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Abstract: The advent of industry 4.0 necessitates a paradigm shift toward autonomous industrial 

operations, prompting the integration of digital twin to orchestrate machines and processes within 

automation systems. The Asset Administration Shell (AAS) emerges as a pivotal digital twin 

intended to encapsulate an asset’s lifecycle. It comprises of several submodels defining different 

aspects of machines or processes that in turn empowers continuous autonomy.  

This potential of AAS opens the scope to extend the standardization of machine processes that are 

common within a factory. One of these processes is a self-diagnostic and continuous analysis of the 

state of a machine. This imperative not only mitigates machine downtime but expeditiously detect 

faults or anomalies in production processes.  

This study explores the integration of Asset Administration Shell (AAS) into industrial machine 

analytics, aligning with Industry 4.0 paradigms. It emphasizes the application of AAS submodels 

for enabling machines to self-diagnose and continuously analyze their state, focusing on a universal 

analytics approach. This is achieved through a standardized submodel based on ISO 22400-2:2014 

Key Performance Indicators (KPIs), facilitating a vendor-agnostic solution for machine analytics.  

The paper highlights the effectiveness of these standardized submodels in improving machine 

efficiency, predictive maintenance, and operational effectiveness in industrial processes. It also 

discusses the challenges and practical applications of these submodels, offering insights into their 

real-world implementation. 

Keywords: Industry 4.0, Asset Administration Shell, Industrial analytics, ISO 22400-2, data 

integration. 

1 Introduction 

In the words of Clive Humby, a British mathematician, “Data is the new oil. It’s valuable, 

yet if unprocessed, it remains of little use. Just like oil must be converted into fuel or 

plastic, data too needs to be refined and analyzed to unlock its true potential.” [5]. This 

concept, introduced in 2006, serves as a cornerstone in the realm of data-driven 

approaches. In the pursuit of Industry 4.0 objectives, manufacturers globally are focusing 

on enhancing operational efficiency and product quality.  

The adoption of Industry 4.0 is driven by the inclusion of cutting-edge technologies such 

as the Internet of Things (IoT), Artificial Intelligence (AI), and big data analytics. Within 

this framework, digital twins, facilitated through the Asset Administration Shell (AAS), 
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stand out as pivotal for defining assets in Industry 4.0. The AAS, with its submodels, 

provides a standardized framework for capturing essential characteristics of industrial 

assets [6]. 

The impetus for this paper springs from the synergy between extensive manufacturing 

knowledge and the innovative potential of Industry 4.0 technologies. The research aims to 

delve into the capabilities of the AAS and leverage the power of its submodels to bolster 

analytics capabilities, offering standardized descriptions for analytical KPIs. This 

endeavor seeks to bridge the gap between the abundance of available data and the 

extraction of practical insights. It advocates methodologies for depicting analytical KPIs 

and storing these within the AAS. 

The structure of this paper is organized by beginning with the introduction which explains 

addresses potentials of data driven application and AAS, Section 2 presents a brief 

background on key topics central to the paper. Section 3 provides related work which 

review existing literature in area of analytics. Section 4 investigates proposed 

methodology for implementing the findings. It describes an analytical framework for 

defining KPIs within AAS and industrial analytics domain. Section 5 provides details 

about the implementation of the proposed methodology. Section 6 discusses some findings 

and provides recommendation. Section 7 concludes the paper and summarizes the 

research.  

2 Background 

2.1 Asset Administration Shell 

The AAS [1] is a core element in the concept of the I4.0 Component, as evident from the 

AAS’s definition. According to Plattform I4.0, an I4.0 Component is “an entity with a 

global unique identifier and communication abilities, comprising an administration shell 

and an asset in an I4.0 system, offering services with specified QoS (quality of service).” 

[7].   

Grasping the connection between the I4.0 Component and the AAS in the context of 

manufacturing and Industry 4.0 requires certain critical insights. Hoffmeister underlines 

the crucial role of the I4.0 Component in the development of Smart Factories, marking its 

importance [8]. Cyber-Physical Systems are recognized for their amalgamation of the 

physical and digital realms. The Asset Administration Shell (AAS) symbolizes the digital 

facet of a CPS. Within the framework of Industry 4.0, it functions as the interface that 

connects the physical and virtual worlds.  

The metamodel of an AAS is defined to contain collection of submodels which defines 

different aspect of the asset. in the submodel, is collections of submodelElements (SME). 

Some type of SMEs are submodelElementCollection(SMC) property, range, 

submodelElementList(SML), referenceElement, etc. in this paper, SMC and SME will be 

used to denote   submodelElementCollection and other submodelElements types 

respectively. 
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Figure 1: The role of AAS in I4.0 [9]. 

The AAS exist in three distinct types each offering different levels of complexity and 

interactivity.  

The Type 1 AAS are the most basic form. They are essentially serialized files, often in 

formats like XML or JSON. These shells contain static information about the asset, which 

doesn’t change over time [10]. The Type 2 AAS represent a more dynamic and interactive 

category. Existing as runtime instances, they are hosted on servers and can contain both 

static and dynamic information [10]. The Type 3 AAS are more intelligent type of AAS 

built on type 2 AAS to be autonomous and have decision making capabilities. They can 

interact with other AAS using industry 4.0 language. 

2.2 Overview of Industrial Analytics 

The manufacturing sector worldwide is experiencing a profound shift moving from 

traditional physical production to focusing on data-driven processes and products. This 

digital shift is creating vast amount of diverse data throughout the industrial value chain, 

ranging from simulation data in the design phase to sensor data during manufacturing, and 

sensor data during the usage of the product therefore huge amount of data is generated 

during the complete life cycle of a product, encompassing all stages from initial design to 

eventual recycling. Gaining valuable insights and knowledge from this data is becoming 

a crucial factor for success in the industry, such as for process optimization and product 

enhancement [11]. This process is known as industrial analytics, which involves applying 

data analytics specifically for generating industrial value. Sitting at the intersection of data 

science and industrial engineering, industrial analytics is fundamental to Industry 4.0 [12]. 

The phrase "industrial analytics" typically denotes the use of data analytics for generating 

value in the industrial sector, often in the context of Industry 4.0. It’s also interchangeably 
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referred to as "Industry 4.0 analytics “and "industrial intelligence". Common form of 

analytics are descriptive analytics, diagnostic analytics, prescriptive analytics, and 

predictive analytics [13]. Table 1 shows the focus and basic analytic question attached to 

these analytics types.  

Table 1 : Types of Analytics and their focus areas 

 Descriptive 

Analytics 

Diagnostic 

Analytics 

Predictive 

Analytics 

Prescriptive 

Analytics 

Focus Transparency Root Cause Forecast Action 

Analytical 

Question 

What has 

happened? What 

is happening? 

Why has it 

happened? 

What will 

happen? 

How can we 

make it happen? 

Example What is the 

current first pass 

yield (FPY)? 

What has 

decreased in 

certain regions?  

What will be 

FPY in the next 

quarter? 

How can we 

increase FPY? 

 

3 Related Work 

Predictive Maintenance (PdM) plays a crucial role in the framework of Industry 4.0, 

particularly within the context of smart manufacturing. The AAS is suggested as an 

essential element in attaining interoperability and reducing the complexity of operational 

technology. This is crucial for harmonizing various PdM strategies in the ever-changing 

industrial sector [14] [15]. An important aspect of authors research is a case study that 

examines the application of machine learning in predictive maintenance (PdM) of milling 

machines. This case study demonstrates the practicality of the methodology by using data 

from diverse sources to perform predictive analytics. The model’s potential in various 

industrial applications and its effectiveness in solving real-world difficulties are 

highlighted by these practical demonstrations [14][15]. 

The development of ISO 22400 was driven by the need for a standardized approach to 

performance measurement in the manufacturing industry. Prior to its introduction, 

manufacturers often relied on a variety of inconsistent and non-comparable metrics to 

assess their operations. This lack of standardization led to significant challenges in 

benchmarking and optimizing performance. In response, ISO 22400 emerged, providing 

a structured and universally applicable set of KPIs. These KPIs align with the evolving 

needs and technological advancements in the manufacturing sector, offering a solution to 

the previously fragmented approach to performance measurement. The standard’s 

development also reflects a growing trend towards globalization in manufacturing, 

necessitating a common framework that can be applied across diverse manufacturing 

environments [3] 

The discussion of ISO 22400[3] is pertinent as this standard provides the framework for 

defining analytical KPIs in the context of the analytic submodel. This standard is 
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instrumental in establishing a structured approach for the description of key performance 

indicators, thereby facilitating a standardized and coherent method for developing the 

analytic submodel. 

4 KPI description with AAS submodel 

In the context of AAS, the overall architecture used in this paper is provided in Figure 2. 

In this architecture is an AAS server hosting a type 2 AAS. This AAS contains some 

submodels that collaborate to provide an analytics value for the machine user. The 

analytics submodel is the focus of this paper. Other submodels shown in Figure 2 are in 

one way or the other helping the analytics service (Analytics App) to carry out its function 

real-time and on-demand.  

 

Figure 2: Proposed methodology. 

4.1 Analytics Submodel 

Providing a top-down mapping of the KPI structure provided in ISO-22400[3] into 

analytics submodel. As seen in Figure 3, the Top SMC defines the name of the KPI and 

inside the SMC, other information related to the KPI is provided. The Datapoints (an SMC 

containing Reference SMEs) and Value (a Reference SME) are extension of the original 

KPI structure. They are used to provided references to parameters used in calculating KPIs 

and storing the calculated outcome respectively.  

Other information in the KPI SMC are used by the analytics service as a guidance on how 

the calculation will be performed. For example, the Timing SME can define if a KPI should 
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be calculated in real-time, periodically or on-demand.  The Rating SME tells the upper 

and lower limits trend of the KPI. 

 

Figure 3: Mapping of ISO 22400 KPI structure into Analytics Submodel UML 

4.2 Asset Interfaces Description (AID) and Asset Interfaces Mapping 

Configuration Submodels (AIMC). 

The AID [4] and AIMC submodels shown in Figure 2 helps the AAS integrate its 

corresponding asset’s operational data. The AID submodel contains description of 

interfaces related to asset datapoints and/or related services and AIMC provides mapping 

of asset payload to a designated location within the AAS.  

Since all the metrics needed to calculate a machine KPI are all time dependent information, 

bringing them into the AAS needs to be defined as time dependent parameters. The 

TimeSeries [2] submodel offers such possibilities. The TimeSeries submodel allows AAS 

elements to be recorded with respect to the time.  

This paper combines the potentials of already defined submodels like TimeSeries 

submodel, AID and AIMC submodel to achieve its analytics goal. 
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5 KPI implementation with AAS analytics service.  

This chapter focuses on the implementation of the submodel modelled in section 4. This 

implementation consists of two interconnected parts: The development of an AAS with 

necessary submodels as seen in Figure 2 and the integration of analytical service as a proof 

of concept to the potential of analytics submodel. The metric that would be focused on 

this development is the Overall Equipment Efficiency (OEE). 

5.1 AAS and Submodels Development:  

Leveraging the AAS package Explorer, the AAS and its submodels are developed to 

encapsulate all the core aspects of an asset. Amongst these aspects is the asset’s 

operational metrics. The OEE is one of the important metrics used to evaluate how well a 

machine is operating with respect to its expected production output. To evaluate a 

machine’s OEE, metrics like availability, quality and performance of the asset is captured 

or calculated. Figure 4 shows the overview of an asset’s AAS containing the analytics 

submodel where holds the descriptions of some KPIs used to evaluate the machines overall 

efficiency.  

 

Figure 4: Sample AAS with Analytics Submodel as described in section 4 and Figure 3 

As seen in Figure 4, the Formula (BLOB SME) contains the formula for the OEE in a blob 

format and the datapoints SMC provides references to the parameter to be used in the 

formula. For this implementation, the datapoints are time-based metrics so they are 

provided in the TimeSeries submodel and referenced in each metrics (Availability SMC, 
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Performance SMC and Quality SMC) datapoint. The value of the calculated OEE is also 

provided in the TimeSeries submodel because it is a time-based metric. 

The OEE which is a well-known KPI in manufacturing, combining availability, 

effectiveness, and quality ratio. It shows the percentage of productive manufacturing time. 

A perfect OEE score of 100 percent means manufacturing high-quality parts efficiently 

and without stoppages. OEE is ideal for improving equipment productivity, identifying 

losses, or benchmarking performance.  It is calculated with the following formula: 

 

𝑂𝐸𝐸 𝐼𝑛𝑑𝑒𝑥 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 [3] 

5.2 Analytic Service 

The analytic service uses the AAS analytics submodel to run analytics on an AAS specific 

to an asset. Figure 2 shows the overall picture of how the analytics service is 

implementated.  

The flowchart of the analytics service is provided in Figure 5 considering that AAS server 

is running, and asset data integration driver shown in Figure 2 is integrating asset 

datapoints into the AAS. The flowchart serves as a guide to the systematic process the 

analytic service implementation, detailing each step from data input to processing and 

output. 

 

Figure 5: Flowchart for analytics service. 

6 Discussion and Recommendation 

During the development of the analytics submodel, it was seen that the TimeSeries 

submodel is an important submodel for its implementation because that is the only 

submodel that stores time-related data within AAS ecosystem. 
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One of the drawbacks of the TimeSeries submodel is that it is structured to store collection 

of data within one time stamp. The metadata SMC does not allow the creation of multiple 

records for different data collection. For instance, asset datapoints or asset related services 

data can be created with one record and an opportunity to create another record that is not 

specific to asset datapoints.  

It is recommended that this feature is investigated because if AAS will capture different 

aspects of asset information across its life cycle, it is certain that some of these aspects 

might need TimeSeries submodel at different time by different applications. 

The analytical submodel is an ideation of how asset analytics can be achieved with AAS. 

There is still some work to be done on the modelling most especially on the Formula SME. 

some rules on how the expression will be presented must be defined for all users to know 

how to property provide their formulas. 

Also, because the formula SME is using BLOB, the information provided in the BLOB 

needs to be properly and intelligently interpreted by analytics service according to the 

expression rules. 

7 Conclusion and Outlook 

This paper has provided a review of fundamental elements of Industry 4.0, specifically 

emphasizing on the Asset Administration Shell (AAS) and its use in the domain of 

industrial analytics. As industrial automation technologies continue to advance, the 

importance of on-the-fly analytics that can be used to evaluate assets is paramount. 

Providing a standardized description for well-known KPIs to enable plug-and-analyze 

capabilities for applications on the shop floor will help facilitates early detection of 

problems in machines.  

The proposed methodology aligns with current Industrial approach for implementing the 

AAS. The methodology architecture has been designed to create a connection between 

Analytics, and TimeSeries submodels, with each submodel serving a distinct function in 

the asset. The method included the process of defining asset datapoints in AID and AIMC 

submodels that facilitates data integration from asset.  

The implementation section provides an overview of how the proposed methodology was 

implemented. This involved the development of the AAS and its submodels using the 

AASX Package Explorer, defining important KPIs and their parameters, which are then 

used by analytical services.  

 

Though the analytics submodel in this paper focuses on assets KPIs. In future work, an 

extension of how this submodel can be used to analyze a part (component) of asset from 

the information provided in either the asset’s PDF manual or TechnicalData submodel 

with the use of technology like Large Language Models (LLMs) is expected to be 

explored.  
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