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Abstract

In the past two decades, the lattice Boltzmann method (LBM) has emerged as an efficient
alternative to classical numerical techniques for simulating physiological flows, owing to
the advancement of modern supercomputers. This progress has opened up new avenues
for improving our understanding of the pathology and pathophysiology of various medical
conditions within the human body. This thesis focuses on investigating various aspects of
hemodynamics within intracranial aneurysms using our in-house numerical solver, called
ALBORZ.

Firstly, we address the challenge of complex geometry in patient-specific aneurysms by devel-
oping a curved boundary condition. This innovation significantly enhances the accuracy of
LBM simulations, allowing for the capture of intricate geometries with a lower computational
domain resolution.

The second focal point of our research is the non-Newtonian flow model. We propose a
robust modified central Hermite polynomial-based multiple relaxation time lattice Boltz-
mann model, which offers independent control over the relaxation of acoustic modes for
non-Newtonian fluids. Our primary application is in modeling blood flow within intracranial
aneurysms. This model employs a robust collision operator and enables implicit computa-
tion of non-linear stress, providing flexibility in terms of time step and grid size. Validation
is performed through well-documented configurations, demonstrating second-order conver-
gence. The results challenge the assumption of high shear rates within aneurysm sacs.

The final emphasis of this thesis is unsteady flow within patient-specific aneurysms, with a
focus on flow fluctuations. Flow instability has recently gained recognition as a promis-
ing hemodynamic metric for assessing the rupture risk of intracranial aneurysms. Our
study investigates flow fluctuations using both Newtonian and non-Newtonian fluid mod-
els in patient-specific intracranial aneurysms. High-resolution lattice Boltzmann simulations
are employed to quantify flow instabilities through power spectral density, proper orthogo-
nal decomposition, spectral entropy, and fluctuating kinetic energy of velocity fluctuations.
Furthermore, we compare these hemodynamic parameters between ruptured and unruptured
aneurysms. Our findings reveal that pulsatile inflow through the neck of ruptured aneurysms
is subject to hydrodynamic instability, resulting in high-frequency fluctuations around the
rupture location throughout the cardiac cycle. In other regions, flow instability is primarily
observed during the deceleration phase, gradually diminishing as the flow returns to a lam-
inar pulsatile state during diastole. Importantly, for unruptured aneurysms, the difference
between Newtonian and non-Newtonian outcomes is minimal. However, in the context of
ruptured cases, adopting the non-Newtonian model significantly increases the magnitude of
fluctuations within the aneurysm sac.

This thesis contributes to the understanding of hemodynamics in intracranial aneurysms,
providing insights into the role of non-Newtonian behavior and flow fluctuations in the
rupture risk assessment of these critical medical conditions.

Keywords: Lattice Boltzmann method, Intracranial aneurysms, Computational



fluids dynamics, Non-Newtonian flows, Flow instability



Zusammenfassung

In den letzten zwei Jahrzehnten hat sich die Lattice-Boltzmann-Methode (LBM) als ef-
fiziente Alternative zu klassischen numerischen Techniken für die Simulation physiologischer
Strömungen entwickelt, dies ist auf den Fortschritt moderner Supercomputer zurückzuführen.
Dieser Fortschritt hat neue Möglichkeiten eröffnet, unser Verständnis für die Pathologie
und Pathophysiologie verschiedener medizinischer Zustände im menschlichen Körper zu
verbessern. Diese Dissertation konzentriert sich darauf, verschiedene Aspekte der Hämo-
dynamik innerhalb intrakranieller Aneurysmen mithilfe unseres hausinternen numerischen
Lösers ALBORZ zu untersuchen.

Zunächst gehen wir auf die Herausforderung der komplexen Geometrie in patientenspezi-
fischen Aneurysmen ein, indem wir eine gekrümmte Randbedingung entwickeln. Diese In-
novation verbessert signifikant die Genauigkeit von LBM-Simulationen und ermöglicht die
Erfassung komplexer Geometrien mit einer geringeren Auflösung des Berechnungsbereichs.

Der zweite Schwerpunkt unserer Forschung liegt auf dem nicht-newtonschen Strömungsmod-
ell. Wir schlagen ein robustes, auf zentralen Hermite-Polynomen basierendes LBM mit
mehreren Relaxationszeiten vor, das eine unabhängige Steuerung der Relaxation akustis-
cher Moden für nicht-newtonsche Fluide ermöglicht. Unsere Hauptanwendung liegt in der
Modellierung des Blutflusses innerhalb intrakranieller Aneurysmen. Dieses Modell verwen-
det einen robusten Kollisionsoperator und ermöglicht die implizite Berechnung von nicht-
linearem Stress, was Flexibilität in Bezug auf Zeitschritt und Gittergröße bietet. Die Vali-
dierung erfolgt durch gut dokumentierte Konfigurationen, die eine Konvergenz zweiter Ord-
nung zeigen. Die Ergebnisse stellen die Annahme hoher Schergeschwindigkeiten innerhalb
von Aneurysma-Säcken in Frage.

Der letzte Schwerpunkt dieser Arbeit liegt auf der instationären Strömung innerhalb pa-
tientenspezifischer Aneurysmen mit Fokus auf Strömungsschwankungen. Strömungsinsta-
bilität wird in letzter Zeit als vielversprechende hämodynamische Metrik für die Bewer-
tung des Rupturrisikos intrakranieller Aneurysmen anerkannt. Unsere Studie untersucht
Strömungsschwankungen unter Verwendung sowohl newtonscher als auch nicht-newtonscher
Strömungsmodelle in patientenspezifischen intrakraniellen Aneurysmen. Hochauflösende
Lattice-Boltzmann-Simulationen werden verwendet, um Strömungsinstabilitäten durch Leis-
tungsdichtespektrum, orthogonale Zerlegung, spektrale Entropie und fluktuierende kinetis-
che Energie von Geschwindigkeitsfluktuationen zu quantifizieren. Darüber hinaus vergle-
ichen wir diese hämodynamischen Parameter zwischen rupturierten und nicht-rupturierten
Aneurysmen. Unsere Ergebnisse zeigen, dass der pulsierende Zufluss durch den Hals von
rupturierten Aneurysmen einer hydrodynamischen Instabilität unterliegt, die zu hochfre-
quenten Schwankungen um die Rupturstelle während des gesamten Herzzyklus führt. An an-
deren Stellen wird die Strömungsinstabilität hauptsächlich während der Verzögerungsphase
beobachtet, die sich allmählich vermindert, und die Strömung kehrt während der Diastole
zu ihrem ursprünglichen laminaren pulsierenden Zustand zurück. Insbesondere für nicht-
rupturierte Aneurysmen ist der Unterschied zwischen newtonschen und nicht-newtonschen
Ergebnissen minimal. In rupturierten Fällen führt jedoch die Anwendung des nicht-newtons-



chen Modells zu einer erheblichen Zunahme der Schwankungen innerhalb des Aneurysma-
Sacks.

Diese Dissertation trägt zum Verständnis der Hämodynamik in intrakraniellen Aneurysmen
bei und bietet Einblicke in die Rolle des nicht-newtonschen Verhaltens und der Strömungss-
chwankungen bei der Bewertung des Rupturrisikos dieser kritischen medizinischen Zustände.

Schlüsselwörter: Lattice-Boltzmann-Methode, Intrakranielle Aneurysmen, Nu-
merische Strömungsdynamik, Nicht-newtonsche Strömungen, Strömungsinsta-
bilität
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1.1. Motivations and Objectives

1.1 Motivations and Objectives

Cardiovascular disease remains a leading cause of mortality in developed countries [10]. Com-
prehending the behavior of blood within the vascular system, specifically its hemodynamics,
is of paramount importance for gaining insights into the origin, advancement, diagnosis, and
management of vascular disorders. This knowledge is instrumental in addressing conditions
like aneurysms, arteriovenous malformations, and atherosclerosis.

The core concept of this thesis revolves around the increasing interest in modeling hemody-
namics within intracranial aneurysms using various numerical tools. Traditional interven-
tional treatments, including procedures like clipping, coiling, and the use of flow diverters,
can be less justified due to their significant medical and financial costs, as well as the risk of
aneurysm rupture and related complications during surgery. Instead, hemodynamic analysis
plays a pivotal role in assessing the rupture risk of aneurysms. There is mounting evidence
suggesting correlations between hemodynamic features and the likelihood of rupture. Conse-
quently, it becomes imperative to conduct a thorough benefit-risk assessment for each patient
before proceeding with any therapeutic interventions.

Furthermore, given the high computational efficiency, parallel nature, suitability for large-
scale simulations, and ease of handling complex geometric structures, the lattice Boltzmann
method (LBM) presents a compelling approach for investigating flow phenomena in patient-
specific aneurysms. Hence, this thesis is primarily driven by the aspiration to investigate the
possible presence of transitional flows within intracranial aneurysms. To accomplish this,
it leverages our in-house numerical tool that incorporates a parallel fluid solver and high-
performance computing, with the intent of enhancing the comprehension of hemodynamics
in intracranial aneurysms. The ultimate objective of this research is to facilitate clinical
practice by offering an efficient and user-friendly toolkit for real-time decision support.

1.2 Thesis outline

This thesis makes some contributions to the medical community by simulating the hemo-
dynamics in intracranial aneurysms using the lattice Boltzmann method (LBM). All cases
are carried out with our in-house LBM solver (ALBORZ). The thesis is organized in the
following structure:

Chapter 2 (Lattice Boltzmann Method) serves as a short introduction to its theoretical
method. It covers various aspects, starting with the historical background, tracing the
evolution of LBM. It delves into the governing equations, specifically the discretized lattice
Boltzmann equation and collision models, which form the core of the method. Additionally,
this section explores the extension of LBM to non-Newtonian viscosity models, highlighting
its versatility in simulating complex real blood shear-thinning behaviors. Furthermore, the
section reviews the various boundary conditions employed in this study. One of the most
important boundary conditions is the time-dependent boundary condition at inlet which
is essential for capturing the dynamic nature of blood flow. The other one is to address
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1.3. Hemodynamics

the intricate geometries of patient-specific aneurysms by presenting the curved boundary
condition as an effective modeling approach.

Chapter 3 (Validation Studies) is dedicated to a series of benchmarking studies that validate
the accuracy and reliability of the computational simulations employed in the thesis. These
benchmarking exercises serve as essential pillars supporting the credibility of our numerical
methods. Firstly, our simulation results are meticulously compared with in-vitro experimen-
tal results. Secondly, we tackle the FDA nozzle benchmark, which encompasses a wide range
of flow regimes, from laminar to transitional and mildly turbulent flows. Successfully repli-
cating this benchmark demonstrates the versatility and robustness of the numerical solver
across different flow conditions. Finally, we focus on validating the non-Newtonian viscosity
model employed in our simulations. This validation is achieved through comparisons with
classical flow scenarios: Hagen-Poiseuille flow, and lid-driven cavity flow. These canoni-
cal flows provide an excellent foundation for assessing the model’s ability to capture the
shear-thinning behavior of non-Newtonian blood. Collectively, these benchmarking studies
not only validate our numerical solver but also ensure that the numerical results obtained
through this thesis are reliable and representative of real-world fluid dynamics.

Chapter 4 (Non-Newtonian Effect) delves into the significance of non-Newtonian effects in
the context of intracranial aneurysms. The study encompasses three distinct aneurysm cases:
one idealized and two patient-specific. Four different non-Newtonian viscosity models are
involved. By including these variations, we ensure a thorough exploration of the topic.

Chapter 5 (Flow Instability) is dedicated to establishing the connection between aneurysm
rupture and flow fluctuations within the sac. The impact of various factors, including reso-
lution, aneurysm type, non-Newtonian models, and Reynolds number, on the likelihood of
rupture will be thoroughly examined in this section.

Chapter 6 (Conclusions and Outlook) serves as the conclusion of this thesis, offering a com-
prehensive summary and discussion of the research topics and findings presented throughout.
Additionally, it outlines potential future avenues of research, with a particular focus on sim-
ulating thrombosis within intracranial aneurysms.

1.3 Hemodynamics

1.3.1 Blood circulation

The exploration of blood flow within the human circulatory system, often referred to as the
cardiovascular system, has become a focal point of interest in the fields of bioengineering and
medicine. This heightened focus is primarily attributed to the fact that a significant propor-
tion of human fatalities are directly linked to issues related to blood supply, encompassing
blood vessels, arteries, tissues, and the various phases of the cardiac cycle. Conditions such
as heart attacks, strokes, and ischemic chest pain, among others, can be traced back to
diseases affecting the circulatory system. Understanding and analyzing blood flow dynamics
in the cardiovascular system is pivotal in preventing and managing these life-threatening
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1.3. Hemodynamics

conditions.

In the cardiovascular system, blood is a complex mixture of a variety of cells and proteins
by which wastes and nutrients are transported. Typically, red blood cells make up approxi-
mately 40% of blood by volume, which increases the viscosity of blood and affects its behavior
as small semisolid particles. Normally, blood is about four times more viscous than water
but its viscosity is not constant at all flow rates. In the microcirculatory system, blood
exhibits non-Newtonian behavior, which is more evident at very low shear rates in small
branches and capillaries as red blood cells clump together into larger particles. However,
blood behaves like a Newtonian fluid in larger arteries with a diameter greater than 1 mm
and the viscosity can be considered constant there [11].

On the other hand, blood flow and pressure in the arterial system are unsteady due to the
cyclic nature of the heart, which creates pulsatile conditions between the aorta and the veins.
The heart pumps blood out during systole and rests during diastole, resulting in alternating
cycles of blood ejection and filling. As a result, pressure and flow exhibit characteristic
pulsatile shapes that vary in different parts of the arterial system. The pulsatile period of
blood is close to 1 s under normal physical conditions.

These intricate characteristics of blood, including non-Newtonian behavior and pulsatile flow,
significantly increase the complexities of studying hemodynamics within the cardiovascular
system.

1.3.2 Intracranial aneurysms

A common life-threatening disease, coming with intracranial aneurysms (IAs), is constituted
by local malformations of the cerebral vasculature and often arise at a branch site on a
parent artery. It occurs with an estimated prevalence of approximately 3% in the western
population [12]. According to the brain aneurysm foundation, a cerebral aneurysm ruptures
every 18 minutes in the United States, and 30,000 people suffer from a rupture per year.
It is known that aneurysms can grow and either develop into a stable state, or rupture if
the hemodynamic forces exceed the vascular resistance. A Subarachnoid hemorrhage (SAH)
appears as a region of increased density in the subarachnoid spaces of the basal and Sylvian
cisterns [13], which is one of the most fatal consequences. Although studies [14, 15] reported
that a SAH occurs with a probability of only around 0.013% in the world population, over
85% of these cases are caused by IA rupture and the fatality rates are very high, between
32% and 67% [16]. There are three main types of intracranial aneurysms: saccular, fusiform,
and micotic type.

1. Saccular type: It comprises 90% of intracranial aneurysms and it develops as a thin-
walled sac protruding from the cerebral arteries of the circle of Willis or its major
branches. Figure 1.1 illustrates the scheme of the circle of Willis. Approximately 85%
of saccular aneurysms are found protruding from the arteries of the circle of Willis. The
anterior communicating artery (ACoA) is the most frequent site (30-35%), followed by
the internal carotid artery (ICA, 30%) and the middle cerebral artery (MCA, 22%).
Aneurysms of the posterior circulation take up approximately 8-10% and the basilar
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1.3. Hemodynamics

Figure 1.1: Schematics of blood supply to the brain (Left) [1]. The frontal view shows the
primary arteries in the brain. The top view shows the structure of the Circle of Willis (Right,
from https://teachmeanatomy.info/neuroanatomy/vessels/arterial-supply/).

tip is the most common location of origin. Saccular aneurysms can be classified into
three types based on their size: small (<10 mm), large (10-25 mm), giant (> 25 mm).
They can also be further classified based on neck width: small neck (<4 mm) and large
neck (>4 mm). These anatomical features are important for deciding the therapeutic
approach and intraoperative risk [17].

2. Fusiform type: It is an abnormal dilation of arteries caused by atherosclerosis and
are typically found in elder patients. They can result in ischemia or mass effect, but
rupture is uncommon. Dissecting aneurysms, on the other hand, are rare and have
a poor natural prognosis in patients presenting with SAH due to a high rebleeding
rate [18].

3. Mycotic type: It is extremely rare and develops from infections in the arterial wall,
often originating from bacterial endocarditis. These aneurysms primarily affect the dis-
tal branches of cerebral arteries and appear as fusiform and eccentric dilations without
the neck typically seen in saccular aneurysms [19].

Ninety percent of aneurysms become symptomatic due to rupture, leading to SAH, with the
highest incidence occurring between the ages of 40 and 60. The CT angiography (CTA)
is considered the gold standard for diagnosing SAH. The original CT pattern can provide
valuable information about the source of the ruptured aneurysms in most cases. Focal blood
layers are typically present near the ruptured aneurysm and can assist in determining which
vessel to investigate using arteriography. Around 15-20% of patients with spontaneous SAH
exhibit normal findings on intra-arterial digital subtraction angiography (IADSA), indicating
an unidentified source of bleeding.
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1.3. Hemodynamics

1.3.3 Medical imaging techniques

Imaging is indeed essential for the diagnosis, surveillance, treatment, and post-treatment
follow-up of intracranial aneurysms. IAs are increasingly being detected due to the widespread
application of advanced imaging techniques. On the other hand, accurate numerical simula-
tions of intracranial aneurysms heavily rely on precise imaging data for constructing patient-
specific models and boundary conditions. In this context, we will provide an overview of the
common imaging techniques used to detect aneurysms:

• Computed tomography angiography-CTA: With the introduction of spiral and
multi-slice CTA, examination times have been substantially reduced. As a result, three-
dimensional CTA has been suggested as a supplementary technique to non-contrast
CT for investigating SAH. To visualize the intracranial arteries adequately, the 3D-
CTA examination should encompass the region from the first vertebral body to the
vertex. This wide coverage is essential to capture the relevant anatomical structures
and pathology associated with SAH.

Achieving good quality CTA not only relies on appropriate acquisition parameters but
also on post-processing techniques, which should be performed on a fast workstation
capable of real-time 3D volume rendering. There are several methods available for
analyzing the CTA volume [20]. First and foremost, it is essential to examine the
source images to identify the aneurysms and partial thrombosis before proceeding with
3D processing. The average sensitivity of CTA for detecting IAs has been reported
to be around 90%. However, the sensitivity decreases to 61% for aneurysms ≤ 3 mm
while the detection rate increases to 96% for larger diameter aneurysms [21]. In some
centers, CTA has almost entirely replaced IADSA in patients with SAH [22, 23].

• Magnetic resonance angiography-MRA: While Magnetic resonance angiography
(MRA) has shown promising results in detecting aneurysms in acute SAH [24], its
practicality is still often limited in severely affected patients. MRA has drawbacks
such as long examination times, lower spatial resolution compared to digital subtrac-
tion angiography (DSA), high cost, susceptibility to motion artifacts, and difficulties in
visualizing vessels with low-flow conditions. Intracranial MRA is preferred as a screen-
ing modality for specific high-risk groups rather than the general population. These
high-risk groups include individuals with connective tissue disorders such as fibromus-
cular dysplasia, Ehlers-Danlos type IV and neurofibromatosis type 1. MRA is also
recommended for families with two or more first-degree relatives who have experienced
SAH [25]. However, MRA offers the advantage of high sensitivity to flow phenom-
ena, enabling visualization of cerebral vessels without the need for contrast medium
administration.

Currently, three main MRA techniques are commonly employed: time-of-flight (TOF),
phase-contrast (PC) and gadolinium-enhanced MRA. These techniques involve the ac-
quisition of flow-sensitive images of intracranial vessels in either 2D or 3D, with back-
ground suppression, and the generation of angiographic projections to visualize the
intracranial vasculature. 3D acquisitions are preferred for imaging the intracranial ar-
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teries due to lower gradient amplifier demands, enabling shorter echo times and higher
signal-to-noise ratios, which can contribute to improved spatial resolution. As phase-
contrast MRA is characterized by longer acquisition times and lower spatial resolution,
3D TOF MRA has largely replaced phase-contrast MRA in screening examinations.
Spatial resolution plays a crucial role in accurately visualizing smaller aneurysms and
reducing the impact of turbulent flow in larger aneurysms. However, compared to
CTA, MRA has the disadvantage of limited coverage of the intracranial vasculature.
The development of MRA examination strategies is indeed challenging due to the need
to balance image resolution, anatomical coverage and acquisition time, which involves
trade-offs among these factors. Gadolinium-enhanced MRA has recently emerged as
a potential method for assessing larger aneurysms that exhibit turbulent flow. Tradi-
tional techniques often underestimate the size of such aneurysms [26]. Contrast-phase
MRA is particularly appealing as it offers the possibility of conducting MR exami-
nations with both extensive coverage volume and high spatial resolution. However,
the widespread adoption of contrast-enhanced MRA has been limited so far. This is
primarily due to the challenge of differentiating contrast-enhanced proximal arteries
from the enhanced venous structures near the cavernous segment of the internal carotid
artery.

In summary, medical imaging, particularly through CTA and MRA, plays a pivotal role in
the comprehensive management of intracranial aneurysms. CTA and MRA stand out as
noninvasive and cost-effective imaging techniques. CTA, in particular, offers the advantage
of lower radiation exposure compared to conventional diagnostic angiography, while MRA
eliminates ionizing radiation altogether. Future research should aim to enhance imaging
methodologies while considering healthcare efficiency and patient care quality.
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2.1. Overview

2.1 Overview

Fluid mechanics is a fascinating branch of physics that investigates the behavior of fluids
and the forces exerted on them. In the realm of Computational Fluid Dynamics (CFD),
there are typically three distinct approaches employed to simulate the transport equations
of the fluids. These approaches are categorized based on the available time and length scales
revlevant to the physical domain being studied.

1. Continuum Approach (Top-Down): This approach provides a macroscopic de-
scription of fluid behavior using partial or ordinary differential equations for the con-
servation of mass, momentum, and energy in the system. For instance, the well-known
Navier-Stokes Equations (NSE) are often employed to describe the momentum con-
servation in fluid flows. These equations are further simplified to the Navier-Stokes-
Poisson equation in incompressible cases. However, obtaining the analytical solutions
to these differential equations is exceptionally challenging due to the intricate nature of
real-world phenomena. Consequently, alternative numerical techniques such as finite
element, finite difference, and finite volume methods are used to discretize the differ-
ential equations into a system of algebraic equations. These algebraic equations are
then solved iteratively by employing the appropriate initial and boundary conditions.

2. Microscopic Approach (Bottom-Up): Compared to the macroscopic method,
this approach considers fluids as a vast collection of atoms or molecules that inter-
act through collisions and exhibit random motion. In this microscopic scale of study,
the focus is on the behavior of individual particles rather than macroscopic variables.
The forces between particles can be described using Newton’s second law. The position
of each particle is updated by solving ordinary differential equations. Statistical me-
chanics provides a powerful framework for connecting the microscopic and macroscopic
properties of the fluid. For instance, macroscopic variable pressure is related to the
frequency of collisions with the walls while the temperature is obtained from the kinetic
energy of the particles. However, this method is primarily applicable to studying very
small domains, typically on the sub-micrometer scale due to the enormous number of
particles present in even a small fluid domain. Consequently, the analysis of large-scale
systems becomes virtually impractical using this approach.

3. Mesoscopic Approach (Hybrid): In recent years, an alternative approach known
as the LBM has emerged for simulating a wide variety of fluid flow, which bridges the
gap between the continuum and microscopic approaches above mentioned by consider-
ing molecular dynamics. LBM works by solving distribution functions that represent
the number density of molecules with certain discrete velocities. These distribution
functions are updated, typically through an explicit quasi-linear collision-propagation
process. Macroscopic variables like pressure, velocity, and velocity gradients are then
computed as moments of these distribution functions. The fundamental idea behind
the LBM is to construct simplified kinetic models that incorporate only the essential
physics of microscopic or mesoscopic processes, ensuring that the macroscopic aver-
aged properties adhere to the desired macroscopic equations. The LBM offers several
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highly valued features such as simplicity, easy handling of complex geometries, and
excellent parallelization efficiency. Due to these advantages, the LBM has experienced
rapid development over the last few decades and has found extensive application in
fluid dynamics simulations across various domains.

CFD is known to be a demanding field in terms of computational resources and is sensi-
tive to the numerical scheme employed. Traditional numerical methods used in CFD are
computationally heavy and rely on relatively fastidious discrete operations, especially when
the geometry is complex. The LBM is an alternative numerical technique that gained in-
creasing attention, particularly so over the last two decades. Its popularity is due to the
simplicity of the involved numerical operations, their locality – ensuring excellent porta-
bility to parallel computing architectures – and the relative ease at which complex geome-
tries can be treated [27]. These strengths combined with its ability to model mechano-
biological phenomena [28, 29], make the LBM a method of choice for the bio-medical com-
munity [30, 31, 32, 33, 34, 35, 36, 37, 38].

2.2 Background

LBM originated from lattice gas automata (LGA), used to track the movement of discrete
gas particles on a regular lattice in the late 1980’s [39]. The collision process of those discrete
particles follows specific rules. These particles meet at lattice nodes and are subsequently
redistributed in a manner that guarantees the conservation of mass, momentum, and energy.
In contrast, the streaming of these particles is a more straightforward and simpler process.
The first LGA model, known as the HPP model, was introduced by Hardy et al. [40] and
was based on a square lattice. However, this HPP model lacks sufficient symmetry and
failed to yield the NSE in the macroscopic limit. To address this limitation, the FHP model
was introduced [41], which incorporated hexagonal symmetry and allowed for the modeling
of various two-dimensional geometries. Frisch et al. [39] later addressed the issue of three-
dimensional modeling within the framework of LGA. Despite these advancements, both
models had two major limitations. The first is that the Boolean nature of LGA introduced
statistical noise and the other one is that Galilean invariance could not be recovered, due to
its discrete nature of the lattice. Additionally, the pressure, which was determined by the
equation of state, exhibited an explicit and unphysical dependence on velocity [42].

To overcome these limitations, the LBM introduced a significant change by replacing the
Boolean variable of LGA with a real-valued distribution function [43, 44]. This distribution
function represents the probability of finding a particle with a specific velocity at a given
lattice site. By using a continuous distribution function, LBM could handle a wider range
of fluid behaviors and address the limitations of LGA. On the other hand, a Maxwell-type
distribution function was introduced, leading to noise suppression, Galilean invariance, and
velocity-independent pressure. Furthermore, the collision operator was further simplified
by using a constant relaxation parameter, resulting in the well-known single relaxation time
(SRT) with the Batnagar-Gross-Krook (BGK) operator. Later, He and Luo [45] derived LBM
directly from the Boltzmann equation, providing a theoretical foundation for the method.
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2.3. The Boltzmann equation

2.3 The Boltzmann equation

A statistical description of a system can be obtained using a distribution function, denoted
as f(x, ξ, t). Here, f(x, ξ, t)dxdξdt represents the number of molecules positioned between
x and x + dx, with velocities between ξ and ξ + dξ. When an external force F acts on
a gas molecule of unit mass, it changes the molecule’s velocity from ξ to ξ + Fdt and its
position from x to x+ ξdt. In the absence of collisions between the molecules, the number
of molecules,f(x, ξ, t), before the application of the external force, is equal to the number
of molecules after the disturbance,f(x + ξdt, ξ + Fdt, t + dt). This implies that in the
absence of collisions, the distribution function remains unchanged. Hence,

f (x+ ξdt, ξ + F dt, t+ dt) dξdx− f (x, ξ, t) dξdx = 0 (2.1)

On the other hand, when collisions occur between the molecules, the number of molecules
within the infinitesimal volume (dx) will be affected. The collisions lead to a redistribution
of the molecules in both position and velocity space. This net difference, which represents
the rate of change between the initial and final states of the distribution function, is referred
to as the collision operator, denoted as Ω.

Therefore, the equation governing the evolution of the distribution function can be written
as:

f (x+ ξdt, ξ + F dt, t+ dt) dξdx− f (x, ξ, t) dξdx = Ω(f)dξdxdt (2.2)

Dividing the above equation Eq. 2.2 by dξdxdt in both sides and taking the limit as dt
approaches 0, we obtain:

lim
dt→0

f (x+ ξdt, ξ + F dt, t+ dt)− f (x, ξ, t)

dt
=

df (x, ξ, t)

dt
= Ω(f) (2.3)

We can expand the expression f (x, ξ, t) into a total derivative form with respect to ξ,x, t,
as follows:

df

dt
=

∂f

∂t
+

∂f

∂ξ

dξ

dt
+

∂f

∂x

dx

dt

=
∂f

∂t
+

∂f

∂ξ

F

m
+

∂f

∂x
ξ

(2.4)

where m is the molecular mass.
Combining Eq. 2.3 and Eq. 2.4, the Boltzmann transport equation can be rewritten as,

∂f

∂t
+

∂f

∂ξ

F

m
+

∂f

∂x
ξ = Ω(f) (2.5)

In the absence of an external force, the Boltzmann equation can be expressed as:

∂f

∂t
+ ξ · ∇f = Ω(f) (2.6)

It is essential to recognize that while the force-free Boltzmann equation can be categorized
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as a hyperbolic partial differential equation, it differs significantly from classical hyperbolic
PDEs in that it operates in D + D + 1 dimensions. Since the equation primarily governs the
advection of the distribution function f by the particle velocity ξ, the numerical schemes can
be designed to handle the advection processes efficiently such as finite differences or finite
volumes. Moreover, the simplicity of the source term, which only relies on the local value of
f , contributes to the ease of implementation. It means that the computation of the source
term does not require complicated calculations involving gradients or derivatives of f . This
simplifies the numerical algorithm and makes it more computationally efficient.
The relationship between Eq. 2.6 and macroscopic quantities, such as fluid density ρ, fluid
velocity u and internal energy e, can be expressed as follows

ρ(x, t) =

∫
fdξ (2.7a)

ρ(x, t)u(x, t) =

∫
ξfdξ (2.7b)

ρ(x, t)e(x, t) =
1

2

∫
(ξ − u)2fdξ (2.7c)

Equations 2.7a, 2.7b, and 2.7c express conservation of mass, momentum, and energy, respec-
tively.

2.3.1 The lattice Boltzmann equation

In fact, the Boltzmann equation presents a challenge in analytical solutions due to its
complexity, as the distribution function fα(x, ξ, t) depends on seven parameters: position
(x, y, z), particle velocity (ξx, ξy, ξz) and time (t). However, an alternative approach can be
pursued by solving the Boltzmann equation numerically, which can provide an indirect so-
lution to the NSE. The numerical scheme for solving the Boltzmann equation is surprisingly
simple. By discretizing the Boltzmann equation in time, physical space, and velocity space,
we arrive at the lattice Boltzmann equation (LBE).

fα (x+ cαδt, t+ δt) = fα (x, t) + δtΩα, (2.8)

where fα denotes the probability of finding a particle with discrete velocity cα at a position x
at time t, which is often referred to as the particle population, cα the corresponding particle
velocities, δt the time-step size and Ωα the discretized particle collision operator. The indices
which run from α = 0 ... (N − 1) denote the discrete velocity directions depending on the
chosen stencil. More details on the stencils can be found in Appendix A.
The discrete Boltzmann equation has several advantages:

• Simplicity: The discrete Boltzmann equation breaks down the complex Boltzmann
equation into a discrete form on a lattice, which simplifies the mathematical formula-
tion, making it easier to understand.

• Handling Complex Boundaries: The LBM excels in handling complex boundaries and
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geometries. The discretization of the Boltzmann equation is performed on a lattice,
which can be easily adapted to incorporate complex boundaries and irregular geome-
tries. The lattice structure naturally captures the interaction between fluid particles
and boundaries, allowing for accurate simulation of flows in complex geometries such
as medical flows with complex boundary conditions.

• Exact Advection: The advection term, which describes the transport of the distribu-
tion function fα, is handled naturally and accurately through the streaming step in
the lattice Boltzmann equation without the need for complicated iterative numerical
schemes or additional approximation errors. This feature contributes to the accuracy
and efficiency of the LBM.

Similar to the distribution function discussed above, the macroscopic variables such as den-
sity (ρ), momentum (ρu) at a given position x and time t can be obtained by weighted sums,
known as moments, of the discrete velocity distribution function fα.

ρ(x, t) =
∑

fα (2.9a)

ρ(x, t)u(x, t) =
∑

cαfα (2.9b)

2.3.2 Approximations to the collision term

2.3.2.1 Single relaxation time model

One of the pioneering approximations for modeling the collision term in the Boltzmann
equation was introduced by Bhatnagar, Gross, and Krook in [46]. This approach utilizes
a linear relaxation operator to approximate the effects of collisions, aiming at bringing the
system closer to an equilibrium state. This BGK approximation is considered one of the
oldest, simplest, and most efficient methods for simulating fluid flow using the LBM.

Ωα =
1

τ

(
f (eq)
α − fα

)
, (2.10)

where τ is the relaxation time. f
(eq)
α is the equilibrium distribution function (EDF). The EDF

used in LBM solvers is typically approximated as a truncated expansion (using a Taylor-
McLaurin expansion in the limit of vanishing Mach numbers [45] or a Hermite expansion [47])
to resemble the Maxwell-Boltzmann distribution. It is important to note that the specific
form of this approximation may depend on the dimensionality of the lattice, and in the case
of a 2D lattice, the equilibrium distribution function closely matches the Maxwell-Boltzmann
distribution. Therefore, it can be written as [48]:

f (eq)
α = wα

N∑
n=0

1

n!c2ns
a(eq)
n : Hα,n, (2.11)
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where wα are weights associated to each discrete population, cs is the non-dimensional sound
speed at the reference temperature tied to the time-step and grid sizes, Hα,n the Hermite

polynomial of order n and a
(eq)
n the Hermite coefficient of the corresponding order.

Shortcomings The form of the LBM most commonly used in medical applications, i.e.
with the SRT collision operator and a second-order EDF, is subject to a number of well-
documented shortcomings. It can be readily shown through a multi-scale perturbation anal-
ysis, that at the macroscopic scale, the viscous stress tensor recovered by the second-order
EDF admits deviations from the target Newtonian stress scaling as O(Ma3) [49]. In the LBM
literature this deviation is usually referred to as the Galilean invariance problem (rightly so
as it ties the effective kinematic viscosity to local velocity) of the stress tensor. It can readily
be shown that the Galilean invariance of the viscous stress tensor can be restored by ex-
tending the Hermite expansion of the EDF to higher orders, specifically for the off-diagonal
components, reaching at least order three. For the bulk viscosity, however, given the bias
between the first and third-order moments introduced by the limited number of discrete
velocities, one must introduce an additional correction term. The bulk viscosity not being
of much interest nor relevance in the near-incompressible regime, it will not be discussed
further. Detailed numerical and theoretical proofs can be found in [50, 51, 52, 53, 54].

One of the major advantages of the LBM is the way boundary conditions can be implemented.
The bounce-back rule is one of the most popular approaches to enforce wall, velocity and
pressure boundary conditions. However, it has been shown that when used with the SRT op-
erator it is subject to numerical artifacts such as the (non-dimensional) viscosity-dependence
of the solid wall position [55]. This shortcoming can be readily proven through asymptotic
analysis of the corresponding system of discrete equations or simple permeability studies of
flow in porous media [49, 56]. The seminal work of I. Ginzburg and subsequent development
of a collision operator with a wall position independent of the relaxation coefficient led to
the two relaxation time (TRT) operator [57]. The so-called generalized collision operator
first proposed in [44, 58] was later parametrized to fix its shortcomings [55]. It has been
shown that in order to control the wall position independently from the viscosity, at least
two different relaxation coefficients are needed (one for odd, one for even moments).

Last but not least, it is common knowledge that the classical SRT model is very sensitive
to the Fourier number defined as Fo = νδt/δ

2
x. It is practically unusable for Fo < 0.005 as

shown by [48, 53, 59]. Extension of the operation range of the LBM has been the topic of
a wide number of articles over the past decades. Continuous effort has been dedicated to
developing more advanced collision operators resulting in a plethora of models such as the
multiple relaxation time (MRT) models based on either raw [60] or central moments [61],
regularized models [62], entropic operators [63, 64, 65], each of which have been shown to
lift this restriction to different extents.

Stability and accuracy While the BGK model represents the simplest form of a collision
operator, it also faces challenges related to accuracy and stability under certain conditions.
For large Reynolds number (Re) flow, stability issues can arise when the viscosity is signifi-
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cantly reduced (τ close to 1/2) or the flow velocity is too large (u ̸≪ cs). By decreasing the
grid size, the spatial resolution of the simulation is enhanced, allowing for mitigating stability
problems. However, it is important to note that increasing grid resolution also leads to in-
creased computational expenses. Therefore, a trade-off between stability and computational
cost needs to be considered when deciding to decrease the grid size in such cases.

The accuracy of the numerical simulations using the BGK collision model depends on the
choice of relaxation time τ . For instance, when employing the standard bounce-back algo-
rithm for wall boundaries, the wall location is influenced by the value of τ . This becomes
particularly problematic for simulations in complex aneurysm geometries. The reason is
that the second-order Hermite series expansion is insufficient to ensure Galilean invariance,
resulting in an error term O(u3) in the macroscopic dynamics.

To address these limitations, the improvement of accuracy and stability in the LBM can be
achieved by revising the collision step. Two such collision operators have been proposed(MRT
and TRT), which provide greater degrees of freedom in controlling the relaxation process
while there is only one relaxation rate in BGK collision operator.

2.3.2.2 Multiple relaxation time model

Compared to the BGK collision operator, the MRT collision operator is a generalization of
the BGK model and its formulation allows to relax the distribution function in a space of
linearly independent base functions, typically moments of the distribution function. Since
the classical BGK collision operator with one relaxation coefficient has stability issues for
vanishing non-dimensional viscosities, the MRT model is proposed. The fundamental steps
of the MRT collision operator are presented below:

• Transform populations to moment space.

• Relax the moments toward equilibrium.

• Transform moments back to population space.

Raw moment The raw MRT emerged and gained prominence in the early 2000s [60, 66].
The fundamental concept behind this approach is a mapping from the population in phase
space to moment space via a transformation matrix. This distinctive approach allows for the
independent manipulation of individual relaxation rates for linearly independent moments.
The introduction of additional degrees of freedom in this method proves advantageous from
both a physical and numerical standpoint [67]. In this framework, the BGK operator is
expressed as:

Ωα = M−1SM
(
f (eq)
α − fα

)
, (2.12)

where M is the moments transform matrix, and S represents the relaxation coefficients
matrix, which is primarily defined as a diagonal matrix with elements of 1/τα, where τα
controls the relaxation rate of the corresponding raw moment.
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The moments mα can be defined as follows:

mα =

q∑
β=0

Mα,βfβ (2.13)

The conversion between the distribution function and moment spaces is accomplished through
the use of a transformation matrix, denoted as M, and its inverse, denoted as M−1.

The general form can be expressed as follows, incorporating the position variables (x, y, z):

mxiyjzk =

q∑
α=0

ciα,xc
j
α,yc

k
α,zfα (2.14)

For the D2Q9 stencil, the following moments can be utilized:

m =
(
m0 mx my mxy mx2 − c2s my2 − c2s mx2y − c2smy mxy2 − c2smx mx2y2 − c2s(mx2 +my2) + c4s

)
(2.15)

Considering terms up to the second order in the Hermite expansion, the corresponding
equilibrium moments are given by:

m(eq) =
(
ρ ρux ρuy ρuxuy ρu2

x ρu2
y 0 0 0

)
(2.16)

Central moment In the central moment method, the moments are taken in a reference
frame that is moving with the macroscopic velocity. This transformation allows for better
separation of the equilibrium and non-equilibrium parts of the distribution function, leading
to improved accuracy and stability. It provides the additional degrees of freedom necessary to
fix the wall position in the bounce-back algorithm. The enhanced spectral properties of the
collision operator do not only remove some of the issues inherent to second-order EDF-based
SRT operators but can effectively allow for cheaper simulations of a given configuration as
they can allow for a reduction of the number of grid-points and discrete time-steps.

This approach follows a similar paradigm to raw MRT while a distinct set of moments is
employed, namely the central moments represented as m̃x,y,z, and defined as follows [61, 68]:

m̃xiyjzk =

q∑
α=0

(cα,x − ux)
i(cα,y − uy)

j(cα,z − uz)
kfα (2.17)

The MRT collision operator in central Hermite moments (also known as cascaded) space with
a full Hermite expansion of the EDF has been shown to have better numerical properties
than other choices of moments space. The collision operator can be written as follows in the
MRT approach.

Ωα = M−1N−1SNM
(
f (eq)
α − fα

)
+ Ξi (2.18)
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whereM andM−1 are the moments transform tensor and its inverse, S is the diagonal tensor
of relaxation rates. The matrix N is introduced that serves to transform raw moments into
central moments:

m̃ = Nm (2.19)

The moments transform tensor is defined via a set of modified central Hermite polynomials
H̃n(cα), which for the D3Q27 stencil are:

H̃n ∈ {H̃0, H̃x, H̃y, H̃z, H̃xy, H̃xz, H̃yz, H̃xx − H̃yy, H̃xx − H̃zz, H̃xx + H̃yy + H̃zz,

H̃xyz, H̃xxy, H̃xxz, H̃xyy, H̃yyz, H̃xzz, H̃yzz, H̃xxyy, H̃xxzz, H̃yyzz,

H̃xxyz, H̃xyyz, H̃xyzz, H̃xyyzz, H̃xxyzz, H̃xyzz, H̃xxyyzz}. (2.20)

For a more in-depth exploration of central Hermite polynomials, we recommend interested
readers to [53]. Based on the above polynomials in D3Q27, equilibrium moments are the
central Hermite coefficients ãeqn , which for the equilibrium distribution function:

ãeqn ∈ {ρ, 0, 0, 0, 0, 0, 0, 0, 0, 3(p− ρc2s), 0, 0, 0, 0, 0, 0, 0,

(p− ρc2s)
2
, (p− ρc2s)

2
, (p− ρc2s)

2
, 0, 0, 0, 0, 0, 0, (p− ρc2s)

3}. (2.21)

Setting p = ρc2s, all equilibrium coefficients reduce to zero except at order zero. The relax-
ation frequency tensor S is defined as:

S = diag(1, 1, 1, 1, ωs, ωs, ωs, ωs, ωs, ωb, ωg,

ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg, ωg), (2.22)

where the operator diag is defined as:

diag(A) = (A⊗ 1) ◦ I, (2.23)

for a given vector A, with 1 a vector with elements 1, I the unitary tensor, and ◦ the
Hadamard product, while ωs, ωb and ωg are the shear, bulk, and ghost-modes relaxation
frequency, respectively. The quantity ωb is related to the bulk viscosity, η, as [69]:

ωb =
δt

(2+D
D

− ∂ ln p
∂ ln ρ

)η
p
+ δt/2

, (2.24)

while the shear modes relax with:

ωs =
δt

µ
p
+ δt/2

, (2.25)

and ωg = 1. The correction term for the diagonal components of the third-order moments
appearing in Eq. 2.18 changes in the context of the multiple relaxation time collision operator
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into:

Ξi =

(
1− ωbωs

ωb + ωs

)
wi

2c4s
(∇H2) : ∆

eq
3 . (2.26)

The MRTmodel allows for an independent bulk viscosity and Galilean-invariant dynamic and
bulk viscosities. It is essential to emphasize that throughout this study, all LBM equations
are presented in S.I. units, and no non-dimensionalization has been applied.

2.4 Extension to non-Newtonian viscosity models

2.4.1 The shear strain tensor

The non-Newtonian viscosity laws typically involve dependence on the shear rate γ̇ defined
as:

γ̇ =
√
2DII , (2.27)

where DII is the second invariant of the rate-of-strain tensor. The rate-of-strain tensor is
defined as the symmetric part of the tensor ∇u:

S =
1

2

(
∇u+∇u†) , (2.28)

where † is the conjugate transpose operator. The strain rate can in turn be decomposed into
a trace-less part modeling pure shear strain and a diagonal-only tensor taking into account
compression/dilatation:

S =
1

2

(
∇u+∇u† − 2

D
∇ · uI

)
︸ ︷︷ ︸

trace=0

+
1

D
∇ · uI︸ ︷︷ ︸

trace=∇·u

. (2.29)

where D designates the number of physical dimensions of the system. It is well-known that
for incompressible flows the divergence of the velocity field goes to zero meaning only the
traceless part of the rate-of-strain tensor is to be considered in those regimes. As such we
only consider the traceless part of the rate-of-strain tensor to compute its second invariant:

DII =

(
S − 1

D
trace(S)

)
:

(
S − 1

D
trace(S)

)
, (2.30)

which for a 2-D system would result in:

DII = 2S2
xy +

1

2
(Sxx − Syy)

2, (2.31)

while in 3-D:

DII = 2
(
S2
xy + S2

xz + S2
yz

)
+

2

3

(
S2
xx + S2

yy + S2
zz − SxxSyy − SxxSzz − SyySzz

)
. (2.32)
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While one can directly evaluate these terms via finite-difference approximations to the gra-
dient of the velocity field, the lattice Boltzmann method allows for a fully local evaluation.
The next subsection will derive this local evaluation.

2.4.2 Local computation of rate-of-strain in lattice Boltzmann

Although already available in the literature [70], we will provide here a short derivation of
the expression of the rate-of-strain tensor from lattice Boltzmann populations for the sake of
a better readability. It is well-known that applying a multi-scale perturbation analysis one
can recover macroscopic equations at different scales in the perturbation parameter, here ε,
i.e. Euler and Navier-Stokes equations. At scale ε2, after expansion of all terms in ε one
recovers the following equation:

∂
(2)
t f eq

α +D
(1)
t

(
1− ω

2

)
f (1)
α = −ωf (2)

α . (2.33)

The first-order moment of this equation should recover Navier-Stokes-level contributions to
the momentum balance equation. Knowing that the zeroth- and first-order moments of f (1)

are null as a result of the solvability conditions:

∂
(2)
t ρu+∇

(
1− ω

2

)∑
α

cα ⊗ cαf
(1)
α︸ ︷︷ ︸

=2µS

= 0, (2.34)

which leads to:

S =
1

2µ

(
1− ω

2

)∑
α

cα ⊗ cαf
(1)
α , (2.35)

where µ and ω are the dynamic viscosity and relaxation frequency, respectively. Using the
definition:

ω =
δt

µ/p+ δt/2
, (2.36)

where p is pressure, which for the isothermal lattice Boltzmann reduces to p = ρc2s with

c2s =
δ2x
3δ2t

, and δx the grid-size, and an approximation for f (1):

f (1)
α ≈ fα − f eq

α , (2.37)

one gets the final expression:

S =
ω

2pδt

∑
α

cα ⊗ cα (fα − f eq
α ) . (2.38)

Going back to the model with the modified central Hermite polynomial collision operator
and combining Eqs. 2.27, 2.30 and 2.38 in 2-D one gets:

γ̇ =
ωs

2p

√
4ã2xy + ã2xx−yy, (2.39)
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while in 3-D:

γ̇ =
ωs

2p

√
4ã2xy + 4ã2xz + 4ã2yz +

2

3
(ãxx−yy − 2ãxx−zz)

2 +
2

3
(ãxx−zz − 2ãxx−yy)

2. (2.40)

which in turn leads to the following implicit equation:

µ(γ̇)

p
− δt

ωs

+
δt
2
= 0, (2.41)

where µ(γ̇) can be any one of the non-Newtonian viscosity laws. ωs is the shear relaxation
frequency. The viscosity can be either obtained via a simple explicit approximation as:

ωs(t) =
δt

µ(γ̇(t−δt))
p(t)

+ δt
2

, (2.42)

or by iteratively solving Eq. 2.41. In the present study, the second approach is adopted as
it naturally leads to more accurate results.

2.5 Boundary conditions

The application of patient-specific boundary conditions has been demonstrated to improve
the precision and reliability of cardiovascular simulation parameters, including wall shear
stress and pressure gradients [71]. While boundary conditions are instrumental in determin-
ing the accuracy of fluid simulations and effectively representing patient hemodynamics [72],
defining boundary conditions in LBM presents a significant challenge since traditional bound-
ary conditions are specified for macroscopic variables like pressure or velocity in hydrody-
namic problems, not for the main LB variables, which are the distribution functions fα.
At the boundary, the incoming distribution functions (pointing into the fluid domain) are
unknown after the propagation step and must be determined. Consequently, establishing
suitable relationships between the incoming and outgoing distribution functions is crucial to
reproduce the desired macroscopic behavior at the domain’s boundary.

S. Succi [27] distinguishes between elementary and complex boundary conditions. Elemen-
tary boundary conditions are applied when the boundary aligns with the coordinates of the
grid, whereas complex boundaries may cut across mesh cells. The subsequent sections will
detail the boundary conditions utilized in this study, encompassing inflow/outflow boundary
conditions and no-slip boundary conditions.

2.5.1 Inflow and outflow boundary conditions

Inlet and outlet boundary conditions are significant both mathematically and physically as
the type of condition helps determine the specific solution. Even though the volume fraction
of the total fluid domain may be small, the numerical effects of the inlet and outlet condi-
tions propagate throughout the entire geometry. Therefore, they play a key role in correctly
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describing patient hemodynamics in numerical studies [72]. Despite the growing applica-
tions of LBM in blood flow analysis, a unified scheme for implementing inlet and outlet
boundary conditions is lacking. This absence poses challenges in treating boundaries appro-
priately when simulating physiological flow in anatomically realistic geometries. Inaccurate
implementations can result in issues such as unrealistic flow distributions, nonphysiological
velocity and pressure profiles, and imprecise predictions of wall deformation [73, 74].

Inlet velocity and outlet pressure boundary conditions: Dirichlet boundary condi-
tion was developed by Zou and He to apply pressure or velocity at a straight boundary [75].
The fundamental concept of the Zou-He boundary condition involves solving for the un-
known distributions by bouncing back the nonequilibrium component of the distribution
function. The boundary condition is characterized by its local operations, making it easily
implementable in parallel. In the case of D3Q19, there are five unknown distributions after
the streaming step. The equation used to calculate these unknown distributions is given by:

fᾱ = fα − 2ωαρ

c2s
(cα · u)− ρ

3
(tα · u) + 1

2

18∑
β=0

fβ(tα · cβ)(1− |cβ · n|) (2.43)

where fα represents the distributions streaming into the boundary, fᾱ denotes the bounce-
back populations, cα are the direction vectors, n is the outward normal vector, and tα is
computed as follows:

tα = cα − (cα · n)n. (2.44)

The continuity relation allows the specification of three out of the four macroscopic variables-
density ρ and the three components of velocity u. The last variable is computed from the
distribution function. Specifically, we employ the complete velocity u for inlet conditions,
whereas density ρ is specified at the outlet.

2.5.1.1 Dynamic boundary condition (Velocity)

Since patient-specific inflow profiles based on 4D MRI are not commonly available, speci-
fying physiological velocity conditions at the inlet presents a nontrivial task, especially in
complex vascular geometries. Various inlet velocity conditions, such as parabolic or Wom-
ersley profiles, are employed in hemodynamic simulations [76]. Determining the velocity as
a function of the geometric center and radius of the inlet is straightforward when the inlet
surface is approximately circular. However, for irregular inlet surfaces, our solver enables
the computation of an accurate velocity profile for patient-specific aneurysms with complex
inlets. To demonstrate the utility and validate the inlet velocity profile, we conducted a
numerical test using Womersley flow.

Benchmarking of Womersley flow: Pulsatile behavior is a characteristic feature of
the cardiovascular system, and it has a significant impanct on both the aneurysm wall and
the flow field within blood vessels. Many numerical studies adopt a pulsatile velocity profile
as the inlet boundary condition to replicate the pulsatile nature of blood flow.
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The Womersley flow similar to Poiseuille flow serves as a well-established benchmark in fluid
dynamics. It simulates the flow of an incompressible fluid within a cylindrical tube under a
reference pressure. However, the distinguishing feature is that the pressure gradient in the
channel direction varies with time, mirroring the flow characteristics found in large arteries.
Researchers often employ this scenario to study pulsatile flow within medical flow simulation.

In this benchmark, a three-dimensional Womersley flow is driven by the periodic varying
pressure gradient at the inlet. The pressure gradient follows the following equation:

∂P

∂x
= −P ∗eiωt (2.45)

where P ∗ is the maximal amplitude of the sinusoidally varying pressure signal and ω is the
angular frequency.

The Reynolds number is defined below:

Re =
2UcR

ν
(2.46)

where R is the radius of the axisymmetric pipe, ν is the kinematic viscosity of the fluid, Uc

is the characteristic velocity defined as

Uc =
P ∗α2

4ωρ
=

P ∗R2

4ρν
(2.47)

where α is the Womersley number, which is defined as

α = R

√
ω

ν
(2.48)

The analytical solution for three-dimensional axisymmetric pipe pulsatile flow is given as [77]:

u(r, t) = Re

 P∗

iωρ0

1− J0

[
1√
2
(−α + iα) r

R

]
J0

[
1√
2
(−α + iα)

]
 eiωt

 (2.49)

where J0 is the zeroth-order Bessel function.

In this validation, the initial velocity is set to zero in the entire domain. Womersley number
α and Reynolds number Re are 8 and 1200, respectively. The period T is 1200 s. The
characteristic velocity is 1.025 m/s. The radius is 1 m. Data sampling starts from the 10T
step.

The normalized velocity ux profiles obtained with the LBM simulations are displayed at
different time instants in Figure 2.1. It can be seen that this comparison shows excellent
agreement between numerical results (circular symbols) and analytical solutions (lines).
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Figure 2.1: Velocity profiles along the diameter over a period. From top to bottom, time is
0.25T , 0.38T , 0.46T , 0.55T , 0.71T . Comparison between numerical results (circular symbols)
and analytical solutions (lines).

2.5.2 Flat walls

The LBM is conventionally founded on an orthogonal, equidistant lattice structure. A com-
mon approach involves the representation of the boundary using a ”staircase” and applies the
standard bounce-back wall boundary conditions [78]. The boundary conditions in LBM can
be classified into heuristic schemes, hydrodynamic schemes, and interpolation/extrapolation
schemes. In this context, we focus on the heuristic scheme. This scheme is devised based
on the dynamics of fluid particles encountering a wall and it includes standard bounce-
back, modified bounce-back, half-way bounce-back, and specular-reflection. The bounce-
back scheme is the most commonly used rule for stationary non-slip walls. It assumes that
a particle simply reverses its velocity after colliding with the wall. Mathematically, it means
that the post-collision distribution function at a boundary node xb is

f ′
ᾱ(xb, t) = f ′

α(xf , t) (2.50)

where xb and xf are a node located on the wall and the neighboring fluid node, respectively.

Based on the collision-streaming process, the bounce-back scheme can also be expressed in
alternative formulations,

f ′
ᾱ(xf , t+ δt) = f ′

α(xf , t) (2.51)

2.5.3 Curved walls

The ability of the LBM to accurately model intricate geometries can be complex itself, mainly
because of the utilization of a Cartesian grid and the intricate boundary handling along
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curved surfaces. When approximating a curved boundary with a staircase-like representation,
several issues can arise that can be categorized into two main problems.

Firstly, there is the challenge of representing complex geometries, since the Cartesian grid
used in the LBM does not inherently align with curved boundaries. This misalignment
can lead to inaccuracies when trying to represent intricate shapes. Secondly, implementing
correct boundary conditions can be difficult. During the streaming operation, situations
can arise where incorrect distribution functions originate from solid nodes located outside
the fluid domain. These issues with boundary conditions can lead to erroneous results and
further complicate the simulation.

Several approaches have been proposed to address the challenges of simulating complex ge-
ometries using the LBM. These methodologies aim at accurately handling the representation
of curved boundaries and implement appropriate boundary conditions.

• Extrapolation scheme with castellated approach: In this approach, the bound-
ary is approximated using lattice nodes that are closest to the curved surface [79].
This technique involves a castellated approach where adjacent nodes streaming to the
castellated boundary nodes lie within the solid domain. Distribution functions at these
solid nodes are then computed using a second-order extrapolation method.

• Linear interpolation method: This technique involves interpolating between a fic-
titious equilibrium distribution function and a carefully chosen near-boundary distri-
bution function using a simple linear interpolation [80].

• Combined bounce-back and interpolation scheme: Lallemand and Luo [81]
developed a technique that combines the bounce-back scheme with an interpolation
scheme. The bounce-back scheme is used to handle stationary boundaries, while an
additional term is introduced to simulate moving boundaries.

Each approach offers unique advantages and considerations depending on the specific sim-
ulation requirements and geometries involved. Given the complex nature of geometries
considered in aneuryms, appropriate treatment of wall boundaries and their curvature is
an important point. In the context of the present study, the curved-boundary bounce-back
formulation proposed in [82] is used. An intuitive approach is employed following the one-
dimensional scenario depicted in Figure 2.2. The position of the wall is determined by
the ratio of CF/CD. When a particle departs from node C and undergoes reflection upon
encountering wall (referred to as bounce back scenario), the particle will not reach a fluid
node after moving one grid size. An exception to this occurs when the ratio q equals to 0,
1/2, or 1. Consequently, following the collision step, the distance CE remains indeterminate.
To address this challenge, the following scheme was put forward:
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Figure 2.2: Illustration of the collision process. The dashed line indicates the wall. (a) q <
1/2. (b) q ≥ 1/2.

At a given boundary node xf , the missing incoming populations are computed as:

fα(xf , t+ δt) = 2qfᾱ(xf + cᾱ, t+ δt)

+ (1− 2q) fᾱ(xf , t+ δt),∀q <
1

2
, (2.52a)

fα(xf , t+ δt) =
1

2q
fᾱ(xf + cᾱ, t+ δt)

+
2q − 1

2q
fᾱ(xf , t+ δt),∀q ≥

1

2
, (2.52b)

where ᾱ designates the direction opposite α and q:

q =
||xf − xs||

||cα||
, (2.53)

with xs denoting the wall position in direction α.

The proposed scheme stands out from other schemes by exclusively utilizing interpolations
instead of extrapolations, thereby enhancing its stability. Additionally, the continuity in the
change of q in equations contributes to the scheme’s smoothness. Notably, when q = 1/2,
the interpolation formulas simplify to the bounce-back scheme. The proposed scheme is less
intricate, as it focuses on the interaction of the fluid with the boundary, specifically coupling
populations fα, fᾱ with opposite velocities.
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3.1. An in-vitro validation study

3.1 An in-vitro validation study

Part of this section has been published as:
Seyed Ali Hosseini, Philipp Berg, Feng Huang, Christoph Roloff, Gábor Janiga, and Do-
minique Thévenin. Central moments multiple relaxation time LBM for hemodynamic sim-
ulations in intracranial aneurysms: an in-vitro validation study using PIV and PC-MRI.
Computers in Biology and Medicine, 131:104251, 2021.

3.1.1 Introduction

Since a reliable and clinically applicable rupture risk assessment procedure remains challeng-
ing until now, increasing research effort is being put into developing one. Owing to their
non-invasive nature resulting in risk-free (for the patient) assessment of rupture probability
and the possibility to access highly resolved velocity fields (in both space and time) CFD
studies are becoming increasingly popular [83, 84].

While valuable insights have been gained through such numerical studies [85, 86], a number of
challenges and gaps remain to be bridged, before predictive and reliable models based on CFD
for aneurysm dynamics can be developed [87, 88]. To put these challenges into perspective,
Berg et al. [89] summarized the individual working steps involved in image-based blood flow
simulations and provided corresponding recommendations to avoid simulation inaccuracies.
As for any numerical simulation, the choice of the numerical solver, resolution and grid
configuration are of the utmost importance to ensure convergence of the obtained solutions.
The latter two also being consequences of the choice of the numerical method, the former is
a determining factor concerning both convergence and efficiency of the solver.

The performances of the employed solvers can only be assessed through a systematic bench-
marking/validation procedure against reliable experimental data. One of the most frequently
used sources of experimental reference data is the Particle image velocimetry (PIV) relying
on laser-based high-speed camera flow measurements [90, 91, 92, 93, 94]. PIV measure-
ments allow for more accurate measurements and higher resolutions as compared to other
data acquisition tools such as magnetic resonance imaging (MRI) [95] or cerebral angiog-
raphy [96]. A number of studies have presented qualitative comparisons of velocity fields
for patient-specific aneurysms as obtained from CFD and PIV measurements, and reported
good qualitative agreement between the two [3, 97].

While most of the early publications relied on discrete solvers for the Navier-Stokes-Poisson
(NSP) equations, e.g. using finite volume (FV) or finite element (FE) methods, emer-
gent numerical methods such as smoothed particle hydrodynamics (SPH) [98, 99] and the
LBM [100, 101, 102, 103, 104, 105, 106, 107] are increasingly applied to such flows. Contrary
to classical NSP solvers they are not strictly incompressible, as they approximate the low
Mach flow regime through appropriate isothermal flow manifolds, and as such rely on a sys-
tem of purely hyperbolic equations, making the algorithm inherently local. The absence of
the elliptic component of the NSP equations allows for dramatic computation cost reduction
while the parabolic nature of the partial differential equation (PDE) describing pressure evo-
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lution makes the formulation suitable for unsteady simulations – contrary to other weakly
compressible formulations such as the artificial compressibility method (ACM). Furthermore,
the compressible nature of the formulation (involving a thermodynamic pressure) along with
kinetic heuristic boundary closures (such as the bounce-back rule) provide for an efficient
and consistent implementation of wall boundaries [49, 108, 109]. The drastic decrease in
computation time makes the method more viable compared to approaches based on the
NSP equations. Based on these observations, a number of dedicated LBM-based solvers for
blood flow simulations have been developed over the past decade, e.g. [101, 110, 111]. For
example a research prototype was developed by the Siemens Healthineers AG (Erlangen,
Germany), which is increasingly used to address clinical questions [112, 113, 114]. However,
it must be noted that the LBM in its simplest form, i.e. with a SRT collision operator and a
second-order discrete EDF has a rather limited stability domain. The SRT formulation also
leads to a number of other well-documented numerical artifacts including, but not limited
to, the (non-dimensional) viscosity-dependence of the solid wall position when used with
bounce-back-type boundary treatments [55].

The aim of the present work is to assess the performances of a specific class of MRT operator
based on Hermite central moments and a fully expanded EDF. This collision model is shown
to alleviate some of the traditional shortcomings of the classical SRT-based solvers, while –
through its much wider stability domain – allowing for stable low-resolution simulations. The
performances of the central Hermite multiple relaxation time (CHMRT) model are assessed,
via our in-house solver ALBORZ [56, 115], through a variety of test-cases spanning ideal and
patient-specific geometries considering steady and pulsatile flows. The numerical results are
compared with high-resolution in-vitro measurements for validation. They are also compared
to results from a SRT solver with second-order EDF to further showcase the added value of
the CHMRT collision operator. The issue of under-resolved simulations is also considered
by systematically conducting simulations at different (lower) resolutions. It is shown that at
low resolution (inaccessible to the SRT collision operator), the proposed scheme is still able
to capture properly the flow dynamics.

3.1.2 Case description

To illustrate the points brought forward in the previous section and showcase the perfor-
mances of the CHMRT collision operator for the applications of interest, three different test
cases are considered: (a) ideal aneurysm under steady flow, (b) ideal aneurysm subject to
pulsatile flow, and finally (c) patient-specific geometry. While the latter two are intended as
detailed validations of the solver against experimental data, the first test case is presented to
briefly illustrate the difference between the classical SRT operator and the proposed model.

3.1.2.1 Idealized aneurysm model under steady flow

The first configuration is a rather simple one consisting of an ideal spherical aneurysm of
radius 20 mm and vessels of diameter 6 mm positioned with an angle of 90◦. The distance
between the inlet and the opposite point in the aneurysm sac is 60 mm while for the outlet
it is 50 mm. The domain is subject to a constant inflow at the inlet and an open boundary
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at the outflow. The case is modeled using both the CHMRT and second-order SRT collision
operators at different resolutions. The obtained results are further validated against the
commercial finite-volume code STAR-CCM+ 14.04 (Siemens Product Lifecycle Management
Software Inc., Plato, TX, USA).

3.1.2.2 Idealized aneurysm model with pulsatile flow

For the purpose of validation, an idealized spherical sidewall aneurysm with a diameter of
20 mm was virtually created. The parent vessel featured a diameter of 4 mm and was bent
under an angle of 120◦ (see Figure 3.1). The 3-D vessel geometry served as basis for the
numerical simulation as well as for the phantom manufacturing prior to the in-vitro PIV mea-
surements. Based on the 3-D CAD model, a transparent phantom model was manufactured
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Figure 3.1: (left) Idealized aneurysm geometry as used both for the phantom manufacturing
and subsequent PIV measurement and in LB simulation [2], and (right) Segmentation of the
patient-specific intracranial aneurysm model used for the LBM simulations and the in-vitro
validation [3].

using a lost-core technique that resulted in a silicone block incorporating the hollow vessel
structure. The refractive index of the silicone was measured to be nsilicone = 1.4113 at 22◦C
(Abbemat 200, Anton Paar, Ostfildern, Germany). As blood analogue liquid (BAL), a mix-
ture of distilled water, glycerin, sodium iodide, and sodium thiosulphate was used to match
the refractive index of the silicone block (nBAL = 1.4109) as well as relevant fluid dynamical
properties of blood plasma, i.e. density ρBAL = 1221 kg/m3. The kinematic viscosity of the
fluid used for this configuration was νBAL = 3.2×10−6 m2/s. This corresponds to a dynamic
viscosity of µblood = 4.03× 10−3 Pa.s (assuming a density of ρblood = 1222 kg/m3).

During the PIV measurements, the phantom was placed inside a transparent acrylic box with
two inclined walls and filled with index-matching fluid. A laser light sheet was directed to
illuminate the sagittal plane of the aneurysm. As seeding for the PIV measurements, small
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resin microspheres doped with Rhodamine B (diameter d=10.46 ± 0.18 µm, density ρ =
1510 kg/m3) were used. The two stereoscopic PIV high-speed cameras (sCMOS, 2560×2160
pixel) observed the flow through the inclined windows from the side of the acrylic box to
minimize optical aberrations such as astigmatism.

A micro-gear pump (HNP Mikrosysteme, Schwerin, Germany) delivered the periodic flow,
which was monitored by an ultrasonic flowmeter (Sonotec, Halle, Germany). The average
velocity at the inflow cross section is displayed in Figure 3.2 over one entire cycle (maximum
Reynolds number Remax = 1025 and Womersley number Wo = 2.54). The original flow curve
is based on 4-D flow measurements in a 7T phase contrast magnetic resonance imaging (PC-
MRI) – Siemens Magnetom. Further details regarding the flow acquisition can be found
in [116]. To ensure a fully developed laminar flow profile the inlet connector to the phantom
consisted of a 500 mm straight tubing. The PIV double frame recordings were conducted at
a frequency of 500 Hz (triggered by the pump control), where the interframe time was set
to 200 µs. In total, 36 periodic cycles were recorded, resulting in 36,000 double frame pairs.
Velocity processing was conducted via DaVis 8.4.0 (LaVision, Göttingen, Germany) using a
multi-pass stereo cross-correlation with a final interrogation window size of 32 × 32 px and
50 % overlap, resulting in one velocity vector every 141 µm. The velocity fields were then
phase-averaged. Additional details on the PIV data acquisition and processing procedure
can be found in [2].
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Figure 3.2: Average velocity profile at the inlet over one cardiac cycle for the idealized
pulsatile aneurysm.

A pulsatile hemodynamic simulation was carried out using identical conditions compared
to the experiment. Specifically, the same geometry and boundary conditions were applied,
with a higher temporal and spatial resolution. The LBM simulation was performed using
time-step and grid sizes of δt = 1.5× 10−5 s and δx = 1.25× 10−4 m, respectively. Two addi-
tional lower-resolution simulations were also conducted to provide qualitative/quantitative
characterizations of convergence and under-resolution effects. Furthermore, the simulations
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were run for multiple cycles and data sampling was carried out at the fourth cycle. The
state of the flow, and the absence of any artifacts tied to initial conditions were assessed
by monitoring the velocity changes at three points around the aneurysm sac. The obtained
results (from the highest resolution simulation) are shown in Figure 3.3.
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Figure 3.3: Velocity magnitude changes over four cycles at three different monitoring points
around the aneurysm sac for the idealized pulsatile aneurysm.

3.1.2.3 Patient-specific aneurysm model with steady inflow

In order to increase the anatomical complexity and enable a qualitative and quantitative
comparison in a more realistic scenario, a patient-specific aneurysm was further considered
(see Figure 3.1, right). Here, an internal carotid artery aneurysm with a spherical shape was
chosen, since this location represents one of the most frequent sites of occurrence. Further,
a small aneurysm is located opposite the larger one leading to the formation of interesting
flow structures.

To account for the most comprehensive situation from a hemodynamic perspective, peak
systolic flow conditions were chosen for the validation. Specifically, a flow rate of 430 mL/min
was defined resulting in a Reynolds number of Repeak = 563 and a corresponding mean
velocity in the proximal vessel of 0.512 m/s, respectively.

Equivalent to the experiments described in the previous section, stereoscopic PIV measure-
ments were carried out to obtain in-vitro flow data. Specifically, the micro-gear pump (HNP
Mikrosysteme, Schwerin, Germany) provided the desired flow rate of Q = 430.4±1.5 mL/min
and 500 recordings were taken at 5 Hz. The velocity processing was conducted via DaVis
8.4.0 (LaVision, Göttingen, Germany), which included a multi-pass cross-correlation with a
final interrogation window size of 32 × 32 px (corresponding to 208 × 208 µm) and 50 %
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overlap. This resulted in a velocity vector every 104 µm. The final results were obtained
by averaging all processed recordings.

In addition to the PIV acquisitions, phase-contrast PC-MRI measurements were carried out
in a 7 Tesla whole-body system (Siemens Healthineers, Forchheim, Germany) with a voxel
size of 570× 570× 570 µm3. The measurements were repeated six times and afterwards the
data were averaged. Before evaluation, eddy currents and other background phase effects
were corrected using a second dataset with identical scan parameters. For further details
regarding the scan parameters and the data processing the interested reader is referred
to [3, 117].

For the corresponding LBM simulation, similar to the idealized geometry, blood is assumed
to be a Newtonian fluid with density ρ = 1221 kg/m3 and kinematic viscosity ν = 3.2 ×
10−6 m2/s, a valid choice since shear-thinning effect in the considered neurovasculature are
negligible. The time-step and grid sizes were set to δt = 5 × 10−6 s and δx = 1 × 10−4 m,
respectively. This choice of parameters led to a non-dimensional relaxation coefficient of
τ
δt
= 0.506 and a maximum non-dimensional velocity of umaxδt

δx
≈ 0.064. To further highlight

the added value of the collision operator for under-resolved flows, an additional low-resolution
simulation with δt = 1×10−5 s and δx = 2×10−4 m, leading to τ/δt = 0.503, was performed.
It is worth noting that using the SRT collision operator at this resolution led to unstable
simulations, as confirmed by linear stability maps found in the literature [48].

3.1.3 Results

In the following, qualitative and quantitative comparisons between the hemodynamic simu-
lations based on the LB approach and the in-vitro phantom measurement are presented.

SRT vs CHMRT: Idealized aneurysm with steady flow-rate

As a first step, before going into detailed validation of the solver against experimental data,
we present a brief comparative study of the solver (against a classical SRT solver) through a
simple test case. The steady-state velocity profiles along the incoming and outgoing vessels,
as obtained from the different simulations are shown in Figure 3.4. The simulations using the
classical SRT model were conducted using three different resolutions, i.e. δx = 3.33× 10−4,
2.22 × 10−4 and 1.11 × 10−4 m (R1, R2, and R3 in Figure 3.4). For the CHMRT only
one simulation at δx = 3.33 × 10−4 was conducted. It can clearly be observed that at
the lowest resolution, the CHMRT solver matches results from the SRT simulation with the
highest resolution, and even surpasses it in some regions. The low-resolution SRT simulation
exhibits clear underestimation of the maximum velocity at the center of the inflow vessel.
The CHMRT simulation on the other hand, even through relying on a grid-size three times
that of the highest resolution SRT, is the closest to the reference STAR-CCM+ simulation,
showing the superior performances of the former. It is worth noting that the differences
observed near the inlet are to be expected, due to the different ways boundary conditions
are applied. The length of the inlet pipe, as observed in the velocity distribution plots,
guarantees that at the inlet of the sac the velocity profiles are established for all simulations.
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Figure 3.4: (a) Geometrical configuration of the steady flow in the idealized aneurysm, (b)
velocity distribution in the x−direction, and (c) velocity distribution in the y−direction
(along the dashed lines shown in the left subfigure).

Idealized aneurysm model with pulsatile inflow

The angle of the model for the second case was chosen in a way that the flow can enter into
the sac through the distal part of the aneurysm ostium. After impinging on the aneurysm
wall, the flow aligns along the perfect spherical shape. This forms a large vortex within the
aneurysm with a stagnation zone approximately at the center of the sac.

The comparison between the experimental (PIV) and the numerical (LBM) flow acquisition
demonstrates an excellent agreement within the considered plane (perpendicular to the z-
axis passing through the center of the aneurysm sac). Results for 11 different times spanning
a cycle are shown in Figure 3.5. Almost identical flow structures are captured and slight

35



3.1. An in-vitro validation study

deviations are only visible in the outflow region of the aneurysm close to the peak-systolic
time point (0.4 s). Additionally, minor differences can be observed most notably in the
form of, less pronounced, unsteady structures not observed in the experimental data. The
absence of these structures can partially be explained by the data acquisition modes in
experiments and simulations. While the time-dependent flow field from the PIV are phase-
averaged over a number of cycles, those from the simulations represent instantaneous shots
from the fourth cycle after initialization. In addition to this qualitative observation, a
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Figure 3.5: Qualitative comparison of the transient flow field between PIV experiments (top
row) and LB simulation (bottom row) at eleven different time points covering an entire
cardiac cycle (from 0 s to 1 s with ∆t = 0.1 s). The considered plane is shown on the upper
left figure. The positions of the snapshots in time (relative to the cardiac cycle) are shown
with red dashed lines on the upper right plot.

quantitative comparison is presented in Figure 3.6. Here, the velocity components (ux and
uy) are compared along two orthogonal lines on the plane perpendicular to the z-axis for
three different resolutions, confirming the initial findings: Both experiment and simulation
lead to almost identical profiles throughout the cardiac cycle and the numerical approach
nearly always occurs within the presented error bars of the measurement. It is worth noting
that two additional simulations were performed by setting δx to 2× 10−4 m and 3× 10−4 m;
the corresponding time-steps were set to respectively 1.5× 10−5 s and 2.2× 10−5 s. At the
lowest resolution, as compared to the highest resolution simulation, the computational cost
is reduced by a factor of 25, while velocity profiles are still in very good agreement (and
mostly within the error bars) with the experimental data.

Overall, based on both qualitative and quantitative comparisons with PIV data, it is shown
that the solver is able to correctly capture the flow structure and match experimental ob-
servations. The good agreement is still well maintained even for relatively under-resolved
simulations.
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Figure 3.6: Velocity profiles along the (in red) x- and (in blue) y-directions at the center of
the aneurysm sac on the central z-plane at four different times: (from left to right) 0.16, 0.27,
0.51 and 0.61 s from the start of the fourth cycle, and (top to bottom) decreasing resolutions
in the lattice Boltzmann simulations. Velocity profiles obtained from the LBM simulation
are shown with red and blue plain lines while black plain lines with error bars (corresponding
to the 99.7% confidence interval) represent data obtained from PIV measurements.

Patient-specific aneurysm model

The last part of the validation was carried out in a patient-specific aneurysm model enabling
a clearly more realistic flow scenario. The obtained velocity fields (both numerical and
experimental) on three perpendicular planes cutting through the main aneurysm sac are
shown in Figure 3.7. It must be noted that both PIV and PC-MRI measurements were
conducted here (as opposed to the previous configuration where only PIV measurements
were made).

Similar to the idealized test-case, a vortex forms within the sac aligning along the luminal
surface and forming a stagnation zone at the center. Due to the helical vessel anatomy
proximal to the aneurysm as well as the different ostium size, this vortex appears less stable.
Regarding the qualitative comparison of the three independent methods of flow acquisition
one can notice that the overall flow structure is captured by all approaches. The entering flow
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jet of the simulation appears to be slightly narrower and contains accordingly higher velocity
values compared to the experimental techniques. A look at the convergence indicator in the
simulations and the flow field evolution over time showed that this configuration results in
an unsteady flow although the inlet velocity is not pulsatile. This numerical observation was
also confirmed by studying PIV instantaneous velocity fields. As such the data averaging
procedure in time, i.e. sampling frequency and time interval, can have non-negligible effect
on out-coming velocity fields from both experiments and numerical simulations. The third
column in Figure 3.7, representing the instantaneous fields from the LBM simulation are
included to point out the unsteady nature of the flow. It must be noted that due to the
computational costs and large sizes of associated files, an interval of 0.25 s and sampling
frequency of 400 Hz were used to get the average velocity fields for the simulation while
as noted earlier, for the PIV the data acquisition was operated at a frequency of 5 Hz and
spanned 100 s. For the PC-MRI results on the other hand, the final velocity fields are the
average of six snapshots taken at a repetition/echo time of 6.9/3.586 ms. These differences
in the averaging process stemming from limitations of each one of these approaches can
explain, to a great extent, the discrepancies observed in Figure 3.7. In practice, the low data
sampling frequency in PIV and PC-MRI measurements operates as a low-pass filter while the
limited sampling interval of the simulation is equivalent to a high-pass filter. This in turn can
explain the thicker and smoother shear layers observed in the former two. The subsequent
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Figure 3.7: From left to right: Qualitative comparison of the velocity fields acquired using
PC-MRI (1st column), stereoscopic PIV (2nd column), instantaneous (3rd column) and
time-averaged LBM (last column) simulation in the aneurysm sac on three different planes,
i.e. from top to bottom: planes I, II and III.

quantification presented in Figure 3.8 provides a better insight in occurring differences and
further confirms the previously discussed effect regarding the discrepancies coming from data
acquisition. Here, velocity magnitudes are shown along three orthogonal lines through the
aneurysm. Overall, the courses of all approaches are in a good agreement and the values
show no strong deviations from each other. It must be noted that error bars in Figure 3.8
only represent the 99.7% confidence interval. The simulation results fall within the 99.7%
confidence interval at all points.
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Matching coordinates and positions of the corresponding velocity fields, together with possi-
ble distortions in space resulting from the different experimental procedures, constitute also
a major challenge for this comparison; it certainly explains to some extent the observed dis-
crepancy. This effect is particularly visible on the line along the y-axis in Figure 3.8. While
the velocity profiles from the simulation tend towards zero near the aneurysm sac walls, PIV
results do not show such a clear behavior. Interestingly, the agreement between all methods
is excellent for plane III (see Figure 3.8, right), while larger discrepancies are noticeable
in the other two (e.g., smoother courses of the measurement compared to the simulation).
Overall, while a good qualitative agreement between the three different approaches can be
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Figure 3.8: Comparison of velocity magnitude profiles along three lines in the aneurysm
sac as obtained from PIV (red plain lines with error bars corresponding to one standard
deviation), PC-MRI (blue dashed lines with square symbols), instantaneous LB velocity
field (black plain lines) and time-averaged (over 0.25 s) LB velocity field (grey plain lines).

observed, non-negligible discrepancies persist. In-depth analysis of the results showed that
the unsteady nature of the configuration, along with the different data acquisition modes
(i.e. frequency and time-span of velocity field averaging process) affect the final velocity
fields. This effect was illustrated by comparing instantaneous and averaged velocity fields in
the simulation. The distortions and manufacturing artifacts in the final aneurysm geometry
can also contribute to these discrepancies. Further reasons are discussed in Section 3.1.4.

Under-resolved simulation of the patient-specific configuration

Finally, to showcase the ability of the collision operator to deal with under-resolved cases,
and provide a more in-depth analysis, the patient-specific configuration was also modeled
using a coarse grid. The time-averaged velocity fields obtained using the high- and the low-
resolution LBM simulation are shown in Figure 3.9. The orthogonal planes reveal that the
predicted flow structures, while admitting discrepancies, agree very well. The quantitative
comparison of both simulations leads to a domain-averaged similarity of 0.8294, 0.8765 and
0.8359 for planes I, II and III, respectively. This similarity index on each plane is computed
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Figure 3.9: Qualitative comparison of the velocity fields in the aneurysm sac on three different
planes, i.e. from top to bottom: planes I, II and III, as obtained from the high-resolution
(left) and low-resolution (right) simulation.

Figure 3.10: Quantitative comparison of the velocity magnitude distribution in the high- and
low-resolution simulations on planes I (top left), II (top right) and III (bottom). The color
bar represents the normalized (via the total number of sampled points) number of grid-points
with the corresponding velocities in the low-resolution (x-axis) and high-resolution (y-axis)
simulation.
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as the average similarity index over all discrete points on the plane [2]:

SI =

(
1 +

uHR · uLR

||uHR||||uLR||

)
·
(
1− | ||uHR||

||uHR||max
− ||uLR||

||uLR||max
|
)
, (3.1)

where uHR and uLR are the velocity vectors from the high- and low-resolution simulations,
respectively. The deviations are further illustrated in Figure 3.10, where the low-resolution
velocity magnitudes are plotted against the high-resolution ones on the three considered
planes. The normalized frequency of the similarity index on all three planes is shown in
Figure 3.11. Despite these minor differences with respect to the velocity distribution, it is

Figure 3.11: Histograms displaying the normalized frequency of the SI on planes I (blue),
II (red) and III (black). The corresponding overall SIs are shown using dashed lines of the
same color.

important to mention that the low-resolution simulation reduced the number of grid-points
by a factor of eight, and – given the acoustic scaling – the number of time-steps needed for
convergence by a factor of two. This in turn reduced the computation time by a factor of 14
on the same machine and using the same number of processing units.

3.1.4 Discussion

With an improved linkage of medical and engineering disciplines as well as increasing com-
putational resources new potentials in interdisciplinary research are revealed. Specifically,
the challenging question of rupture risk assessment for intracranial aneurysm remains unan-
swered until now; however, more and more insights into patient-specific hemodynamics be-
come accessible [118]. On the other hand, insufficient data processing, the absence of reliable
boundary conditions and mostly long simulation times lead to a reduced translation into clin-
ical practice [119].

To highlight the potential of image-based blood flow simulations and demonstrate their reli-
ability with respect to flow prediction, a multimodal validation study was carried out. This
included different configurations, flow scenarios, measurement methodologies and simulation
settings, respectively.
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The first part of the validation relied on flow assessments under well-controlled conditions.
A brief comparative study showed that the CHMRT collision operator with a full extension
of the EDF performed much better than the classical SRT model. To further validate the
solver an idealized model of an intracranial aneurysm was created leading to the development
of an organized flow field. The qualitative and quantitative comparison of both independent
techniques (LBM versus PIV) showed good agreement. Due to the unsteady inflow, minor
fluctuations occurred throughout the cardiac cycle, especially near peak systole. Still, both
simulation and measurement were in very good agreement during the whole period.

In the second part of this study, complexity was increased by considering a patient-specific
anatomy. Although unsteady phenomena occurred at peak-systolic inflow conditions, flow
predictions by simulation and measurement were comparable. Beside the validation using
PIV, PC-MRI acquisitions were carried out. Here, minor differences especially in high-
velocity regions close to the aneurysmal lumen were present, which could be a result of
vessel wall compliance [120]. However, taking into account all underlying differences with
respect to temporal and spatial resolution as well as the uncertainties associated to the
measurement procedures, the validation of the LBM simulation was successfully conducted.

Apart from the validation purpose, additional simulations with low spatial resolutions were
performed. The comparison of low- and high-resolution LBM computations showed that sim-
ilar velocity fields were calculated, although only 1/14 of the simulation time was required.
Hence, depending on the clinical research question and the desired accuracy of the hemo-
dynamic description the low-resolution approach, made possible by the CHMRT collision
operator, can be a promising development direction, especially given that the computational
overhead associated to the change of collision operator is very minor [121].

Beside the presented findings, it is important to mention that this study has several limi-
tations: First, the number of cases considered is relatively small for an extensive validation
study. Only two idealized and one patient-specific geometries were selected. However, it
is important to point out that intracranial aneurysms show a high variability regarding
size (small versus giant), location (lateral versus terminal), morphology (spherical versus
complex). Consequently, this can lead to increased challenges for the underlying numerical
schemes. Nevertheless, multiple numerical and experimental processing steps are involved.
Second, precise qualitative and quantitative comparisons are only feasible, when identical
conditions are warranted. However, due to the manufacturing of the phantom models for
the in-vitro investigations or the subsequent registrations processes, minor misalignment
between the ideal CAD geometries and the silicone models can occur.

Third, blood was considered as an incompressible Newtonian fluid in the simulations. There
is an ongoing debate about the necessity of a more detailed consideration of this suspen-
sion [122, 123, 124]. Many studies claim that blood rheology has a secondary impact com-
pared to primary factors such as segmentation or boundary conditions [125, 89]. This point
will be checked later on in this document. Finally, although PC-MRI is a technique to obtain
flow data in-vivo, within this study in-vitro measurements in a silicone phantom were carried
out. Therefore, the MR sequence might lead to slightly different results when applied to a
real aneurysm.
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3.1.5 Conclusions

This validation study comprising multimodal measurement techniques and various experi-
mental scenarios demonstrates a number of points. Chief among them is the advantage of
using multimodal approaches for a detailed validation of results in this area. It was readily
shown that experimental measurements using both PIV and PC-MRI were prone to non-
negligible sources of uncertainty and needed to be considered with care. Furthermore it was
proven that the presented LBM solver relying on a CHMRT collision operator is able to
generate reliable and valid simulation results. These findings are in line with observations
made in the LBM literature on the effect of such models in eliminating a number of numeri-
cal artefacts associated to the classical SRT collision operator with second-order EDF while
maintaining a low computational cost low – around 0.4 Mega lattice updates per second
(MLUPS) per processor. As shown in [53] the added cost of the modified collision operator
is negligible. Furthermore, the wider stability domain and enhanced spectral properties of
the collision model (as compared to the SRT) allowed for simulations relying on lower resolu-
tions (not stable with the SRT) yielding comparable numerical predictions with an extensive
reduction of computational load (grid-points and time-steps). Given the difficulties of apply-
ing explicit sub-grid model-based large eddy simulations (LES) to pulsatile flows in complex
geometries, tools and numerical formulations allowing for model-free under-resolved simula-
tions – tantamount to implicit LES – can be an interesting path towards a rapid evaluation
of flow parameters in complex biomedical settings.

3.2 CFD challenge in a giant aneurysm

3.2.1 Introduction

Numerous individual studies have undertaken the validation of image-based CFD predic-
tions by comparing them against meticulous in vitro measurements [126, 127] or available
in vivo data [128, 129]. Despite the wealth of these individual validations, there has been a
relative scarcity of studies in the biofluids literature that systematically evaluate the sensi-
tivity of CFD predictions to different solvers or research groups. Notable exceptions include
initiatives like the Virtual Intracranial Stent Challenges [130] and the FDA nozzle bench-
mark [131]. These efforts, such as the CFD challenge proposed to document the variability
among different CFD groups, contribute significantly to the understanding of the robustness
and reliability of diverse CFD approaches. The case presented in Ref. [5], involving a giant
aneurysm, was specifically chosen for such evaluations. Note that, being organized by a US
group, non-USI units have been specified for this benchmark.

3.2.2 Numerical setting

The configuration and the inlet flow waveform are illustrated in Figure 3.12. The flow
waveform exhibits a period of 0.99 s. The blood was modeled with Newtonian behavior,
characterized by a constant viscosity and density of 0.04 Poise and 1.0 g/cm3, respectively.
The nominal inlet diameter D was set at 5.58 mm, corresponding to a peak flow rate of
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Figure 3.12: (a) Phase I CFD model geometry. (b) Phase I pulsatile inlet flow waveforms.

11.42 mL/s. Pulsatile velocity and constant pressure were applied as the boundary conditions
for the inlet and outlet, respectively. A non-slip boundary condition was implemented at the
walls. The simulations were conducted over three cycles, and the results were sampled from
the last cycle.

3.2.3 Results

3.2.3.1 Mesh independence analysis

This study examined three different resolutions (334×123×18, 400×146×220, 498×181×
274). The velocity profiles, as depicted in Figure 3.13, show satisfactory agreement with the
reference results (from code Nektar). Notably, the lowest resolution result deviates at the
position of 4 mm, while the two higher resolutions exhibit considerable overlap. Considering
additionally computational cost, the medium resolution (400 × 146 × 220) was selected for
conducting the further numerical simulations.

3.2.3.2 Effect of the inlet length

To mitigate the potential impact of the inlet condition, the inlet was extended to 0.03(5D),
0.08(14D), or 0.13 m(23D) along the normal vector of the inlet surface. As illustrated
in Figure 3.14, the length of the inlet significantly influences the numerical outcomes. The
velocity from the shortest extension deviates considerably from the Nektar solution, while the
other two exhibit nearly identical results. Considering additionally computational efficiency,
the medium extension was adopted for further simulations.
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Figure 3.13: Phase I centerline velocities for ”pulsatile2” flow at three resolutions. The
dotted lines represent the two Nektar solutions [4].
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Figure 3.14: Phase I centerline velocities for ”pulsatile2” flow. The red and blue lines
represent the two Nektar solutions [4]. The magenta, green, and black lines show the LBM
results for different inlet lengths 0.03 m, 0.08 m, 0.13 m.

3.2.3.3 Velocity comparision

Figure 3.15 depicts the peak systolic velocities for the ”pulsatile2” case. Among the groups
participating in the original benchmark, a strong variability is observed regarding the flow
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patterns in the aneurysm sac. Among the solutions (A, Q, R, U, W, X), strong flow instabil-
ities are apparent, while all remaining solutions exhibit smoother isosurfaces. The solutions
(L, N, Z) are very comparable to those obtained by LBM in the present study.

LBM

Figure 3.15: Isosurfaces of velocity magnitude at 0.5 m/s for Phase I, ”pulsatile2” case at
peak systole (PK2). The result from this study (LBM) is shown in the bottom right corner.
All remaining results are from reference [5].

Additionally, Figure 3.16 shows the centerline velocities for the ”pulsatile2” case at peak
systole (PK) and for cycle-averaged flow (AV). Our numerical results are in good agreement
with the Nektar (reference) solutions. Noticeable differences in average velocity are only
found near the outlet, showing a possible impact of boundary conditions.
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Figure 3.16: (a) Velocity distribution along the centerline for ”pulsatile2” case at peak
systole (PK) or for cycle-averaged velocity magnitudes (AV). (b) represents the centerline
with corresponding positions [5].

3.3 FDA nozzle benchmark

Part of this section has been published as:
Feng Huang, Romain Noël, Philipp Berg, and Seyed Ali Hosseini. Simulation of the
FDA nozzle benchmark: A lattice Boltzmann study. Computer Methods and Programs
in Biomedicine, 221:106863, 2022.

3.3.1 Introduction

For the classical LBM, computational costs are still often prohibitive at high Reynolds num-
bers, for instance in aortic aneurysms. That is mainly due to the fact that the standard LBM
using a collision operator with a single parameter (SRT) EDF suffers from shortcomings such
as limited stability and lack of Galilean invariance [48, 50, 132].

Thus, many modifications have been proposed to extend the accuracy and stability of the
LBM, most notably, through more advanced collision operators, e.g. the entropic formu-
lation [64, 133], the MRT [134], centered or cascaded [61], the Cumulant method [135], or
the regularized LBM [136]. Furthermore, the inconsistency in the shear components can be
readily overcome by using higher order expansions in the EDF [132]. The development of
more consistent and robust schemes has also opened the door to so-called under-resolved di-
rect numerical simulations [48, 137]. A number of studies have shown that such simulations
can match LES with explicit sub-grid scale closures in terms of accuracy in many configura-
tions, as demonstrated most recently in [138] for homogeneous isotropic turbulence. In the
present work, we will further explore that avenue in the context of biological flows, through
a well-established benchmark.

The need for reliable, reproducible benchmarks confronted with experiments is urging in
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bio-medical applications where many variables may affect the results: temperature, in-vivo
vs. ex-vivo vs. in-vitro, biological species, etc. The US Food and Drug Administration
(FDA), conscious of this reality, suggested a series of challenging benchmarks. The idealized
medical nozzle device benchmark has been used by several laboratories to conduct PIV mea-
surements. Those measurements provided reference standards to test the accuracy, stability
and efficacy for numerical solvers or alternative experimental measurement techniques [139].
Experimental data sets have been provided by independent laboratories at different Reynolds
numbers Re = 500, 2000, 3500, 5000, and 6500, computed using the diameter of the throat
(see later Figure 3.17). These values of Reynolds numbers are typically encountered in medi-
cal devices involving flow recirculations, contractions, or expansions. This range of Re covers
very different flow regimes going from laminar (for Re = 500 and 2000) to transitional (for
Re = 3500 and 5000) to low-level turbulence (for Re = 6500). The corresponding PIV ex-
periments have been carried out completely independently by three different groups. It must
be kept in mind that large inter-laboratory discrepancies have been observed, in particular
regarding the jet breakdown location for transitional and turbulent flows. Conversely, a very
good agreement was observed for fully laminar flows [131].

Many numerical studies of this benchmark nozzle have been performed over the years, em-
ploying various numerical schemes ranging from Finite Element Method (FEM) [140, 141]
to Finite Volume Method (FVM) [142, 143], as well as a few using LBM [31, 144]. Table 3.1
summarizes the published numerical studies of the FDA benchmark nozzle with the associ-
ated Reynolds numbers, numerical methods and turbulence models employed. While many
studies performed Direct Numerical Simulation (DNS) for the lower Reynolds numbers, most
simulations in the turbulent regime were conducted using turbulence models like Unsteady
Reynolds-Averaged Navier-Stokes (URANS) [145, 146] or LES [147, 143, 148].

Table 3.1: Summary of numerical studies associated to the FDA benchmark nozzle.
Study at Re 500 2000 3500 5000 6500 Numerical method Sub-grid model

Sanchez Abad et al. [149]✓ ✓ ✓ ✓ Spectral elements (Nek5000)None
Fehn et al. [150] ✓ ✓ ✓ ✓ ✓ High-order None
Bergersen et al. [140] ✓ ✓ ✓ FEM (Oasis) None
Pewowaruk et al. [145] ✓ ✓ ✓ FVM (Converge v2.4) None
Stewart et al. [131] ✓ ✓ ✓ ✓ ✓ various various
Zmijanovic et al. [142] ✓ FVM (YALES2BIO) σ-model
Manchester et al. [147] ✓ FVM (OpenFOAM) Wale
Bhushan et al. [146] ✓ ✓ ✓ FVM (ANSYS Fluent) URANS
Janiga [143] ✓ FVM (ANSYS Fluent) Smagorinsky
Chabannes et al. [141] ✓ ✓ ✓ FEM (Feel++) None
White et al. [144] ✓ regularized LBM (Palabos) None
Jain [31] ✓ ✓ MRT-LBM (Musubi) None
Present work ✓ ✓ ✓ central Hermite MRT-LBM None

Few studies simulated the FDA nozzle benchmark using LBM; none of those has covered
all experimental conditions, more specifically the higher Reynolds numbers. White and
Chong [144] performed LBM simulations at low Reynolds numbers (50 – 500) and studied
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the suitability of different lattice types. More recently, Jain [31] studied the FDA nozzle
at Re = 2000 and 3500 with a simple LBM scheme (raw moments MRT collision operator
with second order EDF and D3Q19 lattice) focusing on fully-resolved simulations. Results
were shown for the average axial velocity, pressure profiles, and shear stress in different
planes. In the present study, we consider a wider range of Reynolds number, covering all
flow regimes. The computations are done with an advanced LBM model relying on a central
Hermite collision operator with a full expansion of the discrete equilibrium, implemented in
the in-house LBM solver ALBORZ [53, 56, 115, 151]. The accuracy of this numerical model
is assessed in under-resolved direct numerical simulations at different resolutions, akin to
filtered simulations. A comprehensive comparison to experimental data covering all relevant
fields is presented.

3.3.2 Numerical simulations

Cases description A cross-sectional view of the idealized medical device, subject of the
FDA nozzle benchmark is shown in Figure 3.17. The geometry is composed of an axisymmet-

Figure 3.17: Schematic representation of the FDA nozzle with all dimensions.

ric nozzle with a convergent section on the flow inlet extremity, a constant throat section in
the middle and a sudden expansion section toward the end. To eliminate a possible numerical
effect of inlet and outlet boundary conditions, the nozzle has been extended by 0.052 m and
0.02 m at both ends, respectively. The final length of the nozzle is 0.24 m. To validate the
numerical results, data are collected from both the horizontal center-line and eight distinct
planes located at different coordinates along the horizontal x-axis. Figure 3.17 shows the
locations of these planes. The simulations are run over a total period of time covering 300 tc,
where tc is the flow-through period defined as,

tc =
Lc

uc

, (3.2)

where the characteristic speed uc and length Lc are set to the velocity in the throat uthr

and to the length of the throat section, respectively. Only data from the second half, i.e.
150− 300 tc is used for the time-averaging process to get average flow fields. The PIV data
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used for validation and the 3-D model geometry are available from the FDA official website1.

Flow conditions Following experimental settings and benchmark requirements, the fluid
was considered to be Newtonian, with a density of 1056 kg/m3 and a dynamic viscosity of
3.5 mPa · s. The Reynolds number is computed as:

Re = Rethr =
ρuthrdthr

µ
, (3.3)

where dthr is the throat diameter and uthr is defined as:

uthr =

(
d0
dthr

)2

u0. (3.4)

The average inlet velocity u0 is obtained by dividing the volume flow rate by the inlet surface
area S0 = πd20/4. To cover all flow regimes, the present study considers Re = 500, 3500, and
6500. Based on critical pipe Reynolds numbers, the first would fall in the laminar regime,
the second in the transitional, and the third in the low-level turbulent regime, respectively.

Simulation details The inlet boundary condition for the velocity is prescribed in the form
of a laminar parabolic profile:

u(r) = 2u0

(
1− 4

r2

d20

)
. (3.5)

Constant pressure boundary conditions are implemented at the outlet while no-slip boundary
conditions are employed along the walls. The no-slip conditions are enforced with the curved
treatment of the bounce-back method [82] while the outflow constant pressure is applied using
the non-equilibrium extrapolation approach [152].

The computational domain is tridimensional (D = 3) and has a volume of 0.012 × 0.012 ×
0.24m3. Simulations were conducted with different grid resolutions, δr, listed in Table 3.2.
Four different resolutions will be considered in the study. The respective time-step sizes, δt,
are defined by fixing the maximum predicted convective Courant–Friedrichs–Lewy (CFL)
number in the domain:

CFL =
2uthr

δr/δt
, (3.6)

in turn leading to:

δt =
ρdthrδrCFL

2µRethr
. (3.7)

For the analysis of the turbulent statistics, the velocity is decomposed into a mean and a
fluctuating part as:

u(x, t) = u(x) + u′(x, t), (3.8)

1https://ncihub.org/wiki/FDA_CFD
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Table 3.2: Spatial and temporal resolutions of simulations.
Re δr [×10−4m] δt [×10−6s]

R1 500 2.3 49.03
R2 500 1.725 36.75
R3 500 1.15 24.5

R1 3500 2.3 9.86
R2 3500 1.725 7.38
R3 3500 1.15 4.93

R1 6500 2.3 5.31
R2 6500 1.725 3.98
R3 6500 1.15 2.65
R4 6500 0.776 1.7

where the mean part u is defined by:

u(x) =
1

∆t

∫ t0+∆t

t0

u(x, t)dt, (3.9)

t0 indicates the start of averaging and ∆t the period over which it is done. Averaging the
convective momentum flux term in the NSE using this decomposition, one gets:

(uα + u′
α)(uβ + u′

β) = uαuβ + u′
αu′

β, (3.10)

The last term of this equation appears in the Reynolds stress tensor, defined as:

Π′
αβ = ρu′

αu′
β, (3.11)

where u′(x, t) and ρ indicate velocity fluctuations and fluid density, respectively. The
Reynolds stress tensor is symmetrical and consists of three normal stress and six shear stress
components. The normal stress can be calculated as ρu′

αu
′
α where the term u′

αu
′
α indicates

the time-averaged product of normal velocity fluctuations. Finally, the viscous shear stress
σ is calculated, in this study, as below:

σαβ =
1

2
ρν (∂βuα + ∂αuβ) . (3.12)

3.3.3 Results

Numerical results are compared to experimental data from three independent laboratories,
presented in the form of five different data-sets [139], i.e. three different measurements from
the first laboratory, and one each for the second and third laboratories. Throughout this
section the three independent sets of measurements from the first laboratory are shown with
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diamonds, circular, and square markers. Data from the second and third laboratories are
represented by asterisks and upward-pointing triangular markers, respectively.

3.3.3.1 Laminar flow, Re = 500

At Re = 500 (inlet Reynolds number of 167), the flow regime is expected and has been
observed to be fully laminar from both PIV and numerical results, meaning that no jet
break-down is observed after the sudden expansion (see Figure 3.18(a)).
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Figure 3.18: Results for Re = 500. (a) Snapshot of the steady velocity field as obtained
from R2 simulations at time t = 2.4 s. (b) Comparison of mean axial velocity between LBM
results and PIV experiments along the center-line of the nozzle. The results from R1, R2,
and R3 are indicated by solid black, dashed black and solid red lines respectively.

Axial velocity The results as obtained from R1, R2 and R3 resolutions are compared to
experimental data in Figures 3.18(b) and 3.19. First, we look into the time-averaged axial
velocity (note that, in this laminar configuration, time-averaged fields are equivalent to the
steady fields) along the center-line. All three numerical profiles closely match each other –
lying often on top of each other –, indicating that the chosen grid-sizes allow to correctly
resolve the flow features.

It can be noted from the axial velocity plot that the flow is constant upstream of the con-
traction section (x < −0.063 m) and accelerates when flowing into the contraction region,
reaching a peak value of 0.76 m/s at the entrance of the expansion section, plane X2 (cor-
responding to x = 0). The flow starts decelerating with an approximately linear rate in
the sudden expansion section (x > 0) due to the increase in cross-section area. In both
Figures 3.18(b) and 3.19, large discrepancies are observed between the different measure-
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Figure 3.19: Results for Re = 500. Axial velocity profiles compared with PIV experiments
at selected cross-sections. The radial distance is normalized by the radius of the nozzle, R0.
The results from R1, R2, and R3 are indicated by solid black, dashed black and solid red
lines respectively. Cross-section planes X1 to X8 are represented from top left to bottom
right.

ments. Stewart et al. [131] reported that the experimental data-sets are strongly affected by
normalization errors, which could partly explain the observed variations.

Radial profiles of axial velocity on sampling planes The profiles of the predicted
axial velocity are illustrated at eight cross-sections in Figure 3.19. A good quantitative
agreement is observed between PIV data and numerical results throughout the nozzle.

However, the peak values of the axial velocity appear to be slightly overestimated after
the sudden expansion section. Hariharan et al. [139] reported fluctuations in flow rate
during the experiments, which can lead to this difference. Given that discrepancies between
experimental and numerical results are at the same level as measurement uncertainties, it
can still be concluded that numerical simulations agree well with the experiments for this
case.

Viscous shear stress The magnitude of the mean viscous shear stress component σxy

along the same cross-sections is illustrated in Figure 3.20. Overall, numerical viscous shear
stresses are in good agreement with the values reported from the PIV measurements. Peak
stresses between the central jet and the recirculation zones show a decreasing trend in down-
stream direction after entering the sudden expansion. The viscous shear stresses are consis-
tently zero along the center-line.
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Figure 3.20: Results for Re = 500. Viscous shear stress compared with PIV experiments at
selected cross-sections along the center-line. The results from R1, R2, and R3 are indicated
by solid black, dashed black and solid red lines respectively. Cross-section planes X1 to X8

are represented from top left to bottom right. Note the different vertical scales between the
two rows.

3.3.3.2 Transitional flow, Re = 3500

At Re = 3500 (inlet Reynolds number of 1169), the flow regime has been observed to be
transitional with a jet breakdown downstream of the sudden expansion region observed both
in the PIV experiments and numerical simulations (see Figure 3.21(a)).

Axial velocity Looking at Figure 3.21(b), the axial velocity reaches a peak of 4 m/s on
the finest grid (R3) at x = 0.02 m, but then decreases afterwards rapidly to 0.5 m/s at
x = 0.06 m, which indicates jet break-down. The velocity distributions obtained from all
three simulations match perfectly up to the smooth contraction zone. In the throat, small
discrepancies (of the order of 3% relative differences) are observed in the predicted maximum
velocities. Overall, the time-averaged axial velocities along the center-line predicted by LBM
simulations match the PIV data very well, particularly so for resolution R3. The differences
observed between R1, R2 and R3 are in the same range as the variations found in the
measurements.

Radial profiles of axial velocity on sampling planes Figure 3.22 shows axial velocity
profiles along the chosen cross-section planes. In contrast to the parabolic profiles found at Re
= 500, the axial velocity profiles are now plug-like in the throat section, as expected. Starting
at X4, negative axial velocities appear close to the walls indicating a large, recirculating
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Figure 3.21: Results for Re = 3500. (a) Snapshots of instantaneous velocity field as obtained
from R3 simulation at time t = 4.2 s. The top-left inlay is a zoom over the sudden expansion.
(b) Comparison of mean axial velocity between LBM results and PIV experiments along the
center-line of the nozzle. The results from R1, R2 and R3 are indicated by solid black,
dashed black and solid red lines, respectively.
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Figure 3.22: Results for Re = 3500. Time-averaged axial velocity profiles compared with
PIV experiments at selected cross-sections. The radial distance is normalized by the radius
of the nozzle, R0. The results from R1, R2 and R3 are indicated by solid black, dashed black
and solid red lines respectively. Cross-section planes X1 to X8 are represented from top left
to bottom right.
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toroidal zone. Further downstream, the profiles slowly grow into a parabolic distribution with
a decreasing peak value, down to 0.5 m/s at the late stages, i.e. the last plane X8. Visible
differences between different grid resolutions are observed most notably at X6, where the
highest levels of turbulence (and hence smallest structures) are present, as will be discussed
later. The results with the finest mesh R3 (red lines in Figure 3.22) lead everywhere to an
excellent agreement with measurement data. Even strongly under-resolved simulations, like
R1, lead to fully correct and stable qualitative predictions, and stay even in fair quantitative
agreement with measurement data outside of the transitional region, demonstrating the
robustness of the employed numerical solver.

Viscous shear stress The magnitude of the mean viscous shear stress component σxy is
shown in Figure 3.23. The peak of the viscous shear stress is found at around 25Pa in the
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Figure 3.23: Results for Re = 3500. Time-averaged viscous shear stress compared with
PIV experiments at selected cross-sections. The results from R1, R2 and R3 are indicated
by solid black, dashed black and solid red lines respectively. Cross-section planes X1 to X8

are represented from top left to bottom right. Note the different vertical scales between the
two rows.

throat section. The stress decreases gradually from plane X2 to the end of the nozzle. The
peak is shifted toward the shear layer between the jet and the recirculation zone during jet
breakdown. The shear stress remains zero in the boundary layers of the recirculation region
at planes X3 and X4, while it starts increasing there at plane X5, before progressively going
back to zero further downstream (relaminarization).

Reynolds stress Figures 3.24 and 3.25 show the normal Reynolds normal in axial direc-
tion at selected cross-sections and along the center-line, respectively. Ahead of the sudden
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Figure 3.24: Results for Re = 3500. Time-averaged normal Reynolds stress in axial direction
compared with PIV experiments at selected cross-sections. The results from R1, R2 and R3
are indicated by solid black, dashed black and solid red lines respectively. Cross-section
planes X1 to X8 are represented from top left to bottom right. Note the different vertical
scales between the two rows.

expansion section, the Reynolds stress is nearly zero, indicating laminar conditions.
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Figure 3.25: Results for Re = 3500. Comparison between LBM results and experimental
data for normal Reynolds stress in axial direction along the center-line. The results from
R1, R2 and R3 are indicated by solid black, dashed black, and solid red lines, respectively.

It experiences a sharp increase around plane X4, reaching maximum values in planes X5

and X6. The peak of the normal Reynolds stress is found to be around 800 Pa for the finest
resolution at X6, where strong flow instabilities can be observed from Figure 3.21(a). Further
downstream (cross-section planes X7 & X8) the turbulent stress goes back to zero, indicating
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again relaminarization of the flow. While noticeable differences are observed among the
three different resolutions (especially around the jet breakdown region), they are observed
to converge toward experimental data, as seen in Figure 3.25. The numerical results from
the finest mesh R3 fall within the PIV data and follow closely the corresponding trends,
leading to an accurate description of jet breakdown. It must also be kept in mind that
an accurate measurement of the Reynolds stress tensor based on PIV remains extremely
challenging due to the needed resolution in space and time. As such, the experimental
data used for the present comparison is certainly associated with a non-negligible level of
experimental uncertainty, already visible in the widely different results obtained by the three
experimental groups involved in the study.

3.3.3.3 Mildly turbulent flow, Re = 6500

At Re = 6500 (inlet Reynolds number of 2171), the flow regime is observed to be locally
turbulent downstream of the sudden expansion region in the PIV and in the numerical
simulations (see Figure 3.26(a)).
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Figure 3.26: Results for Re = 6500. (a) Instantaneous axial velocity field for mesh R1 at
time t = 11.925 s. (b) Comparison between LBM results and PIV experiments for mean
axial velocity along the center-line of the nozzle. The results from solid black, dashed black,
solid red and dashed red lines, respectively.

Axial velocity The profiles of time-averaged axial velocity for the PIV data-sets and for
the four LBM meshes (R1, R2, R3 and R4) are shown along the center-line in Figure 3.26(b).
As in Figure 3.21(b) the LBM axial velocity profiles show very good agreement with PIV
experimental data-sets. The results with mesh resolution R3 and R4 fall within the experi-
mental symbols. It is worth noting that the jet from the coarsest mesh, R1, starts breakdown
slightly later than at higher resolution. The axial velocity increases to a peak value around
7.5 m/s at x = 0.01 m, before decreasing very sharply to less than 0.5 m/s. This abrupt
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decrease marks the onset of jet breakdown. All four resolutions are able to accurately predict
the axial velocity distribution along the center-line throughout the FDA nozzle.

Radial profiles of axial velocity along sampling planes The time-averaged axial
velocity profiles are illustrated at the selected cross-sections along the flow direction in Fig-
ure 3.27. It can be seen from the first two plots that the flow remains at the same peak
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Figure 3.27: Results for Re = 6500. Time-averaged axial velocity compared with PIV exper-
iments at the chosen cross-sections along the center-line. The radial distance is normalized
by the radius of the nozzle, R0. The results from R1, R2, R3 and R4 are indicated by solid
black, dashed black, solid red and dashed red lines respectively. Cross-section planes X1 to
X8 are represented from top left to bottom right.

velocity in the throat section; the numerical results from the four resolutions match well with
the PIV experiments. Although the flow enters the expansion section at location X3, the
peak axial velocity is still the same as in the previous locations, in good agreement with PIV
data. It is worth noting that a small negative velocity appears at cross-section X4 near the
boundary layers, while the peak axial velocity decreases only slightly. On the other hand,
the peak axial velocity decreases drastically from section X5 to X6 in association with jet
breakdown. At later stages, in the cross-sections X7 and X8, it can be observed that the
peak values are relatively small (around 0.75 m/s). The numerical predictions match very
well with the PIV data in this region where the jet collapses almost completely and the
flow reattaches. Overall, the LBM results are in very good agreement with the experiments
concerning jet breakdown. The mesh R3 captures correctly the axial velocity profile and the
jet breakdown process throughout the nozzle.
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Viscous shear stress The magnitude of the time-averaged viscous shear stress component
σxy is shown at selected cross-sections in Figure 3.28. It can be noted that the viscous shear
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Figure 3.28: Results for Re = 6500. Time-averaged viscous shear stress compared with PIV
experiments at selected cross-sections along the center-line. The results from R1, R2, R3 and
R4 are indicated by solid black, dashed black, solid red and dashed red lines, respectively.
Cross-section planes X1 to X8 are represented from top left to bottom right. Note the
different vertical scales between the two rows.

stress reaches a peak around 50 Pa in the throat section, the largest velocity gradients being
found as expected in the boundary layer. In the sudden expansion section, the peak of
the viscous shear stress is predicted to be less than 8 Pa and is found in the shear layers
between the central, high-velocity jet and the recirculating fluid. The peak of the viscous
shear stress decreases further downstream. Later on, the effect of viscous shear stress can
be fully neglected due to the uniform and low velocity found in the nozzle. The largest (but
low) shear stress is found close to the boundary layer in cross-sections X7 and X8, which
can be attributed to the jet reattachment to the wall. As expected, the shear stress is zero
along the center-line. The height of the boundary layer is estimated to be around half of the
throat diameter in both experimental and numerical results.

Overall, viscous shear can be neglected as the peak viscous stress is very small throughout
the nozzle. Such a value should not be able to damage red blood cells. Depending on the
studies, a shear stress exceeding about 100 Pa is necessary to observe any hemolysis [153].

Reynolds stress Figures 3.29 and 3.30 illustrate the normal Reynolds stress for selected
cross-planes and along the center-line, respectively. It can be observed that the results are
in good agreement with the experimental data throughout the nozzle, keeping in mind the
large variations also found in the experiments. In the throat section (planes X1& X2), the
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Figure 3.29: Results for Re = 6500. Comparison between LBM results and experimental data
for axial Reynolds normal stress at different cross-sections. The results from R1, R2, R3 and
R4 are indicated by solid black, dashed black, solid red and dashed red lines, respectively.
Cross-section planes X1 to X8 are represented from top left to bottom right.
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Figure 3.30: Results for Re = 6500. Comparison between LBM results and experimental
data for axial Reynolds normal stress along the center-line. The results from R1, R2, R3,
and R4 are indicated by solid black, dashed black, solid red and dashed red lines respectively.

numerical results are close to zero, as in most measurements (while few experimental sets
show local peaks up to 1500 Pa; the experimental results vary very widely there). After
flowing through the sudden expansion region, the Reynolds stress increases largely until the
late stage of jet breakdown. The peak of Reynolds stress appears in this region in the shear
layers between the central high-speed jet and the surrounding recirculating fluid, reaching
around 3000 Pa between cross-sections X5 and X6. Further downstream, the Reynolds stress
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starts decreasing sharply towards zero. The Reynolds stress is negligible in the throat as
well as at the end of the nozzle.

3.3.4 Discussion

In this section, further information is provided concerning agreement and/or discrepancies
between numerical results and PIV measurements in this study.

Laminar flow The in-house numerical tool ALBORZ successfully predicts the nature of
the laminar flow. The jet induced after leaving the throat does not break down in the sudden
expansion section. The numerical simulations accurately capture the fields of velocity and
viscous shear stress.

Transitional flow Both numerical simulations and experiments show a transitional regime
with a jet breakdown in the sudden expansion section at this Reynolds number of 3500. The
location of the jet breakdown is accurately predicted by the simulations, around x = 0.02 m,
which is later than for Re = 6500. The effect of the viscous shear stress would be negligible
regarding hemolysis, due to its low peak value. Concerning the Reynolds stress, used to
quantify the strength of turbulent velocity fluctuations and to assess indirectly the potential
damage to blood cells, the obtained values are much higher and would be sufficient to trigger
hemolysis. However, as explained in Yu et al. [153], there is still no clear consensus regarding
critical values and unsteady effects must be taken into account to clearly assess the impact
of stress on hemolysis.

Mildly turbulent flow The turbulent flow exhibits an earlier onset of jet breakdown,
already around x = 0.01 m. Ahead of the sudden expansion section, the value of the
Reynolds stresses are small, showing that there is no notable flow disturbance produced
before and within the throat, as expected. Some discrepancies are found between numerical
results and PIV measurements regarding Reynolds normal stress for cross-section planes X5

and X6. However, the differences are below the variations observed among the different
experimental data-sets, the orders of magnitude are well predicted, and the shapes of the
profiles coincide. It is therefore impossible to decide if the disagreements come from the
numerical model or from experimental limitations.

3.3.5 Conclusions

Lattice Boltzmann simulations were performed on the FDA’s benchmark nozzle, mimick-
ing a simplified blood-contacting medical device, to assess the capability of the in-house
solver ALBORZ in modelling such flows under laminar, transitional, and mildly turbulent
conditions. For this purpose, Reynolds numbers Re = 500, 3500, and 6500 have been consid-
ered, for which experimental data are available. Velocity, viscous shear stress, and turbulent
Reynolds stress were compared to the inter-laboratory PIV experiments documented in the
literature [139]. Overall, numerical results are in very good agreement with the experimental
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data, demonstrating that the solver is capable of predicting accurately the underlying flow
physics. This applies even for under-resolved simulations (grid R1), allowing therefore very
fast estimates, since results on grid R1 are typically obtained almost 20 times faster than
on grid R3. When a very high accuracy is required, by increasing the resolution, results
converge toward experimental profiles within the corresponding uncertainty. This shows
that the solver can be used in a stable manner either 1) for a fast estimate of the flow
conditions with a fair accuracy, or 2) to get very accurate flow predictions at the price of
a much longer computational time. To our knowledge, this work is the first LBM study of
the FDA’s benchmark nozzle considering simultaneously laminar, transitional, and mildly
turbulent flow conditions, providing comprehensive quantitative comparisons for the flow
fields.

3.4 Validation of non-Newtonian fluid model

Part of this section has been published as:
Seyed Ali Hosseini, Feng Huang, Dominique Thévenin. Lattice Boltzmann model for simu-
lation of flow in intracranial aneurysms considering non-newtonian effects. Physics of Fluids,
34(7):073105, 2022.

3.4.1 Plane Poiseuille flow

We consider a 2D flow between parallel plates driven by a constant and uniform body force
along the channel. The height of the channel is H. The applied body force is F = (Fx, Fy).
The fluid shows power-law fluid property, following:

µ

ρ
=

k

ρ
γ̇(n−1), (3.13)

where µ and ρ are the dynamic viscosity and density, respectively; k is the consistency
index with the unit of kg · sn−2/m, n is the power index. The fluid is shear-thinning when
0 ≤ n < 1; the fluid behaves as shear-thickening (or dilatant) when 1 < n; while a fluid
becomes Newtonian with constant viscosity of k when n = 1.

The Reynolds number is defined as:

Re =
u2−n
maxH

n

k/ρ
, (3.14)

where the velocity reaches a maximum umax at the centerline of the channel.

For such a 2D steady flow, the analytical solution of this system can be expressed as:

ux(y) =
n

n+ 1

(
Fx

k/ρ

) 1
n

(∣∣∣∣H2
∣∣∣∣n+1

n

−
∣∣∣∣H2 − y

∣∣∣∣n+1
n

)
. (3.15)
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To assess the accuracy of our solver, a series of simulations were carried out under different
values of the power index n. The convergence analysis was done using different grid reso-
lutions Ny = H

δr
∈ {20, 30, 40, 50, 60} where δr is the grid size. On the basis of the below

convergence criterion, the simulations were considered to have reached a steady state.√√√√√
∑
i,j

(ux(t, x, y)− ux(t− δt, x, y))2∑
i,j

ux(t, x, y)2
< 10−10. (3.16)

The list of the above-mentioned parameters for the simulations are given in Table 3.3.

Table 3.3: Maximum velocities and force in Hagen-Poiseuille simulations.
n 0.25 0.5 0.75 1.0 1.25 1.5 1.75

Fx [-] 4.1E-5 1.25E-5 3.5E-6 1E-6 2.5E-7 7.0E-8 1.8E-8
Umax [-] 0.131 0.1373 0.1351 0.1406 0.1312 0.1359 0.133

After the flow reaches steady state, the velocity profiles were compared to the analytical
solution from Eq. 3.15. The relative errors were estimated via an L2 norm:

EL2 =

√√√√√
∑
i,j

(ux − uref
x )2∑

i,j

(uref
x )2

, (3.17)

where uref
x (x, y) is the analytical velocity in x direction.

Figure 3.31 demonstrates the velocity comparison between numerical results obtained from
the finest resolution and the corresponding analytical solutions under different values of the
power index n. This comparison points to an excellent agreement.

To further assess the accuracy of our solver, we summarize the relative error obtained from
all simulations listed in Table 3.4 and plot the relative error vs. resolution in Figure 3.32.
It can be clearly observed that for all power indices our numerical model is second-order
accurate in space.

Table 3.4: L2 norm of error for Hagen-Poiseuille power-law fluid flow simulations.
Ny n 0.25 0.5 0.75 1.0 1.25 1.5 1.75

20 1.5E-02 6.4E-03 4.4E-03 3.6E-03 3.1E-03 2.8E-03 2.7E-03
30 6.7E-03 2.8E-03 2.0E-03 1.6E-03 1.4E-03 1.3E-03 1.3E-03
40 3.7E-03 1.5E-03 1.1E-03 9.2E-04 8.3E-04 7.8E-04 7.5E-04
50 2.5E-03 9.6E-04 7.3E-04 5.9E-04 5.4E-04 5.1E-04 5.0E-04
60 1.8E-03 7.2E-04 5.2E-04 4.1E-04 3.7E-04 3.6E-04 3.5E-04
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Figure 3.31: Comparison of velocity profiles for the power-law flows with different index n
for Re = 100. The markers represent the numerical solutions and the solid lines are the
corresponding analytical solution. It should be noted that for the sake of readability not all
simulation grid-points are shown with the symbols.
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Figure 3.32: Scaling of the L2 norm of the global error for the 2-D steady Hagen-Poiseuille
case. Symbols follow those selected in Figure 3.31. The solid line shows second-order con-
vergence in space.

3.4.2 Lid-driven cavity

To further validate the accuracy and robustness of our solver, a lid-driven cavity case was
chosen to test the model with a non-Newtonian fluid. A square box is considered with a
side length of L; the top wall is moving with the horizontal velocity U0. The other walls are
static and a no-slip boundary condition is applied there. The Reynolds number is defined
as:

Re =
U2−n
0 Ln

k/ρ
. (3.18)
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We will consider both power indices 0.5 and 1.5 at Re = 500. The domain is discretized with
200 grid points in each direction. The grid size is thus set to δr = L/200 and the speed of the
moving wall is non-dimensionalized as U0 = 0.1δr/δt. The simulations are carried out until
the convergence criterion is reached as defined in Eq. 3.16. The velocity data are extracted
along the horizontal and vertical centerlines and then compared against the reference data
from [6]. The results for both numerical simulations are shown in Figure 3.33 and point to
an excellent agreement with the reference velocity profiles. To better illustrate the effect of
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the fluid behavior index on the flow structure at the fixed Reynolds number, the vorticity
magnitude fields of both cases are shown in Figure 3.34. It is observed that both peripheral
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Figure 3.34: Steady-state vorticity magnitude field as obtained from simulations at Re =
500 for (left) n = 1.5 and (right) n = 0.5.

secondary vortices and the primary vortex are affected. The primary vortex is smaller and
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3.4. Validation of non-Newtonian fluid model

more energetic for n = 1.5. This fact is also confirmed by the larger maximum/minimum
velocities as shown in Figure 3.33. This concludes the successful validation of all numerical
models employed in the present investigation.
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4.1. Introduction

Part of this chapter has been published as:
Seyed Ali Hosseini, Feng Huang, Dominique Thévenin. Lattice Boltzmann model for simu-
lation of flow in intracranial aneurysms considering non-newtonian effects. Physics of Fluids,
34(7):073105, 2022.

4.1 Introduction

From a biomechanical perspective, it is widely accepted that hemodynamic forces such as
wall shear stress and pressure play a significant role in aneurysm rupture. When the forces
acting on the aneurysm lumen wall exceed the strength of the lumen tissues, this results
in material failure, tissues degradation, and ultimately rupture [154]. From a geometric
point of view, the aspect ratio, shape and size of aneurysms may also have an effect on
rupture risk [155, 156]. While considerable progress has been made in the past years, access
to details of flow structures and accurate measurements of the velocity field within IAs
via experimental measurements is still quite challenging. In recent years, given the rapid
progress of numerical tools in computational fluid dynamics, those are becoming interesting
non-intrusive alternatives to experimental studies in order to conduct systematic studies and
get a better understanding of flow dynamics in IAs [30, 157, 158, 159, 160, 161].

Of the many open questions in that area, the issue of viscosity modeling for blood is one that
has attracted much attention [162, 163, 164, 165, 166]. Blood is known to exhibit a shear-
thinning behavior, which results from the mixture of suspended cells in the plasma. The
velocity profile of blood is found to be flattened [167, 168] as compared to its counter-part
under a Newtonian viscosity assumption. Compared to a pseudo-Newtonian blood there is
less circulation, stagnation, and flow separation in the aneurysms [168]. In spite of this,
most studies carried out simulations in cerebral aneurysms assuming a Newtonian fluid, as
discussed e.g. by Fukazawa et al. [169]. However, it must be noted that the studies con-
firming usability of the Newtonian assumption were carried out in healthy arteries; there,
the magnitude of shear rate is normally larger than 100 s−1 making non-Newtonian effects
negligible [170]. On the other hand, IAs show a wide range of morphological variability
leading to complex flow structures involving regions with low shear-rate [171, 172]. To the
best of the authors’ knowledge, there is still no consensus on whether rheological models
should be employed to simulate intracranial aneurysms [162]. Therefore, further comprehen-
sive studies using efficient numerical tools are needed to settle this issue. It must be noted
that at smaller scales and Reynolds numbers non-Newtonian effects are more important, for
instance in micro-vasculatures or the vasculature at arteriole/venules level. This is another
area were non-intrusive methods like computational fluid dynamics can be used to elucidate
non-Newtonian effects on the dynamic of the flow.

While publications on blood flow simulations using the lattice Boltzmann method are now
quite well-spread, hemodynamic simulations of realistic 3-D patient-specific geometries and
flow-rates involving non-Newtonian properties are still rather limited [173, 174]. Publications
considering the specific context of cerebral aneurysms are even more scarce [105], even if
the first article describing the implementation of non-Newtonian viscosity laws within the
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4.2. Simulations of fluid flow with non-Newtonian models.

lattice Boltzmann framework can be dated back to as far as 1993 [175]. Many articles have
since been published [176, 177, 178, 179, 180, 181, 182], but all of them have been limited
to simple flow configurations with no specific intent of porting the model to medical flows.
Furthermore, from a more technical point of view, most if not all models proposed since [175]
rely on a second-order expansion of the equilibrium distribution function leading to well-
known Galilean-variant errors in the viscous shear stress tensor. On top of this, both single
relaxation and multiple relaxation time formulations[183, 184] have considered the full rate-
of-strain tensor including dilatation contributions when computing the apparent viscosity
of non-Newtonian models. Given that in lattice Boltzmann simulations the sound speed is
rescaled and orders of magnitude smaller than the actual speed of sound of the configurations
of interest, which in turn leads to large compressibility effects and velocity field divergence,
this could possibly cause a noticeable over-estimation of the apparent viscosity.

In this work, we propose a solver overcoming most issues related to the classical lattice Boltz-
mann formulation when dealing with incompressible flows. The model makes use of the full
Hermite expansion of the discrete equilibrium distribution function, eliminating the cubic
errors in the deviatoric components of the viscous stress tensor and making the apparent vis-
cosity in non-Newtonian fluid simulations Galilean-invariant. The collision model is replaced
with a modified version of the central Hermite polynomials-based multiple relaxation time
model allowing for a much wider domain of stability and independent control over the dis-
sipation rate of acoustic modes [53, 185]. This is an interesting property for the simulations
considered here, as it allows for a very fast elimination of acoustic waves; given the re-scaling
of the speed of sound in lattice Boltzmann, those are non-physical, spurious, and should be
avoided as far as possible. Finally, the rate-of-strain contribution is computed excluding
dilatation, as done classically using a classical discretization (finite volumes, elements, or
differences), using the second-order moment of the non-equilibrium part of the distribution
function and the resulting system of equations, i.e. the evaluation of the apparent viscosity,
is solved via a point-wise implicit solver.

4.2 Simulations of fluid flow with non-Newtonian mod-

els.

4.2.1 Idealized aneurysm model

As the first non-canonical configuration we consider an idealized aneurysm geometry. The
corresponding geometry has already been presented in Figure 3.1(a), with inflow conditions
shown in Figure 3.2. In Section 3.1.2.2 the viscosity was defined via a Newtonian fluid model
in order to reproduce the experiment in which a (Newtonian) mixture of distilled water,
glycerin, sodium iodide and sodium thiosulphate with a density of ρBAL = 1221 kg/m3

and a viscosity of µBAL/ρ = 3.2 × 10−6 m2/s was used. Now, non-Newtonian fluid models
are employed in the same configuration. To provide a first illustration of non-Newtonian
effects in a typical cerebral aneurysm four simulations with four different viscosity models
are conducted: (a) Newtonian, (b) power-law, (c) Carreau-Yasuda and (d) Cross model.
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4.2. Simulations of fluid flow with non-Newtonian models.

While the power-law model follows that defined in previous sections, the Carreau-Yasuda
model is defined as:

µ(γ̇) = µ∞ + (µ0 − µ∞)[1 + (λγ̇)a]
(n−1)

a (4.1)

where µ0 and µ∞ are the zero-shear-rate and infinite-shear-rate dynamic viscosities, respec-
tively, λ and n are the relaxation time constant and the power-law index, while the last
parameter a is a dimensionless coefficient that characterizes the width of the transition re-
gion between the zero-shear-rate region and the power-law region. The Carreau-Yasuda
model turns into the Carreau model if a = 2. The Cross model is defined as:

µ(γ̇) = µ∞ +
µ0 − µ∞

[1 + (λγ̇)n]
. (4.2)

The parameters used in each model follow those proposed in the literature and are listed in
Table 4.1.

Table 4.1: Summary of model parameters used for the ideal aneurysm configuration.
model µ∞[Pa.s] µ0[Pa.s] λ[s] a n

Newtonian 0.004 - - - -
Power law 0.01467 - - - 0.7755

Carreau-Yasuda 0.0035 0.16 8.2 0.64 0.2128
Cross 0.0036 0.126 8.2 1 0.64

Figure 4.1: Shear-rate dependent viscosity as described by the four different laws used for
the ideal aneurysm case: (blue) Newtonian, (red) power-law, (green) Cross and (magenta)
Carreau-Yasuda.

To better illustrate the difference between the four models, the apparent viscosity as a
function of shear rate is plotted in Figure 4.1.

As discussed in the introduction it is indeed observed that in the limit of high shear rate
values, i.e. above 100 s−1 all four models converge to the Newtonian fluid behavior. In order
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4.2. Simulations of fluid flow with non-Newtonian models.
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Figure 4.2: Velocity profiles on the center-lines along the (red) x- and (black) y-axes as
obtained from simulations using: (plain line) Newtonian, (dashed line) power-law, (dash-
dotted line ) Carreau-Yasuda, and (dotted line) Cross at different times: (top row from left
to right) 0.2, 0.3, 0.5 and (bottom row from left to right) 0.6 and 1 s.

to make sure that the impact of the initial condition is negligible, the simulations were carried
out over four cardiac cycles and only data from the last cycle was used. In all simulations
time-step and mesh sizes were set to δt = 1.5× 10−5 s and δr = 1.25× 10−4 m, respectively.
This choice resulted in 2, 687, 000 grid-points and 267, 000 time-steps. Simulations were
run with 300 cores at an average speed of 0.6 million lattice updates per second per core.
The velocity profiles at different times of a cycle along the two center-lines inside the sac
are shown in Figure 4.2. While no major difference in terms of flow structure is observed,
velocity profiles exhibit non-negligible differences both in the central (low strain) region and
close to the aneurysm sac walls, where a larger strain-rate is found. These differences are
further illustrated with iso-surfaces of the velocity magnitude in Figure 4.3. To clarify the
reason behind these differences, we extracted a normalized probability distribution function
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4.2. Simulations of fluid flow with non-Newtonian models.

Figure 4.3: Isosurface of velocity (magnitude of 0.4 m/s) at peak systole. From top left to
bottom right: Newtonian, Power-law, Carreau-Yasuda, and Cross model.
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Figure 4.4: Probability distribution function of the shear rate inside and outside the
aneurysm sac at peak systole as obtained from simulations using (plain line) Newtonian,
(dashed line) power-law, (dash-dotted line) Carreau-Yasuda, and (dotted line) Cross model.
Note the different horizontal scales.

for the shear rate in the sac region, f(γ̇, r, t) such that:∫ γ̇=∞

γ̇=0

∫
V

f(γ̇, r, t)dγ̇dV = 1. (4.3)
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4.2. Simulations of fluid flow with non-Newtonian models.

This probability distribution function at peak systole is illustrated in Figure 4.4.

Here, it is clearly observed that contrary to healthy cerebral arteries the majority of the
volume within the sac is subject to low shear rates, i.e. 1 < γ̇ < 30 s−1, meaning that non-
Newtonian effects might indeed become non-negligible. To further confirm the difference
between hemodynamics in healthy arteries and in the sac a similar plot is shown for regions
outside the sac in Figure 4.4.

In agreement with observations reported in the literature, the majority of the flow volume is
subject to high shear rates in the arteries, explaining why the use of a Newtonian assumption
is reasonable there.

4.2.2 Patient-specific cerebral aneurysm

To better illustrate the robustness of the solver and also provide additional details on the
behavior of the shear rate in realistic configurations, we finally consider the cases of two

Figure 4.5: Geometries for the patient-specific cerebral aneurysm cases (first configuration:
left, second configuration: right).

patient-specific cerebral aneurysms. The corresponding geometries are shown in Figure 4.5.
The simulations are carried out assuming a density of ρ = 1054 kg/m3 and using a modified
Cross viscosity law defined following [165]:

µ = µinf +
µ0 − µinf

(1 + λnγ̇n)a
, (4.4)

with µinf = 0.00369 Pa · s, µ0 = 0.056 Pa · s, λ = 3.736 s−1, n = 2.406 and a = 0.254. In
both simulations time-step and grid sizes are set to δr = 7.5× 10−6 s and δt = 7.5× 10−5 m
which result in respectively 4.9 and 14.5 million grid-points and 530 thousand time-steps.
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4.2. Simulations of fluid flow with non-Newtonian models.
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Figure 4.6: Inlet velocity changes with time over one cycle for the patient-specific aneurysm
cases. Plain line: first configuration, dashed line: second configuration.

Simulations were carried out using 500 cores for an average performance of 0.63 million
lattice updates per second per core. Outlets are modeled via a constant-pressure boundary
condition, set to Pout = ρc2s, while inlets are subject to pulsatile velocity conditions with
a plug-flow profile. The prescribed inlet velocities over time are shown in Figure 4.6. The
simulations are conducted over four cycles and only data from the last cycle is used for the
analysis.

Figure 4.7: Streamlines at different times over a cycle for the first patient-specific configura-
tion. From left to right: 0.1, 0.3, 0.5, 0.7 and 0.9 s. The red iso-surfaces show regions with
shear rates below 100 s−1.

The flow field of the first configuration over a cycle is illustrated in Figure 4.7. As for most
aneurysms a persistent vortical structure fed by the incoming flow is observed within the
aneurysm sac. At the difference of the ideal configuration, there does not seem to be a large
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4.2. Simulations of fluid flow with non-Newtonian models.

low shear rate region within the aneurysm sac at peak systole. This is further confirmed
by the probability distribution function of the shear rate. The distribution of shear rate at
two different times corresponding to the minimum and maximum inlet velocities are shown
in Figure 4.8(a). The plot shows that while at peak systole the shear rates within the sac
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Figure 4.8: Probability distribution function of the shear rate inside the patient-specific
aneurysm sac for both configurations at two different times: (blue dashed line) t = 0.2 s,
minimum inlet velocity; and (red solid line) t = 0.3 s, maximum inlet velocity.

are concentrated around a large value of 400 s−1, they do not go much below 100 s−1 at the
lowest inlet velocity.

The second configuration, involving a larger aneurysm, along with the corresponding shear
rate field within the sac over one cycle is illustrated in Figure 4.9. Different from the previous
patient-specific configuration, large portions of the sac have shear rates below 100 s−1. This
is confirmed by looking at the shear rate distribution within the sac, shown in Figure 4.8(b).
This demonstrates the high sensitivity of shear rate – and hence of viscosity modeling -
towards the exact vasculature geometry.
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4.3. Summary

Figure 4.9: Shear rates at different times over a cycle for the second patient-specific config-
uration. From left to right: 0.1, 0.3, 0.5, 0.7 and 0.9 s.

4.3 Summary

In this chapter the developed lattice Boltzmann solver has been extended for the simulation of
non-Newtonian blood flows, allowing an accurate description of hemodynamics in cerebral
aneurysms. The model ensures Galilean-invariant viscosities and allows for independent
control over the bulk viscosity. Furthermore, the use of the central Hermite polynomials-
based collision operator allows for a wider stability domain and therefore a wider range
of accessible time-step and mesh sizes. The solver was used to model the flow in an ideal
cerebral aneurysm geometry with different viscosity laws. The results showed that the choice
of the viscosity model noticeably affects the flow field, especially within the aneurysm sac
– in its center as well as close to the walls. The importance of non-Newtonian effects was
further characterized via a probability distribution function for the shear rate showing that
large parts of the volume within the aneurysm sac are subject to low shear rates; there, non-
Newtonian effects are prominent. We finally demonstrated the robustness of the numerical
model by simulating the pulsating flow in patient-specific aneurysms, revealing noticeable
differences and opening the door for systematic studies of non-Newtonian effects in different
types of cerebral aneurysms to clarify their role and importance.
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5.1. Introduction

5.1 Introduction

With the development of non-invasive medical imaging techniques, unruptured intracranial
aneurysms are being increasingly detected. While many patients with aneurysms may remain
healthy throughout their life, the risk of rupture stays present in connection with aneurysm
growth. The rupture, in turn, can be fatal or often lead to severe disabilities [16, 186]. Most
treatments for aneurysms involve surgical interventions, which may result in complications
and sometimes even increase again the risk of aneurysm rupture. This highlights the need
for a better a priori evaluation of rupture risk. To address this, a number of attempts have
been made to systematically quantify rupture risk. E.g., Greving et al. [187] developed a risk
score system (PHASES) used to predict the risk of aneurysm rupture based on various pa-
tients and aneurysm characteristics, such as smoking habits, size and location of aneurysms,
etc. Despite lower risk scores indicating that there is no need for further treatment, such
aneurysms may still rupture, pointing to the need for further research to better understand
and predict the rupture risk and improve patient treatment outcomes.

It has been argued that hemodynamics play an important role in the initiation, growth, and
subsequent rupture of intracranial aneurysms [85, 172]. The presence of oscillatory shear
stress distributions and complex flow patterns within the aneurysm sac has been hypothe-
sized to be a potential contributor to the rupture of aneurysms [188, 189]. The existence
of such unsteady flow structures is currently a hot topic of discussion within the commu-
nity. Advanced in vivo experiments and numerical studies observing non-laminar blood
flow behavior associated with intracranial aneurysms have been documented in the litera-
ture [4, 126, 190, 191]. Kurokawa et al. [192] reported sound at frequencies in the range
of 150-800 Hz caused by flow-induced vibration of the aneurysm wall. Steiger et al. [193]
reported low-frequency flow fluctuations in cerebral saccular aneurysms of six patients out
of twelve using Intraoperative Doppler recording. A spectral analysis and concomitant glass
model studies showed a correlation between flow fluctuation and aneurysm type. Unexpected
vibrations were also reported in experimental aneurysm studies, which are possibly associ-
ated with fluctuating flows [194, 195, 196, 197, 198]. The significance of fluctuations in blood
flow has been thoroughly explored and discussed by Steinman and his research team [199].
They found that significant narrow-band vibrations ranging from 100 to 500 Hz could be
detected in two out of the three tested aneurysm geometries. This finding is in accordance
with the study by Jain [200]. Furthermore, the pulsatile nature of blood flow has been ob-
served to influence aneurysm stability in both numerical and experimental studies [201, 202].
It is indeed known that a pulsatile flow can become transitional in a straight pipe during the
deceleration phase of the oscillation at Reynolds numbers below 2000 [203]. This explains
why several studies discovered indications of transitional flow in cerebral vessels, despite the
low Reynolds numbers found there, and suggesting an elevated risk of rupture [204, 205].

CFD, due to its non-invasive nature, is increasingly used to investigate the hemodynamics
in patient-specific intracranial aneurysms. Numerous high-fidelity CFD studies have been
conducted to study, among other aspects, flow fluctuations in ruptured and unruptured
intracranial aneurysms [172, 206, 207, 208, 209]. From statistical analysis, they found that
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5.2. Configurations and numerical set-up

the occurrence of a rupture in aneurysms is correlated with abnormally high and low wall
shear stresses, high oscillatory shear acting on the vessel wall, the presence of complex flow
structures, and concentrated inflow jets. Baek et al. [210] reported flow instabilities occurring
during the deceleration phase of a cardiac cycle at the internal carotid artery and concluded
that the occurrence of low-frequency fluctuations depended on the geometry. Ford et al. [211]
and Valen-Sendstad et al. [205, 212] confirmed the presence of high-frequency fluctuations
in patient-specific terminal and intracranial aneurysms. Still, many CFD studies may be
overlooking potentially relevant flow features such as high-frequency flow instabilities, simply
due to inappropriate solver properties (highly dissipative schemes) and/or inadequate spatial
and temporal resolutions, fluid models, or boundary conditions [213, 214].

As of today, a generalizable criterion for accurately assessing the risk of rupture in intracranial
aneurysms remains elusive [215]. In an attempt to contribute to the discussion on the
existence and properties of flow fluctuations, we consider in the present study five patient-
specific intracranial aneurysms with known outcomes via direct numerical simulations (DNS,
i.e., resolving properly all physical scales in time and space): two remaining unruptured, and
the other cases rupturing within the sac. Additionally, both Newtonian and non-Newtonian
fluid models will be considered in the DNS, since non-Newtonian behaviour could play an
important role, as discussed in the previous chapter.

This comparative study can be used to provide valuable information regarding the underlying
mechanisms and possible consequences on hemodynamics.

5.2 Configurations and numerical set-up

5.2.1 Case description

In the present study, hemodynamic features are investigated in five patient-specific intracra-
nial aneurysm geometries. The configurations are shown in Figure 5.1. The flow values at up
to 9 points were tracked upstream and downstream of the aneurysms, as well as within the
aneurysm sac, in order to monitor any manifestation of possible flow fluctuations. It is worth
noting that all the inlets and outlets were extended five diameters along the normal vector
of the corresponding surfaces to reduce possible effects of the inlet and outlet boundary
conditions. Furthermore, for Newtonian cases, blood was assumed to be an incompressible
fluid with a constant density and viscosity. However, in the non-Newtonian scenario, the
modified Cross model was employed to depict the rheological properties of blood. Detailed
parameters can be found in the accompanying Table 5.1. All simulations were conducted
over three cycles, with data sampling carried out during the third cycle in order to eliminate
any potential effects stemming from initial transients.

Patient A This aneurysm was detected in the posterior inferior cerebellar artery (PICA)
in a 51-year-old female patient. The rupture location is known within the aneurysm sac. The
3D-DSA scan was carried out on an AXIOM-Artis (Siemens Healthineers AG, Forchheim,
Germany) with the same spatial resolution (0.28 mm) as in the other cases. The raw images
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Figure 5.1: Representation of the five patient-specific aneurysm models (Case A, B, C, D, E)
employed in simulations. The red arrows point to the inlets and outlets, respectively. Note
that point P6 corresponds to the ruptured location in case A, while the ruptured points are
unknown in other patients.

Table 5.1: Summary of numerical simulation parameters used in this study, encompassing
aneurysm status, size, three different spatial (δr) and temporal (δt) resolutions (low resolution
LR, medium resolution MR, high resolution HR), the corresponding Courant- Friedrichs-
Lewy number (CFL), computation time in core hours, as well as the physical properties
including density and viscosity.

Case ID Status Size[mm3]
δr[m] / δt[s] CFL ρ[kg/m3] ν[m2/s] Core-h

LR MR HR

A Ruptured 21.20*37.61*19.70 2.6×10−4/
7.6×10−6

1.3×10−4 /
3.8×10−6

6.5×10−5 /
1.9×10−6 0.052 1000 4.0E-6

8.76E3
B Unruptured 32.50*18.40*11.10 3.81E3

C Ruptured 12.29*20.59*14.06 - -
6.5×10−5 /
1.9×10−6 0.052 1055 3.8E-6 2.06E3

D Unruptured 13.30*14.56*17.30 - -
6.5×10−5 /
1.9×10−6 0.052 1055 3.8E-6 1.94E3

E Ruptured 59.26*34.48*34.98 - -
6.5×10−5 /
1.9×10−6 0.052 1000 4.0E-6 3.90E4

were reconstructed using the ”EE/auto” kernel (Siemens Healthcare GmbH, Forschheim,
Germany). The geometric models of the aneurysms were reconstructed on this basis and
further processed to simplify numerical simulations, retaining only the intracranial aneurysms
and the corresponding major arteries to guarantee reasonable inflow and outflow, while the
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distal arterial segments were cut off.

Patient B The unruptured aneurysm (of size 1.6 mm) was found in the middle cerebral
artery (MCA) in a 53-year-old female patient who experienced an acute subarachnoid hem-
orrhage and severe headaches and was treated by coiling. The three-dimensional rotational
angiography (3DRA) was performed on an Artis Q angiography system (Siemens Health-
ineers AG, Forchheim, Germany) with a spatial resolution of 0.28 × 0.28 × 0.28 mm to
produce tomography slices of the volume of interest. Subsequently, the reconstructed raw
image was acquired from a syngo X Workplace (Siemens Healthcare GmbH, Forchheim,
Germany) through an ”HU auto” kernel. Further details can be found in reference [216].

Patient C and D The two patient-specific aneurysms were roughly matched based on
sex (female), age (83 years old for patient C and 63 years for patient D), location (middle
cerebral artery), size (11.7 mm maximum diameter for patient C and 9.6 mm for patient
D), and similar shape. Additional information about the patient’s medical histories can be
found in the reference [217].

Patient E In order to study the effect of Reynolds number on the flow instability, the
ruptured giant cerebral aneurysm (of size 26 mm) from Steinman et al. [4] was selected, which
was detected in the left internal carotid artery (ICA) in a 62 years old female patient. The
nominal inlet diameter was measured to be 5.58 mm, and the corresponding peak Reynolds
numbers were 513 and 651, respectively. Further information regarding the patients’ history
is available in reference [5].

5.2.2 Quantitative analysis methods

5.2.2.1 Fluctuating kinetic energy

Fluctuating (or turbulent) kinetic energy (FKE) serves as a crucial metric for quantifying flow
fluctuations. In the context of the present study, we will focus the majority of our analysis
on fluctuating components of the velocity field. To quantify the variations, the instantaneous
velocity is decomposed into a mean component u(r, t) and a fluctuating component u′(r, t)
where:

u(r, t) =
1

∆t

∫ t0+∆t

t0

u(r, t)dt, (5.1)

where ∆t is the averaging period and:

u′(r, t) = u(r, t)− u(r, t). (5.2)

FKE, a variable we will be using quite frequently, is expressed as:

FKE(r, t) =
1

2∆t

∫ t0+∆t

t0

u′(r, t)u′(r, t)dt. (5.3)
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5.2.2.2 Power spectral density

Power spectral density (PSD) shows how the power of a signal is distributed over the fre-
quency domain; this provides a quantitative measure of flow fluctuations. Here, the PSD at
each probe point has been computed using Matlab (Welch’s method).

The discrete-time power spectral density (Sxx(f)) is defined at frequency f by [218]:

Sxx(f) =
δ2t
∆t

∣∣∣∣∣
t0+∆t∑
t=t0

ϕ(t) exp
[
−2π

√
−1f(t− t0)

]∣∣∣∣∣
2

(5.4)

where δt and ∆t are the sample interval and the length of the signal, respectively, while ϕ(t)
is the velocity signal.

5.2.2.3 Spectral entropy

In order to quantify the temporal flow instability in the velocity field of interest, the spectral
entropy Sd is computed by a Proper Orthogonal Decomposition (POD) of the velocity [219].
The flow regimes can then be distinguished into stable or unstable flows based on spectral en-
tropy. The relative energy in the aneurysm Pi is obtained from the corresponding eigenvalue
λi, which quantifies the energy content of the ith mode:

Pi =
λi∑N
j=1 λj

(5.5)

where N is the total number of modes in the analysis.

The spectral entropy measures the average energy distributed in the aneurysm across the N
modes, which can be used to quantify the stability of hemodynamic flows. The definition is
as below:

Sd = −
N∑
i=1

Pi lnPi (5.6)

Based on Eq. (5.6), the spectral entropy reaches its maximal value when the energy is evenly
distributed over all the N modes. Entropy is minimized when the velocity signal contains
only one single mode, meaning a steady flow (Sd = 0).

5.2.3 Numerical simulation

Simulations have been carried out using our in-house LBM solver ALBORZ, which has
already been thoroughly validated using a variety of benchmark studies [30, 115, 220], as
discussed in the previous chapters of this thesis. To make sure simulations are converging to
the incompressible limit and keep computation costs as low as possible, the time-step size
refinement follows an acoustic scaling resulting in a fixed CFL number, set to a low value
of 0.052. Simulations have been carried out using three different resolutions (Low resolution
(LR), Middle resolution (MR) and High resolution (HR)) in cases A and B, allowing to make
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sure extracted results are converged physical data, as opposed to numerical artifacts such
as Gibbs oscillations. For cases B, C, D and E, the highest resolutions (HR) are chosen to
perform simulations.

Boundary conditions The inlet boundary conditions were configured with pulsatile ve-
locity profiles, and the corresponding inflow velocity waveforms are depicted in Figure 5.2.
The duration of each cardiac cycle is as follows: 1 s for cases A&B, 0.81 s for case C, 0.925 s

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

A&B

C

D

E1

E2

Figure 5.2: Illustration of the inflow velocity waveforms over an entire cardiac cycle imposed
at the inlet of patients A&B (red), C (black dashed), D (black solid) and E (blue), respec-
tively. Note that E1 and E2 indicate low and high inlet velocity profiles.

for case D and 0.99 s for case E (E1&E2), respectively. Additionally, constant pressure was
prescribed as the boundary condition at all outlets, primarily due to the limited availability
of pressure measurements at the outlet vessels or the lack of information regarding the cor-
relation between flow rate and pressure in most cases. The vessel walls were assumed to be
rigid, and no-slip boundary conditions were applied.

All results, with a focus on fluctuations, are now detailed in the next section.

5.3 Results

The following section presents qualitative and quantitative comparisons of hemodynamic
simulations between ruptured (A, C, E) and unruptured cases (B, D), considering both
Newtonian and non-Newtonian models
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5.3.1 Impact of grid resolution on flow characteristics

In order to obtain accurate results while keeping acceptable computational costs, we first
conducted a grid-independence study on case A and B considering Newtonian simulations.
The grid size and time-step were varied simultaneously (keeping CFL number constant) from
260 µm down to 65 µm and from 7.6 µs to 1.9 µs, respectively.

As expected, the high-frequency fluctuations were found to be remarkably sensitive to both
temporal and spatial resolutions. As shown in the top row of Figure 5.3, the low-resolution
simulation (LR, blue lines) failed to capture any high-frequency fluctuation across the entire
domain for both cases. Furthermore, it exhibited pronounced discrepancies when compared
to velocity profiles acquired at higher resolutions for both aneurysms. Specifically, in both
intermediate (MR, red lines) and high-resolution (HR, black lines) simulations, the noticeable
high-frequency oscillations were evident under the exact conditions and at the same locations,
specifically at points P3 to P9 within case A. However, these fluctuations are entirely absent
in case B.

Still, minor discrepancies are still visible between MR and HR for case A at points P7 and
P8, within the aneurysm sac. These discrepancies could be attributed partly to the fact that
the monitoring points were fixed to the nearest grid points, causing a slight shift in actual
position between resolutions. It is also possible that the resolution HR still has not reached
complete grid-independence. However, it must be kept in mind that the central objective
of this study is to detect high-frequency fluctuations in cases where they appear. In that
regard, the outcomes derived from MR and HR simulations are fully identical, revealing such
fluctuations at identical positions for the equivalent conditions and with similar spectra.
Taking into account that the total computational load is high but still acceptable using
High-Performance Computers for the highest resolution (HR), it was decided to maintain
this resolution for the subsequent sections of this paper to optimize precision.

A similar conclusion can be drawn from the spectral analysis. The spectral profiles derived
from both MR and HR simulations are nearly indistinguishable, as depicted in the bottom
row of Figure 5.3. This alignment indicates a remarkably consistent flow behavior between
the two. In contrast, the spectra from the lower resolution LR simulations reveal a reduced
energy content in comparison to the higher resolution outcomes in patient A, signifying a
relatively laminar flow pattern. It is worth noting that the energy level remains consis-
tently lower across all three simulations in patient B, serving as evidence of a laminar flow
configuration.

Therefore, the choice of an appropriate resolution significantly influences the acquisition of
accurate data concerning high-frequency oscillations. Opting for a lower resolution might
potentially lead to an underestimation of the impact of high-frequency fluctuations in clinical
assessments.
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Figure 5.3: Time histories of the simulated velocity (top row) and corresponding energy
spectra of the velocity distributions (bottom row) for patients A (left) and B (right) at nine
monitoring points during the last cardiac cycle. The blue, red and black solid lines denote
the flow velocity and energy spectra for increasing resolution (LR: low, MR: middle, and
HR: high, respectively). From top left to bottom right in each quadrant, results at points
P1 to P9 are shown.

5.3.2 Comparison of flow characteristics in the Newtonian sce-
nario

Flow patterns within the aneurysm sac Figure 5.4 provides a qualitative comparison
of flow streamlines within the aneurysm sac, offering insights into the dynamic behavior
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Figure 5.4: Flow streamlines colored by flow velocity inside the aneurysm sac for case A, B,
C, D, and E (E1&E2) at the acceleration (T1), peak (T2), and deceleration (T3) systole,
respectively. The black point and red arrow indicate the rupture location and high-speed
jet, respectively. The left column of the figure shows results for the Newtonian model, right
column corresponds to the non-Newtonian (Cross) model.

during different phases of the cardiac cycle (acceleration, peak systole, and deceleration
phases). This illustration contrasts these flow streamlines under two distinct scenarios: one
assuming Newtonian fluid behavior (left column) and the other considering non-Newtonian
characteristics (right column).
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The initial comparison reveals distinctions between flow streamlines in ruptured and unrup-
tured cases. For the ruptured aneurysms (A, C, E), a concentrated high-speed jet originating
from the parent vessel, striking the opposing wall at a specific angle, generates intricate vorti-
cal structures and disturbed flow patterns. In contrast, the unruptured cases (B, D) present
a quite stable flow pattern characterized by a single large-scale vortex that persists consis-
tently over all three cycles at the three selected time points. The flow streamlines within
unruptured cases display a smoother and more laminar flow.

One further interesting observation that can be made here is that while Newtonian and
non-Newtonian results are visually quite similar for the unruptured cases, they exhibit pro-
nounced differences for the ruptured cases, also concerning large-scale flow structures. Cor-
responding effects will be discussed in more detail in a later section.

This first, qualitative analysis revealed a stronger flow with larger variations in time in the
ruptured cases. Therefore, velocity fluctuations in time appear to play an important role
and will be quantified in what follows.

Temporal velocity fluctuation To gain a more precise understanding of the occurrence
and spatial distribution of flow fluctuations within the aneurysm sac, the findings should be
further examined. Figure 5.3(a) shows the temporal variations of velocity, in particular at
probe P6 in case A (remember that point P6 corresponds to the known rupture location in
this case).

Firstly, it is important to note that discernible flow instabilities are absent in the parent
artery (points P1&P2). Instead, flow fluctuations emerge initially at the bifurcation point
(P3), and subsequently propagate throughout the entire sac and extend to the two outlets
(points P4&P5). At bifurcation point P3, only subtle fluctuations are evident, primarily
around the peak systole phase. Similar dynamics have been reported by Le et al. [221], where
a highly dynamic inflow jet was observed in the ostium of intracranial aneurysms. Their
findings, through dynamic mode decomposition analysis, highlighted that high-frequency
modes, characterized by brief duration, corresponded to flow separation at the proximal
neck and the impingement of the jet onto the aneurysm wall. Within the aneurysm sac
(points P6 to P9), both the frequency and amplitude of flow fluctuations exhibit notable
escalation (as evident in the second row of Figure 5.3). On the other hand, as the flow
passes beyond peak systole, both the amplitude and frequency gradually decay, even if
velocity instabilities persist over the entire cardiac cycle in part of the sac. Interestingly,
these fluctuations are particularly pronounced during the deceleration phase of the cardiac
cycle. This phenomenon can be attributed to the suppression of transition effects during the
acceleration phase and their enhancement during the deceleration phase, as also observed in
pulsating flows in straight tubes [222].

To better study the velocity fluctuations at the rupture point (P6), one cardiac cycle was
divided into three distinct phases (2-2.2 s, 2.2-2.8 s, 2.8-3.0 s, see Figure 5.5), facilitating
the analysis. Examining the top row of the plot, at the commencement of the cardiac cycle
(left subfigure), fluctuations appear uniform and the average velocity hovers around 0.4 m/s.
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Figure 5.5: Time history of velocity (top), normalized fluctuating velocity (center), and FFT
of velocity (bottom) at point P6 in case A during the last cardiac cycle (from 2 to 3 s from
left to right), considering blood as a Newtonian fluid. Note that the figures in the two top
rows use different vertical scales for a better readability. The red and blue stars in the
bottom row indicate the first and second dominant frequencies.

Subsequently, substantial fluctuations manifest after peak systole, driving the maximum
velocity to almost 1.2 m/s. In the final phase, the flow instability diminishes toward the
end of the deceleration phase, transitioning into low-frequency fluctuations with an average
velocity of approximately 0.4 m/s (right figure), closely resembling the flow characteristics
observed at the start of the cardiac cycle (compare left and right subfigures).

The middle row exhibits the normalized fluctuating velocity profile over time. It reveals that
the relative amplitude of the velocity fluctuations is roughly 20% during the early and late
phases of the cardiac cycle, increasing significantly to around 100% during peak systole.

The bottom row depicts the fast Fourier transform (FFT) of the fluctuating velocity sig-
nal. This analysis indicates that the dominant frequencies (represented by red stars) are
approximately 140 Hz during both the early and late phases of the cardiac cycle. Dur-
ing peak systole, the frequency spectrum becomes more complex, with multiple frequencies
participating and the FFT signal becoming highly populated, indicative of the onset of tur-
bulent conditions. In this phase, the dominant frequency is roughly 47 Hz, accompanied by
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Figure 5.6: Time histories of the simulated velocity in case C and D at nine monitoring
points during the last cardiac cycle. From top left to bottom right, results at points P1 to
P9 are shown.

a secondary peak at 173 Hz. The lower-frequency fluctuation observed here may possibly
be attributed to cycle-to-cycle fluctuations arising as the flow decelerates, a phenomenon
previously documented in studies [212, 223].

Moving on to cases C and D in Figure 5.6(b), a closer examination of the velocity profiles re-
veals a notable trend. In the nine monitored points within the sac, only minimal fluctuations
can be observed. These fluctuations are nearly negligible, strongly implying the prevalence
of laminar flow patterns in these cases.

5.3.3 Fluctuating kinetic energy

A more in-depth analysis of cases A and E is conducted by calculating FKE. As demonstrated
in Figure 5.7, the distribution of FKE at the monitoring points in ruptured cases (A and
E1) offers valuable insights. Notably, the time evolution of FKE within the parent artery
(points P1&P2) remains consistently at zero for both cases. This absence of FKE aligns
with the smooth velocity profiles and absence of discernible fluctuations in these regions.
Furthermore, the peaks of maximum FKE primarily occur during peak systole in both cases.
However, uniquely in case A, distinct fluctuations are also observed at the rupture site (P6)
during late systole, with the second-highest peak reaching ∼ 1 × 10−4 m2/s2. This value
surpasses the overall peak FKE at all other points both within and outside the aneurysm
sac. Interestingly, the highest level of FKE also occurs at P6 in case E1 (orders of magnitude
larger, ∼ 6× 10−5 m2/s2).

At the bifurcation point P3 of case A, a low level of FKE (∼ 2×10−6 m2/s2) emerges during
peak systole, revealing the initiation of flow instability. In contrast, FKE at this juncture
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Figure 5.7: Time evolution of FKE in the cases A and E1 at all monitoring points during the
last cardiac cycle, considering blood as a Newtonian fluid. From top left to bottom right,
results at points P1 to P9 are shown. Note the different vertical scales.

in case E1 remains at negligible levels. At the outlets, remarkably pronounced fluctuations
are also apparent, with a noteworthy disparity in FKE between both outlets in case A. This
variance can potentially be attributed to the specific geometry of the ruptured aneurysm
and vessel tree configuration. It is noteworthy that the flow rate exiting through the outlet
associated with P4 greatly surpasses that of the outlet containing P5. Minor fluctuations
are also discernible at the outlet of case E, with FKE at approximately ∼ 5 × 10−5 m2/s2

while the FKE level is zero in the other outlet (P5).

The remaining points within the aneurysm sac of case A (points P7, P8, P9) exhibit lower
FKE values compared to the other monitoring points. At the start and conclusion of the
cardiac cycle, FKE effectively diminishes to near zero in these areas. Likewise, FKE values
at points P5, P7, P9 in case E1 also converge to zero. However, at point P8, the FKE level
remains around ∼ 3× 10−6 m2/s2.

Overall, these distinctive features of FKE suggest that intensive flow instability, as measured
by FKE, may serve as a characteristic hallmark of the potential rupture location within the
aneurysm sac.

5.3.4 Power spectral density

Figure 5.8 shows the energy spectra of flow velocity at the designated monitoring points for
cases A, B, C, and D. Notably, within the aneurysm sac, the PSD of case A (depicted in red)
consistently ranks the highest in comparison to the other cases. Case A shows distinctive
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Figure 5.8: Energy spectra of velocity in case A (red), case B (blue), case C (green) and
case D (black) at the 9 monitoring points during the last cardiac cycle, considering blood as
a Newtonian fluid. From top left to bottom right, results at points P1 to P9 are shown.

spectral characteristics indicative of turbulent-like flow with pronounced fluctuations. A
notable and expansive rise in PSD is discernible around the approximate frequency of 100 Hz.
This unique behavior is consistent across all points from P4 to P9 and within the aneurysm
sac. Conversely, the PSD of the flow velocity for cases B, C, and D reveal a nearly monotonic
decline relative to frequency, devoid of prominent peaks. Overall, the simulation outcomes
unequivocally affirm that the flow in case A exhibits distinct spectral traits divergent from
the other cases, particularly conspicuous at the rupture point P6. At this specific location,
a clear frequency peak emerges at approximately 120 Hz prior to and subsequent to peak
systole, hinting at the potential significance of high-frequency features in the context of
aneurysm rupture.

5.3.5 Spectral entropy analysis

The analysis based on spectral entropy Sd is able to deliver a single, scalar value characteriz-
ing the state of an unsteady, 3D flow (as found here). The lowest possible value of Sd (i.e., 0)
corresponds to laminar conditions. Previous investigations have shown that transition occurs
around Sd ≈ 1 (see previously cited studies for more detailed values). Here, the values of
Sd are compared 1) between ruptured and unruptured aneurysms, and 2) using either New-
tonian or non-Newtonian viscosity models. The results are summarized in Table 5.2. The
obtained values of Sd show that the ruptured intracranial aneurysm A exhibits significantly
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Table 5.2: Summary of the values of spectral entropy computed in all cases in Newtonian or
non-Newtonian scenario.

Case Sd (Newtonian) Sd (non-Newtonian) Flow regime
A 1.16 1.50 Unstable / Unstable
B 0.10 0.12 Stable / Stable
C 0.22 0.24 Stable / Stable
D 0.30 0.34 Stable / Stable
E1 0.52 0.55 Stable / Stable
E2 0.54 0.63 Stable / Stable

higher spectral entropy compared to the other cases, corresponding to an unstable flow state
with strong fluctuations. The value of Sd for the ruptured case A is approximately 10 times

(a) Case A-Newtonian (b) Case A-Non-Newtonian

(c) Case B-Newtonian (d) Case B-Non-Newtonian

Figure 5.9: Hybrid visualization (based on [9]) of the isosurface obtained with the help of the
first POD mode, but colored by the second POD mode for both aneurysms A (top, ruptured)
and B (bottom, unruptured) with either Newtonian (left) or non-Newtonian models (right).

larger than for the very stable flow found in the unruptured aneurysm B (Sd ≈ 0.1). This
shows that spectral entropy can safely be used to delineate between stable and unstable flow
configurations in intracranial aneurysms, as already discussed by Cebral and co-workers [224]
and Janiga [225]. Additionally, it is observed that the spectral entropy increases by approx-
imately 20% in cases (A, B, C, D) when a non-Newtonian model is applied. However, this
does not change the predicted flow state (stable for unruptured aneurysm B; unstable for
ruptured aneurysm A) in the present cases. In case E, a roughly 20% increased spectral en-
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tropy is observed with the rise in the inlet flow rate in both Newtonian and non-Newtonian
cases. Despite the increase in spectral entropy, they still fall into a stable flow regime.

Figure 5.9 illustrates a combined qualitative illustration of the first two most energetic POD
modes in ruptured (A) and unruptured (B) aneurysms as suggested by [9]. The temporal
averaged flow information is represented by the first POD mode, therefore, it can effectively
characterize the primary flow. It can be observed that the jet flow to the aneurysm sac has
a higher velocity in the ruptured case A compared to the unruptured aneurysm B.

The second POD mode represents the secondary flow structures, which can be used to
demonstrate the temporal variation of the blood flow. The higher POD modes are generally
not straightforward to interpret physically. In Figure 5.9, the second mode is used to color-
code the isosurface obtained from the first POD mode. The dark colors indicate stronger
secondary flow features. The lighter colors associated with lower secondary flow features
symbolize a stable flow throughout the cardiac cycle. This qualitative combined visualization
of the first two POD modes enables the identification of high or low areas in the secondary
flow and can efficiently help analyzing the complexity of the hemodynamics.

5.3.6 Effect of non-Newtonian behavior

The preceding discussion has predominantly rested on the assumption of Newtonian blood
behavior. Despite real blood being recognized as non-Newtonian and shear-thinning, the
relevance of these non-Newtonian characteristics has often been overlooked in prior studies,
as discussed in the previous chapter. Our recent investigations, e.g. [226] have delved into the
impact of non-Newtonian behavior on the flow distribution within aneurysms. The findings
indicate that the adoption of a non-Newtonian model significantly influences the flow field,
particularly within the aneurysm sac and in proximity to its walls, given the prevalence of
low shear rates across substantial portions of the sac.

In Figure 5.4, the streamlines have been qualitatively compared between Newtonian and
non-Newtonian cases among these aneurysms, revealing evident distinctions in the ruptured
case. A further comparison of velocity fluctuations between ruptured and unruptured cases
is presented in Figure 5.10. In cases B, C, and D, the non-Newtonian model displays only
a small impact, as indicated by nearly overlapping black and red curves. However, in case
A (rupture), very strong differences emerge, particularly at point P8 within the sac. High-
frequency fluctuations are absent in case B (unruptured), regardless of the fluid behavior
assumption. The situation contrasts significantly in case A where the impact of the non-
Newtonian model is negligible in the parent artery (points P1& P2) and at the neck (P3)
while the velocity fluctuations are much stronger when considering a non-Newtonian behav-
ior, particularly at point P6 and point P8. Similar tendencies are evident in case E1 (also
ruptured), where the non-Newtonian model substantially impacts points P6 and P8.

Comparing Case C (ruptured) and Case D (unruptured), the differences induced by the non-
Newtonian fluid model are also larger in the former, in particular at point P8, even if they
remain small.
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Figure 5.10: Velocity over time in case A, B, C, D and E at the nine monitoring points
during the last cardiac cycle. The black and red solid lines denote the velocity magnitude
computed using a Newtonian or a non-Newtonian (Cross) model, respectively. From top
left to bottom right in each block, results at points P1 to P9 are shown. Note the different
vertical scales. 96
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Figure 5.11: Energy spectra of the velocity over frequency in the case A and E1. The
black and red solid lines denote the energy spectra computed using a Newtonian or a non-
Newtonian (Cross) model, respectively. From top left to bottom right, results at points P1
to P9 are shown.

Figure 5.11 presents the energy spectra of the velocity in two ruptured cases (A&E1), unveil-
ing higher energy levels in the non-Newtonian model compared to the Newtonian counterpart.
These outcomes again suggest that a non-Newtonian fluid behavior may amplify flow insta-
bility. Additionally, the local shear rate at the various monitoring points among these cases
is shown in Figure 5.12, investigating the potential impact of the different viscosity models.
In the unruptured cases (B&D), the evolution of the shear rates exhibit similar trends under
both Newtonian and non-Newtonian considerations, with peak systole-associated relative
differences below 25%. Although high-frequency fluctuations are not observed in case B,
there are weak velocity fluctuations within the sac in case D. Furthermore, the shear rates
are quite small and stay below 1000 s−1 at most of the points.

In the ruptured cases (A, C & E1), this correlation holds also true within the cerebral artery
preceding the aneurysm (points P1&P2). The shear rate fluctuations remain modest at the
bifurcation point (P3), yet very considerable fluctuations are observable at points P4 to P9
in cases A and E1. The peak shear rate even exceeds 4000 s−1 at point P6 and reaches
1500 s−1 at peak systole at the outlet P4 in both cases. This finding confirms the presence
of significant velocity variations at these two points. However, Case C (also ruptured) shows
no significant difference to Case D (unruptured). The findings of the present study certainly
depend on the specific configuration considered and must be confirmed by involving even
more cases in the analysis.
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Figure 5.12: Shear rate over time in cases A, B, C, D and E1 at the nine monitoring points
during the last cardiac cycle. The black and red solid lines denote the shear rate computed
using a Newtonian or a non-Newtonian (Cross) model, respectively. From top left to bottom
right in each block, results at points P1 to P9 are shown. Note the different vertical scales.
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In conclusion, the non-Newtonian model generally tends to induce higher amplitudes of
shear rate fluctuations, with notable differences observed at specific points. Unexpectedly,
this does not really apply to the rupture point P6 in case A, P6. Here, large fluctuations are
observed, but at a very similar level for the Newtonian and the non-Newtonian fluid model.
Further investigations will be necessary to check this observation.

5.3.7 Effect of flow rate

Figure 5.13 illustrates the evolution of velocity magnitude, PSD over frequency, shear rate
over time, and FKE over time for case E under two distinct inlet flow rates (low: E1; high:
E2). This figure shows that an increase in the inlet velocity profile leads to enhanced velocity
fluctuations regarding both intensity and frequency. At point P6, the disparity can be as
substantial as threefold for FKE. While the PSD profile shows a relatively weak content in
terms of frequencies, noticeable fluctuations emerge in particular in the shear rate profile, as
also confirmed by FKE. These fluctuations are evident not only at point P6 but also at the
other points within the entire sac. The FKE profile reveals maximal velocity fluctuation at
P6 and P8, attaining values of 4× 10−4 and 6× 10−6 m2/s2, respectively.

Comparing the outcomes between low and high inlet velocities, it becomes apparent that ele-
vated inlet velocity serves to magnify fluctuations, potentially contributing to an augmented
risk of aneurysm rupture. This observation underscores the significance of using a realistic
inlet flow rate due to its influence on flow dynamics within the aneurysm, ultimately with
strong potential implications for rupture susceptibility.
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Figure 5.13: Evolution of (top left) velocity magnitude over time, (top right) PSD over
frequency, (bottom left) shear rate over time, and (bottom right) FKE over time in case E
with two different flow rates at the nine monitoring points during the last cardiac cycle. The
blue and black solid lines denote simulation results employed with low (E1) or high (E2)
inlet flow rates, respectively. From top left to bottom right in each block, results at points
P1 to P9 are shown. Note the different vertical scales.

5.4 Conclusions and discussion

In conclusion, this comparative study provides valuable insights regarding hemodynamic
characteristics among ruptured and unruptured, patient-specific intracranial aneurysms. the
findings drawn from the aforementioned analysis indicate that high-frequency fluctuations
can in general be identified within ruptured intracranial aneurysms. This observation aligns
qualitatively with earlier computational investigations of intracranial aneurysms, such as the
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work conducted by Varble et al. [227] and more recent works on that topic, e.g. [228, 229].
However, it is worth noting that the presence of high-frequency fluctuations may not be a
consistent characteristic of all rupture cases, as seen for configuration C.

Additionally, these findings also suggest that a high level of spatial and temporal resolution is
required to investigate high-frequency fluctuations possibly occurring in such configurations;
using a coarser grid and a large time step leads to increased numerical dissipation and damps
artificially the onset of flow instability.

Furthermore, these investigations also demonstrate that non-Newtonian models may have a
very large impact on shear rate at specific locations, particularly around peak systole. This
appears to be even more important in ruptured aneurysms. However, the exact rupture
point is unexpectedly almost not affected by the shear rate – so that further studies involving
additional configurations will be needed to clarify the picture. Still, it cannot be assumed that
the shear rate will exceed 100 s−1 at all locations and at all times, so that using a suitable
non-Newtonian model is recommended to be on the safe side; this might be particularly
important when assessing flow instability in patient-specific aneurysms.

Several limitations should be mentioned in connection with the present study. The first one
is obviously the very limited number of configurations considered – only three ruptured and
two unruptured cases. It is well known that aneurysm size, shape, location, the ratio of
size and neck. . . will affect hemodynamics and aneurysm rupture. A much larger number
of patient-specific configurations must be considered in future studies. Secondly, all vessels
have been assumed to be rigid. Clearly, the obtained findings might be modified when taking
into account fluid-structure interactions; however, this would only be possible when having a
detailed knowledge of wall resistance and structure, which is extremely challenging [230, 231].
Nonetheless, it is important to acknowledge that uncertainties remain regarding the existence
of fluctuations when the number of monitored points is increased. Further investigation
and analysis would be required to ascertain whether fluctuations are found at additional
monitoring points across the entire sac.

Finally, it is worth noting that the interplay between hemodynamic factors and biological pro-
cesses regarding aneurysm formation and rupture remain poorly understood. Best-practice
rules are needed for the assessment of aneurysm hemodynamics using numerical simulations,
in order to support more robust and reliable comparisons among studies [217, 232, 233].
Ultimately, this would open the door for an efficient support of clinicians, possibly leading
to highly personalized, optimized treatment options.
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6.1 Conclusions

This thesis was centered on the validation and application of our in-house numerical solver,
based on LBM, for the simulation of medical flows, with a primary focus on investigating the
hemodynamics within aneurysms. The research encompassed various numerical simulations,
ranging from idealized aneurysm models to complex patient-specific cases and standard
benchmark scenarios. The following key conclusions and achievements have emerged:

• We successfully developed and integrated shear-thinning non-Newtonian models (in-
cluding Power law, Carreau-Yasuda, and Cross models) for the first time into our solver.
In this manner it becomes possible to capture in a realistic manner the non-Newtonian
behavior of blood. The outcomes of our simulations underscore the substantial impact
of the chosen viscosity model on the flow field, particularly within the aneurysm sac,
where the differences were pronounced both near the center and close to the walls.
This work demonstrated the robustness of our numerical model, enabling systematic
investigations into non-Newtonian effects across diverse types of cerebral aneurysms.
This offers valuable insights into the role and significance of non-Newtonian behavior
in these complex flows.

• The study delved into the occurrence of flow fluctuations, contrasting Newtonian
and non-Newtonian fluid models in patient-specific intracranial aneurysms using high-
resolution lattice Boltzmann simulations. The quantification of flow instabilities through
various metrics, including power spectral density, proper orthogonal decomposition,
spectral entropy, and fluctuating kinetic energy of velocity fluctuations, led to critical
insights. Specifically, our findings unveiled hydrodynamic instabilities in the pulsatile
inflow through the neck of two ruptured aneurysms, manifesting as high-frequency
fluctuations around the rupture location throughout the entire cardiac cycle.

This research has extended our understanding of hemodynamics in intracranial aneurysms,
shedding light on the transition to weakly turbulent flows within these critical medical con-
ditions. The implications of these findings are far-reaching, as they offer insights into the
pathophysiology of aneurysm rupture and hold promise for the development of medical de-
vices to mitigate such flow instabilities. It is imperative to note that the accurate assessment
of these occurrences necessitates a substantial commitment to high spatial and temporal res-
olutions in patient-specific aneurysm simulations. This work contributes significantly to the
broader field of computational hemodynamics, with potential applications in clinical practice
and medical device design at a later stage.

6.2 Principal limitations

The limitations of this study have been discussed in detail throughout each chapter, and are
summarized here:

• Limited Cohort of Patient-Specific Aneurysms: One generic limitation is the
relatively small cohort of patient-specific aneurysms that were studied. To draw more
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robust conclusions regarding the presence of transitional flows in aneurysms, a larger
and more diverse dataset would be beneficial. A larger cohort would provide a more
comprehensive understanding of the factors influencing transition and flow instabili-
ties. Moreover, the inclusion of aneurysms with varying morphological and geometrical
characteristics would add depth to the analysis.

An expanded dataset would not only enhance the statistical strength of our findings but
also allow us to delve into the vast diversity of aneurysm shapes, sizes, and locations.
These individual characteristics are known to significantly impact hemodynamics and,
by extension, the risk of rupture. Therefore, future research should strive to incorporate
a more extensive array of patient-specific cases to account for this variability.

• Exclusion of Aneurysm Wall Movement and Properties: Another notable lim-
itation is the omission of any movement or biological degradation of the aneurysm
wall in the context of fluctuating or pulsatile flow within aneurysm sacs. Previous
research, such as Zimny’s work [234], has identified discernible effects of wall motion
on wall shear stress in aneurysms and has proposed potential consequences of this as-
pect on thrombus formation. It is reasonable to assume that the interaction between
hemodynamics and the aneurysm wall, considering its movement, would have a sig-
nificant impact on transitional hemodynamics. The intensity of these hemodynamic
fluctuations may, in turn, be influenced by the behavior of the aneurysm wall.

The study of transitional flow is inherently linked to the complex interplay between
blood flow and the aneurysm wall. Future investigations should aim to bridge this gap
by incorporating fluid-structure interaction (FSI) models. FSI simulations can provide
a more comprehensive understanding of how the dynamic behavior of the aneurysm
wall affects transitional hemodynamics. This will pave the way for more accurate risk
assessments and treatment strategies.

• Multi-Modal Data Fusion: While the unavailability of 4D MRI-based patient-
specific inflow profiles is in general a current limitation, future research should explore
methods for obtaining and incorporating such data. This step would enhance the re-
alism and precision of computational simulations. Additionally, future work should
focus on establishing clear links between transitional flow patterns and clinical out-
comes, particularly the prediction of aneurysm rupture.

Combining various data sources, including patient-specific imaging, computational sim-
ulations, and clinical outcomes will provide a holistic perspective on aneurysm dynam-
ics and the transition to rupture, ultimately guiding optimal and even safer medical
decisions.

6.3 Perspectives

While this thesis has explored several patient-specific cases, the sample size remains limited
due to computational constraints. In the future, we aim to expand our research by devel-
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oping a numerical procedure capable of simulating a broader range of patient-specific cases
with high accuracy. This expansion will enable us to analyze hemodynamics across a larger
dataset, providing a more comprehensive understanding of aneurysm behavior. Addition-
ally, we plan to extend our investigations to include numerical simulations involving stents
placed within aneurysms. This will allow us to assess the effectiveness of different medical
devices already used or under development for aneurysm treatment and seek opportunities
for optimization or explore new geometric configurations.

Furthermore, a significant avenue for future research involves the simulation of thrombosis
within patient-specific aneurysms. Hemostasis, the complex process involving various bio-
chemical and hemodynamic factors leading to thrombus formation [235], is a topic closely
related to aneurysms. Despite extensive study, the intricate mechanisms and coagulation
pathways that underlie thrombus formation and growth continue to challenge medical re-
search. Blood components, including both inactive and active platelets and red blood cells,
along with a multitude of chemical species such as pro- and anti-coagulant proteins, con-
tribute to the complexity of this phenomenon.

Our numerical tool encompasses solvers for the flow field, species, and energy fields, based
on methods combining the lattice Boltzmann method with finite differences. This tool has
already demonstrated its utility on large parallel clusters and exhibits excellent scalability.
Our future work will initially involve modeling simple configurations using reaction networks
available in the literature [236, 237]. We will assess different bioreaction schemes, transport
models, and adhesion models for platelets found in the literature by incorporating them into
our simulations, utilizing the thermo-chemistry library REGATH available within ALBORZ.
These models will be used to simulate academic test-cases based on in-vitro experimental
studies from existing literature. Subsequently, we will apply the most suitable models,
including chemical schemes and platelet transport models, to more complex patient-specific
geometries, advancing our understanding of thrombosis within aneurysms.

In summary, the future work will focus on expanding our dataset of patient-specific cases, ex-
ploring the role of stents, and advancing our understanding of thrombosis within aneurysms.
This research will contribute to the field of hemodynamics and improve the assessment and
treatment of aneurysms.
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flow prediction in an idealized aneurysm geometry using data assimilation. Computers
in Biology and Medicine, 115:103507, 2019.

[3] Q. Li, N. Hong, B. Shi, and Z. Chai. Comparison of intracranial aneurysm flow quan-
tification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-
contrast MRI vs CFD. Journal of Neurointerventional Surgery, 11(3):275–282, 2019.

[4] D. A. Steinman, Y. Hoi, P. Fahy, L. Morris, M.T. Walsh, N. Aristokleous, A. S.
Anayiotos, Y. Papaharilaou, A. Arzani, S. C. Shadden, et al. Variability of computa-
tional fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME
2012 Summer Bioengineering Conference CFD Challenge. Journal of Biomechanical
Engineering, 135(2), 2013.

[5] J. R. Cebral, F. Mut, M. Raschi, E. Scrivano, R. Ceratto, P. Lylyk, and C. M. Put-
man. Aneurysm rupture following treatment with flow-diverting stents: computational
hemodynamics analysis of treatment. American Journal of Neuroradiology, 32(1):27–
33, 2011.

[6] Q. Li, N. Hong, B. Shi, and Z. Chai. Simulation of power-law fluid flows in two-
dimensional square cavity using multi-relaxation-time lattice Boltzmann method.
Communications in Computational Physics, 15(1):265–284, 2014.

[7] P. Neofytou. A 3rd order upwind finite volume method for generalised newtonian fluid
flows. Advances in Engineering Software, 36(10):664–680, 2005.

[8] B. C. Bell and K. S. Surana. p-version least squares finite element formulation for
two-dimensional, incompressible, non-newtonian isothermal and non-isothermal fluid
flow. International journal for numerical methods in fluids, 18(2):127–162, 1994.

[9] G. Janiga. Novel feature-based visualization of the unsteady blood flow in intracranial
aneurysms with the help of proper orthogonal decomposition (POD). Computerized
Medical Imaging and Graphics, 73:30–38, 2019.

107



Bibliography

[10] World Health Organization. The world health report 2002: reducing risks, promoting
healthy life. World Health Organization, 2002.

[11] A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid dynamics:
problems, models and methods. Computing and Visualization in Science, 2(4):163–197,
2000.

[12] M. H. Vlak, A. Algra, R. Brandenburg, and G. J. E. Rinkel. Prevalence of unruptured
intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time
period: a systematic review and meta-analysis. The Lancet. Neurology, 10(7):626–636,
2011.

[13] A. I. Karttunen, P. H. Jartti, V. A. Ukkola, J. Sajanti, and M. Haapea. Value of the
quantity and distribution of subarachnoid haemorrhage on CT in the localization of a
ruptured cerebral aneurysm. Acta Neurochirurgica, 145:655–661, 2003.

[14] S. Cornejo, A. Guzmán, A. Valencia, J. Rodŕıguez, and E. Finol. Flow-induced wall
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tracranial aneurysm lumen are associated with inflammation and degenerative changes
of the aneurysm wall. American Journal of Neuroradiology, 38(1):119–126, 2017.

[87] D. Fiorella, C. Sadasivan, H. H. Woo, and B. Lieber. Regarding “Aneurysm rupture
following treatment with flow-diverting stents: computational hemodynamics analysis
of treatment”. American Journal of Neuroradiology, 32(5):E95, 2011.

[88] D. F. Kallmes. Point: CFD–computational fluid dynamics or confounding factor dis-
semination. American Journal of Neuroradiology, 33(3):395–396, 2012.

113



Bibliography

[89] P. Berg, S. Saalfeld, S. Voß, O. Beuing, and G. Janiga. A review on the reliability of
hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics
alone cannot solve the equation. Neurosurgical Focus, 47(1):E15, 2019.

[90] M. D. Ford, H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata,
F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted
flow dynamics in anatomically realistic cerebral aneurysm models. Journal of Biome-
chanical Engineering, 130(2):021015, 2008.

[91] M. Raschi, F. Mut, G. Byrne, C. M. Putman, S. Tateshima, F. Viñuela, T. Tanoue,
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D. Thévenin, G. Janiga, and P. Berg. Fluid-structure simulations of a ruptured in-
tracranial aneurysm: constant versus patient-specific wall thickness. Computational
and Mathematical Methods in Medicine, 2016, 2016.

125



Bibliography

[232] P. Berg, S. Saalfeld, S. Voß, O. Beuing, and G. Janiga. A review on the reliability of
hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics
alone cannot solve the equation. Neurosurgical Focus, 47(1):E15, 2019.

[233] P. Berg, S. Voß, G. Janiga, S. Saalfeld, A. W. Bergersen, K. Valen-Sendstad, J. Bru-
ening, L. Goubergrits, A. Spuler, T. L. Chiu, et al. Multiple Aneurysms Anatomy
Challenge 2018 (MATCH)—phase II: rupture risk assessment. International Journal
of Computer Assisted Radiology and Surgery, 14:1795–1804, 2019.

[234] S. Zimny. Hemodynamic Flow Simulation in Patient Specific Cerebral Aneurysms.
Verlag Dr. Hut, 2016.

[235] T. Skorczewski, L. C. Erickson, and A. L. Fogelson. Platelet motion near a vessel wall
or thrombus surface in two-dimensional whole blood simulations. Biophysical Journal,
104(8):1764–1772, 2013.

[236] M. N. Ngoepe and Y. Ventikos. Computational modelling of clot development in
patient-specific cerebral aneurysm cases. Journal of Thrombosis and Haemostasis,
14(2):262–272, 2016.

[237] V. Govindarajan, V. Rakesh, J. Reifman, and A. Y. Mitrophanov. Computational
study of thrombus formation and clotting factor effects under venous flow conditions.
Biophysical Journal, 110(8):1869–1885, 2016.

[238] D. A. Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann models: an
introduction. Springer, 2004.

126



Appendix A

Discrete velocity sets

In order to obtain accurate solutions to the Boltzmann equations, it is crucial to have an
appropriate discrete velocity set {cα} that is sufficiently well-resolved. However, it is also
important to consider the numerical cost of the algorithm, which increases with the number
of discrete velocities used. Therefore, finding a velocity set with a minimal number of dis-
crete velocities while still capturing the desired physics is an important task. The detailed
discussion can be found in the book by Wolf-Gladrow [238].
The discrete velocity set is commonly expressed by its number d of spatial dimensions and
the number q of discrete velocities using the notation DdQq in the LBM terminology. The
so-called stencil has to obey rotational symmetry and keeps the conservation of mass and
momentum. The most popular sets for 2D are D2Q5 and D2Q9 while it is D3Q15, D3Q19
and D3Q27 in 3D computations.
The discrete velocities (cα) and corresponding weights of those velocities (wα) are summa-
rized below in 2D and 3D simulations with different types of stencils.
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A.1. 2-D stencils

A.1 2-D stencils

Figure A.1: D2Q5 and D2Q9 velocity sets commonly used in the 2D simulations.
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where α = 0, . . . , 4
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where α = 0, . . . , 8

A.2 3-D stencils

• D3Q15 stencil
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A.2. 3-D stencils

Figure A.2: The schematic of discrete velocity sets for D3Q15, D3Q19, D3Q27 commonly
used in the 3D simulations.
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where α = 0, . . . , 14

• D3Q19 stencil
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where α = 0, . . . , 18
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A.2. 3-D stencils

• D3Q27 stencil
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where α = 0, . . . , 26

130



Appendix B

MRT: Transformation matrices
involving Hermite polynomials

We will focus on smaller stencils here for simplicity (D2Q9 and D3Q7 stencils). To com-
pute the transformation matrices for both stencils, we need to determine the relationships
between the moments in velocity space and the discrete velocity vectors. These transform
matrices allow us to express the moments in terms of the discrete velocities, simplifying the
computation of the collision and streaming steps. However, it is important to note that
transforms for higher-order stencils and different moment spaces can be readily computed
using the discrete velocity vectors and chosen sets of moments.
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B.1. D2Q9 stencil

B.1 D2Q9 stencil

For the D2Q9 stencil, the transformation matrix M consisting of nine 2-D Hermite polyno-
mials and its inverse M−1 are given as:

M =



H0

Hx

Hy

Hxy

Hx2

Hy2

Hx2y

Hxy2

Hx2y2


=



1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 1 −1

−c2s 1− c2s −c2s 1− c2s −c2s 1− c2s 1− c2s 1− c2s 1− c2s
−c2s −c2s 1− c2s −c2s 1− c2s 1− c2s 1− c2s 1− c2s 1− c2s
0 0 −c2s 0 c2s 1− c2s 1− c2s c2s − 1 c2s − 1
0 −c2s 0 c2s 0 1− c2s c2s − 1 c2s − 1 1− c2s
c4s c2s(c

2
s − 1) c2s(c

2
s − 1) c2s(c

2
s − 1) c2s(c

2
s − 1) (c2s − 1)2 (c2s − 1)2 (c2s − 1)2 (c2s − 1)2



(B.1)

M−1 =



(c2s − 1)2 0 0 0 c2s − 1 c2s − 1 0 0 1

− c2s(c
2
s−1)
2

1−c2s
2

0 0 1−c2s
2

− c2s
2

0 −1
2

1
2

− c2s(c
2
s−1)
2

0 1−c2s
2

0 − c2s
2

1−c2s
2

−1
2

0 −1
2

− c2s(c
2
s−1)
2

c2s−1
2

0 0 1−c2s
2

− c2s
2

0 1
2

−1
2

− c2s(c
2
s−1)
2

0 c2s−1
2

0 − c2s
2

1−c2s
2

1
2

0 −1
2

c4s
4

c4s
4

c4s
4

1
4

c4s
4

c4s
4

1
4

1
4

1
4

c4s
4

− c4s
4

c4s
4

−1
4

c4s
4

c4s
4

1
4

−1
4

1
4

c4s
4

− c4s
4

− c4s
4

1
4

c4s
4

c4s
4

−1
4

−1
4

1
4

c4s
4

c4s
4

− c4s
4

−1
4

c4s
4

c4s
4

−1
4

1
4

1
4


(B.2)

132



B.2. D3Q7 stencil

B.2 D3Q7 stencil

For this D3Q7 stencil, the transformation matrix is composed of seven Hermite polynomials,
resulting in the following matrix:

M =
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−c2s 1− c2s 1− c2s −c2s −c2s −c2s −c2s
−c2s −c2s −c2s 1− c2s 1− c2s −c2s −c2s
−c2s −c2s −c2s −c2s −c2s 1− c2s 1− c2s


(B.3)

M−1 =
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0 0 1
2
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c2s
2

0 1
2

0 0 1
2

0
c2s
2

0 −1
2

0 0 1
2

0
c2s
2

0 0 1
2

0 0 1
2

c2s
2

0 0 −1
2

0 0 1
2


(B.4)
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