

Master Thesis in Information Technology and Communication Systems

Mr. Hani Khader

Matrikel Number: 28054

Title:

The Impact of Modern Consumer GPUs on Commonly
Used Secure Password Standards.

First Examiner: Prof. Dr. Sven Karol

Second Examiner: Prof. Dr. Rüdiger Klein

Date: 10.11.2023

III

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die Arbeit selbstständig angefertigt, keine anderen als die
angegebenen Hilfsmittel benutzt und alle wörtlichen oder sinngemäßen Entlehnungen
deutlich als solche gekennzeichnet habe.

Name: Hani Khader

IV

Danksagung

An dieser Stelle möchte ich mich bei denjenigen bedanken, ohne die das Verfassen dieser Arbeit nicht
möglich gewesen wäre.

Als erstes gilt mein Dank meinem Professor Prof. Dr. Sven Karol für sein Betreuungsengagement und
seine konstruktiven Anregungen während der Erstellung der Arbeit. Ebenso gilt mein Dank Herrn Prof.
Dr. Rüdiger Klein für seine Unterstützung bei der Bereitstellung der Testhardware.

Schließlich gilt mein tiefster Dank meiner Familie für ihre unerschütterliche Unterstützung und endlose
Motivation während meines Studiums sowie meiner Zeit, die ich in Deutschland verbracht habe.

V

ABSTRAKT

Da immer mehr Geräte und Server, die auf Heimnetzwerken basieren, zugänglich sind [1], wird das
Bewusstsein für Cybersicherheit und bewährte Verfahren zur Sicherung drahtloser Netzwerke immer
wichtiger. Mit der zunehmenden Erschwinglichkeit fortschrittlicher Hardwaretechnologien, wie z. B.
moderner Gaming-PCs, die mit leistungsstarken Grafikprozessoren (GPUs) ausgestattet sind, die das
Knacken von Passwörtern mit Brute-Force-Methoden in einem breiteren Spektrum ermöglichen,
nehmen die Sicherheitsbedrohungen für passwortgeschützte drahtlose Netzwerke zu. In diesem Beitrag
soll die Robustheit aktueller Passwortstandards sowie die Anfälligkeit häufig verwendeter Passwörter
untersucht werden. Dazu wird moderne Consumer-GPU-Technologie eingesetzt, um die
Unbrauchbarkeit einer Untergruppe von Passwörtern zu demonstrieren, die gemeinhin als sicher gelten.

Diese Studie konzentriert sich auf zwei moderne Consumer-GPUs, AMD Radeon RX 6800 und Nvidia
RTX 4090, und ihre Fähigkeit, Brute-Force-Angriffe zum Knacken von Passwörtern auf PMKID-
Hashes mit Hashcat durchzuführen [2]. In dieser Arbeit wird die Effektivität des Einsatzes dieser GPUs
zum Knacken komplexer Passwörter diskutiert und die Länge eines komplexen Passworts bewertet, bei
der es sofort geknackt werden kann. Darüber hinaus wird die potenzielle Zunahme der Anfälligkeit für
das Knacken von WPA-Passwörtern innerhalb eines praktischen Zeitrahmens aufgezeigt, insbesondere
bei der Verwendung von Passwörtern, die sich Menschen merken können, und zwar im Hinblick auf
die Fortschritte bei der Entwicklung von Gaming-GPUs in den letzten fünf Jahren.

In dieser Forschungsstudie soll die Effizienz aktueller GPU-Architekturen im Vergleich zu älteren
Architekturen unter Verwendung verschiedener Algorithmen zum Knacken von Passwörtern bewertet
werden. Die Ergebnisse zeigen, dass selbst als sicher geltende Passwörter angreifbar sind, was die
Notwendigkeit verbesserter Sicherheitsmaßnahmen verdeutlicht.

Schließlich unterstreicht diese Arbeit die Notwendigkeit, das Bewusstsein für Cybersicherheit in der
Öffentlichkeit zu stärken, insbesondere im Hinblick auf die Sicherung drahtloser Heimnetzwerke.
Durch Sensibilisierung und Förderung bewährter Verfahren zur Bekämpfung moderner Cracking-
Techniken können wir dazu beitragen, Cyberangriffe zu verhindern und unser digitales Leben zu
schützen.

VI

ABSTRACT

As home network-based devices and servers become more accessible [1], the need for cybersecurity
awareness and best practices to secure wireless network is increasingly important. With the growing
affordability of advanced hardware technology, such as modern gaming PCs equipped with powerful
graphics processing units (GPUs), which can facilitate password brute force cracking on a wider
spectrum, security threats to password protected wireless networks are on the rise. This paper aims to
examine the robustness of contemporary password standards, as well as the susceptibility of frequently
deployed passwords, by utilizing modern consumer GPU technology to demonstrate the deprecation of
a subset of passwords commonly deemed secure.

This study focuses on two modern consumer GPUs, AMD Radeon RX 6800 and Nvidia RTX 4090,
and their ability to perform brute-force password cracking attacks on PMKID hashes using Hashcat [2].
The paper discusses the effectiveness of using these GPUs to crack complex passwords and evaluates
the length of a complex password at which it can be instantly cracked. Moreover, it demonstrates the
potential increase in vulnerability of WPA password cracking within a practical time frame, especially
when using human memorable passwords, with respect to the progress made in gaming GPU
development over the past five years.

This research study seeks to evaluate the efficacy of recent GPU architectures, in contrast with older
architectures using different password cracking algorithms. The findings demonstrate that even
passwords deemed secure are vulnerable to exploitation, highlighting the necessity for enhanced
security measures.

Finally, this paper highlights the need for greater cybersecurity awareness among the general public,
particularly with regards to securing wireless home networks. By raising awareness and promoting best
practices to combat modern cracking techniques, we can help prevent cyber attacks and safeguard our
digital lives.

VII

TABLE OF CONTENTS

Abstrakt .. V

Abstract ... VI

Table of Abbreviations .. IX

1 Introduction... 11

2 Theoretical Basis ... 12

2.1 Explanation of PMKID and how it can be used to hack Wi-Fi passwords 12

2.2 RSN IE vulnerability and how it can be exploited to retrieve PMKID hashes 13

2.3 Performance Characteristics of Nvidia RTX 4090 and AMD Radeon RX 6800 GPUs 14

2.3.1 AMD Radeon RX 6800 ... 14

2.3.2 Nvidia RTX 4090 .. 14

2.3.3 Disparities in Performance Between the Two Units .. 14

3 Literature Review ... 15

3.1 Previous research on hacking Wi-Fi networks .. 15

3.2 Advantages of PMKID attack over previous ways .. 17

3.3 Analysis of commonly used passwords and their vulnerability to cracking 18

3.4 Investigating the Vulnerabilities of Wireless Routers: Analysis of Default WPA2 Password
Generation Algorithms .. 24

3.5 A Comparative Analysis of Nvidia RTX 4090 and AMD Radeon RX6800 for Hash Cracking
Performance Evaluation .. 26

3.5.1 Analysis Results .. 27

4 Methodology ... 31

4.1 Explanation of the hardware and software used in the process .. 31

4.1.1 Hardware ... 31

4.1.1.1 Network Adapter ... 31

4.1.1.2 Router .. 32

4.1.1.3 Computer/Laptop .. 32

4.1.1.4 GPU card ... 33

4.1.2 Software .. 34

4.1.2.1 Linux OS ... 34

4.1.2.2 Hcxdumptool and Hcxtools ... 35

4.1.2.3 Hashcat .. 35

VIII

4.2 Detailed description of the steps involved in exploiting the RSN IE vulnerability, retrieving
PMKID hashes and cracking passwords using GPU performance .. 36

4.2.1 Wi-Fi AP Attack and Retrieving PMKID Hash... 36

4.2.2 Cracking the PMKID hash using Hashcat tool .. 41

4.3 Exploring the Capabilities of Modern GPUs for Cracking of Network Passwords 44

4.3.1 Password Lists Generation .. 44

4.3.1.1 German Phone Number Generator .. 44

4.3.1.2 Dates List Generator .. 46

4.3.1.3 Default ISP Password Generator ... 47

4.3.1.4 PMKID Hash Generator .. 49

4.3.2 Assessing Password Security: An Analysis of Breached Passwords in Generated
Passwords ... 51

4.3.2.1 Bloom Filter Generator ... 51

4.3.2.2 Bloom Filter Checker .. 54

4.3.3 Preparation and Curation of Password Datasets .. 56

4.4 Challenges or issues encountered during the experimentation .. 57

4.4.1 Insufficient Availability of Authentic Packet Captured Data 57

4.4.2 Limitations of Latin Alphabet-Based Metrics ... 57

4.4.3 Mitigation Strategies of Hash Collision for Large Password Datasets Using
MurmurHash3 Algorithm ... 58

5 Results & Analysis .. 59

5.1 Presentation of the data obtained from the experimentation, including the success rate in
cracking PMKID hashes ... 59

5.2 Defining the Threshold for Critically Weak Passwords and Introducing the Concept of
Password Dead-Zone .. 62

5.3 Discussing strategies to mitigate password vulnerabilities .. 64

6 Conclusion .. 65

6.1 Summary of the main findings of the study ... 65

6.2 Implications for Wi-Fi Password Security .. 67

6.3 Recommendations for Improving Wi-Fi Security and Best Password Practices 68

Table of Figures .. 77

Table Index ... 78

Code Listing Index ... 79

IX

TABLE OF ABBREVIATIONS

Abbreviations Definition

AP Access Point

BPF Berkeley Packet Filter

BSSID Basic Service Set Identifier

CPU Central processing unit

CU Computer unit

CUDA Compute Unified Device Architecture

EAPOL Extensible Authentication Protocol over LAN

ESSID Extended Service Set Identifier

GB/s Gigabyte per second

GDDR6 Graphics Double Data Rate 6

GPU Graphics Processing Unit

HMAC Hash-Based Message Authentication Code

IoT Internet of Things

ISP Internet Service Provider

LAN Local Area Network

MAC Address Media Access Control Address

MAC_AP Access Point MAC Address

MAC_STA Client MAC Address

MD5 Message Digest Algorithm

MHz Megahertz

NAS Network Attached Storage

OpenCL Open Computing Language

PBKDF2 Password Based Key Derivation Function 2

PC Personal Computer

PIN Personal Identification Number

PMK Pairwise Master Key

PMKID Pairwise Master Key Identifier

PSK Pre-Shared Key

RSN IE Robust Security Network Information Element

SHA1 Secure Hash Algorithm

SM Streaming Multiprocessor

SP Stream processor

SSID Service Set Identifier (Network Name)

VLAN Virtual Local Area Network

WAP Wireless Access Point

WLAN Wireless Local Area Network

WPA Wireless Protected Access

WPS Wi-Fi Protected Setup

11

 Introduction

1 INTRODUCTION

Ensuring WiFi password security is of utmost importance in safeguarding the devices connected to a
WiFi network. With the advent of Internet of Things (IoT) devices like smart home appliances and
Network Attached Storage (NAS) devices, it has become increasingly effortless to establish a network
of gadgets in a home or business. However, if not adequately secured, these devices can be susceptible
to cyber attacks.

A viable approach to fortifying a WiFi network is by employing a robust and intricate password. A
strong password is one that is difficult for hackers to guess or crack using brute-force techniques.

Utilizing a combination of upper- and lower-case letters, numbers, and special characters, and making
the password a minimum of eight characters is considered by many institutes the standard practice for
creating strong passwords [3] [4]. Over the past five years, advancements in GPU technology and
sophisticated password cracking tools have rendered an eight-character password inadequate in terms
of security.

An adequate implementation of strong, complex passwords can serve as the primary defense mechanism
for individual users and organizations alike. It is imperative to note that the utilization of passwords of
insufficient length places the entire network at risk of being compromised, even by a modern gaming
computer with current password cracking technology.

The objective is to demonstrate the susceptibility of commonly used passwords and the simplicity with
which they can be cracked using a complex brute force cracking technique. Modern gaming hardware
was employed to showcase the effectiveness of today’s consumer GPU computing power.

Hacking a wireless network and then attempting to crack it has become easier than ever. This was
demonstrated through the utilization of the PMKID attacking method. PMKID hashes are typically used
in Wi-Fi networks to ensure secure communication between client devices and access points. However,
they can also be exploited to crack passwords. This approach involves capturing a PMKID hash from a
Wi-Fi network and then running a brute force attack on it.

By leveraging the parallel processing power of GPUs, the brute force cracking process will be
accelerated and the time required to crack passwords will be reduced.

It is worth noting that while this approach is used as an example in this paper, the use of GPUs to crack
network passwords is not restricted to this technique. The aim of this study is to exhibit the substantial
advancements in the cracking proficiency of Graphics Processing Units (GPUs) that have been observed
in present day.

12

 Theoretical Basis

2 THEORETICAL BASIS

2.1 EXPLANATION OF PMKID AND HOW IT CAN BE USED TO HACK WI-FI

PASSWORDS

Pairwise Master Key Identifier (PMKID) is a hash that exists in the PMKID list field in the Robust
Security Network Information Element (RSN IE) of Beacon frames. The utilization of PMKID is
primarily intended to facilitate secure communication between a client device and an access point for
roaming purposes [5]. Nevertheless, the legitimate use of PMKID holds limited relevance to the subject
matter of this thesis.

PMKID is generated from the pairwise master key (PMK) which is generated using a Password-Based
Key Derivation Function 2 (PBKDF2). This derivation function derives cryptographic keys from
passwords. Its main purpose is to enhance password security by producing a strong key that can be
utilized to encrypt data [6].

To generate a derived key, PBKDF2 takes in a password, a salt [7] [8], and an iteration count as inputs.
The algorithm then applies a pseudorandom function to these inputs.

𝐏𝐌𝐊 = 𝐏𝐁𝐊𝐃𝐅𝟐(𝐏𝐚𝐬𝐬𝐩𝐡𝐫𝐚𝐬𝐞, 𝐒𝐒𝐈𝐃, 𝟒𝟎𝟗𝟔)

The PMK is generated from the name of the network (SSID) which is freely available, the WiFi
password (Passphrase) and the number of PBKDF2 iterations (4096).

Once PMK is generated, the PMKID created from the Access Point MAC Address (MAC_AP), Client
MAC Address (MAC_STA), the pairwise master key (PMK) and PMK Name.

𝐏𝐌𝐊𝐈𝐃 = 𝐇𝐌𝐀𝐂_𝐒𝐇𝐀𝟏_𝟏𝟐𝟖 (𝐏𝐌𝐊, "𝐏𝐌𝐊 𝐍𝐚𝐦𝐞" | 𝐌𝐀𝐂_𝐀𝐏 | 𝐌𝐀𝐂_𝐒𝐓𝐀)

In order to crack the PMKID hash, the process involves generating and computing possible Pairwise
Master Keys (PMKs) utilizing the Service Set Identifier (SSID) of the network and various passphrases.
Afterward, PMKID is calculated using the generated PMK along with other network details. The
PMKID hash is considered cracked once a PMKID identical to the one from the Access Point is
produced. The passphrase used in generating the correct PMK used to derive the PMKID is recognized
as the accurate WiFi password.

13

 Theoretical Basis

2.2 RSN IE VULNERABILITY AND HOW IT CAN BE EXPLOITED TO RETRIEVE

PMKID HASHES

Robust Security Network Information Element (RSN IE) is a security component of the IEEE 802.11i
standard that provides security features for wireless LANs, including encryption, data integrity, and
authentication [5]. However, the RSN IE is vulnerable to PMKID attacks that exploit weaknesses in the
WPA2 protocol [9].

When a wireless client authenticates with a WPA2 network, the access point generates a PMK based
on the pre-shared key (PSK) or the 802.1X/EAP authentication credentials. The access point then sends
a PMKID to the client, as exemplified in Figure 1.

This vulnerability is activated when an access point (AP) receives an association request packet and has
the capability to transmit PMKID [10] [9].

Figure 1: captured PMKID from RSN IE of a single EAPOL frame – Wireshark

14

 Theoretical Basis

2.3 PERFORMANCE CHARACTERISTICS OF NVIDIA RTX 4090 AND AMD

RADEON RX 6800 GPUS

2.3.1 AMD Radeon RX 6800

The AMD Radeon RX 6800 is a high-performance graphics card designed for demanding applications
such as gaming. It was release in 2020 based on AMD's RDNA 2 architecture [11]. It features 60
compute units and 3,840 stream processors. The card also comes with 16GB of GDDR6 memory and a
boost clock speed of 2105 MHz. Additionally, it has a 256-bit memory interface and a memory
bandwidth of 512 GB/s [12].

The AMD Radeon RX 6800 excellent graphics performance for demanding applications, high compute
unit and stream processor count, combined with the memory capacity, make it an ideal option for many
gamers and professionals alike who require high-quality graphics.

2.3.2 Nvidia RTX 4090

The Nvidia RTX 4090 is a high-performance graphics card designed for demanding applications such
as gaming, artificial intelligence, and machine learning. It is based on Nvidia's latest Ada Lovelace
architecture, which was released in 2022 [13].

The RTX 4090 features 16,384 CUDA cores, which is a significant increase compared to its
predecessors. The card also comes with 24GB of GDDR6X memory and a boost clock speed of 2520
MHz. Additionally, it has a 384-bit memory interface and a memory bandwidth of 1008 GB/s [13].

2.3.3 Disparities in Performance Between the Two Units

The two GPUs being compared belong to different classes and generations. The disparity in
performance between the GPUs is significant, with the RTX 4090 exhibiting a performance
improvement factor of 2.5 to 4.5 times compared to the RX 6800 in various hash cracking applications.

The RTX 4090 has 128 Streaming Multiprocessors (SMs). Each SM contains 128 CUDA cores, which
are specialized units for parallel processing [13]. This is equivalent to a total of 16,384 CUDA cores.
The RX 6800 has 60 Compute Units (CUs), which are equivalent to SMs, and each CU has 64 Stream
Processors (SPs), which are equivalent to CUDA cores. The RX 6800 has 3,840 SPs [12]. Higher core
count equates to more processing power for graphics-intensive tasks.

In addition, Nvidia GPUs generally tend to perform better in hash cracking tasks than AMD GPUs. This
is due to the absence of a competitive alternative to Nvidia's Compute Unified Device Architecture
(CUDA) by AMD in the past [14] [15]. As a result, Open Computing Language (OpenCL) surfaced as
the closest substitute. Nonetheless, when evaluated, Nvidia’s CUDA outshines OpenCL in terms of
stability, compatibility, and overall performance [16].

15

 Literature Review

3 LITERATURE REVIEW

3.1 PREVIOUS RESEARCH ON HACKING WI-FI NETWORKS

There are several methods that were developed for compromising wireless networks. One of the
commonly employed techniques involves the interception of a handshake exchange between the access
point (AP) and the client during the authentication phase [17]. This can be accomplished by scanning a
target network as demonstrated in Figure 2, then initiating a deauthentication attack [18] against the
network’s clients as shown in Figure 3, prompting it to re-authenticate and allowing for the capture of
a hash, as presented in Figure 4. This hash is then used as the basis for a password cracking attack,
enabling unauthorized access to the network.

Figure 2: Identifying a target WPA2 network using airodump-ng

Figure 3: Client deauthentication attack using aireplay-ng

Figure 4: Handshake captured successfully

16

 Literature Review

Another popular approach is by targeting Wi-Fi Protected Setup (WPS) protocol vulnerabilities [19].
This can be done by a brute-force attack, where the attacker attempts to guess the WPS Personal
Identification Number (PIN) through a trial-and-error method, as outlined in Figure 5. The WPS PIN is
an eight-digit code that is used to authenticate devices to a wireless network. However, because the PIN
is only eight digits long, it can be easily guessed through automated tools.

An alternative strategy is the Pixie Dust attack [20], which exploits a weakness in the WPS protocol's
random number generator. This attack involves capturing a handshake between a client device and a
wireless network, then using that handshake to calculate the WPS PIN.

A less common tactic to exploit WPS vulnerabilities is by using null PIN attack [21]. In a null PIN
attack, an attacker attempts to connect to the wireless access point using a PIN of all zeros or no PIN at
all. If the WAP has been configured with a default or empty PIN, it will accept the connection, giving
the attacker access to the wireless network.

Figure 5: Attempting to attack a wireless access point that has WPS enabled using Wifite tool

17

 Literature Review

3.2 ADVANTAGES OF PMKID ATTACK OVER PREVIOUS WAYS

The utilization of PMKID attacks to demonstrate the cracking potential of modern gaming GPUs over
conventional network attacks is motivated by the several factors.

• PMKID attack is clientless. It does not require clients to be connected to the target Wi-Fi
network. The attacker is able to communicate with the AP directly, even if the network does
not have connected devices.

• PMKID attack requires a capture of a single EAPOL frame rather than a full EAPOL 4-way
handshake. This makes the attack fast to implement, especially when attacking multiple
networks.

• PMKID attack is convenient to execute. It does not require extra steps such as client
deauthentication or creating an evil network [15]. This results in an uncomplicated,
straightforward attack to perform.

• The computational complexity of PMKID calculations results in a significant time delay to
crack PMKID hashes. Demonstrating the ability of GPUs to break them within a reasonable
timeframe could serve as a benchmark for estimating the feasibility of cracking other types of
hashes to reveal passwords.

18

 Literature Review

3.3 ANALYSIS OF COMMONLY USED PASSWORDS AND THEIR VULNERABILITY

TO CRACKING

Passwords are a critical component of authentication systems, and weak passwords can be easily
cracked by attackers using brute-force attacks, dictionary attacks [22], or other methods. Many cyber
experts recommend using long passwords to increase the difficulty for attackers to guess or crack the
password [23] [24]. However, most people prefer to use easy-to-remember passwords such as their
phone number [25] or a word that usually relates to them [26] [27]. These passwords are often used
repeatedly, which puts them at a higher risk of being compromised.

NordPass conducted a study on breached passwords, shown in Table 1. They analyzed a database of
275,699,516 passwords to find the top 200 weakest passwords of the year [28].

Table 1: Top 200 most common passwords of the year 2021 - NordPass

Top 200 most common passwords in 2021. The research shows that people still use weak passwords

to protect their accounts.

 2019 2020 2021

 Password Number of users Password Number of users Password Number of users

1 12345 2,812,220 123456 2,543,285 123456 103,170,552

2 123456 2,485,216 123456789 961,435 123456789 46,027,530

3 123456789 1,052,268 picture1 371,612 12345 32,955,431

4 test1 993,756 password 360,467 qwerty 22,317,280

5 password 830,846 12345678 322,187 password 20,958,297

6 12345678 512,56 111111 230,507 12345678 14,745,771

7 zinch 483,443 123123 189,327 111111 13,354,149

8 g_czechout 372,278 12345 188,268 123123 10,244,398

9 asdf 359,52 1234567890 171,724 1234567890 9,646,621

10 qwerty 348,762 senha 167,728 1234567 9,396,813

11 1234567890 329,341 1234567 165,909 qwerty123 8,933,334

12 1234567 261,61 qwerty 156,765 000000 8,377,094

13 Aa123456. 212,903 abc123 151,804 1q2w3e 8,204,700

14 iloveyou 171,657 Million2 143,664 aa12345678 8,098,805

15 1234 169,683 000000 122,982 abc123 7,184,645

16 abc123 150,977 1234 112,297 password1 5,771,586

17 111111 148,079 iloveyou 106,327 1234 5,544,971

18 123123 145,365 aaron431 90,256 qwertyuiop 5,197,596

19 dubsmash 144,104 password1 87,556 123321 5,168,171

20 test 139,624 qqww1122 85,476 password123 4,681,010

21 princess 122,658 123 84,438 1q2w3e4r5t 4,624,323

22 qwertyuiop 116,273 omgpop 77,492 iloveyou 4,387,925

19

 Literature Review

The analysis presented in Table 1 reveals that over a span of three years, a substantial number
of users worldwide consistently employ passwords that are characterized by a high degree of
vulnerability. Such passwords exhibit a marked lack of security, rendering access credentials
susceptible to facile guessing.

The data suggests a prevailing lack of awareness among the majority of individuals regarding
the consequential significance of employing a robust password. This is particularly noteworthy
in light of the preeminent utilization of the exceedingly common password "123456."

A comparable analysis was performed on accounts originating from Germany, as detailed in Table 2,
elucidating the top 200 passwords frequently utilized. The results underscore a consistent behavioral
trend in password selection among the common masses.

20

 Literature Review

According to the report presented by NordPass, the passwords mentioned in Table 2 below were
commonly utilized in Germany in the year 2022 [29].

Table 2: Top 200 most common passwords in Germany of the year 2022 - NordPass

Top 200 most common passewords in Germany in 2022.

Rank password Count Rank Password Count Rank Password Count

1 123456 10,359 40 wasser 591 79 marcel 414

2 password 2,901 41 merlin 588 80 patrick 413

3 123456789 2,669 42 moritz 583 81 banane 411

4 12345 2,396 43 asdf 572 82 starwars 411

5 hallo 1,993 44 Groupd2013 571 83 matthias 408

6 passwort 1,918 45 tobias 570 84 000000 407

7 ficken 1,628 46 schalke04 555 85 sascha 404

8 12345678 1,596 47 snoopy 538 86 schnecke 400

9 master 1,367 48 666666 529 87 nicole 392

10 1234 1,345 49 markus 526 88 julian 390

11 qwerz 1,302 50 1q2w3e4r 515 89 fussball 387

12 hallo123 1,082 51 hamburg 515 90 samsung 383

13 danial 1,033 52 werder 503 91 borussia 379

14 killer 1,012 53 computer 497 92 oliver 374

15 123 922 54 asdasd 486 93 werner 371

16 111111 903 55 handball 486 94 aaaaaa 370

17 super123 875 56 arschloch 483 95 nadine 367

18 guest 841 57 logitech 483 96 schule 366

19 michael 840 58 sonnenschein 483 97 felix 362

20 matrix 785 59 abc123 479 98 fuckyou 362

21 thomas 783 60 asdfgh 479 99 kerstin 362

22 1234567 776 61 1234567890 475 100 shadow 361

23 dennis 770 62 andrea 469 101 AlLom! 358

24 diablo 724 63 fabian 469 102 test 356

25 sommer 722 64 warcraft 469 103 !~!1 353

26 123123 701 65 laufen 455 104 bayern 349

27 stefan 695 66 sebastian 453 105 mercedes 347

28 florian 694 67 sunshine 453 106 claudia 346

29 lol 691 68 christian 450 107 xxxxxx 346

30 alexander 689 69 nirankar 444 108 michelle 345

31 berlin 681 70 kennwort 440 109 steffi 344

32 geheim 663 71 johannes 439 110 niklas 341

33 internet 661 72 lollol 439 111 trustno1 340

34 andreas 660 73 schalke 434 112 jogmap 337

35 dragon 644 74 medion 425 113 philipp 337

36 snadra 643 75 schatz 424 114 sabine 333

37 lol123 600 76 benjamin 422 115 charly 329

38 blabla 697 77 eminem 422 116 porsche 328

39 martin 591 78 melanie 421 117 siemens 328

21

 Literature Review

In a similar vein, another study conducted by Tsinghua University [30] in 2016, detailed in Table 3,
revealed that out of 6,428,632 email passwords examined, 75% of them consisted of 8-10 characters.

This observation suggests a prevalent inclination among users to adhere to the minimal password
lengths permissible by platforms. Furthermore, the study underscores that only a scant proportion,
specifically less than 8%, manifest a willingness to adopt passwords exceeding a length of 12 characters.

Table 3: Frequency of occurrence and corresponding percentages of different password lengths. Highest frequency categories

are shown in bold. [30]

Password length Frequency Percent

1–3 characters 739 0.01%

4 characters 6,675 0.10%

5 characters 33,039 0.51%

6 characters 82,998 1.29%

7 characters 16,923 0.26%

8 characters 2,338,639 36.38%

9 characters 1,552,182 24.14%

10 characters 930,881 14.48%

11 characters 628,832 9.78%

12 characters 369,537 5.75%

13 characters 167,861 2.61%

14 characters 154,979 2.41%

15 characters 75,347 1.17%

16 characters 49,648 0.77%

17–34 characters 20,352 0.32%

1–34 characters 6,428,632 100.00%

22

 Literature Review

In a subsequent investigation, depicted in Table 4, it was discovered that when users incorporated
symbols into their passwords, the characters ‘.’, ‘@’, ‘!’, and ‘*’ were employed in 80% of the
passwords.

Table 4: The percentage of passwords including different symbols [30].

Symbols Proportion Symbols Proportion

. 34.57% (1.29%

@ 25.43% ^ 1.23%

! 10.92% ; 1.10%

* 9.19% _ 0.96%

- 7.81% , 0.86%

6.62%] 0.55%

+ 5.47% [0.55%

/ 3.36% > 0.42%

$ 3.32% ‘ 0.42%

? 2.69% < 0.36%

& 2.52% \ 0.32%

= 2.09% : 0.30%

% 2.00% { 0.09%

Space 1.46% } 0.08%

) 1.41% “ 0.07%

~ 1.34% | 0.05%

The prevalence of symbols, including but not limited to '.', '-', '!', '@', and '#', commonly employed in
daily interactions or located at the initial positions on a standard keyboard, may suggest users are
mimicking common requirements, choosing easily typed and memorable characters, following
observed patterns, or having a misconception that these symbols enhance security. Password strength
relies on various factors, and understanding common practices can inform effective password creation.

23

 Literature Review

The research also encompasses the analysis of password selection, as demonstrated in Table 5. This
brings attention to the passwords that were found to be most frequently utilized.

Table 5: The percentage of most common passwords in the data set [30].

Password Frequency Percentage Password Frequency Percentage

123456789 235012 3.66% iloveyou 3080 0.05%

12345678 212749 3.31% 31415926 3061 0.05%

11111111 76346 1.19% 12344321 2985 0.05%

dearbook 46053 0.72% 0000000000 2885 0.04%

00000000 34952 0.54% asdfghjkl 2826 0.04%

123123123 19986 0.31% 1q2w3e4r 2796 0.04%

1234567890 17790 0.28% 123456abc 2580 0.04%

88888888 15033 0.23% 0123456789 2578 0.04%

111111111 6995 0.11% 123654789 2573 0.04%

147258369 5965 0.09% 12121212 2540 0.04%

987654321 5553 0.09% qazwsxedc 2515 0.04%

aaaaaaaa 5459 0.08% abcd1234 2396 0.04%

1111111111 5145 0.08% 12341234 2380 0.04%

66666666 5025 0.08% 110110110 2348 0.04%

a123456789 4435 0.07% asdasdasd 2296 0.04%

11223344 4096 0.06% 22222222 2243 0.03%

1qaz2wsx 3667 0.06% 123321123 2166 0.03%

xiazhili 3649 0.06% abc123456 2160 0.03%

789456123 3610 0.06% a12345678 2138 0.03%

password 3501 0.05% 123456 2131 0.03%

87654321 3281 0.05% 123456123 2113 0.03%

qqqqqqqq 3277 0.05% a1234567 2106 0.03%

000000000 3175 0.05% 1234qwer 2100 0.03%

qwertyuiop 3143 0.05% qwertyui 1989 0.03%

qq123456 3094 0.05% 123456789a 1986 0.03%

The findings of this investigation are congruent with the analysis disseminated by NordPass
[28] [29], as presented in Tables 1 and 2.

The examination reveals that the passwords "123456789" and "12345678" exhibit the highest
frequency of utilization among the surveyed population, aligning with the reported patterns.

24

 Literature Review

3.4 INVESTIGATING THE VULNERABILITIES OF WIRELESS ROUTERS:

ANALYSIS OF DEFAULT WPA2 PASSWORD GENERATION ALGORITHMS

In 2015, Radboud University, in collaboration with the Dutch National Cyber Security Centre,
conducted a study that investigated the security of the default WPA2 password generating algorithms
employed by wireless routers [31]. These algorithms are loaded during device initialization and
hardware reset. The study demonstrated that certain algorithms exhibit weak password generating
mechanisms, which renders them vulnerable to brute-force attacks.

An investigation was conducted into the default WiFi password generation algorithm utilized by two
prominent Internet Service Providers (ISPs) in the Sachsen Anhalt region of Germany, namely Telekom
and PYUR. The inquiry was carried out through an analysis of default router passwords extracted from
second-hand market offerings of the most recent iterations of routers provided by internet service
providers.

Based on the investigation of the two ISPs, A pre-set WiFi password consisting of 16 digits is provided
by Telekom for its routers, as shown in Figure 6.

Figure 6: Back side of Speedport W 724v Telekom router showing the WiFi password [32].

25

 Literature Review

In contrast, PYUR uses a 12-character password that includes 2-4 digits and 2-4 capital letters, with the
remainder of the password comprising lowercase letters, as evidenced in Figure 7.

Figure 7: Back side of a PYUR CH7467CE router showing the WiFi password [33].

Passwords satisfying sufficient length criteria, such as 12 characters, are deemed secure owing to the
vast array of potential combinations. 16-digit passwords remain secure unless insufficient complexity
or randomness renders them susceptible to brute-force attacks.

26

 Literature Review

3.5 A COMPARATIVE ANALYSIS OF NVIDIA RTX 4090 AND AMD RADEON

RX6800 FOR HASH CRACKING PERFORMANCE EVALUATION

The performance of the AMD Radeon RX 6800 GPU and Nvidia RTX 4090 in the context of hash
cracking has been evaluated through a comparative analysis. This analysis involved comparing the
performance of both GPUs with other GPUs in their respective classes, using standardized benchmarks
to assess their computational capabilities. The results of this analysis indicate that the Nvidia RTX 4090
is capable of providing superior hash cracking performance compared to its peers, due to its advanced
hardware architecture and optimized software support. It delivers up to 247.6% higher performance
compared the previous generation. In contrast, the AMD Radeon RX 6800 exhibits a commendable
hash cracking performance in its category, often demonstrating parity with the RTX 3080 under similar
circumstances. It is also worth to mention that these findings have significant implications for the
development of more efficient and effective cryptographic algorithms, as well as for the design and
implementation of secure password authentication systems.

A comparison was made among the high-end gaming graphics processing units (GPUs) released by
Nvidia over the past five years. These include the RTX 4090 [13], RTX 3090 [34], RTX 3080 [34], and
RTX 2080 [35], which were released in 2022, 2020, 2020, and 2018, respectively.

On the AMD side, a similar comparison is carried out between the high-end gaming GPUs of the
Radeon RX 7000, RX 6000 and RX 5000 [36] series. This list includes the RX 7900 XTX [37], RX
6900 XT [38], RX 6800 [39] and RX 5700 XT [36], which were released in 2022, 2020, 2020 and 2019,
respectively.

In this analysis, a benchmark test was conducted using the Hashcat tool to analyze the performance of
these GPUs in cracking different types of hashes. The benchmark test consisted of commonly used
hashes, such as salted MD5 [40], salted SHA1 [41], HMAC-SHA1 [42], salted SHA256 [43], HMAC-
SHA256 [44], and WPA/PMKID. The obtained results were then compared among the GPUs to
evaluate their respective performance.

Comparing the cracking capabilities of GPUs across different types of hashes provides a broader
perspective on the extent of their capabilities in modern computing.

The raw benchmark data of the RTX 3090, RTX 3080, RTX 2080, RX 7900 XTX, RX 6900 XT, and
RX 5700 XT GPUs were provided by the Hashcat team and other users in the Hashcat forum [45] [46].

In the context of GPU hash cracking, the metric used to quantify its performance is represented by the
speed hash rate per second, indicating the rate at which the GPU is capable of cracking a given hash.

27

 Literature Review

3.5.1 Analysis Results

In the conducted study, benchmark tests were performed utilizing Hashcat to assess the computational
capabilities of various GPUs. The obtained results have been documented in Table 6 and Table 7. A
comprehensive comparative analysis of these results demonstrates the superior performance of the latest
Nvidia GPU architecture, specifically the RTX 4090, when compared to both earlier Nvidia generations
and AMD architectures. Notably, the GPUs denoted in the highlighted columns are earmarked for
subsequent investigations concerning secure password weaknesses.

Table 6: A comparative evaluation of hash cracking performance among NVIDIA GPUs, utilizing the Hashcat tool.

 RTX 4090 RTX 3090 RTX 3080 RTX 2080

md5($pass.$salt) 164.0 GH/s 66252.7 MH/s 52134.0 MH/s 36671.4 MH/s

sha1($pass.$salt) 52244 MH/s 22777.5 MH/s 16852.0 MH/s 12010.8 MH/s

PBKDF2-HMAC-SHA1 19933 kH/s 9240.9 kH/s 7135.9 kH/s 4535.8 kH/s

sha256($pass.$salt) 22880 MH/s 9746.6 MH/s 6980.9 MH/s 5380.8 MH/s

PBKDF2-HMAC-SHA256 8948.3 kH/s 3785.4 kH/s 3029.2 kH/s 2144.1 kH/s

WPA-PBKDF2-PMKID 2720 kH/s 1129.0 kH/s 839.3 kH/s 556.3 kH/s

Table 7: A comparative evaluation of hash cracking performance among AMD GPUs, utilizing the Hashcat tool.

 RX 7900 XTX RX 6900 XT RX 6800 RX 5700 XT

md5($pass.$salt) 70078.3 MH/s 56112.1 MH/s 44337.9 MH/s 32182.4 MH/s

sha1($pass.$salt) 28889.1 MH/s 22231.2 MH/s 17975.2 MH/s 12731.3 MH/s

PBKDF2-HMAC-SHA1 11783.2 kH/s 8810.0 kH/s 6846.0 kH/s 5076.6 kH/s

sha256($pass.$salt) 12770.9 MH/s 9421.7 MH/s 7602.2 MH/s 5377.0 MH/s

PBKDF2-HMAC-SHA256 4788.5 kH/s 3681.1 kH/s 2918.8 kH/s 2099.3 kH/s

WPA-PBKDF2-PMKID 1466.4 kH/s 1132.4 kH/s 910.0 kH/s 647.5 kH/s

28

 Literature Review

In the following charts, comparative analysis assessment of the hash cracking performance is illustrated
based on GPU benchmarks for each algorithm.

In Figure 8, the presented data illustrates the computational prowess of the RTX 4090 GPU in the
context of salted MD5 hash cracking, achieving an average performance of 160,000 mega hashes per
second. Notably, this performance level surpasses that of the second best consumer-grade GPU
currently available by a factor of 2.28, underscoring the significant advancement in processing speed
and efficiency offered by the RTX 4090 in the realm of cryptographic computations.

Conversely, the AMD RX 6800 showcases an average performance typical of high-end consumer GPUs
observed over the past two years.

Figure 8: Comparative Evaluation of GPU Performance for Salted MD5 Hash Cracking.

In accordance with the methodology employed in the preceding graphical representation, Figure 9
illustrates that the RTX 4090 exhibits a computational speed 1.8 times higher than that of the RX 7900
XTX when subjected to salted hash SHA1 encryption cracking.

Notably, in this specific algorithm, AMD GPU architectures exhibit a favorable edge, even though
Nvidia's CUDA core technology traditionally surpasses AMD's OpenCL in general computing tasks.
Specifically, the AMD RX 6900 XT showcases performance parity with the Nvidia RTX 3090, whereas
the RX 6800 surpasses the RTX 3080 in terms of computational efficiency during the aforementioned
encryption cracking process.

Figure 9: Comparative Evaluation of GPU Performance for Salted SHA1 Hash Cracking.

160,000 MH/s

70,078 MH/s 66,253 MH/s
56,112 MH/s 52,134 MH/s 44,338 MH/s 36,671 MH/s 32,182 MH/s

0 MH/s

50,000 MH/s

100,000 MH/s

150,000 MH/s

200,000 MH/s

R T X 4 0 9 0 R X 7 9 0 0
X T X

R T X 3 0 9 0 R X 6 9 0 0
X T

R T X 3 0 8 0 R X 6 8 0 0 R T X 2 0 8 0 R X 5 7 0 0
X T

H
as

h
ra

te

GPU

MD5($PASS.$SALT)

52,244 MH/s

28,889 MH/s
22,778 MH/s 22,231 MH/s

17,975 MH/s 16,852 MH/s
12,731 MH/s 12,011 MH/s

0 MH/s

10,000 MH/s

20,000 MH/s

30,000 MH/s

40,000 MH/s

50,000 MH/s

60,000 MH/s

R T X 4 0 9 0 R X 7 9 0 0
X T X

R T X 3 0 9 0 R X 6 9 0 0
X T

R X 6 8 0 0 R T X 3 0 8 0 R X 5 7 0 0
X T

R T X 2 0 8 0

H
as

h
ra

te

GPU

SHA1($PASS.$SALT)

29

 Literature Review

In Figures 10 and 11, it is observed that the RTX 4090 still demonstrates superior performance in the
context of PBKDF2 HMAC encryption cracking, outperforming other GPUs. Additionally, the RX
6800 exhibits comparable performance to the RTX 3080 in the same task.

Figure 10: Comparative Evaluation of GPU Performance for HMAC-SHA1 Hash Cracking.

Figure 11: Comparative Evaluation of GPU Performance for Salted SHA256 Hash Cracking.

19,933 kH/s

11,783 kH/s
9,241 kH/s 8,810 kH/s

7,136 kH/s 6,846 kH/s
5,077 kH/s 4,536 kH/s

0 kH/s

5,000 kH/s

10,000 kH/s

15,000 kH/s

20,000 kH/s

25,000 kH/s

R T X 4 0 9 0 R X 7 9 0 0
X T X

R T X 3 0 9 0 R X 6 9 0 0
X T

R T X 3 0 8 0 R X 6 8 0 0 R X 5 7 0 0
X T

R T X 2 0 8 0

H
as

h
ra

te

GPU

PBKDF2-HMAC-SHA1

22,880 MH/s

12,771 MH/s

9,747 MH/s 9,422 MH/s
7,602 MH/s 6,981 MH/s

5,381 MH/s 5,377 MH/s

0 MH/s

5,000 MH/s

10,000 MH/s

15,000 MH/s

20,000 MH/s

25,000 MH/s

R T X 4 0 9 0 R X 7 9 0 0
X T X

R T X 3 0 9 0 R X 6 9 0 0
X T

R X 6 8 0 0 R T X 3 0 8 0 R T X 2 0 8 0 R X 5 7 0 0
X T

H
as

h
ra

te

GPU

SHA256($PASS.$SALT)

30

 Literature Review

In the context of deciphering complex algorithms like PBKDF2-HMAC-SHA256, the comparative
analysis of performance across GPUs, including the RTX 4090, reveals consistent results, as depicted
in Figure 12.

Figure 12: Comparative Evaluation of GPU Performance for HMAC-SHA256 Hash Cracking.

The RTX 4090 demonstrates remarkable performance in decrypting WPA2 password encryption, as
evidenced by the data presented in Figure 13. Despite WPA2's robustness and reliability in securing the
majority of wireless network infrastructures, the exceptional capabilities of the RTX 4090 in this
context are noteworthy.

Moreover, the ongoing investigation into secure password vulnerabilities using this algorithm is crucial.
Given its robust and common usage, the identification of weaknesses within a subset of secure password
ranges could have severe consequences. In network environments where access security relies solely
on passwords without additional authentication factors, such vulnerabilities pose a significant threat,
emphasizing the importance of thorough analysis and reconsideration of minimum password
requirements.

Figure 13: Comparative Evaluation of GPU Performance for PMKID Hash Cracking.

8,948 kH/s

4,789 kH/s
3,785 kH/s 3,681 kH/s

3,029 kH/s 2,919 kH/s
2,144 kH/s 2,099 kH/s

0 kH/s

2,000 kH/s

4,000 kH/s

6,000 kH/s

8,000 kH/s

10,000 kH/s

R T X 4 0 9 0 R X 7 9 0 0
X T X

R T X 3 0 9 0 R X 6 9 0 0
X T

R T X 3 0 8 0 R X 6 8 0 0 R T X 2 0 8 0 R X 5 7 0 0
X T

H
as

h
ra

te

GPU

PBKDF2-HMAC-SHA256

2,720 kH/s

1,466 kH/s
1,132 kH/s 1,129 kH/s

910 kH/s 839 kH/s
648 kH/s 556 kH/s

0 kH/s

500 kH/s

1,000 kH/s

1,500 kH/s

2,000 kH/s

2,500 kH/s

3,000 kH/s

R T X 4 0 9 0 R X 7 9 0 0
X T X

R X 6 9 0 0
X T

R T X 3 0 9 0 R X 6 8 0 0 R T X 3 0 8 0 R X 5 7 0 0
X T

R T X 2 0 8 0

H
as

h
ra

te

GPU

WPA-PBKDF2-PMKID

31

 Methodology

4 METHODOLOGY

4.1 EXPLANATION OF THE HARDWARE AND SOFTWARE USED IN THE PROCESS

Hacking a wireless network involves using specific hardware and software tools to analyze surrounding
networks, attempting to attack a target network, retrieving the handshake (PMKID) and attempting to
crack that hash. Here is an overview of the hardware and software I have used for this purpose.

4.1.1 Hardware

4.1.1.1 Network Adapter

Figure 14: ALFA AWUS036ACH WiFi Adapter

To capture a PMKID WiFi hash, a network adapter with the capability of monitor mode is required, as
it allows for packet capturing without the need for association with an access point. This capability is
typically found in network adapter devices designed to test and diagnose wireless network security by
attempting to gain unauthorized access. Therefore, a network adapter device that supports both
connectivity and monitor mode capabilities is essential for effective PMKID hash capture and network
security testing.

There are various network adapters that support managed and monitor modes [47]. The ALFA
AWUS036ACH [48], shown in Figure 14, utilizes Realtek RTL8812AU WLAN chipset [49].

32

 Methodology

4.1.1.2 Router

Figure 15: Deutsche Telekom Speedport W 724V Router and Access Point

In order to demonstrate a target access point, a router is needed to provide a controlled environment and
safe testing ground to test our network attack.

The Speedport W 724V router, in Figure 15, is provided by Telekom German Internet Service Provider
(ISP).

4.1.1.3 Computer/Laptop

Figure 16: Personal computer with average specifications for a common modern gaming PC

A computer or laptop is required to execute the network attack and run the cracking processes. An
average consumer PC is demonstrated in Figure 16.

33

 Methodology

4.1.1.4 GPU card

Figure 17: AMD Radeon RX 6800 GPU connected to the computer

Figure 18: Nvidia RTX 4090 GPU connected to a separate computer

Graphics processing units required for cracking process. Shown in Figures 17 and 18.

34

 Methodology

4.1.2 Software

4.1.2.1 Linux OS

Figure 19: Debian based PopOS, LTS edition

Figure 20: Debian based Kali Linux, rolling edition

A Linux operating system is required to install the necessary tools for the process. As an example, two
different Linux Debian based operating systems are shown in Figures 19 and 20.

35

 Methodology

4.1.2.2 Hcxdumptool and Hcxtools

Figure 21: hcxdumptool 6.2.7, compiled from the latest available branch

Hcxdumptool, shown in Figure 21, contains a set of tools to capture packets from WLAN devices and
to discover potential weak points within own Wi-Fi networks [50]. In addition, hcxtools are required
for further processing of captured hashes. It consists of a set of tools that extract and convert captured
hashes into a format compatible with cracking tools [51].

As of the time of composing this paper, it should be noted that these tools exclusively offer support for
Linux-based operating systems.

4.1.2.3 Hashcat

Figure 22: Hashcat version 6.2.6

An advanced password recovery tool that combines CPU and GPU capabilities to crack hashes [2].

Hashcat, presented in Figure 22, can be used in both Linux and Windows environments.

36

 Methodology

4.2 DETAILED DESCRIPTION OF THE STEPS INVOLVED IN EXPLOITING THE

RSN IE VULNERABILITY, RETRIEVING PMKID HASHES AND CRACKING

PASSWORDS USING GPU PERFORMANCE

4.2.1 Wi-Fi AP Attack and Retrieving PMKID Hash.

First step starts by stopping services that might interfere with packet capturing tools

Using the Hcxdumptool, in Figure 23, we scan surrounding networks using the ALFA WLAN interface
using the following command options, which are explained in Table 8.

Table 8: hcxdumptool scan command options explanation

Command Option Explanation

-i <interface> Select the wireless interface to be used.

--do_rcascan Scan for target access points.

Figure 23: hcxdumptool scan for target access points

sudo systemctl stop NetworkManager

sudo systemctl stop wpa_supplicant

sudo hcxdumptool -i wlx00a096f98754 --do_rcascan

37

 Methodology

As the target access point is identified in Figure 23. The wireless interface is set to monitor mode in
order to begin the attack, using the following commands.

In order to create a controlled environment and make sure only the target network is being monitored,
a filter is required to explicitly specify the targeted traffic based on the target’s MAC address
(84:DB:AC:DD:16:03). Using Berkeley Packet Filter (BPF) [52], packets can be identified with the
MAC address in one of the three address fields of a Wi-Fi frame. BPF allows network packages to be
filtered and processed in real time at the kernel level. This method ensures that packets exchanged with
the target access point are exclusively monitored.

To create a BPF file, we use the following tcpdump [53] command, which is explained in Table 9.

Table 9: tcpdump filter command options explanation [54]

Command Option Explanation
-i <interface> Select the interface to be used.
wlan addr1 ehost True if the first IEEE 802.11 address field is ehost.
wlan addr2 ehost True if the second IEEE 802.11 address field, if present, is ehost. The second address

field is used in all frames except for CTS (Clear To Send) and ACK
(Acknowledgment) control frames.

wlan addr3 ehost True if the third IEEE 802.11 address field, if present, is ehost. The third address
field is used in management and data frames, but not in control frames.

-ddd Dump packet-matching code as decimal numbers (preceded with a count).

sudo tcpdump -i wlx00a096f98754 wlan addr1 84:DB:AC:DD:16:03

or wlan addr2 84:DB:AC:DD:16:03 or wlan addr3 84:DB:AC:DD:16:03

-ddd > target.bpf

sudo ip link set wlx00a096f98754 down

sudo iwconfig wlx00a096f98754 mode monitor

sudo ip link set wlx00a096f98754 up

38

 Methodology

In the next step, the PMKID attack is initiated employing hcxdumptool while applying the previously
created Berkley Packet Filter using the following command. The selected options of the command are
detailed in Table 10.

Table 10: hcxdumptool PMKID attack command options explanation

Command Option Explanation
-i <interface> Select the interface to be used.
-o <dump file> Output file in pcapng format.
--enable_status=5 Enable real-time display of incoming traffic: EAPOL and

AUTHENTICATION.
--disable_deauthentication Do not send deauthentication or disassociation frames to connected clients.
--disable_client_attacks Do not attack clients.
--bpfc=<file> Input kernel space Berkely Packet Filter (BPF) code.

Finally, the PMKID of the target network is captured, as shown in Figure 24.

Figure 24: captured PMKID using hcxdumptool

The attack resulted in an output file “testNetwork_PMKID.pcapng” which contain the captured
packages. This file can be opened and analysed using network protocol analyzers, as demonstrated in
Figure 25. Nevertheless, to facilitate further processing, the PMKID must first be extracted from the
pcapng file and transformed into a compatible format readable by cracking tools, such as Hashcat.

sudo hcxdumptool -i wlx00a096f98754 -o

testNetwork_PMKID.pcapng --enable_status=5

--disable_deauthentication --disable_client_attacks

--bpfc=target.bpf

39

 Methodology

Figure 25: Captured PMKID using hcxdumptool shown in testNetwork_PMKID.pcapng file - Wireshark

In order to extract and transform the captured hash from “testNetwork_PMKID.pcapng” file,
hcxpcapngtool of the hcxtools set is utilized. Employing the following command produces a text file
holds the PMKID transformed into hashcat format 22000.

hcxpcapngtool -o testNetwork_PMKID_22000_hash.txt

testNetwork_PMKID.pcapng

40

 Methodology

 The execution of the previous command using hcxpcapngtool led to the generation of the file
"testNetwork_PMKID_22000_hash.txt," encompassing the subsequent information.

This hash format corresponds to 22000 hashcat mode which combines PMKIDs and EAPOL
MESSAGE PAIRs in a single file [55].

The 22000-hash format stores the following information, which are clarified in Table 11.

Table 11: Hashcat 22000 hash format details

Information Details
PROTOCOL Fixed string "WPA"
TYPE 01 for PMKID, 02 for EAPOL
PMKID/MIC PMKID if TYPE=01, MIC if TYPE=02
MACAP MAC address of access point
MACCLIENT MAC address of client
ESSID Network name (ESSID) in HEX
ANONCE ANONCE
EAPOL EAPOL (SNONCE)
MESSAGEPAIR Bitmask [56]

Having successfully captured the PMKID hash, the utilization of ANONCE, EAPOL, and
MESSAGEPAIR in this context is deemed unnecessary, leading to the absence of their values within
the hash.

WPA*01*5ef9e9519d9f262215eb01fc1ac3c218*84dbacdd1603*b0febd61

b866*546573744e6574776f726b***

PROTOCOL*TYPE*PMKID/MIC*MACAP*MACCLIENT*ESSID*ANONCE*EAPOL*ME

SSAGEPAIR

41

 Methodology

4.2.2 Cracking the PMKID hash using Hashcat tool

Hashcat has the capability to utilize multiple techniques for cracking passwords, with the most
commonly employed method being the utilization of a dictionary attack [57] that is bolstered by the
inclusion of rules and masks [58]. In the present example, a basic "mask attack" [59] was conducted,
wherein a keyspace was defined to establish how a brute force attack should be executed.

When performing a mask attack, a built-in charset, detailed in Table 12, is to be used.

Table 12: Hashcat Mask-Charset explanation

Mask Charset Charset Components
?l abcdefghijklmnopqrstuvwxyz
?u ABCDEFGHIJKLMNOPQRSTUVWXYZ
?d 0123456789
?h 0123456789abcdef
?H 0123456789ABCDEF
?s «space»!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
?a ?l?u?d?s

As an example, the mask of the word Merseburg2023 is ?u?l?l?l?l?l?l?l?l?d?d?d?d

The following hashcat command was used to try all possible numbers from 8 characters long, which is
the minimum length allowed for WPA2 password to 10 characters long.

./hashcat.exe -a 3 -w 4 -m 22000 -i --increment-min=8

--increment-max=10 …\testNetwork_PMKID_22000_hash.txt

?d?d?d?d?d?d?d?d -o testNetwork_pmkid_cracked.txt

42

 Methodology

The components of the command are elucidated in Table 13, with the outcomes illustrated in Figures
26 to 28.

Table 13: Hashcat mask attack command explanation

Command Option Explanation
-a Attack-mode. 3 = Brute-force
-w Workload-profile. 4 = highest power consumption.
-m Hash-type. 22000 combines WPA-PBKDF2-PMKID and EAPOL
-i Enables mask increment mode

--increment-min Start mask incrementing at X
--increment-max Stop mask incrementing at X

-o Output file for recovered hash

Figure 26: Starting hashcat mask attack utilizing AMD RX 6800 GPU

Figure 27: Hashcat mask attack in a running status

43

 Methodology

Figure 28: Hashcat final result after cracking the PMKID hash

The Hashcat session status in Figure 28 shows that the hash with a length of 8 digits was successfully
cracked in just 15 seconds using the AMD RX 6800 GPU. As per the Hashcat command specifications,
the output file named "testNetwork_pmkid_cracked.txt" was generated, which contains the passphrase
of the corresponding access point, revealed in Figure 29.

Figure 29: The cracked passphrase in the testNetwork_pmkid_cracked.txt file

44

 Methodology

4.3 EXPLORING THE CAPABILITIES OF MODERN GPUS FOR CRACKING OF

NETWORK PASSWORDS

4.3.1 Password Lists Generation

To simulate real-world scenarios that involve commonly used passwords in Germany, customized
scripts were developed to generate German phone numbers list, dates list, and different complicated
password lists in combination with frequently utilized passwords. These lists of passwords were then
compiled into lists of PMKID hashes, which were then composed in 22000 hashcat format. The main
objective is to explore the effectiveness of using common and complex passwords against modern GPUs
cracking capabilities. The generation of these lists also shines the light on common human behaviors in
creating complex memorable passwords.

4.3.1.1 German Phone Number Generator

Given that phone numbers are commonly employed as Wi-Fi passwords, even considered weak, a
custom script was crafted to generate random German phone numbers.

In the first part of the script, Code Listing 1, a country code is defined as 0, as every phone number
starts with 0 when called locally. A list of German area codes [60] is defined, including the 3 major
carriers, T-Mobile, Vodafone and O2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

import random

Define a list of German area codes

COUNTRY_CODE = "0"

AREA_CODES = [

 {"city_carrier": "T-Mobile", "codes": ["151", "160", "170", "171", "175"]},

 {"city_carrier": "Vodafone", "codes": ["152", "162", "172", "173", "174"]},

 {"city_carrier": "o2 Germany", "codes": ["155", "157", "159", "163", "176",

"177", "178", "179"]},

 {"city_carrier": "Berlin", "codes": ["30"]},

 {"city_carrier": "Munich", "codes": ["89"]},

 {"city_carrier": "Hamburg", "codes": ["40"]},

 {"city_carrier": "Frankfurt", "codes": ["69"]},

 {"city_carrier": "Cologne", "codes": ["221", "228"]},

 {"city_carrier": "Stuttgart", "codes": ["711"]},

 {"city_carrier": "Düsseldorf", "codes": ["211"]},

 {"city_carrier": "Bremen", "codes": ["421"]},

 {"city_carrier": "Dresden", "codes": ["351"]},

 {"city_carrier": "Leipzig", "codes": ["341"]},

 {"city_carrier": "Halle", "codes": ["345"]},

]

Code Listing 1: German Phone Number Generator - Part 1

45

 Methodology

In Code Listing 2, lines 1-16, the script generates multiple phone numbers by taking the country code
(0) and selecting a random area code from a list of pre-defined German area codes, and then generating
a random 6 to 8 digits long number creating a German phone number, which is 9 to 13 digits long [61].
The generated phone numbers are then written to a file specified by the user, lines 18-32.

Using this code, a list of random phone numbers has been compiled to a text file.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Generate a random phone number

def generate_phone_number():

 # Select a random area code list

 area_code_list = random.choice(AREA_CODES)

 # Select a random area code from the chosen list in the previous step

 area_code = random.choice(area_code_list["codes"])

 # Generate a random number between 10^6 and 10^8 - 1 (6 - 8 digits long)

 number = random.randint(10**6, 10**8 - 1)

 # Format the previously generated number as a string

 number_str = str(number)

 # Return the concatenated phone number

 return COUNTRY_CODE + area_code + number_str

Generate multiple phone numbers and write them to a file

def generate_phone_numbers_to_file(num_numbers, filename):

 # Create an empty list to store the generated numbers

 phone_numbers = []

 # Generate the specified number of phone numbers

 for i in range(num_numbers):

 phone_numbers.append(generate_phone_number())

 # Write the phone numbers to the file

 with open(filename, "w") as f:

 f.write("\n".join(phone_numbers))

 # Return the list of generated phone numbers

 return phone_numbers

Take user inputs

while True:

 try:

 num = int(input("How many German phone numbers to generate? "))

 break

 except ValueError:

 print("Invalid input. Please enter a number.")

output = input("Name of the output file? ")

Generate numbers from user input

generate_phone_numbers_to_file(num, output + ".txt")

Code Listing 2: German Phone Number Generator - Part 2

46

 Methodology

4.3.1.2 Dates List Generator

 A frequently observed password choice is a specific date that holds personal significance for the user,
such as a date of birth, graduation, or marriage. In order to reproduce this phenomenon, a script was
developed to generate a user-defined quantity of such dates.

The script in Code Listing 3, lines 3-11, asks for the number of dates to generate and the name of the
output file where the generated dates will be written. The script then, in lines 13-23, generates the
specified number of dates of birth in lines and adds each date to a list called “dates”. The dates are
generated randomly and are in the format DDMMYYYY, where DD is the day, MM is the month, and
YYYY is the year. To ensure the generation of accurate dates of birth, the days, months and years are
limited to 1-28, 1-12 and 1900-2023, respectively. Finally, in lines 25-28 the list of generated dates is
written to the specified output file, with each date on a separate line.

A list of random dates was generated and compiled into a txt file.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import random

Specify the number of dates to generate

while True:

 try:

 num_dates = int(input("How many dates to generate? "))

 break

 except ValueError:

 print("Invalid input. Please enter a number.")

output = input("Name of output file? ")

Generate a list of random dates

dates = set()

while len(dates) < num_dates:

 day = str(random.randint(1, 28)).zfill(2)

 month = str(random.randint(1, 12)).zfill(2)

 year = str(random.randint(1900, 2023))

 date = day + month + year

 if date not in dates:

 dates.add(date)

dates = list(dates)

write the list of dates to a file

with open(output, 'w') as f:

 for date in dates:

 f.write(date + '\n')

print(f"File '{output}' created.")

Code Listing 3: Dates List Generator

47

 Methodology

4.3.1.3 Default ISP Password Generator

A prevalent practice among users is to retain the default WiFi password that is provided by the Internet
Service Provider (ISP). The rationale behind this practice is often based on convenience, as the
password is readily available at the back of the router, in case the user forgets it.

Following the investigation of Telekom and PYUR routers, as detailed in section 5.4 of this study, an
ISP password generator was developed. The Python script is designed to generate passwords with
randomized characters and writes them to a file that mimics PYUR ISP default passwords. The script
defines the set of characters that can be included in each password, consisting of a combination of 2-4
uppercase letters, 2-4 digits, and lowercase letters. The passwords are generated by randomly selecting
characters from each of these categories, and the order of the sections is randomized by shuffling.
Finally, the resulting passwords are written to the output file. The script was executed to generate a
dataset of random passwords.

The script in Code Listing 4, lines 4-13, prompting the user to enter the name of the output file as well
as a valid integer for the number of passwords to generate. In lines 15-23, the script defines sets of
characters to be used in the password (uppercase letters, lowercase letters, and digits) and the length of
each section in the password. The total length is fixed at 12 characters.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

import random

import string

prompt for the name of the output file

filename = input("Enter the name of the output file: ") + ".txt"

specify the number of passwords to generate

while True:

 try:

 num_passwords = int(input("How many passwords to generate? "))

 break

 except ValueError:

 print("Invalid input. Please enter a number.")

define the possible characters to use in the password

uppercase = string.ascii_uppercase

lowercase = string.ascii_lowercase

digits = string.digits

define the length of each section in the password

upper_length = random.randint(2, 4)

digit_length = random.randint(2, 4)

lower_length = 12 - upper_length - digit_length

Code Listing 4: Default ISP Password Generator - Part 1

48

 Methodology

Finally, in lines 25-37, passwords are generated and written to the output file. To ensure password
randomization, each password is created by randomly selecting characters from each character set and
then shuffling the order of the characters.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

generate the passwords and write them to the output file

with open(filename, 'w') as file:

 for i in range(num_passwords):

 upper = ''.join(random.choices(uppercase, k=upper_length))

 digit = ''.join(random.choices(digits, k=digit_length))

 lower = ''.join(random.choices(lowercase, k=lower_length))

 # combine the sections and shuffle the order

 password = upper + digit + lower

 password = ''.join(random.sample(password, len(password)))

 # write the password to the output file

 file.write(password + "\n")

print(f"{num_passwords} passwords have been generated and saved to {filename}.")

Code Listing 5: Default ISP Password Generator – Part 2

49

 Methodology

4.3.1.4 PMKID Hash Generator

After compiling a list of frequently used passwords, a method is required to transform them into PMKID
hashes in Hashcat format 22000, which mimics their capture from WiFi attacks and facilitates their
decryption. To achieve this, a script was designed based on the process of creating Hashcat 22000
format, as elaborated in section 6.2.1, to generate a roster of PMKID hashes utilizing the aforementioned
password lists.

Code Listing 6 comprises of 4 functions that randomly generate values for Access Point MAC address
in lines 7-13, Client MAC address in lines 15-21, and an Access Point name in lines 23-39. These values
are essential for creating a PMKID hash. In particular, the Access Point name is necessary for
computing the PMK, which, in turn, is used in conjunction with the Access Point and Client MAC
addresses to derive the PMKID hash, as described in section 4.1.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

import hashlib

from hashlib import pbkdf2_hmac, sha1

import hmac

import subprocess

import random

Generate a random MACADDRESS for Access Point

def generate_mac_ap():

 mac = [0x00, 0x12, 0x3a,

 random.randint(0x00, 0xff),

 random.randint(0x00, 0xff),

 random.randint(0x00, 0xff)]

 return ''.join(map(lambda x: "%02x" % x, mac))

Generate a random MACADDRESS for CLIENT

def generate_mac_client():

 mac = [0x00, 0x12, 0x3b,

 random.randint(0x00, 0xff),

 random.randint(0x00, 0xff),

 random.randint(0x00, 0xff)]

 return ''.join(map(lambda x: "%02x" % x, mac))

Access Point name generator

def generate_random_word():

 # Generate a random word of length between 8 and 9 characters

 length = random.randint(8, 9)

 word = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz1234567890', k=length))

 return word

def generate_random_APname():

 # Access Point indicator

 name = 'AP'

 # Generate a counter with leading zeros

 counter = str(random.randint(000, 999)).zfill(3)

 # Generate a random word

 word = generate_random_word()

 return f"{name}_{counter}_{word}"

Code Listing 6: PMKID Hash Generator - Part 1

50

 Methodology

In Code Listing 7, lines 1-7, the user is prompted to provide the names of the input and output files. The
input file should contain a list of passwords generated earlier, while the output file will contain the
corresponding PMKID hashes. The code then opens the input file, reads its contents, and splits them
into individual lines, which are stored as separate items in a list named “items”. In lines 9-40, a loop is
implemented to process each item in the list of passwords generated earlier. For each password, random
values are generated for the Access Point (AP) MAC address, Client MAC address, and ESSID name,
utilizing the functions defined in Code Listing 6.

Thereafter in lines 26-29, the pbkdf2_hmac function is employed to create a Pairwise Master Key
(PMK) using the passphrase and ESSID. Finally, in lines 31-36, the hmac function is used to generate
a PMK Identifier (PMKID) hash based on the PMK, which is then formatted with the other parameters
into a hashcat 22000 format string. The resultant string is then written to the output file.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Read input file name and output file name from the user

input_file_name = input("Enter the input file name: ")

output_file_name = input("Enter the output file name: ")

Open the input file and read the list of items

with open(input_file_name, 'r') as input_file:

 items = input_file.read().splitlines()

Open the output file for writing

with open(output_file_name, 'w') as output_file:

 # Loop through the items and convert each one to a PMKID hash

 for item in items:

 # Parameters

PROTOCOL*TYPE*PMKID/MIC*MACAP*MACCLIENT*ESSID*ANONCE*EAPOL*MESSAGEPAIR

 protocol="WPA"

 pType="01"

 passphrase = item

 # AP MAC Address

 bssid = generate_mac_ap()

 # Client MAC Address

 sta_mac = generate_mac_client()

 # Essid Name

 essid = generate_random_APname()

 pmk = pbkdf2_hmac(

 'sha1', bytes(passphrase, 'utf-8'), bytes(essid, 'utf-8'),

 iterations=4096, dklen=32

)

 pmkid = hmac.new(pmk, (b'PMK Name' + bytes.fromhex(bssid) +

bytes.fromhex(sta_mac)), sha1).hexdigest()[:32]

 pmkid_string = '{}*{}*{}*{}*{}*{}***'.format(protocol, pType, pmkid, bssid,

sta_mac, bytes(essid, 'utf-8').hex())

 print(pmkid_string)

 # Write the PMKID hash to the output file

 output_file.write(pmkid_string + '\n')

Code Listing 7: PMKID Hash Generator - Part 2

51

 Methodology

4.3.2 Assessing Password Security: An Analysis of Breached Passwords in Generated
Passwords

4.3.2.1 Bloom Filter Generator

To enhance password uniqueness, it is essential to implement a mechanism that filters out compromised
passwords. By doing so, we can guarantee that the generated password lists remain exclusive to
individual users and are devoid of entries found in breached databases.

Recently, there have been numerous instances of high-profile data breaches that have caused millions
of user passwords to be leaked [62]. To address this problem, a tool has been developed using Python
that employs Bloom Filters to analyze breached passwords in generated passwords. A Bloom Filter is
a probabilistic data structure that efficiently checks if an item is a member of a set. In this particular
case, the dataset utilized by the Bloom Filter consists of 851,082,816 passwords from hacker breaches
until March 2023, which was supplied by HIBP [63].

To ensure accuracy, the MurmurHash3 algorithm was utilized to create the Bloom Filter with a false
positive probability rate of 1/10000000. As a result, the Bloom Filter is 99.99999% accurate in detecting
whether a generated password is present in the breached dataset.

In Code Listing 8, lines 7-14, several crucial parameters are computed, including the name of the input
and output files, the quantity of lines in the input file, the desired false positive probability rate, and the
number of partitions into which the generated Bloom Filter will be divided.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#! /usr/bin/python

import mmh3

import bitarray

import math

import datetime

inputFile = "pwnedpasswords.txt"

number_of_lines = int(subprocess.check_output(['wc', '-l', inputFile]).decode('utf-

8').split()[0])

outputFile = "finalBF_" + datetime.datetime.now().strftime("%H%M") + "_pt"

Define the desired false positive rate

false_positive_rate = 0.0000001

num_partitions = 8

Calculate the required size of the bit array and the number of hash functions

num_bits = int(-(number_of_lines * math.log(false_positive_rate)) / (math.log(2) ** 2))

num_bits_per_partition = (num_bits + 1) // num_partitions

num_hashes = int((num_bits_per_partition / number_of_lines) * math.log(2))

print(f"num_hashes (k): {num_hashes}")

print(f"num_bits (m): {num_bits}")

print(f"number of bits per partition: {num_bits_per_partition}")

Code Listing 8: Bloom Filter Generator - Part 1

52

 Methodology

The calculation of the Bloom Filter size, which takes place in line 17, is based on the false positive
probability rate and the total number of lines in the input file. Subsequently, in line 18, the size of each
partition is determined by dividing the calculated number of bits by the specified number of partitions.

Eventually, the calculation of the hash functions, in line 19, is then performed using the bits per partition
and the total number of lines in the input file. Finally, in lines 21-23, the program displays the computed
values for the number of bits, hash functions, and bits per partition on the screen.

In Code Listing 9, lines 1-4, a list of bit arrays are initialized, where each bit array corresponds to a
partition. The size of each bit array is defined by the number of bits per partition. All bits in these arrays
are initially set to false. In lines 6-13, the program opens the input file in read mode and iterates through
each line. For each password, hash values are calculated by using the mmh3 hash function. The
mmh3.hash64 function takes the encoded password as input and generates a 64-bit hash value, while
ensuring that the hash values are within the range of the current partition's bit array. Afterward, another
loop iterates over the calculated hash values for the current password and for each hash value, the
corresponding bit is set to true, marking the positions in the Bloom filter where the current password's
hash values indicate membership.

Finally, in lines 15-22, after processing all passwords, the code writes each partition's bit array to
separate binary files and prints the names of the input file as well as the names of the output binary files
for each partition.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

Create a list of bit arrays. One for each partition

bit_arrays = [bitarray.bitarray(num_bits_per_partition) for _ in range(num_partitions)]

for bit_array in bit_arrays:

 bit_array.setall(False)

with open(inputFile, 'r') as f:

 for line in f:

 password = line.strip()

 for i in range(num_partitions):

 hash_values = [mmh3.hash64(password.encode(), j, True)[0] %

num_bits_per_partition for j in range(num_hashes)]

 for index in hash_values:

 bit_arrays[i][index] = True

Write the Bloom filter to a binary file

for i in range(num_partitions):

 with open(f'{outputFile}{i}.bin', 'wb') as f:

 bit_arrays[i].tofile(f)

print(f"\nInput file: {inputFile}")

for i in range(num_partitions):

 print(f"Output file: {outputFile}{i}.bin")

Code Listing 9: Bloom Filter Generator - Part 2

53

 Methodology

Utilizing the custom-designed Bloom Filter tool, a Bloom filter with a size of 3.6GB was created,
partitioned into eight segments, employing the 36.6GB password dataset supplied by HIBP, as depicted
in Figures 30 and 31.

Figure 30: Generated output using the Bloom Filter Generation script.

Figure 31: Binary files generated with Bloom Filter Generation script

54

 Methodology

4.3.2.2 Bloom Filter Checker

To validate a set of generated passwords against a pre-existing Bloom Filter, a dedicated software
application was engineered for this purpose.

The program in Code Listing 10, lines 7-13, was configured with variable outputs from Bloom Filter
Generator in Figure 30, together with the number of partitions alongside the name of the input list to
check and the name of the corresponding bloom filter binary.

In lines 16-23, the code iterates over the number of partitions. For each partition, it opens the
corresponding binary file (finalBF_1037_pt0.bin, finalBF_1037_pt1.bin, ..., finalBF_1037_pt7.bin)
and reads the content into a bit array. The file names and contents are printed for each iteration.

In the next instance, the code, in lines 25-27, opens the file containing the list passwords to check. It
reads the content of the file, splits it into lines, and stores the result in the list passwords_to_check.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#! /usr/bin/python

import os

import mmh3

import struct

import bitarray

num_partitions = 8

num_hashes = 2

num_bits = 28551874663

num_bits_per_partition = 3568984333

textFile = input('Enter file to check: ')

binFile = "finalBF_1037_pt"

Load the Bloom filter bit arrays from the binary files

bit_arrays = []

for i in range(num_partitions):

 with open(f'{binFile}{i}.bin', 'rb') as f:

 print(f"{binFile}{i}.bin")

 bit_array = bitarray.bitarray()

 bit_array.fromfile(f)

 bit_arrays.append(bit_array)

Check if the strings are present in the Bloom filter

with open(textFile, 'r') as file:

 passwords_to_check = file.read().splitlines()

Code Listing 10: Bloom Filter Checker - Part 1

55

 Methodology

Subsequently, in Code Listing 11, lines 1-4, the code establishes multiple variables to serve as counters,
specifically designated for quantifying the total number of passwords, the count of successfully detected
passwords, and the count of undetected passwords. Additionally, the program initializes a list, denoted
as not_detected_passwords, to systematically record and monitor the outcomes of the detection process.

In lines 5-20, the code iterates through each password in the passwords_to_check list. For every
password, a series of hash functions is employed to hash the password across the partitions of the Bloom
filter. Afterwards, the algorithm evaluates whether the respective bits in the Bloom filter are configured
to 1. If any bit is not set, the password is considered not in the filter. The results are used to update the
detected and undetected counters, alongside populating the not_detected_passwords list.

Finally, in lines 22-29, the program writes the passwords not detected by the Bloom filter to a file and
prints the summary statistics on the display.

By utilizing this Bloom Filter, it was possible to verify whether generated passwords had appeared in
prior breaches. This helps ensure that the passwords generated are not leaked and are not easily guessed.
By preventing the reuse of easily guessed passwords, it is feasible to accurately assess the capabilities
of modern GPUs in cracking these passwords.

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

num_passwords = 0

num_detected = 0

num_not_detected = 0

not_detected_passwords = []

for password in passwords_to_check:

 num_passwords += 1

 is_password_in_filter = True

 for i in range(num_partitions):

 hash_values = [mmh3.hash64(password.encode(), j, True)[0] %

num_bits_per_partition for j in range(num_hashes)]

 for index in hash_values:

 if not bit_arrays[i][index]:

 is_password_in_filter = False

 break

 if is_password_in_filter:

 num_detected += 1

 else:

 num_not_detected += 1

 not_detected_passwords.append(password)

with open(f'not_detected_{textFile}', 'w') as file:

 for not_detected_password in not_detected_passwords:

 file.write(not_detected_password + '\n')

print("Total number of passwords: {}".format(num_passwords))

print("Number of passwords detected: {}".format(num_detected))

print("Number of passwords NOT detected: {}".format(num_not_detected))

print(f'Not detected passwords are written to not_detected_{textFile}')

Code Listing 11: Bloom Filter Checker - Part 2

56

 Methodology

4.3.3 Preparation and Curation of Password Datasets

All generated passwords lists underwent a curation process comprised of the following measures:

1. Integration of files into a singular file.
2. Elimination of duplicates.
3. Exclusion of passwords with a length of less than eight characters, which is the minimum

password length possible for WPA.
4. Elimination of passwords identified in the leaked password dataset supplied by HIBP by using

a Bloom Filter.

Following the curation process, a compilation of 33,864 passwords was obtained, detailed in Table 14.

Table 14: Sorted collection of curated passwords list

Number of Passwords Type of Password
4253 Dates and 8-digit passwords
4179 German phone numbers
1000 12 characters (uppercase, lowercase and digits)
3000 12 characters (L33t type passwords)
1222 +20 characters (L33t type passwords)
16252 Commonly used passwords over 13 characters long
2802 Complexified Common WPA Passwords (8 char)
763 Complexified Common WPA Passwords (9 char)
305 Complexified Common WPA Passwords (10 char)
88 Complexified Common WPA Passwords (11 char)

Ultimately, The PMKID Hash Generator script (section 6.3.1.4) was utilized to generate a list of
PMKID hashes in hashcat 22000 format from the curated passwords. A snapshot of this list is displayed
in Figure 32.

Figure 32: A snapshot of a portion of the PMKID hashes from the generated list

The decryption of generated PMKID hashes was then carried out by utilizing the RTX 4090 and the
comparatively older RX 6800. By performing a comparative analysis of the outcomes, the study aims
to elucidate the impact of the new GPU technology on diverse secure password standards.

57

 Methodology

4.4 CHALLENGES OR ISSUES ENCOUNTERED DURING THE EXPERIMENTATION

Throughout the course of experimentation, several challenges and limitations were identified and
carefully documented. In the subsequent sections, a comprehensive analysis of these challenges is
provided for a thorough understanding of the experimental constraints encountered during the study.

4.4.1 Insufficient Availability of Authentic Packet Captured Data

Despite the aspiration to collect random packet data through extensive street-level roaming and analysis,
ethical constraints, notably Sec. 202a of the German Criminal Code [64], prohibit such practices.
Obtaining consent from numerous access point (AP) owners for a generalized wireless attack involving
thousands of APs is an arduous task. Consequently, an alternative approach involves simulating typical
human password creation patterns based on the analysis of previous studies and breached data dumps.

This alternative approach, while not replicating real-world scenarios entirely, offers valuable insights
into common human password behaviors. By meticulously studying historical data breaches and
previous research, patterns emerge, shedding light on the recurring tendencies of individuals when
devising passwords. These insights encompass factors such as the prevalence of easily guessable
passwords, the overreliance on dictionary words, and the predictable use of common alphanumeric
combinations.

Furthermore, this study strives to expose the fallibility of what are conventionally perceived as strong
passwords. By systematically scrutinizing password behaviors derived from previous research and data
breaches, we shed light on the subtle nuances that can render even seemingly robust passwords
susceptible to exploitation. This nuanced perspective is crucial, as it challenges the conventional
understanding of password security and necessitates the adoption of more robust measures.

4.4.2 Limitations of Latin Alphabet-Based Metrics

The metrics utilized in this study are constrained to users utilizing Latin alphabet-based keyboards, such
as English and German. Despite similarities in human behavior, these metrics do not encompass
passwords composed in non-Latin languages such as Arabic, Chinese, Japanese, Cyrillic, and others.

58

 Methodology

4.4.3 Mitigation Strategies of Hash Collision for Large Password Datasets Using
MurmurHash3 Algorithm

The MurmurHash3 algorithm is a non-cryptographic hash function that generates hash values with high-
quality distribution and computational efficiency. Despite its efficacy, the algorithm is still prone to
hash collisions [65], which occur when two different input values result in the same hash value. This
phenomenon poses a challenge to hash table-based data storage and retrieval applications, causing file
corruption.

The probability of hash collisions is positively correlated with the number of input values and the hash
table size. In the present study, the password file consisting of leaked database passwords, provided by
HIBP, was 37.5 gigabytes and consisted of 851,082,816 passwords. To address this risk, it is
recommended to employ larger hash tables to ensure an adequate number of slots to store all possible
hash values, while raising the false positive probability rate to 1/1000, which is relatively high given
the large number of passwords in the data set.

Efforts to mitigate hash collision probabilities in the presence of an extensive password dataset proved
to be highly demanding in terms of resources. As a result, an intricate yet efficient approach was
developed to improve the accuracy of the Bloom filter.

The approach to address the challenge at hand involves dividing the Bloom Filter binary into eight
partitions, with each partition serving as an individual Bloom Filter. The process entails scanning the
generated passwords through all eight partitions. This method yields several advantages, including a
reduction in the size of the generated binaries, decreasing resource-intensive processes, and the ability
to operate with a considerably low false positive probability rate in a relatively shorter time.

59

 Results & Analysis

5 RESULTS & ANALYSIS

5.1 PRESENTATION OF THE DATA OBTAINED FROM THE EXPERIMENTATION,
INCLUDING THE SUCCESS RATE IN CRACKING PMKID HASHES

A total of 12 comprehensive tests, marked in Table 15, were conducted to evaluate the performance of
the two distinct Graphics Processing Units (GPUs), namely the RTX 4090 and the RX6800. These tests
encompassed a mix of exhaustive brute-force and dictionary-based attacks. Every test was restricted by
predetermined time limits, following the Hashcat general rules embedded within the tool, and utilizing
well-known wordlists frequently employed by penetration testers.

The applied rules in the tests included "capitalize", "append", "leetspeak", and "rockyou-30000". The
dictionaries employed included the RockYou wordlist [66] and a standard English language dictionary.

The first three experiments employ an identical encrypted password dataset to demonstrate the speed at
which a present-day consumer GPU can break a commonly used vulnerable password, serving as a
benchmark against its forerunners.

Notably, certain tests were successfully completed within the designated time frame on the RTX 4090,
which in turn determined the time constraint applied to the tests conducted on the RX6800. Presented
below are the detailed results derived from these rigorous evaluations.

60

 Results & Analysis

Table 15: Results of Password Cracking Tests Conducted on Nvidia RTX 4090 and AMD RX 6800 GPUs

The experimental findings demonstrate a significant disparity in computational speed between the 2
GPUs when tasked with decrypting passwords. The RTX 4090 displays a computational efficiency
ranging from 2 to 5 times higher than that of the RX6800. Despite that, anomalies were detected during
tests 5, 7, and 12 in the performance of the RX6800.

No. Test
Cracking

Duration
Mask

Mask

Meaning /

Dictionary

Total

Encrypted

Password

s

RTX 4090

Cracked

Password

s

RX 6800

Cracked

Password

s

Cracked Password

Samples

1 8 Digits
9H

(09:00:00)

?d?d?d?d?d?

d?d?d
8 Digits 4253

1208

(28.40%)

352

(8.27%)
26101978

2 8 Digits
4H

(04:00:00)

-1 01

?1?d?d?d?d?

d?d?d

8 Digits 4253
1266

(29.77%)

357

(8.39%)
17021969

3
Date of

Birth

4.86 Min.

(00:04:52)

-1 0123 -2 01

-3 12 -4 90

?1?d?2?d?3?

4?d?d

All possible

dates of birth

from

01011900

4253
4253

(100%)

795

(18.69%)
22041960

4
Phone

Number

8H

(08:00:00)

0?d?d?d?d?d

?d?d?d?d?d
11 Digits 4179

666

(15.56%)

176

(4.11%)
3417749012

5

12 Char

(Uppercase

+

Lowercase

+ Digits)

24H

(24:00:00)

Dictionary

Attack

English

Language

Dictionary

1000
112

(11.20%)
0 (0%)

Alterant9641

Absolved5084

6

12 Char

L33t Type

Passwords

24H

(24:00:00)

Dictionary

Attack

English

Language

Dictionary

3000
825

(27.5%)

190

(6.33%)

pyr0phyll1t3

w0nd3rm0ng3r

7

+20 Char

L33t Type

Passwords

24H

(24:00:00)

Dictionary

Attack

English

Language

Dictionary

1222
35

(2.86%)
0 (0%) m3thyltr1n1tr0b3nz3n3

8

Common

passwords

+13 char

24H

(24:00:00)

Dictionary

Attack
RockYou 16252

2259

(13.89%)

1060

(6.52%)
syncmaster920n

9

Common

WPA

Passwords

8 Char

8H

(08:00:00)

Dictionary

Attack
RockYou 2802

1355

(48.36%)

514

(18.34%)

bl1zz4rd

schn3ck3

r0s3m4ry

10

Common

WPA

Passwords

9 Char

8H

(08:00:00)

Dictionary

Attack
RockYou 763

442

(57.93%)

161

(21.1%)

v4l3nt1n3

bulld0z3r

schn31d3r

11

Common

WPA

Passwords

10 Char

8H

(08:00:00)

Dictionary

Attack
RockYou 305

167

(54.75%)

40

(13.11%)

krypt0n1t3

w4t3rm3l0n

12

Common

WPA

Passwords

11 Char

8H

(08:00:00)

Dictionary

Attack
RockYou 88

42

(47.73%)
2 (2.27%)

c0mpl1c4t3d

chr1st0ph3r

61

 Results & Analysis

In response to the observed anomalies, the assessment protocols were modified by extending the
temporal constraints. Specifically, Tests 5 and 7 were subjected to a time limit of 48 hours, while Test
12 required a total of 64 hours to complete, owing to the limited quantity of encrypted passwords
involved in the analysis. The following outcomes of these tests are delineated in Table 16.

Table 16: Findings from Experiments 5, 7, and 12 conducted on AMD RX 6800 Under Extended Time Constraints

Upon analyzing the outcomes, it becomes evident that the RX6800 demonstrates increased efficacy in
handling specific password subsets as the duration of computation extends. Following the conclusion
of test 12, it is apparent that the RX6800 produces results equivalent to those attained by the RTX 4090,
albeit with a prolonged time frame. This observed phenomenon may arise from limitations inherent in
OpenCL in comparison to CUDA, or it could be influenced by the positioning of the passwords within
the latter portion of the dictionary.

No Test
Cracking

Duration
Mask

Mask

Meaning

Total

Encrypted

Passwords

RTX 4090

Cracked

Passwor

ds

RX 6800

Cracked

Passwords

Cracked Password

Samples

5

12 Char

(Uppercase +

Lowercase +

Digits)

48H

(48:00:00)

Dictionar

y Attack

English

Language

Dictionary

(370,000

Words)

1000 - 24 (2.4%)
Abricock6515

Acalephs1743

7

+20 Char L33t

Type

Passwords

48H

(48:00:00)

Dictionar

y Attack

English

Language

Dictionary

(370,000

Words)

1222 - 9 (0.73%) p0lyv1nylpyrr0l1d0n3

12

Modified

Common

WPA

Passwords

(11 Char)

64H

(64:00:00)

Dictionar

y Attack
RockYou 88 - 42 (47.73%)

y3ll0wst0n3

c0nst4nt1n3

62

 Results & Analysis

5.2 DEFINING THE THRESHOLD FOR CRITICALLY WEAK PASSWORDS AND

INTRODUCING THE CONCEPT OF PASSWORD DEAD-ZONE

In the realm of cybersecurity, a critically weak password denotes a password of utmost vulnerability
due to its ubiquity and ease of prediction, exemplified by sequences like "123456" or "qwerty". In the
context of assessing the computational power of the RTX 4090, it was observed that certain passwords
were breached almost instantaneously under pure brute-force attacks. This observation instigated a
comprehensive inquiry into varying password lengths and character sets. The objective was to evaluate
the feasibility of cracking all possible combinations within a relatively short timeframe using today's
consumer-grade GPUs.

These investigations imposed specific constraints: the passwords being analyzed had to be entirely
random, mirroring the generation protocols employed by password managers. Moreover, the attacks
executed were strictly pure brute-force attacks, encompassing the entirety of the character sets involved,
without any rules, wordlists, or procedures that might enhance the efficiency of the attack. The primary
aim was to evaluate, from a raw computational potency perspective, the RTX 4090's ability to penetrate
through all conceivable password combinations within a 24-hour window, pushing the boundaries until
the maximum password length was determined where the RTX 4090 broke all possible combinations.

The data, in Table 17, presents the outcomes obtained from an experiment assessing the threshold values
associated with passwords characterized as critically weak, formulated solely from a lowercase
character set.

Table 17: Test Results for Critically Weak Password Lengths Formulated from Lowercase Characters

No. Test

Duration

to

complete

Test Status Mask Range

Total

Encrypted

Passwords

RTX 4090

Cracked

Passwords

Cracked

Password

Samples

1
4 random

characters

1s

(00:00:01)
Completed

Bruteforce

Attack
aaaa -> zzzz 10 10 (100%)

jrqz

lkvh

2
5 random

characters

28s

(00:00:28)
Completed

Bruteforce

Attack
aaaaa -> zzzzz 10 10 (100%)

nbjvz

zlesj

3
6 random

characters

9.6m

(00:09:40)
Completed

Bruteforce

Attack

aaaaaa ->

zzzzzz
10 10 (100%)

qzmpyf

lkbkae

4
7 random

characters

4.3H

(04:18:00)
Completed

Bruteforce

Attack

aaaaaaa ->

zzzzzzz
10 10 (100%)

njtgouj

jopdsft

5
8 random

characters

EST. 6 days

(144:00:00)

Only 24h

Completed

Bruteforce

Attack

aaaaaaaa ->

zzzzzzzz
10 3 (30%)

gcuswfrl

tyzgkxhr

63

 Results & Analysis

Subsequently, an additional experiment was conducted, involving an extended character set comprising
lowercase letters (a-z), numerals (0-9), and most common special symbols (!@#$%^&*()), to further
evaluate password strength and security, detailed in Table 18.

Table 18: Test Results for Critically Weak Passwords Formulated from Lowercase Letters, Numerals, and Special Symbols

No Test
Duration to

complete
Test Status Mask Range

Total

Number of

Encrypted

Passwords

RTX 4090

Cracked

Password

s

Cracked

Password

Samples

1
4 random

characters

12s

(00:00:12)
Completed

Brute force

Attack
aaaa ->)))) 10 10 (100%)

@wz)

 4#u3

2
5 random

characters

4.75m

(00:04:45)
Completed

Brute force

Attack
aaaaa ->))))) 10 10 (100%)

!dx0q

5tn^&

3
6 random

characters

3.59H

(03:36:00)
Completed

Brute force

Attack

aaaaaa ->

))))))
10 10 (100%)

*y56q%

hkrl)8

4
7 random

characters

EST. 20 Days

(480:00:00)

Only 24h

Completed

Brute force

Attack

aaaaaaa ->

)))))))
10 0 (0%)

xa%*5nu

3w(u@c)

In experiment no.4 identified as 7 random characters, a 24-hour duration was allocated for testing
without yielding any visible results. Despite the absence of outcomes within this timeframe, it is
anticipated that the exhaustive exploration of all potential combinations within this specific character
set will require a maximum period of 20 days to successfully crack and complete the test.

These experiments led to the discovery of a phenomenon termed the 'Password Dead-Zone'. This term
refers to a specific range of password lengths and character sets that are cracked almost instantly under
pure brute-force attacks, highlighting a critical area of concern in digital security.

In the realm of the Password Dead-Zone, passwords of those lengths are alarmingly weak no matter the
character compositions. These passwords are highly susceptible to brute-force attacks due to their
insufficient length. The computational power of modern consumer GPUs, exemplified by the RTX
4090, can swiftly crack passwords within the range of this zone, making them essentially worthless as
security measures.

64

 Results & Analysis

5.3 DISCUSSING STRATEGIES TO MITIGATE PASSWORD VULNERABILITIES

In spite of the extensive dissemination of warnings and recommendations regarding the formulation of
robust passwords, a substantial segment of internet users persists in employing weak and easily
predictable passwords, provided they meet the minimum technical requirements. As evidenced in the
conducted experiments, the WPA2 protocol mandates a minimum password length of 8 characters.
Nonetheless, an 8-character password lacking randomness and intricate complexity is susceptible to
instant decryption. Furthermore, the encryption algorithm for password protection in WPA2 networks
stands as the primary defense against network intrusion. The computational prowess of GPU-based
cracking techniques is expected to advance further, rendering even more intricate password
configurations vulnerable to rapid decryption in the future.

As time progresses and technology advances, the Password dead zone continues to expand. Considering
that passwords tested are encrypted using WPA2 algorithm, which is currently regarded as one of the
most robust encryption methods relied upon by the majority of wireless networks. This highlights the
critical significance of implementing strong password policies, emphasizing the necessity for strict
requirements concerning password length and complexity. Users are encouraged to utilize lengthy,
random, and diverse combinations of characters. It is crucial to refrain from employing passwords that
fall within the criteria of the Password Dead-Zone, as they provide minimal to no protection against
cyber threats.

Based on the experimental findings presented in this study, wherein an encryption algorithm renowned
for its robustness and resistance to rapid decryption was employed, coupled with the tendency of
individuals to devise passwords based on memorability, it is advisable to opt for password management
systems featuring a minimum complexity of 16 characters. This exceeds the established Password
Dead-Zone threshold by twofold, thereby ensuring heightened security. Nonetheless, it is noteworthy
that human-memorable passwords, composed of multiple words and exceeding 18 characters, remain
secure when employing a sophisticated character set, as evidenced by contemporary standards.

In conclusion, the concept of the Password Dead-Zone serves as a stark reminder of the ever-present
dangers in the digital landscape. By staying vigilant and employing robust password practices,
individuals and organizations can fortify their defenses against cyber threats, ensuring the safety of
sensitive information in an increasingly interconnected world.

65

 Conclusion

6 CONCLUSION

6.1 SUMMARY OF THE MAIN FINDINGS OF THE STUDY

The research conducted on the vulnerabilities of secure passwords, particularly focusing on the impact
of consumer GPU technology advancements on password cracking. The results underscored several
critical points:

1. Ineffectiveness of Complex Passwords: Contrary to common belief, the study revealed that
the complexity of passwords alone is no longer a sufficient safeguard against modern cracking
techniques. Even intricate passwords lacking adequate character randomization were found to
be vulnerable. This challenges the widely held notion that incorporating uppercase letters,
numbers, and special characters guarantees security.

2. Cracking Long Passwords: One of the discoveries was the ability to crack long passwords.
Passwords with 12 or more characters, despite their length, become vulnerable to cracking
attempts within a reasonable timeframe. This highlights the inadequacy of length alone in
ensuring security; character randomization and unpredictability are equally crucial factors.

3. Instant Vulnerability of Short Passwords: Perhaps most concerning was the finding that
passwords below 8 characters, regardless of their complexity, were instantly crackable. This
signifies a critical Password Dead-Zone, a range where passwords are exceptionally vulnerable,
emphasizing that even minimal length requirements are insufficient in the face of modern
cracking tools.

4. Advancements in Consumer GPU Technology: The study showcased the substantial
progress made in consumer GPU performance concerning password cracking. With each
generation, these GPUs become exponentially more potent, enabling attackers to break
passwords at an alarming pace. This escalation in computational power significantly reduces
the time and effort required to crack passwords, making traditional security measures obsolete.

5. Default Wordlists and Rules: The research employed default wordlists and rules provided by
encryption cracking tools like Hashcat. This highlights the accessibility and ease with which
attackers can utilize off-the-shelf tools to compromise passwords. The default configurations
alone were potent enough to breach passwords, indicating the simplicity of launching such
attacks.

6. Implications for Security Paradigms: These findings challenge existing paradigms of
password security. Passwords, regardless of their complexity, face a formidable threat from
evolving cracking techniques. The research underscores the urgent need for a paradigm shift in
security strategies, moving away from reliance solely on passwords.

66

 Conclusion

In conclusion, the research paints a grim picture of the current state of password security. It highlights
the pressing need for innovative approaches that transcend traditional password policies. The study's
revelations serve as a wake-up call for individuals, organizations, and security professionals, urging
them to adopt advanced security measures, robust authentication protocols, and continuous awareness
programs to effectively safeguard against the escalating threat landscape.

67

 Conclusion

6.2 IMPLICATIONS FOR WI-FI PASSWORD SECURITY

The implications of these findings for Wi-Fi password security are significant and far-reaching. Wi-Fi
networks serve as gateways to a multitude of devices and sensitive information, making them attractive
targets for malicious actors. Historically, Wi-Fi networks have relied heavily on passwords to safeguard
access. However, the emergence of increasingly powerful consumer GPUs amplifies the vulnerabilities
associated with this approach.

Firstly, the research emphasizes that the traditional reliance on passwords, even complex ones, is
precarious. Weak or easily guessable passwords could lead to unauthorized access, enabling attackers
to exploit network resources, intercept data, or launch more extensive attacks within the network. This
scenario raises concerns about user privacy, data integrity, and overall system security.

Additionally, the study challenges the common assumption that longer passwords automatically
guarantee security. As demonstrated, the length alone does not suffice if the characters lack
randomization. This finding prompts a fundamental reexamination of how passwords are created,
emphasizing the need for genuine randomness in character selection. Without this, even lengthy
passwords can be cracked, leaving Wi-Fi networks vulnerable to infiltration.

Furthermore, these vulnerabilities have significant implications for businesses and individuals alike.
For organizations, a breach in Wi-Fi security could lead to data breaches, financial losses, and damage
to their reputation. Individuals may experience identity theft, loss of sensitive personal information, and
unauthorized access to their online accounts.

In summary, the research findings indicate a paradigm shift in cybersecurity, necessitating a
fundamental reevaluation of Wi-Fi password security practices. New, innovative approaches, such as
multifactor authentication, biometric recognition, and enhanced encryption methods, are imperative to
fortify Wi-Fi networks against the ever-advancing capabilities of malicious actors armed with powerful
consumer GPU technology. Without adopting advanced security measures, the risk of unauthorized
access and data compromise in Wi-Fi networks remains unacceptably high.

68

 Conclusion

6.3 RECOMMENDATIONS FOR IMPROVING WI-FI SECURITY AND BEST

PASSWORD PRACTICES

1. Longer and Unique Passwords:

Encouraging users to create longer passwords (at least 16 characters) is essential. These
passwords should not be dictionary words or predictable combinations. Users should
incorporate a mix of uppercase and lowercase letters, numbers, and special symbols to enhance
complexity. Avoiding easily guessable information like birthdays or pet names is crucial.
Additionally, passwords should be unique for each account or device, reducing the impact of a
potential breach on other accounts.

2. Passphrases:

Promoting the use of passphrases can significantly enhance security. Passphrases are essentially
longer combinations of words or even complete sentences. They are easier to remember yet
highly secure. For instance, "PurpleElephant$Jumping@Stars" is a strong passphrase. Their
length and randomness make them robust against both brute-force attacks and dictionary
attacks. One effective technique is the "3-Word Technique," where users think of three random
words and combine them to form a passphrase. For instance, the passphrase
"BananaMountain$Dance".

3. Password Managers:

Encourage the use of reputable password managers. Password managers are secure tools that
generate, store, and manage complex passwords for various accounts. They offer the
convenience of having unique, complex passwords for each service without requiring users to
remember them all. Password managers can generate lengthy, randomized passwords that are
practically impossible to guess. Additionally, they often come with features like secure
password sharing and auditing, ensuring that users maintain good password hygiene across all
their accounts. By utilizing password managers, individuals can enhance both the security and
convenience of their online activities, reducing the risk of weak or reused passwords
compromising their accounts.

4. Network Encryption:

Ensure that Wi-Fi networks are encrypted using the latest protocols, preferably WPA3, which
offers advanced security features. Although it's important to note that widespread adoption of
WPA3 is still in progress and not all devices and clients currently support it, upgrading to
WPA3-compatible equipment is advisable when feasible. For devices that do support WPA3,
implementing it enhances the security of the network significantly. This proactive approach
ensures that the network remains resilient against evolving cybersecurity threats, even as device
compatibility catches up with the latest encryption standards.

69

 Conclusion

5. Separate Wi-Fi Networks:

In environments where various smart home appliances are in use, it's crucial to separate home
networks effectively. One effective strategy is to employ Virtual Local Area Networks
(VLANs) to create distinct network segments for user devices and Internet of Things (IoT)
devices. By isolating these categories into different VLANs, potential security risks are
contained within specific network boundaries. This segmentation limits the scope of hacking
attacks significantly. Even if an IoT device is compromised, it remains isolated from user
devices and sensitive data, reducing the overall impact of a potential breach. Proper network
segmentation ensures that vulnerabilities in one category of devices do not compromise the
security of the entire network, enhancing overall resilience against cyber threats.

6. Network Monitoring and Intrusion Detection:

Implementing network monitoring tools and intrusion detection systems to actively monitor
network traffic. While it might be challenging for the average Wi-Fi user to set up and manage,
its benefits are significant. These systems continuously monitor network traffic, detecting
unusual patterns or suspicious activities indicative of potential cyber threats. While it demands
a certain level of expertise, this proactive approach can substantially minimize the damage
caused by intruders. Timely detection and response to unauthorized access attempts can thwart
malicious activities before they escalate, ensuring a higher level of security for the network.

7. Regular Security Audits:

Conduct regular security audits and vulnerability assessments to identify potential weaknesses
in the network infrastructure. Regular audits help in identifying and addressing vulnerabilities
before they can be exploited by malicious actors. It's crucial to stay proactive in identifying and
mitigating security risks.

8. Device Security:

Educate oneself and others about securing their devices that connect to the Wi-Fi network. This
includes ensuring that devices have updated antivirus software, enabling firewalls, and
regularly updating the device's operating system and applications. Insecure devices can serve
as entry points for attackers even if the network itself is well-protected.

By implementing these recommendations and promoting best password practices, organizations and
individuals can significantly enhance their Wi-Fi security posture. A multi-layered approach that
combines strong passwords, encryption protocols, and user education is key to mitigating the evolving
threats posed by sophisticated cyber attackers.

71

 Sources

Sources

[1] Muhammad Umair, Muhammad Aamir Cheema, Omer Cheema, Huan Li and Hua Lu., "Impact

of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities,

Transportation and Industrial IoT.," June 2021. [Online]. Available:

https://doi.org/10.3390/s21113838.

[2] "hashcat Wiki," [Online]. Available: https://hashcat.net/wiki/doku.php?id=hashcat.

[3] Wanli Ma, John Campbell, Dat Tran and Dale Kleeman, "A Conceptual Framework for

Assessing Password Quality," IJCSNS International Journal of Computer Science and Network

Security, vol. 7, no. 1, pp. 179-185, 2007.

[4] Steven Furnell, "Assessing website password practices – Unchanged after fifteen years?,"

School of Computer Science, University of Nottingham, Nottingham, UK, vol. 120, 2022.

[5] IEEE, "Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 6:

Medium Access Control (MAC) Security Enhancements," 23 July 2004. [Online]. Available:

https://paginas.fe.up.pt/~jaime/0506/SSR/802.11i-2004.pdf. [Accessed 1 Jan 2023].

[6] K. Raeburn, "RFC 3962: Advanced Encryption Standard (AES) Encryption for Kerberos 5," Feb

2005. [Online]. Available: https://www.rfc-editor.org/rfc/rfc3962. [Accessed 17 Dec 2022].

[7] Paul A. Grassi, Michael E. Garcia and James L. Fenton, "Digital Identity Guidelines," 02 03

2020. [Online]. Available: https://doi.org/10.6028/NIST.SP.800-63-3.

[8] Mike Rosulek, "Chapter 11: Hash Functions," in The Joy of Cryptography, Oregon State

University, 2021, pp. 204-205.

[9] Atom, "New attack on WPA/WPA2 using PMKID," 4 August 2018. [Online]. Available:

https://hashcat.net/forum/thread-7717.html.

[10] "jsteube (Jens Steube)," Github, [Online]. Available: https://github.com/jsteube.

[11] AMD Inc., "RDNA Architecture | AMD," AMD, [Online]. Available:

https://www.amd.com/en/technologies/rdna. [Accessed 11 03 2023].

[12] AMD Inc., "Compare Graphics Specifications | AMD," AMD, [Online]. Available:

https://www.amd.com/en/products/specifications/compare/graphics/10516%2C10521%2C1

0526. [Accessed 11 03 2023].

72

 Sources

[13] NVIDIA, "NVIDIA Ada GPU Architecture," 2022. [Online]. Available:

https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf.

[Accessed 11 03 2023].

[14] Amr Bayoumi, Michael Chu, Yasser Hanafy, Patricia Harrell and Gamal Refai-Ahmed,

"Scientific and engineering computing using ATI stream technology.," Computing in Science &

Engineering, vol. 11, no. 06, pp. 92-97, 2009.

[15] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama, Hiroyuki Takizawa, and

Hiroaki Kobayashi, "Evaluating Performance and Portability of OpenCL Programs," In The fifth

international workshop on automatic performance tuning, vol. 66, no. 1, 2010.

[16] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, "A Comprehensive Performance

Comparison of CUDA and OpenCL," in International Conference on Parallel Processing, Taipei,

Taiwan, 2011.

[17] Karina Astudillo, Wireless Hacking 101, Babelcube Inc., 2017.

[18] Yogi Kristiyanto and Ernastuti, "Analysis of deauthentication attack on ieee 802.11

connectivity based on iot technology using external penetration test.," CommIT

(Communication and Information Technology) Journal, vol. 14, no. 1, pp. 45-51, 2020.

[19] Jared Allar, "Vulnerability Note VU#723755 WiFi Protected Setup (WPS) PIN brute force

vulnerability," Vulnerability Notes Database. CERT Coordination Center, 27 12 2011. [Online].

Available: https://www.kb.cert.org/vuls/id/723755.

[20] Linko G. Nikolov, "Wireless network vulnerabilities estimation," Security & Future, vol. 2, no.

2, pp. 80-82, 2018.

[21] Stefan Viehböck, "Brute forcing wi-fi protected setup.," Wi-Fi Protected Setup, vol. 9, 2011.

[22] L. Bošnjak, J. Sreš and B. Brumen, "Brute-force and dictionary attack on hashed real-world

passwords," 41st International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), pp. 1161-1166, 2018.

[23] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L.

Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin and Lorrie Faith Cranor, "Can

Long Passwords Be Secure and Usable?," Association for Computing Machinery, New York,

NY, USA, 2014.

[24] Mark Burnett and Dave Kleiman, "Chapter 5 - Password Length: Making It Count," in Perfect

Passwords, Syngress, 2005, pp. 53-67.

[25] Brown, Alan S., Elisabeth Bracken, Sandy Zoccoli, King Douglas, "Generating and

remembering passwords," Applied Cognitive Psychology: The Official Journal of the Society for

Applied Research in Memory and Cognition, vol. 18, no. 6, pp. 641-651, 2004.

73

 Sources

[26] Mark Burnett and Dave Kleiman, "Chapter 8 - Ten Password Pointers: Building Strong

Passwords," in Perfect Passwords, Syngress, 2005, pp. 93-106.

[27] Hana Habib, Pardis Emami-Naeini, Summer Devlin, Maggie Oates, Chelse Swoopes and Lorrie

Faith Cranor, "User Behaviors and Attitudes Under Password Expiration Policies," USENIX

Association, Baltimore, MD, USA, 2018.

[28] NordPass, "200-most-common-passwords-en.pdf," 2021. [Online]. Available:

https://s1.nordcdn.com/nord/misc/0.55.0/nordpass/200-most-common-passwords-en.pdf.

[Accessed 03 2023].

[29] NordPass, "Top 200 most Common Password List 2022 | NordPass," NordPass, 2022.

[Online]. Available: https://nordpass.com/most-common-passwords-list/. [Accessed 03

2023].

[30] Chao Shen, Tianwen Yu, Haodi Xu, Gengshan Yang and Xiaohong Guan, "User practice in

password security: An empirical study of real-life passwords in the wild," Computers &

Security, vol. 61, pp. 130-141, 2016.

[31] Eduardo Novella Lorente, Carlo Meijer, and Roel Verdult, "Scrutinizing WPA2 password

generating algorithms in wireless routers.," in 9th {USENIX} Workshop on Offensive

Technologies ({WOOT} 15), Radboud University, The Netherlands, 2015.

[32] Telekom, "Bedienungsanleitung der Telekom Deutschland GmbH - speedport-w-724v.pdf,"

[Online]. Available: https://www.telekom.de/hilfe/downloads/bedienungsanleitung-

speedport-w-724v.pdf.

[33] PYUR, "pyur-wlan-kabelbox-handbuch-compal-ch7467ce.pdf," [Online]. Available:

https://www.pyur.com/content/dam/pyur/download/pyur-wlan-kabelbox-handbuch-

compal-ch7467ce.pdf.

[34] NVIDIA, "NVIDIA AMPERE GA102 GPU ARCHITECTURE," 2021. [Online]. Available:

https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-

GA102-GPU-Architecture-Whitepaper-V1.pdf. [Accessed 03 2023].

[35] NVIDIA, "NVIDIA Turing GPU Architecture," NVIDIA, 2018. [Online]. Available:

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-

visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[Accessed 03 2023].

[36] AMD, "RDNA ARCHITECTURE," 2019. [Online]. Available:

https://www.amd.com/system/files/documents/rdna-whitepaper.pdf. [Accessed 03 2023].

[37] AMD, "AMD Radron RX 7900 XTX | AMD," AMD, [Online]. Available:

https://www.amd.com/en/products/graphics/amd-radeon-rx-7900xtx. [Accessed 03 2023].

74

 Sources

[38] AMD, "AMD Radeon RX 6900 XT Graphics Card | AMD," AMD, [Online]. Available:

https://www.amd.com/en/products/graphics/amd-radeon-rx-6900-xt. [Accessed 03 2023].

[39] AMD, "AMD Radeon RX 6800 Graphics Card | AMD," AMD, [Online]. Available:

https://www.amd.com/en/products/graphics/amd-radeon-rx-6800. [Accessed 03 2023].

[40] Ah Kioon, Mary Cindy, Zhao Shun Wang, and Shubra Deb Das;, "Security analysis of MD5

algorithm in password storage," Applied Mechanics and Materials, Vols. 347-350, pp. 2706-

2711, 2013.

[41] P. Sriramya and R. A. Karthika, "Providing password security by salted password hashing using

bcrypt algorithm," ARPN journal of engineering and applied sciences, vol. 10, no. 13, pp.

5551-5556, 2015.

[42] H.E. Michail, A.P. Kakarountas, A. Milidonis and C.E. Goutis, "Efficient implementation of the

keyed-hash message authentication code (HMAC) using the SHA-1 hash function.," in In

Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and

Systems, Patras, Greece, 2004.

[43] Diksha.S.Borde, Poonam.A.Hebare and Priyanka.D.Dhanedhar, "Overview of Web password

hashing using salt techiques.," Int Res J Eng Technol, vol. 4, no. 11, pp. 152-154, 2017.

[44] Chinazo, Nureni Ayofe Azeez and Onyema Juliet, "ACHIEVING DATA AUTHENTICATION WITH

HMAC-SHA256 ALGORITHM," Computer Science & Telecommunications, vol. 54, no. 2, pp. 34-

43, 2018.

[45] "hashcat forum," [Online]. Available:

https://hashcat.net/forum/search.php?action=results&sid=eb5674abc56000b7e456c0881b6

8e197&sortby=lastpost&order=desc. [Accessed 03 2023].

[46] "Chick3nman's Gists," GitHub Gist, [Online]. Available: https://gist.github.com/Chick3nman.

[Accessed 03 2023].

[47] "Npcap/WiFi adapters - SecWiki," Secwiki.org, [Online]. Available:

https://secwiki.org/w/Npcap/WiFi_adapters. [Accessed 03 2023].

[48] ALFA Network Inc, "AWUS036ACH - ALFA Network Inc," 2020. [Online]. Available:

https://www.alfa.com.tw/products/awus036ach?variant=36473965871176. [Accessed 2023].

[49] Realtek Semiconductor Corp, RTL8812AU datasheet - SINGLE-CHIP IEEE 802.11ac 2T2R WLAN

CONTROLLER, Taiwan, 2011.

[50] ZerBea, "ZerBea/hcxdumptool: Small tool to capture packets from wlan devices," [Online].

Available: https://github.com/ZerBea/hcxdumptool. [Accessed 03 2023].

75

 Sources

[51] ZerBea, "ZerBea/hcxtools: Portable solution for conversion of cap/pcap/pcapng WiFi dump

files to hashcat formats and to John the Ripper formats.," [Online]. Available:

https://github.com/ZerBea/hcxtools. [Accessed 03 2023].

[52] Jeff Stebelton, "Berkeley Packet Filters–The Basics.," 2014. [Online]. Available:

http://www.infosecwriters.com/text_resources/pdf/JStebelton_BPF.pdf. [Accessed 2023].

[53] Linux man page, "tcpdump(8): dump traffic on network - Linux man page," [Online].

Available: https://linux.die.net/man/8/tcpdump.

[54] The Tcpdump Group, "pcap-filter(7) man page | TCPDUMP & LIBPCAP," 12 03 2023. [Online].

Available: https://www.tcpdump.org/manpages/pcap-filter.7.html. [Accessed 21 03 2023].

[55] Hashcat, "cracking_wpawpa2 [hashcat wiki]," [Online]. Available:

https://hashcat.net/wiki/doku.php?id=cracking_wpawpa2.

[56] Hashcat, "hccapx [hashcat wiki]," [Online]. Available:

https://hashcat.net/wiki/doku.php?id=hccapx.

[57] Hashcat, "dictionary_attack [hashcat wiki]," [Online]. Available:

https://hashcat.net/wiki/doku.php?id=dictionary_attack.

[58] Hashcat, "rule_based_attack [hashcat wiki]," [Online]. Available:

https://hashcat.net/wiki/doku.php?id=rule_based_attack.

[59] Hashcat, "mask_attack [hashcat wiki]," [Online]. Available:

https://hashcat.net/wiki/doku.php?id=mask_attack.

[60] Bundesnetzagentur, "Bundesnetzagentur - Homepage - Geographische Darstellung der

Ortsnetzkennzahlen," Bundesnetzagentur, 23 03 2012. [Online]. Available:

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunik

ation/Unternehmen_Institutionen/Nummerierung/Rufnummern/ONVerzeichnisse/ONBVerze

ichnis/A-geographischeDarstellungONK.html. [Accessed 03 2023].

[61] Bundesnetzagentur, "Bundesnetzagentur - Nummerierung," [Online]. Available:

https://www.bundesnetzagentur.de/cln_1911/DE/Sachgebiete/Telekommunikation/Unterne

hmen_Institutionen/Nummerierung/Nummerierungskonzept/nummerierungskonzept_node.

html.

[62] Troy Hunt, "Have I Been Pwned: Pwned websites," 03 2023. [Online]. Available:

https://haveibeenpwned.com/PwnedWebsites. [Accessed 03 2023].

[63] Troy Hunt, "Have I Been Pwned: Pwned Passwords," 03 2023. [Online]. Available:

https://haveibeenpwned.com/Passwords. [Accessed 03 2023].

76

 Sources

[64] Bundesrepublik Deutschland, "German Criminal Code (Strafgesetzbuch – StGB)," [Online].

Available: https://www.gesetze-im-internet.de/englisch_stgb/englisch_stgb.html.

[65] Thomas H. Cormen, in Introduction to Algorithms, MIT Press, 2009, p. 253.

[66] (ADC), The Imperva Application Defense Center, "Consumer Password Worst Practices,"

[Online]. Available:

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf.

[67] "NordPass," NordPass, [Online]. Available: https://nordpass.com/about-us/. [Accessed 03

2023].

[68] Mayank Agarwal, Santosh Biswas and Sukumar Nandi, "An Efficient Scheme to Detect Evil

Twin Rogue Access Point Attack," International Journal of Wireless Information Networks

(2018), vol. 25, no. 2, pp. 130-145, 29 March 2018.

77

 Table Index

TABLE OF FIGURES

Figure 1: captured PMKID from RSN IE of a single EAPOL frame – Wireshark 13

Figure 2: Identifying a target WPA2 network using airodump-ng ... 15

Figure 3: Client deauthentication attack using aireplay-ng ... 15

Figure 4: Handshake captured successfully .. 15

Figure 5: Attempting to attack a wireless access point that has WPS enabled using Wifite tool 16

Figure 6: Back side of Speedport W 724v Telekom router showing the WiFi password [32]. 24

Figure 7: Back side of a PYUR CH7467CE router showing the WiFi password [33]. 25

Figure 8: Comparative Evaluation of GPU Performance for Salted MD5 Hash Cracking. 28

Figure 9: Comparative Evaluation of GPU Performance for Salted SHA1 Hash Cracking. 28

Figure 10: Comparative Evaluation of GPU Performance for HMAC-SHA1 Hash Cracking. 29

Figure 11: Comparative Evaluation of GPU Performance for Salted SHA256 Hash Cracking. 29

Figure 12: Comparative Evaluation of GPU Performance for HMAC-SHA256 Hash Cracking. 30

Figure 13: Comparative Evaluation of GPU Performance for PMKID Hash Cracking. 30

Figure 14: ALFA AWUS036ACH WiFi Adapter ... 31

Figure 15: Deutsche Telekom Speedport W 724V Router and Access Point 32

Figure 16: Personal computer with average specifications for a common modern gaming PC 32

Figure 17: AMD Radeon RX 6800 GPU connected to the computer ... 33

Figure 18: Nvidia RTX 4090 GPU connected to a separate computer ... 33

Figure 19: Debian based PopOS, LTS edition... 34

Figure 20: Debian based Kali Linux, rolling edition ... 34

Figure 21: hcxdumptool 6.2.7, compiled from the latest available branch ... 35

Figure 22: Hashcat version 6.2.6 ... 35

Figure 23: hcxdumptool scan for target access points .. 36

Figure 24: captured PMKID using hcxdumptool .. 38

Figure 25: Captured PMKID using hcxdumptool shown in testNetwork_PMKID.pcapng file - Wireshark

 .. 39

Figure 26: Starting hashcat mask attack utilizing AMD RX 6800 GPU ... 42

Figure 27: Hashcat mask attack in a running status .. 42

Figure 28: Hashcat final result after cracking the PMKID hash ... 43

Figure 29: The cracked passphrase in the testNetwork_pmkid_cracked.txt file 43

Figure 30: Generated output using the Bloom Filter Generation script. ... 53

Figure 31: Binary files generated with Bloom Filter Generation script ... 53

Figure 32: A snapshot of a portion of the PMKID hashes from the generated list 56

78

 Table Index

TABLE INDEX

Table 1: Top 200 most common passwords of the year 2021 - NordPass .. 18

Table 2: Top 200 most common passwords in Germany of the year 2022 - NordPass 20

Table 3: Frequency of occurrence and corresponding percentages of different password lengths.

Highest frequency categories are shown in bold. [30] .. 21

Table 4: The percentage of passwords including different symbols [30]. ... 22

Table 5: The percentage of most common passwords in the data set [30]. 23

Table 6: A comparative evaluation of hash cracking performance among NVIDIA GPUs, utilizing the

Hashcat tool. ... 27

Table 7: A comparative evaluation of hash cracking performance among AMD GPUs, utilizing the

Hashcat tool. ... 27

Table 8: hcxdumptool scan command options explanation .. 36

Table 9: tcpdump filter command options explanation [54] ... 37

Table 10: hcxdumptool PMKID attack command options explanation ... 38

Table 11: Hashcat 22000 hash format details ... 40

Table 12: Hashcat Mask-Charset explanation ... 41

Table 13: Hashcat mask attack command explanation ... 42

Table 14: Sorted collection of curated passwords list ... 56

Table 15: Results of Password Cracking Tests Conducted on Nvidia RTX 4090 and AMD RX 6800 GPUs

 .. 60

Table 16: Findings from Experiments 5, 7, and 12 conducted on AMD RX 6800 Under Extended Time

Constraints .. 61

Table 17: Test Results for Critically Weak Password Lengths Formulated from Lowercase Characters

 .. 62

Table 18: Test Results for Critically Weak Passwords Formulated from Lowercase Letters, Numerals,

and Special Symbols .. 63

79

 Table Index

CODE LISTING INDEX

Code Listing 1: German Phone Number Generator - Part 1 .. 44

Code Listing 2: German Phone Number Generator - Part 2 .. 45

Code Listing 3: Dates List Generator ... 46

Code Listing 4: Default ISP Password Generator - Part 1 .. 47

Code Listing 5: Default ISP Password Generator – Part 2 ... 48

Code Listing 6: PMKID Hash Generator - Part 1 .. 49

Code Listing 7: PMKID Hash Generator - Part 2 .. 50

Code Listing 8: Bloom Filter Generator - Part 1 .. 51

Code Listing 9: Bloom Filter Generator - Part 2 .. 52

Code Listing 10: Bloom Filter Checker - Part 1 .. 54

Code Listing 11: Bloom Filter Checker - Part 2 .. 55

file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531176
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531177
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531178
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531179
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531180
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531181
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531182
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531183
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531184
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531185
file:///C:/Users/Enchilada/Desktop/Masterarbeit%20progress/Thesis.docx%23_Toc150531186

