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Abstract: As electrical machines are widespread in industrial automation, operating them 
efficiently has significant potential to improve sustainability. Due to the complexity of electrical 
machines, obtaining direct measurement of energy consumption is challenging and cost intensive. 
Soft sensors are useful in inferring variables using available measurements in industrial processes. 
The data-driven approach to developing soft sensors requires a sufficiently large and diverse 
training dataset. Given the high cost to obtain voluminous sensor data, turning to simulation data 
as an additional data source is less expensive, although possibly inaccurate. With this motivation, 
we explore the need and benefit of combining measurement data from intelligent sensors with 
electrical machine simulation data for building soft sensors. We present an approach to leverage 
both, sensor measurements and simulation data to develop a soft sensor for energy efficiency. The 
soft sensor implementation results for an induction motor support the feasibility of the approach.  
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1 Introduction 

Electrical machines are widespread in industrial automation systems – they play a 
critical role in the overall performance, cost-effectiveness, and energy efficiency of 
industrial processes. Three phase induction machines are used in various industrial 
applications due to their simple design and reliability. They provide mechanical power 
from electrical power to drive loads. As electrical machines need to be supplied with 
high amounts of energy and with the goal of increasing sustainability, strict regulations 
for transparency regarding energy efficiency for electrical machines are required. 
Operating motors efficiently has significant potential to improve sustainability, 
especially since around 60% of installed motors operate below their rated power [Ch16]. 
According to one estimate, the adoption of high-efficiency motor systems could cut 
global electricity consumption by up to 7% [FE11]. With the increased installation and 
application of electrical machines in the future, energy efficiency becomes increasingly 
important. In fact, energy costs (as opposed to purchase costs) make up most of a 
machine’s lifecycle costs. So, providing more transparency on energy efficiency helps 
fulfill both sustainability and economic goals.  

To ensure efficient operation of induction machines, dynamic modeling approaches are 
needed to assess and improve their performance. Electrical machines can be modeled 
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using numerical or analytical approaches, each offering a trade-off between 
computational effort and accuracy. Using such models, machine parameters can be 
derived to estimate the output power and overall efficiency from the supplied electrical 
input power.  

Complementary to modeling approaches, monitoring approaches are needed to include 
sensed real values in the estimations. Within the vision of Industry 4.0, miniaturized 
sensors with communication and processing modules (intelligent sensors) have enabled 
the acquisition of data and analysis of industrial assets during operation. However, 
continuously measuring some variables using intelligent sensors is not always feasible 
due to interference with critical processes or complex machine construction. For 
instance, measuring the mechanical power of induction machines is not directly possible 
and usually relies on estimation approaches based on measured values such as flux, 
speed, or vibration. Additionally, sensors used to measure these values are placed in 
industrial environments and therefore may be subject to faults thereby introducing 
inaccuracy and decreasing their reliability. 

In this regard, soft sensors or virtual sensors are useful in inferring variables based on 
available measurements in industrial processes. The data-driven approach to developing 
soft sensors requires a training dataset that is sufficiently large and diverse e.g., 
encompassing the range of operation of an electrical machine. Given that measured data 
can be costly to collect in large amounts, it is natural to turn to other sources of data, 
e.g., simulation data, which is much less expensive to collect but might be inaccurate 
depending on model used to represent the machine.  

With this motivation, this paper explores the need and benefit of combining 
measurement data from intelligent sensors with data generated using electrical machine 
simulation for the purpose of building useful soft sensors for electrical machines. In our 
work, we use data assimilation to model differences between measurements and 
simulation followed by data augmentation to generate additional corrected simulation 
data. In the context of soft sensors, we can leverage data augmentation techniques in 
several scenarios, e.g.: 

 To compensate for inaccurate or insufficient sensor measurements,  

 Where direct measurement is infeasible due to high intrusiveness or costs e.g., 
measuring the output torque of an electrical motor, which can either require costly 
sensors, commonly not present in industrial settings, or high intrusiveness. 

The remainder of the paper is organized as follows. Section 2, presents the related 
literature on electrical machine modeling approaches for energy efficiency estimations 
and soft sensors for condition monitoring and performance optimization of induction 
machines. Section 3 presents our approach and Section 4 discusses the results. Finally, 
Section 5 concludes the paper and discusses future work.  
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2 Related Work 

2.1 Electrical Machines Modeling 

To monitor and optimize the performance of electrical machines, a modeling approach is 
needed. Generally, electrical machines can be modeled in a numerical or analytical 
manner. Numerical methods, e.g., finite element method, are classified as accurate, 
although computationally expensive. Analytical methods encompass equations based on 
the machine equivalent circuit.  

Simulations implement models of electrical machines as a function of time. For the 
scope of industrial automation, a simulation model is a virtual representation of one or 
multiple aspects of a physical asset, which mimics its expected behavior when giving 
possible inputs to a virtual model. Simulation models differ in type and fidelity level and 
can be complex and costly to run for industrial assets.  

Electrical machines simulators are designed and used to simulate the operations of 
electrical machines and to collect operational data such as speed, power load, magnetic 
field, and other data. 

A high-fidelity simulation of an electrical machine using finite element method is 
commonly applied and requires a geometrical model as well as knowledge about its 
material and properties. The simulation time, given through a number of steps and a 
given period is transformed into discrete time steps. Furthermore, loading points of the 
machine can be given as an input to compute output values such as the output electrical 
values, power or the flux density distribution within the magnetic field. [TKS20] 

2.2 Energy Efficiency of Electrical Machines 

Energy efficiency of electrical machines is the ratio of electrical input power to the 
mechanical output power delivered to the shaft to drive applications. There are different 
approaches to measure energy efficiency of induction motors, mostly consisting of 
indirect measurements and estimations due to the non-linearities exhibited within the 
electromagnetic field and machine construction. The nameplate method for example, 
relies on motor ratings to estimate the machine’s efficiency profile [Ar22], whereas 
indirect measurements of the external flux or speed can be used to derive a linearized 
speed curve. Estimating different power losses by the machine is a further common 
approach to estimate its energy efficiency. The equivalent circuit approach uses 
parameters of the machine’s equivalent circuit to calculate its output power given 
technical data or relying on lab tests. [Sa19] 

It can be noted that all mentioned approaches with their variations differ in their 
accuracy and intrusiveness level. No single approach is collectively deemed best. In 
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recent years, approaches relying on artificial intelligence and data-driven methods have 
been increasingly considered.  

In [AC23], a combination of a data-driven and physics-based model is used to rate the 
machine efficiency as part of its Digital Twin. In [Si23], search algorithms are compared 
and used to estimate parameters of the machine’s equivalent circuit.  

2.3 Soft Sensors 

A soft sensor is an intelligent software module that uses existing physical sensors to 
generate similar data or derive new information by processing physically measured data 
using mathematical, physics-based, or data-driven approaches. It can be redundant to the 
physical sensor thus increasing its reliability, replace the physical sensor in case of high 
maintenance and calibration cost, or extend its functionality by deriving more 
information from raw measured data. One example is provided by [Li12], where an 
industrial soft sensor to measure nitrogen oxides based on process measurements was 
developed.  

Data-driven soft sensors [KGS09], [SG21] apply data-processing and analysis 
techniques such as machine learning and artificial intelligence to measured quantities, 
obtained through physical sensors, to derive new data and information which are not 
directly measurable through the physical sensor.  

The idea of data-driven soft sensors is already established. However, a key challenge of 
solely relying on historical data to train such sensors has been the difficulty in ensuring 
that a wide range of process states and/or conditions are sufficiently covered. This can be 
addressed by using adaptive soft sensing techniques [KGG10].  For instance, in our case, 
we leverage simulation data together with associated measurement data to account for 
any gaps in coverage of different operating conditions of electric machines. 

Related to soft sensors is also the concept of surrogate models. They are simplified 
representations of complex systems or simulations. A common approach to obtain 
surrogate models is by fitting machine learning models on the input-output data resulting 
from simulation systems [TKS20], [TMK22].  Amongst the benefits of using surrogate 
models is to obtain instantaneous estimations, which would otherwise be more time-
consuming. Moreover, they can be employed for various use cases, such as condition 
monitoring or as part of digital twin models. Surrogate models can be realized in a data-
driven, hierarchical, or projection-based manner in which a high-fidelity simulation 
model is used as basis. Data-driven surrogate models using machine learning models can 
complement simulations for deriving output values of electrical machines. [TKS20] 



 
 5 

3 Approach 

We propose an approach that combines the use of sensor measurements and simulation 
data to develop soft sensors for electrical machines. Figure 1 shows an overview our 
approach to develop soft sensors for electrical machines. It can be used for different soft 
sensor applications e.g., speed estimation, motor health or fault detection, and energy 
efficiency estimation [Sa19].   

 

Figure 1: Workflow to develop data-driven soft sensors for electrical machines. 

The approach consists of three steps for data collection and processing: gathering real 
data, generating simulation data, and assimilating and augmenting simulation data. Then, 
ML models are trained on the final dataset which consists of measurements and 
augmented simulation data. In the following sections, we provide more details on the 
proposed steps. 

3.1 Collection of Sensor Measurements 

We collect operational data, i.e. torque and speed in an experimental setup for an 
electrical machine. The data is collected using an external sensor attached to the 
operating motor. Section 4.1 gives more details about the data we collect in our 
experiments. 
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3.2 Generation of Simulation Data 

We use a proprietary simulator for electrical machines to collect large amounts of 
simulation data. We generate data for the same operating conditions that were used while 
collecting the real data. 

3.3 Data Assimilation  

Based on the available measurement data, we first obtain simulation data for the same 
operating conditions. We seek to combine the measurement and simulation data such 
that the simulation data is adjusted to better match the associated real measurements. To 
this end, we employ “data assimilation” i.e., techniques to combine different sources of 
information such as integrating a numerical model with observations, with the goal of 
improving the forecasting capability of a given model [PVS22], [PVS22]. 

Different data assimilation techniques exist e.g., averaging values, applying priority rules 
to favor one source over another, or simply selecting the most recent data, fitting of error 
residuals and Kalman filter (see review of techniques: [PVS22]). We adopt a statistical 
data assimilation approach that has already been applied to the domain of machine 
learning for electrical machines (see [Bi24]) 

In particular, the error between recorded measurements at different loading conditions 
and associated simulation data for each model feature are computed. A normal 
distribution is then fitted to estimate the mean (μ) and standard deviation (σ) of the error 
for each loading point associated with each feature. Consequently, for any loading point, 
the simulator can be used to generate data, which can then be corrected using an estimate 
of the error from models fitted on the mean (μ) and standard deviation (σ) values. 

3.4 Data Augmentation 

Data augmentation refers to the process of creating variations of an existing data set for 
multiple purposes, e.g., fill gaps in data or increase the amount of data to enable the 
application of machine learning techniques. Examples of data augmentation approaches 
include oversampling, and synthetic minority oversampling technique (SMOTE). 

In our work, data assimilation is a pre-requisite for data augmentation. Thus, once we 
have modelled the error between measurement and simulation data using data 
corresponding to the same operating conditions, we can then, also similar to [Bi24], use 
data augmentation to create new data that resembles measurement data, without needing 
to record additional measurements in a real setup.  

This is done by generating simulation data for any number of additional operating 
conditions, and then correcting it to resemble real measurements. Not only is this 
beneficial because the effort to record additional measurements is eliminated but also 
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because machine learning modelling typically benefits from datasets that are larger in 
size and variety of conditions. 

3.5 Machine Learning 

The data assimilation and augmentation approach helps create an arbitrarily large dataset 
encompassing a wide range of operating conditions, which is then used to train a 
machine learning-based soft sensor.  

Our work differs from [Bi24] in that we tackle a different problem: predicting load levels 
of electrical machines as a regression problem whereas they classify the health status of 
motors and fault conditions such as broken rotors. 

4 Results 

We developed a soft sensor for motor output power as output power directly correlates to 
motor efficiency and would otherwise need to be measured intrusively during operation, 
for instance, attaching a torque meter to the motor shaft to record torque and rotational 
speed. 

4.1 Experimental Setup 

To collect measurement data, we use a setup similar to the one presented in a reference 
work [Bi24] i.e., a “deriving” motor is controlled to act as a constant load torque to our 
“test” motor. We use an IE4 15 kW, 50 Hz, 400 V delta-connected induction motor and 
increase the load in steps. At each load level, torque meter measurements are recorded 
along with corresponding magnetic flux sensor measurements. 

4.2 Data Generation, Assimilation, and Augmentation 

We increased the load in steps of about 10% from no load to 110% to collect a few 
measurements samples for each distinct load – we consider different samples at about 
the same load as a ‘loading group’. For each of these measurements, we use the 
simulator to generate equivalent data. For both, measurements and simulations, we 
computed a number of statistical features over a number of windows of the flux data. For 
each feature, we assimilated the simulation and measurements by computing the error of 
at each loading group and then estimating the mean (μ) and standard deviation (σ) of the 
error. 

In order to validate our approach, we leave out one loading group at a time and use the 
remaining available measurement data for data assimilation and augmentation. For the 
loading group we leave out, we generate simulation data, compute the same statistical 
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features and then correct them by adjusting the error estimated for the given loading 
point via data assimilation. This estimation and adjustment of error can be done an 
arbitrary number of times to augment the dataset. For instance, in our experiments, for 
every loading group, we have about 3 measurements, so we generated 5 augmented 
samples i.e., enough to increase the dataset but not so many that the machine learning 
model is biased by synthetic data in favor of real measurements.  

4.3 Model Training and Validation 

We trained machine learning models to learn loading from flux values, where loading 
denotes the ratio of output power to the rated power of the motor. The statistical features 
we used include mean, standard deviation, minimum, maximum, skewness, and kurtosis. 
We experimented with different modeling algorithms for regression such as linear 
models (linear and ridge) and ensemble models (random forest and gradient boosting). 
The best results we obtained were using gradient boosting regression with statistical 
features computed on both, X and Y components of flux. 

Validation of our modeling was done by performing leave-one-group-out cross-
validation [TAJ21], i.e., to determine how well our model would generalize to an unseen 
loading condition, we held out the measurements of that loading group. However, to 
realize the benefit of our data assimilation and augmentation, we included the simulation 
data we generated and corrected for the held-out loading group.  

For each held-out loading group, the model predictions for each available measurement 
sample corresponding to the loading group are compared against ground truth torque 
meter measurements. The absolute errors are computed for these loading values and 
predictions and their mean values are plotted (see Figure 2). 

 

 

Figure 2 Comparison of modelling error distributions 
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The results show an overall error reduction when we use measurement data combined 
with simulation data (‘Sim + Real’) over only measurement data (‘Real’). Most notable 
of these improvements include loading groups at the extreme ends. This is not surprising 
as machine learning models are naturally better suited for interpolation as opposed to 
extrapolation from the underlying training data distribution. 

5 Conclusion & Future Work 

Motivated by the need of transparency regarding energy efficiency of electrical 
machines and the challenges around respective data collection, an approach for 
developing data-driven soft sensors was pursued. The approach follows a 3-step process 
of collecting and processing data from both simulation and sensor measurements.  We 
implemented the proposed data-driven soft sensor approach in a specific industrial 
application and our results support the feasibility and the promise of the approach. 

Potential directions for further research may include investigating the relationship 
between data quantity and model performance as well as testing the use of such soft 
sensors for different applications. For instance, a soft sensor for machine losses may be 
trained using our approach, which could be used together with an optimizer to compute 
machine configuration parameters for a given set of operating conditions. 
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