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Summary

The effect of climate change on population dynamics is a complex issue. Much research
already been done to understand the effect climate drivers have on populations and species
persistence. Part of this effort has been to develop a wide range of models, each designed to
address particular questions, but also with their own assumptions. These models are built
from vital rate regressions, and it is in these vital rates, that the effect of climate is often
modelled. Much time has been spent trying to understand how different climate variables
such as temperature and precipitation affect population dynamics, but much less time has
been spent investigating, and re-evaluating prevalent assumptions, on when climate affects

vital rates and thus population dynamics.

The aim of this dissertation is to specifically provide new insights in the timing aspect of
climate drivers. To do so, this dissertation has been divided into three different research
chapters. First, | will investigate which time frames are currently being used by researchers to
investigate the effect of climate on plant vital rates, such as survival and flower probability.
Moreover, | will analyse the effect of climate on four different plant species, to see which
timeframes result in the best models when we loosen the assumptions of timeframes
currently being used in the literature. Second, | will use simulations to see what the effects
are on a population level of including different timeframes in our vital rate models. Here | will
consider both the effect of more varied timeframes on population growth rates, but also on
the effect and relative importance of other components that play an important part in
population dynamics, such as climatic autocorrelation. Finally, | will analyse a long-term
dataset of the endangered Dracocephalum austriacum, where | apply the lessons learned in

the first two chapters.

The results of this dissertation shed light on an often-overlooked aspect of climate drivers. It
provides insights and concrete advise on how to improve the selection of appropriate climate
driver timeframes. As such, it will improve future research into the consequences of climate

change on plant populations.



Zusammenfassung

Die Auswirkung des Klimawandels auf die Populationsdynamik ist ein komplexes Thema. Es
wurde bereits viel geforscht, um die Auswirkungen des Klimawandels auf Populationen und
den Fortbestand von Arten zu verstehen. Ein Teil dieser Bemiihungen bestand darin, eine
breite Palette von Modellen zu entwickeln, die jeweils auf bestimmte Fragen ausgerichtet
sind, aber auch ihre eigenen Annahmen haben. Diese Modelle beruhen auf Regressionen der
Vitalitatsraten, und die Auswirkungen des Klimas werden haufig anhand dieser Vitalitatsraten
modelliert. Es wurde viel Zeit darauf verwendet, zu verstehen, wie sich verschiedene
Klimavariablen wie Temperatur und Niederschlag auf die Populationsdynamik auswirken.
Andererseits wurde deutlich weniger Zeit darauf verwendet, die vorherrschenden Annahmen
dariiber zu untersuchen und neu zu bewerten, wann das Klima die Vitalraten und damit auch

die Populationsdynamik beeinflusst.

Ziel dieser Dissertation ist es, insbesondere neue Erkenntnisse iber den zeitlichen Aspekt der
klimatischen Einfliisse zu gewinnen. Um dies zu erreichen, ist diese Arbeit in drei verschiedene
Forschungskapitel unterteilt. Zunachst werde ich untersuchen, welche Zeitrahmen derzeit von
Forschern verwendet werden, um die Auswirkungen des Klimas auf die Vitalitdatsraten von
Pflanzen, wie Uberleben und Bliihwahrscheinlichkeit, zu untersuchen. AuRerdem werde ich
die Auswirkungen des Klimas auf vier verschiedene Pflanzenarten analysieren, um zu sehen,
welche Zeitrahmen die besten Modelle ergeben, wenn wir die Annahmen der derzeit in der
Literatur verwendeten Zeitrahmen lockern. Zweitens werde ich mit Hilfe von Simulationen
untersuchen, welche Auswirkungen es auf Populationsebene hat, wenn wir verschiedene
Zeitrahmen in unsere Modelle fiir die Vitalitatsrate aufnehmen. Dabei werde ich sowohl die
Auswirkungen unterschiedlicher Zeitrahmen auf die Populationswachstumsraten als auch die
Auswirkungen und die relative Bedeutung anderer Komponenten, die eine wichtige Rolle in
der Populationsdynamik spielen, wie z. B. die klimatische Autokorrelation, untersuchen.
AbschlieBend werde ich einen Langzeitdatensatz des gefdahrdeten Dracocephalum austriacum

analysieren und dabei die in den ersten beiden Kapiteln gewonnenen Erkenntnisse anwenden.

Die Ergebnisse dieser Dissertation beleuchten einen oft Gibersehenen Aspekt der Klimatreiber.
Sie bieten Einblicke und konkrete Ratschldge, wie die Auswahl geeigneter Zeitrahmen fir
Klimatreiber verbessert werden kann. Dadurch wird die kiinftige Erforschung der

Auswirkungen des Klimawandels auf Pflanzenpopulationen verbessert.






Chapter 1

General Introduction

As ecologists, we seek to understand the spatial and temporal variation we observe in the
species around us (Andrewartha & Birch, 1954; Sutherland et al., 2013). A large part of ecology
is explaining population dynamics. Efforts have been made to explain the distribution (e.g.,
Kelly & Goulden, 2008), the temporal and spatial dynamics (e.g., Diez, Giladi, Warren, &
Pulliam, 2014; Fréville et al., 2004) of populations within species (Compagnoni, Pardini, &
Knight, 2021; Dostalek & Miinzbergovd, 2013), and even across species (Adler, Leiker, &
Levine, 2009; Seether et al., 2003). These topics are becoming more and more relevant.
Understanding how climate affects these different aspects of population dynamics is a long-
standing question (Sutherland et al., 2013). It has become clear that climate can play a large
role in determining a population’s fate (Urban, 2015). Moreover, climate change is causing,
and will cause, previously unseen weather anomalies (IPCC, 2014), as well as changing
historical weather correlations (Di Cecco & Gouhier, 2018). Therefore, researchers can no
longer depend on historical correlations between climate drivers and population dynamics,

unless it is the climate driver that is actually influencing the population dynamics.

Modelling population dynamics

Over the years, structured population projection models have emerged as a powerful tool
to investigate the effects of climate on populations. However, different types of models have
different strengths and assumptions, and researchers must carefully consider these when
selecting an appropriate model for their study system.

One of the earliest types of population models, non-structured models, assume that all
individuals within a population experience the same birth and death rates. While these non-
structured models can be easy to parameterize and have been used to address questions
regarding, for example, pest management (Liu, Zhang, & Chen, 2005), the assumption that all
individuals are identical can often be un-realistic.

Age-based models, such as Leslie matrices (Leslie, 1945), offer a more realistic
representation of individual variation within a population. These age structured Matrix

Population Models (MPMs) assume that vital rates such as survival and reproduction are
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dependent on an individual’s age. Moreover, as the name suggests, Leslie matrices summarize
age specific vital rates (such as survival and reproduction) in a matrix. This enables research
from using well established mathematical theory to perform inference on these models,
including population growth rate and life history characteristics. Examples of Leslie matrices
in the literature have been used to address conservation (Li et al., 2022) and evolutionary
questions (Charlesworth, 1994). Although Leslie matrices incorporate more variation within a
population compared to the non-structured population models, an age-based structure is not
necessarily the defining intrinsic characteristic that correlates best with vital rates.
Researchers realised early on that plant demography often depends ontogeny or size,
rather than age (e.g., Harper, 1967; Werner, 1975), and developed stage-structured matrix
models (Keyfitz, 1964; L.P. Lefkovitch, 1965). Stage-structured MPMs classify individuals into
discrete stages, such as size classes (e.g., Osunkoya, Perrett, Fernando, Clark, & Raghu, 2013)
or reproductive state (e.g., Tremblay et al., 2009). This allows researchers to determine which
characteristics best correlate with different vital rates. Moreover, the use of stage also allows
stasis (where an individual remains in the same stage) and regression (where an individual
transition into a stage against the normal direction of development) to occur within the
modelled life cycle. The increased flexibility in stage selection and lifecycle structure,
combined with the ease of analysis thanks to the matrix formulation of these models (Caswell,
2001), have made them a popular tool for analysing population dynamics. The open-access
databases COMPADRE (Salguero-Gomez et al., 2015) and COMADRE (Salguero-Gémez et al.,
2016), which contain thousands of matrices from hundreds of population studies in both

plants and animals, highlight the widespread use of MPMs.

Despite their popularity, the discrete classifications of individuals forced by MPMs can be
challenging. In some cases, these classifications can be clear, for example when using
developmental stages such as seed, non-reproductive plant and reproductive plant. However,
challenges can arise in cases where continuous traits, such as body mass, are the primary
drivers of vital rates. Even in seemingly easy to divide lifecycles, researchers have sometimes
been forced to create stages like “young” and “mature” reproductive adults (Marrero-Gémez,

Oostermeijer, Carqué-Alamo, & Bafiares-Baudet, 2007).

To address this limitation, integral projection models (IPMs) were developed (Easterling,

Ellner, & Dixon, 2000). IPMs allow researchers to classify individuals based on continuous traits
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such as body weight (Simmonds & Coulson, 2015), volume (Ferrer-Cervantes et al., 2012) or
length (Wallace, Leslie, & Coulson, 2013). Although the first IPMs developed consisted of a
model with only a single continuous stage, IPMs can accommodate complex structures, such
as discrete stages (Dahlgren, Ehrl, Dahlgren, & Ehrl, 2011), or an age-by-size structure (Childs,
Rees, Rose, Grubb, & Ellner, 2003). Although these models are much more complicated to
program than the other models discussed here, the development of excellent code guides
(Merow et al.,, 2014) and R (R Core Team, 2021) packages (Levin et al., 2021; Metcalf,
McMahon, Salguero-Gémez, & Jongejans, 2013) have made them accessible for ecologists.
Moreover, because IPMs are implemented as large (>100 cells) matrices (Ellner, Childs, &
Rees, 2016), many of the analyses developed for MPMs can also be performed on IPMs. All of
these advantages have led to an increasing popularity of IPMs (Levin et al., 2022). However,
IPMs too, make several assumptions. For examples, most IPMs assume that there is no
environmental or heterogeneity or individual stochasticity (but see e.g., Snyder & Ellner,

2016).

Individual-based models (IBMs) explicitly model the behaviour of individuals within a
population. As such, IBMs use equations and vital rates for individuals, rather than population
level probabilities, regardless of stage or state dependence. This allows researchers to include
different environmental values at the individual level, such as soil conditions, microclimatic
variables, or light levels. As a result, IBMs allowing for a more flexible representation of the
dynamics of a population. For example, IBMs allow for easily simulating demographic
stochasticity (e.g. Compagnoni, Pardini, and Knight 2021), or asymmetric competition (Pacala
et al., 1996). Thus, by incorporating individual-level behaviour into models, IBMs can provide
insights into the mechanisms driving population dynamics and help inform management and

conservation strategies.

There are several other models that | could discuss, some of which loosen the assumptions
discussed above (e.g., Plard, Turek, Griebler, & Schaub, 2019; Schaub & Abadi, 2011).
However, these models too, make assumptions and have certain draw backs. In the end, each
population model type has its advantages, challenges, and assumptions. It is the task of
researchers to carefully select the appropriate model for their study system and question(s).

The strength of all population models lies in acknowledging the assumptions each make, so
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we can utilize their strengths. New models continue to emerge as researchers strive to better

understand the complexities of population dynamics.

Understanding the effect of climate on population dynamics

Population models are essential tools for ecologists to understand and analyse population
dynamics. However, the accuracy of these models depends on the accuracy of their underlying
vital rate models. Vital rate models should reflect the data closely and incorporate appropriate
coefficients and structure to answer researchers' questions accurately. Inaccurate models can
lead to misleading results, impacting conservation and management strategies. In the next
paragraphs | will introduce several challenges in creating accurate, climate sensitive vital rate
models. These vital rate models are crucial in our efforts to understand how climate change
will affect population dynamics.

Ecologists use population models to analyse and understand population dynamics.
However, these tools are only useful in that they help us answer important ecological
questions. Moreover, the accuracy of these population models is limited by the accuracy of
their underlying vital rate models. Therefore, it is crucial that vital rate models are built to
reflect the data as closely as possible, as well as incorporate the right coefficients and
structure that is needed to address the questions being asked by researchers. In this
dissertation | will focus on one topic: The effect of climate on plant population dynamics.

Identifying the right climate driver is crucial for ecologists because climate fluctuations can
affect vital rates such as survival and reproduction. These fluctuations can lead to transitions
where populations have more surviving individuals or higher reproduction rates, but also to
transitions where vital rates are below average. This will lead to different annual population
growth rates (A). Inter-annual variance in population growth rate has been shown to result in
a long-term population growth rate that is lower than the average (Tuljapurkar, 1990, but see,
e.g., Koons, Pavard, Baudisch, & Jessica E. Metcalf, 2009). Investigating the effect of climate
on population dynamics is therefore an increasingly salient question, with climate change no
longer a problem for the future, but already clearly present in our everyday life (IPCC, 2014).

There are two general approaches to investigating the effect of climate on population
dynamics. The first is to correlate population-level inferences like annual population growth
rate to selected climate drivers. This relatively straightforward analysis was common in earlier

studies (e.g., Knape & de Valpine, 2011; Picé, De Kroon, & Retana, 2002) but can be limited by
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low sample sizes. Moreover, this approach can obscure opposing effects from lower-level vital
rates. In and of itself, this is not necessarily a disadvantage when the aim is to predict or
forecast rather than to understand (Tredennick, Hooker, Ellner, & Adler, 2021). However,
correlations between a population's growth rate and climate may become less accurate under
climate change as previously unobserved climate values and changes in observed climatic

autocorrelation arise under climate change (Di Cecco & Gouhier, 2018; IPCC, 2014).

Correlating climate drivers with vital rates

The second approach that is becoming the norm, is to analyse correlations at the vital rate
scale. This approach enables the detection of opposing climate effects across vital rates and
the use of individual observations as data points. It more accurately represents the level at
which climate influences populations. However, selecting the best climate driver for vital rate
models is a significant challenge. Pinpointing the exact time frame in which a climate variable
best predicts a vital rate requires a significant amount of data (Tenhumberg, Crone, Ramula,
& Tyre, 2018; van de Pol et al., 2016), and researchers have therefore historically made a priori
selections of climate drivers due to computational and data limitations.

In the literature, climate driver and climate variable can often be used interchangeably,
however in this dissertation, | will be using them as two distinct definitions. Climate variables
are the different aspects of weather that are measured or calculated, such as temperature or
precipitation. Climate drivers on the other hand, are a combination of climate variables and a
specific time frame, e.g., the total precipitation from June to August.

The biggest challenge is in the component that distinguishes climate driver from climate
variable. Being able to pinpoint the exact time frame in which a climate variable best predicts
a vital rate requires significant amount of data, anywhere from 10 years for strong climate
signals (R? = 0.4-0.8) to 47 years for weaker climate signals (R? = 0.2) (van de Pol et al., 2016).
In comparison, the median study duration for plant demography is five years (Salguero-Gémez
et al.,, 2015). Because of this, and because of computational challenges, historically,
researchers have been forced to make a priori selection of climate drivers.

Although | will address this topic in more detail in the next chapter, this practice of selecting
the most recent growing season climate a priori has become a prevalent routine among
population ecologist, despite studies that point to alternative time frames (Dalgleish, Koons,

Hooten, Moffet, & Adler, 2011; Fox, Ribeiro, Brown, Masters, & Clarke, 1999; Hacket-Pain et
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al., 2018; Inouye & McGuire, 1991). Furthermore, several new model selection methods have
been developed (Gasparrini, Scheipl, Armstrong, & Kenward, 2017; Teller, Adler, Edwards,
Hooker, & Ellner, 2016; Tenhumberg et al., 2018) that can assist in the selection of the best
climate drivers. These methods can reduce the number of assumptions made in the climate

driver timing.

Aims and scope of thesis

In this dissertation, | aim to challenge several assumptions on climate driver timing at the
vital rate and population levels. This research will contribute to a better understanding of how
to model the effect of climate on population dynamics and will evaluate and refine existing
methods for selecting climate drivers. By re-evaluating assumptions and applying new tools
to our analyses, we can make progress in population ecology and contribute to our
understanding of the effects of climate change on natural systems. | will also provide a case
study of an herbaceous perennial with a long-term dataset to show how such analysis can be

done.

Outline of research chapters

In this dissertation, | aim to investigate the effect of climate driver timing on different levels
(Fig. 1). First, in chapter 2, | investigate the timeframes that link climate to vital rate
regressions (Fig. 1). The aim is to evaluate more concretely what timeframes are commonly
used in recent literature. Moreover, | use one of the recently developed model selection
methods to select the best timeframes for several plant species, stepping away from many of
the assumptions made in the literature about the best timeframe. Next, in chapter 3 | analyse
the effect of including more varied climate driver timing in vital rate regressions on population
dynamics (Fig.1). | use MPM simulations to investigate the effect of including more varied
timeframes, as suggested by the results of Chapter 2. These simulations include MPMs for a
wide range of life histories, as well as many other components that are known to influence
population dynamics, such as vital rate correlations and climate autocorrelation. Finally, in
chapter 4, | incorporate the conclusions of chapter 2 and 3 into the population analysis of
Dracocephalum austriacum. | investigate the effect of climate and its interaction with several
(a)biotic variables on both the population dynamics and forecasts of several D. austriacum

populations in the Czech Republic.
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| Dracocephalum austriacum population dynamics

Population
Dynamics

Climate Vital rates

Effect of climate
driver timing

Right
timeframe

2

Doesit
matter?

Figure 1. This dissertation addresses the complexity of climate driver timing on three different levels. First, in Chapter 2, |
investigate the timeframe of climate drivers. Here | focus on the effect of climate drivers on vital rates. Next, in Chapter 3, |
focus on the effect of different time frames in the vital rates might have at a population level. Finally, Chapter 4 combines
the conclusions of the previous chapters into a case study of Dracocephalum austriacum.
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Abstract

Understanding the effects of climate on the vital rates (e.g.. survival, development,
reproduction) and dynamics of natural populations is a long-standing quest in ecol-
opy, with ever-increasing relevance in the face of climate change. However, linking
climate drivers to demographic processes requires identifying the appropriate time
windows during which climate influences vital rates. Researchers often do not have
access to the long-term data required to test a large number of windows, and are thus
forced to make a priori choices. In this study, we first synthesize the literature to as-
sess current a priori choices employed in studies performed on 104 plant species that
link climate drivers with demographic responses. Second, we use a sliding-window
approach to investigate which combination of climate drivers and temporal window
have the best predictive ability for vital rates of four perennial plant species that each
have over a decade of demographic data (Helianthella quinguenervis, Frasera speciosa,
Cylindriopuntio imbncata, and Cryptantha flava). Our literature review shows that most
studies consider time windows in only the year preceding the measurement of the
vital rate(s) of interest, and focus on annual or growing season temporal scales, In
contrast, our sliding-window analysis shows that in only four out of 13 vital rates the
selected climate drivers have time windows that align with, or are similar to, the grow-
ing season, For many vital rates, the best window lagzed more than 1 year and up to
4 years before the measurement of the vital rate. Our results demonstrate that for
the vital rates of these four species, climate drivers that are lagged or outside of the
growing season are the norm. Our study suggests that considering climatic predictors

Thiis is an open access article under the tarms of the Creative Cammons Attribution License, which permits use, distributlion and reprodoction in any medium,

provided the original work is properly cited.

© 2021 The Authors, Global Change Biology published by John Wiley & Sons Lid
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1 | INTRODUCTION

Understanding the effects of climate on population dynamics is a
central, long-standing guest in ecology (Andrewartha & Birch, 1954;
Sutherland et al., 2013). This topic is increasingly salient because
climate change is expected to alter dramatically population dy=
namics of many species, which is key for predicting local extinction
risk and species’ range shifts (Bellard et al., 2012; Kelly & Goulden,
2008; Urban, 2015). In the last decades, ecologists have been work-
ing toward understanding (Harper & White, 1971; Hindle et al.,
2019; Sarukhan, 1974) and, more recently, forecasting the effects of
climate on population dynamics (ller et al., 201%; Urban et al., 2014,
Models that link climate to bislogical processes such as population
dynamics (Merow et al, 2044; Pagel & Schurr, 2012} have higher
predictive ability in novel climates than those based on species oc-
cupancy, such as species distribution models [Zurell et al,, 2016}
However, one challenge in linking climate drivers to demographic
processes is to identify the appropriate time window during which
climate influences demography, as well as the specific dimatic vari-
able that best predicts vital rates [e.g., temperature, precipitation,
etc). This task is challenging because environmental drivers are
often correlated, researchers often do not know the most relevant
time window nor environmental variable for plant physiclogical re-
sponses Lo climate, and researchers typically do not have access lo
long-term data to analyze different temporal windows (Salguero-
Gomez et al., 2015).

Investigators often link climate drivers to population dynam-
ics based an pre-existing knowledge of their focal species (van de
Pal et al., 2014). The most common approach for plant species is lo
consider climate within the growing season of the vear preceding
the vital rate(s) (Le., survival, development. reproduction; e.g., Chu
et al, 2014; Clark et al., 2011). While these choices are supported
by strong a priori expectations (e.g., Menges & Quintana-Ascencio,
2004). some evidence suggests at least two alternative time win-
dowes that might provide better predictive ability, First, several stud-
ies show that climate conditions during the dormant season can have
a substantial effect on vital rates (Fox et al., 1999, Inouwye & MoGuire,
1991; Kreyling, 2010, For example, temperature and precipitation
during the dormant season influence snowpack, which protects
plants from frost damage through insulation (Groffman et al., 2001}
A decrease in snowpack has been shown to decrease flower pro-
ductian, mast likely through frost damage (Boggs & Inouye, 2012;
Inouye & McGuire, 1991). Second, some researchers have found ev-
idence of lagged effects, in which vital rates are affected by climate

that fall outside of the most recent growing season will improve our understanding of

how climate affects population dynamics.

carryover effects, environmental driver, lagged effects. plant demography, precipitation,
sliding window. temperature

mare than 1 year prior to the year in which vital rates are measured
(Dalgleish et al,, 2011; Hacket-Pain et al., 2018; Tenhumberg et al,,
2018). For example, decreased snowfall can cause a shortage of
soil water later in the season, depleting an individual's stored re-
sources and thus decreasing growth and survival in the following
vear {Dalgleish et al., 2011). These studies highlight that the most
appropriate time window of climate ta predict vital rates might not
be during the growing season or the current year.

In the literature, authors also tend to select specific climate vari-
ables, such as temperature and precipitation, g priori, as opposed Lo
using a maodel selection approach. Authors generally select the cli-
mate predictor according to the main limiting factor of the system:
for example, precipitation in a warm desert [Huxman et al., 2004;
Meoy-Melr, 1973) However, testing alternative climate varlables
is justified when these wariables could also affect the limiting re-
sources within a system, For example, in warm deserts, tempera-
ture can deplete soil maoisture (Sherry et al., 2008), and therefore
may be just as likely to predict vital rates as precipitation. Moreover,
different climate variables could change idiosyncratically during the
upcoming century (|PCC, 2014), disrupting historical correlations be-
tween climate variables. The choice of climate variable could thus
atfect the accuracy of future predictions.

Recently, new statistical techniques have emerged that facilitate
selecting a specific climale variable and time window(s) during which
this climate variable has a high predictive ability (Ogle =t al., 2015;
van de Pol & Cockburn, 2011: Teller et al., 2014). Among these, the
sliding-window approach (e.g., Brommer et al., 2008; Husby et al.,
2010; van de Pal et al, 2014) campares the predictive ability of
maodels whaose climate predictor is represented by different time
windows (Figure 1), If we subdivide a year into months, then the
"time window" is defined as a time period of consecutive month(s).
Im this scenario, predictive time windows comprise all possible com-
binations of opening (i.e., beginning) and closing {i.e.. end) months
during the year. The climatic predictor is then computed by taking an
aggregate measure of the monthly climatic values within each win-
dow. Although the sliding-window approach holds much promise in
increasing predictive ability when linking climatic drivers to dema-
graphic processes, it requires large amounts of data, Using simulated
datasets, van de Pol et al. (2014) showed that a sample size of 10,
referred to either years, sites, ar both, was enough to detect strong
climate signals reliably (R® = 0.4 and 0.8); a zample size of 47 years
detected weak climate signals [R* = 0.2). These data requirements
present a challenge, as the median study duration for plant demog-
raphy research is 5 years [Salguero-Gomez et al., 2015),
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FIGURE 1 Graphical representation of the sliding-window approach, showing time windews in arange. In this article, the sliding-
window approach is applied for each of the seven climate variables {three temperature variables, precipitation, snowfall, snow depth, and
Standardized Precipitation-Evapotranspiration Index; SPEI). For each climate variable, madels are run including the mean climate variable
anomaly in all possible time windows within a certain range {in this example, 2 years). Using monthly data, these time windows consist of

all possible start and end months. In this example, this means that for model 1 the mean monthly temperature anomaly is calculated in the
time window July 2002. The time window for model 2 is July and June 2002, the time window used for model 3 is July, June and May 2002,
ete. until model 25 where the time window used are the full 2 years. The time window for model 26 is June 2002, and for model 27 June
and May, etc., until 300 different time windows are created for temperature over the 2-year timeframe

Here we will address twoe questions, First, we review recent liter-
ature that links climate drivers to plant vital rates to evaluate which
time windows are used to define climate drivers in plant demographic
studies. Second, we apply a sliding-window analysis to long-term
datasets of four temperate perennial plant species [Helianthella quin-
queneryis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha
flava). We focus on several climate variables (temperature, precipi-
tation, smow depth, and a drought index) and ask, for each species:
when selecting one climate driver. what is the best time window for
predicting plant vital rate responses to climate? We predicted that
vital rates will depend mostly on the climate during the respective
growing seasons of these plants (Angert et al., 2007; Kérner, 2003).
However, by explicitly testing for the time window with the best
predictive ability, we evaluate how strong the alternative cases are.
Our analyses aim to clarify whether, and how aften, the dormant
season (Hacket-Pain et al., 2018; Kruuk et al, 2015; Sherry et al.,
2008; Thampson & Ollason, 2001) and lagged effects (Fox et al.,
1999 Harsch et al,, 2014; Kreyling, 2010} play a role in the effects of

climate on plant demographic processes.

2 | METHODS

21 | Literature review

To create a comprehensive overview of what time windows are
used to define climate drivers, we conducted a literature review.
We investigated two aspects of time windows: [i) the relative time
windowls) within the year that are used (annual, growing season,

and/er dormant season] and (i) how far remaoved the time windows
are from the census date. We used studies published between 1997
and 2017 that contain structured population projection madels (gi-
ther matrix population models [Caswell, 2301] or integral projec-
tion maodels [Easterling et al., 2000]) and that linked macro-climatic
drivers to plant vital rates, We identified these studies performing a
search on Web of Science using the same Boolean expression em-
ployed by Compagnoni et al. (2020, Appendix 51),

Far each study (n = 76 studies). we identified whether the time
window examined for climate driver(s) was within the growing sea-
son, dormant season, and/or whether it was an annual driver (i,
climate aggregated owver a 12-month period). If investigators con=-
sidered multiple drivers acrass different periads, the study was
assigned to all applicable time windows. For example, a study con-
sidering the effect of annual and growing season precipitation was
assigned to both the annual and growing season time window. As
a single study could consider multiple periods, we used Cochran's
O tests implemented through the RVAideMemoire package (Herve,
2020) in R R Core Team, 2018) to test whether certain time win-
dews were considered mare often than others [annual, growing
season, and dormant season). When Cochran's G test identified
significant differences in the selection of periads, McNemar's xz
tests (RVAIdeMemoire package; Herve, 2020} were used for fur-
ther pairwise comparisons among the three time windows. Second,
we identified the length of the timeframe aver which climate was
considered before each demographic census to quantify how many
studies considered lagged time windows [i.e., ocourring more tham
12 months prior to the census month). For each study, we identitied
the census date of the vital rates, whether the climate driveris) were
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temperature-related [mean, minimum, etc.) or precipitation-related
{including precipitation, snowfall, soil moisture, etc), and the date
of the time windowis) considered for the dlimate driver relative to
the census date, We chose temperature and precipitation because
maost studies investigated at least one climate driver that could be
classified as one of these two categories. When a study tested both
temperature and precipitation, we scored both of these as pres-
ent for the study. We included the presence of a climate driver if it
was considered by the author, and regardless of significance of the
results, the mode| types used, and whether it was analyzed for its
effect on population growth rate of enly one vital rate. We tested
whether temperature and precipitation were considered egually
aften as possible climate drivers across biomes, As temperature and
precipitation could both be considered in the same study, we again
used McMNemar's ;! tests.

2.2 | Demographic modeling

2,21 | Study species and study sites

Tao identify which climate varizbles and time windows best predict
plant vital rates, we applied the sliding-window analysls to long-term
datasets. We identified four perennial plant species datasets for our
demographic modeling that had over a decade of demographic data.
Our selected species come from biomes whose growing season is
clearly defined by an abiotic limitation: temperature for montane
habitats (Bryson, 1974) and precipitation for arid habitats (Huxman
et al., 2004; Moy-Meir, ‘19?3?.

Montane species

We used data collected in the West Elk Range of the Colorado
Rocky Mountains, USA, on two herbaceous montane plant spe-
cies, Helianthella quingueneryis (Hoaok.) A. Gray and Frasera speciosa
Douglas ex Griseb. Helianthella quinguenervis (Asteraceas), the aspen
sunflower, is a long-lived iteroparous perennial {Inouye & Taylor,
1%79] far which three populations were censused across its elevation
range for up to 15 years {ller et al., 2019). In this study, we used data
from 1998 to 2012 for the “mid” population (38°57.5'N, 106°59.3'W,
2886 ma.s L), 2005 to 2012 for the "high" population (38°58.412"N,
1067538 690"W, 3407 m a.s.l), and 1999 to 2012 for the “low" popu-
lation (38°51.774'N; 107°09.556"W, 2703 m a.sl). Frasera speciosa
(Gentianaceae), the monument plant or green gentian, is a long-lived
semelparous perennial (Inouye, 19868} whose population was cen-
sused in an alpine meadow at 3750 m, near Cumberland Pass (Che-
Castaldo & Inouye, 2011). This population was censused for 47 years
(1973-2019).

Populations of both H. quinguenervis and F. specioss were cen-
sused annually in Juby, which i in the middle of the growing season
{roughly June=August, ller et al., 201%). Each census measured sur-
wival, size, reproduction, and the number of reproductive structures
of each plant. Size was measured as the number of rosettes for H.
gquinguenervis and as the number of leaves im the basal rosette for F.

speciosa. The reproductive measurements of H. guinguenervis and F.
speciosg are the number of flowering stalks and the number of flow-
ers, respectively. Climate data for the three H. guinquenervis popu-
lations were estimated using PRISM (PRISM Climate Group, Oregon
State University, n.d.) because separate weather stations were not
available for each population (Figure 51.1), Climate data for the sin-
gle population of F. speciess come from the closest NOAA [Mational
Oceanic and Atmaospheric Administration, USA] weather station that
has data going back ta the 1970= (18 km away from the population,
Figure 51.2), retrieved using the R package rmoaa (Chamberlain,
2019).

Arid speties
‘We used data from a caclus, Cylindriopuntia imbricate (Haw.) DC.,
and an herbaceous perennial, Cryptantha flawva L. {&. Melson) Payson.
For C. imbricata {Cactaceae), the tree chaolla cactus, we used 15 years
of data (2004-2018) from a population located at the Sevilleta
Mational Wildlife Refuge, a Long-Term Ecalogical Research site (SEV-
LTER] in central Mew Mexico, USA (34°20'5.3N, 106°37'53.2"W,
1660 m asl: see [Miller et al., 2009] and [Ohm & Miller, 2014]
for more details). Cryptantha flava (Boraginaceael, Brenda's yellow
cryptantha, is a short-lived itercparous perennial. The data used in
this study come from a population near Redfleet State Park, Utah,
USA (40°35'42 43 N, 109°25'55.92"W, 1790 m a.s.l.). Demographic
manitaring was set up in several plots, distributed among six blocks
{see Lucas et al., 2008 for details). The dataset contains 16 years of
demographic information (1997-2012; Salguero-Gémer et al., 2012).
Annual demographic censuses were conducted in May for both
species, coinciding with the beginning of the growing season faor C.
imbricata (May-September; Miller et al,, 2009 and C. flava (April-
July:; Salguerc-Gamez et al., 2012). Each census measured survival,
size changes (growth/shrinkage), probability of reproduction, and
number of reproductive structures of each individual, For C. imbri-
cata, size measures consisted of plant height, maximum width, and
the width perpendicular to the maximum width. Cryptantha flava's
size was measured as the number of rosettes. Reproductive struc-
tures quantified during the annual censuses were flower buds and
flowering rosettes for C. imbricata and C. flava, respectively. Climate
data for C. imbricate were obtained from the nearest climate station
of the SEV-LTER (=0.1 km, Figure 51.3, Moore, 2014), Data for C.
flava came from the nearest NOAA station (16.6 km, Figure 51.4).

222 | Analyses

2.2.1 | Baseline madels

We modeled vital rates based on generalized linear mixed models
that followed previous studies published by the data ariginators.
Because of data limitations, and for consistency with previous lit-
erature, all vital rate models are density-independent. Testing for
density dependence would require data an the location of each indi-
vidual and possibly the location of other species, which are not avail-
able for our species. Baseline models did not include climate drivers,
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were size-dependent, and included year as a random intercept, We
used alog-transformed size predictor in all models to improve model
fit. For C. imbricata, size was calculated as the log-transformed vol=
wme (em?] of an individual, caleulated as a cone using plant height
and average width. For H. quinguenerviz in every baseline model,
population was added az a fiwed effect (ler et al,, 2019) and block
was used as a fixed effect for C. flave (Salguero-Gomez et al., 2012}
Plot identity was added to every baseline madel for C. imbricata as a
random effect (Elderd & Miller, 2014}

Swrvival and changes in size were modeled as dependent om
the size in the previous year (Table 53.1). Because F. speciosa is se-
melparous, survival for this species was modeled conditional on not
flowering. Data for C. flava suggested senescence, with decreased
survival al larger sizes; therefore, the survival baseline for this vital
rate also included & quadratic response to size (Table $3.1) as we
assume size correlates with age. For H. quinguenervis, C. imbricata,
and C. flava, flowering probability and number of reproductive struc-
tures were modeled as a function of size during the same census
(Table 53.1). For F. speciosa, the flowering probability and flower
numbers (in year t + 1) were modeled as dependent on size of the
previous census (vear £ In this species, size was not measured at
the time of flowering (except for flowering stalk height and number
of flawers).

Survival and flowering probability were modeled as Bernoulli re-
gressions, Because the size measure of C. imbricata i continuoius,
the size change model for this species was modeled as a Gaussian
regression. The size change madel of the other species, which have
count data as size variables, was modeled as Poisson regressions.
Flower numbers also consisted of count data and thus were also
modeled as Poisson regresslons, See Table 53.1 for an averview of
the full set of baseline models.

2.2.2 | Climate variables

We tested a total of seven climate variables for F. speciosa and five
climate variables for the other species, based on monthly tempera-
ture or monthly precipitation anomalies. Previous studies have
shown that temperature, precipitation, snow cover, and drought
indices (which integrate temperature and precipitation) can be key
drivers of population dynamics ez, Dalgleish et al,, 2011; Doak &
Morris, 2010; Salguero-Gomez et al., 2012; Siepielski et al., 2017;
Tenhumberg et al., 2018). We wsed climate anomalies rather than
absolute values because plants are expected to be adapted to their
mean climate (Peterson et al., 2018), and should therefore respond to
clirmatic anomalies, We considered both average and extreme tem-
perature anomalies because climale extremes have also been shown
to influence vital rates (Easterling, Meehl, et al., 2000). Specifically,
mean minimum and mean maximum temperature should correlate
with limitations to wegetation processes. For example, the mean
minimum temperature should influence nighttime respiration costs
(Criddle et al, 1997, Maier et al., 19%8; Wright et al, 2004) while
the mean maximum temperature should influence photorespiration
costs (Hagemann & Bauwe, 201&). The monthly climate variables in-
cluded total precipitation (), mean average daily temperature (T_ ),

Global Change Bislogy

mean maximurn daily temperature (T 1, and mean minimum

daily temperature (T o). We used precipitation data, and the
latitude of our study populations, to calculate a drought index, the
Standardized Precipitation-Evapotranspiration Index (SPEI), on a
scale of 12 months, using the SPEI R package (Begueria & Vicente-
Servano, 2017). Finally, for F. speciosa, we also included monthhy
snowfall [5,,,) and mean snow depth (5, ]. 5, and Sd“pm were not
available for the separate populations of the other montane species,
H. guinguenervis. We used P, SPEL 5. 5., . and T to quantify the
cumulative effect of water availability and temperature on vegeta-
tion precesses. We used 5, and 5 to account for the physical
and T,

effects of snow. Finally, we used T_ -

min_mean
the effect of climatic extremes in driving demographic rates,

to quantify

We calculated climate anomalies as a z-score, by subtracting the
monthly climate mean from each annual monthly value, and divid-
ing by the standard deviation of the manthly climate, We calculated
the means and standard deviations of monthly climate across a min-
imum period of 30 yvears (World Meteorological Organization, 2017,
However, for C. imbricata, we could only calculate climate anomalies
for the 20-year period (1998-2018) during which climate data were
available.

We computed the climatic predictors of our peneralized linear
models using the climate observed from the start of the annual cen-
sus backwards (e.g., if survival was measured in mid-July 2018, we
considered the monthly climate anomalies starting in July 2018; see
Figure 1). Our demographic datasels consist of censuses made on
the same month each year. As a result, the start and end months of
the range tested for climate signals were the same across years for
each species.

Our time range started from the census where the response
variable was measured [e.g., survival or flower probability). Thus,
for all vital rates and species except for F. speciosa, gur range in-
cludes the maonth during which the response variable was mea-
sured in year £ + 1, and the preceding 36 months. For F. speciosa,
we considered a more extended range: & years Tor survival and
size changes, and 4 yvears for fertility. While this increased range
increased the possibility of spurious correlations, previous re-
search indicates that this species commits to flowering 4 vears
befare flowering [Incuye, unpublished), and increases the number
of leaves in the rosette every 4 years on average (Inouye, 1986),
suggesting it may be particularly slow growing and prone to lagged
climate effects.

2.2.3 | Sliding-window analysis

We identified the climate driver with the best ability to predict
demographic rates using the sliding-window approach {van de Pol
et al., 2014, Figure 1), implemented with the dimwin package (Bailey
& van de Pal, 2014} in R (R Core Team, 2018). This package compares
the predictive ability of models that include climate from all pos-
sible time windows within a specified time frame [range). Because
our data are monthly, possible time windows include windows of
1-month duration, 2-month duration, and all the way up to the full
extent of the range tested. Moreover, all possible starting manths
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were considered for each window duration, In other words, a time
window of 2 menths could start 2 months before and end at the
census dabe, or it could start 7 months before and end 5 months
befare the census manth., Subdividing a range of 3 yvears inta the
constituting 3& months implies testing the predictive ability of 703
time windows of each climate driver for each response variable, The
maonthly climate variables were aggregated within each window by
taking the mean.

The sliding-window analysis included a single linear effect of cli-
mate for each vital rate and species. This resulted in a total of seven
maodels far each vital rate for the montane species, and five models
for each vital rate of the arid species, for which the predictive ability
of all time windows was tested, We selected the best model and
thus best climate driver) using AIC_. We subtracted the AIC_ of the
baseline models (i.e., models not considering climate) fram the Al
of the climate models. The climate driver with the lowest AIC_ was
selected for further analysis. We focus on identifying a single, best
climate variable for each vital rate, Additional climate variables may
also predict vital rates, and owver different timeframes, but our goal
was to assess whether the best climatic predictor accurred withim
a timeframe that is typically considered (e.g., the growing season).
Additionally, adding multiple climatic predictors would amplify the
number of climate windows, increasing the chance of spurious cor-
relations {see section below). Finally, we evaluated the predictive
ability of our selected climate driver models. This was done by com-
paring the AIC_ scores of the selected climate driver models with the
madels using the same climate variable observed during the most

recent growing season.

2.2.4 | Potential for spurious correlations

Due to the high number of windows tested in our analysis, we ax-
aminaed potential spurious cerrelations between the climate driv-
ers and vital rates. There are two ways in which selected models
might reflect a spurious relationship. First, due to the high number
of madels tested, significant climate signals could arise by chance.,
Second, there may be a correlztion between the selected climate
driver and other tims windows and/er climate variables, To address
the first possibility, we used a randomization procedure that rand-
omizes the date of the demographic data {van de Pol et al., 2018}
This randemization removed the observed correlation between re-
sponse variable and climatic drivers. However, this randomization
maintained the original data structure, as well as the structure of
the climate variables. Then, we re-ran the sliding-window analysis
described above, saving the AIC_ of the best model, This model se-
lection was done 2000 times. creating a distribution of the best
AIC, values obtained on each randomized dataset, This distribution
was then used to test whether the AIC, of the best model found in
the sliding-window analysis is due to chance, indicating a spurious
correlation.

To address the second possibility that there is a correlation be-
tween the selected climate driver and other climate drivers, we in-
vestigated the influence of correlation between competing climatic
windows. While high correlations would not decrease the predictive

abilities of the selected climate drivers, they could indicate that the
causal relationship could be found in other time windows and/or
climate variables, We first quantified the autocorrelation between
the selected climate windaow, and all other competing windows, We
then also tested the correlation between the selected climate win-
dowe and the climate windows of all the climate variables that were
not selected.

3 | RESULTS

3.1 | Literature review

Ot of 76 studies (Table 51.1) with 244 different populations of 103
plant species, few considered the possibility of climate effects i
the darmant season. or the possibility of lagged effects, The stud-
ies had a mean duration of 8.04 years (with a range of 1-40 years).
A total of 11 studies had a duration greater than 15 years, and all
studies selected climate drivers a priori, rather than using a model
selection approach such as the sliding window. We found that re-
searchers do not consider different periods (annual, growing, and
dormant season) equally when examining the effects of tempera-
ture {,-._rz = 7294, df = 2, p = D.0248) and precipitation [f = 19.471,
df = 2, p = 0.001) on vital rates {Figure 2). When authors consid-
ered temperature as a possible climate variable, the growing season
was considered significantly more often than the dormant season
(y¥ = 8642, df = 1, p = 0.003). Moreover, a tendency emerged for

climate effects in an annual period to be investigated more often
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Proportion of studies
[ ]
Z

[=]
ha
on

0.00

Temperature  Frecipilalon
Climate wvariable

FIGURE 2 The literature review reveals that 25% or fewer
studies examining temperature and precipitation as climate drivers
explicitly consider climate during the dormant season. Studies that
include temperature and/or precipitation drivers are categorized
by the periods within the yvear over which climate is considered as
a potential driver fannual, dormant season, and growing season).
The black lines indicate studies that explicitly include dormant
season as a possible climate driver
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than in the dormant season 1;2 = 3.375, df = 1, p = 0.046). When
authors investigated precipitation, the annual timeframe was most
commonly considered (Figure 2). Authors considered the annual
periad :xz = 15,625, df = 1, p = 0.001) and the growing season
txz = 5063, df = 1, p = 0.024) significantly more often than the dor-
mant season, Additionally, authors also investigated precipitation

during an annual period more often than during the growing season

iy? = 4.5, df = 1, p = 0.034],

A total of 85% of the examined stisdies (n = &5 out of 74 studies)
considered windows inside the transition year only {Figure 3b shows
Arid studies: all studies can be found in Figures 51.1 and 51.2). Of
the 11 studies including lagged windows, only six considered two
full years prior to the census, Finally, only the publications frem arid
biomes had a strong preference of one type of climate driver over
the other. Studies in arid regions investigated precipitation climate

drivers significantly more often h,z =8091,n=17df =1, p =0.003)

than temperature.

3.2 | Demographic modeling

321 |

Randomizations showed that of the 14 climate signals detected, 13
had a significantly low chance of being spuricus results (p < 0,05;

FIGURE 3 Few studies consider
climate drivers more than 12 months
prior to the census menth. (a) shows the
hypothetical example with written climate
driver descriptions and the appropriate
time windaws in graphical farm. (b)
shows the subset of studies conducted in
arid regions. The time windows that are
considered in studies conducted in two
biomes; arid and temperate coniferous
forest relative to the census of the
response variable. Few studies consider
the potential for lagged effects (climate
drivers more than 12 months prior Lo

the census). Both precipitation and
temperature drivers are included

Potential for spurious correlations

lobal Change Biclogy

clirmate drivers.,

auto-correlations or correlations with other climate variables (e.g.,
Figure 52.4), whereas longer windows have many other nelghboring

windows that are highly correlated, both within the same climate

Figures 59.% and 59.12),

3.2.2 | Sliding-window analysis

We found that in many cases the climate variable most predictive of

(a) rE‘I:iFI'IFlI!': A study with a census in July that considers:
1. Annual precipitation
2. Epring (March—]une) precipitation
3. Mean temperature of June—July in current and previous year

ER —H

1] B 12 ] 24
Manths relative to observation at month 0

(b)

van Klinken and Pichancourt j2015) +——x
Shryeck et al, (2014) 4t d—tug—tf—s f—fi—=
Salguero=-Gomeaz e al. (2012) t——————
Raghu et al. ;2013)
Pravdy of al. (2010) 4= d4—t
Pichancourt and van Klinken {2012) 4=
Miller &t al. {200%) 4+—x
Maschinski et al. {1087)
Mandujana et al, (2007) +=—————————n
Lucas et al, (2008) 4=
Griffith & Lok (2010) d=tt—
Evans et al. {£007) $———x
Dalgleish et al. (2011) HSSSNSH———-
Chu et al. {2016) # - w *
Argya-Cosultchl et al. (2018) 4————
Andrello et al. (2012) d—
Adler, Dalglaish & Ellner2M2) =S¢
o B 12 18 24
Time windows of climate driver

Appendix 56). On the ather hand, the climate drivers selected for
the survival of F. speciosa (p = 0.346%; Figure 56.5) and for the size
changes and flower numbers in C. imbricata (p = 0.217; Figure 54.10
and p = 0.520; Figure 56.12, respectively] did have a chance of being
spurious. We therefore did not present the results for these three

Correlation results showed that shorter windows have fewer

variable and in others [e.g., Figure $9.14). Correlation was more com-
mon between the temperature climate variables (e.g., Figure 5%.1),
between P and SPEl je.g., Figure 59.8), and between snowfall and
depth {e.g.. Figure 59.5). Correlation was less common between P

and SPEIl, and between the temperature and snow variables (but see

demographic rates fell outside of the growing season, and many cli-
matic predictors were lagged (e, their effect occurred farther back
than one transition year; Figure 4). One climate driver had a time

window that resembled the growing seasen: average temperatire

Climate variable

# Precipitation
4 Temperature
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FIGURE 4 The climate drivers that best predict vital rates in Helianthelle guinguenervis, Frasera speciosa, Cylindriopuntia imbricata, and
Cryptantha fiava mosthy fall outside the growing season and before the first year prior to the population census, Far each vital rate and each
species, the time window with the best predictive ability is shown with blue horizontal lines. The best driver is listed on the right side of
the graph. The grid lines indicate census months and the shaded areas show the time range considered in the sliding-window analysis. The

dashed areas indicate the growing seasons for each population

for C. imbricata survival extends 1 month before and after the grow-
ing season (Figure 4), Other windows included only 1 month during
the growing season or fell fully cutside the prowing season [eg., C.
flava survival and F. speciosa changes in size, respectively, Figure 4).
Moreover, lagged windows were comman: out of the 13 non-spuri-
ous time windows, six open and close before the transition year [i.e.,
=1 year before the census in time t), and one window closes in the
transition year, but opens in yvear t - 1 (C. flava flower probability,
Figure 4). We also found windows spanning more than 12 maonths.
We found that elght of the 13 best climate predictors were related
to temperature. Finally, all but one of the selected models with a
time window different fram the growing season had AIC_scores that
were at least 2 units lower than models with time windows in the
recent growing season [(Appendix 55).

Far H. quinguenervis, we found that precipitation [P) from July in
yeart - 1 Uul-,,rﬁ_lj to January in year t - 1 {lanuary, ,} has the best pre-
dictive ability for survival from year £ to year t + 1 {with 59.32 AIC units
lower than the baseline; from now on presented as AAIC, = -52.32;
Figure 4; Table 55.1). P in this time pericd has a positive effect on
survival of H. quinguenenvis (Figure 5). An increase of two standard
deviations {from mean =S50 to mean +30) changed survival probabil-
ity of an average-sized individual from 79.5% to 96.0% (Figure 58.1).
Size changes were best predicted by P from July,; to December,
(AAIC, = -51.33: Figure 4; Table 55.2). P during this time window had
a positive effect on H. quinguenervis (Figure 5). Anincrease of 2-30in
Pincreased the size inyear £+ 1 by 43.8% (for an average-sized indi-
vidual; Figure S8.1). Flower probability was best predicted by mean

maximum temperature (T ) in September, ; [AAIC, = -47.2

mean_max

Figure 4; Table 55.3). A 2-5D increase in T, .., decreased flower
prabability from 85.0% to 1.5% (Figure &; Figure 58.2]. Finally, the
number of flowering stalks was best predicted by P from July, ; to
July,, [AAIC, = -31.64; Figure 4; Table 55.4), which is the full time
range in our analysis, An increase of 2-50 increased the number of
floweering stalks by 70.2% (Figure &; Figure 58.2).

Frasera specioza changes in size were best predicted by P in
September, . to April_, [AAIC. = -9.52; Figure 4; Table $5.4),
whiere an increase of 2-5D decreased sizeint + 1 by 4.1% (Figure 5;
Figure 58.1). Flower probability was best predicted by T . .
from March,_, to May, , [AAIC = -11.49; Figure 4: Table 55.7),
when a 2-5D increase increases flower probability from 0.02% to
0.14% (Figure &: Figure 58.2). Finally, average temperature (T, .} in
August, , best predicted the number of flowers [AAIC_ = -12.9%;
Figure 4; Table 55.8). A 2-50 increase in temperature increased the
number of flowers by 38.0% (Figure &; Figure S8.2). All vital rates of
F. specioza had at least one secondary climate variable whose pre-
dictive ability was close to the best models (i.e., within 2 AIC_ units;
Tmean_rnax' P, and Trrbean_mu

flower numbers, respectively; Table 55.4-5.8).

for size changes, flower probability and

Cur results show that for C. imbricats, survival was best pre-
dicted by T, from April,, to October, (AAIC, = -8.43; Figure 4;
Table 55.9). An increase in temperature of 2-50 during this period
decreased survival probability (Figure 5) from 98.7% o 95.9% for
an average-sized individual (Figure 58.1). There was also a second
climate variable with a AAIC, score that was within 2 units of the
selected survival model (T, Table 55.9). The best predictor for

flower probability was T _from December,_, to May, (AAIC_= -7.88;
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FIGURE 5 The model prediction for suwiml chang&ﬁ in siza
survival and changes in size with the
best climate driver plotted against the o P - P
datapoints for Helianthella guinguenervis = o 1.0 ¥ 80
("mid” population), Frasers speciosa, % = 0.9 £ &0
Cylindriopuntia imbricata, and Cryptantha g g 08 $ a0
flava [Block 1), Climate effect was g2 07 % 20
. . £ a 8
calculated on three levels; mean climate g_ 0.6
anomaly during this time windm.l..r a_=., T 0 1 2 3 4 *= 0 0 1 2 3 4
well as + and - one standard deviation Size (log # rosetes) Size (log # roseties)
climate anomaly. The vertical blue lines
are the mean size of the individuals used _ F
to parameterize the models. Data used i : 75
_— Tt
for the model parameterization are also b e
plotted, In the survival column, the points g ‘w o 50
are the binned proportions of survival, a E 5 25 Climate
with the size of the points proportional to “a o E 0 ar:;n:ﬁlias
the number of observations in each bin. w *= 0 1 2 3 4
The peints in the changes of size column Size (lag # leaves in : = sD
are individual observations basal rosette) o TES?:?
Taug
- 1.004 i
§ 2075
E 8050
E £o.2s
] 0.004
=5 0 & 10 15
Size (log volume)
Tmu:n_mln
0.9 T
o Z H'? E
=) =
Z 506 8
2 05 5
O o 04 & o
0.3 *
0 1 2 3 4 0 1 2 3 4

Sizae {log # rozaltes)

Figure 4; Table 55.11). where flower probability increased from 0.9%
to 5.9% with a 2-5D increase in T:-.g [Figure &; Figure 58.2).

Finally, for C. flava, the best predictor for survival probabil-
ity was Toun min in May; (AAIC, = -12.71; Figure 4; Table 55.13).
Survival decreased from 7%.3% to 63.0% with a 2-50 increase of
Trnean_min I0 this pericd (Figure 5; Figure 58.1). The second best cli-
mate variable for predicting survival tTm“n_mx
Januaryy] also had a low AAIC, score (AAIC, = -12.35). Changes in
size were best predicted by P from Decy_, to April,, (AAIC_ = -14.03;
Figure 4; Table 55.14), Average-sized individuals in vear t were 27.9%
smialler int + 1 when P increased with 2-50 in this period (Figure 5;
Figure 58.1). Flower probability was best predicted by P from
Decemnber, , to February, (AAIC_ = -13.07; Figure 4; Table 55.15). A
2-50 increase in P increased flower probability of an average-sized
individual from 10.5% to 31.3% (Figure &; Figure S8.2) The num-
ber of flowering rosettes was also best predicted by P, but from
December, to April, (AAIC_ = -12.14; Figure 4; Table 55.14), Number
of flowering rosettes increased by 54.3% with a 2-5D increase in
precipitation over this timeframe (Figure &, Figure 58.2].

from September, to

Size (log # rosatlas)

4 | DISCUSSION

Changes in climate are projected to be heterogensous across space
and time (IPCC. 2014). Thus, it is important for ecologists to select
the right climate variables and time windows to understand and
forecast responses of their specific study systems/locations to cur-
rent and future climate (van de Pal et al., 2014), We found that plant
population ecalogists typically only consider in their demographic
maodels the climate during the transition year, over either annual
of growing season time frames, This choice makes the implicit as-
sumplion that climatic effects on vital rates—and thus emergent
population dymamics—are short term. However, our sliding-window
analyses reveal that in the four species Tor which we have long-term
(=10 years) demographic data, lagged windows are the rule rather
than the exception. Mereaver, our analyses demonstrated that the
influence of climate drivers on demcgraphy often occurred outside
of the most-recent growing season. Thus, these results indicate
that lagged climate variables and dormant season climate might

ke important drivers of plant pepulation dynamics. Consequently,
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investigators are justified in considering dormant season and lagged
climate as {a priord) climate predictars,

Our results suggest that lagged climate might commonly medi-
ate the effect of climate on vital rates. The literature provides some
key examples of how a lagged effect of climate could result from
physiological mechanisms. For instance, in Astragaius scaphoides,
Tenhumberg et al, (2018) found a lagged nepative effect of spring
precipitation an survival. This lagged effect was linked to the bian-
nual flowering peaks of this species [Crane & Lesica, 2004) where
a large proportion of individuals flower after a wel spring. This
flowering peak led to depleted non-structural carbohydrate stores
in the following year [Crone et al.. 2009), which negatively influ-
enced survival (Tenhumberg et al., 2018). The prevalence of lagged
effects we report here across our species could result from similar
physiclegical mechanisms. Correlating residuals frem the changes
in size madels from 1 yvear to the next revealed significant negative
relationships for H. guinguenervis and F. speciosa (data not shown),
but not C. flava, This finding suggests that the former two species

Size (log # rosettes)

could be similarly limited by resources after a year of better tham
average growth,

Ancther way in which plant physiology might result in lagged
climate effects is the preformation of leaves and inflorescences.
Belowground bud banks are common among herbaceous plants
(Ott et al., 2019). For instance, in alpine environments, up to
4 years can be required for each leaf and inflorescence ta progress
from initiation to functional and structural maturity (e.g.. Diggle,
1997 Garcia et al., 2011}, This preformation happens in F. specioss
as well 4 years before emergence (Inouyve, 19848). Accordingly, the
climate maost influential to the changes in number of leaves and
flowering probability in F. speciosa occurs 4 years before the cen-
sus [Figure 4). Our second result on flowering probability agrees
with another analysis carried out on this same F. speciosa dataset.
Flowering by F. speciosa is correlated with summer precipitation
4 years prior to inflorescence emergence (Inouye, in prep), Qur
analysis selected mean maximum temperature, rather than precip-
itation ocourring 4 years prier to flowering as the best predictor
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of flowering probability; howsever, precipitation was a close sec-
ond best model (Table $5.7). Temperature was also a significant
predictor of flowering, with a 2-year lag, of Veratrum tenuipeta-
fum (Melanthiaceae] in the same habitats as lower-altitude Frasera
populations {ller & Inouye, 2013).

An alternative hypathesis to explain lagged climate drivers during
the dormant season is their indirect effects. Indirect effects of climate
drivers occur when these influence certain biotic drivers, such as soil
micrabiomes or pollinaters, rather than plant physiclogy, Examples
inchude the reported long, lagged window in which precipitation has
a negative effect on the growth of C. flava. Yu et al, (2019) showed
that under wetter conditions, B. eriopoda, a C, rass, had a competitive
advantage over C. imbricata, Indirect effects can also include inter-
specific (Aschehoug et al., 2014} or intraspecific density dependence
(Drahlgren et al., 2008). Specifically, lagged climate drivers for survival
could point to intraspecific density dependence, but we do not find
such lagged climate drivers for our species. Previous authors who em=
phasized the impartance of dormant season climate also pointed to
indirect biotic effects (Kreyling. 2010; Stahl et al_, 2004). Accordingly,
biotic drivers are known to have large effects on population growth
rates (Marris et al, 2020). Identifying possible indirect effects of di-
mate on vital rates would require additional data on, for examgple, in=
sect populations (Stakl et al., 2008} or the sail community (Bever et al.,
1997 Maherali, 2020}, and is an exciting area for future research.

The mechanisms by which dermant season cimate influences
wvital rates likely depend on the habital. For example, snow cover du-
ration during the dormant season might be important for vital rates
of montane and cold desert species such as C. flava (which reguires
vernalization to flower), whereas physiological activity outside of
the growing season might be important for arid species. In the mon-
tane species F. speciosa, the dormant season was impaortant for size
changes and flower probability. Less precipitation during the win-
ter might be linked to earlier snow melt, a longer growing season,
and mare growth. An earlier snow melt might also correlate with
which led to a higher probability of flowering.
Snow melt timing generally has a substantial effect on the dynamics
af physiology of alpine plant populations (Camphell, 2019; ller et al,,
2019; Wipf et al., 2009). However, it is possible that dormant sea-
son snowfall and snow depth anomalies do not correlate well with
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snow melt timing, or that the ecological effects of snow cover on
vital rates might be nonlinear (e.g., because snow cover insulates the
ground only above the 40 cm threshold: Cline, 1997).

The climate driver that best predicted the flowering of our arid
species, C. imbricata, is most likely linked to the impartance of phys-
iological processes during the dormant season. Both our results and
Crachura and Miller (2020) found that flowering probability was
positively affected by temperature anomalies observed during the
dormant season. Wetter and cooler seasons might allow dormant
seazon photosynthetic activity, as has been documented in ather
species, such as winter annuals (Regehr & Bazzaz, 1976) and conifers
in cceanic climates {Waring & Franklin, 197%).

We hypothesize that the diversity of selected climate wvari-
ables and time windows could explain an earlier finding showing

Gilobal Change Bio

maostly uncorrelated wvital rates in C. imbricats and H. quinquenervis
(Compagnoni et al., 2018). Specifically, our results suggest that vital
rates might fluctuate independently because they respond to a di-
versity of climatic windows, climate drivers, and effect sizes. Testing
this hypothesis would also require ruling out the effect of other fac-
tors producing positive or negative correlations among vital rates,
such as density dependence and individual-level trade-offs between
vital rates,

Despite the computational burden of aur sliding-window analy-
ses, we still make assumptions that could be relaxed by more com-
plex models. First, we assumed that each month within the time
window is equally important. However, generalized additive models
(Teller et al,, 2016} and regularization (Tredennick et al.. 2017} can
estimate the effect sizes, and therefore the relative importance, of
simgle monthly or seasonal climate anomalies. This could be espe-
cially important in the long windows such as the flower numbers
of H. quinguenervis, which includes several growing and dormant
seasons, Second, we focused on selecting anly one climate driver
per vital rate, which allowed us to address the main question of this
article: what are the best climate variables and time windows for our
species, and how do these relate to what is commoen in the literature?
However, other research questions could benefit from selecting
multiple drivers [van de Pal et al., 2016), for example, when maximiz-
ing predictive ability of predicting population trends under climate
change, Finally, we did not consider more camplex relationships be-
tween climate and vital rates, such as nonlinear effects {Ehrlen et al.,
2014), density dependence (Gornish, 2013), climate and size inter-
actions {ller et al., 2019, and interactions between vital rate param-
eters. Including these factors could increase the predictive ability
of vital rate models or even change the climate driver selected, Our
approach is an important first step in assessing the relative impor-
tance of climate conditions that fall cutside of typically considered
time windows in studies of plant demography.

When selecting the best climate driver, closely related time win-
dews, or different climate variables can have similar model support.
Selecting among climate variables, nine of our vital rates had a cli-
mate variable with a much lower AAIC, (at least 2 units) than all other
variables |e.g., Table 55.2), but other vital rates had at least one other
climate variable with AAIC, scores close to the best climate driver
{e.g., Table 55.6). This lack of a clear winner could indicate highly
correlated climate drivers, complex relations betwesn vital rates and
climate mentioned previously or a strong influence of more than one
climate driver {van de Pol et al., 2014). When multiple models have
similar support, investigators can opt to perform madel averaging.
However, the ability of these models to predict future responses to
climate might still be low. Far example, when correlations between
separate climate drivers are high, it may be impossible to establish
causality. This is especially relevant when predicted climatic changes
include novel correlations between climatic drivers (IPCC, 2014},

In this analysis, we have used large-scale, macro-climatic predic-
tors which, however, can differ from the micro-climate experienced
by plants (Scherrer & Karner, 2010). This can be especially important
when investigating plant populations in spatially variable habitats,
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such as montane grasslands (Komer, 2003; Oldfather & Ackerly,
2019). Because it is currently unclear how climatic anomalies cor-
relate at the macro- and micro-scale, employing micro-climatic con=
diticns in a sliding-window analysis could improve cur understanding
of timeframes over which climate affects vital rates.

Cur results motivate several recommendations for researchers
with shorter-term datasets for which the shiding-window method
may not—yet—be feasible, and for those with longerterm datasets.
In short-term datasets, a sliding-window method has a high chance
of not detecting the climate signal, or identifying true signals as spu-
rious through the randomization tests [van de Pol et al,, 2018} We
therefore suggest to first compare the predictive ability of dimatic
predictor bypes over larger and fewer timeframes le.g., "dormant sea-
son temperature”), rather than continuously sliding climatic windows.
According to our findings, these climate predictors should include
both precipitation and temperature during the growing season, the
dormant season, and in previous years. Second, considering natural
histary information (e.g., presence of belowground bud banks, or of
dormant season physiological activity) when selecting climate drivers
can imprave the chance of selecting relevant time periads (includ-
ing lagged time windows), Third, with shorter datasets, researchers
should account for potential overfitting, for example by performing
cross-validation (Wenger & Olden, 2012} or by fitting regularized re-
gression models {Dahlgren, 2010). Finally, for the researchers with
longer-term datasets, we encaurage the use of model selection meth-
ods to select climate drivers. In these cases, it is vital to consider the
life=history information of their speciels) to select a time range that
allows for appropriate lagged effects. This time range should include
climate drivers during the growing and dormant season.
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Abstract

1.

4.

Climate variability will increase with climate change, and thus it is important for
population ecologists to understand its consequences for population dynamics. Four
components are known to mediate the consequences of climate variability: the
magnitude of climate variability, the effect size of climate on vital rates, covariance
between vital rates, and autocorrelation in climate. Recent studies have pointed to a
potential fifth component: vital rates responding to climate in different time frames,
with some responding more immediately and some having lagged responses.

We use simulations to quantify how all five components modify the consequences of
climatic variability on long-term population growth rates across a range of life histories
defined by life expectancy and iteroparity. We use an established method to compose
Matrix Population Models (MPM) for 147 life histories.

Our simulations show that including different timeframes for vital rates responses to
climate can either reduce or amplify the negative influence of climate variability on
long-term population growth rates. The negative effect of different timeframes for
vital rates responses on population growth is amplified when climatic autocorrelations
are negative, and when species are long-lived.

Synthesis: The existing literature shows that vital rates often respond to climate in
different time frames, and that studies often ignore climate autocorrelation. Our
results show that simultaneously including both of these factors can substantially
increase or decrease a population’s expected growth rate. Moreover, the relative
magnitude of this change increases with the generation time of a life history. Our
results are relevant to conservation, population forecasts, and population modeling in

general.

Introduction

In recent years, the threat of climate change to both plant and animal populations has

become a central topic in ecology (Clark et al., 2001; Urban et al., 2016). Climate variability is

projected to increase in the future (IPCC, 2014), and studies suggest that this could pose a

larger threat to populations than changes in mean climate (e.g., Vasseur et al., 2014). Thus, it

is important to understand how climate variability influences the vital rates (survival,
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reproduction, etc.) of species, their annual population growth rate (A), and their long-term
stochastic population growth rate (As; Barraquand & Yoccoz, 2013; Lewontin & Cohen, 1969).
The literature has examined four components that influence the effect of climate variation to
long-term population growth: (1) the magnitude of climate variability (Boyce et al., 2006), (2)
the susceptibility of vital rates to climate, in particular vital rates with high sensitivity (Morris
et al., 2008), (3) the covariances among vital rates (lles, Rockwell, & Koons, 2019), (4) the
environmental autocorrelation in the climate (Fey & Wieczynski, 2017). Recent studies
identified a fifth component that could affect long-term population growth: the timeframe in
which vital rates respond to climate drivers (Evers et al. 2021). For example, some vital rates
might respond almost immediately while others have lagged responses to climate drivers. We
do not know how much temporally varied responses (i.e., the fifth component) influence long-
term population growth. It is also unclear what the relative effect and importance of the first
four components are in the presence of temporally varied responses.

Climate variability (component 1) and the susceptibility of a species’ vital rates to climate
(component 2) play a large role in determining the interannual variation in A. The higher the
interannual variation in A, the lower the As (Lewontin & Cohen, 1969; Tuljapurkar, 1990). As a
result, populations for which sensitive vital rates (vital rates that strongly influence A, Caswell,
2001) respond strongly to climate drivers are expected to change the most from increases in
climate variance (e.g., Boyce et al., 2006). Covariation among vital rates (component 3) can
mediate climatic effects. In particular, positive covariation increases, while negative
covariation dampens, interannual variation in A, and thus decreases and increases As
respectively (Doak et al., 2005). In the context of climate drivers, positive covariation arises if
all vital rates respond in the same direction to a certain climate driver, whereas negative
covariation arises when two (or more) vital rates respond in opposite directions to the same
climate driver.

The environmental autocorrelation in climate (component 4), in which the climate at each
point in time is correlated to the previous environment, also influences interannual variation
in A and extinction risk. Positive environmental autocorrelation tends to increase extinction
risk because populations in decline tend to stay in decline. On the other hand, negative
environmental autocorrelation tends to stabilize populations, as declines are followed by
increases (Heino & Sabadell, 2003; Pilowsky & Dahlgren, 2020; Schwager, Johst, & Jeltsch,

2006). The effect of environmental autocorrelation generally has a small effect on population
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growth rates when compared to the effects of other components, such as vital rate covariation
(e.g., Morris et al., 2011). However, environmental autocorrelation can be important for
species that recover slowly from perturbations (Tuljapurkar & Haridas, 2006), such as those
with long lifespans and high reproductive output (Salguero-Gémez et al., 2016).

The fifth component, when different vital rates respond to climate drivers in different time
frames (hereafter, Temporally Varied Responses or TVR), has been shown to occur by recent
research that considers climate timeframes other than the typical first 12 months prior to vital
rate responses (Evers et al., 2021; Tei et al., 2017; Tenhumberg, Crone, Ramula, & Tyre, 2018).
Here, we show that TVR and climate autocorrelation affect As via their effect on vital rates
covariations. For example, consider a species with two vital rates that respond positively to
the same climate driver. In the absence of TVR, the correlation between the vital rates will be
strongly positive. However, in the presence of TVR (e.g., survival responds to climate in the
current year, and fecundity responds to climate in the previous year), the correlation between
the vital rates will depend on the temporal autocorrelation of the climatic driver. Specifically,
strong negative autocorrelation will produce a strong negative vital rate covariation, thus
increasing As; vice versa for a strong positive autocorrelation.

We also expect that life history of a species will influence the extent to which TVR will
influence populations growth rate. Species with low life expectancies typically have low
juvenile survivorship, and species with high iteroparity typically have high adult survivorship.
When the means of survivorship are close to zero or to one, high coefficients of variation are
not possible (Morris & Doak, 2004), and we expect the effects of TVR to diminish in magnitude.
This leads us to the expectation that the relative effects of TVR will vary with life history (e.g.,
longevity and parity).

Here, we use simulations to investigate how the five components we described above
mediate the effect of climate variation on As. We simulate matrix population models that
represent a wide range of life histories. We then run stochastic simulations in which TVR is
either present or absent, while modifying the first four components (climate variability,
climate effect strength, vital rate covariation, and climatic environmental autocorrelation). By
doing so, we elucidate how long-term viability responds to TVR across a large range of life

histories.
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Methods

In order to investigate the effect of TVR on long-term population growth rate across a broad
range of life histories, we used a well-established framework to create Matrix Projection
Models (MPMs) representing a wide range of life histories (Neubert and Caswell 2000). We
use these MPMs to conduct stochastic simulations of their dynamics under different scenarios
of environmental autocorrelation, environmental variance, strength of climatic signal, vital

rate covariation, and TVR (Figure 1).

Simulating temporal sequences

We simulated variation in the vital rates of MPMs starting from normally distributed
environmental sequences (V ) with standard deviation ay,. These environmental sequences
reflect the response of a vital rate to both a climate driver, C, and unexplained environmental
variation represented as random noise, € (Figure 1a). We control the environmental variance
(V) explained by climate (C) using signal strength (p). Signal strength varies between 0 and 1,
where for example 0.5 and 1 imply that climate explains, respectively, 50% and 100% of the
environmental variance gy,2. We then converted these normally distributed sequences to the
beta and gamma distributions that characterize the survival and fecundity rates, respectively
(see “Environmental sensitive Matrix Population Models” below, Figure 1c).

We simulated the environmental sequences (V) by adding two separate random
processes, the climate sequence (C), and the unexplained variation (g). We first simulated
climate sequences, C, using 35 combinations of standard deviation and autocorrelation (see
S1.1 for detailed methods). We included five levels of the environmental standard deviation,
oy (0.01,0.258, 0.505, 0.753 and 1). We chose these values to scale standard deviation of vital
rates (see “Population Models across life histories”) from 1 to 100% (component 1). We
incorporated seven levels of autocorrelation in the climate sequences (component 4): -0.6, -
0.3, -0.1, 0, 0.1, 0.3 and 0.6. For each combination of o, and autocorrelation (N=35

combinations), we simulated 30 different sequences, resulting in 1050 climate sequences.
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Population models

Simulating temporal sequence T
across life histories
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Figure 1. Workflow to simulate the effect of climate autocorrelation (rg), climate variability (standard deviation of its
distribution, oc), signal strength (p), and Temporally Variable Response (TVR), on the stochastic natural logarithm of
population growth rate (As). (a) create climate sequences of 10,000 steps, with different levels of autocorrelation and o, and
combine them with random noise into a environmental sequence (in this example 50% climate signal, 50% noise, signal
strength = 0.5). (b) using a 2x2 MPM, create 147 different life histories, with different values for transition probability from
juvenile to adult (y), juvenile and adult survival (S; and S,), and with fecundity (@) set so that matrix A produces a stable
population (population growth rate = 1). As an example, one life history (ID) can be seen in the table, with vital rate means

and standard deviations (in parentheses, for the three fluctuating vital rates). (c) for each time step, here as example i = 10,
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calculate the quantile probability of the recent and 1-step lagged value from the normally distributed temporal sequence
from (a), given a mean of 0 and standard deviation of o.. Using this quantile probability, calculate the corresponding
quantiles on the beta (for vital rates Sy and Sa) and gamma (for vital rate @) distributions given the vital rates’ respective
mean and standard deviation defined in (b) to populate the A; matrix. (d) repeat these calculations for all steps in the
sequence. (e) calculate the A; using the sequence of A matrices. (f) create the result table with As for each of the different life
histories, autocorrelation, climate variability, signal strengths, and simulation type (TVR) as shown here, or control where ¢

also responds to recent climate (in green).

The final step to produce the environmental sequences V, was to simulate random
noise (&), partition the variance of C and ¢, and add them together. We included random noise
in the temporal sequences to represent other factors that influence population dynamics in
the real world, such as anthropogenic disturbances, biotic interactions, or other unknown

climate drivers. We computed each individual value, i, of this temporal sequence, V, as
Vi:Ci* 9p+ ei*Bl_p qu

where ¢; is the /™" individual random deviate from a normal distribution with mean 0 and
standard deviation oy, C; is the i random deviate from climate sequence described above
with mean 0, standard deviation o, and an autocorrelation level. We multiply each random
deviate C and ¢g; by parameters 6,, and 68, _,, to, control the proportion (p) of variance in V
that is explained by the climate driver C; p can also be seen as the signal strength of C, or the
susceptibility of the vital rates to the climate driver C. Because our objective is to produce an

environmental sequence V with standard deviation oy, summing up C and & with

untransformed variance o, would produce a V with standard deviation \/T‘%. Multiplying
each C; and ¢; random deviate by 6, and 6,_,, respectively, shrinks their standard deviation
to produce a I variable with the desired oy,. For example, if the signal strength (p) is 0.5 and
we aim to produce a random variable V with a standard deviation (oy) of 1, 6,, and 6,_,, are
equal to approximately 0.7071. These values make intuitive sense on the variance scale: they
produce two random variables C and E with standard deviation 0.7071 (and therefore variance
0.5), which sum to produce a variable V with standard deviation 1 (and therefore variance 1).
We implemented 4 different p values (0.05, 0.25, 0.5 and 1). As such, we have temporal
sequences where hardly any variance is explained by the climate driver, to sequences where
the temporal sequence is fully driven by the climate driver. Our sequences thus encompass a

range of temporal variance, autocorrelation, and of variance explained by the climate driver.
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Population models for a range of life histories

In order to address how TVR (component 5) affects population demography, we used the
Matrix Population Model (MPM) parameterization suggested by Neubert & Caswell (2000)
(Figure 1b). This MPM has two stages, juvenile and adult, and yearly transitions are described

by the following equations:

Nyyq =N+ Ay Ea. 2
A - (S],t(l —-Y) <pt> Eq. 3
t SieY St

Where n; and n.,1 are population size vectors at time t and t+1 respectively, A; is the
transition matrix, y is the probability of transitioning from juvenile to the adult stage if the
individual survives to from t to t+1, S; - and S, ; represent the survival probability of juveniles
and adults respectively. Finally, @, is the number of offspring produced per surviving adult.
This MPM can model a large range of life histories depending on the vital rate (y, S;, S4 and p)
values (Neubert & Caswell, 2000). For example, changing adult survival so that it approaches
0 (S4 — 0), changes the model species from iteroparous to semelparous (Neubert & Caswell,
2000). We recognize that to model the full range of life histories observed worldwide, we
would need more realistic and complex MPMs. However, this simple life cycle can still span a
wide range of life histories, and is sufficient to explore the relative effect of responding to
different time windows on population dynamics across life histories.

To create MPMs that span a wide range of life histories, we followed Koons et al.’s (2016)
method (Figure 1b). We set y to either 0.2, 0.5 or 0.8 and set S; and S, from 0.05 to 0.95, in
steps of 0.15. Then for every possible combination of y, §; and S4, we calculated a value of ¢
such that Eq. 2 and Eqg. 3 would result in a population growth rate (A) of 1 (which equals a
stable population). This resulted in 147 different life histories. Next, we calculated the
standard deviation of §;, S4 and ¢ to run stochastic simulations. Most of the existing literature
assumes that in real world populations, these standard deviations evolve to inversely correlate
to the elasticity of vital rates, a pattern known as “demographic buffering” (reviewed in Hilde
et al., 2020). While evidence contrary to demographic buffering exists (e.g., Jakalaniemi,
Ramula, & Tuomi, 2013; McDonald et al., 2017), we decided to follow Koons et al. (2016)
method in this as well, as it reflects the more common evidence on demographic buffering.
To simulate these standard deviations, we used the elasticities (e) of S;, S4 and ¢ to calculate

a proportional measure of buffering: 7; = (1 — ei)/max(esj,eSA,e(p) where i is S;, S4 or @.
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We calculated the standard deviation of survival rate, VR, as gyg = T; * 0.5 * CV,,4 * VR,
where CV,, 4, is the maximum coefficient of variation of a probability (Morris & Doak, 2004).
Following Koons et al., (2016) we set CV,,,, to 1 for o.

Finally, we calculated two life history traits (life expectancy and degree of iteroparity,
Demetrius entropy) for our 147 life histories using the popbio (C. J. Stubben & Milligan, 2007)
and Rage (Jones et al., 2022) R packages. To improve model fit, and facilitate comparisons of

effect sizes, we transformed In(life expectancy), and iteroparity into z-scores.

Environmental sensitive matrix population models

We then created an environmentally sensitive MPM to include the climate effect size
(component 2) in our projections (Figure 1c). We kept y fixed, but simulated variation in the
other vital rates (S, 54 and ) by mapping the normally distributed temporal sequence v (Eq.
1) in beta-distributed (for S;) and gamma-distributed (for ¢,) values. To do so, we calculated
the quantile of each V; value given the distribution of V, and computed the value of that
quantile for the beta and gamma distributions (Figure 1c). For example, if a value of V; was
the 98™ percentile of its normal distribution, we drew the 98™ percentile from the beta
distribution for S; ; and S, ; (see S1.2). Note that while the means of these vital rates always
remained the same, we scaled standard deviations by a factor o}, (which ranged from 0.01 to

1).

Population projections

Using the MPMs and the environmental time series, V, we investigated the effect on
populations when some of their vital rates respond to a recent climate driver, and others
respond to lagged climate. Using these temporally varied responses to climate drivers (TVR)
we projected the population dynamics over 10,000 time steps (Eq. 2-3, Fig. 1d) and calculated
As using the popbio package ( Stubben, Milligan, & Maintainer, 2016) in R (R Core Team, 2021).
We obtained a temporal sequence from Eq. 1 (hereafter, V,ecent) and created the
corresponding lagged temporal sequence by offsetting the C sequence of Vy.cent by One step,

III

and a new & sequence to create Vj;44.4 (Fig. 1a). In the “control” simulations, S;, S4, and ¢
responded to the same C sequences, but different € sequences. In the “TVR” simulations, the

fecundity vital rate (¢) responded to Vyecene, but the survival vital rates (S;and Sy ) responded
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to Vigggea- In these simulations, all vital rates respond in the same (positive) trend to the V
sequences, thus creating positive covariance between the vital rates (component 3). Initial
analysis showed that there was no difference in As when fecundity instead of the survival
responds to Vi, g4eq; therefore, we only show the first.

Next, we repeated the simulations described above, but with the assumption of negative
covariance (component 3) between the survival and fecundity vital rates in their response to
C. Using similar calculations as described in the previous paragraph, we investigated the effect
that responding to TVR could have, if the responses of the different vital rates to climate were
negatively correlated. For this we re-ran the simulations in the previous paragraph, but
multiplied C; in Eq. 1 by -1 for the fecundity vital rate (¢).

In both simulations mentioned above, vital rates all respond equally strongly (p) to the
climate driver. However, it is possible that stages respond with different intensity to a climate
driver (e.g., Tredennick, Teller, Adler, Hooker, & Ellner, 2018). Therefore, as an additional
analysis, we also picked one life history, and repeated the simulations with positive
covariance. For each of the simulations we modified the response of §;, S4, or ¢ to the climate
driver to be only half that of the other two vital rates. For example, in one simulation §; and
S, would have a p =0.5, and ¢ would have a p = 0.25. More details on the simulations can be
found in S3.

Finally, to summarise the effect sizes of the different components (climate variance, signal
strength, vital rate covariance, climate autocorrelation, and TVR) on As we used linear mixed
effect models for both the positive and negative vital rate covariance simulations. In these
models, As was the response variable, and the fixed effects were climate variance (og; linear
and quadratic), climate autocorrelation (rk), signal strength (p), simulation type (TVR versus
control), and the interaction of simulation type with o, autocorrelation and signal strength
(p). For the random slope we used the effect of climate variance for each life history.

We first examine the outcome of simulations focusing on a single representative life
history, and then use the linear mixed effect model to quantify the effects of fixed effects
across our life histories. As our representative life history we choose a matrix model with §; =
0.5,5,=0.2,y=0.5,and ¢ = 2.4, because this life history is relatively central in both longevity

and iteroparity, and because it visually clearly shows the trends found across all life histories.
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Correlation with life history traits

We investigated how mean In(life expectancy) and degree of iteroparity correlated with
our simulation results. We first calculated the log relative decrease in As from o.=0.01 to 1 for
both the TVR and control simulations across the o values. Specifically, we calculated relative

decrease as

i As,controloe=1= As,control,oc=0.1
relative decrease = ln( S,controloc s,controlac .
AsTVR,cc=1— AsTVRGc=0.1

Using this measure, values above zero meant that the TVR simulations had relatively lower
decrease, and thus higher As than control simulations. We then fit a linear mixed effect model,
with the relative decrease as the response variable. The fixed effects were life expectancy,
iteroparity, climate autocorrelation and signal strength, as well as the interaction between life
expectancy and iteroparity with climate autocorrelation. The random effect was an intercept

for each of our 147 different life histories.

Results

Simulations across life histories

The results for our representative life history (S, = 0.5, S4 =0.2, ¥ = 0.5, and ¢ = 2.4), show
three main patterns in which TVR change As. First, when vital rates respond in the same
direction to climate, interannual variance in A is lower (Figure 2), resulting in higher As (Figure
3A). Second, these effect of TVR are amplified for larger values of o, and autocorrelation
(Figure 3A). Regarding autocorrelation, its direct effect is minuscule when compared to its
interaction with TVR (Figure 3A-B). Third, and importantly, in the case vital rates respond in
opposite direction to climate, these two effects of TVR are reversed in sign, resulting in lower
As values (Figure 3B).

The linear mixed effect model shows that the above patterns hold across all life histories
(see S2.4 for plots on the results for every life history), and it indicates two additional patterns.
First, that signal strength (p) also amplifies the effects of TVR (Figure 4) with a magnitude
similar to autocorrelation and o.. Second, it emphasizes that environmental variance o,
remains the predominant force controlling As (Figure S2.3).

Finally, we used the same life history as in Figure 3 (5§, =0.5, 54, =0.2,y =0.5 and ¢ = 2.4),

to investigate the effect of different climate signal strengths across vital rates. When one vital

eq. 4
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rate experiences a climate signal (p) that is only half of the climate signal experienced by the

other vital rates, the trends and relationships found in the main analysis remain (see S2.2).

Correlation with life history traits

The largest effects of TVR simulations on stochastic population growth rate (As) occur for
species with high life expectancy and, to a much lesser degree, species with low degree of
iteroparity (Figure 5 and S2.4). Model estimates show that these effects of life history are
amplified under negative autocorrelation (rx) (Figure 6). As seen previously, the models
confirm that the sign of vital rate correlation switches the effect of TVR on As from beneficial
(positive correlations) to detrimental (negative correlations, Figure 6). Figure S2.2 shows a
graphical comparison of different life histories on the extremes of life expectancy and degree

of iteroparity.
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Figure 2. Under positive vital rate correlation, TVR simulations result in lower interannual variance in the natural logarithm
of the population growth rate (log lambda) compared to the control simulation. A) log annual population growth rate (A)
across a 35-year time series (years 95-130 of 10,000 years) of stochastic matrix population model (MPM) projections where
the MPMs vary according to a climate driver, and random noise. In this simulation, 50% of the variance was explained by a
climate driver and 50% of the variance was random. In the “control” simulation all vital rate models respond to recent

climate and in the temporally varied response (TVR) simulation, the survival vital rates (juvenile and adult survival) respond
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to 1-year lagged climate, whereas the fecundity vital rate responds to recent climate. Simulations were done under (i) 0.6,
(ii) 0 and (iii) -0.6 environmental autocorrelation in the climate driver. B) the density distribution of the interannual
difference in A for the whole 10,000-year sequence under (i) 0.6, (ii) 0 and (iii) -0.6 environmental autocorrelation in the

climate driver.

A: Positive covariation B: Negative covariation

0.00

-0.05

-0.10

stochastic log lambda

-0.15

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
oy of environmental sequence

Autocorrelation == -06 == 0 = 0.6

Simulation type =— control — TVR

Figure 3. Responding to both lagged and recent climate (i.e., temporally varied responses — TVR) can either buffer or amplify
the negative effect of increasing environmental standard deviation (oy). Projected stochastic population growth rates of a
life history over a range of environmental variation and climate autocorrelations, using a 2-by-2 matrix population model. In
this simulation, 50% of the variance was explained by a climate driver and 50% of the variance was random. We included
two types of simulations, the control where all vital rates respond to the same (recent) climate, and the temporally varied
response (TVR) simulations, where the vital rates in the somatic submatrix (survival) respond to climate that is one year
lagged from that of the reproductive submatrix (fecundity). In A) all vital rates respond in a positive direction to the climate

driver. In B) the reproductive submatrix responds to the climate driver in the opposite direction of the survival submatrix.
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Figure 4. Selected coefficient estimates and 95% confidence interval of the two linear mixed effect models, relating the
stochastic log lambda of population dynamic simulations to climate variables under either positive (in black) or negative (in
red) correlation between the survival and fecundity vital rates. Climate autocorrelation (ri) is the autocorrelation in the
climate sequence used in the simulations, ranging from -0.6 to 0.6. Climate signal strength (p) is the relative importance of
the climate sequence compared to random noise, ranging from 0.01 to 1. TVR simulation type is the difference between the
Control and Temporally Varied Response simulations. Finally, the figure shows the estimates for the interaction effect of TVR
with the climate standard deviation (o.), autocorrelation, and signal strength respectively. The coefficient of the linear mixed
effect model not included in this graph are the intercept (positive; -0.045, -0.052:-0.038 Cl; negative; -0.078, -0.085:-0.071
Cl), and the linear (positive; 1.217, 1.195:1.239 Cl, negative; 1.256, 1.233:1.278 Cl) and quadratic (positive; -2.110, -2.664.:-
1.555 Cl, negative; -2.077, -2.629:-1.524 Cl) effect of o..
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Figure 5. Slow life histories see the largest change in stochastic population growth rate (As) in the presence of temporally
varied responses (TVR). Relative difference in the decrease of stochastic population growth rate (As) between simulations
with TVR and control simulations, across a range of iteroparity and life expectancy. Colours show the predicted values of
linear mixed effect models relating TVR to stochastic population growth rate (A;). Difference in As was defined as the change
in stochastic population growth rate from climate standard deviation of 0.1 to 1. The relative difference in As was calculated
by dividing the difference of the control simulations by the TVR simulations. Positive values indicate that TVR is beneficial for
the population growth rate (i.e., has a lower decrease in A compared to the control simulations), whereas negative values
indicate that the responding with all vital rates to the same time window (control) is beneficial for the population growth
rate. Each circle represents one of the 147 simulated life histories. In the TVR simulations, survival responds to climate that is
one year lagged from that of fecundity; in the control simulations, all vital rates respond to the same (recent) climate. The
results in the graphs refer to a climate signal strength of 0.5 (i.e., 50% of the vital rate’s variance is driven by climate).
Columns refer to three levels of autocorrelation (-0.6, 0, and 0.6). Rows refer to positive vital rate correlation (where all vital
rates respond positively to the climate driver), or negative vital rate correlation (where the survival and fecundity vital rates

respond in different directions to the climate driver).
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Figure 6. Coefficient estimates and 95% confidence interval of the two linear mixed effect models, relating the relative
decrease in stochastic population growth rate to different life history and climate variables, and their interactions, under
either positive (in black) or negative (in red) correlation between the survival and fecundity vital rates. In(life expectancy)
and degree of iteroparity are scaled variables for comparison. Climate autocorrelation (rK) is the autocorrelation in the
climate sequence used in the simulations, ranging from -0.6 to 0.6. Climate signal strength (p) is the relative importance of

the climate sequence compared to random noise, ranging from 0.01 to 1.

Discussion

There is concern that increased climate variance poses a threat to populations, which has
motivated considerable interest in understanding this topic (e.g., Boyce et al., 2006; Vazquez,
Gianoli, Morris, & Bozinovic, 2017). Here, we found that when vital rates of populations
respond to climate with a mix of more recent and lagged climate driver timing (temporally
variable response, TVR), this response buffers the populations from the effects of
environmental variance on population growth. In particular, this buffering effect always
occurs when the vital rates of a species respond to a climatic driver in the same direction
(positive covariance). The magnitude of this buffering increases in inverse proportion to the
temporal autocorrelation of climatic drivers. On the other hand, in the case of opposing
responses of vital rates to the climate driver, TVR could actually exacerbate the effect of
increasing climate variability. These results are relevant to population and conservation
ecologists for two reasons. First, our results show that the direct effects of environmental

autocorrelation on population dynamics are small with respect to their potential indirect
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effects mediated by TVR. Second, the conditions that lead to TVR buffering the effects of
environmental variance are likely common in nature. Thus, our results encourage empirical
studies to identify TVR, and to include them in population projection models.

Our results are perhaps the first to suggest that environmental autocorrelation might affect
As indirectly, by affecting vital rates covariation via TVRs. Previous studies found that
environmental autocorrelation has relatively small direct effects on population growth rates
(Eckhart et al., 2011; Paniw et al., 2018). As a result, many researchers currently investigate
stochastic population dynamics under the assumption that no autocorrelation is present (e.g.,
Compagnoni et al., 2016; McDonald et al., 2017). Our simulations show that environmental
autocorrelation can have up to ten times larger an effect on As through interaction with TVR,
compared to its direct effect. Temporal autocorrelation is expected to increase under climate
change (Di Cecco & Gouhier, 2018), which would decrease the indirect buffering effect of TVR.
However, significant regional variation in trends are also expected (Di Cecco & Goubhier, 2018),
including regional decreases in autocorrelation, which would actually decrease their
extinction risk.

We show that the presence of TVR reduces the annual variation in lambda and thus
relatively increases As under a wide range of scenarios that are likely to occur in nature. TVR
increases As when vital rates respond in the same direction to climate drivers. Climate drivers
are usually thought to cause responses in vital rates that are similar in direction (e.g.,
Compagnoni, Pardini, & Knight, 2021; Hindle, Pilkington, Pemberton, & Childs, 2019). For
example, drought typically harms multiple vital rates rather than harm some and benefit
others. Examples of opposing trends in vital rate responses do exist (e.g., Dahlgren, Bengtsson,
& Ehrlén, 2016; Noél et al., 2010), however, this opposing responses do not necessarily reflect
direct responses to climate, but rather physiological tradeoffs that end up resulting in
correlations of opposing sign (e.g., trade-offs in vital rates in response to limited resource
availability rather than a direct response to the climate driver (Crone, Miller, & Sala, 2009;
Tenhumberg et al., 2018). This benefit of TVR is highest in the presence of large, negative
environmental autocorrelation. On the other hand, the benefit of TVR mostly disappears only
in the presence of large, positive autocorrelation, or when the climate has a very weak effect
on the temporal variance of vital rates. These conditions should also be uncommon in nature,

as autocorrelations are not known to be so extreme as those considered in our simulations.
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We find consistent results across life histories in the direction of the TVR effect on As,
suggesting that the effects of TVR on populations can likely be generalized to a variety of life
histories. As expected, we find that the relative effects of TVR tend to be stronger in
populations with high life expectancy and/or with low iteroparity. This is likely because high
coefficients of variation are not possible for populations with low life expectancy (where
juvenile survivorship is close to 0) or with high iteroparity (where adult survivorship is close to
1; Morris and Doak 2004). However, the relative decrease in As under TVR was much more
severe with changing life expectancy than with changing iteroparity. This could be because
TVR effects on populations with different life expectancies act primarily through effects on
juvenile survivorship, and effects on this young stage class can have a cascading effect on the
entire life cycle.

Based on physiological principles, we expect that many natural populations have TVR. For
example, many plant species are known to have preformation of leaves and/or inflorescences
more than 12 months before emergence (e.g., Diggle, 1997; Inouye, 1986). Thus, the vital rates
associated with growth and/or fecundity will respond to climate drivers in this same
timeframe as the preformation (e.g., Evers et al., 2021). In combination with possible frost
damage that has rapid demographic consequences (e.g., ller et al., 2019), alpine species could
be a prime example of species with TVR. The presence of belowground rhizomes is another
physiological characteristic that has been linked to lagged climate drivers in Heliconia
acuminata (Scott, Uriarte, & Bruna, 2021). For this species, more immediate climate responses
have been observed as well (Westerband & Horvitz, 2017). Even if species only exhibit
immediate physiological responses to climate drivers, indirect climate effects can still lead to
TVR. For example, the presence of nurse plants positively influenced seedling recruitment
(e.g., Flores-Torres & Montafia, 2012), and any delayed effect of climate on the nurse plant
would thus translate to the seedling as well.

Studies have shown that vital rates (growth, survival, and reproduction) correlate with
climate drivers in unique ways that reflect different biological mechanisms (Bogdziewicz et al.,
2020; Fritts, 2012; Trugman et al., 2021). Therefore, it is plausible that the link between vital
rates and climatic drivers is complex in nature. Currently, few empirical studies have tested
for the presence of TVR. However, previous studies searching for TVR have found evidence for
them (Evers et al., 2021; Scott et al., 2021; Tenhumberg et al., 2018), suggesting that TVR

might be common. Our recent study (Evers et al. 2021) conducted a review of literature
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published between 1997 and 2017 and found that most demographic studies consider only a
single climate timeframe: typically, the first 12 months prior to vital rate responses. However,
among the eight studies that tested for the presence of lagged effects in multiple vital rates,
seven found evidence of TVR (Evers et al., 2021).

Our results bolster the nascent research agenda focused on the importance of TVR on
population dynamics. This research agenda can advance via both empirical investigations and
population modeling studies. Empirically, there are still too few studies that test for the
existence of TVR, perhaps because such studies require long-term data (van de Pol et al., 2016,
Tenhumberg et al., 2018; Evers et al. 2021; Scott et al. 2021). Thus, we encourage researchers
with long-term demographic data to explicitly test for TVR. A large literature on TVR would
provide a better understanding of their prevalence and underlying mechanisms. Further, our
results are relevant to conservation research aimed at understanding and accurately
forecasting the dynamics of populations known to be threatened by climate change, (e.g.,
Compagnoni et al., 2021; Lindell, Ehrlén, & Dahlgren, 2022). In the case of species particularly
sensitive to climatic variation, explicit modeling of TVR could substantially change forecasts by
correctly accounting for the indirect effects of climatic autocorrelation.

We have shown that populations that respond to a mix of temporal climate drivers can be
buffered from increasing climate variance. We have also shown that climatic temporal
autocorrelation, often acknowledged but unmodelled, can either increase or dampen the
effect of variability when driven by mixed temporal climate drivers. Thus, explicitly accounting
for mixed temporal climatic drivers might be an overlooked avenue to improve our

understanding of population responses to future climatic change.
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Supplementary materials

S1 Method details

S$1.1 Simulating temporal sequences

First, we simulated the normally distributed climate driver, C, by creating an autocorrelated

sequence using the following equations:

Ci=c 1 *xrg te (1)
€~ Norm(0,1) (2)
c-C
C= * 0, ~ Norm(0,0.) (3)
¢

where i ranges from 1 to 10,000, r is the autocorrelation value. C and o¢ are the mean and

.. . c-C
standard deviation of the sequence created in Eq. (1) and so — scales the sequence to a ~
c

Norm(0,1) distribution. g is the standard deviation of the desired climate simulation. We

used normally distributed processes because it is straightforward to partition their variance.

Second, we combined the climate sequence C with random noise to create a single temporal

sequence. We computed each random deviate i of the temporal sequence I/ as:
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V, = C, % 6, + € % 6,_,withi = 1,2, ..., 10000
C; ~ Normal(0,0y,)

€ ~ Normal(0, o)

where i ranges from 1 to 10,000, ¢; is the random noise but always had an autocorrelation
equal to zero. We included random noise in the temporal sequences to represent other factors
that influence population dynamics in the real world, such as anthropogenic disturbances,
biotic interactions or other unknown climate drivers. 6, and 6;_, control the proportion (p)
of variance in V that is explained by C. p can also be seen as the proportion to which C

contributes to V, or the susceptibility of the vital rates to C.

Note that summing two independent random variables with mean 0, produces a new random
variable whose variance is equal to the sum of the variances of the two summed random
variables. Hence, to have a random variable with variance 1, and assuming a p = 0.5, both C
and € should have variance 0.5. Translating this example using standard deviation, the C and
€ variables will have standard deviation ~0.71 which summed will produce a variable V' with
standard deviation 1. As such to ensure that the standard deviation of C and € are equal to

that of V, and because partitioning occurs on the variance scale, we calculate 6,, and 6;_,, as

oZ2*p |o2+(1-p)

0, =——and 0,_, =
p o 1-p e

. In other words, we transform the standard deviation (o)
into variance, and back-transform it to a standard deviation after multiplying it by p and 1-p,

respectively.

We considered 4 different p values (0.05, 0.25, 0.5 and 1). As such, we have temporal
sequences where hardly any variance is explained by the climate driver, to sequences where
the temporal sequence is fully driven by the climate driver. Our sequences thus encompass a

range of temporal variance, autocorrelation, and of variance explained by the climate driver.
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S$1.2 Calculating vital rate distributions

Using the method of moments, we can use the mean and standard deviation of the survival
probabilities, to calculate the shape parameters of the S vital rate distributions in Eq. 3 of the

main manuscript as:

S ~ Beta(ag, Bg) (7)

s (1 pig) .

I (R ap— . .
*s (O'S*Uc)z ) s (h)

. ps* (1 —pig)
fg= (22— =27 __
Bs =1 (og*x0,)?

1) (1—pg) (9)
Where as and 55 are the shape parameters of the beta distributions and ug and g are the
mean and standard deviation of S. g, is the standard deviation of the temporal sequence (V).

Multiplying a5 by o, scaled the observed standard deviations, as o, varied between 0.01 and

1.

The ¢ vital rate distribution is defined as:

¢ ~ Gamma(ay, B,) (10)
2
M -
Qg (0, % PE (11)
- Heg ;
B, = 12
~e (04%0,) (12)

Where ay and B are, respectively, the shape and scale parameters of the gamma

distributions, and pi4 and o, are the expected value and standard deviation of ¢.

S2 Additional results

S2.1 Life history trait distributions and responses

Below Figure S2.1 shows the trait distribution of our 147 simulated life histories. It also shows

the locations of the life history 60, of which the simulation results are shown in figure 1 of the
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manuscript.

Of other four life histories labelled here, nr. 92 and 144, have similar degree of iteroparity, but
a low (92) and high (144) life expectancy. Nr 111 and 44 have similar life expectancy but low
(111) and high (44) degree of iteroparity. The results of the simulations for the latter four life

histories can be seen in the next figure.

-5 144

>

5 5.0

o

_% e o 00 O
2.5
0.0

log(life.expect)

Figure S2.1: Life history trait distribution of the 147 life histories used in the simulations. log(Life expectancy) on the x-axis
and degree of iteroparity on the y-axis. Number 60 is the life history shown in the main manuscript. Nr. 92 and 144 are life
histories with low and high life expectency, but similar degree of iteroparity. Nr. 111 and 44 are life histories with low and
high degree of iteroparity, but with similar life expectancies.
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Figure S2.2: Simulation results for 4 different life histories. Low and high life expectancy (92 and 144) have similar degrees of
iteroparity, low and high degree of iteroparity (111 and 44) have similar life expectancy. Each panel shows projected
stochastic population growth rates of the life history over a range of environmental variation and climate autocorrelations,
using a 2-by-2 matrix population model. In these simulations, 50% of the variance was explained by a climate driver and 50%
of the variance was random. We included two types of simulations, the control where all vital rates respond to the same
(recent) climate, and the Temporally Varied Response (TVR) simulations, where the vital rates in the somatic submatrix
(survival) respond to climate that is one year lagged from that of the reproductive submatrix (fecundity). All vital rates
respond in the same direction to the environmental sequence (i.e., positive covariance in the vital rates)

$2.2 Different climate signal strengths between vital rates

In the simulations of the main manuscript, all 3 vital rates (S}, S4} and ¢) respond with the
same strength to the climate driver. In other words, although the standard deviation of the
vital rates differ, the responses have the same relative deviation from the mean, or same
probability given the mean and std. dev. In the main manuscript we investigate how different
directional responses of the vital rates to the climate can influence the effect of Temporally
Varied Response. One additional option is the possibility of certain vital rates responding with
different strengths to climate driver. One classic example is the survival probability of
seedlings/saplings being more strongly influenced by climate than the survival probability of

adults/larger individuals.
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Here we repeated the simulations presented in the main manuscript, with one addition. We
incorporated the presence of a “weak” vital rate. For this vital rate, the signal strength was
only half of that of the other vital rates. We used the same life history and signal strength as
highlighted in the main manuscript whose mean vital rate values are §; =0.5, 5, =0.2,y = 0.5
and ¢ = 2.4 and signal strength of 0.5. This means that the “weak” vital rate, had a signal
strength of 0.25. These simulations were done under positive vital rate covariance. Thus, the

III

upper left panel of the figure below (“all equal”) is thus an exact replicate of Figure 2A.
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all equal
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Figure S2.3: Projected stochastic population growth rates of a life history over a range of environmental variation and
climate autocorrelations, using a 2-by-2 matrix population model. We included two types of simulations, the control where
all vital rates respond to the same (recent) climate, and the Temporally Varied Response (TVR) simulations, where the vital
rates in the somatic submatrix (survival and growth) respond to climate that is one year lagged from that of the
reproductive submatrix (fecundity). All vital rates respond in a positive direction to the climate driver. In these simulation, we
used a signal strength of 0.5 for the normal response. In other words 50% of the variance was explained by a climate driver
and 50% of the variance was explained by a random variable. In the simulation similar to those analysed in the main
manuscript (labelled “all equal”), all climate sensitive vital rates respond with a signal strength of 0.5. The other three panels
show simulations where two of the three vital rates respond with a signal strength of 0.5. The third vital rate (named in the
panel label), a weak response to climate was modelled with a signal strength of 0.25. i.e., by having 25% of the variance
explained by the climate driver, and 75% by a random variable.
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S2.3 Regression summaries

Below is the summary of the regression, correlating the stochastic log lambda with
environmental and simulation covariates and the full graphical representation of the

coefficient estimates (i.e., the full version of Figure 4 in the main manuscript).

## [1] "Possitive vital rate correlation”

## Linear mixed model fit by REML ['lmerMod']
## Formula: lambda ~ clim _sd + I(clim_sd”2) + clim_auto + sig.strength +

## clm t:1g tU ©.000
## sg.strng: U 0.381

.000 0.000 -0.707
.000 0.000 0.000 -

.000 0.000 0.000
.707 -0.585 0.001 0.000

Hit lag _type + lag type:clim_sd + lag type:clim _auto + lag type:sig.stre
ngth +
Hit (I(clim_sd*2) - 1 | 1lh_id)
it Data: df %>% filter(vr_cov == "positive")
#i
## REML criterion at convergence: 3912009
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -34.309 -0.138 -0.0990 0.072 15.023
#i
## Random effects:
## Groups Name Variance Std.Dev.
## 1h_id I(clim sd”~2) 11.669 3.416
## Residual 1.393 1.180
## Number of obs: 1233731, groups: 1lh_id, 147
#it
## Fixed effects:
H#it Estimate Std. Error t value
## (Intercept) -0.045280 0.003531 -12.824
## clim_sd 1.217261 0.011318 107.550
## I(clim_sd~2) -2.109637  ©0.281940 -7.483
## clim_auto 0.001867 0.004150 0.450
## sig.strength -0.070317 0.004230 -16.622
## lag typeUmatrix -0.019460 0.004601 -4.230
## clim_sd:lag typeUmatrix 0.032664 0.006075 5.377
## clim_auto:lag typeUmatrix -0.017649 ©.005869 -3.007
## sig.strength:lag typeUmatrix ©.035868 ©.005983 5.995
#it
## Correlation of Fixed Effects:
H#it (Intr) clm_ sd I(_"2) clim t sg.str 1lg tyU clm_s: U clm_t: U
## clim sd -0.593
## I(clm_sd”2) ©.014 -0.034
## clim_auto 0.000 0.000 0.000
## sig.strngth -0.539 0.000 0.000 0.000
## 1g_typUmtrx -0.652 0.179 ©.000 ©0.000 0.414
## clm_sd:1g U ©.434 -0.268 0.000 0.000 .000 -0.667

(%]

(%]

OO0

## [1] "Negative vital rate correlation”
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## Linear mixed model fit by REML ['lmerMod']
## Formula: lambda ~ clim_sd + I(clim_sd”2) + clim_auto + sig.strength +

## lag type + lag type:clim_sd + lag type:clim_auto + lag type:sig.stre
ngth +

it (I(clim_sd~2) - 1 | 1lh_id)

it Data: df %>% filter(vr_cov == "negative")

##

## REML criterion at convergence: 3909731

H##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -34.112 -0.133 -0.090 0.062 15.020

##

## Random effects:

## Groups Name Variance Std.Dev.

## 1h_id I(clim_sd”2) 11.609 3.407

## Residual 1.391 1.179

## Number of obs: 1233727, groups: 1lh_id, 147

##

## Fixed effects:

Hit Estimate Std. Error t value

## (Intercept) -0.078090 0.003528 -22.137
## clim_sd 1.255544 ©.011308 111.035

## I(clim_sd”2) -2.076572 ©0.281216 -7.384
## clim_auto 0.001659 0.004146 0.400

## sig.strength -0.007093 0.004227 -1.678

## lag typeUmatrix 0.017698 ©0.004597 3.850

## clim_sd:lag typeUmatrix -0.039113 0.006070 -6.444
## clim_auto:lag_typeUmatrix 0.009824 0.005863 1.676

## sig.strength:lag typeUmatrix -0.027198 ©0.005977 -4.550
##

## Correlation of Fixed Effects:

it (Intr) clm sd I(_"2) clim t sg.str 1g tyU clm s: U clm t: U
## clim_sd -0.593

## I(clm_sd~2) ©0.014 -0.034

## clim_auto 0.000 0.000 0.000

## sig.strngth -0.539 0.000 ©0.000 0.000

## 1lg typUmtrx -0.652 ©0.179 0.000 0.000 0.414

## clm_sd:1g U ©0.434 -0.268 0.000 0©0.000 0.000 -0.667

## clm_t:1g tU ©.000 0.000 0.000 -0.707 0.000 0.000 0.000
## sg.strng:_ U ©.381 0.000 0.000 0.000 -0.707 -0.585 0.001 0.000
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Figure S2.4: Coefficient estimates and 95% confidence interval of the two linear mixed effect models, relating the stochastic
log lambda of population dynamic simulations to climate variables under either positive (in black) or negative (in red)
correlation between the survival and fecundity vital rates. Climate standard deviation ranges from 0.01 to 1, cliamte
autocorrelation (rK) is the autocorrelation in the climate sequence used in the simulations, ranging from -0.6 to 0.6. Climate
signal strength (p) is the relative importance of the climate sequence compared to random noise, ranging from 0.01 to 1.
TVR simulation type is the difference between the Control and Temporally Varied Response simulations. Finally, it shows the
estimates for the interaction effect of TVR with the climate standard deviation (oc), autocorrelation and signal strength
respectively.

Next is the model summary of the regression that correlates the relative decrease in stochastic
log lambda with environmental covariates and life history traits. Relative decrease is defined

as follows;

AsTVRo o, — AsTVRe,_,

Relative Dif ference = In( ) (13)

)‘s,cantruf,a':_u., - As,canh‘a!,a':_l

As such, a relative difference below 0 means less decrease for the TVR simulations, and a value
above 0 means less decrease for the control simulations.
Below is also a graphical representation of the model coefficients estimates and 95%

confidence interval.

## [1] "Possitive vital rate correlation”

## Linear mixed model fit by REML ['lmerMod']

## Formula:

## log(rel decrease) ~ life.expect + iteroparity + auto_cat + sig.strength
+

Hit auto_cat:life.expect + auto_cat:iteroparity + (1 | lh_id)
it Data: df2 %>% filter(vr_cov == "positive")
#it
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REML criterion at convergence: 80797.5
Scaled residuals:
Min 1Q Median 3Q Max
-28.0830 -0.3263 0.0004 0.2989 25.5452
Random effects:
Groups  Name Variance Std.Dev.
1h_id (Intercept) 0.004695 0.06852
Residual 0.114537 0.33843
Number of obs: 119553, groups: 1lh_id, 147
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.057029 0.005869 9.716
life.expect 0.142359 ©0.009336 15.249
iteroparity -0.052122 0.009330 -5.587
auto_cat -0.266256 0.002682 -99.273
sig.strength 0.434511 ©.002755 157.699
life.expect:auto_cat -0.154542 ©0.004401 -35.113
iteroparity:auto_cat ©0.065698 ©0.004350 15.103
Correlation of Fixed Effects:
(Intr) 1f.xpc itrprt aut_ct sg.str 1f.x:_
life.expect ©.000
iteroparity ©0.000 -0.789
auto_cat -0.001 -0.001 0.000
sig.strngth -0.211 -0.002 0.000 0.000
1f.xpct:t_c -0.001 -0.002 ©0.000 ©0.004 0.000
itrprty:t c ©.000 0.000 -0.001 ©0.006 0.000 -0.781
[1] "Negative vital rate correlation”
Linear mixed model fit by REML ['lmerMod']
Formula:
log(rel decrease) ~ life.expect + iteroparity + auto_cat + sig.strength
auto_cat:life.expect + auto_cat:iteroparity + (1 | 1lh_id)
Data: df2 %>% filter(vr_cov == "negative")
REML criterion at convergence: 166989.7
Scaled residuals:
Min 1Q Median 3Q Max
-14.5100 -0.3818 0.0167 0.4330 15.0367
Random effects:
Groups  Name Variance Std.Dev.
1h_id (Intercept) 0.02623 0.162
Residual 0.23815 0.488

Number of obs: 118516, groups: 1lh_id, 147
Fixed effects:

Estimate Std.
0.081716

Error

(Intercept) 0.013553

t value
6.029
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life.expect
iteroparity
auto_cat
sig.strength

-0.270612
0.123097
0.295557

-1.043687

life.expect:auto_cat ©.153595
iteroparity:auto_cat -0.054012

Correlation of Fixed Effects:

life.expect ©.000
iteroparity ©.000
auto_cat 0.000
sig.strngth -0.132
1f.xpct:t_c ©.000
itrprty:t_c ©.000
Intercept

In(life expectancy)

Degree of iteroparity

Climate autocorrelation (ry)

Climate signal strength (p)

rk : In(life expectancy) interaction

rk : lteroparity interaction
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-0.789
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Figure 2.5: Coefficient estimates and 95% confidence interval of the two linear mixed effect models, relating the relative
decrease in stochastic population growth rate to different life history and climate variables, and their interactions, under
either positive (in black) or negative (in red) correlation between the survival and fecundity vital rates. In(life expectancy)
and degree of iteroparity are scaled variables for comparison. Climate autocorrelation (rK) is the autocorrelation in the
climate sequence used in the simulations, ranging from -0.6 to 0.6. Climate signal strength (p) is the relative importance of
the climate sequence compared to random noise, ranging from 0.01 to 1.
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S2.4 Individual life histories results

Please not that this section has been slimmed down in this dissertation compared to the version
currently in revision in Journal of Ecology. There this section consists of 98 pages. Here, | have

selected 4 random pages.

In the graphs below, points of the control and TVR simulations are slightly dodged to make
sure both are visible. They are however, at the same climate standard deviation (i.e., although

the climate std. looks like 0.95 for and 1.05, all have a value of 1)

In the graphs below, individual lines are drawn using splines (in the ggplot2::geom_smooth()
function). This formula does not match the functional form of the models in S2.3 and are

therefore only for illustration purpose.
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Positive vital rate covariation
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Negative vital rate covariation
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Abstract

The relationship between population dynamics and climate is a complex question that is becoming
increasingly important due to climate change. The effects of climate variables can be unpredictable
and change through time, and understanding how they interact with other biotic and abiotic factors is
crucial for conservation efforts. Here we analysed a 20-year dataset of four populations of the
endangered plant species, Dracocephalum austriacum, to investigate the effects of climate and
possible climate-interactions on vital rates, such as survival, flower probability and seed production,
and population growth rate.

We found that models with potential evapotranspiration by shading interactions were the best
predictive models for survival probability, flower probability and number of seeds produced. For
growth and seed production probability, the best models included precipitation by shading
interactions. We also found that climate sensitivity was higher under low and high shading levels for
survival and number of seeds respectively. Higher shading levels also result in a higher stochastic
population growth rate, and can buffer the effect of future climate change, although under most
climate scenarios, the populations will still go extinct. The results suggest that shading is important for
the long-term persistence of these plant populations in the face of climate change.

The study emphasizes the importance of long-term studies to properly understand population
dynamics and the impact of climate change on populations. The results of this study suggest that
despite being a species of open habitats, localities with heterogenous microhabitats with different
levels of shading are important for the long-term persistence of these plant populations in the face of
climate change. The study provides valuable insights for conservation efforts and underscores the need

for continued research in this area.



Chapter 4

Introduction

Investigating the effect of climate on population dynamics is a long running topic (e.g., Lewontin &
Cohen, 1969), and is only becoming more salient (Sutherland et al., 2013; Urban, 2015). It has become
increasingly clear that the relationship between population dynamics and climate can be much more
complex than is usually modelled. First, the timing of the most relevant climate is often outside a-priori
expectations (Evers et al., 2021). Second, it is possible for the effect of a climate variable to vary
through time (Tenhumberg, Crone, Ramula, & Tyre, 2018). Finally, the relationship between climate
and vital rates can also depend on other (a)biotic factors (e.g., Biitof et al., 2012; Tye, Menges,
Weekley, Quintana-Ascencio, & Salguero-Gémez, 2016). Including the right climate timeframe and
relationship in our analysis is crucial as climate change is already causing previously unobserved
climate values and changes in historical (auto)correlations (Di Cecco & Goubhier, 2018; IPCC, 2014).
Fortunately, our understanding of complex climate driver timing has been steadily improving thanks
to the development of useful tools and methods (e.g., Bailey & van de Pol, 2016; Gasparrini, Scheipl,
Armstrong, & Kenward, 2017; Teller, Adler, Edwards, Hooker, & Ellner, 2016). On the other hand,
including more complex climate relationships will often require more data than the most studies have
(Salguero-Gémez et al., 2015; Teller et al., 2016). Simulations show that exclusion of these complexities
could have significant effects on population level inferences (Evers, Knight, & Compagnoni, in revision).

Being able to understand how climate interacts with other (a)biotic factors can be incredibly useful
in conservation efforts, when these (a)biotic factors can be manipulated in conservation efforts (e.g.,
Martorell, 2007). For example, non-targeted species can be removed to decrease light competition
(Canham et al., 1990). However, when removing other species, especially trees and shrubs, other
functions, such as soil-moisture retention (Rickard, 1967), will be lost. Unfortunately, the effect of
climate on plant vital rates is a data intensive question requiring a minimum of 20 years for multiple
sites (Tenhumberg et al., 2018) and investigating interaction effects will increase the required amount
of data. With the median length of plant demographic studies well below the required length, at 5
years (Salguero-Gémez et al., 2015), it is vital that we thoroughly explore the climate effects and
interactions in the few datasets that have the required length and try to find trends that can be applied
to other species with less data available (e.g., Evers et al., 2021)

Dracocephalum austriacum is a prime example of a species with sufficient data available to
investigate the effects and interactions of climate. Dracocephalum austriacum is an endangered
species of open rocky outcrops, and conservation efforts have focused on removing encroaching shrub
and tree species at these localities. The aim of removing the encroaching individuals was to decrease
the level of shading experienced by D. austriacum individuals. However, after several drought years,
survival of individuals appeared to be significantly higher in areas with more encroachment and

shading (personal obs. T. Dostalek). Other efforts to conserve the species also include population
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reinforcement by transplants pre-cultivated in controlled conditions. A previous study of eight years
on seven populations in the French alps, has shown that the effect of temperature can depend on the
slope of the locality (Nicole, Dahlgren, Vivat, Till-Bottraud, & Ehrlén, 2011).

In this manuscript, we analyse 16 years of a long-term dataset of four populations of D. austriacum
in the Czech Republic. This dataset has been previously analysed when four yearly transitions were
available (Dostalek & Miinzbergova, 2013), but the populations have been continuously monitored
since then. Here we will take advantage of this increased dataset and new methods developed. We
investigate the effect of climate and several (a)biotic factors (shading, slope, soil depth and rock
presence) on the vital rates and population growth rate of the four D. austriacum populations. Finally,
we forecast the development of the populations under several future climate scenarios, investigating

what effects these different factors and future climate will have on the monitored populations.

Method

Species

Dracocephalum austriacum (Lamiaceae) is a long-lived perennial species growing on rocky steppes
with a range from North-East Spain to central Europe and to Turkey (IUCN 2021). Although as of 2011
D. austriacum was classified by the IUCN as data deficiency, it is clear that populations are scarce
throughout its range and these populations are mostly small and declining (Bilz, 2011). This species
was suggested to form persistent seed bank (Dostalek & Miinzbergova, 2013) eventhough its
importance for population dynamics has not been fully understood yet (Andrello et al., 2012; Dostalek
& Minzbergova, 2013). In the Czech Republic, open rocky habitats with characteristic species
(including D. austriacum) are being threatened by shrub and tree encroachment. In an effort to protect
the species, several populations have been put under active management. This management consists
of regular removal of shrubs and trees, such as Swida sanguinea, Rosa sp. and Fraxinus excelsior that

encroach upon D. austriacum populations.

Data collection

Individual level data for D. austriacum have been recorded in May/June from 2003 until the present
in four population in the Bohemian Karst in Central Europe (Dostalek & Miinzbergova, 2013). In this
study we will analyse data ranging from 2003-2019 These populations were; Haknovec (Hk), Cisarska
rokle (Cr), Kodska sténa (Ks) and Radotinské udoli (Ru). Exact coordinates are withheld for the
protection of the populations. Measurements taken during data collection include number of
vegetative stems, flowering stems, length of the longest stem, traits related to seed production on 2
randomly chosen flowering stems (length of flowering stem, inflorescence length, number of calices,

number of seeds). Each year localities were also searched for newly emerged seedlings which were



Chapter 4

defined as new plants with one thin stem up to 10 cm long. In addition to the yearly census,
experiments were performed to understand the species seedbank dynamics. We estimated the
percentage of viable seeds produced by cutting 100 seeds and visually checking if the embryo was
developed. This resulted in assumption that 45% of the sown seeds were viable. Next, to estimate
survival of the seeds in the seed bank, we buried a total of 9 nylon bags at Hk locality, each containing
50 seeds in autumn 2015. Specifically, we buried 3 bags, at 3 different locations at Hk. Next, we
excavated three seed bags (one at each site) in the following three years (May 2017, 2018, 2019) and
checked seed viability by cutting and visually checking embryo as before. On average, 8.9% and 5.9%
seeds survived after two and three years, respectively. After three years, there were no viable seeds
found.

Data on herb and shrub encroachment (hereafter shading), soil depth, slope and rock presence has
been recorded on the individual plant level. Herb and shrub encroachment were estimated on a scale
from 0 to 10, where 0 was characterized as no other plants present within 20 cm and 10 as very dense
herb and/or shrub vegetation, with the D. austriacum individual completely overgrown. Soil depth was
determined for each individual using a nail pushed into the soil in three random places within 5 cm of
the individual. Slope was estimated on a microsite of 20x20 cm with the D. austriacum individual in
the center. Finally, rock presence was estimated as proportion in % of rock or larger stones on the

same 20x20cm microsite.

Climate data

Climate data and future climate projections used in our analyses were obtained from CHELSA. We
retrieved historical monthly climate values from 2001 to June 2019 of mean daily air temperature (tas)
and precipitation (pr) from CHELSA V.2.1 (Karger et al., 2017, 2018). We also retrieved monthly tas and
pr projections from the cmip5 time series (Karger, Schmatz, Dettling, & Zimmermann, 2019, 2020) for
2022 to 2100. Next we calculated the potential evapotranspiration (PET) for both the historical climate
and the future projections using the SPEI package (Begueria & Vicente-Serrano, 2017) in R (R Core
Team, 2021). We include PET in our analysis as this variable combines temperature and precipitation
to reflect the potential water lost to the plants. Although PET is available for the historical data from
CHELSA, we used our calculated PET values for consistency across the historical and future climate
(correlation between calculated PET, and PET available from CHELSA =0.92). Finally, we calculated the
mean and standard deviation of the historical tas, pr and PET. We used these values to transform the
historical and future climate values into climate anomalies (Z-scores).

We also created two ARIMA (Autoregressive Integrated Moving Average) models without drift
based on 30 years (World Meteorological Organization, 2017) of climate data. Using ARIMA models,
we are able to simulate monthly climate values, with the same autocorrelations as in the climate data.

The first set of ARIMA models (historical ARIMA hereafter) was created using historical tas, pr and PET
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from 1989-2018. This time period was chosen as the most historical period, that still included all the
census years of D. austriacum and the most recent year with complete CHELSA data available. The
second set of ARIMA models (future ARIMA hereafter) were based on forecasted monthly values of
tas, pr and PET, from 2071-2100, which are the last 30-years of the future projections. As these models
will be used to run long-term simulations (10,000 time-steps), we did not include drifts in the ARIMA

models. As such, these models represent “stable” historical and future climate.

Vital rate models

We modelled five vital rates as being size dependent on the (log transformed) number of stems.
These vital rates were: survival probability (s), change in size (g, hereafter growth, although shrinkage
is also possible), flowering probability (f,), seed production probability (a,) and number of seeds
produced (seed,). We used Functional Linear Models (FLM) to investigate which of the environmental
and climate covariates had the best predictive power (Teller et al., 2016). We included a range of two
years of past data (details next paragraph) for each of the climate variables (tas, pr and pet) separately,
as well as the other recorded environmental variables (shading, slope, rockiness and soil depth).
Finally, we also considered interactions between the climate and environmental variables. All models
include population (Hk, Cr, Ks and Ru) as fixed effect, and year as random effect. Climate data was
monthly data, shading was used as a yearly value and slope, rockiness and soil depth were available as
one value per individual. To test if a climate variable, environmental variable, or an interaction
between climate and environment had the best predictive power, we used AIC to select the best
model.

Functional Linear Models (Ramsay & Silverman, 2005) are a great tool to link climate drivers to
demography, and are excellently explained by Teller and colleagues (2016) in this context. However,
in short, these FLMs are models that include (in our case) 2 years of monthly climate effects, using a
smooth function in a gam model, using the mgcv package (Wood, 2017) in R (R Core Team, 2021). With
this method, the autocorrelation within the time range considered is accounted for. To test for
interactions between climate and environmental drivers, we included climate interactions with the
environmental covariates as tensor products. Because we included these interactions, we were not
able to use 24 knots (i.e. one knot per month as done in Teller et al. (2016)). Instead, we used 8 knots
for the s and g models and 5 knots for the f,, a, and seed, models resulting in knots every 3-, or 5-
months rather than one for every month.

Using the results of the seed experiments, we calculated the proportion of seeds produced in time
t that were viable at the census in t 4+ 1 (seeds1). We also calculated the probability of seeds surviving
in the seedbank from t + 1 to t + 2 (seeds;) and from t + 2 to t + 3 (seedsss). Then, using these

survival probabilities, the observed number of seeds produced in the years from t — 2 to t and the
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number of new seedlings observed in year t + 1 we estimated the germination probability. Finally, we

estimated the size distribution in t + 1 of seedlings in t that transfer to the adult stage (sdl;).

Population model

To investigate the long-term population level effects, we created an Integral Projection Model (IPM)
using ipmr (Levin et al., 2021). This IPM consist of 3 discrete stages (Seedbank year 1 (B;) and year 2
(B3) and Seedlings (Sdl)) and 1 continuous stage (plants (n)). Transition probabilities and sub-kernels
were based on the vital rate models described in “Vital rate models” above. The full IPM equation looks

as follows;

U
Buea = [ IF@InG0dz x (1~ germ)
L

Byty1 = seedsy * By (1 — germ)

U
SDL;yq = U [F(z',z)]n(z,t)dz + seedgz * B, + seeds, * By.|* germ
L
U
n(z',t+1) = f [P(z',2)In(z,t)dz + sdl; * sdly(z") * SDL,
L

Where germ is the germination probability of a seed, seed, and seedy; are seed survival
probabilities in the second and third year respectively, sdl; is the average seedling survival probability
and sdl;(z") is the size distribution of seedlings that enter the continuous plant stage (n). U and L are
the upper and lower limits of integral (In(size) = 0 and 4.121 resp.). These limits correspond to the
smallest size possible and 120% of the largest observed log-transformed size (stems = 31). We
integrated this IPM using the midpoint rule, and 100 mesh-points and we corrected for unintentional
eviction using a truncated distribution.

Finally, F(z',2) and P(z’, z) are the fecundity and survival/growth sub-kernels defined as:

F(z) = f,(2) x a,y(2) * seedy(z) * seed;

P(z',z) = s(z) » g(z', 2)

Where f,(2), a,(2), seed,(z), s(z) and g(z’, z) are the flowering probability, seed production
probability of a flowering individual, number of seeds produced by a seed producing individual, survival
probability and growth, described above in the “Vital rate models” section. To prevent extreme values,
seed,, (z) was limited to 515 which is about 3.8 times the maximum observed (=137).

To create long-term population growth rate for our populations, we iterated our IPMs several times
for 10,000 timesteps. We used either the historical or future ARIMA models to create climate

sequences. We also ran the IPMs for four different levels of shading (0, 2, 4, and 6). We did not include

eq. 1

eq.2

eq. 3

eq. 4

eq. 5

eq. 6
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slope, soil depth or rockiness in our IPM simulations as our analyses of the vital rate models found that
of the environmental covariates, only shading was included in the best models.

Next, we used an Individual Based Model (IBM) to investigate the short-term extinction probability
for our populations. The structure of our IBM followed the structure of the IPM and vital rate models.
We set our extinction threshold to 10 adult individuals as this is the minimal population size able to
survive for longer time (T. Dostalek, pers. obs.). Using the forecasted climate anomalies from CHELSA,
we forecasted population numbers from 2022 to 2100. To analyse if and how much climate change is
speeding up extinction probability, we also forecasted the populations for an equal amount of time,

using climate sequences simulated from the historical ARIMA models described above.

Results

Vital rate models

For all the vital rates (survival, growth, flower probability, seed probability and number of seeds)
the model with the lowest AIC score included a climate-by-shading interaction. As such we show the
results using poisson distributions with lambdas of 0, 2, 4 and 6 to simulate shading levels. These values
symbolise a range of decrease, stable and increase in the shading level experienced by the populations,
whose shading distribution during monitoring had a lambda ranging from 2.2 to 3.6 (Figure S1A).

For survival, flowering probability and number of seeds the selected climate variable was potential
evapotranspiration (PET), whereas for growth and seed probability, the selected climate variable was
precipitation. Shading had very small effect on the effect of climate on growth (Figure 1B). For
flowering probability, and the probability to produce seeds higher shading levels increase the effect of
climate, but we see no large difference of effect of climate across the two years before census
considered in the analyses (Figure 1C&D). We do see changes of the effect of climate through the two
years of climate before census in survival and number of seeds produced (Figure 1A&E). We see that
PET can have a positive and negative effect on survival and seed number, depending on when it is.
Moreover, we see that lower and higher shading levels lead to more variability in the response to PET
in survival and seed number respectively. The full model summaries for the vital rates can be found in
Supplement S3.

Our long term IPM shows that higher levels of shading results in higher stochastic population
growth rate, As (Figure 2). We also see that the effect of shading is a larger under most of the future
climate models. However, under the RCP 4.5 scenario (Figure 2) three of the four climate models show
significantly larger decreases in A; compared to the historical climate. Under the RCP 8.5 scenario this

is true for all models (Figure S2).
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In our short-term (until 2100) forecasts using individual based models, we see that almost all
populations will drop below the extinction threshold (10 adult plants) before 2100 if there is no, or low
shading. Here we present the results of our analyse using historical climate and the projected climate
from the CMCC model. We choose to show the CMCC model projections, as our IPM analyses indicates
this to be the second best for D. austriacum, in terms of population growth rate. The results of the
other models, can be found in the Supplement (S5). Moreover, extinction will most likely occur faster
due to predicted climate change (Figure 3). Ks will most likely go extinct, regardless of shading level or
future climate scenario. Our IBM also shows that this would have been the case, even without climate
change (Figure S5). Cr and Ru might be able to persist until 2100 under a shading level of 6. However,
we only see persistence with the CMCC climate model for both populations (Figure 3), and MIROCS for

Cr (Figure S5). We also see stronger effects of shading for Hk, compared to the other populations

(Figure S5).
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Figure 1. Effect of Potential Evapotranspiration (A,C,E) and precipitation (B,D) in the Functional Linear Models for survival
(A), growth (B), Flowering probability (C), Probability of producing seeds for a flowering individual (D) and the number of
seeds per seed-producing individual (E) for Dracocephalum austriacum.

79



80

Evers

Cr Hk Ks Ru
O-
.. -"'.__ — () T I 1 oo 2N T -0
oZ ¢ e //) ’ ’/' /J
7 A | s r P /. e ./ [ ]
T T i : N A A
S & . Al VAN RN & .
£ /
° ] YL - | 7 /8
® /1 i " . /1
:':.-_1- /1 /I /’ / !
g / ! / I I / !
o / ] /. 1 /, !
= 1
o A ! ~ ] ! 1 (
5 s d ! /1 s
s ' ' .
a I 1 "’l !
_%-2' I ! // I} i
@ ! 1
£ /J ] !
2 l’ !/, ! /‘
2 I
- -
.” ! 'z
3 ' ’,'
-3- -
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Shading level

Climate model
—»— Historical = = ACCESS1 -®  CESM1 - CMCC -+ MIROC5

Figure 2. Long-term population growth rates of Dracocephalum austriacum predict large decreases of population sizes, but
significantly less decrease under higher levels of shading. Stochastic population rates, calculated using long running integral
projection models, and ARIMA models of the historical climate and 4 future climate projections under Representative
Concentration Pathway scenario 4.5.



Population size

Chapter 4

Historical CMCC

2020 2040 2060 2080 21002020 2040 2060 2080 2100
Simulation year

Figure 3. Most populations of Dracocephalum austriacum are predicted to drop below extinction threshold (<10 individuals)
faster under future climate, and with lower shading levels. Simulations were run from 2023 to 2100, using climate simulated
from a historical ARIMA model or forecasted climate by the CMCC circulation model. Population simulations were done
under different shading levels, using an Individual Based Model. Each line represents a separate simulation run (n=30 per
shading level/locality/climate model).
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Discussion

With an increase in endangered and at-risk populations as well as species due to climate change
(IPCC, 2014; Urban, 2015), the need for conservation actions has increased. However, it is important
that we assess conservation actions, in the light of the projected changes in climate. Here we analysed
a long-term dataset of four Dracocephalum austriacum populations. We investigated both the effect
of climate and of several other (a)biotic factors on the populations. These populations have been under
active management through the removal of encroaching interspecific individuals to reduce shading.
We found vital rates with clear long-lasting climate effects. All vital rate models included an interaction
of climate with herb and shrub shading. These outperformed all other vital rate modes with or without
interactions. Contrary to the aim of conservation actions already in place, we found that higher levels
of shading are actually beneficial for all the populations. This is true under current climate, but
especially obvious for our projections under future climate. Nevertheless, almost all projections using
forecasted climate show drastic decrease in population growth rate and earlier extinction.

Our results show that survival probability and number of produced seeds are mostly likely sensitive
to two different consequences of herb and shrub encroachment. Specifically, these two vital rates
show large differences in their sensitivity to climate, based on the level of shading. For survival
probability, lower shading levels result in more variability, whereas number of seeds shows more
susceptibility to climate with higher shading levels. Such climate and habitat interactions, leading to
opposing trends in sensitivity and directional responses have been found in the literature before
(Fernandes, Maguas, & Correia, 2017). We suspect that these opposing responses of survival and seed
production in D. austriacum are being driven by two opposing consequences of encroachment.
Conservation efforts for D. austriacum have focused on the removal of encroaching individuals to
reduce the light competition (e.g., Dormann et al., 2020; Funk & McDaniel, 2010). However, shrubs
also assist in soil moisture retention (Rickard, 1967), and removal will most likely decrease the water
available to D. austriacum individuals. Our results indicate that the number of seeds produced is most
likely limited by light availability, as under higher shading levels, the number of seeds produced
becomes more sensitive to potential evapotranspiration (PET). On the other hand, survival is more
sensitive to climate under lower levels of shading. This suggests that survival benefits from the
presence of other herbs and shrubs, because of higher water availability. This hypothesis is supported
also by personal observations during drought years, where most of the surviving individuals were
located in more shaded and wetter areas.

The fact that both our long-, and short-term forecasts show a clear benefit of higher shading levels,
despite contrasting effects of shading on the vital rate level, can most likely be explained by the
difference in sensitivity of the population growth rate to the vital rates (Salguero-Gémez et al., 2016).

Long-lived perennials are usually most sensitive to variation in survival. Survival varies less under
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higher levels of shading, which is beneficial to the stochastic population growth rate (Tuljapurkar,
1990) and thus results in better forecasts for the populations under higher shading levels.

Our study is also a great example of the importance of long-term studies in properly understanding
population dynamics. In this study, we analysed a 20-year dataset of D. austriacum. This same dataset
has been previously analysed, however, at that time, only four years of data were collected (Dostalek
& Miinzbergova, 2013). These four years, did not include very dry years, and as such no serious effects
on plant survival were found and the variability in climate effects on vital rates was very small.
Moreover, overestimation of seedbank dynamics resulted in inaccurate buffering of many (climate)
effects (Dostdlek & Miinzbergova, 2013).

Although we did not find significant effects of pollen supplement on population growth rate in our
previous study (Castro, Dostalek, van der Meer, Oostermeijer, & Minzbergovd, 2015), there were
significant effects on seed production. As this was done using models with our short term data with
overestimated seedbank (Dostalek & Miinzbergova, 2013), it might be possible that future climate
changes might also affect pollinator communities and consequently D. austriacum population
dynamics. More research will be needed to determine if these changes will be positive or detrimental
for our populations.

Another study on D. austriacum population dynamics also found strong effects of climate on
population dynamics and vital rates. Nicolé and colleagues (Nicolé et al.,, 2011) found effects of
temperature and slope of the population on survival probability. However, they did not consider
precipitation or PET, which our result show results in models with better predictive power than
temperature. Moreover, the populations analysed by Nicolé et al. (2011) were located between 1300
and 2000 m asl (Bonin, Nicole, Pompanon, Miaud, & Taberlet, 2007), which is significantly higher than
our populations (240-350 m asl). This makes direct comparison slightly more complicated. However,
Nicole et al. (2011) observed that D. austriacum occurs in patches with low competition, and speculate
that shrubs and trees might have a detrimental effect on the populations. This is contrary to our
findings, however, it is not uncommon to find contrasting climate effects across elevation (e.g., Dolezal
et al., 2021).

Finally, our study also has implications for the conservation efforts of this species and possibly other
species. Current conservation efforts of D. austriacum are focused on the removal of encroaching
individuals that provide shading, under the assumption lower shading levels to be beneficial for the
populations. This is in sharp contrast with our results, that indicate that low levels of shading will be
detrimental for the perseverance of the populations. That we find such a contrast between current
management strategies, and our results, suggests similar analyses might be needed for other species
currently under management. For D. austriacum, we do not have many observations of high (>8)

shading levels, despite our extensive dataset. Rather than removal of (almost) all encroaching

83



84

Evers

individuals we therefore suggest more heterogeneous approach. We suggest that this approach
focusses on preventing full encroachment, and strategic removal of encroaching individuals so patches

of high shading remain as a refuge in cases of drought.
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S1 Shading distribution
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Figure S1. The shading distribution of the different localities is close to a poisson distribution with lambda of 2-4. A shows
the shading distribution observed in the four different localities (Cisarskd rokle (Cr), Haknovec (Hk), Kodska sténa (Ks) and
Radotinské udoli (Ru) during monitoring. B shows the distributions of the different shading levels used in the individual
based model in the main manuscript.
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S2 Climate model distributions
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S3 Vital rate models summaries

Survival

##

## Family: binomial

## Link function: logit

##

## Formula:

## survival tl ~ In_stems_t®@ + population + s(year_t@, bs = "re") +
#it te(lags, tot_shading m, k = lag/3, by = pet_scaledcovar)
#it

## Parametric coefficients:

it Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.84174 0.17323 10.632 < 2e-16 ***

##
##

In stems t6 ©.95183 0.09532 9.986 < 2e-16 ***
populationHK ©.42493 0.21702 1.958 0.05023 .

## populationkS -0.57463 0.20587 -2.791 0.00525 **

## populationRU ©.33272 0.27250 1.221 0.22209

## ---

## Signif. codes: © '***' @9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

#it

## Approximate significance of smooth terms:

H## edf Ref.df Chi.sq p-value
## s(year_to) 1.453 10.00 2.965 0.0295 *
## te(lags,tot_shading_m):pet_scaledcovar 13.546 17.01 168.594 <2e-16 ***
## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

#it

## R-sqg.(adj) = ©.313 Deviance explained = 32.9%

## UBRE = -0.49772 Scale est. =1 n = 2375

Growth

#it

## Family: gaussian

## Link function: identity

#it

## Formula:

## 1n_stems tl ~ 1n_stems_t@ + population + s(year _t@, bs = "re") +

it te(lags, tot_shading m, k = lag/3, by = pr_scaledcovar)

#it

## Parametric coefficients:

##
##
##
##
##
##
##
##
##
##
##
##
##

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.37550 . 34855 1.077 0.2815
ln stems _to 0.85774 .01092 78.530 <2e-16 ***
populationHK -0.01159 .02821 -0.411 0.6812

OO0

populationKS -0.03906 .02848 -1.371 0.1704
populationRU -0.10857 .06527 -1.663 0.0964 .
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:

edf Ref.df F p-value
s(year_t0) 7.802 10.00 7.832 < 2e-16 ***
te(lags,tot_shading m):pr_scaledcovar 14.868 15.34 2.144 0.00535 **
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#H# ---
## Signif. codes: © '***' 9.001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1
#it

## R-sq.(adj) = ©.762 Deviance explained = 76.5%

## GCV = 0.22615 Scale est. = 0.22198 n = 2099

Flower probability

##
## Family: binomial
## Link function: logit

##

## Formula:

## flower_p_t@ ~ 1n_stems_t@ + population + s(year_t@, bs = "re") +

Hit te(lags, tot_shading_m, k = lag/5, by = pet_scaledcovar)

#i

## Parametric coefficients:

it Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.7306 0.5162 -3.353 0.000801 ***

## 1ln_stems_to 1.3681 0.2152 6.357 2.06e-10 ***

## populationHK  0.5443 0.4269 1.275 0.202341

## populationks 0.7380 0.4678 1.578 0.114680

## populationRU -0.0909 0.7974 -0.114 0.909246

## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

H## edf Ref.df Chi.sq p-value
## s(year_to) 5.201 9.000 17.615 0.000763 ***

## te(lags,tot shading m):pet_scaledcovar 6.668 8.258 6.872 0.599962
## ---

## Signif. codes: © '***' 9,001 '**' 0.01 '*' @.05 '.' 0.1 ' ' 1
##

## R-sqg.(adj) = ©.353 Deviance explained = 33.4%

## UBRE = 0.086963 Scale est. =1 n = 235

Abortion probability

#it

## Family: binomial
## Link function: logit

##

## Formula:

## seed p t@ ~ 1n_stems _toO + population + s(year_t@, bs = "re") +
it te(lags, tot_shading m, k = lag/5, by = pr_scaledcovar)

#it

## Parametric coefficients:

Hit Estimate Std. Error z value Pr(>|z|)

## (Intercept) -21.9761 42.0983 -0.522 0.6017

## 1n_stems to -0.3525 0.3679 -0.958 0.3381

## populationHK 3.6370 1.5012 2.423 0.0154 *

## populationks 0.3990 1.3283 0.300 0.7639

## populationRU 7.8611 39.8630 0.197 0.8437

## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

##
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## Approximate significance of smooth terms:

H## edf Ref.df Chi.sq p-value
## s(year_t0) 5.419 9.00 5.271 0.114
## te(lags,tot_shading_m):pr_scaledcovar 16.108 17.06 11.111 ©0.853
##

## R-sq.(adj) = ©.516 Deviance explained = 59.7%

## UBRE = -0.0083258 Scale est. =1 n =131

Number of seeds

##
## Family: Gamma
## Link function: log

##

## Formula:

## est _seed n_t@ ~ 1n_stems_tO + population + s(year_t@, bs = "re") +
it te(lags, tot_shading m, k = lag/5, by = pet_scaledcovar)

##

## Parametric coefficients:

#H# Estimate Std. Error t value Pr(>|t])

## (Intercept) 0.4927 0.6492 0.759 0.455

## 1n_stems_t© 0.8365 0.1427 5.861 3.46e-06 ***

## populationHK -0.2914 0.4155 -0.701 0.489

## populationKS ©.2220 0.3923 0.566 0.576

## populationRU -0.7187 2.1244 -0.338 0.738

## ---

## Signif. codes: © '***' 9,001 '**' @.01 '*' ©0.05 '.' 0.1 ' ' 1

#i

## Approximate significance of smooth terms:

H## edf Ref.df F p-value
## s(year_t0) 1.044 5.00 0.806 0.0147 *

## te(lags,tot_shading m):pet_scaledcovar 9.827 11.08 1.085 0.4066
## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

##

## R-sqg.(adj) = ©.652 Deviance explained = 77.2%

## GCV = 1.4211 Scale est. = 0.55483 n =42
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S4 Long term population growth rate
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Figure S4. Long-term population growth rates of Dracocephalum austriacum predict large decreases of population sizes, but
significantly less decrease under higher levels of shading. Stochastic population rates, calculated using long running integral
projection models, and ARIMA models of the historical climate and 4 future climate projections under Representative
Concentration Pathway scenario 8.5.
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S5 Short term population projections

Historical CESM1 CMCC MIROCS ACCESS1

. . . . C . . . o . . . " . . . " . . ' )
2020 2040 2060 2080 210@020 2040 2060 2080 210@020 2040 2060 2080 2102020 2040 2060 2080 210@020 2040 2060 2080 2100
Simulation year

Figure S5. Most populations of Dracocephalum austriacum are predicted to drop below extinction threshold (<10 individuals) faster
under future climate, and with lower shading levels. Simulations were run from 2023 to 2100, using climate simulated from a
historical ARIMA model or forecasted climate by the CESM1, CMCC, MIROC5 and ACCESS1 circulation models. Population
simulations were done under different shading levels, using an Individual Based Model. Each line represents a separate simulation
run (n=30 per shading level/locality/climate model).
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Chapter 5

Synthesis

Population models are a fundamental tool for ecologist to investigate the effects of climate
on population dynamics. As these models are built upon vital rate regressions, it is important
to use models that are as accurate as possible. This is a considerable challenge as the
relationship between climate and vital rates is complex. Although much research has been
done on the correlation between climate and vital rates, research in this dissertation shows
that the timing of climate drivers is a component often overlooked or wrongly modelled.
Considering the ongoing climate change and its threat to plant populations (Urban, 2015), it
is important that we improve our understanding of climate and vital rate correlations and thus

population dynamic forecasts.

Main findings

In chapter 2 | found a clear discrepancy between the timeframe of climate drivers
considered in the literature, and those that best predict the vital rates of the four plant species
I analysed. There is a clear preference in the literature to select recent (<12 months of census)
climate drivers, in particular climate drivers during the most recent growing season. It was
therefore surprising that the models with the best predictive power for the vital rates of my
species had timeframes mostly located in the dormant season, and had longer lags (> 12
months before census). While the selection method used in my analyses requires more data
than is usually available, | was able to link several climate driver time frames to physiological
processes that can assist future research to select better timeframes.

Having shown that current literature uses mostly similar time frames, but model selection
methods select more diverse timeframes, | investigated the effect on population level
inferences when more diverse timeframes were included. | found that although the directional
effects are dependent on many factors, the inclusion of temporally varied responses (TVRs)
could significantly influence population growth rate. Interestingly | found that the effect of
autocorrelation mediated through TVR was about 10x bigger than the direct effects of

autocorrelation on population growth rate.
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Finally, in chapter 4 | used a long-term dataset to investigate the effect of climate on four
Dracocephalum austriacum populations. In the analyses | incorporate many of the suggestions
from the previous two chapters. | show that the sensitivity of two vital rates to climate
depends on the shading level, but that the most sensitive shading level is reversed for these
two vital rates, indicating opposing mechanisms. | also show that under most climate
scenarios the population growth rate of D. austriacum is significantly lower than under

historical climate, resulting in earlier projected extinction.

Discussion

In Chapter 1 | briefly discussed the development of population models, and how ecologist
have continuously tried to improve existing methods by implementing increasingly realistic
assumptions. Trying to link climate to variation observed in population dynamics and models,
has been an equally long process (Andrewartha & Birch, 1954; Sutherland et al., 2013). Early
attempts focused on linking population level inferences (such as population growth rate) to a
priori selected climate drivers (e.g., Aanes et al., 2002). These analyses were necessarily
limited to population-level patterns and a small number of climate drivers, as tools and
computational power were not available for more in-depth analyses. It is interesting though,
that the development of more complicated models and analyses have been well received by
population ecologists, but at the same time, researchers appear to have stuck to the same a
priori selection of climate drivers, despite evidence pointing to other possibilities (Dalgleish,
Koons, Hooten, Moffet, & Adler, 2011; Fox, Ribeiro, Brown, Masters, & Clarke, 1999; Groffman
et al., 2001; Hacket-Pain et al., 2018).

It has mostly been recently that studies have started including climate drivers with more
diverse timing (e.g., Scott, Uriarte, & Bruna, 2021; Shryock, Esque, & Lee Hughes, 2014). The
development of several model selection methods and packages have played a great part in
this trend (Bailey & van de Pol, 2016; Gasparrini, Scheipl, Armstrong, & Kenward, 2017;
Ramsay & Silverman, 2005). Together, these methods and packages have helped develop our
understanding that often, the a priori selected climate drivers are not necessarily the ones
with the best predictive power. However, the research my co-authors and | have done in
chapter 2 is the first that explicitly challenges the expectation that climate drivers in the most

recent growing season drive the vital rates of herbaceous plants. Moreover, chapter 3 is the



first in combining the topic of timing with the many other components that influence long-
term population dynamics.

Being able to improve the predictive power of our vital rate models is always a goal we
should be aiming for. However, as ecologists, discovering the actual mechanisms through
which climate influences population dynamics is equally important. Including the possibility
of long lagged climate drivers, as done in chapter 2, can increase the difficulty in finding these
mechanisms. Lagged climate drivers can be caused through several mechanisms, many of
which can be hard to decipher (e.g., resource depletion; Crone, Miller, & Sala, 2009;
Tenhumberg, Crone, Ramula, & Tyre, 2018). However, lagged climate drivers caused by
processes like leaf pre-formation (e.g., Diggle, 1997), are most likely easier to link. It is worth
noting that being able to link the selected time frames in Frasera speciosa to leaf pre-
formation, was only possible by the fundamental biological research done by one of my co-
authors (Inouye, 1986). This highlights the importance of such hands-on biological research in
the time of rapid methodical and technological advances in ecology (e.g., Marzluff, Knick, &
Millspaugh, 2001; Palumbi, Gaines, Leslie, & Warner, 2003; Tay, Erfmeier, & Kalwij, 2018).

With climate change already influencing plant population dynamics in present day (IPCC,
2014), it is vital that we make the best of already existing datasets. In chapter 2 and 3 | show
how we can improve our predictions, but in Chapter 4 | show how research into population
dynamics can look like in a real dataset, when incorporating the conclusions of the two
previous chapters. Moreover, | have shown that doing so, can allow us to tease apart complex
climate relationships, with applicable implications in conservation. Unfortunately, for many
species there will simply not be enough time to gather the required amount of data (10-20
years; Tenhumberg et al., 2018; van de Pol et al., 2016) for these type of climate analyses
(Salguero-Goémez et al., 2015). Fortunately, there is a possibility that an increased reliance on
spatial replication can decrease the required monitoring years (Compagnoni, Evers, & Knight,
2022). Although this method could reduce the number of years required, it requires a high
time and resource investment in a very short time.

Whether we re-analyse old, long-term datasets, planned short-term datasets with enough
spatial replication, or anything in between, using the correct climate drivers is still vital. Using
less optimal climate drivers will results in less accurate population forecasts, especially when
historical existing climate (auto)correlations changing under climate change (Di Cecco &

Gouhier, 2018; IPCC, 2014).
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Future directions

Next, | would like to share some of my thoughts on the areas of further research and new
qguestions prompted by this dissertation.

First, although | have been able to link certain physiological processes to lagged climate
drivers, other processes or mechanisms can be a lot harder to detect. It would require a lot of
demographic and physiological research which might not be possible for every species. As
such it would be interesting to investigate if there are proxies, such as life history traits, that
can be used to predict appropriate timeframes. It would not be unexpected to find a
correlation with traits in the fast-slow continuum (Salguero-Gémez et al., 2016). | have already
started this effort through the supervision of a master thesis, but much work still needs to be
done.

We have also now gained a thorough understanding of how temporally varied responses
can influence population growth rates, thanks to the simulations in chapter 3. The strength of
simulation studies is in the simplification, which allows us to thoroughly study the aspects of
interest, without other complexities convoluting the mechanisms. However, this simplification
also means that in real examples, the conclusions of the simulations are less clear. It would
therefore also be interesting to further explore how population growth rates change using
empirical examples. These will present different timings of climate drivers, and different
forecasted climate sequences.

For the population analysis of Dracocephalum austriacum, there are still some interesting
guestions to address. It is clear that this species will suffer from climate change, and that
current conservation actions will probably not be enough to save the populations from
extinction. Previous efforts have been made to transplant small individuals from botanical
gardens into the monitored, and unmonitored populations. If these efforts are to be repeated
(pers. comm., T. Dostalek), the population model build for chapter 4 could be used to
investigate how many and how often transplants are needed to save the populations from
extinction. Alternatively, it might be possible to use seed addition rather than transplants. This
would require less effort, but a significant, yet to be investigated, amount of seeds would be

needed.



Conclusion

We need to start considering different timeframes. Not doing so, might not only result in
VR regressions with lower predictive power, but it could also lead to different population level
conclusions. More complex vital rate regression models (Chapter 3) can also point us to
different processes through which climate influences population dynamics. In the end, this
dissertation has shown that climate driver timing can be complex and alter population
dynamics, but it is absolutely possible and necessary to include these complexities in our

research.
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2023

Oral presentation | 8" meeting of the Evolutionary Demography Society
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“Analysis and interpretation of stage-structured population models via RCOMPADRE, Rage,
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Workshop co-organizer | Ecological Society of America Annual Meeting
“ipmr: An R Package for Easy and Flexible Construction and Interpretation of Integral
Projection Models”
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