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Abstract 
T cells are key components of the defense system protecting our body from invading 

pathogens. Upon antigen recognition, T cells become activated and subsequently initiate 

specific cellular programs leading to proliferation, differentiation and acquisition of effector 

functions (e.g. cytokine production, cytotoxicity). Alterations in T-cell activation may lead to 

diseases such as, chronic inflammation, immunodeficiency, allergy, and cancer. Therefore in 

my study, I investigated how T-cell activation is regulated. In particular, I focused on the 

analysis of the dynamics of T-cell activation. As a model system, I used primary human  

T cells. Cells were stimulated to induce either transient or sustained T-cell activation. These 

two different activation dynamics correlate with apoptosis/unresponsiveness (anergic-like 

state) or proliferation, respectively. I studied how the execution of these two cellular 

programs is regulated at the molecular level. I found that transient signaling corresponds with 

strong activation of tyrosine kinases and phospho-tyrosine-dependent signaling, which 

induce negative feedback loops thereby terminating T-cell activation. Conversely, sustained 

signaling is associated with a positive feedback circuit between Lck (a crucial tyrosine kinase 

involved in initiation of T-cell activation) and ERK, which is required to modulate Lck activity, 

hence prolonging signaling. 

In the second part of my work, I focused my investigation on how the dynamics of Ras-ERK 

activation are regulated. This cascade is critical for the specification of cellular responses in 

many cell types. In T cells, the Ras-ERK cascade is activated by the combined action of two 

guanine nucleotide exchange factors, Sos1 and RasGRP1. I found that RasGRP1 is 

necessary for the activation of ERK under conditions inducing both transient and sustained 

signaling, whereas Sos1 appears to be dispensable for transient, but required for sustained 

ERK signaling. In conclusion, I showed for the first time how TCR-mediated signaling 

dynamics are regulated in primary human T cells.  
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1. Introduction 

1.1. The immune system 

The natural environment is filled with a plethora of microorganisms, which may induce 

infections or diseases. In order to protect our body from these pathogens, we are equipped 

with a sophisticated network of defense mechanisms known as the immune system. The 

immune system can be divided into two major parts: non-specific or innate immunity and 

specific or adaptive immunity. 

Innate immunity is the first line of defense. It responds very fast to invading pathogens, as 

the defenses of the innate immune system are constitutively expressed and hence they can 

instantly react. However, the innate immunity is not specific. This means that cells of the 

innate immune system recognize pathogen-associated molecular patterns (PAMPs), which 

are common to many pathogens. Phagocytic cells, natural killer (NK) cells, the complement 

system, and other secreted soluble factors constitute the innate immune system. 

Additionally, physical barriers like the skin and mucosa are also components of innate 

immunity. This type of defense is evolutionary older than adaptive immunity and it does not 

possess immunological memory (see below).  

On the other hand, the adaptive immunity is induced upon infection and thus represents the 

second line of defense. It is composed of highly specialized cells, such as B and  

T lymphocytes, and soluble factors such as antibodies. Lymphocytes synergize together in 

order to protect the body from foreign pathogens. In fact, T lymphocytes are required for 

proper activation of B cells and antibody production. Moreover, the adaptive immunity is 

characterized by the presence of immunological memory. This means that after the first 

encounter with a pathogen the adaptive immunity develops experienced T- and B-cell 

subsets, which are able to rapidly respond upon a re-encounter with the same pathogen 

(Chaplin, 2006). 

 

1.2. T lymphocytes 

T cells are essential for adaptive immunity, as they directly recognize and respond against 

pathogens. Moreover, T cells are also required for the activation of other immune cells. All  

T cells arise from hematopoietic stem cell progenitors that are generated in the bone marrow. 

T-cell progenitors migrate from the bone marrow to the thymus, where they undergo a tightly 

regulated maturation process (Fig. 1.1). T-cell development in the thymus can be monitored 

by measuring the expression of surface markers defined as clusters of differentiation (CD), 

such as CD4 and CD8. Upon entering the thymic cortex via the post-capillary venules, 

lymphoid progenitors differentiate into immature T cells (thymocytes), which are 

characterized by the lack of CD4 and CD8 expression and are, therefore, called double  
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Figure 1.1. T-cell development. T-cell progenitors enter the thymus and undergo several stages of maturation. 

In the cortex they develop into DN (double negative) thymocytes and subsequently mature into DP (double 

positive) cells. DP cells are surveyed for their ligand binding affinity and they undergo either positive or negative 

selection. Cells expressing functional TCRs are then selected and commit to either the CD4 or CD8 lineage. 

Finally, fully mature SP (single positive) CD4+ and CD8+ T cells leave the thymus and migrate into the periphery 

(the figure was adopted from Germain, 2002). 
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negative (DN) thymocytes. DN thymocytes can be further subdivided by the expression of 

CD25 and CD44 into DN1 (CD25-, CD44+), DN2 (CD25+, CD44+), DN3 (CD25+, CD44-) and 

DN4 (CD25-, CD44-) (Fig. 1.1) (Godfrey et al, 1993). Chemokines induce the migration of the 

most immature thymocytes (DN1/2) from the cortex to the subcortex where they further 

mature into DN3 cells (Fig. 1.1). 

At the DN3 stage, thymocytes express the β chain of the T-cell receptor (TCR), which pairs 

with an invariant pre-Tα chain and with CD3ε, CD3γ, CD3δ, and TCRζ molecules to form the 

pre-TCR. Signaling via the pre-TCR is ligand independent, but indispensable for further 

maturation of DN3 thymocytes. Cells that fail to express a functional pre-TCR are arrested at 

the DN3 stage and die by apoptosis. This process is one of two major checkpoints during  

T-cell development and is called β-selection (Germain, 2002). 

The pre-TCR transduces signals inducing proliferation and further maturation to the DN4 

stage. Moreover, it also initiates allelic exclusion that will ensure that only one TCR β chain 

will be expressed in each cell. Subsequently, DN4 cells upregulate both CD4 and CD8 

molecules to become double positive (DP) thymocytes (Fig. 1.1). At this point, the β chain of 

the T-cell receptor forms a heterodimer with a randomly rearranged mature TCRα chain. At 

the end of this process, each cell bears a unique TCR. To verify the functionality of the 

mature TCR, a second developmental checkpoint, the so-called αβ-selection, takes place in 

the thymic cortex. Here, DP thymocytes are exposed to MHC (major histocompatibility 

complex) class I and II molecules complexed with self-antigens (Fig. 1.1). If a mature TCR 

interacts with weak/moderate affinity with self-peptide-MHC molecules, then DP cell will 

undergo positive selection. Positively selected cells will mature further and will be committed 

to either the CD4 or CD8 single positive (SP) T-cell lineages (Fig. 1.1). Conversely, if the 

TCR is not able to recognize self-peptide-MHC molecules, the DP thymocyte will undergo 

apoptosis (“death by neglect”) (Fig. 1.1). If DP thymocytes strongly react with self-peptide-

MHC molecules, which indicates that they have the potential to become autoreactive, 

negative selection will take place. These autoagressive thymocytes will be eliminated by 

apoptosis, thus preventing the development of autoreactive T cells (Fig. 1.1) (Germain, 

2002). These selection events are also known as central tolerance. 

Nevertheless, not all autoreactive T cells are deleted during negative selection. Therefore, 

other safety systems, called peripheral tolerance, will keep these autoaggressive T cells 

under control. Only a minor fraction of DP cells complete maturation and migrate to the 

periphery, where they circulate as naïve T cells until exposure to pathogens. Upon antigen 

encounter, naïve T cells will proliferate and become activated effector cells. Some of these 

cells will eventually differentiate into long-lasting memory T lymphocytes. 

As I have mentioned before (see 1.1), memory T cells are antigen-experienced and, 

therefore, respond much faster to reoccurring infections, thus enhancing the adaptive 
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immune response. T-cell activation is tightly regulated in order to ensure the clearance of the 

pathogens without causing chronic inflammation and autoimmunity. 

Mature naïve and memory T cells circulating in the periphery are divided into two major 

subsets, T helper (Th) and T cytotoxic (Tc) cells. These subpopulations can be distinguished 

by the expression of the surface markers CD4 and CD8. Th cells express CD4, whereas  

Tc cells express CD8, respectively. 

Th cells function as mediators and regulators of immune responses. They orchestrate the 

activation of other immune cells (e.g. B lymphocytes, macrophages etc.) by producing 

cytokines (i.e. interleukins). There are several subsets of Th cells, which are divided 

according to their function and cytokine profile: (i) Th1 cells produce IFNγ (interferon gamma) 

and activate macrophages in order to increase killing of intracellular pathogens and further 

support the activation of Tc cells; (ii) Th2 secrete a variety of interleukins to augment antibody 

production by B cells; (iii) Th17 mainly produce IL-17 (interleukin 17) and provide  

anti-microbial defense; (iv) Tregs (regulatory T cells) produce IL-10 and TGFβ (transforming 

growth factor beta) to suppress immune responses thereby limiting chronic inflammation and 

autoimmunity (Zhu et al, 2008). 

Tc cells, the second T-lymphocyte subset, are responsible for the generation of cell-mediated 

immunity against intracellular pathogens, such as viruses. Tc cells recognize foreign antigens 

presented on MHC class I molecules, which are expressed, for example, on virus-infected 

cells. They kill the target cell by inducing programmed cell death (apoptosis). Apoptosis of 

the target cell can be induced either by the release of soluble factors such as perforin, 

granzymes, and granulysin, or by the engagement of the Fas receptor expressed on the 

target cell. 

In summary, mature naïve T cells and antigen-experienced memory T cells create a versatile 

defense mechanism crucial for adaptive immunity. 

 

1.3. Molecular events occurring during T-cell activation 

1.3.1. TCR engagement 

Given the importance of T cells within the immune system, I would like to describe the 

molecular events occurring during T-cell activation. First, I would like to focus my attention on 

the TCR, a surface receptor crucial for T-lymphocyte biology. The TCR regulates T-cell 

development, homeostasis, and activation. It is a heterodimer consisting of two highly 

variable chains, TCRα and TCRβ (or TCRγ and TCRδ in a minor T-cell population) 

connected by disulfide bond (Fig. 1.2). It is able to recognize peptides presented together 
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Figure 1.2. The structure of T-cell receptor (TCR/CD3) signaling complex. The TCR consists of two chains 

TCRα and TCRβ (shown in blue) containing constant (C) and variable (V) regions. The TCR/CD3 complex is 

formed from CD3δε and CD3γε heterodimers (shown in green), and two TCRζ chains (shown in violet). The 

ITAMs (immunoreceptor tyrosine-based activation motifs) required for signal initiation are indicated in red. 

 



12 
 

with MHC class I and II molecules. The TCRα and TCRβ chains of the TCR are composed 

of constant (C) and variable (V) regions (Fig. 1.2). The constant part is required for anchoring 

of the TCR to the plasma membrane, whereas the variable part contains the antigen-binding 

site (Fig. 1.2). V regions are generated by random joining of gene segments, thus creating 

the unique antigen specificity of the TCR. The TCRαβ heterodimer is associated with the 

CD3 and TCRζ molecules required for signal transduction. The full TCR/CD3 complex 

consists of a TCRαβ heterodimer, CD3εδ and CD3εγ heterodimers, and a TCRζζ homodimer 

(Fig. 1.2). Signaling downstream of the TCR/CD3 complex depends on the phosphorylation 

of distinct tyrosine motifs called immunoreceptor tyrosine-based activation motifs (ITAMs)  

located within the CD3 and TCRζ chains (Fig. 1.2). ITAMs include two characteristic amino 

acid sequences (YxxL or YxxI) separated from each other by 6 to 8 amino acids. The 

TCR/CD3 complex contains 10 ITAMs. 

T-cell activation is initiated upon the binding of the TCR to peptide antigens presented by 

MHC molecules expressed on antigen presenting cells (APCs). However, despite intense 

investigations, it is not yet fully understood how TCR-mediated signaling is initiated and 

several models have been hypothesized. The widely accepted hypothesis, called the 

segregation model, postulates that signals are triggered upon spatial reorganization of 

TCR/CD3 complexes and effector molecules (Fig. 1.3) (Davis et al, 2006). According to this 

model, TCR engagement leads to TCR oligomerization and to the formation of signaling 

microclusters also including crucial effector molecules such as Lck (lymphocyte-specific 

protein tyrosine kinase), but not negative regulators such as the phosphatase CD45 and the 

tyrosine kinase Csk (c-Src tyrosine kinase) (Fig. 1.3) (Torgersen et al, 2001; Choudhuri et al, 

2010; Borger et al, 2013; Rossy et al, 2013). Thus, according to this model, signaling is 

initiated upon the segregation of positive and negative regulatory molecules. 

 

1.3.2. Initiation of the TCR-mediated signaling by Src and Syk family kinases 

The TCR has no intrinsic catalytic activity and therefore it is closely associated with tyrosine 

kinases belonging to the Src and Syk family. Src (sarcoma tyrosine kinase) family kinases 

(SFKs) such as Lck and Fyn (feline yes-related protein) phosphorylate the ITAMs within the 

CD3 and TCRζ chains. It has been proposed that both Lck and Fyn are constitutively active 

(40% - 50% of the total pool) in T cells and maintain the basal level of TCR phosphorylation 

(Nika et al, 2010; Brownlie et al, 2013). This is necessary to provide tonic signaling required 

for T-cell survival (Seddon et al, 2002). In T cells, Lck can be associated with the CD4 or 

CD8 co-receptors expressed on the surface of Th or Tc cells, respectively. Upon TCR 

engagement, Lck is brought into close proximity of the ITAM chains in both a co-receptor-

dependent and -independent manner (Artyomov et al, 2010). According to the segregation  

 



13 
 

Figure 1.3. Molecular organization of TCR/CD3 complexes upon T-cell activation. (a) In resting T cells, 

TCR/CD3 complexes, effector molecules (e.g. Lck), and negative regulators (e.g. Csk, CD45) are randomly 

distributed throughout the plasma membrane. (b) Upon T-cell activation, TCR complexes oligomerize with effector 

molecules to form microclusters, whereas negative regulators are excluded from this clustering zone. 
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model discussed above (see 1.3.1), Lck and TCR/CD3 complexes are then sequestered 

from inhibitory molecules into microclusters (Fig. 1.3), where Lck will phosphorylate the 

ITAMs, thus initiating TCR-mediated signaling (Fig. 1.4).  

Lck is the apical tyrosine kinase in the signaling cascade and the mechanisms regulating Lck 

activation have been under intense investigation for more than 20 years. However, how Lck 

is activated upon TCR triggering is still not well-understood. According to the model 

proposed by Nika et al., and others, signaling is initiated upon translocation of the active Lck 

pool to the engaged TCR without the need of de novo Lck activation (Paster et al, 2009; Nika 

et al, 2010). However, a very recent study from our institute has challenged this model and 

proposed that a fraction of Lck is indeed activated at the triggered TCR (Stirnweiss et al, 

2013).  

Lck contains an N-terminal unique region (with two palmitoylation and one myristoylation 

sites required for lipid raft anchoring), an SH3 (Src homology 3) domain (necessary for 

interaction with other proteins via their proline-rich regions) followed by an SH2 domain 

(which binds phosphorylated tyrosine residues) and the kinase domain followed by  

a C-terminal tail (Fig. 1.5a). In addition, Lck possesses two critical tyrosine residues, Y505 

located in the C-terminus and Y394 located within the activatory loop of the kinase domain, 

which control Lck activation (Fig. 1.5a). Phosphorylation of Lck on Y505 results in the binding 

of the C-terminal tail to the Lck-SH2 domain thereby, generating a “closed” conformation and 

an inactive enzyme (Fig. 1.5b) (Xu et al, 1999). The phosphorylation of Y505 is mediated by 

Csk, which is a master negative regulator of TCR-mediated signaling (Schoenborn et al, 

2011). Conversely, the phosphatase CD45 is known to dephosphorylate Lck at  

the C-terminal tyrosine, leading to the so-called “primed” non-phosphorylated Lck (Fig. 1.5b) 

(Hermiston et al, 2003; Salmond et al, 2009). At this point, Lck can cluster and  

trans-phosphorylate on Y394 leading to the “opened” conformation, which corresponds to an 

active enzyme (Fig. 1.5b). It has been proposed that the “opened” conformation can be 

reverted by the phosphatases PTPN22 (protein tyrosine phosphatase non-receptor type 22) 

bound to Csk, SHP1 (SH2 domain-containing phosphatase 1), or CD45 (Cloutier et al, 1999; 

Salmond et al, 2009). Finally, “opened” Lck can be further phosphorylated on Y505 resulting in 

double phosphorylated, active form (Nika et al, 2010). Only “opened” and active Lck is 

capable to phosphorylate ITAMs and therefore initiate signaling.  
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Figure 1.4. Organization of TCR-mediated proximal signaling. After T-cell activation Lck phosphorylates the 

ITAMs of the TCR/CD3 complex, allowing recruitment and Lck-mediated activation of ZAP70. Subsequently, 

activated ZAP70 phosphorylates LAT and SLP76 adaptor proteins, thus facilitating formation of the LAT 

signalosome. The assembled LAT signalosome consists of LAT, Grb2, Gads, SLP76, ADAP, PLCγ1, Itk, Nck, and 

Vav1. Here, Itk is able to phosphorylate PLCγ1 which subsequently hydrolyzes PIP2 to DAG and IP3, second 

messengers required for the activation of PKC-, Ras-, and Ca++-mediated downstream pathways necessary for 

activation of the transcription factors AP1, NFκB, and NFAT, respectively. Activated AP1, NFκB, and NFAT drive 

the synthesis of the cytokine IL-2 to further support T-cell activation and proliferation. Phosphorylation of crucial 

molecules is indicated by red dots. 

 
Figure 1.5. Regulation of Lck. (a) Schematic representation of the Lck protein. Blue squares represent domains 

and red circles indicate possible phosphorylation sites with the corresponding amino acid indicated below. The 

structure of Lck is as follows: unique domain (UD), Src homology domain 3 (SH3), Src homology domain 2 (SH2), 

kinase domain (also known as SH1), and tail region. (b) Conformational changes of Lck representing “closed”, 

“primed” or “opened” form (figure 1.5b was modified from Acuto et al, 2008). 
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TCR-mediated signaling is further propagated upon recruitment of ZAP70 (zeta-chain-

associated protein kinase 70 kDa), a member of the Syk family, to the phosphorylated ITAMs 

(Fig. 1.4) (Isakov et al, 1995). Binding of its tandem SH2 domains to the ITAMs unlocks 

ZAP70, which is subsequently phosphorylated on Y315 and Y319 by Lck. Further  

auto-phosphorylation on Y493 completes ZAP70 activation (Pelosi et al, 1999; Deindl et al, 

2007; Acuto et al, 2008; Yan et al, 2013). Catalytically active ZAP70 is necessary for the 

phosphorylation of two adaptor proteins, LAT (linker of activated T cells) and SLP76 (SH2 

domain-containing leukocyte protein of 76 kDa), which constitute the center of an anchoring 

platform (LAT signalosome), which recruits additional cytosolic signaling molecules that are 

required to propagate signaling to the nucleus (Fig. 1.4) (Bubeck-Wardenburg et al, 1996; 

Paz et al, 2001). 

 

1.3.3. Assembly of the LAT signalosome and activation of downstream signaling 

LAT belongs to the transmembrane adaptor protein (TRAP) family and has nine tyrosine 

residues, which are phosphorylated upon TCR triggering (Fuller et al, 2011; Balagopalan et 

al, 2010). Phosphorylated LAT binds effector proteins such as PLCγ1 (phospholipase  

C gamma 1), the p85 subunit of PI3K (phosphoinositide 3-kinase), and the cytosolic adaptors 

- Grb2 (growth factor receptor-bound protein 2) and Gads (Grb2-related adapter protein 

downstream of Shc) (Fig. 1.4). Gads is constitutively associated with SLP76 (Liu et al, 1999). 

Upon recruitment of Gads to LAT, SLP76 interacts with PLCγ1, the proto-oncogene Vav1, 

the Tec family kinase Itk (IL-2-inducible T-cell kinase), and the adaptor proteins - Nck (non-

catalytic region of tyrosine kinase adaptor protein) and ADAP (adhesion and degranulation 

promoting adapter protein) (Fig. 1.4). Thus, by recruiting several cytosolic effector molecules, 

LAT and SLP76 coordinate the activation of different cellular signaling pathways (e.g. Ca++, 

PKC, Ras), which will ultimately culminate in gene expression, cytoskeletal reorganization, 

and T-cell activation (Smith-Garvin et al, 2009).  

The activation of the phospholipase PLCγ1 is of particular importance during T-cell 

activation. Upon binding to LAT and SLP76, PLCγ1 is phosphorylated on Y783 and hence 

activated by Itk. Subsequently, PLCγ1 hydrolyzes the membrane lipid PIP2 

(phosphatidylinositol-4,5-bisphosphate), producing the second messengers IP3 (inositol 

1,4,5-trisphosphate) and diacylglycerol (DAG) (Fig. 1.4). IP3 activates Ca++-dependent 

signaling, whereas DAG will initiate two major intracellular signaling pathways involving 

protein kinase C (PKC) and Ras (rat sarcoma) (Fig. 1.4) (Smith-Garvin et al, 2009). These 

pathways lead to the activation of three transcription factors – NFAT (nuclear factor of 

activated T-cells), NFκB (nuclear factor kappa light chain enhancer of activated B cells), and 

AP1 (activator protein 1), which are required for IL-2 synthesis (Fig. 1.4). IL-2 is an important 

cytokine for activated T cells, which enhances T-cell activation and proliferation. Therefore, 
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given the importance of NFAT, NFκB, and AP1, I will briefly describe the molecular events 

leading to their activation. 

Ca++-NFAT 

PLCγ1-generated IP3 activates IP3 receptors on the endoplasmic reticulum (ER) and leads to 

the release of Ca++ from cytoplasmic stores. Depletion of intracellular calcium opens calcium 

release activated channels (CRAC) on the plasma membrane, thus allowing the entry of 

extracellular Ca++. Rise of intracellular Ca++ is sensed by calmodulin (CaM), which binds and 

activates other proteins such as, calmodulin kinase (CaMK) and the calmodulin-dependent 

phosphatase calcineurin. Calcineurin dephosphorylates members of the NFAT transcription 

factor family, thus allowing their translocation into the nucleus to activate gene transcription 

(Smith-Garvin et al, 2009, Robert et al, 2011). 

PKCθ-NFκB 

The NFκB pathway is initiated by the generation of DAG at the plasma membrane. DAG 

production results in the membrane localization and activation of PKCθ. PKCθ is then able to 

phosphorylate CARMA1 (CARD-containing MAGUK protein 1), a member of a trimolecular 

CBM complex (CARMA1, Bcl10, and MALT1). Upon phosphorylation CARMA1 oligomerizes 

and associates with Bcl10 (B-cell lymphoma 10), and MALT1 (mucosa-associated lymphoid 

tissue lymphoma translocation protein 1). The CBM complex contributes to the degradation 

of the regulatory subunit of IKK (IκB kinase), thus unlocking the IKK catalytic site. Activated 

IKK phosphorylates IκB (inhibitor of kappa B) which keeps NFκB inactive. Phosphorylation of 

IκB leads to its degradation and release of NFκB. Ultimately, free NFκB molecules enter the 

nucleus and initiate gene transcription (Smith-Garvin et al, 2009). 

Ras-ERK-AP1 

Activation of the AP1 transcription complex, consisting of two proto-oncogenes Jun and Fos, 

depends on the Ras-ERK pathway. Ras is a small guanine nucleotide-binding protein that 

hydrolyzes GTP into GDP (GTPase). Ras is active in the GTP-bound state and inactive when 

loaded with GDP. Transition from the inactive to the active state is mediated by GEFs 

(guanine nucleotide exchange factors), which facilitate the release of GDP and promote the 

binding of GTP. During T-cell activation, GEFs are induced upon the assembly of the LAT 

signalosome (see 1.4.1). 

In activated T cells, RasGTP (active Ras) interacts with Raf (rat fibrosarcoma, MAP3K), a 

MAPK (mitogen-activated protein kinase) through its Ras binding domain (RBD). This 

association is necessary to unlock autoinhibited Raf from its “closed” conformation. “Opened” 

Raf can dimerize and trans-phosphorylate to achieve full activation. In turn, activated Raf 

phosphorylates and activates the dual specificity kinases MEK1/2 (mitogen-activated protein 

kinase kinase 1/2). MEKs are required for the phosphorylation of the crucial serine/threonine-

specific protein kinases ERK1/2 (extracellular signal-regulated kinase 1/2). Activated ERK is 
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essential for the generation of the AP1 transcription complex. ERK1/2 can modulate gene 

transcription directly (by phosphorylating and stabilizing Jun and Fos) or indirectly (by 

phosphorylating RSK [ribosomal s6 kinase] and ELK [ETS domain-containing protein] 

transcription activators). The phosphorylated AP1 complex controls the transcription of 

several genes and drives the expression of CD69, which is commonly used as a marker of T-

cell activation (Smith-Garvin et al, 2009). 

 

1.3.4. Additional signals supporting T-cell activation 

CD28-mediated co-stimulation 

In order to induce full T-cell activation, co-stimulatory signals are also required. In fact, 

ligation of the TCR alone (defined as signal 1) does not induce T-cell activation, but results in 

a non-responsive state called anergy. In addition to the TCR, co-stimulatory receptors deliver 

signals (called signal 2) during T-cell activation. Ligands for these receptors are expressed 

on APCs, such as dendritic cells (DCs), macrophages, and B cells. Among the co-stimulatory 

receptors in T cells, CD28 is one of the most studied. CD28 interacts with CD80 (B7-1) and 

CD86 (B7-2) molecules expressed on APCs. CD28-mediated co-stimulation synergies with 

T-cell receptor signals and promotes survival, clonal expansion, and differentiation (Rudd et 

al, 2009). 

Similarly to the TCR, CD28 lacks intrinsic catalytic activity and signals by recruiting effector 

proteins to its cytoplasmic tail. Engagement of CD28 by its ligands leads to Lck and Fyn-

mediated tyrosine phosphorylation of tyrosine-based signaling motifs (TBSMs) located within 

the CD28 cytosolic tail. The phosphorylation of the YMNM motif promotes the association of 

CD28 with the p85 regulatory subunit of PI3K and Grb2 (Okkenhaung et al, 1998). Recruited 

p85 binds to p110, the catalytic subunit of PI3K, which converts the phospholipid PIP2 into 

PIP3. In turn, PIP3 serves as a docking site for pleckstrin homology (PH) domain-containing 

proteins including PDK1 (phosphoinositide-dependent protein kinase 1) and its substrate 

PKB/Akt (protein kinase B/Ak thymoma). Recruitment of these molecules to the plasma 

membrane activates signaling pathways involved in cell metabolism and survival (Rudd et al, 

2009; Smith-Garvin et al, 2009). 

IL-2-mediated signaling 

In addition to TCR- and CD28-mediated signaling (signal 1 and 2), cytokines such as IL-2 

(signal 3) also play a role in T-cell activation and proliferation. TCR- and CD28-mediated 

transcriptional activation leads to IL-2 production and to the upregulation of the IL-2R (IL-2 

receptor). IL-2-IL-2R interaction provides a mitogenic signal leading to clonal expansion of 

activated T cells (Malek, 2008). The high affinity form of the IL-2 receptor is composed of  

IL-2Rα (CD25), IL-2Rβ (CD122), and the common γ chain (CD132). The latter is also shared 

with other cytokine receptors. The IL-2Rα and β chains bind IL-2. This leads to the activation 
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of Janus kinase 3 (JAK3). Subsequently, the IL-2Rβ chain is phosphorylated by active JAK3, 

thus enabling the recruitment of JAK1 and Shc (SH2 domain-containing transforming protein) 

to the receptor. At the activated IL-2R, triple phosphorylated Shc serves as a platform for the 

binding of Grb2/Sos1 complex required for the activation of the Ras-ERK cascade (see 

1.4.1) (Gu et al, 2000). On the other hand, activated JAK1/3 phosphorylate STAT (signal 

transducer and activator of transcription) proteins, which dimerize and translocate to the 

nucleus where they can regulate cell growth, survival and differentiation (Vainchenker et al, 

2013). The IL-2R can also recruit the p85 subunit of PI3K, which will trigger PKB/Akt 

activation, thus further promoting T-cell survival. Interestingly, the IL-2R and TCR signaling 

networks are interconnected. The cross-talk between these two signaling pathways has been 

recently described (Beyer et al, 2011). This study suggests that for adequate T-cell activation 

some effector proteins, such as ERK, have to receive all three activatory signals.  

 

1.4. Regulation of T-cell activation 

1.4.1. Feedback regulation of T-cell activation 

T-cell activation is regulated by the interplay between upstream activators, such as apical 

tyrosine kinases, and effector proteins downstream. The interactions between these 

signaling molecules are defined as positive and negative feedback loops. Feedback 

regulation determines whether agonist-induced activation will be translated into transient or 

sustained T-cell signaling, or whether it will be terminated. Below I would like to describe 

several important examples. 

Negative feedback regulation 

Negative feedbacks circuits are crucial during T-cell activation as they are responsible for 

fine-tuning and termination of the signal. Negative regulatory mechanisms oppose rapid 

induction and amplification of biochemical events. They allow signals to be controlled or 

stopped and guarantee the appropriate response to perturbations. Phosphorylation and 

dephosphorylation are the main means of dampening signal propagation, although other 

modifications, such as ubiquitinylation, may also contribute (Acuto et al, 2008). 

Very strict and elaborate feedback regulation adjusts proximal signaling. For example, the 

Lck-SHP1 negative feedback loop controls Lck activity. As I have mentioned previously (see 

1.3.2), SHP1 is one of the phosphatases involved in the inhibition of Lck. Upon T-cell 

activation, Lck is able to phosphorylate SHP1 on several tyrosine residues including Y564 

which lies within the consensus sequence for binding of the Lck SH2 domain (Stefanova et 

al, 2003). Phosphorylated SHP1 can deactivate Lck directly by dephosphorylating the 

activatory Y394 residue (Fig. 1.5b). SHP1 can also counteract Lck action by 
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dephosphorylating Lck substrates or other downstream signaling molecules, such as TCRζ, 

ZAP70, Vav1, Grb2, and SLP76. (Fig. 1.6a) (Lorenz et al, 1994; Plas et al, 1996; Acuto et al, 

2008; Methi et al, 2005). 

Another negative feedback loop regulating Lck, and also Fyn, involves the adaptor protein 

PAG (phosphoprotein associated with GEMs) and Csk (Brdicka et al, 2000; Smida et al, 

2007). In resting T cells, membrane-bound PAG is constitutively phosphorylated by Fyn. 

Phosphorylated PAG binds Csk and localizes it at the plasma membrane, in the proximity of 

SFKs. There, Csk is able to phosphorylate the inhibitory tyrosines of Lck and Fyn, Y505 and 

Y529, respectively (Fig. 1.6a). Upon T-cell activation, PAG is dephosphorylated, likely by 

CD45, and Csk is released into the cytoplasm, where it no longer inhibits tyrosine kinases 

(Brdicka et al, 2000). 

Other components of proximal signaling are regulated by a negative feedback loop mediated 

by the SHIP1-Dok2 module (Fig. 1.6a) (Acuto et al, 2008). Upon TCR stimulation, SHIP1  

(SH2 domain-containing inositol-5-phosphatase) and Dok2 (docking protein 2) are 

phosphorylated by Tec family tyrosine kinases and form a complex with Grb2. SHIP1 

dephosphorylates PIP3 into PIP2, thus interfering with the recruitment of PH domain-

containing proteins, such as PKB/Akt or PDK1, to the plasma membrane (Smith-Garvin et al, 

2009; Acuto et al, 2008). In addition, Dok2 negatively regulates signaling by recruiting Csk or 

RasGAP (Ras GTPase activating protein) – an inhibitor of the Ras-ERK pathway 

(Schoenborn et al, 2011; Acuto et al, 2008). Furthermore, it has been proposed that Dok2, 

together with Dok1, may also compete with ZAP70 for binding to the phosphorylated ITAMs 

or interfere with the assembly of the LAT signalosome, thus negatively regulating T-cell 

activation in multiple ways (Fig. 1.6a) (Dong et al, 2006; Yasuda et al, 2007). 

Ubiquitinylation of components of the TCR/CD3 complex and also other effector molecules 

plays an additional role in the inhibition of TCR-mediated signaling. It has been shown that 

members of the CBL (casitas B lineage lymphoma) family (e.g. cCbl, an E3 ubiquitin ligase) 

are involved in the ubiquitinylation and subsequent degradation of ZAP70, TCRζ chains, and 

potentially other components of the TCR/CD3 complex. In activated T cells, cCbl is brought 

into close proximity of the ζ chains upon its binding to phosphorylated ZAP70. Here, cCbl 

may promote ubiquitinylation of its targets (Fig. 1.6a) (Wang et al, 2001; Naramura et al, 

2002; Wang et al, 2008). This process is also thought to be part of the mechanism regulating 

TCR expression. 

Positive feedback regulation 

In contrast to negative regulation, positive feedbacks promote signaling. Positive circuits are 

crucial for the prolongation and/or the amplification of the initial signal without continuous 

presence of the original stimulus. Extending and propagating signals is necessary for  
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Figure 1.6. Negative and positive feedback regulation in TCR-mediated signaling. (a) The following negative 

regulators are involved in the orchestration of T-cell signaling, PAG-bound Csk (a master tyrosine kinase 

regulator), SHP1 (a phosphatase able to dephosphorylate Lck, ZAP70, and other signaling molecules), cCbl (an 

E3 ubiquitin ligase capable of ubiquitinylating TCRζ, ZAP70, and potentially other components of TCR complex), 

and SHIP1-Dok2 complex (responsible for deactivation of Ras and interferening with ITAMs phosphorylation), 

which is phosphorylated by Tec kinases (TK). (b) Actions of some negative regulators can be counteracted by 

positive feedbacks, such as the ERK-Lck feedback loop, which prevents Lck from SHP1-mediated 

dephosphorylation or Ras-Sos1 feedback necessary to amplify activation of Ras-ERK cascade (the figure was 

modified from Poltorak et al, 2013). 
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facilitation of particular molecular processes, for example stabilization of transcription factors. 

The interplay between positive and negative regulation shapes T-cell responses and 

consequent functional choices. 

As a model molecule, Lck is regulated by both positive and negative feedbacks. A positive 

feedback between ERK1/2 and Lck has been proposed to block the interaction with SHP1 

(see above) (Stefanova et al, 2003; Dong et al, 2010). It has been shown that Lck can be 

phosphorylated by activated ERK1/2 on serine 59 (S59) (Watts et al, 1993; Winkler et al, 

1993; August et al, 1996). Phosphorylation of this site leads to a conformational change in 

Lck, which affects the binding capacity of the Lck SH2 domain and prevents the interaction of 

Lck with SHP1, thus impeding SHP1-mediated dephosphorylation and hence inactivation of 

Lck (Fig. 1.6b) (Joung et al, 1995; Stefanova et al, 2003). 

In addition, activation of the Ras-ERK cascade is regulated by an unusual interplay of Ras 

activators involving a positive feedback circuit. T cells express GEFs belonging to two 

different families, RasGRP1/4 (Ras guanyl-releasing protein 1/4) and Sos1/2 (son of 

sevenless 1/2) (Kortum et al, 2013; Stone, 2011). Although the function of RasGRP4 is not 

yet fully understood, it is very well-established that RasGRP1 is the major Ras activator in  

T cells (Genot et al, 2000; Smith-Garvin et al, 2009). Studies from RasGRP1-/- mice and  

T-cell lines demonstrated the importance of RasGRP1 for the activation of ERK in both 

mature and immature T cells (Roose et al, 2005; Roose et al, 2007; Priatel et al, 2010; 

Kortum et al, 2012). Moreover, defects in the expression of RasGRP1 in humans are 

contributing factors to autoimmune diseases, such as systemic lupus erythematosus (SLE) 

(Yasuda et al, 2007; Stone, 2011). RasGRP1 possesses a catalytic domain required for its 

GEF function composed of a REM (Ras exchange motif) box and a CDC25 (cell division 

cycle 25) box (Fig. 1.7a). Additionally, RasGRP1 possesses two calcium-binding elements 

called EF hands, a C1 domain for DAG-binding, and a unique tail (Fig. 1.7a) (Ebinu et al, 

1998; Stone, 2011). Upon T-cell activation RasGRP1 is recruited to the plasma membrane 

via its C1 domain and the unique tail. At the plasma membrane, RasGRP1 is activated by 

PKCθ-mediated phosphorylation of T184 (Carrasco et al 2004; Roose et al, 2005; Fuller et al, 

2012). Thus, the activation of RasGRP1 depends on DAG and hence on PLCγ1 activity. 

The second Ras activator, Sos, was discovered in Drosophila melanogaster, where it is 

essential for normal eye development (Bonfini et al, 1992). In human T cells, two 

homologues are expressed, Sos1 and Sos2 (Chardin et al, 1994). Mutations in the Sos1 

gene have been recently reported in Noonan syndrome, which is a RASopathy – a 

developmental disorder caused by alterations in genes related to Ras-MAPK pathways 

(Pierre et al, 2011). In contrast to RasGRP1, Sos1 is constitutively bound to Grb2, an 

adaptor which is recruited to phosphorylated LAT (see 1.3.3). Thus, Grb2 is required to bring  
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Figure 1.7. Structure of RasGRP1 and Sos1. (a) Schematic representation of the RasGRP1 protein. Green 

squares represent domains. The structure of RasGRP1 is as follows: catalytic domain-containing a REM (Ras 

exchange motif) box and a CDC25 (cell division cycle 25) box, EF hands, and a C1 domain. (b) Schematic 

representation of the Sos1 protein. Orange squares represent domains. A unique allosteric pocket required for 

RasGTP binding is indicated. The structure of Sos1 is as follows: Dbl homology (DH) domain, pleckstrin 

homology (PH) domain, catalytic domain containing REM box, CDC25 box and unique allosteric pocket, and 

proline-rich region (PRR). 
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Sos to the plasma membrane. Sos1 has a Dbl homology (DH) domain, a PH domain 

followed by a RasGRP1-like catalytic domain with a unique allosteric pocket, and a proline-

rich region (PRR) necessary for interaction with the SH3 domain of Grb2 (Fig. 1.7b) (Margarit 

et al, 2003; Pierre et al, 2011). Upon TCR stimulation, the Grb2/Sos1 complex is recruited to 

phosphorylated LAT where it can facilitate the activation of Ras (Genot et al, 2000; Smith-

Garvin et al, 2009). It is believed that the intrinsic GEF activity of Sos1 can be greatly 

enhanced upon the loading of active RasGTP in its unique allosteric pocket (Fig. 1.7b) 

(Margarit et al, 2003; Roose et al, 2007). Moreover, it has been proposed that membrane-

recruited Sos1 is in an autoinhibited conformation and priming of Sos1 initially depends on 

RasGTP generated exclusively by RasGRP1 (Margarit et al, 2003; Sondermann et al, 2004). 

According to a recently proposed model, it is believed that Ras activation in T cells is 

orchestrated by the coordinated action of both RasGRP1 and Sos1 (Roose et al, 2007; Das 

et al, 2009).  Initial TCR triggering leads to Ras activation exclusively via RasGRP1. 

Subsequently, RasGRP1-generated RasGTP primes Sos1, thus enhancing its enzymatic 

activity up to 80-fold. This interaction creates a positive RasGTP-Sos1 loop and strongly 

increases the levels of active Ras (Fig. 1.6b) (Roose et al, 2007; Das et al, 2009). It has 

been proposed that RasGTP generated by RasGRP1 alone regulates T-cell differentiation 

(positive selection), whereas the high amount of RasGTP generated by both RasGRP1 and 

Sos is believed to take part in the regulation of apoptosis in developing thymocytes (negative 

selection) (Priatel et al, 2002; Prasad et al, 2009). However, recent studies suggest that at 

specific stages of T-cell development, RasGRP1 and Sos1 can activate Ras independently 

(Kortum et al, 2011; Kortum et al, 2012). For example, RasGRP1-/- mice display only a mild 

defect in β-selection, but a severe block in positive selection (Table 1.1) (Kortum et al, 2012). 

On the other hand, Sos1 conditional knock-out mice show a strong defect in β-selection, but 

normal positive and negative selection (Table 1.1) (Kortum et al, 2011). Therefore these 

studies indicate that Sos1 can influence T-cell development during particular stages of 

thymopoiesis independently of RasGRP1 (e g. during β-selection). 
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Mouse model Developmental effect 

RasGRP1-/- 20% reduction in thymocyte cellularity 

Mild defect in β-selection 

Block in  positive selection 

Normal negative selection 

Sos1-/- 50% reduction in thymocyte cellularity 

Proliferative defect at the β-selection checkpoint 

Normal positive and negative selection 

RasGRP1/Sos1-/- Up to 90% reduction in thymocyte cellularity 

Block in  β-selection 

Block in positive and negative selection 

Grb2-/- Defective positive and negative selection 

 

Table 1.1. The role of RasGRP1, Sos1, and Grb2 in T-cell development (the table 

modified from Kortum et al, 2013) 

 

1.4.2. Regulation of T-cell responses: the mode of Ras-ERK activation 

The magnitude/duration of Ras-ERK activation controls cellular responses. In the well-

established model system for neuronal differentiation based on the PC12 cell line, it has 

been shown that moderate and sustained ERK phosphorylation upon NGF (nerve growth 

factor) treatment causes cell differentiation, whereas strong and transient ERK activation 

upon EGF (epidermal growth factor) stimulation induces proliferation in the same cells 

(Santos et al, 2007). In other cell types such as fibroblasts, it has been demonstrated that 

sustained ERK activation induced by mitogens, such as α-thrombin, leads to cell cycle  

re-entry, whereas transient signaling triggered by synthetic agonists, such as TMP (thrombin 

mimicking peptide), results in quiescence (Vouret-Craviari et al, 1993; Murphy et al, 2002). 

Thus, data from different cell types indicate that receptor stimulation at the plasma 

membrane is translated into quantitatively and/or qualitatively different activation kinetics of 

the Ras-ERK module to activate different cellular programs. 

In T cells, it has been postulated that the magnitude of ERK activation is important for the 

regulation of thymic development. For example, strong ERK activation correlates with 

apoptosis (negative selection), whereas weak ERK activity is associated with differentiation 

(positive selection) (Daniels et al, 2006). Additionally, it has been shown that also in mature 

mouse T cells the magnitude of ERK activation is important for the regulation of T-cell 

responses. For example, strong ERK signal in CD8+ T cells leads to apoptosis, in contrast to 

low levels of phosphorylated ERK, which result in survival/proliferation (Wang et al, 2008). 
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The duration of the ERK signal is another important factor for the generation of cellular 

responses. A dynamic behavior of ERK activity seems to exist in murine thymocytes. 

Transient ERK activation induces negative selection, whereas sustained ERK activity leads 

to positive selection of immature T cells (McNeil et al, 2005; Daniels et al, 2006). In mature  

T cells, induction of transient signals corresponds with unresponsiveness or apoptosis, in 

contrast to sustained ERK signaling, which results in activation and proliferation (Berg et al, 

1998; Wang et al, 2008). 

It has been proposed that differences in the magnitude and the duration of the Ras-ERK 

signaling are regulated by different mechanisms including feedback loops (see 1.4.1). In 

PC12 cells a strong and transient signal results in activation of a negative feedback circuit 

between ERK and, most likely, Sos, whereas moderate and sustained ERK phosphorylation 

is regulated by PKC-mediated ERK-Raf positive feedback loop (Santos et al, 2007). In 

cytotoxic mouse T lymphocytes transient signaling is mediated by classical PKC isoforms, 

whereas novel PKCs are involved in prolonged signals (Puente et al, 2006). Additionally, it 

has been shown in mouse thymocytes that the compartmentalization of Ras activators 

(Grb2/Sos1 complex and RasGRP1), as well as Ras and ERK themselves may contribute to 

the activation kinetics. Localization analysis of these molecules indicated that during 

transient activation, signaling occurs exclusively at the plasma membrane. However, when 

sustained signaling is induced, the activated proteins localize in cytoplasmic vesicles 

(Daniels et al, 2006; Wang et al, 2008). 

Despite the fact that the regulation of Ras-ERK activation has been well-studied in some cell 

systems, how the magnitude/duration of the Ras-ERK signal is regulated in primary human  

T cells is still poorly understood. 

 

In summary, in order to activate the appropriate cellular program and to induce an efficient 

immune response, T cells are equipped with a multitude of regulatory mechanisms, which 

serve to integrate, fine-tune, and terminate signals triggered at the plasma membrane. 

 

1.5. Aims of the study 

Altered T-cell activation is the basis for many human diseases, such as chronic inflammation, 

immunodeficiency, allergy, and cancer. In my study, I focused on how TCR-mediated 

signaling is regulated on the molecular level. For my experiments, I used primary human  

T cells because of their relevance in human disease. I addressed the following scientific 

questions: 

How are the activation dynamics regulated in T cells?  

In the first part of my work, I analyzed how transient vs. sustained TCR signaling is 

regulated. Transient signaling correlates with apoptosis/unresponsiveness (anergic-like 
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state), whereas sustained signaling is associated with T-cell activation and proliferation. I 

found that transient signaling is regulated by negative regulatory loops involving inhibitory 

molecules such as Dok2 and cCbl, whereas sustained signaling is triggered by a positive 

regulatory feedback involving the ERK-mediated phosphorylation of Lck. 

How is Ras-ERK activation regulated in T cells?  

In the second part of my work, I focused my attention on the contribution of RasGRP1 and 

Sos1 to Ras-ERK activation. Using RNAi (RNA interference), I demonstrated that RasGRP1 

is a crucial activator of Ras-ERK in primary human T cells. Conversely to RasGRP1, Sos1 

contributes only to Ras-ERK activation during sustained signaling. Moreover, I found that 

Sos2, a homologue of Sos1, and Grb2, an adaptor molecule associated with Sos1, appear to 

be dispensable for the ERK activation upon TCR-mediated stimulation in human primary  

T cells.  

The results of my studies are presented in the section below. 
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2. Results 

In the results section, I characterized stimulation methods to induce transient or sustained 

TCR-mediated signaling, investigated the activation dynamics of key signaling molecules 

upon TCR triggering and analyzed the regulation of Ras-ERK activation.  

 

2.1. Analysis of transient vs. sustained TCR signaling  

In order to study how T cells are activated upon physiological stimulation in living organisms, 

the in vitro experimental setup has to mimic as closely as possible the in vivo conditions. 

During the past years, different methods have been developed to stimulate T cells in vitro, 

which have allowed an extensive analysis of the biochemical events occurring during T-cell 

activation. A variety of studies have employed mouse T cells expressing a transgenic TCR. 

The advantage of this system is that T cells can be stimulated with physiological ligands (e.g. 

peptide-MHC complexes specific for the transgenic TCR).  However, the mouse immune 

system is not fully comparable with the human immune system. In fact, a very recent study 

has analyzed the profiles of genes upregulated in response to inflammatory stress in humans 

and mice and has come to the conclusion that mouse models are poorly suited to study 

human inflammatory diseases (Seok et al, 2013). Therefore, in order to better understand the 

molecular mechanisms underlying human diseases, I decided to employ human T cells for 

my studies. Unfortunately, with the exception of memory T cells, which can be re-stimulated 

in vitro with specific antigen (e. g. tetanus) (Cellerai et al, 2007), there are no physiological 

ligands available to stimulate a sufficient number of naïve human T cells in vitro for 

biochemical studies. 

Therefore, I took advantage of two available stimulation systems to activate human 

peripheral T cells in vitro. I used antibodies applied in solution (sAbs) and antibodies 

immobilized on microbeads (iAbs). Both systems are based on antibodies directed against 

the TCR/CD3 complex and co-stimulatory molecules. Anti-CD3 antibodies recognize 

epitopes in the extracellular part of the CD3ε chains and induce the aggregation of at least 

two TCR/CD3 complexes (a process called crosslinking). Antibodies against the CD28  

co-stimulatory molecule and the CD4 co-receptor utilize the same principle. In my studies, I 

used monoclonal IgG antibodies (mAbs) against human CD3ε (clones OKT3, UCHT1), CD28 

(clone CD28.2), and CD4 (clone OKT4), which were biotinylated.  Biotinylation allows linkage 

of multiple antibodies upon the addition of streptavidin, thus enhancing TCR/CD3 

crosslinking and T-cell stimulation, 

One of the most important results of my studies is that sAbs and iAbs induce completely 

different signaling dynamics and T-cell functional outcomes (Arndt et al, 2013; Poltorak et al, 

2013). Therefore, these stimuli have allowed me to study the molecular mechanisms 
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regulating signaling kinetics and T-cell responses. The major characteristics of transient and 

sustained signaling triggered by sAbs or iAbs, respectively, are presented below. 

Transient signaling induced by sAbs 

Human peripheral T cells were left unstimulated or stimulated with sAbs for the indicated 

time periods (Fig. 2.1). The Western blot analysis presented in figure 2.1 clearly show that 

the maximal signal intensity induced by sAbs peaks at 2 - 5 min and then rapidly declines to 

the basal levels 15 to 30 min post-stimulation (Fig. 2.1a). These transient phosphorylation 

kinetics are observed for molecules involved in both proximal (ZAP, LAT, PLCγ1) and more 

distal (Akt, Raf, MEK, ERK, RSK) TCR signaling (Fig 2.1a and Poltorak et al, 2013). 

It has been previously shown that transient TCR-mediated signaling does not induce 

activation and differentiation of mouse CD8+ T cells (Berg et al, 1998; Wang et al, 2008). To 

test if sAbs also do not induce T-cell activation in human primary T cells, I measured the 

expression of CD69 and CD25, two well-known activation markers. CD69 is expressed in 

response to the ERK-dependent activation of the transcription factor AP1 and CD25 

upregulation occurs concomitantly with IL-2 production. When T cells were stimulated with 

sAbs neither CD69 nor CD25 were upregulated (Fig. 2.1b). In agreement with the impaired 

activation, crosslinking of the antibodies in solution also did not induce T-cell proliferation 

(Fig. 2.1c). Interestingly, we found that, conversely to mouse T cells where sAbs induce 

apoptosis (Wang et al, 2008), stimulation of human T cells with sAbs induces an anergic-like 

state, characterized by unresponsiveness to re-stimulation (data not shown). 

Sustained signaling induced by iAbs 

Antibodies against the TCR/CD3 complex can be bound to plastic (e.g. 96-well plates or 

plastic Petri dishes) or to microspheres of different size (Koike et al, 2003; Carpentier et al, 

2009; Li et al, 2010). Under these conditions of stimulation, T-cell proliferation will be induced 

(Berg et al, 1998; Puente et al, 2000; Puente et al, 2006). In my work, I decided to take 

advantage of antibodies immobilized on SuperAvidin-coated microbeads with the diameter of 

approximately 10 µm. This size was selected to mimic the dimensions of APCs and to 

prevent endocytosis of the beads by T cells. 

Next, I performed analysis of the signaling kinetics triggered by antibodies immobilized on 

microbeads (Fig. 2.2). In stark contrast to sAbs, iAbs stimulation triggered sustained 

phosphorylation of proximal and distal signaling molecules for up to 12 h (Fig. 2.2a and 

2.2b). It has been previously shown that sustained signaling corresponds with T-cell 

activation and differentiation in mouse CD8+ T cells (Berg et al, 1998; Wang et al, 2008). 

Therefore, I tested whether iAbs also induce activation/proliferation of human T cells. As 

presented in figure 2.2c, microbeads were able to induce strong expression of both the  
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Figure 2.1. sAbs induce transient signaling and T-cell unresponsiveness. Purified primary human T cells 

were treated with CD3, CD3xCD28 or CD3xCD4xCD28 mAbs cross-linked in solution (sAbs) as indicated. (a) 

Samples were analyzed by Western blotting using the indicated Abs. For each condition one representative 

immunoblot of at least four independent experiments is shown. (b) 24 h after stimulation with CD3xCD28 sAbs, 

the expression of CD25 and CD69 was analyzed by flow cytometry. (c) T cells were labeled with CFSE and 

stimulated as indicated in (b). Proliferation was assessed after 72 h by analyzing CFSE content by flow cytometry 

(the figure was modified from Arndt et al, 2013).  
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Figure 2.2. iAbs trigger sustained signaling kinetics, T-cell activation and proliferation. Purified primary 

human T cells were treated with CD3, CD3xCD28 or CD3xCD4xCD28 mAbs immobilized on microbeads (iAbs) 

as indicated. (a and b) Samples were analyzed by Western blotting using the indicated Abs. For each condition 

one representative immunoblot of at least four independent experiments is shown. (c) 24 h after stimulation with 

CD3xCD28 sAbs, the expression of CD25 and CD69 was analyzed by flow cytometry. (d) T cells were labeled 

with CFSE and stimulated as indicated in (c). Proliferation was assessed after 72 h by analyzing CFSE content by 

flow cytometry (the figure was modified from Arndt et al, 2013).  
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activation markers CD69 and CD25. Moreover, flow cytometric analysis of CFSE-labeled  

T cells clearly showed that iAbs stimulation triggers proliferation (Fig. 2.2d). 

 

Collectively, the data show that sAbs stimulation correlates with transient signaling that leads 

to unresponsiveness, whereas iAbs stimulation corresponds with sustained signaling and 

productive T-cell responses, such as CD69 and CD25 upregulation and proliferation. 

 

2.2. Analysis of feedback regulation in transient vs. sustained T-cell activation 

The stimuli I employed activate the same receptor and trigger the same cellular pathways. 

Nevertheless, they induce different activation dynamics, thus resulting in different cellular 

responses.  Therefore, I performed additional studies to shed light onto how the activation of 

the same receptor (i. e. the TCR) results in different signaling kinetics. 

 
2.2.1. Transient signaling correlates with a strong activation of Src family kinases 

I initially focused my attention on proximal TCR signaling events (see 1.3.2). To this end, I 

measured the phosphorylation of TCRζ upon sAbs vs. iAbs treatment (Fig. 2.3a). TCRζ 

immunoprecipitates were prepared from either unstimulated or stimulated T cells and probed 

with an anti-pan-phospho-tyrosine antibody (clone 4G10). As shown in figure 2.3a, transient 

signaling (sAbs) correlates with increased tyrosine phosphorylation of TCRζ, as suggested 

by the appearance of two phosphorylated bands running at 21 and 23 kDa. In stark contrast, 

I did not observe any significant change in TCRζ chain phosphorylation during sustained 

signaling (iAbs) (Fig. 2.3a). These data imply that the activity of SFKs, which are responsible 

for TCRζ phosphorylation (see 1.3.2), is likely differentially regulated upon transient vs. 

sustained activation. Therefore, to further test this hypothesis, I analyzed the activity of Lck 

and Fyn. I focused on the fractions of Lck and Fyn which are associated with the TCR/CD3 

complex and hence are directly involved in signaling. To this aim, I performed 

immunoprecipitations of TCRζ under mild detergent conditions to pull-down intact TCRζ 

chains associated with effector molecules. Subsequently, taking advantage of the phospho-

Src-Y416-specific antibody, which recognizes phosphorylation of the activatory tyrosines Y394 

and Y416 in Lck and Fyn, respectively, I tested TCRζ immunoprecipitates for the presence of 

active SFKs. The results presented in figure 2.3b show that, in contrast to sustained 

signaling, the amount of active Lck and Fyn associated with the TCR significantly increases 

during transient activation. These data demonstrate that SFKs activity is strongly enhanced 

during transient signaling. In agreement with these findings, I observed that the global 

tyrosine phosphorylation pattern is strongly induced during transient activation (Fig. 2.3c). 

Conversely, tyrosine phosphorylation does not appear to be as strongly induced during 

sustained as during transient signaling (Fig. 2.3c). 
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Figure 2.3. Transient signaling correlates with a strong activation of Src family kinases. Purified human  

T cells were treated with either soluble (sAbs) or immobilized (iAbs) CD3xCD28 mAbs for the indicated time 

periods. TCRζ immunoprecipitates (a and b) or total cell lysates (c) were prepared and analyzed by Western 

blotting using the indicated Abs. In (b), anti-TCRζ-coated agarose beads were incubated in lysate buffer without 

cells as a control (Ctrl). One representative immunoblot of at least three independent experiments is shown. The 

phosphorylation of TCRζ (a) or Fyn and Lck (b) was quantified using the 1D ImageQuant software and the values 

were normalized to the corresponding total TCRζ or Lck and Fyn signal, respectivelyl. Data represent the mean of 

phosphorylation levels shown as arbitrary units ± SEM of at least three independent experiments. Asterisk in (b) 

indicates the antibody heavy chain (figures 2.3a and b were modified from Poltorak et al, 2013). 
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In summary, these data suggest that a quantitative difference in the activation of Src family 

kinases distinguishes transient from sustained activation. 

 

2.2.2. Activation of negative regulators during transient TCR-mediated signaling 

The enhanced activation of Lck and Fyn implies that also the activation of downstream 

signaling molecules is augmented under conditions of stimulation inducing transient 

signaling. This hypothesis is further supported by the enhanced tyrosine phosphorylation 

pattern (Fig. 2.3c). Indeed, I found that the phosphorylation of ZAP70, LAT, and PLCγ1 (Fig. 

2.1) is enhanced upon sAbs stimulation. I hypothesized that, in addition to positive 

regulators, also the activation of negative regulators of TCR signaling may be strongly 

augmented during transient signaling. If this holds true, an imbalance in the equilibrium 

between positive and negative regulators may explain why signaling is rapidly terminated 

upon transient stimulation. 

It is known that some negative regulators depend on tyrosine phosphorylation for their 

activation. One of these is cCbl, an E3 ubiquitin ligase involved in the ubiquitinylation and 

degradation of TCRζ and ZAP70 (see 1.4.1). I analyzed cCbl phosphorylation under 

conditions of stimulation inducing either transient or sustained signaling. The results 

presented in figure 2.4 clearly show that stimulation with sAbs greatly increases cCbl 

phosphorylation above the basal level, whereas treatment with iAbs does not. In agreement 

with these findings, we found that ZAP70 expression was reduced upon sAbs treatment, 

likely indicating degradation (Poltorak et al, 2013). This hypothesis is further supported by 

the observation that anti-ZAP70 immunoblots revealed a particular pattern of ZAP70 

migration on SDS-PAGE gel corresponding with ubiquitinylation (Wang et al, 2008). Thus, 

activation of cCbl and the subsequent degradation of signaling molecules such as ZAP70 

upon sAbs stimulation may lead to a dampening of the TCR-mediated signaling and hence 

may contribute to the observed transient activation under this condition of stimulation 

(Poltorak et al, 2013).  

Next, I tested whether other negative regulators are also activated during sAbs stimulation. 

Another inhibitory molecule activated by tyrosine phosphorylation is Dok2 (see 1.4.1). As 

described in 1.4.1, Dok2 can interfere with TCR signaling at several levels. Therefore, it was 

important to test whether Dok2 is also phosphorylated/activated under sAbs treatment. As 

expected, Dok2 phosphorylation was strongly enhanced upon transient stimulation (Fig. 2.4). 

In contrast, in iAbs-treated T cells, Dok2 phosphorylation was only slightly increased above 

the basal level (Fig. 2.4).  
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Figure 2.4. Activation of negative regulators during transient TCR-mediated signaling. Purified naïve CD4+ 

human T cells were left untreated or treated with either soluble (sAbs) or immobilized (iAbs) mAbs for the 

specified time periods. Samples were analyzed by Western blotting using the indicated Abs. The phosphorylation 

of cCbl and Dok2 was quantified using the 1D ImageQuant software and the values were normalized to the 

corresponding β-actin signal. Data represent the mean of the phosphorylation levels shown as arbitrary  

units ± SEM of three independent experiments. One representative experiment of four is shown. 
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These findings support the hypothesis that strong activation of SFKs may unbalance the 

equilibrium between positive and negative regulators of TCR-mediated signaling thereby 

leading to termination of T-cell activation. 

 

2.2.3. Positive feedback regulation under sustained TCR signaling 

It has been shown that sustained signaling in other cell types, such as PC12 cells, is 

regulated by positive feedback loops (see 1.4.2). Therefore, I investigated whether sustained 

signaling in T cells upon iAbs stimulation is also regulated by positive circuits. It has been 

suggested that active ERK1/2 phosphorylates Lck to initiate signaling in thymocytes  

(Stefanova et al, 2003). Hence, I assessed whether an ERK-Lck positive feedback mediates 

sustained signaling in mature peripheral T cells. 

Sustained, but not transient, TCR signaling correlates with the appearance of a Lck form 

migrating approximately at 59 kDa on SDS-PAGE (p59Lck) (Fig. 2.5a). It is believed that this 

retarded mobility of Lck results from the phosphorylation of serine residues that affect Lck 

conformation (Watts et al, 1993; Gold et al, 1994). Previous reports proposed that Lck could 

be phosphorylated on serine residues by both ERK- and/or PKCs (Winkler et al, 1993; 

Schroeder et al, 2000). Thus, I decided to shed more light onto how Lck is regulated during 

sustained signaling in primary human T cells. To this end, I used well-characterized MEK 

inhibitors to block ERK activation and evaluated the effect on Lck. As expected, pre-

incubation with MEK Inhibitor I or U0126 completely abolished ERK1/2 phosphorylation (Fig. 

2.5b). Subsequently, I tested how Lck migrates in SDS-PAGE. As shown in figure 2.5b, both 

MEK inhibitors abolished the generation of p59Lck. These results confirmed that activated 

ERK1/2 phosphorylates Lck in primary human T cells. To test if PKCs also phosphorylate 

Lck, I induced PKC activation upon treatment of T cells with the DAG analog, PMA. DAG 

may activate both ERK and PKCs. Therefore, T cells were stimulated in the presence of a 

MEK inhibitor to block ERK, but not PKC activation. I found that upon strong PKC activation 

and in the presence of inactive ERK, Lck appears as a unique band migrating at 56 kDa (Fig. 

2.5c). Collectively, these data suggest that ERK, but not PKC, phosphorylates Lck in primary 

human T cells. 

Next, I decided to investigate which serine residues in Lck are phosphorylated by ERK. 

Several studies indicated that S42 and S59 in the N-terminal part of Lck might be the targets 

for serine/threonine kinases (Watts et al, 1993; Winkler et al, 1993; Joung et al, 1995). To 

assess this issue, I took advantage of Lck constructs carrying S-to-D and S-to-A mutations, 

either on S42 or S59. Substitutions from serine to aspartic acid mimic constitutive 

phoshorylation, and hence Lck should migrate as a unique 59 kDa band on SDS-PAGE. 

Conversely, serine to alanine substitution prevents phosphorylation and thus Lck should  
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Figure 2.5. Positive feedback regulation under sustained TCR signaling. Purified primary human T cells were 

left untreated or treated with either immobilized CD3xCD28  mAbs (a and b) or with 27 ng/ml PMA (c) for the 

indicated time periods in the presence or absence of MEK Inhibitor I or U0126. Samples were analyzed by 

immunoblotting using the specified Abs. One representative immunoblot of at least three independent 

experiments is shown. Bands in (a) were quantified using the 1D ImageQuant software. The graph represents the 

mean of p59Lck signal intensity normalized to the total amount of Lck shown as percentage ± SEM of ten 

independent experiments. (d) J.CaM1.6 cells were transfected with constructs carrying different Lck mutations 

(S42A, S42D, S59A, S59D, S42A/S59A). 24 h after transfection, cells were either left unstimulated or stimulated 

with CD3xCD28 iAbs. Samples were analyzed by Western blotting using the indicated Abs. One representative 

immunoblot of five independent experiments is shown. (e) Purified human T cells were treated with iAbs alone for 

30 min, then either DMSO, MEK inhibitor I, or U0126 was added and samples were incubated for additional 30 to 

60 min. Cell lysates were analyzed by Western blotting using the indicated Abs. One representative immunoblot 

of four independent experiments is shown (figures 2.5b and d were modified from Poltorak et al, 2013). 
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migrate exclusively as a 56 kDa protein. I used the following mutants, S42A, S42D, S59A, 

S59D, and S42A/S59A. The mutants were transfected into the Lck-deficient Jurkat T-cell 

variant (J.CaM1.6). 24 h after transfection, cells were harvested and stimulated with iAbs 

(Fig. 2.5d). Constructs carrying the S42A/S59A and S59A Lck mutations migrated at 56 kDa 

upon iAbs stimulation, whereas the S59D mutant resulted in the presence of the p59Lck form 

only (Fig. 2.5d). On the other hand, both S42A and S42D mutants showed mobility on SDS-

PAGE comparable to that of wild type Lck and hence appeared as both 56 and 59 kDa 

bands (Fig. 2.5d). Thus, these findings indicate that S59, but not on S42, is the amino acid 

residue phosphorylated by ERK. 

Finally, I investigated whether ERK-mediated phosphorylation of Lck has functional 

consequences. To test this, I measured the phosphorylation of the Lck substrate ZAP70 and 

other downstream signaling molecules such as LAT, in the presence of U0126 (Fig. 2.5e). 

Human primary T cells were first stimulated with iAbs for 30 min, to activate the ERK-Lck 

feedback loop, and then, ERK1/2 activation was blocked by the addition of the inhibitor 

U0126. As shown in figure 2.5e, both ZAP70 and LAT phosphorylation were decreased in 

the presence of U0126. This decrease is not due to a reduction in the expression levels of 

LAT or ZAP70 (Fig. 2.5e). To further show that the ERK-Lck feedback loop is only required 

for sustained TCR signaling, the same experiments were repeated using sAbs. As mentioned 

above sAbs do not induce the appearance of p59Lck, thus indicating that they do not induce 

the ERK-Lck feedback loop. Treatment with U0126 did not affect ZAP70 and LAT 

phosphorylation upon sAbs stimulation (Poltorak et al, 2013). These results indicate that (i) 

U0126 has no off-target effects on ZAP70 and LAT and (ii) that the ERK-Lck feedback loop 

regulates the activation of Lck downstream targets and hence sustained TCR signaling 

(Poltorak et al, 2013). 

 

2.2.4. ERK-Lck feedback regulates Lck activity 

Next, I decided to investigate how ERK regulates Lck function. First, I evaluated whether 

ERK influences the activity of Lck. I measured Lck activation taking advantage of the 

phospho-SrcY416-specific antibody which detects phosphorylation of the activatory tyrosine 

residue Y394 (Fig. 2.6a). 

I found that the phosphorylation of total Lck on Y394 was significantly reduced in primary 

human T cells at the later stages of stimulation (Fig. 2.6a). To exclude the possibility that the 

observed reduction in p59Lck phosphorylation was due to protein degradation, I analyzed 

Lck expression in T cells in which the ERK-Lck feedback loop was either activated or 

inhibited. Results presented in figure 2.6b show that expression of total Lck is comparable 

between untreated and U0126 treated primary human T cells, suggesting that degradation is 

not triggered by the ERK-Lck feedback loop. 
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Figure 2.6. ERK-Lck feedback regulates Lck activity. Purified human T cells were left unstimulated or 

stimulated with CD3xCD28 iAbs for indicated time periods in the presence or absence of U0126. Lck 

immunoprecipitates (a) or total cell lysates (b) were prepared and analyzed by Western blotting using the 

specified Abs. One representative immunoblot of at least four independent experiments is shown. Bands intensity 

was quantified using the 1D ImageQuant software. Graphs in (a) represent the mean of the phospho-specific Lck, 

p56Lck, or p59Lck signal normalized to the total amount of Lck shown as arbitrary units ± SEM of eight 

independent experiments. Data in (b) represent the mean of Lck expression levels normalized to β-actin shown as 

arbitrary units ± SEM of four independent experiments. (c) Lck immunoprecipitates were subjected to a classical 

in vitro kinase assay using radiolabelled 32γ-ATP. In vitro labeled IPs were resolved on the SDS-PAGE gel, 

transferred to a nitrocellulose membrane, and analyzed by an autoradiography. One representative 

autoradiograph is depicted. Autoradiographs were quantified using the 1D ImageQuant software. Data on graph 

represent the mean of the relative Lck auto-phosphorylation shown as arbitrary units ± SEM of three independent 

experiments. 
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Next, I looked at the phosphorylation of the two Lck forms. I found that the phosphorylation of 

p56Lck was not significantly changed upon iAbs stimulation. Conversely, the phosphorylation 

of p59Lck on Y394 was strongly decreased (up to 50%) (Fig. 2.6a).  Collectively, these results 

indicate that reduced Y394 phosphorylation of p59Lck accounts for the decreased 

phosphorylation of total Lck during sustained TCR signaling. 

To investigate whether the reduced phosphorylation on Y394 correlates with a decreased 

enzymatic activity of Lck, I performed a classical in vitro kinase assay. Briefly, Lck 

immunoprecipitates from unstimulated or iAbs-stimulated primary human T cells in the 

presence or absence of U0126 were incubated with radiolabelled 32γ-ATP. Subsequently, IPs 

were washed, resolved on SDS-PAGE, transferred to a nitrocellulose membrane, and 

subjected to autoradiography. The data shown in figure 2.6c indicate that generation of 

p59Lck in iAbs-stimulated T cells correlated with an almost 50% reduction in auto-

phosphorylation of Lck. These findings corroborated previous results showing that 

recombinant mouse Lck has approximately two-fold lower kinase activity when incubated in 

the presence of purified ERK (Watts et al, 1993). Thus, Lck phosphorylated on S59 by ERK 

appears to be less active than non-phosphorylated Lck. 

 

2.3. Regulation of the Ras-ERK cascade in transient vs. sustained T-cell signaling 

The striking differences in feedback regulation during transient vs. sustained signaling 

prompted me to further investigate signaling events occurring during T-cell activation. In 

particular, I focused my attention on the regulation of the Ras-ERK module. The current 

model for Ras-ERK activation proposes that Ras can be triggered by a positive feedback 

between RasGRP1 and Sos, the GEFs expressed in T cells (see 1.4.1). As this model is 

based on data from lymphoid cell lines, it is not yet clear how RasGRP1 and Sos contribute 

to Ras activation in primary human T cells. Moreover, the proposed model does not address 

how the Ras-ERK module is regulated during transient vs. sustained signaling.  

 

2.3.1. RasGRP1 is required for transient and sustained ERK activation 

Experimental evidence suggests that RasGRP1 is the crucial activator of Ras in T cells (see 

1.4.1). This has been demonstrated in different systems including Jurkat T cells and 

RasGRP1-/- thymocytes (Roose et al, 2007; Stone, 2011; Kortum et al, 2013). Indeed, 

RasGRP1-deficient T cells have a severe block in Ras-ERK activation (Priatel et al, 2002; 

Roose et al, 2007; Kortum et al, 2012). However, the importance of RasGRP1 for Ras 

activation in mature human T cells has not yet been demonstrated. Therefore, I used primary 

human T cells as model system. To investigate the role of RasGRP1 in these cells, I 

performed RNAi (RNA interference) to suppress RasGRP1 expression. Peripheral human  

T cells were transfected with RasGRP1-specific short interfering RNA (siRNA) or a non-



41 
 

relevant siRNA duplex (control) and stimulated with sAbs or iAbs (Fig. 2.7). Western blot 

analysis revealed that ERK1/2 phosphorylation upon suppression of RasGRP1 expression 

was diminished in comparison to controls under both transient and sustained signaling (Fig. 

2.7a and 2.7b). These data demonstrated the importance of RasGRP1 for Ras-ERK 

activation also in primary human T cells. Moreover, my experiments demonstrate for the first 

time that RasGRP1 is required for both transient and sustained ERK activation. 

The observed reduction in ERK1/2 phosphorylation indicates that RasGRP1 downregulation 

might also have an impact on T-cell activation. Thus, I investigated if T-cell activation and 

proliferation were affected upon suppression of RasGRP1 expression. I found that both 

CD69 upregulation (a readout for T-cell activation) and proliferation were significantly 

reduced in T cells expressing low RasGRP1 levels (Fig. 2.7c and 2.7d). These findings 

further corroborate the assumption that RasGRP1 is crucial for T-cell activation. 

Nevertheless, despite the fact that I was able to achieve efficient suppression of RasGRP1 

expression, the block in ERK1/2 phosphorylation and T-cell activation was not complete. This 

would suggest that other factors, such as Sos, are are involved in the regulation of the Ras-

ERK cascade. 

 

2.3.2. Sos1 is dispensable for transient but required for sustained ERK activation 

The results presented above (see 2.3.1) suggest the involvement of other factors in the 

activation of the Ras-ERK pathway. The obvious candidate, which in addition to RasGRP1 

may be involved in Ras activation, is Sos1. Therefore, I assessed the role of Sos1 in the 

regulation of Ras-ERK activation, using a similar experimental approach as for RasGRP1 

(Fig. 2.8). Surprisingly, I discovered that suppression of Sos1 expression does not affect 

ERK1/2 phosphorylation upon sAbs stimulation (Fig. 2.8a). In marked contrast, upon iAbs 

treatment ERK activation was significantly attenuated in T cells were Sos1 expression was 

suppressed (Fig. 2.8b). Importantly, the decreased ERK1/2 phosphorylation in Sos1 knock-

down cells was more apparent at later stages of T-cell activation (Fig. 2.8b, lower panel). 

This observation suggests that Sos1 is required for the sustained activation of the Ras-ERK 

cascade, whereas it is dispensable for transient ERK signaling. 

Next, I assessed whether Sos1-mediated reduction in sustained ERK activation translates 

into decreased T-cell activation. To this end, I measured expression of CD69 and 

proliferation in Sos1-low cells. As shown in figure 2.8c and 2.8d, both parameters of T-cell 

activation were significantly affected. 

Collectively, these data suggest that, similar to RasGRP1, Sos1 is required for ERK 

phosphorylation and T-cell activation upon iAbs stimulation. This is an important finding of 

my studies as I was able to show for the first time that Sos1 is necessary for the regulation of 

ERK activity in human primary T cells. 
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Figure 2.7. RasGRP1 is required for both transient and sustained ERK activation. Peripheral human T cells 

were transfected with control (Ctrl) or RasGRP1-specific siRNA and cultured for 72 h. Subsequently, cells were 

stimulated with either sAbs (a) or iAbs (b) for the indicated time periods. Cell lysates were analyzed by 

immunoblotting using the indicated Abs. Bands in (a) and (b) were quantified using the ImageQuant software and 

values were normalized to the corresponding β-actin signal. Graphs in (a) and (b) show the phosphorylation levels 

of ERK1/2 as arbitrary units ± SEM of at least three experiments. (c) Transfected human T cells were treated as 

indicated. 3 h after stimulation, CD69 expression was analyzed by flow cytometry. One representative experiment 

of four is shown. (d) T cells were transfected with siRNA duplexes and stimulated with plate-bound CD3. After 2 

days, cells were pulsed with [3H]-thymidine and processed for standard scintillation counting. Graph shows 

proliferation expressed as arbitrary units ± S.E.M. of RasGRP1-low T cells compared to control from three 

independent experiments. For (a), (b), (c), and (d) immunoblots verifying RasGRP1 downregulation are shown. 

Numbers below the bands indicate expression levels or fold induction of phosphorylation compared to controls 

(figures 2.7a, b, and c were adopted from Poltorak et al, 2014; figure 2.7d was modified from Warnecke et al, 

2012). 
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Figure 2.8. Sos1 is dispensable for transient, but required for sustained ERK activation. Peripheral human 

T cells were transfected with control (Ctrl) or Sos1-specific siRNA and cultured for 72 h. Subsequently, cells were 

stimulated with either sAbs (a) or iAbs (b) for the indicated time periods. Cell lysates were analyzed by 

immunoblotting using the indicated Abs. Bands in (a) and (b) were quantified using the ImageQuant software and 

values were normalized to the corresponding β-actin signal. Graphs in (a) and (b) show the phosphorylation levels 

of ERK1/2 as arbitrary units ± SEM of at least three experiments. (c) Transfected human T cells were treated as 

indicated. 3 h after stimulation, CD69 expression was analyzed by flow cytometry. One representative experiment 

of four is shown. (d) T cells were transfected with siRNA duplexes and stimulated with plate-bound CD3. After 2 

days, cells were pulsed with [3H]-thymidine and processed for standard scintillation counting. Graph shows 

proliferation expressed as arbitrary units ± S.E.M. of Sos1-low T cells compared to control from four independent 

experiments. For (a), (b), (c), and (d) immunoblots verifying Sos1 downregulation are shown. Numbers below the 

bands indicate expression levels or fold induction of phosphorylation compared to controls (figures 2.8a, b, and c 

were adopted from Poltorak et al, 2014; figure 2.8d was modified from Warnecke et al, 2012). 

 



44 
 

2.3.3. Sos2 is dispensable for both transient and sustained ERK activation 

T cells express also Sos2, a homologous of Sos1. Therefore, it is possible that loss of Sos1 

can be, at least partially, compensated by the presence of Sos2. In order to analyze whether 

Sos1 and Sos2 possess redundant functions, I suppressed Sos2 expression using RNAi and 

measured ERK1/2 phosphorylation in T cells stimulated with either sAbs or iAbs, as 

described above. An efficient suppression of Sos2 has no effect on ERK activation upon both 

transient and sustained signaling (Fig. 2.9a and 2.9b). 

To exclude that the influence of Sos2 on the activation of ERK1/2 might be masked by the 

dominant role of Sos1 in cells expressing low Sos2 levels, I performed simultaneous 

suppression of both Sos1 and Sos2 in human peripheral T cells (Fig. 2.9c). T cells in which 

the expression of both Sos proteins was suppressed displayed similar levels of ERK1/2 

phosphorylation as single Sos1 knockdowns (Fig. 2.7b, 2.9c, and Warnecke et al, 2012). 

These results suggest that Sos2 is dispensable for Ras-ERK activation in TCR-mediated 

signaling. 

 

2.3.4. Grb2 is dispensable for both transient and sustained ERK activation 

Sos1 is constitutively associated with Grb2, which is required for the recruitment of Sos to 

the LAT signalosome (see 1.4.1). To test the role of Grb2 in TCR-mediated ERK activation, I 

suppressed Grb2 expression using RNAi (Fig. 2.10). Surprisingly, suppression of Grb2 

expression did not influence ERK activation regardless of the type of stimulation (Fig.2.10a, 

2.10b, and Warnecke et al, 2012). Although unexpected, these data were in line with 

previous observations made in Grb2-deficient mice. In fact, in these mice the loss of Grb2 

had no effect on the activation of either Ras or ERK1/2 in thymocytes (Jang et al, 2010). 

Thus, the data suggests that these two molecules may have independent and non-redundant 

functions (Kortum et al, 2013). 
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Figure 2.9. Sos2 is dispensable for both transient and sustained ERK activation. Peripheral human T cells 

were transfected with control (Ctrl), Sos2-specific or Sos1- and Sos2-specific siRNA and cultured for 72 h. 

Subsequently, cells were stimulated with either sAbs (a) or iAbs (b and c) for the indicated time periods. Cell 

lysates were analyzed by immunoblotting using the indicated Abs. Bands in (a), (b), and (c) were quantified using 

the ImageQuant software and values were normalized to the corresponding β-actin signal. Graphs in (a), (b), and 

(c) show the phosphorylation levels of ERK1/2 as arbitrary units ± SEM of at least three independent experiments. 

For (a), (b), and (c) immunoblots verifying Sos1 and Sos2 downregulation are shown. Numbers below the bands 

indicate expression levels or fold induction of phosphorylation compared to controls (the figure 2.9 was adopted 

from Poltorak et al, 2014). 
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Figure 2.10. Grb2 is dispensable for both transient and sustained ERK activation. Peripheral human T cells 

were transfected with control (Ctrl) or Grb2-specific siRNA and cultured for 72 h. Subsequently, cells were 

stimulated with either sAbs (a) or iAbs (b) for the indicated time periods. Cell lysates were analyzed by 

immunoblotting using the indicated Abs. Bands in (a) and (b) were quantified using the ImageQuant software and 

values were normalized to the corresponding β-actin signal. Graphs in (a) and (b) show the phosphorylation levels 

of ERK1/2 as arbitrary units ± SEM of at least four experiments. For (a) and (b) immunoblots verifying Grb2 

downregulation are shown. Numbers below the bands indicate expression levels or fold induction of 

phosphorylation compared to controls. 
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3. Discussion 

3.1. Differential regulation of proximal signaling in transient vs. sustained T-cell 

activation 

Ligation of the TCR generates a signal which will be ultimately translated into a specific 

cellular response. In my study, I performed a detailed comparison of the signaling dynamics 

correlating with two different cellular outcomes induced upon TCR stimulation in primary 

human T cells. I observed marked differences in the molecular regulation of an anergic-like 

state induced by monoclonal antibodies in solution (sAbs) vs. proliferation triggered by 

antibodies immobilized on microbeads (iAbs). My analyses indicate that the anergic-like state 

corresponds with transient signaling, whereas proliferation correlates with sustained 

activation. These two different cellular responses and signaling dynamics likely originate from 

the activation of distinct regulatory feedback loops. 

These two distinct types of stimulation induce qualitative differences already in the apical part 

of the TCR signaling cascade. Lck appears to be a key factor in the regulation of signaling 

dynamics and cellular outcomes. I propose that Lck can function as a “signal splitter”, a 

molecule which senses and discriminates the signal emanating from the TCR (Neilson et al, 

2004). The existence of a “signal splitter” in the apical part of the cascade could be beneficial 

for the cell because it could decipher the nature of the signal induced by a particular ligand 

almost instantly, thus requiring only a limited number of molecules regulating downstream 

signaling. In another study LAT has been proposed as a protein directing T-cell responses 

via modulating Lck activation (Dong et al, 2010). Dong et al., suggested that the active pool 

of Lck in the proximity of the TCR is controlled by LAT and that LAT promotes T-cell 

activation induced by TCR/MHC-peptide interactions of low affinity (Dong et al, 2010). 

Although we and others agree that Lck is a decisive factor positioned in the epicenter of  

T-cell activation, whether it is a “signal splitter” is still a matter of debate. 

In my experiments, transient signaling corresponded with substantial phosphorylation of Lck 

on Y394, the well-know activatory site (see 1.3.2). Furthermore, in the study by Stirnweiss et 

al., we have detected a 20% increase in Lck kinase activity upon stimulation with soluble 

antibodies (Stirnweiss et al, 2013). Parallel observations were made in another very recent 

study where the “opened”/active fraction of Lck correlated with condensation of TCR 

microclusters (Rossy et al, 2013). I was able to correlate the activation of Lck with 

augmented general tyrosine phosphorylation of cellular proteins and enhanced 

phosphorylation of the Lck substrates, TCRζ and ZAP70. Collectively, these data suggest 

that a fraction of Lck, or more generally SFKs, are de novo activated upon stimulation. 

Noteworthy, in my study only transient signaling results in the increased Lck activation, 

whereas iAbs stimulation does not elevate Lck activity. 
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I hypothesize that changes in the magnitude of Lck activation have a tremendous impact on 

downstream molecular events. In fact, I observed a strong phosphorylation of inhibitory 

molecules such as cCbl and Dok2 upon transient, but not sustained activation. Furthermore, 

others have reported that during transient signaling another negative regulator, the 

phosphatase SHP1, is activated (Methi et al, 2005). Since transient activation corresponds 

with a very strong activation of Lck and Fyn, it is likely that the high activity of SFKs 

correlates with the phosphorylation of phospho-tyrosine-dependent negative regulators. 

Hyperphosphoryation of inhibitory proteins may disturb the equilibrium between positive and 

negative regulators and therefore may lead to signal termination (Fig. 3.1, left side). Indeed, 

active cCbl, Dok2, and SHP1 are capable of deactivating Lck and other TCR proximal 

signaling molecules thereby terminating signaling (see 1.4.1). 

To confirm that Lck plays a role in the activation of inhibitory feedback loops, we have 

suppressed Lck expression by RNA interference (Poltorak et al, 2013). Indeed, Jurkat T cells 

expressing low levels of Lck exhibited prolonged ERK1/2 phosphorylation upon soluble 

antibody stimulation in comparison to controls (Poltorak et al, 2013). Others have shown that 

reduced Lck expression correlated with impaired activation of cCbl as well as SHP1 and with 

extended activation of the transcription factors NFAT and AP1 (Methi et al, 2005; Methi et al, 

2008). Therefore, fine-tuning of Lck activity appears to be crucial for the signaling dynamics 

and for the generation of a productive T-cell response. On the basis of these considerations, 

we hypothesized that by augmenting Lck activity a sustained signal can be converted into a 

transient one (Poltorak et al, 2013). In order to test this hypothesis, cells were stimulated with 

iAbs, which do not induce a substantial increase in Lck activation, and with soluble CD4. It is 

known that crosslinking of CD4 strongly increases Lck phosphorylation. As anticipated, 

enhancement of Lck phosphorylation upon CD4 cross-linking led to a reduced ERK1/2 

activation, decreased CD69 expression, and reduced proliferation upon iAbs stimulation 

(Poltorak et al, 2013). Collectively, our data show that suppression of Lck activity (e.g. by 

RNAi) extends signaling, thus converting transient into sustained signaling. Conversely, 

increase in Lck activity terminates sustained signaling (Fig. 3.1, left side), thus resulting in 

the conversion from sustained to transient signal.  

In stark contrast to transient signaling, sustained signaling does not dramatically increase 

Lck activity. Furthermore, I found that after the initial phase of T-cell activation, Lck activity is 

rather gradually downmodulated. In vitro kinase assays revealed that the ability of Lck 
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Figure 3.1. Regulation of Lck activity and signal duration. sAbs stimulation (left side) results in 

hyperactivation of Lck and activation of negative regulators concluding in rapid termination of signaling. iAbs 

stimulation (right side) leads to establishment of ERK-Lck feedback, which is necessary to modulate Lck activity 

and to sustain signaling. 
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to auto-phosphorylate was greatly reduced 60 min after stimulation. These results further 

corroborate the hypothesis that hyperactivation of Lck may be detrimental for T-cell 

activation. It is reasonable to assume that SFKs have to be kept “in check” during the course 

of T-cell activation. If not controlled, a slow but continuous increase in Lck activity would lead 

to enhanced tyrosine phosphorylation and to the activation of negative regulators (as in the 

case of stimulation with sAbs). Moreover, reduced Src kinase activity could increase the 

activation threshold and desensitize T cells, thus preventing spontaneous re-activation. 

Noteworthy, in support of our data, similar observations and conclusions were made by an 

independent group in different experimental settings (Lee et al, 1997). Lee et al., have 

described that mouse CD4+ Th1 clones expressing a transgenic TCR specific for pigeon 

cytochrome c (3C6) stimulated for longer time periods with APCs (P13.9 cells) show 

decreased global and TCR-specific tyrosine phosphorylation. Biochemically, these 

observations correlated with increased serine phosphorylation of Lck, decreased Lck kinase 

activity, and loss of cytosolic Lck. Lee et al., proposed that the downregulation of Lck activity 

is an important regulatory mechanism necessary to prevent unwanted TCR signaling and 

activation that can lead to cell death (Lee et al, 1997). 

These observations raise the question of how Lck activity is downmodulated during 

sustained signaling. I propose that the ERK-Lck positive feedback loop regulates Lck activity. 

I was able to show that during the course of iAbs treatment, Lck is phosphorylated on S59 by 

activated ERK1/2. It has been observed by other groups that ERK can bind directly to Lck via 

the SH3 domain (August et al, 1996). Subsequent phosphorylation of S59 by active ERK has 

been implicated in a change in the binding specificity Lck’s SH2 domain, which favors the 

binding of a different set of proteins to Lck (Joung et al, 1995). For example, Stefanova et al., 

proposed that ERK-mediated phosphorylation of Lck protects Lck from binding to its negative 

regulator, SHP1 (Stefanova et al, 2003). Therefore, the ERK-Lck circuit may be involved in 

promoting positive signals, on the one hand, by preventing Lck from inactivation (e.g. by 

SHP1) and on the other, by allowing slow downmodulation of Lck by other regulators (Fig. 

3.1, right side). 

Phosphatases responsible for gradual dephosphorylation/deactivation of Lck are not yet 

known. However, one possible candidate is PTPN22 (also known as LYP), which forms a 

complex with Csk (Cloutier et al, 1996). The PTPN22-Csk complex has a dual function: 

PTPN22 is able to dephosphorylate Y394 while Csk phosphorylates Y505 of Lck (Brownlie et al, 

2013). Their combined actions force the conversion of the kinase into a “closed” and inactive 

conformation (Vang et al, 2012). It is tempting to speculate that S59 phosphorylation and 

subsequent alteration in the binding properties of the SH2 domain may favor the interaction 

of PTPN22 with Lck over SHP1 leading to gradual dephosphorylation instead of a rapid 

inactivation. Low active, but not hyperactive, Lck is then able to sufficiently phosphorylate its 
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substrates for continuous signaling. In line with this hypothesis, PTPN22-/- mice have an 

augmented SFK signaling in effector cells and increased tendency to develop autoimmune 

inflammatory diseases (Hasegawa et al; 2004; Brownlie et al, 2012). Furthermore, R620W 

polymorphism of PTPN22 in humans has been associated with high risk for autoimmune 

diseases (Bottini et al, 2006). Nevertheless, the role of the PTPN22-Csk complex or other 

phosphatases in Lck inactivation during iAbs treatment requires further investigation. 

In summary, I was able to show that transient activation results in abnormal increase in 

activity of Src kinases and consequent strong phosphorylation of negative regulators of TCR 

signaling leading to premature termination of the T-cell activation signal (Fig. 3.1, left side). 

Phosphorylation of cCbl, Dok2, and probably other negative regulators, appears to be a fail-

safe mechanism to prevent improper activation of T cells. On the other hand, sustained 

signaling results in the activation of an ERK-Lck positive feedback loop which changes the 

binding specificity of Lck thereby protecting Lck from inactivation (e.g. by SHP1) and 

promotes a slow and subtle downmodulation of its activity (likely by PTPN22) (Fig. 3.1, right 

side). Thus, activation of the ERK-Lck loop appears to be necessary to support continuous 

signaling and to induce productive T-cell response. Nevertheless, in both types of activation, 

Lck plays a crucial role in regulating signals at the very apical part of the TCR cascade. 

 

3.2. Regulation of the Ras-ERK cascade differs in transient vs. sustained T-cell 

activation 

Differences in the activation of proximal signaling molecules are translated into differential 

activation of downstream pathways. I focused my attention on the Ras-ERK cascade which 

plays an important role in T-cell development and activation (Kortum et al, 2013). Regulation 

of the Ras-ERK pathway has an enormous therapeutic potential because perturbations in the 

activation of this cascade have been described in many pathological conditions (Kortum et al, 

2013). Ras-ERK is one of the central cascades because many signals propagated from 

different receptors converge in the activation of Ras and ERK. How cells are able to 

distinguish these signals and respond to them accordingly is still a matter of debate. It seems 

that the mode of ERK activation (e.g. magnitude and duration) can be interpreted and 

translated into different functional outcomes (Murphy et al, 2004: Ebisuya et al, 2005; von 

Kriegsheim et al, 2009). Therefore, changes in the strength or kinetics of Ras-ERK signaling 

may result in different T-cell responses, like positive and negative selection in the thymus 

(see 1.4.2) (Daniels et al, 2006). Taking these facts into account, the understanding of the 

regulation of Ras and ERK is of great importance. 

Hence, I decided to investigate how the Ras-ERK cascade is activated under transient or 

sustained TCR signaling in human peripheral T cells. I focused my studies on two well-know 

activators of Ras, the lymphoid-specific RasGRP1 and ubiquitously expressed Sos1. My aim 
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was to validate a widely accepted model proposing an interplay between RasGRP1 and 

Sos1, which is required to prime Sos1 by RasGRP1-produced Ras (RasGTP-Sos1 positive 

feedback loop) (see 1.4.1) (Roose et al, 2007; Das et al, 2009). 

First, I investigated the role of RasGRP1 in the activation of the Ras-ERK cascade in primary 

human T cells. I demonstrated that RasGRP1 is required for both transient and sustained 

ERK1/2 phosphorylation (Fig. 3.2) as well as for CD69 expression and T-cell proliferation. 

These results are in line with the data from RasGRP1-/- mice, where reduction in ERK 

signaling was reported in DP thymocytes (Kortum et al, 2012) and CD8+ T cells (Priatel et al, 

2010). Also a similar effect on TCR-mediated ERK activation was observed in RasGRP1-

deficient Jurkat T cells (Roose et al, 2005; Roose et al, 2007). 

Next, I analyzed the impact of Sos1, and of its homologue Sos2, on the phosphorylation of 

ERK1/2 upon transient or sustained activation. Suppression of Sos1 and/or Sos2 by RNA 

interference did not affect ERK activation in cells stimulated with sAbs. Also in Sos1-/- mice, 

the loss of Sos1 led to a very modest (10 - 15%) reduction in ERK1/2 phosphorylation in 

mature T cells after soluble anti-CD3 stimulation (Kortum et al, 2012). However, iAbs 

stimulation of human T cells, in which Sos1 expression was suppressed, significantly 

affected ERK activation. Noteworthy, the reduction in ERK1/2 phosphorylation was more 

pronounced at later time-points of T-cell activation (30 min and longer). The reduced ERK 

activation corresponded with a reduction in the expression of early activation genes (i.e. 

CD69) and decreased proliferation. Importantly, Sos1 appeared to play a role only in 

sustained ERK activation in mature T cells. This observation would support the model, where 

RasGRP1 is required for the initiation of the Ras-ERK pathway and for priming of Sos1. 

Subsequently, triggered Sos1 can contribute to prolongation of the ERK signaling (Fig. 3.2, 

right side). Nevertheless, the cooperation between RasGRP1 and Sos1 in primary cells has 

still to be demonstrated. In a recently proposed model, the relative expression levels of 

RasGRP1 and Sos1 determine their participation in thymic selection (Kortum et al, 2013). At 

the DN3 stage, Sos1 is expressed at much higher level than RasGRP1, hence Ras is 

preferentially activated via Sos1. Here, RasGRP1 acts as a fail-safe mechanism to ensure 

transition of sufficient numbers of DN thymocytes to the DP stage in case of Sos1 

malfunction (Kortum et al, 2013). At the TCR checkpoint (DP stage), RasGRP1 expression 

increases up to five-fold, whereas Sos1 expression decreases about five-fold (Dower et al, 

2000; Prasad et al, 2009; Kortum et al, 2011). Therefore, positive selection mainly depends 

on RasGRP1-mediated Ras activation and only in negative selection, which requires full 

Ras-ERK activation, both RasGRP1 and Sos1 are needed (Kortum et al, 2013). Since the 

ratio between RasGRP1 and Sos1 does not change dramatically from DP thymocytes to SP 

T cells, ERK activation in mature cells also depends preferentially on RasGRP1, whereas 

Sos1 is required to sustain the Ras signal. 
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Figure 3.2. Regulation of the Ras-ERK cascade during transient and sustained signaling. sAbs stimulation 

(left side) results in activation of ERK solely via RasGRP1, whereas iAbs stimulation (right side) leads to 

combined actions of RasGRP1 and Sos1 to sustain ERK phosphorylation. Sustained ERK activation triggers 

ERK-Lck positive feedback (right side) which is necessary for further support of the continuous signaling. 
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In summary, data generated by us and others suggest a more elaborate and dynamic 

interplay between these two GEFs than initially predicted. 

In contrast to Sos1, Sos2 downregulation does not influence ERK upon either transient or 

sustained activation. Additionally, combined suppression of Sos1 and Sos2 expression does 

not further affect ERK1/2 phosphorylation compared to suppression of Sos1 alone. 

Comparable observations were made in Sos2-/- and Sos1/2-/- mice, where deletion of Sos2 

did not further affect ERK activation and T-cell development (Kortum et al, 2012). Therefore, 

it appears that Sos2 is dispensable for ERK activation and T-cell development. 

I also explored the function of Grb2 in the activation of Ras-ERK. Grb2 is required to bring 

Sos to the plasma membrane. However, I was not able to show any effect on ERK1/2 

phosphorylation upon suppression of Grb2 expression. My results are in agreement with the 

data obtained from T-cell specific conditional Grb2 knock-out mice. In fact, the activation of 

both Ras and ERK is unaffected in these mice. It has to be taken into consideration that Grb2 

interacts with many molecules such as SHIP1, RasGAP, Gab2, Themis (thymocyte-

expressed molecule involved in selection), and cCbl, which may have an inhibitory effect on 

the Ras-ERK cascade (see 1.4.1) (Yamasaki et al, 2003; Dong et al, 2006; Fu et al, 2009; 

Smith-Garvin et al, 2009; Gascoigne et al, 2011; Paster et al, 2013). In fact, Sos1-/- and  

Grb2-/- mice have different phenotypes. Grb2 knock-outs have defective positive and 

negative selection whereas positive and negative selections are normal in Sos1-deficient 

mice (see Table 1.1). Data from Grb2-deficient thymocytes further suggest that Grb2 may 

play an unexpected role in the activation of Src kinases. However, I didn’t observe any effect 

on the tyrosine phosphorylation pattern in primary human T cells upon the suppression of 

Grb2. Thus, Grb2 may play a different role in mature vs. immature T cells.  

In addition to the TCR, it has been shown that the Grb2/Sos1 complex is involved in the 

regulation of the Ras-ERK cascade downstream of other receptors, such as the IL-2R (see 

1.3.4). In IL-2R-mediated signaling, both STAT and ERK pathway are activated. Activation of 

STATs depends on JAK kinases, whereas activation of ERK requires the Grb2 and Sos1 

(Beyer et al, 2011). We have shown that downregulation of both Grb2 and Sos in T-cell 

blasts resulted in attenuated ERK1/2 phosphorylation (Warnecke et al, 2012). In contrast, 

suppression of RasGRP1 had no impact on ERK1/2 activation downstream of the IL-2-R 

(Priatel et al, 2010, Warnecke et al, 2012). 

Thus, Grb2 appears to be required for the activation of the Ras-ERK cascade downstream of 

the IL-2R, but not of the TCR. On the other hand, Sos1 appears to be crucial for both TCR- 

and IL-2R-mediated ERK activation. Conversely, RasGRP1 activates Ras-ERK downstream 

of the TCR, but not downstream the IL-2-R (Table 3.1). Regardless of the receptor, all three 

proteins are necessary for proper ERK-dependent T-cell activation as the loss of one of them 

impairs proliferation (Poltorak et al, 2013). 
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Molecule 

TCR-mediated 

transient ERK 

activation 

TCR-mediated 

sustained ERK 

activation 

IL-2R-mediated 

ERK activation 

RasGRP1 required required dispensable 

Sos1 dispensable required required 

Sos2 dispensable dispensable dispensable 

Grb2 dispensable dispensable required 

 

Table 3.1.  Importance of RasGRP1, Sos1/2, and Grb2 in ERK activation. 

 

It is important to mention that, despite the fact that RasGRP1 and Sos1 are crucial for Ras 

activation, other mechanisms to activate Ras may exist in T cells. Recently, it has been 

reported that the B-cell adaptor molecule of 32 kDa (Bam32) activates ERK in T cells in a 

Ras-independent manner (Sommers et al, 2008; Rouquette-Jazdanian et al, 2012). Study 

shows that a Bam32-PLCγ1-Pak1 complex activates ERK via Pak1-mediated 

phosphorylation of Raf1 and MEK (Rouquette-Jazdanian et al, 2012). Furthermore, in LAT-

Y136F knock-in mice, a PLCγ1-independent Lck-PKCθ-RasGRP1-Ras pathway has been 

also described (Kortum et al, 2013). When the LAT binding site for PLCγ1 is mutated, 

RasGRP1 is presumably phosphorylated by PKCθ. 

Collectively, I was able to show for the first time that activation and regulation of the Ras-

ERK cascade in primary human T cells depends on cooperative actions of RasGRP1 and 

Sos1 downstream of the TCR (Fig. 3.2). However, it appears that either during different 

stages of thymic development or upon different stimulatory conditions, the importance of 

RasGRP1 and Sos1 may vary. Moreover, recent developments in the field suggest that other 

pathways can also contribute into the Ras-ERK activation. Thus, interactions between 

RasGRP1 and Sos1 have proven to be very dynamic, complex, and until now are not fully 

resolved. 
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4. Materials and Methods 

4.1. Ethics 

Approval for these studies involving the analysis of TCR-mediated signaling in primary 

human T cells was obtained from the Ethics Committee of the Medical Faculty at the Otto-

von-Guericke University, Magdeburg, Germany with the permission number [107/09]. 

Informed consent was obtained in writing in accordance with the Declaration of Helsinki. 

 

4.2. Materials 

4.2.1. Reagents and recipes 

Human culture medium 

RPMI 1640 liquid medium with NaHCO3 and stable glutamine (Biochrom) 

10% FCS (PAN Biotech) 

2 µg/ml Ciprobay (Bayer Schering Pharma) 

 

Cell-lines culture medium 

RPMI 1640 liquid medium with NaHCO3 and stable glutamine (Biochrom) 

10% FCS (PAN Biotech) 

100 U/ml of Penicilin/Streptavidin (Biochrom) 

 

Standard lysis buffer 

1% lauryl maltoside (N-dodecyl β-maltoside) (Calbiochem) 

1% IGEPAL CA-630 (Sigma Aldrich) 

1 mM Na3VO4 (Sigma Aldrich) 

1 mM PMSF (Sigma Aldrich) 

10 mM NaF (Sigma Aldrich) 

10 mM EDTA (Roth) 

50 mM Tris pH 7.5 (Roth) 

150 mM NaCl (Roth) 

 

Mild lysis buffer 

1% Brij58 (Thermo Scientific) 

1% IGEPAL CA-630 (Sigma Aldrich) 

1 mM Na3VO4 (Sigma Aldrich) 

1 mM PMSF (Sigma Aldrich) 

10 mM NaF (Sigma Aldrich) 

10 mM EDTA (Roth) 

50 mM Tris pH 7.5 (Roth) 
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150 mM NaCl (Roth) 

 

5 x Reducing sample buffer 

50% glycerol (Merck) 

330 mM Tris pH 6.8 (Roth) 

10% SDS (Serva) 

0.01% bromphenolblue (Roth) 

10% 2-mercaptoethanol (Merck) 

 

SDS-PAGE resolving 7.5% gel 

7,2 ml ddH2O 

3,8 ml 30% Acrylamid (Bio-Rad) 

3,8 ml 1,5 M Tris pH 8.8 (Roth) 

150 µl 10% SDS (Serva) 

150 µl 10% APS (Roth) 

15 µl TEMED (Roth) 

 

SDS-PAGE resolving 10% gel 

4,5 ml ddH2O 

3,8 ml 30% Acrylamid (Bio-Rad) 

2,9 ml 1,5 M Tris pH 8.8 (Roth) 

113 µl 10% SDS (Serva) 

113 µl 10% APS (Roth) 

11 µl TEMED (Roth) 

 

SDS-PAGE resolving 12% gel 

3,5 ml ddH2O 

3,8 ml 30% Acrylamid (Bio-Rad) 

2,5 ml 1,5 M Tris pH 8.8 (Roth) 

100 µl 10% SDS (Serva) 

50 µl 10% APS (Roth) 

5 µl TEMED (Roth) 

 

SDS-PAGE stacking gel 

2,1 ml ddH2O 

0,6 ml 30% Acrylamid (Bio-Rad) 

0,9 ml 1,5 M Tris pH 8.8 (Roth) 
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38 µl 10% SDS (Serva) 

38 µl 10% APS (Roth) 

4 µl TEMED (Roth) 

 

Running Buffer 

25 mM Tris pH 8.3 (Roth) 

192 mM glycine (Roth) 

0.1% SDS (Serva) 

 

Blotting Buffer 

39 mM glycine (Roth) 

48 mM Tris (Roth) 

0.037% SDS (Serva) 

20% methanol (Merck) 

 

TBS Buffer 

10 mM Tris pH 7.5 (Roth) 

150 mM NaCl (Roth) 

 

Blocking Buffer 

10 mM Tris pH 7.5 (Roth) 

150 mM NaCl (Roth) 

5% Milk (Roth) 

 

Washing Buffer 

20 mM Tris pH 7.5 (Roth) 

150 mM NaCl (Roth) 

0.02% Tween 20 (Roth) 

 

IP Washing Buffer 

0.1% lauryl maltoside (N-dodecyl β-maltoside) (Calbiochem) 

0.1% IGEPAL CA-630 (Sigma Aldrich) 

1 mM PMSF (Sigma Aldrich) 

50 mM Tris pH 7.4 (Roth) 

10 nM NaF (Sigma Aldrich) 

0.16 M NaCl (Roth) 
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Kinase Buffer 

50 mM Tris pH 7.4 (Roth) 

10 mM MnCl2 (Sigma Aldrich) 

0.1% IGEPAL CA-630 (Sigma Aldrich) 

10 µCi [γ-32P] ATP (Perkin Elmer) 

 

4.2.2. siRNA sequences 

Grb2 

5’ – CAU GUU UCC CCG CAA UUA UTT – 3’ 

3’ – AUA AUU GCG GGG AAA CAU GTT – 5’ 

RasGRP1 

5’ – GGG UGA GGA GUU ACA UUG CTT – 3’ 

3’ – GCA AUG UAA CUC CUC ACC CTT – 5’ 

5’ – CAG CCC AGG AUA CUC UAU AUG UGC U – 3’ 

3’ – AGC ACA UAU AGA GUA UCC UGG GCU G – 5’ 

Renilla Luciferase (siRNA negative control) 

5’ – CCA AGU AAU GUA GGA UCA ATT – 3’ 

3’ – UUG AUC CUA CAU UAC UUG GTT – 5’ 

Sos1 

5’ – UUG CCC AUU UAU CAA UUG GTT – 3’ 

3’ – CCA AUU GAU AAA UGG GCA ATT – 5’ 

Sos2 

5’ – UCA GCU AAU GAA GAG UCU CUC UAU U – 3’ 

3’ – AAU AGA GAG ACU CUU CAU UAG CUG A – 5’ 

 

All siRNA duplexes were purchased from Invitrogen (Life Technologies) and used according 

to manufacturer’s recommendations. 

 

4.2.3. Antibodies 

Antibodies used for stimulation 

Biotin conjugated mouse anti-human CD28 (clone CD28.2, eBioscience) 

Biotin conjugated mouse anti-human CD3ε (clone UCHT1, eBioscience) 

Biotin conjugated mouse anti-human CD4 (clone OKT4, eBioscience) 

Biotin conjugated mouse IgG1 K isotype control (clone P3.6.2.8.1, eBioscience) 

Biotin conjugated mouse IgG2a K isotype control (clone eBM2a, eBioscience) 

Mouse anti-human CD3ε MEM92 hybridoma supernatants (kindly provided by Vaclav 

Horejsi, Academy of Sciences of the Czech Republic, Prague, Czech Republic) 
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Antibodies used for immunoblotting 

anti-β-actin (clone AC-15, Sigma-Aldrich) 

anti-ERK1/2 (#V1141, Promega) 

anti-Fyn (clone Fyn01, kindly provided by Vaclav Horejsi, Academy of Sciences of the Czech 

Republic, Prague, Czech Republic) 

anti-Grb2 (clone C-23, Santa Cruz Biotechnology) 

anti-LAT (#06-807, Milipore) 

anti-Lck (clone 28/Lck, BD Biosciences) 

anti-Lck (clone Y123, Epitomics) 

anti-phosphotyrosine HRP conjugate (clone 4G10, Millipore) 

anti-phospho(p)S217/221 MEK1/2 (clone 41G9, Cell Signaling Technology) 

anti-pS338 cRaf (clone 56A6, Cell Signaling Technology) 

anti-pT202/Y204 ERK1/2 (#9101, Cell Signaling Technology) 

anti-pY171 LAT (#3584, Cell Signaling Technology) 

anti-pY351 Dok2 (#3911, Cell Signaling Technology) 

anti-pY416 Src (#2101, Cell Signaling Technology) 

anti-pY493 ZAP70 (#2704. Cell Signaling Technology) 

anti-pY731 cCbl (#3554, Cell Signaling Technology) 

anti-pY783 PLCγ1 (#2821, Cell Signaling Technology) 

anti-RasGRP1 (kindly provided by James C. Stone, University of Alberta, Edmonton, 

Canada) 

anti-Sos1 (clone C-23, Santa Cruz Biotechnology) 

anti-Sos2 (clone C-19, Santa Cruz Biotechnology)  

anti-ZAP70 (clone 29/ZAP70, BD Biosciences) 

 

Each antibody was diluted in TBS buffer (see 4.2.1) supplemented with 5% BSA (Sigma 

Aldrich) or 5% Milk (Roth) according to manufacturer’s recommendation. 

 

Antibodies used for immunoprecipitation 

agarose-conjugated anti-CD3ζ (clone 6B10.2, Santa Cruz Biotechnology) 

anti-Lck (clone 3A5, Santa Cruz Biotechnology) 

anti-Lck (clone 3A5, Milipore) 

normal goat control IgG (Santa Cruz Biotechnology) 

normal rabbit control IgG (Santa Cruz Biotechnology) 
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Each antibody was added into cell lysate in the presence of Protein A or G agarose beads 

(Santa Cruz Biotechnology) and 2% of BSA (Sigma Aldrich) in the concentration 

recommended by manufacturer. 

 

Antibodies used for flow cytometry 

APC conjugated anti-human CD69 (clone FN50, BD Biosciences) 

FITC conjugated anti-human CD25 (clone M-A25, BD Biosciences) 

 

For cell staining antibodies were diluted in PBS (Biochrom) in the concentration 

recommended by the manufacturer. 

 

4.3. Methods 

4.3.1. Human T-cell purification and culture 

Peripheral blood mononuclear cells were isolated by Ficoll gradient (Biochrom) centrifugation 

of heparinized blood collected from healthy volunteers. Total population of human T cells or 

CD4+ subpopulation were further purified by non-T cell depletion using T-cell isolation kits 

and AutoMacs magnetic separation system (all from Miltenyi Biotec). The purity of T cells, 

determined by flow cytometry, was usually more than 96%. After isolation, T cells were 

cultured at 37°C and 5% CO2 in human culture medium (see 4.2.1). 

 

4.3.2. T-cell line culture 

The Lck-deficient variant of the Jurkats (J.CaM1.6) were maintained at 37°C and 5% CO2 in 

cell-lines culture medium (see 4.2.1). 

 

4.3.3. T-cell transfection 

For protein downregulation in human primary T cells or T-cell blasts siRNA duplexes 

purchased from Invitrogen (Life Technologies) were used (see 4.2.2). 8 x 106 cells were 

washed with PBS containing Mg++ and Ca++ ions (BIochrom), resuspended in 200 µl of  

Opti-MEM transfection medium (Life Technologies), and transferred into transfection cuvette 

(Bio-Rad). Subsequently, 50 µM of siRNA duplex was added 3 min before electroporation. 

To achieve efficient downregulation, primary human T cells or T-cell blasts were 

electroporated using the Gene Pulser Xcell (Bio-Rad) (one 500V pulse for 3 ms). Cells were 

collected 72 h (in case of primary T cells) or 24 h (in case of T-cell blasts) after 

electroporation and stimulated accordingly. 

For Lck-deficient variant of the Jurkats (J.CaM1.6) transfection, pEF-BOS expression 

plasmid encoding various Lck constructs (S42A, S42D, S59A, S59D, S42A/S59A) were 

used. 2 x 107 cells were washed, resuspended in 350 µl of PBS containing Mg++ and Ca++ 
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ions (Biochrom), and transferred into transfection cuvette (Bio-Rad). Subsequently,  

30 µg of cDNA was added. To achieve efficient transfection, cells were electroporated using 

the Gene Pulser II (Bio-Rad) (230V; 950 µF). 24 h after electroporation cells were collected, 

stimulated with iAbs or sAbs as indicated. 

 

4.3.4. T-cell stimulation 

T cells were stimulated with either soluble or immobilized mAbs as follows. For soluble Ab 

stimulation, 2 x 106 cells were loaded with 5 µg/ml biotinylated anti-human CD3 alone or in 

combination with 5 µg/ml biotinylated anti-human CD28, and 5 µg/ml biotinylated anti-human 

CD4  mAbs (see 4.2.3) in 100 µl RPMI 1640 medium (Biochrom) for 15 min on ice. After 

washing, receptors were cross-linked by addition of 25 µg/ml NeutrAvidin (Pierce). For 

microbead stimulation, SuperAvidin-coated polystyrene microspheres (Ø~10 µm, Bangs 

Laboratories) were coated with biotinylated CD3 alone or in combination with CD28 and CD4 

mAbs as indicated (5 µg/ml each) for 30 min at 37 °C in PBS (Biochrom). Antibody-coated 

microbeads were washed twice with PBS, resuspended in RPMI 1640 medium and 

incubated with T cells in a 1:1 ratio. Stimulation of T cells was facilitated and synchronized by 

centrifuging samples for about 10 s at 100xg. Biotinylated IgG2a and IgG1 mouse 

immunoglobulins were used as a control (see 4.2.3). Stimulation with plate-bound antibodies 

was performed as follows, 10 µg/ml of CD3 and 10 µg/ml CD28 Abs were coated on 6-well 

plates for 2 h at 37°C. After washing, 2 x 106 cells were added to the plates, rapidly 

centrifuged at 100xg and incubated at 37°C for the indicated time periods. 

Stimulations in the presence of either the MEK inhibitor I, U0126 (Calbiochem) or DMSO 

(Sigma Aldrich) were performed by pre-incubating T cells for 30 min with 10 µM of the 

compounds before stimulation with mAbs. For indicated microbead stimulation, 10 µM of 

either U0126 or DMSO were added 30 min after stimulation. 

 

4.3.5. Immunoblotting 

After specific period of time stimulation of cells was stopped by addition of 1 ml ice-cold TBS 

buffer (see 4.2.1) and brief centrifugation at 10,000xg. Subsequently, cells were lysed in  

30 µl of standard lysis buffer (see 4.2.1) for 25 min on ice. Afterwards, nuclear content was 

separated from protein suspension by 10 min centrifugation at 16,000xg. To unwind proteins 

7,5 µl of 5x reducing sample buffer (see 4.2.1) was added and samples were heated for  

5 min at 95°C. Post-nuclear lysates were separated by SDS-PAGE electrophoresis system 

(Bio-Rad) and transferred using semi-dry Western blotting onto nitrocellulose membranes 

(Amersham) (for used reagents see 4.2.1). Membranes were probed with the indicated 

primary antibodies (see 4.2.3) and the appropriate HRP-conjugated secondary antibodies 

(Dianova) and developed using the ECL detection system on the Hyperfilm MP (Amersham). 
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For quantifications of the immunoblots, the intensity of the detected bands was acquired 

using the Perfection V700 Photo Scanner (Epson) and analysis was performed using 1D 

ImageQuant software (Kodak). Unless indicated otherwise, β-actin was used as a loading 

control (typical loading error in the experiment: ±13%). 

For dual-color analysis, nitrocellulose membranes were first incubated with rabbit anti-pY416 

Src antibody (see 4.2.3) and goat anti-rabbit IRDye 680LT (LI-COR Biosciences), stripped for 

20 min in Restore PLUS Western Blot Stripping Buffer (Thermo Scientific), and then 

incubated with rabbit antibody against Lck (see 4.2.3) and goat anti-rabbit IRDye 800CW (LI-

COR Biosciences). Signal intensities were determined by scanning the membranes with an 

Odyssey infrared imager (LI-COR Biosciences) and analyzing the data with the Odyssey 

application software. 

 

4.3.6. Immunoprecipitation 

Primary human T cells (3 x 107) were either left untreated or stimulated with sAbs or iAbs for 

the indicated periods of time (see 4.3.4). Cells were processed as for immunoblotting (see 

4.3.5), lysed in standard or mild lysis buffer (see 4.2.1), and cleared by centrifugation. 

Proteins of interest were immunoprecipitated from lysates with specific antibodies (see 4.2.3) 

conjugated with recombinant 40 µl of protein A or G agarose beads (Santa Cruz 

Biotechnology) in the presence of 2% BSA (Sigma Aldrich) at 4°C overnight. After washing 

thoroughly with IP washing buffer (see 4.2.1), immunoprecipitates were resolved by SDS-

PAGE, transferred to a nitrocellulose membrane (Amersham), and analyzed by 

immunoblotting with the indicated antibodies (see 4.2.3). 

 

4.3.7. Flow cytometric measurements 

To determine the efficiency of T-cell activation, T cells were stimulated as described 

previously (see 4.3.4). After 24 h, T cells were stained with specific antibodies against 

activation markers (see 4.2.3) for 15 min at 4°C and analyzed by flow cytometric analysis 

using a BD LSRFortessa, FACSDiva Software 6.1.3 (BD Biosciences), and FlowJo 7.6.5 

(Tree Star).  

Proliferation experiments were carried out in 96-well plates (Costar). Purified human T cells 

were labeled with 2.5 µM CFSE (Molecular Probes) for 10 min at 37°C. After washing, 2 x 

105 cells were seeded in a total volume of 200 µl to each well and cultured in human culture 

medium (see 4.2.1). T cells were either left unstimulated or stimulated with sAbs or iAbs as 

indicated. T cells were cultured for 72 h at 37°C and 5% CO2. Proliferation was assessed by 

CFSE dilution using a BD LSRFortessa, FACSDiva Software 6.1.3 (BD Biosciences), and 

FlowJo 7.6.5 (Tree Star). 
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4.3.8. Proliferation assay 

To assess the proliferative capacity T cell, cells were transfected with siRNA duplex as 

described above (see 4.3.3), rested overnight and stimulated in 96-well round-bottomed 

tissue culture plates (Corning Life Sciences) coated with CD3 monoclonal antibody (MEM92) 

(see 4.2.3). Cells were plated at 5 x 104 cells per well in quadruplicates and cultured for 48 h. 

[3H]-Thymidine (0.3 mCi per well; specific activity 50 Ci/mmol, ICN) was added for the last  

8 h, and the plates were collected using a PHD cell harvester (Inotech). Thymidine 

incorporation was measured by liquid scintillation counting using liquid scintillator 1450 

Microbeta Wallac (Perkin Elmer). 

 

4.3.9. In vitro kinase assay 

After stimulation with iAbs (see 4.3.4), T cells were lysed in standard lysis buffer (see 4.2.1). 

Subsequently, lysates were subjected to immunoprecipitation with anti-Lck antibody (see 

4.2.3 and 4.3.6). Immunoprecipitates were washed 5 times with IP washing buffer (see 4.2.1) 

and 10% was taken for Western blot analysis (see 4.3.5). Remaining 90% was resuspended 

in 40 µl kinase reaction buffer containing [γ-32P]-ATP (Perkin Elmer) (see 4.2.1). The reaction 

was allowed to proceed for 5 min at room temperature and stopped by adding 10 µl  

5x reducing sample buffer (see 4.2.1) and heating at 95°C for 5 min. Samples were analyzed 

on 7.5% SDS-PAGE (see 4.2.1). Gels were dried and exposed to Hyperfilm MP (Amersham) 

for 12 h at -70°C with intensifying screen. 

 

4.3.10. Statistical analysis 

Graphical representation of the data and statistical analysis were performed using GraphPad 

Prism 3.02 (GraphPad Software Inc). Significance was calculated by paired two-tailed 

student’s t-test (* P≤0.05, ** P≤0.01, *** P≤0.001). 
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5. Used abbreviations 

A  alanine 
Abs  antibodies 
ADAP  adhesion and degranulation promoting adapter protein 
Akt  Ak thymoma 
AP1  activator protein 1 
APC  antigen presenting cell 
Bam32  B cell adaptor molecule of 32 kDa 
Bcl10  B-cell lymphoma 10 
C  constant region 
CaM  calmodulin 
CaMK  calmodulin kinase 
CARMA1 CARD-containing MAGUK protein 1 
Cbl  casitas B lineage lymphoma 
CD  cluster of differentiation 
CDC25 cell division cycle 25 
cPKC  classical protein kinase C 
CRAC  calcium release activated channels 
Csk  c-src tyrosine kinase 
cSMAC central supramolecular activating cluster 
D  aspartic acid 
DAG  diacylglycerol 
DC  dendritic cell 
DH  Dbl homology 
DN  double negative 
Dok2  docking protein 2 
DP  double positive 
dSMAC distal supramolecular activation cluster 
EGF  epidermal growth factor 
ELK  ETS domain-containing protein 
ER  endoplasmic reticulum 
ERK1/2 extracellular signal-regulated kinase 
FasL  Fas ligand 
Fyn  feline yes-related protein 
Gads  Grb2-related adapter protein downstream of Shc 
GDP  guanosine diphosphate 
GEF  guanine nucleotide exchange factor 
Grb2  growth factor receptor-bound protein 2 
GSF  GDI-like solubilizing factor 
GTP  guanosine triphosphate 
iAbs  immobilized anitbodies 
IFNγ  interferon gamma 
IκB  inhibitor of kappa B 
IKK  IκB kinase 
IL  interleukin 
IL-2R  IL-2 receptor 
IP3  inositol 1,4,5-trisphosphate 
IS  immunological synapse 
ITAM  immunoreceptor tyrosine-based activation motif 
Itk  IL-2-inducible T-cell kinase 
JAK  janus kinase 
JNK  c-Jun N-terminal kinase 
LAT  linker of activated T cells 
Lck  lymphocyte-specific protein tyrosine kinase 
mAbs  monoclonal antibodies 
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MALT  mucosa-associated lymphoid tissue lymphoma translocation protein 1 
MAP3K mitogen-activated protein kinase kinase kinase 
MAPK  mitogen-activated protein kinases 
MEK  mitogen-activated protein kinase kinase 
MEKK1 mitogen-activated protein kinase kinase kinase 1 
MHC  major histocompatibility complex 
MKK  mitogen-activated protein kinase kinase 
MW  molecular weight 
Nck  non-catalytic region of tyrosine kinase adaptor protein 
NFAT  nuclear factor of activated T-cells 
NFκB  nuclear factor kappa light chain enhancer of activated B cells 
NGF  nerve growth factor 
nPKC  novel protein kinase C 
OVA  ovalbumin 
OT  ovalbumin-specific TCR 
PAMP  pathogen-associated molecular patterns 
PAG  phosphoprotein associated with GEMs 
PC12  pheochromocytoma of the rat adrenal medulla cell line 
PH  pleckstrin homology 
PIP2  phosphatidylinositol-4,5-bisphosphate 
PIP3  phosphatidylinositol-3,4,5-triphosphate 
PDK1  phosphoinositide-dependent protein kinase 1 
PI3K  phosphoinositide 3-kinase 
PKB  protein kinase B 
PKC  protein kinase C 
PLCγ1  phospholipase C gamma 1 
PRR  proline-rich region 
pSMAC peripheral supramolecular activation cluster 
PTP  protein tyrosine kinase 
PTPN22 protein tyrosine phosphatase, non-receptor type 22 
R  arginine 
Rac  Ras-related C3 botulinum toxin substrate 
Raf  rat fibrosarcoma 
Ras  rat sarcoma 
RasGAP Ras GTPase activating protein 
RasGRP1 Ras guanyl-releasing protein 1 
RBD  Ras binding domain 
REM  Ras exchange motif 
RNAi  RNA interference 
RSK  ribosomal s6 kinase 
S  serine 
sAbs  soluble antibodies 
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SFK  Src family tyrosine kinase 
Shc  SH2 domain-containing transforming protein 
SH2  Src homology 2  
SH3  Src homology 3  
SHP1  SH2 domain-containing phosphatase 1 
SHIP1  SH2 domain-containing inositol-5-phosphatase 
siRNA  short interfering RNA 
SLE  systemic lupus erythematosus 
SLP76  SH2 domain-containing leukocyte protein of 76 kDa 
Sos  son of sevenless 
SP  single positive 
Src  sarcoma tyrosine kinase 
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STAT  signal transducer and activator of transcription 
Syk  spleen tyrosine kinase 
TBSM  tyrosine-based signaling motif 
Tc  cytotoxic T cell 
TCR  T-cell receptor 
TGFβ  transforming growth factor beta 
Th  T helper cell 
Themis thymocyte-expressed molecule involved in selection 
TMP  thrombin mimicking peptide 
TRAP  transmembrane adaptor protein 
Treg  regulatory T cell 
TSAd  T-cell specific adapter protein 
Ub  ubiquitin 
Unc119 uncoordinated 119 
W  tryptophan 
WT  wild type 
V  variable region 
Vav1  proto-oncogene vav 1 
Y  tyrosine 
ZAP70  zeta-chain-associated protein kinase 70 kDa 
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