Thus a multi-step approach was adopted to overcome these difficulties. In the first step, “test
points” to certain individual circuits were used to monitor various critical values on the oscillo-
scope (membrane potential, pulse length, linear decay rate β, etc.). In subsequent steps, a series
of “neurophysiological” experiments at increasing levels of complexity (individual neurons and
synapses, individual neuron response function, open-loop population response functions) were
performed.

Implementing the desired connectivity between circuit components presents no particular
difficulty, as the configuration of the synaptic matrix is based on a digital data-stream handled by a
dedicated microcontroller.

8.2.2 Synaptic efficacy

To assess the effective strength of the synaptic couplings, it is essential to know the distribution
of efficacies across synaptic populations. A series of experiments were conducted to establish
the efficacies of excitatory (potentiated and depressed) and inhibitory synapses. The results are
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Figure 8.2: (A) Distribution of efficacy in 1,024 excitatory depressed synapses, expressed as fractions of the dynamic
range of the membrane potential (i.e., from the reset potential 0 and to the firing threshold θ). (B) Single-neuron
response function Φ(ν). Mean and standard error of neuromorphic neurons (blue symbols with error bars). The
variability is due primarily to device mismatch in the linear decay rate β and in the absolute refractory period τarp .
Mean of simulation results (red symbols) for an ideal neuron and 120 synapses drawn from a Gaussian distribution
of efficacies (see inset and text for details).

summarized in Figure 8.2A.The basic principle of thesemeasurements is to stimulate an individual
synapse with presynaptic regular spike trains of different frequencies and to establish how this
affects the firing activity of the postsynaptic neuron. Specifically, for a postsynaptic neuron with
zero drift rate β = 0 and no refractory period τarp = 0, the synaptic efficacy Jsyn (for small Jsyn) is
approximated by:

Jsyn ≈
fout − fref

fin
, (8.1)

where fout is the postsynaptic output frequency, fref the postsynaptic baseline activity, and fin the
presynaptic input frequency.

If the measured spike trains are sufficiently long (≥ 0.5 s), this procedure gives reasonably accu-
rate results. Note that this measurement characterizes the analog circuitry generating postsynaptic
currents and therefore does not depend on the routing of presynaptic spikes (i.e., internally via
recurrent connections or externally via the AER). Tomeasure the efficacy of the excitatory synapses,
it is sufficient to initialize the desired configuration (potentiated or depressed) and to apply the
desired presynaptic input. To measure the efficacy of the inhibitory synapses, the postsynaptic
neuron has to be sufficiently excited to produce spikes both with and without the inhibitory input.
To ensure this, a suitable level of background excitation ( fref ) has to be supplied via an excitatory
synapse of known strength.

Knowing the dispersion of synaptic efficacies will prove important for the experiments de-
scribed below (e.g., in determining the value of ∆J2). Note also that the variability of the efficacy is
not related to the location of the synapse on the matrix (not shown), thus all postsynaptic neurons
receive spikes mediated by synapses with a similar distribution of efficacies.
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8.2. The network

8.2.3 Duration of synaptic current

Synaptic efficacy is the product of the amplitude and the duration of the synaptic pulse. To
disambiguate these two factors, the actual duration of the individual synaptic currents were experi-
mentally determined. To this end, advantage was taken of current saturation due to overlapping
synaptic pulses. The synapse circuit initiates a postsynaptic current pulse immediately upon arrival
of the presynaptic spike. If another spike arrives while the pulse remains active, the first pulse is
truncated and a new pulse initiated. This truncation reduces synaptic efficacy at high presynaptic
spike frequencies.

The duration of the synaptic pulses was τpulse = 2.4ms with a standard deviation of 0.58ms.
To determine the actual duration of the individual synapses, periodic spikes of frequency νpre were
applied presynaptically and the postsynaptic firing νpost was monitored, thereby setting both the
linear decay rate β and the absolute refractory period τarp to zero. With these settings, postsynaptic
firing saturates when synaptic pulses overlap to produce a constant continuous current. The true
pulse duration τpulse may then be computed as the inverse of the presynaptic frequency at which
saturation is reached, i.e.,

τpulse =
1

νpre
. (8.2)

8.2.4 Duration of refractory period

To measure the absolute refractory period τarp of individual neurons, advantage was taken of a
special feature of the neuron circuit, which allows a direct current to be delivered to each neuron.
For a given input current, the inter-spike-intervals (ISI) obtained for zero and non-zero values of
τarp were compared. The difference between those values revealed the true value of the absolute
refractory period.

The dispersion in the value of τarp was approximately 10% (average τarp = 1.2ms and standard
deviation 0.11ms). This degree of variability is sufficient to affect single-neuron response functions.

8.2.5 Linear decay rate

In principle, the linear decay rate β of individual neurons can also be determined experimentally
(e.g., by nulling it with a direct current). In practice, however, it proved more reliable to establish
the decay rate in the context of the single-neuron response function (see below).

8.2.6 Single-neuron response function

The response function of a neuron describes the dependence of its firing rate on presynaptic input.
To establish this function for an individual F-LANN neuron, 40 synapses of its dendritic tree
were configured as excitatory/depressed, 40 synapses as excitatory/potentiated, and 30 synapses
as inhibitory. All synapses were activated via the AER with independent Poisson spike trains.
In particular, 70 synapses (depressed and inhibitory) were activated with fixed Poisson rates of
20Hz (to maintain a baseline operating regime), while 40 synapses (potentiated) were stimulated
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with Poisson rates ranging from 10Hz to 160Hz (to vary excitatory input). For each input rate,
an associated output rate was established and the results (mean and standard deviation over 100
individual neurons) are shown in Figure 8.2B. For the chosen parameter values, output firing
exhibited a monotonically increasing and slightly sigmoidal dependence on excitatory input. For
comparison, Figure 8.2B also shows the response function of a simulated neuron model (with all
parameters set to their nominal values). The sigmoidal shape of the response function will turn
out to be crucial for obtaining bistable dynamics with recurrently connected populations.

Once an estimate of the synaptic efficacies and τarp is obtained, thematch between the empirical
and simulated single-neuron response function allows for a good estimate of β. Thus, by comparing
the leftmost part of the curve with simulation data, the effective value of β for each neuron could
be determined. All simulations were performed with an efficient event-driven simulator.

The comparison between single-neuron response function and its theoretical or simulated
counterpart is an important aggregate test of a neuromorphic neuron and its synapses (i.e., the
synapses on its “dendritic tree”). Passing this test safeguards against several potential problems,
among them crosstalk between analog and digital lines, excessive mismatch, or other spurious
effects. In addition, this comparison stresses the AER communication between the F-LANN chip
and the PCI-AER board. In short, the single-neuron response function provides a good indication
that the hardware components, as a whole, deliver the expected neural and synaptic dynamics.

Note that there are a number of unavoidable discrepancies between the hardware experiment,
on the one hand, and theory/simulation, on the other hand. These include device mismatch among
neurons and synapses, violations of the conditions of the “diffusion limit”, finite duration of synaptic
pulses (causing the saturation effects discussed above), non-Gaussian distribution of the synaptic
efficacies, as it results from Figure 8.2A, and any deviations from the predictions for instantaneous
synaptic transmission (Renart et al., 2004; Brunel and Sergi, 1998), and others. For the present
purposes, it was sufficient to avoid egregious discrepancies and to achieve a semi-quantitative
correspondence between hardware and theory/simulation.

8.2.7 Measuring the effective response function

The procedure detailed here is similar to that of Section 7.4 with the difference that we now
have an additional excitatory background population. Measuring the ERF of a population of
hardware neurons provides valuable information, because while the predictions of theory and
simulation are qualitatively interesting, they are quantitatively unreliable. This is due to the
unavoidable discrepancies between experiment and theory (mentioned above) and also because of
the compounding of these discrepancies by recurrent network interactions.

To establish the ERF for population Eatt in the context of the network (Figure 8.1), the con-
nectivity was modified as illustrated in Figure 8.3. Specifically, the recurrent connections of Eatt
were cut and replaced by a new excitatory input Eext. From the point of view of a postsynaptic
neuron of Eatt, anymissing presynaptic inputs from fellow Eatt neurons were replaced one-to-one by
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Figure 8.3: Modified network architecture to measure the effective response function of population Eatt . Recurrent
connections within Eatt are severed and their input replaced by input from external population Eext . In all other
respects, the network remains unchanged. The effective response function is νout = Φ(νin).

presynaptic inputs from Eext neurons. This was achieved by the simple expedient of reconfiguring
recurrent synapses within Eatt as AER synapses and by routing all inputs to these synapses from
Eext neurons, rather than from Eatt neurons. All other synaptic connections were left unchanged.

Controlling the activity νin of Eext neurons, the resulting activity νout of Eatt neurons was
monitored. Performing a sweep of νin values, established the ERF of Eatt, which is illustrated in
Figure 8.4A. Note that, during the entire procedure, populations E1AER, E2AER and IAERmaintained
their original firing rates, while populations Ebkg and I were free to adjust their activity.

In Figure 8.4A, each red curve shows the average activity of Eatt as a function of νin. Different
red curves show results from six different “microscopic” implementations of the network (i.e., six
probabilistic assignations of the connectivity of individual neurons and synapses). The fact that the
bundle of red curves is so compact confirms that the network is stable across different “microscopic”
implementations. The shaded red area gives the total range of outcomes for individual neurons of
Eatt, attesting to the considerable inhomogeneity among hardware neurons.

The effective response functionΦeff in Figure 8.4A predicts three fixed points for the dynamics
of the complete network (i.e., in which the severed connections are re-established). These fixed
points are the intersections with the diagonal (νin = νout, black line) at approximately 0.5Hz, 40Hz,
and 160Hz. The fixed points at 0.5Hz and 160Hz are stable equilibrium points and correspond
to stable states of “low” and “high” activity, respectively. The middle fixed point at 40Hz is an
unstable equilibrium point and represents the barrier the network has to cross as it transitions
from one stable state to another.
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Figure 8.4: (A) Effective response functions (ERF) of population Eatt measured on-chip (see Figure 8.3). Each red
line represents an average over neurons in Eatt . Different red lines represent different probabilistic assignments of
connectivity (see text). Also indicated is the range of activities obtained from individual neurons (shaded red area).
Intersections between ERF and the diagonal (black line) predicts fixed points of the network dynamics (stable or
unstable). Note that these predictions are approximate (inset). (B) “Double-well” energy landscape derived from
the ERF (see text for details). “Energy” minima (maxima) correspond to stable (unstable) fixed points of the network
dynamics.

When a recurrently connected network is displaced from its steady-state νss to ν ≠ νss, it
experiences a restorative “force” which reflects the imbalance between the incoming rate νin = ν
and the outgoing rate νout. Equating this force with the difference νout − νin = Φ(νin) − νin (as a
first order approximation), we can consider this to be the negative gradient of a potential “energy”.
To better understand the network dynamics, an effective “energy” function can be obtained by
computing the “work” that must be performed in overcoming these restorative forces as activity
changes from some reference level (e.g., ν = 0) to any given level ν. The “energy” function V(ν)
can be thus inferred from the ERF by computing the integral of this restorative “force”:

V(ν) = − ∫ ν

0
[Φ(νin) − νin] dνin. (8.3)

Since the “energy” function V(ν) is calculated by computing the area under the (νout − νin) curve,
the units of V(ν) are expressed in Hz2. The resulting “energy” function (Figure 8.4B) is a typical
“double-well” landscape with two local minima at 0.5Hz and 160Hz (two stable fixed points),
which are separated by a local maximum at 40Hz (unstable fixed point). In predicting the relative
stability of the two fixed-points, one has to consider both the height of the energy barrier and the
amplitude of noise (essentially the finite-size noise), which scales with activity. For example, while
the transition from “low” to “high” activity faces a lower barrier than in the reverse direction, it is
also driven by less noise. As a matter of fact, under our conditions, the “low” activity state turns
out to be less stable than the “high” state. Refer to Section 3.4 for a discussion of “energy” function
in relation to neural networks.
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8.3 Results
The implemented neuromorphic network exhibits the essential characteristics of an attractor
network. The following results demonstrate, firstly, hysteretic behavior conserving the prior history
of stimulation (section entitled “Working memory”), secondly, stochastic transitions betweenmeta-
stable attractor states (“Bistable dynamics”) and, thirdly, self-correction of corrupted activity states
(“Basins of attraction”). In addition, the time-course of the state transitions (“Transition latencies”)
is characterized and an experimental bifurcation analysis (“Feedback tuning”) is performed.

8.3.1 Working memory

Attractor networks with two (or more) meta-stable states show hysteretic behavior, in the sense that
their persistent activity can reflect earlier external input. This behavior is termed “workingmemory”
in analogy to the presumed neural correlates of visual working memory in non-human primates
(see for instance Zipser et al. (1993); Amit (1995); Del Giudice et al. (2003)). The central idea is
simple: a transient external input moves the system into the vicinity of one particular meta-stable
state; after the input has ceased, this state sustains itself and thereby preserves a “working memory”
of the earlier input.

The starting point is the network depicted in Figure 8.1, which possesses meta-stable states of
“low” and of “high” activity. Thenormal level of external stimulation is chosen such that spontaneous
transitions between meta-stable states are rare. To trigger transitions, an additional external input
(‘kick’) must be transiently supplied. To generate an excitatory (inhibitory) input transient, the
mean firing rate of E1AER (IAER) is increased from the baseline frequency νE1 = 24Hz as described
in the following paragraphs. Here, input transients are applied to all Eatt neurons and only to
Eatt neurons. The effect of stimulating both Eatt and Ebkg neurons is reported further below in
Section 8.3.5.

The effect of excitatory and inhibitory input transients (“kicks”) to Eatt is illustrated inFigure 8.5.
Its central panel depicts average firing of Eatt and Ebkg neurons during four successive “kicks”, two
excitatory and two inhibitory. Thefirst excitatory “kick” is weak (t = 0.5 s, νE1 = 34Hz) andmodifies
the Effective Response Function (ERF) only slightly, so that Eatt increases only marginally. After
the “kick” the original ERF is restored and Eatt returns to the “low” meta-stable state (Figure 8.5,
bottom left inset).

The second excitatory “kick” is more hefty (t = 1.5 s, νE1 = 67Hz, 84Hz, or 115Hz) and
dramatically increases Eatt and (to a lesser degree) Ebkg activity. The reason is that a stronger “kick”
deforms the ERF to such an extent that the “low” state is destabilized (or even eliminated) and
the system is forced towards the “high” state (with ν > 170Hz, Figure 8.5, top left inset). Thus, the
recurrent interactions of the network (far more than the external “kick” itself) drive the network
to a “high” state. After the “kick”, the original ERF is once again restored. However, as the network
now occupies a different initial position, it relaxes to its “high” meta-stable state (Figure 8.5, top
right inset), thereby preserving a “working memory” of the earlier “kick”.
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8.3. Results

In a similar manner, inhibitory “kicks” can induce a return transition to the “low” meta-stable
state. In Figure 8.5, a weak inhibitory “kick” was applied at t = 3 s and a strong inhibitory “kick”
at t = 4 s. The former merely shifted the “high” state and therefore left the “working memory”
intact. The latter was sufficiently hefty to destabilize or eliminate the “high” state, thus forcing the
system to return to the “low” state. Figure 8.5 also illustrates the different behaviors of Eatt and
Ebkg. Throughout the experiment, activity of the background population remains below 30Hz.
The highest level of Ebkg is reached while the input from Eatt is strong, i.e., while Eatt occupies its
“high” state. Differences between Eatt and Ebkg highlights, therefore, the overwhelming importance
of the different recurrent connectivity in allowing for multiple meta-stable states.

The meta-stable states are robust against activity fluctuations and small perturbations, a mani-
festation of the attractor property. However, even in the absence of strong perturbations like the
above kicks, large spontaneous fluctuations of population activity can drive the network out from
an attractor state and into another, as illustrated in the next section.

8.3.2 Bistable dynamics

An important characteristic of attractor networks is their saltatory and probabilistic dynamics.
This is due to the presence of spontaneous activity fluctuations (mostly due to the finite number of
neurons) and plays an important functional role. Spontaneous fluctuations ensure that the energy
landscape around any meta-stable state is explored and that, from time to time, the system crosses
an energy barrier and transitions to another meta-stable state. The destabilizing influence of spon-
taneous fluctuations is counter-balanced by the deterministic influence of recurrent interactions
driving the system towards a minimal energy state. The stochastic dynamics of attractor networks
is thought to be an important aspect of neural computation. Below follows a description of how
spontaneous transitions between meta-stable states may be obtained in a neuromorphic hardware
network.

Once again, a network (Figure 8.1) with “low” and “high” meta-stable states is considered. In
contrast to the “working memory” experiments just described, E1 activity is kept fixed and elevated
to νE1 = 33Hz. The additional excitation increases the amplitude of spontaneous fluctuations such
that meta-stable states are made less stable and spontaneous transitions become far more frequent
(cf. double-well energy landscape in Figure 8.4B).

Network activity was allowed to evolve spontaneously for 30 s and a representative time-course
is illustrated in Figure 8.6. The instantaneous firing rate of Eatt neurons (red curve) alternates
spontaneously between “low” and “high” states, spending comparatively little time at intermediate
levels. The spiking of individual neurons (blue raster) reveals subtle differences between the two
meta-stable states: in the “low” state, activity is driven largely by external stimulation and inter-
spike intervals are approximately Poisson-distributed (coefficient of variation CV = 0.83), whereas,
in the “high” state, activity is sustained by feedback and inter-spike intervals are approximately
Gaussian-distributed (CV = 0.29). In both cases, the network maintains an asynchronous irregular
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Figure 8.7: Power spectra of the firing activity of population Eatt in the “high” (upper panel) and the “low” (lower
panel) stable states. P(ω) denotes the power spectral density of the firing activity from a 30 s data set.

state, as is evident from the absence of any peaks in the power spectra of the population activities
(Figure 8.7), and also from the spontaneous fluctuations of the instantaneous firing rate (red
curve) of Figure 8.6. The origin of spontaneous fluctuations is well understood: they are due to a
combination of noisy external input, of the randomness and sparseness of synaptic connectivity,
and of the finite number of neurons in the network (Vreeswijk and Sompolinsky, 1996; Brunel
and Hakim, 1999; Mattia and Del Giudice, 2002). The power spectral density (PSD) P(ω) of the
firing activity is computed by calculating the discrete-time Fourier transform of its autocorrelation.
Since the firing activity is expressed in Hz, the resulting units of P(ω) are [Hz2/Hz] = [Hz].

The balance between spontaneous fluctuations and deterministic energy gradients provides
a tunable “clock” for stochastic state transitions. In the present example, the probability of large,
transition-triggering fluctuations is comparatively low, so that meta-stable states persist for up to a
few seconds. Note that this time-scale is three orders of magnitude larger than the time-constants
implemented in circuit components (e.g., 1/β = 5ms).

In spite of the comparatively slow evolution of the collective dynamics, transitions between
meta-stable states complete, once initiated, within milliseconds. This is due to the massive positive
feedback, with each excitatory neuron receiving spikes from 57 (48 × 0.6 × 2) (see Figure 8.1)
other excitatory neurons. This feedback ensures that, once the energy barrier is crossed, activity
rapidly approaches a level that is appropriate to the new meta-stable state.
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8.3.3 Transition latencies

The experiments described so far exemplify two escape mechanisms from a meta-stable state: a
deterministic escape triggered by external input and a probabilistic escape triggered by spontaneous
fluctuations which is consistent with Kramers’ theory for noisy crossings of a potential barrier
(Risken, 1989).

The distribution of “escape times” following an onset of external stimulation was examined.
The protocol adopted was similar to Figure 8.5, but involved only a single input transient (‘kick’)
lasting for 3 s. Although transitions in both directions were studied, only findings for transitions
from the low spontaneous state to the high meta-stable state induced by stimulation (see top-left
inset in Figure 8.5) are reported. In this direction, the transition latency (or “escape time’) was
defined as the time between stimulus onset and Eatt activity reaching a threshold of ν = 50Hz.

Representative examples of the evolution of activity in response to weaker (νE1 = 34Hz) or
stronger (νE1 = 41Hz) “kicks” are illustrated in the central panel of Figure 8.8. It is evident that
weaker “kicks” result in longer, more broadly distributed latencies, whereas stronger “kicks” entail
shorter, more narrowly distributed latencies. The respective latency distributions produced by
weaker and stronger “kicks” are shown in the left and right panels of Figure 8.8 (as well as being
superimposed over the central panel).

The difference between the two latency distributions reflects the difference between the un-
derlying mechanism: a stronger “kick” disrupts the energy landscape and eliminates the “low”
meta-stable state, forcing a rapid and quasi-deterministic transition, whereas a weaker “kick”
merely modifies the landscape to increase transition probability.

8.3.4 Feedback tuning

So far, only the network response to external stimulation has been described. It is now the turn of
an internal parameter to be examined—the level of recurrent feedback—which shapes the network’s
dynamics and endows it with self-excitability. It will now be shown that the network response to an
external stimulus can be modulated quantitatively and qualitatively by varying internal feedback.

The present experiments were conducted with a network similar to that of Figure 8.1, except
that the fraction f of potentiated synapses (among recurrent Eatt synapses) was varied in the range
0.65 to 1.0. The results are summarized in terms of a bifurcation diagram (the set of meta-stable
states as a function of f ) (Figure 8.10) and in terms of the average transition latencies (Figure 8.9).

To establish a bifurcation diagram (analogous to the theoretical one introduced in Amit and
Brunel (1997b), a protocol similar to that of Figure 8.5 was used to measure the firing of Eatt after
the end of a strong “kick” (νE1 = 41Hz, duration 0.5 s). The results are illustrated in Figure 8.10.
For low levels of recurrency ( f < 0.8), only the “low” meta-stable state is available and after
the “kick” Eatt activity rapidly returns to a level below 0.5Hz (blue curve). For high levels of
recurrency ( f ≥ 0.8), the network exhibits both “high” and “low” meta-stable states in the absence
of stimulation. Just beyond the bifurcation point ( f ∼ 0.8) the highmeta-stable state is about 100Hz
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8. Bistable Dynamics and Error Correction in the F-LANN Chip

(red points); due to the finite-size effect after a variable amount of time, the network spontaneously
returns to the “low” state (blue curve). Both the activity level and the stability (persistence time) of
the “high” state increase with the degree of recurrency, as expected. Indeed, the sigmoidal shape of
the effective response function and the height of the barrier in the energy landscape become more
pronounced (see insets in Figure 8.10).

In addition to the qualitative effect of establishing a “high” meta-stable state, stronger feedback
influences the network also in quantitative ways. One such quantitative effect is expected to be
an acceleration of response times to external stimulation. To demonstrate this, the protocol of
Figure 8.8 was revisited and the transition latencies (‘escape times’) measured in response to
three levels of external stimulation (νE1 = 34Hz, 36Hz, and 41Hz). The dependence of transition
latencies on the strength of recurrency is shown in Figure 8.9.

As expected, the responsiveness of the network to external stimulation can be tuned over a
large range of latencies by varying the strength of the recurrent feedback. It is also noted that the
sensitivity of the transition latencies to f decreases as the external stimulus increases (compare the
slopes of the three curves in Figure 8.9).

8.3.5 Basins of attraction

The “basin of attraction” of a given attractor is defined as the set of all the initial states from which
the network dynamics spontaneously evolves to that attractor. The size of the basins of attraction
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Figure 8.9: Transition latency and recurrent connectivity. Latency of transitions from low spontaneous state of Eatt

activity to its high meta-stable state induced by stimulation (same protocol as Figure 8.8), as a function of the
recurrent connectivity of population Eatt (fraction of potentiated synapses) and of the strength of external
stimulation (νE1 increasing from a baseline of 24 Hz to an elevated level of either 34 Hz, 36 Hz, or 41 Hz (red, green,
and blue curves, respectively).
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8. Bistable Dynamics and Error Correction in the F-LANN Chip

established the “error correction” ability of the network: a stimulus implementing a “corrupted”
version of the neural activities in the attractor state leads, provided it is in the basin of attraction,
to a fully restored attractor state. In other words, the network behaves as a “content addressable
memory” in the sense suggested by Hopfield (1982).

Time [s]

ν
E1

[Hz]
24
43

corruption level C = 0.5
ν 

[H
z]

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

Figure 8.11: Correction of “corrupted” input pattern. An external stimulus (increase of νE1 from 24 Hz to 43 Hz) is
applied selectively to half of Eatt and half of the Ebkg neurons (corruption level C = 0.5). The network corrects this
“corrupted” input and transitions into the “high” meta-stable state with both stimulated and non-stimulated Eatt

neurons (orange and gray curves, respectively). Activity of Ebkg neurons remains below 30 Hz (not shown).

Specifically, a “corruption level” C is defined and a transient external input (‘kick’) is delivered
to a subset of 48(1 − C) neurons of Eatt and a subset of 48C neurons of Ebkg. Accordingly, for
C = 0, a “kick” is delivered exclusively to Eatt neurons and, for C = 1, the “kick” impacts only
Ebkg neurons. This ensures that for different levels of corruption (i.e., different distances from
the attractor states in which all 48 neurons of Eatt are highly active) the total afferent input to the
network is kept constant. Once the input transient has passed, the network is again governed by its
intrinsic dynamics. If this dynamics restores the “high” meta-stable state of Eatt (which also entails
“low” activity in Ebkg), we say that the network has “recognized” the corrupted input pattern. If the
dynamics lead to some other activity pattern, we speak of a “recognition failure’.

A representative example of the network’s response to a “kick” of 500ms duration and a
corruption level C = 0.5 is illustrated in Figure 8.11. The instantaneous activities of the stimulated
and non-stimulated subsets of Eatt neurons (orange and gray curves, respectively) are seen to be
very similar, except during a short period following the onset of the “kick”. During this period, the
activity of non-stimulated neurons may lag slightly behind that of the stimulated neurons, by the
time it takes for them to be recruited by the stimulated ones.

With this protocol, the “recognition” probability was measured as a function of the corruption
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level C (Figure 8.12). For low values of C, the network recognizes the “corrupted” input reliably
and enters into the “high” attractor state.
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Figure 8.12: Basin of attraction: Recognition probability P, as a function of input corruption C , measured with the
protocol of Figure 8.11. Recognition fails above corruption levels of C ≈ 0.6.

For values of C above 0.65, the “recognition” probability falls below 25%, so that the network
fails to recognize the input pattern in more than 75% of the trials. The sharp drop of the sigmoidal
P(C) curve marks the boundary of the basin of attraction around the “high” state. Note that this
curve depends also on the strength of the external input transient (not shown).

8.4 Discussion
The results described in this chapter show how bistable attractor dynamics can be realized in silicon
with a small network of spiking neurons in neuromorphic VLSI hardware. Step-by-step, it was
shown how various emergent behaviors can be “designed into” the collective activity dynamics.
The demonstrated emergent properties include:

• asynchronous irregular activity,

• distinct steady states (with “low” and “high” activity) in a sub-population of neurons,

• evoked state transitions that retain transient external input (“working memory”),

• self-correction of corrupted activity states (“basin of attraction”),

• tunable latency of evoked transitions,

• spontaneous state transitions driven by internal activity fluctuations,
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• tunable rate of spontaneous transitions.

Standard theoretical techniques predict the single-neuron response function, which in turn
determines the equilibrium states of the collective dynamics under the “mean-field” approximation.
In the case of a multi-population network, an Effective Response Function (ERF) for one or more
populations of interest can be extracted with the help of further approximations.

The ERF provides the central hinge between network architecture and various aspects of the
collective dynamics. It predicts quantitatively the number and location of steady-states in the
activity of selected populations, both for spontaneous and for input-driven activity regimes. In
addition, within the scope of the relevant approximations, the ERF describes qualitatively the
energy landscape that governs the activity dynamics. Accordingly, it also gives an indication about
kinetic characteristics such as transition latencies.

Establishing a proper correspondence between theoretical parameters and their empirical
counterparts in an analog, neuromorphic chip is fraught with difficulties and uncertainties. For
this reason, theory is not stretched to the point of directly predicting the network’s behavior in
silicon (in contrast to the route taken by Neftci et al. (2011)). Instead, the theoretical construction
of the ERF is implemented in hardware and this important function is established empirically. The
ERF so obtained encapsulates all relevant details of the physical network, including effects due
to mismatch, violation of the diffusion limit, etc. Thus, one relies on an effective description of
the physical network, and not on a tenuous correspondence to an idealized network. Equipped
with these tools (mean-field theory, characterization scripts, empirical ERF), the neuromorphic
hardware becomes an easily controllable and reliable system on which it was demonstrated how
the concepts of mean-field theory may be used to shape various aspects of the network’s collective
dynamics.
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Chapter

9
Conclusion

In this dissertation I report that together with our Rome colleagues we successfully designed and
tested an analog VLSI chip (termed F-LANN) for demonstrating robust bistable attractor dynamics.
Correct chip operation was proven by using the PCI-AER interface to monitor and stimulate the
incoming and outgoing spikes.

Neuromorphic neurons and synapses feature adaptive and self-regulating properties designed
for the associative learning of complex and partly correlated patterns. Although the F-LANN
incorporates 128 neurons and 16,384 synapses, significantly greater numbers of neurons and
synapses will be needed for associative learning with natural stimulus sets. An attractive route to
larger networks is to link multiple VLSI chips via an AER-based communication infrastructure.
For this reason, the F-LANN implements an AER-compliant chip design in which each neuron
features an AER segment on its dendritic tree, which stands ready to accept spikes from external
sources. The external source may either be another VLSI chip or a software simulation.

To achieve maximal flexibility in setting a connection architecture, each synapse can be individ-
ually configured to be either recurrent or AER-based, either excitatory or inhibitory, and of either
high or low initial efficacy. In addition, selected synapses may be read and set without impeding
spike traffic on the AER bus. These new features of individually programming the synapses also
functioned correctly. In summary, the F-LANN represents a critical step toward flexible multi-
chip systems that perform associative learning of natural stimulus sets with biologically plausible
components.

Following the verification that the F-LANN chip functioned as intended, a recurrent neural
network of spiking neurons was implemented and tested on-chip. The on-chip network configura-
tion was able to support two discrete metastable attractor states of very low and elevated activity,
with transitions between the two allowing for sufficiently strong transient stimulation. The silicon
network behavior matched well the one predicted by the mean-field theory in terms of an effective
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response function (ERF).
Attractor states are increasingly recognized as powerful, general purpose dynamic primitives,

and have been proposed to subserve brain processes including, among others, working memory,
decision mechanisms, multi-stable perception, and information integration. As such, large multi-
modular attractor networks hold promise for a vast array of applications. At the same time, the tiny
network demonstrated in the present work, could serve as a feasibility proof that such attractor
dynamics can indeed be embedded in a neuromorphic chip.

On the technical side, it is also rewarding to attest that the approach taken in the chip design,
together with the PCI-AER programmable interface, ensure an easy and flexible configuration
of the synaptic connectivity, high-level and user-friendly setting of the parameters and a chip
interaction with a “synthetic environment” emulating additional simulated neural populations.

9.1 System improvements
The F-LANN chip is starting to show its age and one could think of various improvements that
could be applied to the chip itself as well as to the interface board. Also, the successor of the
F-LANN chip is already in the works and is part of the EU Coronet project, which has for example,
more “flexible” synapses with the inclusion of short-term plasticity to enable richer and more
“real” dynamics. Other chip improvements could be the provision of on-chip digital-to-analog
converters (DACs) for the generation of the bias voltages, resulting in a more precise as well as
a more compact overall system. Currently over 60 external high-precision DACs are needed to
generate the various bias voltages that are needed by the F-LANN chip to configure the various
on-chip analog components. Having all these bias voltages directly embedded on the chip itself
would greatly result in a big saving of board space.

Another suggestion would be to move to a smaller technology node, such as a 0.18 µm technol-
ogy which would enable a larger number of neurons and synapses—necessary to recreate more
biologically realistic attractor neural networks that show a richer and larger range of dynamics.

One sorelymissing feature of the F-LANN chip was definitely the lack of axonal delays. Without
these delays, one is not able to reliably generate sustained activity with a small number (less than
100) neurons. Sustained activity was still possible on the F-LANN simply because the presynaptic
input to the neurons wasn’t just an infinitesimal pulse, but a pulse which could be controlled by
means of an external bias voltage. Luckily this provided us with an alternative to the missing axonal
delays and enabled the successful creation of various attractor network behaviors.

To make the system more compact and implantable, another idea would be to also put a
parameterizable Poisson spike generated directly on the neuromorphic chip. This would essentially
free the chip from the computer and the “virtual” populations that are usually generated by the PC
could be directly generated on-chip.

Working with subthreshold designs has both its advantages and its disadvantages. One of the
biggest disadvantages is the circuit mismatch that is introduced with such designs leading to very
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noisy neurons and synapses. Luckily all the neurons in the population “work” together to average
out the noise, but finding the right parameters (bias voltages) to produce attractor networks that
work reliably is a tough proposition. A circuit technique that provides better control of these
very-low frequency and subthreshold designs would be to use switched-capacitor circuit design
techniques, which would certainly provide tighter timing control. One would have to consider,
though, whether the introduction of a clock signal has any adverse effects on the sensitive analog
neuron and synaptic circuitry.

9.2 Wider objectives
The computational possibilities of neural activity dynamics are gradually becoming better under-
stood. A wider objective is to translate neuroscientific advances in this area to neuromorphic
hardware platforms. In doing so, one hopes to build step-by-step the technological and theoretical
foundations for biomimetic hardware devices that, in the fullness of time, could be integrated
seamlessly with natural nervous tissues.

Reverberating states of neocortical activity, also called “attractor states”, are thought to underlie
various cognitive processes and functions. These include working memory (Amit and Brunel,
1997b; Mongillo et al., 2003; Del Giudice et al., 2003), recall of long-term memory (Hopfield, 1982;
Amit, 1995; Hasselmo and McClelland, 1999; Wang, 2008), attentional selection (Deco and Rolls,
2005), rule-based choice behavior (Vasilaki et al., 2009; Fusi et al., 2007), sensory integration in
decision making (Wang, 2002; Wong et al., 2007; Furman andWang, 2008; Marti et al., 2008; Braun
and Mattia, 2010), and working memory in combination with delayed sensory decision making
(Machens et al., 2005; Laing and Chow, 2002), among others.

Dynamical representations involving attractor states are not only restricted to the “point
attractors” considered here (Destexhe and Contreras, 2006; Durstewitz and Deco, 2008). For
example, there is evidence to suggest that “line attractors” may underlie some forms of working
memory and path integration (Trappenberg, 2005;Machens et al., 2005; Chow et al., 2009). Chaotic
attractors have long been proposed to subserve perceptual classification in certain sensory functions
(Skarda and Freeman, 1987). More generally, both spontaneous and evoked activity in mammalian
cortex may well be characterized by “attractor hopping” at multiple spatial and temporal scales
(Grinvald et al., 2003; Fox and Raichle, 2007; Ringach, 2009; Shu et al., 2003; Durstewitz and Deco,
2008).

Thus, the stochastic dynamics of amulti-attractor systemoffer both a comparatively stereotyped,
low-dimensional representation of high-dimensional inputs, and a statistical distribution of possible
responses. This motivates the emphasis that has been placed on the stochastic aspects of the
collective dynamics of the F-LANN hardware network. The classification of sensory events at
multiple spatial and temporal scales might require “nested attractor” dynamics in a neuromorphic
VLSI device. In a “nested” scenario, reverberating activity patterns spanning multiple spatial and
temporal scales are generated by many individually bistable attractor modules interacting in a
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hierarchical network architecture (Gigante et al., 2009; Braun and Mattia, 2010).
The energy landscape of a “nested” system would be considerably more complex than the one

described here (Braun and Mattia, 2010). It should be imagined with multiple high-dimensional
valleys within valleys, ridges, and saddles permitting state transitions. To match the sensory time-
scales of interest, the dynamics of such a system could be tuned in much the same way as the
simplistic attractor system of the present work (i.e., by adjusting ERFs and noise levels).

Yet another challenging perspective is to build attractor representations in an adaptive manner,
by means of activity-driven plasticity. Even at the level of theory, surprisingly few studies have
addressed this important issue (Amit and Mongillo, 2003; Del Giudice et al., 2003; Pannunzi et al.,
2012). The 16,384 synapses of the F-LANN chip exhibit a bistable, spike-driven plasticity (Fusi et al.,
2000) that, in principle, would be well suited for this purpose (Del Giudice et al., 2003). Although
this work did not make use of this feature, it is imperative to face this challenge with neuromorphic
hardware and initial steps in this direction (Corradi, 2011) have already been taken.

9.3 State of the field
Neuromorphic engineering is a broad and active field seeking to emulate natural neural processes
with CMOS hardware technology for robotic, computational, and/or medical applications.

Recently, two groups have implemented “continuous attractor” dynamics in neuromorphic
VLSI (Massoud and Horiuchi, 2011; Neftci et al., 2010). The two networks in question (comprising
32 and 124 neurons, respectively) realized a continuous-valued memory of past sensory input by
means of excitatory-inhibitory interactions between nearest neighbors. The resulting winner-take-
all dynamics permitted the authors to represent and update a sensory state with incremental input
(Trappenberg, 2005). The hardware used by these groups is comparable to ours in that it combines
fixed synapses with the neuronal circuit of Indiveri et al. (2006).

The main difference to this study concerns the handling of noise and mismatch. To minimize
drift in the continuous attractor dynamics, Massoud and Horiuchi (2011) suppress finite-size noise
with a synchronous and regular firing regime, while authors of Neftci et al. (2010) propose an
initial precise calibration phase to reduce the mismatch that greatly affects the performance of
their system. In contrast, here, I have taken advantage of both mismatch and finite-size noise to
create a stochastic dynamics. As has been shown, the time-scale of this dynamics can be finely
controlled by setting the balance between deterministic forces (energy landscape) and stochastic
factors (finite-size noise).

To my knowledge, there have been no further demonstrations of self-sustained activity and
working memory with neuromorphic VLSI hardware. Other neuromorphic applications concern
biomimetic sensors such as “silicon cochleas” (Chan et al., 2007; Wen and Boahen, 2009; Hamilton
et al., 2008) or “silicon retinas” (Boahen, 2005; Lichtsteiner et al., 2008; Zaghloul and Boahen,
2006; Kim et al., 2009; Liu and Delbruck, 2010), implementations of linear filter banks (Serrano-
Gotarredona et al., 2006), receptive field formation (Choi et al., 2005; Bamford et al., 2010), echo-
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localization (Chan et al., 2010; Shi and Horiuchi, 2007), or selective attention (Indiveri, 2008;
Serrano-Gotarredona et al., 2009).

9.4 Scaling up
As already mentioned, the wider objectives include spiking neural networks that operate in real-
time and that can be interfaced with living neural tissues. At present, it is not evident which
technological path will lead to the network sizes and architectures that will eventually be required
for interesting computational capabilities. However, neuromorphic VLSI is a plausible candidate
technology that offers considerable scope for further improvement in terms of circuits, layout,
autonomy, and silicon area. Multi-chip architectures with a few thousand spiking neurons and
plastic synapses may come within reach in the near future (Federici, 2011). Such networks could
accommodate multiple attractor representations and complex energy landscapes.

Several consortia are building special-purpose platforms that in principle could able to host
large, attractor-based networks. These include the neuromorphic “Neurogrid” (Boahen) system,
which aims to simulate up to one million neurons in real-time, the BrainScaleS project (Meier),
which relies on wafer scale technology and promises 160,000 neurons with 40 million plastic
synapses operating several thousand times faster than natural networks. In addition, the SpiNNaker
project (Furber) proposes a fully digital, ARM-based simulation of approximately 20,000 Izhikevich
neurons and spike-time-dependent synapses, and the EU SCANDLE project, which uses a single,
off-the-shelf FPGA to accommodate 1 million neurons (Cassidy et al., 2011). Finally, a fully-digital
VLSI chip has recently been presented by the DARPA-funded SyNAPSE project. Designed with
45nm technology, it comprises 256 neurons and 65,000 plastic synapses (Merolla et al., 2011; Seo
et al., 2011).

Of course, a fully digital implementation would quietly abandon the original vision of a
“synthesis of form and function” in neuromorphic devices (Mahowald, 1992). Nevertheless, in
view of the rapid progress in digital tools and fabrication processes, this may well be the most
appropriate route for most applications. However, for applications requiring an implantable device
operating in real-time, a mixed-signal approach founded on analog CMOS circuits seems likely to
remain a viable alternative.

9.5 Conclusion
With a network of leaky integrate-and-fire neurons realized in neuromorphic VLSI technology,
I demonstrate that two distinct meta-stable states of asynchronous activity constitute attractors
of the collective dynamics. This dissertation describes how the dynamics of these meta-stable
states—an unselective state of low activity and a selective state of high activity—can be shaped
to render transitions to be either quasi-deterministic or stochastic, and how the characteristic
time-scale of such transitions can be tuned far beyond the time-scale of single-neuron dynamics.
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This constitutes an important step towards the flexible and robust classification of natural stimuli
with neuromorphic systems.
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F-LANN Top-level Schematics



A. F-LANN Top-level Schematics

Figure A.1: F-LANN top-level schematic.
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Figure A.2: FLANN main circuit (neurons, synapses, AER).
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