
Modelling of NOA 178 Verification of Request concept using
Pro-Active Asset Administration Shells

H.K. Pakala*, Ch. Diedrich*

*Otto von Guericke University Magdeburg, Magdeburg, LSA 39106
Germany (e-mail: harish.pakala@ovgu.de)

Germany (e-mail: christian.diedrich@ovgu.de).

Abstract:

The NAMUR automation pyramid is the current state of the art in the process control industry.
The pyramid is a monolithic structure with information flowing either in top-down or bottom-up
directions. Introducing new technologies into this structure would imply modifying or replacing
existing equipment and the control software. NE 175 opens up this closed structure with a
new open architecture (NOA) to provide access to external interfaces without changing the
existing structure safely, securely and reliably. In continuation of the NOA, the NE 178
presents an architecture for the verification of the request concept (VOR) to allow plant-
specific M+O applications to make requests for a change in functioning of the plant by-
passing the strong hierarchy of the pyramid. This paper attempts to model the actors involved
in this concept and their interactions using the Pro-Active AAS concept, it introduces a new
interaction protocol and demonstrates the concept using the single water tank case study.

Keywords: automation systems, cyber physical systems, Asset Administration Shell, NOA, verification of
request, automation pyramid

1. Introduction

Normen-Arbeitsgemeinschaft für Mess-und-Regeltechnik in der Chemischen Industrie (NAMUR)
automation pyramid is the traditional, well-accepted and proven structure within the process control
industry. This structure emphasizes and ensures a hierarchical information flow from the field devices
at the bottom to the MES at the top, as shown in Figure 1. The field devices, programmable logic
controllers, SCADA and the MES applications within the four levels of the pyramid, as pointed out in
Figure 1, are tightly coupled and interrelated. Introducing new technologies into the existing plant would
require modifications at all levels by the appropriate manufacturers, involving huge man-hours and
financial investment by all the players involved.

Within the Information technology (IT) industry during the last two decades, there were significant
advancements like better user experience interfaces, virtual reality, blockchain, enterprise integration,
ontologies and the semantic web, automation verification of the systems, Chat GPT and many more.
Combined with the Artificial Intelligence sectors like energy, health, transportation and supply chain are
integrating and benefitting from the IT advancements. The article (Klettner et al. 2017) points out that
within the automation sector in reference to the NAMUR ecosystem, there is no significant adoption of
IT technologies. In this context, one of the NAMUR working groups has published the (NE 175), which
introduces the concept of NAMUR open architecture (NOA). NOA is safe, secure, and reliable and
intends to open up the automation pyramid to introduce the latest features and products from the IT
industry. The (NE 175) professes that NOA is open, but the pyramid structure stays intact and the
scope for the new technologies is rather parallel to the existing structure.

http://dx.doi.org/10.25673/116048

mailto:harish.pakala@ovgu.de
mailto:christian.diedrich@ovgu.de

NE 178 further strengthens the idea of the autonomy of the plant
and the plant owner and introduces an architecture for the NOA
Verification of Request (VOR) concept. The actual document for NE
178 is in draft stage and the details of the VOR concept are
published in (Iatrou et al. 2022). It is the systems of systems
architecture for the transmission of information between the plant
and the interfaces of new IT infrastructure. The aim of the VOR
concept is to systematically allow external applications to make
requests for a change in the functioning of the
plant and accordingly, the NE 178 identifies the actors involved and
defines their roles and responsibilities. The need for structured
requests and the relevant feedback messages, information about
security and authentication mechanisms, step-by-step processing
of the incoming requests, and the logging of the requests such that
everything gets tracked within the entire system and other aspects
are outlined by NE 178 as described in (Iatrou et al. 2022)

(Specification IEC 16593-1) describes an Industry 4.0 (I4.0) component as a combination of multiple sub-
components (I4.0). Here, each sub-component or the component as a whole has a specific behaviour.
The I4.0 component interacts and reacts to the events generated within its environment. The behaviour
of these I4.0 components may be modelled, using explicit procedures or finite-state machines, as
shown in Figure 2.

(INSTITUT FÜR AUTOMATISIERUNGSTECHNIK 2019) address the aspect of pro-active asset

administration shells (AAS) furthering the idea of type 3 AAS as presented in (Specification 01002-3-
0). Pro-Active AAS are the I4.0 components that communicate with each other using the I4.0 language
semantics (VDI-Richtlinien) and have the capability to take independent decisions. In this article, we
aim to demonstrate the VOR Systems of Systems architecture using a set of Pro-Active AAS each
communicating with each other over a defined interaction protocol. Accordingly, this paper introduces
a new interaction protocol with relevant sequence diagrams. A prototype implementation of VOR
architecture is presented with CPC domain represented by a single water tank case study (Larsen et
al. 2016).

The rest of the paper is organized into seven sections. Section 2 presents a brief summary of NOA

concept, AAS and the interaction protocols. Section 3 presents a detailed reported on the VOR concept
as presented in (Iatrou et al. 2022). Section 4 presents a description of the single water tank use-case
introduced in (Larsen et al. 2016). Section 5 demonstrates the implementation of VOR concept using
Pro-Active AAS. Section 6 presents a brief overview of literature of past works. Section 7 concludes
the paper.

Asset’s Digital Representation

Asset

Decision algorithm

Optimization
algorithm

Interaction

protocol

Asset’s Digital Representation

Asset

Decision algorithm

Optimization
algorithm

Figure 1 NOA Pyramid (Klettner
et al. 2017)

Figure 2 I4.0 environment consisting two Pro-Active AAS each consisting state machines
modelling respective behaviours

2. Background

NAMR Open Architecture (NOA)

The NAMUR pyramid shown in Figure 1 is a monolithic and closed structure, with four different layer. As

a system integrator, a plant owner has to own the responsibility of the interconnection between different
levels, making his job more important and, the same applies to the device and the control software
manufacturers. Such a hierarchical structure enables tight coupling between manufacturers of different
products required for automation and has worked well over many decades. With the pyramid structure

in place, for new technology to be
integrated the existing devices should be
upgraded, modified or replaced by the new
ones, involving high investment from all the
players involved.

In such a background, (NE 175) just like its
previous documents, is introduced by one
of the NAMUR working groups. The NE 175
document introduces the NAMUR open
architecture (NOA) concept. The primary
goal of NOA is the introduction of modern
IT technologies into the automation
architectures without compromising the
safety, security and reliability of the existing
and future plants. The NE 175 clearly
states that the ability to add new
technologies is only complementary to the
existing structure and the intent is not to
replace the existing structure. In Figure 1,
the tilted bar on one of the sides of the
automation pyramid proposed by NE 175
acts like a plugin to the existing one. For the

realization of such an idea, the NE 175 introduces a new architecture (as shown in Figure 3) with the
concept of three communicating domains, namely the Core Process Control (CPC), Plant Specific
Monitoring and Optimization (psM+O) and, Central optimization and monitoring (M+O). The CPC
domain is the automation pyramid itself within the plant. The psM+O is the communication domain
owned by the plant owner that is responsible for transmitting of information from the CPC domain to
the external interfaces and acts like the demilitarized zone for the plant, where the plant owner has
clear control over what kind of information enters and leaves the CPC domain. The M+O is the actual
domain purported to be the additional bar, presented in Figure 1, that aims to introduce the
technological advances from the IT industry into the automation pyramid.

Asset Administration Shell (AAS)

The concept of Asset Administration Shell, referred to as the standardized digital representation of an

asset, is introduced by Platform Industry 4.0 (Plattform Industrie 4.0 2016). It aims to standardize the
exchange of information between different partners, primarily within the automation industry. In order
to achieve this, a standardized information model is introduced in (Specification 01001-3-0) with a core
element called the Submodel that could contain elements of different types (Property, Range,
MultiLanguageProperty, SubmodelElementCollection (SMC)). The term Submodel in the context of
encapsulation of information about an asset could represent either a Nameplate or a Technical Data
or a Documentation or asset access-related information. The information about an asset modelled
using the AAS information model could be exchanged as files (Type 1 AAS), or a software component
can consume the data and provide standardized interfaces for access (Type 2 AAS) (Specification
01002-3-0).

Figure 3 NOA Architecture

Interaction Protocols

(VDI-Richtlinien) characterizes the interactions of an active AAS with its environment as interaction
protocols (IP) with I4.0 language format. IP is a structured sequence of interactions (or the exchange
of messages) between I4.0 components, attaching defined protocols to the interactions makes the
communication restricted to a set of message types. Where an I4.0 message as defined in the (VDI-
Richtlinien) is organized into two parts frame (representing sender and receiver information, message
type, conversation and messages IDs and a reference to the protocol definition) and the interaction
elements (constituting the actual data).

3. NE 178 Verification of Request Architecture

In this section, we present different steps of the NE 178 as presented in (Larsen et al. 2016).

The architecture identifies three main actors within the scope of a plant in a process control industry,
namely the requester issuer (this could be either from the psM+O or M+O domain, as pointed out in
section 2), the VOR server and VAS server (VAS). NE 178 defines a sequence of steps,
starting with, authentication until the request execution and provides guidelines on who (the specific
actor) should perform them.

Authentication and Authorization Step: Every request issuer (RI) shall authenticate itself with the VOR
server and then directly issue the requests. The VOR server first authorizes the RI against its
credentials for every incoming request. Successful authentication would result in VOR sending
feedback to the RI. Feedback is not issued for the failed authentication step. The credentials may be
just the user ID and password or RI-specific certificates and, these may be managed using existing
state-of-the-art solutions.

Verification Step: The VOR server first verifies the authenticated request, probably using a set of Boolean
expressions. The plant owner is responsible for specifying these expressions.

Mapping Step: A request from the M+O user is more on a higher-level construct, indicating that the issuer
does not know the internal dynamics or the operation of the plant. For example, a request from psM+O
or M+O domain could be to switch off the valve that inlets the water into the tank. A set of endpoints
represents the CPC domain, through which the specific aspects can be accessed and modified. Either
the VOR server or the VAS maps an authorized request to the suitable CPC endpoints, in this paper we
model the VAS server to perform this task.

Acceptance Step: This step checks whether the current state of the plant is valid and whether the plant is
prepared enough to execute the request. One of the situations where a request is not accepted could
be, for example, the absence of the operation personnel on the plant who is required during the
execution process for monitoring and logging environment situations. NE 178 specifies that efforts must
made to automate the acceptance and not bring in human interference.

Mapping Verification: The mapped request is then checked for relevance if it requires execution,
for example, does the specific valve within the plant need to be switched off? In case a single request
consists of changes to multiple CPC endpoints then the request needs to be executed only if all the
changes are possible or else the request is completely rejected. This step finalizes the entire step and
forwards the changes to the CPC endpoints.

Feedback Processing: Any request processing step can generate a feedback message. Every feedback
submitted by an actor in a specific step is first verified and then dispatched. A feedback created by the
VOR server will be dispatched to the RI and the feedback created by VAS will be dispatched to the
VOR server only. There is no direct interaction between the VAS and the RI. At every step, the request
and the feedback messages are timestamped and stored for traceability and verification in future.

4. CaseStudy

Figure 4 shows the P&ID diagram of a

process automation plant with a single
water tank, a use case as presented in
(Larsen et al. 2016). A pump supplies
water to the tank at a specific rate, and the
valve (0041) attached between the tank
and the pump controls the water flow into
the tank. The tank has an outlet to drain
the water, and another valve (0043)
controls the water flow leaving the tank.
The water inlet into the tank and the
draining may not happen simultaneously.
The two valves in Figure 4 are digitally
accessible and have an OPC UA
interface. The valves may be closed or
opened by updating a boolean variable over the OPC UA interface. A level sensor is attached to the
water tank, records the water level (in quantity) in the tank and sends the values as messages to the
controller component at regular intervals, not shown in Figure 4. The controller component maintains
the water level within maximum and minimum thresholds. Every time the controller receives a message
from the level sensor, it checks the level against the threshold. If the value equals (maximum - 1), valve
0041 is closed and valve 0043 is opened. If the value equals (minimum + 1), valve 0041 is
opened and valve 0043 is closed. The level sensor attached to the tank has an OPC UA interface, a

single variable representing the water level in the tank.

Figure 5 shows the screenshot from the UAExpert
(OPCUA client) interface. The two valves and the level
sensor for each, an object of type 'PADIMType' is
instantiated. The sensor0042 has the variable ‘height’ of
type LevelMeasurementVariableType under the
SignalSet object, it represents the water level in the tank
(with real-time updates). The valves 0041 and 0043
have the variable ‘vswitch’ of type boolean under
the 'SignalSet' object and are used to open/close the
respective valves. The PADIM-OPCUA companion
specification can be accessed from (OPC Foundation
2024). Figure 5 indicates for the three devices, only one
namespace is used, representing the entire plant. Based
on the NE 175 guidelines, only read-only access to the
OPCUA server is provided to the external M&O
applications.

In this paper, based on guidelines from NE 178, we
present a framework based on the concept of proactive
AAS to access the functionality of the controller unit
safely and securely. We suppose a scenario in which,
due to unforeseen circumstances, external M&O
applications may initiate a request to switch off the
supply to the water tank. To this scenario we add an
additional check, the water level in the tank shall always
be above the average of maximum and minimum
thresholds, when the source of the water is
unexpectedly closed for-ever.

Figure 4 P&ID for the Single Water Tank (SWT)
use-case

Figure 5 OPC Server representation for the
single water tank use case

5. Realization of the NE 178 Concept for single water tank use case using
Pro-Active AAS

In this section, we demonstrate the NE 178 concept using the single water tank use case, In this context,

a new interaction protocol is introduced.

 In this paper, we utilize a set of Proactive AAS

to demonstrate the NE 178 VOR concept. We
model the NE 178 actors RI, VOR server,
and VAS server as individual Pro-Active
AAS. These representations do not represent
a specific asset but encapsulate defined
processes. Each AAS has a unique
identifier and documents the information
about the underlying process using the
submodels. Figure 6 presents the screenshot
of the package explorer (PE), it shows three
AASs, and each AAS has a set of submodels.
The RI AAS has three submodels, namely
RequesterInformation, Requests and
FeedBacks@Vor. The RequesterInformation
submodel contains an identifier for the RI and
its security-related credentials. The Requests
submodel contains a list of SMCs, each
representing a request issued by the RI. The
FeedBacks@Vor submodel also contains a
sequence of SMCs, each representing the
feedback received by the RI from the VOR
server. The VOR server AAS has four
submodels, namely, a) ‘Requests@RI’, which
contains a list of SMCs, each representing
the requests received from RI. b)
Requests@Vor, which contains a list SMCs,
each representing the requests sent to the
VAS server. c) FeedBacks@RI, which contains a list SMCs, each representing the feedback sent to
RI. d) FeedBacks@Vas contains a list of SMCs, each representing the feedback received from the
VAS server. The VAS server AAS has three submodels namely, a) Requests@Vor, which contains a
list SMCs, each representing the requests received from the VOR server, b) FeedBacks@Vor, which
contains a list of SMCs, each representing the feedback sent to the VOR server.

Similar to the interaction protocol presented in (INSTITUT FÜR AUTOMATISIERUNGSTECHNIK

2019), in this section, we present a protocol representing a series of interactions between the three
NE 178 actors, as shown in the sequence diagram from Figure 7. The behaviour of each AAS within
the context of the interaction protocol is modelled using the finite state machines (FSM). A specific
interaction between any two actors involves the transfer of a message from one actor to the other and
is identified by a unique message type. The labels identifying the directed arrows in Figure 7 are the
message types. The sequence of the message types between all the actors makes up the interaction
protocol. Each message exchanged between the actors over a specific interaction is an I4.0 message
as described in (VDI-Richtlinien). The actual content of each I4.0 message is either a submodel or any
of the AAS submodel elements.

Figure 6 Screen shot from the Package Explorer
representing three AAS and their respective

submodels

Authentication and Authorization: As part of
the SWT demonstrator, we have
maintained a single authentication
server. Each Pro-Active AAS
representing the NE 178 actor is
provided with a certificate. The Pro-Active
AAS uses this certificate to get an access
token from the authentication server,
it then uses it for interaction with the other
AAS. Every un-authenticated interaction
would be rejected.

We have used PythonAASxServer

framework for the implmentation of the
Pro-Active AAS (Harish Kumar Pakala
2024). A detailed description of the
framework is provided in (Weiss et al.
2023). The Framework provides an order
management interface, this is used for
creating a request.

The interaction protocol in the Figure 7

begins when the RI, receives an order to
create a new request. The RI then creates
a request message, that contains an SMC
(request1) constituting the elements,
identifier, description, impact, the priority
of the request and the timestamp of the
request creation, as shown in Figure 8
and transmits the message to the VOR
server.

In the case of the SWT demonstrator use case, suppose
that the water supply into the tank needs to be closed due
to some external reasons and to stop the flow of water
into the tank. The RI specifies this information in the
description property element as shown in the Figure 8.
The priority of this request is set to high and, the impact
of this request execution is set to medium. The NE 178
mandates that every request generated by the RI needs
to be logged and accordingly, the Request1 SMC is
added to the 'Requests' submodel.

The RI may issue only two request types “Close the valve
that regulates the water flow into the tank” and “Open the
valve that regulates the water flow into the tank”. The

VOR server first verifies the originator of the request message, it is the eligibility test for the RI to issue
a specific request. For every verified request, the VOR server notifies the RI with a feedback
message. The VOR server interprets the description of the message and turns it into an executable
request, as shown in Figure 9. We suppose that the VOR server has complete knowledge of the
structure of the plant. Figure 9 shows that valve0041 needs to be closed. The valve0041 is
mentioned under the parameters SMC and, the change to the switch associated with the valve is
mentioned under the modification SMC. The VOR server creates a new message of type ‘vorrequest’
and attaches to it the Request1 SMC shown in Figure 9.

Figure 8 AAS PE screen shot depicting a
Request from RI

Figure 7 Sequence Diagram representing the VOR
concept

 The VAS server examines the incoming
vorrequest and attempts to map the request to an
executable action, for example, to modify a
specific variable from the OPCUA
server. In case the mapping step fails, negative
feedback of type ‘vasfeedback’ is sent to the
VOR server. In the SWT use case, the request
‘close switch related to the Valve0041’ is mapped
to nodeId of the variable switch, with a change to
the variable as ‘closed’. The list of the variables
and related nodeId mappings are part of the VAS
Server AAS shown in Figure 6. After the
successful mapping step, as there is no
requirement for personal in SWT use case the
request is accepted and an acceptance
notification is sent to the VOR sever.

In the SWT use case, it is assumed that the
valve0041 may be closed only when it results in
a scenario where the water level is above the
average of maximum and minimum thresholds.
The VAS server obtains the water level in the
tank by reading the relevant OPCUA variable and
checks if the level is already below the average.

If yes, the request is rejected indicating the mapping verification is failed, and negative feedback is
sent to the VOR server. In case the level is above the threshold, the request is accepted as mapping
verified and pushed for execution.

In the execution step, both values 0041 and 0043 are

closed one after the other immediately without any
delay and positive feedback is sent back to the VOR
server (assuming that modifications of the OPC UA
variables and the changes to the underlying assets
are precise without any errors). Upon receipt of the
‘vasfeedback’ message from the VAS server, the
VOR server examines the message and send an
appropriate message of type ‘feedback’ to the RI.
Figure 10 shows the structure of a vasfeedback from
the VAS server, screen shot form the package
explorer. The intent of the message is specified as the ‘implemented’, indicating that the the change
request is executed succesfully.

Benefits of using Pro-Active AAS

• Figure 11 shows the submodel RequestTypes
representing the type of requests possible by
the VOR concept (part of VOR server AAS).
The plant owner may dynamically edit this
submodel and delete or add new request
types.

• The plant owner may also specify a mapping
between Request Issuers and Request Types,

Figure 9 AAS PE screen shot depicting a Request
from RI

Figure 10 AAS PE screen shot depicting a
Feedback from VAS Server

Figure 11 AAS PE screen shot depicting the
Request Types from VOR Server AAS

allowing him to decide to deny a specific RI for a specific Request Type.

• All the messages exchanged within one execution of an interaction protocol are logged as
submodel elements with respective AAS, as shown in Figure 6.

Single source of the truth for the Plant Owner.

• Apart from the central authentication server, role-based access to the submodels may be granted.

Access to information may be restricted tightly among the three NE 178 actors and also the external
applications.

• Each asset shown in Figure 4 may be represented by AAS. Documenting technical properties of
the asset using a submodel, may allow the plant owner to change, for example, the threshold
values for the water level in the tank at any instant in time.

As part of the SWT demonstrator, we have modelled the assets shown in Figure 4 as AAS, the
screenshots are not included in this paper.

FSM implementations for each of the NE 178 actors are implemented in the PythonAASxServer (Harish
Kumar Pakala 2024) framework as pointed out in section 5. These FSMs fetch the information from the
AAS repositories dynamically, every time they perform a specific operation. FSM implementations are
cyclic, this allows the creation of new requests after completing another request without a change in
the configurations.

6. Related Work

This section provides a short summary of the previous work within the domain of digital twins, industry 4.0

solutions for control within the automation pyramid, our intention is just to provide a flavor of approaches
adapted by different works. (Azarmipour et al. 2020) aims to attach a digital twin (DT) at all levels of
the automation pyramid. In the article, the authors have shown an example of DT at the process control
level. The basic idea is that the DT requests information from the process level, performs the required
simulations or optimizations and returns the result to the MES whenever it is requested.

To ensure the security of the pyramid structure, the authors assert the architecture enables a unidirectional

flow of information from the control level to the DT, indicating that the DT will never have the opportunity
to send any control signals to the process level. (Martinez et al. 2021) proposes a DT structure for the
entire automation pyramid and introduces a virtual model to all the level and within in this context aims
to leverage the benefit the AI. (Pessl and Rabel 2022) presents a use-case for dissolution of the
automation pyramid within the industrial environment, where dissolution here means that instead of a
top-bottom (and vice-versa) flow of information it would be interactions between all the level. To the
best of the knowledge of the authors there is no paper which deals with a multi-phase write access to
an automation component such a field device from an external application.

7. Conclusion

Industrial automation system migrates from a rigorous hierarchical architecture to an open system. In the

process control domain this is accompanied by the NOA concept. It starts with a strict read only
approach and is nowadays extended by a secure way of modifying parameters in automation devices.
This concept is called “Verification of Request” (VOR). While defining the requirements in the according
“NAMUR Empfehlung” NE 178 this paper propose a specification which fulfill the requirements. This is
implemented as prototype using the Asset Administration Shell (AAS) which is a standardized
specification of digital twins. The VOR is not restricted to the process control domain, it is suitable for
a large variety of applications where a secure write access to the automation system is needed

8. Acknowledgement

This work of the project "Administration Shell Networked - Interoperability between I4.0 Components" was

supported by the Federal Ministry for Economic Affairs and Energy in the Industry 4.0 initiative under
the following numbers: FKZ: 13I40V001A.

Publication bibliography
Azarmipour, Mahyar; Elfaham, Haitham; Gries, Caspar; Kleinert, Tobias; Epple, Ulrich (2020): A Service-

based Architecture for the Interaction of Control and MES Systems in Industry 4.0 Environment. In :
2020 IEEE 18th International Conference on Industrial Informatics (INDIN): IEEE.

Harish Kumar Pakala (2024): PythonAASxServer: Github. Available online at
https://github.com/harishpakala/PythonAASxServer, checked on 4/26/2024.

Iatrou, Chris Paul; Hoppe, Henry; Erni, Klaus (2022): NOA Verification of Request: Automatisierte
Anlagenoptimierung mit Feedback aus Edge und Cloud. In atp 64 (1-2), pp. 78–84.

INSTITUT FÜR AUTOMATISIERUNGSTECHNIK (2019): Specification Testbed "AAS networked“.
Proactive AAS - interaction according to the VDI/VDE 2193. INSTITUT FÜR
AUTOMATISIERUNGSTECHNIK.

Klettner, Christian; Tauchnitz, Thomas; Epple, Ulrich; Nothdurft, Lars; Diedrich, Christian; Schröder,
Tizian et al. (2017): Namur Open Architecture. In atp 59 (01-02), p. 17. DOI: 10.17560/atp.v59i01-
02.620.

VDI-Richtlinien, 04 2020: Language for I4.0 Components - Structure of messages.

Larsen, Peter Gorm; Fitzgerald, John; Woodcock, Jim; Fritzson, Peter; Brauer, Jörg; Kleijn, Christian et
al. (2016): Integrated tool chain for model-based design of Cyber-Physical Systems: The INTO-CPS
project. In : 2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS
(CPS Data). IEEE, pp. 1–6.

Martinez, Edwin Mauricio; Ponce, Pedro; Macias, Israel; Molina, Arturo (2021): Automation pyramid as
constructor for a complete digital twin, case study: A didactic manufacturing system. In Sensors 21
(14), p. 4656.

NE 175, 7/9/2020: NAMUR Open Architecture NOA Concept. Available online at https://www.namur.net,
checked on 6/6/2023.

OPC Foundation (2024): OPC 30081: Process Automation Devices - PADIM (1.01). Available online at
https://reference.opcfoundation.org/nodesets/129, updated on 2/1/2024, checked on 4/18/2024.

Pessl, Ernst; Rabel, Birgit (2022): Digitization in Production: a Use Case on a Cloud-based
Manufacturing Execution System. In : 2022 8th International Conference on Computer Technology
Applications. New York, NY, USA. New York, NY, USA: ACM.

Plattform Industrie 4.0 (2016): Fortschreibung der Anwendungsszenarien der Plattform Industrie 4.0.
Ergebnispapier. Bundesministerium fÜr Wirtschaft und Energie (BMWi).

Specification IEC 16593-1: RM-SA - Reference Model for Industrie 4.0 Service architectures.

Specification 01001-3-0, April 2023: Specification of the Asset Administration Shell. Available online at
https://industrialdigitaltwin.org/, checked on June 2023.

Specification 01002-3-0, April 2023: Specification of the Asset Administration Shell, checked on June
2023.

Weiss, Marco; Wicke, Kai; Wende, Gerko; Pakala, Harish; Gill, Milapji (2023): MaSiMO-Development
and Research of Industry 4.0 Components with a Focus on Experimental Applications of Proactive
Asset Administration Shells in Data-Driven Maintenance Environments.

