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Abstract: 

The NAMUR automation pyramid is the current state of the art in the process control industry. 
The pyramid is a monolithic structure with information flowing either in top-down or bottom-up 
directions. Introducing new technologies into this structure would imply modifying or replacing 
existing equipment and the control software. NE 175 opens up this closed structure with a 
new open architecture (NOA) to provide access to external interfaces without changing the 
existing structure safely, securely and reliably. In continuation of the NOA, the NE 178 
presents an architecture for the verification of the request concept (VOR) to allow plant-
specific M+O applications to make requests for a change in functioning of the  plant by-
passing the strong hierarchy of the pyramid.  This paper attempts to model the actors involved 
in this concept and their interactions using the Pro-Active AAS concept, it introduces a new 
interaction protocol and demonstrates the concept using the single water tank case study. 

Keywords: automation systems, cyber physical systems, Asset Administration Shell, NOA, verification of 
request, automation pyramid 

1. Introduction

Normen-Arbeitsgemeinschaft für Mess-und-Regeltechnik in der Chemischen Industrie (NAMUR) 
automation pyramid is the traditional, well-accepted and proven structure within the process control 
industry. This structure emphasizes and ensures a hierarchical information flow from the field devices 
at the bottom to the MES at the top, as shown in Figure 1. The field devices, programmable logic 
controllers, SCADA and the MES applications within the four levels of the pyramid, as pointed out in 
Figure 1, are tightly coupled and interrelated. Introducing new technologies into the existing plant would 
require modifications at all levels by the appropriate manufacturers, involving huge man-hours and 
financial investment by all the players involved. 

Within the Information technology (IT) industry during the last two decades, there were significant 
advancements like better user experience interfaces, virtual reality, blockchain, enterprise integration, 
ontologies and the semantic web, automation verification of the systems, Chat GPT and many more. 
Combined with the Artificial Intelligence sectors like energy, health, transportation and supply chain are 
integrating and benefitting from the IT advancements. The article (Klettner et al. 2017) points out that 
within the automation sector in reference to the NAMUR ecosystem, there is no significant adoption of 
IT technologies. In this context, one of the NAMUR working groups has published the (NE 175), which 
introduces the concept of NAMUR open architecture (NOA). NOA is safe, secure, and reliable and 
intends to open up the automation pyramid to introduce the latest features and products from the IT 
industry. The (NE 175) professes that NOA is open, but the pyramid structure stays intact and the 
scope for the new technologies is rather parallel to the existing structure.  
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NE 178 further strengthens the idea of the autonomy of the plant 
and the plant owner and introduces an architecture for the NOA 
Verification of Request (VOR) concept. The actual document for NE 
178 is in draft stage and the details of the VOR concept are 
published in (Iatrou et al. 2022). It is the systems of systems 
architecture for the transmission of information between the plant 
and the interfaces of new IT infrastructure. The aim of the VOR 
concept is to systematically allow external applications to make 
requests for a change in the functioning of the 
plant and accordingly, the NE 178 identifies the actors involved and 
defines their roles and responsibilities. The need for structured 
requests and the relevant feedback messages, information about 
security and authentication mechanisms, step-by-step processing 
of the incoming requests, and the logging of the requests such that 
everything gets tracked within the entire system and other aspects 
are outlined by NE 178 as described in (Iatrou et al. 2022) 
 

(Specification IEC 16593-1) describes an Industry 4.0 (I4.0) component as a combination of multiple sub-
components (I4.0). Here, each sub-component or the component as a whole has a specific behaviour. 
The I4.0 component interacts and reacts to the events generated within its environment. The behaviour 
of these I4.0 components may be modelled, using explicit procedures or finite-state machines, as 
shown in Figure 2. 

 

 
(INSTITUT FÜR AUTOMATISIERUNGSTECHNIK 2019) address the aspect of pro-active asset 

administration shells (AAS) furthering the idea of type 3 AAS as presented in (Specification 01002-3-
0). Pro-Active AAS are the I4.0 components that communicate with each other using the I4.0 language 
semantics (VDI-Richtlinien) and have the capability to take independent decisions. In this article, we 
aim to demonstrate the VOR Systems of Systems architecture using a set of Pro-Active AAS each 
communicating with each other over a defined interaction protocol. Accordingly, this paper introduces 
a new interaction protocol with relevant sequence diagrams. A prototype implementation of VOR 
architecture is presented with CPC domain represented by a single water tank case study (Larsen et 
al. 2016). 

 
The rest of the paper is organized into seven sections. Section 2 presents a brief summary of NOA 

concept, AAS and the interaction protocols. Section 3 presents a detailed reported on the VOR concept 
as presented in (Iatrou et al. 2022). Section 4 presents a description of the single water tank use-case 
introduced in (Larsen et al. 2016). Section 5 demonstrates the implementation of VOR concept using 
Pro-Active AAS. Section 6 presents a brief overview of literature of past works. Section 7 concludes 
the paper. 
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Figure 1 NOA Pyramid (Klettner 
et al. 2017) 

Figure 2 I4.0 environment consisting two Pro-Active AAS each consisting state machines 
modelling respective behaviours 



 
 

     

 

2. Background 
 
NAMR Open Architecture (NOA) 
 
The NAMUR pyramid shown in Figure 1 is a monolithic and closed structure, with four different layer. As 

a system integrator, a plant owner has to own the responsibility of the interconnection between different 
levels, making his job more important and, the same applies to the device and the control software 
manufacturers. Such a hierarchical structure enables tight coupling between manufacturers of different 
products required for automation and has worked well over many decades. With the pyramid structure 

in place, for new technology to be 
integrated the existing devices should be 
upgraded, modified or replaced by the new 
ones, involving high investment from all the 
players involved.  
 
In such a background, (NE 175) just like its 
previous documents, is introduced by one 
of the NAMUR working groups. The NE 175 
document introduces the NAMUR open 
architecture (NOA) concept. The primary 
goal of NOA is the introduction of modern 
IT technologies into the automation 
architectures without compromising the 
safety, security and reliability of the existing 
and future plants. The NE 175 clearly 
states that the ability to add new 
technologies is only complementary to the 
existing structure and the intent is not to 
replace the existing structure. In Figure 1, 
the tilted bar on one of the sides of the 
automation pyramid proposed by NE 175 
acts like a plugin to the existing one. For the 

realization of such an idea, the NE 175 introduces a new architecture (as shown in Figure 3) with the 
concept of three communicating domains, namely the Core Process Control (CPC), Plant Specific 
Monitoring and Optimization (psM+O) and, Central optimization and monitoring (M+O). The CPC 
domain is the automation pyramid itself within the plant. The psM+O is the communication domain 
owned by the plant owner that is responsible for transmitting of information from the CPC domain to 
the external interfaces and acts like the demilitarized zone for the plant, where the plant owner has 
clear control over what kind of information enters and leaves the CPC domain. The M+O is the actual 
domain purported to be the additional bar, presented in Figure 1, that aims to introduce the 
technological advances from the IT industry into the automation pyramid. 

           
Asset Administration Shell (AAS) 
 
The concept of Asset Administration Shell, referred to as the standardized digital representation of an 

asset, is introduced by Platform Industry 4.0 (Plattform Industrie 4.0 2016). It aims to standardize the 
exchange of information between different partners, primarily within the automation industry. In order 
to achieve this, a standardized information model is introduced in (Specification 01001-3-0) with a core 
element called the Submodel that could contain elements of different types (Property, Range, 
MultiLanguageProperty, SubmodelElementCollection (SMC)). The term Submodel in the context of 
encapsulation of information about an asset could represent either a Nameplate or a Technical Data 
or a Documentation or asset access-related information. The information about an asset modelled 
using the AAS information model could be exchanged as files (Type 1 AAS), or a software component 
can consume the data and provide standardized interfaces for access (Type 2 AAS) (Specification 
01002-3-0).  

Figure 3 NOA Architecture 



 
 

     

 

Interaction Protocols 
 

(VDI-Richtlinien) characterizes the interactions of an active AAS with its environment as interaction 
protocols (IP) with I4.0 language format. IP is a structured sequence of interactions (or the exchange 
of messages) between I4.0 components, attaching defined protocols to the interactions makes the 
communication restricted to a set of message types. Where an I4.0 message as defined in the (VDI-
Richtlinien) is organized into two parts frame (representing sender and receiver information, message 
type, conversation and messages IDs and a reference to the protocol definition) and the interaction 
elements (constituting the actual data).   

 
 

3. NE 178 Verification of Request Architecture 
 
In this section, we present different steps of the NE 178 as presented in (Larsen et al. 2016). 

The architecture identifies three main actors within the scope of a plant in a process control industry, 
namely the requester issuer (this could be either from the psM+O or M+O domain, as pointed out in 
section 2), the VOR server and VAS server (VAS). NE 178 defines a sequence of steps, 
starting with, authentication until the request execution and provides guidelines on who (the specific 
actor) should perform them.  

Authentication and Authorization Step: Every request issuer (RI) shall authenticate itself with the VOR 
server and then directly issue the requests. The VOR server first authorizes the RI against its 
credentials for every incoming request. Successful authentication would result in VOR sending 
feedback to the RI. Feedback is not issued for the failed authentication step. The credentials may be 
just the user ID and password or RI-specific certificates and, these may be managed using existing 
state-of-the-art solutions. 

Verification Step: The VOR server first verifies the authenticated request, probably using a set of Boolean 
expressions. The plant owner is responsible for specifying these expressions.  

Mapping Step: A request from the M+O user is more on a higher-level construct, indicating that the issuer 
does not know the internal dynamics or the operation of the plant. For example, a request from psM+O 
or M+O domain could be to switch off the valve that inlets the water into the tank. A set of endpoints 
represents the CPC domain, through which the specific aspects can be accessed and modified. Either 
the VOR server or the VAS maps an authorized request to the suitable CPC endpoints, in this paper we 
model the VAS server to perform this task.  

Acceptance Step: This step checks whether the current state of the plant is valid and whether the plant is 
prepared enough to execute the request. One of the situations where a request is not accepted could 
be, for example, the absence of the operation personnel on the plant who is required during the 
execution process for monitoring and logging environment situations. NE 178 specifies that efforts must 
made to automate the acceptance and not bring in human interference.  

Mapping Verification: The mapped request is then checked for relevance if it requires execution, 
for example, does the specific valve within the plant need to be switched off? In case a single request 
consists of changes to multiple CPC endpoints then the request needs to be executed only if all the 
changes are possible or else the request is completely rejected. This step finalizes the entire step and 
forwards the changes to the CPC endpoints.  

Feedback Processing: Any request processing step can generate a feedback message. Every feedback 
submitted by an actor in a specific step is first verified and then dispatched. A feedback created by the 
VOR server will be dispatched to the RI and the feedback created by VAS will be dispatched to the 
VOR server only. There is no direct interaction between the VAS and the RI. At every step, the request 
and the feedback messages are timestamped and stored for traceability and verification in future. 



 
 

     

 

4. CaseStudy  
 
Figure 4 shows the P&ID diagram of a 

process automation plant with a single 
water tank, a use case as presented in 
(Larsen et al. 2016). A pump supplies 
water to the tank at a specific rate, and the 
valve (0041) attached between the tank 
and the pump controls the water flow into 
the tank. The tank has an outlet to drain 
the water, and another valve (0043) 
controls the water flow leaving the tank. 
The water inlet into the tank and the 
draining may not happen simultaneously. 
The two valves in Figure 4 are digitally 
accessible and have an OPC UA 
interface. The valves may be closed or 
opened by updating a boolean variable over the OPC UA interface. A level sensor is attached to the 
water tank, records the water level (in quantity) in the tank and sends the values as messages to the 
controller component at regular intervals, not shown in Figure 4. The controller component maintains 
the water level within maximum and minimum thresholds. Every time the controller receives a message 
from the level sensor, it checks the level against the threshold. If the value equals (maximum - 1), valve 
0041 is closed and valve 0043 is opened. If the value equals (minimum + 1), valve 0041 is 
opened and valve 0043 is closed. The level sensor attached to the tank has an OPC UA interface, a 

single variable representing the water level in the tank. 
 
Figure 5 shows the screenshot from the UAExpert 
(OPCUA client) interface. The two valves and the level 
sensor for each, an object of type 'PADIMType' is 
instantiated. The sensor0042 has the variable ‘height’ of 
type LevelMeasurementVariableType under the 
SignalSet object, it represents the water level in the tank 
(with real-time updates). The valves 0041 and 0043 
have the variable ‘vswitch’ of type boolean under 
the 'SignalSet' object and are used to open/close the 
respective valves. The PADIM-OPCUA companion 
specification can be accessed from (OPC Foundation 
2024). Figure 5 indicates for the three devices, only one 
namespace is used, representing the entire plant. Based 
on the NE 175 guidelines, only read-only access to the 
OPCUA server is provided to the external M&O 
applications.  
 
In this paper, based on guidelines from NE 178, we 
present a framework based on the concept of proactive 
AAS to access the functionality of the controller unit 
safely and securely. We suppose a scenario in which, 
due to unforeseen circumstances, external M&O 
applications may initiate a request to switch off the 
supply to the water tank. To this scenario we add an 
additional check, the water level in the tank shall always 
be above the average of maximum and minimum 
thresholds, when the source of the water is 
unexpectedly closed for-ever. 

 

Figure 4 P&ID for the Single Water Tank (SWT) 
use-case 

Figure 5 OPC Server representation for the 
single water tank use case 



 
 

     

 

5. Realization of the NE 178 Concept for single water tank use case using 
Pro-Active AAS 

 
In this section, we demonstrate the NE 178 concept using the single water tank use case, In this context, 

a new interaction protocol is introduced. 
 
 In this paper, we utilize a set of Proactive AAS 

to demonstrate the NE 178 VOR concept. We 
model the NE 178 actors RI, VOR server, 
and VAS server as individual Pro-Active 
AAS. These representations do not represent 
a specific asset but encapsulate defined 
processes. Each AAS has a unique 
identifier and documents the information 
about the underlying process using the 
submodels. Figure 6 presents the screenshot 
of the package explorer (PE), it shows three 
AASs, and each AAS has a set of submodels. 
The RI AAS has three submodels, namely 
RequesterInformation, Requests and 
FeedBacks@Vor. The RequesterInformation 
submodel contains an identifier for the RI and 
its security-related credentials. The Requests 
submodel contains a list of SMCs, each 
representing a request issued by the RI. The 
FeedBacks@Vor submodel also contains a 
sequence of SMCs, each representing the 
feedback received by the RI from the VOR 
server. The VOR server AAS has four 
submodels, namely, a) ‘Requests@RI’, which 
contains a list of SMCs, each representing 
the requests received from RI. b) 
Requests@Vor, which contains a list SMCs, 
each representing the requests sent to the 
VAS server. c) FeedBacks@RI, which contains a list SMCs, each representing the feedback sent to 
RI. d) FeedBacks@Vas contains a list of SMCs, each representing the feedback received from the 
VAS server. The VAS server AAS has three submodels namely, a) Requests@Vor, which contains a 
list SMCs, each representing the requests received from the VOR server, b) FeedBacks@Vor, which 
contains a list of SMCs, each representing the feedback sent to the VOR server.  

  
Similar to the interaction protocol presented in  (INSTITUT FÜR AUTOMATISIERUNGSTECHNIK 

2019),  in this section, we present a protocol representing a series of interactions between the three 
NE 178 actors, as shown in the sequence diagram from Figure 7. The behaviour of each AAS within 
the context of the interaction protocol is modelled using the finite state machines (FSM). A specific 
interaction between any two actors involves the transfer of a message from one actor to the other and 
is identified by a unique message type. The labels identifying the directed arrows in Figure 7 are the 
message types. The sequence of the message types between all the actors makes up the interaction 
protocol. Each message exchanged between the actors over a specific interaction is an I4.0 message 
as described in (VDI-Richtlinien). The actual content of each I4.0 message is either a submodel or any 
of the AAS submodel elements.  

 

Figure 6 Screen shot from the Package Explorer 
representing three AAS and their respective 

submodels 



 
 

     

 

Authentication and Authorization: As part of 
the SWT demonstrator, we have 
maintained a single authentication 
server. Each Pro-Active AAS 
representing the NE 178 actor is 
provided with a certificate. The Pro-Active 
AAS uses this certificate to get an access 
token from the authentication server, 
it then uses it for interaction with the other 
AAS. Every un-authenticated interaction 
would be rejected. 

 
We have used PythonAASxServer 

framework for the implmentation of the 
Pro-Active AAS (Harish Kumar Pakala 
2024). A detailed description of the 
framework is provided in (Weiss et al. 
2023). The Framework provides an order 
management interface, this is used for 
creating a request. 

 
The interaction protocol in the Figure 7 

begins when the RI, receives an order to 
create a new request. The RI then creates 
a request message, that contains an SMC 
(request1) constituting the elements, 
identifier, description, impact, the priority 
of the request and the timestamp of the 
request creation, as shown in Figure 8 
and transmits the message to the VOR 
server.   

In the case of the SWT demonstrator use case,  suppose 
that the water supply into the tank needs to be closed due 
to some external reasons and to stop the flow of water 
into the tank. The RI specifies this information in the 
description property element as shown in the Figure 8. 
The priority of this request is set to high and, the impact 
of this request execution is set to medium. The NE 178 
mandates that every request generated by the RI needs 
to be logged and accordingly, the Request1 SMC is 
added to the 'Requests' submodel. 
 
The RI may issue only two request types “Close the valve 
that regulates the water flow into the tank” and “Open the 
valve that regulates the water flow into the tank”. The 

VOR server first verifies the originator of the request message, it is the eligibility test for the RI to issue 
a specific request. For every verified request, the VOR server notifies the RI with a feedback 
message. The VOR server interprets the description of the message and turns it into an executable 
request, as shown in Figure 9. We suppose that the VOR server has complete knowledge of the 
structure of the plant. Figure 9 shows that valve0041 needs to be closed. The valve0041 is 
mentioned under the parameters SMC and, the change to the switch associated with the valve is 
mentioned under the modification SMC. The VOR server creates a new message of type ‘vorrequest’ 
and attaches to it the Request1 SMC shown in Figure 9. 

Figure 8 AAS PE screen shot depicting a 
Request from RI 

Figure 7 Sequence Diagram representing the VOR 
concept 



 
 

     

 

 
 The VAS server examines the incoming 
vorrequest and attempts to map the request to an 
executable action, for example, to modify a 
specific variable from the OPCUA 
server. In case the mapping step fails, negative 
feedback of type ‘vasfeedback’ is sent to the 
VOR server. In the SWT use case, the request 
‘close switch related to the Valve0041’ is mapped 
to nodeId of the variable switch, with a change to 
the variable as ‘closed’. The list of the variables 
and related nodeId mappings are part of the VAS 
Server AAS shown in Figure 6. After the 
successful mapping step, as there is no 
requirement for personal in SWT use case the 
request is accepted and an acceptance 
notification is sent to the VOR sever. 
 
In the SWT use case, it is assumed that the 
valve0041 may be closed only when it results in 
a scenario where the water level is above the 
average of maximum and minimum thresholds. 
The VAS server obtains the water level in the 
tank by reading the relevant OPCUA variable and 
checks if the level is already below the average. 

If yes, the request is rejected indicating the mapping verification is failed, and negative feedback is 
sent to the VOR server. In case the level is above the threshold, the request is accepted as mapping 
verified and pushed for execution.  

 
In the execution step, both values 0041 and 0043 are 

closed one after the other immediately without any 
delay and positive feedback is sent back to the VOR 
server (assuming that modifications of the OPC UA 
variables and the changes to the underlying assets 
are precise without any errors). Upon receipt of the 
‘vasfeedback’ message from the VAS server, the 
VOR server examines the message and send an 
appropriate message of type ‘feedback’ to the RI. 
Figure 10 shows the structure of a vasfeedback from 
the VAS server, screen shot form the package 
explorer. The intent of the message is specified as the ‘implemented’, indicating that the the change 
request is executed succesfully. 

 
Benefits of using Pro-Active AAS 
 

• Figure 11 shows the submodel RequestTypes 
representing the type of requests possible by 
the VOR concept (part of VOR server AAS). 
The plant owner may dynamically edit this 
submodel and delete or add new request 
types.  

 

• The plant owner may also specify a mapping 
between Request Issuers and Request Types, 

Figure 9 AAS PE screen shot depicting a Request 
from RI 

Figure 10 AAS PE screen shot depicting a 
Feedback from VAS Server 

Figure 11 AAS PE screen shot depicting the 
Request Types from VOR Server AAS 



 
 

     

 

allowing him to decide to deny a specific RI for a specific Request Type. 
 

• All the messages exchanged within one execution of an interaction protocol are logged as 
submodel elements with respective AAS, as shown in Figure 6. 
 

Single source of the truth for the Plant Owner. 
 

• Apart from the central authentication server, role-based access to the submodels may be granted. 
 

Access to information may be restricted tightly among the three NE 178 actors and also the external 
applications. 
 

• Each asset shown in Figure 4 may be represented by AAS. Documenting technical properties of 
the asset using a submodel, may allow the plant owner to change, for example, the threshold 
values for the water level in the tank at any instant in time. 

 
As part of the SWT demonstrator, we have modelled the assets shown in Figure 4 as AAS, the 
screenshots are not included in this paper. 
 

FSM implementations for each of the NE 178 actors are implemented in the PythonAASxServer (Harish 
Kumar Pakala 2024) framework as pointed out in section 5. These FSMs fetch the information from the 
AAS repositories dynamically, every time they perform a specific operation. FSM implementations are 
cyclic, this allows the creation of new requests after completing another request without a change in 
the configurations. 

 

6. Related Work 
 
This section provides a short summary of the previous work within the domain of digital twins, industry 4.0 

solutions for control within the automation pyramid, our intention is just to provide a flavor of approaches 
adapted by different works. (Azarmipour et al. 2020) aims to attach a digital twin (DT) at all levels of 
the automation pyramid. In the article, the authors have shown an example of DT at the process control 
level. The basic idea is that the DT requests information from the process level, performs the required 
simulations or optimizations and returns the result to the MES whenever it is requested.  

 
To ensure the security of the pyramid structure, the authors assert the architecture enables a unidirectional 

flow of information from the control level to the DT, indicating that the DT will never have the opportunity 
to send any control signals to the process level. (Martinez et al. 2021) proposes a DT structure for the 
entire automation pyramid and introduces a virtual model to all the level and within in this context aims 
to leverage the benefit the AI. (Pessl and Rabel 2022) presents a use-case for dissolution of the 
automation pyramid within the industrial environment, where dissolution here means that instead of a 
top-bottom (and vice-versa) flow of information it would be interactions between all the level. To the 
best of the knowledge of the authors there is no paper which deals with a multi-phase write access to 
an automation component such a field device from an external application.  

 

7. Conclusion 
 
Industrial automation system migrates from a rigorous hierarchical architecture to an open system. In the 

process control domain this is accompanied by the NOA concept. It starts with a strict read only 
approach and is nowadays extended by a secure way of modifying parameters in automation devices. 
This concept is called “Verification of Request” (VOR). While defining the requirements in the according 
“NAMUR Empfehlung” NE 178 this paper propose a specification which fulfill the requirements. This is 
implemented as prototype using the Asset Administration Shell (AAS) which is a standardized 
specification of digital twins. The VOR is not restricted to the process control domain, it is suitable for 
a large variety of applications where a secure write access to the automation system is needed 
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