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To my mother.

Don’t sacrifice your dreams for the illusion of security.
There is no security.

Realize there is no security
and become comfortable with that.

It will free you up to do what you really need to do.

— David Mack





ABSTRACT

The topic of multistationarity in multisite phosphorylation networks is ex-
ploited in this thesis. A distributive, sequential phosphorylation network
with n phosphorylation sites is introduced and extended by several dif-
ferent network setups. Multistationarity is established for the distributive,
sequential network setup and n > 2. For extended network setups includ-
ing synthesis and degradation of the enzymes and the (phosphorylated)
protein in various forms multistationarity is established for two phospho-
rylation steps. For network setups allowing compartmentalization, i. e., two
phosphorylation networks of size n with distinct transport reactions being
coupled, multistationarity can be established under certain restrictions for
arbitrary n > 2. Furthermore, a parametrization of the multistationarity
region for the n-times distributive, sequential phosphorylation network is
provided and analyzed. A random walk is applied to the distributive, se-
quential phosphorylation network to test the robustness towards parameter
variations of the multiple steady states in parameter space.

ZUSAMMENFASSUNG

Die vorliegende Promotion betrachtet das Thema mehrfach stationärer Zu-
stände in distributiven, sequentiellen Phosphorylierungsnetzwerken mit n
Phosphorylierungsstufen. Netzwerke unterschiedlicher Komplexität werden
analysiert. Mehrfach stationäre Ruhelagen können für ein distributives, se-
quentielles n-fach Phosphorylierungsnetzwerk und n > 2 nachgewiesen
werden und eine Parametrisierung der mehrfach stationären Ruhelagen er-
folgt. Für Phosphorylierungsnetzwerke, die auch Auf- und Abbau von (phos-
phorylierten) Proteinen und Enzymen erlauben, werden mehrfach statio-
näre Ruhelagen für n = 2 nachgewiesen. Durch das Koppeln zweier n-fach
Phosphorylierungsnetzwerke mit Transportreaktionen zwischen diesen bei-
den Netzerken wird ein Reaktionsnetzwerk auf Basis von Kompartmentali-
sierung erzeugt. Für dieses kann für n > 2 und unter bestimmten Vorausset-
zungen Mehrfachstationarität nachgewiesen und eine Parametrisierung der
Ruhelagen angegeben werden. Weiterhin wird die Robustheit des distribu-
tiven, sequentiellen n-fach Phosphorylierungsnetzwerkes in seiner einfachs-
ten Form untersucht.
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You need to believe in things that aren’t true –

how else can they become?

— Terry Pratchett

ACKNOWLEDGMENTS

A thesis is not only the sum of thoughts of several years fixed on paper. It
also reflects the ideas, support and encouragement of various people.
Foremost, I like to thank my advisory Prof. Dr. Dietrich Flockerzi, who

had always time for the strangest questions, found answers to those and is
a source of constant inspiration.
Besides him, I like to thank Dr. Carsten Conradi who supervised me

already during the time of my diploma thesis and made this thesis possible
at all.
Thanks goes also to Prof. Dr. Jörg Raisch and Prof. Dr. Rolf Findeisen for

letting me finish this thesis at the university of Magdeburg.
To reflect on the encouragement, I thank all members of the lab S3.18 (at

various points in time) for time, support, discussions, coffee breaks and a
cake-lovers friendly environment: Boris, Robert, Berni, Anke and Phil. But
also Andi, Janine, Maayan and Astrid as noninhabitants of the office but
also part of this community. I’d also like to thank my diligent proof readers:
Astrid and Boris (from above) and, from a different spatial list of friends, my
most favorite ex-roommate Günni and my most favorite Canadian Dave.
For his love and support till the very end (and only thus rendering this

work possible) I’d like to thank my Steintülling André.
But most of all, I’d like to thank my father: obwohl du vermutlich wenig

von dem lesen wirst, was in dieser Arbeit geschrieben steht, so hast du sie
erst durch deine konstante Unterstützung, Weisheit und Zuversicht ermög-
licht. Danke.

xi





CONTENTS

1 introduction 1

2 modeling biological systems 5

2.1 Key Terms and Definitions 5

2.2 Ordinary Differential Equations Arising from (Bio-) Chemi-
cal Reaction Networks 7

3 multisite phosphorylation as an important intracel-
lular process 13

3.1 Multistationarity, Enzyme Kinetics and Rate Theories 13

3.2 Multistationarity in Intracellular Processes 19

4 known theoretical results for multisite phosphory-
lation networks 29

4.1 A Good Threshold but Poor Switch by Multisite Phosphory-
lation 29

4.2 Establishing Bistability in Chemical Reaction Networks 31

4.3 Bounds for Number of Steady States 33

5 multistationarity in multisite phosphorylation net-
works 35

5.1 Multisite Phosphorylation of Proteins in n Steps 35

5.2 Multistationarity inMultisite Phosphorylation Networks 39

5.3 Computation of Sign Vectors Yielding Multiple Steady States 43

5.4 Explicit Formulation for Multistationarity 53

5.5 Summary and Open Questions 66

6 effect of synthesis and degradation of proteins and

enzymes in multisite phosphorylation networks 69

6.1 Modeling a Small Phosphorylation Network with Synthesis
and Degradation 69

6.2 Multistationarity 74

6.3 An Excursion Towards Larger Networks 88

6.4 Summary and Open Questions 94

7 effect of compartmentalization 95

7.1 Compartmentalization and Phosphorylation 95

7.2 Multistationarity of a Compartmentalized Phosphorylation
Network 100

7.3 Numerical Analysis for Different Network Setups 110

7.4 Summary and Open Questions 120

8 robustness towards variations in parameter space 123

8.1 Generating Initial Values 123

8.2 The Polynomial and Coset Condition 127

8.3 Robustness Analysis 128

8.4 Summary and Open Questions 131

9 summary, open questions and conclusions 133

xiii



xiv Contents

a proofs and further mathematical issues 137

a.1 Nullspace of Stoichiometric Matrix for Standard Phosphory-
lation 137

a.2 Nullspace of Rate Exponent Matrix for Standard Phosphory-
lation 139

a.3 Solvability for the Polynomial Condition 142

a.4 Feasibility of Sign Vectors for Standard Phosphorylation 145

a.5 Restrictions on Choosing Sign Vectors for Systems with Com-
partmentalization 147

b some more matrices and solutions 149

b.1 Cones of Standard Multisite Phosphorylation 149

b.2 Solutions for Phosphorylation Networks of Size 2 Including
Synthesis and Degradation of Proteins 150

b.3 An Excursion towards Larger Networks with Synthesis and
Degradation 181

c some more tables and figures 187

c.1 Further Figures for Networks with Compartmentalization 187

c.2 Further Figures for Robustness Analysis Towards Parameter
Variation 189

c.3 Values for Rate Constants and Concentrations 189

bibliography 193



L IST OF F IGURES

Figure 2.1 Example of a pointed polyhedral cone and multiple
steady states 10

Figure 3.1 Response curves for different enzymatic mechanisms 16

Figure 3.2 Multiple steady states inMAPK phosphorylation 20

Figure 3.3 Cell cycle control in budding yeast 21

Figure 3.4 Oscillation of Sic1 and Cdc14 throughout the cell cy-
cle 22

Figure 3.5 Schematic description ofNFAT de-/phosphorylation 24

Figure 3.6 Translocation of NFAT via Ca2+ oscillations 25

Figure 3.7 Activation of NFAT via Ca2+ levels 26

Figure 5.1 Reaction scheme of an n-times phosphorylation net-
work 35

Figure 5.2 Parameter regions for non-adjusted µ, s and exem-
plary steady states 56

Figure 5.3 Parameter regions for non-adjusted rate constants 57

Figure 5.4 Parameter regions for adjusted µ, s and exemplary
steady states 63

Figure 5.5 Parameter regions for adjusted rate constants 63

Figure 5.6 Bifurcation analysis for non-adjusted parameters 65

Figure 5.7 Bifurcation analysis for adjusted parameters 66

Figure 6.1 Bifurcation analysis of system with protein synthesis
and degradation over total kinase concentration 88

Figure 6.2 Bifurcation analysis of system with protein synthe-
sis and degradation over total phosphatase concen-
tration 88

Figure 7.1 Biological interpretation of response curves for the
decoupled networks inNFAT de-/phosphorylation 101

Figure 7.2 Bifurcation analysis for two decoupled systems for
the uni-valued setup 115

Figure 7.3 Bifurcation analysis for the coupled systems of the
uni-valued setup 115

Figure 7.4 Bifurcation analysis of two decoupled system for the
multi-valued network setup 119

Figure 7.5 Bifurcation analysis of two coupled system for the
multi-valued network setup 119

Figure 7.6 Temporal course of dynamical behavior of a multi-
valued setup 120

Figure 8.1 Steady state a as a function of µ and s 125

Figure 8.2 Robustness analysis for first sign vector of n = 2, . . . , 14
of the binary set 130

Figure 8.3 Exit reasons for random walk 131

Figure C.1 Bifurcation analysis of two decoupled systems for the
multi-valued setup 188

Figure C.2 Bifurcation analysis of two decoupled multi-valued
systems 188

Figure C.3 Robustness analysis for sign vectors of n = 2, . . . , 14
for the binary set 189

xv



xvi List of Figures

Figure C.4 Robustness analysis of remaining sign vectors for n =

3, . . . , 15 of the binary set 190

Figure C.5 Exit reasons for random walk for remaining sign vec-
tors 191



L IST OF TABLES

Table 5.1 Number of valid sign vectors for distributive, sequen-
tial phosphorylation 44

Table 6.1 Prediction of multiple steady states by CRNT 73

Table 6.2 Number of sign vectors and patterns for phosphory-
lation networks with synthesis and degradation 86

Table 7.1 Number of additional dependencies for phosphoryla-
tion with compartmentalization 104

Table 7.2 Bifurcation analysis for the uni-valued setup 113

Table 7.3 Bifurcation analysis for the multi-valued setup 117

Table 8.1 Nomenclature for robustness analysis following a ran-
dom walk 124

Table C.1 Examples for phosphorylation of proteins 192

Table C.2 Examples for dephosphorylation of proteins 192

xvii





L IST OF ABBREVIAT IONS

biological terms

ATP adenosin triphosphate

Cdc cell division cycle protein

Cdk cyclin-dependent kinase, found in cell cycle regulation

Ck casein kinase

Clb B-type cyclin

Cln cyclin proteins in S. cerevisiae

Cyc cyclin protein

ERK extracellular signal-regulated kinases (unphosphorylated)

ERK2/pY extracellular signal-regulated kinase, phosphorylated on
tyrosine-185

ERK2/pT extracellular signal-regulated kinase, phosphorylated on
threonine-183

ERK2/pTpY extracellular signal-regulated kinase, phosphorylated on
both residues

DNA deoxyribonucleic acid

G1 phase first gap phase during cell cycle

G2 phase second gap phase during cell cycle

GSK glycogen synthase kinase

IKK IκB kinase

IκBα nuclear factor of kappa light poylpeptide gene enhancer in
B-cells inhibitor, alpha (inhibits NFκB)

JNK1 mitogen-activated protein kinase 8

MAPK mitogen-activated protein kinase

MEK mitogen-activated protein kinase; extracellular signal-
regulated protein kinase kinase

MKP mitogen-activated protein kinase phosphatase

NES nuclear export signal

NFAT nuclear factor of activated T-cells, found in immune re-
sponse

NFκB nuclear factor kappa-light-chain-enhancer of activated B
cells

NLS nuclear localization signal

PP2A protein phosphatase 2

RAS protein family belonging to hydrolyze guanosine triphos-
phate

RNA ribonucleic acid

S phase synthesis phase during cell cycle

S. cerevisiae budding yeast Saccharomyces cerevisiae

S. pombe fission yeast Schizosaccharomyces pombe

xix



xx list of abbreviations

Sic1 stoichiometric inhibitor protein of Cdk1-Clb in S. cerevisiae

SP motif serine and proline-rich region

SRR-1 motif serine-rich region

Swe1 protein kinase in S. cerevisiae, homologue of Wee1

VHR vaccinia H1-related phosphatase

Wee1 protein kinase in S. pombe

further abbreviations

add. dep. additional dependencies

con convergence

CRNT chemical reaction network theory

H Hopf bifurcation

LP limit point

nd no data

nmss no multiple steady states

PM phosphorylation mechanism

RW random walk

TB toolbox



L IST OF SYMBOLS

A substrate of the network

K kinase of the network

P phosphatase of the network

n number of phosphorylation steps, also number of species
in the network

i index addressing phosphorylation step, vector and matrix
elements

x concentration vector of substances in networks

k vector of rate constants

r number of reactions in a network, also number of educt
complexes in the network

v vector of reaction rates

y vector of educt complexes in the network
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Ī, Imin, Imax mean, minimal and maximal exit number



The creation of a single world

comes from a huge number
of fragments and chaos.

— Hayao Miyazaki

1INTRODUCTION

Multisite phosphorylation is an often found feature in (bio-) chemical reac-
tion networks. The size of the phosphorylation network can vary from two
phosphorylation steps, for example, in the layers of the mitogen activaded
protein kinases (MAPK), [69], up to very large numbers of more than 150

sites, [101]. They are not only restricted to procaryotics, but can be found
in intracellular processes of eucaryotics. These intracellular processes in-
clude among others signal transduction, check point control in the cell cycle,
and information processing. For example, signal transduction is achieved
via the cascades of the MAPKs, [69]. Check point control in the cell cycle
is achieved by various proteins, for example the stoichiometric inhibitor pro-

tein, (Sic1), with nine phosphorylation sites, the cell division cycle protein 25,
(CDC25), with probably more than fourteen phosphorylation sites and Wee1

with more than five sites, [82]. For signal transduction, information is pro-
cessed in one compartment of the cell. Information processing is used for
transition of information between different cells or cell compartments. For
example, the proteins of the nuclear factor of activated T-cells family, (NFAT),
are activated in the cytoplasm and enable gene transcription for immune
response in the nucleus. These proteins posses at least 21 phosphorylation
sites, [64].
The important feature of, for example, cell cycle control is the ability of

the underlying reaction to exhibit a switch-like response curve. This switch-
like curve cannot only be achieved by a uni-valued function, but also by
a multi-valued function, e. g., an s-shaped function, with underlying multi-
stationarity, [16, 106]. Networks also display dynamic properties like oscilla-
tions, [104]. Higher-level network structures, such as positive or double neg-
ative feedback loops, are used to create models with multiple steady states
displaying bistability, oscillations or limit cycles. These feedback loops were
seen as a prerequisite for a bistable response curve in (bio-) chemical re-
action networks, [69]. But analysis on multisite phosphorylation networks
showed, networks with multisite phosphorylation can already exhibit mul-
tiple steady states without the need of higher-level network structures, see
for example [22]. N. I. Markevich et al. were the first to demonstrate the pos-
sibility of multistationarity in a single cascade level of MAPK. Further work
followed by J. Gunawardena and, for example, L. Wang and E. D. Sontag
on the number of steady states a multisite phosphorylation network could
exhibit. These studies so far only brought answers to general “yes-or-no”
questions, i. e., multiple steady states exist or not, or found exactly one ex-
plicit pair of steady states, such providing only one explicit solution. An
overview of these works is discussed briefly in chapter 4, after a discussion
on the theoretical and experimental aspects of multisite phosphorylation
and multistationarity in chapters 2 and 3, respectively.
C. Conradi then provided an algorithm based on the work of M. Feinberg

as well as [31], that not only answered the question of multistationarity but

1



2 introduction

also provided a parametrization of the multistationarity region. This algo-
rithm was then exploited in the diploma thesis, [49], of the author. These
results are summarized and extended in chapter 5. Here, a multisite phos-
phorylation process with a distributive, sequential mechanism is introduced,
referred to as the standard phosphorylation network. Multistationarity can
be established for a multisite phosphorylation network of size n > 2. The
parametrization of the multistationarity region provides also rate constants
and steady states. Thus, a parametrization for the multistationarity region
is provided with explicit solutions of not only one pair but for the whole
region. The parameter space as well as region of steady states is then ana-
lyzed. And a parametrization yielding steady states in biological relevant
regions is achieved in the same chapter.
As the phosphorylation network discussed in chapter 5 does not represent

all (bio-) chemical network setups of multisite phosphorylation processes,
further setups are considered as well. Often the phosphorylated protein is
bound to further reactions. It can be actively degradated or inactivated by
the phosphorylation process or compartmentalization. Thus the introduced
multisite phosphorylation is extended by additional reactions. These allow
synthesis and/or degradation of the protein as well as its phosphorylation
forms, but also synthesis and/or degradation of the enzymes. Examples for
these networks can again be found in the cell cycle. Degradation of the pro-
tein Sic1 by an ubiquitinase is the trigger for transition from G1 to S phase
in cell cycle, [24]. Compartmentalization by sequestration is present in the
deactivation of the protein Cdc25, [38]. And hyper-phosphorylation can be
seen in Swe1, an analogon of Wee1, [115]. Such phosphorylation networks
with additional reactions are discussed in chapter 6. The provided solution
algorithm for these multisite phosphorylation networks with additional syn-
thesis and/or degradation only discusses double phosphorylation networks.
Multistationarity can be established for some of the arising network setups
resulting as well in a parametrization. Larger phosphorylation networks
are considered as well, but no explicit solution is provided: The reaction
network is analyzed in a reduced form instead of considering the actual
number of states and rates. The double phosphorylation network is a sim-
ple translation of an n-times phosphorylation network in a reduced form.
Here, the unphosphorylated form of the protein in the reduced model corre-
sponds to the actual unphosphorylated protein of the large model. The dou-
ble phosphorylated form of the protein in the reduced model corresponds
to the fully phosphorylated protein. And the single-phosphorylated pro-
tein in the reduced model corresponds to all in between phosphorylation
forms. This reduction of reactions is often found in (bio-) chemical reac-
tion networks, see for example [39]. It is also used in the next chapter on
compartmentalization.
As (bio-) chemical reaction networks often display some sort of compart-

mentalization, chapter 7 discusses two coupled phosphorylation networks
and existence of multiple steady states. The de-/phosphorylation of the
protein NFAT in cytoplasm and nucleus is taken as an example for these
kind of mechanisms. Again, multistationarity is established for n > 2. A
parametrization for rate constants together with steady states is provided
for arbitrary n and an explicit example is given for a reduced model of two
phosphorylation steps.

Besides the existence of multiple steady states in multisite phosphoryla-
tion network, this thesis also considers the robustness of these steady states
in terms of variations of parameters. If parameters in (bio-) chemical reac-
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tion network change, the property of multistationarity could be lost due to
sensitive behavior of the reaction network towards these changes. On the
other hand, robustness of the reaction network might preserve the property
of multistationarity. The work of S. Herold on robustness towards variation
in parameter space is extended in this thesis and discussed in chapter 8.
A random walk in parameter space is applied to test the robustness of the
multistationarity. Here the robustness of the multisite phosphorylation net-
work increases with the step size n up to four to six phosphorylation steps
and decreases afterwards. Thus larger phosphorylation networks show a
less robust behavior in numerical simulation towards variation in parame-
ter space.
For reasons of readability large matrices and proofs can be found in the

appendices. They are organized as follows: Appendix A contains proofs
and further algorithms of chapter 5 and 7. Large matrices of chapter 5

and further results of chapter 6 can be found in appendix B. Appendix C
contains some more figures and tables from chapters 3, 7 and 8.
The thesis establishes mutlistationarity for different multisite phosphory-

lation networks: multistationarity of an n-times phosphorylation network,
of double phosphorylation networks with synthesis and/or degradation, as
well as of networks with compartmentalization. Furthermore, it provides a
parametrization for the multistationarity region. Thus higher-level network
setups are not needed any more to establish multiple steady states in these
forms of (bio-) chemical reaction networks. And dynamic properties, such
as switching, oscillations or limit cycles, can be established by these small
networks.





Over thinking, over analyzing separates the body from the mind.

Withering my intuition, missing opportunities and I must
feed my will to feel my moment drawing way outside the lines.

— Justin Chancellor

2MODELING BIOLOGICAL SYSTEMS

This chapter covers conceptual basics needed to get a start. Included are
nomenclature and some standard approaches in systems biology. Not cov-
ered however are basics in systems biology and control theory. The inter-
ested reader not familiar with the topic at hand is advised to follow the
work of E. Klipp, et al. for an introduction in systems biology in general
and to A. Cornish-Bowden for a more detailed introduction in enzyme ki-
netics. For an introduction to control theory the work of D. G. Luenberger
is recommended.
Furthermore, this thesis makes use of some standard mathematical con-

cepts from stochastics and bifurcation theory. Again it is assumed that the
reader is familiar with these or might follow standard literature, see for ex-
ample [7, 46, 72] and [112] for the first, and [41] and [62] for bifurcation
theory.

2.1 key terms and definitions

This work makes extensive use of matrices and vectors. To achieve a distinct
nomenclature the following terms are used:

R
n the n-dimensional Euclidean space

R
n
>0 the positive orthant of R

n

R
n
>0 the nonnegative orthant of R

n

R
n×m set of n×m matrix with real entries

q ∈ R
n a column vector of length n

A uppercase calligraphic letters denote sets

AT transpose of a matrix or a vector, often used to denote column

vectors as transposed row vectors

q⊥ orthogonal complement of q

|a| absolute value of a variable a

‖q‖ L2-norm of a vector q ∈ R
n with ‖q‖ =

√
q2
1 + · · ·+ q2

n, also

denoted as ‖q‖2
exp(a) exponential function for basis e and exponent a, a real num-

ber, also denoted as ea

To describe the standard scalar product in R
n:

〈pq〉 =
∑

pi qi = qT p.

5



6 modeling biological systems

Subscripts i and j are used to denote either rows, columns or elements of
matrices and vectors respectively. A bracketed superscript denotes the phos-
phorylation step considered. For a time series or an analysis over several
steps (j) is used to denote the current step. Furthermore, the following
standard forms are used:

I identity matrix

0 matrix of zeros

0 vector of zeros

en unit vector of length n

ei unit vector of suitable dimension with a one at the ith entry

Mathematical notations for parameters p ∈ R and vectors x ∈ R
n:

x =




x1
...

xn


 = [x1, . . . , xn]

T ,

x > 0 ⇔ x1 > 0, . . . , xn > 0,

x−1 =
1

x
=

[
1

x1
, . . . ,

1

xn

]T
,

ln x = [ln x1, . . . , ln xn]
T , x > 0,

exp(x) = ex = [ex1 , . . . exn ]T ,

p · x = [p · x1, . . . , p · xn]
T .

Furthermore, xy with x, y ∈ R
m
>0 is defined as:

xy = x
y1
1 x

y2
2 · · · xyn

n =

n∏

i=1

x
yi
i

The expression col is used to denote the existence of sub-vectors in a vector.
Consider a column vector of length n, the vector can be displayed as an
p(q+ 1) dimensional column vector with

x =
[
x(10), . . . , x(p0), x(11), . . . , x(p1), . . . , x(1q), . . . , x(pq)

]T

by

x = col
(
x(0), . . . , x(q)

)
∈ R

p(q+1),

where x(i) with 0 6 i 6 q denotes the i-th sub-vector of x.
In addition to the biological abbreviations given on page xix, abbrevia-

tions are used in the following sense:

tot refers to the total sum of an entity (for example total concen-

tration)

diag denoting an n×n diagonal matrix

ker nullspace of a matrix

[A] image of a matrix A, also im(A), or concentration of a

substance A in the reaction network

sgn sign pattern describing sign of each entry of a vector

orth orthonormal basis of image of a matrix



2.2 ordinary differential equations arising from (bio-) chemical reaction networks 7

supp closure or support of a vector, i.e., set of indices where the vec-

tor has nonzero elements

span span of a set

rand random number in associated probability distribution

length length of a vector

size size of a matrix

rank rank of a matrix

2.2 ordinary differential equations arising from (bio-) chem-
ical reaction networks

In this section the notation of reoccurring network matrices is introduced.
A simple (bio-) chemical reaction network can be given by the following
example

2A+ B GGGBF GGG A2BGGGA C+ B,

CGGGA D+ E,

A+D GGGBF GGG E,

(N2.1)

where Bmay describe an enzyme catalyzing the first reaction. Arrows point
from consumed species, called educts, to produced species, called products.
The network consists of six species. The number of species in a network will
be given by n. If the system is open, i. e., a species can enter and/or leave
the system at any time, a zero element is used in the following form:

species GGGBF GGG 0

Every species can be described by its concentration x ∈ R
n:

x1 = [A] , x2 = [B] , x3 = [A2B] ,

x4 = [C] , x5 = [D] , x6 = [E] .

Furthermore, the network is described by reactions and associated rate con-
stants k ∈ R

r=6:

2
x1

A +
x2

B
k1

GGGGGGBF GGGGGG

k2

x3

A2B
k3

GGGGGGA

x4

C +
x2

B ,

x4

C
k4

GGGGGGA

x5

D +
x6

E ,

x1

A +
x5

D
k5

GGGGGGBF GGGGGG

k6

x6

E .

Assumption 2.1. All reactions are irreversible.

The network can also be analyzed in terms of graph-theory, see for exam-
ple the work of M. Feinberg. Here, only nodes or complexes of the network
but not individual substances are considered. Network (N2.1) consists of
seven complexes ỹ:

ỹ1 GGGBF GGG ỹ2GGGA ỹ3

ỹ4GGGA ỹ5

ỹ6 GGGBF GGG ỹ7

(N2.2)
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The number of complexes of a system will be described by m thus ỹ ∈ R
m,

here m = 7. Some complexes ỹ appear only as educt complexes y in the
network,e. g., ỹ4. Whereas other complexes appear only as products in the
network, e. g., ỹ5 or even as both, e. g., ỹ1. To differ between educts and
educt complexes, the variable ỹ refers to all complexes and the variable y to
educt complexes. The number of educt complexes in a network is equal to
the number of reactions, as each reaction is based on an educt.
Network matrices are used to describe, in a compact form, the reaction

network itself. These matrices enable a structural interpretation of the net-
work as no quantitative values are used. The structure of a reaction network
can, for example, be described by the stoichiometric matrix N ∈ R

n×r, the
complex matrix Ỹ ∈ R

n×m, or the rate exponent matrix Y ∈ R
n×r, also

known as educt complex matrix.
The stoichiometric matrix is composed of rate constants describing col-

umn and species describing row elements. Each rate constants describes
synthesis or degradation of a species, where the sign is set by the type of
consumption in the network itself:

N =




k1 k2 k3 k4 k5 k6

x1 −1 1 0 0 −1 1

x2 −1 1 1 0 0 0

x3 1 −1 −1 0 0 0

x4 0 0 1 −1 0 0

x5 0 0 0 1 −1 1

x6 0 0 0 1 1 −1



.

For network (N2.1), the stoichiometric matrix N ∈ R
6×6.

The complex matrix Ỹ ∈ R
n×m describes each node of the network in a

simple ascending manner. Each node describes the contribution of a species
in the network towards this node in terms of unit vectors of length n with a
contributing factor at the appropriate position of the species:

ỹ1 = 2e1 + e2, ỹ2 = e3,

ỹ3 = e2 + e4, ỹ4 = e4,

ỹ5 = e5 + e6, ỹ6 = e1 + e5,

ỹ7 = e6.

Thus Ỹ can be given by

Ỹ =
[
ỹ1 ỹ2 ỹ3 ỹ4 ỹ5 ỹ6 ỹ7

]

with Ỹ ∈ R
6×7 for network (N2.1). Collecting all educt complexes in the

network yields the rate exponent matrix Y. This matrix describes all educt
complexes y of the reaction network in the same ascending manner of or-
dered entries:

Y =
[
ỹ1 ỹ2 ỹ2 ỹ4 ỹ6 ỹ7

]

with Y ∈ R
6×6 or in general Y ∈ R

n×r.
If in- or outflow of certain species as educts is allowed, corresponding

zero columns in Y can be found. To differ between all complexes and educt
complexes in the reaction network, ỹ always refers to elements of the com-
plex matrix Ỹ and y refers to elements of the rate exponent matrix Y.
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The graph of the reaction network itself is represented by the incidence
matrix IA. Columns of IA correspond to rate constants k and rows to com-
plexes ỹ. Thus, each column contains only nonzero entries for synthesis and
degradation of a complex:

IA =




k1 k2 k3 k4 k5 k6

ỹ1 −1 1 0 0 0 0

ỹ2 1 −1 −1 0 0 0

ỹ3 0 0 −1 0 0 0

ỹ4 0 0 0 −1 0 0

ỹ5 0 0 0 1 0 0

ỹ6 0 0 0 0 −1 1

ỹ7 0 0 0 0 1 −1




with IA ∈ R
7×6 or in general IA ∈ R

m×r. Note that

N = Ỹ IA.

To describe the network in terms of ordinary differential equations a fur-
ther assumption is made:

Assumption 2.2. The mass action law holds for all reactions, i. e., the reac-
tion rate v is proportional to the product of the concentrations of the educts.

With the rate v being proportional to the product of educt concentration
and the rate exponent matrix describing coupling of educts, the elements of
the educt complex matrix Y can be used to describe, in a short form, each
individual reaction rate v:

vi = ki

r∏

j

xyj

v =
[
k1x

2
1x2, k2x3, k3x3, k4x4, k5x1x5, , k6x6

]T
.

Thus, the proportional coefficient is given by the rate constant k, and the ex-
ponents of the monomials yield the contribution of each educt. This product
is also referred to as:

v (k, x) = diag (k)Φ (x) (2.1)

with the monomial vector Φ defined by

Φ (x) :=
[
xy1 · · · xyr

]T
. (2.2)

Following the law in its simplest form thus yields ordinary differential equa-
tions composed of proportional rates (amount of species) of contributing
educts. This correlation can be used to describe the change of concentration
of substrates over time. The result are ordinary differential equations for
the single substances:

ẋ1 = −k1x
2
1x2 + k2x3 − k5x1x5 + k6x6,

ẋ2 = −k1x
2
1x2 + k2x3 + k3x3,

ẋ3 = k1x
2
1x2 − k2x3 − k3x3,

ẋ4 = k3x3 − k4x4,

ẋ5 = k4x4 − k5x1x5 + k6x6,

ẋ6 = k4x4 + k5x1x5 − k6x6.

(2.3)
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v1
v2

v3
ǫ1

ǫ2

ǫ3

ǫ4
ǫ5

ǫ6

v1
v2

v3 v(k,a)

v(k,b)

v(k, c)

Figure 2.1: Left hand side: example of a pointed polyhedral cone in R
3 and its generators

ǫ1, ǫ2, . . . described by solid lines, [58, 78]. Note that this sketch does not describe the

given example network or any network in this thesis. Right hand side: “appearance” of

steady states a and b, outer stable ones, and a third unstable steady state, c, in their

middle.

The sign of individual terms is negative, if a substrate is consumed or pos-
itive, if it is produced. As this sign is also displayed in the stoichiometric
matrix, the ordinary differential equations can be given in a short form us-
ing the stoichiometric matrix N and the vector of reaction rates v:

dx(t)
dt

= Nv(k, x(t)) (2.4)

In general, the stoichiometric matrix N does not have full row rank s. The
number of species is in most cases smaller than the number of reactions.
Often, so called conservation relations can be found, describing the conser-
vation of sums of species in the reaction network. Thus, s is usually smaller
then the number of species. Given the stoichiometric subspace S = im(N) a
matrix W ∈ R

(n−s)×n can be given by

WTN = 0

whose rows yield the conservation relation of the reaction network:

WT x(t) = constant = c, ∀t (2.5)

The matrix W is referred to as a weight matrix.
This can be seen from a (bio-) chemical point of view: while conservation

of substances is present, the network operates in a closed environment, see
for example [28]. If not all substances are conserved, some species might
enter or leave the system, for example proteins moving into or out of the
cell nucleus. Thus, equations (2.5) are referred to as conservation relations
of the reaction networks.
The number of ordinary differential equations can be reduced by the num-

ber of present conservation relations. Only rank(N) equations have to be
solved. In the given network example (N2.1), n− s = 6− 4 = 2 conservation
relations can be found:

x1 + x3 = constant and x2 + x3 = constant,

thus only four equations have to be solved.
Interesting points of such (bio-) chemical reaction networks are steady

states of the network as these translate, for example, to certain stable cell
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states. For example, the four phases in the cell cycle are associated with
steady states of the underlying reaction networks, for example, see the work
of J. J. Tyson. The reaction network is in steady state, if equation (2.4)

Nv(k, x) = 0. (2.6)

For chemical reaction networks only positive x are meaningful. Further-
more, with irreversible reactions all rate constants in k are positive. Thus,
solutions to equation (2.6) lie in the cone ker(N) ∩ R

n×r
>0 , a pointed polyhe-

dral cone, see for example the arbitrary cone in figure 2.1. The stoichiomet-
ric matrix of reaction networks discussed in this work show cones E, whose
columns form also a basis for the right nullspace of the stoichiometric ma-
trix, see the proof in appendix A.1 for an n-times phosphorylation network:

NE = 0 with E ∈ R
n×q
>0 . (2.7)

Note, this is not the case for all reaction networks, i. e., the number of gen-
erators for the cone E in the positive subspace is usually larger then the
number of basis vectors of the right nullspace of N.
For reaction network (N2.1) the cone E can be given by

ET =

[
1 1 0 0 0 0

0 0 0 0 1 1

]
.

Remark 2.3. [Biological Interpretation.] Extreme rays of the pointed poly-
hedral cone E can be interpreted in a biological way. Each column describes
a minimal set of rates in v. In this biological sense the steady state is in-
terpreted as a steady state, where rates are balanced and Nv is zero. The
columns of E are then interpreted as a flux or extreme pathway through the
reaction network. For example, see the work of [57, 79, 87, 89, 97] and [105]
on metabolic flux analysis.

In general, (bio-) chemical reaction networks have at least one steady state
in one set x0(t) + im(N), where for a certain given initial concentration the
following

WT x(t) ≡ WT x(0) ⇔ x(t) − x(0) ∈ im(N)

holds for any such steady state.
Certain (bio-) chemical reaction networks can not only exhibit one steady

state in one set but several ones in the same set. For example, the phospho-
rylation network of ERK in the MAPK cascade can exhibit multiple steady
states, [69]. Furthermore, the single phases of the cell cycle are associated
with multiple steady states. Here, each phase can exhibit at least two stable
steady states in the same set enabling switching between different phases,
see [109] for a model of the cell cycle and the associated switching.

Definition 2.4. [Multistationarity.] Assume that a system can at least exhibit

two distinct steady states a and b in the same coset with x0(t) + im(N). The
polynomial system in equation (2.4) has to hold for both steady states with

Nv(k, a) = 0 = Nv(k, b), (2.8a)

referred to as the polynomial condition.
Furthermore, as equation (2.4) holds and if a left kernel of N can be found, the

following holds for the steady states in the system

WT a = c = WT b ⇔ b− a ∈ im(N), (2.8b)

referred to as the coset condition for multistationarity.



12 modeling biological systems

In figure 2.1 the two corresponding rates of the steady states a and b are
represented by the outer stable ones.

Remark 2.5. [The Generators of the Cone E.] Considering Eλ different ap-
proaches can be used to generate λ. In a first approach, one would assign
each generator the same value λ. This can be interpreted in terms of the
reaction network as well. As each generator corresponds to a flux in the
network, the same value is assigned to each contributing reaction. Thus, ev-
ery reaction has the same efficiency and thus same quantitative meaning in
the network, see for example [57]. On the other hand, if different values are
assigned to generators, i. e., λi 6= λj, reactions in the network are weighted
differently. Here, different effects of single reactions are taken into account.
For example, the efficiency of certain fluxes could be higher. With this sec-
ond approach, a quantitative analysis of fluxes can be done, [91].



After all the world is indeed beautiful

and if we were any other creature than man
we might be continuously happy in it.

Sebastian Barry

3MULTIS ITE PHOSPHORYLATION AS AN IMPORTANT
INTRACELLULAR PROCESS

Throughout this thesis, chemical reaction networks are restricted to phos-
phorylation networks, where a protein is phosphorylated by an enzyme
and dephosphorylated by another enzyme. The binding of enzymes en-
ables de-/coupling of phosphate groups to and from the protein or confor-
mational changes of the protein itself. The phosphorylation of the protein
itself triggers further processes, such as degradation of the protein or fur-
ther reactions as ubiquitination. Furthermore, phosphorylation often limits
the movement of proteins, e. g., bounded phosphate groups increase the vol-
ume of the molecule and phosphorylated proteins thus might not be able
to pass the cell membrane. Even energy carrier in the cell such as ATP

can be generated via phosphorylation, for example, see [36, 80, 103]. The
number of phosphorylation sites depends on the considered protein. Short
phosphorylation processes of only two steps are possible and can be found,
for example, as phosphorylation of the proteins in the layers of the MAPK
cascades. Proteins can exhibit more than one or two phosphorylation sites,
for example, phosphorylation of Sic1 with nine phosphorylation sites, [24],
or proteins of the NFAT family with 21 sites or even more, where 14 are
considered important for its biological function, [13, 24].
This chapter gives a brief overview on phosphorylation itself with ex-

amples provided for experimental or theoretical results of three types of
phosphorylation processes, namely a double phosphorylation of the protein
MAPK, nine times phosphorylation of Sic1, and fourteen times phosphory-
lation of NFAT.

3.1 multistationarity, enzyme kinetics and rate theories

The single phosphorylation of a protein can be described by the following
process: an enzyme E binds to a protein A. This catalytic binding enables
phosphorylation at one site by a phosphate group, yielding a single phos-
phorylated protein A1P. In general, an enzyme driven reaction can be given
by:

x1

E +
x2

S
k1

GGGGGGBF GGGGGG

k2

x3

ES
k3

GGGGGGA

x1

E +
x4

P (N3.1)

Where S describes the substrate, E describes the enzyme, and P describes
the product. Rates are defined as the association rate k1 and the dissocia-
tion rate k2.1 In terms of phosphorylation networks rate k3 describes the
phosphorylation of the enzyme-substrate complex ES.

3.1 Note that k2

k1
is also sometimes referred to as dissociation rate in literature.

13
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The mechanism (N3.1) describes a general mechanism. If a phosphory-
lation of a protein is described, two such enzymatic reactions would be
needed, one describing phosphorylation and one describing dephosphory-
lation. Referring to de-/phosphorylation processes, the substrate is given
by A and the product by its phosphorylated form AP:

K+A GGGBF GGG KAGGGA K+AP

P+AP GGGBF GGG PAPGGGA P +A
(N3.2)

The forward process of phosphorylation is catalyzed by an enzyme called
kinase, K. The backward process of dephosphorylation is catalyzed by a
different enzyme, the phosphatase P. The phosphorylation step will be
indicated by an index iP up to the maximum number of nP phosphorylation
steps. The first phosphorylation step will be referred to as {}P.
In accordance to network (N3.2) the following assumptions are made and

hold throughout this thesis:

Assumption 3.1. Both, phosphorylation and dephosphorylation follow a
distributive mechanism, i. e., the enzyme-substrate complex enables alloca-
tion of one phosphate.

Different mechanisms would be possible, where more than one phosphate
group could be allocated or first the allocation happens before the complex
falls apart, also known as a processive phosphorylation. The latter ones
do not exhibit multiple steady states and are thus not of interest, see for
example [17]. Furthermore, the binding of the phosphate group can follow
several mechanisms:

Assumption 3.2. Phosphorylation and dephosphorylation follow a sequen-
tial mechanism, i. e., no difference is made between individual phosphory-
lation sites of a protein.

The kind of mechanism plays only a role for networks with a larger num-
ber of phosphorylation sites. If a network has only one phosphorylation site,
the number of possible states of the sequential and random mechanisms are
equal. It changes for higher number of sites. A strictly sequential mecha-
nism, e. g., phosphorylation of serine/theronine (S/T − X−X− X− S/T ) sites
at CKI, can be given in the following form with n+ 1 different phosphory-
lation states:

P P P P P P

The number of sequences needed to achieve full phosphorylation is ex-
actly one. If each phosphorylation site of a protein is regarded individually,
and the order of de-/phosphorylation is not fixed, like before, a random
mechanism is present:

P P P P P P

P P P

P P P
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Here, 2n different phosphorylation states for the protein can be found.
The number of sequences to achieve full phosphorylation is n!.

Of course, mixed mechanisms can be found as well. E. g., phosphoryla-
tion could follow a random mechanism and dephosphorylation a sequential
one. See for example the work of [85] and [86].
If synthesis and/or degradation reactions are not present, the total concen-

tration is constant for certain species in the network, see also the previous
chapter on conservation of species and the left nullspace of the stoichiomet-
ric matrix on page 10. For network (N3.1) total concentration of the enzymes
is constant with:

Etot = c = [E] + [ES].

Values for total concentrations are known in in-vitro experiments. But val-
ues for concentrations of individual substances are hard to provide even in
small phosphorylation networks. For one, reactions can take place in a mil-
lisecond and thus are hard to measure, furthermore intermediate phospho-
forms, i. e., AP, . . . , An−1P , usually cannot be dissolved other than in quali-
tative degree, e. g., the gel electrophoresis method. If only product synthesis
is of interest in network (N3.1)

SGGGA P,

assumptions are made on ratios of substrate-enzyme concentrations as well
as on phosphorylation rates, allowing to provide rate laws for this explicit
product synthesis, [21]. To describe product synthesis the Michaelis-Menten
constant

kM =
k2 + k3

k1
, (3.1)

with a unit of mol/l and the maximal velocity

vmax = k3 c

of mol/s are often used as a simple measure in the reaction network. The
Michaelis-Menten constant kM describes the affinity of an enzyme to its
substrate, or in more general terms, it is a measurement for effective cataly-
sis of the enzyme dependent on substrate concentration. The reaction rate
v describes the rate of product synthesis. And, the maximal velocity vmax
describes the maximal rate achievable by complete enzyme saturation for
product synthesis, thus describes a limiting rate for the network, [59]. Fur-
thermore, the turn-over number

kcat =
vmax

c
, here = k3 (3.2)

with a unit of 1/s is the maximal number of molecules of substrates being
converted, [21]. Here, the turn over number can be reduced to k3. The
Michealis-Menten kinetic is used as a simplification of the mass action law
in enzyme kinetics. The rate law for kM in equation (3.1) can be derived
by a quasi steady state approximation in the respective system of ordinary
differential equations, see [21] for a derivation. Using Michaelis-Menten
kinetics reduces the number of ordinary differential equations in the sys-
tem and thus enables an easier handling of the underlying network due to
the simplification. For example, it is often applied, where only speed of
substrate consumption is of interest, see left hand side of figure 3.1. To be



16 multisite phosphorylation as an important intracellular process

v
vmax

vmax
2

kM x2

v
vmax

vmax
2

n ↑

n ↑

x2

Figure 3.1: Both sides: Rate v of product synthesis dependent on substrate concentration

[S] = x2. Left hand side: The black, solid curve describes the standard Michaelis-Menten

mechanism with a saturation response curve for network (N3.1). The red, dashed curve

describes a Hill mechanism. Right hand side: A Hill mechanism as described by (N3.3).
If the number of substrates molecules (here n > 2) binding to the enzyme increases, the

curve steepens.

able to derive explicit solutions to the system of ordinary differential, rate
constants for each enzyme reaction in a network have to be known. If the
reaction network rises in size, e. g., double or triple phosphorylation exists,
different approaches have to be used, to model reactions correctly. Further
rate laws exist besides the mass action law and Michaelis-Menten kinetics,
describing various effects, e. g., allosteric effects, enzyme inhibition and so
on.
But different kinetic rate laws do not only describe the network in a dif-

ferent way, e. g., in a simplified manner, they also define results beforehand.
Michaelis-Menten kinetics result in a saturation curve, due to the initial
assumption of saturation in the network. This assumption is often valid
in-vitro experiments but might fail in-vivo due to, for example, cell com-
partmentalization. Furthermore, if these kinetics are used for small net-
works, e. g., (N3.1), without higher-level reactions like feedback loops as
present in MAPK cascades, they cannot describe switch like response curve
for a phosphorylation mechanism.2 If higher phosphorylation steps are as-
sumed, they can only achieve a strictly monotone response curve like other
mechanism, for example Hill-kinetics, e. g., compare the A. Goldbeter and
D. E. Koshland model.
The reaction mechanism is then often reduced in such a way, that the in-

termediate substrate forms are not considered anymore, but the mechanism
takes place in only one reaction step. The Hill-mechanism can be given in
such a way:

E+nS
k1

GGGGGGBF GGGGGG

k2
ESn

k3
GGGGGGA E+nP. (N3.3)

If a large reaction network is used, a second approach besides lumping the
network as in (N3.3) is possible. A simplified Michaelis-Menten mechanism
can be applied for reaction networks of n steps, where each reaction part
i = 1, . . . , n is considered individually:

E+ S
k1

GGGGGGBF GGGGGG

k2
ES

k3
GGGGGGA E+ S1

k4
GGGGGGBF GGGGGG

k5
· · ·

k3n−3
GGGGGGGGGGGA E+ Sn−1

k3n−2
GGGGGGGGGGGBF GGGGGGGGGGG

k3n−1

ESn−1

k3n
GGGA E+nP,

(N3.4)

3.2 This thesis uses the term strictly monotone if the response curve is uni-valued and at most
shows a very steep gain. In contrast the term “s-shaped” response curve is used, if the curve
is multi-valued and actually “binds over”.
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where the final product describes either full substrate conversion to nP after
n steps. In terms of the single phosphorylation network depicted in (N3.2)
network (N3.4) can be given in terms of

K+A GGGBF GGG AKGGGA · · · GGGBF GGG An−1PKGGGA K+AnP,

P+AnP GGGBF GGG AnPPGGGA · · · GGGBF GGG APPGGGA P+A.
(N3.5)

See network (N3.2) on page 14 for notation. For these large reaction net-
works a Michaelis-Menten constant can be introduced for each step disre-
garding former or latter steps:

k̃M,i =
k3i + k3i−1

k3i−2
, with i = 1, . . . , n, (3.3)

where k3i and k3i−1 describe the phosphorylation and dissociation, respec-
tively. And k3i−2 describes the association rate. This corresponds to the
standard Michaelis-Menten rate constants for i = 1.
The next section will take a closer look at actual values of rate constants

and concentrations of substances.

3.1.1 Ranges for Rate Constants

Reaction constants often cannot simply be measured in experiments, as the
reaction time is quite small, e. g., range of milliseconds for the dissociation
rate. Different theories exist to describe transition from one state of a sub-
stance, e. g., inactive, unphosphorylated or unbound, to another state, e. g.,
active, phosphorylated or bound to another substance.
These theories take into account the probability of two substances meeting

or how their orientation to one another has to be in order to bind. For a good
overview on theories for rate constants see the work of Huan-Xiang Zhou.
The dissociation and phosphorylation rate constants describe two fairly

simple rate constants. By dissociating, a complex simply falls apart. Whereas
the phosphorylation step (or in more general terms the last step to build the
product) describes a simple change in the structure of the protein, e. g., a
conformational change, in the substrate structure. Thus, these rates can be
modeled by intramolecular transition, [124]. For reaction networks of vari-
ous phosphorylation steps as given by network (N3.4), the rates are given
usually in the range of

k2 ∈ [10−3, 101] 1/s and k3 ∈ [10−3, 101] 1/s.

These ranges hold also for higher phosphorylation steps, as k3i−1 describes
the dissociation, e. g., k2, k5 and so on, and k3i the phosphorylation rate
constant.
The association rate constant k1 is far more complicated as two molecules

have to meet at the right position in order to bind. This rate is thus limited
by the diffusion rate of protein-protein interaction. The theory behind diffu-
sion rates is motivated by the Brownian motion of particles. In the case of
association rates educts have to meet in order to react to their correspond-
ing product. But diffusion can only take place in an open or free space. The
cell is not an open space, e. g., cell compartmentalization by the endoplas-
mic reticulum, where substances can move freely, as required by Brownian
motion. The cell compartments hinder the free motion of molecules in the
cell. Furthermore, after meeting, the orientation of the reactants has to be
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right for the substances to react to a complex, also known as the transition
complex. Both, the meeting of the reactants through diffusion as well as the
conformational rearrangement can be the limiting factor in the association
rate. If the first one is limiting, the mechanism is diffusion controlled, if the
latter is limiting, the process is called activation controlled, [124].
An upper bound on association rate constants motivated by free diffusion

and transition complex theory is in the order of [109, 1010] l/(mol s), see for
example [98, 75, 124]. Usually, these values can not be achieved as they arise
from purely probabilistic models. In this model, multiple of the probability
of correct alignment of reactants together with their probability of random
collision are used to compute association rates. As these neglect, for exam-
ple, cell compartmentalization, the provided value for the association rate is
far too optimistic. The transition complex state theory, see for example [88],
was proposed to account for limiting factors in the association rates of pro-
teins. For example, it takes into account that energy barriers or side-chain
freezing during complex formation might arise, [88]. Thus, protein-protein
interactions are rather in the order of [102, 107] l/(mol s) depending on the
proteins. Here [104, 106] l/(mol s) seems to mark the crucial range for the lim-
iting factor described in the former paragraph, [1, 88, 113]. Rates higher
than 105 l/(mol s), [124], are enhanced, for example by electrostatic enhance-
ment, and are thus diffusion controlled. These can be found for example at
RNA-protein interactions. Association rates are lower when the interaction
is activation controlled. Comparing different protein-protein interactions
the association rate is in the range of

k1 ∈ [103, 105] l/(mol s) and [105, 107] l/(mol s)

for unbiased diffusion and enhanced biased diffusion, respectively. For
some examples, see tables C.1 and C.2 and various tables in [60, 88]. The
range for the first case, diffusion controlled, is chosen as the range for the
association rate in this work. This range is more realistic for in-vivo reac-
tions where the diffusion is indeed the limiting factor, for example, due to
cell compartmentalization.
For a more detailed overview on rate theories and experimental results

for proteins see the work by H.-X. Zhou and [44, 54, 56, 60, 61, 102, 123]
and references therein.

3.1.2 Concentration Range for Substances

Ranges for substrates and enzymes are needed for simulation, and compar-
ison with actual biological networks of multisite phosphorylation processes.
Literature data can be found in table C.1 for phosphorylation and in ta-
ble C.2 for dephosphorylation, respectively.
With a single phosphorylation process given in network (N3.2), the follow-

ing ranges are chosen for an unphosphorylated protein and its enzymes:

[K] ∈ [10−9, 10−3]mol/l,

[A] ∈ [10−9, 10−5]mol/l,

[P] ∈ [10−9, 10−3]mol/l.

(3.4)

For the i-times phosphorylated protein, with i = 1, . . . , n, and bounded
enzyme-protein forms smaller ranges are chosen. See again network (N3.5)
for the overall reaction. This is motivated by the models given by [20, 69], as
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the bounded forms in general only form intermediate complexes, compare
also the Michaelis-Menten approach discussed above:

[A(i−1)PK] ∈ [10−9, 10−5]mol/l,

[AiP] ∈ [10−9, 10−5]mol/l,

[AiPP] ∈ [10−9, 10−5]mol/l.

(3.5)

If steady states are present in the system, concentrations lie in the range as
given by equations (3.4) and (3.5). Furthermore, restricting concentrations
of enzyme complexes and phosphorylated proteins to these intervals does
not pose such a large restriction on the network as, for example, Michaelis-
Menten assumptions would pose. Note that later on concentrations and
rate constants will be given in units in the region of nmol/l. This rescaling
accounts for numerical issues, as, e. g., multiplication of x1 x2 would already
yield values below the floating point precision.

3.2 multistationarity in intracellular processes

3.2.1 Multistationarity in Signal Transduction Networks

To depict an example for a small scale phosphorylation network, the dou-
ble phosphorylation of the MAPK ERK by MEK and dephosphorylation by
MKP3 is described by N. I. Markevich et al., [69], This reaction network is
present in signal transduction cascades in the cell, for an overview of its
functions see [122]. [69] describe a model of a sequential, distributive dou-
ble phosphorylation of MAPK, exhibiting a bistability region not only in a
hypothetical region but actually in a realistic region for parameter combi-
nations received from experimental data. Total concentration of the protein
[A]tot, as well as the enzymes [K]tot and [P]tot are given by 500 nmol/l. Refer-
ring furthermore to the nomenclature for rate constants used later on in this
thesis the following rates can be given3

k1 = 0.02 l/(nmol s), k2 = 1 1/s, k3 = 0.01 1/s,

k4 = 0.045 l/(nmol s), k5 = 1 1/s, k6 = 1 1/s,

k7 = 0.032 l/(nmol s), k8 = 1 1/s, k9 = 15 1/s,

k10 = 0.01 l/(nmol s), k11 = 1 1/s, k12 = 0.5 1/s.

Furthermore, concerning the aforementioned Michaelis-Menten rate laws,
see equation (3.1) and equation (3.2), values can be given by:

kcat,1 = 0.01 1/s, kM,1 = 50 nmol/l,

kcat,2 = 15 1/s, kM,2 = 500 nmol/l,

kcat,3 = 0.084 1/s, kM,3 = 22 nmol/l,

kcat,4 = 0.06 1/s, kM,4 = 18 nmol/l,

where the first two turn-over numbers, see equation (3.2), correspond to
k3 and k9, the phosphorylation rate constant of the first and second phos-
phorylation step, respectively. See network (N3.5) for n = 2. The first two

3.3 Nomenclature for higher phosphorylation steps will be introduced in chapter 5. For the net-
work see (N5.1) on page 36. Note that k4, k5 and k6 describe the dephosphorylation process.
Thus, the next phosphorylation step (from the single phosphorylated form to the double phos-
phorylated one) starts with k7.
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Figure 3.2: Graphic adapted from [69]: Bifurcation analysis resulting in two stable steady

states, S1 and S3, as well as an unstable one, S2, for phosphorylation of the fully phos-

phorylated protein [MAPK2P] =̂ [A2P] over [K]tot.

Michaelis-Menten rate constants can be given as Michaelis-Menten rate con-
stants for individual phosphorylation steps via

kM,1 =̂
k2 + k3

k1
and kM,2 =̂

k8 + k9
k7

,

see equation (3.3). Conversion of remaining rates is possible but not of
interest for the following chapters and thus omitted. Indeed, here a region
of multistable states can be found. Bifurcation analysis was performed for
change in [K]tot. The resulting steady state curve of the concentration of the
double phosphorylated protein [A2P ] can be found in figure 3.2.
Concentration of the double phosphorylated protein, [A2P ], is stable for

low total kinase concentration, [K]tot. It is furthermore stable for a high to-
tal kinase concentration. Changing the total kinase concentration leads to
switching in the network between these two stable concentrations. Thus,
bistable regions for substrates in phosphorylation networks can appear al-
ready in small networks of double phosphorylation for realistic parameter
combinations without the need of positive feedback loops or further feed-
back mechanisms.

3.2.2 Multistationarity in Cell Cycle Control

Phosphorylation is possible up to quite large n. In the cell cycle transition
of Saccharomyces cerevisiae from G1 to S phase, phosphorylation networks
with larger n can be found: Cdc6 with four sites, Cln2 with seven sites, and
Sic1 with nine phosphorylation sites, [3]. Here, the phosphorylation process
is used for cell cycle control, [52]. The cell cycle itself is associated with
different stable states: G1-phase, S-phase, G2-phase and Mitosis. The cell
switches through the single cell states by changing certain concentrations.
Between different cell state a so called checkpoint is used to control correct
timing in the cell cycle, see figure 3.3 and, for example, work of [53]. These
checkpoints are usually concentrations of certain proteins ensuring that the
cell is actually ready to move on in the cell cycle, e. g., is large enough to
split, or chromosome replication is correct. See [108], where an online model
can be found allowing simulation of the cell cycle and its various steps.
Figure 3.3 describes progression through the cell cycle dependent on dif-

ferent kinase and phosphatase concentrations. Depicting just one example,
transition from G1- to S-phase is, in a nutshell, enabled by a change in the
concentration of the protein Sic1. Sic1 is de-novo synthesized in late Anna-
phase, a part of Mitosis. It is then phosphorylated at the end of G1 by the
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Figure 3.3: Transition through the cell cycle as posed by [107], see also [110]: changing

kinase, CycE, or phosphatase, Cdc14, concentration enables the cell to move through the

cell cycle phases, where each phase is represented by a steady state. Arrowheads describe

check points between individual cycles. Bifurcation curve itself describes qualitative con-

centration levels of CycB throughout the cell cycle with the dashed line describing the

unstable area. The cell cycle starts in G1 phase with a newborn cell and a low concen-

tration of Cdc14. This low concentration leads to phosphorylation of the corresponding

protein Sic1 followed by its ubiquitination and thus transition to S phase. Kinase con-

centration in final S phase is high. As CycB down-regulates the kinase CycE the cell

moves on to G2 phase. Finally the phosphatase Cdc14 down-regulates CycB resulting in

a move towards Mitosis and in a final roundup closing of the cell cycle. See also the work

of Tyson, for example in [111].

kinase Cdc28 in high amounts. Sic1 exhibits nine equal phosphorylation
sites, [14]. After phosphorylation of six of the nine phosphorylation sites
an ubiquitinase binds to Sic1, [24], enabling degradation of the six-times
phosphorylated form of Sic1. This results finally in a low concentration of
Sic1 as a result of its phosphorylation and subsequent degradation. The low
concentration of Sic1 triggers transition from G1 to S phase in the cell cycle.
The protein can be dephosphorylated by the phosphatase Cdc14. Transition
through the cell cycle is usually depicted via this phosphatase and the kinase
CycE, regulating different phosphorylation processes further on through the
cell cycle. Concentration of the phosphatase Cdc14 at the end of G1 phase
is low with an antagonistic mechanism down regulating its concentration
by CycB, another important player in the cell cycle. With a low concentra-
tion of the phosphatase Cdc14 the concentration of the unphosphorylated
form of Sic1 is very low over the process, resulting in the cycle as described
above with stable Sic1 concentrations for stable Cdc28 concentrations, [3].
Figure 3.4 describes oscillations of Sic1 and its corresponding phosphatase
concentration.
Thus, with degradation being an important feature of this reaction net-

work, phosphorylation of Sic1 does not only describe a process of a larger
phosphorylation network, but also of an extended network mechanism. The
network introduced in (N3.2) cannot only be extended to higher phosphory-
lation steps, as described by network (N3.5), but also by additional synthesis
and degradation reactions of the (phosphorylated) protein and enzymes.
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Figure 3.4: Adaptation from the online model provided by [108]: Oscillation of Sic1 and its

phosphatase Cdc14 throughout the cell cycle. Each oscillation peak in concentration of

Sic1 describes progression from S phase to G1 phase.

Recently, it has been proposed by M. Kõivomägi, [51], that phosphory-
lation of Sic1 itself follows a processive mechanism. Whereas [2, 24, 73,
97, 115] and [117] postulate a distributive mechanism. A purely proces-
sive mechanism as proposed by M. Kõivomägi would not allow multiple
steady states. Higher-level reactions, like positive or double-negative feed-
back loops, would be needed to produce multiple steady states as desired
for the cell cycle mechanism. This is not in agreement with measurement
data found in literature, see also M. Kõivomägi et al.’s work in [116]: mea-
surements provided by [51] can as well be explained by a mathematical
model based on a distributive mechanism, as they highlight themselves in
their supplementary work in [51]. This mathematical model of a distributive
mechanism corresponds to others already used in literature, see for exam-
ple [42, 85] and [115] and parameters therein.

Problems arise while determining rate constants and concentrations in
multisite phosphorylation systems. E. g., to provide exact values, cells have
to be at the exact same timing and state. Furthermore, stoichiometric mech-
anisms and recovery of only picomole quantities complicate the measure-
ment process. To identify various phosphorylation states of a protein, differ-
ent methods exist, e. g., electro-spray mass spectrometry, [2, 14, 73, 97, 117]
. In gels, different phosphorylation states can be recovered. Here, various
phosphorylation states of Sic1 can be recovered, see [38, 73, 115] and mea-
surements by [51]. Thus, phosphorylation of Sic1 cannot follow a purely
processive mechanism. An at least partly distributive mechanism should be
present. The distributive mechanism could then account for the observed
switch-like changes and the sharp threshold, [38].
The switch in the cell state at G1/S transition is possibly not only enabled

by a strictly monotone function, see figure 3.1. Sic1 can indeed exhibit at
least two distinct stable states, as described by a distributive phosphoryla-
tion mechanism, [106]. For example, concentration of Sic1 is stable at two
distinct steady states based on the medium, [5, 23]: in poor medium with
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a low carbon source (e. g., ethanol) small daughter cells with an elongated
G1 phase are born whereas their mother cells are larger and show a shorter
G1 phase. The elongated G1 phase is due to a high Sic1 concentration. If
the cells are grown in rich medium, e. g., high carbon source like glucose,
large amounts of Sic1 are phosphorylated resulting in degradation of the
phosphorylated form, thus growth between mother and daughter cells is
comparable, with a short G1 phase due to very low Sic1 concentrations.
As the cell cycle model described above is available online, no data is pro-

vided here, but rates can be found for a reduced model on the website, [108].
Large phosphorylation networks do not only exist in the cell cycle. They

can be found in various other cell processes. Furthermore, synthesis and
degradation of substances is not the only network variation possible in mul-
tisite phosphorylation networks. The next section covers a further possible
variation found in the cell: compartmentalization.

3.2.3 Multistationarity in Multisite Phosphorylation Processes with Compartmen-

talization

Phosphorylation networks with more phosphorylation sites exist, for exam-
ple, in the phosphorylation process of proteins of the NFAT family with at
least 21 phosphorylation sites. Fourteen of these 21 sites are important dur-
ing immune response, [48]. This network shows a further complex structure
as a compartmentalization of the phosphorylation process exists: part of the
protein is phosphorylated and dephosphorylated in cytoplasm, and part of
it in nucleus.
The protein family has a broad range of diverse functions like bone main-

tenance, memory formation, and is present in immune response and in
cell differentiation, [20]. For example, high level of expression of nuclear
NFATc1 can be found in pancreatic carcinomas, high expression of NFATc2

and NFAT5 are found in tumor breast cells. Thus, the calcineurin/NFAT
pathway is considered as a potential target for therapy, see for example [70]
and [39]. In total five members of the protein of the NFAT family exist, de-
noted by NFATc1, . . . , NFATc4, and NFAT5. The first four are regulated by
the phosphatase calcineurin whereas the last one is regulated via osmotic
stress, [67]. These proteins are found in the expression of the immune sys-
tem except for NFATc4, which can be found in neurons of vertebrates.
In this thesis, the unphosphorylated protein is described simply by NFAT

and its fully phosphorylated form by NFATfP. This short notation though
only covers the first four groups of NFAT. NFAT5 is not considered in this
thesis.
The protein itself allows gene transcription via a signaling cascade, see

figure 3.5 for an overview: NFAT is phosphorylated in resting T-cells on at
least 21 serine residues. Eighteen of these are located in the regulatory do-
main, the so called N-terminal. Fourteen of these eighteen are a conserved
sequence motif in the NFAT family.
In a nutshell, during immune response, the concentration of Ca2+ rises

caused by opening of pores in T-cells. These ions then activate the Ca2+ sen-
sor calmodulin, which then activates in turn the phosphatase calcineurin in cy-
toplasm of T-cells.4 The phosphatase calcineurin dephosphorylates thirteen
phosphorylation sites of NFAT, [37] , thus a decrease in the concentration of

3.4 Note, concentrations of calcineurin are not measured usually. Instead, the reaction network is
controlled via changes of concentrations in Ca2+ resulting in changes of calcineurin concentra-
tion.
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Figure 3.5: Schematic description of dephosphorylation and transport of NFAT into the

nucleus and further gene transcription and rephosphorylation of NFAT, and transport

of NFATfP into the cytoplasm. Kinetics and thus exact parameters for NFAT de-

/phosphorylation and nuclear translocation vary with cell type and stimulation condi-

tions, [25]. Still qualitative kinetics can be provided for general transport mechanisms

during NFAT activation. Transport and reaction times given here are a summary of the

work of [20, 47, 64, 94] and [100].

unphosphorylated NFAT can be found. Dephosphorylation of these thirteen
sites results in exposure of a nuclear localization signal in the regulatory do-
main and mask of a nuclear export sequence. With exposure of the nuclear
localization signal and unphosphorylation of thirteen sites, the protein is
in its maximum state of transcriptional activity. It is then transported into
the nucleus where it binds to specific DNA response elements to regulate
gene transcription of Interleukin-2, e. g. [12]. After gene transcription NFAT

decouples from the DNA and is phosphorylated by CK1 and GSK3, [77].
These two kinases synergize for rephosphorylation of NFAT resulting in
exposure of the nuclear export sequence. The kinase CK1 phosphorylates
proteins located at the SRR-1 motif, the region of the nuclear translocation
signal, and GSK3 phosphorylates the protein on its SP motif, the region of
the nuclear export signal, [84]. Thus, if only the second kinase is present,
the protein stays in nucleus as the nuclear localization signal is not masked,
see again work in [77] on fine tuning of NFAT functions via phosphoryla-
tion by different kinases. The two forms of NFAT enable a conformational
switch. After the nuclear export signal is exposed and the nuclear localiza-
tion one masked, nuclear export of the fully phosphorylated form of the
protein takes place. Furthermore, the phosphatase calcineurin can enter the
nucleus via nuclear pores prolonging the stay of NFAT in nucleus, [39, 95].
For an overview on the phosphorylation process as well as transition times
between the single states see figure 3.5.
To validate the range of values for rate constants and concentrations, dif-

ferent literature values are used and described quantitatively in figure 3.5.
Dephosphorylation of NFAT takes place in about 1 minute [64]. In literature,
data can be found to show that NFAT rests in the nucleus for about one hour
and nuclear translocation takes about 10 minutes, [64]. Transport from the
nucleus into the cytoplasm takes about 30 minutes, [65]. Phosphorylation
in the nucleus takes about 15 minutes, [65]. Furthermore by stimulating
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Figure 3.6: Reproduction of modelling data by [104] describing translocation of NFAT via

Ca2+ oscillations. High frequency in three minute intervals lead to nuclear transloca-
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only in slight nuclear translocation of NFAT together with periodic dephosphorylation
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NFAT periodically, its activity signal will be averaged by the import and
export kinetics, [47, 93].
This process is considered as the activation of NFAT as it leads to immune

response. It follows a rather complicated mechanism of distinct calcineurin
activation. Brief activation of Ca2+ and thus brief increase of calcineurin
concentration results only in degradation of mast cells, [37]. Usually, levels
of Ca2+ are elevated for several hours after initial contact of T-cells with
antigen pulsed B-cells. But a simple increase of Ca2+ levels is not sufficient
for NFAT activation. The progression of the increase is of importance as well:
for example a transient high spike of Ca2+ results in activation of NFκB and
JNK1. Whereas a prolonged low increase in Ca2+ activates NFAT.
Modeling results with oscillating phosphatase concentrations indicate al-

ready a more complex reaction scheme, see figure 3.6 adapted from [104]:
oscillations of Ca2+ as initial inducer of calcineurin activity cause oscilla-
tions of cytosolic NFAT. Thus, cytosolic NFAT is actually able to respond in
an oscillatory way. In response to these oscillations, nuclear NFAT may or
may not oscillate: high frequencies of Ca2+ impulses do not yield oscilla-
tions of nuclear NFAT. Low frequencies, on the other hand, induce indeed
oscillations of nuclear NFAT with a low amplitude.
These findings, based on experimental results and reproduced via mathe-

matical models, give rise to several questions. First, one might ask whether
the oscillations of nuclear NFAT is actually the result of calcineurin oscilla-
tions, i. e., in engineering terms, whether NFAT oscillation is a forced oscilla-
tion. Or is the underlying system of NFAT phosphorylation able to produce
oscillations on its own. Finally, one might ask whether the response curves
of NFAT concentrations, i. e., linear or oscillating with small frequencies, are
actually a result of an averaged response stabilizing over time, i. e., the ex-
pected high frequency in figure 3.6 cannot be resolved at all by experiments.
Or, whether it could be resolved correctly, displaying a distinct complex
response curve resulting from multiple states.
Furthermore, oscillations of Ca2+ can either yield oscillatory responses

of cytosolic NFAT, see figure 3.6 Or they can lead to a higher activation
concentration of calcineurin without calcineurin oscillating itself, [26]. Spikes
of lower concentrations of Ca2+ evoke only a transient nuclear translocation
of NFAT, where approximately half of the presentNFAT proteins returned to
the cytoplasm after Ca2+ returned to the baseline concentration, [26], and
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in black curve, results in a sustained NFAT translocation into the nucleus. Though both

the red and black curve result nuclear translocation and final immune response, they

show different levels of activation.

the remaining half staying in the nucleus. Same experimental results can
be found, if concentration of Ca2+ and thus activator of calcineurin returns
to baseline: half of the activated NFAT returns to the cytoplasm while the
rest remains active in the nucleus resulting in multistationarity, see as well
figure 3.7.
A condensed model of NFAT cycling can be found for example in [39]

with a reduced model of only two phosphorylation states: unphosphory-
lated NFAT and fully phosphorylated NFATfP. Rates as well as concentra-
tions for this reduced model are provided. Rates are given in terms of
Michaelis-Menten like rate constant, where the ratio of rate constants is
given in terms of the rate constant of nuclear translocation of NFAT over ac-
tivation rate constant of calcineurin, [20], i. e., the association rate constant
in equation (3.3):

kM = 535 nmol/l.

In general the following ranges for concentrations can be found in literature
together with the quantitative data provided in figure 3.5, see for exam-
ple [20] as well as [96] for further work on NFAT together with the already
mentioned work above:

[NFAT ]tot ∈ [2.0, 1000]µmol/l,

calcineurin ∈ [1, 1000]µmol/l,

Ca2+ ∈ [2.0, 60] nmol/l.

As the focus of the thesis lies on multisite phosphorylation processes,
only the phosphorylation process of the calcineurin/NFAT network will be
considered. For an overview on the reaction network see work by F. Macian
as well as the extensive work of Ch. Loh, et al., and H. Okamura.
Although the phosphorylation network of NFAT is highly complex and,

up until now, not completely understood the interesting question is again,
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whether a very small part of it can exhibit multistable states, or if the pro-
cess is, by itself without higher-level reactions, only able to show a stable
response curve based on a single steady state.
Before discussing these different phosphorylation networks, i. e., the stan-

dard network of n-times phosphorylation, networks allowing additionally
synthesis and/or degradation of (phosphorylated) proteins and/or enzymes,
and networks with compartmentalization, theoretical findings from litera-
ture on multisite phosphorylation networks are discussed.
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— Charles Bukowski

4KNOWN THEORETICAL RESULTS FOR MULTIS ITE
PHOSPHORYLATION NETWORKS AND CHEMICAL
REACTION NETWORKS IN GENERAL

(Bio-) chemical reaction networks and in particular multisite phosphoryla-
tion processes have been subject to study for quite a long time. With multi-
site phosphorylation processes appearing in a variety of cellular processes
not only the reaction network itself, but also its dynamics have been of inter-
est. This chapter introduces related literature to the work at hand. Though
considerably more literature exists, the focus is set on three works, and the
interested reader is advised to follow literature given here or in the work of
the cited authors.
Starting with the work of J. Gunawardena, and comparable work by C.

Salazar and T. Höfer, a multisite phosphorylation process is introduced
yielding steady states and insight on the properties of networks exhibiting
switch like response curves. This introduction is followed by the predic-
tion of a higher number of steady states as introduced by the work of M.
Feinberg on chemical reaction network theory. It builds the basis of this
thesis, as it gives rise to the idea, that not only single steady states can re-
veal a switch like response curve, but also multiple steady states resulting
in rather s-shaped curves than strictly monotone functions of sharp steps. It
is then rounded off by the work of L. Wang and E. D. Sontag on upper and
lower bounds on the number of steady states in distributive phosphoryla-
tion processes.

4.1 a good threshold but poor switch by multisite phospho-
rylation

In this thesis, a multisite phosphorylation process with a distributive mech-
anism is analyzed. Work already exists on this topic, but the focus lies
on arising dynamics to achieve a switch like response curve based on uni-
valued response curves and not on s-shaped response curves.

Whereas J. Gunarwardena, see [42], considers only a distributive, sequen-
tial phosphorylation the work of C. Salazar and T. Höfer, see for exam-
ple [85], covers different mechanisms (sequential, random and various cyclic
mechanisms). Both papers are based on the same reaction network with an
initial sequential, distributive phosphorylation network, that can also be
translated into the networks used throughout this thesis.
To derive rate laws for the reaction mechanism they assume Michaelis-

Menten mechanism to hold, see equation (3.1) on page 15. They justify
this approach, by assuming that low enzyme concentrations are present

29
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compared to substrate concentration , i. e., [A] ≫ [K], [A] ≫ [P], compare
network (N3.2). This results in fast reaction constants, e. g., k1 ≫ k3, see
network (N3.1). Making furthermore a rapid-equilibrium approximation,
e. g., d[AK]/dt = 0, d[APP]/dt = 0, reduces the number of reactions rates
enabling numerical analysis. They reduce the derived system of ordinary
differential equations further, compare equation (2.3), by merging variables,
e. g., considering [A] + [AK] + [AP] instead of individual variables.
Having simplified the ordinary differential equations for the network this

far, they provide solutions for the steady state response curve at a phospho-
rylation step i = 1, . . . , n, i. e., ([AiP] + [AiPK] + [Ai−1PP]/([A]tot + [K]tot +

[P]tot) over [K]tot/[P]tot), and the transition time of the system can be given,
i. e., the time needed for changes in concentration of the fully phosphory-
lated protein. Results are summarized briefly for each reaction mechanism
considered. For detailed analysis of the reaction network see the cited pa-
pers. The following conclusions are drawn in terms of response curves
towards changes in [K]tot/[P]tot:

sequential mechanism With an increasing n the steady state response
curve resembles a step function. For n = 1 the curve corresponds to
a standard Michaelis-Menten steady state response curve. The step
function gives rise to a more threshold like response for changes in
the activity of the two enzymes. But the fully de-/phosphorylated
forms can only be achieved for extreme values of [K]tot/[P]tot.

random mechanism The response curve is less steep than for the se-
quential mechanism. A clear step shape appears way later for this
mechanism than for the sequential one. As there are more intermedi-
ate states of the phosphorylated substrate, more partially phosphory-
lated substrates can be found for moderate values of [K]tot/[P]tot. Even
larger values than for the sequential mechanism are needed to achieve
a fully de-/phosphorylated form.

cyclic mechanism The steady state response curve is even less steep
than the one for the random mechanism.1

Overall, at most step functions can be found but no s-shaped or multi-
valued curves, a consequence of the assumptions made on kinetics, i. e.,
quasi steady state and fast phosphorylation reaction. Thus, switching in the
network is here only enabled via the step functions.
Furthermore, C. Salazar and T. Höfer compute effective Hill coefficient

nH for each mechanism, a measure for the sensitivity of the network. I. e.,
cooperative binding of a protein already bound to an enzyme is increased
(nH > 1) or decreased (nH < 1), compare also figure 3.1 on page 16. They
find two cases yielding a switch like response curve based on step functions
in phosphorylation networks:

1. Enzyme concentration in the network is very low and enzyme binding
shows a negative cooperativity.

2. Enzyme concentration is high and enzyme binding shows a positive
cooperativity.

The first case is described as zero-order ultra sensitivity and does not de-
pend on multiple phosphorylation sites but can be found at proteins with
one phosphorylation site.

4.1 A cyclic mechanism corresponds to a sequential mechanism, but dephosphorylation follows
inverse order of protein de-binding than phosphorylation.
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Combining cooperativity for catalytic rate constants, e. g., k3, with the
two necessities above, the system can exhibit a bistable response curve. This
bistable curve then results in a switch like response of the system. As the
initial assumptions, i. e., quasi steady state and fast phosphorylation reac-
tion, are quite strict on the reaction networks, they conclude that only strict
conditions on the network enable multistability:

• Efficient competition between unphosphorylated and phosphorylated
targets for binding to enzymes.

• Total enzyme concentration must be low enough for competition.

• The unphosphorylated protein must be phosphorylated slowly. The
fully phosphorylated protein must be dephosphorylated slowly.

Concentration of substances and rate constants are not the only values in-
fluencing the shape of the response curve. An additional degree of freedom
can be found by the order of phosphorylation, i. e., sequential vs. cyclic vs.
random mechanism. Having a fixed order for the sequential mechanism,
a sharp steady state response curve can be found. The random and cyclic
mechanism show flatter response curves than the sequential one. Further-
more, the concentrations of the partially phosphorylated states of the cyclic
and random mechanisms are higher than for the sequential. This difference
is even more pronounced for higher networks with higher phosphorylation
steps due to the growing number of intermediate states. Due to this number,
they conclude that a higher ratio of kinase activity to phosphatase concen-
tration is needed to achieve full phosphorylation of the protein.
These results corresponds to the work of J. Gunarwardena, as he makes

the same assumptions for reactions and concentrations in the network.2 He
concludes, that multisite protein phosphorylation can make a good thresh-
old but a poor switch, [42].
A lot of assumptions on the concentrations in the system are made. They

are indeed valid for invitro (bio-) chemical reaction networks. But invivo re-
action networks are subject to cell compartmentalization resulting in, for ex-
ample, different concentration levels, or restrictions in reaction rates, see 3.1.1
on page 17. Thus, assumptions made above might not be valid for all reac-
tion networks. Furthermore, networks showing an actual multistable re-
sponse curve are known, see 3.2. The question arises whether networks
can be constructed showing at least a bistable response curve with less re-
strictions on the phosphorylation network itself then the ones above. For
example, C. Conradi constructs such a network with less assumptions than
C. Salazar and T. Höfer. This network shows response curves with an s-
shaped response curve. As the work of C. Conradi is the overall basis of
this thesis, an excursion towards chemical reaction network theory follows
presenting the fundamental ideas behind his work.

4.2 establishing bistability in chemical reaction networks

Solving ordinary differential equations based on (bio-) chemical reaction
networks (with mass action kinetics) is not always an easy task, because
often a large number of species and unknown rate constants are present.

4.2 Note that the phosphorylation process used in this thesis can be completely translated into the
system described by C. Salazar and T. Höfer, and thus yields under the same restrictions the
same results.
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Thus, instead of solving the arising system of ordinary differential equa-
tions, prediction on the properties is welcomed. Already in 1987, M. Fein-
berg introduced a method guaranteeing existence and uniqueness of steady
states in (bio-) chemical reaction networks under certain restrictions, see
also [31, 32, 33, 35]. For more recent work see [16, 27, 81].
The structure of the (bio-) chemical reaction network allows already to

draw conclusions about the existence and uniqueness of (multiple) steady
state of the underlying reaction network. The theory is based on an index
called deficiency ϑ. Besides the already introduced number of species of a
network, n, the number of reactions, r, the number of complexes,m, and the
rank s of the stoichiometric matrix N, see section 2.2, a further variable is
introduced: The network is divided into complexes that are linked together.
For network (N2.1) on page 7 three groups of these linked complexes, the
so called linkage classes of the network, can be found:

{2A+ B, A2B, C+ B}; {C, D+ E}; {A+D, E}.

The number of linkage classes l can be used to compute the deficiency ϑ of
the network:

ϑ = m− l− s.

Thus, for the given example network in (N3.1): n = 6, m = 7, and s = 4, and
l = 3, the deficiency can be given by ϑ = 0. The Deficiency Zero Theorem
allows to draw conclusions on the existence of steady states if the deficiency
is zero:3

- If the network is not weakly reversible,4 the ordinary differential equa-
tions of the network cannot admit a positive steady state for any kinet-
ics applied and any rate constants endowed to the system.

- If the network is weakly reversible, then exactly one asymptotically
stable steady state exists in every coset (x0(t) + im(S))∩R

r
>0 for mass

action kinetics.

As the given example network (N2.1) has ϑ = 0 and is indeed not weakly
reversible, the first statement holds true and any further analysis of the
network concerning qualitative analysis is not necessary.
To address a broader class of reaction networks, the Deficiency Zero The-

orem is extended in [30] by the Deficiency One Theorem. The reader is
advised to follow detailed work in [22, 31, 32] and [33]. Reaction networks
of deficiency zero build a subset of reaction networks, where the Deficiency
One Theorem holds. For reaction networks of deficiency zero, the deficiency
of each linkage class is zero and the deficiency of the entire network is equal
to the sum of the deficiencies of the individual linkage classes, [30]. For reac-
tion networks of deficiency one the deficiency of individual linkage classes
can be no greater than one. If each linkage class of the reaction network
contains just one terminal strong linkage class, the deficiency of the linkage
classes is not greater than one and the sum of the deficiencies of the linkage
classes is equal to the deficiency of the entire reaction network, then:

4.3 More conclusions can be drawn, but only necessary ones building the background of this thesis
are provided.

4.4 Reaction networks are reversible, if each reaction is accompanied by its reverse reaction. They
are weakly reversible, if there is a direct pathway from one complex to another, even via further
complexes. Reaction network (N2.1) is not (weakly) reversible. If additional reactions from
C+B back toA2B, and from D+E back toCwould be included, the network would become
reversible.
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- Ordinary differential equations based on mass action kinetics can ad-
mit no more than one stable steady state with positive rate constants
k under some restrictions on the reaction network.

- And, if furthermore, the network is weakly reversible, then differential
equations based on mass action kinetics admit exactly one positive
steady state for a given vector of rate constants.

As an extension to the Deficiency Zero and One Theorems, the Advanced
Deficiency Algorithm allows to draw further conclusions.

- For networks having exactly one linkage class, l = 1, with ϑ > 1 (and
further restrictions), the ordinary differential equations based on mass
action kinetics can admit multiple steady states for a given k.

Thus, without solving the ordinary differential equations, conclusions can
be drawn on the number of steady states the network can exhibit. Fur-
ther work exists for networks not fulfilling these conditions, for example [8]
and [27], extending the work of M. Feinberg. A toolbox based on the chem-
ical reaction network theory exists, [34], allowing to draw conclusions in a
simple manner. Here, only the reaction network has to be inserted. The
toolbox provides an answer whether the network exhibits multiple steady
states in the same coset and provides exactly one parameter set in case these
exists.
Nonetheless, the deficiency theorems themselves only provide qualitative

answers. Using the toolbox, they provide, if possible, exactly one pair of
solutions. The theorems give rise to an algorithm introduced in [15] by C.
Conradi, to check whether multiple steady states exist in the same coset
in a double phosphorylation network of multisite phosphorylation. This
algorithm furthermore provides a parametrization of rate constants and
concentrations, see for example the thesis of C. Conradi and consecutive
work. This algorithm will be exploited in chapter 5 for n site multisite
phosphorylation networks. Variations thereof are introduced in chapter 6

and 7 providing solutions for further networks. An algorithm is provided
to check if a mass action network can exhibit at least two positive steady
states for a certain parameter vector k in the same coset. The algorithm is
only dependent on the network structure itself and not inherently on the dif-
ferential equations stated by the network or further strict assumptions like
quasi steady states and fast phosphorylation reactions. Further, it allows the
computation of the actual steady states to the system.

4.3 bounds for the number of steady states in multisite phos-
phorylation networks

The work of L. Wang and E. D. Sontag conjectures an upper bound for the
number of steady states an n-site sequential, distributive phosphorylation
network can exhibit in the same coset. Ordinary differential equations de-
scribing the network are provided, assuming that the mass action law holds.
A system of 3n+ 3 ordinary differential equations arises, see section 5.1 for
a description of the state space. The system is reduced by a transformation
of coordinates. Only two equations remain. Instead of solving a system of
3n ordinary differential equations (3n+ 3 ordinary differential equations - 3
conservation relations) to find multiple steady states, the problem is shifted
to solve only two polynomials by finding their positive roots corresponding
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to steady states. The interested reader is referred to [119] and the solution
algorithm therein for finding these positive roots.
The question of the number of steady states a sequential, distributive

multisite phosphorylation system can exhibit is coupled to properties of
the rate constants as biological parameters. If rate constants are close to
Michaelis-Menten conditions, [S]tot ≫ [E]tot, they proof a lower bound for
the number of steady states by n+ 1 for even phosphorylation steps n, and
n for odd n in their first theorem. They proof furthermore an upper bound
of 2n− 1 positive steady states for rate constants of mass action in their third
theorem. This upper bound is fine tuned late on, where they proof an upper
bound under Michaelis-Menten conditions and an additional condition of
at most n+ 1 positive steady states in the fourth theorem. Furthermore, for
conditions far from Michaelis-Menten, they proof that at most one positive
steady state can be found in their fifth theorem. As they expect the number
of steady states to change continuously and bounds coincide under some
restrictions, they conjecture that there are at most n+ 1 (n) steady states for
n even (or odd) phosphorylation steps under any conditions, .
Thus, only lower and upper bounds on the number of steady states can

be given, though it is indeed remarkable, that bounds can be provided at.
Nonetheless, a parametrization of states is still missing. The work at hand
closes the gap between these different works and provides a parametrization
for various phosphorylation network setups in the following chapters and
find answers on the existence of multistable states in sequential, distributive
phosphorylation networks.



But I come with a dream in my eyes tonight,

And I knock with a rose at the hopeless gate of your heart –
Open to me!

For I will show you the places Nobody knows,
And, if you like,

The perfect places of Sleep.

You are tired, (I think) — E. E. Cummings

5MULTISTATIONARITY IN MULTIS ITE
PHOSPHORYLATION NETWORKS

To introduce the used nomenclature and algorithm of this thesis, the work
by C. Conradi on double-phosphorylation networks and the diploma the-
sis, [49], of the author on n-times phosphorylation networks are given for
an overview. This mechanism of n-times phosphorylation is analyzed and
standard nomenclature is introduced. Work therein is extended, and a novel
theorem and proof of the result are presented. Furthermore a novum al-
gorithm is introduced to provide the multistable region. The chapter is
rounded off by an analysis of parameter values in the multistationarity re-
gion and its relevance towards actual biological data.

5.1 multisite phosphorylation of proteins in n steps

A phosphorylation/dephosphorylation process in n steps is analyzed, see
figure 5.1: the phosphorylation is catalyzed by an enzyme, a kinase K, and
is described by the upper branch. The dephosphorylation is catalyzed by
a different enzyme, a phosphatase P, and is described by the lower branch.
The substrate and its phosphorylated form is represented by an A and a
corresponding subscript nP, where n describes the order of phosphoryla-
tion and i the current phosphorylation step 1 6 i 6 n. For a double
phosphorylation with n = 2 this network represents a single layer of the
Mitogen-activated protein kinase (MAPK) cascade. Especially considering
the mammalian extracellular signal-regulated protein kinase (ERK) cascade
the substrate represents the protein ERK. The kinase describes RAS and the
phosphatase Clb, [92].

Ph

PhPhPh

PhPh

A

KKK AK

AP An−1P

An−1PK

AnP

AnPP PPPAPP

. . .

Figure 5.1: Simplified reaction model of a distributive phosphorylation process in n steps.

The catalytic active enzymes are denoted by K and P for kinase and phosphatase, respec-

tively, the (phosphorylated) proteins by A and a corresponding subscript. The phosphate

group attaching to the substrate is denoted by Ph.

Different phosphorylation processes exist in nature. For example, the
order of phosphorylation, i. e., order of binding phosphate groups to indi-
vidual regions on proteins, can follow a random, a sequential or a mixed

35
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mechanism. The phosphorylation process itself can follow a processive or
distributive mechanism. As given by assumption 3.2 and 3.1 on page 14,
here only networks following a sequential, distributive mechanism are ana-
lyzed. Furthermore, in phosphorylation networks a varying number of en-
zymes can be found, de-/phosphorylating the individual phosphate groups
attached to the protein:

Assumption 5.1. Throughout this thesis each branch is catalyzed by just
one enzyme form, K and P, respectively.

This assumption is valid as a simplification. Often the exact number
and the principle behind phosphorylation by a kinase are not known in
detail, and phosphorylation is only modeled in a reduced way assuming ex-
istence of a certain number of kinases phosphorylating the protein together.
This phosphorylation mechanism of sequential, distributive phosphoryla-
tion with one kinase and phosphatase forms is referred to as the standard
phosphorylation mechanism.

To model the underlying mechanism of the de-/phosphorylation network
the concentration of substances is described by a vector x with xi > 0,
x ∈ R

n
>0. Rate constants are denoted by a vector k with ki > 0, k ∈ R

r
>0.

Following assumption 2.1, all rates are irreversible. Thus, each reaction is
labeled separately. Against standard notation (labeling one substance after
another, starting with the upper branch in figure 5.1 and finishing with the
lower branch and thus the complex AnPP) a stepwise nomenclature is intro-
duced: each substance is labeled according to its appearance in the network.
I. e., each phosphorylation step introduces new species in the network, thus
they are labeled after the species and rates of the former step are described:
the concentration of the unphosphorylated protein [A] and the enzymes [K]
and [P] are described by x2, x1 and x3 respectively. In the second step
the concentration of the single phosphorylated protein [AP] and arising en-
zyme complexes, [AK] and [AP], are described by x5, x4 and x6 respec-
tively. This formalism is continued for all steps up to n and yields finally
[Ai−1P] = x3i−1 for i = 1, . . . , n+ 1 (or [AiP] = x3i+2 for i = 2, . . . , n), and
[Ai−1PK] = x3i+1 and [AiPP] = x3i+3 for i = 1, . . . , n. This notation allows
a more intuitive handling of the network and enables an easy recognition
of each step in the network matrices, and therefore, a more efficient way to
solve the posed multistationarity problem. The following network describes
the phosphorylation

x1

K +
x2

A
k1

GGGGGGBF GGGGGG

k2

x4

AK
k3

GGGGGGA K+
x5

AP

k7
GGGGGGBF GGGGGG

k8

x7

APK
k9

GGGGGGA · · ·

k6n−9
GGGGGGGGGGGA K+

x3n−1

An−1P

k6n−5
GGGGGGGGGGGBF GGGGGGGGGGG

k6n−4

x3n+1

An−1PK
k6n−3

GGGGGGGGGGGA K+
x3n+2

AnP

(N5.1a)

and dephosphorylation

P+
x3n+2

AnP

k6n−2
GGGGGGGGGGGBF GGGGGGGGGGG

k6n−1

x3n+3

AnPP
k6n
GGGA P+An−1P

k6n−8
GGGGGGGGGGGBF GGGGGGGGGGG

k6n−7

· · ·

· · ·
k10

GGGGGGGBF GGGGGGG

k11

x9

A2PP
k12

GGGGGGGA P+AP

k4
GGGGGGBF GGGGGG

k5

x6

APP
k6

GGGGGGA

x3

P +A.

(N5.1b)

In total 3n + 3 states xi described by their concentrations x, and 6n rate
constants ki are needed for network (N5.1).
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The reaction mechanism can be given in form of ordinary differential
equations by assuming that the mass action law holds, see assumption 2.2
on page 9. The stoichiometric matrix N ∈ R

(3n+3)×6n and the vector of
reaction rates v ∈ R

6n are used to describe the network.

dx
dt

= Nv(k, x). (5.1)

Network matrices, among them the stoichiometric matrix N, and the vector
of reaction rates v are introduced below.
The aforementioned stepwise nomenclature results in a block structure of

the stoichiometric matrix:

N(1) =

[
n11

n21

]
, N(2) =




N(1) n12

n22

03×6 n21


 ,

N(3) =




N(2)

n12

03×6

n22

03×12 n21



, . . . ,

N(n) =




N(n−1)

n12

03(n−2)×6

n22

03×6(n−1) n21




(5.2)

with the superscript describing the number of phosphorylation steps and

n11 =




−1 1 1 0 0 0

−1 1 0 0 0 1

0 0 0 −1 1 1


 ,

n12 =




−1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 −1 1 1


 ,

n21 =




1 −1 −1 0 0 0

0 0 1 −1 1 0

0 0 0 1 −1 −1


 ,

n22 =




0 0 0 0 0 0

−1 1 0 0 0 1

0 0 0 0 0 0


 .

The stoichiometric matrix neither has full row nor column rank, thus a left
and right nullspace can be computed. The matrix W ∈ R

(3n+3)×3 is intro-
duced, referred to as the matrix of conservation laws, whose columns form
a basis of the left nullspace of the stoichiometric matrix N, see also page 10.
The rank of W is three. Thus, one choice of W is given by three independent
conservation relations in the network: if the network operates in a closed
space, as is so far considered for network (N5.1), the total concentration
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of the species is conserved. This is reflected in the following conservation
relation:

〈wj, x〉 = cj, j = 1, 2, 3, (5.3)

recall wj as columns of W = (w1, w2, w3) and c1 associated with the total
concentration of K and its protein-complexes, c2 with P and its protein-
complexes, and c3 with A and its phosphorylation forms respectively. In a
compressed form the matrix can be given by:

W(n)T =



1 0 0

0 0 1

0 1 0

1 0 0 1 0 0

0 0 1 · · · 0 0 1

1 1 1 1 1 1
︸ ︷︷ ︸

n-times


 .

(5.4)

Later on, different network setups are considered where not always a left
nullspace appears.
Besides the left nullspace for N(n), a right nullspace can be found. The

columns of the matrix E(n) ∈ R
6n×3n form a basis of this right nullspace:

E(n) =




E(1)

. . .

E(1)


 (5.5)

with

E := E(1) =




1 0 1

1 0 0

0 0 1

0 1 1

0 1 0

0 0 1




. (5.6)

See appendix A.1 on page 137 for a proof on columns of E(n) being genera-
tors of ker(N(n)) ∩ R

6n
>0.

The vector of reaction rates shows a reappearing structure due to the
network setup and the chosen nomenclature:

v(k, x) = diag(k)Φ(x), (5.7)

= [k1 x2 x1, k2 x4, k3 x4, k4 x5 x3, k5 x6, k6 x6, . . . ,

k6i−5x3i−1x1, k6i−4x3i+1, k6i−3x3i+1,

k6i−2x3i+2x3, k6i−1x3i+3, k6ix3i+3, . . .

k6n−5x3n−1x1, k6n−4x3n+1, k6n−3x3n+1,

k6n−2x3n+2x3, k6n−1x3n+3, k6nx3n+3]
T ,

with i = 1, . . . , n and the monomial vector

Φ(x) :=
[
xy1 · · · xy6n

]T
, (5.8)

and yi columns of Y(n), see the next paragraph. Recall equation (2.2) on
page 9. The vector of reaction rates v(k, x) describes the coupling between
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each substance and the single rate constants. Each yi describes an educt
complex of the network. Complexes of the network describe single network
nodes, see network (N2.2) on page 7 for an introduction. The tilde is used
to differ between elements y as educt complexes and ỹ as complexes of the
reaction network. Complexes ỹ of the network are assigned in the same step-
wise manner as was done for concentrations and rate constants: for example,
for n = 1 complexes can be given by ỹ1 = x1 + x2, ỹ2 = x4, ỹ3 = x1 + x5,
ỹ4 = x3 + x5, ỹ5 = x6 and ỹ6 = x3 + x5. The complexes are collected in a
stepwise manner in the complex matrix Ỹ(n) ∈ R

(3n+3)×(4n+2) . Combin-
ing furthermore the complexes corresponding to their appearance as educts
in the network itself yields the rate exponent matrix Y(n) ∈ R

(3n+3)×6n .
Assigning each node unit vectors ei of length 3n+ 3, with ones at their ith
position, yields its final form:

Ỹ(n) = [e1 + e2 e4 e1 + e5 e3 + e5 e6 e3 + e2

e7 e1 + e8 e3 + e8 e9 · · ·

e3i+1 e1 + e3i+2 e3 + e3i+2 e3i+3 · · ·

e3n+1 e1 + e3n+2 e3 + e3n+2 e3n+3]

(5.9)

Y(n) = [e1 + e2 e4 e4 e3 + e5 e6 e6 · · ·

e1 + e3i−1 e3i+1 e3i+1 e3 + e3i+2 e3i+3 e3i+3 · · ·

e1 + e3n−1 e3n+1 e3n+1 e3 + e3n+2 e3n+3 e3n+3]

(5.10)

As the rate exponent matrix Y(n) is used thoroughly throughout this thesis,
a different notation is presented as well:

Y(n) =

[
Y(n−1)

03×6(n−1)

e1 + e3n−1 e3n+1 e3n+1 (5.11)

e3 + e3n+2 e3n+3 e3n+3

]
, (5.12)

with

Y(1) =
[
e1 + e2 e4 e4 e3 + e5 e6 e6

]
. (5.13)

Here, the stepwise structure can be seen with matrices of the former step
n − 1 appearing in the upper left corner of the matrices of n. The yi
given in equation (5.8) are the columns of Y(n). A representation U for
the nullspace of the rate exponent matrix is chosen by U(n) ∈ R

6n×(3n−2) ,
with rank(Y(n)) = 3n + 2. See section A.2 on page 139 for a proof that
columns of U span a basis for the nullspace of Y(n).

5.2 multistationarity in multisite phosphorylation networks

The phosphorylation network is completely described by the differential
equation, see (5.1). Given an initial x0, the solution of equation (5.1) is
confined to

WT x(t) = WT x0 =: c.
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Assuming that the considered network (N5.1) can at least exhibit two dis-
tinct steady states a and b with a 6= b, the differential equation (5.1) in
terms of these two steady states can be given by

da
dt

= Nv(k, a) = 0,

db
dt

= Nv(k, b) = 0.
(5.14)

This condition is referred to as the polynomial condition for multistationa-
rity, see also definition 2.4 on page 11.
The conservation relation has to hold as well for both steady states yield-

ing the same total concentration for the overall network:

〈wj, b〉 = cj = 〈wj,a〉, with j = 1, 2, 3,

→ 〈wj,b− a〉 = 0. (5.15)

This condition is referred to as the coset condition for multistationarity, see
the second part of definition 2.4.
Thus, (multiple) steady states, a and b, in the phase space of x0 are de-

fined by (5.14) and (5.15). Solutions for a and b are derived over the next
two sections in two consecutive steps. The first one regards the solution of
the polynomial condition in equation (5.14), the second one the solution of
the coset condition in equation (5.15).

5.2.1 The Polynomial Condition

This section considers the arising polynomial of the system of ordinary dif-
ferential equations given in equation (5.14). To solve this system in terms
of two distinct steady states a and b, the polynomial condition is rewritten
first.
Only non-negative concentrations xi > 0 with x ∈ R

3n+3
>0 and non-

negative rate constants ki > 0 with k ∈ R
6n
>0 are considered. Thus, the

vector of reaction rates v is non-negative with vi > 0 and v ∈ R
6n
>0, see

equation (5.7). Therefore, in steady state the vector Nv lies in the pointed
polyhedral cone, spanned by the cut of ker(N) and the non-negative orthant
R

6n
6n:

v(k, a) ∈ ker(N(n)) ∩ R
6n
>0,

v(k, b) ∈ ker(N(n)) ∩ R
6n
>0.

(5.16)

This pointed polyhedral cone can be described by positive linear combina-
tion of its generators. Of course, in general v(k, x) can exhibit arbitrary
values, with k > 0 by definition, see assumption 2.1, and x arbitrary in
a mathematical sense. But, in a bio-chemical meaningful sense, only posi-
tive solutions are of interest. Thus, with x > 0, generators for the pointed
polyhedral cone result directly from the network, [99]:

v(k, a) = E(n)λ, λ ∈ R
3n
>0

v(k, b) = E(n)ν, ν ∈ R
3n
>0.

(5.17)

Recall equation (5.5) for E(n). With v given in terms of ki and its corre-
sponding a and b, the two equations in (5.17) can be rewritten using the
row vectors ǫi of E for i = 1, . . . , 6n:

ki a
yi = ǫi λ ki b

yi = ǫi ν
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Applying furthermore the logarithm and subtracting the first group of terms
from the second group yields:

〈ln
b

a
, yi〉 = ln

ǫi ν

ǫi λ
.

Introducing

µi = ln(bi/ai) (5.18)

and

ln
E(n)ν

E(n)λ
:=

[
ln

ǫ1 ν

ǫ1 λ
· · · ln

ǫ6n ν

ǫ6n λ

]T
(5.19)

yields finally

Y(n)Tµ = ln
E(n) ν

E(n) λ
(5.20)

as a solution to the polynomial condition. To solve this problem, the follow-
ing two matrices Π(n) and M(n) are introduced:

Π(n) =




Π(1)
...

Π(n)


 (5.21)

with

Π(i) =
[
(2− i)1 (i− 1)1

]
, i = 1, . . . , n, (5.22)

with 1 a vector of ones of length six. Thus, Π(n) ∈ R
6n×2. And M(n)

M(n) =




M(0,n)

M(1,n)
...

M(n,n)




(5.23)

with

M(0,n) =



−1 −n+ 1 n

1 n −n

−1 −n+ 2 n− 1


 , (5.24)

M(i,n) =



0 −i+ 2 i− 1

1 n− i −n+ i

0 −i+ 2 i− 1


 (5.25)

for i = 1, . . . , n. Thus, M(n) ∈ R
(3n+3)×3 . These two matrices are chosen,

such that

Π(n) = Y(n)TM(n), (5.26)

see the proof in appendix A.3 on page 142 for a construction of these matri-
ces. With M and Π defined, the following can be stated.
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Theorem 5.2. [Solutions to the Polynomial Condition.] See also the theorem

in [P1] on page 12.
Recall the following network matrices for an n-site sequential, distributed phos-

phorylation network as given by network (N5.1): the stoichiometric matrix N(n)

in equation (5.2), the rate exponent matrix Y(n) in equation (5.10), E(n) in (5.5),
Π(n) in (5.21) and M(n) in (5.23). The following are equivalent:

(A) There exists a vector k ∈ R
6n and vectors a, b ∈ R

3n+3 with a 6= b

satisfying (5.14).

(B) There exist vectors µ ∈ R
3n+3, µ 6= 0, and ν, λ ∈ R

6n satisfying (5.20)

(C) There exist vectors µ ∈ R
3n+3, ξ ∈ R

2 and ν, λ ∈ R
6n, with µ 6= 0 such

that

a) the vectors µ and ξ satisfy

Y(n)T µ = Π(n) ξ, (5.27)

b) and the vectors ν, λ and ξ satisfy

λ ∈ R
6n, free, (5.28a)

and, for i = 1, . . ., n

ν3i = λ3i e
(2−i)ξ1+(i−1)ξ2 , (5.28b)

ν3i−2 = λ3i−2
ν3i

λ3i
, (5.28c)

ν3i−1 = λ3i−1
ν3i

λ3i
. (5.28d)

(D) There exists a vector µ ∈ R
3n+3, µ 6= 0 with

µ ∈ im
(
M(n)

)
=: M. (5.29)

For a proof of the theorem see appendix A.3 on page 142 or [P1].
Choosing µ according to equation (5.20) then yields a set of steady state

vectors by deriving the second steady state b in terms of a and µ:

ai = āi

bi = exp(µi)ai,
(5.30)

where āi is an arbitrary, but positive value.
Choosing λ > 0, the vector of rate constants can be given according to

equation (5.17):

k = diag
(
Φ(a−1)

)
E(n)λ (5.31)

Vectors a and b are a solution to polynomial condition in equation (5.14) if
k is chosen according to equation (5.31). For multistationarity, a and b have
to satisfy additionally the coset condition in equation (5.15). This condition
is discussed in the next section.
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5.2.2 The Coset Condition

This section discusses solutions to the coset condition in equation (5.15). To
find these solutions, the coset condition is rewritten

〈wj,b− a〉 = 0

yielding a vector s = b− a. This vector lies in the orthogonal subspace S to
the linear subspace W spanned by wj of W(n):

S =
{

s ∈ R
3n+3 |〈wj, s〉 = 0, j = 1, 2, 3

}

= im(N). (5.32)

S is the stoichiometric subspace [30, 33]. To derive solutions for the coset
condition, the approach by [19] is used. Instead of finding all pairs a and
b satisfying ln(b/a) = µ and b− a = s, the existence of a and b is linked
to the existence of µ and s: there are two steady states a,b ∈ R

3n+3, if and
only if µ = ln(b/a) ∈ M as well as s = b− a ∈ S hold. Thus, a and b can
be directly computed via µ and s if and only if such a pair exists. Lemma 2

in [19] holds not only for n = 2 in [19] but also for arbitrary n as no further
restrictions to the network appear: vectors µ and s are only prolonged by
three entries per phosphorylation step. See [19, page 114] for a proof of this
condition. By lemma 2 of [19] steady states a and b can be found for n = 2,
if and only if µ ∈ M and s ∈ S exist with the same sign pattern:

sgn(µ) = sgn(s). (5.33)

If the sign of µ and s are equal, they are called valid vectors µ and s, and
their signs valid sign vectors. The sign pattern will be given by a sign vector
δ as composed elements of {+, −, 0}3n+3:

sgn(x) =
{

δ ∈ {+, −, 0}3n+3 | ∃x ∈ R
3n+3 with δ = sgn(x)

}

. (5.34)

There are, at most, 33n+3 possible sign vectors for δ ∈ {+, −, 0}with sgn(µ) =
sgn(s). Assume, that j distinct valid sign vectors δ(n) ∈ {+, −, 0}3n+3 can
be found for a given phosphorylation step n, then all valid δ(n) are collected
in a matrix ∆(n) ∈ {+, −, 0}(3n+3)×j with

∆(n) = col
(
δ
(n)
1 ; . . . ; δ(n)

j

)

for δ(n) ∈ {+, −, 0}3n+3 (or ∈ {+, −}3n+3). If at least one valid sign vector
can be found, a pair (µ, s) can be given. This results in the coset condi-
tion being satisfied and multistationarity established (if sign vectors can be
found) for the considered reaction network.

Remark 5.3. The approach of solving the polynomial and coset condition is
not dependent on the actual network structure, e. g., a sequential, distribu-
tive, phosphorylation network, but holds for all (bio-) chemical reaction
networks satisfying assumptions 2.2 and 2.1, i. e., the mass action law holds
and reactions are irreversible.

The next section discusses the computation of these sign vectors.

5.3 computation of sign vectors yielding multiple steady states

Without any information on the underlying structure of the matrices M

and W, see equations (5.23) and (5.4) respectively, the sign vector problem
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Table 5.1: Number of valid sign vectors for individual sign vectors ({+, −, 0}, {+, −}) and

different phosphorylation steps in n satisfying sgn(µ) = sgn(s). For the single phospho-
rylation process no sign vector can be found. Therefore no multiple steady states exist.

The rule for the number of valid sign vectors for an arbitrary step n and δ ∈ {+,−} is

motivated later on in equation (5.46), the empirical rule for δ ∈ {+,−, 0} is validated up

to n = 5.

n 1 2 3 4 5 6 n

#δ ∈ {+, −} − 8 20 36 56 80 2(n− 1)(n+ 2)

#δ ∈ {+, −, 0} − 14 46 94 158 no data emp. 2(4n2 − 4n− 1)

can be solved in a very naïve way: there are in total 33n+3 possible sign
vectors for δ ∈ {+, −, 0}, referred to as the ternary set of sign vector, or
23n+3 for δ ∈ {+, −}, the binary set respectively. One would have to check
half of the sign vectors of each set (as the other one can be computed by
simple sign conversion of the first half) for valid µ and s, providing in total
1
2 (3

3n+3 − 1) or 1
2 (2

3n+3 − 1) possible sign vectors to be checked.1 The
MATLAB function elmodes_calc by S. Klamt, [58], or the very powerful
MATLAB function orthi_calc by M. Uhr, [114], can be used to check for
valid sign vectors δ. The first one is suitable for any sign condition and the
second one only for the binary set. Note though, that the algorithm by [58]
runs only sufficiently fast for very small phosphorylation networks (up to
n = 5 for the ternary set and n = 6 for the binary set). The second one is
based on mixed integer linear programming and actually designed to run
fast. It can be used to check sign vectors for larger network sizes. It was
tested for n = 2, . . . , 25 and even up to n = 53 for the binary set. Results of
these two algorithms can be found in table 5.1.
As the number of possible sign vectors rises exponentially, it would be

tedious to check all possible sign vectors for all n. One could either try until
at least one valid sign vector is found for the desired n. One could also take
a closer inspection on the underlying network structure and thus structure
of the matrices, these might yield some insight to find all valid sign vectors
δ for arbitrary n.

5.3.1 Remarks on the Structure of the Sign vector

With three elements prolonging the sign vector, the binary set of sign vectors
{+, −} yields in total eight possible combinations:

{
+
+
+
,
+
+
−
,
+
−
+
,
−
+
+
,
−
−
+
,
+
−
−
,
−
+
−
,
−
−
−

}

. (5.35)

The ternary set of possible sign vectors yields in total 27 possible combi-
nations to prolong the set of possible sign vectors in each phosphorylation
step n:

{
+
+
+
,
+
+
−
,
+
−
+
,
−
+
+
,
−
−
+
,
+
−
−
,
−
+
−
,
−
−
−
,
+
+
0
,
+
0
+
,
0
+
+
,
−
+
0
,
+
−
0
,
+
0
−
,
−
0
+
,
0
+
−
,
0
−
+
,
−
−
0
,
−
0
−
,
0
−
−
,

+
0
0
,
0
+
0
,
0
0
+
,
−
0
0
,
0
−
0
,
0
0
−
,
0
0
0

}

. (5.36)

5.1 These numbers account for half of the set to be checked minus the null vector.
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Remark 5.4. Due to the introduced stepwise notation in network (N5.1),
each sign vector δ(n) is prolonged per phosphorylation step by one of the
possible sign vectors given above, e. g., δ(n+1) = col(δ(n),+, +, +).

Remark 5.5. An entry of ′0 ′ corresponds to si, µi = 0 and thus ai = bi,
thus, the ternary set might provide solutions with ai = bi. The binary set
excludes this case in advance.

A sign vector δ(n) = sgn(s) = sgn(µ) can be composed only of ele-
ments of the above range given in (5.35) for the binary set and (5.36) for
the ternary set. Thus, the whole valid set of sign patterns for an arbitrary
phosphorylation step n can also be regarded in terms of a sign matrix of
columns of sign vectors. Introducing column vectors δ(0) = [δ10, δ20, δ30]T,
. . . , δ(n) = [δ1n, δ2n, δ3n]T from {+, −}3 in case of the binary set, a sign
vector δ(n) can be defined as

δ(n) = col (δ0, . . . , δn) ∈ {+, −}3(n+1) (5.37)

and a sign matrix ∆(n) of the whole set of all valid δ(n) for a given phos-
phorylation step n by:

∆(n) =
[
δ
(n)
1 , · · · , δ(n)

j

]
∈ {+, −}(3n+3)×j. (5.38)

Furthermore, define the following sign matrix ∆0 of elements δ(i) for i =

0, . . . , n:

∆0 =



δ10 · · · δ1n

δ20 · · · δ2n

δ30 · · · δ3n


 =

[
δ(0) . . . δ(n)

]
∈ {+, −}3+(n+1). (5.39)

The given set of possible signs thus reduces to a vector δ(n) as a composed
vector of sub-vector δ0, . . . , δn. Thus, defining the following sign vectors

δ1 := [ 1, 1, 1]T, δ2 := [ 1, −1, 1]T, (5.40a)

δ3 := [−1, −1, −1]T = −δ1, δ4 := [ 1, −1, −1]T, (5.40b)

δ5 := [−1, 1, −1]T = −δ2, δ6 := [−1, 1, 1]T = −δ4, (5.40c)

δ7 := [ 1, 1, −1]T, δ8 := [−1, −1, 1]T = δ7 (5.40d)

allows to rewrite the sign vector δ(2)1 , compare matrix (5.42)

δ
(2)
1 = [ 1, 1, 1, | 1,−1, 1, |− 1,−1,−1]T (5.41)

in terms of these sub-vectors

δ
(2)
1 = col (δ1, δ2, δ3) .

For small n the sign matrix ∆(n) can be computed by the algorithms
provided by [114] and [58]. Of course, this computation does not yield a
proof of having found all valid sign vectors, nor a prediction of all valid
sign vectors for the ternary and binary set. In equation (5.42) on page 46

all ∆(7) are given as computed by the algorithm of [114]. Thus, order of
vectors δ(n) in ∆(n) follow the order provided by the algorithm. Note, the
matrix ∆(n) also contains all valid ∆(n) for n = 2, . . . , 6, see also remark 5.4.
A color code is used to distinguish between individual solutions: the valid
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sign matrix ∆(7) is not highlighted at all (as it describes the complete matrix
in (5.42)). The elements of the sign matrix ∆(6) are highlighted by a very

light gray . Elements of the matrix ∆(5) are highlighted by light gray .

Elements of ∆(4) are highlighted by a middle gray , elements of ∆(3) by a

light-dark gray , and elements of ∆(2) by a dark gray :

∆(7)T =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1−1 1−1−1−1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1−1 1 1−1 1−1−1−1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1−1 1−1−1−1−1−1−1

1 1 1 1 1 1 1 1 1 1 1 1 1−1 1 1−1 1 1−1 1−1−1−1

1 1 1 1 1 1 1 1 1 1 1 1 1−1 1 1−1 1−1−1−1−1−1−1

1 1 1 1 1 1 1 1 1 1 1 1 1−1 1−1−1−1−1−1−1−1−1−1

1 1 1 1 1 1 1 1 1 1−1 1 1−1 1 1−1 1 1−1 1−1−1−1

1 1 1 1 1 1 1 1 1 1−1 1 1−1 1 1−1 1−1−1−1−1−1−1

1 1 1 1 1 1 1 1 1 1−1 1 1−1 1−1−1−1−1−1−1−1−1−1

1 1 1 1 1 1 1 1 1 1−1 1−1−1−1−1−1−1−1−1−1−1−1−1

1 1 1 1 1 1 1−1 1 1−1 1 1−1 1 1−1 1 1−1 1−1−1−1

1 1 1 1 1 1 1−1 1 1−1 1 1−1 1 1−1 1−1−1−1−1−1−1

1 1 1 1 1 1 1−1 1 1−1 1 1−1 1−1−1−1−1−1−1−1−1−1

1 1 1 1 1 1 1−1 1 1−1 1−1−1−1−1−1−1−1−1−1−1−1−1

1 1 1 1 1 1 1−1 1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1

1 1 1 1−1 1 1−1 1 1−1 1 1−1 1 1−1 1 1−1 1−1−1−1

1 1 1 1−1 1 1−1 1 1−1 1 1−1 1 1−1 1−1−1−1−1−1−1

1 1 1 1−1 1 1−1 1 1−1 1 1−1 1−1−1−1−1−1−1−1−1−1

1 1 1 1−1 1 1−1 1 1−1 1−1−1−1−1−1−1−1−1−1−1−1−1

1 1 1 1−1 1 1−1 1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1

1 1 1 1−1 1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1

1−1 1−1−1−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1 1−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1 1−1 1 1−1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1 1−1 1 1−1 1 1−1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1 1−1 1 1−1 1 1−1 1 1−1 1 1 1 1 1 1 1

1−1 1−1−1−1 1−1 1 1−1 1 1−1 1 1−1 1 1−1 1 1 1 1

1−1 1−1−1−1−1−1−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1 1−1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1 1−1 1 1−1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1 1−1 1 1−1 1 1−1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1 1−1 1 1−1 1 1−1 1 1−1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1 1−1 1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1 1−1 1 1−1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1 1−1 1 1−1 1 1−1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1−1−1−1 1−1 1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1−1−1−1 1−1 1 1−1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 1−1 1 1 1 1

1−1 1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1

1−1−1−1 1−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1−1−1−1−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1−1−1−1−1−1 1−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1−1−1−1−1−1−1−1−1 1−1 1 1 1 1 1 1 1 1 1 1 1 1

1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 1 1 1 1 1 1

1−1−1−1−1−1−1−1−1−1−1−1−1 1−1 1 1 1 1 1 1 1 1 1

1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 1 1 1

1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 1−1 1 1 1 1 1 1

1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1

1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 1−1 1 1 1

1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1




(5.42)
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The following three points are noteworthy in matrix (5.42) and motivate
the next section 5.3.2 for arbitrary δ(n).

Observation 5.6. As a consequence of remark 5.4, the first n vectors, of size
three each, are of the former set of sign vectors. Observe that this set of the
former step is unique in the following one, e. g., take the third valid sign
vector δ(3)3 and the first valid sign vector δ(2)1 in equation (5.42):

δ
(3)
3 = col (δ1, δ2, δ3, δ3) ,

δ
(2)
1 = col (δ1, δ2, δ3)

→ δ
(3)
3 = col

(
δ
(2)
1 , δ3

)
.

Note, δ(2)1 does not appear again in the first nine elements of any other
vector in ∆(7) in equation (5.42).

Observation 5.7. The color code follows a certain highlighting pattern. This
color code enables a kind of prediction of valid sign vectors. This observa-
tion motivates the next section. E. g., a colored row in ∆(7) (the row were
δ
(2)
1 can be found) enables prediction of valid sign vectors for larger n by

simply adding δ3 of (5.40b):

δ
(7)
21 = col

(
δ
(6)
15 , δ3

)
= col

(
δ
(5)
10 , δ3, δ3

)
= col

(
δ
(4)
6 , δ3, δ3, δ3

)

= col
(
δ
(3)
3 , δ3, δ3, δ3, δ3

)
= col

(
δ
(2)
1 , δ3, δ3, δ3, δ3, δ3

)
.

The short notation

col
(
δ
(2)
1 , δ3, δ3, δ3, δ3, δ3

)
= col

(
δ
(2)
1 , [δ3]5

)

will be used to describe vectors δ(n) of reoccurring elements. Furthermore,
colored “diagonals” in ∆(7) (sign vector δ(2)4 in ∆(7) and every second vector
below it) enable prediction in a similar form, e. g., the number of present δ3
increases in δ(n) per phosphorylation step n

δ
(7)
54 = col (δ4, δ3, δ3, δ3, δ3, δ3, δ3, δ1) = col (δ4, [δ3]6, δ1)

δ
(6)
40 = col (δ4, δ3, δ3, δ3, δ3, δ3, δ1) = col (δ4, [δ3]5, δ1)

δ
(5)
28 = col (δ4, δ3, δ3, δ3, δ3, δ1) = col (δ4, [δ3]4, δ1)

δ
(4)
18 = col (δ4, δ3, δ3, δ3, δ1) = col (δ4, [δ3]3, δ1)

δ
(3)
10 = col (δ4, δ3, δ3, δ1) = col (δ4, [δ3]2, δ1)

δ
(2)
4 = col (δ4, δ3, δ1) = col (δ4, δ3, δ1)

and the number of appearance of δ1 decreases in the same amount as δ3
increases in one set of δ(n) for a fixed n:

δ
(7)
44 = col (δ4, δ3, δ1, δ1, δ1, δ1, δ1, δ1) = col (δ4, δ3, [δ1]6)

δ
(7)
46 = col (δ4, δ3, δ3, δ1, δ1, δ1, δ1, δ1) = col (δ4, [δ3]2, [δ1]5)

δ
(7)
48 = col (δ4, δ3, δ3, δ3, δ1, δ1, δ1, δ1) = col (δ4, [δ3]3, [δ1]4)

δ
(7)
50 = col (δ4, δ3, δ3, δ3, δ3, δ1, δ1, δ1) = col (δ4, [δ3]4, [δ1]3)

δ
(7)
52 = col (δ4, δ3, δ3, δ3, δ3, δ3, δ1, δ1) = col (δ4, [δ3]5, [δ1]2)

δ
(7)
54 = col (δ4, δ3, δ3, δ3, δ3, δ3, δ3, δ1) = col (δ4, [δ3]6, δ1)

Of course, this order is a consequence of the solution algorithm. Using
a different solution algorithm, the order would change. Still, as the same
solution would be found, only the position of δ(n)

i in ∆(n) would change.



48 multistationarity in multisite phosphorylation networks

Following these two observations and the order presented by the second
one, one could assume, that

col
(
δ
(2)
1 , [δ3]6

)
and col (δ4, [δ3]7, δ1)

are valid sign vectors of ∆(8), which is indeed the case.2

Observation 5.8. The number of valid sign vectors for each phosphorylation
step n seems to follow a certain numerical order. This numerical order
gives rise to the (empirical) rule for the number of valid sign vectors in
each phosphorylation step in table 5.1. A rule for this number together
with a theorem providing actual sign vectors in case of δ ∈ {+, −} will be
established in the next section.

5.3.2 Binary Set of Sign Vectors for Feasibility of the Multistationarity Problem

Sign vectors can be constructed from the binary set, δ ∈ {+, −}, or ternary
set δ ∈ {+, −, 0}. It suffices to show that at least one sign vector exists
to prove existence of multistationarity in the corresponding (bio-) chemical
reaction network. Nonetheless, all valid sign vectors for the binary set for
an arbitrary n are provided later on.
To find valid sign vectors, two subproblems have to be solved. The first

subproblem is given by the coset condition: given a δ, find a vector s such
that

W(n)Ts = 0, with sgn(s) = δ ∈ {+,−}3n+3. (5.43)

This result is applied to the second subproblem, the solution of the polyno-
mial condition: for a given δ and s, find a vector µ such that

µ = M(n) ξ with sgn(µ) = δ ∈ {+,−}3n+3. (5.44)

The subproblem of the coset condition (5.43) reduces to a decoupled prob-
lem, where only columns of the matrix of conservation laws have to be
considered:

n∑

j=0

s1j = 0, (5.45a)

n∑

j=0

s3j = 0, (5.45b)

n∑

j=0

s2j = s10 + s30. (5.45c)

Here the first line corresponds to the decoupled problem arising from the
first column of the matrix of conservation laws, the second line corresponds
to the second column. The last line is a result of the sum of the first two
columns minus the last one. Thus, the following can be stated.

5.2 Here, the first vector is a consequence of the first example in observation 5.7. The second vector
describes the arising vector as a consequence of the second example: its first 3n elements
would not be part of ∆(7), compare δ

(7)
54 .
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Lemma 5.9. [Sign Vectors Satisfying the Coset Condition.] See also Lemma

4.9 in [P1]. For a given sign vector matrix

∆0 =
[
δ(0) · · · δ(n)

]
=



δ10 · · · δ1n

δ20 · · · δ2n

δ30 · · · δ3n


 ∈ {+, −}3×n+1

as given by equation (5.39) and its sign vector δ(n) ∈ {+, −}3n+3, the subproblem

W(n)Ts = 0, with sgn(s) = δ(n)

in (5.43) is not feasible if and only if ∆0 has one of the following three properties:

(1) The elements of its first row are all of the same sign δ10, cf. (5.45a).

(2) The elements of its third row are all of the same sign δ30, cf. (5.45b).

(3) The elements of its second row are all of the same sign δ20 with δ20 δ10 < 0,
and δ20 δ30 < 0, cf. (5.45c).

These restrictions are already a very good reduction of the set of possi-
ble sign vectors. They reduce the whole set to one, that does fulfill equa-
tion (5.43) and fulfills (5.44). Thus, no in-depth solution is necessary. On
the contrary only sign changes with respect to Lemma 5.9 have to be con-
sidered. Only sign vectors defined in equations (5.40a)–(5.40c) but not in
equation (5.40d) yield valid signs such that elements of the composed vec-
tor δ(n) ∈ {−,+}3n+3 satisfy equation (5.44) in the following combinations:

Theorem 5.10. [Valid Sign Vectors of the Binary Set.] See also the correspond-
ing theorem in [P1]. The linear feasibility problem in equation (5.43) and (5.44)
with a sign vector δ(n) ∈ {+,−}3n+3, is feasible with a non-empty M(n), if and

only if δ(n) is of one of the following sign vectors (or its sign inverse):

• For n > 2:

δ = col
(
δ1, [δ2]i1 , [δ3]i2

)
with i1, i2 > 1 and i1 + i2 = n, (5.∆b1)

δ = col
(
δ2, [δ3]i1 , [δ1]i1

)
with i1, i2 > 1 and i1 + i2 = n, (5.∆b2)

δ = col
(
δ4, [δ5]i1 , [δ1]i2

)
with i1 = 1, i2 > 1 and i1 + i2 = n,

(5.∆b3)

δ = col
(
δ4, [δ3]i1 , [δ1]i2

)
with i1, i2 > 1 and i1 + i2 = n. (5.∆b4)

• And additionally for n > 3:

δ = col
(
δ1, [δ1]i1 , [δ2]i2 , [δ3]i3

)
with i1, i2, i3 > 1 and

i1 + i2 + i3 = n, (5.∆b5)

δ = col
(
δ2, [δ3]i1 , [δ2]i2 , [δ1]i3

)
with i1, i2, i3 > 1 and

i1 + i2 + i3 = n, (5.∆b6)

δ = col
(
δ4, [δ3]i1 , [δ5]i2 , [δ1]i3

)
with i1, i3 > 1, i2 = 1 and

i1 + i2 + i3 = n. (5.∆b7)

The proof has been moved to A.4, see also [P1].
Note, to refer to explicit δ(n)

i in ∆(n) and a given continuation, e. g., equa-

tion (5.41), the expression δ
(1)
2 is used for ∆(n) with n = 2 and its second

valid vector with δ(n) ∈ {+, −}, i. e., equation (5.∆b1) with a continuation
i1 = 1 and i2 = 1, compare also matrix (5.51) given later on page 54.
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Corollary 5.11. Theorem 5.10 together with proof A.4 forms an independent proof,

that for n > 2 a sign vector δ can be found, defining a linear system (5.43)–(5.44),
and thus parameterizing steady states a and b, see Remark 5.14 on page 54.

Example 5.12. The rules in Theorem 5.10 pose a simple integer problem to
generate valid sign vectors. For the first arising sign vector δ(2)1 given as in
equation (5.41) the following pattern generates all possible signs, that can
be generated from (5.∆b1):

n = 2 n = 3 n = 4 n = 5

δ1 δ2 δ3
δ1 δ2 δ2 δ3

δ1 δ2 δ3 δ3

δ1 δ2 δ2 δ2 δ3

δ1 δ2 δ2 δ3 δ3

δ1 δ2 δ3 δ3 δ3

δ1 δ2 δ2 δ2 δ2 δ3

δ1 δ2 δ2 δ2 δ3 δ3

δ1 δ2 δ2 δ3 δ3 δ3

δ1 δ2 δ3 δ3 δ3 δ3

The arising path in the tree like pattern is of course not unique in terms of
generating sign vectors. Taking first the upper and then lower branch from
δ(2) to δ(4) yields the same sign vector col(δ1 δ2 δ2 δ3 δ3), as taking first the
lower and then the upper branch. The sign vectors themselves are, of course,
unique. One has to account for these “double” generated sign vectors using
the tree like pattern by comparing generated sign vectors to generate a valid
unique set.

The total number of valid sign vectors per phosphorylation step n can
thus be computed by solving the integer partition problem posed by Theo-
rem 5.10.

Example 5.13. For 2 6 n 6 5 rule (5.∆b1) poses an integer partition problem
of an integer n into a sum of two integers i1 and i2. Taking order into
account the following partitions per step n are possible:

2 = 1+ 1 → {(1, 1)},

3 = 1+ 2 → {(1, 2), (2, 1)},

4 = 1+ 3 = 2+ 2 → {(2, 2), (1, 3), (3, 1)},

5 = 1+ 4 = 2+ 3 → {(1, 4), (4, 1), (2, 3), (3, 2)}.

There are in total n − 1 possible partitions of the integer n per step n.
Thus (5.∆b1) yields per phosphorylation step n− 1 valid sign vectors.

The solution to the integer partition problem posed by Theorem 5.10 can
be given by counting solutions to rules (5.∆b). Counting is possible here, as
the problem is quite small. Solving the integer partition problem at hand
for a general problem would be possible as well. By solving first the posed
partition problem, i. e., partition of an integer n as sum of two integers q and
r: p(n|2) = q+ r, or as sum of three integers q, r and s: p(n|3) = q+ r+ s, for
unique solutions (not taking ordering into account), and then by permuting
arising solutions, accounting for all possible orders, the correct number can
be given.
Counting possible partitions, a general form is given first. The partition

of an integer n as a sum of two positive variables, p(n|2) = r + q, taking
order into account, can be given by:

n = (n− 1) + 1 = (n− 2) + 2 = · · · = (n− (n− 1)) + (n− 1).
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There are in total n − 1 possible ways to partition n into the sum of two.
This partition gives already rise to the solution of p(n|3) = r+ q+ s with
r, q, s > 0. If zero would be taken into account, the partition above would
already be valid for sums of three elements with the third integer set to zero.
Moving one integer further, the above partition is already valid for two of
the three integers:

n = (n− 2) + 1+ 1 = (n− 3) + 1+ 2 = · · · = (n− (n− 1)) + 1+ (n− 2)

→n− 2 ways,

= (n− 3) + 2+ 1 = (n− 4) + 2+ 2 = · · · = (n− (n− 1)) + 2+ (n− 3)

→n− 3 ways,
...

= (n− i) + (i− 1) + 1 = · · · = (n− i− (n− 1)) + (i− 1) + (n− i)

→n− i ways,
...

= 1+ (n− 2) + 1

→ 1 way.

Thus, there are in total

n−2∑

i=2

i− 1 =
1

2
(n− 2)(n− 1)

possible integer partitions for p(n|3). To compute the total number of valid
sign vectors per phosphorylation step n, the numbers of integer partitions
per (5.∆b) have to be summed to compute the total number of valid sign
vectors δ(n) per phosphorylation step n:

(n− 2)(n− 1)
︸ ︷︷ ︸

(5.∆b5) & (5.∆b6)

+ 3(n− 1)
︸ ︷︷ ︸

(5.∆b1), (5.∆b2) & (5.∆b4)

+ (n− 2)
︸ ︷︷ ︸

(5.∆b7)

+ ( 1 )
︸ ︷︷ ︸

(5.∆b3)

= (n− 1)(n+ 2). (5.46)

Recall, table 5.1 considers the whole solution set of δ(n) ∈ {+, −, } whereas
equation (5.∆b) considers only half of the set. The remaining sign vectors
can be computed by sign inverting the set of (5.∆b).

5.3.3 The Ternary Set of Sign Vectors

The former section considers only the binary set of sign vectors. A solution
for all n > 2 is provided. This yields valid sets of steady states a and b and is
already sufficient for the cause of proving existence of multiple steady states
for networks (N5.1). Nonetheless, it would be nice to have rules like (5.∆b)
for the ternary set of sign vectors δ ∈ {+, −, 0}3n+3 for cases where also a
zero sign, i. e., ai = bi, would be of interest for some i.
Per phosphorylation step n 27 possible sign vectors δi can prolong the

existing set of sign vectors, as given in equation (5.36). Half of this set
would have to be checked in a similar manner as in the former section.
With a possible zero sign, i. e., si = 0 as well as µi = 0, the three items in
Lemma 5.9 still hold: no matter if a zero emerges or not, a sign change has
to appear for equations (5.45).
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The new arising sign sub-vectors, omitting the negative form for sake of
brevity, are given by:

δ9 := [ 1, 1, 0]T, δ10 := [ 1, 0, 1]T, (5.47a)

δ11 := [ 0, 1, 1]T, δ12 := [ 1, 0, 0]T, (5.47b)

δ13 := [ 0, 1, 0]T, δ14 := [ 0, 0, 1]T, (5.47c)

δ15 := [ 1, −1, 0]T, δ16 := [ 1, 0, −1]T, (5.47d)

δ17 := [ 0, 1, −1]T, δ18 := [ 0, 0, 0]T. (5.47e)

Note, the null vector δ(n) = col([δ18]n+1) would correspond to a = b and
thus just one steady state.
The binary set of valid sign vectors is contained in the ternary. Thus, its

valid sign vectors are valid for the ternary set δ ∈ {+, −, 0}3n+3. These
vectors do not have to be checked again for validity. Only new arising sign
vectors containing one of the above δi in equation (5.47) have to be tested.

The number of all possible sign vectors is of course larger. With the The-
orem 5.10 being a consequence of the observations on the structure of the
binary sign vectors, similar observations for the ternary sign vectors would
be of help. But, as they are only known up to n = 5, recall section 5.3 on
page 5.3, such observations could not be made so far. Nonetheless rules
can be given, tested up to n = 5, for additionally valid sign vectors of
δ ∈ {+, −, 0}3n+3 satisfying equations (5.43) and (5.44):

• For 2 6 n 6 5:

δ = col
(
−δ15, [δ3]i1 , [δ18]i2 , [δ1]i3

)
with i1, i3 > 1, i2 = 0, 1

and i1 + i2 + i3 = n, (5.∆t1)

δ = col
(
δ4, δ3, [δ3]i1 , −δ10, [δ1]i2

)
with i1, i2 > 1 and

i1 + i2 = n, (5.∆t2)

δ = col
(
δ11, δ1, [δ1]i1 , δ2, [δ3]i2

)
with i1, i2 > 1 and

i1 + i2 = n. (5.∆t3)

• Additionally for 3 6 n 6 5

δ = col
(
δ4, [δ3]i1 , δ13, [δ1]i2

)
with i1, i2 > 1 and

i1 + i2 = n− 1, (5.∆t4)

δ = col
(
δ8, δ1, [δ1]i1 , δ10, −δ13, [δ3]i2

)
with i1, i2 > 1

and i1 + i2 = n− 1, (5.∆t5)

δ = col
(
[δ1]i1 , [δ2]i2 , −δ13, [δ3]i3

)
with i1, i2, i3 > 1

and i1 + i2 + i3 = n, (5.∆t6)

δ = col
(
[δ1]i1 , δ10, [δ2]i2 , [δ3]i3

)
with i1, i2, i3 > 1 and

i1 + i2 + i3 = n, (5.∆t7)

δ = col
(
δ2, [δ3]i1 , −δ13, [δ2]i2 , [δ10]i3 , [δ1]i4

)
with i1, i4 > 1,

i2, i3 = 0, 1, i2 + i3 6 1 and i1 + i2 + i3 + i4 = n− 1, (5.∆t8)

δ = col
(
δ2, [δ3]i1 , δ2, [δ2]i2 , δ10, [δ1]i3

)
with i1, i2, i3 > 1

and i1 + i2 + i3 = n. (5.∆t9)

• Additionally for 4 6 n 6 5

δ = col
(
[δ1]i1 , δ10, [δ2]i2 , −δ13, [δ3]i3

)
with i1, i2, i3 > 1

and i1 + i2 + i3 = n− 1, (5.∆t10)
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δ = col
(
δ2, δ1, [δ2]i1 , δ10, [δ1]i2

)
with i1 = 0, 1, i2 > 1 and

i1 + i2 = n− 2. (5.∆t11)

• And additionally for n = 5

δ = col
(
δ2, [δ1]2, −δ13, [δ10]i1 , [δ2]i2 , [δ1]i3

)
with i1, i2 = 0, 1,

i1 + i2 = 1, i3 > 1 and i1 + i2 + i3 = n− 3. (5.∆t12)

Until now, no further results for δ(n) ∈ {+, −, 0} and n > 5 can be provided.
The multisite phosphorylation network in (N5.1) exhibits multiple steady

states, see Corollary 5.11. But states themselves are not discussed so far. The
next section takes a closer look at steady states and provides examples.

5.4 explicit formulation for multistationarity

Sign vectors in either the binary or ternary set are defined in equations
(5.∆b) for arbitrary n > 2 and (5.∆t) for 2 6 n 6 5, respectively. These sign
vectors can be used to provide a description for µ and s: the solution space
D with σ(µ) = σ(s) is given by a cut of the corresponding linear subspaces
M, S with R

3n+3
δ :

D := {δ ∈ {+, −, 0}3n+3 |M∩ R
3n+3
δ 6= 0 and S∩ R

3n+3
δ 6= 0}. (5.48)

Note again, the solution set for the ternary sign vectors contains the one
for the binary sign vectors. A short notation for those cuts is used in the
following form:

Mδ = M∩ R
3n+3
δ ,

Sδ = S∩ R
3n+3
δ .

Each pointed polyhedral cone can be described by its generators following
the notation introduced in section 2.2:

ESδ =
[
ǫ
Sδ
1 . . . ǫ

Sδ
pSδ

]
,

EMδ =
[
ǫ
Mδ
1 . . . ǫ

Mδ
qMδ

]
.

Vectors µ and s can be described in terms of nonnegative linear combina-
tions of the basis vectors of the pointed polyhedral cones, see for example
figure 2.1 on page 10:

µ = EMδα, α ∈ R
p

δ(n) ,

s = ESδβ, β ∈ R
q

δ(n) .
(5.49)

The pointed polyhedral cones EMδ and ESδ change of course, dependent
on the chosen δ. In appendix B.1 cones are given for EMδ for δ(n) with
n = 2, . . . , 14 of (5.∆b2) and i1 = 1 and i2 = n− 1. Furthermore, ESδ can
be found for the same set of sign vectors and n = 2, . . . , 5.
With fixed µ and s, the steady states can be given by solving the equations

µ = ln b
a and s = b− a for a and b:

ai =







si
exp(µi)−1

, if µi 6= 0

āi > 0, if µi = 0

bi = exp (µi) ai,

(5.50)

with ā again an arbitrary, but fixed, positive value and i = 1, . . . , 3n+ 3.
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Remark 5.14. Theorem 5.10 together with equations (5.31) and (5.50) pro-
vide an explicit solution to the multistationarity problem at hand. As every
δ generated in (5.∆b) yields a valid sign vector for n > 2, i. e., the binary
set of sign vectors, phosphorylation networks as defined in (N5.1) exhibit
multiple steady states for all n > 2 and the binary set of sign vectors. These
sign vectors (5.∆b) provide a parametrization for equations (5.50) and (5.31).

To get an idea of the structure of the steady states a and b, a qualitative
parametrization is given first. Then the actual “reachable” range, in terms
of quantitative data, is discussed in reference to the biological ranges for
parameters given in section 3.1.1.

Towards the qualitative setup: half of the sign vectors for δ ∈ {+, −}3n+3

for a double phosphorylation network can be given by:

∆
(2)T

b =




1 1 1 1 −1 1 −1 −1 −1

1 −1 1 −1 −1 −1 1 1 1

1 −1 −1 −1 1 −1 1 1 1

1 −1 −1 −1 −1 −1 1 1 1




(5.51)

and for the ternary set δ ∈ {+, −, 0}3n+3 by:

∆
(2)T

t =




1 1 1 1 −1 1 −1 −1 −1

1 −1 1 −1 −1 −1 1 1 1

1 −1 0 −1 −1 −1 1 1 1

1 −1 −1 −1 1 −1 1 1 1

1 −1 −1 −1 0 −1 1 1 1

1 −1 −1 −1 −1 −1 1 1 1

0 1 1 1 −1 1 −1 −1 −1




(5.52)

These sign matrices define the whole set of sign vectors for a double phos-
phorylation network yielding multiple steady states.

By choosing, for example, the second of the valid sign vectors in either
matrix for a network of two phosphorylation steps:

δ
(2)
2 =

[
1 −1 1 −1 −1 −1 1 1 1

]T
,

steady states a and b can be given in terms of α and β according to equa-
tion (5.49) and (5.50):

µ = [2α1 +α2 +α3, −2α1 − 2α2 −α3, α1, −α2, −α1 −α2, −α2,

α1 +α3, α3, α1 +α3]
T ,

s = [β1, −β2, β3, −β1 −β5, −β4, −β3 −β6, β5,

β1 +β2 +β3 +β4, β6]
T ,

and thus

a =

[
β1

exp(d2) − 1
,

−β2

exp(d3) − 1
,

β3

exp(α1) − 1
,

−β1 −β5

exp(−α2) − 1
,

−β4

exp(d1) − 1
,

−β3 −β6

exp(−α2) − 1
,

β5

exp(d4) − 1
,

β1 +β2 +β3 +β4

exp(α3) − 1
,

β6

exp(d4) − 1

]T
,
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b =

[
exp(d2)β1

exp(d2) − 1
,

− exp(d3)β2

exp(d3) − 1
,

exp(α1)β3

exp(α1) − 1
,

exp(−α2) f2
exp(−α2) − 1

,

− exp(d1)β4

exp(d1) − 1
,

exp(−α2) f3
exp(−α2) − 1

,
exp(d4)β5

exp(d4) − 1
,

exp(α3) f1
exp(α3) − 1

,

exp(d4)β6

exp(d4) − 1

]T
,

and by (5.31)

k =

[
−(λ1 + λ3)β1 β2

(exp(d2) − 1) (exp(d3) − 1)
,

λ1 f2
exp(−α2) − 1

,
λ3 f2

exp(−α2) − 1
,

−(λ2 + λ3)β3 β4

(exp(d1) − 1) (exp(α1) − 1)
,

λ2 f3
exp(−α2) − 1

,
λ3 f3

exp(−α2) − 1
,

−(λ4 + λ6)β1 β4

(exp(d1) − 1) (exp(d2) − 1)
,

λ4 β5

exp(d4) − 1
,

λ6 β5

exp(d4) − 1
,

(λ5 + λ6)β3 f1
(exp(α1) − 1) (exp(α3) − 1)

,
λ5 β6

exp(d4) − 1
,

λ6 β6

exp(d4) − 1

]T
,

with

d1 = −α1 −α2, d2 = 2α1 +α2 +α3,

d3 = −2α1 − 2α2 −α3, d4 = −α1 +α3,

f1 = β1 +β2 +β3 +β4, f2 = −β1 −β5,

f3 = −β3 −β6.

5.4.1 Quantitative Approach towards Steady State Parametrization

Steady states as defined by equation (5.50) can be given in a quantitative way
by using uniformly distributed pseudo random numbers in the interval of
zero to one, U(0, 1), for components of λ in equation (5.31), and α and β in
equation (5.49). Furthermore, with the rule for generating sign vectors given
in Theorem 5.10, choosing one sign vector out of the seven possible ones and
one path of continuation, compare example 5.12, also enables comparison
between results of different phosphorylation steps as the sign vector is the
same in its corresponding step length n. The signs of µ and s are maintained
while generating α and β as uniformly distributed pseudo random numbers,
compare equation (5.49). Elements αi, βi and λi define the ratio of basis
vectors of their respective cones EM, ES and E. Thus (0, 1) is chosen as their
range.3 Choosing a different, positive range for these random numbers
would only correspond to a shift of the spanned plane of the basis vector,
see also [19, page 122]. MATLAB 7.5.0 is used to generate pseudo random
numbers and steady states are computed following equations (5.49)–(5.50).
In total 100 parameter sets per phosphorylation step n with n = 2, . . . , 14

are generated, varying in α, β, and λ.4 So far, the parametrization is purely
chosen for visualization. Thus, no units, e. g., nmol/l for xi and 1/s for k3i,
for concentrations and reaction rates can be provided.
As an initial sign vector

δ
(2)
2 =

[
1 −1 1 −1 −1 −1 1 1 1

]T
,

5.3 Note, the actual value of zero for µ is not allowed due to the form of equation (5.50). Here a
new random parameter in α is chosen, if such a case should occur.

5.4 The maximal phosphorylation step of fourteen is chosen, as MatCont 4p2 is used for later
numerical analysis of steady states. This program is only able to perform numerical analysis
up to fourteen phosphorylation steps due to the increasing number of parameters.
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Figure 5.2: Parameter region for µ, s and steady state a: given are only the corresponding

parameters to the unphosphorylated protein a2 = [A], and the fully phosphorylated

protein a3n+2 = [AnP]. Remaining parameters and steady state can be found in the

same intervals. Given is the median over all 100 generated values in a red line, first and

third quartiles of these values are given by the blue box, black whiskers provide the ninth

and 91th percentile and red crosses mark outliers.

of the binary sign set of δ ∈ {+, −} in (5.51) is chosen. This sign vector
is prolonged by rule (5.∆b2) with δ1 or δ3 and i1 = 1 and i2 = n − 1

for higher phosphorylation steps n. Figures 5.2 and 5.3 illustrate results
for some µ, s and steady states a. Here, a2 = [A] and a3n+2 = [AnP]

and their corresponding µ and s are chosen. Furthermore, an overview on
rate constants is given, where rate constants are grouped according to their
function in the reaction network. Solutions to the random parameters α, β
and λ are displayed in terms of the median over all 100 generated values,
first and third quartiles of these values. Whiskers provide the ninth and
91th percentile and crosses mark outliers.
Besides rate constants ki, a Michaelis-Menten like kM,i, see as well equa-

tion (3.3), can be computed for individual phosphorylation steps, not taking
into account the consecutive phosphorylation steps:

kM,i =
k3i + k3i−1

k3i−2

for i = 1, . . . , 2n. Where k3i describes the de-/phosphorylation step, k3i−1

describes the breaking of the enzyme-protein complex and k3i−2 describes
the building of the enzyme-protein complex.
The concentration of the unphosphorylated protein increases with a rising

phosphorylation step. In comparison, the concentration of the fully phos-
phorylated protein decreases significantly with the phosphorylation step.
Furthermore, the rate constants increase as well over a significant interval
with the phosphorylation step. This de-/increase appears over different in-
tervals. The concentration of the unphosphorylated protein x2 can be found
in an interval [0.1, 10], whereas the concentration of the fully phosphory-
lated protein is given by approximately [10−10 , 100]. Even though no units
are used, this de-/increase over such large intervals cannot be reflected by
actual biological data from (bio-) chemical reaction networks. These cover
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usually only small ranges, e. g., concentration of all proteins is somewhere
in [100, 104] nmol/l, see section 3.1.2 on page 18. A similar behavior can be
found for ranges of the rate constants, see 3.1.1 on page 17 for appropriate
ranges.
This de-/increase is due to steady state a being a function of the inverse

of exp(µ), see equation (5.50), and k being a function of the inverse of a, see
equation (5.31). It is independent on the chosen sign vector and due to the
increasing or decreasing (depending on the chosen sign vector), elements
in EM and de-/increasing quantity of ones for certain rows in ES, see ap-
pendix B.1 on page 149. This results in the described behavior of coverage
of very large intervals for concentrations and reaction rates.
But, the large intervals do not pose the only problem. A second problem

arises from missing units. Without units, comparison with actual data from
(bio-) chemical reaction networks is not possible.

To provide actual biological meaningful values a parametrization of α, β,
and λ can be used, to compute scaled variables a, b, and k with given units
in a biological sense, compare also section 3.1. This parametrization should
also be used to overcome the rise in entries in EM dependent on the step
size n, e. g., compare elements for n = 2 of EM on page 149 with elements
for n = 6.

5.4.2 Parametrization of Steady States and Rate Constants

Data from experiments as well as mathematical models can be used to pro-
vide ranges for concentrations and rate constants. See the discussion in sec-
tion 3.1 as well as tables C.1-C.2 in appendix C.3 for a summary of literature
data.
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For the unphosphorylated protein and unbounded enzyme forms the fol-
lowing ranges are chosen:

[K] = x1 ∈ [10−9, 10−3]mol/l = [100, 106] nmol/l

[A] = x2 ∈ [10−9, 10−5]mol/l = [100, 104] nmol/l

[P] = x3 ∈ [10−9, 10−3]mol/l = [100, 106] nmol/l,

(5.53)

see also section 3.1.2 and tables in appendix C.3. For phosphorylated pro-
teins as well as bounded enzyme-protein forms smaller ranges are chosen.
This is motivated by the models given by [20, 69], as the bounded forms in
general only form intermediate complexes:

[A(i−1)PE1] = x3i+1 ∈ [10−9, 10−5]mol/l = [100, 104] nmol/l,

[AiP] = x3i+2 ∈ [10−9, 10−5]mol/l = [100, 104] nmol/l,

[AiPE2] = x3i+3 ∈ [10−9, 10−5]mol/l = [100, 104] nmol/l,

(5.54)

for i = 1, . . . , n. These ranges hold of course for both steady states a and b

as they lie in the same parameter space.5

For rate constants the following ranges are chosen:

k3i−2 ∈ [103, 105] l/(mol s)

k3i−1 ∈ [10−3, 101] 1/s

k3i ∈ [10−3, 101] 1/s

with again k = col(k3i−2, k3i−1, k3i) for association, dissociation, and de-
/phosphorylation, respectively, and k ∈ R

6n
>0 and, here, i = 1, . . . , 2n. See

section 3.1.1 and tables in appendix 3.1.2.

Remark 5.15. With the parametrization provided for steady states a and
b in equation (5.50) and for rate constants in equation (5.31), see also Re-
mark 5.14, and the approach presented in this section, a parametrization for
arbitrary sequential, distributive phosphorylation networks can be given to
compute values in a biological meaningful sense.

To provide a parametrization for rate constants k, the steady state a is
regarded fixed in the above given range. The parameter λ is then fixed ac-
counting for k in equation (5.31) and thus shifting k to the desired interval.
In a second step, parameters α and β are fixed to generate a and b in a de-
sired interval by accounting for structures in EM and ES, see equation (5.49)
and examples of EM and ES in appendix B.1 on page 149.

Choosing the Parameter λ

In a first step the parameter λ is fixed. Instead of generating uniformly dis-
tributed pseudo random numbers in (0, 1), the parameter is shifted towards
its desired range by multiplication with a coefficient. The choice of this
coefficient is motivated next.

5.5 Note, ranges are chosen in nmol/l instead of mol/l due to the computational effort.
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As computation of k is dependent on the first steady state a and λ, equa-
tion (5.31) for k on page 42 is rearranged with i = 1, dots,n:

k6i−5 =
λ3i−2 + λ3i
a1 a3i−1

∈ [103, 105] l/(mol s) (5.55a)

k6i−4 =
λ3i−2

a3i+1
∈ [10−3, 101] 1/s (5.55b)

k6i−3 =
λ3i

a3i+1
∈ [10−3, 101] 1/s (5.55c)

k6i−2 =
λ3i−1 + λ3i
a3 a3i+2

∈ [103, 105] l/(mol s) (5.55d)

k6i−1 =
λ3i−1

a3i+3
∈ [10−3, 101] 1/s (5.55e)

k6i =
λ3i

a3i+3
∈ [10−3, 101] 1/s (5.55f)

Note again, k6i−5 corresponds to k6i−2, as they both correspond to the as-
sociation rates. k6i−4 corresponds to k6i−1, the dissociation rate constants.
And k6i−3 corresponds to k6i, the phosphorylation and dephosphorylation
rate constants, respectively.
Equations (5.55b) and (5.55e) are considered first to provide expressions

for λ3i−2 and λ3i−1. Rearranging these two yields

[10−3, 101] 1/s ∋
λ3i−2

a3i+1
,
λ3i−1

a3i+3
.

Using interval arithmetic, see for example [50], expressions for λ3i−2 and
λ3i−1 can be found. Units are omitted for sake of clarity. Furthermore, for
sake of argument, lets assume the following:

λ3i−2, λ3i−1 ∈ [10−3, 101]× [10−9, 10−7].

By interval arithmetic the multiplication rule has to be obeyed: the mini-
mum and the maximum of the combinations of the two given intervals can
be given by

λ3i−1, λ3i−2 ∈ [10−12, 10−6]. (5.56)

Next, equations(5.55c) and (5.55f) are analyzed to provide an expression for
λ3i:

[10−3, 101] l/(mol s) ∋
λ3i

a3i+1
,

λ3i
a3i+3

,

yielding of course the same result with

λ3i ∈ [10−3, 101]× [10−9, 10−7]

→ λ3i ∈ [10−12, 10−6].

Note, this range holds only for k in mol/l. If the desired unit is nmol/l, the
range has to be shifted by 10−9 with k3i−2 given in l/(nmol s).
Thus equation (5.55a) and (5.55d) remain. As the former equations fix

already the intervals for λ, the range for the steady state a might be affected,
to provide association rate constants in the desired interval. Note, using λ

in the given intervals might result in association rate constants in too large
intervals. To account for this, equation (5.55a) and (5.55d) are used:

[103, 105] l/(mol s) ∋
λ3i−2 + λ3i
a1a3i−1

,
λ3i−1 + λ3i
a3a3i+2

.
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To minimize ranges for a1, a3, a3i−1 and a3i+2 choose:

a1 a3i−1, a3 a3i+2 ∈
[10−12, 10−6]

[103, 105]
mol2/l2.

By interval arithmetic the minimum and maximum of combinations of these
two intervals is computed, yielding

a1 a3i−1, a3 a3i+2 ∈ [10−17, 10−9]mol2/l2.

The range for unbounded enzymes is fixed in a larger interval than the one
of phosphorylated proteins. Keeping this in mind, choose:

a1, a3 ∈ [10−9, 10−4]mol/l,

a3i−1, a3i+2 ∈ [10−8, 10−5]mol/l.

Note again, by multiplication the minimum and maximum of combinations
of these intervals yield expressions for the combined interval. Note also,
x3i−1 corresponds to x3i+2 for the consecutive phosphorylation step. These
ranges are included in the ranges given in table C.1-C.2 for real experimental
data and are in accordance with the former chosen ranges in equations (3.4)
and (3.5) and (5.53) and (5.54)

Adjusting Parameters α and β

As not only rate constants show a shifting behavior in figure 5.3 but also
concentrations for steady states in figure 5.2, parameters α and β have to be
adjusted as well. This adjustment should also account for the intervals of
x1, x3, x3i−1 and x3i+2.
The parameter α is adjusted first. WithM(n) ∈ R

(3n+3)×3 , there are only
three free α independent of the phosphorylation step n. Furthermore, as α
directly translates to µ and thus via steady state a also to the second steady
state b, α cannot be changed too much, as this would shift the second steady
state towards undesired intervals.
The increase in µ, see figure 5.2, is addressed such that values for µ do not

increase over time but are uniformly distributed in an interval correspond-
ing mainly to the one of n = 2, 3, and 4, i. e., values between (−5, 5) are
desired. Furthermore, steady states a and b are restricted by the argument
in the former section. For the sake of the argument let

a, b ∈ [101, 105] nmol/l

to cover all intervals given (and adjust them later on in the actual algorithm
accordingly). Choose

exp(µ) ≈ 1,

to provide a and b in the same interval while taking care that µi 6= 0, see
equation (5.50). Thus, exp(µi) 6= 1. Furthermore as the sign of µ is fixed
by δ, negative values are allowed for µ as well. Thus the interval for exp(µ)
is relaxed, to account for the sign conditions posed by sign vectors in δ.
Orienting at the first intervals given for n = 2, 3, 4 in figure 5.2 results in
the upper and lower limits of

max(µ) =
1

2
· 101 and min(µ) = −

1

2
· 101
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resulting in

exp(µ) ∈ [10−7, 102].

To shift µ towards these intervals choose an α ∈
[
10−2, 100

]
. Note, at most

sums of three α multiplied by approximately n appear in EM, see equa-
tion (B.1) in appendix B.1 on page 149. Thus, choosing the given interval
accounts for increase or decrease of elements in EM and shift µ at the same
time to the desired interval. Note, very small values (close to zero) are not
desirable for µ, as this would only yield ai = bi, not desired for numerical
analysis later on.
In the next step the parameter β is adjusted to counteract generated large

intervals by 1/ exp(µ) via s. I. e., choosing β is not a trivial task as the
dimension of the cone ES rises significantly with an increasing n, see B.1
where cones for various phosphorylation steps are given. Here, α is always
R

3, see equation (5.49) on page 53. But length of β increases with increas-
ing n. Still a certain structure of rows of sums of (minus) ones as well as
diagonal elements of ones can be found in all ES. β is adjusted accordingly
by grouping it to the given structure in the cone, see the next paragraph for
an example.
Concentrations for steady states a and b as well as rate constants k are

then computed using equation (5.50) and (5.31). Choosing parameters in
this range for different phosphorylation steps n = 2, . . . , 14 yields not only
adjusted parameters in biological meaningful ranges but the slope (in the
position of box plots per step n) is also significantly different, see figures 5.4-
5.5. Concentrations in a no longer de-/increase with rising phosphorylation
steps but can be found in approximately the same range.

Parameter Regions for Adjusted Steady States and Rate Constants

With the given parametrization above steady states a and b as well as rate
constants k can be computed for different phosphorylation networks n =

2, . . . , 14. The following parametrization is chosen:

αi ∈







n ·U(0, 1) if n = 2

n · 10−0.5 ·U(0, 1) if n = 3, 4

n · 10−1 ·U(0, 1) if n = 5, 6, 7

n · 10−1.5 ·U(0, 1) if n = 8, 9, 10

n · 10−1.75 ·U(0, 1) if n = 11, 12, 13, 14

The parameter β is adjusted in the aforementioned form to account for the
structure arising in the cone ES. Note, this structure only holds for the cho-
sen sign vector, as a different sign vector yields a different cone. Choosing
δ2 of rule (5.∆b2) with i1 = 1 and i2 +n− 1, β is of dimension 6n− 6, (5.49).
To account for the structure the whole vector is adjusted first, depending on
the phosphorylation step n:

β1:2n−2 ∈







101.5 ·U(0, 1) for n = 2, 4, 7, 10, 11, 13, 14

101 ·U(0, 1) for n = 3, 5, 6, 8, 9

102 ·U(0, 1) for n = 12

β2n−1:6n−6 ∈

{

101.5 ·U(0, 1) for n = 2, 4, 10, 11, 13, 14

101 ·U(0, 1) for n = 3, 5, 6, 7, 8, 9, 12
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Then, certain rows are substituted for n > 3 by

β2n−1 ∈

{

101 ·U(0, 1) for n = 3, 5, 6, 7, 8, 10, 11, 12

101.5 ·U(0, 1) for n = 4, 9, 13, 14

β2n+1 ∈

{

101 ·U(0, 1) for n = 3, 5, 6, 7, 8, 10, 11, 12

101.5 ·U(0, 1) for n = 4, 9, 13, 14

and for n > 4 by:

β2n+3:3n ∈

{

101.5 ·U(0, 1) for n = 4, 9, 13, 14

101 ·U(0, 1) for n = 5, 6, 7, 8, 10, 11, 12

β4n−1:5n−4 ∈

{

101.5 ·U(0, 1) for n = 4, 9, 13, 14

101 ·U(0, 1) for n = 5, 6, 7, 8, 10, 11, 12

This row-wise replacement is motivated by the structure of the cone ES

where sums of elements of β appear via the first and third row of the cone.
For example, for n = 1 and n = 3

s1 = β1.

For n = 4

s1 = β7 +β11 +β12,

whereas for n = 10

s1 = β21 +

33∑

i=25

βi.

Thus, the range is shifted to still guarantee acceptable values for the steady
state a to counteract those sums, compare again the matrices given in ap-
pendix B.1.

In the last step λi is adjusted for i = 1, . . . , 14 with λ ∈ R
3n
>0. Values are

generated as a function of n and U(0, 1) and fixed in
[
10−3, 103

]
:

λ1:6 ∈ 10−1 ·U(0, 1), λ4:9 ∈ 10−1 ·U(0, 1),

λ7:12 ∈ 10−2 ·U(0, 1), λ13:15 ∈ 10−2 ·U(0, 1),

λ16:18 ∈ 10−2 ·U(0, 1), λ19:21 ∈ 10−3 ·U(0, 1),

λ22:24 ∈ 10−2 ·U(0, 1), λ25:27 ∈ 10−2 ·U(0, 1),

λ28:30 ∈ 100 ·U(0, 1), λ31:33 ∈ 100 ·U(0, 1),

λ34:36 ∈ 102 ·U(0, 1), λ37:39 ∈ 10−2 ·U(0, 1),

λ40:42 ∈ 10−2 ·U(0, 1),

where length of λ depends on the phosphorylation step n.
Concentrations for steady states a and b and rate constants k are then

computed using equation (5.50) and (5.31) by MATLAB 7.5.0 and generating
again 100 random variables per phosphorylation step in α, β and λ. See
figure 5.4 and 5.5 for an overview in form of box plots, compare results in
section 5.4.1 on page 55 with figures 5.2-5.3.
Choosing parameters in this range for different phosphorylation steps

n = 2, . . . , 14 yields not only adjusted parameters in biological meaning-
ful ranges but also a different slope of box plot positions throughout the
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figures. Concentrations in a no longer de-/increase with rising phosphory-
lation steps but can be found in approximately the same range. Note, val-
ues for a2 = [A] increase in a small interval over the phosphorylation step
accounting for higher concentrations of the protein in larger networks, [20].
Furthermore, rate constants follow the given range by [124] for phosphoryla-
tion as well as protein binding and breakdown. Also, the Michaelis-Menten
like constant kM,i, equation (3.3) on page 17, increases per phosphorylation
step from 100 nmol/l to 104 nmol/l. Its deviation stays in the range of 101 nmol/l.
This corresponds to actual biological data as proteins in networks of higher
phosphorylation steps n possess, of course, more binding sites. Thus, for
non-fully phosphorylated proteins binding happens first faster and slows
down towards saturation as more and more sites are occupied, [42].
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Depicting just one example of the generated data with α = n ·U(0, 1)
and β = 101.5 ·U(0, 1) for the sign vector δ

(2)
2 of (5.∆b2) with i1 = 1 and

i2 = n− 1:

α = [1.5025, 0.5102, 1.0119]T ,

β = [22.1067, 28.1728, 30.3355, 17.3045, 4.3837, 4.7211]T ,

results in

µ = [4.5272, −5.0374, 1.5025, −0.5102, −2.0127, −0.5102,

2.5144, 1.0119, 2.5144]T ,

s = [22.1067, −28.1728, 30.3355, −26.4904, −17.3045, −35.0565,

4.3837, 97.9195, 4.7211]T .

Steady states can be given by:

a = [0.2416, 28.3569, 8.6845, 66.2893, 19.9734, 87.7250,

0.3859, 55.9265, 0.4156]T nmol/l,

b = [22.3484, 0.1841, 39.0200, 39.7989, 2.6689, 52.6685,

4.7696, 153.8460, 5.1367]T nmol/l,

and total concentration, recall equation (5.3), by:

c = [66.9168, 96.8251, 259.0726]T nmol/l.

Furthermore adjusting λ to the given values in the former section of λ ∈

10−1 ·U(0, 1) yields:

λ = [0.0258, 0.0841, 0.0254, 0.0814, 0.0244, 0.0929]T ,

and rate constants in the following form:

k =
[
0.0075, 3.892 · 10−4, 3.832 · 10−4, 6.312 · 10−4, 9.587 · 10−4,

2.895 · 10−4, 0.0361, 0.2109, 0.2407, 2.415 · 10−4, 0.0587, 0.2235
]T

.

Here, rate constants for association rates are given in l/(nmol s) and remaining
rates are given in 1/s.

Bifurcation Analysis for Various Network Sizes

Besides the range for concentrations and rate constants further points are of
interest in the region of steady states a and b. E. g., can the parameters of the
(bio-) chemical reaction network be found in a biological meaningful region
and, does the switch also lie in a biological meaningful region. Or, whether
this region exhibits only one steady state and the other lies somewhere else,
where it is not of interest to experimenters.

For bifurcation analysis different parameters can be chosen as the bifur-
cation parameter. The software MatCont 4p2 for MATLAB is chosen for
this analysis. The parameter c2, the total concentration of the phosphatase
P and its bounded forms, e. g., AP, is chosen as bifurcation parameter for
numerical analysis. A sample of values is taken from the initial values gen-
erated for section 5.4.1 (for general values) and for section 5.4.2 (for adjusted
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values). Here, only the first 50 generated variables, i. e., generated α, β and
λ, are chosen for bifurcation, due to computational costs. All remaining val-
ues are fixed. Thus, c1 and c3, compare equation (5.3), and rate constant k,
equation (5.31) are kept constant. This corresponds to shifting the affine so-
lution plane in the coset. And thus, corresponds to variations, where steady
states are born or disappear.
If vectors α, β and λ are not adjusted, the appearance of the bifurca-

tion curves changes with curves becoming thinner in total concentration
range and higher in substrate range, see figure 5.6. The step width (width
of s-shape) decreases for higher networks of higher phosphorylation steps
n for the chosen concentrations, but can be seen in bifurcation curves for
concentrations of remaining phosphorylated proteins over c2. Whereas the
step heights (heights of the s) increases with rising step size for the chosen
substances. This translates to a more pronounced difference in the concen-
tration of the different steady states, e. g., a2 ≫ b2. But, the range where
switching between steady states appears, becomes quite small with a ris-
ing phosphorylation step n. This corresponds to a poor switch, compare
also section 4.1, as already small changes in the total concentration of the
phosphatase would result in a switching behavior.

Performing bifurcation analysis on the adjusted parameter set yields a
different behavior. Here, the s-curves are more pronounced. The width of
the step increases in terms of the total concentration c2 with the phospho-
rylation step n. This is in accordance to actual biological data, compare for
example total concentration for MAPK systems and NFAT systems: e. g. [69]
for a double phosphorylation system, where c2 = 500 nmol/l, and [20] for a
14-times phosphorylation with c2 = 6µmol/l. This makes the switch itself
more pronounced, i. e., a bigger change has to be applied to result in ac-
tual switching. Thus, the network allows for switching, but is more robust
towards very small variations in comparison to the unadjusted case. Fur-
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thermore, the height of the step, the height of the s-curve, rises with a rising
phosphorylation step n. Thus networks of higher phosphorylation steps
seem to actually make a good switch as the step is more pronounced with
higher phosphorylation steps n.
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Figure 5.7: Bifurcation analysis for adjusted parameters: unphosphorylated protein concen-

tration, x2 = [A], (top) and fully phosphorylated protein concentration, x3n+2 = [AnP],

(bottom) over total concentration c2 (total phosphatase concentration) for various net-

work sizes n = 2, . . . , 14.

Step heights for all results of bifurcation for phosphorylation networks of
n = 2, . . . , 5 as well as the thirteen given in figure 5.7 were compared. No
significant difference between different networks of phosphorylation sizes
could be found. Thus, no conclusions can be drawn, whether the two ex-
trema in the s-shape increase, translating to a greater difference in concen-
tration of the two steady states with an increasing step size n.

5.5 summary and open questions

This chapter covers the general question of existence of multistationarity
in a distributive, sequential multisite phosphorylation network (N5.1) of n
steps. (Bio-) Chemical reaction networks of this kind indeed exhibit multiple
steady states for any n > 2 phosphorylation sites. A parametrization for the
multistationarity region is provided dependent on a sign vector δ. All δ are
provided for the binary sign structure of {+, −} and all δ for n = 2, . . . , 5 are
provided for the ternary set {+, −, 0}. Thus, a parametrization for steady
states using the binary sign structure can be given for any n and for the
ternary one for 2 6 n 6 5, where the ternary one includes all solutions of
the binary one.
Though results seem rather theoretical with the provided sign vectors

δ, a parametrization of the steady state region can be provided and explicit
examples for values of concentrations and rate constants can be given. These
values can not only be found in an arbitrary region, but a parametrization of
a biological meaningful sense is given. I. e., parameters and concentrations
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of the multistationarity region are found in realistic intervals corresponding
to actual biological data of phosphorylation networks.
Furthermore, the sign vector δ can be translated in a biological context.

First of all, δ and −δ correspond to the same set of steady states, where
the negative sign vector simply yields the results in a sign inverse form,
i. e., aδ = b−δ and bδ = a−δ. This simply means, that concentrations for
steady states are switched if the opposite sign is use. Second, a zero ele-
ment in the sign vector corresponds to ai = bi. As the sign vectors of the
binary set (for all n) and for ternary set (for n = 2, . . . , 5) always ends with
{+, +, +} (or {−, −, −}), the last three components of b are always greater
(or smaller) than those of a. Third, with first and third rows of M(i,n),
the determining matrix of ratios of a and b, being equal, the ratio of the
steady state concentrations of the kinase-substrate complexes is equal to
the ratio of the phosphatase-substrate complexes, i. e., µ3i+1 = µ3i+3, see
also the discussion in [P1] and fact 6.1 in [P2]. Thus, if a certain ratio is
known, remaining ratios can be reconstructed and by further knowledge of
concentrations, the corresponding steady state can be reconstructed, e. g.,
(b1/a1)/(b3/a3) = (b3i+1/a3i+1)/(b3i−2/a3i−2). Note, [P2] exploits the
idea of L. Wang and E. D. Sontag on bounds on the number of steady
states. [P2] studies a scalar determining equation and presents exact solu-
tions for a sequential, distributive phosphorylation network of n = 2, 3 and
4 with 2n− 1 steady states. By doing so, counterexamples to the conjecture
of L. Wang and E. D. Sontag are given.
Besides the given biological interpretation, further meaning of sign vec-

tors is of interest. First of all, the question arises, how sign vectors and their
corresponding steady state reflect response curves in the multistationarity
region. Furthermore, if sign vectors are allowed to be prolonged only in a
certain way, i. e., {+, +, +} or {−, −, −}, does this reflect somehow on the
robustness of the reaction network? Are thus certain sign vectors more ro-
bust than others? Also, switching in reaction networks might attributed to
some values being always greater (smaller) than others, compare also the
figures by J. Gunawardena and C. Salazar and T. Höfer. In these publi-
cations, the steady state concentration of sums of substances of intermedi-
ate steps,e. g., [AP ] + [AK] + [APP], over total concentration of these sums,
[A]tot + [K]tot + [P]tot, is plotted versus total concentration of the kinase over
total concentration of the phosphatase, [K]tot/[P]tot. Thus, if certain ratios
are always the same, recall the short example in the previous paragraph,
the response curves always have to be the same if plotted in such a way.
Further biological interpretations of the sign vectors remain unclear.
The function of the phosphorylation network can, so far, not be derived

from the sign vector. I. e., though knowing signs vectors, one still needs to
compute an exact parametrization and perform bifurcation analysis to get
an insight on the response curve. Here, it would be interesting whether
a certain sign vector predetermines the response curve in the reaction net-
work. If such an association would be possible, knowing all possible results
for sign vectors would correspond to knowing all functions of a phosphory-
lation network.
As this chapter covers only multisite phosphorylation networks with a

distributive, sequential mechanism, different network setups should be con-
sidered as well. First, synthesis and degradation of the proteins and/or
enzymes could be considered. This will be covered in the next chapter. Sec-
ond, a higher number of enzymes catalyzing de-/phosphorylation can in-
deed be found in (bio-) chemical reaction networks, often several kinases
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phosphorylate a single protein. But as the exact number of kinases or
sites they can phosphorylate are usually unknown, this topic is not cov-
ered here. Furthermore, different (mixed) mechanisms, e. g., purely random
de-/phosphorylation or random phosphorylation and distributive dephos-
phorylation, should be considered as well as they can be found in (bio-)
chemical reaction networks. Here, again, the question arises, whether these
multisite phosphorylation networks can exhibit multiple steady states at all.
And last, with respect to [P2], it would be of interest, whether an exact
solution for the number steady states can be provided.



Man muss noch Chaos in sich haben,

um einen tanzenden Stern gebären zu können.

— Friedrich Nietsche [74]

6EFFECT OF SYNTHES IS AND DEGRADATION OF
PROTE INS AND ENZYMES IN MULTIS ITE
PHOSPHORYLATION NETWORKS

The previous chapter discusses phosphorylation and dephosphorylation of
a protein in arbitrary steps n. Multiple steady states can be computed
for these systems entailing complex dynamical behavior. But recalling sec-
tion 3.2.2 these simple phosphorylation/dephosphorylation networks might
not be sufficient to represent actual (bio-) chemical reaction networks. This
chapter expands these phosphorylation networks, still in a basic modeling
approach, by allowing also synthesis and/or degradation of the protein, its
phosphorylated forms and/or the enzymes.

6.1 modeling a small phosphorylation network with synthe-
sis and degradation

Synthesis and degradation exist in phosphorylation networks of various
sizes. These processes depict basic network properties in addition to simple
synthesis or degradation, like synthesis from other educts, or into nothing,
i. e., degradation into its components, for example Sic1. Further examples
can be given by unavailability via inactivation of a protein through phos-
phorylation, found in Swe1, or compartmentalization through sequestration,
found in Cdc25, [38].
As the additional reactions of synthesis and/or degradation of the protein

and/or enzyme complicate the system, a small network of double phospho-
rylation with a distributive, sequential mechanism is considered first. This
network represents at the same time an n-times phosphorylation network
in a reduced form. In this reduced version the unphosphorylated form of
the protein in the double phosphorylation network corresponds to a stan-
dard unphosphorylated, active protein, like Sic1, Cdc25, and Wee1. The
double phosphorylated protein of the small reaction network with n = 2

corresponds to the fully or active form (in terms of activation, degradation,
etc.) in the large reaction network, e. g., Sic1-6p. The single phosphorylated
form of the double phosphorylation network corresponds to all intermedi-
ate phospho-forms. Such a model describes a reduced form of the inter-
mediate phosphorylation states. By reducing the model in such a way, the
complexity of the network is reduced while still being able to qualitatively
describe and analyze the underlying network structure.
A phosphorylation process of a protein in two steps with synthesis and/or

degradation of the protein and enzymes is considered. The distributive, se-
quential double phosphorylation

ỹ1
x1

K +
x2

A
k1

GGGGGGBF GGGGGG

k2

ỹ2
x4

AK
k3

GGGGGGA

ỹ3

K+
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k10
GGGGGGGBF GGGGGGG

k11

ỹ10
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k12

GGGGGGGA

ỹ11
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x8

APP (N6.1a)
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and dephosphorylation

ỹ12

P+APP

k13
GGGGGGGBF GGGGGGG

k14

ỹ13
x9

APPP
k15

GGGGGGGA

ỹ4

P+AP

k4
GGGGGGBF GGGGGG

k5

ỹ5
x6

APP
k6

GGGGGGA

ỹ6
x3

P +A (N6.1b)

of a protein A and its kinase K and phosphatase P are extended by several
scenarios: The first scenario considers just synthesis and/or degradation of
the protein A and its phosphorylated forms:

ỹ8

A
k7

E GGGGGGGGGGGGC

k8

ỹ7

0
ỹ9

AP

k9
GGGGGGA

ỹ7

0
k16

D GGGGGGG

ỹ14

A2P (N6.2a1)

A GGGBF GGG 0 0D GGGA2P (N6.2a2)

AD GGG 0 APGGGA 0D GGGA2P (N6.2a3)

AD GGG 0 0D GGGA2P (N6.2a4)

Each of these networks combined with network (N6.1) yields the considered
reaction network, thus, so far four possible reaction networks. In a second
scenario synthesis and/or degradation of the protein itself together with
synthesis and degradation of the kinase K is considered:

A GGGBF GGG 0 E GGGGGGC K APGGGA 0D GGGA2P (N6.2b1)

A GGGBF GGG 0 E GGGGGGC K 0D GGGA2P (N6.2b2)

AD GGG 0 E GGGGGGC K APGGGA 0D GGGA2P (N6.2b3)

AD GGG 0 E GGGGGGC K 0D GGGA2P (N6.2b4)

The third scenario considers along scenario one synthesis and degradation
of phosphatase P:

A GGGBF GGG 0 E GGGGGGC P APGGGA 0D GGGA2P (N6.2c1)

A GGGBF GGG 0 E GGGGGGC P 0D GGGA2P (N6.2c2)

AD GGG 0 E GGGGGGC P APGGGA 0D GGGA2P (N6.2c3)

AD GGG 0 E GGGGGGC P 0D GGGA2P (N6.2c4)

Further scenarios are possible as well:

synthesis of enzymes along with scenario one Allowing only
synthesis but not degradation for both enzymes. These cases are dis-
cussed in appendix B.2.4.

no synthesis and degradation of the protein The last example
considers only synthesis and degradation of the enzymes (and the
phosphorylated form) but not of the unphosphorylated protein. These
cases are discussed in appendix B.2.5.

Combining network (N6.1) with the given scenarios in the networks (N6.2)
above yields in total twelve possible reaction networks. As each of these net-
works is only a small variation of the former one, compare for example net-
work (N6.2a2) to network (N6.2a1), note the missing degradation reaction
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k9, only one network will be analyzed in detail in this chapter. The focus is
set on network (N6.2a1). Results are given for all processes in section 6.2.3.
Results for remaining network scenarios can be found in appendix B.2.1-
B.2.3 for results of networks (N6.2a2)–(N6.2c4), respectively.
The concentration of single substances is described by a state x. Rate

constants are described by a parameter k. Elements are noted in a step-
wise manner. Putting the emphasis on the phosphorylation process itself,
the phosphorylation step is labeled first before synthesis and degradation
steps are considered. Thus, the unphosphorylated protein and unbounded
enzyme forms are considered first: x1 = [K], x2 = [A] and x3 = [P] with
corresponding rate constants. In a second step the single phosphorylated
form of the protein and the enzyme complexes are considered: x4 = [AK],
x5 = [AP] and x6 = [APP]. Then, degradation and synthesis of the phos-
phate and enzymes are considered as they occur between each step, see rate
constants in (N6.1) and (N6.2a1). Finally the next phosphorylation step is
considered yielding x7 = [APK], x8 = [APP] and x9 = [APPP] and corre-
sponding rate constants.
The double phosphorylation as described by equation (N6.1) yields in

total x ∈ R
9. The number of states does not vary with the considered re-

action network as no new species arise. But, the number of parameters
k ∈ R

r changes with the considered form in network (N6.2), for example
r = 16 for network (N6.1)+(N6.2a1). The number of complexes and educt
complexes changes dependent on the reaction network with ỹ ∈ R

14 for net-
work (N6.1)+(N6.2a1). Furthermore, assumptions 2.1 and 2.2 in section 2.2
on page 7 and assumption 5.1 in section 5.1 on page 35 hold.
The system is rewritten using ordinary differential equations:

dx
dt

= Nv (6.1)

yielding a polynomial system with the stoichiometric matrix N ∈ R
9×16 for

network (N6.1)+(N6.2a1)

N =




k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16

x1 −1 1 1 0 0 0 0 0 0−1 1 1 0 0 0 0

x2 −1 1 0 0 0 1 1−1 0 0 0 0 0 0 0 0

x3 0 0 0−1 1 1 0 0 0 0 0 0 −1 1 1 0

x4 1−1−1 0 0 0 0 0 0 0 0 0 0 0 0 0

x5 0 0 1−1 1 0 0 0−1−1 1 0 0 0 1 0

x6 0 0 0 1−1−1 0 0 0 0 0 0 0 0 0 0

x7 0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0 0

x8 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0 −1

x9 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 0




,

where k7 describes synthesis of the unphosphorylated protein A and k8, k9
and k16 degradation of the unphosphorylated, the single phosphorylated
and the double phosphorylated protein, respectively.
The vector of reaction rates can be given by:

v(k, x) = diag(k)Φ(x) , (6.2)

Φ(x) :=
[
xy1 · · · xyr

]
,
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compare equation (5.8) and see as well equation (2.1) on page 9 for an intro-
duction. Thus, for network (N6.2a1)

v(k, x) = [k1x1x2 k2x4 k3x4 k4x3x5 k5x6 k6x6 k7 k8x2 k9x5

k10x1x5 k11x7 k12x7 k13x3x8 k14x9 k15x9 k16x8]
T .

The rate exponent matrix Y ∈ R
9×16 for network (N6.1)+(N6.2a1) can be

given by

Y =




1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0




. (6.3)

The number of conservation relations in the network changes between
two for the first four reaction networks in (N6.2) and one for the last eight
reaction networks. Here, [K]tot and [P]tot are constant for the first four, only
[P]tot is constant for the second four, and [K]tot is constant for the last four
networks. Thus, for network (N6.1)+(N6.2a1) the conservation relation can
be given by:

〈wj, x〉 = cj, j = 1, 2 (6.4a)

with

w1 =
[
1 0 0 1 0 0 1 0 0

]T
, (6.4b)

w2 =
[
0 0 1 0 0 1 0 0 1

]T
. (6.4c)

Furthermore, a basis for the right nullspace of the stoichiometric matrix
N for network (N6.1)+(N6.2a1) can be given by:

ET =




1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1




. (6.5)

Note, the cone E has a similar structure to E(n) of the previous chapter,
recall equation (5.5) on page 38. Again, a matrix E(1) can be found on the
main diagonal blocks. But here, additional vectors in columns four, five and
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Table 6.1: Prediction of multiple steady states following the chemical reaction network theory

by Martin Feinberg, see for example [29]. The deficiency of the whole network is given

by ϑ. The deficiency of the individual subnetworks (given by the lower and upper branch

of de-/phosphorylation, respectively) is given by ϑi, with i = 1 describing the phospho-

rylation, i = 2 the dephosphorylation and i = 3 additional synthesis and degradation

reactions. Furthermore the CRNT toolbox (TB) provides either an explicit pair of steady

states if the system exhibits multistationarity (cases with a!) or not (cases with a %),

see [34].

(N6.1)+ (N6.2a1) (N6.2a2) (N6.2a3) (N6.2a4)

ϑ 4 3 4 3

ϑi, i = 1, 2, 3 1, 1, 0 1, 1, 0 1, 1, 0 1, 1, 0
3∑

i=1

ϑi 2 2 2 2

TB ! ! ! !

(N6.1)+ (N6.2b1) (N6.2b2) (N6.2b3) (N6.2b4)

ϑ 4 3 4 3

ϑi, i = 1, 2, 3 1, 1, 0 1, 1, 0 1, 1, 0 1, 1, 0
3∑

i=1

ϑi 2 2 2 2

TB ! ! % %

(N6.1)+ (N6.2c1) (N6.2c2) (N6.2c3) (N6.2c4)

ϑ 4 3 4 3

ϑi, i = 1, 2, 3 1, 1, 0 1, 1, 0 1, 1, 0 1, 1, 0
3∑

i=1

ϑi 2 2 2 2

TB ! ! ! !

nine can be found not present in the previous cone. This structure is similar
for remaining networks in (N6.1)+(N6.2).
With ordinary differential equations, the rate exponent matrix and the

conservation relation given, networks in (N6.1)+(N6.2) can be checked for
multistationarity using an algorithm based on the theorem of the previous
chapter.
Compared to the underlying network mechanism in the previous chapter,

nothing can be said about the possibility of the networks to exhibit multiple
steady states beforehand. But, following the approach by M. Feinberg, see
table 6.1, the deficiency of the networks can be computed. The deficiency
theorems are not applicable here as the deficiency of the network itself is
not the same as the sum of the deficiency of the terminal strong linkage
classes. Nonetheless, [34] provides a toolbox, that is based on the deficiency
theorems and provides answers even if the Deficiency Zero or Deficiency
One Theorem do not hold. This toolbox allows to draw conclusions on the
ability of the network to exhibit multiple steady states, see table 6.1. As in-
dicated by checkmarks two of the arising twelve networks are not supposed
to yield multiple steady states, the remaining ones do.
Though the toolbox does not provide algebraic solutions to the questions

of existence of multiple steady states, it provides one explicit set of solutions.
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By doing this, it answers indeed the question of existence of multiple steady
states. At the same time, this confines the solution set to one given pair.
The previous chapter provides a parametrization for multiple steady states

for a distributive, sequential phosphorylation network of n steps. The same
or at least a similar approach could provide also solutions for different kind
of phosphorylation networks, like the one discussed in this chapter.
With the result given in table 6.1, analysis of network (N6.1) together

with (N6.2) becomes quite interesting. Two questions arise: first, is the
approach of the previous chapter applicable to (bio-) chemical reaction net-
works as motivated by section 3.2.2 and second, if so, does the approach
presented in the previous chapter exhibit the same solutions as provided by
the toolbox. If so, results using the approach of the previous chapter could
yield a parametrization for the overall multistationarity region and not just
one pair. It might furthermore provide an algorithm applicable to general
(bio-) chemical reaction networks, where the previous chapter might not
yield solutions, e. g., cases where providing all sign vectors is not possible
or further restrictions appear.

6.2 multistationarity

The twelve reaction networks in (N6.1)+(N6.2) give rise to a set of ordinary
differential equations, see equation (6.1), and conservation relations, equa-
tion (6.4). These networks can now be checked for existence of multiple
steady states similar to the approach introduced in the previous chapter
and the ones introduced in [19] and [49]. Detailed steps are again given
for network (N6.1)+(N6.2a1). A short form of the solution algorithm can
be found in appendix B.2 for all remaining networks, results for all twelve
networks are presented at the end of this section.
Again, the existence of two distinct steady states a and b is assumed such

that the polynomial condition

Nv(k,a) = 0 Nv(k,b) = 0

and the coset condition in (6.4) from Definition 2.4

〈wj, b− a〉 = 0, with j = 1, 2 (6.6)

hold. In a first step, the polynomial condition will be solved and a gen-
eral algorithm provided to solve such systems. In a second step, the coset
condition is considered.

6.2.1 Solution Algorithm for the Polynomial Condition

The theorem of the previous chapter and the solution approach introduced
in [19] and [49] are extended to network (N6.1)+(N6.2a1).

Algorithm 6.1. [Solution Algorithm for the Polynomial Condition.] The
polynomial condition

Nv(k,a) = 0 Nv(k,b) = 0 (6.7)

exhibits solutions, if

v(k,a) ∈ int
(
ker(N) ∩ R

16
>0

)
, v(k,b) ∈ int

(
ker(N) ∩ R

16
>0

)
. (6.8)
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This system can be rewritten in terms of the elements of the rate exponent
matrix with

v(k,a) = Eλ and v(k,b) = Eν, λ,ν ∈ R
9
>0, (6.9)

and thus

ki a
yi = ǫi λ, ki b

yi = ǫi ν,

with i = 1, . . . , 16 and ǫi denoting row vectors of E, see equation (6.5). Thus,
by introducing µ = ln b

a the following equation can be given:

YT µ = ln
Eν

Eλ
. (6.10)

In contrast to the former chapter, compare equation (5.6) on page 38 with
equation (6.5), the cone E is not of a block-diagonal form with zeros in
the upper right and lower left corner. Thus, λl are constrained in a more
complex way then before, see the two examples on page 76. If the λl are
unconstrained, equation (6.10) yields

YT µ = Πκ (6.11)

→ µ = M κ̃. (6.12)

If they are constrained nonlinear inequalities for linear constraints in λl can
be given by:

Q(κ̃) λ̃ = 0, with λ > 0 for a subvector λ̃ of λ. (6.13)

Solvability of equation (6.13) implies solvability of equation (6.8). Vectors
κ, κ̃ and λ̃ will be motivated on the following pages. If κ̃ ∈ K can be
found, a homogeneous Q(κ̃) λ̃ with λ > 0 can be given and solutions to the
polynomial condition 6.7 can be found.

Remark 6.2. Note, the polynomial condition of section 5.2.1 and its solution
approach via Theorem 5.2 describes a special case of this algorithm, where
no additional linear constraints on λl can be found.

Remark 6.3. The solution algorithm provided here is independent of the
considered phosphorylation network. It can be applied to arbitrary (bio-)
chemical reaction networks, where mass action kinetics are applied.

6.2.2 Application of the Solution Algorithm to Network (N6.1)+(N6.2a1)

Equation (6.10) for network (N6.1)+(N6.2a1) can be given by:

µ1 +µ2 = ln
ν1 + ν3 + ν5 + ν9

λ1 + λ3 + λ5 + λ9
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν5 + ν9

λ3 + λ5 + λ9
(6.14a)

µ3 +µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3
(6.14b)

0 = ln
ν4 + ν5 + ν9

λ4 + λ5 + λ9
µ2 = ln

ν4

λ4
µ5 = ln

ν5

λ5
(6.14c)

µ1 +µ5 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
µ7 = ln

ν6

λ6
µ7 = ln

ν8 + ν9

λ8 + λ9
(6.14d)

µ3 +µ8 = ln
ν7 + ν8

λ7 + λ8
µ9 = ln

ν7

λ7
µ9 = ln

ν8

λ8
(6.14e)

µ8 = ln
ν9

λ9
(6.14f)
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Due to the structure of these equations, compare again the structure of the
cone E in equation (6.5), dependencies occur between individual expressions
reducing the number of parameters. E. g., the following linear constraints
can be found due to the present E(1) in E at the first main diagonal block
for equation (6.14b):

µ6 = ln
ν2

λ2
= ln

ν3

λ3
.

Thus,

ν2

λ2
=

ν3

λ3
→ ν2 =

ν3 λ2
λ3

yields also

ln
ν2 + ν3

λ2 + λ3
= ln

ν3 λ2
λ3

+ ν3

λ2 + λ3

= ln
ν3

λ3

λ2 + λ3
λ2 + λ3

= ln
ν3

λ3

and thus, the linear constraint in µ can be given by:

µ6 = µ3 + µ5

reducing the number of variables. The same holds true for the more com-
plex equations, i. e., linear constraints arise due to the additional column
vectors at the fourth, fifth and ninth position in E. E. g., equation (6.14a):

µ4 = ln
ν1

λ1
= ln

ν3 + ν5 + ν9

λ3 + λ5 + λ9

→ ln
ν1

λ1
= ln

ν1 + ν3 + ν5 + ν9

λ1 + λ3 + λ5 + λ9

→µ1 + µ2 = µ4

Together with the two remaining equations

ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
= ln

ν6

λ6
= ln

ν8 + ν9

λ8 + λ9

ln
ν7 + ν8

λ7 + λ8
= ln

ν7

λ7
= ln

ν8

λ8

the following linear constraints occur:

µ1 = µ4 − µ2, µ1 = µ7 − µ5,

µ3 = µ6 − µ5, µ3 = µ9 − µ8.

And thus

µ4 − µ2 = µ7 − µ5, µ6 − µ5 = µ9 − µ8. (6.15)

No further constraints of this kind can be found.
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To solve equation (6.10) a vector κ ∈ R
7 is introduced:

κ1 := ln
ν1

λ1
(6.16a)

κ2 := ln
ν2

λ2
(6.16b)

κ3 := ln
ν4

λ4
(6.16c)

κ4 := ln
ν5

λ5
(6.16d)

κ5 := ln
ν6

λ6
(6.16e)

κ6 := ln
ν7

λ7
(6.16f)

κ7 := ln
ν9

λ9
(6.16g)

where due to equation (6.15)

κ5 = κ1 −κ3 +κ4, κ7 = −κ2 +κ4 +κ6. (6.17)

Thus

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = exp(κ3) λ4

ν5 = exp(κ4) λ5 (6.18)

ν6 = exp(κ5) λ6 → ν6 = exp(κ1 −κ3 +κ4) λ6

ν7 = exp(κ6) λ7 ν8 = exp(κ6) λ8

ν9 = exp(κ7) λ9 → ν9 = exp(−κ2 +κ4 +κ6) λ9

Whereas equation (6.14b), (6.14e) and (6.14f) yield independent λl, some
equations in (6.14) pose constraints on λl, e. g., via equation (6.14a):

κ1 = ln
ν3 + ν5 + ν9

λ3 + λ5 + λ9
. (6.19a)

The same holds for equation (6.14c):

0 = ln
ν4 + ν5 + ν9

λ4 + λ5 + λ9
, (6.19b)

and equation (6.14d):

κ1 −κ3 +κ4 = ln
ν8 + ν9

λ8 + λ9
. (6.19c)

Using equation (6.18) these three expressions can be rewritten:

0 = (exp(κ2) − exp(κ1)) λ3 + (exp(κ4) − exp(κ1)) λ5

+ (exp(−κ2 +κ4 +κ6) − exp(κ1)) λ9 (6.20a)

0 = (exp(κ3) − 1) λ4 + (exp(κ4) − 1) λ5

+ (exp(−κ2 +κ4 +κ6) − 1) λ9 (6.20b)

0 = (exp(κ6) − exp(κ1 −κ3 +κ4)) λ8

+ (exp(−κ2 +κ4 +κ6) − exp(κ1 −κ3 +κ4)) λ9 (6.20c)
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Recall, algorithm 6.1 only poses sign conditions on λl. Thus, equation (6.20)
does not have to be solved for explicit expressions of λl. Solutions satisfying
λl > 0 are sufficient for algorithm 6.1.
To provide solutions for algorithm 6.1 the independent κk and dependent

λl, i. e., those that do not appear on the left hand side of equation (6.17) and
those, that appear in equation (6.20) respectively, are collected in vectors
κ̃ ∈ R

5 and λ̃ ∈ R
5
>0:

κ̃ =
[
κ1 κ2 κ3 κ4 κ6

]T
, (6.21)

λ̃ =
[
λ3 λ4 λ8 λ5 λ9

]T
. (6.22)

The solution of equation (6.11) to equation (6.10) can be given by:

µ := M κ̃

with M ∈ R
9×5

M =




1 0 −1 0 0

0 0 1 0 0

0 1 0 −1 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

1 0 −1 1 0

0 −1 0 1 1

0 0 0 0 1




. (6.23)

Note again, vectors and matrices are given for network (N6.1)+(N6.2a1).
And solutions for remaining networks (N6.1)+(N6.2) can be found in ap-
pendix B.2.

The first part of algorithm 6.1, finding a solution to µ, is done. The remain-
ing part of finding expressions or rather sign conditions on expressions for
κk in equation (6.20) is discussed now, yielding a solution to equation (6.13).
To derive expressions for κk yielding λl > 0, equations in (6.20) are rewrit-

ten using a shorter notation. As only positivity of λl is required, variables
qij are introduced for each block of (exp() − exp()) in equation (6.20):

0 = q11 λ3 + q12 λ5 + q13 λ9, (6.24a)

0 = q21 λ4 + q22 λ5 + q23 λ9, (6.24b)

0 = q31 λ8 + q32 λ9, (6.24c)

yielding linear equations in λl. To compute λ̃ while guaranteeing positivity
of λl, signs of qij have to be computed, shifting the nonlinear problem
of equation (6.13) to a linear inequality problem of sign conditions. For
example, if λ8, λ9 > 0 is desired for equation (6.24c), then either q31 > 0,
q32 < 0 or q31 < 0, q32 > 0. Thus, the arising system of inequalities has to
be solved only in a qualitative manner. Signs are collected in a sign matrix
Q ∈ R

3×5 of elements qij in the following form

Q =



q11 0 0 q12 q13

0 q21 0 q22 q23

0 0 q31 0 q32


 (6.25)
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with

Q λ̃ = 0 for λ̃ ∈ R
5
>0. (6.26)

Each element qij of Q can be smaller, equal or larger then zero resulting in
a sign pattern {+, −, 0} for each qij.
Without loss of generality, a matrix K ∈ R

8×5 of sign patterns is chosen
for equation (6.20) and can be given by:

K =




−1 1 0 0 0

−1 0 0 1 0

−1 −1 0 1 1

0 0 1 0 0

0 0 0 1 0

0 −1 0 1 1

−1 0 1 −1 1

−1 −1 1 0 1




, (6.27)

where elements qij of Q are such that

qij = K exp(κ̃) (6.28)

and

sgn(q) = sgn(K κ̃),

with q a vector of composed elements of qij, with i = 1, . . . , n, j = 1, . . . , m:

q = [q11 . . . q1m . . . qi1 . . . qim . . . qn1 . . . qnm]T ,

q = col(qi). (6.29)

The matrix K is referred to as a sign matrix.

Remark 6.4. If Q has more than three entries in one row, compare equa-
tion (6.25), no definite solution can be found, as inequalities of sums of at
least four elements have to be solved, see as well Lemma 6.6 or section 6.3
further on.

To find all valid signs for Q, the matrix K is examined first row wise,
corresponding to a stepwise testing of various sign conditions for positivity
of λ̃ and thus, corresponding to the three equations in (6.24). In a second
step, a column wise inspection of K is done, to check for contradictions that
might arise between single equations in (6.24) while choosing qij.
The stepwise testing is done in the following way: first, composed ele-

ments of {+, −, 0} are chosen as a sign for qij in Q. But, as only certain
combinations of these signs yield λ̃l > 0, the maximal possible number of
patterns is reduced in advance. I. e., if a row qi of Q contains only two
entries qij, in total a maximum of nine possible sign pattern arise:

{

+
+
, +
−
, −
+
, −
−
, 0
+
, 0
−
, +
0
, −
0
, 0
0

}

.
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But only three of these nine sign conditions yield λ̃l > 0:
{

+
−
, −
+
, 0
0

}

.

Note, these signs provide λ̃l > 0 for individual rows of Q, but do not check
for contradictions between these rows. Also note, if one sign pattern is valid,
its sign-inverse is also valid.
If a row qi contains three entries, e. g., equation (6.24a) or (6.24b), thirteen

of the arising 27 sign combinations yield λ̃i > 0, compare also the signs
in (5.36) on page 44:

{
+
0
−
,
+
−
0
,
−
+
0
,
−
0
+
,
0
+
−
,
0
−
+
,
0
0
0
,
+
+
−
,
+
−
+
,
+
−
−
,
−
+
+
,
−
+
−
,
−
+
+

}

.

To provide all valid sign patterns for Q and K, all possible signs for rows qi

have to be combined.1 As equations in (6.24) are composed of one equation
containing two qij and two equations contain three, in total 3 · 132 = 507

possible sign patterns have to be checked for network (N6.1)+(N6.2a1).
Testing which sign patterns for qij may arise, the set of all possible sign

patterns is tested and valid ones are collected in a vector σ ∈ {+, −, 0}8

with2:

sgn(q) =
{

σ ∈ {+, −, 0}8 | ∃ κ̃ with sgn(q(κ̃)) = sgn(K κ̃) = σ
}

.

(6.30)

If such a σ = sgn(q) exists, then, each equation defined by a row vector of
Q is feasible:

Q(i, j) λ̃ = 0, λ > 0

All valid σ are collected in a matrix Σ ∈ {+, −, 0}8×m with

Σ = [σ1, . . . , σm] (6.31)

with 0 6 m 6 507 for network (N6.1)+(N6.2a1). If no valid σ can be found,
the network excludes multistationarity.
This concludes the first step of computing all possible sign patterns. In a

second step, contradiction between individual signs of qij fixing the sign of
κl have to be checked. Up till now, choosing a κ̃ such that sgn(K κ̃) = σ for
some σ ∈ δ generates feasibility of Q(i, j) λ̃ = 0, λ̃ > 0, but does not have to
hold simultaneously for the system Q λ̃ = 0, λ̃ > 0.

Example 6.5. Additional conditions on κl might occur: combining {+, +, −}

for the first row with either {+, −, +} or {+, −, −} for the second one in
equation (6.24) poses additional restrictions, see example 6.8 and 6.9 later
on.

In more general terms, independent of the networks considered in (N6.2)
and the structure in Q for network (N6.1)+(N6.2), the following necessary
condition can be posed:

6.1 Matrix K in equation (6.27) describes only one possible matrix of sign patterns, various other
matrices are possible as well.

6.2 Note, the length of the vector σ corresponds to the number of qij in Q.
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Lemma 6.6. [Computation of Sign Patterns σ.] A system of equations Q λ̃ = 0

for λ̃ > 0 with

Q =




q11 0 0 q12 q13

. . .
...

...

qi1

...
... qi2 qi3

. . .
...

...

q(n−1)1 0 q(n−1)2 q(n−1)3

0 0 qn1 0 qn3




, (6.32)

with i = 1, . . . , n and λ̃ = [λ1, . . . , λn, λp−1, λp]T can be solved if and only if
the matrix Q of rows qi obeys the following sign conditions:

(A) In the bilinear case, i. e., qi = [qi1 qi3]
T with Q ∈ R

n×(n+1) and λ̃ =

[λ1, . . . , λn, λp]T each row can contain either of the following three sign

patterns:

qi1
qi3

{

+
−
, −
+
, 0
0

}

(6.33)

such that

λi qi1 + λp qi3
!
= 0. (6.34)

has a positive solution λi and λp.

(B) In the trilinear case, i. e., qi = [qi1 qi2 qi3]
T with Q ∈ R

n×(n+2) and

λ̃ = [λ1, . . . , λn, λp−1, λp]T each row can contain either of the following
thirteen sign patterns:

qi1
qi2
qi3

{
+
0
−
,
+
−
0
,
−
+
0
,
−
0
+
,
0
+
−
,
0
−
+
,
0
0
0
,
+
+
−
,
+
−
+
,
+
−
−
,
−
+
+
,
−
+
−
,
−
+
+

}

(6.35)

such that

λi qi1 + λp−1 qi2 + λp qi3
!
= 0. (6.36)

has a positive solution λi, λp−1 and λp. The condition λ̃ > 0 yields for each

row qi of Q

1

qi1

[
qi2 λp−1 + qi3 λp

] !
< 0

for qi1 6= 0. Rearranging yields

sgn(qi1)

|qi1|

[
sgn(qi2) |qi2| λp−1 + sgn(qi3) |qi3| λp

]
< 0

→ sgn(qi1) sgn(qi2) λp−1 < −sgn(qi1) sgn(qi3)
|qi3|

|qi2|
λp (6.37)

if qi1, qi2 6= 0. Equation (6.37) has to hold to guarantee positivity for all λ̃.

(C) For further cases see Remark 6.4.
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Remark 6.7. Combining different sign patterns in various ways might yield
additional conditions. E. g., having two rows qi and qk, with three en-
tries in the i-th row and and two entries in the k-th row, does not yield
additional conditions on the q’s while choosing the first column of signs
of (6.35) for each row q in Q. But combining different sign patterns might.
Here, not only combinations within the same column, i. e., the same sign
vector of (6.35) for corresponding entries in rows in Q, but also combina-
tions of different columns can yield additional constraints. Two examples
are chosen respectively to elucidate the arising constraints.

Example 6.8. Consider in the case of interest of matrix Q in equation (6.25)
for network (N6.1)+(N6.2a1) two rows qi and qk with 1 6 i 6 n− 1, 2 6

k 6 n and i 6= k, containing three and two elements respectively:
[
qi1 qi2 qi3

0 qk1 qk3

]

and a corresponding λ̃

[
λj λp−1 λp

]T
,

for j = 1, . . . , n with the following signs

sgn
([

qi1 qi2 qi3

])
=

{

+ + −

}

and

sgn
([

qk1 qk3

])
=

{

+ −

}

.

Thus

λj = −
qi2

qi1
λp−1 +

|qi3|

qi1
λp

!
> 0

λp−1 =
|qk3|

qk1
λp

!
> 0

Thus, the additional sign restriction

qi2 qk3

qj1
< qi3

for qi1 > 0 appears.

Example 6.9. Consider the same matrix Q and vector λ̃ as in example 6.8
with a different setup of signs

sgn
([

qi1 qi2 qi3

])
=

{

+ + −

}

and

sgn
([

qk1 qk3

])
=

{

− +

}

.

These conditions result in a reversed pattern for final values in q:

qi2 qk3

qk1
> qi3

for qi1 > 0 appears.
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Recall equation (6.24) and the discussion on page 80 on the number of
possible sign patterns. For network (N6.1)+(N6.2a1) in total 13 · 13 · 3 = 507

possible sign patterns σ can be found. Each σ defines a linear inequality
system

diag(σ)K κ̃ > 0.

All valid sign matrices K for valid σ are collected in the set of sign matrices
K, such that:

sgn(K κ̃) = σ. (6.38)

Knowing K from equation (6.27), only valid σ have to be given to provide
all valid sign matrices collected in K. With a valid σ a vector κ̃ ∈ R

5 and
a matrix Q ∈ R

3×5 can be given. If a valid κ̃ can be found, such that
Q(κ̃) λ̃ has a solution, then a solution for µ can be given by equation (6.12).
Thus, steady states satisfying the polynomial system posed by the ordinary
differential equations can be given by:

ai = āi

bi = ai exp(µi)

for i = 1, . . . , 3n + 3. Here, µ is dependent on κ̃ satisfying sign patterns
collected in K. Furthermore, the vector of rate constants can be derived
again in terms of a and λ according to equation (6.9):

k = diag
(
Φ(a−1)

)
Eλ. (6.39)

Recall, certain entries in λ are not independent, compare equation (6.22).
The same overall solution algorithm 6.1, described in detail in this section,

can be applied to the remaining network setups. The overall structure of Q
and K stays the same in accordance to lemma 6.6. But the size and entries
change. General results are given after the next section, detailed ones can
be found in appendix B.2 for missing networks (N6.1)+(N6.2).
The solution to the cosed condition is discussed in the next section.

6.2.3 The Coset Condition

For steady states to satisfy not only the polynomial condition posed by the
ordinary differential equations but also the coset condition, compare sec-
tion 5.2.2, a sign condition posed by s = b− a ∈ im(N) and µ = ln b

a arises.
Here, µ has to satisfy also conditions posed by κ̃. Thus, the following sign
conditions have to hold for equations (6.12), (6.38) and (6.6) respectively:

M κ̃− diag(δ) ζ1 = 0

K κ̃ − diag(σ) ζ2 = 0

WTdiag(δ) ζ3 = 0

(6.40)

with ζ1, ζ2, ζ3 > 0. Valid sign vectors δ and sign patterns σ are referred
to as valid sign combinations for the reaction network. The algorithm pro-
vided by [58] can be extended to include also the sign patterns collected
in K: instead of checking only M, W and δ, the system in equation (6.40)
has to be checked. Thus, every possible sign pattern, i. e., all solutions to
equation (6.38), are tested in combination with every possible sign vector δ,
either 33n+3 for the ternary set of δ ∈ {+, −, 0} or 23n+3 for the binary set
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of δ ∈ {+, −}, yielding not only a desired δ but also valid sign patterns for
K via σ, recall equation (6.30) and thus, enabling multistationarity.
Note, one sign pattern σ can be valid for several sign vectors δ. Also, if

a certain σ and δ is given, the corresponding sign-inverse −σ and −δ are
valid sign combinations as well.

Using the algorithm provided by [58] to test for valid sign combinations,
in total 23 sign vectors can be found for network (N6.1)+(N6.2a1). All δi
for δ ∈ {+, −, 0}9 are collected in ∆ ∈ {+, −, 0}9×23, and all σi for σ ∈

{+, −, 0}8 are collected in Σ ∈ {+, −, 0}8×23:

∆T =




−1 −1 −1 −1 1 −1 1 1 1

−1 1 −1 1 1 1 −1 −1 −1

−1 1 −1 1 1 1 −1 −1 −1

−1 1 −1 1 1 1 −1 −1 −1

−1 1 0 1 1 1 −1 −1 −1

−1 1 1 1 −1 1 −1 −1 −1

−1 1 1 1 0 1 −1 −1 −1

−1 1 1 1 1 1 −1 −1 −1

−1 1 1 1 1 1 −1 −1 −1

−1 1 1 1 1 1 −1 −1 −1

0 −1 −1 −1 1 −1 1 1 1




(6.41)

Given is only half of the set with the remaining half being the sign inver-
sion of the first and the vector δ23 = 0 being the last valid sign vector.
Furthermore, 23 sign patterns σ for K can be found for each sign vector,
respectively:

ΣT =




−1 1 1 −1 1 1 −1 1

0 1 −1 1 1 −1 −1 1

1 1 −1 1 1 −1 −1 1

−1 1 −1 1 1 −1 −1 1

1 1 −1 1 1 −1 0 0

1 −1 −1 1 −1 −1 1 −1

1 −1 −1 1 0 −1 1 −1

1 0 −1 1 1 −1 1 −1

1 1 −1 1 1 −1 1 −1

1 −1 −1 1 1 −1 1 −1

−1 1 1 −1 1 1 −1 1




(6.42)

Again, only half of the valid set of σ is given, sign patterns for the inverted
half of sign vectors can be computed by σ(δ) = −σ(δ). As the same sign
pattern σ can be valid for various δ, some doubling entries can be found.
For example the eleventh sign pattern, σ11, corresponds to the first, σ1.3

Each of these 23 sign vectors δ together with its corresponding sign pat-
tern σ can be used to compute steady states a and b. As in section 5.2.2
the sign vector is used to computed cones where sgn(s) = sgn(µ). Here

6.3 Note, additional conditions on choosing λ̃l might occur, when a certain sign vector
is chosen. For example, δ15, as the fifteenth row vector in ∆, yields with σ15 =

[−1 1 1 − 1 − 1 1 − 1 1] the additional condition 0 <
q23

q13
. Other sign vectors

do not have to impose additional conditions on λl, for example δ8.
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only the corresponding cone ES to s is used as µ is defined by κ̃, recall
equation (6.12):

µ = M κ̃,

s = ES β,
(6.43)

where κ̃ satisfies equation (6.13) and sgn(µ) = sgn(s). The computation of a
and b then follows the same algorithm as in equation (5.50) in section 5.2.2.

ai =







si
exp(µi)−1

, if µi 6= 0

āi > 0, if µi = 0

bi = ai exp (µi)

for i = 1, . . . , 9. Furthermore, rate constants can be given by

k = diag
(
Φ(a−1)

)
λ

corresponding to equation (5.31) and λ̃ restricting some elements of the vec-
tor λ, see equation (6.22). An example for steady states is given in the next
section.
Results for remaining networks can be found in appendix B.2. Table 6.2

gives an overview on the number of all possible sign vectors δ ∈ {+, −, 0},
and all possible sign patterns σ ∈ {+, −, 0}, as well as the actual number
of valid sign vectors δ and unique valid sign patterns σ. If the number of
sign patterns σ is lower than the number of sign vectors δ, then certain σ

are valid for several δ, see as well solutions in appendix B.2.
As valid σ and δ can be given for some of the phosphorylation networks

in (N6.1)+(N6.2), they can indeed exhibit multiple steady states: They ex-
hibit multiple steady states if and only if the kinase is not synthesized or
degraded together with synthesis, but not degradation of the unphosphory-
lated protein. The two remaining cases, i. e., the kinase is synthesized and
degraded, and the unphosphorylated protein is only synthesized, do not
yield multiple steady states but only one, see page 167 in appendix B.2. In
accordance to table 6.1 all but networks (N6.1)+(N6.2b3) and (N6.1)+(N6.2b4)
yield multiple steady states. Additionally to the results given by the CRNT
toolbox, a parametrization for the steady states can be given in terms of a,
b and k. An example for network (N6.1)+(N6.2a1) will be discussed in the
next section.

Remark 6.10. Algorithm 6.1 shifts the nonlinear problem in equation (6.7)
in such a way, that solutions to a linear problem in equation (6.12) together
with a nonlinear inequality problem in equation (6.13) have to be solved.
Lemma 6.6 provides necessary conditions on (6.13), such that a linear prob-
lem is provided in equation (6.12) together with sign patterns provided in
equation (6.30). This approach is applicable for (bio-) chemical reaction net-
works of mass action kinetics, and if Remark 6.4 is not valid, the system
can be checked for multistationarity and, if present, a parametrization is
provided

The Algorithm 6.1 together with Lemma 6.6 does not only confirm results
by the CRNT toolbox, see table 6.1, but also provides a parametrization of
the whole multistationarity region for networks allowing multistationarity.
The next section provides an example for the parametrization. Note, the

parametrization of steady states in section 5.4.2 could be applied here, see
Remark 5.15, to provide parameters in desired intervals.
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Table 6.2: Overview on number of (valid) sign vectors δ and (valid) sign patterns σ for

all synthesis and/or degradation networks in (N6.1)+(N6.2) yielding steady states. The

upper blocks provide the maximum number of valid sign vectors and sign patterns. The

actual number of valid sign vectors together with valid sign patterns is given in the lower

blocks. Note, the zeros in the middle right part indicate systems exhibiting at most one

steady state but not multiple steady states. Furthermore, δ = 0 is neglected in this table

as it is a valid result for all twelve networks and results only in systems exhibiting one

steady state.

(N6.1)+ (N6.2a1) (N6.2a2) (N6.2a3) (N6.2a4)

max #(σ) 507 27 117 9

max #(δ) 19683 19683 19683 19683

#σ 20 8 12 2

#δ 22 14 54 2

(N6.1)+ (N6.2b1) (N6.2b2) (N6.2b3) (N6.2b4)

max #(σ) 507 27 117 9

max #(δ) 19683 19683 19683 19683

#σ 2 2 0 0

#δ 2 2 0 0

(N6.1)+ (N6.2c1) (N6.2c2) (N6.2c3) (N6.2c4)

max #(σ) 39 9 9 3

max #(δ) 19683 19683 19683 19683

#σ 2 2 2 2

#δ 2 2 2 2

6.2.4 Steady States and Bifurcation Analysis

To compute steady states for network (N6.1)+(N6.2a1) the conditions on κi

via κ̃ in (6.12) have to be fulfilled. For example, the eighth sign vector δ8
in (6.41) together with its corresponding sign pattern σ8 in (6.42) are chosen:

δ8 =
[
−1 1 1 1 1 1 −1 −1 −1

]T
,

σ8 =
[
1 0 −1 1 1 −1 1 −1

]T
.

As only the sign itself is specified, different κi can be chosen to compute
valid µ. All κi for σ8 are arbitrary, but nonzero. They are chosen in a range
of [−1, 1]\{0} and values for each entry are chosen in a basic form according
to the condition given, for example:

κ̃ =
[
0.25 0.75 0.6 0.25 −0.05

]T
.
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The vector β, equation (6.43), is needed to compute values for s. These are
generated as previously in terms of uniformly distributed pseudo random
numbers in (0, 1):

β = [0.995319, 0.261444, 0.725198, 0.342727, 0.114304, 0.44888,

0.376883]T .

Recall, α is not needed, as µ is computed in terms of κi via equation (6.43).
Thus κ̃ and β yield for δ8 and σ8 of network (N6.1)+(N6.2a1)

µ = [−0.35, 0.6, 0.5, 0.25, 0.25, 0.75, −0.1, −0.55, −0.05]T ,

s = [−0.0123, 0.9867, 0.2729, 0.4384, 0.0625, 0.1866,

−0.4261, −0.9145, −0.4595]T .

Where sgn(µ) = sgn(s). Furthermore, the vector λ is computed as uniformly
distributed pseudo random numbers in (0, 10) besides elements appearing
in λ̃, see equation (6.22), the free λi in λ̃ are set to “1”, i. e., λ5 and λ9:4:

λ = [0.241468, 2.19095, 2.06396, 0.16911, 1, 2.51463,

3.90448, 7.06776, 1]T

Thus steady states can be computed in the standard way as posed by equa-
tion (5.50) on page 53:

a = [0.0417865, 1.20012, 0.420632, 1.54353, 0.22009, 0.167043,

4.47721, 2.16173, 9.42084]T ,

b = [0.0294465, 2.18677, 0.693504, 1.98194, 0.282601, 0.353631,

4.05115, 1.24721, 8.96138]T ,

with the total concentration given by

c = [6.06253, 10.0085]T ,

and the parameter vector set to:

k = [111.607, 1.78042, 1.84567, 111.215, 56.5543, 5.08165,

2.16911, 0.140907, 4.5436, 1292.83, 0.853689, 1.80196,

12.1026, 0.417902, 0.750226, 0.462592]T .

Furthermore the eigenvalues for the steady state a are given by:

[−37.1519, −21.2114, −13.5008, −10.8353, −2.38677,

−0.252575+ 0.111824 · i, −0.252575− 0.111824 · i, 0, 0]

Note, two zero eigenvalues occur due to the conservation relation.
Bifurcation analysis for change of total concentration in either c1 = [K]tot

or c2 = [P]tot yields s-shaped curves with two stable branches and one
unstable one in the middle, see figure 6.1 as well as figure 6.2, respectively.

6.4 If there is more than one free λi in λ̃ but additional conditions occur on remaining λj’s, the
free ones are set to “1” and the other λj’s are set to a value satisfying the condition posed by
Q.
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Figure 6.1: Bifurcation analysis for change of total kinase concentration c1: concentration of

unphosphorylated protein, x2 = [A] (left hand side), and double phosphorylated protein,

x8 = [APP] (right hand side), over total concentration of kinase, c1 = [K]tot, resulting

in two limit points.
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Figure 6.2: Bifurcation analysis of unphosphorylated protein concentration, x2 = [A] (left

hand side), and double phosphorylated protein concentration, x8 = [APP] (right hand

side), over total concentration of phosphatase, c2 = [P]tot, resulting in two limit points.

6.3 an excursion towards larger networks

As the protein Sic1 can actually be phosphorylated on nine sites, where no
actual significance of different phosphorylation sites could be distinguished
(c. f. see [73]), it is of interest whether the actual number of phosphorylation
steps plays an important role. Or if phosphorylation of six sites is enough
to trigger degradation of Sic1 after an ubiquitinase binds to the six times
phosphorylated form of Sic, see [24]. The following questions arise:

• Why are six phosphorylation sites necessary but also already sufficient
to trigger degradation of Sic1 and not five or seven?

• Why are there nine phosphorylation sites? Which role do the last three
phosphorylation sites play?

• Why are there at all that many phosphorylation sites? A phosphoryla-
tion network of only two steps could yield similar results, where the
binding of the ubiquitinase occurs already at the double phosphory-
lated form.

Modeling only two phosphorylation steps including synthesis and degrada-
tion of proteins and/or enzymes is not sufficient to model the whole mech-
anism behind Sic1 and find answers to the questions above. This double
phosphorylation describes only a reduced form, where the double phos-
phorylated form corresponds to the sixth (and higher) phosphorylated pro-
tein, the unphosphorylated protein corresponds to the unphosphorylated
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protein in the large network, and the single phosphorylated protein corre-
sponds to all in-between proteins, see also section 3.2.2. But, this reduced
model describes, in a nice form, phosphorylation and additional synthesis
and/or degradation of different proteins. Still, as the number of phospho-
rylation sites seems to be important, an outlook towards larger networks is
given in this section. Here, further cases are considered, containing nine
phosphorylation steps of Sic1 and synthesis and/or degradation of higher
phosphorylation forms.

A small remark in advance: matrices M and Q can be computed for these
network setups. But, here a matrix K is not provided as Q falls in the range
of remark 6.4. And thus, no conclusions on existence of multistationarity
can be drawn here. Still, a general discussion is provided, as solutions could
be provided for an explicit network using a suitable solver and multistatio-
narity might be established for this explicit system.
Thus, a solution for Algorithm 6.1 is presented here, but no solution to

Lemma 6.6, as Q λ̃ = 0 for λ̃ > 0 has not been solved at present. Using
suitable solvers, solutions to the lemma could be given.

6.3.1 Modeling of a Large Phosphorylation Network Including Synthesis and

Degradation

While modeling phosphorylation of Sic1 different scenarios are possible.
First, different scenarios for synthesis and/or degradation of the protein
and enzymes are possible. Second, there are also various forms for degra-
dation of the different phosphorylation states of the protein. For example
only degradation of fully phosphorylated or various combinations of degra-
dation of intermediate phosphorylation forms could be possible.
One focus lays on degradation of all phosphorylation-forms of the pro-

tein. This case is modeled as it includes also the remaining cases where, for
example, the fully phosphorylated protein can be degraded besides the un-
phosphorylated one. Of course, if the former algorithm to compute multiple
steady states is used, matrix sizes change with the considered network form,
e. g., degradation of only the six-times phosphorylated form or all from six
to nine. But, considering the maximal case should suffice, general results
are given below.
Assume that phosphorylation

K+A GGGBF GGG AKGGGA K+AP GGGBF GGG APKGGGA K+APP GGGBF GGG · · ·

· · · GGGBF GGG A7PKGGGA A8P +K GGGBF GGG A8PKGGGA A9P +K
(N6.3a)

and dephosphorylation

A9P + P GGGBF GGG A9PPGGGA A8P + P GGGBF GGG A8PPGGGA · · ·

· · · GGGA P+APP GGGBF GGG APPPGGGA P +AP GGGBF GGG APPGGGA P +A
(N6.3b)

follow the standard approach of distributive, sequential phosphorylation.
In a first scenario, synthesis and degradation of enzymes are not allowed.

Further network setups can include synthesis and degradation of the en-
zymes in various forms, see left hand sides of networks (N6.2). Furthermore,
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synthesis and degradation of the protein itself are possible in different sce-
narios with

AD GGG 0

APGGGA 0 A2PGGGA 0 · · · A8PGGGA 0 A9PGGGA 0
(N6.4)

being the maximal one. Other scenarios include degradation of only the
fully phosphorylated form or gradually allowing degradation of further
phosphorylation forms up to the fully phosphorylated form, for example
not allowing degradation of AP in a second scenario. These would corre-
spond to gradually approaching the actual mechanism of Sic1, where only
the phosphorylated forms of n > 6 are degraded.

6.3.2 Network Description

The network is again labelled in the same ascending manner. The stoichio-
metric matrix for nine phosphorylation steps can be given by:

N =




n11 n12 n12 · · · n12 n12

n21 n22 0 · · · 0

0 n31 n22

n31
. . .
. . . n22 0

n31 n22

0 0 n31




,

with N ∈ R
30×64 and

n11 =




0 −1 1 1 0 0 0 0

1 −1 1 0 0 0 1 0

0 0 0 0 −1 1 1 0


 ,

n12 =



−1 1 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −1 1 1 0


 ,

n21 =




0 1 −1 −1 0 0 0 0

0 0 0 1 −1 1 0 −1

0 0 0 0 1 −1 −1 0


 ,

n22 =




0 0 0 0 0 0 0

−1 1 0 0 0 1 0

0 0 0 0 0 0 0


 ,

n31 =




1 −1 −1 0 0 0 0

0 0 1 −1 1 0 −1

0 0 0 1 −1 −1 0


 .

Submatrices n12, n22 and n31 appear in total eight times to build the stoi-
chiometric matrix for nine phosphorylation steps.



6.3 an excursion towards larger networks 91

Furthermore, the rate exponent matrix Y ∈ R
29×54 and the educt matrix

Ỹ ∈ R
29×48 can be given by:

Y = [0 e1 + e2 e4 e4 e3 + e5 e6 e6 e5

e1 + e5 e7 e7 e3 + e8 e9 e9 e8 · · ·

e1 + e3i−1 e3i+1 e3i+1 e3 + e3i+2 e3i+3 e3i+3 e3i+2 · · ·

e1 + e26 e28 e28 e3 + e29 e30 e30 e29] ,

Ỹ = [e2 e1 + e2 e4 e1 + e5 e6 e3 + e2 e5 e7

e1 + e8 e3 + e8 e9 e8 · · ·

e3i+1 e1 + e3i+2 e3 + e3i+2 e3i+3 e3i+2 · · ·

e28 e1 + e29 e3 + e29 e30 e29] .

Considering only the phosphorylation network (N6.3) with synthesis and
degradation as in network (N6.4), the total concentration of the two enzymes
K and P is constant yielding two conservation relations:

w1 =
[
1 0 0 | 1 0 0 | · · · | 1 0 0

]T
,

w2 =
[
0 0 1 | 0 0 1 | · · · | 0 0 1

]T
,

where both vectors are of length 30.
The given matrices are sufficient to continue with multistationarity analy-

sis following Algorithm 6.1 on page 74.

6.3.3 Multistationarity Analysis

To solve for multiple steady states a and b, the Algorithm 6.1 is used to
solve equation (6.10), i. e., YT µ = ln((Eν)/(Eλ)), for network (N6.4). The
solution of this equation is moved to page 181 in appendix B.3. Following
the Fredholm alternative, µ can be computed by asking for UTYT = 0 →

UT ln Eν
Eλ = 0. Hence, the following 15 relations occur:

ln
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Again, constraints on λl occur, thus, κk are introduced:

ln
ν1

λ1
= κ1 ln

ν2

λ2
= κ2 ln

ν3

λ3
= κ2 ln

ν4

λ4
= κ3

ln
ν5
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= κ5 ln
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= κ5 ln
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ln
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ln
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ν16
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ln
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Note, only the first ratios of sums are given for reasons of legibility. But
terms of sums appear as well in the ln expressions, see appendix B.3 on
page 181 for the full list.

The simplifications given above for µi also hold for κk:

κ27 = −κ2 +κ26 +κ3, κ25 = −κ2 +κ23 +κ4,

κ24 = −κ2 +κ23 +κ3, κ22 = −κ2 +κ20 +κ4,

κ21 = −κ2 +κ20 +κ3, κ19 = −κ2 +κ17 +κ4,

κ18 = −κ2 +κ17 +κ3, κ16 = −κ2 +κ14 +κ4,

κ15 = −κ2 +κ14 +κ3, κ13 = −κ2 +κ11 +κ4,

κ12 = −κ2 +κ11 +κ3, κ10 = −κ2 +κ4 +κ8,

κ9 = −κ2 +κ8 +κ3, κ7 = −κ2 +κ5 +κ4,

κ6 = −κ2 +κ5 +κ3.

As in the previous section for network (N6.2a1) linear constraints between
λl occur, compare equation (6.20) on page 78. They have been moved to
appendix B.3 for reasons of readability. The corresponding λ̃ can be given
by:

λ̃ = [λ3, λ4, λ7, λ11, λ15, λ19, λ23, λ27, λ31, λ35, λ8, λ12,

λ16, λ20, λ24, λ28, λ32, λ36]
T ,

compare equation (6.22) on page 78, and κ̃ by:

κ̃ = [κ1, κ2, κ3, κ4, κ5, κ8, κ11, κ14, κ17, κ20, κ23, κ26]
T .

The matrix Q is then given in analogy to the matrix Q in equation (6.25) for
network (N6.2):

Q =




q11 q12 0 0 0 0 0 0 0 0 q13 q14 q15 q16 q17 q18 q19 q19
0 q21 0 0 0 0 0 0 0 0 q22 q23 q24 q25 q26 q27 q28 q29
0 0 q31 0 0 0 0 0 0 0 q32 q33 q34 q35 q36 q37 q38 q39
0 0 0 q41 0 0 0 0 0 0 0 q42 q43 q44 q45 q46 q47 q48
0 0 0 0 q51 0 0 0 0 0 0 0 q52 q53 q54 q55 q56 q57
0 0 0 0 0 q61 0 0 0 0 0 0 0 q62 q63 q64 q65 q66
0 0 0 0 0 0 q71 0 0 0 0 0 0 0 q72 q73 q74 q75
0 0 0 0 0 0 0 q81 0 0 0 0 0 0 0 q82 q83 q84
0 0 0 0 0 0 0 0 q91 0 0 0 0 0 0 0 q92 q93
0 0 0 0 0 0 0 0 0 q101 0 0 0 0 0 0 0 q102



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Expressions for elements qij of Q can be found on page 184 in appendix B.3.
Though the qij are rather special functions of κ̃, the system Q λ̃ = 0 for

λ̃ > 0, compare equation (6.25), cannot be solved in general, as more than
three unknown qij are present in the first eight rows of Q, see also the
remark in section 6.4 on page 79.
Still, a solution for µ, compare equation (6.12), in terms of the matrix M

can be given by:

M =




0 0 −1 1 0 0 0 0 0 0 0 0
1 0 1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 −1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 −1 0 1 1 0 0 0 0 0 0 0
0 −1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 −1 0 1 0 1 0 0 0 0 0 0
0 −1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 −1 0 1 0 0 1 0 0 0 0 0
0 −1 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 −1 0 1 0 0 0 1 0 0 0 0
0 −1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 −1 0 1 0 0 0 0 1 0 0 0
0 −1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 −1 0 1 0 0 0 0 0 1 0 0
0 −1 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 −1 0 1 0 0 0 0 0 0 1 0
0 −1 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1




with κ̃ given above.
As sign restrictions on κi cannot be given using the approach introduced

in the previous section, valid sign vectors δ and sign patterns σ cannot be
computed to find multiple steady states to network (N6.3)+(N6.4). General
solutions to equation (6.12) could be computed, yielding a vector µ. Fur-
thermore, sign vectors δ satisfying sgn(µ) = sgn(s) could also be computed.
But, µ found in this way, i. e., following equation (5.49) on page 53 rather
than equation (6.43) on page 85, do not necessarily imply λi > 0. Thus, no
general conclusions can be drawn on the existence of multiple steady states
in network (N6.3)+(N6.4). Still, providing solutions for explicit networks
might be possible using suitable solvers to compute σ and δ.
As only the synthesis of the protein and degradation of all its phosphory-

lated forms is considered here, smaller network setups allowing only degra-
dation of higher phosphorylated proteins could be of interest. Comparing
the matrix Q for different network setups of the small phosphorylation pro-
cess from section 6.2 reveals, different reaction mechanisms yield different
complex Q matrices. Thus, the number of additional sign restrictions qij

could decrease with different degradation mechanisms, e. g., only degrada-
tion of the fully phosphorylated protein. Results here would be of course
of interest, especially when comparing results for degradation of six-times
and higher phosphorylated proteins with results for degradation of only
the fully phosphorylated protein. These different setups could provide an
answer to the question, why Sic1 is phosphorylated on nine sites, when six
sites are sufficient for transition to G1 phase, as stated by [73].
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6.4 summary and open questions

This chapter extends the phosphorylation of a protein in n steps by allowing
additional synthesis and/or degradation of the protein, its phosphorylated
forms and/or the enzymes. For a small network of n = 2 phosphoryla-
tion steps, multistationarity can be established for all but two of the arising
twelve networks: if both enzymes (phosphatase and kinase) or only the
kinase are preserved, multistationarity can be established for all arising net-
works. If only the phosphatase is conserved, multistationarity can only be
established if the unphosphorylated protein is synthesized and degraded.
Again, a parametrization for the multistationarity region in the parameter
space is provided as well as values for steady states a and b.
This is done using an algorithm, that is also valid in more general terms:

the algorithm presented enables to check (bio-) chemical reaction networks
of mass action kinetics for multistationarity. If the algorithm, together with
the stated lemma on sign patterns, holds, a parametrization for rate con-
stants and steady states is provided.
The network of double phosphorylation corresponds to a reduced version

of phosphorylation networks with n > 2 containing synthesis and degrada-
tion, like phosphorylation of Sic1, Cdc25 or Wee1. This lumped network is
extended in a network containing nine phosphorylation sites allowing syn-
thesis of the protein and degradation of its phosphorylated forms. Here,
multistationarity cannot be guaranteed by the presently chosen approach.
Nonetheless, multiple steady states can indeed be found for networks

including synthesis and degradation in a double phosphorylation network,
a novel finding.
Concerning Remark 2.3 from page 12, the additional constraints in the

vector λ, i. e., the vector λ̃, are quite of interest from a biological point of
view. Allowing only certain λl to be free and restricting others in the pre-
sented way should somehow translate to the fluxes in the (bio-) chemical
reaction network. If a λ is restricted to certain values, the contribution of the
corresponding flux could also be restricted in the reaction network. Thus,
the “function” of the (bio-) chemical reaction network could be restricted as
well.



On a pu écrire depuis que la voie

la plus courte et la meilleure entre deux vérités du domaine réel
passe souvent par le domaine imaginaire.

— Jacques Hadamard [43]

7EFFECT OF COMPARTMENTALIZATION IN MULTIS ITE
PHOSPHORYLATION NETWORKS

The phosphorylation introduced in chapter 5 and its extension in chapter 6

are not the only phosphorylation mechanisms that are possible in (bio-)
chemical reaction networks. For example, multisite phosphorylation can
also occur in networks of information processing. During immune response,
the members of the protein family NFAT are de-/phosphorylated at many
sites in a complex mechanism of compartmentalization of the phosphoryla-
tion process. The protein is de-/phosphorylated in different compartments
of the cell: in the cytoplasm as well as in the nucleus. This compartmental-
ization plays an important role for information processing, leading, via the
protein NFAT, to immune response.

This chapter considers a model of protein phosphorylation including com-
partmentalization, addressing multistationarity and analysis of the multi-
stationarity region in the cell, taking the phosphorylation of NFAT as an
example of the underlying principle. The question is, whether phosphoryla-
tion networks including compartmentalization can exhibit multiple steady
states.

7.1 compartmentalization and phosphorylation

The protein NFAT is fully phosphorylated on at least 21 sites in its inactive
form, i. e., if no immune response takes place. During immune response, the
protein is dephosphorylated on thirteen of fourteen associated phosphoryla-
tion sites. This leads to nuclear translocation, followed by, in a nutshell, gene
transcription. Afterwards, the protein is rephosphorylated and transported
back into cytoplasm. For a more detailed discussion see chapter 3.2.3. Con-
sidering only this short network setup, models are conceivable with various
phosphorylation mechanisms:

PM1 The phosphorylation network with a reduced number of fourteen
phosphorylation sites: Two kinases phosphorylate in a mutual way all
fourteen phosphorylation sites. One phosphatase dephosphorylates
thirteen of the fourteen phosphorylation sites. The single phosphory-
lated protein is transported into nucleus. The fully phosphorylated
protein is transported into cytoplasm.

PM2 The phosphorylation network of fourteen phosphorylation steps in-
cluding only one kinase and one phosphatase: Simplifying the model,
both enzymes can attack all phosphorylation sites, i. e., the phosphatase
also dephosphorylates all fourteen sites. The single phosphorylated
protein is transported into nucleus. The fully phosphorylated protein
of fourteen sites is transported back into cytoplasm.
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Reactions in cytoplasm can be given by:

y1
x1

KC +
x2

A
k1

GGGGGGBF GGGGGG

k2

y2
x4

AKC

k3
GGGGGGA

y3

KC +
x5

AP

k7
GGGGGGBF GGGGGG

k8

y7
x7

APKC

k9
GGGGGGA · · ·

k69
GGGGGGGA

y48

KC +
x38

A12P

k73
GGGGGGGBF GGGGGGG

k74

y51
x40

A12PKC

k75
GGGGGGGA

y52

KC +
x41

A13P

y53

PC +A13P

k76
GGGGGGGBF GGGGGGG

k77

y54
x42

A13PPC
k78

GGGGGGGA

y49

PC +
x38

A12P

k70
GGGGGGGBF GGGGGGG

k71
· · ·

k10
GGGGGGGBF GGGGGGG

k11

y10
x9

A2PPC
k12

GGGGGGGA

y4

PC +AP

k4
GGGGGGBF GGGGGG

k5

y5
x6

APPC
k6

GGGGGGA

y6
x3

PC +A,

(N7.1a)

reactions in nucleus by:

y53
x43

KN +
x44

B
k79

GGGGGGGBF GGGGGGG

k80

y56
x46

BKN

k81
GGGGGGGA

y57

KN +
x47

BP

k85
GGGGGGGBF GGGGGGG

k86

y61
x49

BPKN

k87
GGGGGGGA · · ·

k147
GGGGGGGGGA

y102

KN +
x80

B12P

k151
GGGGGGGGBF GGGGGGGG

k152

y105
x82

B12PKN

k153
GGGGGGGGGA

y106

KN +
x83

B13P

y107

PN + B13P

k154
GGGGGGGGBF GGGGGGGG

k155

y108
x84

B13PPN

k156
GGGGGGGGGA

y103

PN + B12P

k148
GGGGGGGGBF GGGGGGGG

k147
· · ·

y64
x51

B2PPN

k90
GGGGGGGA

y58

PN + BP

k82
GGGGGGGBF GGGGGGG

k83

y59
x48

BPPN

k84
GGGGGGGA

y60
x45

PN + B,

(N7.1b)

and reactions for transport for the second phosphorylation mechanism, PM2, can be given by:

y109
x2

A
k157

GGGGGGGGGA

y110
x44

B

y111
x83

B13P

k158
GGGGGGGGGA

y112
x41

A13P (N7.1c)
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PM3 A reduced model of thirteen phosphorylation steps: This model con-
siders again only one kinase and one phosphatase, where both can
de-/phosphorylate all proteins. The difference to the first model lies
in the transport reaction. Here the unphosphorylated protein is trans-
ported into nucleus. And, as there are only thirteen phosphorylation
steps, this protein is transported back into cytoplasm. This model
corresponds to a shifted version of the first one, as the individual
phosphorylated protein forms are just shifted by one. It reduces the
reaction network by one order.

PM4 The fully reduced version, comparable to the one in chapter 6: This
model considers only two phosphorylation steps, and again one ki-
nase and one phosphatase. Here, the double phosphorylated protein
corresponds to the inactive form. The unphosphorylated to the active
one, that is transported into nucleus. The double phosphorylated pro-
tein is then transported back into cytoplasm. In a reduced approach,
the single phosphorylated form represents all intermediate phospho-
forms of the protein. This model depicts a reaction network with a
drastically reduced number of parameters and states.

In a first attempt to model the phosphorylation of NFAT the third mech-
anism, PM3, is considered. This mechanism already considers a reduced
model without too many restrictions on the phosphorylation process.1

To model the reaction network, the same assumptions as before hold: the
kinases CK1 and GSK3 are assumed to operate as one kinase K. The phos-
phatase calcineurin is described by a P. The system in cytoplasm is depicted
by an index C and the system in nucleus by an N. To distinguish between
the protein being in cytoplasm or nucleus, a variable A is used for the pro-
tein in the cytoplasm and a variable B for its presence in the nucleus. A
different variable is used instead of an additional index as this would only
complicate indexing of the protein.
The standard stepwise notation is kept for each subsystem. The system in

cytoplasm is labeled first, then the system in the nucleus. At the end, trans-
port reactions are considered. The concentration of substances is described
by x ∈ R

6n+6 and the vector of rate constants by k ∈ R
12n+2 with

x = [ x1 · · · x3n+3
︸ ︷︷ ︸

concentration
in cytoplasm

x3n+4 · · · x6n+6
︸ ︷︷ ︸

concentration
in nucleus

]T (7.1)

= col (xC, xN) ,

k = [ k1 · · · k6n
︸ ︷︷ ︸

rate constants
in cytoplasm

k6n+1 · · · k12n
︸ ︷︷ ︸

rate constants
in nucleus

k12n+1 k12n+2
︸ ︷︷ ︸

rate constants of
transport reactions

]T (7.2)

= col (kC, kN, kT ) .

Vectors and matrices gain a blockwise structure: first elements of the system
in cytoplasm (C), then elements of the system in the nucleus (N), and finally
elements for the transport reactions (T ) appear. The benefit of this notation

7.1 Reducing the system to thirteen phosphorylation steps with a shift of the transported single
phosphorylated to the unphosphorylated protein being transported, results only in a shift in fi-
nal results. If the original system would have been considered, only larger networks due to the
higher number of phosphorylation steps would appear, but the results would be comparable.
So far, a system including several kinases has not been considered as the actual mechanism of
phosphorylation by two kinases is not fully understood up to now, i. e., the order of phospho-
rylation and the position of actual phosphate groups being attacked are mostly unknown.
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lies in the structure of network matrices, as the phosphorylation processes
in cytoplasm and nucleus correspond to the standard phosphorylation con-
sidered in chapter 5. For these standard phosphorylation processes the net-
work vectors and matrices are already known. The rate vector v ∈ R

12n+2

for the phosphorylation process of NFAT can be given in terms of the rate
vector of an n-times phosphorylation process, compare equation (5.7) on
page 38:

vNFAT =
[
v(n)T v̂(n)T k12n+1x2 k12n+2x6n+5

]T
(7.3)

= col (vC, vN, vT )

where v̂(n) corresponds to v(n) by shifting the index of x by 3n+ 3 and of
k by 6n:

vC = [k1 x2 x1, k2 x4, k3 x4, k4 x5 x3, k5 x6, k6 x6, . . . ,

k6i−5 x3i−1 x1, k6i−4 x3i+1, k6i−3 x3i+1,

k6i−2 x3i+2 x3, k6i−1 x3i+3, k6i x3i+3, . . .

k6n−5 x3n−1 x1, k6n−4 x3n+1, k6n−3 x3n+1,

k6n−2 x3n+2x3, k6n−1 x3n+3, k6n x3n+3]
T ,

vN = [k6n+1 x3n+5 x3n+4, k6n+2 x3n+7, k6n+3 x3n+7,

k6n+4 x3n+8 x3n+6, k6n+5 x3n+9, k6n+6 x3n+9, . . . ,

k6n+6i−5 x3n+3i+2 x3n+4, k6n+6i−4 x3n+3i+2,

k6n+6i−3 x3n+3i+4, k6n+6i−2 x3n+3i+5 x3n+7,

k6n+6i−1 x3n+3i+6, k6n+6i x3n+3i+6, . . .

k12n−5 x6n+2 x3n+4, k12n−4 x6n+4, k12n−3 x6n+4,

k12n−2 x6n+5 x3n+6, k12n−1 x6n+6, k12n x6n+6]
T

vT = [k12n+1x2 k12n+2x6n+5]
T .

And thus

vNFAT = diag(kC, kN, kT )Φ(xC, xN, xT ) (7.4)

= diag(k)Φ(x)

with

Φ(xC) =
[
x
y1
C , . . . , xy6n

C

]T ,

Φ(xN) =
[
x
y6n+1

N , . . . , xy12n
C

]T ,

Φ(xT ) =
[
x
y12n+1

2 , x
y12n+2

6n+5

]T .

(7.5)

Network matrices can be constructed using matrices of section 5.1 on page 35.
The stoichiometric matrix NNFAT, compare equation (5.2) on page 37, for
network N7.1 is constructed using two stoichiometric matrices for n-times
phosphorylation systems and additional columns for transport reactions. As
this matrix is constructed using only ones and zeros, no index shifting has
to be done:

NNFAT =

[
N(n) 0

0 N(n)
NT

]
, (7.6)

with NT =
[
−e2 + e3n+5 e3n+2 − e6n+5

]
,
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with NNFAT ∈ R
2(3n+3)×(2(6n)+2) . A basis for the right nullspace of NNFAT

can be given by a matrix E ∈ R
(12n+2)×(6n+1) . Recall matrix E(1) in equa-

tion (5.6) from page 38 and define a matrix Ẽ(1):

E(1) =




1 0 1

1 0 0

0 0 1

0 1 1

0 1 0

0 0 1




, Ẽ(1) =




1 1 0

1 0 0

0 1 0

0 1 1

0 0 1

0 1 0




.

Furthermore, define two column vectors

ǫ1 =
[
0 0 0 1 0 1

]T
, ǫ2 =

[
1 0 1 0 0 0

]T
.

The matrix ENFAT can then be given by:

ENFAT =




Ẽ(1) 0 ǫ1
. . .

...

Ẽ(1) ǫ1

E(1) ǫ2
. . .

...

E(1) ǫ2

1

0 1




, (7.7)

where E(1), Ẽ(1), ǫ1 and ǫ2 appear in total n-times.
For the rate exponent matrix YNFAT, compare equation (5.11) on page 39,

and the complex matrix ỸNFAT, compare equation (5.9) on page 39 an index
shifting is used with a shift of 3n + 3 for concentrations and 6n for rate
constants in Ŷ and ˆ̃Y:

YNFAT =

[
Y(n) 0

0 Ŷ(n)
YT

]
, (7.8)

with YT =
[
e2 e6n+5

]
,

with YNFAT ∈ R
2(3n+3)×(2(6n)+2) and the complex matrix ỸNFAT

ỸNFAT =

[
Ỹ(n) 0

0 ˆ̃Y(n)
ỸT

]
, (7.9)

with ỸT =
[
e2 e3n+5 e6n+5 e3n+2

]
,

with ỸNFAT ∈ R
2(3n+3)×(2(4n+2)+4) . Remaining entries of the network

matrices are only prolonged by blocks of zeros, see for comparison equa-
tion (5.3) in section 5.1 on page 35.
Furthermore the conservation relation of the overall network can be given

by

cNFAT = WT
NFAT x
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with columns of the weight matrix WNFAT ∈ R
2(3n+3)×5 given by:

w1,NFAT = e1 +

n∑

i=1

e3i+1

w2,NFAT = e2 +

n∑

i=1

e3i+1 + e3i+2 + e3i+3 + e3n+5

+

2n∑

i=n+1

e3i+1 + e3i+2 + e3i+3

w3,NFAT = e3 +

n∑

i=1

e3i+3

w4,NFAT = e3n+4 +

2n∑

i=n+1

e3i+1

w5,NFAT = e3n+6 +

2n∑

i=n+1

e3i+2

(7.10)

and ei column vectors of length 6n+ 6 with a one at their ith position. This
matrix resembles the former weight matrix for a standard phosphorylation
in parts. In terms of the old weight matrix W(n) for an n-times phosphory-
lation network given in equation (5.4) on page 38, the weight matrix WNFAT

can be given by:

WT
NFAT =




w
(n)T

1 0

w
(n)T

3 w
(n)T

3

w
(n)T

2 0

0 ŵ
(n)T

1

0 ŵ
(n)T

2




, (7.11)

where indices in ŵ are the indices of w shifted by 3n + 3. For sake of
simplicity the subscript {}NFAT is omitted.

7.2 multistationarity of a compartmentalized phosphoryla-
tion network

Here, the main question for multisite phosphorylation networks with com-
partmentalization is, whether they can exhibit multiple steady states. Due
to the apparent compartmentalization two setups to achieve multiple steady
states are possible. As in the previous chapters, it could be assumed, that
the system exhibits multiple steady states. Based on the compartmentaliza-
tion this would correspond to multiple steady states in cytoplasm but also
in nucleus. The overall coupled network should exhibit as well multiple
steady states.
But motivated by experimental results, see section 3.2.3, a different ap-

proach could be possible as well. If the system in cytoplasm only shows
a mono-stable setup, while the system in nucleus exhibits multiple steady
states, the overall coupled reaction network could still exhibit multiple steady
states.
Both setups could still enable immune response, see figure 7.1. Here, two

stable steady states could correspond to immune response taking place at
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A, B A13P , B13P

c3c3(1) (1)(2) (2)

Figure 7.1: Biological interpretation of the schematic description of a uni-valued setup in

the red, dashed line, and a multi-valued setup in the black, solid line. Points (1) and

(2) describe two possible concentrations of c3 = [PC]tot corresponding to no immune

response or immune response taking place. (1) With a fixed low concentration c3 the

steady state in nucleus is also fixed corresponding to a low steady state concentration of

the unphosphorylated protein and a high steady state concentration of the fully phospho-

rylated protein. (2) Changing the total concentration c3 towards a higher value would

switch the behavior with low concentrations for the fully phosphorylated protein forms

and high concentrations for unphosphorylated protein forms. The switch corresponds to

activation of NFAT and consecutive immune response.

either a high concentration or a low concentration of the protein. The bio-
logical interpretation of two steady states would correspond to an s-shaped
response curve, see the solid curves in figure 7.1. Whereas only one steady
state or a mono-stable system would correspond to a strictly monotone re-
sponse curve.
The two setups are given by:

uni-valued response curve The first setup considers a reaction net-
work showing a different setup in its decoupled and coupled form. If
the network is decoupled, the network in cytoplasm exhibits a strictly
monotone response curve towards change of the total concentration
of an enzyme, e. g., phosphatase concentration. The network in the
nucleus exhibits an s-shaped response curve with at least two steady
states.

multi-valued response curve The second setup considers the same
setup in its decoupled and coupled form: an at least s-shaped response
curve in cytoplasm and nucleus for the decoupled network should
provide a multi-valued coupled reaction network.

To check whether these two setups allow multistationarity in the coupled
reaction network, the Algorithm 6.1 introduced in the previous chapter is
used in a first step. Besides this algorithm, the approach of subnetwork
analysis is used to check whether reaction networks allowing compartmen-
talization exhibit multistable states. In a second step, one or respectively
two steady states are fixed using the toolbox MatCont for MATLAB for the
decoupled networks and the two setups given above. The networks are cou-
pled and checked for multistationarity using the toolbox. Either or both of
these two approaches, i. e., the mono- and multi-valued setup, might yield
multistationarity.
Figure 7.1 describes the response curves of the two setups. While no cal-

cineurin intake is happening, the concentration of A13P is constant over time
for a certain total concentration of [PC], see point (1) in figure 7.1. This con-
centration is associated with a fixed concentration of the unphosphorylated



102 effect of compartmentalization

protein in cytoplasm. Thus the concentration of B in nucleus and the fully
phosphorylated form, B13P are constant. This inactive state of the reaction
network is associated with no immune response. If Ca2+ pores open, the
concentration of calcineurin changes and A13P is dephosphorylated, point
(2), thus the concentration decreases. The unphosphorylated protein A is
transported into nucleus for gene transcription and consecutive immune
response. In general, the fully phosphorylated form of A in cytoplasm is
associated with a high concentration as long as no calcineurin is present.

7.2.1 Multistationarity Using the Solution Algorithm for the Polynomial Condi-
tion

To check for multiple steady states, the Algorithm 6.1 introduced in chap-
ter 6 is followed. The system of ordinary differential equations yields again
a polynomial condition. To find a solution for this condition, the rate ex-
ponent matrix Y and the arising pointed polyhedral cone E can be used to
reduce the nonlinear system:

YT µ = ln
Eν

Eλ
(7.12)

The same algorithm, as in the previous chapter, is used to solve this system.
As the number of states and parameters is very high, only a double phos-
phorylation network is considered in a first step, compare PM4, with results
for n = 14 provided at the end. The equation from above reduces for n = 2

to:

ln
ν1 + ν2

λ1 + λ2
= ln

ν1

λ1
, ln

ν2

λ2
= ln

ν1

λ1
, (7.13a)

ln
ν13 + ν2 + ν3

λ13 + λ2 + λ3
= ln

ν3

λ3
, ln

ν13 + ν2

λ13 + λ2
= ln

ν3

λ3
, (7.13b)

ln
ν4 + ν5

λ4 + λ5
= ln

ν4

λ4
, ln

ν5

λ5
= ln

ν4

λ4
, (7.13c)

ln
ν13 + ν5 + ν6

λ13 + λ5 + λ6
= ln

ν6

λ6
, ln

ν13 + ν5

λ13 + λ5
= ln

ν6

λ6
, (7.13d)

ln
ν13 + ν7 + ν9

λ13 + λ7 + λ9
= ln

ν7

λ7
, ln

ν13 + ν9

λ13 + λ9
= ln

ν7

λ7
, (7.13e)

ln
ν8 + ν9

λ8 + λ9
= ln

ν8

λ8
, ln

ν9

λ9
= ln

ν8

λ8
, (7.13f)

ln
ν10 + ν12 + ν13

λ10 + λ12 + λ13
= ln

ν10

λ10
, ln

ν12 + ν13

λ12 + λ13
= ln

ν10

λ10
, (7.13g)

ln
ν11 + ν12

λ11 + λ12
= ln

ν11

λ11
, ln

ν12

λ12
= ln

ν11

λ11
. (7.13h)

Just like the system in section 6.2.1, these equations exhibit some additional
dependencies in λl and pose constraints on those. They are addressed by
introducing variables κk via:

ν1 = exp(κ1)λ1, ν2 = exp(κ1)λ2,

ν3 = exp(κ2)λ3,

ν4 = exp(κ3)λ4, ν5 = exp(κ3)λ5,

ν6 = exp(κ4)λ6,

ν7 = exp(κ5)λ7,

ν8 = exp(κ6)λ8, ν9 = exp(κ6)λ9,

ν10 = exp(κ7)λ10,
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ν11 = exp(κ8)λ11, ν12 = exp(κ8)λ12,

ν13 = exp(κ9)λ13.

Following Algorithm 6.1, compare equation (6.20) on page 78, the depen-
dencies in equations (7.13b), (7.13d)(7.13e) and (7.13g) can be rewritten such
that, instead of solving the four nonlinear equations arising from equa-
tion (7.12), only four nonlinear inequalities have to be solved guaranteeing
positivity of λl:

0 =(exp(κ2) − exp(κ1)) λ2 + (exp(κ2) − exp(κ9)) λ13,

0 =(exp(κ4) − exp(κ3)) λ5 + (exp(κ4) − exp(κ9)) λ13,

0 =(exp(κ5) − exp(κ6)) λ9 + (exp(κ5) − exp(κ9)) λ13,

0 =(exp(κ7) − exp(κ8)) λ12 + (exp(κ7) − exp(κ9)) λ13.

(7.14)

Instead of using expressions exp() − exp(), short forms in terms of qij are
used, compare equation (6.24) on page 78. These qij are collected in a matrix
Q ∈ R

4×5, compare equation (6.25). A vector λ̃ is introduced, with Q λ̃ = 0

for λ > 0:

λ̃(2) =
[
λ2 λ5 λ9 λ12 λ13

]
,

Q(2) =




q11 0 q12

q21 q22

q31 q32

0 q41 q42



.

To distinguish between matrices for networks of different phosphorylation
sizes n, explicit vectors and matrices have a superscript (n). This super-
script is omitted during computation and where formulas are given, where
possible and applicable. Note, the matrix Q is constructed of only two ele-
ments per row in contrast to some matrices in section 6.2.2, i. e., one qi1 and
one qi2 per row. Compare Remark 6.4 and Lemma 6.6 on pp. 79. Note also,
no subvector κ̃ with elements of the original vector κ has to be introduced,
as no simplifications as in (6.17) on page 77 occur. Thus, equation (6.12) of
Algorithm 6.1 holds for κ and not κ̃.

Additional dependencies in λk, given in equation (7.14) for n = 2, can
be found for all n = 2, . . . , 14 for network (N7.1). Thus, the approach is
independent of the considered phosphorylation mechanisms PM2–PM4. In
contrast to the results in section 6.2.1, the structure ofQ stays the same: each
step introduces only new terms with the same blockwise structure. This
yields only one qi1 and one qi2 inQ(n) independent of the phosphorylation
step n and PM2–PM4:

Q(n) =




q11 0 0 · · · 0 q11

0 q21 0 · · · 0 q21

...
...

. . .
...

...

0 0 · · · q(2n−1)1 0 q(2n−1)1

0 0 · · · 0 q(2n)1 q(2n)1




.

The number of entries in the corresponding equations stays the same, yield-
ing only an increasing number of sign conditions. Table 7.1 gives an overview
on the number of additional occurring dependencies, i. e., equations restrict-
ing λl.
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Table 7.1: Number of additional dependencies (add. dep.) on κ per phosphorylation step for

phosphorylation of NFAT. The number of additional restrictions, i. e., number of rows in

Q, can be given by 2n per phosphorylation step n.

n 2 3 4 5 6 7 8 9 10 11 12 13

size(κ) 9 11 13 15 17 19 21 23 25 27 29 31

# of add. dep. 4 6 8 10 12 14 16 18 20 22 24 26

Thus, Remark 6.4 on page 79 does not apply, and the system Q λ̃ = 0 can
be solved for λ > 0. This concludes the second step of Algorithm 6.1, i. e.,
equation (6.13). This equation states only conditions on λl, but does not
provide a general solution to equation (7.12), compare equation (6.12). A
solution to equation (7.12) in terms of M and κ = [κ1, . . . , κ9] ∈ R

9 can be
given by:

µ = Mκ

with

M =




1 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1
1 1 −1 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

−1 −1 1 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 1 1 −1
0 0 0 0 1 1 −1 −1 1
0 0 0 0 0 0 0 1 −1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 −1 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0




.

Thus, a solution to the polynomial condition can be provided, if Q λ̃ = 0

for λ > 0 is solvable. Recall, equation (7.14) only poses sign conditions
on elements qij as substitutes of expressions exp() − exp(). Sign patterns
guaranteeing positivity of λ are collected in a vector σ = sgn(q), see equa-
tion (6.30). If such σ can be found, the polynomial condition is solvable.
To show, that reaction network (N7.1) exhibits multiple steady states, the

coset condition has to hold as well, compare Definition 2.4 on page 11. In
addition to the sign restrictions posed by λ̃(n) and Q(n), sign vectors δ

arising via the coset condition with s = b−a and δ = sgn(s) = sgn(µ), recall
section 6.2.3. Sign restrictions guaranteeing a positive λ̃ and sign vectors δ

posed by sgn(s) = sgn(µ) have to be checked. The algorithm provided
by [58] can be used to check these sign conditions of λ̃ and δ, since additional
constraints can be implemented. But, as the number of parameters and
states is quite large, the performance of the algorithm by [58] is too bad,
to be used as a suitable solver. Recall, the algorithm could not be used for
sign conditions in chapter 5.3 for networks of size n = 6 for the ternary set
of δ ∈ {+, −, 0}, and for n = 7 for the binary set of δ ∈ {+, −} due to the
computational load.
For the phosphorylation including compartmentalization, each phospho-

rylation step n introduces 36n+6 or 26n+6 possible sign vectors, dependent
on the given sign pattern δ ∈ {+, −, 0} or δ ∈ {+, −}, respectively. Here, with
2n additional sign constraints per step n due to σ, in total (26n+6 − 1) · 2n · 3
matrices for the binary set, and (36n+6) · 3 · 2n matrices for the ternary set
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have to be checked for multistationarity.2 Again, the algorithm is only suited
to check small networks and worked for the phosphorylation network de-
scribed in chapter 5 only up to n = 5 with large computation times. For
the phosphorylation process here, it is not suited to check even the small
system with n = 2, as already 3 145 728 matrices have to be checked, which
is already larger than the maximal number of sign vectors arising for the
phosphorylation process in chapter 5 with n = 6 and #δ = 2 097 152 for the
binary set.
In addition, the system with fourteen phosphorylation steps is the actual

system of interest, where even higher numbers of sign combinations would
have to be checked. Thus, this approach is not really applicable to com-
pute valid sign vectors δ together with valid sign patterns σ for multiple
steady states of a phosphorylation system as given in network (N7.1). The
computational load for higher phosphorylation steps would be too big.
But, as the underlying network (N7.1) corresponds to the phosphoryla-

tion network (N5.1) discussed in section 5.1, results of this previous chapter
might be applicable to gain some insight on the system: regions of multi-
stationarity for the underlying subnetwork of n-times phosphorylation are
known. Extending these regions to the coupled system of network (N7.1)
might yield multistationarity for the overall reaction network. This ap-
proach will be discussed in the next section.

7.2.2 Multistationarity Using Subnetwork Analysis

Conradi et al., [18], introduce an approach, where properties on multista-
tionarity of a subnetwork of a (bio-) chemical reaction can be transferred
under certain restrictions to the overall reaction network. As valid sign
vectors δ for the underlying subnetwork of multisite phosphorylation are
known, some of them might be valid for the overall network under restric-
tions. Applying this approach does, of course, not yield the whole set of
valid sign vectors as would the standard approach, where inequalities have
to be solved. But the known valid sign vectors for the underlying phospho-
rylation might be valid for the coupled network resulting in multistationa-
rity.
The reaction network in (N7.1) is divided into subnetworks of standard

multisite phosphorylation and in additional reactions coupling these two
reaction networks. The subnetworks of n-times multisite phosphorylations
are referred to as the subnetworks, E, consisting of the two n-times phos-
phorylation networks in cytoplasm and nucleus. The remaining reactions
are referred to as the network R, here, the transport reactions. Solutions
to the subnetwork E are known. These solutions might be valid in a region
around the initial solution for the overall network and are tested throughout
this section.
Matrices, introduced before, can as well be used for the analysis here. The

structure of the stoichiometric matrix (7.6) is already in such a form that the

7.2 The first factor describes the number of maximal possible sign vectors, 3n+ 3 for the system
in cytoplasm, 3n+ 3 for the states in nucleus. The second, 2n, describes the overall number
of sign combinations to be checked, i. e., the number of rows in Q. The third, 3, describes the
number of possible sign combinations per row in Q: {+− , −+ , 00 }.
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subnetwork matrices can be read off easily to generate the stoichiometric
matrix off the subnetwork E:

NE =

[
N(n) 0

0 N(n)

]
(7.15)

NR = NT (7.16)

NE corresponds two the first two column-matrix entries in N, see equa-
tion (7.6), with the block of NT missing. The matrix NR corresponds to the
part of N, where only the transport reactions are present, i. e., the last two
columns of N containing NT , see equation (7.6).
The reaction rates are divided into a part containing only the rate con-

stants of the subnetwork, kE, and one containing only rate constants of the
additional reactions, kR. Again the stepwise nomenclature allows for an
easy description of the respective rate constants

kE = (k1, . . . , k12n)T, (7.17)

kR = (k12n+1, k12n+2)
T (7.18)

with k
(2)
E = (k1, . . . , k24)T and k

(2)
R = (k25, k26)T. Besides these two vec-

tors, vectors k̂E and k̂R of length 12n + 2 are needed for calculations later
on. They correspond to kE and kR in a prolonged way by adding zeros at
the respective positions, i. e., addition of two zeros at the end of kE and 12n

zeros at the beginning of kR to generate the “hatted” versions.
As the network is divided into a subnetwork and remaining reactions, the

reaction rate v changes, too. With kE and kR defined, the reaction rate can
be given by:

vE = [vC, vN]T ,

= diag(kC, kN)Φ(xC, xN), (7.19)

vR = vT ,

= diag(kT )Φ(xT ), (7.20)

with

ΦE = Φ(xC, xN),

ΦR = Φ(xT ).
(7.21)

Recall equation (7.4) and following equations for a definition of vNFAT and
Φ(xC, xN, xT ), furthermore, recall equation (7.1) and (7.2) for a definition
of the vector of concentrations x = [xC, xN]T and the vector of rate constants
k = [kC, kN, kT ]

T.
The weight matrix poses a more subtle problem. As the subnetwork con-

sists of two standard multisite phosphorylation networks, each of these two
has three conservation relations. Thus, the weight for the subnetworks can
be given in terms of two decoupled weight matrices of a standard n-times
phosphorylation network:

WE =

[
W(n) 0

0 W(n)

]
.
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Furthermore, an additional vector wadd occurs due to the coupling of the
two subnetworks, such that wadd complements W, see equation (7.11), in
such a way, that they span a basis for the left nullspace of NE. Choose:3

wadd = e2 +

3n+3∑

i=4

ei

with e unit vectors of length 6n+ 6.
Having found an additional weight vector wadd and with the monomial

vector ΦR(x) defined by the educt complexes not contained in the subnet-
work, i. e., y12n+1 and y12n+2 , a positive vector of rate constants k of the
overall system resulting in multistationarity of this system can be found by
following the algorithm proposed in [18]. Values for kE are already given
by the subnetwork. The algorithm yields values for kR:

Algorithm 7.1. Adapted from [18], see as well [P6].

(1) For a system with known multiple steady states x∗a 6= x∗b for k∗E, define
the Jacobian J(x, k) = DxSv(k, x) of the overall reaction network and
choose an orthonormal basis matrix SE for im(NE). Define further for
i = a, b

A∗
i := STE J(k̂∗E, x

∗
i )SE,

and

B∗

i := STE J(k̂∗E, x
∗

i )wadd

If both A∗

i are regular, denote the solution to the linear matrix equa-
tions A∗

iXi + B∗

i = 0 by Xi.

(2) Choose a vector k∗R with
[

wT
add NR diag(ΦR(x

∗
a))

wT
addNR diag(ΦR(x

∗

b))

]
k∗R = 0. (7.22)

for two distinct steady states x∗a 6= x∗b.

(3) Given a positive vector k∗R with (7.22), define

C∗

i := wT
add J(k̂

∗

R, x
∗

i )SE (7.23)

D∗

i := wT
add J(k̂

∗

R, x
∗

i )wadd (7.24)

D∗

i := C∗

i Xi +D∗

i . (7.25)

If D∗
i and D∗

i are regular for i = a, b, then there exists a line segment
of positive rate constants k∗(ǫ) = k̂∗E + ǫ k̂∗R and a pair of smooth
one-parameter curves of positive steady states xa(ǫ) and xb(ǫ) with
Nxa = 0 = Nxb and WT xa = WT xb as long as ǫ > 0 is sufficiently
small.

Following the algorithm, the condition:

wT
addNR diag(ΦR(x

∗

i ))kR
!
= 0

7.3 Of course, the chosen vector is not unique. E. g., wadd = [0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 1 ]
T is a valid vector for a double phosphorylation network.
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has to be satisfied for i = a, b. This condition just poses a condition on the
first steady state x∗a. For sake of simplicity the steady states x∗a and x∗b are
referred to as a and b, respectively. It can indeed be solved for an arbitrary
phosphorylation step n

[
a2 k12n+1 − a6n+5 k12n+2

exp(µ2)a2 k12n+1 − exp(µ6n+5)a6n+5 k12n+2

]
!
= 0 (7.26)

if

µ2 = µ6n+5

k12n+2 =
a2

a6n+5
k12n+1.

(7.27)

If such µ can be found, the second equation provides a solution for transport
reactions, such that the overall reaction network exhibits multistationarity,
if the subnetwork shows such a behavior.
Recall the two introduced network setups from page 101, i. e., the uni- and

multi-valued network setups. To carry on the thought experiment therein,
one or two steady states are fixed for the subnetwork and the condition (7.27)
is checked.
Furthermore, recall the structure of the sign vectors as a condition on

the signs of µ and s from section 5.3.2 for the binary set, δ ∈ {+,−}, and
section 5.3.3 for the ternary set, δ ∈ {+,−, 0}, on pages 48 and 51, respectively.
The binary set provides steady states a and b for arbitrary n > 2. The
ternary set only provides sign vectors for n = 2, . . . , 5. These sign vectors
have to be checked for both proposed network setups.

uni-valued response curve The response curve in cytoplasm shows
a uni-valued response curve with a = b. Thus, µ = 0 → exp(µ) = 1.
The condition 7.27 reduces to:

µ2 = 0 µ6n+5 = 0

k12n+2 =
a2

a6n+5
k12n+1, (7.28)

or in terms of the subnetworks:

µC,2 = 0

µN,3n+2 = 0

kT ,2 =
aC,2

aN,3n+2
kT ,1

Valid sign vectors of the binary set with δ ∈ {+, −} yielding multista-
tionarity for the subnetwork E naturally do not exhibit a zero element
anywhere in their vector. Furthermore sign vectors of the ternary set
with δ ∈ {+, −, 0} are only known up to n = 5. These known sign
vectors never contain a zero at their second entry or at their second
to last entry, compare equations (5.∆t) on page 53. It could be possi-
ble, that for n = 6, . . . , 13 a sign vector exists, satisfying the condition
above. But as these are not known, the sign vectors of the ternary set
do not satisfy the condition above for n 6 5. Thus, the network setup
cannot guarantee existence of multiple steady states via subnetwork
analysis. But, the algorithm is only sufficient and not necessary for
the existence of multiple steady states. Thus, the network might ex-
hibit multiple steady states with a uni-valued response curve in the
cytoplasm subnetwork.
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multi-valued response curve Having an s-shaped response curve in
the decoupled networks in cytoplasm and nucleus, at least two distinct
steady sates a 6= b exist in the subnetworks. Thus, the condition (7.26)
does not reduce to zero for some µi, but can be reduced to (7.27) for a
nontrivial:

µ6n+5 = µ2

k12n+2 =
a2

a6n+5
k12n+1

and in terms of the subnetworks:

µN,3n+2 = µC,2,

kT ,2 =
aC,2

aN,3n+2
kT ,1.

The transport rate constant k12n+1 is a free parameter. But, multiple
steady states can only be exhibited for small variations of the initial
chosen vector of rate constants. Only small variations from the initial
rate constants of the underlying subnetworks are allowed, a conse-
quence of the Implicit Function theorem being the principle behind
the algorithm. Thus small values are chosen for the transport rate
constant with k12n+1 = ǫ.

Remark 7.2. Choosing a multi-valued response curve as the initial setup of
the underlying subnetworks in network (N7.1), the overall reaction network
can indeed exhibit multiple steady states.

To compute steady states for the multi-valued setup up in a first approach,
one would just chose the same sign vector δ for each standard phosphoryla-
tion network, i. e., the same sign vector for the subnetworks:

δE = col
(
δ(n), δ(n)

)
.

The condition from the subnetwork analysis with µ6n+5 = µ2 and thus
sgn(µ6n+5) = sgn(µ2) does not allow for such an approach. Sign vectors
cannot be chosen freely due to this condition. But, sign vectors of the binary
set are known for arbitrary phosphorylation steps n, see Theorem 5.10 on
page 49. Here, the sign of the second to last entry in δ(n) is always the

sign-inverse of the second entry in δ(n). Thus, with sgn(µ) !
= sgn(s), the

choice of sign vectors is

δC = −δN

to achieve sgn(µ2) = sgn(µ6n+5). As the vector µ = EM α, recall equa-
tion (5.49), is computed via linear combinations of the extreme rays of EM,
the restriction on δC and δN can be directly translated to restrictions on α.
While choosing a certain sign vector, the structure of EM has to be main-
tained, restricting thus certain entries in α, see section A.5 on page 147 for
an overview on restrictions depending on the chosen sign vector.
Any valid sign vector δ ∈ {+,−} can be chosen as long as the negative one

is chosen for the phosphorylation network in nucleus. The same holds true
for δ ∈ {+,−, 0} as long as phosphorylation mechanism PM4 on page 97 is
considered, i. e., only two phosphorylation steps take place. But, a different
δ imposes different restrictions on α. Thus, a sign vector is chosen, that
poses the least restrictions on α. Here, the second δ2 of ∆(2) is chosen as
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the initial vector with i1 = 1 and i2 = n− 1 for larger n, see equation (5.∆b2)
on page 49, yielding:

δ
(n)
C = −δ

(n)
N

αC, αN > 0
(7.29)

and

αN,3 =
2

n− 1
(αC,1 +αC,2) +

1

n− 1
αC,3 −

n− 2

n− 1
(αN,1 +αN,2). (7.30)

See appendix A.5 on page 147 for a more detailed analysis of the restric-
tions. For arbitrary n > 2 the variable αN,3 is fixed. Furthermore, choos-
ing the remaining αC,N and βC,N as uniformly distributed pseudo random
numbers, compare section 5.4.1, enables computation of steady states, see
equation (5.50) on page 53.
Rate constants can be computed by choosing λ, see equation (5.31) on

page 42, as either a uniformly distributed pseudo random number or setting
each λi to a constant value, such that

∑
λi = 1. Note that λ is not dependent

on κ as only conditions on the subnetworks are of importance as a result of
algorithm 7.2.2 being independent on the former section with the algorithm
only considering the subnetwork setup. An example for steady states as
well as parameters together with bifurcation analysis will be discussed in
the next section.

7.3 numerical analysis for different network setups

Bifurcation analysis can be done for both network setups, the uni-valued
and multi-valued one. For the first setup no δ can be found, see the discus-
sion on page 108. To still test whether the network still can exhibit multiple
steady states, a general set of initial conditions motivated by the work of [42]
is chosen, see also section 4.1. For the second setup the conditions for δ in
equation (7.29) and α in equation (7.30) have to hold.
Bifurcation analysis is done in the same way as before, MATLAB and

the toolbox MatCont, version 3p2 and 4p2, are used. Again the number of
parameters and network size pose a problem for this toolbox. Only small
networks can be analyzed, as the number of parameters in the network be-
comes too large to generate any data files for bifurcation analysis for n > 9.
Thus, results are only given for a double phosphorylation network. PM3,
analyzed in the former section, reduces here to PM4. Results from the pre-
vious section are applied for n = 2.

7.3.1 Numerical Analysis of Response Curves for the Uni-Valued Setup

Variables αC, αN and βN are computed as uniformly distributed pseudo
random numbers with the dependent αN,3 computed by equation (7.30) for
a double phosphorylation:

αN,3 = 2αC,1 + 2αC,2 +αC,3.
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These results are used to compute parameters for the system in nucleus
with a uni-valued setup, i. e., equations (5.49) and (5.50) on page 53 hold,
yielding for i = 1, . . . , 3n+ 3

µN = EM
NαN, sN = ES

NβN,

aN,i =







sN,i
exp(µN,i)−1

, if µN,i 6= 0

āN,i > 0, if µN,i = 0

bN,i = exp
(
µN,i

)
aN,i.

The total concentration of the network in nucleus is then given by cN =

W(2)aN. Furthermore λN is computed as a normalized vector in the fol-
lowing form, see also section 2.2 for a discussion on λ on page 12: all but
the last entry in λ are generated as uniformly distributed pseudo random
numbers, the last entry is normalized such that the sum of all entries equals
one:

λN,1:5 = 0.2 · rand(5) ∼ U(0, 1)

λN,6 =

5∑

i

λN,i

A value of 0.2 is chosen as a parameter to adjust λ and guarantee a fairly
large λN,6 with

∑
λN,1:5 < 1. If no such parameter would be chosen, λN,6

might be very small or none might be computable at all.
Rate constants in nucleus can then be computed following equation (5.31)

on pages 42:

kN = diag
(
Φ(aN)−1

)
E(n)λ.

Thus, the subnetwork of double phosphorylation in the nucleus exhibits
multiple steady states. Next, the steady state in the cytoplasm has to be
fixed.
To compute parameters for the uni-valued setup in cytoplasm the ap-

proach of [42] is followed, see also section 4.1 on page 29. Thus, rate con-
stants in cytoplasm are set to a constant value, that is scaled by a random
(uniformly distributed) number to get several initial setups:

kC = (rand(1) ∼ U(0, 1)) · [1 0.1 0.1 1 0.1 0.1 1 0.1 0.1 1 0.1 0.1]T

By choosing such values, the network in cytoplasm exhibits a strictly mono-
tone response curve, see for example [85] for a motivation of these values.
With kC given, the concentration in cytoplasm is computed as a function of
the rate constant, see equation (5.31):

aC =




kC,6(λC,4+λC,5)(λC,5+λC,6)
kC,10kC,7aC,8(λC,(2+λC,3)

kC,10kC,7aC,8(λC,1+λC,3)(λC,2+λC,3)
kC,1kC,4(λC,4+λC,6)(λC,5+λC,6)

λC,5+λC,6
kC,10aC,8

λC,1
kC,2

kC,10aC,8(λC,2+λC,3)
kC,4(λC,5+λC,6)

λC,2
kC,5
λC,4
kC,8

1
λC,5
kC,11




,
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where λC is chosen as a uniformly distributed pseudo random number.
The total concentration of the subnetwork in cytoplasm can be given by

cC = W
(2)
C aC,

withW(2) defined by equation (5.4), i. e., conservation of all three substances
in the subnetwork.
Finally, according to equation (7.28), transport rate constants can be given

by

kT ,1 = ǫ

kT ,2 = kT ,1
aC,2

aN,8

with a small, positive number ǫ. When coupling the two systems the total
concentration of the overall network is given by

c = WT (aC, aN)

with W defined by equation (7.11) and (aC, aN) a column vector of com-
posed elements of concentrations for substances in cytoplasm and nucleus,
respectively, see above. Recall, W ∈ R

5×6n+6 .
For a numerical test on the response curve of the reaction network, 100

variables are generated in α to compute µ. Furthermore, for each µ, 100 vari-
ables in λ are generated to change k. Table (7.2) describes results for bifur-
cation analysis over three different total concentrations, c2 = [A]tot + [Btot],
c3 = [PC]tot and c5 = [PN]tot and different ǫ as an influence on the trans-
port rate constant. Each of these systems reveals a similar overall dynamical
behavior (over all µ and λ) with hardly any multiple steady states found in
accordance to the predictions made in section 7.2.2. Of course, results are
only valid in the analyzed range: 900 steps forwards and backwards begin-
ning from the initial value for both network setups. Steady states appearing
before or after those steps are not depicted here, but might be present. They
could be found by increasing the step size.4 Thus, the numerical analysis
might find only one Hopf bifurcation or one limit point, where several more
lay beyond the analyzed range. Besides these results, an increase in the per-
centage of limit points and Hopf bifurcations can be seen for bifurcation of
c5, last three rows in table 7.2.
Furthermore, changes in c3 address directly the response curve in the

uni-valued subnetwork in cytoplasm and only indirectly the subnetwork
in nucleus, as concentrations change in the multi-valued subnetwork due
to a change in concentrations in the strictly monotone subnetwork. Thus,
changing this total concentration should not have a large influence on the
overall response curve of the reaction network, as it is not able to generate
switch like behavior in the strictly monotone subnetwork. Consequential,
the coupled network does not show limit points or Hopf bifurcations in
high percentages, as changes in c3 only correspond to traversing the strictly
monotone curve. On the other hand, changing c5 directly influences the
s-shaped response curve of the subnetwork in nucleus. Thus, the response
curve of the overall reaction network should change more significantly. This

7.4 A version update of MatCont from 3 to 4 happened throughout this thesis addressing a deriva-
tive error. Not all of the simulations were run again due to computational costs. But results in
the first column of table 7.2 might be a consequence of this former error. Furthermore, MatCont
is known for showing no convergence for networks with small parameters due to numerical
restrictions in the solver step size.
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Table 7.2: Bifurcation analysis for the uni-valued setup and a double phosphorylation net-

work yielding the following results: no con – no convergence, LP – at least two limit

points, LP & H: at least two limit points and one Hopf bifurcation, H: at least one Hopf

bifurcation, nmss – no multiple steady states could be found in the analyzed region.

c ǫ no con LP LP & H H nmss

c2

1e− 7 – 0.11% – 0.34% 99.55%

1e− 6 – 0.55% – 0.34% 99.11%

1e− 5 0.17% 2.05% – 0.38% 97.40%

c3

1e− 7 – 0.24% – 0.42% 99.34%

1e− 6 – 0.79% – 0.43% 98.78%

1e− 5 0.08% 2.39% – 0.43% 97.10%

c5

1e− 7 0.02% 5.36% 30.69% 58.63% 5.30%

1e− 6 0.05% 6.24% 40.78% 48.71% 4.22%

1e− 5 0.10% 7.25% 49.35% 39.85% 3.45%

is reflected in the last three rows of table 7.2, where a higher percentage of
limit points and Hopf bifurcations can be seen.
Note, the same qualitative results in percentage of limit points and Hopf

bifurcations can be seen for change of c2 as for change of c3, first three rows
in table 7.2. This could be due to the strictly monotone subnetwork having
some kind of filter effect on the coupled reaction network decreasing the
percentage of limit points and Hopf bifurcations.

Choosing just one example of the set containing two limit points with
ǫ = 1e− 7 and bifurcation parameter c2 = [A]tot + [B]tot, the values

aC = [0.3663, 1.0000, 0.3663, 1.8316, 1.0000, 1.8316,

1.8316, 1.0000, 1.8316]T ,

cC = [4.0295, 4.0295, 10.3263]T ,

aN = [0.0431, 0.0001, 0.0573, 1.2881, 0.0917, 0.1203, ,

0.6474, 0.1750, 0.04885]T ,

bN = [3.51e− 4, 0.0130, 0.0419, 1.9672, 0.1916, 0.1837,

0.0110, 0.0041, 8.311e− 4]T ,

cN = [1.9786, 0.2265, 2.3714]T ,

with

c = [4.0295, 12.6978, 4.0295, 1.9786, 0.2265]T ,

and

kC = [0.91, 0.091, 0.091, 0.91, 0.091, 0.091,

0.91, 0.091, 0.091, 0.91, 0.091, 0.091]T ,

kN = [6 0192.8019, 0.0614, 0.0778, 30.3323, 0.4933, 0.8331,

189.6487, 0.1354, 1.0224, 67.1570, 0.2416, 13.5532]T ,

kT = 1e− 7 · [1, 5.7149]T ,
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yield results as given in figure 7.3 for the coupled network setup. Response
curve of the decoupled network setup can be found in figure 7.2.
Eigenvalues and concentrations for two arising limit points in the coupled

system in figure 7.2 can be given for the first limit point by

evLP1 = [−9 510.5156, −13.9216, −8.2888, −7.2878, 0, −3.6914,

0, −3.6867, 0, −2.7434, −1.1712, −0.1855, −0.1820,

−0.1245, −0.0870, 0, 0, 0]T ,

xLP1 = [3.9522, 0.00197, 3.9522, 0.0387, −0.0347, 0.0387, 0.0387,

0.001957, 0.0754, 2.9056e− 5, 0.1574, 0.0417, 1.9776,

0.1936, 0.1847, 9.214e− 4, 3.4234e− 4, 6.9515e− 5]T ,

c2,LP1 = 2.6751,

and the second limit point:

evLP2 = [−7 748.12e+ 3, −37.6696, −29.4427, −2.881+ 2.1339 i, 0,

−2.8810− 2.1339 i, 0, −2.8625, 0, −2.5801, −0.4017,

−0.3148, −0.182, −0.0315, −0.0056, 0, 0, 0]T ,

xLP2 = [0.2999, 1.2438, 0.2999, 1.8648, 0.6228, 1.8648, 1.8648,

1.2438, 2.4858, 0.1287, 1.5513e− 5, 0.0718, 0.8413,

0.0478, 0.0786, 1.0086, 0.2176, 0.0761]T ,

c2,LP2 = 13.4607.

Response curves for both network setups are unstable between the two limit
points with one eigenvalue being positive between the limit points and neg-
ative otherwise.

7.3.2 Bifurcation Analysis for a Multi-Valued Setup

In this section the network setup containing an initial multi-valued setup
of the uncoupled subnetworks is considered. Again, only the double phos-
phorylation network is considered due to computational restrictions in Mat-
Cont. As both standard phosphorylation networks in the subnetworks are
supposed to exhibit multiple steady states, variables αC, αN, βC and βN

are generated again as uniformly distributed pseudo random numbers with
the dependent variable αN(3) given by

αN,3 = 2αC,1 + 2αC,2 +αC,3

as follows from equation (7.30) for n = 2.
Furthermore, µ and s are computed for each subsystem according to equa-

tion (5.49). As µC and µN have to have opposing signs due to the condition
in equation (7.27), the negative sign vector for the network in nucleus is
chosen:

µC = EM
C αC, µN = −EM

C αN,

sC = ES
C βC, sN = −ESC ,neg βN.

Note, δC = −δN results in EM
C = −EM

N . Steady states a and b are then given
by (5.50) for each subsystem. The total concentrations of the subsystems are
given by

cC = W(2) aC, cN = W(2) aN,
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Figure 7.2: Bifurcation analysis of two decoupled systems for the uni-valued setup. The sys-

tem in cytoplasm shows a uni-valued response curve, upper two panels, and the system

in nucleus shows a multi-valued response curve.
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multi-valued response curve with two limit points arising.
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with W(2) defined by (5.4) for n = 2. Note, the total concentration of the
whole network has to be computed using the matrix of conservation laws in
equation (7.11) for a composed vector of (aC, aN) describing the concentra-
tion in the overall reaction network.
To compute rate constants kC and kN for the subnetwork, the vector λ,

see equation (5.31) on page 42, is generated in terms of a scaled, normalized
random number: all but the last entry are generated in terms of a scaled
uniformly distributed pseudo random number, the last value is normalized
such that the sum over all entries in λ equals one:

λC,1:5 = 0.2 · rand(5) ∼ U(0, 1),

λN,1:5 = 0.2 · rand(5) ∼ U(0, 1),

λC,6 = 1−

5∑

i

λC,i,

λN,6) = 1−

5∑

i

λN,i,

yielding rate constants

kC = diag
(
Φ(aC)

−1
)
E(2) λC,

kN = diag
(
Φ(aN)−1

)
E(2) λN.

The rate constants of the transport reactions are given by equation (7.27):

kT ,1 = ǫ, kT ,2 = kT ,1
aC,2

aN,8
.

For a numerical analysis of the response curve of the coupled reaction net-
works, 100 values for α and β are generated, yielding a set of 100 parameters
µ and s. For each set 100 values for λ are generated. Table 7.3 describes the
overall results for numerical analysis via bifurcation of c2 = [A]tot + [B]tot,
c3 = [PC]tot and c5 = [PN]tot and different small, but positive ǫ for 900 steps
for- and backwards from the initial values.
Multiple steady states as solutions to the subnetwork are, in the scope

of the algorithm 7.2.2, only valid for the overall network in a small region
around this initial setup. See table 7.3 for three different ǫ and c2, c3 or c5 as
bifurcation parameters. Each of these considered systems shows multistatio-
narity. At the same time, the number of networks without multiple steady
states in the analyzed region rises with a rising ǫ due to the restrictions in
algorithm 7.2.2, compare also work of [18].
In comparison to the previous case, i. e., a mono-valued response curve,

multistationarity can be found in ≈ 86% of cases tested for ǫ = 1e − 7

and ≈ 80% for ǫ = 1e − 6 and ǫ = 1e − 5. The remaining results, not
showing multiple steady states or even no convergence, are probably due
to numerical issues, see as well footnote 4 or due to the width of 900 steps
forwards and backwards.
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Table 7.3: Bifurcation analysis over different total concentrations c for the multi-valued

setup of a double phosphorylation network and different transport rate constants via ǫ.

The coupled system shows: no con – no convergence, LP – at least two limit points, LP

& H – at least two limit points and at least one Hopf bifurcation, nmss – no mulitple

steady states in the analyzed interval.

c ǫ no con LP LP & H HP nmss

c2

1e− 7 0.01% 6.35% 8.97% 72.13% 12.54%

1e− 6 0.01% 9.14% 16.24% 64.69% 9.91%

1e− 5 0.31% 10.84% 26.9% 53.27% 8.68%

c3

1e− 7 0.02% 5.36% 30.69% 58.63% 5.30

1e− 6 0.05% 6.24% 40.78% 48.71% 4.22%

1e− 5 0.1% 7.25% 49.35% 39.85% 3.45%

c5

1e− 7 0.02% 0.81% 26.83% 68.39% 3.95%

1e− 6 0.13% 1.20% 39.57% 55.55% 3.55%

1e− 5 0.36% 1.77% 52.70% 42.20% 2.97%

Choosing one example of the set containing limit points as well as Hopf
bifurcation, with ǫ = 1e− 7 and bifurcation parameter c2 = [A]tot + [B]tot,
the values

aC = [0.0157, 0.4401, 0.5015, 1.2294, 0.1040, 2.0918,

0.0272, 1.4638, 0.0355]T ,

bC = [0.4695, 0.0077, 1.3268, 0.6425, 0.0205, 1.0931,

0.1604, 3.2587, 0.2088]T ,

cC = [1.2724, 2.6288, 5.3918]T ,

aN = [0.2931, 0.0009, 0.0454, 0.4944, 0.5109, 0.1310,

0.1691, 1.7539, 0.1075]T ,

bN = [0.4695, 0.0077, 1.3268, 0.64250.0205, 1.0931,

0.1604, 3.2587, 0.2088]T ,

cN = [0.9567, 0.2839, 3.1677]T ,

with

c = [1.2724, 8.5596, 2.6288, 0.9567, 0.2839]T ,

and

kC = [172.3585, 0.3180, 0.6534, 31.3414, 0.3974, 0.3840,

358.6558, 2.2206, 19.3479, 1.2617, 11.2608, 14.8601]T ,

kN = [4 6024, 0.7917, 1.6250, 70.4185, 6.3443, 6.1305,

3.9216, 0.3576, 3.1154, 11.6212, 3.7155, 4.9031]T ,

kT = 1e− 7 [1.0, 0.2509]T ,
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yield results as given in figure 7.4 for the decoupled and as given in fig-
ure 7.5 for the coupled network setup. Eigenvalues and concentrations of
the points on the curve can be given by:

evH1 = [−2 758.1, −98.0254, −35.0978, −26.6784, 0, −29.2774,

0, −20.1976, 0, −3.5888, −2.8405 · 10−6 − 2.019 · 10−5 i,

2.8405 · 10−6 − 2.019 · 10−5 i, −0.8052, −9.2654, −6.5831,

0, −4.4980, 0]T ,

xH1 = [0.1409, 0.0400, 0.7560, 1.0001, 0.0561, 1.7016

0.1315, 4.6873, 0.1712, 0.5988, 0.0003, 0.1680

0.3009, 0.0841, 0.0798, 0.0569, 0.1595, 0.0361]T ,

c2,H1 = 8.5054,

with the first Lyapunov coefficient given by 302.56 for the first Hopf bifurca-
tion, see for example [62].5 For the first limit point by

evLP1 = [−2 446.7, −88.5334, −34.8538, −20.8221− 2.3541 i, 0,

−20.8221+ 2.3543 i, 0, −30.6582, 0, −3.7245, 0.0642,

0, −0.6799, −9.135, −6.3736, 0, −4.5139, 0]T ,

xLP1 = [0.1059, 0.0560, 0.6895, 1.0525, 0.0648, 1.7908,

0.1140, 4.4577, 0.1485, 0.5311, 0.0004, 0.1456,

0.3566, 0.1150, 0.0945, 0.0690, 0.2232, 0.0438]T ,

c2,LP1 = 8.5868,

the second limit point by:

evLP2 = [−1 472.5, −93.1079, −32.5, −50.2162, 0,

−16.4112− 4.0841 i, 0, −16.4112+ 4.0841 i, 0,

−9.1931, −3.0109, 0.1298, 0, −0.3102, −6.1183, 0,

−3.7668, 0]T ,

xLP2 = [0.0302, 0.2226, 0.5343, 1.1945, 0.0948, 2.0323,

0.0477, 2.4064, 0.0621, 0.3189, 0.0008, 0.0677,

0.5103, 0.3539, 0.1353, 0.1275, 0.8870, 0.0810]T ,

c2,LP2 = 8.1561,

and the last Hopf bifurcation:

evH2 = [−1 431.3, −179.27, −90.8973, −29.2165, 0,

−17.8335− 2.6058 i, 0, −17.8335+ 2.6058 i, 0, −9.6928,

−1.671, −7.3341, −0.261, 1.92 · 10−8 − 7.47 · 10−5 i,

1.92 · 10−8 + 7.47 · 10−5 i, 0, −2.9658, 0
]T

,

xH2 = [0.0092, 0.7663, 0.4860, 1.2467, 0.1088, 2.1211,

0.0166, 0.9202, 0.0216, 0.3101, 0.0007, 0.0331,

0.4320, 0.6127, 0.1145, 0.2145, 3.0537, 0.1363]T ,

c2,H2 = 9.7658,

7.5 Note, due to step size restrictions of MatCont only values around the actual limit points and
Hopf bifurcations are given. Thus, the real part of the eigenvalues of the Hopf bifurcation is
not necessarily zero for the numerical values given by MatCont.
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and the first Lyapunov coefficient given by 0.024208. The system is unstable
between the two Hopf bifurcations with two positive eigenvalues and stable
with no positive eigenvalues left from the first and right from the second
Hopf bifurcation.
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Figure 7.4: Bifurcation analysis of two decoupled systems using the multi-valued network

setup. The response curve of the coupled network setup can be found in figure 7.5.
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Figure 7.5: Bifurcation analysis of two coupled system for the multi-valued setup resulting

in an overall behavior with two Hopf bifurcations and two limit points. A composed

“temporal” course of this figure can be found in figure 7.6.
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Figure 7.6: Composed “temporal” course of the dynamical system in figure 7.5 for con-

centration of the protein in cytoplasm, [A], and in nucleus, [B]. The concentration

c2 = [A]tot + [B]tot is changed for a fixed integration time 5 · 108 by 0.1 per integration

step as shown in the lower panel. This figure illustrates movement along the curve of

figure 7.5. Integration starts below the first Hopf bifurcation, moves on to the upper

branch and above the second Hopf bifurcation. Integration time is not long enough for

the system to run into a steady state while oscillating.

Furthermore, a composed “temporal” course of figure 7.5 can be found
in figure 7.6. This “temporal” course illustrates movement along the curve
in figure 7.5 while varying c2 stepwise as a dynamical simulation. The
total concentration c2 is changed as a step function for a fixed integration
time, such that the system either runs into its steady state or shows other
characteristic behavior like oscillations. Note, the resolution for the step
size is not large enough for the system to actually run into a steady state,
e. g., while its oscillations are decreasing. Step size is chosen such, that c2 is
varied between 7.25 and 9.5 to highlight the behavior.

Recall section 3.2.3 on page 23 and figure 3.6 and the discussion therein.
Finding a multivalued region in the phosphorylation network (N7.1) can
actually yield response curves as observed in the experiments based on the
phosphorylation network itself and is thus not due to oscillations of cal-

cineurin.

7.4 summary and open questions

A large (bio-) chemical reaction network containing two coupled standard
phosphorylation networks of size n is considered in this chapter. The under-
lying subsystem of phosphorylation networks leads to a compartmentaliza-
tion of the reaction network. In a first approach, the algorithm to solve the
polynomial condition of the previous chapters is applied. The algorithm
is applicable and yields not only conditions on signs of µ and s but also
additional sign restrictions on λ. But, as the network is too big due to the
large number of states and parameters, no results for valid sign vectors can
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be given. Using a different approach or appropriate solvers to solve sign
restrictions in λ and find valid sign vectors δ, it should be possible to pro-
vide an explicit answer towards existence of multiple steady states in the
considered network. It might be possible to provide solutions following the
approach of Lemma 5.9.
As application of this algorithm does not yield solutions, the compart-

mentalization of the networks is used to check whether the reaction net-
work can exhibit multiple steady states. Known results for the underlying
multisite phosphorylation network are used to solve the multistationarity
problem in a small area around known solutions of the subnetworks. Con-
ditions on the network are stated to find such solutions. These conditions
can actually be satisfied by some sign vectors, such that a region of mul-
tistationarity can indeed be found: The n-times phosphorylation network
including compartmentalization can exhibit multiple steady states. An ex-
ample is given, where oscillations arise due to a change in the total protein
concentration. This describes a novel finding. The subnetwork analysis
could have failed or only stated conditions, that can not be satisfied by the
sign vectors of the underlying standard phosphorylation network. But, the
phosphorylation process including compartmentalization can actually ex-
hibit multiple steady states. Thus, oscillations observed in experiments can
also be found in the considered network. These oscillation need not be a
product of oscillating enzyme concentration but can be produced by the re-
action network itself. This is a very interesting finding, as the considered
reaction network of NFAT phosphorylation plays an important role during
immune response. Experiments on an enclosed reaction network of NFAT
phosphorylation could elucidate these findings.





And it’s hard to dance

with a devil on your back.
So shake him off, . . .

— Florence Welch and Paul Epworth

8ROBUSTNESS TOWARDS VARIAT IONS IN PARAMETER
SPACE

Analysis so far has been rather analytical with some excursions to actual
values to visualize results. But, existence of multiple steady states, either in
general or indeed in biological relevant regions, is not the only interesting
topic in (bio-) chemical reaction networks. If multiple stable steady states
can be found, it is also of interest, whether these states are still stable if
parameter change, as (bio-) chemical reaction networks are often prone to
changes. These changes can occur in overall settings, e. g., changes in total
concentrations, but also in changes of the temperature, etc., resulting in
changes in rate constants. Thus, if the (bio-) chemical reaction network is
somewhat robust towards these changes, network properties, like steady
states can be preserved if parameters change in small intervals. Otherwise,
small environmental changes might have a too drastic impact on the reaction
network and the overall organism. This chapter covers some aspects of
parameter changes by applying a random walk in parameter space to test
robustness of a standard multisite phosphorylation network.
The chapter is based on the robustness analysis done by S. Herold, [45],

see also his remarks on different approaches on robustness analysis and on
the choice of using a random walk. S. Herold applied a random walk on
phosphorylation networks with n = 2, . . . , 8 phosphorylation steps. Anal-
ysis therein is extended up to n = 14 phosphorylation steps for the binary
set of sign vectors δ(2) ∈ {+, −}, see section 5.3 on page 43, for the binary
set of sign vectors δ(3) ∈ {+, −} and n = 3, . . . , 15 phosphorylation steps
with i1 = 1 and i2 = n − 1, respectively, compare equation (5.∆b). The
basic idea is, to change rate constants randomly up to a certain number of
times and link robustness to the number of times this change can happen.
Preservation of multistationarity in the reaction network is checked via the
polynomial and coset condition, compare Definition (2.4) on page 11. In
contrast to S. Herold’s, see [45, page 19, ff.], this chapter also considers the
influence on the robustness of the network of generating the parameters
α, β and λ in different ways, i. e.,as uniformly distributed pseudo random
numbers or choosing fixed values, compare also section 5.4.
Where S. Herold’s focus lies on robustness of multistationarity towards

changes in either the individual parameters or the overall parameter vector,
this chapter provides results for changes of the whole parameter vector due
to the rising number of parameters with larger network sizes n. It also
provides results for four different versions of generating parameters α, β
and λ, recall Remark 2.5 on page 12.

8.1 generating initial values

To enable robustness analysis initial parameters for rate constants k and
steady states a and b have to be generated. The initial concentration of

123
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Table 8.1: Nomenclature for parameters of different setups for generating α, β and λ. See

also y-axis in figure 8.2, C.3 and C.4.

version/variable α, β λ

α, β random number fixed parameter

α, β, λ random number random number

{} fixed parameter fixed parameter

λ fixed parameter random number

states a and b are kept constant during the random walk. Following the ap-
proach of former chapters, see for example section 5.4.1, different scenarios
for generating parameters are possible. Here, parameters are generated in a
general form, such that they are not restricted to certain intervals, compare
section 5.4.2. Following section 5.4.1, parameters can be generated in two
different ways: either parameters are set to a fixed value, for example 1/6

for all values in λ(2), see section 5.4.2 on page 58 but also remark 2.5 on
page 12, or chosen as uniformly distributed pseudo random numbers, see
table 8.1 for arising combinations of parameters.
Due to the nature of the algorithm, α and β can be chosen freely in

the network, recall equation (5.49) on page 53. Thus, choosing uniformly
distributed pseudo random variables does not restrict any given network
properties. Furthermore, restricting them to a given length might enable
better comparison in the random walk analysis between a flexible param-
eter space or a tight parameter space, respectively. Recall, the α is always
of length three for the standard multisite phosphorylation network consid-
ered in chapter 5, see also the cone EM on page 149. Thus, in analogy to
Remark 2.5 on page 12 choosing the same value for each entry in α and β

would correspond to fixed values in these vectors dependent on the size of
their appropriate cones, thus a “fixed” parameter space. Thus, chose for the
random setup

α ≈ U(0, 1) ∈ R
3
δ(n) and β ≈ U(0, 1) ∈ R

q

δ(n) ,

compare equation (5.49) and notation in table 8.1. And, for the fixed setup

α =
1

3
∈ R

3
δ(n) and β

1

q
∈ R

q

δ(n) .

Values for steady states are computed following equation (5.50) on page 53

ai =







si
exp(µi)−1

, if µi 6= 0

āi > 0, if µi = 0

bi = exp (µi) ai.

The same argument holds for the parameter λ and its cone E(n). Further-
more, recall equation (5.31) on page 42, λ can also be interpreted as flux
modes in the reaction network, see section 2.2 on page 12. Setting elements
of λ to a constant range would correspond to equal influence of every flux
mode whereas random values correspond to a biased influence of each el-
ementary mode, e. g., large values correspond to a larger influence of the
corresponding reaction. Thus, influence of λ on the reaction network via
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Figure 8.1: Steady state a as a function of µ and s for sgn(µ) = sgn(s) and an interval of

µ, s ∈ [−10, 10], compare also figure 5.4 on page 63. Distribution of a follows, in an

approximation, the slope of a logarithmic function.

its cone E(n) can be used to interpret results in a biological way. For the
random setup

λ ≈ U(0, 1) ∈ R
3n
>0,

and the fixed setup

λ =
1

3n
∈ R

3n
>0

are chosen. With a given by equation (5.50), a set of initial rate constants
k(0) can be computed via equation (5.31) on page 42

k(0) = diag(Φ(a)−1)Eλ.

To be able to draw conclusions from the random walk, several aspects
have to be considered. First of all, the parameter space has to be simply
connected or, at least, should not contain holes at unknown positions. The
random walk would of course fail reaching boarders or holes. Generating
the steady state a via µ and s, the distribution of the steady state seems to
follow the slope of a logarithmic function, see figure 8.1, where only ai = 0

is not defined. Thus, the pointed polyhedral cone E, where v(k, a) lies,
seems to be simply connected minus the origin, without loss of generality
due to equation (5.50) and equation (5.31).
The second aspect to be considered is, whether conclusion can be drawn

following the random walk itself. The step size is known, given by equa-
tion 8.1. A high number of iterations is needed to be able to draw con-
clusions from the random walk due to the crude approximations on the
distribution of generated variables, a and b. In total R = 1000 initial steady
states are generated and varied in (a maximum of) m = 100 steps. These
numbers were chosen to guarantee a wide range of initial values even for
the tight setup {}, see table 8.1.
To analyze robustness towards variation in the parameter vector, the vec-

tor of rate constants k is varied randomly in each step of the random walk.
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This “stochastic process” uses the initial vector k(0) from above, confined
to a parameter space dependent on the size of the initial vector of rate con-
stants. The vector k(j) is stepwise varied randomly for j = 1, . . . , m by
a given constant distance ∆k(j), until the valid parameter region, i. e., the
region were the network exhibits multiple steady states, can no longer be
sustained:

k(j) = k(j− 1) +∆k(j), j = 1, 2, . . . , m (8.1)

with

‖∆k(j)‖2 =

√√√√
6n∑

i

ki(0)2, (8.2)

where the distance ∆k(j) is not only dependent on the initial vector of rate
constants k(0), but also individual values of ki(0), compare section 3.1.1.
Variation of the parameter vector k can either be done individually for spe-
cific entries in k, i. e., only one or several entries in k are changed during
the random walk, or for the overall vector, i. e., the whole vector changes.
This is in contrast to most other sensitivity analysis tools, here variation of
certain pairs of k is possible within the random walk, e. g., varying the rate
constant of all phosphorylation steps k6i−3 or dephosphorylation steps k6i
and i = 1, . . . , n, see network (N5.1).

8.1.1 Variation of the Whole Parameter Vector

In a first attempt, the whole parameter vector k can be varied to analyze
robustness. Choosing a fixed step size independent on actual values in k

can yield either too small values for some ki or too large ones for others, see
also [45]. To provide a step size, that takes these differences in the ki into
account, a directed vector δk(j) of normally distributed random numbers
with mean 0 and standard deviation of 1, N(0, 1), is generated. The step
size is chosen as a function of a biased vector r ∈ R

6n
>0:

∆k(j) = r · δk(j)
‖k(0)‖2
‖δk(j)‖2

(8.3)

to account for differences in the values of the ki. And thus, parameters k(j)
of a step j are dependent on parameters of the former step j− 1 as well as
the initial value k(0). Note, only positive ki(j) are allowed.

8.1.2 Variation of Individual Parameters

A second scenario is possible, where an individual parameter ki is varied.
The influence on the robustness of the network towards a single ki could
be tested in such a way. It would be, for example, of interest whether the
property of multistationarity is more robust towards variation of the associ-
ation rate constants, k6i−6 for i = 1, . . . , n, than the phosphorylation rate
constants, k6i−3.
Here, single steps j are chosen in such a way, that individual rate constants

ki(j) are only dependent on the initial parameter rate constant ki(0) and
thus, values for the step j are in the same range as the ones of the initial
step:

∆ki = δki(j) ·
‖ki(0)‖

‖ki(j)‖
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and

∆kmax,i = ki(0),

where the step itself is again a normally distributed random number with

δki(j) ≈ N(0, 1).

Following this approach, all but the i-th rate constants are kept constant.
The i-th rate constant is given by equation (8.1) and ki(j) lies in an interval
ki(j− 1)± ki(0). Again, only positive rate constants are admissible.

8.2 the polynomial and coset condition

A random walk is applied for network (N5.1) and n = 2 (3), . . . , 14 (15) for
variation of the vector of rate constants k ∈ R

6n and the discussed cases
of table 8.1. Preservation of multistationarity by changing the parameter re-
gion is guarantied by checking the polynomial condition, see equation (5.14),
and the coset condition, see equation (5.15). The polynomial condition has
to be fulfilled for every variation step. For validation of the coset condition
three scenarios are possible:

RW1 In a biological sense, no external regulation is allowed. The total
concentration c ∈ R

3 of the network is constant with

c(0) = c(j) = const. ∀ j = 1, . . . , m.

The total concentration has to stay constant with each variation step
j. New parameters k(j) as well as steady states a, b ∈ R

3n+3
>0 have to

fulfill

0 =




Nv(k(j), a)

Nv(k(j), b)

c(0) −WT a

c(0) −WT b




such that multistationarity is maintained with a 6= b, i. e., steady states
for all k(j) have to lay in the same coset.

RW2 External regulation of enzymes in the network is allowed via unmod-
eled synthesis and/or degradation or inflow via higher network struc-
tures. Thus only the total concentration of the protein and its phos-
phorylated forms is constant for all steps and positive a and b:

c3(0) = c3(j) = const. ∀ j = 1, . . . , m.

The following condition has to be fulfilled in each variation step j:

0 =




Nv(k(j), a)

Nv(k(j), b)[
wT

1

wT
2

]
(b− a)

c3(0) −wT
3 a

c3(0) −wT
3 b




to guarantee multistationarity.
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RW3 External regulation of all enzymes and the protein is possible. Thus
the total concentrations of all substances are allowed to change with
each variation step, for positive a and b. To guarantee multistationa-
rity of the network itself, the following condition has to be fulfilled:

0 =




Nv(k(j), a)

Nv(k(j), b)

WT (b− a)


 .

“Robustness” of the network is then defined via the number of possible steps
allowed in the current random walk. If the condition in the corresponding
setup fails, the current random walk is aborted corresponding to parameters
failing to sustain the network property of multistationarity.
Furthermore the different scenarios RW1–RW3 allow to model a degree

of freedom for the network, as higher network structures, for example over-
and underlying layers in the MAPK cascade, are able to intervene with the
network and thus increase or decrease the robustness of the network.

8.3 robustness analysis

To enable robustness analysis, exit conditions, as indicated in RW1–RW3 on
page 127, are checked in every variation step j. If they fail, the random walk
is aborted and the last valid step is taken as the exit number I of the random
walk. By using several cycles of the random walk the mean exit number I
can be computed

I =
1

R

R∑

i=1

I(i), (8.4)

recall R as being the total number of initial sets being generated,i. e., R =

1000 for each phosphorylation step n. And,m = 100 as the maximal number
of steps taken during the random walk. Furthermore, variables Imin and
Imax are used, to describe the minimal and maximal number of steps a
random walk could be performed for all R. Where, in the worst case, Imin =

0, i. e., the random walk failed in the first step. And at most, Imax = m.
The mean exit number enables predictions for the actual robustness of the

network towards variation of the parameter k for different sign vectors δ(n):
higher values correspond to more robust parameters whereas lower values
correspond to more sensitive parameters.
For small phosphorylation networks, the approach of testing the robust-

ness of each individual rate constant is laborious, but feasible. As the num-
ber of rate constants rises by 6 per phosphorylation step, the approach is
not feasible for larger phosphorylation networks. Consider a simple case of
a double phosphorylation: twelve rate constants would have to be varied
up to m = 100 times. To be able to draw conclusions, about R = 1000 ini-
tial values would have to be generated, comparable to the former approach
for variation of the whole vector. For the small network, this would yield
for each sign vector δ(2)i ∈ ∆(2), see equation (5.51) on page 54, each setup
(compare table 8.1) and each scenario, RW1–RW3, in total 4× 4× 3 = 48 sets
of data for each rate constant. S. Herold followed this approach for phospho-
rylation networks up to a size n = 6 for each scenario and each sign vector,
but only one setup, the one corresponding to the first line in table 8.1. He
found differences in the robustness of individual rate constants, i. e., certain
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rate constants could be varied more often, respective to their initial value,
than others, before conditions on multistationarity can no longer be satisfied.
But, the computational effort rises of course with a rising network size. For
networks of n > 7 it is already too large to actually check all rate constants
for all δ(2,3), all setups, compare table 8.1, and scenarios RW1–RW3, under
the given conditions. Thus, the approach is not further considered here in
favor of testing the influence of generating parameters α, β and λ on the
robustness of the reaction network. Robustness analysis is only performed
following equation (8.3) for all ∆(n) of equation (5.∆b) with n = 2, . . . , 14
and n = 3, . . . , 15 for i1 = 1 and i2 = n− 1, all four setups of table 8.1 and
scenarios RW1–RW3.

8.3.1 Results for Variation of the Whole Parameter Vector

A random walk for variation of k for sign vectors δ(n) of ∆(n) for n =

2, . . . , 14 and n = 3, . . . , 15 and i1 = 1 and i2 = n− 1 in equation (5.∆b)
is applied. Selective results for all four setups, I(α, β), I(α, β, λ), I(λ) and
I({}) for RW1–RW3 and δ

(2)
1 can be found in figure 8.2. Results for remaining

δ(2) of ∆(2), and ∆(3) can be found in appendix C.2 in figure C.3 and C.4,
respectively.
Dependent on the scenario, see table 8.1, different “slopes” can be seen.

Note, the mean exit number Ī for a given color corresponds to the “same”
sign vector for networks of rising n, i. e., sign vectors δ(2) are only pro-
longed by δ1 and δ3 with i1 = 1 and i2 = n− 1, see equation (5.∆b2) in
Theorem 5.10. This excludes of course other sign vectors, i. e., those pro-
longed by δ1 and δ3 but with i1 and i2 not fixed in the previous sense, but
also all others prolonged by different signs. This approach is used to enable
comparability between different phosphorylation steps n. If orthants are
prolonged in such a way, ratios between individual concentrations stay the
same, see also the discussion in section 5.5 on page 66, in [P1] and the Fact
6.1 in [P2]:
Some scenarios of RW1–RW3 show a constant mean exit number, for some

the mean exit number first increases and then decreases, and some scenarios
even show a decrease towards a mean exit number of zero, i. e., the random
walk fails already in the first step. Comparing the overall slope of the curve
of the mean exit number for a fixed scenario, RW1–RW3, but between all
four setups, I(α, β), I(α, β, λ), I(λ) and I({}), the influence of the parameter
α and β seems to be higher than the one of λ. The overall appearance stays
the same whether λ is chosen fixed or varied randomly, compare curves
between left two subplots with those in the right two subplots in figure 8.2.
Whereas changes of α and β alter the overall appearance of the mean exit
number I, compare curves in upper two subplots with those in the lower
two. The network seems to even lose robustness in parameter variation for
larger phosphorylation steps n by setting α and β to fixed values,i. e., the
mean exit number is zero and thus no random walk is possible. Overall,
the robustness seams to decrease for almost all sign vectors and scenarios
for phosphorylation networks of sizes n > 6, the only exception being δ

(2)
1 ,

compare additional figures C.3-C.4 in appendix C.2.
Besides these influences, the restrictions on the exit conditions, i. e., the

cause for violation RW1–RW3, have an influence on the robustness as well.
As expected the least restrictive exit condition, RW3, is the most robust one
for most of the networks, only in some cases is RW2 better. The mean exit
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Figure 8.2: Mean exit number as measure of robustness for perturbation of the parameter

vector for sign vectors ∆(n) ∈ {+, −} in equation (5.∆b) with i1 = 1 and i2 = n− 1.

Different scenarios are coded in the following way: RW1 = red circle, RW2 = black cross,

RW3 = blue plus. Note Ī = 0 for n > 7 or 8 for fixed α and β (subplots in lower row).

number of RW2 lies close by the one of RW3, but is below the one of RW3 in
most cases, e. g., exceptions for δ(2)1,2 and Ī(α, β, λ). With RW1 corresponding
to the most restrictive network setup, it shows accordingly the lowest mean
exit times and thus, yields the least robust results. On average, only one fifth
of the variation steps possible for RW2–RW3 could be achieved for RW1.1

8.3.2 Relaxation of Conservation Relation and Exit Condition

If the numerical test for the exit condition in each scenario fails, the exit
reason is analyzed via the following exit conditions:

#1 Violation of 〈W, b− a〉 = 0.

#2 No positive pair a, b can be found.

#3 No pair a, b can be found at all.

Due to the number of runs and sign vectors, this test is only done for the
first four sign vectors of ∆(2) and their corresponding vectors for i1 = 1,
i2 = n− 1 of rules (5.∆b).
Figure 8.3 shows the maximum, mean, and minimum exit numbers for

δ
(2)
1 of ∆(2) and following δ(n) of equation (5.∆b1) with i1 = 1 and i2 =

n − 1 for all three scenarios, RW1–RW3, and four setups from table 8.1,
I(α, β), I(α, β, λ), I(λ) and I({}). Results for remaining sign vectors of ∆(n)

8.1 A Kolmogorov-Smirnov test, see [46], yields the same underlying distribution comparing dis-
tribution of mean exit numbers in between the same scenarios, RW1–RW3, in the following
sense: distribution of the mean exit numbers of RW1–RW3 of Ī(α, β, λ) corresponds to the
one of Ī(α, β), and the distribution of the mean exit numbers of RW1–RW3 of Ī(λ) to the one
of Ī({}).
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Figure 8.3: Exit reason for all exit conditions and δ
(2)
1 of ∆(2) and following δ(n) of equa-

tion (5.∆b1) with i1 = 1 and i2 = n − 1. Upper (solid red, blue, black) horizontal

line describes maximum exit step Imax, middle horizontal line describes mean exit step Ī

and lower horizontal line describes minimum exit step Imin (not visible in all cases as it

corresponds to zero, i.e. the first step is already invalid).

for n = 2, . . . , 14 of equation (5.∆b) on page 49 can be found in figures C.5
in appendix C.2 on page 189.
Again, the overall result is similar for all ∆, scenarios, and exit conditions,

RW1–RW3: most of the random walks fail due to violation of reason #2.
But, small differences can be seen for the different signs ∆(n). The first sign
vector, δ(n)

1 , exhibits an overall higher mean value for exit Ī as a consequence
of reason #2 for all three RW’s than the other three sign vectors. The mean
exit number Ī for the other three sign vectors is mostly higher for the second
exit reason #2 and RW3. Furthermore, comparing maximum, mean and
minimum exit numbers I within a sign vector, all show a similar behavior
for different setups from table 8.1: If (only) α and β are chosen randomly,
networks might fail as well due to reason #3. But if α and β are fixed,
reason #3 never is the cause for violation of the exit condition, except for
RW1. Note, Imin is zero for all curves in figure 8.3. Thus all random walks
fail at least once due to violation of #1, #2 or #3 for all ∆, RW and setups.
Interestingly, Imax is 100, corresponding to m, only for some scenarios and
some ∆. It is always lower than 100 for reason #3, i. e., if reason #3 is violated,
the system never reaches its maximum number of steps. But if α and β are
fixed, it also hardly reaches the maximum number of steps for RW3.

8.4 summary and open questions

If a standard phosphorylation network exhibits multiple steady states for
n > 2, it is of interest, whether these steady states are robust towards
changes in parameter space. Therefore, a random walk in parameter space
is applied in this chapter. It is based on work of S. Herold, [45], and ex-
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tended in substantial ways. In contrast to work by [45], different forms to
generate parameters and their influence on the robustness of the network
are considered. Furthermore, different random walk scenarios, RW1–RW3,
are considered. The first one corresponds to the polynomial condition and
coset condition to hold. The second one allows external regulation of the
enzymes, e. g., via synthesis and degradation. The third one allows external
regulation of the enzymes and the protein.2 The different scenarios corre-
spond to network properties, where the reaction network is either operating
in a fixed setup or is regulated by external reactions. And thus, might be
able to adapt to external influences, e. g., variation in parameters.
Concluding from the results of the different scenarios, RW1–RW3, for dif-

ferent exit conditions for the random walks, the robustness of the multista-
tionarity region in terms of variation of parameters rises with the phospho-
rylation step n up until four to six phosphorylation steps and then decreases
for higher n. These results confirm the findings of [45] for smaller phospho-
rylation networks. Thus, findings confirm what one would expect from the
reaction network: the least restrictive setup is the most robust one as the
network is able to adapt to changes imposed by the random walk as long as
external regulation via synthesis and degradation is allowed.
Furthermore, generating parameters α, β and λ seems to play an impor-

tant role. Parameters α and β influence directly steady states a and b and
have an indirect influence on k via a. The parameter λ only influences the
rate constant k. Robustness analysis indicates, that α and β play a more
important role on preservation of multistationarity than the vector λ. While
keeping α and β fixed, the random walk fails immediately for n = 7 or
n = 8, depending on the used sign vector δ. Whereas, randomly chosen α

and β enable a random walk up to fourteen phosphorylation steps, though
the maximum number of possible steps decreases with a rising step n. On
the other hand, choosing a fixed or random λ does not seem to have an
influence on the random walk itself.
From a biological point of view, this is quite surprising. Here, an inter-

pretation of λ’s influence on the reaction network is more intuitive, than
the one of α and β. On might expect, that changing λ, i. e., the random
setup, should have a more drastic impact on the reaction network, as rate
vectors are influenced directly and thus, flux modes in the reaction network.
But this does not seem to be the case. Rather, fixing α and β, in terms of
their respective cones, seems to impose too strict conditions on the network
or move steady states in rather narrow regions of their multistationarity
region. Recalling the example provided on the ratios of steady state concen-
trations, see also [P2], these results are really interesting and more analysis
on the influence of parameters α, β and λ in terms of a mathematical but
also biological interpretation on the network structure is needed.
Furthermore, the distribution of exit numbers of the random walk over

different sign vectors δ is not the same. Dependent on the sign vector used,
the random walk fails for some sign vectors already after 20 steps and for
others after 60 steps. Again, a biological interpretation of sign vectors is
needed to enlighten this phenomenon.

8.2 I. e., the steady state a of an arbitrary random walk step j has to lie in the same coset as the
second steady state b for the same step j. But they do not have to lie in the same coset as the
initial pair of steady states.



In the end

these things matter most:
How well did you love?

How fully did you live?
How deeply did you let go?

— Siddharta Gautama

9SUMMARY, OPEN QUEST IONS AND CONCLUS IONS

The thesis discusses the topic of multistationarity in multisite phosphory-
lation networks. After an introduction of the topic, theoretical and experi-
mental aspects of modeling (bio-) chemical reaction networks are discussed.
Experimental results and theoretical findings on the number of steady states
of certain reaction networks from literature are given. Multiple steady states
have been shown to exist in experimental setups of multisite phosphoryla-
tion networks. Furthermore, existence of multiple steady states in a distribu-
tive, sequential double phosphorylation network have been shown to exist
by [19], where a parametrization of the multistable region is provided for
two steady states.
But, nothing could be said so far about existence of multiple steady states

in general multisite phosphorylation networks. Thus, a distributive, sequen-
tial phosphorylation network with n phosphorylation sites is introduced as
the standard phosphorylation network in this thesis. A polynomial and a
coset condition are presented as prerequisites for existence of multistationa-
rity. A theorem, together with a proof, is presented to solve the polynomial
condition. To solve the coset condition for solutions of the polynomial con-
dition, a lemma is given providing sign vectors. These sign vectors define,
in a nutshell, the parametrization of the multistationarity region. Thus, if
a sign vector can be given, pairs of steady states can be given as well. As
these sign vectors can be found for any n > 2 for distributive, sequential
phosphorylation networks of mass action kinetics, a parametrization for at
least two steady states can be provided as well. Thus, multisite phosphory-
lation networks with n phosphorylation sites and a distributive, sequential
mechanism indeed exhibit multistable states. A quantitative analysis of the
parameter space reveals, that multiple steady states are not only a theoret-
ical result, but can actually be found in biological relevant regions. One
result of the sign vectors is, that the ratio of the steady state concentrations
of the kinase-substrate complexes is always equal to the ratio of the steady
state concentrations phosphatase-substrate complexes.
The distributive, sequential n-times phosphorylation network is extended

by additional synthesis and degradation reactions for the enzymes and
(phosphorylated) protein to cover a wider set of (bio-) chemical reaction net-
works. Here, the polynomial condition cannot simply be solved following
the theorem for the former reaction network. Still, an algorithm is presented
to solve the arising polynomial condition. It results in a system of a linear
equation and a system of bilinear inequality. Existence of multistationarity
is coupled to existence of sign vectors satisfying not only the polynomial
and coset condition, as before, but also the bilinear inequalities. The algo-
rithm is applicable to (bio-) chemical reaction networks, if mass action kinet-
ics are endowed. The distributive, sequential phosphorylation mechanism

133
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from above represents a special case of this algorithm, where no bilinear
inequalities arise. For a double phosphorylation network including synthe-
sis and degradation, these sign vectors, and thus, multistationarity, can be
established, if either both enzymes or the kinase are preserved. If only the
phosphatase is preserved, the unphosphorylated protein has to be synthe-
sized and degradated for the network to exhibit multiple steady states. A
parametrization for rate constants and steady states is provided. For larger
reaction networks of n > 2 multistationarity cannot be established as the
arising bilinear inequality set is not tractable.
In a further extension, a reaction network containing two distributive, se-

quential phosphorylation networks is coupled by two transport reactions.
Applying the former algorithm yields a set of linear and bilinear inequali-
ties. In general, it is possible to solve the linear inequalities. Furthermore,
the bilinear inequalities are tractable. An explicit solution to the linear equal-
ities and bilinear inequalities cannot be provided, due to the large number
of parameters. A different approach is taken. Instead of trying to find sign
vectors satisfying the polynomial and coset condition together with solu-
tions for the nonlinear inequalities, the structure of the subnetworks, i. e.,
compartmentalization in two distributive, sequential phosphorylation net-
works, is used to provide results. Knowledge of multistationarity of the
subnetwork structure can be used to establish multistationarity for certain
parameter combinations of the overall reaction network. This approach is
successful. It results in a partial parametrization for rate constants and
steady states. Furthermore, simulations of the reaction network reveal not
only a switch like response curves based on two steady states but also oscil-
lations and limit cycles.
The work is rounded off, by a robustness analysis of the multistationa-

rity region of the distributive, sequential phosphorylation network. Here,
robustness is tested towards variation of the parameters. Random walks in
parameter space are applied. Multisite phosphorylation networks show dis-
tinct results in this robustness analysis dependent on the sign vector: with
rising size n the robustness increases up to four to six phosphorylation steps.
Then it decreases with rising n.

Thus overall, multisite phosphorylation networks, considered here, are in-
deed able to generate multiple steady states in a (bio-) chemical reaction net-
work. Furthermore, not only a bistable switch-like behavior can be seen, but
also response curves including oscillations. Thus, already a very small net-
work of a multisite phosphorylation can account for certain biological obser-
vations, like switching in networks or oscillations. It is thus not necessary to
consider higher structures of different feedback loops or even larger setups
in (bio-) chemical reaction networks to exhibit multiple steady states. This
is quite interesting, as it not only answers questions, for example, whether
switching in the cell cycle is already enabled by the underlying phosphory-
lation mechanism, but also rises new questions. For example, is the exact
function and mechanism of the (bio-) chemical reaction network predefined,
i. e., does the network structure already define network properties? Is the
robustness of the network as well predefined by the size of the phosphoryla-
tion network? And if so, why are larger networks apparently more sensitive
than smaller ones? And if that is actually the case, why do multisite phos-
phorylation networks with a high number of phosphorylation sites exist, if
they tend to loose robustness for higher numbers of phosphorylation sites,
when multistationarity can already be established for small n.



summary, open questions and conclusions 135

This thesis tries to provide biological interpretations of the solutions pro-
vided, where possible. These are discussed in more detail at the end of each
of the four main chapters five to eight. Nonetheless, a biological interpre-
tation of the arising sign vectors as a condition for multistationarity is still
needed. Also, implications of arising nonlinear inequalities as restrictions
on choosing parameters to generate extreme rays of the pointed polyhedral
cone, i. e., the solution set where reaction rates in steady state live, cannot
be given in a biological sense.
Besides these missing interpretations, this thesis leaves, of course, some

open questions. First of all, finding a solution to the problem of the linear
equality and nonlinear inequality set polynomial condition together with
solutions to the coset condition for phosphorylation networks with com-
partmentalization should be possible, if either a different approach for the
underlying solution algorithm in MATLAB is used, or if better hardware is
used.
Furthermore, an expansion to regard also different network setups should

be considered. For example, phosphorylation networks including a different
number of enzymes would be of interest. And, though only a distributive,
sequential reaction mechanism is considered, a random or mixed (random-
sequential) mechanism might yield a reaction network, that exhibit multiple
steady states. And, with the presented solution algorithm being applicable
to (bio-) chemical reaction networks of mass action kinetics, different net-
works besides phosphorylation networks, should be considered.

Considering the results of the random walk together with the linear in-
equality set of chapter six, a different question arises. Pairs of steady states
can be given in terms of the rate constants and three further variables, e. g.,
µ3n+2, ln

ν3
λ3

and ln ν6
λ6

, compare equation (A.18), independent of the size
of the phosphorylation network. It is possible to rewrite the system for any
n in terms of three independent variables and all rate constants. Here, a
reduced solution set could be considered. The approach so far considered
all 3n + 3 components for the steady state. With the large number of pa-
rameters, only the exit time of the random walk could be analyzed. Instead
of using the parameter vector for robustness analysis, analysis based on
changes the three independent variables, i. e., changing the ratio of a3n+2

to b3n+2, λ3, and λ6, could be possible as well. This would reduce the
number of parameters immensely, and thus, enable robustness analysis up
to large n. Besides a reduction of the parameter space for robustness analy-
sis, a completely different approach could be used. Following the work of
S. Waldherr, robustness analysis could be done without using explicit pa-
rameters by confining the solution space to a region where multiple steady
states still can be found based on uncertain parameters, i. e., the method pro-
vides a region without local bifurcations and thus, might restrict the region
where multiple steady states exist indirectly.





Calvin: “When a kid grows up,

he has to be something.
He can’t just stay the way he is.

But a tiger grows up and stays a tiger.”
Tiger: “No room for improvement.”

— Bill Watterson

APROOFS AND FURTHER MATHEMATICAL ISSUES

a.1 nullspace of stoichiometric matrix for standard phospho-
rylation

For a discussion on the nullspace of the stoichiometric matrix, see also [49].
As the stoichiometric matrix N(n) of higher phosphorylation steps can be
written in terms of the stoichiometric matrix N(1) of a single phosphoryla-
tion step, the nullspace of N(n) can be given in a similar stepwise form. To
derive this form, the nullspace of a single phosphorylation process will be
considered first. The basis of the nullspace can be given by

E(1) =




1 0 1

1 0 0

0 0 1

0 1 1

0 1 0

0 0 1




=
[
ǫ1 ǫ2 ǫ3

]
. (A.1)

The nullspace for higher phosphorylation steps is motivated by the follow-
ing lemma.

Lemma A.1. Given the stoichiometric matrix N(n) for the n-th phosphorylation

step by equation (5.2) and E = E(1) for a single phosphorylation step by equa-

tion (A.1), the following can be stated.

(i) The basis for the nullspace of N(n) can be given by

E(n) =




E 0
. . .

0 E


 . (A.2)

(ii) The columns of E(n) are generators for ker(N(n)) ∩ R
6n
>0.

(iii) The matrix N(n) is of rank 3n.

Proof. (i) To show that
[
E(n)

]
⊆ ker(N(n)) and ker(N(n)) ⊆

[
E(n)

]
, it is

sufficient to proof the condition for n11, n12, n21 and n22, by splitting

137
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the stoichiometric matrix N(n) in these elements according to equa-
tion (5.2). The nullspace of each element can then be given in terms of
ǫ, see equation (A.1), and unit vectors as follows:

ker(n11) =




1 0 1

1 0 0

0 0 1

0 1 1

0 1 0

0 0 1




, ker(n12) =




1 1 0 0

1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1




,

ker(n21) =




1 0 1

1 0 0

0 0 1

0 1 1

0 1 0

0 0 1




, ker(n22) =




1 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




.

with

ker(n11) = span
{

ǫ1 ǫ2 ǫ3

}

,

ker(n12) = span
{

ǫ1 ǫ2 e1 + e3 e4 + e6

}

,

ker(n21) = span
{

ǫ1 ǫ2 ǫ3

}

,

ker(n22) = span
{

ǫ1 e3 e4 e5 e1 + e6

}

.

For ker(n11) = ker(n21) = ker(N(1)) holds. Additionally,

n12E = 03×3 n22E = 03×3.

hold as well with

ǫ2 = e4 + e5 and ǫ3 = e1 + e3 + e4 + e6.

(a.) The first condition
[
E(n)

]
⊆ ker(N(n)) can be satisfied by split-

ting the two matrices N(n) and E(n) in their elements nij and
E:

N(n)E(n) =




n11E n12E n12E · · · n12E

n21E n22E 0 0

0 n21E n22E 0
. . . . . .

...
...

. . . n22E 0

n21E n22E

0 0 n21E




= 0.

(b.) The second one, ker(N(n)) ⊆
[
E(n)

]
, has to hold as well. To

show such, a vector η is introduced, with η ∈ ker(N(n)) and
η = col

[
η(1) . . . η(n)

]
, with η(i) column vectors of length
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six. As N(n) can be rewritten in terms of nij, we can rewrite
N(n)η = 0 as follows:

n11η
(1) +

n∑

i=2

n12η
(i) = 0,

n21η
(1) +n22η

(2) = 0,
...

n21η
(n−1) +n22η

(n) = 0,

n21η
(n) = 0.

The last equation yields η(n) ∈ ker(n21) = [E] ⊆ ker(n22). Con-
sequently η(n−1) ∈ ker(n21) holds as well for the penultimate
equation. Substituting stepwise results in η(n−2) ∈ ker(n21), . . . ,
η(1) ∈ ker(n21) for the second equation. And so the first equa-
tion has to hold as well with ker(n11) = [E] and [E] ∈ ker(n12).
Therefore ker(N(n)) ⊆

[
E(n)

]
.

(ii) By definition, a vector ǫ is a generator of ker(N(n))∩R
6n
>0, if all of the

following conditions hold:

ǫ > 0 (A.3)

N(n)ǫ = 0 (A.4)

If ǫ1 and ǫ2 are generators for ker(N(n)) ∩ R
6n
>0 and

supp(ǫ1) ⊆supp(ǫ2) holds, then ǫ1 = 0 or ǫ1 = αǫ2 (A.5)

has to hold as well, with α > 0.

As the column vectors of E satisfy these three conditions, the columns
of E(n) satisfy them as well. Since E(n) is a basis for ker(N(n)), ev-
ery non negative linear combination of vectors η with N(n)η = 0 are
non negative linear combinations of columns of E(n). Therefore all
generators of ker(N(n))∩ R

6n
>0 are columns of E(n).

(iii) The matrix E is of rank three. As the matrix E(n) just consists of n
matrices E on its main diagonal, its rank can be given by 3n. Therefore
rank(N(n)) = 6n− 3n = 3n.

�

a.2 nullspace of rate exponent matrix for standard phospho-
rylation

A basis for the nullspace U of the rate exponent matrix Y, see equation (5.10)
is discussed in this section. For the single phosphorylation process this
nullspace can easily be written down at a closer inspection of Y, see equa-
tion (5.10) on page 39: As some of the elements in Y just double and the
remaining elements do not interfere, the nullspace of this matrix can be
given by two vectors

u1 =
[
0 −1 1 0 0 0

]T
,

u2 =
[
0 0 0 0 −1 1

]T
.
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With Y(n) described in terms of its predecessor matrices, recall:

Y(1) =
[
e1 + e2 e4 e4 e3 + e5 e6 e6

]
,

Y(n) =

[
Y(n−1)

03×6(n−1)

e1 + e3n−1 e3n+1 e3n+1

e3 + e3n+2 e3n+3 e3n+3

]
,

compare this rewritten form of Y with entries in equation (5.10), those two
vectors u1,2 can be found for any n in a corresponding position by simply
looking at submatrices. The vectors will therefore be called trivial nullspace
vectors. For an arbitrary n these column vectors can be given for i = 1, . . . ,n
by:

u
(i)
1 = −e6i−4 + e6i−3,

u
(i)
2 = −e6i−1 + e6i.

(A.6)

Thus, each new phosphorylation step introduces two additional trivial null-
space vectors. Checking for further nullspace vectors for higher phosphory-
lation steps yields for n = 3 and Y(3) ∈ R

12×18

Y(3) =
[
e1 + e2 e4 e4 e3 + e5 e6 e6

e1 + e5 e7 e7 e3 + e8 e9 e9

e1 + e8 e10 e10 e3 + e11 e12 e12

]

another nullspace vector:

u
(3)
3 = e4 − e7 − e10 + e13.

It is possible to derive this additional vector again for every phosphorylation
step n > 3 by taking a closer inspection of the rate exponent matrix. A
description of this vector for higher phosphorylation processes with i =

3, . . . ,n can be given by:

u
(i)
3 = e4 − e7 − e6i−8 + e6i−5. (A.7)

Thus, one additional nullspace vector per phosphorylation step n for n > 3

can be found. As these vectors u(i)
3 are found by a closer inspection of the

matrix Y, they are called non-trivial nullspace vectors. No further vectors
can be found for any given n, see also the argument at the end of this section.
A basis for the nullspace U of the rate exponent matrix Y contains 2n trivial
vectors for n > 1 and for n > 3 additionally n− 2 non-trivial vectors and
can be given by:

U(1) =
[
−e2 + e3 −e5 + e6

]
(A.8)

U(2) =

[
U(1)

06×2

−e8 + e9 −e11 + e12

]
(A.9)

U(n) =

[
U(n−1)

06×3n−5

−e6n−4 + e6n−3 −e6n−1 + e6n

e4 − e7 − e6n−8 + e6n−5] (A.10)
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Thus, the size can be given by U ∈ R
6×2 for n = 1 and by U ∈ R

6n×3n−2

for n > 2.
It remains to be shown, that the basis of the right nullspace of Y is truly

given by the 3n− 2 vectors above collected in U. This is done via complete
induction by an inspection of the left kernel of Y. The basis of the left kernel
is denoted by a matrix ul ∈ R

2×6 for n = 1 and by a vector ul ∈ R
1×3n+3

for n > 2:

u
(1)
l = [−e1 + e2, −e3 + e5]

u
(2)
l = [e1 − e2 + e3 − e5 − e8]

u
(n>3)
l =

[
u
(n−1)
l − e3n+2

]
=

[
e1 + e3 −

n+1∑

1

e3i−1

]
.

It can easily be shown that u(1)
l as well as u

(2)
l are indeed basis vectors

for the left nullspace of matrix Y(1, 2), where dimensions of this nullspace is
still easily manageable and thus are computable even by hand. Complete in-
duction is used to show that u(n>3)

l holds as well for arbitrary n > 3. Recall
the former introduced notation for Y, a rewritten form of equation (5.10):

Y(n) =

[
Y(n−1)

03×6n

e1 + e3n−1 e3n+1 e3n+1

e3 + e3n+2 e3n+3 e3n+3

]
.

The problem u
(n)
l Y(n) is now solved recursively. The first step is given by

u
(2)
l Y(2) = 012. Due to the nature of prolonging ul:

u
(n)
l Y(n) = 06n

holds as well, compare elements of Y(n) and u
(n)
l . Thus for phosphorylation

networks of size n+ 1:

u
(n+1)
l =

[
e1 + e3 −

n+1∑

1

e3i−1

]

Y(n+1) =

[
Y(n)

03×6(n−1)

e1 + e3n+2 e3n+4 e3n+4

e3 + e3n+5 e3n+6 e3n+6

]
.

This step can be done by a blockwise division of Y(n+1) into three parts: the
part of the previous step n in the upper left corner, a block of zeros, in the
lower left corner, and a fairly large matrix of six columns on the right hand
side (given in this notation by the single line of (sums of) unit vectors ei).
Analyzing individual parts of the rate exponent matrix, the first two blocks
(counterclockwise starting at the upper left corner) reduce to:

u
(n)
l Y(n) + [ 0 − 1 0] 03×6n = 06n.
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This follows stepwise for all n down to n = 2. The remaining new part
appearing for n+ 1 in the third block has to be analyzed in detail:

[
e1 + e3 −

n+2∑

1

e3i−1

]
×
[
e1 + e3n+2 e3n+4 e3n+4

e3 + e3n+5 e3n+6 e3n+6

]

=

[
e1 + e3 −

n∑

1

e3i−1 −
(
e3(n+1)−1 + e3(n+2)−1

) ]
×

[
e1 + e3n+2 e3n+4 e3n+4 e3 + e3n+5 e3n+6 e3n+6

]

=
[
(e1 − e3n+2)

T (e1 + e3n+2) 0 0 (e3 − e3n+5)
T (e3 + e3n+5)

0 0

]

=
[
eT1e1 − eT3n+2e3n+2 0 0 eT3e3 − eT3n+5e3n+5 0 0

]

=
[
1− 1 0 0 1− 1 0 0

]
= 06

Thus recombining these three blocks again, the total system indeed reduces
to

u
(n+1)
l Y(n+1) =

[
06n 06

]
= 06n+6.

As this expression is true for n = 2, for n as well as n+ 1, u(n)
l is a basis for

the left nullspace of Y yielding rank(Y) = 3n+ 2 for n > 2. Thus, the right
kernel of Y is of dimension 6n× 3n− 2 for n > 2 yielding U as a basis for
the right nullspace of the rate exponent matrix Y.

a.3 solvability for the polynomial condition

For a proof of the Theorem 5.2 and the argument in section 5.2 on page 39

the following has to be shown, see also [P1]:

(A) → (D) → (C) → (B) → (A) (A.11)

To do so, the following matrix is defined:

A :=



1 0 0 1 1 1 2 2 2 . . . n n n

1 0 1 1 0 1 1 0 1 . . . 1 0 1

0 1 0 1 1 1 1 1 1 . . . 1 1 1


 , (A.12)

where A can be computed using M via AT by the column operations: (2) +
(3), (1)+ (2)+ (3), (1)+ (2)+2 (3), see Theorem 4.3 in [81], where columns of
A correspond to the exponents of t1, t2, t3 in the statement of the theorem.
The matrix itself is displayed in the corresponding proof in [81]. Further-
more define

Q :=



n 0 1

1 1 1

2 1 1


 . (A.13)

Furthermore, recall definitions in section 5.2.1 forM, ξ the and Π on page 40.
With these matrices defined the Theorem 5.2 on page 42 can be proven:



A.3 solvability for the polynomial condition 143

Proof. For reference, see also the proof in [P1].

(A) → (D): For nonsingular Q the following holds:

AT = M(n)Q (A.14)

implying im
(
M(n)

)
= im

(
AT) with µ := lnb− lna.

(D) → (C): In a first step, Y(n)T M(n) = Π(n) is shown. Recall the stepwise
definition of Y(n)T in equation (5.11) on page 39. Define

Y(i) :=
[
e1 + e3i−1 e3i+1 e3i+1 e3 + e3i+2 e3i+3 e3i+3,

]

then

Y
(i)T

0




M(0,n)
...

M(i,n)


 =

[
0 (−i+ 2)1 (i− 1)1

]

=: P(i) ∈ R
6×3, (A.15)

where 1 is used to denote a vector of length six filled with ones and,
accordingly, 0 to denote a vector of length six filled with zeros. Thus,

Y(n)T M(n) =




P(1)
...

P(n)


 (A.16)

Recall equation (5.22) for Π and ξ ∈ R
2 on page 41 and note

P(i)




∗

ξ1

ξ2


 =

[
(−i+ 2)1 (i− 1)1

](
ξ1

ξ2

)
= Π(i)

(
ξ1

ξ2

)
(A.17)

Thus, any nonzero µ ∈ im(M(n))

µ = M(n)




∗

ξ1

ξ2


 (A.18)

yields

Y(n)TM(n)




∗

ξ1

ξ2


 =




Π0(1)
...

Π0(n)




(
ξ1

ξ2

)

= Π(n) ξ. (A.19)

Recall ν and λ from (5.28a) and (5.28b)–(5.28d). The vector ξ together
with any positive λ can be used to compute ν as in (5.28b)–(5.28d).
Hence (D) ⇒ (C).
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(C) → (B): Let µ ∈ R
3n+3 with µ 6= 0 and ξ ∈ R

2 be given, such that (5.27)
holds. Further let ν and λ be given satisfying (5.28a) and (5.28b)–
(5.28d), that is λ ∈ R

3n and for i = 1, . . . , n

ν3i = λ3i e
(2−i)ξ1+(i−1)ξ2 , (A.20a)

ν3i−1 = λ3i−1
ν3i

λ3i
(A.20b)

ν3i−2 = λ3i−2
ν3i

λ3i
. (A.20c)

These ν, λ satisfy

ln
ν3i−2

λ3i−2
= ln

ν3i−1

λ3i−1
= ln

ν3i

λ3i
= (2− i) ξ1 + (i− 1)ξ2 (A.21)

and thus

ln
ν3i−2 + ν3i

λ3i−2 + λ3i
= ln

ν3i

λ3i
(A.22a)

ln
ν3i−1 + ν3i

λ3i−1 + λ3i
= ln

ν3i

λ3i
. (A.22b)

Define

ν(i) := (ν3i−2, ν3i−1, ν3i) (A.23a)

λ(i) := (λ3i−2, λ3i−1, λ3i) (A.23b)

with

ν = col
(
ν(1), . . . , ν(n)

)
(A.24a)

λ = col
(
λ(1), . . . , λ(n)

)
. (A.24b)

Recall the matrices E(n) and E from (5.6) and (5.5) respectively. Note
that

ln
E(n) ν

E(n) λ
=

(
ln

Eν(1)

Eλ(1)
, . . . , ln

Eν(n)

Eλ(n)

)

and

ln
Eν(i)

Eλ(i)
=

(
ln

ν3i−2 + ν3i

λ3i−2 + λ3i
, ln

ν3i−2

λ3i2
, ln

ν3i

λ3i
,

ln
ν3i−1 + ν3i

λ3i−1 + λ3i
, ln

ν3i−1

λ3i−1
, ln

ν3i

λ3i

)
.

Hence the following holds for ν and λ

ln
Eν(i)

Eλ(i)
=
[
(2− i)1 (i− 1)1

](
ξ1

ξ2

)

and

ln
E(n) ν

E(n) λ
= Π(n) ξ.

Consequently, if there exist vectors µ ∈ R
3n+3, µ 6= 0 and ξ ∈ R

2 sat-
isfying (5.27) and vectors ν, λ satisfying (5.28a), (5.28b)–(5.28d), then
µ, ν and λ also satisfy (5.20). Note that ν and λ satisfying (5.28a) and
(5.28b)–(5.28d) are positive. Thus, (C) ⇒ (B).
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(B) → (A): Finally, assume µ ∈ R
3n+3 with µ 6= 0 and ν, λ ∈ R

3n sat-
isfy (5.20). For a fixed a ∈ R

3n+3 define

b := diag (eµ) a

k := diag
(
Φ(n)

(
a−1

))
E(n) λ.

Then

N(n) diag(k)Φ(n)(a)

= N(n) diag
(
Φ(n)

(
a−1

))
diag

(
E(n) λ

)
Φ(n)(a)

= N(n) E(n) λ = 0

and with equation (5.20)

N(n) diag(k)Φ(n)(b) = N(n) diag(k)diag
(
Φ(n)(a)

)
eY

(n)T µ

= N(n) E(n) ν = 0 (A.25)

and thus (B) ⇒ (A).

�

a.4 feasibility of sign vectors for standard phosphorylation

For a proof of the feasibility of the sign pattern, see also [P1].

Proof. First, the necessity of the sign patterns (5.∆b) is shown. Therefore the
range of the regular matrix M(0,n) from equation (5.24) is parametrized by

w(0) :=




y

x

y− z


 =



−1 −n+ 1 n

1 n −n

−1 −n+ 2 n− 1







x+nz

x+ y

x+ y+ z


 . (A.26)

Thus, one has for M(i,n), i = 1, . . . , n, from eq. (5.25)

w(i) =



w1(i)

w2(i)

w3(i)


 :=



x+ iz+ y− z

x+ iz

x+ iz+ y− z


 =



0 −i+ 2 i− 1

1 n− i −n+ i

0 −i+ 2 i− 1







x+nz

x+ y

x+ y+ z


 .

(A.27)

Note that components w2(i) and w1(i) = w3(i) = w2(i) + (y− z) are affine
functions of i, thus sign changes can be easily read off.
Next, necessary conditions for sgn(w(0)) being one of the four sign pat-

terns δ1, δ2, δ4 and δ7 from (5.40a)–(5.40d) are derived, under the side
condition that system (5.43) is not unfeasible. Note, these four sign pat-
terns represent all eight possible sign patterns, as the other half can be
easily generated by sign inversion of the first half as they still agree with
equations (5.43) and (5.44) with W (−s) = 0 and sgn(M(n)(−ξ) = −δ(n),
respectively.
Indices ik and jk given here, will always be > 1.
Regarding the single sign pattern:
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1. sgn(w(0)) = δ1, i. e., y > 0, x > 0, y− z > 0:
For z > 0, the components of all the w(i) are of the same sign. By
item (1) of Lemma 5.9, z > 0 cannot lead to a feasible sign pattern. For
z < 0, the w(i) may generate the sign pattern matrices

(δ1, [δ2]i1 , [δ3]i2), (δ1, [δ1]j1 , [δ2]j2 , [δ3]j3)

with i1 + i2 = n and j1 + j2 + j3 = n where the δ3 entries are neces-
sary (otherwise the first rows do not offer a sign change). The direct
passage from δ1 to δ3 is obviously impossible since w2(i) > 0 implies
w1(i+ 1) = w2(i) + y > w2(i) > 0.

2. sgn(w(0)) = δ2, i. e., y > 0, x < 0, y− z > 0:
For z 6 0, the w2i are all negative so that one has δ20 = δ21 = · · · =

δ2n = −1 and δ10 = δ30 = 1. By item (3) of Lemma 5.9, z 6 0 cannot
lead to a feasible sign pattern. For z > 0 the possible sign pattern
matrices are

(
δ2, [δ3]i1 , [δ1]i2

)
,
(
δ2, [δ3]j1 , [δ2]j2 , [δ1]j3

)

for i1 + i2 = n and j1 + j2 + j3 = n where the δ1 entries are neces-
sary by item (3) of Lemma 5.9. Note, the sign pattern (δ2, [δ1]n) is
unfeasible by item (1) of Lemma 5.9.

3. sgn(w(0)) = δ4, i. e., x < 0, 0 < y < z:
At first, possible sign pattern matrices are

(
δ4, [δ3]i1 , [δ1]i2

)
,
(
δ4, [δ5]i1 , [δ1]i2

)
,
(
δ4, [δ3]j1 , [δ5]j2 , [δ1]j3

)

for i1 + i2 = n and j1 + j2 + j3 = n where the δ1 entries are necessary
by item (2) of Lemma 5.9. Note, the sign pattern (δ4, [δ1]n) is unfea-
sible by item (1) of Lemma 5.9. And note, δ5 can appear just once
because of w1,i+1 = w2i + y > w2i.

4. sgn(w(0)) = δ7, i. e., x > 0, 0 < y < z:
Because of z > 0, the components w1i are positive for i = 0, . . . , n. By
item (1) of Lemma 5.9, δ7 cannot lead to a feasible sign pattern.

Next, the sufficiency of the sign patterns in equation (5.∆b) is discussed,
by proving that they are realizable. Thus, a vector for each (δk), k ∈

{1, . . . , 7} is presented by

ξ = col(x, x+ y, x+ y+ z) ∈ R
3 (A.28)

leading to the sign pattern (δk) for M(i,n)ξ:

For (δ1): x = −n+ 1
4 , y = n+ i1 − 3

4 , z = −1 .

For (δ2): x = i2 − 3
4 , y = −n+ 5

4 , z = +1 .

For (δ3): x = n− 3
4 , y = −n+ 1

4 , z = +1 .

For (δ4): x = i2 − 1
4 , y = −n+ 3

4 , z = +1 .

For (δ5): x = −i2 − i3 +
1
4 , y = n+ i2 − 3

4 , z = −1 .

For (δ6): x = i3 − 3
4 , y = −n+ i2 +

5
4 , z = +1 .

For (δ7): x = i2 + 1
4 , y = −n+ 1

4 , z = +1 .

(A.29)

�
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a.5 restrictions on choosing sign vectors for systems with

compartmentalization

Restrictions on choosing sign vectors for a double phosphorylation network
including compartmentalization describing phosphorylation of the protein
NFAT, see chapter 7 on page 95, appear. These restriction, following the
algorithm described in [18] and in section 7.2.2 on page 105, can be stated
as follows:

µC,2 = µN,8

kT ,2 =
xC,2

xN,8
kT ,1

As the vector µ is computed via linear combinations of the rays, α, in EM,
the condition in µ can be transformed into a condition in α as µ = EM α. For
δ
(2)
1 computation is given in detail and results are provided for remaining δ

for n = 2:

E
M,(2)
C =




1 0 0

0 1 0

2 1 1

1 1 0

−1 0 −1

1 1 0

0 0 −1

−2 −1 −2

0 0 −1




, E
M,(2)
N =




−1 0 0

0 −1 0

−2 −1 −1

−1 −1 0

1 0 1

−1 −1 0

0 0 1

2 1 2

0 0 1




and thus

µC = E
M,(2)
C αC, µN = E

M,(2)
N αN

If µN,8 = µC,2 has to hold αC,2 = 2αN,1 +αN,2 + 2αN,3 has to hold as well.
Thus

αN,3 =
1

2
αC,2 −αN,1 −

1

2
αN,2.

But remaining rows in EM have to be considered as well, as they restrict α
further. Considering as well

µN,3 = −2αN,1 −αN,2 −
1

2
αC,2 +αN,1 +

1

2
αN,2

!
< 0 with sgn(µN,3) = −1

µN,5 = αN,1 +
1

2
αC,2 −αN,1 −

1

2
αN,2

!
> 0 with sgn(µN,5) = 1

µN,7 = µN,9 =
1

2
αC,2 −αN,1 −

1

2
αN,2

!
>0 with sgn(µN,7) = sgn(µN,9) = 1

yields for αi > 0

αC,2 > αN,2,
1

2
αC,2 > αN,1 +

1

2
αN,2.
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The same computation can be done for the remaining six δ and yields:

δ2 : αN,3 = 2αC,1 + 2αC,2 +αC,3

α > 0

δ3 : αN,3 = 2αC,2 +αC,3

α > 0

a3 > 0

δ4 : 2αN,2 < αC,1 +αC,3

2αN,2 < αC,1 +αC,3 −αN,1

αN,3 = −αC,1 −αC,3 − 2αN,2 −αN,1

α > 0

δ5 : αN,1 < αC,1 +αC,3

αN,3 = −αC,1 −αC,3 −αN,1

α > 0

a5 > 0

δ6 : αN,1 < αC,1 + 2αC,2 + 3αC,3

αN,3 = αC,1 + 2αC,2 +αC,3 −αN,1

α > 0

δ7 : αC,3 > 2αN,2

αN,3 = αC,3 − 2αN,2

α > 0

a1 > 0

Results for larger values in n can be computed in a similar way.



“Sometimes”, said Pooh,

“the smallest things take up
the most room in your heart.”

— Alan Alexander Milne

BSOME MORE MATRICES AND SOLUTIONS

b.1 cones of standard multisite phosphorylation

Here, a selected overview on EM and ES for δ(n) is given with n = 2, . . . , 14
and n = 2, . . . , 5, respectively, for δ of (5.∆b2) with i1 = 1 and i2 = n− 1 as
indicated by the subscript δ2. Note, EM is given up to fourteen phosphory-
lation steps n, where only the 3n+ 3 rows represent the respective rows for
the n-th step:

EM
δ2

=




2 1 1
−2 −2 −1
1 0 0
0 −1 0

−1 −1 0
0 −1 0
1 0 1
0 0 1
1 0 1
2 1 2
1 1 2
2 1 2
3 2 3
2 2 3
3 2 3
4 3 4
3 3 4
4 3 4
5 4 5
4 4 5
5 4 5
6 5 6
5 5 6
6 5 6
7 6 7
6 6 7
7 6 7
8 7 8
7 7 8
8 7 8
9 8 9
8 8 9
9 8 9
10 9 10
9 9 10
10 9 10
11 10 11
10 10 11
11 10 11
12 11 12
11 11 12
12 11 12
13 12 13
12 12 13
13 12 13




(B.1)
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ES

δ
(2)
2

=




1 0 0 0 0 0

0−1 0 0 0 0

0 0 1 0 0 0

−1 0 0 0−1 0

0 0 0−1 0 0

0 0−1 0 0−1

0 0 0 0 1 0

1 1 1 1 0 0

0 0 0 0 0 1




ES

δ
(3)
2

=




0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0−1 0 0 0−1 0 0

0 0 0 0 0 0 1 0 0 0 1 0

−1 0−1 0−1 0 0 0−1 0 0 0

0 0 0 0 0 0 0−1 0 0 0−1

0−1 0−1 0 0−1 0 0 0−1 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0




ES

δ
(4)
2

=




0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0−1 0 0 0 0−1−1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0

−1 0−1 0−1 0−1 0 0 0−1−1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0−1 0 0 0 0 0 0−1−1

0−1 0−1 0−1 0 0−1 0 0 0 0 0−1−1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0




ES

δ
(5)
2

=




0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0−1 0 0 0 0 0−1−1−1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0

−1 0−1 0−1 0−1 0−1 0 0 0−1−1−1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0−1 0 0 0 0 0 0 0 0 0−1−1−1

0−1 0−1 0−1 0−1 0 0−1 0 0 0 0 0 0 0−1−1−1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




b.2 solutions for phosphorylation networks of size 2 includ-
ing synthesis and degradation of proteins

b.2.1 Synthesis and Degradation of Protein A

This section checks existence of multiple steady states in a double phos-
phorylation network with synthesis and degradation as described in net-
work (N6.2) for remaining subnetworks (N6.2a2)–(N6.2c4). Only solutions
to the approach presented in section 6.2 are given. To distinguish between
different network setups, each vector and matrix has a subscript denoting
the current reaction network, e. g., a2 for network (N6.2a2).
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For each subnetwork, Y µ = ln(Eν)/(Eλ) is given, compare equation (6.14),
together with substitutions of ln(νi)/(λi) via κk, see equation (6.16), result-
ing simplifications, compare equations (6.15) and (6.17), and solutions in M,
Q and K, compare equations (6.23), (6.25) and (6.28) respectively, and sign
conditions δ and σ, compare equations (6.41) and (6.42). If multiple steady
states can be found, an example is given.

Network (N6.2a2)

µ1 + µ2 = ln
ν1 + ν3 + ν8

λ1 + λ3 + λ8
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν8

λ3 + λ8

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

0 = ln
ν4 + ν8

λ4 + λ8
µ2 = ln

ν4

λ4

µ1 + µ5 = ln
ν5 + ν7 + ν8

λ5 + λ7 + λ8
µ7 = ln

ν5

λ5
µ7 = ln

ν7 + ν8

λ7 + λ8

µ3 + µ8 = ln
ν6 + ν7

λ6 + λ7
µ9 = ln

ν6

λ6
µ9 = ln

ν7

λ7

µ8 = ln
ν8

λ8

κ1 = ln
ν1 + ν3 + ν8

λ1 + λ3 + λ8
= ln

ν1

λ1
= ln

ν3 + ν8

λ3 + λ8

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν4

λ4

κ4 = ln
ν5 + ν7 + ν8

λ5 + λ7 + λ8
= ln

ν5

λ5
= ln

ν7 + ν8

λ7 + λ8

κ5 = ln
ν6 + ν7

λ6 + λ7
= ln

ν6

λ6
= ln

ν7

λ7

κ6 = ln
ν8

λ8

µ2 = κ3

µ4 = κ1

µ6 = κ2

µ7 = κ4

µ8 = κ6

µ9 = κ5

µ1 + µ2 = κ1

µ3 + µ5 = κ2

µ1 + µ5 = κ4

µ3 + µ8 = κ5

(B.2)

Equation (B.2) yields:

κ6 = −κ1 −κ2 +κ3 +κ4 +κ5
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ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = exp(κ3) λ4

ν5 = exp(κ4) λ5

ν6 = exp(κ5) λ6 ν7 = exp(κ5) λ7

ν8 = exp(κ6) λ8

0 = (exp(κ2) − exp(κ1)) λ3

+ (exp(−κ1 −κ2 +κ3 +κ4 +κ5) − exp(κ1)) λ8

0 = (exp(κ3) − 1) λ4 + (exp(−κ1 −κ2 +κ3 +κ4 +κ5) − 1) λ8

0 = (exp(κ5) − exp(κ4)) λ7

+ (exp(−κ1 −κ2 +κ3 +κ4 +κ5) − exp(κ4)) λ8

κ̃a2 = [κ1 κ2 κ3 κ4 κ5]
T

λ̃a2 = [λ3 λ4 λ7 λ8]
T

Ma2 =




1 0 −1 0 0

0 0 1 0 0

1 1 −1 −1 0

1 0 0 0 0

−1 0 1 1 0

0 1 0 0 0

0 0 0 1 0

−1 −1 1 1 1

0 0 0 0 1




Qa2 =



q11 0 0 q12

0 q21 0 q22

0 0 q31 q31




with

q11 = − exp(κ1) + exp(κ2)

q12 = − exp(κ1) + exp(−κ1 −κ2 +κ3 +κ4 +κ5)

q21 = −1+ exp(κ3)

q22 = −1+ exp(−κ1 −κ2 +κ3 +κ4 +κ5)

q31 = − exp(κ4) + exp(κ5)

q32 = − exp(κ4) + exp(−κ1 −κ2 +κ3 +κ4 +κ5)
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K =




−1 1 0 0 0

−2 −1 1 1 1

0 0 1 0 0

−1 −1 1 1 1

0 0 0 −1 1

−1 −1 1 0 1




Note, only half of the set of valid sign vectors is given from now on. Fur-
thermore the trivial solution is omitted. The same holds true for the sign
pattern Σ.

∆T
a2 =




−1 −1 −1 −1 1 −1 1 1 1

−1 1 −1 1 1 1 −1 −1 −1

−1 1 0 1 1 1 −1 −1 −1

−1 1 1 1 −1 1 −1 −1 −1

−1 1 1 1 0 1 −1 −1 −1

−1 1 1 1 1 1 −1 −1 −1

0 −1 −1 −1 1 −1 1 1 1




ΣT
a2 =




−1 1 −1 1 −1 1

1 −1 1 −1 −1 1

1 −1 1 −1 0 0

1 −1 1 −1 1 −1

1 −1 1 −1 1 −1

1 −1 1 −1 1 −1

−1 1 −1 1 −1 1




Choosing

κ̃
δ1
a2 = [−0.5, −0.75, −0.25, 0.75, 0.5]T

β
δ1
a2 = [0.126531, 0.863756, 0.770589, 0.243902, 0.636293, 0.819782,

0.951175]T

λ
δ1
a2 = [0.69805, 0.765565, 66.1966, 38.3715, 3.38806, 6.65696,

15.7401, 1]T

yields

a
δ1
a2 = [0.572022, 3.90488, 0.932661, 0.619876, 0.370307, 1.5537,

0.331632, 0.112065, 2.45155]T

b
δ1
a2 = [0.445491, 3.04112, 0.162072, 0.375974, 1.0066, 0.733914,

0.702065, 1.06324, 4.04192]T

c
δ1
a2 = [4.9379, 1.52353]T

k
δ1
a2 = [30.3959, 1.12611, 108.403, 193.885, 0.492738, 42.6059,

39.3715, 9.82654, 95.0228, 10.2163, 50.4778, 214.288,

2.71541, 6.42046, 8.92342]T
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Network (N6.2a3)

µ1 + µ2 = ln
ν1 + ν3 + ν4 + ν8

λ1 + λ3 + λ4 + λ8
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν4 + ν8

λ3 + λ4 + λ8

µ2 + µ3 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

0 = ln
ν4 + ν8

λ4 + λ8
µ5 = ln

ν4

λ4

µ1 + µ5 = ln
ν5 + ν7 + ν8

λ5 + λ7 + λ8
µ7 = ln

ν5

λ5
µ7 = ln

ν7 + ν8

λ7 + λ8

µ3 + µ5 = ln
ν6 + ν7

λ6 + λ7
µ9 = ln

ν6

λ6
µ9 = ln

ν7

λ7

µ8 = ln
ν8

λ8

κ1 = ln
ν1 + ν3 + ν4 + ν8

λ1 + λ3 + λ4 + λ8
= ln

ν1

λ1
= ln

ν3 + ν4 + ν8

λ3 + λ4 + λ8

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν4

λ4

κ4 = ln
ν5 + ν7 + ν8

λ5 + λ7 + λ8
= ln

ν5

λ5
= ln

ν7 + ν8

λ7 + λ8

κ5 = ln
ν6 + ν7

λ6 + λ7
= ln

ν6

λ6
= ln

ν7

λ7

κ6 = ln
ν8

λ8

µ4 = κ1

µ5 = κ3

µ6 = κ2

µ7 = κ4

µ8 = κ6

µ9 = κ5

µ1 + µ2 = κ1 (B.3)

µ2 + µ3 = κ2 (B.4)

µ1 + µ5 = κ4 (B.5)

µ3 + µ5 = κ5 (B.6)

Solving equations (B.4)–(B.6) and inserting into (B.3) yields

κ5 = −κ1 +κ2 +κ4.

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = exp(κ3) λ4

ν5 = exp(κ4) λ5

ν6 = exp(κ5) λ6 ν7 = exp(κ5) λ7

ν8 = exp(κ6) λ8
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0 = (exp(κ2) − exp(κ1)) λ3 + (exp(κ3) − exp(κ1)) λ4

+ (exp(κ6) − exp(κ1)) λ8 (B.7a)

0 = (exp(κ3) − 1) λ4 + (exp(κ6) − 1) λ8 (B.7b)

0 = (exp(−κ1 +κ2 +κ4) − exp(κ4)) λ7 + (exp(κ6) − exp(κ4)) λ8
(B.7c)

κ̃a3 = [κ1 κ2 κ3 κ4 κ6]
T

λ̃a3 = [λ3 λ4 λ7 λ8]
T

Ma3 =




0 0 −1 1 0

1 0 1 −1 0

−1 1 −1 1 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

−1 1 0 1 0




Qa3 =



q11 q12 0 q13

0 q21 0 q22

0 0 q31 q32




with

q11 = − exp(κ1) + exp(κ2)

q12 = − exp(κ1) + exp(κ3)

q13 = − exp(κ1) + exp(κ6)

q21 = −1+ exp(κ3)

q22 = −1+ exp(κ6)

q31 = − exp(κ4) + exp(−κ1 +κ2 +κ4)

q32 = − exp(κ4) + exp(κ6)

Ka3 =




−1 1 0 0 0

−1 0 1 0 0

−1 0 0 0 1

0 0 1 0 0

0 0 0 0 1

−1 1 0 0 0

0 0 0 −1 1



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∆T
a3 =




−1 −1 −1 −1 1 −1 1 −1 1
−1 −1 0 −1 1 −1 1 −1 1
−1 −1 1 −1 1 −1 1 −1 1
−1 0 −1 −1 1 −1 1 −1 1
−1 1 −1 −1 1 −1 1 −1 1
−1 1 −1 −1 1 0 1 −1 1
−1 1 −1 −1 1 1 1 −1 1
−1 1 −1 0 1 1 1 −1 1
−1 1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 1 1 −1 −1 −1
−1 1 −1 1 1 1 −1 −1 −1
−1 1 −1 1 1 1 −1 −1 −1
−1 1 −1 1 1 1 −1 −1 −1
−1 1 −1 1 1 1 −1 −1 −1
−1 1 −1 1 1 1 −1 −1 0
−1 1 −1 1 1 1 −1 −1 0
−1 1 −1 1 1 1 −1 −1 0
−1 1 −1 1 1 1 −1 −1 1
−1 1 −1 1 1 1 −1 −1 1
−1 1 −1 1 1 1 −1 −1 1
−1 1 −1 1 1 1 0 −1 1
−1 1 −1 1 1 1 0 −1 1
−1 1 −1 1 1 1 0 −1 1
−1 1 −1 1 1 1 1 −1 1
−1 1 −1 1 1 1 1 −1 1
−1 1 −1 1 1 1 1 −1 1
0 −1 1 −1 1 −1 1 −1 1




ΣT
a3 =




1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1

−1 −1 1 −1 1 −1 1
1 0 −1 1 −1 1 −1
0 1 −1 1 −1 0 0
1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 −1

−1 1 −1 1 −1 −1 1
1 0 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 −1
1 0 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 −1
1 0 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 −1
1 0 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1




This system poses additional conditions on λl when certain sign patterns
are chosen. E. g., λ4 poses restrictions in equation (B.7a) but appears also
while computing λ3 in equation (B.7b). For example, if

σa3 =
[
1 1 −1 1 −1 ∗ ∗

]T

is chosen, here ∗ just indicates that the last two signs are arbitrary, as they
are not considered right now, additional restrictions occur. This sign vector
corresponds to different δ(i)a3, e. g., δ(1)a3, . . . , δ(8)a3. Choosing this sign
vector yields for entries in Qa3:

q22q12

q21
> q13.

But not all sign vectors impose further restrictions. Choosing for example
δ(10)a3 and its corresponding sign pattern in Σ

δ(10)a3 =
[
−1 1 −1 1 1 1 −1 −1 −1

]T
,

σ(10)a3 =
[

1 0 −1 1 −1 1 −1

]T
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does not pose further conditions, as sgn(q12) = 0. Choosing δ(10)a3 with

κ̃
δ10
a3 = [0.5, 0.75, 0.8, −0.5, −0.75]T

β
δ10
a3 = [0.819965, 0.765444, 0.685297, 0.527232, 0.794805, 0.231815,

0.77515]T

λ
δ10
a3 = [0.834267, 0.916061, 1.98176, 0.430531, 0.2758, 0.131831,

0.778801, 1]T

yields the following steady states:

a
δ10
a3 = [1.12715, 0.151584, 1.0542, 2.48916, 0.430204, 1.30747,

2.01999, 0.439348, 3.50431]T

b
δ10
a3 = [0.307184, 0.917028, 0.368905, 4.10393, 0.957436, 2.76792,

1.22519, 0.207533, 2.72916]T

c
δ10
a3 = [5.86598, 5.6363]T

k
δ10
a3 = [24.8544, 0.33516, 1.37086, 18.1341, 0.700635, 1.51572,

1.43053, 1.00076, 4.23713, 0.136535, 0.880597, 2.00791,

0.0376196, 0.222241, 2.2761]T

Network (N6.2a4)

µ1 + µ2 = ln
ν1 + ν3 + ν7

λ1 + λ3 + λ7
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν7

λ3 + λ7

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

0 = ln
ν7

λ7

µ1 + µ5 = ln
ν4 + ν6 + ν7

λ4 + λ6 + λ7
µ7 = ln

ν4

λ4
µ7 = ln

ν6 + ν7

λ6 + λ7

µ3 + µ8 = ln
ν5 + ν6

λ5 + λ6
µ9 = ln

ν5

λ5
µ9 = ln

ν6

λ6

µ8 = ln
ν7

λ7

κ1 = ln
ν1 + ν3 + ν7

λ1 + λ3 + λ7
= ln

ν1

λ1
= ln

ν3 + ν7

λ3 + λ7

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν4 + ν6 + ν7

λ4 + λ6 + λ7
= ln

ν4

λ4
= ln

ν6 + ν7

λ6 + λ7

κ4 = ln
ν5 + ν6

λ5 + λ6
= ln

ν5

λ5
= ln

ν6

λ6

κ5 = ln
ν7

λ7

µ4 = κ1

µ6 = κ2

µ7 = κ3

µ8 = 0

µ9 = κ4
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µ1 + µ2 = κ1

µ3 + µ5 = κ2

µ1 + µ5 = κ3

µ3 + µ8 = κ4

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2, ν3 = exp(κ2) λ3

ν4 = exp(κ3) λ3

ν5 = exp(κ4) λ4, ν6 = exp(κ4) λ6

ν7 = λ7

0 = (exp(κ2) − exp(κ1)) λ3 + (1− exp(κ1)) λ7

0 = (exp(κ4) − exp(κ3)) λ6 + (1− exp(κ3)) λ7

κ̃a4 = [κ1, κ2, κ3, κ4]
T

λ̃a4 = [λ3, λ6, λ7]
T

Ma4 =




0 −1 1 1

1 1 −1 −1

0 0 0 1

1 0 0 0

0 1 0 −1

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1




Qa4 =

[
exp(κ2) − exp(κ1) 0 1− exp(κ1)

0 exp(κ4) − exp(κ3) 1− exp(κ3)

]

=

[
q11 0 q12

0 q21 q22

]

Ka4 =




−1 1 0 0

−1 0 0 0

0 0 −1 1

0 0 −1 0




The valid sign vector can be given by

δa4 =
[
−1 1 −1 1 1 1 −1 0 −1

]T
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with the corresponding sign condition:

σa4 =
[
1 −1 −1 1

]T

Choosing

κ̃
δ1
a4 = [0.5, 0.75, −0.5, −0.75]T

β
δ1
a4 = [0.231466, 0.935601, 0.467326, 0.998736, 0.182941, 0.936059,

0.973374]T

λ
δ1
a4 = [0.96151, 5.04049, 1.38533, 9.30634, 8.90458, 2.93275 1]T

yields

a
δ1
a4 = [0.267694, 0.0836666, 0.885702, 0.638805, 0.286854,

1.28979, 0.464943, 1, 1.84479]T

b
δ1
a4 = [0.0362285, 1.01927, 0.418376, 1.05321, 1.28559,

2.73049, 0.282002, 1, 0.871418]T

ca4 = [4.02029, 1.37144]T

k
δ1
a4 = [149.43217, 1.50517, 3.73405, 25.29184, 3.90798,

1.07407, 1, 172.40857, 20.0161, 8.45855,

13.36493, 4.82687, 1.58974, 1]T

Note, a zero in a sign vector s = µ automatically results in an arbitrary
positive value in the corresponding entry of the steady states. A value of ’1’
is chosen in ai and bi, wherever it applies.

b.2.2 Additional Synthesis and Degradation of Enzyme E1

Network (N6.2b1)

µ1 + µ2 = ln
ν1 + ν10 + ν3 + ν6

λ1 + λ10 + λ3 + λ6
µ4 = ln

ν1

λ1
µ4 = ln

ν10 + ν3 + ν6

λ10 + λ3 + λ6

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

µ1 = ln
ν4

λ4
0 = ln

ν4

λ4
µ2 = ln

ν5

λ5

0 = ln
ν10 + ν5 + ν6

λ10 + λ5 + λ6
µ5 = ln

ν6

λ6

µ1 + µ5 = ln
ν10 + ν7 + ν9

λ10 + λ7 + λ9
µ7 = ln

ν7

λ7
µ7 = ln

ν10 + ν9

λ10 + λ9

µ3 + µ8 = ln
ν8 + ν9

λ8 + λ9
µ9 = ln

ν8

λ8
µ9 = ln

ν9

λ9

µ8 = ln
ν10

λ10

κ1 = ln
ν1 + ν10 + ν3 + ν6

λ1 + λ10 + λ3 + λ6
= ln

ν1

λ1
= ln

ν10 + ν3 + ν6

λ10 + λ3 + λ6

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3
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κ3 = ln
ν3

λ3

κ4 = ln
ν6

λ6

κ5 = ln
ν10 + ν7 + ν9

λ10 + λ7 + λ9
= ln

ν7

λ7
= ln

ν10 + ν9

λ10 + λ9

κ6 = ln
ν8 + ν9

λ8 + λ9
= ln

ν8

λ8
= ln

ν9

λ9

κ7 = ln
ν10

λ10

µ1 = 0

µ2 = κ3

µ4 = κ1

µ5 = κ4

µ6 = κ2

µ7 = κ5

µ8 = κ7

µ9 = κ6

µ1 + µ2 = κ1 (B.8)

µ3 + µ5 = κ2 (B.9)

µ1 + µ5 = κ5 (B.10)

µ3 + µ5 = κ6 (B.11)

Using equation (B.9) and (B.11) yields:

κ7 = −κ2 +κ4 +κ6,

and equation (B.8) yields

κ3 = κ1,

furthermore equation (B.10) yields

κ5 = κ4.

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = λ4

ν5 = exp(κ3) λ5

ν6 = exp(κ4) λ6

ν7 = exp(κ5) λ7

ν8 = exp(κ6) λ8 ν9 = exp(κ6) λ9

ν10 = exp(κ7) λ10
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0 = (exp(κ2) − exp(κ1)) λ3 + (exp(κ4) − exp(κ1)) λ6+

(exp(−κ2 +κ4 +κ6) − exp(κ1)) λ10

0 = (exp(κ1) − 1) λ5 + (exp(κ4) − 1) λ6

+ (exp(−κ2 +κ4 +κ6) − 1) λ10

0 = (exp(κ6) − exp(κ4)) λ9 + (exp(−κ2 +κ4 +κ6) − exp(κ4)) λ10

κ̃b1 = [κ1 κ2 κ4 κ6]
T

λ̃b1 = [λ3 λ5 λ6 λ9 λ10]
T

Mb1 =




0 0 0 0

1 0 0 0

0 1 −1 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 −1 1 1

0 0 0 1




Qb1 =



q11 0 0 q12 q13

0 q21 0 q22 q23

0 0 q31 0 q32




with

q11 = − exp(κ1) + exp(κ2)

q12 = − exp(κ1) + exp(κ4)

q13 = − exp(κ1) + exp(−κ2 +κ4 +κ6)

q21 = −1+ exp(κ1)

q22 = −1+ exp(κ4)

q23 = −1+ exp(−κ2 +κ4 +κ6)

q31 = − exp(κ4) + exp(κ6)

q32 = − exp(κ4) + exp(−κ2 +κ4 +κ6)

Kb1 =




−1 1 0 0

−1 0 1 0

−1 −1 1 1

1 0 0 0

0 0 1 0

0 −1 1 1

0 0 −1 1

0 −1 0 1






162 some more matrices and solutions

δb1 =
[
0 −1 −1 −1 1 −1 1 1 1

]T

σb1 =
[
−1 1 1 −1 1 1 −1 1

]T

Choosing

κ̃
δ1
b1 = [−0.5, −0.75, 0.75, 0.5]T

β
δ1
b1 = [0.514032, 0.026438, 0.544385, 0.200874, 0.201162, 0.218151,

0.29908, 0.690439]T

λ
δ1
b1 = [9.5156, 0.965879, 61.8123, 4.92665, 19.0766, 1,

1.99576, 0.42886, 11.2584, 1]T

yields

a
δ1
b1 = [1, 0.067192, 0.700742, 0.510519, 0.180091, 0.413451, 0.267753,

0.108066, 1.17544]T

b
δ1
b1 = [1, 0.040754, 0.156357, 0.309645, 0.381253, 0.1953, 0.566833,

0.798505, 1.93798]T

c
δ1
b1 = 2.28964

k
δ1
b1 = [1091.32, 18.6391, 124.995, 497.46, 2.33614, 149.503, 4.92665,

4.92665, 283.912, 21.0766, 5.55274, 79.1494, 7.45372, 45.7824,

154.335, 0.364849, 9.57797, 9.25361]T

Network (N6.2b2)

µ1 + µ2 = ln
ν1 + ν3 + ν9

λ1 + λ3 + λ9
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν9

λ3 + λ9

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

µ1 = ln
ν4

λ4
0 = ln

ν4

λ4
µ2 = ln

ν5

λ5

0 = ln
ν5 + ν9

λ5 + λ9

µ1 + µ5 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
µ7 = ln

ν6

λ6
µ7 = ln

ν8 + ν9

λ8 + λ9

µ3 + µ8 = ln
ν7 + ν8

λ7 + λ8
µ9 = ln

ν7

λ7
µ9 = ln

ν8

λ8

µ8 = ln
ν9

λ9

κ1 = ln
ν1 + ν3 + ν9

λ1 + λ3 + λ9
= ln

ν1

λ1
= ln

ν3 + ν9

λ3 + λ9

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν5

λ5

κ4 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
= ln

ν6

λ6
= ln

ν8 + ν9

λ8 + λ9
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κ5 = ln
ν7 + ν8

λ7 + λ8
= ln

ν7

λ7
= ln

ν8

λ8

κ6 = ln
ν9

λ9

µ1 = 0 µ2 = κ3

µ4 = κ1 µ6 = κ2

µ7 = κ4 µ8 = κ6

µ9 = κ5

µ1 + µ2 = κ1 (B.12)

µ3 + µ5 = κ2 (B.13)

µ1 + µ5 = κ4 (B.14)

µ3 + µ8 = κ5 (B.15)

Equations (B.13)–(B.15) yields

κ6 = −κ2 +κ4 +κ5

and thus, equation (B.12) yields

κ3 = κ1

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = λ4

ν5 = exp(κ3) λ5

ν6 = exp(κ4) λ6

ν7 = exp(κ5) λ7 ν8 = exp(κ5) λ8

ν9 = exp(κ6) λ9

0 = (exp(κ2) − exp(κ1)) λ3 + (exp(−κ2 +κ4 +κ5) − exp(κ1)) λ9

0 = (exp(κ1) − 1) λ5 + (exp(−κ2 +κ4 +κ5) − 1) λ9

0 = (exp(κ5) − exp(κ4)) λ8 + (exp(−κ2 +κ4 +κ5) − exp(κ4)) λ9

κ̃b2 = [κ1 κ2 κ4 κ5]
T

λ̃b2 = [λ3 λ5 λ8 λ9]
T
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Mb2 =




0 0 0 0

1 0 0 0

0 1 −1 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 −1 1 1

0 0 0 1




Qb2 =



q11 0 0 q12

0 q21 0 q22

0 0 q31 q32




with

q11 = − exp(κ1) + exp(κ2)

q12 = − exp(κ1) + exp(−κ2 +κ4 +κ5)

q21 = −1+ exp(κ1)

q22 = −1+ exp(−κ2 +κ4 +κ5)

q31 = − exp(κ4) + exp(κ5)

q32 = − exp(κ4) + exp(−κ2 +κ4 +κ5)

Kb2 =




−1 1 0 0

−1 −1 1 1

1 0 0 0

0 −1 1 1

0 0 −1 1

0 −1 0 1




δb2 =
[
0 −1 −1 −1 1 −1 1 1 1

]T

σb2 =
[
−1 1 −1 1 −1 1

]T

Choosing

κ̃
δ1
b2 = [−0.5, −0.75, 0.75, 0.5]T

β
δ1
b2 = [0.1836, 0.1189, 0.995388, 0.297905, 0.876835, 0.13933,

0.356146, 0.863183]T

λ
δ1
b2 = [1.75872, 2.69681, 50.5539, 9.24765, 16.2377, 5.11683,

4.91143, 11.2584 1]T
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yields

a
δ1
b2 = [1, 0.302183, 1.28128, 0.757124, 0.784991, 0.264065, 0.318842,

0.135103, 1.74916]T

b
δ1
b2 = [1, 0.183283, 0.285892, 0.459219, 1.66183, 0.124736, 0.674988,

0.998286, 2.88388]T

c
δ1
b2 = 3.2945

k
δ1
b2 = [176.425, 2.32289, 68.0918, 52.944, 10.2127, 191.445, 9.24765,

9.24765, 53.7349, 17.2377, 22.1343, 16.0482, 38.4466, 93.4103,

2.80788, 6.43645, 7.40174]T

Networ (N6.2b3)

µ1 + µ2 = ln
ν1 + ν3 + ν5 + ν9

λ1 + λ3 + λ5 + λ9
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν5 + ν9

λ3 + λ5 + λ9

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

0 = ln
ν4

λ4
µ1 = ln

ν4

λ4
0 = ln

ν5 + ν9

λ5 + λ9

µ5 = ln
ν5

λ5

µ1 + µ5 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
µ7 = ln

ν6

λ6
µ7 = ln

ν8 + ν9

λ8 + λ9

µ3 + µ8 = ln
ν7 + ν8

λ7 + λ8
µ9 = ln

ν7

λ7
µ9 = ln

ν8

λ8

µ8 = ln
ν9

λ9

κ1 = ln
ν1 + ν3 + ν5 + ν9

λ1 + λ3 + λ5 + λ9
= ln

ν1

λ1
= ln

ν3 + ν5 + ν9

λ3 + λ5 + λ9

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν5

λ5

κ4 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
= ln

ν6

λ6
= ln

ν8 + ν9

λ8 + λ9

κ5 = ln
ν7 + ν8

λ7 + λ8
= ln

ν7

λ7
= ln

ν8

λ8

κ6 = ln
ν9

λ9

µ1 = 0

µ4 = κ1

µ6 = κ2

µ7 = κ4

µ8 = κ6

µ9 = κ5
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µ1 + µ2 = κ1 (B.16)

µ3 + µ5 = κ2 (B.17)

µ1 + µ5 = κ4 (B.18)

µ3 + µ8 = κ5 (B.19)

Equation (B.17)–(B.19) yield

κ6 = −κ2 +κ3 +κ5

and thus from (B.16)

κ4 = κ3

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = λ4

ν5 = exp(κ3) λ5

ν6 = exp(κ4) λ6

ν7 = exp(κ5) λ7 ν8 = exp(κ5) λ8

ν9 = exp(κ6) λ9

0 = (exp(κ2) − exp(κ1)) λ3 + (exp(κ3) − exp(κ1)) λ5

+ (exp(−κ2 +κ3 +κ5) − exp(κ1)) λ9

0 = (exp(κ3) − 1) λ5 + (exp(−κ2 +κ3 +κ5) − 1) λ9

0 = (exp(κ5) − exp(κ3)) λ8 + (exp(−κ2 +κ3 +κ5) − exp(κ3)) λ9

κ̃b3 = [κ1 κ2 κ3 κ5]
T

λ̃b3 = [λ3 λ5 λ8 λ9]
T

Mb3 =




0 0 0 0

1 0 0 0

0 1 −1 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 −1 1 1

0 0 0 1




Qb3 =



q11 0 q12 q13

0 0 q21 q22

0 q31 0 q32



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with

q11 = − exp(κ1) + exp(κ2)

q12 = − exp(κ1) + exp(κ3)

q13 = − exp(κ1) + exp(−κ2 +κ3 +κ5)

q12 = −1+ exp(κ3)

q22 = −1+ exp(−κ2 +κ3 +κ5)

q31 = − exp(κ3) + exp(κ5)

q32 = exp(κ3)(−1+ exp(−κ2 +κ5))

Kb3 =




−1 1 0 0

−1 0 1 0

−1 −1 1 1

0 0 1 0

0 −1 1 1

0 0 −1 1

0 −1 0 1




δb3 =
[
0 0 0 0 0 0 0 0 0

]T

σb3 =
[
0 0 0 0 0 0 0

]T

Note, if only the zero sign vector is a valid sign vector, no multiple steady
states can be found as sgn(mu) = sgn(s) = 0 and thus a = b.

Network (N6.2b4)

µ1 + µ2 = ln
ν1 + ν3 + ν8

λ1 + λ3 + λ8
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν8

λ3 + λ8

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

0 = ln
ν4

λ4
µ1 = ln

ν4

λ4
0 = ln

ν8

λ8

µ1 + µ5 = ln
ν5 + ν7 + ν8

λ5 + λ7 + λ8
µ7 = ln

ν5

λ5
µ7 = ln

ν7 + ν8

λ7 + λ8

µ3 + µ8 = ln
ν6 + ν7

λ6 + λ7
µ9 = ln

ν6

λ6
µ9 = ln

ν7

λ7

µ8 = ln
ν8

λ8

κ1 = ln
ν1 + ν3 + ν8

λ1 + λ3 + λ8
= ln

ν1

λ1
= ln

ν3 + ν8

λ3 + λ8

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν5 + ν7 + ν8

λ5 + λ7 + λ8
= ln

ν5

λ5
= ln

ν7 + ν8

λ7 + λ8

κ4 = ln
ν6 + ν7

λ6 + λ7
= ln

ν6

λ6
= ln

ν7

λ7
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µ1 = 0

µ4 = κ1

µ6 = κ2

µ7 = κ3

µ8 = 0

µ9 = κ4

µ1 + µ2 = κ1

µ3 + µ5 = κ2 (B.20)

µ1 + µ5 = κ3

µ3 + µ8 = κ4

Equation (B.20) then yields

κ4 = κ2 −κ3.

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = λ4

ν5 = exp(κ3) λ5

ν6 = exp(κ4) λ6 ν7 = exp(κ4) λ7

ν8 = λ8

0 = (exp(κ2) − exp(κ1)) λ3 + (1− exp(κ1)) λ8

0 = (exp(κ2 −κ3) − exp(κ3)) λ7 + (1− exp(κ3)) λ8

κ̃b4 = [κ1 κ2 κ3]
T

λ̃b4 = [λ3 λ7 λ8]
T

Mb4 =




0 0 0

1 0 0

0 1 −1

1 0 0

0 0 1

0 1 0

0 0 1

0 0 0

0 1 −1



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Qb4 =

[
− exp(κ1) + exp(κ2) 0 1− exp(κ1)

0 exp(κ2 −κ3) − exp(κ3) 1− exp(κ3)

]

=

[
q11 0 q12

0 q21 q22

]

Kb4 =




−1 1 0

−1 0 0

0 1 −2

0 0 −1




δb4 =
[
0 0 0 0 0 0 0 0 0

]T

σb4 =
[
0 0 0 0

]T

Same results as for network (N6.2b3) apply here, as only δ = 0 is a valid
sign vector to the system.

b.2.3 Additional Synthesis and Degradation of Enzyme E2

Network (N6.2c1)

µ1 + µ2 = ln
ν1 + ν10 + ν3 + ν6

λ1 + λ10 + λ3 + λ6
µ4 = ln

ν1

λ1
µ4 = ln

ν10 + ν3 + ν6

λ10 + λ3 + λ6

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

µ2 = ln
ν4

λ4

0 = ln
ν10 + ν4 + ν6

λ10 + λ4 + λ6
(B.21)

µ3 = ln
ν5

λ5

0 = ln
ν5

λ5

µ5 = ln
ν6

λ6

µ1 + µ5 = ln
ν10 + ν7 + ν9

λ10 + λ7 + λ9
µ7 = ln

ν7

λ7
µ7 = ln

ν10 + ν9

λ10 + λ9

µ3 + µ8 = ln
ν8 + ν9

λ8 + λ9
µ9 = ln

ν8

λ8
µ9 = ln

ν9

λ9

µ8 = ln
ν10

λ10
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κ1 = ln
ν1 + ν10 + ν3 + ν6

λ1 + λ10 + λ3 + λ6
= ln

ν1

λ1
= ln

ν10 + ν3 + ν6

λ10 + λ3 + λ6

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν4

λ4

κ4 = ln
ν6

λ6

κ5 = ln
ν10 + ν7 + ν9

λ10 + λ7 + λ9
= ln

ν7

λ7
= ln

ν10 + ν9

λ10 + λ9

κ6 = ln
ν8 + ν9

λ8 + λ9
= ln

ν8

λ8
= ln

ν9

λ9

κ7 = ln
ν10

λ10

µ2 = κ3 µ3 = 0

µ4 = κ1 µ5 = κ4

µ6 = κ2 µ7 = κ5

µ8 = κ7 µ9 = κ6

µ1 + µ2 = κ1 (B.22)

µ3 + µ5 = κ2 (B.23)

µ1 + µ5 = κ5 (B.24)

µ3 + µ8 = κ6 (B.25)

Combining equation (B.22) and (B.24) yields

κ5 = κ1 +κ2 −κ3,

furthermore equation (B.23) yields

κ4 = κ2,

and equation (B.25) yields

κ6 = κ7.

Furthermore equation (B.21) yields

κ6 = κ5

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = exp(κ3) λ4

ν5 = λ5

ν6 = exp(κ4) λ6

ν7 = exp(κ5) λ7

ν8 = exp(κ6) λ8 ν9 = exp(κ6) λ9

ν10 = exp(κ7) λ10
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0 = (exp(κ2) − exp(κ1)) λ3 + (exp(κ2) − exp(κ1)) λ6

+ (exp(κ1 +κ2 −κ3) − exp(κ1)) λ10

0 = (exp(κ3) − 1) λ4 + (exp(κ2) − 1) λ6 + (exp(κ1 +κ2 −κ3) − 1) λ10

κ̃c1 = [κ1 κ2 κ3]
T

λ̃c1 = [λ3 λ4 λ6 λ10]
T

Mc1 =




1 0 −1

0 0 1

0 0 0

1 0 0

0 1 0

0 1 0

1 1 −1

1 1 −1

1 1 −1




Qc1 =

[
q11 0 q11 q13

0 q21 q22 q32

]

with

q11 = − exp(κ1) + exp(κ2)

q12 = − exp(κ1) + exp(κ2)

q13 = − exp(κ1) + exp(κ1 +κ2 −κ3)

q21 = −1+ exp(κ3)

q22 = −1+ exp(κ2)

q23 = −1+ exp(κ1 +κ2 −κ3)

Kc1 =




−1 1 0

−1 1 0

0 1 −1

0 0 1

0 1 0

1 1 −1




δc1 =
[
−1 1 0 1 1 1 −1 −1 −1

]T

σc1 =
[
1 1 −1 1 1 −1

]T
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Choosing

κ̃
δ1
c1 = [0.2, 0.5, 0.8]T

β
δ1
c1 = [0.842524, 0.283754, 0.568224, 0.904543, 0.629725, 0.313306,

0.852005, 0.984639]T

with an additional condition of

λ10 > 6.81698 λ6

and thus

λ
δ1
c1 = [0.243565, 5.39844, 6.40818, 0.24716, 6.38347,

1, 7.04565, 0.211258, 4.51445 10]T

the following steady states and parameter can be given

a
δ1
c1 = [1.86734, 0.231534, 1, 5.22048, 1.39435, 0.970718, 3.29232,

8.95315, 10.3469]T

b
δ1
c1 = [1.02482, 0.515288, 1, 6.37631, 2.29889, 1.60044, 2.97901,

8.10115, 9.36227]T

c
δ1
c1 = 10.3801

k
δ1
c1 = [40.8272, 0.0466556, 3.33459, 8.46749, 5.56129, 6.60149,

1.06749, 11.2472, 6.38347, 6.38347, 0.717181, 8.28048,

2.14003, 4.40858, 0.527827, 0.0204175, 0.436309, 1.11692]T

Network (N6.2c2)

µ1 + µ2 = ln
ν1 + ν3 + ν9

λ1 + λ3 + λ9
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν9

λ3 + λ9

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

µ2 = ln
ν4

λ4

0 = ln
ν4 + ν9

λ4 + λ9
(B.26)

µ3 = ln
ν5

λ5
0 = ln

ν5

λ5

µ1 + µ5 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
µ7 = ln

ν6

λ6
µ7 = ln

ν8 + ν9

λ8 + λ9

µ3 + µ8 = ln
ν7 + ν8

λ7 + λ8
µ9 = ln

ν7

λ7
µ9 = ln

ν8

λ8

µ8 = ln
ν9

λ9
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κ1 = ln
ν1 + ν3 + ν9

λ1 + λ3 + λ9
= ln

ν1

λ1
= ln

ν3 + ν9

λ3 + λ9

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν4

λ4

κ4 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
= ln

ν6

λ6
= ln

ν8 + ν9

λ8 + λ9

κ5 = ln
ν7 + ν8

λ7 + λ8
= ln

ν7

λ7
= ln

ν8

λ8

κ6 = ln
ν9

λ9

µ2 = κ3 µ3 = 0

µ4 = κ1 µ6 = κ2

µ7 = κ4 µ8 = κ6

µ9 = κ5

µ1 + µ2 = κ1 (B.27)

µ3 + µ5 = κ2 (B.28)

µ1 + µ5 = κ4 (B.29)

µ3 + µ8 = κ5 (B.30)

Equation (B.30) yields

κ5 = κ6,

and equation (B.27) and (B.29) yield

κ4 = κ1 +κ2 −κ3.

Furthermore equation (B.26) yields

κ5 = κ1 +κ2 −κ3

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = exp(κ3) λ4

ν5 = λ5

ν6 = exp(κ4) λ6

ν7 = exp(κ5) λ7 ν8 = exp(κ5) λ8

ν9 = exp(κ6) λ9

0 = (exp(κ2 − exp(κ1))) λ3 + (exp(κ1 +κ2 −κ3) − exp(κ1)) λ9

0 = (exp(κ3 − 1)) λ4 + (exp(κ1 +κ2 −κ3) − 1) λ9
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κ̃c2 = [κ1 κ2 κ3]
T

λ̃c2 = [λ3 λ4 λ9]
T

Mc2 =




1 0 −1

0 0 1

0 0 0

1 0 0

0 1 0

0 1 0

1 1 −1

1 1 −1

1 1 −1




Qc2 =

[
q11 0 q12

0 q21 q22

]

with

q11 = − exp(κ1) + exp(κ2)

q12 = − exp(κ1) + exp(κ1 +κ2 −κ3)

q21 = −1+ exp(κ3)

q22 = −1+ exp(κ1 +κ2 −κ3)

Kc2 =




−1 1 0

0 1 −1

0 0 1

1 1 −1




δc2 =
[
−1 1 0 1 1 1 −1 −1 −1

]T

σc2 =
[
1 −1 1 −1

]T

Choosing

κ̃
δ1
c2 = [0.2, 0.5, 0.8]T

β
δ1
c2 = [0.116211, 0.586789, 0.897889, 0.909449, 0.410328,

0.917537, 0.647233, 0.822854]T

λ
δ1
c2 = [2.89629, 5.89607, 0.74082, 0.07765, 2.32315, 4.41779,

4.94928, 8.24542, 1]T
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yields

a
δ1
c2 = [0.257567, 0.4788, 1, 4.66909, 1.40191, 0.632519, 9.64179,

6.80134, 8.64682]T

b
δ1
c2 = [0.141356, 1.06559, 1, 5.70284, 2.31136, 1.04285, 8.72425,

6.15411, 7.82397]T

c
δ1
c2 = 14.5684

k
δ1
c2 = [37.6013, 0.620312, 0.372839, 4.73417, 9.32157, 1.17122,

0.162175, 1.07765, 2.32315, 2.32315, 37.8392, 0.458193,

0.95889, 1.94001, 0.572381, 0.953577, 0.14703]T

Network (N6.2c3)

µ1 + µ2 = ln
ν1 + ν3 + ν5 + ν9

λ1 + λ3 + λ5 + λ9
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν5 + ν9

λ3 + λ5 + λ9

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

0 = ln
ν5 + ν9

λ5 + λ9
(B.31)

µ3 = ln
ν4

λ4
0 = ln

ν4

λ4
µ5 = ln

ν5

λ5

µ1 + µ5 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
µ7 = ln

ν6

λ6
µ7 = ln

ν8 + ν9

λ8 + λ9

µ3 + µ8 = ln
ν7 + ν8

λ7 + λ8
µ9 = ln

ν7

λ7
µ9 = ln

ν8

λ8

µ8 = ln
ν9

λ9

κ1 = ln
ν1 + ν3 + ν5 + ν9

λ1 + λ3 + λ5 + λ9
= ln

ν1

λ1
= ln

ν3 + ν5 + ν9

λ3 + λ5 + λ9

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν5

λ5

κ4 = ln
ν6 + ν8 + ν9

λ6 + λ8 + λ9
= ln

ν6

λ6
= ln

ν8 + ν9

λ8 + λ9

κ5 = ln
ν7 + ν8

λ7 + λ8
= ln

ν7

λ7
= ln

ν8

λ8

κ6 = ln
ν9

λ9

µ3 = 0 µ4 = κ1

µ5 = κ3 µ6 = κ2

µ7 = κ4 µ8 = κ6

µ9 = κ5
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µ1 + µ2 = κ1

µ3 + µ5 = κ2 (B.32)

µ1 + µ5 = κ4

µ3 + µ8 = κ5 (B.33)

Equation (B.32)

κ3 = κ2,

and (B.33) yields

κ6 = κ4,

furthermore equation (B.31) yields

κ5 = κ4.

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = λ4

ν5 = exp(κ3) λ5

ν6 = exp(κ4) λ6

ν7 = exp(κ5) λ7 ν8 = exp(κ5) λ8

ν9 = exp(κ6) λ9

0 = (exp(κ2) − exp(κ1)) λ3 + (exp(κ2) − exp(κ1)) λ5

+ (exp(κ4) − exp(κ1)) λ9

0 = (exp(κ2) − 1) λ5 + (exp(κ4) − 1) λ9

κ̃c3 = [κ1 κ2 κ4]
T

λ̃c3 = [λ3 λ5 λ9]
T

Mc3 =




0 −1 1

1 1 −1

0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1






B.2 solutions for synthesis and degradation of proteins 177

Qc3 =

[
q11 q11 q12

0 q21 q22

]

with

q11 = − exp(κ1) + exp(κ2) q12 = − exp(κ1) + exp(κ4)

q21 = −1+ exp(κ2) q22 = −1+ exp(κ4)

Kc3 =




−1 1 0

−1 1 0

−1 0 1

0 1 0

0 0 1




δc3 =
[
−1 1 0 1 1 1 −1 −1 −1

]T

σc3 =
[
1 1 −1 1 −1

]T

Choosing

κ̃
δ1
c3 = [0.5, 0.75, −0.5]T

β
δ1
c3 = [0.858816, 0.0459736, 0.816562, 0.245334, 0.974303, 0.878165,

0.163494, 0.6968261]T

λ
δ1
c3 = [7.21801, 6.62893, 1.87332, 3.58024, 0.35226, 7.07666, ,

5.71935, 0.961662, 1]T

yields

a
δ1
c3 = [0.54762, 0.144533, 1, 0.883383, 0.0857965, 0.794956, 0.463429,

1.85948, 2.00634]T

b
δ1
c3 = [0.156896, 0.831732, 1, 1.45645, 0.181631, 1.68292, 0.281084,

1.12783, 1.21691]T

c
δ1
c3 = 1.89443

k
δ1
c3 = [118.76, 6.98925, 3.65139, 111.407, 9.66726, 2.35651, 1.35226,

0.205306, 0.205306, 4.10571, 318.876, 14.6554, 17.6733, 7.32318,

3.20335, 3.58379, 0.537785]T
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Network (N6.2c4)

µ1 + µ2 = ln
ν1 + ν3 + ν8

λ1 + λ3 + λ8
µ4 = ln

ν1

λ1
µ4 = ln

ν3 + ν8

λ3 + λ8

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3
µ6 = ln

ν2

λ2
µ6 = ln

ν3

λ3

0 = ln
ν8

λ8
µ3 = ln

ν4

λ4
0 = ln

ν4

λ4

µ1 + µ5 = ln
ν5 + ν7 + ν8

λ5 + λ7 + λ8
µ7 = ln

ν5

λ5

µ7 = ln
ν7 + ν8

λ7 + λ8
(B.34)

µ3 + µ8 = ln
ν6 + ν7

λ6 + λ7
µ9 = ln

ν6

λ6
µ9 = ln

ν7

λ7

µ8 = ln
ν8

λ8

κ1 = ln
ν1 + ν3 + ν8

λ1 + λ3 + λ8
= ln

ν1

λ1
= ln

ν3 + ν8

λ3 + λ8

κ2 = ln
ν2 + ν3

λ2 + λ3
= ln

ν2

λ2
= ln

ν3

λ3

κ3 = ln
ν5 + ν7 + ν8

λ5 + λ7 + λ8
= ln

ν5

λ5
= ln

ν7 + ν8

λ7 + λ8

κ4 = ln
ν6 + ν7

λ6 + λ7
= ln

ν6

λ6
= ln

ν7

λ7

µ3 = 0 µ4 = κ1

µ6 = κ2 µ7 = κ3

µ8 = 0 µ9 = κ4

µ1 + µ2 = κ1

µ3 + µ5 = κ2

µ1 + µ5 = κ3

µ3 + µ8 = κ4 (B.35)

Equation (B.35) yields

κ4 = 0,

and equation (B.34) yields

κ3 = 0.

ν1 = exp(κ1) λ1

ν2 = exp(κ2) λ2 ν3 = exp(κ2) λ3

ν4 = λ4

ν5 = exp(κ3) λ5

ν6 = exp(κ4) λ6 ν7 = exp(κ4) λ7

ν8 = λ8
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0 = (exp(κ2) − exp(κ1)) λ3 + (exp(κ1) − 1) λ8

κ̃c4 = [κ1 κ2]
T

λ̃c4 = [λ3 λ8]
T

Mc4 =




0 −1

1 1

0 0

1 0

0 1

0 1

0 0

0 0

0 0




Qc4 =
[
− exp(κ1) + exp(κ2) 1− exp(κ1)

]

=
[
q11 q12

]

Kc4 =

[
−1 1

−1 0

]

Results for the system can be given by:

δc4 =
[
−1 1 0 1 1 1 0 0 0

]T

σc4 =
[
1 −1

]T

Choosing

κ̃
δ1
c4 = [0.5, 0.75]T

β
δ1
c4 = [0.0164385, 0.17352, 0.734814, 0.702408, 0.207469, 0.11047,

0.749789, 0.452581]T

λ
δ1
c4 = [7.42513, 0.293478, 1.38533, 2.24759, 8.93328, 5.1864,

0.325866, 1]T
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yields

a
δ1
c4 = [0.0311552, 0.0696773, 1, 0.0253399, 0.628835, 0.185738,

1, 1, 1]T

b
δ1
c4 = [0.0147167, 0.243198, 1, 0.0417784, 1.33124, 0.393207,

1, 1, 1]T

c
δ1
c4 = 1.0565

k
δ1
c4 = [4519.27, 293.022, 94.1335, 2.66972, 1.58007, 7.45853,

1, 2.24759, 2.24759, 523.654, 8.93328, 1.32587,

5.51227, 5.1864, 0.325866, 1]T

b.2.4 Synthesis and Degradation of Proteins and Enzymes

Additional versions for synthesis and degradation of proteins and enzymes
to network (N6.1) are possible. The following version includes synthesis
and/or degradation of the protein A together with both enzymes:

A GGGBF GGG 0 K GGGBF GGG 0 P GGGBF GGG 0 (NA.1a)

A GGGBF GGG 0 K GGGBF GGG 0 P GGGBF GGG 0 APGGGA 0D GGGA2P (NA.1b)

A GGGBF GGG 0 K GGGBF GGG 0 P GGGBF GGG 0 0D GGGA2P (NA.1c)

AD GGG 0 K GGGBF GGG 0 P GGGBF GGG 0 APGGGA 0D GGGA2P (NA.1d)

AD GGG 0 K GGGBF GGG 0 P GGGBF GGG 0 0D GGGA2P (NA.1e)

The network itself is completely open without any conservation relation.
The first scenario (NA.1a) results in

µ10a = 0

thus yielding only one steady state a = b. With an open network any state of
the system corresponds to the steady state, compare also (5.50) on page 53.

b.2.5 Synthesis and Degradation of Enzymes

A scenario considering only synthesis and degradation of the enzymes but
not the unphosphorylated form of the protein with

K GGGBF GGG 0 P GGGBF GGG 0 (NA.2a)

K GGGBF GGG 0 P GGGBF GGG 0 APGGGA 0D GGGA2P (NA.2b)

K GGGBF GGG 0 P GGGBF GGG 0 0D GGGA2P (NA.2c)

can be used to describe possible network setups in chemical reaction net-
works.

The first network setup yields a weight vector for the conservation relation
of the total concentration of A and its phosphorylated form. The second and
third one are open systems towards conservation of the substances.
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The first network setup (NA.2a) yields

µ11a =
[
0 1 0 1 1 1 1 1 1

]T
ln

ν3

λ3

Conservation of substances in system (NA.2) happens only for substrate A

and its phosphorylated forms. This yields only one weight vector w11a =

µ11a. Thus s ⊥ µ resulting in no steady states at all.
The second and third network setups, (NA.2b) and (NA.2c) respectively,

yield only µ11b/c = 0. Only a = b is valid for any µ and s and thus exactly
one steady state can be found for these two network setups.

b.3 an excursion towards larger networks with synthesis and

degradation

Provided are the solutions to YT µ = ln Eν
Eλ for a nine-times phosphoryla-

tion network including synthesis and degradation of the (phosphorylated)
protein, compare section 6.3 on page 88:

0 = ln
ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36 + ν4 + ν8

λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36 + λ4 + λ8

µ1 + µ2 = ln
ν1 + ν12 + ν16 + ν20 + ν24 + ν28 + ν3 + ν32 + ν36 + ν4 + ν8

λ1 + λ12 + λ16 + λ20 + λ24 + λ28 + λ3 + λ32 + λ36 + λ4 + λ8

µ3 + µ5 = ln
ν2 + ν3

λ2 + λ3

µ4 = ln
ν1

λ1
µ6 = ln

ν2

λ2

µ4 = ln
ν12 + ν16 + ν20 + ν24 + ν28 + ν3 + ν32 + ν36 + ν4 + ν8

λ12 + λ16 + λ20 + λ24 + λ28 + λ3 + λ32 + λ36 + λ4 + λ8

µ6 = ln
ν3

λ3
µ5 = ln

ν4

λ4

µ1 + µ5 = ln
ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36 + ν5 + ν7 + ν8

λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36 + λ5 + λ7 + λ8

µ3 + µ8 = ln
ν6 + ν7

λ6 + λ7

µ7 = ln
ν5

λ5
µ9 = ln

ν6

λ6

µ7 = ln
ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36 + ν7 + ν8

λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36 + λ7 + λ8

µ9 = ln
ν7

λ7
µ8 = ln

ν8

λ8

µ1 + µ8 = ln
ν11 + ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36 + ν9

λ11 + λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36 + λ9

µ11 + µ3 = ln
ν10 + ν11

λ10 + λ11

µ10 = ln
ν9

λ9
µ12 = ln

ν10

λ10

µ10 = ln
ν11 + ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36

λ11 + λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36

µ12 = ln
ν11

λ11
µ11 = ln

ν12

λ12

µ1 +µ11 = ln
ν13 + ν15 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36

λ13 + λ15 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36
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µ14 + µ3 = ln
ν14 + ν15

λ14 + λ15

µ13 = ln
ν13

λ13
µ15 = ln

ν14

λ14

µ13 = ln
ν15 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36

λ15 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36

µ15 = ln
ν15

λ15
µ14 = ln

ν16

λ16

µ1 + µ14 = ln
ν17 + ν19 + ν20 + ν24 + ν28 + ν32 + ν36

λ17 + λ19 + λ20 + λ24 + λ28 + λ32 + λ36

µ17 + µ3 = ln
ν18 + ν19

λ18 + λ19

µ16 = ln
ν17

λ17
µ18 = ln

ν18

λ18

µ16 = ln
ν19 + ν20 + ν24 + ν28 + ν32 + ν36

λ19 + λ20 + λ24 + λ28 + λ32 + λ36

µ18 = ln
ν19

λ19
µ17 = ln

ν20

λ20

µ1 + µ17 = ln
ν21 + ν23 + ν24 + ν28 + ν32 + ν36

λ21 + λ23 + λ24 + λ28 + λ32 + λ36

µ20 + µ3 = ln
ν22 + ν23

λ22 + λ23

µ19 = ln
ν21

λ21
µ21 = ln

ν22

λ22

µ19 = ln
ν23 + ν24 + ν28 + ν32 + ν36

λ23 + λ24 + λ28 + λ32 + λ36

µ21 = ln
ν23

λ23
µ20 = ln

ν24

λ24

µ1 + µ20 = ln
ν25 + ν27 + ν28 + ν32 + ν36

λ25 + λ27 + λ28 + λ32 + λ36
µ23 + µ3 = ln

ν26 + ν27

λ26 + λ27

µ22 = ln
ν25

λ25
µ24 = ln

ν26

λ26

µ22 = ln
ν27 + ν28 + ν32 + ν36

λ27 + λ28 + λ32 + λ36
µ24 = ln

ν27

λ27

µ23 = ln
ν28

λ28

µ1 + µ23 = ln
ν29 + ν31 + ν32 + ν36

λ29 + λ31 + λ32 + λ36
µ26 + µ3 = ln

ν30 + ν31

λ30 + λ31

µ25 = ln
ν29

λ29
µ27 = ln

ν30

λ30

µ25 = ln
ν31 + ν32 + ν36

λ31 + λ32 + λ36
µ27 = ln

ν31

λ31

µ26 = ln
ν32

λ32

µ1 + µ26 = ln
ν33 + ν35 + ν36

λ33 + λ35 + λ36
µ29 + µ3 = ln

ν34 + ν35

λ34 + λ35

µ28 = ln
ν33

λ33
µ30 = ln

ν34

λ34

µ28 = ln
ν35 + ν36

λ35 + λ36
µ30 = ln

ν35

λ35

µ29 = ln
ν36

λ36
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The following dependencies occur due to the structure of the terms in the
logarithms:

ln
ν1

λ1
= ln

ν12 + ν16 + ν20 + ν24 + ν28 + ν3 + ν32 + ν36 + ν4 + ν8

λ12 + λ16 + λ20 + λ24 + λ28 + λ3 + λ32 + λ36 + λ4 + λ8

= ln
ν1 + ν12 + ν16 + ν20 + ν24 + ν28 + ν3 + ν32 + ν36 + ν4 + ν8

λ1 + λ12 + λ16 + λ20 + λ24 + λ28 + λ3 + λ32 + λ36 + λ4 + λ8

ln
ν2

λ2
= ln

ν3

λ3
= ln

ν2 + ν3

λ2 + λ3

ln
ν5

λ5
= ln

ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36 + ν7 + ν8

λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36 + λ7 + λ8

= ln
ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36 + ν5 + ν7 + ν8

λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36 + λ5 + λ7 + λ8

ln
ν6

λ6
= ln

ν7

λ7
= ln

ν6 + ν7

λ6 + λ7

ln
ν9

λ9
= ln

ν11 + ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36

λ11 + λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36

= ln
ν11 + ν12 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36 + ν9

λ11 + λ12 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36 + λ9

ln
ν10

λ10
= ln

ν11

λ11
= ln

ν10 + ν11

λ10 + λ11

ln
ν13

λ13
= ln

ν15 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36

λ15 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36

= ln
ν13 + ν15 + ν16 + ν20 + ν24 + ν28 + ν32 + ν36

λ13 + λ15 + λ16 + λ20 + λ24 + λ28 + λ32 + λ36

ln
ν14

λ14
= ln

ν15

λ15
= ln

ν14 + ν15

λ14 + λ15

ln
ν17

λ17
= ln

ν19 + ν20 + ν24 + ν28 + ν32 + ν36

λ19 + λ20 + λ24 + λ28 + λ32 + λ36

= ln
ν17 + ν19 + ν20 + ν24 + ν28 + ν32 + ν36

λ17 + λ19 + λ20 + λ24 + λ28 + λ32 + λ36

ln
ν18

λ18
= ln

ν19

λ19
= ln

ν18 + ν19

λ18 + λ19

ln
ν21

λ21
= ln

ν23 + ν24 + ν28 + ν32 + ν36

λ23 + λ24 + λ28 + λ32 + λ36

= ln
ν21 + ν23 + ν24 + ν28 + ν32 + ν36

λ21 + λ23 + λ24 + λ28 + λ32 + λ36

ln
ν22

λ22
= ln

ν23

λ23
= ln

ν22 + ν23

λ22 + λ23

ln
ν25

λ25
= ln

ν27 + ν28 + ν32 + ν36

λ27 + λ28 + λ32 + λ36

= ln
ν25 + ν27 + ν28 + ν32 + ν36

λ25 + λ27 + λ28 + λ32 + λ36

ln
ν26

λ26
= ln

ν27

λ27
= ln

ν26 + ν27

λ26 + λ27

ln
ν29

λ29
= ln

ν31 + ν32 + ν36

λ31 + λ32 + λ36

= ln
ν29 + ν31 + ν32 + ν36

λ29 + λ31 + λ32 + λ36
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ln
ν30

λ30
= ln

ν31

λ31
= ln

ν30 + ν31

λ30 + λ31

ln
ν33

λ33
= ln

ν35 + ν36

λ35 + λ36

= ln
ν33 + ν35 + ν36

λ33 + λ35 + λ36

ln
ν34

λ34
= ln

ν35

λ35
= ln

ν34 + ν35

λ34 + λ35

Thus dependencies between λl in terms of κ can be given by:

0 = (exp(c1) − exp(κ1)) λ36 + (exp(c2) − exp(κ1)) λ32

+ (exp(c3) − exp(κ1)) λ28 + (exp(c4) − exp(κ1)) λ24

+ (exp(c5) − exp(κ1)) λ20 + (exp(c6) − exp(κ1)) λ16

+ (exp(c7) − exp(κ1)) λ12 + (exp(c8) − exp(κ1)) λ8

+ (exp(κ3) − exp(κ1)) λ4 + (exp(κ2) − exp(κ1)) λ3,

0 = (exp(c1) − 1) λ36 + (exp(c2) − 1) λ32 + (exp(c3) − 1) λ28

+ (exp(c4) − 1) λ24 + (exp(c5) − 1) λ20 + (exp(c6) − 1) λ16

+ (exp(c7) − 1) λ12 + (exp(c8) − 1) λ8 + (exp(κ3) − 1) λ4,

0 = (exp(c1) − exp(κ4)) λ36 + (exp(c2) − exp(κ4)) λ32

+ (exp(c3) − exp(κ4)) λ28 + (exp(c4) − exp(κ4)) λ24

+ (exp(c5) − exp(κ4)) λ20 + (exp(c6) − exp(κ4)) λ16

+ (exp(c7) − exp(κ4)) λ12 + (exp(c8) − exp(κ4)) λ8

+ (exp(κ5) − exp(κ4)) λ7,

0 = (exp(c1) − exp(d1)) λ36 + (exp(c2) − exp(d1)) λ32

+ (exp(c3) − exp(d1)) λ28 + (exp(c4) − exp(d1)) λ24

+ (exp(c5) − exp(d1)) λ20 + (exp(c6) − exp(d1)) λ16

+ (exp(c7) − exp(d1)) λ12 + (exp(κ8) − exp(d1)) λ11,

0 = (exp(c1) − exp(d2)) λ36 + (exp(c2) − exp(d2)) λ32

+ (exp(c3) − exp(d2)) λ28 + (exp(c4) − exp(d2)) λ24

+ (exp(c5) − exp(d2)) λ20 + (exp(c6) − exp(d2)) λ16

+ (exp(κ11) − exp(d2)) λ15,

0 = (exp(c1) − exp(d3)) λ36 + (exp(c2) − exp(d3)) λ32

+ (exp(c3) − exp(d3)) λ28 + (exp(c4) − exp(d3)) λ24

+ (exp(c5) − exp(d3)) λ20 + (exp(κ14) − exp(d3)) λ19,

0 = (exp(c1) − exp(d4)) λ36 + (exp(c2) − exp(d4)) λ32

+ (exp(c3) − exp(d4)) λ28 + (exp(c4) − exp(d4)) λ24

+ (exp(exp(d4)) λ23,

0 = (exp(c1) − exp(d5)) λ36 + (exp(c2) − exp(d5)) λ32

(exp(c3) − exp(d5)) λ28 + (exp(κ20) − exp(d5)) λ27,

0 = (exp(c1) − exp()) λ36 + (exp(c2) − exp(d6)) λ32

+ (exp(κ23) − exp(d6)) λ31,

0 = (exp(c1) − exp(d7)) λ36 + (exp(κ26) − exp(d7)) λ35
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with

c1 = −κ2 +κ3 +κ26 c2 = −κ2 +κ3 +κ23

c3 = −κ2 +κ3 +κ20 c4 = −κ2 +κ3 +κ17

c5 = −κ2 +κ3 +κ14 c6 = −κ2 +κ3 +κ11

c7 = −κ2 +κ3 +κ8 c8 = −κ2 +κ3 +κ5

d1 = −κ2 +κ4 +κ5 d2 = −κ2 +κ4 +κ8

d3 = −κ2 +κ4 +κ11 d4 = −κ2 +κ4 +κ14

d5 = −κ2 +κ4 +κ17 d6 = −κ2 +κ4 +κ20

d7 = −κ2 +κ4 +κ23





Some people are old at 18

and some are young at 90.
Time is a concept

that humans created.

— Yoko Ono

CSOME MORE TABLES AND FIGURES

c.1 further figures for networks with compartmentalization

The reaction network including compartmentalization by two coupled stan-
dard phosphorylation networks for the multi-valued setup can also yield
further interesting response curves, e. g., closed loops in the bifurcation dia-
grams:

xC = [0.0239, 0.6736, 0.1762, 0.7982, 0.9263, 0.8435,

0.0101, 1.7460, 0.0881]T ,

xN = [0.7781, 0.0084, 5.5190, 2.1990, 0.8094, 1.5128,

0.4575, 2.2992, 0.6636]T ,

cC = [0.8322, 1.1077, 5.0857]T ,

cN = [3.4346, 7.6954, 7.9497]T ,

kC = [54.0889, 0.0578, 1.0317, 5.6395, 0.1152, 0.9763,

74.4054, 68.6440, 93.8750, 4.1188, 3.6011, 10.7911]T ,

c = [0.8322, 13.0354, 1.1077, 3.4346, 7.6954]T ,

kN = [133.2642, 0.0210, 0.3745, 0.2061, 0.0642, 0.5443,

2.6121, 1.5189, 2.0771, 0.0999, 0.4779, 1.4320]T ,

kT = 1e− 07 · [1, 0.29307]T ,

see figure C.1 for the uncoupled response curve and figure C.2 for the cou-
pled one. Bifurcation analysis starts at a = f(xC, xN).
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Figure C.1: Bifurcation analysis for the multi-valued setup of two decoupled systems. Re-

sults for coupling these two systems can be found in figure C.2.
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Figure C.2: Bifurcation analysis of coupling two systems of the multi-valued setup with

multiple steady states as given in figure C.1. Here closed loops can be seen.
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c.2 further figures for robustness analysis towards param-
eter variation

Results for mean exit number Ī of remaining sign vectors for robustness
analysis are given for δ(2)2,3,4 and following ∆(n) for n = 2, . . . , 14 and n =

3, . . . , 15, of equation (5.∆b2)–(5.∆b4) for i1 = 1 and i2 = n− 1.

phosphorylation step n

Ī(
λ
)

Ī(
{}
)

Ī(
α
,β

,λ
)

δ
(2)
4δ

(2)
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(2)
2

Ī(
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Figure C.3: Mean exit number Ī as measure of robustness for perturbation of the parameter

vector for sign vectors δ ∈ {+, −} for missing δ
(2)
2,3,4 and higher n with i1 = 1 and

i2 = n − 1 for equations (5.∆b2)–(5.∆b4). Different exit conditions are coded in the

following way: RW1 = red circle, RW2 = black cross, RW3 = blue plus. Note, Ī = 0 for

n > 7 or 8 for fixed α and β (last two rows).

c.3 values for rate constants and concentrations

Given here is an overview on rate constants and concentrations in multi-
site phosphorylation networks from literature for section 3.1.1 in table C.1
and C.2.
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Figure C.4: Mean exit number Ī as measure for robustness for sign vectors δi ∈ {+, −}

with i = 1, 2, 5, 6, 9 and 10 of ∆(3) and higher n with i1 = 1 and i2 = n− 1, see

equations (5.∆b). Here, remaining sign vectors in n = 3, . . . , 15 are shown, missing

four sign vectors of δ(3) are those in figure 8.2 and C.3 for n = 2. Exit conditions are

coded by: RW1 = red circle, RW2 = black cross, RW3 = blue plus. Note again, Ī = 0 for

n > 7 or 8 for fixed α and β (last two rows).
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Figure C.5: Exit reason, see section 8.3.2 for all exit conditions, RW1–RW3. Upper (solid

red, blue, black) horizontal line describes maximum exit step Imax, middle horizontal line

describes mean exit step Ī and lower horizontal line describes minimum exit step Imin

(not seen as it corresponds to zero, i.e. the first step is already invalid). Given are exit

times for ∆(n) for sign vectors δ ∈ {+, −} for missing δ
(2)
2,3,4 and higher n with i1 = 1

and i2 = n− 1 for equations (5.∆b2)–(5.∆b4).
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Table C.1: Examples for rate constants and concentrations from literature for various protein phosphorylation processes.

protein kinase # sites concentration: rate constants: ref.

protein in mol/l kinase in mol/l kM in mol/l k1 in l/(mol s) k2 in 1/s k3 in 1/s nH

IκBα IKK 2 [0.5− 10] · 10−6 0.1 · 10−6 1.7 · 10−6 22.5 · 103 1.25 · 10−3 3.7 · 10−2 [44]

ERK

2

[1− 10] · 10−6 1 · 10−3 22.9 · 10−6 nd nd 7.28 · 10−4

[123]
→ERK2/pY MEK1 [1− 10] · 10−6 1 · 10−3 15.5 · 10−6 nd nd 0.165

→ERK2/pT MEK1 [1− 10] · 10−6 1 · 10−3 15.2 · 10−6 nd nd 0.451

→ERK2/pTpY MEK1 [1− 10] · 10−6 1 · 10−3 10.0 · 10−6 nd nd 6.51

Sic1 CK2α
9

[0− 1.5] · 10−6 [0.1− 1] · 10−6 460 · 10−9 5.85 · 103 2.09 · 10−3 nd
[4]

CK2β [0− 1.5] · 10−6 [0.1− 1] · 10−6 460 · 10−9 9.42 · 104 3.56 · 10−3 nd

Cdc25 Cdk1 > 14 150 · 10−9 100 · 10−9 nd nd nd 11 [106]

Wee1 Cdk1 > 5 [10− 120] · 10−9 200 · 10−9 566 · 10−9 nd nd nd 3.5 [55]

ATP Cdk1 3 10−3 1 · 10−3 35 · 10−6 nd nd 2.2 [113]

Table C.2: Examples for rate constants and concentrations from literature for various protein dephosphorylation processes.

protein phosphatase # sites concentration of rate constants ref.

protein in mol/l phosphatase in mol/l kM in M k1 in l/(mol s) k2 in 1/s k3 in 1/s nH

ERK MKP3
2

[0− 20] · 10−3 200 · 10−9 1.5 · 10−3 nd nd 0.45
[56]

VHR [0− 20] · 10−3 200 · 10−9 2.32 · 10−3 nd nd 6.2

Cdc25 (PP2A) 6− 13 150 · 10−9 nd nd nd 32 [106]

Wee1 (PP2A) (> 5) [10− 120] · 10−9 97 · 10−9 nd nd nd 1.5 [55]
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