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Abstract

This cumulative thesis reports on the simulation of transport properties in two different regimes:
steady-state and ultrafast processes. The considered quantities are in particular, the electron’s
charge, spin, and orbital angular momenta, which are carried by respective currents.

One part of the thesis deals with the steady-state transverse transport, where an applied homo-
geneous electric field causes responding charge, spin and orbital currents. The resulting currents
are transverse, since they flow perpendicular to the applied electric field; this phenomenon is de-
noted as ‘Hall effect’. In this theoretical work, I investigate the anomalous, spin and orbital Hall
effect in the two-dimensional kagome lattice. Model calculations based on the tight-binding ap-
proach and the Berry curvature formalism, contribute to an understanding of the effects in the
kagome systems on a microscopic level. Thereby, the role of the lattice structure, spin-orbit cou-
pling, and a noncollinear magnetic texture, which is localized on the atomic sites, is discussed.

In the other part of the thesis, the focus is on ultrafast transport, where electron dynamics
is induced by excitation of thin films with femtosecond laser pulses. By utilizing an effective
one-electron density matrix approach combined with real space tight-binding calculations, the
time evolution during laser excitation is simulated with atomic resolution. I performed the sim-
ulations with the computational framework evolve, a computer code which is being developed
in our group. The investigated materials are thin films, in particular homogeneous Cu or Co
samples and a Co/Cu heterostructure, which are illuminated with laser pulses of different light
polarization. I analyze how spin and orbital angular momenta are generated, manipulated and
transferred by laser excitation. Thereby, the role of surfaces and interfaces as well as the light
polarization of the laser pulse is discussed.

Kurzzusammenfassung

In dieser kumulativen Arbeit wird über die Simulation von Transporteigenschaften in zwei ver-
schiedenen Regimen berichtet: zeitunabhängige und ultraschnellen Prozesse. Bei den betra-
chteten Größen handelt es sich insbesondere um die Ladung, den Spin und den Bahndrehimpuls
des Elektrons, die durch entsprechende Ströme transportiert werden.

Ein Teil der Arbeit befasst sich mit dem zeitunabhängigen transversalen Transport, bei dem
ein angelegtes homogenes elektrisches Feld zu entsprechenden Ladungs-, Spin- und Orbital-
strömen führt. Die resultierenden Ströme sind transversal, da sie senkrecht zum angelegten
elektrischen Feld fließen; dieses Phänomen wird als „Hall-Effekt” bezeichnet. In dieser theo-
retischen Arbeit untersuche ich den anomalen, spin und orbitalen Hall-Effekt im zweidimen-
sionalen Kagome-Gitter. Modellrechnungen, die auf dem Tight-Binding-Ansatz und dem Berry-
curvature-Formalismus basieren, tragen zum Verständnis der Effekte in den Kagome-Systemen
auf mikroskopischer Ebene bei. Dabei wird die Rolle der Gitterstruktur, der Spin-Bahn-Kopplung
und einer nicht-kollinearen magnetischen Textur, die auf den atomaren Plätzen lokalisiert ist,
diskutiert.

Im anderen Teil der Arbeit liegt der Schwerpunkt auf dem ultraschnellen Transport, bei dem
die Elektronendynamik durch die Anregung dünner Filme mit Femtosekunden-Laserpulsen in-
duziert wird. Durch die Verwendung eines effektiven Ein-Elektronen-Dichtematrix-Ansatzes in
Kombination mit Realraum-Tight-Binding-Berechnungen wird die zeitliche Entwicklung während
der Laseranregung mit atomarer Auflösung simuliert. Ich habe die Simulationen mit evolve
durchgeführt, einem Computercode, der in unserer Gruppe entwickelt wird. Bei den unter-
suchten Materialien handelt es sich um dünne Filme, insbesondere homogene Cu- oder Co-
Proben und eine Co/Cu-Heterostruktur, die mit Laserpulsen unterschiedlicher Lichtpolarisation
beleuchtet werden. Ich analysiere, wie Spin- und Bahndrehimpuls durch Laseranregung erzeugt,
manipuliert und transportiert werden. Dabei wird die Rolle von Oberflächen und Grenzflächen
sowie der Lichtpolarisation des Laserpulses diskutiert.
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1 Introduction

Spin- and orbitronics. The world has changed: a field alternative to conventional electronics is
emerging, namely ‘spintronics’, which could make smaller devices with lower power consump-
tion possible [1–3]. Traditional electronic devices, such as solar cells, transistors, sensors, and
LCD/LED displays, have conventionally relied solely on the charge of electrons for operation.
However, in spintronics, as the name implies, the electron’s spin degree of freedom and the as-
sociated angular momentum are also harnessed. This shows great potential for designing more
compact and energy-efficient nanoelectronic devices with increased memory and processing ca-
pabilities [4, 5].

One class of materials has gained great interest in this field: antiferromagnets that build on
their versatility since they can be (semi)metallic, insulating or semiconducting [2]. A conven-
tional (collinear) antiferromagnet is a magnetically ordered state that has a vanishing net mag-
netization [3, 6]. Although this property challenges the detection or manipulation of antifer-
romagnets in experiments, it also offers intriguing possibilities, since these materials allow for
ultrafast spin dynamics and particular transport quantities. Besides, antiferromagnets are more
‘robust’ against perturbation by (external) magnetic fields and create no stray fields [2, 3].

Since spin (angular momentum) is used for efficient storage and transfer of information, one
important aspect of spintronics is the generation of spin(-polarized) currents and their injection
into other materials. Spintronics can be roughly divided into two subfields: spin-transfer elec-
tronics and spin-orbitronics [2]. The former focuses on effects arising from strong exchange
interactions between itinerant and highly localized magnetic moments, such as spin-transfer
torque [7, 8], which allows for electrical control of magnetic textures, and the ‘inverse’ effect
of spin pumping, where spin currents are created by precessing magnetic moments [9]. In con-
trast, the latter subfield typically relies on spin-orbit coupling (SOC), leading to phenomena like
anisotropic magnetoresistance [10] as well as the ‘famous’ anomalous and spin Hall effects [11,
12]. The latter two effects are used to generate transverse charge and spin(-polarized) currents.
For a long time, it was believed that the anomalous Hall effect (AHE) is a signature of ferromag-
netism, since the generated charge current could be related to the net magnetization. In contrast,
the spin Hall effect (SHE) exists in nonmagnetic materials (where the AHE is absent), but typi-
cally large SOC is essential for the generation of large spin currents.

Both effects have become very significant for antiferromagnetic spintronics since both theoret-
ical [13–17] and experimental [18–20] works during the last 10 years showed large AHE and SHE
in the noncollinear antiferromagnetic material class Mn3X (X=Rh, Ir, Pt, Ga, Ge, Sn). Most in-
terestingly, the AHE exists despite a vanishing net magnetization, and the SHE is allowed even
without SOC in these systems. The two effects have been predicted mainly based on symme-
try arguments for the noncollinear magnetic texture formed by the Mn magnetic moments on
the two-dimensional kagome lattice (cf. Fig. 1): in these materials, specific symmetries are bro-
ken which allows for non-vanishing Berry curvatures – which are topological properties of the
electronic structure – that give rise to the ‘intrinsic’ contributions to the AHE [13, 14] and the
SHE [15–17]. In the first section in the cumulative part of this thesis, I am going beyond this
symmetry analysis and discuss the unconventional transport properties in these noncollinear
kagome magnets on a microscopic level.

The aforementioned aspects of spintronics have focused only on the manipulation and transfer
of angular momentum arising from the intrinsic spin degree of freedom of electrons. Yet, the to-
tal magnetic moment also has contributions from the orbital counterpart, which even dominates
in some materials [21]. Nevertheless, the orbital degree of freedom was given less consideration
because of the so-called ‘orbital quenching’, a phenomenon where the crystal field suppresses
orbital angular momentum in equilibrium [22]. However, recent studies showed that the gener-
ation and transport of orbital angular momentum in non-equilibrium is possible despite orbital
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Figure 1: Illustration of steady-state transport in a kagome lattice. The atoms (blue spheres)
are arranged in a two-dimensional kagome lattice and carry a magnetic moment (black
arrows). The latter form a noncollinear magnetic texture, as it is observed in Mn3Ir [13].
The application of an homogeneous electric field (orange arrow) yields as a response a
current (red arrow) that may carry charge, spin or orbital angular momentum.

quenching [21, 23, 24].
Thus, a field alternative to conventional electronics that relies on the orbital degree of free-

dom is denoted as ‘orbitronics’ [21, 25–27], which builds on ‘new’ effects like the orbital Rashba
effect, orbital torque, and the orbital Hall effect (OHE). The latter phenomenon is used to gener-
ate transverse orbital currents, and is also investigated in this work. Akin to the intrinsic AHE
and SHE, a non-vanishing ‘orbital Berry curvature’ leads to an intrinsic contribution to the OHE
which is closely related to the SHE. However, it has been demonstrated that the OHE does not
require SOC. Consequently, (transverse) orbital currents may exist in materials where the SHE
is small or forbidden due to weak SOC [23]. Furthermore, orbital currents can be converted to
spin currents via SOC, which makes their distinction challenging in experiments. At the current
state, it has been revealed that the generation of orbital currents are facilitated by two contribu-
tions. Typically, the atomic center approximation with a restriction to intra-atomic contributions
is considered, in which the OHE requires hybridization of specific orbitals [21, 23]. However very
recently, inter-atomic contributions, that have been disregarded for a long time, are also included
if the OHE is computed according to the modern formulation of orbital magnetization [28]. In
the first section in the cumulative part of the thesis, the modern formulation of orbital magneti-
zation is exploited, and as we demonstrate, the kagome lattice plays also an interesting role in
orbital transport.

Light-induced ultrafast magnetization dynamics. On top of exploiting the spin and orbital de-
gree of freedom, in addition to the charge of electrons, another approach to expanding conven-
tional electronics is to focus on light-matter interaction [3]. Exciting materials with laser pulses
is advantageous, since one can achieve high temporal resolution ranging from ns down to a few
fs and also a spatial resolution of less than a µm, even though combining both aspects is very
challenging in experiments [29]. Nevertheless, utilizing laser pulses gained interest for design-
ing new devices that have high performance, while being compact and low-energy consuming,
since lasers have the potential to operate very efficiently on ultrafast timescales with high spatial
accuracy [29–33].

During the last three decades, many ultrafast phenomena have been intensely investigated
in condensed matter physics. A pioneering experimental work, in which ferromagnetic Nickel
became demagnetized in the sub-ps regime by excitation with a femtosecond laser pulse [34] laid
the foundation for the field of ‘light-induced ultrafast magnetization dynamics’. A decade later,
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Figure 2: Illustration of laser-induced electron dynamics. A heterostructure is illuminated with
an ultrafast laser pulse (orange), which induces electron dynamics. For example, ultra-
fast currents (red arrows) are initiated at the interface and propagate into the magnetic
(blue) and nonmagnetic (dark red) layers.

it was shown in experiments with a ferrimagnetic GdFeCo alloy that the magnetization can be
entirely reversed by using circularly polarized laser pulses without applying external magnetic
fields [35, 36]. Since the final magnetization state depended on the helicity of the laser pulse,
it was denoted as ‘helicity-dependent all-optical switching’ [33]. A few years later, all-optical
switching of the same alloy (with a different composition) was also realized by excitation with
linearly-polarized light [37]. Nevertheless, the polarization of the laser pulse plays an important
role for the manipulation of magnetic moments, since the polarization lowers the symmetry of
the irradiated system [38–40].

In the literature, one often focuses on the demagnetization and manipulation of the compo-
nent of the angular momentum associated with the ground state magnetization. Thus, the other
components are often neglected. As I will address in this thesis, the polarization of the laser pulse
plays a crucial role, since it determines which (other) components are allowed or forbidden by
symmetry. Moreover, it is also known that spin polarization can be induced by laser excitation of
nonmagnetic materials through the inverse Faraday effect [41–43]. Thereby, the transfer of the an-
gular momentum of light to the atoms offers new possibilities to control ultrafast magnetization
dynamics.

Besides focusing on demagnetization of ferromagnets [34, 44] and optical manipulation of
magnetic moments [30, 40], other works followed that studied the laser-induced transfer of mag-
netic moments in form of spin(-polarized) currents. Thus, multilayer structures (cf. Fig. 2) gained
interest in magnetization dynamics, since it has been shown that (spin) angular momentum
of electrons can be transported between different layers, for example via optical inter-site spin
transfer (OISTR) [45]. This laser-induced transfer of spin angular momentum has been observed
across interfaces between ferromagnetic [46, 47], and between ferromagnetic/nonmagnetic het-
erostructures [48, 49].

Finally, it is worth noting that, akin to steady-state phenomena, the early works of the ultrafast
community mainly focused on the optical manipulation of the spin degree of freedom of the
magnetic moments. However, the investigation of the laser-induced ultrafast dynamics of the
orbital angular momentum has also started during the last decade [50–53]. Therefore, the time
evolution of the orbital degree of freedom is also taken into account in this thesis.

In the second section in the cumulative part of this thesis, Co/Cu heterostructures are inves-
tigated to address the role of interfaces and surfaces for the generation and transfer of spin and
orbital angular momenta by excitation with ultrafast laser pulses. The simulations have been per-
formed with the computational framework evolve [54], which is being developed in our group.
The obtained results provide detailed insight into the electron dynamics, since observables can
be accessed with both femtosecond and atomic resolution.
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Goals of the thesis. Based on the above motivation, the following main goals for this work are:

1. Establishing a microscopic understanding of the unconventional transverse, steady-state
transport of charge, spin, and orbital angular momenta in kagome systems that goes be-
yond symmetry arguments. Thereby, the interplay of the kagome lattice, the noncollinear
magnetic texture, and the spin-orbit interaction is revealed.

2. Tuning the ultrafast laser-induced generation, manipulation and transfer of spin and orbital
angular momenta and the respective currents in finite systems with atomic and femtosec-
ond resolution.

Outline of the thesis. In the next two sections, the necessary background for understanding the
results presented in the cumulative part of the thesis is explained. Sec. 2 contains the reciprocal-
space tight-binding method that was used to compute the electronic structure and the transverse
transport properties based on the Berry-curvature formalism. Furthermore, the magnetic prop-
erties of the investigated kagome systems and experimental aspects are summarized at the end
of the section. Sec. 3 briefly introduces the real-space tight-binding model and the effective one-
electron density matrix approach for describing the time evolution of a system. Afterward, the
theory of laser excitation of the electron system, which triggers ultrafast electron dynamics in
the simulated clusters, is described in dipole approximation. Finally, it is explained how the
time evolution of observables, in particular, spin and orbital angular momenta and their cur-
rents, are computed with spatio-temporal resolution. The section concludes with the discussion
of advantages and limitations of the computational framework evolve.

In the first section in the cumulative part of the thesis (Sec. 4), three publications consider-
ing transverse transport of charge, spin and orbital angular momenta in kagome systems in the
steady state address goal 1 (cf. Fig. 1). In publication [OB1], the microscopic origin of the anoma-
lous Hall effect in several noncollinear kagome magnets is established, which allows to interpret
the effect as an effective topological Hall effect. In publication [OB2], two sources of the spin Hall
effect in these systems are revealed: the main signal originates from the magnetic texture and can
be reduced by spin-orbit coupling. In publication [OB3], a nonmagnetic s-orbital kagome lattice
is introduced as a minimal model for the orbital Hall effect and a cycloid motion of the electrons
in the edge states, thereby carrying orbital angular momentum, is predicted.

Sec. 5 is the second section in the cumulative part of the thesis, in which two publications are
presented. They are attributed to goal 2: the ultrafast photo-induced generation, manipulation
and transfer of angular momentum in thin films (cf. Fig. 2) simulated with the evolve computer
code. In publication [OB4], a systematic investigation of the laser-induced spin angular momen-
tum and the respective currents is presented. Results for Co/Cu heterostructures and homo-
geneous Cu or Co samples are compared. Thereby, the role of inhomogeneities (surfaces and
interfaces) and the polarization of the impinging laser pulse is addressed. In publication [OB5],
the orbital companion is analyzed in the same material combinations, thereby comparing the
findings of spin and orbital angular momenta. However, the focus is on excitation with circu-
larly polarized laser pulses, which turns out to be useful in order to induce an orbital angular
momentum of sizable magnitude in a normal metal.

Finally, the concluding Sec. 6 provides a summary of the established results and an outlook to
possible future investigations motivated by the findings in this thesis.
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2 Electronic properties and intrinsic steady-state transport

In this chapter, the theoretical background of electronic properties is introduced. First, the tight-
binding approach is explained in Sec. 2.1, which is used to compute the electronic band structure
of periodic crystals. In Sec. 2.2, the topological properties of the electronic structure are moti-
vated and described via the Berry theory. Thereafter, the obtained Berry curvature and related
quantities are used in Sec. 2.3 to compute the intrinsic contributions to the anomalous, spin, and
orbital Hall effects in a semiclassical approach. Afterward, the kagome lattice with different pos-
sible magnetic configurations is introduced in Sec. 2.4, since it is the model system investigated
in publications [OB1], [OB2] and [OB3]. The results are presented in the first section in the cu-
mulative part (Sec. 4), in which the three Hall effects are discussed. Finally, a few aspects of
experimental techniques to study the Hall effects are summarized in Sec. 2.5.

2.1 Tight-binding method

Bloch theorem. A real solid is a many-body system consisting of at least 1023 particles. The
exact description of such a system would be a HamiltonianHtot as a sum of terms describing the
kinetic energy as well as repulsive and attractive Coulomb interactions of all electrons and nuclei,
respectively [6, 55]. Diagonalization ofHtot would yield both the exact many-particle wave func-
tion Ψ and the exact energy spectrum, but the computations would be very demanding. Besides,
finding the exact solution is not necessary in practice and therefore the problem can be mapped
to an effective one-particle problem by exploiting the Born-Oppenheimer and the Hartree-Fock
approximation [55–58]. The obtained single-particle Hamiltonian

H(r) ≡ Heff(r) =
p2

2m
+ Veff(r) = − ℏ2

2m
∇2

r + Veff(r) (2.1)

describes one electron at r moving in an effective potential Veff(r) that is formed by all other
particles, in particular all other electrons and nuclei in the solid. Thus, the electron motion is
already decoupled from the motion of the nuclei.

In periodic ideal crystals, that satisfy Veff(r) = Veff(r + R), the Hamiltonian is translational
invariant, i.e. Heff(r) = Heff(r + R), where R =

∑
i niai is a lattice vector. This lattice peri-

odicity of the Hamiltonian can be exploited to prove Bloch’s theorem [59] which describes the
translational properties of electrons in ideal crystals. Bloch showed that the eigenstates of the
one-electron Hamiltonian are a product of plane waves exp (ik · r) modulated with a lattice pe-
riodic function uν,k(r) = uν,k(r +R), where ν is the band index. These Bloch functions

φν,k(r) = exp (ik · r)uν,k(r) (2.2)

fulfill

φν,k(r +R) = exp (ik ·R)φν,k(r) (2.3)

and solve the effective one-electron Schrödinger equation

H(r)φν,k(r) = εν,k φν,k(r). (2.4)

Now, the goal is to find a method to compute the eigenstates φν,k(r) and the eigenenergies εν,k
of H(r) as will be presented in the following.
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2.1 Tight-binding method

The tight-binding model. The above Hamiltonian is already an enormous simplification of
the original many-body problem. However, computations can still be very demanding if one is
using ab initio methods like density functional theory, in particular if the unit cells contain many
atoms. A beneficial approach yielding the electronic structure and the Bloch states is the tight-
binding method [59] which simplifies the computational effort enormously, as will be shown in
the following. Another advantage of this approach is that tight-binding models are useful as toy
models, in which contributions like spin-orbit coupling or the effect of coupling to a magnetic
texture can be discussed separately (cf. publications [OB1] and [OB2]).

Within the tight-binding approach [6, 59–67], one assumes that electrons do not move freely
in the crystal, but they are bound tightly to the nucleus and are thus (strongly) localized in the
vicinity of the atomic sites. Thus, the starting point are atomic orbitals ϕM(r − R) located at
R ≡ Rn +Rb which is the position of basis atom b within the n-th unit cell. Here, a multi index
M is introduced that is composed of the needed quantum numbers, i.e. basis atom b, spin σ and
orbital type α [66]. If N is the number of atomic sites, one can construct wave functions from
those atomic orbitals

ψM,k(r) =
1√
N

∑
R

exp (ik ·R)ϕM(r −R), (2.5)

which satisfy Eq. (2.3). Thus, they are Bloch functions, but they do not fulfill the Schrödinger
equation (2.4) in general. However, one can expand the solutions of Eq. (2.4) in terms of the
Bloch waves

φν,k(r) =
∑
M

cMν,k ψM,k(r) =
1√
N

∑
M

cMν,k
∑
R

exp (ik ·R)ϕM(r −R). (2.6)

This equation is also known as linear combination of atomic orbitals (LCAO) [60, 61] and is used
in the following to compute the eigenenergies and the eigenstates of the Hamiltonian in terms
of the expansion coefficients cMν,k.

Rewriting the Schrödinger equation with the above ansatz and integrating after multiplication
with ψ∗

M′,k(r) from the left yields

∑
M

cMν,k

∫
ψ∗
M′,k(r)H(r)ψM,k(r) d

3r = εν,k
∑
M

cMν,k

∫
ψ∗
M′,k(r)ψM,k(r) d

3r. (2.7)

Herein, the overlap
∫
ψ∗
M′,k(r)ψM,k(r) d

3r between two Bloch waves is given by

SM′,M(k) =
1

N

∑
R′

∑
R

exp
(
ik ·

(
R−R′)) ∫ ϕ∗M′(r −R′)ϕM(r −R) d3r, (2.8)

which defines the overlap matrix. Exploiting the translational invariance of the periodic lattice
allows setting R′ ≡ 0 and thus rewriting this expression in terms of atomic overlap integrals

SM′,M(R) ≡
∫
ϕ∗M′(r)ϕM(r −R) d3r. (2.9)

Thereby, the overlap-matrix elements (in reciprocal space) read

SM′,M(k) =
∑
R

exp (ik ·R)SM′,M(R). (2.10)

They are a Fourier transform of the atomic overlap from real to reciprocal space. The Hamilton
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2.1 Tight-binding method

matrix in reciprocal space is defined by the matrix elements on the left-hand side of Eq. (2.7)

HM′,M(k) ≡
∫
ψ∗
M′,k(r)H(r)ψM,k(r) d

3r. (2.11)

These matrix elements are written in analogy to the overlap matrix as

HM′,M(k) =
∑
R

exp (ik ·R)HM′,M(R)

=
∑
R

exp (ik ·R)

∫
ϕ∗M′(r)H(r)ϕM(r −R) d3r. (2.12)

According to Eq. (2.1), this term can be split into HM′,M(k) = TM′,M(k) + VM′,M(k) where the
potential-energy term

VM′,M(k) =
1

N

∑
R′′

∑
R′

∑
R

exp
(
ik ·

(
R−R′))

×
∫
ϕ∗M′(r −R′)V(A)(r −R′′)ϕM(r −R) d3r (2.13)

has to be discussed in more detail. While evaluating the matrix elements three types of integrals
occur [62, 67–69]:

• First, on-site integrals appear for R = R′ = R′′, i.e. both wavefunctions and the atomic
potential V(A) are located at the same atomic site. They do not depend on the wave vector
k, since R−R′ ≡ 0.

• If the wavefunctions are located at different atomic sites, but the atomic potential is located
at one of those two sites, they are called two-center integrals or hopping integrals. They
describe the transition of (valence) electrons between atomic sites at distance |R−R′|.

• Finally, if R ̸= R′ ̸= R′′, the terms are called three-center integrals which are typically
neglected within the tight-binding approach due to the assumption of strong localization
of the wave functions.

Summarizing up to this point, one has to solve a generalized eigenvalue problem∑
M

[
HM′,M(k)− εν,kSM′,M(k)

]
cMν,k = 0. (2.14)

With the matrices H(k) ≡
(
HM′,M(k)

)
and S(k) ≡

(
SM′,M(k)

)
, and the vector cν,k ≡

(
cMν,k

)
,

that contains all expansion coefficients, the above expression is given as a matrix equation

[H(k)− εν,k S(k)] cν,k = 0. (2.15)

This equation can be transformed to a conventional eigenvalue problem by Löwdin orthogo-
nalization [70], as explained subsequently. Although the basis set {ϕM} of all atoms in the unit
cell is orthogonal, two wave functions located at different atomic sites do not have to be in gen-
eral. In other words, the overlap of atomic orbitals defined in Eq. (2.9) does not always fulfill
SM′,M(R) = δM′,M. This is achieved by decomposing the overlap matrix in reciprocal space as
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2.1 Tight-binding method

S(k) = S1/2(k)S1/2(k).1 With

H̃(k) = S−1/2(k)H(k) S−1/2(k) (2.16)
c̃ν,k = S1/2(k) cν,k (2.17)

one obtains the conventional eigenvalue problem in matrix form[
H̃(k)− εν,k 1

]
c̃ν,k = 0. (2.18)

Slater-Koster parameters. In the previous part, the Schrödinger equation for solids has been
mapped to a conventional eigenvalue problem that can be solved for each k-point by straight-on
diagonalization. In the derivation of the tight-binding matrix, the matrix elements HM′,M(R) ≡∫
ϕ∗M′(r)H(r)ϕM(r−R) d3r [cf. Eq. (2.12)], which are also called hopping integrals, need to be

evaluated. Since their direct computation may be very demanding, it is possible to fit them to
reference data obtained from ab-initio calculations (e.g. via Quantum Espresso [71]) or fit them
to experimental data obtained from spectroscopy measurements like angle-resolved photoemis-
sion spectroscopy (ARPES) [72, 73].

A common approach in tight-binding is the use of the Slater-Koster formalism [60]. This
method allows to reduce the numbers of fitting parameters enormously by exploiting the crystal
symmetry once again [65, 66, 74, 75]. Slater and Koster demonstrated that several matrix ele-
ments are linearly dependent on each other and can thus be parameterized by only ten different
Slater-Koster parameters Vαα′ β for s, p and d orbitals. The used notation describes a hopping of
electrons between two atomic orbitals α and α′ (α, α′ = s, p, d) with bond type β = σ, π, δ. Within
the Slater-Koster scheme, the hopping integrals are written as a linear combination of those pa-
rameters, where the direction cosine lk of the hopping vector Rij from atom i and j with respect
to the cartesian k-axis (k = x, y, z) is utilized. For example, the hopping integrals between s and
px orbitals, are approximated by lx ·Vspσ, and between two py orbitals by l2y ·Vppσ +(1− l2y) ·Vppπ.
All relations are tabulated in literature, see Ref. [63] for example. Computed values for the Slater-
Koster parameters of a variety of materials can be found for example in Ref. [67].

Spin and Hund’s coupling. In the above derivation, the spin of the valence electron has already
been included in the multi index as well because it is needed for simulating magnetic systems
and spin-orbit interaction (see next paragraph). Akin to charge, spin is an intrinsic property of
electrons, but in the form of an angular momentum. Hence, electrons carry the spin magnetic
moment µ = −µBgs

ℏ S, where µB and gs ≈ 2.0023 are the Bohr magneton and the gyromagnetic
ratio, respectively [76]. Thus, the spin of the electron can couple either to an external magnetic
fieldBext or to a magnetic texturem ≡ {mi}which is formed by magnetic momentsmi localized
at the atomic sites i of the lattice. The total magnetic moment (of the electron) originates not only
from the spin, but also from an orbital contribution [76]. The spin and orbital degree of freedom
will be discussed in more detail within the context of their transport mechanisms in Secs. 2.3
and 3.4.

The spin operator is expressed in terms of the vector of the three Pauli matricesσ ≡ (σx, σy, σz)
as S = ℏ/2σ [77]. Within the tight-binding approach, the coupling of spin to a magnetic field or
atomic magnetic moments can be incorporated by adding a term H

(i)
EX, arising from mean-field

1Another method is the Cholesky decomposition of the overlap matrix into a lower and an upper triangular matrix,
i.e. S = LL†.
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2.1 Tight-binding method

theory, to the Hamiltonian [65]. This so-called ‘exchange interaction’ (EX) [78] lifts Kramer’s de-
generacy [6] and causes an effective magnetic field Beff to which µ aligns parallel µ ↑↑ Beff or
antiparallel µ ↓↑ Beff . Thus, the electronic states split according to their spin orientation with
respect to the external field or the local magnetic moments. Hence, one obtains twice the num-
ber of bands in the electronic structure compared to the spinless case. One can assume an on-site
approximation such that a (strongly) localized electron interacts only with magnetic moments
located at atom i. This is also known as Hund’s coupling [79] (coupling constant m) and is ex-
pressed as [65, 66, 80]

H
(i)
EX = mσ ·mi ≡ m

(
m

(i)
z m

(i)
x − i ·m(i)

y

m
(i)
x + i ·m(i)

y −m(i)
z

)
, (2.19)

which is added to the diagonal elements HM′,M of the Hamiltonian. Thereby, one is able to in-
clude the coupling to a ferromagnetic texture, where the magnetic moments mi of all atoms
i point in the same direction. Coupling to antiferromagnetic textures, which may be either
collinear or even noncollinear, can thus be simulated as well. Noncollinear magnetic textures
will be discussed in more detail in Sec. 2.4.

Spin-orbit coupling and orbital angular momentum. Up to this point, a very important phe-
nomenon has not been considered: spin-orbit coupling (SOC). This relativistic effect plays an
important role in various fields of solid-state physics like Rashba splitting [81], Dzyaloshinskii-
Moriya interaction (DMI) [82, 83] in noncollinear magnetic textures or transport properties like
anomalous or spin Hall effect, as demonstrated in publications [OB1] and [OB2].

The above Schrödinger equation does not include relativistic effects, but one may add SOC as
a correction to the above tight-binding matrix, as derived in [84]. From basic quantum mechan-
ics [76] an expression for SOC is known as

HSOC =
ℏ

4(mc)2
∂V

∂r

1

r
(r × p) · σ ≡ λL · σ, (2.20)

which is denoted as ‘L·S coupling’. It is valid in the vicinity of the nucleus, where the electrostatic
potential is approximately spherically symmetric, i.e. V ≡ V (|r|). The factor λ is the coupling
strength between orbital angular momentum L = r×p and spin angular momentum S = ℏ/2σ
of the electron. Within the tight-binding approach, the used basis set are atomic orbitals and a
common treatment is to express them in terms of real cubic harmonics that are a superposition
of the complex spherical harmonics [85–88]. In the following, the explicit form will be derived
only for p orbitals for the sake of simplicity; expressions for d orbitals follow straightforwardly.

In order to compute the components Li of the orbital angular momentum operator L in the
basis of the complex spherical harmonics |l,m⟩ (in real-space representation Y m

l (θ, ϕ); l is the
orbital angular momentum quantum number and m is the magnetic quantum number), one in-
troduces ladder operators L± = Lx ± iLy.
By exploiting the relation L± |l,m⟩ = ℏ

√
(l (l + 1)−m(m± 1) |l,m± 1⟩ one finds [76, 80]

Lx |l,m⟩ = L++L−
2

|l,m⟩ ; Ly |l,m⟩ = L+−L−
2 i

|l,m⟩ ; Lz |l,m⟩ = ℏm |l,m⟩ . (2.21)

The quantum numbers for p orbitals read l = 1 and m = −1, 0, 1, which yields the matrix rep-
resentation Lsi ≡ ⟨l′,m′|Li|l,m⟩ of the components of the orbital angular momentum operator in

9



2.1 Tight-binding method

the basis of the spherical harmonics bs =
(
|1,−1⟩ , |1, 0⟩ , |1, 1⟩

)T
Lsx =

√
2

2
ℏ

0 1 0
1 0 1
0 1 0

 ; Lsy = −i

√
2

2
ℏ

0 −1 0
1 0 −1
0 1 0

 ; Lsz = ℏ

−1 0 0
0 0 0
0 0 1

 . (2.22)

The cubic harmonics |pi⟩ are superpositions of the complex spherical harmonics

|px⟩ =
1√
2
(|1,−1⟩ − |1, 1⟩) ; |py⟩ =

i√
2
(|1,−1⟩+ |1, 1⟩) ; |pz⟩ = |1, 0⟩ (2.23)

and form a new basis ba =
(
|px⟩ , |py⟩ , |pz⟩

)T. The transformation between these two basis sets
according to ba = T bs is mediated via the unitary transformation matrix

T =
1√
2

1 0 −1
i 0 i

0
√
2 0

 and T† = T−1 =
1√
2

 1 −i 0

0 0
√
2

−1 −i 0

 . (2.24)

Finally, one obtains the matrix representation of the orbital angular momentum in atomic orbitals
Lai ≡ ⟨pi′ |Li|pi⟩, as needed within the tight-binding approach, by transforming Lsi according to
Lai = TLsi T

†:

Lax = i ℏ

0 0 0
0 0 −1
0 1 0

 ; Lay = i ℏ

 0 0 1
0 0 0
−1 0 0

 ; Laz = i ℏ

0 −1 0
1 0 0
0 0 0

 . (2.25)

Hence, one finds a matrix representation of the SOC term 2.20 for p orbitals as

Hp
SOC = λL · σ = λ

∑
i

Lai σ
i = i

 0 −σz σy

σz 0 −σx
−σy σx 0

 . (2.26)

The matrix elements derived here are tabulated e.g. in Refs. [89, 90], together with analog expres-
sions for d orbitals. Thus, the matrix representationHp

SOC shows that SOC is an on-site interaction
that couples orbitals with different spin, and consequently, leads to spin-mixing effects.

10



2.2 Topological properties of the electronic structure: Berry theory in solid-state physics

2.2 Topological properties of the electronic structure: Berry theory in solid-state
physics

This subsection introduces the concept of the Berry phase and related quantities that have be-
come very important and helpful in the field of solid-state physics during the last decades. In-
trinsic topological properties of the electronic structure are linked to transport phenomena like
anomalous, spin or orbital Hall effect, as explained in the next subsection. First, three quantities
are introduced in a general way: Berry phase, Berry connection, and Berry curvature. After-
ward, it will be shown how these quantities are evaluated from the electronic states and energies
within the tight-binding framework. The derivation follows mainly the original publication of
M. Berry [91], complemented with Refs. [92–94].

Motivation and derivation of the Berry phase. An illustrative example where a phase is accu-
mulated geometrically is the Levi-Civita or parallel transport [6]: a vector R(r) is moved along a
closed path Γ on a surface that is characterized by a local normal vector n(r). During this motion,
R(r) must always be parallel to the surface and it shall not be twisted around n(r).

R(r)

n(r)

Γ

(a) (b)

α
Γ

R(r)

n(r)

Figure 3: Illustration of parallel transport. (a) Parallel transport on a 2D plane. (b) Same as (a),
but on a 3D sphere (this figure is reproduced from Ref. [6]).

Fig. 3 shows two examples of the parallel transport: in one case, the surface is planar, and in the
other case it is curved. By comparing the direction of R(r) after a closed loop along Γ, one notices
different results. If the surface is a 2D plane [panel (a)], R(r) is always pointing in the same
direction, whereas, if the surface is a sphere, R(r) changes its orientation about an angle α with
respect to the beginning [panel (b)].2 This phenomenon is explained by the different geometries
of the surfaces. The topic that deals with such phenomena is called ‘topology’. Motivated by this
example, the Berry phase will be introduced in a more general way, subsequently.

In Ref. [91], Berry considers a Hamiltonian H = H(R(t)) which depends on a set of external
time-dependent parameters R(t) = {Ri(t)} spanning a parameter space. Within the framework
of this thesis, it is assumed that R(t) ∈ R3 which allows for exploiting 3D vector analysis. As
demonstrated later, R is not necessarily the position vector in real space. The quantum system
described by H evolves in time according to the time-dependent Schrödinger equation

H(R(t)) |ψ(R(t))⟩ = −ℏ
i

∂

∂t
|ψ(R(t))⟩ . (2.27)

During the time evolution, the Hamiltonian describes a path in the parameter space due to the
time dependence of the parameters {Ri(t)}. This path is considered as a closed loop Γ, such
that R(T )

!
= R(0) implying that the Hamiltonian is in its original form after time T has passed.

However, the system will not return to its initial state. At the beginning (t = 0), the system is in
an eigenstate |ψ(0)⟩ = |φν(R(0))⟩, where the eigenstates of H satisfy the stationary Schrödinger

2It can be shown that α = Ω where Ω is the solid angle defined by the curve Γ [6].
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equation

H(R) |φν(R)⟩ = εν(R) |φν(R)⟩ . (2.28)

For a large time interval T ≫ 0, one can apply the adiabatic approximation [92]. Thereby, the
quantum system will be in an eigenstate for all times

|ψ(R(t))⟩ = α(t) |φν(R(t))⟩ , (2.29)

where α is a time-dependent phase factor. The ansatz for the phase factor is a product of two
exponential functions

α(t) ≡ αd(t)αg(t) = exp
{
− i

ℏ

t∫
0

εν(R(τ)) dτ
}
exp
{
iγν(t)

}
. (2.30)

Herein, the conventional dynamical phase factor αd [80] is multiplied with a geometrical phase
factor αg containing the ‘new’ Berry phase γν(t) introduced by Berry [91]. The explicit time de-
pendence will be omitted from now on, i.e. R ≡ R(t) [93]. An expression for the Berry phase is
found by plugging the ansatz |ψ⟩ ≡ |ψ(R(t))⟩ = α(t) |ν(R)⟩ (with |ν(R)⟩ ≡ |φν(R(t))⟩) into the
time-dependent Schrödinger equation (2.27)

αd(t)αg(t) εν |ν(R)⟩ = −ℏ
i
αd(t)αg(t)

[(
− i

ℏ
εν + i γ̇ν

)
|ν(R)⟩+ |∇Rν(R)⟩ · Ṙ

]
.

Multiplying with ⟨ν(R)| ≡ ⟨φν(R(t))| from the left yields

γ̇ν ⟨ν(R)|ν(R)⟩ = i ⟨ν(R)|∇R ν(R)⟩ · Ṙ. (2.31)

By integrating along the loop Γ, one obtains γν which determines the (geometrical) phase change
of |ψ(T )⟩ after one loop Γ with respect to the initial state |ψ(0)⟩. Note that one can show that the
term ⟨ν(R)|∇R ν(R)⟩ is purely imaginary. Thus, a first expression for the accumulated Berry
phase reads

γν(Γ) = i

∮
Γ

⟨ν(R)|∇R ν(R)⟩ · dR =

∮
Γ

− Im ⟨ν(R)|∇R ν(R)⟩ · dR. (2.32)

This is a real number and thus may be interpreted as an intrinsic (and physical) quantity originat-
ing from the topological properties of the quantum system. The integrand in Eq. (2.32) is defined
as the ‘Berry connection’ of band ν

Aν(R) ≡ −Im ⟨ν(R)|∇Rν(R)⟩ (2.33)

and will be discussed in more detail in the next paragraph.

Berry connection and Berry curvature. The eigenstates |ν⟩ ≡ |ν(R)⟩ are not gauge invariant
and one can chose their phase β ≡ β(R) arbitrarily

|ν⟩ 7→ |ν ′⟩ = exp {iβ} |ν⟩ . (2.34)

It follows that the Berry connection Aν ≡ Aν(R) is not gauge invariant since it transforms under
such a gauge transformation as Aν 7→ A′

ν = − Im ⟨ν ′|∇Rν
′⟩ = Aν −∇Rβ. However, the Berry

12
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phase itself is invariant which is easily shown with the above equation and Stokes’ theorem:

γν(Γ) 7→ γ′ν(Γ) =

∮
Γ

A′
ν · dR = −

∮
Γ=∂S

∇Rβ · dR+

∮
Γ

Aν · dR (2.35)

=−
∫
S

(∇R ×∇Rβ) · dS +

∮
Γ

Aν · dR = γν(Γ). (2.36)

Here, ∇R ×∇Rβ = 0 has been used which motivates to define the curl of the Berry connection
as the gauge invariant Berry curvature of band ν [91]

Ων(R) ≡ ∇R ×Aν(R). (2.37)

This allows to rewrite the Berry phase as

γν(Γ) =

∮
Γ=∂S

Aν(R) · dR =

∫
S

Ων(R) · dS. (2.38)

The Berry connection Aν is sometimes called Berry potential because of the analogy to electro-
dynamics where the magnetic field B(r) = ∇r ×A(r) is the curl of the electromagnetic vector
potential. Thus, the Berry curvature Ων ≡ Ων(R) = ∇R ×Aν can be interpreted as an abstract
magnetic field acting in the parameter space. The next paragraph deals with the calculation of
the Berry curvature in practice.

Evaluation of the Berry curvature. In the following derivation, the parameter R will be omit-
ted. Inserting the definition of the Berry connection (2.33) into the Berry curvature [Eq. (2.37)]
yields

Ων = − Im ⟨∇ν| × |∇ν⟩ . (2.39)

This expression might be problematic in practical calculations, since evaluating the derivative of
the eigenstates ∇ν directly may be difficult or requires high computational effort with numerical
methods [91]. However, the derivative of the Hamiltonian ∇H can be calculated analytically
if the Hamiltonian is given in analytical form, for example in tight-binding or toy models [13,
95–97]. This motivates to find a reformulation of the Berry curvature, where terms with ∇ν are
eliminated. By inserting the completeness relation 1 =

∑
µ |µ⟩ ⟨µ| in the above equation one finds

Ων = −
∑
µ̸=ν

Im ⟨∇ν|µ⟩ × ⟨µ|∇ν⟩ , (2.40)

where integrals of the form ⟨ν|∇µ⟩ need to be replaced. This is achieved by considering the
derivative of the matrix elements ∇⟨µ|H|ν⟩. Exploiting the product rule for derivatives first and
the stationary Schrödinger equation H |ν⟩ = εν |ν⟩ afterward yields

∇⟨µ|H|ν⟩ = εν ⟨∇µ|ν⟩+ ⟨µ|∇H|ν⟩+ εµ ⟨µ|∇ν⟩ . (2.41)

On the other hand, one can apply the derivative after H has acted on the eigenstates to find

∇⟨µ|H|ν⟩ =∇⟨µ|εν |ν⟩ = εν ⟨∇µ|ν⟩+ εν ⟨µ|∇ν⟩ (2.42)
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if µ ̸= ν. Combining both equations leads to the relation

⟨µ|∇ν⟩ =⟨µ|∇H|ν⟩
εµ − εν

(2.43)

and similarly, one can find an analog expression for the integral ⟨∇ν|µ⟩ that is independent of
∇ν but can be calculated via ∇H . Finally, the Berry curvature, which can be applied directly in
numerical calculations, reads

Ων(R) = −Im
∑
µ̸=ν

⟨ν(R)|∇RH(R)|µ(R)⟩ × ⟨µ(R)|∇RH(R)|ν(R)⟩
[εν(R)− εµ(R)]2

. (2.44)

The Berry theory within the tight-binding model. The above derivation considered a general
abstract parameter space. At the end of this subsection, following Ref. [98], it will be demon-
strated how Berry’s quantities can be computed in solid-state physics and in particular within
the tight-binding approach, as shown in [65]. First, one inserts the Bloch functions φν,k(r) =
exp (ik · r)uν,k(r) [cf. Eq. (2.2)] into the stationary Schrödinger equation (2.4) H(r)φν,k(r) =
εν,k φν,k(r). Since the action of ∇r on the Bloch function is

∇r exp (ik · r)uν,k(r) = exp (ik · r) (ik +∇r) uν,k(r), (2.45)

one obtains with H(r) = − ℏ2
2m∇2

r + V (r) from Eq. (2.1)

exp (ik · r)
[

1

2m

(
ℏ
i
∇r + ℏk

)2

+ V (r)

]
uν,k(r) = exp (ik · r) εν,k φν,k(r). (2.46)

Multiplying with exp (−ik · r) yields a new stationary Schrödinger equation

H ′(k)uν(k) = εν(k)uν(k), (2.47)

where the new Hamiltonian is parameterized by the wave vector k

H(k) = exp (−ik · r)H(r) exp (ik · r) =

[
1

2m

(
ℏ
i
∇r + ℏk

)2

+ V (r)

]
. (2.48)

Herein, H(k) ≡ H ′(k) is lattice periodic and corresponds to the tight-binding Hamiltonian de-
rived previously which acts on the lattice periodic part uν(k) of the Bloch function. Formally,
Eq. (2.47) corresponds to Eq. (2.28) which allows to compute the Berry curvature in solid-state
physics from the eigenenergies εν(k) and the lattice-periodic part of the eigenvectors uν(k) that
are the result of the solution of Eq. (2.18). From now on, the parameter space is spanned by the
reciprocal space vector (i.e. R = k). Hence, the Berry curvature of Eq. (2.44) is now given as

Ων(k) = −Im
∑
µ̸=ν

⟨uν(k)|∇kH(k)|uµ(k)⟩ × ⟨uµ(k)|∇kH(k)|uν(k)⟩
[εν(k)− εµ(k)]2

. (2.49)
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The general definition of the Berry curvature Ωk(k) = ϵijk
∂
∂ki

Aj(k) [cf. Eq. (2.37)], implies that it
is also possible to interpret the Berry curvature as the antisymmetric part of a tensor [93, 99]

Ωij(k) =
∂Aj(k)

∂ki
− ∂Ai(k)

∂kj
. (2.50)

Thus, in matrix form, diagonal elements vanish and off-diagonal elements are antisymmetric

Ω(k) = (Ωij(k)) =

 0 Ωxy(k) Ωxz(k)
−Ωxy(k) 0 Ωyz(k)
−Ωxz(k) −Ωyz(k) 0

 . (2.51)

The three linearly independent components are connected to the vector Ων(k) via

Ων(k) =
(
Ωx
ν(k),Ω

y
ν(k),Ωz

ν(k)
)
=
(
Ων,yz(k),Ων,zx(k),Ων,xy(k)

)
. (2.52)

Taking the z component of Eq. (2.49), which will be investigated in publications [OB1] and [OB2],
and considering the antisymmetry of the Berry curvature, yields

Ων,xy(k) = −2 Im
∑
µ̸=ν

⟨uν(k)|∂kxH(k)|uµ(k)⟩ ⟨uµ(k)|∂kyH(k)|uν(k)⟩
[εν(k)− εµ(k)]2

. (2.53)

Subsequently, transport properties will be related to the topological properties of the electronic
structure. As will be explained, the intrinsic contribution to Hall effects can be computed by
integrating the respective Berry curvature over the whole Brillouin zone (BZ).
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2.3 Transverse transport: anomalous, spin and orbital Hall effect

The application of an external electric field E leads to a response of the electron system. In
the most simple case, the responding charge current density can be described by Ohm’s law
jc = σE [6], in which the conductivity σ is in general a matrix. Herein, off-diagonal elements
describe transverse transport effects, where jc is not aligned with the applied field E. The trans-
port phenomena of electrons by means of transverse currents are known as ‘Hall effects’.

In 1879, E. Hall discovered the well-known (‘normal’) Hall effect (NHE): in nonmagnetic con-
ductors, charge carriers are deflected transversely to an applied electric current in the presence
of an external magnetic field Bext

z due to the Lorentz force [100]. Two years later, he measured
a transverse signal that was even stronger and occurred in ferromagnets at temperatures below
the Curie temperature even without an applied magnetic field [101]. This contribution to the
Hall effect was proportional to the spontaneous magnetization MS

z and is nowadays called the
‘anomalous Hall effect’ (AHE) [11]. The AHE could not be understood until Karplus and Lut-
tinger considered spin-orbit coupling (SOC) as the mechanism that breaks time-reversal sym-
metry [102]. Much later, a third contribution, which is denoted as the ‘topological Hall effect’
(THE), has been discovered in systems with a noncoplanar magnetic texture even if SOC is not
taken into account [103–108]. Here, the contribution to the Hall effect arises from the real-space
topology of the magnetic textures and is proportional to the scalar spin chirality χS. These three
contributions to the Hall effect can be described empirically for the specific resistivity ρ ≡ σ−1 [11,
109]

ρxy = RNHEBext
z +RAHEMS

z +RTHEχS, (2.54)

and is valid for many materials like iron or cobalt. In general, extrinsic and intrinsic mechanisms
are responsible for the Hall effect [11]. The former comprise the skew-scattering [110] and side
jump mechanisms [111] which are both related to the SOC of impurities. Consequently, extrinsic
mechanisms are negligible in perfect samples (without any defects), whereas intrinsic ones are
always present. Throughout this work, only the intrinsic contribution to the Hall effect is consid-
ered. Although the three contributions in Eq. (2.54) can be distinguished phenomenologically,
the driving mechanism is the Berry curvature which gives rise to the intrinsic Hall conductivity.

As already mentioned in the introduction, most interestingly, another class of materials gained
interest for spin-orbitronics, namely coplanar noncollinear magnetic textures which have been
observed in the famous kagome antiferromagnets Mn3X (X=Rh, Ir, Pt, Ga, Ge, Sn). These mate-
rials will be introduced in Sec. 2.4 in more detail. Among many other interesting features, these
coplanar systems with compensated net magnetization exhibit an unconventional AHE: it has been
predicted nearly a decade ago [13, 14] and has been experimentally confirmed shortly after in
Mn3Sn [18] and Mn3Ge [19]. Based on this motivation, transverse transport properties of these
kagome systems are investigated in the first section in the cumulative part of this thesis (Sec. 4).
In the following, a semiclassical approach is used to derive an expression for the Hall conduc-
tivity, which links electron transport to the Berry theory introduced in the previous subsection.
Finally, the essential ideas of two closely related transport phenomena, that are also considered
in Sec. 4, will be presented: the spin and orbital Hall effect, where transverse currents carrying
spin and orbital angular momentum are generated, respectively.

Semiclassical approach. A semiclassical treatment in the context of this work means that the
electronic structure is computed from the quantum-mechanical tight-binding approach, whereas
external fields are treated classically [112]. Although it is a more simplified picture than a full
quantum-mechanical treatment, phenomena like the anomalous Hall effect may be understood
intuitively. Furthermore, one can show that an alternative treatment via Kubo formalism [113]
yields the same results for the Hall conductivity as obtained by the approach shown below
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(cf. [65, 114, 115]). The subsequent derivation follows Refs. [6, 112, 116, 117].
Within the semiclassical approach, the electron wave function is constructed as a wave packet

of Bloch waves. The width of that wave packet in reciprocal space is assumed to be much smaller
than the extent of the first Brillouin zone (BZ) [6]. The semiclassical equations of motion under
the influence of external electric and magnetic fields E and B are derived in Ref. [112]:

ṙ =
1

ℏ
∇kε(k)− k̇ ×Ω(k) and k̇ =

q

ℏ
(E + ṙ ×B) . (2.55)

Herein, r ≡ ⟨r⟩ and k denote the center of mass and the momentum of the wave packet. Without
external magnetic fields, the above equations (2.55) decouple and read

ṙ =
1

ℏ
∇kε(k)−

q

ℏ
E ×Ω(k) and k̇ =

q

ℏ
E. (2.56)

The electron velocity ṙ is not only determined by the dispersion ε(k), but there is a ‘new’ ad-
ditional term, denoted as ‘anomalous velocity’ [102, 116], that arises from the Berry curvature
Ω(k). The transport of electrons due to an electric field can be investigated by combining these
equations with the Boltzmann equation [6, 118, 119]:

df
dt = ḟ + ṙ · ∇rf + k̇ · ∇kf = ḟscatt.. (2.57)

In general, this equation describes the total variation of the non-equilibrium distribution func-
tion f = f(r,k, t) of electrons in solids if external fields and scattering processes are considered.
This equation is simplified by the following approximations [6, 118, 119]. First, the terms ḟ and
∇rf are negligible, since we restrict ourselves to time-independent processes and translational
invariant systems. Next, one assumes f = f0 + g and considers only small deviations g ≪ f0
from the Fermi-Dirac distribution function f0 that describes the occupation of electrons. Besides,
the relaxation-time approximation states that, after external fields have vanished, scattering pro-
cesses within a relaxation-time interval τ yield a relaxation of the system back to equilibrium.
Thus, one can replace the scattering term

ḟscatt. ≈ −f − f0
τ

= −g
τ
. (2.58)

Combining the approximations with the semiclassical equations of motion (2.56) yields the sim-
plified linearized Boltzmann equation

q

ℏ
E · ∇k(f0 + g) = −g

τ
. (2.59)

Since f0 = f0(ε(k), µ, T ) is the Fermi-Dirac distribution, one can substitute

∇kf0 =
∂f0
∂ε

∇kε(k) = ℏ
∂f0
∂ε

v, (2.60)

where v = 1
ℏ∇kε(k) is the group velocity of an electron. As a last assumption only small electric

fields are considered in linear response theory, which means the difference g from equilibrium is
linear in E and terms of order E2 are neglected. Consequently, one finds

g = −τ q
ℏ
E · ∇kf0 = −τq∂f0

∂ε
E · v. (2.61)
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2.3 Transverse transport: anomalous, spin and orbital Hall effect

The anomalous Hall effect. Based on the previous results, an expression for the intrinsic Hall
conductivity will be derived following Refs. [6, 112, 116, 117]. As mentioned before, Ohm’s law
reads jc = σE, which allows for defining the electric conductivity as a second-order tensor

σij ≡
∂jc,i
∂Ej

(i, j = x, y, z). (2.62)

The contribution of band ν to the electric current density reads [6, 112]

jc,ν = q

∫
BZ

fν
(2π)d

ṙν d
dk, (2.63)

where d is the dimension of the system. Inserting the decoupled equations of motion [Eq. (2.56)]
and fν = f0,ν + gν with Eq. (2.61) yields the total current density jc =

∑
ν jc,ν [117]

jc = q
∑
ν

∫
BZ

1

(2π)d

(
f0,ν − τq

∂f0,ν
∂ε

E · vν

)(
vν −

q

ℏ
E ×Ων(k)

)
ddk. (2.64)

The occurring term
∫
BZ f0,νvν d

dk vanishes identically, since f0,ν is even and vν is odd in k, and
the integration is performed over the symmetric BZ. Besides, a term ∝ E2 occurs which is ne-
glected as well due to the assumption of linear response and a small applied field. The respond-
ing current can be separated into longitudinal and transverse contributions jc = jlong.c + jtransv.c

jlong.c = q2τ
∑
ν

∫
BZ

1

(2π)d

(
−∂f0,ν

∂ε

)
(vν ⊗ vν)E ddk +O(E2) and (2.65)

jtransv.c =− q2

ℏ
∑
ν

∫
BZ

f0,ν
(2π)d

Ων(k) d
dk ×E. (2.66)

A comparison with Ohm’s law jc = σE allows for identifying the longitudinal and the trans-
verse electric conductivity, where the latter arises from a non-vanishing Berry curvature. Within
Sec. 4, only two-dimensional systems located in the xy plane are considered at zero tempera-
ture. Thereby, the Fermi-Dirac distribution function f0,ν reduces to a step function (1 for energies
below the Fermi energy EF and vanishes for higher energies). Thus, the transverse conductiv-
ity, which is denoted as (intrinsic) ‘Hall conductivity’, is computed from the Berry curvature
Ων,xy(k) = Ωz

ν(k) [cf. Eqs. (2.49) and (2.53)] as [116, 120]

σxy(EF) = −e
2

ℏ
∑
ν

1

(2π)2

∫
εν(k)≤EF

Ων,xy(k) d
2k (2.67)

if E ∥ ey and j ∥ ex are assumed as in publications [OB1] and [OB2]. Note that this equation
can be used to calculate all contributions to the Hall effect, i.e. NHE, AHE and THE. One can
also derive an expression for the Hall conductivity via Kubo formalism [93, 113]. In this case, the
expression reads [11, 121]

σintr.xy = e2ℏ
∫
BZ

∑
ν

∑
µ ̸=ν

f0,ν
(2π)d

Im
[⟨φν(k)|v|φµ(k)⟩ × ⟨φµ(k)|v|φν(k)⟩]z

[εν(k)− εµ(k)]2
ddk (2.68)

with |φν(k)⟩ = exp (ik · r) |uν(k)⟩ and the velocity operator v. The equivalence of Eqs. (2.68)
and (2.67) is proven in Ref. [65]. The Berry curvature in Eq. (2.67) has been derived in the previous
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2.3 Transverse transport: anomalous, spin and orbital Hall effect

subsection [cf. Eq. (2.49)]:

Ων,xy(k) = Ωz
ν(k) = −Im

∑
µ̸=ν

[⟨uν(k)|∇kH(k)|uµ(k)⟩ × ⟨uµ(k)|∇kH(k)|uν(k)⟩]z
[εν(k)− εµ(k)]2

.

Herein, one can replace the lattice-periodic part |uν(k)⟩ = exp (−ik · r) |φν(k)⟩ and perform the
reciprocal-space derivative of the Hamiltonian H(k) [cf. Eq. (2.48)]

∇kH(k) =∇k (exp (−ik · r)H(r) exp (ik · r)) = exp (−ik · r) i [H, r]− exp (ik · r). (2.69)

The commutator [H, r]− can be substituted by exploiting the Heisenberg equations of motion for
the position operator [76]

v =
dr

dt
=

i

ℏ
[H, r]− + ṙ. (2.70)

Assuming that r is not explicitly time-dependent, one finds

∇kH(k) = exp (−ik · r) ℏv exp (ik · r), (2.71)

which proves the equivalence of Eqs. (2.67) and (2.68).

The spin Hall effect. In the previous paragraph about the AHE, the spin degree of freedom
has not been taken into account. However, in a simple picture, the electric current as response to
an external applied electric field is a superposed current jc = j↑c + j↓c of two independent charge
currents for electrons that carry either spin up (↑) or down (↓). This is known as the two-current
model [122] that is used to explain charge transport in ferromagnets below the Curie temperature,
when spin-mixing effects are negligible [123]. Herein, one expresses the contributions of each
band [cf. Eq. (2.63)] as spin-resolved currents with mS = ↑, ↓

jmS
c =

∑
ν

jmS
c,ν = q

∑
ν

∫
BZ

fmS
ν

(2π)d
ṙmS
ν ddk. (2.72)

SOC causes a deflection of electrons with opposite spin orientation in opposite directions, as
is visualized in Fig. 4. Thus, j↑c and j↓c flow in opposite directions. In a ferromagnet (FM), an
imbalance of spin ↑ and ↓ electrons leads to a nonzero magnetization in an equilibrium state, and
to a non-vanishing transverse charge current jc in a non-equilibrium state [panel (a)]. In other
words, an anomalous Hall current in a FM arises from the time-reversal breaking magnetization.
In contrast, in a nonmagnetic metal, the balance of spin ↑ and ↓ electrons due to time-reversal
symmetry renders the charge current zero, since j↑c = −j↓c . In this case, one can define the
difference between spin ↑ and ↓ currents as the spin current jS = j↑c − j↓c that is nonzero and
leads to accumulation of spin angular momentum at the edges of the sample [panel (b)].

The generation of a transverse spin current as response to an applied electric field is denoted
as ‘spin Hall effect’ (SHE) [124–128], which was predicted 50 years ago [129, 130] and is closely
related to the AHE. The Hall conductivity σxy is already characterized by the directions of the
applied electric field and the responding charge current (along y and x direction, respectively).
However, one has to include the spin polarization of the resulting spin current in addition to
classify a corresponding spin Hall conductivity. Hence, the latter is defined as a third-order
tensor [12, 17, 65]

σkij ≡
∂jkS,i
∂Ej

(i, j, k = x, y, z), (2.73)
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Figure 4: Schematic illustration of the anomalous (AHE), spin (SHE) and orbital Hall effect
(OHE). When an electric field E is applied, electrons with opposite angular momenta
are deflected into opposite directions. (a) AHE: A transverse charge current jc can be
measured due to the majority of electrons with one spin direction (here ↑). (b) SHE: In
nonmagnetic metals, there is a balance of electrons with spin ↑ and ↓ which renders jc
zero. However, a net spin current jS emerges that leads to the accumulation of elec-
trons with opposite spin angular momentum ±S at the opposite edges of the sample.
(c) OHE: A net transverse orbital current jL leads to accumulation of orbital angular
momentum ±L at opposite edges.

where σSk
ij describes a spin current jkS,i with spin polarization along k, and flowing along i, if

the electric field is applied in j direction. Like the AHE, the SHE originates from extrinsic and
intrinsic mechanisms [12], and within this work, again only the latter are taken into account.
An expression for the intrinsic spin Hall conductivity can be constructed in analogy to the Hall
conductivity via Kubo formalism [15, 17, 23]. One has to replace the velocity operator, which is
associated with the response of the system, in the expression for the Hall conductivity in Eq. (2.68)
with the so-called ‘spin-current operator’ [127, 131]

Σk
i ≡ 1

2
[vi, Sk]+ . (2.74)

Herein, [·, ·]+ is the anticommutator andSk = ℏ
2σk is the spin operator. The spin Hall conductivity

for a 2D system (in the xy plane) at T = 0K can then be computed as a function ofEF. In analogy
to the Hall conductivity, the spin Hall conductivity

σSz
xy (EF) =

e

ℏ
∑
ν

1

(2π)2

∫
εν(k)≤EF

ΩSz
ν,xy(k) d

2k (2.75)

is also given as the BZ integral of a quantity denoted as ‘spin Berry curvature’ [17, 23, 65, 132].

ΩSz
ν,xy(k) =− 2ℏ2 Im

∑
µ̸=ν

⟨uν(k)|Σz
x|uµ(k)⟩ ⟨uµ(k)|vy|uν(k)⟩
[εν(k)− εµ(k)]2

. (2.76)

For a long time, it was believed that the crucial condition for the existence of a SHE is SOC which
is responsible for the above-presented transverse spin-dependent deflection of electrons [12, 65,
128, 133]. However, some studies showed that noncoplanar magnetic textures show a SHE in the
absence of SOC, which arises from a non-vanishing spin Berry curvature [17, 134, 135]. And very
recently, it was predicted that the coplanar kagome antiferromagnets Mn3X exhibit a SHE as well
even in the absence of SOC [16, 17]. The ‘unconventional’ SHE has already been measured in
Mn3Sn [20, 136].

Thus, as illustratively summarized in Fig. 1 in Ref. [17], SOC is only essential for the AHE
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2.3 Transverse transport: anomalous, spin and orbital Hall effect

in ferromagnets or in coplanar (noncollinear) antiferromagnets, and for the SHE in nonmagnetic
materials or in collinear (anti)ferromagnets. Publications [OB1] and [OB2] presented in Sec. 4 con-
tribute to this topic by investigating the interplay of the noncollinearity of the magnetic texture
with SOC and the consequences for the AHE and the SHE. As will be explained in the follow-
ing, spin-orbit coupling is also not important for another effect that is closely related to the SHE,
namely the orbital Hall effect, where the orbital degree of freedom is now taken into account as
well.

Up to now, only the spin degree of freedom has been included on top of the electron’s charge by
means of (transverse) transport phenomena. In contrast to conventional electronics, spin-based
devices, that rely on the manipulation of spin angular momentum and its currents, have the
potential to operate at high speed while consuming low power [1, 2, 4, 5]. There, the SHE can be
utilized for charge-to-spin conversion, i.e. conversion of an electric current into a transverse spin
current. Subsequent injection into a ferromagnetic layer allows for domain wall motion [137, 138]
or magnetization switching due to spin-transfer torque [139, 140]. However, only recently, the
(conduction) electron’s orbital degree of freedom and transport of orbital angular momentum
(OAM) have gained enormous attention leading to the upcoming field of orbitronics, in which
energy-efficient applications are promising, as well [21, 25–27].

The orbital Hall effect. Orbital transport has long been disregarded, since the crystal field
typically suppresses the OAM in equilibrium, a phenomenon denoted as ‘orbital quenching’ that
will be explained below in more detail [22]. However, it has been shown that the situation can
be different in non-equilibrium: although the OAM is quenched in the ground state, it may be
induced dynamically by the application of an electric field [23]. It has been demonstrated that the
dynamically generated OAM gives rise to an intrinsic transverse current of OAM [cf. Fig. 4 (c)],
which is denoted as (intrinsic) ‘orbital Hall effect’ (OHE) [25, 141–144].

For example, the cubic harmonic orbitals |px⟩ and |py⟩ on their own do not carry OAM (orbital
quenching) if they are ‘isolated’. However, once they hybridize, such that (|px⟩ ± i |py⟩)/

√
2,

their superposition forms a spherical harmonic orbital with magnetic quantum number m =
±1 giving rise to the OAM ⟨Lz⟩ = ±ℏ [23]. Recall that according to Eq. (2.25), the diagonal
elements of Lz vanish in the basis of cubic harmonics, i.e. ⟨pi|Lz|pi⟩ = 0, but can be nonzero in
the basis of spherical harmonics ⟨l,m|Lz |l,m⟩ = ⟨1,±1|Lz |1,±1⟩ = ±ℏ [cf. Eq. (2.22)]. Similarly,
d orbitals need to hybridize, such as (|dzx⟩ ± i |dyz⟩)/

√
2 [24]. Thereby, the generated OAM can

be transported as a (transverse) orbital current through the crystal.
As for the AHE and SHE, restricting the investigation of the OHE to 2D systems in the xy

plane at zero temperature is suitable within the framework of this thesis. Hence, the intrinsic
contribution to the orbital Hall conductivity, as computed in publication [OB3], is given by [21,
23, 24, 28]

σLz
xy (EF) =

e

ℏ
∑
ν

1

(2π)2

∫
εν(k)≤EF

ΩLz
ν,xy(k) d

2k. (2.77)

In analogy to the spin Hall conductivity [cf. Eqs. (2.75) and (2.76)], it is obtained as a function of
the Fermi level EF by integrating the ‘orbital Berry curvature’ [28, 145]

ΩLz
ν,xy(k) =− 2ℏ2 Im

∑
µ̸=ν

⟨uν(k)|Λz
x|uµ(k)⟩ ⟨uµ(k)|vy|uν(k)⟩
[εν(k)− εµ(k)]2

(2.78)

over all occupied states in the BZ. Instead of the spin-current operator, herein, the orbital-current

21



2.3 Transverse transport: anomalous, spin and orbital Hall effect

operator is used which is given by the anticommutator

Λz
x =

1

2
[vx, Lz]+ . (2.79)

The origin and mechanisms of the OHE are still actively discussed. Most interestingly, it has
been shown in Ref. [23] that SOC is not necessary for the OHE and that the OHE is allowed in
nonmagnetic, centrosymmetric systems (e.g. a simple cubic lattice), where the SHE is forbidden
without SOC [17]. In fact, therein it was demonstrated that the SHE is generated from the OHE
through SOC. Thus, orbital currents are indeed more fundamental since they may be interpreted
as a ‘new’ source for spin currents. This makes the OHE and orbital currents highly attractive
for orbitronic devices [21]. In orbitronics one can thereby build on more materials, where strong
SOC is not essential anymore, as it would be the case for the generation of large spin currents for
spintronics devices.

In many studies, it was claimed that the existence of the OHE relies on hybridization of spe-
cific atomic orbitals [21, 23–27, 141–144]. The above description of the superposition of cubic
harmonic orbitals to form spherical harmonics creates the OAM of a wave packet at a specific
atomic site which can be transported as an orbital current. This is known as the atomic center
approximation (ACA) which considers only intra-atomic contributions and has been used in the
previously mentioned studies. In this case, the matrix elements of the OAM operator entering the
orbital-current operator in Eq. (2.79) are constant and given by the expressions derived in Sec. 2.1
[Eq. (2.25) for p orbitals]. The ACA yields suitable results for systems with (partially) occupied,
but strongly localized d or f orbitals like in magnetic transition metals. However, as already
pointed out by Go et al. [23, 24, 146], the ACA is incomplete and the authors highly encouraged
future investigations to apply the modern formulation of orbital magnetization [147–151]. Within
the latter approach, one takes into account the fact that an OAM may also be carried by motion
of the Bloch wave packet between atomic sites — regardless of the orbital composition [112].

Recently, these inter-atomic contributions to the OHE were included by Pezo et al. [28]. A
detailed derivation of the following expressions can be found in their publication. Based on
the modern formulation of orbital magnetization, they showed that the matrix elements of the
orbital-current operator [Eq. (2.79)]

⟨uν(k)|Λz
x|uµ(k)⟩ =

1

2

∑
α

[⟨uν(k)|vx|uα(k)⟩⟨uα(k)|Lz|uµ(k)⟩

+⟨uν(k)|Lz|uα(k)⟩⟨uα(k)|vx|uµ(k)⟩], (2.80)

that enter the orbital Berry curvature [Eq. (2.78)], have to be computed from the eigenstates [28,
145]. Herein, the matrix elements of the orbital angular momentum are given by

⟨uν(k)|Lz|uα(k)⟩ = −i
eℏ2

4gLµB

∑
β ̸=ν,α

(
1

εβ(k)− εν(k)
+

1

εβ(k)− εα(k)

)
× (⟨uν(k)|vx|uβ(k)⟩ ⟨uβ(k)|vy|uα(k)⟩ − ⟨uν(k)|vy|uβ(k)⟩ ⟨uβ(k)|vx|uα(k)⟩) (2.81)

and do not only comprise the diagonal elements, but also the off-diagonal elements which are
essential according to the modern formulation of orbital magnetization. In publication [OB3]
(see Sec. 4.3), we introduce the nonmagnetic kagome lattice, where only s orbitals are assumed,
as a minimal model for the OHE based on the approach derived by Pezo et al.. However, we
corrected a small mistake in their derivation in Eq. (2.81), and replaced ‘Im’ (which determines
the imaginary part of the following expression) by the factor ‘−i’.
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2.4 Properties of the investigated kagome magnets

Figure 5: Crystalline and magnetic structures of manganese compounds. Arrows indicate the
magnetic moments of Mn atoms and gray planes and lines represent respective mirror
planes. (a) The lattice in the family of Mn3Y (Y =Ga, Ge, Sn) is hexagonal where the Mn
atoms arrange in kagome sublattices that are stacked along [0001] which is the z axis.
(b) One Mn3Y kagome sublattice with a noncollinear antiferromagnetic order formed
by the magnetic moments of Mn. (c) In contrast, Mn3X (X=Rh, Ir, Pt) compounds are
crystallizing in a face-centered cubic (fcc) lattice withX atoms located at the corners and
Mn atoms at the face-center sites. Kagome sublattices are formed by Mn atoms as well,
but in the (111) planes and stacked along [111]. (d) The antiferromagnetic order on the
Mn3X kagome sublattice has a different chirality than the one in (b), which is explained
in more detail below (cf. Fig. 6 in Sec. 2.4). Whole figure: Reprinted (figure) with permission
from Y. Zhang et al., Physical Review B 95, 075128 (2017); Ref. [15]; Strong anisotropic anomalous
Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn,
Ga, Ir, Rh, and Pt). Copyright (2017) by the American Physical Society.

2.4 Properties of the investigated kagome magnets

In the introduction, two materials have been mentioned in the context of theoretical predic-
tion [13] and experimental confirmation [18] of the anomalous Hall effect in noncollinear an-
tiferromagnets: Mn3Ir and Mn3Sn, respectively. These materials are both constituted of layered
two-dimensional sublattices, namely ‘kagome’ lattices, that are subject to the first section in the
cumulative part of this thesis (Sec. 4). This kagome lattice has been observed in several materials
including Fe3Sn2 [152, 153] or Co3Sn2S2 [154, 155], which are known as ferromagnetic ‘kagome
magnets’, and the chiral antiferromagnets Mn3Z [13, 15, 18, 19]. The latter can be separated
into two classes — Mn3X and Mn3Y compounds — since they have different crystallographic
structures and different magnetic textures (cf. Fig. 5). In the following, the kagome lattice and
magnetic properties of its magnetic order are described. Besides, the model Hamiltonian utilized
in publications [OB1, OB2] and [OB3], is introduced as well.
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2.4 Properties of the investigated kagome magnets

The kagome lattice. The space groups of Mn3Y (Y =Ga, Ge, Sn) and Mn3X (X=Rh, Ir, Pt) are
P63/mmc and Pm3m, respectively [15]. These materials have in common that Mn atoms form
the kagome sublattice [Fig. 5 (b) and (d)], but in different crystallographic planes. Thus, the
kagome sublattices are stacked along different directions: Mn3Y has a hexagonal lattice where
the stacking of the kagome sublattices is an AB-AB sequence along [0001] [panel (a)]. In the case
of the face-centered cubic (fcc) Mn3X , the kagome sublattices are stacked along [111] according
to ABC-ABC [panel (c)].

The kagome sublattice is a hexagonal lattice with three basis atoms per unit cell that form an
equilateral triangle. Consequently, the reciprocal lattice is hexagonal as well, and the first BZ is
a hexagon with high-symmetry points Γ, M and K. In Sec. 4, the focus is on the two-dimensional
kagome lattice (located in the xy plane) and coupling to adjacent planes is neglected. Thus, a
restriction to 2D systems reduces the computational effort enormously.

As visible in Fig. 5 (b) and (d), in both Mn3Y and Mn3X , the magnetic moments of the Mn
atoms form a coplanar noncollinear antiferromagnetic order, but with a different vector spin
chirality [cf. Eq. (2.89)] which will be explained in more detail below. All of these chiral anti-
ferromagnets have high transition temperatures ranging from 365K (Mn3Ge) to 960K (Mn3Ir),
which are all well above room temperature (cf. Tab. I in Ref. [15]). The stability of the mag-
netic order at room temperature originates from an interplay of strong magnetic anisotropy and
coupling between the kagome planes [13]. Hence, they are interesting for antiferromagnetic spin-
tronics applications [2, 156]. For example, Mn3Ir is already used in spin-valve devices, i.e. for
read heads in hard-disc drives and in magnetic sensors [2]. As described before, the AHE and
SHE are widely exploited in spintronics and for both families Mn3X and Mn3Y large intrinsic
anomalous and spin Hall effects have been predicted [13, 15, 17]. However, only in Mn3Y the
AHE (Y =Sn [18], Ge [19]) and the SHE (Y =Sn [20]) have been measured in experiments.

The model Hamiltonian. The model Hamiltonian used in publications [OB1, OB2] and [OB3]
is adapted from Ref. [13], in which the AHE in a coplanar noncollinear kagome-antiferromagnet
was predicted. It is denoted as double-exchange model or s-d model which simulates the in-
teraction of the magnetic spin moment of the conduction electron (itinerant s electrons) with a
magnetic texture (formed by d magnetic moments) localized at the atomic sites. Furthermore,
spin-orbit interaction (SOC) is also taken into account. In second quantization, the full Hamilto-
nian reads

H =Hkin +HZ +HSOC (2.82)
Hkin = t

∑
⟨i,j⟩

∑
σ

a†i,σaj,σ (2.83)

HZ = m
∑
i

∑
σ,σ′

a†i,σ (mi · σ)σσ′ ai,σ′ (2.84)

HSOC = iλ
∑
⟨i,j⟩

∑
σ,σ′

a†i,σ (nij · σ)σσ′ ai,σ′ . (2.85)

The first term is the kinetic energy Hkin, where a†i,σ and ai,σ are the creation and annihilation
operators of an electron at site i with spin σ, respectively.

∑
⟨i,j⟩ implies a restriction to nearest-

neighbor hopping between sites i and j with hopping energy t. Besides, m in HZ is the strength
of the onsite Hund’s coupling between the spin moment of the conduction electron and the mag-
netic texture {mi}. As demonstrated in Refs. [13, 17, 99], the transport properties depend on the
symmetry of the various magnetic textures; more details on the magnetic configurations entering
HZ will be explained below.
Instead of using the conventional L ·S form of SOC, as described in Sec. 2.1 [Eq. (2.26)], Eq. (2.85)
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2.4 Properties of the investigated kagome magnets

can be identified with SOC (strength λ) as well, and turns out to be advantageous for the in-
vestigation of kagome materials. The SOC term HSOC was first introduced in similar form in
Ref. [96], in which the quantum spin Hall effect in graphene was predicted. Later, it was adapted
in Ref. [13], in which the AHE in the coplanar noncollinear antiferromagnet Mn3Ir was predicted.
The vectors nij are displayed in Fig. 1 of Ref. [OB1]. They are anticlockwise orthogonal to the
hopping vectors Rij that connect sites i and j and were defined in Ref. [13]. Thus, in a kagome
lattice, the set of vectors {nij} account for the different environments of nearest-neighbor hop-
ping (left or right hand) [13].

Classification of the magnetic textures. In the publications [OB1] and [OB2] presented in
Sec. 4, kagome lattices with several magnetic configurations are investigated. They have different
properties, and thus are important for the Hamiltonian’s symmetry. Therefore, it is helpful to
introduce quantities that describe the kagome magnets.

Since the s-d model comprises a subset of a full Hamiltonian, only the relevant bands near the
Fermi level are considered, instead of taking into account all energy bands. Besides, the magnetic
texture {mi} entering the Hamiltonian is assumed to be fixed and formed by energetically lower
states. Thus, two magnetic textures have to be distinguished in this minimal model. First of
all, a ‘spin texture’ is formed in reciprocal space by the spin magnetic moments of the itinerant s
electrons. It depends on the band index ν and is given by the spin-expectation value

⟨Sν(k)⟩ = ⟨uν(k)|Σ|uν(k)⟩. (2.86)

The vector Σ ≡ (Σk) can be constructed from the vector of Pauli matrices σ = (σk) and consists
of diagonal matrices Σk = diag

(
σk, ..., σk

)
. Besides, the ‘fixed magnetic texture’ is a real-space

texture which is described in more detail, subsequently. It is formed by the d-magnetic moments
{mi} at the Mn sites i and is characterized in spherical coordinates,

mi =
(
cos (ϕi) sin (θ), sin (ϕi) sin (θ), cos (θ)

)
(i = 1, 2, 3). (2.87)

Here, it is assumed that for every configuration all magnetic moments have the same magnitude
|mi| !

= 1 and the same out-of-plane component mi,z = cos (θ), i.e. they have the same azimuthal
angle θ ≡ θ1 = θ2 = θ3 [cf. Fig. 6 (a)]. Consequently, coplanar magnetic textures are classified by
θ = 90 ◦.

Another important quantity, that has already been mentioned in Sec. 2.3 in the context of the
topological Hall effect, is the scalar spin chirality [103–108]

χS ≡ mi · (mj ×mk), (2.88)

where mi,j,k denote three neighboring magnetic moments. Obviously, χS can be nonzero for
noncoplanar magnetic textures (here θ ̸= 90 ◦), but vanishes for coplanar and collinear configu-
rations. In the case of coplanar configurations, another quantity is defined as in Ref. [99], namely
the vector spin chirality

κ ≡ 2
√
3

9

∑
⟨ij⟩

(mi ×mj) · ez. (2.89)

Herein, the sum is restricted to nearest neighbors.
Fig. 6 displays four coplanar magnetic textures, where the inplane-orientation of neighboring

atoms differs by 120 ◦ and azimuthal angles are fixed at θ = 90 ◦. However, the configurations
have a different vector spin chirality: κ in Eq. (2.89) is normalized such that ‘right-hand’ and ‘left-
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(b) (c)

(f)(e)(d)

(a)

Figure 6: Different magnetic textures on the kagome lattice. Black arrows indicate the local
magnetic moments mi at the atomic sites i. (a) Noncoplanar texture with equal az-
imuthal angles θ of each magnetic moment. (b), (c) and (e), (f) coplanar configurations
with a positive and a negative vector spin chirality [κ = +1 and κ = −1], respectively.
These magnetic textures are characterized by an inplane offset angle ∆Φ as indicated
above the cartoons. (b) is denoted as ‘radial’ and (c) as ‘toroidal’ phase. Red lines indi-
cate the symmetry planes (M: mirror reflection or T M: a combination of M with time
reversal T ). (d) illustrates the polar angle Φ1 of the position vector r1 (red) that is used
in Eq. (2.90). Panels (a)-(c), (e) and (f) are taken from publication [OB1].

hand’ magnetic textures in Fig. 6 are characterized by κ = +1 and κ = −1, respectively. Thereby,
the inplane-orientation (polar angles ϕi) of the local magnetic moments {mi} can be expressed
as

ϕi = κΦi +∆Φ, (2.90)

with Φi as the polar angle of the position vector ri that is pointing from the center of the unit cell
(i.e. from the center of the triangle) to atom i [cf. Fig. 6 (d)]. Hence, the inplane orientation of the
noncollinear magnetic textures in Fig. 6 can be specified solely by one ‘inplane offset angle’ ∆Φ
and the vector spin chirality κ.

Panels (b) and (c) show two arrangements with a positive vector spin chirality, but different in-
plane orientations. In the antiperovskites Mn3ZN (Z=Ni, Ga, Zn, Sn, Ag, Rh, Pt) [157, 158] and in
Mn3X materials (X=Rh, Ir, Pt) [159], two magnetic orders with κ = +1 have been found. In con-
trast, panels (e) and (f) show two configurations with a negative vector spin chirality (κ = −1)
that have been observed in Mn3Y (Y =Ga, Ge, Sn) compounds for which the AHE in a non-
collinear antiferromagnet has been confirmed experimentally [18, 19, 160]. The arrangement in
which all magnetic moments are pointing away from the center of the unit cell [panel (b)] is
denoted here as ‘radial’ (∆Φ = 0◦). A simultaneous anti-clockwise rotation of all magnetic mo-
ments by 90◦ around the z axis yields a configuration that is called ‘toroidal’ (∆Φ = 90◦). In
contrast to the radial texture, it has a nonzero toroidal moment t = gµB

2

∑
i ri ×mi, where mi is

localized at ri (position vector of atom i with respect to the center of the unit cell) [161].
As indicated by red lines, the toroidal arrangement has three mirror symmetry planes M,

whereas the radial texture has three symmetry planes T M where mirror reflection M is com-
bined with time reversal T [99]. The configurations with κ = −1 have only one symmetry plane
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each (T M and M) and are briefly discussed in Ref. [OB1], but the focus in [OB1] and [OB2] is
put on magnetic textures with κ = +1 (Sec. 4). SOC as considered in Eq. (2.85) breaks the T M
symmetry. This allows for non-vanishing values of the Berry curvature and thus an AHE which
is the integral over the Berry curvature [13, 14]. In contrast, the M symmetry cannot be bro-
ken by SOC, which renders the AHE zero due to a vanishing Berry curvature [99]. However, a
non-vanishing spin Berry curvature, which gives rise to the SHE for these coplanar noncollinear
configurations, can be obtained, even though SOC is neglected [17].

In publications [OB1] and [OB2], we go beyond symmetry arguments and reveal microscopic
mechanisms for the predicted AHE and SHE in these noncollinear kagome antiferromagnets.
Furthermore, in publication [OB3], we restrict the discussion to the nonmagnetic kagome lattice:
we investigate the OHE and establish an alternative mechanism for orbital transport.

2.5 Experimental aspects

At the end of this section, some remarks about experimental techniques that can be used for
studying the presented (Hall) effects are summarized.

Measurement of the AHE. An experimental technique to measure the ordinary Hall effect as
well as the anomalous and topological companions, will be briefly described mainly following
Ref. [162]. Since the AHE has been known for more than 100 years, experiments have been per-
formed for a wide range of materials (for a review see e.g. Refs. [11, 163]). These comprise works
on 3d transition metals and respective oxides, complex oxide ferromagnets, and ferromagnetic
semiconductors. And very recently, the AHE has also been measured in Mn3X compounds [18,
19, 162, 164, OB6].

Typically, the resistivity ρ = σ−1 is used to characterize the electric transport [cf. (2.54)]. In
experiments with a so-called ‘Hall-bar geometry’, one can determine a longitudinal ρxx and a
transverse resistivity ρxy by measuring the voltage parallel and perpendicular to a constant elec-
tric current Ix (applied along the x direction) as a function of an external magnetic field [162].
In a conventional Hall-bar geometry (located in the xy plane), the transverse Hall voltage Uy is
measured as a response to Ix in dependence of Bz (perpendicular to the Hall bar). For the ordi-
nary Hall effect, the Hall signal depends linearly on the magnetic field, whereas the dependence
for the AHE is nonlinear and shows a hysteresis. The Hall conductivity can then be calculated
as σxy = ρxy/(ρxx)

2, which is typically much larger for the anomalous than for the conventional
Hall signal.

Measurement of the SHE. For the AHE, one is able to measure the voltage drop due an im-
balance of spin ↑ and ↓ electrons that accumulate at opposite edges of the Hall bar. However,
in a normal metal, an equal number of ↑ and ↓ electrons are deflected to opposite edges of the
sample [cf. Sec. 2.3]. Thus, a voltage drop is absent and the above setup cannot be used for mea-
suring the SHE. Since the SHE has become a widely explored phenomenon, many techniques
have been used for the detection of the SHE in different materials. A broad review of experimen-
tal techniques and results can be found for example in Refs. [1, 12] and a few aspects are listed,
below.

The first concepts to measure the SHE, which was predicted five decades ago [129, 130], were
introduced more than 20 years ago, and followed two ‘strategies’ that relied on extrinsic scatter-
ing events and electric detection. First, it was suggested to probe the SHE via its inverse effect:
the SHE-generated spin current is injected into an attached layer, in which it is converted back
to a charge current that can be detected electrically [124]. The experimental realization of this
method took ten years and was performed in a nonmagnetic HgTe nanostructure [165]. Another
approach was proposed in Ref. [125], where the idea is to detect the spin accumulation at the
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edge by attaching a ferromagnetic sample to the nonmagnetic material. This method requires
a measurement of the electrochemical potential (at the ferromagnetic electrode) that depends
on the relative orientation of the spins (accumulating in the nonmagnet) and the magnetization
direction of the ferromagnet [1]. The first experimental observation was achieved in a metallic
junction composed of ferromagnetic permalloy (Py) and nonmagnetic Pt [166].

The study of the intrinsic contribution to the SHE started also 20 years ago. Early theoretical
studies [126, 127] predicted experiments with a focus on semiconductors and suggested to take
advantage of the optical activity. Shortly afterward, the magneto-optical Kerr effect and circularly
polarized electroluminescence were used to measure the SHE in the semiconductors GaAs and
InGaAs [167], and in p-n diodes composed of (Al,Ga)As/GaAs heterostructures doped with Si
and Be [168].

The interaction of electromagnetic radiation with magnetic materials gives rise to magneto-
optical effects that have their origin in Faraday. In 1845, he measured a rotation of the polar-
ization of linearly polarized light while it was propagating through a medium parallel to an
applied magnetic field. In contrast to this magneto-optical Faraday effect (MOFE), where radi-
ation is transmitted, the polarization can also be rotated when radiation is reflected. The latter
phenomenon has been observed by Kerr in 1877, and nowadays it is denoted as ‘magneto-optical
Kerr effect’ (MOKE) [99, 169]. These effects can be explained by considering linearly polarized
light as a superposition of two circularly polarized (partial) waves with opposite helicities: the
applied magnetic field leads to a difference in the refractive indices (nL/R) for left- and right-
circularly polarized waves, ∆n = nL − nR [169]. Both partial waves (frequency ω) propagate
through the medium over a distance L. The result is a phase difference ∆θ = ∆n ωL/c of the
two circularly polarized waves, which manifests itself in a rotation of the linearly polarized light
by an angle ∆θ/2. In short, a time-reversal breaking magnetic field or a magnetization is the
cause for the phase shift between the circularly polarized waves which results in a rotation of
the linearly polarized light’s polarization from the initial direction. Thus, MOKE is a useful tool
to detect the accumulation of angular momentum at edges or surfaces. However, spin and or-
bital angular momenta sum up to the total angular momentum which would be detected via
MOKE measurements. Hence, the disentanglement of spin and orbital contributions is compli-
cated, since the SHE stems from the OHE which is partially converted into the SHE via SOC, as
explained before [23].

Measurement of the OHE - the problem of separating spin and orbital contributions. Since
the OHE is predicted to be large in systems with negligible SOC, MOKE spectroscopy could be
used to detect the OHE via the accumulation of orbital angular momentum at the edges, which
was achieved recently in Ti [170]. In order to separate spin and orbital signals in materials with
stronger SOC, where the OHE is accompanied by the SHE, one could perform X-ray magnetic
circular dichroism (XMCD) measurements after MOKE has been done.

Magnetic dichroism effects, that arise from X-ray spectroscopy, can be used to measure mag-
netic properties such as the magnetic moment [38, 39, 162, 171]. The X-ray radiation excites
electrons from the ground state (occupied orbitals) into unoccupied states, which is described
by transition matrix elements, as will be described in detail in Sec. 3.3. Thereby, characteristic
energies are absorbed by the electrons which allows for identifying different magnetic states of
the atoms in the sample. The probability for dipole transitions depends on the occupation of the
final state, on selection rules (∆L = ±1;∆mL = 0,±1;∆S = 0) due to the dipole approxima-
tion, and on the energy difference (between the initial and the final state), which has to match
the X-ray photon energy [162]. The intensity of the energy absorption depends strongly on the
chosen polarization of the radiation leading to dichroic effects, as is measured by X-ray absorp-
tion spectroscopy (XAS). The contrast in absorption can be very pronounced if magnetic samples
are illuminated with either left- or right-circularly polarized X-rays, which is denoted as X-ray
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magnetic circular dichroism (XMCD). Besides, linearly polarized X-ray excitation by radiation
with polarization perpendicular to each other yields dichroic effects as well. Hence, one speaks
of X-ray magnetic linear dichroism (XMLD), which can be utilized to detect domain structures in
collinear AFMs. The observed contrast arises from a magnetization reversal of the sample while
the polarization is fixed or vice versa [39]. The obtained XAS and XMCD signals allow to de-
termine values for both spin and orbital angular momenta by exploiting so-called ‘XMCD sum
rules’ (for details see Ref. [171]).

Another proposal suggests detecting the orbital current by injection into an adjacent ferro-
magnetic material, in which an orbital torque on the magnetic moments is created, similar to the
situation where a spin-transfer torque arises from spin injection [24]. Yet, the detection of orbital
currents and the separation from spin currents remains challenging; some experimental methods
are reviewed in Ref. [21].

Time-resolved measurements. Up to now, only steady-state phenomena have been taken into
account. However, as motivated in the introduction, the field of ultrafast magnetization dynam-
ics gained great interest during the last three decades. In order to detect the laser-induced effects
with subpicosecond resolution, so-called ‘pump-probe’ techniques have been developed [40,
172].

A short optical ‘pump’ pulse with high intensity induces the magnetization dynamics by gen-
erating photoelectrons in the excited material. This changes the reflection or transmission prop-
erties of another, less intense, ‘probe’ pulse that also illuminates the sample and has a control-
lable time delay with respect to the pump pulse. Measuring this change as a function of the delay
between the two pulses allows for reconstructing the change in magnetization and thus the mag-
netization dynamics. Temporal resolution and sensitivity to spin and orbital degree of freedom
of such experiments are governed by the duration and the energy spectrum of the probe pulse,
respectively. One can distinguish different spectral regimes with particular sensitivities – optical,
ultraviolet (UV) and X-ray – that are briefly summarized below; for a review see Ref. [40] and
references therein.

• Interaction with optical pulses leads to the linear magneto-optical effects, such as the above-
described MOKE and MOFE, which allow for indirectly probing spin ordering [173, 174].
Also nonlinear effects like second-harmonic generation (SHG), where light with a doubled
optical frequency is emitted from the excited material, can be used to probe magnetization.
However, the SHG is only allowed in systems without inversion symmetry, and thus this
method is widely used for the detection of surface and interface magnetization [40].

• Excitation with UV probe pulses is used for photoelectron emission microscopy (PEEM) or
spectroscopy: if the photon energy is larger than the difference of vacuum and Fermi en-
ergy, electrons are emitted. With angle-resolved photoemission spectroscopy (ARPES) one
has access to energy and momentum, allowing for mapping the electronic structure [175].
With some experimental ARPES setups one can also detect the spin polarization of photo-
electrons[176]. Consequently, one can directly measure the spin distribution [40].

• Finally, X-ray radiation allows for the detection of time-resolved magnetic dichroism effects
(XMCD and XMLD) [177, 178] which can be utilized for probing magnetization similar to
the magneto-optical effects. However, XMCD and XMLD are more challenging in exper-
iments, but provide elemental and chemical specificity as well as selective access to spin
and orbital angular momentum.

In this section, a theoretical description of steady-state transverse transport based on tight-binding
calculations has been presented. The different Hall effects are described by respective conductiv-
ity tensors σ that relate the responding currents j = σE with the applied homogeneous electric
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field [11, 12, 23]. Although there have been approaches where such response tensors are de-
scribed in the time domain, access to spatial resolution is hardly possible. Besides, the approach
of Sec. 2 is only valid for bulk systems. Thus, the method is not appropriate for a description
of ultrafast magnetization dynamics in finite systems (like heterostructures), where surface and
interface effects play an important role. In the next chapter, the theoretical aspects of the com-
putational framework evolve [54], are presented. This effective one-electron density-matrix ap-
proach allows for simulating the laser-induced ultrafast electron dynamics of such systems, and
it provides access to a number of observables, such as spin and orbital angular momenta and
their currents with both atomic and femtosecond resolution.
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3 Simulation of ultrafast laser-induced electron dynamics

In the previous section, the necessary background for understanding different types of transverse
currents has been presented; the results will be discussed in the first section in the cumulative
part of the thesis (Sec. 4). However, that approach deals with linear responses to an applied
homogeneous electric field, and it is limited to bulk systems without defects. Furthermore, the
spatial and temporal distribution of observables is lacking.

This section lays the foundation for the second section in the cumulative part of this thesis
(Sec. 5), in which the focus is on the investigation of electron dynamics triggered by ultrafast
laser pulses. Of interest are finite systems, such as heterostructures, allowing to address the ef-
fect of inhomogeneities, like surfaces and interfaces. Therefore, the tight-binding approach has to
be considered in real space, as is presented briefly in Sec. 3.1. In Sec. 3.2, the time evolution of the
system in an effective one-electron density matrix approach is introduced. Sec. 3.3 presents an
elegant way to describe the perturbation due to excitation with femtosecond laser pulses: optical
transition matrix elements enter a unitary transformation of the unperturbed (real-space) tight-
binding Hamiltonian. Afterward, expressions for the computation of observables with atomic
and femtosecond resolution, in particular spin and orbital angular momenta and their respective
currents, are derived in Sec. 3.4. The section concludes (Sec. 3.5) with a discussion of the limita-
tions and advantages of the computational framework evolve [54]. It is used for the simulations
published in the publications [OB4] and [OB5] (cf. Sec. 5).

3.1 Real-space tight-binding approach for finite systems

In Sec. 2.1, the ‘conventional’ tight-binding model has been derived. It is in reciprocal space
because one assumes periodicity, i.e.periodic boundary conditions in all directions (in real space),
and thus, the Bloch theorem is fulfilled. However, this approach cannot be used to investigate
finite systems with defects or other inhomogeneities, like surfaces or interfaces, which play an
important role for the electron dynamics, as will be presented in publications [OB4] and [OB5].
An inhomogeneity breaks the translation invariance – at least in one direction along which one
cannot apply periodic boundary conditions anymore [6]. Thus, the Bloch theorem is not valid and
eigenenergies and eigenfunctions of the Hamiltonian do not depend on the crystal momentum k.
Therefore, the effective one-electron Schrödinger equation (2.1) of the previous section now reads
H(r)φn(r) = εn φn(r), and one can derive a real-space tight-binding model in analogy to the
reciprocal-space approach presented in Sec. 2.1. The main results are briefly summarized, below.
In order to stress the difference to the reciprocal-space approach, which has the goal to compute
the band structure εν(k) with band index ν, in the real-space approach the index labeling different
states of the Hamiltonian will be denoted with n instead of ν. The calculated eigenenergies εn
form the electronic structure with discrete energy levels and without dispersion.

In this approach, one considers a finite cluster of atomic sites as a supercell that is composed of
(small) unit cells [54]. The latter form (separate) blocks in real space and one can apply individual
boundary conditions along different directions. One is confronted with either a ‘closed’ circuit
with periodic boundary conditions or an ‘open’ circuit geometry without periodicity along the
respective direction. This allows to simulate heterostructures, chains or thin films as it has been
done in some works of our group [54, OB4, OB5, OB7, OB8] with the computational framework
evolve, which is briefly explained later in this section.

Due to the broken translation invariance, the electron wave functions do not fulfill the Bloch
theorem. Thus, the LCAO ansatz for the solution of the Schrödinger equation is then given by

φn(r) =
1√
N

∑
M,R

cMn,R ϕM(r −R). (3.1)
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Inserting the ansatz into the Schrödinger equation, multiplying with ϕ∗M′(r − R′) from the left
and integrating afterward yields∑

M,R

cMn,R

∫
ϕ∗M′(r −R′)H(r)ϕM(r −R) d3r = εn

∑
M,R

cMn,R

∫
ϕ∗M′(r −R′)ϕM(r −R) d3r.

(3.2)

Introducing another multi indexα ≡ (M,R) allows to define real-space overlap matrix elements

Sα′,α ≡ SM′,R′;M,R =

∫
ϕ∗M′(r −R′)ϕM(r −R) d3r (3.3)

as well as real-space Hamilton matrix elements

Hα′,α ≡ HM′,R′;M,R =

∫
ϕ∗M′(r −R′)H(r)ϕM(r −R) d3r. (3.4)

With this, Eq. (3.2) becomes ∑
α

Hα′,α cn,α = εn
∑
α

Sα′,α cn,α. (3.5)

As before in Sec. 2.1, herein three-center integrals are neglected due to the assumption of strongly
localized electrons and one is confronted again with a generalized eigenvalue problem. In matrix
form, it reads [H− εn S] cn = 0, and in analogy, the matrices are H ≡

(
Hα′,α

)
and S ≡

(
Sα′,α

)
,

and the vector is given by cn ≡ (cn,α).
This equation can again be transformed to a conventional eigenvalue problem by Löwdin or-

thogonalization [70], where a diagonalization of H0, the unperturbed ground state Hamiltonian,
yields the electronic structure and the eigenstates

[H0 − εn 1] c̃n = 0, (3.6)

with H0 ≡ S−1/2HS−1/2 and c̃n ≡ S1/2 cn. In the results presented in Sec. 5 different setups are
simulated.

In publications [OB4] and [OB5], face-centered cubic (fcc) films with a thickness of 40 atomic
layers are investigated. These films are homogenous samples composed of Cu or Co, and a
Co/Cu heterostructure (two blocks with 20 layers each). The primitive cell of an fcc lattice con-
tains two basis atoms, such that each layer of a (100) film would contain one atom in its (2D) unit
cell. Thus, in each simulated case, one fcc(100) sample has a depth of 40 layers. Consequently,
one large supercell contains 40 atoms that form a zigzag chain in x-direction (open boundary
conditions; cf. Fig. 1 in [OB4] and Fig. 1 [OB5]). Periodic boundary conditions are applied along
the other two directions. For the chosen materials one can find lattice constants that slightly differ
(0.36 nm for Cu [179] and 0.34 nm for fcc Co [180]). Consequently in practice, epitaxial growth of
fcc Co on Cu(100) results in a slightly distorted geometry, where Co adopts the inplane fcc lattice
of the Cu substrate, so that the Co films form a face-centered tetragonal lattice [181]. However,
in the simulations with evolve, only one lattice constant can be used; i.e. we assume identical
lattice constants.

In order to describe the electronic structure of these samples s, p and d orbitals of Cu and Co
enter H0 according to the Slater-Koster formalism presented in Sec. 2.1. Numerical values for
both materials are based on parameters that have been obtained by a fit to ab-initio calculations
in Ref. [67]. Collinear magnetism is considered by an exchange splitting of the Slater-Koster
parameters. For the Co atoms, this results in a ground state intrinsic spin and orbital angular
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momentum pointing along z-direction for the chosen setups [182, 183]. Spin-orbit coupling, as
derived in Ref. [90], is included in H0 (cf. Eq. (2.26) for p-orbitals).

A simulation in evolve starts with the determination of the chemical potential µ for the given
number of electrons and the given temperature T . Each atom in the supercell provides a certain
number of valence electrons (11 for Cu and 9 for Co [183]), and the chosen temperature is T =
300K. These values, together with the eigenenergies εn of H0, determine the chemical potential.
The eigenstates |n⟩ of H0 are then occupied according to the respective Fermi-Dirac distribution
fD(εn, µ, T ). The occupation probabilities enter the diagonal elements of the density matrix (in
the eigenstate basis), which is subject of the following subsection.

3.2 Density matrix and equation of motion

The diagonalization of the tight-binding Hamiltonian of the previous section yields a set of
eigenenergies and eigenstates from which expectation values of observables can be computed.
However, one can also use the density operator3 instead of the eigenstates, which is advanta-
geous as will be explained below following Refs. [57, 58, 76, 184–186].

Pure and mixed states. In general, a quantum system which is described by an abstract Hilbert
vector |ψ⟩ can be in two different states: pure or mixed states. Let now O be an operator with
eigenvalues on and eigenstates |n⟩ ≡ |ϕn⟩ forming a normalized basis set; i.e. O |n⟩ = on |n⟩.
By choosing this basis, one may express the state |ψ⟩ =

∑
n cn |n⟩ as a superposition of these

eigenstates |n⟩, where |cn|2 = |⟨n|ψ⟩|2 ∈ [0, 1] is the probability of obtaining the value on while
measuring O. Only, if the system is prepared in a so-called ‘pure’ quantum state, one knows the
complete (quantum) information about the system. Hence, it can be described by a single state; this
could be for example the above superposition |ψ⟩ =∑n cn |n⟩ or a certain eigenstate |ψ⟩ = |n⟩.
This motivates to introduce the expectation value of O as an averaged value obtained from a
large number of measurements under identical conditions in order to account for the quantum
mechanical uncertainty during the measuring process [184]

⟨O⟩ =
∑
n

on|cn|2 =
∑
n

on⟨ψ|n⟩⟨n|ψ⟩ =
∑
n

⟨ψ|O|n⟩⟨n|ψ⟩ = ⟨ψ|O|ψ⟩. (3.7)

In the last step, the completeness relation 1 =
∑

n |n⟩ ⟨n| has been exploited. If one is confronted
with a statistical ensemble of such pure states, the system is in a so-called ‘mixed’ state. That means
the information about the quantum system is incomplete due to a ‘mixture’ of pure states [185,
186]. In practice, where one deals with macroscopic objects of 1023 particles, it is impossible (and
mostly unnecessary) to know everything about the entire system and only information about a
subsystem is sufficient. In this case, the mixed state cannot be represented by one single state, but
one may assume that each possible (pure) state |ψi⟩ is realized with a probability pi which requires∑

i pi
!
= 1. Consequently, the expectation value above has to be averaged again statistically,

which yields the following expression:

⟨O⟩ =
∑
i

pi ⟨ψi|O|ψi⟩ =
∑
i

pi

(∑
n

on|cn,i|2
)

=
∑
n

on
∑
i

piwn,i =
∑
n

onwn. (3.8)

Herein,wn ≡∑i piwn,i is defined as the probability of finding the eigenvalue on when measuring
O at the mixed system state. wn,i ≡ |cn,i|2 = |⟨n|ψi⟩|2 is the corresponding probability that the

3Sometimes the density operator is also called density matrix, although the latter is strictly speaking a matrix repre-
sentation of the density operator in a specific set of eigenstates. Since the many-body problem for non-interacting
electrons has been mapped to an effective single-particle problem, the density operator is an effective one-particle
density operator.
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system is in the pure system state |ψi⟩ (and on is measured) [184–186]. Thereby, one finds

⟨O⟩ =
∑
i

pi
∑
n

on⟨ψi|n⟩⟨n|ψi⟩ =
∑
n

∑
i

pi⟨ψi|O|n⟩⟨n|ψi⟩ =
∑
n

∑
i

pi⟨n|ψi⟩⟨ψi|O|n⟩, (3.9)

which allows us to define the density operator

ρ =
∑
i

pi |ψi⟩ ⟨ψi| . (3.10)

Properties of the density matrix. As explained above, in contrast to a pure state, a mixed
quantum state cannot be represented by a single state due to missing information, and one has
to use the density operator to cover both cases. A density operator approach is a very general
description of a quantum system since ρ is composed of both Hilbert vectors |ψi⟩, which encode
the information about the quantum system, and probabilities pi for the system being in state
|ψi⟩. This approach is very advantageous for several reasons; some important properties are
summarized in the following [184–186].

First of all, instead of directly utilizing the eigenstates to compute the expectation value of an
observable O, one can use Eq. (3.9) and the definition of ρ, to obtain

⟨O⟩ = tr ρO, (3.11)

which has the advantage that the trace is invariant under basis transformations. From the defi-
nition of ρ it is clear that ρ† = ρ since the pi ∈ [0, 1] are real numbers and the projection operator
|ψi⟩ ⟨ψi| is hermitian. Consequently, ρ can be interpreted as a physical observable itself: for an
arbitrary quantum state |ϕ⟩ it is

⟨ϕ|ρ|ϕ⟩ =
∑
i

pi⟨ϕ|ψi⟩⟨ψi|ϕ⟩ =
∑
i

pi|⟨ϕ|ψi⟩|2 ≥ 0. (3.12)

Thus, ρ is positive definite which ensures that the expectation value of ρ, which is the proba-
bility of finding the system in the state |ϕ⟩, can never be less than zero. If ρ is represented in
the (normalized) eigenstate basis {|n⟩} of the observable O the diagonal element pi of ρ can be
interpreted as the probability of measuring on in the mixed state. Furthermore, with O = 1 it
follows directly from Eq. (3.11) that tr ρ = 1, which is in agreement with the interpretation as
probabilities (cf. tr ρ = 1 ⇔∑

i pi = 1). As mentioned above, the density operator is also able to
describe a pure state |ψ⟩ = |ψi⟩ that is characterized by pi = 1 for this one state |ψi⟩ and pj = 0
for all other states |ψj⟩ due to complete knowledge about the system. In this case, the density
operator reduces to ρ = |ψ⟩ ⟨ψ|, and one finds for the squared density matrix ρ2 that ρ2 = ρ and
tr ρ2 = 1, whereas for mixed states one finds ρ2 ̸= ρ and tr ρ2 < 1. Finally, in order to investigate
the time evolution of observables, one has to propagate the density operator in time. Therefore,
one can use the time-dependent Schrödinger equation iℏ ˙|i⟩ = H |i⟩ and express ρ in terms of the
eigenstates |i⟩ of H to derive the time evolution of ρ, which is described by the von Neumann
equation [184, 185]

ρ̇ ≡ ∂ρ

∂t
=

i

ℏ
(ρH −Hρ) =

i

ℏ
[ρ,H]− . (3.13)
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Time evolution of a perturbed system. From now on, the density operator is time dependent:

ρ(t) =
∑
n,m

|n⟩ pnm(t) ⟨m| . (3.14)

Herein, in contrast to a diagonal element pnn which is interpreted as occupation number of state
|n⟩, an off-diagonal element pnm describes an interference or a coherent superposition of states
|n⟩ and |m⟩ which can be generated by a perturbation, for example by excitation with a laser
pulse. This will be explained in more detail in the next subsection and will be motivated briefly
in the following.

As explained above, the time evolution of the density operator is governed by the von Neu-
mann equation (3.13) which is also valid for the dynamics of time-dependent HamiltoniansH(t)
as considered in this work [184, 185]. Therefore, now H is decomposed into a constant part
H0, the real-space tight-binding Hamiltonian of the previous subsection, and a time-dependent
term V (t) mimicking a weak perturbation. In Eq. (3.14), {|n⟩} is the set of eigenstates of H0 (i.e.
H0 |n⟩ = εn |n⟩) which are atomic orbitals of the atomic sites in the cluster in real space. Through-
out this work, it is assumed that the Hilbert space is spanned by the eigenstates of H0. Thus, the
(time-independent) eigenstates and eigenvalues ofH0 are taken into account throughout the time
evolution. In this case, for the equation of motion ρ̇(t) = i

ℏ [ρ(t), H(t)] follows∑
n,m

|n⟩ ṗnm(t) ⟨m| = i

ℏ
∑
n,m

[|n⟩ pnm(t) ⟨m| , H0 + V (t)] (3.15)

=
i

ℏ
∑
n,m

(εm − εn) |n⟩ pnm(t) ⟨m|+ [|n⟩ pnm(t) ⟨m| , V (t)]. (3.16)

Multiplication with ⟨k| from the left and with |l⟩ from the right as well as introducing matrix
elements Vij(t) ≡ ⟨i|V (t)|j⟩ results in the equation of motion

ṗkl(t) =
i

ℏ
(εl − εk) pkl(t) +

i

ℏ
∑
m

pkm(t)Vml(t)−
i

ℏ
∑
n

Vkn(t) pnl(t) . (3.17)

From this, one can see that the last two terms arising from the perturbation induce transitions
between eigenstates which are also called coherences. In the next subsection expressions for these
transition matrix elements will be derived.
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3.3 Theoretical description of laser excitation

In the introduction, it was already explained that light-matter interaction offers new perspec-
tives for modern spin-orbitronics. Ultrafast laser pulses allow for both high spatial and temporal
resolution which has great potential for designing small devices with fast processing times [3,
29, 31–33, 40]. Laser excitation can lead to phenomena like ultrafast demagnetization [34, 44],
all-optical switching [35–37] or ultrafast spin transport across interfaces of heterostructures [46–
49].

Based on this motivation, this subsection explains how the laser-induced perturbation is mod-
eled within the evolve computer code. First, the electric dipole approximation is introduced.
Afterward, it is demonstrated how the (minimal) coupling of the electron to electromagnetic ra-
diation is used to derive the time-dependent Hamiltonian. Finally, explicit expressions for the
dipole-transition matrix elements are derived.

Electric dipole approximation. This paragraph introduces the electric dipole approximation
mainly following Ref. [6]. This approach is a simplification that accounts for the coupling of a
particle with charge q to an electromagnetic field, which is defined via the electric scalar potential
Φ and the magnetic vector potential A, as E = −∇Φ−Ȧ and B = ∇×A. Choosing the Coulomb
gauge, ∇ ·A = 0 and Φ = 0, yields E = −Ȧ. The interaction of an electron (charge q = −e) with
the electric field enters the Hamiltonian via Peierls substitution [76, 80, 187]

p → p− q

c
A, (3.18)

which is also known as ‘minimal coupling’ [188]. If A is time dependent, as in laser-excitation
processes, and terms of orderA2 are neglected, one can show that a time-dependent perturbation
term V (t) = − q

mA(t)·p arises in Coulomb gauge [6]. Fermi’s golden rule tells that the probability
for a transition from an initial state |i⟩ to a final state |f⟩ reads pi→f ∝ |⟨f |V (t)|i⟩|2 with transition
matrix elements Vif = ⟨f |V (t)|i⟩ of the perturbation term [cf. Eq. (3.17)]. An ansatz for the vector
potential of a monochromatic laser is given by [189]

A(r, t) =
A0

2
e exp {i (k · r − ωt)}+ c.c., (3.19)

where A0 is the amplitude of the laser’s vector potential, and e, k, and ω are the (unit vector
of) polarization, propagation direction, and the carrier frequency of the laser, respectively. The
spatial term in the above exponential is approximately given by |k · r| ≈ 2π

λ a0 ≪ 1, since the
Bohr radius a0 = 0.5 nm is much smaller than typical wavelengths λ ≈ 103 . . . 104 nm; note that
the simulated finite samples (cf. Sec. 3.1 and publications [OB4] and [OB5]) have a size of a few
nm. Consequently, one can expand the electromagnetic radiation in terms of multipoles (like it is
known from classical electrodynamics) [189] and take into account only the dipole terms. This is
achieved by expanding the exponentials in the above equation and considering the lowest order,
i.e. exp {±i (k · r)} = 1± i (k · r)+ · · · ≈ 1, which allows treating the vector potential as spatially
constant. With this, the matrix elements above read

Vif = −A0

m
cos (ωt) ⟨f |qe · p|i⟩ = i

A0

ℏ
cos (ωt)(εi − εf ) ⟨f |qe · r|i⟩, (3.20)

where the momentum operator p = mṙ has been replaced by the commutator p = −m i
ℏ [r, H0]−

of the position operator r and the unperturbed Hamiltonian H0 [6, 186]. In summary, the dipole
approximation allows for treating the vector potential as spatially constant and expressing the
perturbation term as V = qE · r [6, 39, 190].
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Minimal coupling in dipole approximation by unitary transformation. In the following, an
elegant way to replace Peierls substitution [187] by a unitary transformation of the ground state
Hamiltonian is explained following the derivation in Ref. [190], and references therein [191–194].
The starting point of the derivation is the equation [190, 194]

exp (if(r, t)) g(r, p̃) exp (−if(r, t)) = g(r, p̃−∇f(r, t)). (3.21)

One can define a scalar functionχ via∇χ(r, t) = A(r, t)which fulfills the Coulomb gauge∇·A =
∇ · (∇χ) = 0. As pointed out above, the spatial dependence of the vector potential is neglected.
Furthermore, if the interaction between the electron and the laser’s magnetic field are neglected
(as will be discussed later in this section), one chooses

χ(r, t) ≡ A(r = 0, t) · r = A0(t) · r, (3.22)

which is the dipole operator in length form [191]. With this, a choice for the function f entering
Eq. (3.21) is given by

f(r, t) =
q

cℏ
χ(r, t) ⇒ ∇f(r, t) = q

cℏ
A0(t). (3.23)

Consequently, one can define a unitary operator

U = U(r, t) = exp
(
i
q

cℏ
χ(r, t)

)
= exp (i f(r, t)) ≈ 1 + i f(r, t) (3.24)

[and U †(r, t) = exp (−i f∗(r, t))] which allows for applying a unitary transformation to the un-
perturbed ground state Hamiltonian H0(r, p̃) (with p̃ = 1

ℏ p = −i∇)

H0(r, p̃) → U(r, t)H0(r, p̃)U
†(r, t) = H(r, p̃, t). (3.25)

In doing so, the time-independent Hamiltonian has been transformed to the time-dependent
Hamiltonian H(r, p̃) = H(r, p̃ − ∇f(r, t)) = H(r, p̃ − q

cℏ A0(t)) according to Eq. (3.21). This
method is more general than the Peierls substitution, since it applies to nonlocal potentials as
well [190].

The unperturbed tight-binding Hamiltonian can be written as [190]

H0 =
∑
n,m

|n⟩h(0)nm ⟨m| with h(0)nm = (H0)nm = ⟨n|H0|m⟩. (3.26)

Applying the above unitary transformation H0 → H = UH0U
† yields

H =
∑
n,m

∑
k,l

|k⟩ ⟨k|U |n⟩h(0)nm⟨m|U †|l⟩ ⟨l| (3.27)

≈
∑
n,m

∑
k,l

|k⟩ ⟨k|1 + i
q

cℏ
χ|n⟩h(0)nm⟨m|1− i

q

cℏ
χ|l⟩ ⟨l| , (3.28)

where the approximation for U in Eq. (3.24) has been used, and the completeness relations have
been inserted. Defining the matrix elements of the dipole transitions operator in length form

χnm = (X)nm = ⟨n|χ|m⟩ = ⟨n|A0(t) · r|m⟩, (3.29)
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and exploiting the orthogonality ⟨n|m⟩ = δnm of the basis functions yields

H ≈
∑
n,m

∑
k,l

|k⟩
(
δkn + i

q

cℏ
χkn

)
h(0)nm

(
δml − i

q

cℏ
χ∗
ml

)
⟨l| (3.30)

=
∑
n,m

|n⟩h(0)nm ⟨m|+ i
q

cℏ

(∑
k

|k⟩χknh
(0)
nm ⟨m| −

∑
l

|n⟩h(0)nmχ
∗
ml ⟨l|

)
+O

(
1

c2

)
. (3.31)

Herein, only paramagnetic terms of order 1
c (arising from terms that are linear in the vector poten-

tial A) are taken into account. Terms of order 1
c2

≪ 1, the so-called ‘diamagnetic contributions’,
are neglected, since c ≈ 137 in atomic units [76, 195]. In other words, only the interaction of
electrons with the electric field is considered, whereas the interaction with the magnetic field of
the laser is neglected. Finally, the obtained result in matrix form reads

H(t) ≈ H0 + i
q

cℏ

(
X(t)H0 − H0X

†(t)
)
. (3.32)

In the context of simulations in evolve, the chosen basis set {|n⟩} is either a set of atomic or-
bitals or of the eigenstates of the tight-binding Hamiltonian H0 that are obtained by a unitary
transformation. It is worth noting that in contrast to the unperturbed Hamiltonian H0, the tran-
sition matrix X(t) is not hermitian, but the combinations X(t)H0 and H0X

†(t) are. Subsequently,
the matrix elements X(t) which enter the perturbation term in the above equation are evaluated.
Therefore, it is helpful to separate the transition matrix elements into a time-dependent and a
time-independent part, as will be demonstrated in the next paragraph.

Derivation of the transition matrix elements. The subsequent derivation follows mainly Ref. [39]
and references therein. The plane of incidence of a laser pulse impinging under angles θph and
ϕph is defined by the surface normal nS, which is assumed to be the cartesian z-axis in this sub-
section, and by the incidence direction [cf. Fig. 7]

nph = −

cos (ϕph) sin (θph)
sin (ϕph) sin (θph)

cos (θph)

 . (3.33)

The electric field E = Es +Ep of the laser pulse is decomposed into components perpendicular
(s; originating from the German word ‘senkrecht’) and parallel (p) to the plane of incidence. For
example, with a coordinate system as chosen in Fig. 7, Es has only a y component, whereas Ep

has x and z components. Thus, the time-dependent field is expressed as a coherent superposition
of two partial fields that are modulated with an envelope function env(t), e.g. a Gaussian or a
Lorentzian distribution function,

E(t) = env(t)
∑
l=s,p

El cos (ωt+∆l). (3.34)

Herein, the partial fields may be shifted in phase with respect to each other by ∆s and ∆p, which
allows for simulating not only linearly but also circularly polarized laser pulses. Since the ampli-
tudes El are constant in time, one can derive time-independent transition matrix elements that
are combined into dipole-transition matrices V = env(t)

∑
l=s,p Vl cos (ωt+∆l). The derivation

follows Ref. [39] and references therein.
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Es

Ep
nS

x
y

z

nph

Figure 7: Illustration of an impinging laser pulse. The incidence direction nph defines the plane
of incidence together with the surface normal nS. In this sketch, the coordinate system
is chosen such thatnS points along z direction and the plane of incidence is the xz plane.
The blue and red arrows visualize the electric field components Es and Ep perpendic-
ular and parallel to the plane of incidence, respectively.

The partial fields are expressed in terms of the angles of incidence,

Es = Es

− sin (ϕph)
cos (ϕph)

0

 and Ep = Ep

cos (ϕph) cos (θph)
sin (ϕph) cos (θph)

− sin (θph)

 . (3.35)

With the unit-vector er = 1
rr in spherical coordinates (r, θ, ϕ), the dipole operator in length form

reads [6, 39, 190]

E · r = r (Es · er +Ep · er) , (3.36)

which describes electron-photon interaction in dipole approximation. The two terms are dis-
cussed, subsequently. First of all, the perpendicular part is taken into account. Inserting the
expression for Es yields

Es · er =− Es [sin (ϕph) cos (ϕ)− cos (ϕph) sin (ϕ)] sin (θ) (3.37)

=+ Es
i√
2

[
1√
2
eiϕphe−iϕ − 1√

2
e−iϕpheiϕ

]
sin (θ), (3.38)

which can be further rewritten by inserting the complex spherical harmonics Y m
l ≡ Y m

l (θ, ϕ) for
l = 1. The latter read [186]

Y ±1
1 = ∓ C√

2
e±iϕ sin (θ), Y 0

1 =C cos (θ) with C ≡
√

3

4π
. (3.39)

With this follows

Es · er =
Es

C

i√
2

[
eiϕph Y −1

1 (θ, ϕ) + e−iϕph Y 1
1 (θ, ϕ)

] (
C =

√
3

4π

)
. (3.40)
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Similarly one finds for the parallel part of the dipole operator

Ep · er =Ep
1√
2

[
1√
2
eiϕphe−iϕ +

1√
2
e−iϕpheiϕ

]
cos (θph) sin (θ)− Ep sin (θph) cos (θ). (3.41)

Analogously to the treatment of the perpendicular part before, one can also replace terms with
complex spherical harmonics which allows for defining [39]

Hs =
i√
2

[
eiϕph Y −1

1 (θ, ϕ) + e−iϕph Y 1
1 (θ, ϕ)

]
(3.42)

Hp =
1√
2

[
eiϕph Y −1

1 (θ, ϕ)− e−iϕph Y 1
1 (θ, ϕ)

]
(3.43)

Hz =Y 0
1 (θ, ϕ). (3.44)

Consequently, the dipole operator in a compact form reads

E · r =
r

C
[EsHs + Ep (Hp cos (ϕph)−Hz sin (θph))]

(
C =

√
3

4π

)
. (3.45)

Based on this, one can evaluate matrix elements ⟨f |E · r|i⟩ that describe the transitions [6, 76]

Ψi = ψi(r)Y
m
l (θ, ϕ) → Ψf = ψf (r)Y

m′
l′ (θ, ϕ) (3.46)

from the initial orbital |i⟩ ≡ |Ψi⟩ to the final orbital |f⟩ ≡ |Ψf ⟩. These matrix elements decompose
into three contributions ⟨f |E · r|i⟩(·) with (·) = s, p, z. It is

⟨f |E · r|i⟩(·) =
∫

ψ∗
f (r)Y

m′∗
l′ r (E · er)(·) ψi(r)Y

m
l d3r (3.47)

=
1

C

∫
ψ∗
f (r) r

3 ψi(r) dr

∫
Y m′∗
l′ C (E · er)(·) Y m

l dΩ, (3.48)

where one can separate the radial part Rfi and evaluate the three contributions separately:

⟨f |E · r|i⟩(·) =RfiC

∫
Y m′∗
l′ (E · er)(·) Y m

l dΩ with (3.49)

Rfi ≡
1

C

∫
ψ∗
f (r) r

3 ψi(r) dr

(
C =

√
3

4π

)
. (3.50)

For the perpendicular part (·) = s, Eq. (3.49) yields

⟨f |E · r|i⟩s =
i√
2
RfiEs

∫
Y m′∗
l′

[
eiϕph Y −1

1 + e−iϕph , Y 1
1

]
Y m
l dΩ (3.51)

= − i√
2
RfiEs

[
eiϕph Gm′1m

l′1l + e−iϕphGm′−1m
l′1l

]
, (3.52)

where Y m
l = (−1)m Y −m ∗

l has been used and the integrals have been replaced by Gaunt coeffi-
cients in the Gordon-Shortley convention [196]

Gm′′m′m
l′′l′l ≡

∫
Y m′′∗
l′′ Y m′∗

l′ Y m
l dΩ. (3.53)
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With an analog treatment of the parallel part one finds

⟨f |E · r|i⟩p =
1√
2
RfiEp cos (ϕph)

∫
Y m′∗
l′

[
eiϕph Y −1

1 − e−iϕph , Y 1
1

]
Y m
l dΩ (3.54)

= − 1√
2
RfiEp cos (ϕph)

[
eiϕph Gm′1m

l′1l − e−iϕphGm′−1m
l′1l

]
, (3.55)

and

⟨f |E · r|i⟩z = −RfiEp sin (θph)

∫
Y m′∗
l′ Y 0

1 Y
m
l dΩ (3.56)

= −RfiEp sin (θph)Gm′0m
l′1l . (3.57)

In summary it is

⟨f |E · r|i⟩ = ⟨f |E · r|i⟩s + ⟨f |E · r|i⟩p + ⟨f |E · r|i⟩z with (3.58)

⟨f |E · r|i⟩s = − i√
2
RfiEs

[
eiϕph Gm′1m

l′1l + e−iϕphGm′−1m
l′1l

]
(3.59)

⟨f |E · r|i⟩p = − 1√
2
RfiEp cos (ϕph)

[
eiϕph Gm′1m

l′1l − e−iϕphGm′−1m
l′1l

]
(3.60)

⟨f |E · r|i⟩z = −RfiEp sin (θph)Gm′0m
l′1l , (3.61)

which imply the optical selection rules [197, 198] l′ = l± 1, m′ = ±1 [cf. (·) = s, p] and l′ = l± 1,
m′ = m [cf. (·) = z]. In the computational framework evolve, the orbitals are expressed in
terms of cubic harmonics that are a superposition of complex spherical harmonics, as described
before [cf. Eq. (2.23)]. Thus, the selection rules allow for transitions between s and p orbitals or
between p and d orbitals with l′ − l = ±1. These transitions comprise coherent excitations and
deexcitations of states that get populated or depopulated, respectively.

In the publications presented in the second section in the cumulative part (Sec. 5), it is assumed
that the thickness of the sample is much smaller than the spatial extent of the impinging laser
pulse. Consequently, in the simulations, all atomic sites of the cluster are illuminated simulta-
neously with the same laser intensity. However, in a real experiment with a thick sample, an
inhomogeneous distribution of occupation and observables across the film would be observed
due to the decay of the laser intensity towards the interior of the slab. Consequently, interpreting
the outcome of our simulations is easier than for experimental results.
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3.4 Observables: spin and orbital angular momenta and their currents

Up to now, the time evolution of a laser-excited system has been described using a density matrix
approach. In Sec. 3.2, the one-electron density matrix has been introduced which is propagated in
time according to the von Neumann equation (3.13). Therein, the time-dependent Hamiltonian
comprises the time-independent real-space Hamiltonian H0 of the ground state [cf. Sec. 3.1] and
the time-dependent electric field of the laser pulse entering via minimal coupling [cf. Sec. 3.3].

In the following, expressions for expectation values of specific observables that are relevant
for the publications presented in Sec. 5 will be derived. In particular, the time evolution of spin
and orbital angular momenta and respective currents are addressed. In addition to having time-
resolved access to those observables with femtosecond resolution, the utilized computational
framework evolve allows for investigating the spatial distribution of observables with atomic
resolution.

Approaches to describe ultrafast spin currents. In literature, ultrafast electron motion in the
form of (spin-polarized) currents has been studied for the last two decades using various ap-
proaches. In order to model femtosecond electron motion, diffusive and ballistic transport can
be considered as the two limits of transport processes. They are characterized by a diffusion expo-
nent γ describing the time dependence of a particle’s displacement distribution σ2d(t) ∝ tγ [199,
200]. Brownian motion leads to standard diffusion (γ = 1), but one assumes large velocities
and a vanishing electron mean-free path, whereas ballistic transport (γ = 2) neglects scattering
events. Thus, both approaches are not suitable for describing electronic motion with finite life-
times and mean-free paths. A combination with an assumed time-dependent γ(t), which starts
in the ballistic regime and goes to standard diffusion for long times results in ‘superdiffusive’
electron transport. In the latter scenario, electrons move with constant velocities and undergo a
finite number of elastic scattering events [199–202].

Ultrafast superdiffusive spin currents are calculated in a semiclassical two-current model by
considering spin-dependent relaxation times, scattering rates and transition probabilities. Be-
sides, laser-excitation is taken into account as a source term. As a result ‘hot majority-spin
electrons’ have a higher mobility than ‘minority-spin electrons’. This enables the laser-induced
transfer of spin-angular momentum from a ferromagnet across an interface into a nonmagnetic
layer [199, 201, 203, 204]. Consequently, the spin-polarized currents carry spin angular momen-
tum and lead to demagnetization of the ferromagnet and a magnetization of the nonmagnetic re-
gion. This phenomenon has been observed experimentally, for example in Fe/Au [48, 203] or in
Co/Cu heterostructures [181]. Later, it has been demonstrated that in such a Co/Cu heterostruc-
ture, this scenario is accompanied by a ‘backflow mechanism’: minority-spin Cu electrons flow
from the nonmagnetic region back to the ferromagnetic Co region, in which unoccupied orbitals
get populated [49]. This reflow mechanism is very similar to optically induced inter-site spin
transfer (OISTR), where spin polarization is redistributed in the vicinity of an interface, lead-
ing to laser-induced switching of the magnetic order in a ferromagnetic/antiferromagnetic het-
erostructure [45].

Besides, it is worth noting that other semiclassical theories to describe the laser-induced dy-
namics of hot carriers exist. These are based on an extended wave-diffusion equation [205] or on
the Boltzmann equation [203, 206]. In the following, the one-electron density matrix approach
used in the evolve computer code will be described in detail [54]. At the current stage, scatter-
ing of electrons with other (quasi-)particles, such as phonons or other electrons, is not included.
However, the method used here enables spatio-temporal access to observables with atomic and
femtosecond resolution, and goes beyond the two-current model. Limitations and advantages
of this approach are summarized at the end of this section (Sec. 3.5).
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Computation of observables with spatio-temporal resolution. As explained before, the time
evolution of an observable’s expectation value ⟨O⟩ is calculated from Eq. (3.11) using the time-
dependent density matrix

⟨O⟩(t) = tr ρ(t)O = trP(t)O. (3.62)

Herein, the right-hand side of the equation is given in matrix form. Spatio-temporal proper-
ties of this observable are computed by taking partial traces [207–209] with the density matrix
P represented in a suitable basis. Within the computational framework evolve, the electron dy-
namics is analyzed either in the eigenstate basis {|n⟩} of H0 or after a unitary transformation
in site-orbital-spin basis {|kασ⟩} [54]. Thus, one can express |n⟩ = ∑

kασ ckασ,n |kασ⟩. Hence, a
resolution with respect to orbital type α (β) and spin orientation σ (σ′) of site k (l) is achieved by
defining submatrices

pσσ
′

kl ≡
(
pσσ

′
kl

)
αβ

= pkασ,lβσ′ and hσσ
′

kl ≡
(
hσσ

′
kl

)
αβ

= hkασ,lβσ′ , (3.63)

which are combined into site-resolved block matrices, i.e. submatrices of the complete density
matrix P and the Hamilton matrix H

Pkl =

(
p↑↑kl p↑↓kl
p↓↑kl p↓↓kl

)
and Hkl =

(
h↑↑kl h↑↓kl
h↓↑kl h↓↓kl

)
. (3.64)

In publications [OB4] and [OB5], the addressed observables are the spin angular momentum
(SAM) and orbital angular momentum (OAM) which are analyzed during the laser excitation
with atomic and femtosecond resolution. Thus, the time-dependent i components of the local
SAM ⟨sl⟩ and OAM ⟨ll⟩ at a specific atomic site l read

⟨sil⟩(t) = trPll(t)Σ
i and ⟨lil⟩(t) = trPll(t) L

i
l (i = x, y, z). (3.65)

Herein, Σi and Lil are block matrices that comprise the Pauli matrices and the matrices of the OAM
operator in the basis of cubic harmonic orbitals, respectively [cf. Eq. (2.25) for p orbitals], where
the latter depends on the atomic species and orbitals at site l. If the number of sites in a sample’s
(large) unit cell N is considered, one can then compute the time evolution of the site-averaged
(global) SAM ⟨S⟩ and OAM ⟨L⟩ according to

⟨S⟩(t) = 1

N

∑
l

⟨sl⟩(t) and ⟨L⟩(t) = 1

N

∑
l

⟨ll⟩(t). (3.66)

The site-resolved block matrixHkl, that is also defined in Eq. (3.64), is needed to compute currents
which will be discussed in detail, subsequently; the explicit time dependence in the expressions
will be omitted in the derivation for clarity.

Charge currents. The existence of currents can be motivated by taking the equation of motion
for the density matrix of a specific site l into account. The equation of motion (3.13) (in atomic
units, ℏ = 1) implies that the change of occupation dpll within dt is given by

dpll
dt

= i
∑
k

(plkhkl − pklhlk) = i
∑
k

plkhkl − ⟨l ↔ k⟩ , (3.67)

where ‘−⟨l ↔ k⟩’ means that the expression before the brackets is subtracted with interchanged
indices l and k. Comparing the above result with the continuity equation ṗ = −∇ · j motivates
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3.4 Observables: spin and orbital angular momenta and their currents

defining currents jkl flowing from site l to site k as

jkl = −i plkhkl − ⟨l ↔ k⟩ . (3.68)

Consequently, all currents jkl starting from site l yield the change of occupation of site l as

ṗll = −
∑
k

jkl. (3.69)

The finite hopping range of the tight-binding Hamiltonian restricts the sum to first- or second-
nearest neighbors k of site l. It is easy to show that the currents are antisymmetric, i.e. jkl = −jlk
by exploiting the hermiticity of the density matrix and the Hamiltonian.

Subsequently, expressions for the computation of currents are derived following Mahan, where
the current operator is defined as [58]

j = −i
∑
kl

rkl |k⟩hkl ⟨l| ≡
∑
kl

rkl jkl. (3.70)

Herein, the direction of the current from site l to k is given by the vector rkl ≡ rk − rl, and the
magnitude of the current operator is defined by

jkl = −i |k⟩hkl ⟨l| = − i

2
(|k⟩hkl ⟨l| − |l⟩hlk ⟨k|) = − i

2
|k⟩hkl ⟨l| − ⟨l ↔ k⟩ . (3.71)

By using the site-orbital-spin resolved basis one can extend the indices k → kασ and l → lβσ′ to
compute the magnitude of the current operator with

(
hσσ

′
kl

)
αβ

from Eq. (3.63)

jkl = − i

2

∑
ασ

∑
βσ′

|kασ⟩
(
hσσ

′
kl

)
αβ

⟨lβσ′| − ⟨lβσ′ ↔ kασ⟩ . (3.72)

The expectation value of the current operator j reads

⟨j⟩ = tr ρj = rkl
∑
kl

tr ρjkl = rkl
∑
kl

⟨jkl⟩. (3.73)

Therein, the expectation value of the magnitude is then given by

⟨jkl⟩ = − i

2

∑
nδµ′

∑
mγµ

∑
ασ

∑
βσ′

(
pµ

′µ
nm

)
δγ

⟨mγµ|kασ⟩
(
hσσ

′
kl

)
αβ

⟨lβσ′|nδµ′⟩ − ⟨lβσ′ ↔ kασ⟩ (3.74)

= − i

2

∑
ασ

∑
βσ′

(
pσ

′σ
lk

)
βα

(
hσσ

′
kl

)
αβ

− ⟨lβσ′ ↔ kασ⟩ . (3.75)

Utilizing the submatrices defined in Eq. (3.63) yields ⟨jkl⟩ = − i
2 tr

∑
σσ′ pσ

′σ
lk hσσ

′
kl −⟨l ↔ k⟩. Writ-

ing the spins explicitly results in

⟨jkl⟩ = − i

2
tr
(
p↑↑lk h

↑↑
kl + p↑↓lk h

↓↑
kl + p↓↑lk h

↑↓
kl + p↓↓lk h

↓↓
kl

)
− ⟨l ↔ k⟩ . (3.76)

This expression can be interpreted as a sum of ↑- and ↓-spin resolved currents in the case of
collinear magnetic textures, where inter-site hopping with spin flip do not occur in the Hamilto-
nian, i.e. h↑↓kl = 0 resp. h↓↑kl = 0. However, spin-orbit coupling and noncollinear magnetic textures
allow for nonvanishing spin-flip hoppings, and thus open additional transport channels.
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3.4 Observables: spin and orbital angular momenta and their currents

Spin-resolved currents. Now, one can take into account currents jSi

kl that are resolved with
respect to the component i = x, y, z of the spin S. These spin-resolved currents carry SAM and
their expectation values can be expressed in a symmetrized form as [54, 58]

⟨jSi

kl ⟩ =
1

2

(
⟨Σijkl⟩+ ⟨jklΣi⟩

)
, (3.77)

where Σi is again the block Pauli matrix. The two expressions on the right can be evaluated
separately. It is

⟨Σijkl⟩ =− i

2

∑
nδµ′

∑
mγµ

∑
ασ

∑
βσ′

(
pµ

′µ
nm

)
δγ

⟨mγµ|Σi|kασ⟩
(
hσσ

′
kl

)
αβ

⟨lβσ′|nδµ′⟩ − ⟨lβσ′ ↔ kασ⟩

=− i

2

∑
µ

∑
ασ

∑
βσ′

(
pσ

′µ
lk

)
βα

⟨µ|Σi|σ⟩
(
hσσ

′
kl

)
αβ

− ⟨lβσ′ ↔ kασ⟩ . (3.78)

In the last step, one uses the fact that the Pauli matrix is diagonal in site and orbitals. Analogously,
one can find

⟨jklΣi⟩ = − i

2

∑
µ′

∑
ασ

∑
βσ′

(
pµ

′σ
lk

)
βα

(
hσσ

′
kl

)
αβ

⟨σ′|Σi|µ′⟩ − ⟨lβσ′ ↔ kασ⟩ . (3.79)

From these results, it is obvious that the non-vanishing matrix elements of the Pauli matrices
have to be considered in order to find explicit expressions for the spin-resolved currents. For
the z component only the diagonal elements ⟨↑ |Σz| ↑⟩ = 1 and ⟨↓ |Σz| ↓⟩ = −1 are nonzero.
Considering this and writing the spins explicitly in the previous equations yields

⟨Σzjkl⟩ = − i

2
tr
[
p↑↑lk h

↑↑
kl − p↑↑kl h

↑↑
lk

]
+
[
p↓↑lk h

↑↓
kl − p↓↑kl h

↑↓
lk

]
−
[
p↑↓lk h

↓↑
kl − p↑↓kl h

↓↑
lk

]
−
[
p↓↓lk h

↓↓
kl − p↓↓kl h

↓↓
lk

]
− ⟨l ↔ k⟩ (3.80)

= − i

2
tr

(
p↑↑lk p↑↓lk
p↓↑lk p↓↓lk

)(
1 0
0 −1

)(
h↑↑kl h↑↓kl
h↓↑kl h↓↓kl

)
− ⟨l ↔ k⟩ , (3.81)

and analogously one finds

⟨jklΣz⟩ = − i

2
tr

(
p↑↑lk p↑↓lk
p↓↑lk p↓↓lk

)(
h↑↑kl h↑↓kl
h↓↑kl h↓↓kl

)(
1 0
0 −1

)
− ⟨l ↔ k⟩ . (3.82)

Furthermore, it is easy to show that the anticommutator [Σz,Hkl]+ reads[(
1 0
0 −1

)
,

(
h↑↑kl h↑↓kl
h↓↑kl h↓↓kl

)]
+

= 2

(
h↑↑kl 0

0 −h↓↓kl

)
. (3.83)

With this, the symmetrized form for the spin-z polarized current can be calculated as follows:

⟨jSz

kl ⟩ = − i

4
tr

(
p↑↑lk p↑↓lk
p↓↑lk p↓↓lk

)[(
1 0
0 −1

)
,

(
h↑↑kl h↑↓kl
h↓↑kl h↓↓kl

)]
+

− ⟨l ↔ k⟩ (3.84)

= − i

2
tr
(
p↑↑lk t

↑↑
kl − p↓↓lk h

↓↓
kl

)
− ⟨l ↔ k⟩ . (3.85)
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3.4 Observables: spin and orbital angular momenta and their currents

Herein, the spin-mixing terms cancel each other and similar to the current jkl, this expression
can be interpreted as the difference of ↑ and ↓-polarized currents, as is known from the two-
current model (cf. Sec. 2.3). Expressions for the x- and y-spin polarized currents are obtained
analogously:

⟨jSx

kl ⟩ = − i

4
tr
(
p↑↑lk + p↓↓lk

)(
h↑↓kl + h↓↑kl

)
+
(
p↑↓lk + p↓↑lk

)(
h↑↑kl + h↓↓kl

)
− ⟨l ↔ k⟩ , (3.86)

⟨jSy

kl ⟩ =
1

4
tr
(
p↑↑lk + p↓↓lk

)(
h↑↓kl − h↓↑kl

)
+
(
p↑↓lk − p↓↑lk

)(
h↑↑kl + h↓↓kl

)
− ⟨l ↔ k⟩ . (3.87)

In contrast to the z-spin resolved current, here the non-vanishing off-diagonal matrix elements
of the Pauli matrices Σx and Σy yield contributions to the spin-polarized currents arising from
spin-mixing terms. One is again able to express the spin-resolved currents with the respective
anticommutators [Σx,Hkl]+ and [Σy,Hkl]+, which allows for writing the (spin-polarized) currents
in a compact form

⟨jkl⟩ =− i

2
trPlkHkl − ⟨l ↔ k⟩ and (3.88)

⟨jSi

kl ⟩ =− i

4
trPlk

[
Σi,Hkl

]
+
− ⟨l ↔ k⟩ (i = x, y, z). (3.89)

Orbital currents. In analogy to the spin-polarized currents above, orbital currents, i.e. currents
carrying OAM from site l to k can be computed. In the following, expressions as utilized in
publication [OB5] are derived. Starting from a symmetrized form ⟨jLi

kl ⟩ = 1
2

(
⟨Li

kjkl⟩+ ⟨jklLi
l⟩
)
,

similarly to the currents of SAM, one finds with the above compact form for the currents

⟨jLi

kl ⟩ = − i

4
tr
(
PlkL

i
kHkl + PlkHklL

i
l

)
− ⟨l ↔ k⟩ (i = x, y, z) . (3.90)

Herein, the i-th component of the OAM operator depends on the atomic species and orbitals at
site j = k or j = l and in the basis of the cubic harmonic orbitals they read in block form

Lij =

(
lij 0

0 lij

)
. (3.91)

Using the previously defined submatrices yields

⟨jLi

kl ⟩ =− i

4
tr

(
p↑↑lk p↑↓lk
p↓↑lk p↓↓lk

)[
lik

(
h↑↑kl h↑↓kl
h↓↑kl h↓↓kl

)
+

(
h↑↑kl h↑↓kl
h↓↑kl h↓↓kl

)
lil

]
− ⟨l ↔ k⟩.

This expression can be split into ‘spin-conserving’ (↑↑ or ↓↓) and ‘spin-mixing’ (↑↓ or ↓↑) contri-
butions, i.e. ⟨jLi

kl ⟩ = ⟨jLi

kl ⟩σσ + ⟨jLi

kl ⟩σσ
′ with σ′ = −σ. First of all, the spin-conserving terms, that

occur after performing the matrix multiplication, read

⟨jLi

kl ⟩σσ =− i

4
tr
(
p↑↑lk

[
likh

↑↑
kl + h↑↑kl l

i
l

]
+ p↓↓lk

[
likh

↓↓
kl + h↓↓kl l

i
l

])
− ⟨l ↔ k⟩ (3.92)

=− i

4
tr
(
p↑↑lk

[
likh

↑↑
kl + h↑↑kl l

i
l

]
+ p↓↓lk

[
likh

↓↓
kl + h↓↓kl l

i
l

])
+

i

4
tr
(
p↑↑lk

∗
[
lil
∗h↑↑kl

∗ + h↑↑kl
∗lik

∗
]
+ p↓↓lk

∗
[
lil
∗h↓↓kl

∗ + h↓↓kl
∗lik

∗
])
, (3.93)
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where the hermiticity of the operators has been exploited (pσσ′
lk

∗ = pσ
′σ

kl , hσσ′
lk

∗ = hσ
′σ

kl and lik
∗ = lik).

In an analog treatment, one finds for the occurring spin-mixing terms (σ′ = −σ)

⟨jLi

kl ⟩σσ
′
=− i

4
tr
(
p↑↓lk

[
likh

↓↑
kl + h↓↑kl l

i
l

]
+ p↓↑lk

[
likh

↑↓
kl + h↑↓kl l

i
l

])
− ⟨l ↔ k⟩ (3.94)

=− i

4
tr
(
p↑↓lk

[
likh

↓↑
kl + h↓↑kl l

i
l

]
+ p↓↑lk

[
likh

↑↓
kl + h↑↓kl l

i
l

])
+

i

4
tr
(
p↓↑lk

∗
[
lil
∗h↑↓kl

∗ + h↑↓kl
∗lik

∗
]
+ p↑↓lk

∗
[
lil
∗h↓↑kl

∗ + h↓↑kl
∗lik

∗
])
. (3.95)

In both expressions, terms of the form tr
(
ABC −A†C†B†) occur with A = pσσ

′
lk , B = lik and

C = hσ
′σ

kl (and A† = pσσ
′

lk
∗, B† = lik

∗ and C† = hσ
′σ

kl
∗). These expressions can be evaluated as

tr
(
ABC −A†C†B†) = 2i Im (tr (ABC)) [184, 186], which allows to condense the spin-conserving

and -mixing terms into

⟨jLi

kl ⟩σσ =
1

2
Im
(
tr
(
p↑↑lk

[
likh

↑↑
kl + h↑↑kl l

i
l

]
+ p↓↓lk

[
likh

↓↓
kl + h↓↓kl l

i
l

]))
(3.96)

⟨jLi

kl ⟩σσ
′
=

1

2
Im
(
tr
(
p↑↓lk

[
likh

↓↑
kl + h↓↑kl l

i
l

]
+ p↓↑lk

[
likh

↑↓
kl + h↑↓kl l

i
l

]))
. (3.97)

In summary, one obtains for the expectation value of the orbital current by adding both contri-
butions

⟨jLi

kl ⟩ =
1

2
Im
∑
σ,σ′

(
tr
(
pσσ

′
lk

[
likh

σ′σ
kl + hσ

′σ
kl lil

]))
. (3.98)

3.5 Advantages and limitations of the approach

At the end of this section, a few aspects on the presented one-electron approach will be discussed,
and some advantages and limits will be briefly summarized. The focus in the publications [OB4]
and [OB5] presented in Sec. 5 is the simulation and investigation of ‘pure’ laser-induced elec-
tron dynamics, in particular on the relations of laser details and photo-induced spin and orbital
angular momentum and their transport.

Advantages. The real-space tight-binding approach offers some advantages (cf. Sec. 3.1): al-
though a simulation of ultrafast spin dynamics with time-dependent density functional theory
(TDDFT) is very accurate [45, 210, 211], it has the disadvantage of very high computational cost.
Thus, this approach is limited to simulations of a few 10 fs and only small samples consisting of
a few unit atoms.

However, tight-binding approaches allow for very efficient calculations offering the opportu-
nity for the simulation of large systems and long time intervals (cf. e.g. 20 atoms and simula-
tion of 100 fs or more in Refs. [54, OB7]). With the real-space tight binding approach, individual
boundary conditions (open or closed) along specific directions are possible and thus, the im-
pact of inhomogeneities like surfaces and interfaces on electron dynamics can be investigated.
Besides, exchange and spin-orbit interaction may be switched on or off, tuned for didactical pur-
poses, and serve as ‘toy’ models to investigate their influence on the electron dynamics.

Finally, results are relatively easy to interpret (e.g. hybridization of atomic orbitals), and the
real-space approach allows for the study of spatio-temporal distribution of observables with both
atomic resolution on fs timescales (e.g. spin and orbital angular momenta or their currents, as
presented in publications [OB4] and [OB5]; cf. Sec. 3.4).
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Limitations. The approach has restrictions, since this effective one-particle model neglects in-
teractions with other particles. Although the evolve computer code has the feature of coupling
the electron system to a bosonic heat bath (cf. Refs. [54, OB7]), electron-phonon interaction is
not addressed in this work. The focus of this thesis (Sec. 5) is the study of ‘pure’ laser-induced
electron dynamics on timescales of a few 10 fs after the laser pulse, whereas thermalization is
relevant on the timescales of picoseconds. Consequently, the heat bath is not turned on in pub-
lications [OB4] and [OB5]. 4

Furthermore, electron-electron scattering is partially included in the Slater-Koster parameters
that enter the ground-state Hamiltonian. As briefly explained before, these parameters are based
on a fit to ab-initio band structures, where exchange-correlation functionals indirectly account
for electron-electron interaction [67].

A full account of the electron-electron interaction would require a two-particle reduced den-
sity matrix approach, which is computationally very demanding [57, 58, 76] and thus typically
restricted to small systems and time spans, similar to TDDFT methods. However, within the uti-
lized one-electron approach, it is possible to explicitly account for electron-electron interaction
by applying the Hartree-Fock approximation (for details see e.g. Refs. [57, 58, 76]). This feature
is not implemented in evolve at the present stage, but one can expect attraction and repulsion
within the laser-induced spatio-temporal charge distribution. Attractive interactions may result
in currents with reduced propagation length, whereas repulsive interactions may increase or
decrease the occupation locally.

4One could account for thermalization which is implemented via so-called Lindblad superoperators that allow for
energy transfer between the electron and the bosonic system (for details see [54] and references therein).
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4 Publications: transverse charge, spin, and orbital transport in
the steady state

In the previous two sections, the theoretical aspects for simulating transport phenomena have
been introduced. In the following, the cumulative part of this thesis, five publication will be pre-
sented and placed into context of this work. In the present section, three publications concerning
the transverse steady-state transport of charge, spin, and orbital angular momenta in kagome
systems are discussed, respectively. Based on tight-binding calculations and the Berry-curvature
formalism (as presented in Sec. 2), the results contribute to a microscopic understanding of the
Hall effects in kagome systems (goal number one in the introduction).

Anomalous Hall effect (AHE) as an effective topological Hall effect (THE). The first publi-
cation [OB1] establishes the microscopic origin of the AHE in several noncollinear kagome mag-
nets. Despite a vanishing net magnetization, a symmetry analysis shows that the effect is allowed
by the magnetic point group of certain coplanar systems. In the publication, the system is ana-
lyzed on the Hamiltonian level by applying a set of unitary transformations to the Hamiltonian.
Thereby, the equivalence of spin-orbit coupling (SOC) and a (virtual) tilting of the magnetic mo-
ments out of the kagome plane is revealed. This allows to interpret the unconventional AHE in
compensated kagome magnets as an effective THE arising from the virtually noncoplanar mag-
netic texture.

Sources of the spin Hall effect (SHE) in noncollinear kagome magnets. In publication [OB2],
the SHE has been computed for various noncollinear kagome magnets. Conventionally, SOC
is considered to be essential for the SHE, but recently it has been demonstrated that the effect
is allowed in these kagome systems, even though SOC is neglected. In this work, two sources
which determine the spin Hall signal are revealed by relating the results to the findings of pub-
lication [OB1]. The dominant contribution arises from the coplanar noncollinear magnetic tex-
ture and exists without SOC. The second contribution mainly reduces the spin Hall signal and
emerges from SOC or the equivalent out-of-plane tilting of the magnetic moments.

Unconventional orbital Hall effect (OHE) arising in s-orbital systems. In the third publi-
cation [OB3], an alternative mechanism for the generation of transverse orbital currents is es-
tablished. Early studies on the OHE claimed hybridization of specific atomic orbitals [only intra-
atomic contributions in atomic center approximation (ACA)] as the origin of the effect. However,
in this publication, we go beyond the ACA and compute the OHE according to the modern for-
mulation of orbital magnetization which includes inter-atomic contributions as well. In doing
so, the nonmagnetic kagome lattice with only s orbitals is introduced as a minimal model for
the OHE. By considering a slab geometry, it is demonstrated that orbital angular momentum is
transported by a cycloid motion of a wave packet.

4.1 Anomalous Hall effect as an effective topological Hall effect

Anomalous Hall effect in noncollinear compensated kagome magnets. As presented in Sec. 2.3,
the generation of transverse electric currents as a response to an applied homogeneous electric
field is called Hall effect. It is described by off-diagonal elements σij = ∂ji

∂Ej
of the electric con-

ductivity tensor σ. In an experiment, one measures the Hall resistivity ρ = σ−1 which allows to
identify three contributions to the Hall signal [identical to Eq. (2.54)]

ρxy = RNHEBext
z +RAHEMS

z +RTHEχS. (4.1)
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4.1 Anomalous Hall effect as an effective topological Hall effect

Herein, the normal Hall effect (NHE) exists in nonmagnetic metals in the presence of an applied
magnetic field Bext

z . The second contribution is the anomalous Hall effect (AHE) which is typi-
cally related to a net magnetizationMS

z . Thus, the AHE has become a signature of ferromagnetism,
but requires spin-orbit coupling (SOC). Finally, the topological Hall effect (THE) denotes the third
contribution to the Hall signal. It exists in noncoplanar magnetic textures with a nonzero scalar
spin chirality χS even without SOC.

Consequently, one would not expect that materials with a coplanar magnetic texture and van-
ishing net magnetization exhibit a Hall effect. However, a few years ago, it was demonstrated
that the AHE exists in various Mn3X compounds (X=Rh, Ir, Pt, Ga, Ge, Sn; cf. Fig. 5): the AHE
was predicted in Mn3Ir [13] and also reported experimentally shortly afterwards in Mn3Sn [18]
and Mn3Ge [19]. These materials consist of layered kagome sublattices with a coplanar non-
collinear antiferromagnetic texture formed by the Mn atoms and their magnetic moments, re-
spectively (cf. Figs. 5 and 6). The three contributions in the above equation can be distinguished
phenomenologically, but the origin to the intrinsic contribution to the Hall signal is a nonzero
Berry curvature. Recall that the intrinsic Hall conductivity σxy is given by the k-space integral
of the Berry curvature over all occupied states in the Brillouin zone (BZ) [cf. Eq. (2.67)]. The
AHE in Mn3X is allowed by the magnetic point group of the materials: a combination of the
noncollinear magnetic texture in combination with SOC breaks certain symmetries [13, 14]. This
leads to a nonzero Berry curvature which gives rise to the Hall conductivity. However, the mi-
croscopic mechanism of the unconventional Hall effect remains to be revealed.

This publication. In the following publication “Microscopic origin of the anomalous Hall ef-
fect in noncollinear kagome magnets” [OB1], an intuitive understanding of the AHE in several
kagome magnets is established. The intrinsic Hall conductivity is computed according to the
Berry curvature formalism based on tight-binding calculations, as presented in Sec. 2. Moreover,
the system is analyzed on the Hamiltonian level by applying a set of unitary transformations to
the model Hamiltonian [cf. Eq. (2.82)]. Each transformation rotates the local coordinate system
at each lattice site i such that the z axis is tilted by an angle α towards the magnetic moment
mi at this site (cf. Fig. 6 in [OB1]). In the new local coordinate system, each magnetic moment
is virtually tilted by α out of the kagome plane. By applying the transformation to all terms of
the Hamiltonian, we reveal that parameter-dependent effective hopping and SOC terms arise.
The main result of the transformation is that this ‘virtual’ magnetic texture {m̃i} arises in sev-
eral noncollinear kagome magnets from SOC which is equivalent to an out-of-plane tilting of the
magnetic moments {mi}.

In particular, a critical tilting angle exists for which SOC is effectively compensated. In this
case, we interpret the unconventional AHE of the coplanar kagome antiferromagnets as an effec-
tive THE arising from a net scalar spin chirality of the noncoplanar virtual texture. Consequently
the coplanar system with SOC behaves like a noncoplanar system without SOC. Furthermore,
we demonstrate that a noncoplanar system with SOC can be transformed into a system with a vir-
tual coplanar texture for which SOC is effectively compensated. Consequently, the Hall effect is
absent for this configuration, although a conventional symmetry analysis would allow the effect.

The following publication: Reprinted (whole article) with permission from O. Busch, B. Göbel and I.
Mertig, Physical Review Research 2, 033112 (2020); Ref. [OB1]; Microscopic origin of the anomalous Hall
effect in noncollinear kagome magnets. Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
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The anomalous Hall effect is commonly considered a signature of ferromagnetism. However, recently, an
enormous anomalous Hall conductivity was measured in the compensated kagome magnets Mn3Sn and Mn3Ge.
The occurrence of this effect is allowed by the magnetic point group of these materials; however, its emergence is
still lacking a microscopic explanation. Herein we show that the spin-orbit coupling and an out-of-plane tilting of
the texture are equivalent for several kagome magnets. Consequently, a coplanar system with spin-orbit coupling
behaves as if it were virtually noncoplanar. We show via tight-binding model calculations that the Hall effect
can mainly be interpreted as a topological Hall effect generated by the opening angle of the virtually tilted
texture. Furthermore, upon tilting the fixed texture out of the kagome plane, we find a critical tilting angle for
which the Hall conductivity vanishes for all energies. In this case, the Hamiltonian is invariant under a combined
time-reversal and mirror symmetry, because the virtual texture is coplanar.

DOI: 10.1103/PhysRevResearch.2.033112

I. INTRODUCTION

The Hall effect of electrons is one of the most intensely
investigated effects in solid-state physics. It describes the
transverse deflection of moving conduction electrons in a Hall
bar when time-reversal symmetry is broken. Besides the con-
ventional Hall effect which is caused by an externally applied
magnetic field [1], the anomalous Hall effect [2] has become
a signature of ferromagnets [3]. This effect can be caused by
the skew-scattering [4,5] and side-jump [6] mechanisms. Both
contributions are extrinsic; they are related to the spin-orbit
coupling at defects [3]. Besides, even in a perfect sample, an
anomalous Hall effect can arise intrinsically [7] due to the
occurrence of a reciprocal-space Berry curvature [8,9]. Typi-
cally, all three contributions are related to a net magnetization;
it breaks a set of time-reversal and spatial symmetries so that
a reciprocal-space Berry curvature can arise. Furthermore, a
Berry curvature can also be caused by noncollinear magnetic
textures with a net scalar spin chirality [10], i.e., certain
noncoplanar textures like magnetic skyrmions [11,12]. The
canted magnetic moments effectively generate an emergent
magnetic field (or real-space Berry curvature) that causes the
so-called topological Hall effect [13].

Over the last years, a straightforward microscopic un-
derstanding has been established for all three of the above
presented contributions to the Hall effect. However, recently it
was found that also materials without a net magnetization can
exhibit an anomalous Hall effect [14–18], whose microscopic
origin must be different from the anomalous Hall effect men-
tioned above. In several layered kagome materials a coplanar
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spin texture is observed with a vanishing net magnetization,
and still tight-binding models and first-principle calculations
predict finite anomalous Hall conductivities in agreement
with magnetic point group analyses [18,19]. Recent exper-
iments in Mn3Sn [16] and Mn3Ge [17], both members of
the space group P63/mmc (No. 194) [16,18], have reported
large anomalous Hall conductivities of up to 500 �−1 cm−1

confirming these predictions [20]. However, a straightforward
microscopic understanding is still missing.

Herein we establish a microscopic explanation for the
occurrence of a finite anomalous Hall effect in several kagome
magnets. We show that the spin-orbit coupling for these
systems is equivalent to a tilting of the magnetic moments out
of the kagome plane. The Hall effect can then be explained
by conventional means upon considering the net moment
and the net scalar spin chirality of the virtually tilted texture
instead of the actual texture. Using tight-binding calculations,
we show that the topological Hall contribution (caused by
the net scalar spin chirality) is dominant over the anomalous
Hall contribution (caused by the net magnetic moment of
the virtual texture). Furthermore, we show that the virtual
tilting due to the spin-orbit coupling can be compensated
by tilting the actual texture along the opposite out-of-plane
direction. For a critical angle the virtual texture is coplanar,
restoring the combined time-reversal and mirror symmetry of
the Hamiltonian that forbids finite Hall conductivities.

II. MODEL AND METHODS

Throughout our study, we consider the tight-binding
Hamiltonian as used in Ref. [14] in which the anomalous Hall
effect in these kagome magnets has first been predicted,

H = t
∑
〈i, j〉

c†
i c j + m

∑
i

c†
i (mi · σ)ci

+ iλ
∑
〈i, j〉

c†
i (ni j · σ)c j . (1)
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FIG. 1. Coplanar magnetic textures on a kagome lattice. (a) The
three basis atoms have four nearest neighbors each. For each of these
bonds the spin-orbit vector ni j = −n ji is indicated (red; the black
arrow indicates the direction i j versus ji). (b) The three basis atoms
and magnetic moments mi (indicated by arrows) in the coplanar ra-
dial configuration. The unit cell has three symmetry planes indicating
a combined time-reversal and mirror symmetry (red). The texture
is characterized by a positive vector spin chirality κ = +1 and an
in-plane offset �� = 0◦, as indicated. (c) The toroidal phase. All
moments are locally rotated by 90◦ compared to (b) giving �� =
90◦. This magnetic texture has three mirror symmetry planes. (d), (e)
Textures with a negative vector chirality are shown. They only have
one symmetry plane each.

The first term represents the hopping of an electron from lat-
tice site j to i with the amplitude t . The second term describes
the Hund’s coupling of electron spin and magnetic texture
{mi}. The strength of this interaction is m = 1.7t throughout
this paper. The third term represents the spin-orbit coupling,
as introduced in Ref. [14], similar to the spin-orbit coupling
in graphene [21]. The term preserves the inversion symmetry,
but accounts for the difference between left- and right-hand
environments for electrons hopping along different paths in a
kagome layer [14]. The vectors ni j = −n ji are visualized in
Fig. 1(a) (red arrows).

This minimal model comprises a subset of the full Hamil-
tonian. Only a few relevant bands near the Fermi energy are
considered and the magnetic texture {mi} is assumed to be
constituted by energetically lower states and is fixed. Still,
the model allows us to establish an understanding for the
emerging Hall effect since it has the same symmetry as the
complete system.

Diagonalizing this Hamiltonian gives the band structure as
eigenvalues En(k) and the eigenvectors |nk〉 ≡ |un(k)〉 from
which the intrinsic contribution to the Hall conductivity can
be calculated [3],

σxy(EF ) = −e2

h

1

2π

∑
n

∫
E (k)�EF

�(z)
n (k)d2k. (2)

We treat the Fermi energy EF as a parameter that can be tuned
by doping or application of a gate voltage. �(z)

n (k) is the z

component of the reciprocal-space Berry curvature of band n,

�(z)
n (k) = −2 Im

∑
m �=n

〈nk|∂kx Hk|mk〉 〈mk|∂ky Hk|nk〉
[En(k) − Em(k)]2

.

Next, we introduce the different configurations of the
considered magnetic texture. The unit cell of a kagome layer
consists of three atoms. The three magnetic moments have
an angle of 120◦ with respect to each other. The polar angle
of their orientation �i and the polar angle of their position
vector φi (center of the coordinate system in the center of the
plaquette) are related by

�i = κφi + �� (3)

for all basis atoms i = 1, 2, 3. Here κ = ±1 is the vector spin
chirality. We discuss the following experimentally observed
kagome magnets: For a positive vector spin chirality κ = +1
there exist two different configurations of Mn3ZN (Z = Ni,
Ga, Zn, Sn, Ag, Rh, Pt) [22,23] or Mn3X (X = Rh, Ir, Pt) [24]
[radial order �� = 0◦, 180◦ and toroidal order �� = ±90◦
shown in Figs. 1(b) and 1(c)], and for a negative vector spin
chirality κ = −1 there exist two different configuration of
Mn3Y (Y = Sn, Ge, Ga) [25] [�� = 0◦, 180◦ and �� =
±90◦ shown in Figs. 1(d) and 1(e)]. Additionally, the tight-
binding model allows us to arbitrarily vary the in-plane offset
angle ��, similarly to the study in Ref. [26], as well as the
azimuthal angle θ [cf. Fig. 3(a); θ = 90◦ for coplanar textures]
like in Ref. [14] in order to analyze the canted magnetic
textures later in this paper.

Before we present our results, we want to stress that
we consider three fundamentally different types of textures
throughout our paper: the fixed magnetic texture, the electron
spin texture, and a virtual texture. The fixed magnetic texture
{mi} is a real-space texture that is formed by localized mag-
netic moments. This texture is predefined and directly enters
the Hamiltonian (1). It is defined by the in-plane orientation
given in Eq. (3) and the azimuthal angle θ . Besides, the
itinerant spin magnetic moments of the conduction electrons
form a texture in reciprocal space. We obtain this so called
spin texture by calculating the spin expectation value

〈sn(k)〉 = 〈nk|�|nk〉 , (4)

where � = diag(σ, . . . , σ ) is given by the vector of Pauli
matrices σ. For a deeper understanding we can also analyze
the spin texture that originates from a single atom. In this
case we use � = diag(0, . . . , σ, . . . , 0). As we will present
later in this paper, the transport properties are only loosely
related to the fixed magnetic texture or the spin texture of
electrons. Instead, the spin-orbit coupling gives rise to a
virtual texture {m̃i} which is effectively tilted with respect to
the fixed texture out of the kagome plane. This virtual texture
is not measurable but is determined by the symmetry of the
system. Therefore, it determines the emerging Hall effects and
can be utilized to explain whether and how certain symmetries
are broken.

III. RESULTS AND DISCUSSION

In the following we present calculations of the band
structure and the anomalous Hall conductivity within the
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FIG. 2. Band structure and anomalous Hall conductivity for the coplanar configurations, θ = 90◦. (a) The band structure of the radial
configuration, �� = 0, when spin-orbit interaction is not taken into account. The out-of-plane spin expectation value 〈sz〉 of all bands and k
points vanishes (gray). (b) Similar to (a) but the spin-orbit interaction is now taken into account. Degeneracies are lifted and the spin expectation
value now has a finite out-of-plane component (red, positive; blue, negative). (c) The anomalous Hall conductivity corresponding to the band
structure in (b). (d) shows the anomalous Hall conductivity for various Fermi energies [colored lines indicated in (c)] upon locally rotating
each moment around the local z axis. Cartoons of the texture for several angles �� are shown below. (e) The spin expectation value for the
energetically lowest band in (b). The color encodes the out-of-plane component. Below, the atom-resolved spin expectation value is shown.

framework of the presented tight-binding model. We focus
here on the κ = +1 phase as for example Mn3Pt. Later we
will briefly refer to the κ = −1 phase as well, which shows
similar results and for which the same arguments hold that we
will establish in the following.

For the κ = +1 phase, we begin by discussing different
coplanar configurations and with a review of the existing
literature. To reveal the mechanism for the emergence of
this effect—the main subject of our paper—we analyze the
expectation value of the conduction electrons’ spin, establish
the equivalence of the spin-orbit coupling and an out-of-plane
tilting of the moments, and even consider fixed magnetic
textures that have been tilted out of the kagome plane.

A. Band structure and anomalous Hall conductivity of the
coplanar radial configuration

Before we consider magnetic systems, we start with a brief
analysis of the structural kagome lattice. The three atoms in
the unit cell of a nonmagnetic kagome layer without spin-
orbit coupling give rise to three spin-degenerate bands (band
structure shown in Fig. 1 of the Supplemental Material [27]).
One of these bands is ideally flat and the other two bands
exhibit a band structure similar to graphene: They touch lin-
early at the Brillouin zone’s K points exhibiting Dirac cones.
Since a magnetic texture is not considered yet, time-reversal
symmetry is conserved and an anomalous Hall conductivity is
absent.

Next, we will review the results for coplanar configura-
tions, similar to Refs. [14,18,26,28]. When we consider the
magnetic texture like in the radial phase of Mn3Pt, as shown
in Fig. 1(b), the spin degeneracy of the bands is lifted due to
the broken time-reversal symmetry and six individual bands
are visible [Fig. 2(a)]. Reminiscent of the Dirac cones of the
original band structure, bands touch linearly at the K points.
Also, degeneracies are present at �. Here, in contrast to the
Dirac points, the band structure is quadratic for all bands.

The mirror symmetry M is broken in the system which is
essential for the emergence of a Hall conductivity. However,
since spin-orbit coupling is still not taken into account, the
system has a combined time-reversal and mirror symmetry

TM forbidding the occurrence of an anomalous Hall conduc-
tivity, since �(z)

n (−k) = −�(z)
n (k) [14] [cf. red lines repre-

senting TM symmetry planes in Fig. 1(b)]. The conduction
electrons’ spins partially align with the spatially dependent
fixed magnetic texture at each lattice site (see Fig. 2(a) of
the Supplemental Material [27]). Both spin texture and fixed
magnetic texture are oriented in the kagome plane.

When spin-orbit interaction is considered, TM symmetry
is broken (we establish how this symmetry is broken micro-
scopically later in this paper) and the degeneracies in the band
structure are lifted [red in Fig. 2(b)]. Away from the high-
symmetry points, the band structure stays mostly unchanged.
The breaking of TM symmetry leads to the emergence of an
anomalous Hall conductivity [red in Fig. 2(c)] that exhibits a
pronounced energy dependence. In the global band gaps the
conductivity is quantized in units of e2/h; i.e., a quantum
anomalous Hall effect occurs [29]. The system becomes a
Chern insulator.

B. In-plane rotation of the magnetic texture

A noncollinear coplanar magnetic texture does not always
lead to the emergence of an anomalous Hall effect. When the
magnetic moments {mi} are collectively rotated around the lo-
cal z axis by �� = 90◦, the alternative phase of materials like
Mn3Pt is established. This system has three mirror symmetry
planes [red in Fig. 1(c)] which protect the Dirac points and
render the anomalous Hall effect zero, even upon considering
spin-orbit coupling.

In Ref. [26] Zhou et al. have investigated the anomalous
Hall conductivity for phases between these two states. We
find similar results and conclude the following: For Fermi
energies that are close to the band edges [red and blue curves
in Fig. 2(d)], the signal is proportional to cos(��), where ��

is the in-plane rotation angle (�� = 0◦, 180◦ corresponds to
the radial phase and �� = ±90◦ corresponds to the toroidal
phase). This observation is reasonable, since the projection
of each moment on the potential mirror plane breaks the
mirror symmetry; it is given by cos(��) as well. Loosely
speaking, the broken mirror symmetry does not only allow for
the anomalous Hall effect to arise, but the “degree by which
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FIG. 3. Anomalous Hall conductivity under out-of-plane tilting of the fixed magnetic texture. In (a)–(e) spin-orbit coupling (SOC) has
not been considered, whereas in (f)–(j) it is taken into account. (a) A noncollinear and noncoplanar configuration. Black arrows indicate the
magnetic moments mi. (b) Hall conductivity versus azimuthal angle θ . All four curves (different colors correspond to different Fermi energies)
are antisymmetric with respect to θ = 90◦ which is the coplanar configuration as indicated by the cartoons below. (c)–(e) Band structures
with out-of-plane components of the spin expectation value (red, positive; blue, negative) for different azimuthal angles θ as indicated. (f) The
texture from (a) in black. Additionally, the virtual magnetic texture {m̃i} is shown in red. This texture arises due to the spin-orbit coupling, as
explained in the main text, and it is characterized by a reduced azimuthal angle θ − �θc. (g) Same as (b), but spin-orbit interaction is taken
into account. Here the curves are antisymmetric with respect to θc = 90◦ + �θc ≈ 103◦. (h)–(j) Same as (c)–(e), but spin-orbit interaction was
considered as in panel (g).

the symmetry is broken” even determines the magnitude of the
effect. Furthermore, this projection also determines the size
of the band gaps due to spin-orbit coupling. For the toroidal
phase (�� = ±90◦), the band structure is unaffected by the
spin-orbit coupling (band structures are shown in Fig. 3 of the
Supplemental Material [27]).

The cos(��) behavior does not hold for Fermi energies
close to the band edge, let alone in the band gap: the black
curve in Fig. 2(d) is not perfectly cosinusoidal and the green
curve at EF = 1.8t is a step function, since the corresponding
Fermi energy is located in a band gap (an opened Dirac point
for �� �= ±90◦) and the Hall conductivity must be quantized.

Summarizing up to this point, we have presented how
the anomalous Hall conductivity for noncollinear coplanar
magnetic textures can be related to the breaking of M and TM
symmetries, which is where the limit of the existing literature
is reached. In the following, we will unravel the underlying
microscopic mechanism.

C. Out-of-plane spin tilting of the conduction electrons

First, we consider a quantity that allows us to explain the
emergence of the anomalous Hall effect in coplanar systems

microscopically: a tilted spin texture formed by the conduc-
tion electrons.

As mentioned, without spin-orbit interaction, the conduc-
tion electrons’ spins remain in the plane, partially aligned
with the fixed magnetic texture [cf. completely gray bands
in Fig. 2(a)]. When the spin-orbit interaction is taken into
account in the toroidal phase, this is unchanged and the
Hall conductivity stays zero (cf. Fig. 3 of the Supplemental
Material [27]). However, in the radial phase, the spins start
to cant out of the plane [red and blue in Fig. 2(b)]. This
canting is k and band dependent, and general trends can be
observed: For the first (energetically lowest) and fourth band,
the tilting is along the −z direction, while for the third and
sixth (energetically highest) band it is along the +z direction.
This relates quite well to the anomalous Hall signal shown in
Fig. 2(c): Within the first and fourth band, the conductivity is
negative (or close to zero if positive) and within the third and
sixth band it is positive. For energies within the second or fifth
band, where the out-of-plane spin component is positive and
negative, the anomalous conductivity changes sign.

Even though we have not yet explained what causes the
tilting, one can register that the spin moment of the conduction
electrons is nonzero in this model, even though the fixed
magnetic texture is coplanar. For this reason, one may argue
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that it is clear that a finite Hall conductivity is calculated by
conventional means: the total texture has a net magnetization
and even a net scalar spin chirality χs = si · (s j × sk ) which
give rise to an anomalous and topological Hall effect, respec-
tively.

While this explanation seems reasonable a first glance,
in the following, we vary the azimuthal angle of the fixed
magnetic texture and find that there exist cases for which this
explanation does not hold: Even for a combined texture with a
net moment and a net scalar spin chirality the Hall effect can
be absent and for a completely compensated system the Hall
effect can be finite. Therefore, next we analyze the system on
the Hamiltonian level to unravel the microscopic mechanism
and to show how the TM symmetry is broken precisely and
how it can even be restored for certain noncoplanar magnetic
textures.

D. Out-of-plane rotation of the magnetic texture

In the following, we tilt the fixed texture out of the kagome
plane (azimuthal angle θ ) which, in the end, allows us to es-
tablish the actual microscopic explanation for the emergence
of the anomalous Hall effect in kagome magnets: the existence
of a virtual texture {m̃i} that is tilted with respect to the actual
magnetic texture {mi} due to the spin-orbit coupling.

First we present and discuss the results upon changing θ

without taking spin-orbit interaction into account [Fig. 3(b)].
This reference system exhibits a pure topological Hall effect
since the anomalous Hall effect is absent by definition. For
θ = 0◦ and 180◦, the localized moments are parallel and
point out of the kagome plane. For θ = 90◦ the moments
are coplanar as described above. In both cases the scalar
spin chirality vanishes and a topological Hall effect does not
emerge. For all other angles the scalar spin chirality

χs = mi · (m j × mk ) = 3
√

3

2
cos θ sin2 θ (5)

(i, j, and k are the lattice sites of a kagome plaquette) is finite
and so is the calculated Hall conductivity (except for single
angles where contributions from different bands compensate).
For all energies, the angular-dependent curves are antisym-
metric with respect to θ = 90◦, due to the antisymmetry of
the scalar spin chirality. While continuously changing the
azimuthal angle θ , the band structure changes considerably.
For this reason, a fixed energy may even shift through band
gaps into other bands as is seen in the blue curve for EF =
1.8t . When the Fermi energy is located in the gap, the Hall
conductivity is quantized. We repeated these calculations also
for fixed occupation numbers (see Fig. 4 of the Supplemental
Material [27]). The curves remained antisymmetric.

When we consider the spin-orbit interaction [cf. Fig. 3(g)],
the curves change and the configurations θ = 0◦, 90◦, and
180◦ now yield a finite signal in agreement with the above
presented findings that the radial type of the coplanar con-
figuration (θ = 90◦) exhibits an anomalous Hall effect and
compatible with the typical observation that a collinear fer-
romagnet (θ = 0◦, 180◦) exhibits an anomalous Hall effect
when spin-orbit interaction is present. Generally, the shape of
this angular-dependent curve looks similar to the case without
spin-orbit coupling. However, besides minor changes near the

ferromagnetic configurations, it is mainly shifted. The curve
is still antisymmetric, not with respect to θ = 90◦, but shifted
by about �θc = 13◦ to an azimuthal angle θc = 103◦. This
critical angle is parameter dependent, and we will precisely
derive it later in this paper.

The systems for the two angles θ = 13◦ and θ = 103◦ are
special in several regards: the Hall conductivity vanishes, the
Dirac points are reestablished, and the reciprocal-space spin
texture is homogeneous, (anti)parallel to the fixed texture [ho-
mogeneous light colors in Fig. 3(h) and homogeneous bright
colors in Fig. 3(i)]. For all other configurations, even for the
coplanar texture (θ = 90◦) or the ferromagnetic configuration
(θ = 0◦, 180◦) [Fig. 3(j)], none of these three features are
fulfilled.

E. Microscopic mechanism: Tilted virtual texture hidden in the
Hamiltonian

These findings point toward a higher symmetry for the
two special configurations characterized by θ = �θc and θ =
θc = �θc + 90◦, even though the texture itself does not have
a higher symmetry than the other textures (they have an even
lower symmetry compared to the coplanar or ferromagnetic
configuration).

As we show, this stems from the fact that the electronic
properties of the system are not determined by the fixed
texture, the conduction electrons’ spin texture, or a combined
texture, but by a virtual texture characterized by the Hamil-
tonian. This virtual texture {m̃i} arises, since the spin-orbit
coupling in this system is equivalent to a canting of the fixed
magnetic texture {mi} out of the kagome plane [cf. red and
black arrows in Figs. 3(a) and 3(f)], as we summarize in the
following. The transformation is shown in the Appendix in
detail.

The full Hamiltonian (1) used throughout this paper can be
transformed to

H =
∑
〈i, j〉

t eff
i j d†

i d j + m
∑

i

d†
i (m̃i · σ )di

+ iλ̃
∑
〈i, j〉

d†
i (ni j · σ )d j, (6)

by applying a unitary transformation Ui (new electron opera-
tors are di), that rotates the coordinate system at each lattice
site. The new z axis of the coordinate system at lattice site i
has an angle α with respect to the initial z axis and has been
tilted along the direction of the magnetic moment mi. A sketch
of this rotation is shown in Fig. 6 as part of the Appendix.

This transformation, of course, leaves the physical prop-
erties unchanged but the spin and the magnetic moments are
measured differently. In this lattice-site dependent coordinate
system, the azimuthal angle of the fixed magnetic texture is
effectively decreased by α,

m̃i =
⎛
⎝cos(�i ) sin(θ − α)

sin(�i ) sin(θ − α)
cos(θ − α)

⎞
⎠. (7)

When the transformation is applied to the hopping term and
the spin-orbit coupling, the (now spin-dependent) hopping
amplitude is modified as given in the Appendix but most
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FIG. 4. Different contributions to the Hall effect for different magnetic textures. (a) The Hall conductivity for a collinear magnetic texture
is shown under variation of the azimuthal angle θ . Only a conventional anomalous Hall effect proportional to mz of the fixed magnetic texture
is present when spin-orbit interaction is considered. (b) The toroidal texture is considered. Upon variation of θ the scalar spin chirality χs is
finite and an additional topological Hall effect arises that is much larger than the anomalous Hall effect. (c) The radial texture is considered, as
discussed above. The curve from the toroidal texture is mainly shifted by �θc = 13◦ which characterizes the nature of the “new” anomalous
Hall effect in this material class. All calculations were performed at a constant occupation number of nocc = 3.4.

importantly both terms now contribute with off-diagonal
elements that can be identified as an effective spin-orbit
coupling. For the radial phase it is quantified by

λ̃ = −
√

3

2
sin(α)t + cos(α)λ. (8)

This transformation shows that the spin-orbit interaction
and a texture that is tilted out of the kagome plane have
the same effect in this system. Especially, a critical angle αc

exists, for which the effective spin-orbit coupling is compen-
sated, λ̃ = 0. This angle determines the effective tilting angle
−�θc of the virtual texture {m̃i} compared to the fixed texture
{mi} [cf. Fig. 3(f)] that arises due to spin-orbit coupling. For
the phase with positive vector spin chirality, κ = +1, the
critical compensation angle of the magnetic texture for which
the virtually tilted texture is coplanar is

�θc = αc = arctan

[
λ

t
√

3/2
cos(��)

]
; (9)

see the Appendix. The λ and �� dependencies have been
confirmed numerically in Fig. 5 of the Supplemental Material
[27]. The numerically determined data points have been de-
termined by looking at the avoided crossings that form Dirac
points at the critical angle. Furthermore, the Hall conductivity
vanishes for all energies at these angles.

In summary, we have shown that the spin-orbit coupling
term can be totally compensated by tilting the texture by
�θc along the azimuthal direction (and also modifying the
hopping). This means that the consequences of the spin-orbit
coupling and a tilted texture are equivalent in this system: A
fixed texture {mi} that is coplanar, θ = 90◦, under the influ-
ence of spin-orbit coupling, λ �= 0, behaves like a tilted texture
{m̃i} in a system without spin-orbit coupling, λ̃ = 0, thereby
explaining the emergence of the anomalous Hall effect in
the coplanar system. Likewise, a texture {mi} with a critical
azimuthal angle θc = 90◦ + �θc with spin-orbit coupling,
λ �= 0, behaves like a texture {m̃i} that is coplanar, θ = 90◦, in

a system without spin-orbit coupling, λ̃ = 0, explaining why
the Hall conductivity vanishes for θ = 103◦ in Fig. 3(g). In a
similar way, this explains why the configuration characterized
by θ = 13◦ in Fig. 3(i) behaves like a ferromagnetic configu-
ration, while the actual ferromagnetic configuration does not:
The azimuthal angle of the virtual textures is reduced by 13◦.

The two special configurations for θ = �θc = 13◦ and
θ = θc = �θc + 90◦ = 103◦ restore the TM symmetry of the
Hamiltonian that we initially discussed in the coplanar sys-
tem without spin-orbit coupling. This symmetry leads to the
closing of Dirac points and to the absence of the Hall conduc-
tivity for these particular configurations since it renders the
reciprocal-space Berry curvature antisymmetric �(z)

n (−k) =
−�(z)

n (k). On the other hand, for a coplanar fixed magnetic
texture (θ = 90◦) the virtual texture is tilted by −�θc. This
virtual texture has a net magnetization and a scalar spin
chirality and therefore gives rise to anomalous and topological
Hall effects which are allowed by the breaking of the TM
symmetry.

F. Effective topological Hall effect

Next, we want to show which mechanism of the virtually
tilted texture is more relevant: a virtual anomalous Hall effect
caused by the net moment of the virtual texture or a virtual
topological Hall effect caused by the scalar spin chirality of
the virtual texture.

To differentiate the calculated signal into anomalous and
topological Hall effects, in the following, we compare the
θ dependence of the Hall conductivity of the radial-type
magnetic texture with the toroidal phase and a collinear
phase, as presented in Fig. 4. Without spin-orbit coupling, the
toroidal spin texture behaves equally to the radial-type texture,
since both exhibit a purely topological Hall effect, that is
proportional to the scalar spin chirality, which is independent
of �� [given in Eq. (5)]. The collinear configuration does not
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FIG. 5. Results for the phase of negative vector spin chirality, κ = −1 and �� = 180◦. This is the texture that has been experimentally
investigated in Mn3Ge [17]. (a)–(e) show the results without spin-orbit coupling. (a) The band structure, (b) the energy-resolved conductivity
for the coplanar (θ = 90◦) texture, (c) the Hall conductivity for different constant Fermi energies [colors as indicated in (a), (b)] in dependence
on the azimuthal angle θ . (d) shows a magnification of (c) near θ = 90◦. (e) The spin texture of the energetically lowest band for θ = 90◦.
(f)–(j) show the same quantities when the spin-orbit interaction λ = 0.2t is taken into account. Similarly to the result of the radial phase (as
extensively presented in the paper), the virtual texture {m̃i}, determined by the Hamiltonian, is tilted due to the spin-orbit coupling. This also
affects the reciprocal-space spin texture shown in (j).

exhibit a finite signal since the scalar spin chirality is always
zero.

When spin-orbit coupling is taken into account, the anoma-
lous Hall effect is also present. Conventionally, it is pro-
portional to the out-of-plane magnetization cos θ which is
observable for the collinear configuration in panel (a), that
exhibits a pure anomalous Hall effect. For the toroidal texture
(b) the signal is symmetric with respect to θ = 90◦. The topo-
logical Hall effect and the (considerably smaller) anomalous
Hall effect are present. In panel (c) the radial configuration is
shown as discussed above. In addition to these two effects, a
shift in θ is observable which characterizes the nature of this
“new” effect as explained above.

Since the topological Hall effect in these calculations is
significantly larger than the anomalous Hall effect (largest for
θ = 0◦, 180◦), the “new” contribution to the Hall effect in
kagome magnets can be understood mainly as a topological
Hall effect caused by a virtually tilted texture.

G. Phase of negative vector spin chirality

Coming back to the experiments in Mn3Sn [16] and
Mn3Ge [17] where this “new” anomalous Hall effect has been
measured recently, we have also investigated the phase of
negative vector spin chirality, κ = −1. The results are shown
in Fig. 5. In these materials the calculated Hall conductivity is
smaller compared to the phase of positive chirality but it is still
considerable. The general statements from above hold also in
this system: For a coplanar configuration, the spin expectation
value is tilted out of the plane [cf. Fig. 5(j)] which can be
related to the emergence of the Hall effect [cf. Fig. 5(g)].
Also, there exists a tilted virtual texture {mi} that determines
the transport properties and a critical compensation angle θc

which is smaller here compared to the κ = +1 system [θc ≈
90.15◦ for λ = 0.2t as visible in Fig. 5(i)].

H. Comparison to the literature and validity of the model

Before we conclude, we want to discuss a few details
that are important to realize in order to understand that our
established mechanism is indeed the origin of the anomalous
Hall effect in kagome magnets.

In the introduction we have mentioned several publications
that report an anomalous Hall effect in kagome systems theo-
retically and experimentally. While these systems are mostly
considered to be coplanar, actually, a small out-of-plane mo-
ment is calculated [14,30] or measured [16,17] (more than two
orders of magnitude smaller than the actual magnetic moment
of Mn). However, in these publications it is argued correctly
that this moment is too small to explain the emergence of the
calculated and measured anomalous Hall effect. In one of the
first-principles calculations in Ref. [14] the system has even
been artificially fixed in the perfectly coplanar configuration.
As a consequence, the Hall conductivity only changed from
σxy = 218 �−1 cm−1 to σxy = 217 �−1 cm−1 and not to zero
which rules out the possibility to explain the Hall effect by
means of an anomalous or topological Hall effect based on
the actual magnetic texture. This means that an alternative
mechanism must be present, which we have revealed in our
paper.

In the study by Chen et al. [14] also a first investigation of
the influence of an out-of-plane tilting of the texture on the
Hall effect has been given by means of first-principles calcu-
lations. While they only calculated a few angles, it seems like
the anomalous Hall effect is zero for several configurations. It
would be interesting to have a more detailed curve and also the
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energy dependence to compare it to our results. The existence
of several zeros could be attributed to a (random) compen-
sation of the electron and hole carrier densities but could
also stem from the existence of carriers of different orbital
character. In this case, the hopping amplitude t would differ
between the carriers and electrons with different orbital char-
acter would experience different virtual tilting angles. This
would imply that different locations of the Fermi energy (e.g.,
changed via doping or gating) would result in different virtual
textures since the ratio of the carrier densities of electrons
with different orbital characters changes. Furthermore, if the
hopping amplitudes have different signs, even a compensation
of the virtual tilting can occur resulting in additional zeros in
the Hall conductivity. In the present model (as established in
Refs. [14,18,26,28]) only a subspace of the total Hamiltonian
is considered, which is why the virtual tilting angle is indepen-
dent of the Fermi energy and only two zero transitions at �θc

and θc = 90◦ + �θc occur.
Finally, we want to address an apparent invalidity of the

model considered in Refs. [14,18,26,28]. This model (that
we also consider in the present paper for θ = 90◦) aims
at discussing the anomalous Hall effect upon considering a
coplanar magnetic texture. However, if we recall the results
from the coplanar radial fixed magnetic texture (Fig. 2), we
have found that while the fixed magnetic texture {mi} exhibits
no net moment, the reciprocal-space spin texture 〈s(k)〉 of
the conduction electrons does. This would mean that the total
magnetic moment is finite and that a magnetization would be
measured. This puts the purpose of the considered model in
these publications in question: The aim of these publications
was to show that an anomalous Hall effect emerges in a
compensated system. However, for θ = 90◦, this tight-binding
model does not actually consider a vanishing net magnetiza-
tion (taking into account both the fixed magnetic texture and
the k-dependent conduction electron spin texture) which is
why the results of these publications do not actually serve their
purpose, since one could argue that the finite Hall conductivity
is not surprising even by conventional means.

However, as we show, for every tilted configuration, except
for θ = θc, the Hall signal is nonzero which means that one
can construct configurations for which the net moment of
the fixed texture is compensated by the spin texture and still
the Hall response is finite. In other words, a tweaked version
of the model can sufficiently describe the completely com-
pensated situation in which the net magnetization is absent.
The fixed texture has to be considered with a small out-
of-plane component θ �= 90◦ but different from the critical
angle θ �= θc.

IV. CONCLUSION

In summary, we have revealed microscopically how
the anomalous Hall effect arises in kagome magnets like
Mn3X (N). The Hamiltonian describes a virtual texture that
determines the Hall conductivity instead of the actually mea-
surable texture. For the coplanar radial-type arrangement, this
texture is tilted out-of-plane due to the spin-orbit coupling.
The virtual texture is characterized by a net moment and a
net scalar spin chirality which give rise to a “virtual” anoma-
lous and a “virtual” topological Hall effect, respectively. Our

explanation is in agreement with the recent experimental
findings in Mn3Sn [16] and Mn3Ge [17].

Our results go beyond conventional symmetry analyses and
show precisely if and how certain symmetries are broken by
the texture and the spin-orbit coupling. Especially insightful
is our result for a noncoplanar system characterized by the
critical azimuthal angle θ = θc [Fig. 3(f)]. The virtual tilting
due to the spin-orbit coupling leads to a coplanar virtual
texture. Consequently, the Hall signal is absent for this critical
configuration. While a magnetic point group analysis would
tell that the Hall signal is allowed, our established micro-
scopic mechanism allows us to understand the absence due
to a preserved TM symmetry of the virtual texture and the
Hamiltonian of the here considered model.

As discussed, our model considers only a single orbital per
lattice site, while the full system is characterized by electrons
with different orbital character. In this case, due to the differ-
ent hopping amplitudes [cf. Eq. (9)], different carriers cause
different tilting angles of the (now orbital-dependent) virtual
texture, which even allows for a compensation. This may
explain why in kagome materials with a positive vector spin
chirality (like Mn3Rh, Mn3Ir, Mn3Pt) no such Hall effect has
been measured yet, even though it is allowed by conventional
symmetry analyses and was predicted more than 6 years ago.
Tuning the Fermi energy by gating or doping can change the
ratio of different carriers and may allow us to tune the Hall
effect in these materials.
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APPENDIX: TRANSFORMATION: EQUIVALENCE OF
SPIN-ORBIT COUPLING AND A TILTED MAGNETIC

TEXTURE

In the main text we have claimed that the spin-orbit cou-
pling term behaves like a virtual tilting of the magnetic texture
out of the kagome plane. In the following we derive this
equivalence explicitly.

We start from the full Hamiltonian that includes hopping,
Hund’s coupling, and spin-orbit coupling terms. Now we
apply a transformation

U †
i =

(
cos

(
α
2

)
sin

(
α
2

)
e−i�i

− sin
(

α
2

)
ei�i cos

(
α
2

)
)

(A1)

that is unitary,

U †
i Ui = 1. (A2)

This transformation reorients the coordinate system for the
magnetic moments of the fixed texture at every lattice site.
Instead of aligning the z axis with the local moment, as has
been done in Refs. [31–33], we tilt the z axis (now labeled
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FIG. 6. Local rotation of the coordinate system as unitary trans-
formation. The dashed coordinate system at each lattice cite i, j, k
is rotated about the same angle α in the plane spanned by z and
the local magnetic moment mi, m j, mk , respectively. The z axes of
the reoriented, site-dependent coordinate systems are visualized by
the solid arrows z̃i, z̃ j, z̃k . In these coordinate systems the magnetic
moments are characterized by a different azimuthal angle θ − α; i.e.,
the texture is virtually tilted.

z̃) by an angle α toward the magnetic moment, as shown in
Fig. 6,

z̃i = (cos �i sin α, sin �i sin α, cos α)T. (A3)

Here �i is the polar angle of the fixed moment mi at site i.
The electron operator ci is transformed to the new operator

di as

ci = Uidi. (A4)

First, we analyze how the Hund’s coupling term transforms,

c†
i (mi · σ)ci = d†

i U †
i (mi · σ)Uidi, (A5)

U †
i (mi · σ )Ui =

(
cos(θ − α) sin(θ − α)e−i�i

sin(θ − α)ei�i − cos(θ − α)

)
. (A6)

As expected by geometric considerations, the azimuthal angle
of the magnetic moment in this new coordinate system is
decreased by α and the polar angle remains the same. Due
to the application of the transformation, the spin is measured
differently; the magnetic texture effectively acts as a new
texture {m̃i}:

c†
i (mi · σ)ci = d†

i (m̃i · σ )di, (A7)

m̃i =
⎛
⎝cos(�i ) sin(θ − α)

sin(�i ) sin(θ − α)
cos(θ − α)

⎞
⎠. (A8)

Of course, the unitary transformation has to be applied also
to the other two terms to leave the physics of the system
unchanged. Therefore, the effect of this new, tilted texture
has to be compensated by the other terms in the Hamiltonian.
Next, we transform the hopping term:

t c†
i c j = t d†

i U †
i Ujd j = t U †

i Uj d†
i d j, (A9)

U †
i Uj =

(
cos2

(
α
2

) + sin2
(

α
2

)
e−i(�i−� j ) 1

2 sin (α)
(
e−i�i − e−i� j

)
− 1

2 sin (α)
(
ei�i − ei� j

)
cos2

(
α
2

) + sin2
(

α
2

)
ei(�i−� j )

)
. (A10)

The diagonal terms describe a hopping with a scaled hopping
amplitude t eff

i j . This hopping has a complex phase which is
opposite for spin-up and spin-down (in this basis) electrons.
For a small α, the effective hopping converges to t .

The off-diagonal terms have the shape of the spin-orbit
coupling. For the radial texture they can be simplified to

−i

√
3

2
sin(α)ni j · σ. (A11)

Lastly, we transform the original spin-orbit coupling term.
Again, the result is a matrix with effective hooping terms on
the diagonal and effective spin-orbit coupling terms on the
off-diagonal:

c†
i (	ni j · 	σ )c j = d†

i U †
i (	ni j · 	σ )Ujd j (A12)

U †
i (ni j · σ )Uj = cos(α)ni j · σ + sin(α)

×
(

e−i 1
2 (�i−� j ) 0

0 −ei 1
2 (�i−� j )

)
. (A13)

Summarizing the transformation, the Hamiltonian

H = t
∑
〈i, j〉

c†
i c j + m

∑
i

c†
i (mi · σ)ci

+ iλ
∑
〈i, j〉

c†
i (ni j · σ)c j (A14)

has been transformed to

H =
∑
〈i, j〉

t eff
i j d†

i d j + m
∑

i

d†
i (m̃i · σ )di

+ iλ̃
∑
〈i, j〉

d†
i (ni j · σ )d j, (A15)

with

t eff↑↓
i j = t

[
cos2

(α

2

)
+ sin2

(α

2

)
e∓i(�i−� j )

]
±iλ e∓i 1

2 (�i−� j ) sin(α), (A16)

λ̃ = −
√

3

2
sin(α)t + cos(α)λ, (A17)
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m̃i =
⎛
⎝cos(�i ) sin(θ − α)

sin(�i) sin(θ − α)
cos(θ − α)

⎞
⎠. (A18)

This means that a tilting of the texture is equivalent to the
emergence of an effective spin-orbit coupling and a modified
hopping amplitude, and vice versa. At a critical tilting angle
αc the spin-orbit coupling is compensated,

0
!= λ̃ = −

√
3

2
sin(αc)t + cos(αc)λ. (A19)

This means that gauging away the spin-orbit coupling is
equivalent to tilting the virtual texture by −αc. Therefore, a
critical angle �θc = +αc of the actual texture compensates
this tilt and leads to a coplanar virtual texture that does not
exhibit a Hall effect,

�θc = αc = arctan
λ

t
√

3/2
. (A20)

For a general κ = +1 configuration, the angle is given by

�θc = αc = arctan

[
λ

t
√

3/2
cos(��)

]
. (A21)
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4.2 Sources of the spin Hall effect in noncollinear kagome magnets

Spin Hall effect in systems without spin-orbit coupling. The generation of transverse spin
currents as response to an applied electric field is called spin Hall effect (SHE). For a long time,
it has been believed that the effect relies on spin-orbit coupling (SOC) which deflects spin ↑ and
↓ electrons in opposite directions. Consequently, in a nonmagnetic material, an equal number
of ↑ and ↓ electrons results in a vanishing charge current, and a pure spin current (two-current
model). In contrast, an imbalance of ↑ and ↓ electrons leads to spin-polarized currents, where
spin and charge is transported. This scenario is present in a ferromagnet (FM) which exhibits an
AHE and a SHE.

Recently, it has been shown that the SHE can be generated in systems with a noncoplanar
magnetic texture even without SOC [134, 135]. And shortly after, the SHE has been predicted in
the coplanar noncollinear kagome antiferromagnets [15] that also show a large AHE [cf. Sec. 4.1].
However, in contrast to the AHE, which requires SOC in these kagome magnets, the SHE may
still emerge even in the absence of SOC [17] due to a non-vanishing spin Berry curvature [cf.
Eq. (2.75)].

The SHE without SOC in the coplanar noncollinear magnetic texture has been predicted mainly
based on symmetry arguments: a combination of time-reversal symmetry with a spin rotation
by 180 ◦ renders the AHE zero while the SHE is allowed. However, a symmetry analysis does
not allow to predict the magnitude of spin Hall signal, quantitatively. The later is the spin Hall
conductivity σzxy which relates the spin current jkS,x with the applied electric field Ey.

This publication. In the following publication “Spin Hall effect in noncollinear kagome antifer-
romagnets” [OB2], two sources of the intrinsic spin Hall signal for various noncollinear kagome
magnets are revealed.

We go beyond a conventional symmetry analysis and relate the results to findings reported in
the previous publication [OB1], in which the origin of the AHE in these materials was established.
In doing so, it is demonstrated that the noncollinear magnetic texture gives rise to the main con-
tribution to the SHE. This mechanism is not affected if all magnetic moments are rotated within
the kagome plane by the same angle, and exists without SOC. Thus, a pure spin current (without
charge transport) is generated since the SHE is nonzero, while the AHE is absent without SOC.

The second contribution mainly reduces the spin Hall signal and originates from SOC or tilting
of the magnetic moments out of the kagome plane, which are equivalent in this model [OB1].
In this scenario, the kagome magnets exhibit an AHE, that we identified as an effective THE, in
addition to the SHE. Consequently, spin and charge are transported in form of spin-polarized
currents, which effectively reduces the spin Hall signal. We show in detail that the reduction of
the spin Hall conductivity is roughly proportional to the product of the anomalous Hall conduc-
tivity and an out-of-plane magnetization density; this product vanishes without SOC.

The findings allow to find analogies between noncollinear kagome magnets and collinear an-
tiferromagnets and ferromagnets, which are relevant for spintronic applications. Pure spin cur-
rents can be generated in noncollinear kagome magnets without SOC similar to the situation in
a collinear antiferromagnet, whereas spin-polarized currents flow like in collinear ferromagnets
if SOC is not negligible (cf. Fig. 1 in [OB2]).

The following publication: Reprinted (whole article) with permission from O. Busch, B. Göbel and I.
Mertig, Physical Review B 104, 184423 (2021); Ref. [OB2]; Spin Hall effect in noncollinear kagome antifer-
romagnets. Copyright (2021) by the American Physical Society.
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The spin Hall effect is commonly considered to be related to spin-orbit interaction that causes a deflection of
charge carriers according to their spin orientation into opposite directions. Thus, this effect creates spin currents
in nonmagnetic materials with spin-orbit coupling. However, recently large spin Hall effects were predicted in
coplanar kagome antiferromagnets Mn3X even when spin-orbit interaction is not considered. Therefore, these
materials are interesting candidates for spintronic applications. In our theoretical study we reveal two sources
that determine the intrinsic spin Hall signal of two-dimensional kagome antiferromagnets. The main contribution
to the spin Hall signal is originating from the noncollinear magnetic texture localized on the Mn sites and it is
maximal for coplanar systems. In addition to that, spin-orbit coupling or an out-of-plane tilting of the magnetic
moments, which are equivalent within the framework of this model, reduce the spin Hall effect effectively.

DOI: 10.1103/PhysRevB.104.184423

I. INTRODUCTION

Conventionally only the charge of electrons is used in
electronic devices like transistors, displays, or solar panels
[1]. However, in the emerging field of spintronics [2,3] the
spin degree of freedom of the electrons is as well exploited
[4,5]. Therefore, the investigation of materials, with regard
to manipulation and control of spin and generation of spin
currents, is mandatory for the development of new low-power
consumption applications [6,7]. Besides, spin-based electron-
ics can build on a wide range of different materials like metals
[8], semiconductors [9–12], or superconductors [13] that have
all been taken into account for application in spintronics de-
vices for the last decades.

Spin currents are generated in metals by the spin Hall
effect as a transverse response to a longitudinal electrical field
[8,14,15]. In experiments, this effect can be quantified by a
transverse accumulation of spin density with opposite sign
at the edges that can be measured directly via the magneto-
optical Kerr effect (MOKE) [16]. Alternatively, the spin Hall
effect can be quantified by a spin Hall conductivity which
is measured indirectly by exploiting the inverse spin Hall
effect where the spin current is converted back into a trans-
verse charge current [17]. A propagation of such spin currents
across a metal/ferromagnet interface allows for magnetization
switching via spin-orbit torque [18]. The same scenario holds
for collinear antiferromagnets [cf. Fig. 1(a)]. Spin-polarized
currents typically occur in ferromagnetic materials. Longi-
tudinal spin-polarized currents are for example responsible
for effects like the giant magnetoresistance and spin-transfer
torque [19,20] which are utilized in magnetic RAMs [21].
Transversal spin-polarized currents are related to the anoma-
lous Hall effect [cf. Fig. 1(b)].

*Corresponding author: oliver.busch@physik.uni-halle.de

Recently, materials with antiferromagnetic order gained
attention. Although the observation and manipulation of anti-
ferromagnetic textures and domains is much more challenging
in experiments and applications [22,23], they show interesting
properties like a strong robustness against external magnetic
fields and the absence of magnetic stray fields [5]. Moreover,
they allow for ultrafast spin dynamics and magnetotransport
phenomena [24,25].

A special type of antiferromagnets is considered in this
work: noncollinear magnetic textures on a two-dimensional
kagome lattice. This structure can be found in some man-
ganese compounds Mn3X (X = Rh, Ir, Pt, Ga, Ge, Sn) that are
constituted by layered kagome planes [26] where the magnetic
moments of the Mn atoms form a noncollinear antiferromag-
netic texture. These materials have been the subject of many
recent theoretical and experimental studies about the anoma-
lous and the spin Hall effect, where spin-orbit interaction
plays an important role.

The anomalous Hall effect has been predicted [26–28] in
these noncollinear kagome magnets and confirmed in experi-
ments with Mn3Sn [29] and Mn3Ge [30,31]. Besides, Zhang
et al. showed that in such compensated systems large spin Hall
effects may occur as well [26], and most interestingly, even
when spin-orbit coupling is not considered. Time-reversal
symmetry T is broken in magnetic systems, whereas a com-
bination of T with a spin rotation S by 180◦ around the axis
perpendicular to the kagome plane can still be a symmetry.
This T S symmetry forbids the existence of the anomalous
Hall effect in a noncollinear coplanar magnetic texture but the
spin Hall effect can exist, even without spin-orbit interaction
[32].

The symmetry analysis is a powerful tool, however, it
does not allow for a quantitative prediction of the size of
the effect. There are cases where the magnetic space group
of a crystalline material would allow for the existence of an
anomalous Hall effect [32,33], but the effect can be absent,
as was shown before in Ref. [34]. There we established a
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FIG. 1. Overview of spin currents and spin-polarized currents in different magnetic systems. Green arrows represent the magnetic texture
{mi} [of the Mn atoms in (c) and (d)]. The thick red arrows indicate the electric field E along y. The electrons participating in transport are
distinguished according to their spin orientation in z direction (blue: ↑, orange: ↓). The small spheres represent the charge of the electrons.
(a) Collinear antiferromagnet (AFM) with spin-orbit coupling (SOC): pure transverse spin current js (yellow arrow) since electrons with
different spin accumulate at opposite sites of the sample and no charge current jc can be measured. (b) Collinear ferromagnet (FM) with SOC
where not only spin but also charge is transported (thin red arrow), resulting in a spin-polarized charge current. (c) Noncollinear AFM without
SOC: In contrast to the situation in (a), spin currents (yellow arrow) may exist even without spin-orbit interaction. (d) Same as (c) but with
SOC that gives rise to an anomalous Hall effect in addition. Therefore, charge currents may flow in addition in analogy to the situation in (b).

microscopic picture that allows us to interpret the anoma-
lous Hall effect in Mn3X systems as an effective topological
Hall effect: spin-orbit interaction induces a virtual tilting of
the magnetic moments out of the kagome plane. Thus, the
opening angle of this virtual noncoplanar texture generates
an effective topological Hall effect due to a net scalar spin
chirality, whereas the magnetic background texture formed by
the magnetic moments of the Mn atoms remains coplanar.

In this work we are investigating the spin Hall effect
[8,14,15] in the same model system and relate the findings
to our previous results of the anomalous Hall effect and the
virtual magnetic texture. We find that the spin Hall signal is
determined by two different mechanisms. First, a large spin
Hall effect emerges from the coplanar magnetic background
texture itself that is independent of the in-plane rotation of
the magnetic moments. In addition to that, spin-orbit coupling
or an out-of-plane tilting of the magnetic moments, which is
equivalent within this model, is related to a spin-polarized cur-
rent that reduces the spin Hall signal of the background texture
effectively. This allows us to distinguish pure spin currents,
where only spin is transported by the electrons, and spin-
polarized currents, where spin and charge are transported,
as a transverse response to an applied electric field in those
systems.

Hence, we find analogies between noncollinear kagome
magnets and collinear (anti-)ferromagnets as illustrated in
Fig. 1. Without spin-orbit interaction a pure spin current is
flowing in coplanar kagome magnets [cf. Fig. 1(c)] like in
a collinear antiferromagnet [cf. Fig. 1(a)]. Taking spin-orbit
coupling into account causes additionally a spin-polarized
current that is related to an anomalous Hall effect which
reduces the spin Hall conductivity [cf. Fig. 1(d)]. The spin-
polarized current is similar to the situation in a collinear
ferromagnet [cf. Fig. 1(b)].

Although we stress the analogy of collinear antiferromag-
nets and noncollinear kagome antiferromagnets with respect
to the generation of spin currents, there is a pronounced
difference. Collinear bipartite antiferromagnets [35] show an
analogy of Kramer’s theorem since the time-reversal op-
eration T in combination with a translation between the
sublattices Td are a symmetry in the system. Consequently, the

bands are doubly degenerate and the corresponding eigenvec-
tors can be classified into “spin-up” and “spin-down” states
[cf. blue and orange small spheres in Fig. 1(a)]. There is no
symmetry in kagome antiferromagnets that fulfills Kramer’s
theorem: the bands are not doubly degenerate [27]. However,
the corresponding eigenvectors consist of equal contributions
of spin-up and spin-down with respect to the quantization axis
perpendicular to the kagome plane, which is illustrated by the
two-colored small spheres in Fig. 1(c). Hence, each eigenstate
generates a pure spin current on its own. Spin-orbit coupling
is changing the equal distribution of spin-up and spin-down
character. As a result an individual state still contributes to
the spin current, however somewhat reduced, and delivers
an appropriate amount of spin-polarized current as well [cf.
Fig. 1(d)].

II. MODEL AND METHODS

The model Hamiltonian that we use was first introduced in
Ref. [27] where the anomalous Hall effect has been predicted
in the compensated kagome magnet Mn3Ir. It is also known
as an sd model that describes the interaction of itinerant s
electrons with d magnetic moments that are localized on the
Mn sites and form a noncollinear magnetic texture. In second
quantization, the tight-binding Hamiltonian reads

H = Hkin + HZ + HSOC, (1)

Hkin = t
∑
〈i, j〉

∑
σ

a†
i,σ a j,σ , (2)

HZ = m
∑

i

∑
σ,σ ′

a†
i,σ (mi · σ)σσ ′ai,σ ′ , (3)

HSOC = iλ
∑
〈i, j〉

∑
σ,σ ′

a†
i,σ (ni j · σ)σσ ′a j,σ ′ , (4)

where a†
i,σ and ai,σ are the creation and annihilation operators

of an electron at site i with spin σ . Here we restrict ourselves
to nearest-neighbor hopping between atomic sites i and j
which is implied by the sum limits 〈i, j〉. The three parameters
t , m, and λ denote the hopping energy, the strength of the
Hund’s coupling between the spin moment of the conduction
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electron with the magnetic texture m = {mi}, and the strength
of spin-orbit interaction, respectively. Here

mi =
⎛
⎝cos(�i ) sin(θi )

sin(�i ) sin(θi )
cos(θi )

⎞
⎠ (5)

is the magnetic moment at site i characterized by the polar
and azimuthal angles �i and θi and the vectors ni j are defined
in Ref. [34] [cf. Fig. 1(a)]. These in-plane vectors ni j form a
set of vectors that are anticlockwise orthogonal to the hopping
vectors Ri j which consider the different environments (left or
right hand) of nearest-neighbor hoppings on a kagome lattice
[27].

In our study the kagome lattice, which is a two-dimensional
hexagonal lattice with a triangular unit cell (formed by Mn
atoms), is located in the xy plane and is assumed to be
periodic. The considered tight-binding model allows for a
continuous rotation of the magnetic moments mi, that are
carried by Mn atoms, within and out of the kagome plane.
Following the notation from Ref. [34], the different magnetic
textures can be characterized as follows. First of all, only
magnetic textures with a positive vector spin chirality [36]

κ ≡ 2
√

3

9

∑
〈i, j〉

(mi × m j ) · ez = +1 (6)

are considered. Rotating each magnetic moment by the same
in-plane offset angle �� within the xy plane, as visualized in
the small cartoons in Fig. 4, does not change the vector spin
chirality since the magnetic moments of neighboring atoms
always differ by a polar angle of 120◦.

Two configurations are special since they have different
symmetries (time reversal T , mirror reflection M): “radial”
(�� = 0◦, three T M planes) and “toroidal” (�� = 90◦,
three M planes). We always assume that all three magnetic
moments have the same azimuthal angle θ ≡ θi for a certain
magnetic texture. Thus, coplanar and noncoplanar configu-
rations are classified by an azimuthal angle of θ = 90◦ and
θ 
= 90◦, respectively, in this work.

We investigate the influence of the spin configuration on
the spin Hall effect. Within linear response theory, the corre-
sponding spin Hall conductivity σ k

i j is a tensor of rank three
and relates an electric field Ej (applied in j direction) to
the spin current jk

s,i = σ k
i jE j that is generated as a response

flowing in i direction with spin polarization in k direction
(i, j, k = x, y, z). We focus on the intrinsic contribution which
can be described by the Berry curvature formalism analog
to the intrinsic anomalous Hall conductivity [37]. For a two-
dimensional system at zero temperature, as considered here,
the intrinsic spin Hall conductivity is defined as follows [26]:

σ z
xy(EF) = e

h̄

∑
ν

1

(2π )2

∫
ε(k)�EF

�z
xy,ν (k) d2k, (7)

where the Fermi energy EF enters as a parameter that can be
varied in practice by doping or by applying a gate voltage. In
this equation, the Brillouin zone integration is performed over
all occupied states for a quantity that is sometimes denoted as

“spin Berry curvature” [26,32]

�z
xy,ν (k) = −2h̄2 Im

∑
μ 
=ν

〈ν, k|�z
x|μ, k〉 〈μ, k|vy|ν, k〉

[εν (k) − εμ(k)]2
(8)

of band ν that is calculated from the eigenvalues εν (k) and
the corresponding eigenvectors |ν, k〉 ≡ ϕν (k) of the tight-
binding Hamiltonian. In contrast to the conventional Berry
curvature, here one has to take into account the spin-current
operator that can be defined by �k

i ≡ 1
2 {vi, sk} as the anticom-

mutator of the velocity operator vi and the spin operator sk .

III. RESULTS AND DISCUSSION

The results section of our paper is organized as follows:
we investigate the influence of the in-plane and out-of-plane
orientation of the magnetic moments on the intrinsic spin Hall
effect by systematically varying the parameters �� and θ ,
respectively. Thereby we observe pure spin currents without
spin-orbit coupling that cause the spin Hall signal. Spin-orbit
interaction brings about spin-polarized currents, as well, that
reduce the spin Hall signal effectively.

A. Spin Hall effect for the radial and toroidal
coplanar configurations

Throughout this subsection the fixed magnetic texture is as-
sumed to be coplanar (θ = 90◦) and the parameter describing
the Hund’s coupling is set to m = 1.7 t .

First, the radial configuration (�� = 0◦) is investigated
without taking spin-orbit interaction into account (λ = 0.0 t).
Figures 2(a) and 2(b) show the corresponding band structure
where one obtains six individual bands and Dirac points at K
due to the T M symmetry of the magnetic texture [27]. The
color of the energy bands represents the spin Berry curvature
�z

xy,ν in units of a2, where a is the lattice constant. A de-
tailed k- and band-resolved plot of the spin Berry curvature in
Fig. 2(c) illustrates that �z

xy,ν has finite values (green positive,
yellow zero, and red negative) allowing for the occurrence of
the spin Hall effect even though spin-orbit coupling is not con-
sidered, as predicted by Zhang et al. [32]. The corresponding
spin Hall conductivity σ z

xy according to Eq. (7) is plotted in

units of ( e2

h )( h̄
e ) as a function of energy simulated by a change

of the Fermi energy EF [black curve in Fig. 3(b)] which is in
agreement with Ref. [32]. Note that this result corresponds to
the situation illustrated for the sample in Fig. 1(c).

Now we take spin-orbit interaction into account (λ =
0.2 t). Therefore, we briefly summarize the main results of our
former work about the virtual magnetic texture that explains
the anomalous Hall effect in this scenario [34].

We demonstrated via a transformation of the model Hamil-
tonian (1) that spin-orbit coupling and a tilting of the magnetic
texture out of the kagome plane are equivalent.

The application of a set of unitary transformations that tilt
the local z axis at each lattice site i by the same angle α

towards the magnetic moment mi implies that one can change
the reference system to a lattice-site dependent coordinate
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FIG. 2. Band structure and spin Berry curvature of the radial magnetic texture. In (a)–(c) spin-orbit coupling (SOC) is neglected, whereas
in (d)–(f) it is considered. (a) Three-dimensional band structure E (kx, ky ) for all bands over the Brillouin zone (indicated by the black hexagon
in the kx-ky plane). The color of the energy surfaces shows the value of the spin Berry curvature �z

xy (green positive, red negative, and yellow
zero as indicated by the legend on the right). (b) Same as in (a) but represented in the reduced zone scheme where the band structure is only
plotted along the high-symmetry points (�-M-K-�). (c) Visualization of the spin Berry curvature of all bands resolved in the two-dimensional
k space. The blue triangle in the upper left panel in (c) shows the reduced Brillouin zone. (d)–(f) Analog to (a)–(c), but spin-orbit interaction
is taken into account (λ = 0.2 t).

system where the magnetic texture is effectively tilted by α:

m̃i =
⎛
⎝cos(�i ) sin(θ − α)

sin(�i) sin(θ − α)
cos(θ − α)

⎞
⎠. (9)

Besides, the unitary transformation of the complete Hamil-
tonian (1) yields effective hopping and spin-orbit coupling
amplitudes t̃ and λ̃. For the radial configurations, the latter
reads

λ̃ = −
√

3

2
sin(α) t + cos(α) λ. (10)

This equation implies that the effective spin-orbit coupling
can be compensated (λ̃ = 0) by a critical tilting angle αc. In
this case, we call the effectively tilted magnetic texture {m̃i}
“virtual” and it is tilted with respect to the fixed magnetic tex-
ture m = {mi} by an azimuthal angle αc = �θc. In particular,
Eq. (10) yields a critical angle αc ≈ 13◦ for λ = 0.2 t .

The virtual texture is hidden in the model Hamiltonian
(1) and is thereby determined by the symmetry of the sys-
tem. Consequently, the virtual texture is responsible for the

electronic properties and thus, the equivalence of spin-orbit
interaction and an out-of-plane tilting allows for an interpre-
tation of the anomalous Hall effect in the coplanar kagome
magnet (θ = 90◦) as an effective topological Hall effect due to
a nonvanishing scalar spin chirality of the virtual noncoplanar
magnetic texture (θ̃ = 90◦ − αc).

Moreover, a noncoplanar background texture {mi} that is
characterized by a critical azimuthal angle θc = 90◦ + �θc

with spin-orbit coupling (λ 
= 0) is equivalent to a virtual
coplanar texture, since {m̃i} is tilted by αc = �θc with respect
to {mi}. Hence, spin-orbit coupling is effectively compensated
(λ̃ = 0) and the Hall effect vanishes again since the already
mentioned T M symmetry of the radial configuration, and
thus of the Hamiltonian, is restored.

The out-of-plane tilting mechanism that arises from spin-
orbit interaction is parameter dependent and the influence on
the in-plane orientation of the magnetic moments is given by
a cosine function [34]. Hence, it is maximal for the radial
configuration and zero for the toroidal configuration which
implies that the virtual texture is not tilted with respect to the
original toroidal texture. The reason for this is that spin-orbit
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FIG. 3. Band structure and spin Hall conductivity σ z
xy plotted against the Fermi level EF for different spin-orbit coupling strengths λ as

indicated. (a) and (b) show the results for the radial configuration (�� = 0◦), where band gaps occur due to spin-orbit coupling and broaden
with increasing λ, whereas the spin Hall signal is reduced for most energies. (c) and (d) show the results of analog calculations for the toroidal
texture (�� = 90◦) which is obtained by an in-plane rotation of each magnetic moment by 90◦ within the kagome plane.

coupling breaks the T M symmetry of the radial configu-
ration (�� = 0◦), whereas M in the toroidal arrangement
(�� = 90◦) is still conserved [27,36]. Note that the magnetic
moments of textures with different in-plane orientations as
discussed in Sec. III B can be interpreted as a superposition
of a radial and a toroidal part. The tilting increases with the
spin-orbit interaction strength λ.

Now we discuss the consequences of the virtual texture
on the band structure and the spin Hall signal for the radial
texture. Since spin-orbit coupling is considered, the T M
symmetry of the magnetic texture is broken and therefore de-
generacies are lifted and global band gaps open [cf. Fig. 2(e)].
In Fig. 3(a) the dependence of the electronic band structure on
the spin-orbit interaction strength λ is presented. Figure 3(b)
shows the corresponding spin Hall signals, where we find that
the magnitude of the spin Hall conductivity is decreasing for
most energies with increasing λ. For the red curve in Fig. 3(b)
we set λ = 0.2 t in correspondence to Ref. [32].

According to Ref. [38], a phase transition from the radial
phase (�� = 0◦) to the toroidal phase (�� = 90◦) has been
found experimentally at a critical temperature TC = 163 K in
the antiperovskite Mn3NiN. Repeating the calculations for the
toroidal texture reveals that both the electronic structure and
the spin Hall signal are hardly affected by spin-orbit coupling
[cf. Figs. 3(c) and 3(d)]: the Dirac points do not open as band
gaps but the bandwidth is slightly broadened with increasing
λ.

B. Spin Hall effect under in-plane rotation of
the magnetic moments

The electronic properties (i.e., the band structure and the
spin Hall conductivity) without spin-orbit coupling (black
curves in Fig. 3) are identical for the two special configura-
tions, but the effect of spin-orbit interaction is quite strong
for the radial phase and almost negligible for the toroidal
one. Motivated by this, we investigate the spin Hall effect
for configurations between those two arrangements. Since the
band structures of the radial and the toroidal configurations
can differ significantly, if spin-orbit coupling is taken into ac-
count [cf. Fig. 3(a)], it is helpful to calculate the conductivity
as a function of the occupation number nocc instead of the

Fermi energy EF to compare different systems with each other.
Therefore, we calculate σ z

xy upon a continuous variation of the
in-plane offset angle �� while nocc is fixed.

As visible in Fig. 4(a), we find for each fixed occupation
number that the spin Hall conductivity as a function of ��

is constant if spin-orbit interaction is not taken into account.
This is in agreement with the above discussion of the spin
transport in the radial and the toroidal configurations without
spin-orbit coupling. The signal is independent of the in-plane
orientation of the magnetic texture (illustrated by the small
cartoons below the panel in Fig. 4). If spin-orbit interaction
is taken into account (λ = 0.2 t), we observe an extra contri-
bution to the spin Hall signal that is oscillating with a period
of 180◦ [cf. Fig. 4(b)]. This periodic behavior is in agreement
with symmetry arguments since the (intrinsic) spin Hall con-
ductivity, which is considered in this work, is even under time
reversal T which is equivalent to a rotation of each magnetic
moment by 180◦ in the kagome plane. Consequently, the spin
Hall signal fulfills σ z

xy(�� + 180◦) = σ z
xy(��).

The spin Hall conductivity for a fixed occupation can be
strongly diminished depending on the in-plane orientation.
The difference is maximal for the radial configuration and
minimal for the toroidal one. To illustrate this more clearly,
the spin Hall conductivity for those two magnetic textures
and configurations in between are shown as a function of
the occupation number in one diagram in Fig. 4(c) where the
horizontal lines indicate the number of the occupied states that
have been chosen for the in-plane rotation in Figs. 4(a) and
4(b).

C. Relation of spin Hall effect to anomalous Hall effect and
magnetization density

Now we would like to interpret our results and relate them
to the findings in Ref. [34] where the anomalous Hall effect
has been investigated.

Without spin-orbit coupling, our calculations revealed that
the anomalous Hall effect is absent and there is only a con-
stant contribution to the spin Hall signal originating from the
magnetic background texture. In this case there is only a pure
spin current [cf. Fig. 1(c)]. As we will show in the following,
the contribution which is arising from spin-orbit coupling and
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FIG. 4. Spin Hall conductivity for different fixed occupation numbers nocc upon a continuous rotation of the magnetic moments within
the kagome plane as indicated by the small cartoons below the panel. (a) Spin-orbit coupling is not taken into account and in this case the
spin Hall signal is nonzero, but constant and thus independent of the in-plane orientation of the magnetic moments. (b) Same as (a) but
spin-orbit interaction is considered (λ = 0.2 t). Here the spin Hall conductivity is oscillating with a period of 180◦ and so does the out-of-plane
component of the magnetic moments of the virtual texture (red arrows in the small cartoons). (c) σ z

xy plotted against nocc for the radial (red) and
toroidal phase (black) and configurations in between the two with spin-orbit interaction taken into account [λ = 0.2 t as in (b)]. The horizontal
lines indicate the values of the fixed occupation numbers in (a) and (b).

which is reducing the spin Hall signal is roughly proportional
to the anomalous Hall conductivity σxy multiplied with the
magnetization density μs

z,

�σ z
xy(SOC) ∝ σxy μs

z. (11)

We will demonstrate this now by examining the behavior of
the systems while varying the parameter m that describes the
Hund’s coupling strength between the spin moment of the
conduction electron and the magnetic texture {mi}. Therefore,
we are calculating not only the spin Hall conductivity σ z

xy but
also the anomalous Hall conductivity σxy and the out-of-plane
component of the magnetization density μs

z upon rotating the
magnetic moments within the kagome plane, as before.

The calculation of σxy is performed via Kubo formalism
[37]:

σxy(EF) = − e2

h

∑
ν

1

2π

∫
ε(k)�EF

�xy,ν (k) d2k, (12)

where one has to integrate over the conventional Berry curva-
ture

�xy,ν (k) = −2h̄2 Im
∑
μ 
=ν

〈ν, k|vx|μ, k〉 〈μ, k|vy|ν, k〉
[εν (k) − εμ(k)]2

. (13)

The magnetization density can be calculated from the spin
texture of the itinerant magnetic moments of the conduction
electrons’ spins in reciprocal space. The z component of the
spin texture of band ν is obtained by the calculation of the spin
expectation value 〈

sz
ν (k)

〉 = 〈ν, k|σ z|ν, k〉 , (14)

where σ z is the Pauli matrix. Integrating over all occupied
states in the Brillouin zone and summing over all bands yields

the out-of-plane component of the magnetization density

μs
z = μB

∑
ν

1

(2π )2

∫
ε(k)�EF

〈
sz
ν (k)

〉
d2k. (15)

The results for σxy (in units of e2

h ) and μs
z (in units of μB)

are presented together with σ z
xy in Fig. 5 where we set the

occupation number nocc = 0.9.
Without spin-orbit interaction (cf. dashed lines), the

anomalous Hall effect is prohibited and the spin texture is
coplanar, whereas the spin Hall effect is constant. σxy and μs

z
vanish identically, independent of m and the in-plane rotation.
The amount of σ z

xy is decreased with increasing m [39].
Taking spin-orbit interaction into account (λ = 0.2 t , solid

lines in Fig. 5), yields a cosinusoidal behavior [40] of both
the anomalous Hall conductivity and the z component of the
magnetization density as a function of ��, whereas the spin
Hall conductivity oscillates with the half-period, as before in
Fig. 4. Now, enlarging the strength of the Hund’s coupling
m causes not only a reduction of the amount of the spin
Hall signal, but also of the out-of-plane magnetization density,
i.e., the spin texture aligns more and more with the coplanar
texture. The amplitude of σxy is hardly affected by m.

For the toroidal configurations (�� = 90◦, 270◦), the
anomalous Hall effect is absent and the spin texture remains
coplanar, protected by the M symmetry. Consequently, there
is no reduction of the spin Hall signal [cf. Eq. (11)] and we
would observe a pure spin current even upon considering
spin-orbit coupling. For all other configurations, the product
of the finite and cosinusoidal signals σxy and μs

z explains the
reduction of the spin Hall signal which is oscillating with a
period of 180◦.

We interpret the nonvanishing out-of-plane magnetization
and charge current emerging due to spin-orbit interaction as
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FIG. 5. Dependence of anomalous and spin Hall conductivity and the magnetization density on the Hund’s coupling parameter m calculated
for a fixed occupation number (nocc = 0.9) as a function of ��, analog to Fig. 4. For calculations with spin-orbit interaction (solid lines), we
set λ = 0.2 t . The dashed lines indicate the results of analog calculations without spin-orbit coupling. (a) The anomalous Hall conductivity σxy

is only finite (and cosinusoidal) if spin-orbit coupling is taken into account. The anomalous Hall signal is only weakly reduced with increasing
m and remains zero for the toroidal arrangements (�� = 90◦, 270◦). (b) Spin Hall conductivity σ z

xy analog to Fig. 4(b). The amplitude of the
contribution originating from the magnetic texture is reduced by spin-orbit coupling for all configurations except for the toroidal one. This
additional contribution is shrinking with growing m. (c) Like σxy, the z component of the spin texture and thus the magnetization density μs

z is
only nonzero if spin-orbit coupling is taken into account. As visible, the spin texture is continuously aligning with the real coplanar magnetic
texture upon increasing Hund’s coupling strength m. Note that μs

z remains zero for the toroidal configurations independent of λ and m.

a spin-polarized current. The latter is reducing the pure spin
current of the magnetic background texture that causes the
spin Hall effect, which is illustrated in Fig. 1(d).

D. Spin Hall effect under out-of-plane rotation
of the magnetic moments

Summing up to this point, two different mechanisms con-
tribute to the intrinsic spin Hall effect in noncollinear kagome
antiferromagnets. One source is the Hund’s coupling of the
spin of the conduction electron to the chiral antiferromagnetic
texture {mi} itself where spin-orbit interaction is not required.
The second contribution to the signal is mainly reducing the
spin conductivity and it is originating from spin-orbit coupling
that gives rise to a virtual magnetic texture {m̃i}. As explained
before, the virtual texture determines the electronic properties
and can be interpreted as tilting with respect to the real texture
depending on the in-plane orientation �� and on the spin-
orbit coupling strength λ.

Motivated by these findings, magnetic textures that are
already tilted out-of the kagome plane [θ 
= 90◦; cf. Eq. (5)]
are investigated, in order to analyze the two contributions to
the spin Hall signal. This could be achieved by applying an
external magnetic field along z. However, we assume that the
magnetic moments are only rotated and their magnitude does
not change.

We calculate σ z
xy for a fixed Fermi energy upon varying

θ while �� is constant [cf. small cartoons in Figs. 6(a) and
6(b)]. Since the tilting mechanism of the virtual magnetic tex-
ture is strongest for the radial arrangement, we set �� = 0◦.

First of all, we discuss the results if we neglect spin-orbit
interaction [cf. Fig. 6(a)]. For the collinear configurations
(θ = 0◦, 180◦), the spin Hall signal is zero since the spin Hall
effect is absent in ferromagnets without spin-orbit coupling

that would deflect electrons with different spin in opposite
directions [41]. For all other configurations we get finite val-
ues and the spin Hall signal is completely symmetric with
respect to θ = 90◦. In this case, the virtual magnetic texture is
not tilted with respect to the real texture but the noncoplanar
texture has an opening angle that gives rise to a pure topolog-
ical Hall effect which implies that charge is transported as a
response to an applied electric field. Since the spin Hall signal
without spin-orbit interaction is independent of the in-plane
rotation ��, it is worth noting that analog calculations for
arbitrary �� yield the same results, as shown exemplarily for
�� = 0◦ in Fig. 6(a).

With spin-orbit coupling (λ = 0.2 t), the collinear ferro-
magnets exhibit a spin Hall effect [cf. Fig. 6(b)] which is
equal for both collinear phases (θ = 0◦, 180◦) since the spin
Hall effect in ferromagnets is not affected by reversal of the
magnetic moments [42]. Besides, the shape of the signal is
only slightly deformed and the curves are mainly shifted by
�θ ≈ 13◦. This can be seen by comparing the positions of the
local extrema in Figs. 6(a) and 6(b). This angle is the same
critical angle �θc that we revealed for λ = 0.2 t in Ref. [34].

As explained before, the anomalous Hall effect is absent
for this noncoplanar (radial-type) texture characterized by
θc = 90◦ + �θc. In this case, the virtual texture is coplanar
and the effective spin-orbit coupling according to Eq. (10) is
compensated. Therefore, the noncoplanar system behaves as if
it was effectively coplanar due to the equivalence of spin-orbit
interaction and out-of-plane tilting of the magnetic texture that
compensate each other, here.

To corroborate this, we compare the spin Hall signal as a
function of EF for this critical angle [black curve in Fig. 6(c)]
with the one of the coplanar configuration [red curve in
Fig. 6(c)] that we have already shown before. As visible,
the spin Hall signal characterized by this critical angle with
spin-orbit coupling is the same as the one of the coplanar
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FIG. 6. Spin Hall conductivity under out-of-plane rotation of the radial-type magnetic texture (�� = 0◦). (a) The spin Hall signal is
symmetric with respect to θ = 90◦ if spin-orbit coupling is not considered. (b) If spin-orbit interaction is taken into account, the curves of
(a) are slightly deformed and mainly shifted by the critical angle �θc ≈ 13◦, as well. (c) The spin Hall conductivity as a function of EF for the
radial-type arrangement (with spin-orbit coupling) that is characterized by the critical out-of-plane orientation (black curve) is identical to the
signal of the coplanar configuration without spin-orbit coupling [cf. black curve from Fig. 3(b)]. The red curve is the same as the red curve in
Fig. 3(b) for the coplanar texture with spin-orbit coupling. The horizontal lines indicate the values of the Fermi level chosen in (a) and (b).

configuration where spin-orbit interaction is neglected [black
curve in Fig. 3(b)].

This explicitly proves that tilting the texture has the same
effect as spin-orbit coupling in this model.

IV. CONCLUSION

In summary, we have identified two mechanisms deter-
mining the spin Hall signal. We showed via tight-binding
calculations that the main contribution is a pure spin cur-
rent that originates from the coplanar magnetic background
texture. Besides, spin-orbit coupling is equivalent to an out-of-
plane tilting of the magnetic moments and thereby generates
an asymmetry in the spin polarization with respect to the
quantization axis perpendicular to the kagome plane. Thus,
with spin-orbit interaction a spin-polarized current is flowing
as well that reduces the spin Hall signal of the pure spin
current effectively.

Therefore, noncollinear kagome antiferromagnets have the
potential for applications in spintronic devices where they
might be utilizable as alternative generators for spin currents
and spin-polarized currents in analogy to collinear antiferro-
magnets and ferromagnets, respectively (cf. Fig. 1).

Besides, our results might be insightful for the exper-
imental observation of the spin Hall effect in manganese
compounds with a positive vector spin chirality like Mn3Ir. In
this material, the anomalous Hall effect was predicted theoret-
ically seven years ago [27,28], but it has not been measured up
to now. The reason is that domains with different phases that
we characterize by �� = 0◦ and 180◦ occur in that material
[43]. The anomalous Hall effect is allowed in both phases but
both signals compensate each other due to their opposite sign
[27,34]. However, our findings show that the spin Hall signal
would be the same for both phases and therefore there could
be the possibility to measure the spin Hall effect without the
need to prepare single-domain samples.
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4.3 Unconventional orbital Hall effect arising in s-orbital systems

Hybridization of atomic orbitals as origin of the orbital Hall effect. The orbital degree of
freedom has been investigated to a smaller extent than the spin companion, since orbital an-
gular momentum (OAM) is often suppressed in the ground state; a phenomenon denoted as
‘orbital quenching’ [22]. However, it has been demonstrated that the situation is different in a
non-equilibrium state: the application of an electric field may generate nonzero OAM which can
be transported through the solid [23]. In analogy to the SHE, the creation of such orbital currents
flowing transverse to the electric field is called ‘orbital Hall effect’ (OHE) [25]. SHE and OHE
are closely related to each other, and they are both allowed in nonmagnetic and centrosymmetric
materials, in which the AHE is forbidden, since the latter requires broken time-reversal symme-
try. In contrast to the SHE, which is absent in such materials without SOC, the OHE is still allowed
and predicted to be large. In fact, it has been shown that orbital currents are partially converted
to spin currents by SOC, which makes the OHE more fundamental than the SHE.

The origin of the OHE is still debated, but early works claimed that the effect arises from hy-
bridization of specific atomic orbitals at a particular lattice site: the superposition of cubic har-
monic orbitals (s, px, py, ...) forms spherical harmonic orbitals with an OAM transported by an
orbital current [21]. This explanation considers only intra-atomic contributions and is known as
the atomic center approximation (ACA). In order to account for inter-atomic contributions to the
OHE as well, one has to apply the modern formulation of orbital magnetization [28].

This publication. In the following publication “Orbital Hall effect and orbital edge states caused
by s electrons” [OB3], an alternative mechanism to generate orbital currents is established. By
comparing results for the OHE computed with both methods – ACA and modern formulation of
orbital magnetization – we show that the OHE may exist for pure states without hybridization
of specific orbitals. As a minimal model for the generation of orbital currents, the nonmagnetic
kagome lattice with only s orbitals and without SOC is introduced. Although s electrons in a
single atom (intra-site contributions in ACA) do not carry OAM, a propagation over multiple
atomic sites (inter-site contributions in modern formulation of orbital magnetization) allows for
accumulation of OAM.

Furthermore, deeper insight into the microscopic mechanism of the OHE is achieved by inves-
tigating various kagome-lattice slab geometries. In doing so, we reveal the existence of ‘geomet-
rical’ edge states in a nanoribbon with two different edges (‘straight’ and ‘triangular’; cf. Fig. 3(b)
in [OB3]). These are ‘orbital edge states’ moving on cycloid trajectories, which gives rise to the
generation of an orbital current as visualized in Fig. 1 in the publication. This situation is in anal-
ogy to the classical scenario of a rolling wheel where a simultaneous translation and rotation
results in a transport of OAM, i.e. in an orbital current.

The following publication: Reprinted (whole article) with permission from O. Busch, I. Mertig and B.
Göbel, Physical Review Research 5, 043052 (2023); Ref. [OB3]; Orbital Hall effect and orbital edge states
caused by s electrons. Published by the American Physical Society under the terms of the Creative Com-
mons Attribution 4.0 International license.
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An orbital current can be generated whenever an object has a translational degree of freedom and a rotational
degree of freedom. In condensed matter physics, intra-atomic contributions to the transverse orbital transport,
labeled the orbital Hall effect, rely on propagating wave packets that must consist of hybridized atomic orbitals.
However, interatomic contributions have to be considered as well because they give rise to an alternative
mechanism for generating orbital currents. As we show, even wave packets consisting purely of s electrons
can transport orbital angular momentum if they move on a cycloid trajectory. We introduce the kagome lattice
with a single s orbital per atom as the minimal model for the orbital Hall effect and observe the cycloid motion
of the electrons in the surface states.

DOI: 10.1103/PhysRevResearch.5.043052

I. INTRODUCTION

The field of orbitronics is concerned with the orbital degree
of freedom of electrons instead of their spin and charge [1].
Despite the fact that orbital quenching [2] leads to a sup-
pressed orbital magnetization in most solids, orbital currents
often surpass spin currents in magnitude, as the latter require
considerable spin-orbit coupling to be generated. This makes
orbital currents highly attractive for dissipationless orbitronic
applications [3].

Charge, spin, and orbital currents can be generated by
the charge [4], spin [5–8], and orbital Hall effects [9–13]:
The application of an electric field leads to the generation of
the different types of currents as a transverse response. While
the conventional (charge) Hall effect requires a broken inver-
sion and time-reversal symmetry, the spin and orbital Hall
effects can exist even in nonmagnetic and centrosymmet-
ric solids. The orbital Hall effect (OHE) has been predicted
to exist even in systems without spin-orbit coupling, but a
hybridization of different atomic orbitals has been strictly
required in the models up to now [14,15].

The need for mixing of orbitals stems from the fact
that earlier studies on the OHE were based on the atomic
center approximation (ACA) for calculating the orbital an-
gular momentum (OAM) [11–14]: An OAM, which is
supposed to be transported as an orbital current, can only
be generated at a particular lattice site. However, since the
building blocks of every solid are cubic harmonic orbitals
(s, px, py, pz, dxy, dyz, dzx, . . .), the OAM of a pure Bloch state
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†boerge.goebel@physik.uni-halle.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
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and the published article’s title, journal citation, and DOI.

always vanishes. The cubic harmonic orbitals need to hy-
bridize (e.g., form the superpositions px ± i py or dyz ± i dxz)
in order to generate an OAM Lz = mh̄. However, the ACA
neglects interatomic contributions to the effect: A wave packet
propagating across several lattice sites can carry an OAM
irrespective of its orbital composition [16].

In this paper, we take into account the interatomic con-
tributions to the OHE by using the modern formulation of
orbital magnetization [17–23]. We show that the generation
of an OHE does not require a specific orbital hybridization
but can exist even for pure states. We propose a kagome lattice
with only s orbitals as the minimal model for the generation
of an orbital Hall effect. We demonstrate that the OHE arises
from a cycloid motion of a wave packet that is best observed in
“geometrical” [24] edge states in a finite slab geometry. These
states give rise to the same orbital current irrespective of their
propagation direction [red and blue in Fig. 1(a)].

II. ORBITAL CURRENTS IN MACROSCOPIC SYSTEMS

The ACA requires an often complicated hybridization of
specific atomic orbitals for the generation of an OAM and an
orbital magnetization [11–14]. However, these quantities may
emerge irrespective of the orbital contribution if the modern
formulation of orbital magnetization is considered.

In the following, we want to point out that this is not sur-
prising. Orbital currents are not “exotic” but appear whenever
objects “translate” and “circulate” simultaneously. Even for
macroscopic objects in classical mechanics, orbital currents
are ubiquitous, as long as there is a translational and a rota-
tional degree of freedom. For example, the rotors of a flying
airplane can be identified with an orbital current. In the local
coordinate system (moving with the center of mass) there
is only a finite OAM L = ρ

∫
r × v d3r since each point of

the rotor follows a circular trajectory. In a global (stationary)
coordinate system that lies on the path of the center of mass,
the OAM is the same, but it is transported by the translational
motion of the airplane. The result is an orbital current.

2643-1564/2023/5(4)/043052(9) 043052-1 Published by the American Physical Society
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FIG. 1. Schematic representation of orbital currents. (a) Orbital
current arising from edge states in a kagome lattice. Left- (k‖ <

0) and right-propagating states (k‖ > 0) carry an opposite orbital
angular momentum L causing identical orbital currents jLz and a
compensated charge current. (b) Orbital current of a tire rolling
forward (v > 0) and backward (v < 0). Both states carry an opposite
orbital angular momentum causing identical orbital currents.

As we will see later, most similar to the orbital current
generated by the OHE in an s-orbital kagome model is the ex-
ample of a rolling wheel (e.g., the tire of a car) [cf. Fig. 1(b)].
Without wheel slip, the friction force is strong enough to
impose a constraint which couples the translational velocity
(of the center of mass) v to the angular frequency ω via the
radius R: v = Rω. Likewise, the angular momentum L ‖ ω

is coupled to v via the moment of inertia I: v = RL/I . In
particular, if v changes sign, L has to change as well. Since
the orbital current jL is proportional to v × L, it is identical
for forward and backward motion even though L reverses.

Consequently, if one considers two wheels moving in op-
posite directions [red and blue in Fig. 1(b)], the total OAM
L is compensated. but a net orbital current jL arises. The
trajectory of each point on the wheels is a cycloid in the global
coordinate systems and a circle in the local coordinate system
(origin is in the center of mass). As we demonstrate next,
we observe an analogous scenario for jL and the same type
of trajectory for a wave packet propagating at the edge of a
kagome lattice [cf. Fig. 1(a)]. Here, the OAM L is coupled to
the group velocity v = ∇kε/h̄.

III. ORBITAL HALL EFFECT

In the existing literature, the hybridization of different
cubic orbitals was claimed to be the origin of the OHE
[11,13,14]. It was argued that they need to form the spherical
harmonic orbitals with a net magnetic quantum number m
that gives rise to a finite OAM [14,15]. As discussed in the
Introduction, this is indeed the only possibility to generate an
OHE when using the ACA. For example, a spherical atomic
orbital with angular momentum quantum number l = 1 and
magnetic quantum number m = +1 is formed by the super-
position of the cubic orbitals px and py as |l = 1, m = 1〉 =
(|px〉 − i|py〉)/

√
2 and gives rise to Lz = mh̄ = +h̄.

In order to be able to account for the transported OAM
via a cycloid trajectory, it is not sufficient to use the ACA for
calculating the OHE. Instead, we take into account intersite
contributions via the modern formulation of orbital magneti-
zation [17–20] and use it to calculate the OHE regardless of
the orbital composition. The calculation is not based on the
on-site OAM operator that accounts for the hybridization of
the cubic atomic orbitals, but it is calculated from the eigen-
vectors |νk〉 ≡ |ϕν (k)〉 and the eigenenergies ενk ≡ εν (k) of
the tight-binding Hamiltonian that are k dependent.

The orbital Hall conductivity (OHC) σ
Lz
xy quantifies the

OHE by relating the generated orbital current to the applied
electric field jLz

x = σ
Lz
xy Ey. The OHC of a two-dimensional

system at zero temperature located in the xy plane, as con-
sidered in this paper, can be computed as [13,14,21]

σ Lz
xy (EF) = e

h̄

∑
ν

1

(2π )2

∫
ενk�EF

	Lz
ν,xy(k) d2k (1)

for a specific Fermi level EF. By analogy with the spin Hall
conductivity, the OHC is given as the Brillouin zone integral
of a “mixed Berry curvature” that is labeled the “orbital Berry
curvature” [21]

	Lz
ν,xy(k) = −2h̄2 Im

∑
μ �=ν

〈νk|
z
x|μk〉〈μk|vy|νk〉

(ενk − εμk)2
. (2)

Herein, vi = 1
h̄

∂H
∂ki

is the velocity operator that is calculated
from the Hamiltonian H . The orbital current operator is given
by 
z

x ≡ 1
2 {vx, Lz} and can be evaluated according to the mod-

ern formulation of orbital magnetization via

〈νk|
z
x|μk〉 = 1

2

∑
α

[〈νk|vx|αk〉〈αk|Lz|μk〉

+ 〈νk|Lz|αk〉〈αk|vx|μk〉].

The matrix elements of the OAM comprise both diagonal
elements and off-diagonal elements

〈νk|Lz|αk〉 = −i
eh̄2

4gLμB

∑
β �=ν,α

(
1

εβk − ενk
+ 1

εβk − εαk

)

× (〈νk|vx|βk〉〈βk|vy|αk〉 − 〈νk|vy|βk〉〈βk|vx|αk〉), (3)

which is different compared with the ACA, where 〈νk|Lz|αk〉
are constant matrix elements that mix different orbitals that
are located at the same lattice site. The above equations were
derived by Pezo et al. [21,23] based on the modern formu-
lation of the orbital magnetization in the language of wave
packet dynamics [18]. The full derivation can be found in
the main text and Supplemental Material of Ref. [21], but
we have corrected a mistake in Eq. (3) [25]. Note that in
a finite sample the derivation differs slightly: As presented
in Ref. [26], the velocity matrix elements can be calculated
from the commutator between the position and the Hamilton
operator.

043052-2



ORBITAL HALL EFFECT AND ORBITAL EDGE STATES … PHYSICAL REVIEW RESEARCH 5, 043052 (2023)

FIG. 2. Orbital Hall effect in an s-orbital kagome lattice. (a) Kagome lattice with three basis atoms (atoms A, B, and C) per unit cell
(red hexagon). (b) Band structure of the bulk system, where the color of the bands indicates the orbital Berry curvature 	Lz

xy using the modern
formulation (mod. form.; cyan, positive; orange, negative). (c) Orbital Hall conductivity as a function of the Fermi level EF. Blue and red (zero)
correspond to the modern formulation and ACA, respectively.

IV. MINIMAL MODEL: KAGOME LATTICE
WITH s ORBITALS

As a minimal model that illustrates the crucial importance
of using the modern formulations for computing the OHE, we
have chosen a planar kagome lattice. This two-dimensional
hexagonal lattice with a three-atom unit cell [cf. Fig. 2(a)]
can be found in several materials including the ferromagnetic
“kagome magnets” Fe3Sn2 [27,28] or Co3Sn2S2 [29,30] and
the famous chiral antiferromagnets Mn3X (X = Ir, Rh, Pt, Ge,
Sn, and Ga) [31–34].

Since the main goal of this paper is to show that con-
sidering the ACA is not sufficient to calculate the OHE, we
completely avoid any hybridization of orbitals by using one s
orbital per lattice site. Note that this orbital does not exhibit
an on-site OAM (quantum number l = 0 and so m = 0). This
means that only the modern formulation of the orbital magne-
tization contributes to the OHE via interatomic contributions.
The ACA would always return a vanishing OHE, which is
why this formalism is inappropriate to quantify the effect.

Since s orbitals do not exhibit spin-orbit coupling, our min-
imal model Hamiltonian includes only hopping terms H =
t

∑
〈i, j〉 c†

i c j with the creation operator c†
i and the annihilation

operator ci of an electron at atom i. For simplicity, we consider
only nearest-neighbor hopping and use t = −1 eV. In matrix
form, the Hamiltonian reads

H =
⎛
⎝ 0 hAB hAC

hBA 0 hBC

hCA hCB 0

⎞
⎠ (4)

with k-dependent entries hAB = hBA = 2t cos(kxa),
hAC = hCA = 2t cos( 1

2 kxa +
√

3
2 kya), and hBC = hCB =

2t cos(− 1
2 kxa +

√
3

2 kya) and the lattice constant a. We
consider spin; so the matrix becomes 6 × 6. The electronic
band structure εν (k) [cf. Fig. 2(b)] exhibits Dirac points
similar to the ones found in honeycomb lattices, such
as graphene [cf. Figs. 5(a) and 5(b) in Appendix A].
Additionally, a flat band arises from the three-atom basis
that allows for closed loops and is not present in honeycomb
lattices. All bands are spin degenerate due to inversion
symmetry I and time-reversal symmetry T of the system in
the absence of spin-orbit coupling.

As expected, the OHC vanishes in ACA because s elec-
trons do not carry an on-site OAM. However, in the modern
formulation, the OHC is finite and depends on the location of
the Fermi level [cf. Fig. 2(c)]. The curve is almost constant
within the bands but changes strongly at the band edges near
the Dirac point and close to the flat band. For an occupation
of two electrons per unit cell, the Fermi level is located at the
Dirac point where the OHC is diverging.

Still, the effect cannot be attributed to the Dirac points
alone, since a honeycomb lattice returns the same band struc-
ture (minus the flat band) but exhibits a vanishing OHC even
in the modern formulation [cf. Fig. 5(c) in Appendix A].
The reason why two almost identical band structures result
in drastically different orbital Hall effects is that the OHC
[Eq. (1)] is determined by the eigenvectors as well.

The on-site (diagonal) elements of the OAM Lz, calcu-
lated by Eq. (3), vanish identically for all bands in the whole
Brillouin zone (not shown here). However, the off-diagonal
elements 〈νk|Lz|αk〉 are finite in the kagome system, and
they enter the matrix elements of the orbital current operator

z

x and result in a finite orbital Berry curvature, which is
encoded as a color code (cyan, positive; orange, negative) in
the electronic structure [cf. Fig. 2(b)]. This means that no net
OAM can be measured, even though the OHC is finite, and
that the transported OAM is not generated at an individual
lattice site but intersite contributions (off-diagonal elements)
arise which correspond to a Bloch state that is spread out over
all atoms in the unit cell. Thus the situation is comparable to
the spin Hall effect, which can be finite despite a compensated
spin magnetization S.

Unfortunately, a trajectory of electron wave packets cannot
be analyzed for the bulk system, as the tight-binding formal-
ism only allows us to access the probability density. However,
investigating a slab geometry (nanoribbon) allows for a deeper
insight into the origin of the orbital Hall effect.

V. EDGE STATES GENERATING CYCLOID
TRAJECTORIES

A slab of the considered kagome system is only periodic
along one direction giving rise to a single wave vector k‖.
Edges are introduced along the perpendicular direction. This
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(a) (b)

FIG. 3. Edge states in an asymmetric kagome-lattice slab that is
periodic along the x direction. (a) Surface band structure along k‖.
The color indicates positive (red) and negative (blue) values of Lz.
(b) Considered slab with probability density (area of purple circles)
of the surface state indicated in (a) for k‖ = 0.95π/2a.

gives rise to a large unit cell and many bands in the slab
band structure. The vast majority of these bands represent a
projection of the bulk band structure, which is why signatures
such as the Dirac points and the flat band appear in the slab
band structure as well. Note that small supercell gaps occur
due to the finite width of the system and that they converge to
zero in the limit of an infinitely wide nanoribbon. However,
caused by the edges, we observe features that were absent in
the bulk band structure: the so-called surface states.

These states depend strongly on the specific shape of the
edge: Most famously, a zigzag edge in a honeycomb lattice,
such as graphene, exhibits an edge state, while an armchair
edge does not [35–37]. For the kagome lattice, we observe
several edge states for multiple edge geometries and want to
focus on the geometry presented in Fig. 3, which has one
“straight” edge and one “triangular” edge [cf. bottom and top
edges of the sketch in Fig. 3(b)].

An edge state occurs close to the flat band, and another oc-
curs between the two Dirac points [cf. Fig. 3(a)]. Their Chern
numbers C are zero due to the time-reversal symmetry of
the system. In Ref. [24] they have been labeled “geometrical
edge states.” In contrast to the edge state in zigzag graphene,
these states have a finite group velocity vν (k‖) = 1

h̄
∂εν (k‖ )

∂k‖
�= 0

allowing electron wave packets to propagate along the edges.
The edge states are symmetric with respect to k‖; for each

right-propagating state at +k0 there is a left-propagating state
at −k0. Due to the vanishing Chern numbers, the edges do not
cause a quantum Hall effect. The Z2 invariant and the spin Hall
effect vanish as well because all the bands are spin degenerate
due to the absence of spin-orbit coupling.

However, the OAM Lz is nonzero and has an opposite
sign comparing states at +k0 and −k0. Note that Lz has been
zero in the bulk because due to the periodic repetition of the
three-atom unit cell, each upward-facing triangle automati-
cally forms a neighboring downward-facing triangle with the
same occupation. Therefore each circular orbit in the bulk
automatically generates an orbit with opposite circumferential
direction resulting in a compensated Lz. At the triangular edge,
this balance of upward- and downward-facing triangles is im-
paired, and so a finite Lz can be generated [color in Fig. 3(a)].

In Fig. 3(b) we show the probability density of electrons
for the surface state between the Dirac points at k‖ = 0.95 π

2a .

Typical for an edge state, the probability density is largest for
lattice sites close to the edge and decays exponentially going
further into the bulk. In particular, the probability density is
largest for the corners of the triangles at the very edge. Even
though we can still only calculate the probability density and
no currents, this distribution of electrons is in agreement with
a cycloid trajectory as presented in Fig. 1(a). If a wave packet
consists of +k0 and −k0 states, the scenario is in analogy with
the forward and backward rolling wheel [cf. Fig. 1(b)], as dis-
cussed in the beginning of this paper: Edge states propagating
along the right carry an opposite OAM compared with edge
states propagating along the left, resulting in the same orbital
current.

Our understanding of the behavior at the edge can be fur-
ther condensed by considering a quasi-one-dimensional chain
resembling the triangles at the very edges. Such a simplistic
three-atom model allows us to calculate similar k‖-resolved
OAM and orbital currents as long as the chain does not have
a glide-mirror symmetry with a symmetry axis along the
periodic direction. In Appendix B, we demonstrate that the
asymmetric chain, as we find at the edge of the considered
kagome lattice, leads to an orbital current [Figs. 6(b) and
6(c)]. The cycloid trajectory with a curvature of constant sign
can be understood as a superposition of a translation and
a rotation as discussed before [cf. Fig. 1(a)]. On the other
hand, a symmetric zigzag chain cannot exhibit an orbital
current since the probability density corresponds to a sinelike
trajectory with alternating curvatures that compensate each
other [Figs. 6(e) and 6(g)] resulting in L = 0. Note that in
a honeycomb lattice, a symmetric zigzag-shaped edge leads
to a dispersionless surface state [38] and therefore no orbital
current can be generated. This also agrees with the finding that
the OHE vanishes for a honeycomb lattice, such as graphene,
even in the modern theory.

So far, we have only taken into account s orbitals (which
are equivalent to pz orbitals for two-dimensional systems lo-
cated in the xy plane). Taking into account all three p orbitals
causes hybridization of px and py, which results in a finite
OHE even within the ACA approach, similar to the findings
in Ref. [14]. OAM-polarized edge states arise in this case
as well, as shown for a related material, PtS2, in Ref. [39].
If spin-orbit coupling is considered, one observes a partial
conversion of the OHE into the spin Hall effect as shown by
Go et al. using the ACA [14]. Spin-orbit coupling lifts the spin
degeneracy and the edge state splits up as shown by Sun et al.
[40].

A categorization of the quantum Hall effect, the quantum
spin Hall effect, and the edge signature of the orbital Hall
effect can be found in Fig. 4. Even though their origins are
fundamentally different, the spin Hall effect (SHE) and OHE
exhibit similar transport of (spin or orbital) angular momen-
tum not only in the bulk but also along the edge. The SHE
caused by an edge state is quantized due to the complete
spin polarization of the surface states. This is not the case
for the OHE because L is not quantized. In contrast to the
quantized versions of the charge and SHE, the orbital edge
current is not protected. In the considered kagome system, the
edge contribution to the OHE appears in its pure form and
is carried by a geometrical edge state that does not bridge
the gap between two bulk bands [cf. Fig. 4(c)]. However,
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FIG. 4. Comparison of edge states and corresponding edge trans-
port. (a) Schematic band structure of a slab giving rise to the quantum
Hall effect. The bulk conduction and valence bands (gray rectangles)
are connected by a chiral edge state that is not spin polarized (gray).
(b) Quantum spin Hall effect. The two edge states are spin polarized
(red, up; blue, down). (c) Orbital Hall effect. The geometric edge
state does not bridge the gap and is partially polarized with respect to
the orbital angular momentum (red, positive; blue, negative). (d)–(f)
Corresponding edge currents in real space. The colored arrows in
(e) correspond to the spin, and those in (f) correspond to the orbital
angular momentum.

especially when spin-orbit coupling is considered, the SHE
and OHE may arise at the same time, and the edge states
can disperse differently. The gap may be bridged, and the
topological invariants C and Z2 may become nonzero integers
giving rise to a quantum Hall effect and quantum SHE that
may be superimposed with the edge contribution to the OHE.

VI. CONCLUSION

In conclusion, we used the method derived in Ref. [21]
to account for intersite contributions to the OHE. While it
has been known that these contributions can drastically dif-
fer from the ACA, our study demonstrates the emergence
of a net OHE in a kagome lattice composed solely of s or-
bitals in which the OHE based on the ACA is strictly zero.
Importantly, we find that the OHE is a more prevalent phe-
nomenon compared with the spin Hall effect and can appear
without a specific orbital composition. The emergence of
orbital currents occurs more easily and is more omnipresent
than anticipated by the ACA. Furthermore, we identify edge
contributions to the OHE. The existence of edge states in
this lattice gives rise to wave packets following a cycloid
trajectory, akin to the trajectory of a particle on a rolling
wheel. These observations highlight the significance of the
OHE in various materials and its relevance for dissipationless
orbitronic applications.

The magnitude of the calculated effect is considerable.
At 1/3 filling, the OHC is diverging in an ideal sample. In
a realistic material, in which the Dirac point opens slightly,
we expect values up to several e

2π
. Therefore they are of the

same order of magnitude as typical spin Hall conductivities
and the orbital Hall conductivities that have been calculated
before using the ACA for other materials such as 4d and 5d
transition metals [12,13] and later 3d materials [41] and Pt
[14]. Recently, the OHE has been observed experimentally in
Ti using the magneto-optical Kerr effect, in which intersite
contributions are already included [42]. Furthermore, orbital

currents have recently been detected on ultrafast time scales
by terahertz emission spectroscopy measurements [43].

Moreover, we note that our findings bear relevance to the
valley Hall effect [44,45], which has garnered significant at-
tention in graphene research. In the context of the kagome
lattice, the presence of distinct Dirac points at K and K ′, which
differ in a physical quantity, gives rise to a Hall effect in that
quantity. This unique characteristic is exemplified in this pa-
per, where the opposite orbital angular momentum associated
with k and −k states [extrema of Lz at the Dirac points in
Fig. 3(a)] leads to the observed OHE.

Importantly, the OHE is not limited to a specific material.
Rather, it is expected to manifest in kagome materials, as
well as materials that allow for loops in the unit cell. This
generality expands the potential avenues for exploring and
harnessing the OHE in diverse systems. We have carried out
additional calculations and find that it is present also in a
square-octagon lattice (cf. Fig. 5 in Appendix A) which has
four basis atoms forming a square in the unit cell.
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APPENDIX A: COMPARISON OF DIFFERENT
TWO-DIMENSIONAL MODEL LATTICES

In this Appendix, we compare the orbital Hall conductivity
(OHC) σ

Lz
xy in four different model lattices. The results are pre-

sented in Fig. 5. In the atomic center approximation (ACA),
the OHC vanishes in all cases because we consider only s elec-
trons that are characterized by the orbital angular momentum
quantum number l = 0. For simplicity, only nearest-neighbor
hoppings with amplitudes t = −1 eV are considered. In the
following, we want to discuss the orbital Berry curvature and
the OHC in the modern formulation.

Figure 5(a) shows a honeycomb lattice such as that in
graphene. The band structure in Fig. 5(b) shows the typi-
cal features such as the Dirac cone at K . The orbital Berry
curvature based on the modern formulation [Eq. (2)] is zero
everywhere, which is the reason why the OHC is zero for
every energy [Fig. 5(c)]. The second row [Figs. 5(d)–5(f)]
shows the same results for the kagome lattice. This time the
orbital Berry curvature is nonzero as discussed in the main
text. This leads to an energy-dependent OHC that exhibits a
sharp peak close to the energy of the Dirac point.

The third [Figs. 5(g)–5(i)] and fourth rows [Figs. 5(j)–5(l)]
show the results for a square lattice and a square-octagon
lattice, respectively. The results are similar to the comparison
of the honeycomb and kagome lattices: Like the honeycomb
lattice, the square lattice [Fig. 5(g)] has no closed loops in
the unit cell. The orbital Berry curvature [Fig. 5(h)] vanishes
everywhere, and the OHC [Fig. 5(i)] is zero for every energy.
However, the square-octagon lattice [Fig. 5(j)] has four atoms
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FIG. 5. Comparison of different two-dimensional model lattices with s orbitals located at the atomic sites (from the top row to the bottom
row: honeycomb, kagome, square, and square-octagon lattices). (a) Honeycomb lattice as found in graphene. (b) Electronic structure with
(vanishing) orbital Berry curvature (orb. Berry curv.) 	Lz

xy using the modern formulation (cyan, positive; orange, negative; gray, zero). (c) OHC
σ Lz

xy as a function of the Fermi energy EF; the OHC vanishes for both methods: ACA and modern theory. (d)–(f) Analog results for the
kagome lattice, which exhibits a finite OHE, however, only if the modern formulation is used [cf. Fig. 2]. (g)–(i) Analog results for a square
lattice, which does not exhibit an OHE. (j)–(l) Analog results for the square-octagon lattice, which allows for a finite OHE using the modern
formulation.
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FIG. 6. Band structure and orbital angular momentum Lz (color is the same as in Fig. 3) for various quasi-one-dimensional chains. (a)–
(d) Quasi-one-dimensional chain resembling the edge of the kagome slab with three atoms in the unit cell. (a) No Lz is generated (gray) when
the edge is a straight line. (b) Lz is finite (red and blue) and antisymmetric with respect to k‖ once the additional atom is taken into account
and the edge becomes asymmetric. (c) The same is true if all nearest-neighbor hoppings are considered. (d) Closed, unconnected loops are not
sufficient to generate Lz. Since the individual triangles are not connected by hopping paths, the bands have no dispersion. (e)–(h) Simplified
versions of the systems, consisting of a zigzag chain with two atoms in the unit cell. (e) A symmetric zigzag edge does not generate a finite Lz.
(f) Once we artificially make the edge asymmetric by considering additional hoppings, Lz is generated. (g) and (h) In these scenarios the edge
becomes symmetric again, giving rise to Lz = 0.

in the unit cell that allow for closed loops of the electron wave
packets. The orbital Berry curvature according to the modern
formulation [Fig. 5(k)] is nonzero, and the corresponding
OHC [Fig. 5(l)] exhibits sharp peaks at the two Dirac points.

APPENDIX B: ORBITAL CURRENTS IN VARIOUS
QUASI-ONE-DIMENSIONAL CHAINS

In the main text, we have discussed that an orbital current
can arise when an object “translates” and “circulates” at the
same time. At the triangular edge of the kagome nanorib-
bon, such a trajectory is present, which can give rise to a
contribution to the OHC. In Fig. 6 we compare different quasi-
one-dimensional chains, corresponding to possible edges of
nanoribbons, and calculate their band structure and k-resolved
orbital angular momentum. The graphs above the band struc-
tures resemble the considered system. The circles are the
lattice sites, and the lines are the considered hoppings with
strength ti = −1 eV. All systems are periodic along the chain
direction.

In Figs. 6(a)–6(d) the chain is like the edge of the kagome
nanoribbon and consists of three atoms. However, we manip-
ulate the hopping to figure out in which scenario translation
(characterized by dispersion in the band structure, v = 1

h̄
∂H
∂k‖

)
and rotation (characterized by an orbital angular momentum

Lz) are present. In that case, an orbital current arises which
contributes to the OHC.

In Fig. 6(a) an electron can propagate along the edge, so
the band structure shows dispersion. However, since there are
no closed loops of the hopping paths, the orbital angular mo-
mentum vanishes for every k point. For this reason, no orbital
current arises. Note that the additional “unconnected” atom
results in a dispersionless band because the hopping to this
atom is disregarded here. In Figs. 6(b) and 6(c) the band struc-
ture exhibits dispersion, and the orbital angular momentum is
nonzero for most k points, which is why an orbital current
can arise in that case. Both scenarios resemble the edge of
the kagome nanoribbon from the main text quite accurately
and explain how the Lz and orbital Hall conductivity arise
at the edge of a kagome slab. The only difference between
the two chains is that in Fig. 6(c) closed loops are present,
while in Fig. 6(b) this is not the case. Still, since the edge
is asymmetric, the corresponding cycloid trajectory transports
an orbital angular momentum, as explained in the main text. In
Fig. 6(d), the individual triangular unit cells are not connected
by hoppings. The band structure exhibits no dispersion, and
no orbital currents can arise.

In the second row [Figs. 6(e)–6(h)], we present re-
sults for simplified systems. These systems, consisting of a
zigzag chain with two atoms in the unit cell, allow for the
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generation of orbital currents as well if the hoppings are
chosen as in Fig. 6(f). The top and the bottom edges must
be inequivalent; otherwise the orbital angular momentum is
compensated due to the glide-mirror symmetry that is present

in Fig. 6(g). The same is true for the systems presented in
Figs. 6(e) and 6(h), which is why the band structure shows
dispersion but no k-resolved orbital angular momentum is
generated.
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5 Publications: Laser-induced ultrafast electron dynamics

In the following section, I investigate how spin and orbital angular momenta are generated, ma-
nipulated and transferred in thin films, induced by excitation with femtosecond laser pulses (goal
number two of the introduction). The photo-induced electron dynamics is discussed during the
laser excitation, i.e. for timescales of a few 10 fs before and after the pulse. Two publications
are presented which discuss the impact of light polarization, sample composition and inhomo-
geneities, in particular surfaces and magnetic/nonmagnetic interfaces, on the electron dynam-
ics. The investigated systems are homogeneous samples of Cu(100) or Co(100) and a Co/Cu(100)
heterostructure illuminated with either a linearly or a circularly polarized laser pulse.

The results have been simulated with evolve, a computer code which is being developed in
our group. As presented in Sec. 3, an effective one-electron density matrix is applied to describe
the time evolution during the laser excitation. The latter enters the Hamiltonian via minimal cou-
pling in dipole approximation. Access to spatio-temporal distributions of observables is gained
by the real-space tight-binding approach.

Photo-induced spin angular momentum (SAM) and (spin-polarized) currents. In the first
publication [OB4], the dynamics of photo-induced SAM and corresponding currents is studied
giving detailed insight into tailoring electron dynamics with ultrafast laser pulses. A symmetry
analysis tells that the laser-induced components of the SAM strongly depends on the polarization
of the laser pulse and on the sample composition, which is fully confirmed by the simulations. Be-
sides, we observe a transition from coherence to incoherence in the spatio-temporal distributions
of the observables, which is attributed to increasing interference after the laser pulse. Moreover,
surfaces and magnetic/nonmagnetic interfaces play a crucial role in ultrafast spin-polarization
effects and facilitate the generation of (spin-polarized) currents.

Ultrafast dynamics of laser-induced orbital angular momentum (OAM). The second pub-
lication [OB5] deals with the laser-induced dynamics of the OAM which plays an increasingly
important role in ultrafast electron and magnetization dynamics. By focusing on excitation with
a circularly polarized laser pulse, we find that a long-lasting OAM component of sizable mag-
nitude can be induced in a normal metal, such as Cu. Furthermore, an interface between a fer-
romagnet and a normal metal significantly facilitates the demagnetization of the magnet by the
OAM contribution to the total magnetization. Finally, to transfer OAM from a ferromagnet into
a normal metal, it is advantageous to choose a laser setup that induces the desired OAM compo-
nent in the ferromagnet, but not in the normal metal.
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5.1 Photo-induced spin angular momentum and (spin-polarized) currents

Spin-polarized free photo electrons in photoemission spectroscopy As explained in Sec. 2.5,
angle-resolved photoemission spectroscopy (ARPES) is a widely used tool to map the electronic
structure of materials. With some experimental setups it is also possible to access the spin polar-
ization of the excited electrons and currents. This technique is called spin- and angle-resolved
photoemission spectroscopy (SARPES). The spin polarization is dictated by the symmetry of
the setup which is determined by the geometry of the sample and the details of the impinging
laser pulse. In particular, the laser polarization plays a crucial role which results in dichroism in
magnetic samples (cf. XMCD, XMLD in Sec. 2.5). Furthermore, the spin polarization of the free
photoelectrons must not be aligned with the ground state magnetization of a laser-excited ferro-
magnetic (FM) material [39]. Moreover, spin-polarized photoelectrons and -currents can also be
generated by laser excitation of nonmagnetic (NM) materials with spin-orbit coupling [38].

However, in the field of ultrafast magnetization dynamics one is not only interested in the
spin polarization of the photoelectrons measured at a detector, but also of the conduction elec-
trons within the laser-excited sample. Many works address the photo-induced demagnetiza-
tion [34] and all-optical switching of magnetic materials [37]. Hence, the focus is often on the
laser-induced change of the spin-polarization associated with the ground state magnetization,
and the other components are disregarded.

This publication. In the following publication “Ultrafast dynamics of electrons excited by fem-
tosecond laser pulses: Spin polarization and spin-polarized currents” [OB4], the photo-induced
electron dynamics during and shortly after the pulse is systematically investigated. Herein, spin
angular momentum (SAM), that is the angular momentum associated with the spin polarization,
and (spin-polarized) currents are examined with femtosecond and atomic resolution [cf. Sec. 3.4].

First, NM Cu is discussed, since it has a vanishing SAM in equilibrium. Thus, the depen-
dence of the laser-induced SAM components on the chosen light polarization (p, s and circularly
polarized) is observed most clearly. The simulations demonstrate that SAM and ultrafast (spin-
polarized) currents of sizable magnitudes are induced in a NM material, where the surface acts
as a “source” for the currents.

The focus in magnetic samples is on excitation with a p-polarized laser pulse, first for a homo-
geneous Co sample. However, instead of aiming at demagnetization of the FM, the laser-induced
SAM components which are not associated with the magnetization direction are investigated. In
doing so, we observe a precession of the SAM vector which is driven by the laser pulse. Besides,
striking differences between the SAM induced in FM and NM samples are found: a superposi-
tion of fast and long-period oscillations in Co, whereas Cu exhibits mainly long-period ones that
are slightly modulated with rapid oscillations.

Finally, the Co/Cu heterostructure is investigated to address the impact of a FM/NM interface.
The main finding is that photo-induced (spin-polarized) currents are initiated at the interface and
propagate into both regions towards the surfaces, which is attributed to a (spin-dependent) im-
balance of occupation. The simulations confirm the results of a symmetry analysis that predicts
which components of the SAM are allowed or forbidden, dependent on the laser polarization
[cf. Tab. II in the publication]. However, a general trend is observed in all simulations, namely
unison oscillations before and reduced coherence after the pulse, which can be attributed to in-
creasing interference.

Note that animations of the dynamics are provided in the supplemental material of the publi-
cation.

The following publication: Reprinted (whole article) with permission from O. Busch, F. Ziolkowski, I.
Mertig and J. Henk, Physical Review B 108, 184401 (2023); Ref. [OB4]; Ultrafast dynamics of electrons
excited by femtosecond laser pulses: Spin polarization and spin-polarized currents. Copyright (2023) by
the American Physical Society.
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Laser radiation incident on a ferromagnetic sample produces excited electrons and currents whose spin
polarization must not be aligned with the magnetization—an effect due to spin-orbit coupling that is ubiquitous
in spin- and angle-resolved photoemission. In this paper, we report on a systematic investigation of the dynamics
of spin polarization and spin-polarized currents produced by femtosecond laser pulses, modeled within our
theoretical framework EVOLVE. The spin polarization depends strongly on the properties of the laser pulse and
on the sample composition, as shown by comparing results for Cu(100), Co(100), and a Co/Cu heterostructure.
We find a transition from coherence before the laser pulse’s maximum to incoherence thereafter. Moreover,
the time dependence of the spin-polarization components induced by spin-orbit coupling differ significantly
in Cu and Co: in Cu, we find long-period oscillations with tiny rapid modulations, whereas in Co prominent
rapid oscillations with long-period ones are superimposed. The pronounced spatial dependences of the signals
underline the importance of inhomogeneities; in particular, magnetic/nonmagnetic interfaces act as a source for
ultrafast spin-polarization effects. Our investigation provides detailed insight into electron dynamics during and
shortly after a femtosecond laser excitation.

DOI: 10.1103/PhysRevB.108.184401

I. INTRODUCTION

Spin-polarized photocurrents are ubiquitous in spin- and
angle-resolved photoelectron spectroscopy (SARPES) [1,2].
In nonmagnetic samples, the spin polarization of the de-
tected photocurrents—brought about by spin-orbit coupling—
depends on details of the setup, in particular on those of the
incident electromagnetic radiation (e.g., on photon energy, po-
larization, and incidence direction; see, for example, Ref. [3])
and on the symmetry of the surface [4–7]. In magnetic sam-
ples, the same effect results in magnetic dichroism [8,9], and
as theoretical and experimental studies have shown, the spin-
orbit-induced spin polarization of photoelectrons must not be
aligned with the magnetization direction (see, for example,
Ref. [8] and references therein).

In ultrafast spin dynamics, electrons are excited by elec-
tromagnetic radiation as well, for example, by a femtosecond
laser pulse. Focusing on the demagnetization of a magnetic
sample [10–12], one investigates mainly the reduction in the
magnetization and disregards its change in direction. The lat-
ter could be brought about by photoinduced spin-polarization
components that are not aligned with the ground state’s mag-
netization. In SARPES these “oblique” components are those
of electrons measured at a detector, whereas in ultrafast spin
dynamics they are those of electrons within a sample; thus,
one is concerned with different boundary conditions [13].
This idea immediately calls for a systematic investigation of
photoinduced spin polarization and spin-polarized currents
caused by femtosecond laser pulses.

*Corresponding author: oliver.busch@physik.uni-halle.de

Ultrafast spin currents have been studied for more than
a decade, for example, in terms of superdiffusive spin cur-
rents. Battiato and coworkers focused on the density of hot
majority carriers [14–16]. The dynamics of the spin currents
is calculated using spin-dependent scattering rates and spin-
dependent transmission of the interface, while the excitation
is treated as a source term. Other semiclassical approaches are
based on the Boltzmann transport equation, as in the work by
Nenno et al. [17], or on a wave-diffusion equation, as in the
work by Kaltenborn et al. [18].

In the theoretical study reported in this paper, we concen-
trate on the spin-orbit-induced spin-polarization effects during
and shortly after a laser excitation. In order to determine the
main features we begin with a nonmagnetic sample, Cu(100),
and then turn to a magnetic sample, fcc Co(100). Since real
samples often contain interfaces, we investigate the role of the
latter by means of a Co/Cu(100) heterostructure.

Questions worth considering are, among others, which
components of the spin polarization are forbidden by sym-
metry? How large are the allowed components, and are their
magnitudes comparable to those observed in SARPES? What
are their temporal and spatial distributions? Does magnetism
reduce the oblique spin-orbit-induced components (here in
samples containing Co)? What are the detailed properties of
the photoinduced currents? We respond to these questions in
this work.

The simulations were performed using our computational
framework EVOLVE [19,20]. In contrast to the established
approaches mentioned above, EVOLVE goes beyond the two-
current model. Moreover, details of the laser radiation are
taken into account, with excitations included in the electric
dipole approximation. On the other hand, scattering processes

2469-9950/2023/108(18)/184401(9) 184401-1 ©2023 American Physical Society
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FIG. 1. Geometry of a Co/Cu heterostructure. The fcc film con-
sists of 40 layers stacked in the x direction, with 20 layers of Co
atoms (cyan spheres) and 20 layers of Cu atoms (magenta spheres).
The Co magnetic moments point along the z direction (black arrows).
The film is infinite in the y and z directions but finite in the x
direction. Sites with intense color forming a zigzag chain belong to
one unit cell of the slab. A laser pulse impinges with a polar angle
ϑph of 45 ◦ within the xz plane onto the sample.

are not considered on the microscopic level, but coupling to
a bosonic heat bath allows for relaxation of the excited state
toward the thermal ground state.

This paper is organized as follows. In Sec. II we sketch our
approach to ultrafast electron dynamics (Sec. II A), discuss
spin polarization as well as currents (Sec. II B), and perform
a symmetry analysis (Sec. II C). Results are discussed in
Sec. III: beginning with Cu(100) (Sec. III A), we turn then
to magnetic systems, namely, fcc Co(100) (Sec. III B) and
a Co/Cu(100) heterostructure (Sec. III C). We conclude in
Sec. IV.

II. THEORETICAL ASPECTS

A. Ultrafast electron dynamics

The samples are freestanding fcc(100) films 40 layers
thick. We consider Cu(100), Co(100), and Co/Cu(100) (with
20 layers each) films. The Cartesian x axis is perpendicular
to the film, and we apply periodic boundary conditions within
the film, i.e., in the y and z directions. In the case of Co(100)
and Co/Cu(100), the magnetic moments are collinear and
point along the z direction (Fig. 1) [21].

Co grows epitaxially on Cu(100), so that Co films adopt the
in-plane lattice of Cu(100) but are tetragonally distorted (face-
centered tetragonal lattice). However, the EVOLVE computer
code requires a single lattice constant, so Co regions are taken
as fcc with the lattice constant of Cu (0.36 nm [22] instead of
0.34 nm found for fcc Co [23]).

The electronic structure of the samples is described by a
tight-binding Hamiltonian Ĥ0 of Slater-Koster type [24], with
parameters for the s, p, and d orbitals taken from Ref. [25].
Collinear magnetism and spin-orbit coupling are taken into
account as described in Ref. [26].

The electron system is excited by a femtosecond laser pulse
with photon energy Eph = ω (in atomic units, h̄ = 1). The
laser’s electric field

E(t ) = l (t )
∑
l=s,p

E l cos(ωt + ϕl ) (1)

is a coherent superposition of s- and p-polarized partial waves
modulated with a Lorentzian envelope l (t ). E l and ϕl are the
amplitudes and the phase shifts of the partial waves, respec-
tively.

The electromagnetic radiation impinges within the xz plane
onto the films, with a polar angle ϑph = 45◦ of incidence.
For s-polarized light (Ep = 0), E(t ) points along the y axis,
which is perpendicular to the plane of incidence, the latter
spanned by the incidence direction of the light and the surface
normal. For p-polarized light (Es = 0), E(t ) lies within the xz
incidence plane. Circularly polarized radiation with helicity
σ± is obtained with ϕs − ϕp = ±90 ◦ and equal amplitudes
(Es = Ep).

Excitation with a circularly polarized laser pulse may in-
duce a spin polarization [8], which is discussed in this work,
or a magnetization, i.e., the inverse Faraday effect [27–29].
An induced magnetization creates a magnetic field that could
dynamically affect the electrons and the magnetic texture of
magnetic samples, thereby coupling the electron dynamics
with magnetization dynamics. In the present stage of the
EVOLVE framework, this feature is not incorporated.

The electron dynamics is described by the von Neumann
equation

−i
d ρ̂(t )

dt
= [ρ̂(t ), Ĥ (t )] (2)

for the one-particle density matrix

ρ̂(t ) =
∑
n,m

|n〉 pnm(t ) 〈m|. (3)

{|n〉} is the set of eigenstates of Ĥ0, with Ĥ0|n〉 = εn|n〉. The
time-dependent Hamiltonian Ĥ (t ) comprises the electric field
of the laser via minimal coupling [30]. The equation of mo-
tion (2) for ρ̂(t ) is solved within our theoretical framework
EVOLVE; for details see Refs. [19,20].

B. Spin polarization and spin-polarized currents

Site-, orbital-, and spin-resolved properties of an observ-
able O are obtained by taking partial traces in the expectation
values 〈O〉(t ) = Tr[ρ̂(t ) Ô], with the density matrix in an ap-
propriate basis.

In matrix form an expectation value reads 〈O〉(t ) =
tr[P(t ) O]. We define matrices pσσ ′

kl and hσσ ′
kl for the density

matrix and the Hamiltonian, respectively, with elements(
pσσ ′

kl

)
αβ

= pkασ,lβσ ′ , (4a)
(
hσσ ′

kl

)
αβ

= hkασ,lβσ ′ . (4b)

k and l are site indices, σ and σ ′ specify the spin orientation (↑
and ↓ with respect to the z direction), and α and β are orbital
indices. These matrices are combined into site-resolved block
matrices

Pkl =
(

p↑↑
kl p↑↓

kl

p↓↑
kl p↓↓

kl

)
, (5a)

Hkl =
(

h↑↑
kl h↑↓

kl

h↓↑
kl h↓↓

kl

)
. (5b)
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The spin polarization at site l is given by

sμ

l = tr (PllΣ
μ), μ = x, y, z,

in which Σμ is a block Pauli matrix. Explicitly,

sx
l = 2 Re tr

(
p↑↓

ll

)
, (6a)

sy
l = −2 Im tr

(
p↑↓

ll

)
, (6b)

sz
l = tr

(
p↑↑

ll − p↓↓
ll

)
, (6c)

with normalization tr(Pll ) = 1. The site-averaged spin polar-
ization

Sμ = 1

Nsite

∑
l

sμ

l , μ = x, y, z, (7)

is obtained by summation over all Nsite sites in a film’s unit
cell. Assuming a slab geometry, a unit cell consists of Nsite =
40 sites forming a zigzag chain in the x direction (see the
color-saturated sites belonging to one unit cell in Fig. 1).

The current

jkl = − i

2
tr (PlkHkl ) − 〈l ↔ k〉 (8)

from site l to site k and the respective spin-polarized currents

jμkl = − i

4
tr (Plk[Σμ, Hkl ]+) − 〈l ↔ k〉, μ = x, y, z, (9)

are derived from Mahan’s equation for the current operator in
spin-symmetrized form [31] (see also Refs. [32,33]; [·, ·]+ is
the anticommutator). For collinear magnetic textures, as dis-
cussed in this paper, intersite hopping with spin flip does not
occur in Ĥ0, i.e., h↑↓

kl = 0 and h↓↑
kl = 0. With this information,

the above equations become

jkl = − i

2
tr

(
p↑↑

lk h↑↑
kl + p↓↓

lk h↓↓
kl

) − 〈l ↔ k〉, (10a)

jx
kl = − i

4
tr

(
p↑↓

lk + p↓↑
lk

)(
h↑↑

kl + h↓↓
kl

) − 〈l ↔ k〉, (10b)

jy
kl = 1

4
tr

(
p↑↓

lk − p↓↑
lk

)(
h↑↑

kl + h↓↓
kl

) − 〈l ↔ k〉, (10c)

jz
kl = − i

2
tr

(
p↑↑

lk h↑↑
kl − p↓↓

lk h↓↓
kl

) − 〈l ↔ k〉. (10d)

Interchanging the site and the spin indices yields jkl = − jlk
and jμkl = − jμlk = j−μ

lk .

C. Symmetry analysis

Instead of a full group-theoretical analysis [8], we perform
a symmetry analysis which reveals which components of the
spin polarization are forbidden for a given setup. The impor-
tant symmetry is the reflection m̂y at the xz plane: (x, y, z) →
(x,−y, z) since the xz plane is a symmetry plane of the lattice
and is also the laser’s plane of incidence (spanned by the light
incidence direction and the surface normal).

For p-polarized light, m̂y is a symmetry operation for a
nonmagnetic sample (M = 0; here Cu) which indicates that
only Sy is allowed to be nonzero (Table I). A z magne-
tization breaks this symmetry [M 
= 0; here Co(100) and
Co/Cu(100)], and all three components of S are allowed to
be nonzero.

TABLE I. Effect of symmetry operations on the laser’s electric
field E decomposed into its s- and p-polarization components Es and
Ep, the magnetization M in the z direction, and the electron spin
polarization S = (Sx, Sy, Sz ). 1̂ is the identity operation, and m̂y is
the reflection at the xz plane.

Operation Electric field Magnetization
Spin

polarization

1̂ Es Ep M Sx Sy Sz

m̂y −Es Ep −M −Sx Sy −Sz

For s-polarized light, the electric field of the laser is along
the y direction. Since for homogeneous nonmagnetic samples
(Cu) the z rotation by 180◦ leaves the setup invariant, Sy = 0
and Sz = 0. For Sy this symmetry holds for the spin polar-
ization at each site (sy

l = 0). For Sz, however, it holds only
for the site-averaged spin polarization, that is, sz

l at equivalent
sites l may be nonzero but compensate each other (equiva-
lent sites have the same distance from the two surfaces of
a film).

Considering circularly polarized light, m̂y reverses the
helicity σ± → σ∓ [(Es, Ep) → (−Es, Ep)], which indicates
that Sx and Sz change sign under helicity reversal for a non-
magnetic sample but Sy does not. For magnetic samples this
strict relation is broken, which may be regarded as a magnetic
spin dichroism (magnetic dichroism is an intensity change
upon magnetization reversal [34]; here we are concerned with
a change in the spin polarization). The symmetry-allowed and
-forbidden spin-polarization components are summarized in
Table II.

III. RESULTS AND DISCUSSION

To discuss our results, we increase the order of com-
plexity step by step. We begin with a nonmagnetic Cu(100)
film since it exhibits the phenomena most clearly. The effect
of magnetism is addressed by fcc Co(100), and eventu-
ally, the combination of both systems into a Co/Cu(100)
heterostructure allows an examination of the effect of a
magnetic/nonmagnetic interface. For selected cases, anima-
tions of the spin dynamics are provided in the Supplemental
Material [35].

In all simulations discussed below, the laser has a photon
energy of 1.55 eV and a fluence of about 3.3 mJ cm−2 and
is modulated with a Lorentzian l (t ) 10 fs wide. All samples
comprise 40 layers, with sites 0 and 39 defining the bottom

TABLE II. Components of the site-averaged electron spin polar-
ization S = (Sx, Sy, Sz ) allowed (+) or forbidden (−) by symmetry,
with the magnetic case given in rectangular brackets. For details see
the text.

Polarization Sx Sy Sz

p − [+] + [+] − [+]
s − [−] − [+] − [+]
Circular + [+] + [+] + [+]
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FIG. 2. Photoinduced spin polarization and currents for a
Cu(100) sample excited by p-polarized light. (a) Site-averaged spin
polarization Sy(t ) (black) and electric field of the laser pulse (orange;
schematic). (b) Local spin polarization sy

l (t ) for selected sites, as
indicated. (c) Currents jkl (t ) between neighboring sites l → k =
l + 1 for selected site pairs as indicated. (d) Currents jkl (t ) and
(e) spin-resolved currents jy

kl (t ); their magnitude is indicated by color
bars with the same range (red is positive; blue is negative). Data in
[(c)–(e)] are in arbitrary units. Vertical dashed lines at t = 0 fs mark
the maximum of the laser pulse.

FIG. 3. Photoinduced spin polarization and current of a Cu(100)
film excited by s-polarized light. (a) sz

l (t ) for selected sites as in-
dicated. Sites 8 (18) and 31 (21) are equivalent. (b) Currents jkl (t )
displayed as a color scale (red is positive, and blue is negative; in
arbitrary units). Dashed arrows serve as guides to the eye. Vertical
dashed lines at t = 0 fs indicate the maximum of the laser pulse.

and top surfaces, respectively. We focus on currents across the
samples, that is, along the zigzag path displayed in Fig. 1.

A. Cu(100)

In accordance with the symmetry analysis (Table II), the
calculations for p-polarized light yield only a nonzero Sy

that is slightly modulated with the doubled laser frequency
[Fig. 2(a)]. The sizable magnitude is explained by the local
contributions sy

l (t ), which oscillate in phase with almost iden-
tical amplitudes [constructive interference; Fig. 2(b)]. After
the laser pulse, deviations among the site-resolved spectra
increase marginally (see t > 12 fs).

The above “unison” oscillations found for sy
l (t ) show up as

well in the currents jkl (t ) before the laser pulse’s maximum
[Figs. 2(c) and 2(d)], but with a much smaller period. The
laser’s photon energy of 1.55 eV corresponds to a period of
2.7 fs, or about 3.7 oscillations within 10 fs, which is also seen
in Figs. 2(c) and 2(d). This suggests that the electron system
follows the electric field of the laser, which is a collective
motion across the film (in the x direction). At about t = −3 fs,
increasing interference, starting at the surfaces, reduces the
coherence in the oscillations, thereby obliterating the pattern
at later times.

The oscillations of the currents are accompanied by those
of the spin-resolved currents jy

kl (t ) in opposite directions
[Fig. 2(e); the x and z components are zero]. A current in the
positive x direction [red in Fig. 2(d)] appears simultaneously
with a spin-polarized current in the opposite direction [blue in
Fig. 2(e)], which implies a flow of −y-polarized electrons in
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FIG. 4. Photoinduced spin polarization Sμ(t ) and spin-resolved currents jμkl (t ) for a Cu(100) film excited by circularly polarized light with
helicity σ+ (top row) and for fcc Co(100) excited by p-polarized light (bottom row). (a) Site-averaged spin polarization Sμ(t ) for Cu(100)
(μ = x, y, z). [(b)–(d)] Spin-resolved currents jμkl (t ) displayed as a color scale, as in Fig. 2. (e) Sx (t ) and Sy(t ) for Co(100). [(f)–(h)] The same
as [(b)–(d)] using the same color scale. Dashed vertical lines indicate the maximum of the laser pulse at t = 0 fs.

the x direction [36]. Again, the current pattern becomes com-
plicated after the laser pulse due to the interference mentioned
before.

For s-polarized light, the symmetry analysis yields S = 0
but allows for sz

l 
= 0. The photoinduced local spin polariza-
tions at equivalent sites thus have to compensate each other.
This is fully confirmed by the simulations: the spin polariza-
tion is spatially antisymmetric within the Cu film [Fig. 3(a)].

The antisymmetry of the spin polarization may be at-
tributed to the surface normals of the freestanding Cu film
being opposite to each other. This reasoning complies with
spin polarization effects in spin- and angle-resolved photoe-
mission [4–8] since they rely on the presence of a surface (they
do not occur in bulk samples). Hence, one may regard the
present result as an indication of the importance of surfaces
and interfaces for ultrafast spin dynamics; see, for example,
Ref. [19] (for reviews on polarized electrons at surfaces we
refer to Refs. [37,38]).

The above argument is supported by the currents jkl (t )
[Fig. 3(b)] which are initiated at the surfaces: compare, for
example, the darker color scale at surface sites 0 and 39 in
Fig. 3(b) with the lighter colors in the interior of the film at t =
−5 fs. The currents enter the film’s interior slightly after the
laser’s maximum (at t ≈ 4 fs), as is schematically indicated
by the dashed arrows (due to the antisymmetry, the current at
the film’s center vanishes, giving rise to the white horizontal
stripe), and are reflected at the surfaces at t ≈ 12 fs, leading to
a crisscross pattern [see the dashed arrows in Fig. 3(b)]. The
spin-resolved currents jz

kl (t ) exhibit a pattern (not shown here)
reminiscent of that of jy

kl (t ) for p-polarized light displayed in
Fig. 2(e).

The antisymmetry of the observed pattern is apparently
related to the symmetry of the sample, in particular to the
presence of two identical surfaces. It is understood as a su-
perposition of two patterns with opposite signs, one attributed
to the bottom surface and one attributed to the top surface. In

experiments, this symmetry is usually broken, for example, by
a substrate, thereby leading to disparate surfaces. For this rea-
son, one would observe a superposition of dissimilar patterns
or, in the case of thick samples, the pattern attributed to one
of the surfaces.

With regard to circularly polarized light, it is sufficient to
discuss one helicity (here σ+ as defined in Sec. II A) since
the x and z components of both spin polarization and spin-
resolved currents change sign upon helicity reversal, whereas
the y component does not, as confirmed by our simulations.

All components of the site-averaged spin polarization Sμ(t )
and the spin-resolved currents jμkl (t ) are nonzero (Fig. 4, top
row). In an admittedly simple picture Sx(t ) and Sz(t ) may
be viewed as being due to the optical orientation in the pho-
toemission [39]. Recall that the laser impinges within the xz
plane onto the film; for a single atom optical orientation by
circularly polarized light would then cause spin polarization
within the xz plane. Likewise, Sy(t ) may be attributed to the
effect predicted by Tamura et al. [4] for SARPES. Of course,
this “decomposition of effects” ignores that the superposition
of the laser’s s- and p-polarized partial waves is coherent and
shifted in phase. Moreover, the electron dynamics mixes the
components of the local spin polarization because of spin-
orbit coupling; nevertheless, Sy(t ) is reminiscent of that for
p-polarized light [Fig. 2(a)].

As shown in Ref. [40], the spin polarization depends on the
angle of incidence and on the photon energy. Moreover, it is
strongly energy dependent, with extreme values of up to 0.5
(Fig. 8 in that publication). Averaging over energy in Figs. 8
and 10 in Ref. [40] would yield roughly 0.1, which is larger
than but comparable to the maximum values in Fig. 4(a).

B. fcc Co(100)

For fcc Co(100) we focus on excitation by p-polarized light
as a representative case (bottom row in Fig. 4; since illumi-
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FIG. 5. Laser-driven precession of the spin polarization in Co(100) excited by p-polarized light. The color scale visualizes the time
evolution from t = −20 fs (dark blue) to t = 0 fs (orange). (a) Correlation of Sy(t ) and Sx (t ) using data presented in Fig. 4(e). (b) and (c) show
Sx (t ) and Sy(t ) versus the electric field Eph(t ) of the laser pulse, respectively.

nation by circularly polarized light produced similar results,
we refrain from discussing those results). As expected and
often found in both experiment and theory, the site-averaged
spin-polarization component Sz(t ) associated with magnetism
is reduced by the laser pulse; that is, the sample becomes
demagnetized (see Refs. [19,20] and references therein). This
demagnetization is site dependent (not shown), similar to the
induced spin polarization in Cu(100) discussed before.

In contrast to nonmagnetic Cu(100), the magnetization of
Co(100) breaks the mirror symmetry at the xz plane and
allows for nonzero Sx(t ) and Sy(t ) (see Table II). Both com-
ponents are modulated with the doubled laser frequency but
shifted in phase [Fig. 4(e)]. Their magnitudes are roughly
10 % of the Sy component in Cu(100) [Fig. 2(a)]. Moreover,
both Sx(t ) and Sy(t ) of Co(100) exhibit a beating pattern (with
maxima at about t ≈ 0, 10, and 20 fs), while Sy(t ) of Cu(100)
displays a clear sinusoidal shape.

The spin-polarization components Sx(t ) and Sy(t ) exhibit
a regular pattern before the maximum of the laser pulse
[Fig. 4(e)], which hints at laser-driven precession of the
spin polarization S(t ). Indeed, Sx(t ) and Sy(t ) display a left-
handed helix, starting at the origin, with increasing amplitude
[Fig. 5(a)]. Moreover, the noticeable shift of the spiral cen-
ter to positive values is explained by spin-orbit coupling: a
minimal tight-binding model for the motion of S(t ), including
spin-orbit coupling, yields two features, a deformation of the
precession cone and a shift of the cone axis off the magnetiza-
tion direction (z axis). Without spin-orbit coupling, one finds
the usual circular cone with its axis along the magnetization
direction.

The time sequences of Sx(t ) and Sy(t ) versus the laser
amplitude Eph(t ) prove that the precession is driven by the
laser [Figs. 5(b) and 5(c)]. The variations in the patterns are
attributed to the phase shift between Sx(t ) and Sy(t ).

The striking differences in the spin polarization of Cu and
Co could be due to the occupation of the electronic states,
to spin-orbit coupling, or to exchange splitting. In order to
shed light upon the origin we performed simulations for Cu
and Co in which the number of initially occupied states, the
strength of the spin-orbit coupling, and the exchange splitting
were varied (not shown here). While the former two have a
minute effect on the spin polarization in both Cu and Co,
reducing the exchange splitting removes the rapid oscillations
and preserves the long-period oscillations that are observed in

Co(100) [Fig. 4(e)]. These findings prompt exchange splitting
as the main origin.

As for the spin polarization, all three components of the
spin-resolved currents are nonzero [Figs. 4(f)–4(h)], with the
z-component jz

kl (t ) being the largest, as exhibited by darker
colors in Fig. 4(h). All components oscillate in unison before
the laser pulse maximum; complicated current patterns arise
after the pulse.

Summarizing briefly for Cu and Co, we find that the
simulations confirm the symmetry considerations. General
trends are unison oscillations before the laser maximum and
complicated patterns thereafter; the optically induced spin-
polarization components are smaller in a magnetic sample but
exhibit precession before the laser pulse maximum.

C. Co/Cu heterostructure

We now address a Co/Cu(100) heterostructure illuminated
by p-polarized light. Decomposing Sx(t ) and Sy(t ) of the
entire sample [black lines in Figs. 6(a) and 6(b)] into the
respective parts in the Co (cyan) and Cu (magenta) regions in-
dicates that Sx(t ) [Fig. 6(a)] is first induced by the laser pulse
in the Co region and subsequently enters the Cu region [recall
that Sx(t ) is symmetry forbidden in Cu(100); see Sec. III A].
This finding underlines the importance of an interface for
ultrafast spin dynamics.

In contrast, Sy(t ) is by far the largest in the nonmagnetic
Cu region [Fig. 6(b)], whereas it is strongly reduced in the
Co region. This finding corroborates the above argument
that magnetism may reduce photoinduced spin-polarization
components. Both the magnitude and frequency of the site-
averaged components in the two regions are reminiscent of
those in the respective homogeneous samples.

The currents jkl (t ) exhibit an oscillating collective mo-
tion across the sample before the pulse, similar to Cu(100)
[Fig. 2(c)]. However, beginning slightly before the pulse max-
imum at t = 0 fs, the spatial homogeneity is lost; instead
there are sizable currents initiated at the interface (visualized
by the horizontal dashed line at site 19) and propagating
toward the Co region [dark blue features in Fig. 6(c)]. This
finding corroborates that the interface acts as a “source” of
ultrafast spin currents. At the magnetic/nonmagnetic inter-
face, the imbalance of occupation facilitates the production
of currents. Moreover, since the imbalance is spin dependent,
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FIG. 6. Photoinduced spin polarization and currents of a
Co/Cu(100) heterostructure excited by p-polarized light. (a) Compo-
nent Sx (t ) of the site-averaged spin polarization (black) decomposed
into that in the Co region (cyan) and that in the Cu region (magenta).
The latter are normalized with respect to Nsite [see Eq. (7)]. The
maximum of the laser pulse at t = 0 fs is marked by the vertical
dashed line. (b) The same as (a), but for Sy(t ). (c) Currents jkl (t )
depicted as a color scale (red is positive; blue is negative). The
Co/Cu interface is identified by the horizontal dashed line. (d) The
same as (c), but for spin-resolved currents jz

kl (t ). Arrows serve as a
guide to the eye.

the spin-resolved currents jz
kl (t ), that is, those with spin along

the magnetization direction, should also be triggered at the
interface. This is, indeed, verified by jz

kl (t ) [Fig. 6(d)]. More
precisely, these currents are homogeneous in the Co region
before the pulse; they become enhanced at the interface at
about t = −5 fs (dark red patches; also illustrated by the black
arrows). The x- and y-spin-resolved currents (not shown here)

are not affected as much by the interface as the z component,
which suggests that the imbalance of magnetization (spin-
dependent occupation) at the interface is the most relevant
origin.

The above argument concerning the importance of inter-
faces is further supported by the varying velocities of jz

kl (t )
in the Cu and Co regions (approximately 2.8 nm/fs in Cu
and 0.9 nm/fs in Co [see the inclinations of the arrows in
Fig. 6(d)]; these velocities compare well with those computed
for other materials, e.g., in Refs. [17,41]). In the latter, we
find the homogeneous oscillating current pattern before the
pulse maximum. In the Cu region, which is nonmagnetic, the
same pattern appears oblique, as indicated by the black dashed
arrows in Fig. 6(d). This means that these currents spill out
from the Co region into the Cu region and propagate toward
the Cu surface (site 39).

IV. CONCLUSION AND OUTLOOK

Our theoretical findings suggest that femtosecond laser
pulses impinging on thin films may be used to generate ultra-
fast oscillating spin-polarized currents. Moreover, interfaces
amplify the production of these currents, as is evidenced in
our study. And the spin polarization can be tuned by details of
the laser’s electric field, in particular by the polarization of the
radiation.

Inhomogeneities in the sample (surfaces, interfaces) yield
intrinsic imbalances of occupation which facilitate the pro-
duction of spin-polarized currents. This finding supports
reasoning given in Ref. [42], in which it was argued that a
spin-dependent imbalance of occupation, termed spin voltage
in that paper, results in both demagnetization and spin cur-
rents.

Spin pumping is the transfer of spin from a ferromagnet
into an attached normal metal due to precession of the local
magnetic moments in the ferromagnet. Extending this picture,
fluctuations of local magnetic moments may also cause the
effect [43,44]. Assuming a fixed collinear magnetic structure,
based on electron dynamics rather than on magnetization dy-
namics, the transfer of spin found in the presented simulations
does not fall into this category of spin pumping but, never-
theless, may be termed “spin pumping” in a general sense.
Hence, our study gives further details on the mechanisms for
the transfer of spin polarization across a magnetic/normal
metal interface generated by laser excitation, as reported, for
example, in Refs. [14,17,45,46].

As shown in this paper, already the combination of 3d
materials (here Co and Cu) produces sizable spin-polarization
effects. The latter could be enhanced further by increasing the
imbalance of spin-dependent occupation at interfaces. Mate-
rial combinations worth investigating could comprise heavier
elements with larger spin-orbit coupling (e.g., Pt [40]) and
heavy magnetic materials (e.g., Gd).

A direct observation of the photoinduced spin polarization
and the spin-polarized currents studied in this paper chal-
lenges experiments because of their as yet limited temporal
resolution. However, it is conceivable to probe the currents
via their emitted electromagnetic radiation (see, for example,
Ref. [47]).
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We conclude by discussing the advantages and disadvan-
tages of the EVOLVE framework. The real-space approach
gives access to spatiotemporal distributions of observables
with atomic and femtosecond resolution. Being an effective
one-electron approach, large samples and long time spans
can be simulated; in contrast, ab initio approaches are lim-
ited in sample size and time interval but are more accurate
(e.g., Ref. [48]). Moreover, EVOLVE is flexible: interactions
(e.g., spin-orbit coupling and exchange splitting) can be var-
ied deliberately, one can choose closed or open boundary
conditions along individual directions, and samples may con-
tain inhomogeneities (e.g., defects or interfaces, noncollinear
magnetic textures). For thermalization (i.e., relaxation from
an excited state toward the thermal ground state) that occurs
on a timescale of a few hundred femtoseconds, coupling to a
bosonic heat bath can be turned on [19,20].

Electron-electron scattering is currently not explicitly
included in the simulations but may be added in the

Hartree-Fock approximation. The validity of the presented
results is therefore somewhat limited, even when focusing on
the period of a laser excitation. Since the electron-electron in-
teraction is reflected partially in the tight-binding parameters
(for the ground state), only deviations from the ground state’s
occupation profile need to be considered. We expect attraction
and repulsion within the dynamic spatial charge distribution
that is generated by the laser pulse. For example, the electron-
electron interaction could reduce the propagation length of
currents (attractive interaction) or spread regions with in-
creased or decreased occupation (repulsive interaction), both
of which could diminish the coherence in occupation and
current profiles.
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5.2 Ultrafast dynamics of laser-induced orbital angular momentum

Increasing role of orbital angular momentum in solid-state physics. In the field of ultrafast
magnetization dynamics, many works examined how angular momentum can be generated,
manipulated and transported, in particular induced by laser excitation (for a review, see e.g.
Ref. [40]). After the photo-induced demagnetization of ferromagnets has been observed exper-
imentally [34], it has been shown that the net magnetization of ferrimagnetic materials can be
entirely reversed by all-optical switching [37]. Furthermore, multilayer systems, such as ferro-
magnetic/nonmagnetic heterostructures, gained interest in this field since angular momentum
can be transported across the interface by ultrafast spin currents [45, 48].

However, the focus has been on the spin angular momentum (SAM) which lends its name to
the field spintronics. An essential key element in the above effects is spin-orbit interaction which
couples the SAM with its orbital companion, the orbital angular momentum (OAM). The latter
has been given less consideration due to the aforementioned orbital quenching, the suppression
of OAM in the ground state. Yet, in recent years, many groups started to investigate the dynamics
of the OAM which led to the alternative field of orbitronics [21]. Since the detection of orbital
currents and their distinction from spin currents in experiments remains challenging, the study
of laser-induced generation and transport of OAM has great potential.

This publication. In the following publication “Ultrafast dynamics of orbital angular momen-
tum of electrons induced by femtosecond laser pulses: Generation and transfer across inter-
faces” [OB5], the laser-induced orbital dynamics of electrons is examined. By investigating the
same setups as in the previous publication [OB4], results for the OAM can be compared to the
ones for the SAM. The components of the OAM, which are allowed or forbidden by the sym-
metry of the system, are the same as the ones of the SAM (cf. Tab. II in [OB4]). However, as a
general trend, we observe faster oscillations and less decoherence after the laser pulse for the
OAM dynamics than obtained for the SAM.

In publication [OB5], the focus is on excitation with circularly polarized light. We find that ul-
trafast orbital currents are generated in nonmagnetic [Cu(100)] and magnetic samples [Co(100)
and Co/Cu(100)]. Furthermore, the induced OAM component is oriented along the propagation
direction of the orbital current, and has a sizable magnitude which persists several 10 fs after
the pulse. Akin to the (spin-polarized) currents, orbital currents are initiated at the surface or
at the interface. For an efficient OAM transfer in the heterostructure, the simulations suggest to
induce an OAM component, which is forbidden in the Cu region, in the Co region and trans-
port the OAM by an orbital current across the Co/Cu interface. This can be tuned by the laser
polarization.

The following publication: Reprinted (whole article) with permission from O. Busch, F. Ziolkowski, I.
Mertig and J. Henk, Physical Review B 108, 104408 (2023); Ref. [OB5]; Ultrafast dynamics of orbital angular
momentum of electrons induced by femtosecond laser pulses: Generation and transfer across interfaces.
Copyright (2023) by the American Physical Society.
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The orbital angular momenta (OAM) of electrons play an increasingly important role in ultrafast electron and
magnetization dynamics. In this theoretical study, we investigate the electron dynamics induced by femtosecond
laser pulses in a normal metal, a ferromagnet, and a ferromagnet/normal metal heterostructure. We analyze the
spatiotemporal distributions of the laser-induced OAM and their respective currents. Our findings demonstrate
that a circularly polarized laser pulse can induce a sizable and long-lasting OAM component in a normal metal.
Furthermore, an interface between a ferromagnet and a normal metal facilitates the demagnetization of the
magnet by the OAM contribution to the total magnetization. Finally, to transfer OAM from a ferromagnet into a
normal metal, it is advantageous to use a laser setup that induces the desired OAM component in the ferromagnet,
but not in the normal metal.
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I. INTRODUCTION

In recent years, there has been significant attention given
to ultrafast phenomena in condensed matter physics. While
much of the focus has been on the spin angular momentum
(SAM) of electrons, which has led to the field of spintron-
ics, the closely related orbital angular momentum (OAM)
of electrons has also emerged as an important topic in its
own right [1–3]. Orbitronic devices are seen as a potential
alternative to electronic and spintronic devices [4–6].

A number of ultrafast phenomena are well described
by means of SAM, for example, the optical manipulation
of magnetic moments [7–9], the demagnetization of fer-
romagnets [10–12], and the transfer of magnetic moment
between ferromagnetic layers [13–15] as well as across
magnet/normal metal interfaces [16–18]. Moreover, fem-
tosecond laser pulses induce SAM in nonmagnetic and
magnetic samples [19,20].

Spin-orbit coupling is not only ubiquitous in solids but also
indispensable for most of the phenomena mentioned above.
Therefore, a question arises regarding the contributions of the
OAM to these effects (recall that SAM and OAM add up
to the total angular momentum). In this respect, we need to
address several issues such as: what components of the OAM
are induced by femtosecond laser pulses, what is their mag-
nitude, and what is their spatiotemporal distribution? In this
paper, we report on a theoretical study where we investigated
photo-induced OAM and their currents in Cu(100), Co(100),
and a Co/Cu(100) heterostructure excited with femtosecond
laser pulses.

Our findings, based on investigations of a Cu(100)
film, reveal a pronounced and persistent presence of laser-
induced OAM in the direction of the OAM current which

*Correspondence author: oliver.busch@physik.uni-halle.de

propagates through the sample. Furthermore, in the context
of a Co/Cu(100) heterostructure, we observe that the inter-
action at the interface between a ferromagnet and a normal
metal facilitates the demagnetization of the magnet due to the
OAM contribution to the overall magnetization. Notably, for
efficient transfer of OAM from the ferromagnet to the normal
metal, careful consideration should be given to the polariza-
tion configuration of the laser pulse. Specifically, inducing the
desired OAM component exclusively within the ferromagnet,
rather than in the normal metal, proves advantageous.

Our study offers valuable insights into the ultrafast dynam-
ics of electron orbital angular momenta. These dynamics are
determined by both the electronic and magnetic properties of
the samples as well as by the laser pulse characteristics.

II. THEORETICAL ASPECTS

We briefly present the main ideas of our approach to ultra-
fast electron dynamics, EVOLVE, since it has been described
elsewhere [20–22].

We consider free-standing films of Cu(100), face-centered
cubic Co(100), and Co/Cu(100), each with a thickness of 40
layers (20 layers each for Co/Cu). The Cartesian x axis is
perpendicular to the film, and periodic boundary conditions
are applied in the y and z directions. The local magnetic
moments in Co(100) and Co/Cu(100) are collinear and point
along the z direction (Fig. 1) [23].

The electron dynamics is described by the von Neumann
equation (in Hartree atomic units)

−i
d ρ̂(t )

dt
= [ρ̂(t ), Ĥ (t )] (1)

for the one-particle density matrix

ρ̂(t ) =
∑

n,m

|n〉 pnm(t ) 〈m|. (2)
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FIG. 1. Geometry of a fcc Co/Cu(100) heterostructure. The film
is composed of 40 layers stacked in the x direction, with 20 layers
of both Co atoms (blue spheres) and Cu atoms (orange spheres). It is
infinite in both the y and the z direction. The Co magnetic moments
point along the z direction (black arrows). A circularly polarized laser
pulse is incident within the xz plane onto the sample.

{|n〉} are the eigenstates of the Hamiltonian Ĥ0 which de-
scribes the electronic structure of the samples in tight-binding
form [24,25]. Collinear magnetism and spin-orbit coupling
are included [26].

The time-dependent Hamiltonian Ĥ (t ) in Eq. (1) sup-
plements Ĥ0 by the electric field of the femtosecond laser
pulse [27]. This field is a coherent superposition of s- and
p-polarized partial waves with energy ω and with a Lorentzian
envelope. In this paper we focus on excitation by circularly
polarized light with helicity σ+ impinging within the xz plane
onto the films with a polar angle ϑph = 45◦ of incidence
(Fig. 1). All atomic sites are illuminated simultaneously and
with the same laser intensity. Hence, we assume that the laser
pulse’s spatial extent is considerably larger than the sam-
ple’s thickness. In an experiment for a thick sample, the laser
intensity would vary across the slab, thereby introducing an
additional occupation inhomogeneity, which complicates the
interpretation of the results. Our assumption avoids this com-
plication.

The geometry of the entire setup dictates what components
of the orbital angular momentum 〈L〉 can be produced by
the incident radiation [20,28]. As for the spin angular mo-
mentum (SAM) components 〈Sμ〉, all three components 〈Lμ〉
(μ = x, y, z) of the OAM can be induced in both nonmagnetic
and magnetic samples by circularly polarized light.

The spatiotemporal properties of an observable O are ob-
tained by taking partial traces in the expectation value
〈O〉(t ) = tr[ρ̂(t ) Ô], with the density matrix in an appropriate
basis; partial trace means that the trace is restricted to the
desired subspace, e.g., to a specific site, orbital, or OAM
component. We address the OAM 〈l i〉(t ) at site i and its
site-averaged (global) companion

〈L〉(t ) ≡ 1

N

∑

i

〈l i〉(t ), (3)

in which the summation is over the N sites in a sample’s
unit cell. Similarly to the SAM currents in Ref. [20], OAM
currents are computed from the symmetrized form

〈
jμkl

〉
(t ) ≡ 1

2 (〈Lμ jkl〉(t ) + 〈 jklL
μ〉(t )), μ = x, y, z, (4)

in which the operator ĵkl for the current from site l to site k
is derived from Mahan’s expression (cf. Ref. [29, page 25].

FIG. 2. Photo-induced orbital angular momentum (OAM) in
Cu(100) is excited with a circularly polarized laser pulse with helicity
σ+. (a) Site-averaged (global) OAM 〈Lμ〉(t ), μ = x, y, z. Thicker
lines represent the data convoluted with a Gaussian with standard de-
viation σ = 10 to better visualize the main trends. (b) Spatiotemporal
distribution of 〈lx

i 〉(t ) depicted as a color scale. (c) OAM current
〈 jx

kl〉(t ) across the sample. Arrows indicate the crisscross pattern. The
color bars indicate positive (red) and negative values (blue) of 〈lx〉
and 〈 jx

kl〉 in panels (b) and (c), respectively. Dashed vertical lines at
t = 0 fs mark the laser-pulse maximum.

Here, we focus on nonequilibrium currents across the films
(along the zigzag path in Fig. 1), since these are important
for OAM transfer within stacked samples (as often used in
experiments).

In all simulations discussed below, the laser has a photon
energy of 1.55 eV, a fluence of about 3.3 mJ cm−2, and is
modulated with a Lorentzian with a width of 10 fs and cen-
tered at t = 0 fs. All samples comprise 40 layers, with sites 0
and 39 defining the bottom and top surfaces, respectively.

III. RESULTS AND DISCUSSION

A. Cu(100)

A circularly polarized laser pulse induces all three OAM
components [panel (a) of Fig. 2]. As has been found for the
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SAM [20], all components of 〈L〉 exhibit rapid oscillations
that are associated with the laser’s frequency. Both 〈Ly〉 and
〈Lz〉 fluctuate slowly about 0 µB after the pulse. Strikingly,
〈Lx〉 is increased within 10 fs and oscillates about an almost
constant value of 0.05 µB per site [thick blue spectrum in
panel (a) of Fig. 2]. This finding implies that an OAM compo-
nent of measurable magnitude persists considerably long after
the femtosecond laser pulse in a nonmagnetic sample.

The spatial distribution of 〈lx
i 〉 is uniform across the sam-

ple, as evidenced by the negative (blue) onset before the
laser-pulse maximum and the plateaulike positive (red) dis-
tribution after the laser pulse [panel (b) of Fig. 2]. Minor
deviations from this uniformity result in an OAM current 〈 jx

kl〉,
which is strongest at the surfaces [sites 0 and 39; panel (c) of
Fig. 2] at t ≈ 0 fs and moves toward the center of the sample.
This creates an antisymmetric crisscross pattern [arrows in
panel (c) of Fig. 2]; there is no net flow of OAM at any time
t because of this antisymmetry. In a semi-infinite sample, an
x-polarized OAM current 〈 jx

kl〉 would be observed starting at
the surface, similar to the OAM of electron beams, which is
also oriented in the propagation direction [30].

B. Co(100) and Co/Cu(100)

After successfully establishing sizable and long-lasting
laser-induced OAM in copper, we now shift our attention
towards magnetic systems.

For a Co(100) sample, one can observe a reduction of
the SAM, well-known as demagnetization [10,20–22]. The
z component of the OAM is strongly modulated during the
pulse but remains constant thereafter [shown in green in panel
(a) of Fig. 3] and has a magnitude similar to the intrinsic 〈lz〉
(0.07 µB, which is in agreement with published data [31]).
This result suggests that OAM does not significantly con-
tribute to demagnetization in homogeneous magnetic samples,
at least in fcc Co. It is worth noting that a laser pulse with
opposite helicity σ− also does not lead to orbital demagneti-
zation (not shown here).

In the context of the Co/Cu(100) heterostructure, 〈Lz〉 is
reduced to approximately 0.04 µB, representing a relative de-
crease of roughly 35 % [green in panel (a) of Fig. 4]. This
finding suggests that inhomogeneities play an important role
in orbital demagnetization, a phenomenon that has already
been established for the SAM [20,21]. In an inhomogeneous
sample, the interface acts as a source for both SAM and OAM
currents, which we attribute to the local imbalance of spin-
dependent (SAM) or 〈lz

i 〉 occupation. Note that in a previous
work a detailed microscopic mechanism has been revealed:
the transfer of angular momentum across the interface arises
from a “backflow mechanism” from the Cu into the Co region.
Right after the laser pulse the occupation of spin-down d
orbitals of Co sites is increased, whereas spin-down d orbitals
of Cu sites near the interface are depopulated. For more details
see Ref. [21] and references therein.

In contrast to Cu(100), 〈Lx〉 is relatively small in both
Co(100) and Co/Cu(110) (about 0.01 µB) but persists, as
well. Moreover, there is no precession of 〈L〉 before the pulse
maximum [32], which differs from the SAM [20].

Inspecting the spatiotemporal OAM-current distributions
shows a crisscross pattern for Co, similar to that for Cu,

FIG. 3. Same as Fig. 2 but for face-centered-cubic Co(100). Re-
call that the OAM of Co has an intrinsic z component of 0.07 µB

[green in panel (a)].

again without net flow of OAM currents. The pattern for
Co/Cu(100) is slightly more complicated, but neither indi-
cates a pronounced transfer of OAM across the interface,
especially from Co into Cu.

For Co/Cu(100) we found a pronounced dependence of
the SAM distribution on the laser’s polarization [20], which
suggests to replace circularly polarized light by p-polarized
light (electric field oscillates in the xz plane; Fig. 1) in order
to evoke transfer of OAM from Co into Cu. Recall that 〈Lx〉 is
not induced by p-polarized light in Cu but in Co [33].

Indeed, the negative 〈lx
i 〉(t ) induced at about t = 0 fs in

the Co region [dark blue region for sites 0 to 19; panel (e) of
Fig. 4] is transferred into the Cu region (oblique blue stripe
starting at the interface). In addition, the oscillations of 〈lx

i 〉
shortly after the laser pulse (red-blue from 10 fs to 20 fs)
propagate into the Cu region, visible as oblique stripes. The
pattern is perhaps better visible in the distribution of 〈 jx

kl〉
[panel (f) of Fig. 4]: the crisscross motif discussed before
“spills over” from the Co region into the Cu region. This holds
for the z-OAM as well (not shown here). Consequently, it is
possible to transfer OAM from a ferromagnet into a normal
metal using an appropriate laser pulse.
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FIG. 4. Same as Fig. 2 but for a Co/Cu(100) heterostructure excited with circularly polarized [top row, panels (a)–(c)] and p-polarized
laser pulse [bottom row, panels (d)–(f)].

IV. CONCLUDING REMARKS

Our theoretical investigation yields these results: a siz-
able and persistent OAM component can be induced in
Cu by a circularly polarized laser pulse; an interface be-
tween a ferromagnet and a normal metal facilitates the
demagnetization of the magnet, not only for the SAM [20]
but also for the OAM contribution to the total magne-
tization; in order to transfer OAM from a ferromagnet
across an interface into a normal metal it appears ad-
vantageous to use a setup in which the respective OAM
component is not induced in the normal metal; this con-
cerns, in particular, the polarization of the femtosecond laser
pulse.

Standing to reason, these findings call for experimen-
tal verification, which might be challenging. It is not just
that experiments on ultrafast timescales are demanding, it
may be intricate to disentangle the spin and orbital contri-
butions to the total angular momentum. Nevertheless, OAM

currents have been measured in a recent experiment using THz
emission spectroscopy [34]. In that work ferromagnet/normal
metal heterostructures have been excited by femtosecond laser
pulses. As suggested in Ref. [35], a suitable method for
probing orbital currents could be similar to the indirect de-
tection of spin currents via accumulated angular momentum
at the edges of a sample via the magneto-optical Kerr effect
(MOKE) [36–38]. In addition, x-ray magnetic circular dichro-
ism (XMCD) measurements [39,40] allow to discriminate
SAM and OAM; being element-specific they provide also de-
tails on the OAM in regions of heterostructures. Moreover, we
consider it worthy to investigate other materials and material
combinations.
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6 Conclusion and outlook

In this thesis, transport of the electron’s charge, spin, and orbital angular momenta has been
studied theoretically.

One part is concerned with the transport properties in various kagome systems in the steady
state, where the response to an homogenous electric field has been investigated. The kagome
lattice is a twodimensional hexagonal lattice with three basis atoms, on which a noncollinear
magnetic texture can be localized. In particular, the transverse response, where resulting currents
are not aligned with the applied electric field, has been studied in these systems. These transverse
currents may carry charge, spin or orbital angular momenta and are phenomena denoted as ‘Hall
effects’. In this thesis, the intrinsic contributions to the Hall conductivities have been studied by
utilizing a Berry curvature approach, based on tight-binding calculations in reciprocal space.

Another part of this thesis is attributed to ultrafast electron dynamics induced by excitation of
thin films with femtosecond laser pulses. The investigated systems are homogeneous Cu or Co
samples and a Co/Cu heterostructure illuminated with linearly or circularly polarized light. The
simulation of finite systems is achieved by using a real-space tight-binding model. In order to
govern the time evolution, an effective one-electron density matrix has been propagated in time
by solving the von Neumann equation numerically. In this equation of motion, the perturbation
due to the laser pulse has been considered in dipole approximation. The real-space approach
allows access to observables, in particular spin and orbital angular momenta and respective cur-
rents, with atomic and femtosecond resolution.

Achievements/Accomplishments. In the introduction, two goals for this work have been for-
mulated. Below, the main results, that have been presented in the cumulative part of the thesis,
are listed.

1. Established understanding of Hall effects on the microscopic level in kagome systems.
• In literature, the unconventional anomalous Hall effect (AHE) in the coplanar non-

collinear kagome antiferromagnets has been predicted mainly based on symmetry
arguments. In publication [OB1], it has been revealed that spin-orbit coupling (SOC)
and a virtual tilting of the magnetic texture out of the kagome plane are equivalent
within the framework of this model. Thus, a coplanar noncollinear kagome magnet
with SOC can behave like a noncoplanar kagome magnet in which SOC is effectively
compensated. Consequently, the AHE in several kagome magnets is interpreted as an
effective topological Hall effect (THE) arising from a nonvanishing scalar spin chiral-
ity of the virtual noncoplanar texture. The aforementioned equivalence of SOC and
tilting of the magnetic moments leads to another scenario, where a noncoplanar mag-
netic texture with SOC behaves as if it is coplanar and has no SOC. In this case, certain
symmetries of the Hamiltonian are reestablished, which renders the Hall effect zero,
although it is allowed by the magnetic point group of the system.

• Recently, it has been predicted that the spin Hall effect (SHE) in coplanar noncollinear
kagome magnets exists even in the absence of SOC, which is typically a key require-
ment for the SHE. In publication [OB2], two sources which determine the spin Hall
signal in these systems are identified by combining the findings with the results of
publication [OB1]. The first contribution to the SHE originates from the noncollinear
coplanar magnetic texture and exists without SOC. In this case, pure spin currents
flow, i.e. no charge is transported. The second contribution emerges from SOC or
an out-of-plane tilting of the magnetic moments, which give rise to the effective THE
in these systems. In this scenario, spin and charge are transported by spin-polarized
currents that mainly reduce the spin Hall signal of the magnetic texture [OB2].
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• Early works on the orbital Hall effect (OHE) consider intra-atomic contributions and
claim hybridization of specific atomic orbitals as the origin of the effect. In publi-
cation [OB3], additional inter-atomic contributions are considered from which an al-
ternative mechanism of the OHE is established. The s-orbital nonmagnetic kagome
lattice (without SOC) is introduced as a minimal model for the generation of orbital
currents. Hybridization of atomic orbitals is not necessary, since the orbital angular
momentum is generated and transported by inter-site motion of pure s electrons on
cycloid trajectories generated by ‘orbital edge states’. This scenario is in analogy with
the trajectory of a point on a rolling wheel, where an orbital current is generated by
simultaneous rotation and translation as well.

2. Analysis of how the laser-induced electron dynamics can be tuned, in particular in Co/Cu
samples.

• In publications [OB4] and [OB5], the generation, manipulation and transfer of the
spin angular momentum (SAM) and the orbital angular momentum (OAM) have been
studied, respectively. A symmetry analysis predicts how the ultrafast dynamics de-
pends on the laser polarization (s, p or circularly polarized) and the sample compo-
sition (nonmagnetic Cu, magnetic Co or a Co/Cu heterostructure). The symmetry-
allowed or -forbidden components of the SAM and OAM are summarized in Tab. 1
and have been fully confirmed with the simulations. As a general trend, a transi-
tion from coherence before the laser pulse to an incoherent behaviour afterward is ob-
served. This is attributed to increasing interference. Moreover, the simulations show
less decoherence for the orbital dynamics than for the spin counterpart.

polarization of the laser pulse ⟨Jx⟩ ⟨Jy⟩ ⟨Jz⟩
p polarized − (+) + (+) − (+)
s polarized − (−) − (+) − (+)

circularly polarized + (+) + (+) + (+)

Table 1: Symmetry-allowed (+) or -forbidden (−) components of the site-averaged electron an-
gular momentum ⟨J⟩ = (⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩) for the setups in publications [OB4] and [OB5].
Herein, ⟨J⟩ is either the SAM ⟨S⟩ or the OAM ⟨L⟩ [cf. Eq. (3.66)]. The magnetic case is
shown in brackets. This table is inspired by Tab. II in publication [OB4].

• Since the approach allows access to the spatio-temporal distribution of observables, a
detailed insight into the dynamics of the SAM and OAM during the laser excitation
is possible with femtosecond and atomic resolution. Thus, it is shown that inhomo-
geneities, in particular surfaces and Co/Cu interfaces, act as “sources” for currents
that may transfer charge, SAM or OAM. For an efficient transfer of SAM or OAM ac-
cross an interface, the results suggest to induce a component, which is forbidden in
the nonmagnetic region, in the ferromagnetic region and transfer it to the nonmagnet.
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Methods. Summarizing the results of my PhD thesis, I gained deeper understanding of the
transport of charge, spin and orbital angular momenta in the steady state and on ultrafast time-
scales. In the process, I learned and used different theoretical techniques. On the one hand, I
worked analytically (e.g. unitary transformation of the model Hamiltonian and derivation of ex-
pressions for the expectation values of observables), and on the other hand I have used, modified,
and developed computer codes to simulate the transport properties. I developed a simple tight-
binding code (python) in which I implemented the computation of the (spin and orbital) Hall
conductivities according to the Berry curvature formalism. For the simulation of ultrafast elec-
tron dynamics, I used the computational framework evolve [54] (C++) which is being developed
in our group. Therein, I contributed to the implementation of the spin and orbital currents. In
order to analyze and visualize the computed data, I utilized Mathematica and self-written python
codes. The latter have also been used to generate animations of the dynamics (see supplemental
material of publication [OB4]).

Perspectives. In studies of the Hall effects in the kagome systems, only model calculations have
been performed. For a more realistic model of the material class Mn3X which are constituted
of layered kagome sublattices, the tight-binding Hamiltonian can be fitted to band structures
obtained by ab-initio calculations. This can be achieved, for example, by utilizing the wannier90
community code [212] which calculates maximally-localised Wannier functions (MLWFs) in a
very efficient way. Transport quantities such as AHE or SHE may be computed subsequently,
for example with the high performance WannierBerri code [213]. The investigation of the laser-
induced electron dynamics and manipulation of the noncollinear antiferromagnets Mn3X with
the framework evolve would be a valuable future project. For example, linear spin polarization
effects [39] suggest that the sublattices in these materials may be excited individually with an
appropriate laser pulse. One may expect laser-induced spin currents with a spin-polarization
component perpendicular to the kagome plane. Unfortunately, a tight-binding fit in the basis of
MLWFs would not provide the necessary input in form of Slater-Koster parameters [cf. Sec. 2.1].

Nevertheless, the impact of noncollinearity may be studied with the evolve approach. Al-
though the publications presented in Sec. 5 considered collinear magnetism, we already started
implementing noncollinear magnetic textures in evolve. This would enable us to study the in-
fluence of thermally fluctuating spins on the electron dynamics in magnetic materials. Non-
collinearity manifests itself in spin-mixing hopping terms, similar to spin-orbit coupling which
opens additional transport channels. After a successful implementation, complex magnetic tex-
tures like skyrmions and related quasiparticles are worth investigating. The topology of the
highly stable, noncollinear magnetic texture offers great potential for spintronic devices; for a
recent review see [214].

Research on spintronics may be extended from materials with a noncollinear magnetic texture
in real space to systems with a noncollinear spin texture in reciprocal space. For example, the
two-dimensional electron gas (2DEG) AlO/SrTiO3 with a Rashba spin texture at the interface is
worth studying in the ultrafast regime, since significant spin and orbital Edelstein effects have
been reported, recently [215]. For the investigation of an ‘ultrafast Edelstein effect’ induced by
a laser pulse with evolve, the theoretical description of the interface must be improved, e.g.
by implementing Rashba spin-orbit coupling [81] in the real-space tight binding Hamiltonian.
An extension of such established steady-state phenomena to the time domain would be of great
interest for the ultrafast magnetization dynamics community. In a recent work [OB8], we studied
laser-induced orbital currents in a Cu nanoribbon and found an ‘ultrafast OHE’. Being laser-
driven, we found pronounced differences to the steady-state OHE. For example, similar to the
scenario of a classical driven harmonic oscillator, our simulations revealed a phase shift between
the laser’s driving electric field and the responding orbital current. This situation is different
from the static OHE where the current is proportional to the field.
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A general aspect on our agenda is to overcome limitations of the evolve approach (cf. Sec. 3.5).
In order to make the simulations more realistic, electron-phonon and electron-electron interac-
tion should be included. The former is already taken into account partially by the feature of
coupling the electron system to a bosonic heat bath via Lindbladians for so-called jump opera-
tors [54, OB7]. Thus, thermalization, relaxation towards thermal equilibrium and dephasing are
simulated, since energy transfer between the two reservoirs is possible. However, the electron-
phonon coupling constants may be improved by using results from ab-initio calculations.

Lastly, the electron-electron interaction is approximately accounted for by the exchange-corre-
lation functional in density-functional theory, and is thus effectively included in the tight-binding
description (recall that the parameters are chosen to reproduce ab-initio band structures). A
full account of the electron-electron interaction requires a two-particle reduced density matrix
approach whose implementation requires the development of a new computer code. Besides,
this approach is computationally very demanding and thus is typically restricted to small sys-
tems and time spans, similar to time-dependent density functional theory [45]. However, the
electron-electron interaction can be explicitly taken into account in evolve by exploiting the
Hartree-Fock approximation, which allows to stay within the one-particle reduced density ma-
trix approach [57]. The implementation of this feature in our code is very challenging but on
our agenda. We expect attraction and repulsion within the dynamic spatial charge distribution
that is excited by the laser pulse. For example, the electron-electron interaction could reduce the
propagation length of currents (attraction) and spread ‘occupation patches’ (spatial regions of
increased or decreased occupation; repulsion). A general feature would be loss of coherence as
often found in experiments.
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