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The non-reciprocal electrical conductivity in a semiconducting 𝑝 − 𝑛 junction diode is a 

crucial, fundamental technological discovery that has helped the exponential development of 

computing power since the late 20th century and has enabled today’s modern semiconducting 

devices that permeate our everyday life. The semiconductor industry has been able to roughly 

double the computing power of the integrated circuits every year by miniaturizing the 

semiconductor components as predicted by Gordon Moore in 19653. As these components reach 

their fundamental physical limit and Moore’s law comes to an end, there is the need to look for 

alternative platforms for solutions that can provide greater and more energy efficient computing 

power. Superconductivity, the physical state of solids with zero resistance, has been of great 

interest fundamentally and technologically since its discovery for its ability to transmit electrical 

currents with no Joule dissipation, which is the major source of energy loss in most electronic 

devices. It has already found some applications in the form of Josephson junctions, which are the 

most important circuit elements of a superconducting quantum bit4, used in quantum computation. 

Quantum computing holds great promise in unlocking a new realm of solutions to problems that 

were previously inaccessible by classical computing. However, this does not obviate the need for 

better and energy efficient classical computers. Hence, it is key to explore superconductors as an 

alternate platform for classical computing bits and logic elements. There has been a lot of interest 

over the years in the development of superconducting logic and memory5.  

The discovery of controlled non-reciprocal critical currents in a superconducting 

heterostructure in 2020, dubbed the ‘superconducting diode effect’6 renewed this interest and 

provided impetus along this new direction of research. The effect was attributed to the presence of 

Rashba spin-momentum locking due to the broken inversion symmetry at the interface of the 

superconductors but a more detailed explanation to the temperature and magnetic field behavior 

was lacking theoretically and microscopically. Non-reciprocal conductivity in such systems 

offered by the unidirectional flow of supercurrents is analogous to a semiconductor diode and 

provides a natural platform for exploring applications in superconducting logic devices. Hence, it 

is of great interest to understand the underlying origin of this effect to be able to tune it precisely. 

A similar supercurrent diode effect was observed in a Josephson junction array made of InAs and 

aluminium7, dubbed the ‘Josephson diode effect’. The observation of a supercurrent diode effect 

in Josephson junctions is rather advantageous, as the utility of Josephson junctions as non-linear 

circuit elements in superconducting elements has been already well studied. 
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Fig. 1.1 Representation of a lateral Josephson junction hosting the diode effect: When a current 

is applied between the superconducting electrodes (blue) in a Josephson junction, Cooper pairs 

(blue) carry it in the form of supercurrents in one direction, while normal electrons (dark orange) 

that dissipate energy carry the current along the opposite direction, inside the material (grey). 

 

This thesis provides a brief and lucid overview to the field of superconductivity and non-

reciprocal transport effects in solids that helps the reader better understand the context of the results 

and their significance before moving on to explore in detail the Josephson diode effect in two van 

der Waals materials with similar crystal structures 1T-NiTe2 and 1T-PtTe2. The 1T structure, 

though centrosymmetric, has a hidden local inversion symmetry breaking on the Te site that gives 

rise to spin polarization and band inversions, leading to the formation of multiple topological states 

in the band structure. The existence of these spin-polarized bands is confirmed with the help of 

spin- and angle-resolved photoemission experiments and density functional theory calculations in 

literature8.  

In the case of 1T-NiTe2, it is shown in this thesis through analysis of lateral Josephson 

junctions that the helical spin-momentum locking in the system plays an important role in the 

creation of a finite-momentum superconducting state, similar to a Fulde-Ferrell-Larkin-

Ovchinnikov (FFLO) state9,10, in the presence of a magnetic field that can give rise to a Josephson 
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diode effect in these systems. The temperature, magnetic field magnitude and angular dependence 

of the Josephson diode effect experimentally observed is in good agreement with that predicted 

from a Ginzburg-Landau model description of finite momentum pairing in a Josephson junction. 

Further, the presence of finite-momentum pairing in the system is confirmed independently by 

measuring the evolution of the Fraunhofer interference pattern in the presence of momentum-

inducing magnetic fields.  

In the case of 1T-PtTe2 Josephson junctions, similar experiments are performed in lateral 

geometry to confirm the existence of helical spin-momentum locking. Vertical Josephson 

junctions of PtTe2 are used to demonstrate the absence of any spin-momentum locking along the 

c-axis of the crystal. It is shown through analysis of the Josephson diode effect along with the 

current-phase relationship that a strong second-harmonic supercurrent component is present in 

these junctions comparable to that in high transparency semiconductor11 and topological Josephson 

junctions12. It is also shown through the evolution of the Fraunhofer pattern with magnetic flux 

that the behavior of the Josephson diode effect essentially mimics the second harmonic term in the 

current-phase relationship (CPR). The origin of the strong second-harmonic component can be 

attributed to the significant contribution of the topological states present in the system that suppress 

the normal reflections in the junction. Furthermore, possible extrinsic mechanisms that can give 

rise to the Josephson diode effect such as self-field effects and geometric asymmetries of the flake 

are identified and eliminated as the source of the experimental observations. 

Overall, this dissertation is a collection of results and observations that attempt to signify 

the reader on the importance of the Josephson diode effect as a simple yet effective ‘tool’ to probe 

unconventional superconductivity in materials, beyond its advertised utility as a logic element in 

superconducting circuits and quantum sensing applications. The inversion and time reversal 

symmetry breaking requirements of the Josephson diode effect leads to the possibility of 

discerning the type of spin-momentum locking in the superconducting state of materials and the 

identification of spontaneous time-reversal symmetry in the superconducting state, which is of 

great interest. The reader is also alerted to the existence of extrinsic mechanisms that can mimic 

the observed effects and how to avoid or eliminate such false positives while performing 

experiments.  
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 The thesis is organized as follows. Chapter 2 contains the basic theoretical aspects of 

superconductivity, Josephson junctions and non-reciprocal transport in superconductors that are 

requisite in understanding the results that appear in later chapters of the thesis. Chapter 3 describes 

in detail the major experimental methods used in fabricating devices, characterizing and measuring 

them. Chapter 4 contains the main experimental results on the Josephson diode effect 

measurements in 1T-NiTe2 and relates it to the effects derived for a junction with non-zero Cooper 

pair momentum1. The Cooper pair momentum is also independently measured to verify its 

existence. Two possible origins for the Cooper pair momentum are suggested. One derived from 

the Rashba-spin momentum locked topological surface states and the other based on Meissner 

screening currents in the niobium electrodes. Chapter 5 describes through Josephson diode effect, 

the helical spin-momentum locking in 1T-PtTe2. The Josephson diode effect is studied as a 

function of the magnetic flux through the junction. A large value of second harmonic supercurrent 

component is obtained in the junction from a CPR model. Oscillations that have a frequency twice 

that of the magnetic flux quantum are obtained as predicted from the CPR indicating the 

importance of the second harmonic component in the observation of the Josephson diode effect. 

The possible origin of the large second harmonic supercurrents is discussed. Chapter 6 discusses 

the results in a broader context and provides future prospects for non-reciprocal transport effects 

in superconductors and Josephson junctions. The appendix contains a brief discussion on the field-

free Josephson diode effect in Nb3Br8
2 and results supporting the conclusions in the main chapters 

of the thesis. 
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Superconductivity is one of the most fascinating scientific discoveries of the 20th century, 

the mysteries of which have pervaded into the current century and captures the attention of many 

scientists to date. Superconductivity was discovered in 1911 by H. Kamerlingh Onnes in Leiden13, 

after he had perfected liquefaction of helium a few years before, allowing him to reach 

temperatures as low as 4.2 K. Onnes won the Nobel Prize in Physics in 1913 for this discovery of 

new state of matter. Elemental mercury was the first discovered superconductor, through its 

hallmark defining property of a zero-resistance electrical conductivity state (also known as perfect 

conductivity) upon cooling down to liquid helium temperatures. But perfect conductivity is not the 

only defining property of a superconductor. Another defining property of superconductors is the 

perfect diamagnetic state discovered by Meissner and Ochsenfeld in 193314, which showed that a 

superconductor is much more complex than what one would expect from a perfect conductor. 

Superconductors that exhibit a complete Meissner state are known as type-I superconductors and 

there are other superconductors that can develop superconducting vortices on the application of a 

magnetic field that allow flux to pass through, known as type-II superconductors. 

 Since then, there has been a lot of work in discovering new superconductors and 

understanding the fundamental properties of superconducting materials. The most prominent 

theories that could best explain the observed properties of superconductivity were the Ginzurg-

Landau (GL) theory15 and the Bardeen-Cooper-Schrieffer (BCS) theory16. The GL theory is a 

phenomenological theory proposed by Vitaly Ginzburg and Lev Landau in 1950 based on the 

Landau theory of phase transitions, which could explain some of the observed thermodynamic 

properties of the superconductors such as critical current, critical field and even some important 

parameters such as the GL coherence length. Vitaly Ginzburg won the Nobel Prize in Physics in 

2003 along with Alexei Abrikosov and Sir Anthony Leggett for pioneering contributions to the 

theory of superconductors and superfluids.  

The BCS theory16 came later on in 1957 as a microscopic theory establishing the existence 

of correlated electron pairs called Cooper pairs that move without scattering in the superconductor. 

For this important discovery, John Bardeen, Leon Cooper and John Robert Schrieffer won the 
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Nobel Prize in Physics in 1972. It was shown by Lev Gor’kov in 1959 that the GL theory could be 

derived starting from the microscopic BCS theory close to the superconducting transition, thus 

validating the phenomenological model17. Another important postulate of the BCS theory was the 

existence of a macroscopic quantum wave function of the superconducting condensate. This 

opened up the possibility of exploring quantum mechanics and performing quantum experiments 

at a macroscopic scale. A direct consequence of this was Brian D. Josephson solving the problem 

of quantum tunneling of the macroscopic superconducting wave function from one superconductor 

to another through a non-superconducting barrier18 in 1962 leading to what is known today as 

Josephson junctions. Josephson received the Nobel Prize in Physics for this work in 1973. These 

junctions allow for controlling the phase difference of the superconducting wave function between 

the electrodes with a current or vice versa. Josephson junctions have been explored a lot over the 

past decades for possible applications in building quantum sensors and superconducting 

electronics such as DC-SQUIDs, superconducting computing elements, and in the current decade 

they serve as the prime building block of superconducting quantum bits, which are the front-runner 

candidates for building a quantum computer.              

While important fundamental discoveries concerning the nature of superconductivity were 

taking place in the 1950s and 1960s, the search for a room temperature superconductor that would 

make the applications of superconductors more feasible was going on in parallel in the materials 

front. Superconductivity, as of yet had been observed mostly in metals or metallic alloys at very 

low temperatures requiring the use of liquid helium cooling. In 1986, two IBM researchers at 

Zurich, Georg Bednorz and Karl Alex Müller discovered superconductivity in a ceramic copper 

oxide material La2-xBaxCuO4, with a relatively high critical temperature of 35 𝐾, which was well 

above the critical temperature of any known superconductor at that time19. This led to a flurry of 

research on copper oxide or cuprate-based superconductors in pursuit of superconductors with 

higher critical temperatures. As of 2021, the cuprate superconductor with the highest transition 

temperature under ambient pressure is Hg12Tl3Ba30Cu45O127 with a critical temperature of 138 𝐾.  

The discovery of high-temperature superconductors has also prompted scientists to think 

beyond conventional BCS theory, in which the pairing potential is assumed to be mediated by  
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Fig. 2.1 Timeline of superconductors: Discovery of different superconducting materials over the 

years along with their critical temperatures. Green circles refer to conventional metallic 

superconductors that are considered to be BCS superconductors. Some of the highest critical 

temperatures achieved to-date are in hydride superconductors under very high pressures. Blue 

diamonds refer to cuprate superconductors, which have the highest critical temperatures at 

ambient pressures discovered so far. Inverted triangles refer to fullerene-based superconductors, 

red triangles correspond to carbon nanotube-based superconductors, yellow squares refer to iron-

based superconductors, magenta star refers to the newly discovered nickel-based superconductor. 

Green stars refer to the unconventional heavy-fermion based superconductors. ‘Timeline of 

Superconductivity from 1900 to 2015’ by PJRay is licensed under CC-BY-SA-4.0 

 

phonons. This general class of materials that do not fall under the purview of BCS theory are 

known as unconventional superconductors and form a sub-field of research of their own, which 

cuprates are a part of. In general, BCS theory requires the presence of inversion and time-reversal 

symmetry in a system for the form of conventional spin-singlet Cooper pairs or s-wave 

superconductivity. Certain intrinsic superconductors lack inversion or time-reversal symmetries 
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and can’t be explained by the formation of Cooper pairs as in BCS theory. Some examples of 

unconventional superconductors include Sr2RuO4
20, heavy fermion superconductors such as 

UPt3
21, UTe2

22, CePt3Si23, CeRh2As2
24, hybrid-superconducting structures composed of 

ferromagnet-superconductor heterostructures25. A more detailed discussion of the topics discussed 

in this chapter can be found in Michael Tinkham’s book ‘Introduction to Superconductivity’26. 

 

 In order to build devices with superconductors for practical applications and understand 

the observed properties of superconductors, it is important to comprehend the basic properties of 

superconductors in electric and magnetic fields. This section focuses on key concepts and ideas on 

some electromagnetic properties of superconductors that shall be encountered throughout this 

thesis.  

 The two fundamental properties observed in superconductors were perfect conductivity 

and perfect diamagnetism. The brothers F. and H. London proposed two phenomenological 

equations27 that govern the electrodynamic properties of superconductors under electric and 

magnetic fields that could describe these properties. These were known as the London equations. 

                                                                      
𝜕𝒋𝒔

𝜕𝑡
=

𝑛𝑒2

𝑚
𝑬                                                            (2.1) 

                                                                𝛁 × 𝒋𝒔 = −
𝑛𝑒2

𝑚
𝑩                                                        (2.2) 

where 𝑛 is the superconducting electron density, 𝑒 is the charge of an electron, 𝑚 is the mass of  

an electron, 𝒋𝒔 is the supercurrent density, 𝑬 is the electric field and 𝑩 is the magnetic field. 

Though there is no rigorous derivation for this equation, equation (2.1) arises from the 

perfect conductivity that is found in a superconductor. The London brothers noted that the 

electrons in a superconductor feel no resistance in the presence of an electric field and accelerate 

continuously as if they were free electrons, as opposed to electrons in a metal that would maintain 

a velocity against a resistance, which is described by Ohm’s law. Hence, the force on the 

superconducting condensate in the presence of an electric field can be written as:  
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𝑭 = 𝑚
𝜕𝒗

𝜕𝑡
= −𝑒𝑬 + 𝑒𝒗 × 𝑩 

The supercurrent density can be written as 𝒋𝒔 = −𝑛𝑒𝒗 which gives 

𝜕𝒋𝒔
𝜕𝑡

= −𝑛𝑒
𝜕𝒗

𝜕𝑡
=
𝑛𝑒2

𝑚
𝑬 

The second London equation (2.2) can be obtained by taking the curl of (2.1) and using Faraday’s 

law (𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
) 

𝜕

𝜕𝑡
[𝛁 × 𝒋𝒔 +

𝑛𝑒2

𝑚
𝑩] = 0 

Writing the magnetic field in terms of the vector potential 𝑩 = 𝛁 × 𝑨 gives 𝒋𝒔 = −
𝑛𝑒2

𝑚
𝑨 

Taking the curl of Ampere’s law 𝛁 × 𝑩 = 𝜇0𝒋𝒔 one can obtain 

𝛁 × (𝛁 × 𝑩) = 𝜇0(𝛁 × 𝒋𝒔) = −
𝜇0𝑛𝑒

2

𝑚
𝑨 

which on further simplification gives 

                                                                   𝛁𝟐𝑩 =
1

𝜆𝐿
2𝑩                                                             (2.3) 

where 𝜆𝐿 = √
𝑚

𝜇0𝑛𝑒
2 is an important characteristic length scale in superconductors known as the 

‘London penetration depth’. Solving equation (2.3) in one dimension would lead to the solution 

𝑩 = 𝑩𝟎𝑒
− 
𝑥
𝜆𝐿 

which shows that the magnetic field decays exponentially inside a superconductor over the 

characteristic length scale of the London penetration depth 𝜆𝐿 . This explains the observation of a 

Meissner state within a superconductor wherein an external magnetic field is screened completely 

inside a superconductor. 𝜆𝐿 is an important parameter that needs to be taken into account while 

calculating effective separation between the electrodes of a Josephson junction, while the presence 

of Meissner screening can lead to flux focusing effects, as will be discussed in later parts of the 

thesis. 
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The Ginzburg-Landau (GL) theory is a phenomenological theory of superconductivity put 

forth by Vitaly Ginzburg and Lev Landau based on the Landau theory of phase transitions15. The 

theory concerns the macroscopic behavior of superconductors in which the free energy of the 

superconductor becomes significant and is useful in predicting critical fields, critical currents and 

other thermodynamic properties of a superconductor. This is achieved by considering a complex 

order parameter 𝜓(𝑟), which is identical to a superconducting wavefunction, whose magnitude 

represents the probability of finding superconducting electrons in a system. The GL theory of 

superconductivity is valid when the temperature is close to the critical temperature (𝑇𝑐) where 

𝜓(𝑟) is small and varies smoothly across space. In this case, the free energy of the superconductor 

can be written as an expansion of  𝜓(𝑟) 

𝐹 = 𝐹𝑛 + 𝛼|𝜓|
2 +

𝛽

2
|𝜓|4 + …… 

Where 𝐹𝑛 is the free energy in the normal state, 𝛼 and 𝛽 are GL parameters. The higher order terms 

are usually very small and can be neglected. In the presence of a magnetic field, the free energy 

can be written as  

𝐹 = 𝐹𝑛 + 𝛼|𝜓|
2 +

𝛽

2
|𝜓|4 +

1

2𝑚∗
|(−

𝑖ℎ

2𝜋
𝛁 − 𝑒∗𝑨)𝜓|

2

+
𝑩2

2𝜇0
 

Where 𝑚∗ and 𝑒∗ correspond to the mass and charge of the ‘supercurrent carrier’ respectively. The 

free energy is minimized (
𝜕𝐹

𝜕𝜓
= 0) to obtain the GL differential equations. 

  𝛼𝜓 + 𝛽|𝜓|2𝜓 +
1

2𝑚∗ (−
𝑖ℎ

2𝜋
𝛁 − 𝑒∗𝑨)𝜓 = 0                                     (2.4) 

and                                      𝑱 = 𝛁 × 𝐁 = −
𝑖𝑒∗ℎ

4𝜋𝑚∗
[𝜓†𝛁𝜓 − 𝜓𝛁𝜓†] −

𝑒∗2

𝑚∗ 𝜓
†𝜓𝑨                        (2.5) 

where 𝑱 is the current due to the magnetic field.  

These differential equations can be used to derive various quantities such as the current, coherence 

length, etc. for a superconductor by modifying the boundary conditions appropriately depending 

on the external magnetic field. 
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Now, in the presence of a magnetic field, deep inside the superconductor where there are 

no fluctuations of the order parameter, equation (2.5) can be written as: 

𝑱 = −
𝑒∗2

𝑚∗
𝜓2𝑨 

Comparing this with 𝒋𝒔 = −
𝑛𝑒2

𝑚
𝑨 derived from the London equations leads to defining the London 

penetration depth in GL formalism as 𝜆𝐿 = √
𝑚

𝜇0𝜓
2𝑒2

  where 𝑛, the superconducting electron 

density is replaced by 𝜓2, the probability amplitude of the superconducting order parameter. 

Now considering the interface of a superconductor with a non-superconductor in one-

dimension, the order parameter 𝜓 becomes non-uniform and variant in space, close to the 

boundary. In the absence of a magnetic field, this scenario can be expressed using equation (2.4) 

as  

𝛼𝜓 + 𝛽|𝜓|2𝜓 −
ħ2

2𝑚∗

𝑑2𝜓

𝑑𝑥2
= 0 

Replacing 𝜉(𝑇) =
ħ2

2𝑚∗|𝛼(𝑇)|
 and 

𝛽

|𝛼|
𝜓2 = 𝑓2, we get 

                                               𝑓 − 𝑓3 + 𝜉2(𝑇) 𝑓′′ = 0                                                         (2.6) 

where 𝜉(𝑇) is a characteristic length scale of the superconductor, which gives the variation of 𝜓  

close to the boundary, known as the GL coherence length. Since 𝛼 ∝ (1 −
𝑇

𝑇𝑐
) , 𝜉(𝑇) ∝

1

(1−
𝑇

𝑇𝑐
)
 

which means 𝜉(𝑇) diverges when 𝑇 is close to 𝑇𝑐.  Equation (2.6) can be rewritten in terms of  𝑓′ 

as 

𝑑

𝑑𝑥
[
𝑓2

2
−
𝑓4

4
+
𝜉2𝑓′2

2
] = 0 

which implies (
𝑓2

2
−
𝑓4

4
+
𝜉2𝑓′2

2
) is a constant. Solving this equation gives  

𝑓(𝑥) = tanh(
√2𝑥

𝜉(𝑇)
) 
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𝜓(𝑥) = √
|𝛼|

𝛽
tanh(

√2𝑥

𝜉(𝑇)
) 

To understand better the significance of 𝜉(𝑇), let us consider 𝑓(𝑥) = 1 + 𝑔(𝑥) in (2.6), where 

𝑔(𝑥) ≪ 1 and drop the 𝑔2 and 𝑔3 terms. This gives 

𝑑2𝑔

𝑑𝑥2
=
2

𝜉2 
𝑔 

and             𝑔(𝑥) = 𝑒
±√2𝑥

𝜉(𝑇)  

which shows that a small change in 𝑥 can lead to an exponential decay of 𝜓 with the characteristic 

length scale 𝜉(𝑇).  

 The existence of type-II superconductors and the vortex lattice phase was discovered by 

Alexei A. Abrikosov in 1957 using the GL theory by tuning the dimensionless GL parameter 𝜅 =

𝜆𝐿(𝑇)

𝜉(𝑇)
 which is the ratio of two characteristic length scales28. It was discovered that 𝜅 >

1

√2
 leads to 

the formation of superconducting vortices, now known as Abrikosov vortices that form a 

hexagonal lattice in the presence of a magnetic field and superconductors that host such vortices 

are known as type-II superconductors. Superconductors with 𝜅 <
1

√2
 are known as type-I 

superconductors and do not host any vortices. This discovery led to the Nobel prize of Abrikosov 

along with Ginzburg for his work on GL theory in 2003. 

 

The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity16 is the most successful 

microscopic theory of superconductivity laid out in 1957. The BCS theory explains many observed 

properties of superconductivity at the quantum level such as the existence of a superconducting 

energy gap, heat capacity, the role of phonons in the formation of so-called Cooper pairs, 

Bogoliubov quasiparticles, and thermodynamic properties such as critical temperature, critical 

fields and currents. The basis for the theory was the proposal of Leon Cooper29 in 1956 when he 

laid out that an arbitrary attractive interaction between two electrons above the Fermi sea due to 
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screened Coulomb repulsions enabled by phonons would lead to an instability and the formation 

of a bound state and pairing of electrons known as Cooper pairs. This idea was later built upon 

together with Bardeen and Schrieffer to come up with the BCS theory. 

 

 

Fig. 2.2 Cooper pair in a lattice: Schematic of attractive interaction between free electrons in a 

metal mediated by the lattice vibrations (phonons). ‘Cooper pairs’ by Tem5psu is licensed under 

CC-BY-SA-4.0 

 

Consider a Fermi sea of 𝑁 electrons. In the presence of an attractive interaction between 

electron pairs, they form a bound state given by the wave function 

𝑓(𝒓𝒊 − 𝒓𝒋)𝜒𝑖𝑗 

where 𝑓(𝒓𝒊 − 𝒓𝒋) is the spatial part of the wave function between electrons located at coordinates 

𝒓𝒊 and 𝒓𝒋. 𝜒𝑖𝑗 is the spin part of the wave function for spins 𝜎𝑖 and 𝜎𝑗. Now, this is a fermionic 

wave function of two particles and has to be anti-symmetric for it to obey the Fermi statistics. BCS 

enforced this by considering the spatial part to be symmetric (s-wave) and the spin part to be 

antisymmetric (spin singlet). This choice makes sense for the superconductors that were know 

until then, as most of them were non-magnetic metals and time-reversal symmetric in nature and 
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have equal spin density of states that is ideal for spin-singlet pairing. The spin-singlet wave 

function can be written as 𝜒𝑖𝑗 =
1

√2
[|↑↓⟩𝛿↑,𝜎𝑖𝛿↓,𝜎𝑗 − |↓↑⟩𝛿↓,𝜎𝑖𝛿↑,𝜎𝑗] where 𝛿𝑥,𝑦 is a delta function. 

 With this we can write down the total wave function of all the 𝑁 electrons in the bound 

state as 

𝛹[(𝒓𝟏𝜎1), (𝒓𝟐𝜎2), … . (𝒓𝑵𝜎𝑁)] = 𝐶𝒜∏[𝑓(𝒓𝒊 − 𝒓𝒊+𝟏)𝜒𝑖,𝑖+1]

𝑁−1

𝑖,1

 

Where 𝐶 is the normalization constant and 𝒜 is the antisymmetrization operator that sums over 

all permutations of the wave function and ensures the antisymmetric nature of the total wave 

function. This total wave function can be written in a simpler form in the second quantized notation 

as 

|𝛹⟩ ∝ [∫𝑑3𝒓𝟏𝑑
3𝒓𝟐𝜓↑

†(𝒓𝟏)𝜓↓
†(𝒓𝟐)𝑓(𝒓𝟏 − 𝒓𝟐)]

𝑁
2
|0⟩ 

where |0⟩ is the vacuum state with no Cooper pairs and just the Fermi sea of electrons. This wave 

function automatically obeys the antisymmetry condition upon exchange of particles provided 𝑓 

is even. This wave function can be Fourier transformed and written in terms of momentum states 

as  

                                           |𝛹⟩ ∝ [∑ 𝑓(𝒌)𝒌 𝑐𝒌↑
† 𝑐−𝒌↓

† ]
𝑁

2  |0⟩                                                   (2.7) 

The equation (2.7) is the total wave function of 𝑁 particles written in the momentum 

representation and it can be seen clearly that the pairing happens between electrons at (𝒌, ↑) and 

(−𝒌, ↓) with the center of mass momentum being zero. This is an important observation from BCS 

theory that requires the presence of inversion symmetry for the presence of states at momenta 𝒌 

and −𝒌 at a given energy and time reversal symmetry for equal ↑ and ↓ spin states in the system 

for the formation of an 𝑠-wave spin singlet superconducting wave function with zero center of 

mass momentum. The BCS Hamiltonian can be written as 

𝐻 =∑𝜀𝑘𝑐𝒌𝜎
† 𝑐𝒌𝜎

𝑘𝜎

−
𝑈0
𝑉
∑ ∑𝑐𝒌+𝒒,𝜎

† 𝑐𝒌′−𝒒,𝜎′
†

𝜎,𝜎′𝑘,𝑘′,𝑞

𝑐𝒌′𝜎′𝑐𝒌𝜎 
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where 𝑈0 is the attractive potential and 𝑉 is the volume of the system. This Hamiltonian can be 

simplified from four-fermion operators to two fermion operators using Wick’s theorem as: 

                               𝐻𝐵 = ∑ 𝜀𝑘𝑐𝒌𝜎
† 𝑐𝒌𝜎𝑘𝜎 − ∑ ∆𝑐𝒌↑

† 𝑐−𝒌↓
† +∆∗𝑐−𝒌↓𝑐𝒌↑𝑘 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                            (2.8) 

                                                              where ∆=
𝑈0

𝑉
∑ 〈𝑐−𝒌↓𝑐𝒌↑〉𝒌                                                (2.9) 

is the superconducting energy gap in the spectrum that is predicted by BCS theory as shall be seen 

later. 

The eigenstates and eigenvalues of 𝐻𝐵 are determined by using a linear transformation 

known as Bogoliubov transformation that helps diagonalize 𝐻𝐵 as done independently by Nikolai 

Bogoliubov30 and John Valatin31 in 1958. 

(
𝑐𝒌↑

𝑐−𝒌↓
† ) = (

𝑢𝒌
∗ 𝑣𝒌

−𝑣𝒌
∗ 𝑢𝒌

) (
𝛾𝒌↑

𝛾−𝒌↓
† ) 

where the coefficients 𝑢𝑘 and 𝑣𝑘 satisfy the equation |𝑢𝑘|
2 + |𝑣𝑘|

2 = 1. After transformation to 

the Bogoliubov basis, in order to diagonalize 𝐻𝐵, the coefficients 𝑣𝒌 and 𝑣𝒌 need to be chosen  

such that terms such as 𝛾𝒌↑𝛾𝒌↓ and 𝛾−𝒌↓
† 𝛾−𝒌↑

†
 vanish. It can be seen that the following values satisfy 

the requirement 𝑢𝑘 = sin (𝜑𝑘), 𝑣𝑘 = cos (𝜑𝑘)𝑒
𝑖𝜃, ∆= |∆|𝑒𝑖𝜃 and sin(2𝜑𝑘) =

|∆|

√𝜀𝑘
2+|∆|2

 leaving 

only 𝛾𝒌𝜎
† 𝛾𝒌𝜎 terms which gives the number of the Bogoliubov quasiparticles or Bogoliubons in a 

particular state. It can be seen that substituting these values simplifies the Bogoliubov Hamiltonian 

to  

𝐻𝐵 =∑𝐸𝒌𝛾𝒌𝜎
† 𝛾𝒌𝜎 +

𝒌𝜎

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

where 𝐸𝒌 = √𝜀𝒌
2 + |∆|2 is the Bogoliubov quasiparticle dispersion. It can be seen that there is an 

energy gap ∆ below which no Bogoliubons exist (𝐸 < |∆|) and the system requires a minimum 

energy of 𝑐 to create such excitations. It can also be seen that the energy spectrum is symmetric 

with respect to k. This implies the existence of particle-hole symmetry in the system. Now, the 

ground state wave function of the BCS Hamiltonian can be found using the argument that no 

Bogoliubons exist in the ground state and hence 𝛾𝒌𝜎|𝐵𝐶𝑆⟩ = 0. The BCS ground state wave 

function that satisfies this criteria can be written as 
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|𝐵𝐶𝑆⟩𝜃 =∏(𝑢𝒌 + 𝑣𝒌𝑒
𝑖𝜃𝑐𝒌↑

† 𝑐−𝒌↓
† )

𝒌

|0⟩ 

which is the form of wave function that BCS originally assumed for their ground state. 

 The energy gap ∆ can be obtained by transforming equation (2.9) to the Bogoliubov basis. 

Upon further simplification, the gap can be obtained as 

                                           ∆(𝑇) = 𝑈0𝑛(0) ∫ 𝑑𝜀 
𝑡𝑎𝑛ℎ(

√𝜀2+|∆|2

2𝑘𝐵𝑇
)

√𝜀2+|∆|2

ħ𝜔𝐷
0

                                                 (2.10) 

where 𝑛(0) is the density of states at the Fermi level and 𝜔𝐷 is the Debye frequency. ∆(𝑇) can be 

numerically calculated from equation (2.10) and this equation can be used to define the critical 

temperature of the superconductor (𝑇𝑐), the temperature at which ∆(𝑇) reaches zero. This would 

give the 𝑇𝑐 of the superconductor to be  

                                                                ∆0≈ 1.764 𝑘𝐵𝑇𝑐                                                            (2.11) 

where ∆0 is the superconducting energy gap at zero temperature. Near 𝑇𝑐, ∆(𝑇) drops to zero as 

∆(𝑇) ≈ 1.74∆0√1 −
𝑇

𝑇𝑐
 

 which gives a √𝑇𝑐 − 𝑇 dependence of the superconducting gap. Further details on BCS can be 

found in ref.26 

 

 As described in the previous section, the BCS theory of superconductivity allows for the 

existence of Cooper pairs with net zero center of mass momentum, which requires electronic states 

at momenta 𝒌 and −𝒌, that is guaranteed by the inversion symmetry of a crystal. It was first 

proposed by Fulde and Ferrell9 and independently by Larkin and Ovchinnikov10 in 1964 that in 

the presence of a strong exchange splitting of the electronic bands, it is possible to obtain pairing 

between electrons located at states that are at 𝒌 and −𝒌 + 𝒒 with a finite non-zero pairing 

momentum of 𝒒 leading to the formation of an order parameter that is spatially modulated by the 
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wave vector 𝒒 (i.e.) ∆𝑒𝑖𝒒𝒙 (FF) or ∆cos(𝒒𝒙) (LO). The exchange splitting can be due to the 

presence of ferromagnetic impurities or strong magnetic fields that create Zeeman splitting of the 

bands. The value of this momentum 𝒒 can be controlled by the strength of the Zeeman splitting or 

the exchange field, depending on the origin. Such a state is called as a Fulde-Ferrell-Larkin-

Ovchinnikov or an FFLO state, named after the four scientists who originally proposed it. A 

schematic of the order parameter modulation in FFLO state is shown in Fig. 2.3. 

 

(a)       (b)                                          (c) 

 

Fig. 2.3 Finite momentum superconductivity: Schematic of the variation of superconducting 

order parameter with space in (a) normal state (b) uniform BCS state (c) FFLO state. Figure from 

ref.32. Reprinted with permission from AAAS. 

 

 Other than FFLO states, it is also possible to have finite momentum Cooper pairing in 

superconductors with spin-momentum locking in the presence of a strong Zeeman field33. This is 

a much more viable route to create finite momentum pairing as the Zeeman fields required to create 

finite momentum shift in a spin-momentum locked superconductor is much lower than in regular 

BCS superconductors. Hence, a natural platform to look for finite-momentum superconductivity 

is in non-centrosymmetric superconductors where the spin-momentum locking can be used to 

create relative shifts of the electronic bands as will be discussed later in the thesis. Signatures of 

finite momentum superconductivity have been identified in a non-centrosymmetric heavy fermion 

superconductor CeCoIn5
34,35 and in an organic superconductor BEDT-TTF36 

(bisethylendithiotetrathiofulvalene). With the advent of 2D materials, more and more candidate 

finite momentum superconductors are being identified as the orbital depairing effect of the Zeeman 

field is minimal in these systems and it is more plausible to realize a finite momentum state before 

the superconductivity is destroyed37,38. 
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The Josephson effect18, first put forth by Brain D. Josephson in 1962 is an extension of the 

quantum tunneling problem of single particles to that of Cooper pairs. It is a direct consequence 

of the macroscopic nature of the wave function of a superconductor as described by BCS theory 

in the last section. A non-superconducting material like a metal or an insulator sandwiched by two 

superconductors can host the flow of supercurrents, provided the barrier to tunneling of the Cooper 

pairs is not very large compared to the superconducting energy gap (𝑒𝑉 < ∆). Such a junction is 

called as a Josephson junction and hosts interesting properties that has amplified the functionality 

of superconductors. It serves as a platform for observation and engineering of quantum phenomena 

at the macroscale such as quantum interference, quantum coherence, quantum entanglement, etc. 

It was first observed experimentally by Philip W. Anderson and John Rowell39. Brian Josephson 

won the Nobel Prize in Physics in 1973 for his prediction of tunneling supercurrents. This section 

will briefly introduce Josephson junctions and the concepts related to them that will be discussed 

throughout the thesis. A more detailed discussion on the Josephson effect beyond what is discussed 

in the thesis can be found in ref.26,40 

 

Two major effects were predicted by Josephson to occur in a Josephson junction. These 

are known as DC and AC Josephson effects respectively based on the nature of response of the 

junction to the external stimuli in terms of frequency. The DC Josephson effect is exploited 

throughout the thesis and will be described in considerable detail. The DC Josephson effect gives 

the supercurrent across the junction as a function of phase difference between the superconductors 

also known as current-phase relationship (CPR), according to the equation: 

      𝐼(𝜑) = 𝐼𝑐  sin (𝜑)                                                           (2.12) 
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where 𝐼(𝜑) is the current across the junction, 𝜑 is the phase difference between the two 

superconducting electrodes and 𝐼𝑐 is the critical current of the junction beyond which supercurrents 

cease to exist. 

The AC Josephson effect is an interesting effect and is the basis for making the Josephson 

junction a voltage and frequency standard but its detailed description is beyond the scope of this 

thesis. The AC Josephson effect is given by: 

𝑑𝜑

𝑑𝑡
=

2𝑒

ℏ
𝑉 =

2𝜋

𝛷0
𝑉                                                           (2.13) 

where 𝑉 is the voltage across the junction and 𝛷0 =
ℎ

2𝑒
 is the superconducting flux quantum. When 

a finite voltage 𝑉 is applied across the junction, it creates a phase difference across the junction 

that changes with time and produces an alternating current according to equation (2.12) with 

frequency 
2𝑒𝑉

ℎ
 irrespective of the specifics of the junction like the shape, material in question, etc. 

and made up of fundamental constants. This makes the AC Josephson effect useful in creating 

very precise frequencies by application of DC voltages and the voltage across the junction can be 

determined by detecting the frequency of radiation in the finite voltage state of the junction, which 

can be measured much more precisely. This makes the Josephson junction a useful tool in quantum 

metrology and in measuring voltages precisely. The inverse AC Josephson effect, wherein a 

specific frequency of current is applied across the junction that creates a voltage across the junction 

is also possible. This makes creation of a voltage standard using Josephson junctions possible. A 

frequency of 483597.7 𝐺𝐻𝑧 is required to create 1𝑉 across the junction but this frequency can be 

arbitrarily modified by connecting arrays of multiple Josephson junctions in series and parallel. 

We can derive the DC Josephson effect using a Ginzburg-Landau formalism. Let us 

consider a simple model of a Josephson junction with two superconductors (𝑆1, 𝑆2) separated by 

a normal (𝑁) region consisting of a metal as shown in Fig. 2.4 (a). 
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(a)                   (b)

 

Fig. 2.4 Schematic of a Josephson junction: (a) Two superconductors with macroscopic quantum 

coherence separated by a non-superconducting metal. (b) shows the ‘leakage’ of the 

superconducting wave function inside the metallic region with considerable overlap. This is a 

useful picture to appreciate the tunneling of the superconducting condensate similar to the 

tunneling of single particle wave functions across barriers in quantum mechanics. 

 

The free energy of the whole system can be written in terms of an expansion as: 

𝐹 = ∑ (𝛼𝑗|𝜓𝑗|
2
+
1

2
𝛽𝑗|𝜓𝑗|

4
)

𝑗=1,2

− 𝛾1𝜓1
∗𝜓2 −

1

2
𝛾2(𝜓1

∗𝜓2)
2 + 𝑐. 𝑐. 

where 𝜓1 and 𝜓2 are the macroscopic wave functions of the two superconductors. 𝛼𝑗 and 𝛽𝑗 are 

Ginzburg-Landau parameters. The terms with 𝜓1
∗𝜓2 give the overlap of the two superconducting 

wave functions that define the Josephson effect with 𝛾1 and 𝛾2 being the two coupling constants 

of the first and second order Cooper pair tunneling processes respectively. The higher order terms 

beyond the first are usually dropped in the description of conventional Josephson junctions, as they 

are negligible.  

The free energy of the junction can be rewritten with only the first order term as: 

𝐹 = 𝐹0 − 𝛾1𝜓1
∗𝜓2 −

1

2
𝛾2(𝜓1

∗𝜓2)
2 + 𝑐. 𝑐. 

where 𝐹0 = ∑ (𝛼𝑗|𝜓𝑗|
2
+
1

2
𝛽𝑗|𝜓𝑗|

4
)𝑗=1,2  is the free energy of the superconducting electrodes. The 

wave functions of the superconductors can be written in terms of their amplitude and phase as 

𝜓𝑖 = 𝛥𝑖𝑒
𝑖𝜑𝑖 which gives 

𝐹 = 𝐹0 − 2𝛾1∆
2cos(𝜑)  − 𝛾2∆

4cos(2𝜑) 
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Where 𝜑 = 𝜑2 − 𝜑1 is the phase difference between the two superconductors. The CPR of the 

Josephson junction can then be obtained from the free energy as  

                                      𝐼(𝜑) =
2𝜋

𝛷0

𝜕𝐹

𝜕𝜑
=

4𝑒

ℏ
{∆2𝛾1 sin(𝜑) + ∆

4𝛾2sin(2𝜑)}                            (2.14) 

The 𝛾2 term is usually negligible in comparison to the 𝛾1 term and can be dropped but it can be 

significant and play an important role in the observation of the Josephson diode effect as will be 

discussed in later chapters. Thus, the critical current can be written as: 

𝐼(𝜑) = 𝐼𝑐sin(𝜑) 

which is the DC Josephson equation and 𝐼𝑐 =
4𝑒

ℏ
∆2𝛾1 is the critical current of the junction. The 

critical current of the junction can then be obtained by maximizing 𝐼(𝜑) with respect to 𝜑. The 

function is maximized when 𝜑 =
𝜋

2
. This is the standard CPR used to describe a Josephson junction 

made from BCS superconductors and a normal metal. When the barrier is replaced with materials 

with properties like large spin-orbit coupling, magnetism, etc. or the superconductor is replaced 

with an unconventional superconductor, this modifies the CPR of the junction accordingly and 

gives rise to interesting effects, which also makes the Josephson junction a useful platform to tailor 

and study unconventional superconductivity. 

 

The resistively and capacitively shunted junction (RCSJ) model is a complete model used 

to describe the complex impedance of a Josephson junction above and below the critical current 

and is important in understanding the dynamics of a superconductor Josephson junction on 

sweeping the current. It can be considered the superconducting analogue of an inductor-capacitor-

resistor (LCR) electrical circuit model where there are three parallel current channels with the 

Josephson junction replacing the role of the inductor. In addition to the supercurrent flowing 

through the junction below the critical current dictated by the Josephson relations, a Josephson 

junction can have other contributions to its impedance in the finite voltage phase. The resistance 

𝑅 refers to the resistance of the junction above the critical current, in the finite voltage state while 

𝐶 refers to the capacitance, which builds up in the junction due to finite size effects or due to the 
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presence of a dielectric barrier. The capacitance in smaller in 𝑆𝑁𝑆 junctions made of metals while 

it is considerable in 𝑆𝐼𝑆 junctions made of insulators. The Josephson junction, itself acts as an 

intrinsic non-linear kinetic inductor in the RCSJ model, in which the inductive energy is derived 

from the kinetic energy of the Cooper pairs. This can be understood by taking a look at the 

Josephson equations. 

 

 

Fig. 2.5 RCSJ circuit model: Josephson junctions can be considered as a non-linear inductor in 

their superconducting state with a resistance and capacitance in parallel that get activated in the 

finite voltage state. The current dynamics in the junction is described by the differential equation 

(2.18)  

Equation (2.12) can be written as 

        
𝜕𝐼

𝜕𝜑
= 𝐼𝑐 cos𝜑                                                               (2.15) 

Applying chain rule to (2.13) and (2.15) we can write 

𝜕𝐼

𝜕𝑡
= 𝐼𝑐 cos𝜑 

2𝜋

𝛷0
𝑉 

which can be rewritten as  

𝑉 = 𝐿(𝜑)
𝜕𝐼

𝜕𝑡
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Where 𝐿(𝜑)= 
𝛷0

2𝜋 𝐼𝑐 cos𝜑
=

𝐿0

cos 𝜑
 is the kinetic inductance across the junction as a function of the 

phase difference and 𝐿0 = 
𝛷0

2𝜋𝐼𝑐 
 is a junction parameter known as the Josephson inductance. 

Above the critical current the junction possesses a resistance given by the normal state 

resistance of the material (𝑅𝑁). The value of 𝑅𝑁 can be obtained by performing a linear fit of the 

𝐼 − 𝑉 data far above 𝐼𝑐 . This can be used to determine the characteristic voltage of the junction 

(𝐼𝑐 𝑅𝑁), which is a material dependent parameter that does not depend on the dimensions of the 

Josephson junction. As can be seen from equation (2.13) the voltage applied in the normal state 

can give rise to a time dependent phase difference and a current. Thus, the total current due to the 

resistive component of the junction can be written as: 

       𝐼𝑅 =
𝑉𝐽

𝑅𝑁
,    where 𝑉𝐽 =

{
 
 

 
 

0, 𝑓𝑜𝑟  𝐼 < 𝐼𝑐 
 

𝛷0

2𝜋

𝑑𝜑

𝑑𝑡
, 𝑓𝑜𝑟 𝐼 > 𝐼𝑐  is the AC component

 
 𝑉𝑁 , 𝑓𝑜𝑟 𝐼 > 𝐼𝑐  is the DC component

                          (2.16) 

 

In case of 𝑆𝐼𝑆 junctions, the capacitance between the two superconducting electrodes can 

be quite significant.  The displacement current due to the capacitance can be written in the presence 

of a time dependent voltage as: 

𝐼𝐷 = 𝐶
𝑑𝑉

𝑑𝑡
= 𝐶

𝛷0

2𝜋

𝑑2𝜑

𝑑𝑡2
                                     (2.17) 

𝐶 =
𝜀𝜀0𝐴

𝑑
 is the capacitance of the junction both in the normal and superconducting states. 𝜀 is the 

dielectric constant of the barrier material. 𝐴 is the junction area and 𝑑 is the separation between 

the electrodes. Thus, the total current across the junction can be written as the sum of currents 

across the three parallel current channels: 

𝐼 = 𝐼𝐽 + 𝐼𝑅 + 𝐼𝐷 

          𝐼 = 𝐼𝑐sin𝜑 +
𝑉𝐽

𝑅𝑁
+ 𝐶

𝛷0

2𝜋

𝑑2𝜑

𝑑𝑡2
                             (2.18) 

      𝐼 = 𝐼𝑐sin𝜑 +
1

𝑅𝑁

𝛷0

2𝜋

𝑑𝜑

𝑑𝑡
+ 𝐶

𝛷0

2𝜋

𝑑2𝜑

𝑑𝑡2
                         (2.19) 
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It is to be noted that in the superconducting state, only the first term is non-zero and the 

other terms vanish. We can define three characteristic time scales for the junction based on this 

equation by considering different combinations of the three parallel current channels. 

𝜏𝑝 = √𝐿𝐶 =
1

𝜔𝑝
 

𝜏𝑐 =
𝛷0
2𝜋

1

𝑉
=
1

𝜔𝑐
 

𝜏𝑅𝐶 = 𝑅𝑁𝐶 =
1

𝜔𝑅𝐶
 

𝜔𝑝 is the plasma frequency of the junction. 𝜔𝑐 and 𝜔𝑅𝐶 are characteristic frequencies of the 

junction above which the normal current and the displacement current dominate the total current 

respectively. The quality factor of the junction is defined as: 

    𝑄 =
𝜔𝑝

𝜔𝑅𝐶
=

𝑅𝐶

√𝐿𝐶
= √𝛽𝐶                            (2.20) 

where 𝛽𝐶  is a dimensionless damping parameter known as Stewart-McCumber parameter. 

Junctions with 𝛽𝐶 ≪ 1 have small 𝐶 and 𝑅𝑁 and are known as overdamped junctions. Junctions 

with 𝛽𝐶 ≫ 1  have large 𝐶 and 𝑅𝑁 and are known as underdamped junctions. 

 The overdamped and underdamped junctions can be better understood in analogy to a 

massive particle in a tilted-washboard potential with damping whose differential equation is given 

by: 

𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝜂

𝑑𝑥

𝑑𝑡
+ ∇𝑈 = 0                           (2.21) 

where 𝑀 is the mass of the particle, 𝜂 is the damping parameter and 𝑈 is the potential. Equation 

(2.19) can be rearranged to read 

       𝐼𝑐sin𝜑 +
1

𝑅𝑁

𝛷0

2𝜋

𝑑𝜑

𝑑𝑡
+ 𝐶

𝛷0

2𝜋

𝑑2𝜑

𝑑𝑡2
                          

𝐼𝑐 (sin𝜑 −
𝐼

𝐼𝑐
)  +

1

𝑅𝑁

𝛷0
2𝜋

𝑑𝜑

𝑑𝑡
+ 𝐶

𝛷0
2𝜋

𝑑2𝜑

𝑑𝑡2
= 0 
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Multiplying by (
𝛷0

2𝜋
) gives: 

𝐸𝐽 (sin𝜑 −
𝐼

𝐼𝑐
)  +

1

𝑅𝑁
(
𝛷0
2𝜋
)
2 𝑑𝜑

𝑑𝑡
+ 𝐶 (

𝛷0
2𝜋
)
2 𝑑2𝜑

𝑑𝑡2
= 0 

where 𝐸𝐽 = (
𝛷0

2𝜋
) 𝐼𝑐 is the Josephson energy. 

           
𝑑

𝑑𝜑
{𝐸𝐽 (1 − cos𝜑 −

𝐼𝜑

𝐼𝑐
)}  +

1

𝑅𝑁
(
𝛷0

2𝜋
)
2 𝑑𝜑

𝑑𝑡
+ 𝐶 (

𝛷0

2𝜋
)
2 𝑑2𝜑

𝑑𝑡2
= 0       (2.22) 

Comparing equation (2.21) and (2.22), we can make an analogy with a phase particle in a tilted 

washboard potential with 𝑀 = 𝐶 (
𝛷0

2𝜋
)
2
,  𝜂 =

1

𝑅𝑁
(
𝛷0

2𝜋
)
2
 and 𝑈 = 𝐸𝐽 (1 − cos𝜑 −

𝐼𝜑

𝐼𝑐
). It can be 

seen that the mass of the phase particle is identical to its capacitance, the damping parameter is 

proportional to 
1

𝑅𝑁
 and 𝑈 is the tilted-washboard potential. 

 

Fig. 2.6 Tilted washboard potential: A schematic of a phase particle of mass 𝑀 and damping 𝜂 on 

the tilted washboard potential. As the current is increased beyond 𝐼𝑐, the phase particle can escape 

the potential well into a finite voltage state with continuously increasing 𝜑. (i.e.) 
𝑑𝜑

𝑑𝑡
≠ 0. Figure 

reproduced with permission from ref.41 , Springer International Publishing. 
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Equation (2.22) can be simplified and rewritten using the Stewart-McCumber parameter as:  

𝛽𝐶
𝑑2𝜑

𝑑𝜏2
+
𝑑𝜑

𝑑𝜏
+ sin𝜑 −

𝐼

𝐼𝑐
= 0 

where 𝜏 =
𝑡

𝐼𝑐𝑅𝑁

𝛷0

2𝜋
. An underdamped junction (𝛽𝐶 ≫ 1), the junction capacitance or/and the 

resistance are large. This means the mass of the particle (𝑀 ∝ 𝐶) is large or the damping (𝜂 ∝
1

𝑅𝑁
) 

is weak. For an overdamped junction (𝛽𝐶 ≪ 1), the conditions are reversed and 𝑀(or 𝐶) or 𝑅𝑁(or 

1

𝜂
) or both are small. Now let us consider the motion of the phase particle in these two situations. 

When the current is increased, the potential starts to tilt and form a staircase in the negative 

direction. When the current goes beyond the critical current, the phase particle acquires enough 

energy to roll down the stairwell continuously, defining the finite voltage state of the junction. 

When the current is ramped down again to 𝐼𝑐, two scenarios are possible depending on whether 

the junction is underdamped or overdamped. 

 

(a)          (b) 

 

Fig. 2.7 Underdamped and overdamped junctions: (a) An example of a characteristic current-

voltage curve of an underdamped junction with 𝐼𝑐 and 𝐼𝑟 that are different. (b) An example of a 

current voltage curve of an overdamped junction with 𝐼𝑐 = 𝐼𝑟. 

In the case of an underdamped phase particle, upon reaching 𝐼𝑐 from larger critical currents, 

the particle continues to roll in the potential stairwell due to its large mass (kinetic energy) or lower 
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damping and the phase particle remains in the finite voltage state even though the current is below 

𝐼𝑐. This leads to a hysteresis in the 𝐼 − 𝑉 curve and the current where the phase particle stops its 

motion upon sweeping down the current is known as reentrant current (𝐼𝑟), where it enters back 

into the superconducting state. In the case of an overdamped phase particle, the motion of the 

particle stops as soon as the current reaches 𝐼𝑐, which corresponds to the junction entering the 

superconducting state. Hence, there is no hysteresis 𝐼 − 𝑉 curve in the case of an overdamped 

junction. Most measured junctions in the thesis are hysteretic in nature and have an 𝐼𝑐 and 𝐼𝑟 

indicating that they have a high quality factor (𝛽𝐶 ≫ 1) and are underdamped. Thus, the RCSJ 

model can explain the observed features of 𝐼 − 𝑉 characteristics in a Josephson junction. 

 

 One of the most important aspects of superconductivity is the presence of macroscopic 

quantum coherence, which enables quantum computation using superconductors. A Josephson 

junction provides an effective platform to utilize this property by placing two superconductors 

with different wave functions in proximity to each other separated by a non-superconducting 

material as in Fig. 2.4, which can lead to either their constructive or destructive interference 

depending on their phase difference, as in wave optics. The phase difference between the two 

superconductors can be controlled with the help of magnetic flux provided by an external magnetic 

field according to the equation  

𝜑 = 𝜑2 − 𝜑1 =
2𝜋𝛷

𝛷0
 

where 𝛷 = ∫𝑨. 𝑑𝒔 is the magnetic flux through the sample. Hence, the phase difference between 

the two superconductors can be continuously tuned with the help of an external magnetic field. 

Combining this with the simplified DC Josephson equation in equation (2.12) shows that the 

critical current of the Josephson junction oscillates with a magnetic flux period of 𝛷0 or 

correspondingly a phase difference period of 2𝜋. In a rectangular junction, this would lead to the 

critical current beahviour of the following form as derived elsewhere. 
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 𝐼𝑐(𝛷) =  𝐼𝑐(0) |
sin (

𝜋𝛷

𝛷0
)

(
𝜋𝛷

𝛷0
)
|                          (2.23) 

 

This functional form is quite similar to the Fraunhofer interference pattern obtained from 

single slit diffraction in wave optics and hence, the same name has stuck with such interference 

patterns in Josephson junctions. This interference effect forms the basis for many important 

applications of the Josephson junction like the Superconducting Quantum Interference Devices 

(SQUIDs) which can act as very sensitive magnetometers, voltmeters, gradiometers, amplifiers, 

etc. The interference pattern can also be used to determine the current distribution across the 

junction by performing an inverse Fourier transform of the obtained interference pattern. Any 

deviation of the interference pattern from that expected in equation (2.23) is considered 

unconventional and due to modifications to the current-phase relationship of the junction. Studying 

the nature of the current-phase relationship in the system allows us to comment on various aspects 

of superconductivity in the system. For example, a 2𝛷0- or 4𝜋-periodic Josephson effect42 is 

expected for a topological Josephson junction and the presence of a (
𝛷0

2
)  period in the Fraunhofer 

pattern indicates the presence of a second harmonic term in the CPR. Unconventional 

superconducting pairing such as d-wave pairing can also be detected from the interference pattern 

by looking at different current geometries of the junction. In the case of d-wave pairing, this would 

result in a critical current minimum at zero flux rather than a maximum due to the 𝜋-phase 

difference in the wave function along the two adjacent edges as shown in Fig. 2.8. In fact, the 

strongest evidence for the existence of a 𝑑-wave order parameter in the cuprates comes from such 

an experiment43. 
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Fig. 2.8 Quantum interference of the superconducting order parameter: The expected 

Fraunhofer interference pattern of the superconducting order parameter in a corner Josephson 

junction for an s-wave superconductor (on top) and a d-wave superconductor (on bottom). Figure 

adapted with permission from ref.43. 
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 A non-reciprocal response is one in which the response of a system to an external stimulus 

like light, heat, electric fields, etc. is not the same when the direction of the stimulus is reversed. 

Non-reciprocal responses to external stimuli in condensed matter are of great importance both 

fundamentally for understanding the implications of symmetries on the system and for various 

technological applications in memory, sensor and logic devices. The starting point for the 

semiconductor industry, which has been at the forefront of important technological developments 

since the 20th century was the discovery of the p-n junction diode, which has a non-reciprocal 

current response to the application of a voltage stimulus in forward and backward directions. The 

fundamental requirement for the observation of any non-reciprocal response is the breaking of 

inversion (Î) symmetry in the system. In addition, certain non-reciprocal processes may require 

the breaking of time-reversal (Ͳ) symmetry as well. The engineering of non-reciprocal responses 

in superconductors is quite interesting as it allows for the creation of technologies with minimal 

energy dissipation. 

 Non-reciprocal responses can be classified into four different categories based on whether 

the response is linear or non-linear and if the system has Ͳ −symmetry or not, as done by Y. Tokura 

and N. Nagaosa44.   

 

 

Table 2.1 Classification of non-reciprocal responses in non-centrosymmetric materials based 

on the type of response and the presence or absence of time-reversal symmetry. Table reproduced 

with permission from ref.44, Springer Nature  
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The Onsager reciprocal relation laid out by Lars Onsager in 1930 forms the basis for 

existence of reciprocal relations in macroscopic thermodynamic systems with microscopic 

reversibility45,46. He applied this idea to a few different examples like thermoelectric phenomena, 

electrical conduction and diffusion. Of particular interest to us is the case of electrical conductivity. 

The general Onsager relation for any process can be written using a linear response function, which 

satisfies the relation 

𝐽𝐴𝐶(𝒒, 𝜔, 𝑩) = 𝜀𝐴𝜀𝐶𝐽𝐶𝐴(−𝒒, 𝜔,−𝑩) 

Where 𝜀𝐴, 𝜀𝐵 = ±1 depending on whether 𝐴 or 𝐶 is even or odd with respect to Ͳ operation. 𝒒 is 

the wave vector and 𝜔 is the frequency. Applied specifically to the electrical conductivity tensor 

this gives, 

𝜎𝑖𝑗(𝒒,𝜔, 𝑩) = 𝜎𝑗𝑖(−𝒒,𝜔,−𝑩) 

Certain non-reciprocal processes such as magneto-chiral effect, circular dichroism, Kerr 

and Faraday rotation can be described under this linear response formalism of the Onsager 

reciprocal relation. It is to be noted that non-reciprocal responses for diagonal elements (i.e.) 𝜎𝑖𝑖, 

require the explicit breaking of  Ͳ −symmetry whereas it is possible to obtain non-reciprocal linear 

responses for off-diagonal elements without the need for Ͳ −symmetry breaking. However, it’s 

quite different for the case of non-reciprocity in non-linear responses. Non-linear non-reciprocal 

responses usually result in directional 𝐼 − 𝑉 characteristics and may or may not require explicit 

Ͳ −symmetry breaking. It is possible to obtain non-reciprocal responses in non-linear process that 

are multiband effects or involve electron correlations that break down the ideal Bloch picture of 

electronic wave functions. The Bloch wave functions are essentially single-particle wave function 

of electrons that do not include electron correlations. In the presence of Ͳ −symmetry, they obey 

the condition 

𝜀𝒌,𝜎 = 𝜀−𝒌,𝜎′ 

Where 𝒌 is the crystal momentum and 𝜎 is the spin state. This can break down in the presence of 

electron correlations or if the process concerned is a multiband process that does not necessarily 

obey Bloch equations or if there are dissipative processes involved47. In the presence of electron 
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correlations, the band structure of a non-centrosymmetric material can be modified asymmetrically 

depending on the direction of the applied electric field (𝑬). 

𝜀𝒌,𝜎(𝑬) ≠ 𝜀−𝒌,𝜎′(−𝑬) 

 The best example for this is the 𝑝 − 𝑛 junction diode, which shows non-reciprocal 𝐼 − 𝑉 

characteristics without Ͳ −symmetry breaking. The non-reciprocity in this system originates due 

to change in the width of the depletion layers upon applying a voltage and can be attributed to the 

electron correlations induced by Coulomb interactions in the depletion layer of the system. 

Another example of non-reciprocity in the presence of Ͳ −symmetry is the observation of shift 

currents in polar insulators, which is essentially an interband current induced by optical excitations 

related to the Berry phase of the bands as opposed to regular transport which is an intraband 

process. However, the supercurrent diode effect that we shall discuss in this thesis is a non-linear 

non-reciprocal single-band process that requires the explicit breaking of Ͳ −symmetry. 

 

 The electrical magneto-chiral anisotropy is a non-linear non-reciprocal phenomenon that 

requires the explicit breaking of Ͳ −symmetry. It is when the resistance of an inversion symmetry 

lacking material depends on the direction and magnitude of the applied magnetic field. It was put 

forth by Geert L. J. A. Rikken in 2001 to explain the phenomenological observation of non-

reciprocal resistance under a magnetic field of chiral 𝑅 − and 𝐿 − bismuth helices based on 

symmetry arguments48. The resistance of a non-centrosymmetric material is given by: 

𝑅(𝑰, 𝑩) = 𝑅0 + 𝛾
𝑖𝑩. 𝑰 + 𝛽𝑩𝟐 

Where 𝑅0 is the resistance in the absence of any external magnetic field, 𝛾𝑖 is the magnetochiral 

anisotropy and 𝛽 is the co-efficient for normal magnetoresistance. For chiral materials, usually 

𝛾𝑅 = −𝛾𝐿. Since then, magneto-chiral anisotropy has been observed in many non-

centrosymmetric materials. Magneto-chiral anisotropy (𝛾 or MCA) is essentially an empirical 

quantity used to quantify non-reciprocity in electrical transport. 𝛾 in metals is usually quite small 

of the order of 10−3 − 10−2𝑇−1𝐴−1 as the spin-orbit coupling energy is usually smaller than the 

Fermi energy. It is predicted that the effects of spin-orbit coupling in the superconducting state are 



 
 

36 
 

enhanced, as they are comparable to the superconducting energy gap Δ. 𝛾 has been measured in 

some superconductors with broken inversion symmetry. The value of  𝛾 for MoS2 in the 

superconducting fluctuation regime49 was found to be around 1200 𝑇−1𝐴−1. This observation 

provided the first signature of possible non-reciprocal transport in superconductors with broken 

inversion symmetry. For a heterostructure composed of multiple superconductors such as 

Nb/V/Ta, 𝛾 reaches around 550 𝑇−1𝐴−1 close to 𝑇𝑐, supporting the hypothesis of an enhanced 

spin-orbit coupling effect in the superconducting state. It was in this heterostructure that the 

superconducting diode effect was also first reported6. 

 

(a)              (b) 

Fig. 2.9 Magneto-chiral anisotropy: (a) The change in resistance of chiral bismuth helices of 

opposite chiralities L-(triangle) and D-(square) upon application of a magnetic field at 300 K and 

(b) 77 K. Figure adapted with permission from ref.48 

 

 The supercurrent diode effect is achieved when the critical currents of a superconductor or 

a Josephson junction are unequal when the currents are applied along opposite directions. This 
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leads to the interesting possibility of sourcing unidirectional supercurrents while the currents are 

dissipative along the opposite direction. The terminology of the supercurrent diode effect is in 

analogy with the non-reciprocal conductivity of a semiconductor diode. The semiconductor diode 

has many applications like in rectifiers, sensors, logic, etc. and has led to the invention of the 

modern bipolar transistor, which forms the basis of most computing devices today. With Moore’s 

law for semiconducting transistors nearing its end, it is crucial to look for alternative energy 

efficient platforms to perform computations with scalability. Superconductors provide a 

fascinating, near dissipationless platform for performing computations in an energy efficient way 

and at a rapid pace. As discussed in the previous section, in order to observe the supercurrent diode 

effect induced by the spin-orbit coupling in the superconducting state, the spin-orbit coupling 

energy scale needs to be comparable to the superconducting energy gap (∆) which is of the order 

of 𝑚𝑒𝑉 instead of the Fermi energy (𝐸𝐹) which can be of the order of 𝑒𝑉. 

 

 Now, let us look at the symmetry requirements for a supercurrent diode effect. 

Conventional BCS superconductors require the existence of particle-hole symmetry in the system 

(Refer section on BCS theory) which implies that the superconducting energy gap (∆) and thereby 

the gap closing current (𝐼𝑐) is the same in opposite directions. The presence of non-reciprocal 

critical currents in the system indicates the existence of unequal superconducting gaps in opposite 

directions, thereby requiring the breaking of particle-hole symmetry in the superconductor. (i.e.) 

the energy spectrum of the superconductor needs to be asymmetric with respect to 𝒌. We shall see 

in later chapters on how this symmetry breaking can be achieved leading to the supercurrent diode 

effect. This non-linear process requires the breaking of time-reversal symmetry of the system and 

like any other non-reciprocal effect, inversion-symmetry breaking is an inherent requirement as 

discussed in Onsager’s reciprocal relation. Therefore, intrinsically the presence of a supercurrent 

diode effect indicates the presence of a strong deviation from the BCS theory and the possibility 

of unconventional pairing mechanisms. 
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 This section gives the developments in the field of supercurrent diode effects at the time 

before the thesis. The superconducting diode effect (SDE) was first reported6 to have been 

observed by Teruo Ono’s group in 2020 in an artificial super lattice of superconductors 

[Nb/V/Ta]n, which lacks a center of inversion. The lack of inversion symmetry at the interface 

between the elemental superconductors leads to the presence of a Rashba-type spin-orbit 

interaction that causes a spin-dependent band splitting in the system that in the presence of a 

magnetic field perpendicular to the direction of current breaks the time-reversal symmetry of the 

system and creates unequal critical currents in the system. The diode effect, defined as ∆𝐼𝑐 = 𝐼𝑐
+ −

|𝐼𝑐
−| was found to be large close to the 𝑇𝑐 around 4.2 𝐾 and vanish at lower temperatures. The 

MCA of the system was also calculated from the second-harmonic resistance and was found to be 

very large close to 𝑇𝑐. The observation of SDE in the system was rather phenomenological and no 

detailed description of the underlying mechanism was provided. Later, SDE was also reported in 

few layer NbSe2
50, which is an Ising superconductor and is expected to have a Zeeman type spin-

orbit coupling. The marked difference here as compared to the previous case, comes from the 

nature of spin-orbit coupling in the system and consequently an out-of-plane magnetic field was 

required to observe an SDE. A SDE was reported in small-twist angle trilayer graphene51 in the 

absence of an applied magnetic field indicating the presence of spontaneous time reversal breaking 

in the system. A valley-polarized occupation of the underlying Fermi surface was attributed as the 

cause of the spontaneous time reversal breaking in the system. 

(a)           (b) 
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(c) 

 

Fig. 2.10 Superconducting diode effect (SDE) in [Nb/V/Ta]n: (a) Schematic of the multilayer 

superconductor structure depicting the flow of electrons in one direction and Cooper pairs in the 

opposite direction. (b) Optical image of the device used for measurements with the magnetic field 

perpendicular to the current direction. (c) Temperature dependence of ∆𝐼𝑐  measured in positive 

and negative magnetic fields showing that the effect is maximized around 4.2K. Figure reproduced 

with permission from ref.6, Springer Nature. 

 

 Another avenue to realize supercurrent diode effects is in Josephson junctions, where the 

supercurrents can flow through the normal barrier when in proximity to superconducting 

electrodes. The non-reciprocity in critical currents obtained in a Josephson junction is labelled 

Josephson diode effect (JDE). Josephson diode effect was first reported in a Josephson junction 

array of InAs quantum wells proximitized with aluminium electrodes by measurements of both 

the critical currents and the kinetic inductance of the Josephson junctions7. InAs is a semiconductor 

with a 2D electron gas and known to have a strong spin-orbit coupling and has been explored a lot 

in connection with topological superconductivity. A very large MCA of 4.1 × 106 𝑇−1𝐴−1 was 

also observed closed to the 𝑇𝑐 of the junction. The presence of a JDE was correlated with the 

presence of a non-sinusoidal term in the CPR of the junction.  

 

 

 



 
 

40 
 

(a)                    (b)                                              (c) 

 

Fig. 2.11 Josephson diode effect in an array of InAs junctions: (a) Schematic of the InAs 

Josephson array consisting of the 2DEG at the bottom with the superconducting aluminium 

electrodes on the top. (b) The evolution of the CPR expected for positive and negative magnetic 

fields perpendicular to the current direction. (c) Inductance measurements show a shift in the 

minima at different magnetic fields that can be used to estimate the CPR. Figure reproduced with 

permission from ref.7, Springer Nature. 

 

The first observation of a magnetic field-free JDE was reported in a vertical van der Waals 

heterostructure of Nb3Br8 sandwiched by NbSe2 on the top and bottom2. Though the exact origin 

of this effect is not fully understood, since Nb3Br8 does not have a magnetic ground state that 

breaks time-reversal symmetry, the spontaneous time reversal symmetry breaking in the system 

was attributed to the obstructed atomic insulator nature of Nb3Br8 with Wannier charge centers 

symmetrically pinned at the unoccupied inversion centers between two Br-Nb-Br layers. The effect 

observed in this paper was very different from the previous reports as the JDE in this case was 

found to be symmetric with respect to the field. More details on this work are discussed in the 

appendix. Later, a field-free JDE was also reported in platinum on top of a ferrimagnetic insulator 

yttrium iron garnet Y3Fe5O12 (YIG), proximitized by niobium electrodes52. The proximity-induced 

magnetization in platinum was used to induce a field-free JDE, the polarity of which could be 

switched by reversing the magnetization of the underlying YIG layer. The efficiency of the diode 

effect in various materials so far can be found in the appendix. 
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(a)                    (b)                                                            (c) 

 

Fig. 2.12 Polarity controlled zero field JDE in Pt/YIG heterostructure junctions: (a) Schematic 

of the Pt/YIG Josephson junction with the superconducting niobium electrodes on the top and the 

momentum shift induced by the combination of the exchange spin splitting and Rashba SOC. (b) 

The polarity of the JDE is reversed when the magnetization of the underlying YIG layer is switched. 

(c) Efficiency of the JDE for various separations of the platinum layer from the YIG. Figure 

reproduced with permission from ref.52 Springer Nature. 

 

As discussed in BCS theory the existence of inversion and time reversal symmetries are 

crucial for spin-singlet s-wave pairing. But the breaking of inversion symmetry is necessary for 

the observation of non-reciprocal effects in transport. Though non-centrosymmetric 

superconductors exist, they are not plenty in number as superconductivity is inherently not 

supported in them according to BCS theory. One way to go about this is to look at materials that 

are centrosymmetric globally but there is a lack of inversion symmetry locally. In this case, the 

superconductivity can still be sustained but the local spin polarizations induced by the inversion 

symmetry breaking can modify the pairing symmetries and lead to unconventional 

superconductivity in the system. Different centrosymmetric point groups that host locally non-

centrosymmetric atomic point groups and the corresponding spin-momentum locking are shown 
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in Table 2.2. A more detailed discussion of spin polarization due to local inversion symmetry 

breaking and its implication on superconductivity can be found in the literature53,54. This section 

discusses one such structure (1T) with local inversion symmetry breaking that is present in both 

the materials (NiTe2 and PtTe2) studied in this thesis. 

 

 

Table 2.2: Classification of centrosymmetric and non-centrosymmetric space groups based on 

atomic point group symmetries along with possible spin-momentum locking. Table reproduced 

with permission from ref.53, Springer Nature. 
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Fig. 2.13 Schematic of 2H and 1T structures: The 2H structure is non centrosymmetric in the 

monolayer but center of inversion is restored in the bilayer. The 1T structure is centrosymmetric 

down to the monolayer but hosts atomic sites that lack inversion symmetry. Figure reproduced 

with permission from ref.55 

 

In order to understand the physics of Cooper pairing in 1T(trigonal)-TMDCs, let us first 

start by considering their crystal structure. 1T systems crystallize in the P-3m1 space group, which 

is a centrosymmetric space group that is not expected to have any asymmetric spin-orbit coupling 

interactions like the Rashba or Dresselhaus effects. Each layer consists of three sublayers with a 

layer of transition metal atoms located in the center and sandwiched by two sublayers of 

chalcogenide atoms on the top and bottom as shown in the schematic in Fig. 2.14. The transition 

metal atoms are coordinated with the chalcogenide atoms in their close vicinity in an octahedral 

fashion. This gives the transition metal atoms a D3d point group symmetry, which includes a center 

of inversion. The chalcogenide atoms on the other hand, have a C3v point group symmetry, which 

lacks a center of inversion. This lack of inversion symmetry, locally within the unit cell leads to 

the existence of equal but opposite electric dipoles pointing out-of-plane and consequently 

asymmetric helical spin–orbit couplings on the top and bottom layers of chalcogenide atoms as 

shown in Fig. 4.1. Though globally the spin-orbit coupling strength adds up to zero, the existence 
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of locally broken symmetries and hence, a ‘local Rashba effect’ in the system leads to the existence 

of a layer-dependent spin-momentum locking in the system where the spins in the top and bottom 

chalcogenide layers are oppositely spin-polarized. This is known as ‘spin-layer locking’ and has 

been observed through ARPES in few layers of PtTe2
56, PtSe2

57, etc. and in bulk MoS2
58. The 

existence of such a spin-polarization and the formation of bulk Dirac cones in 1T systems due to 

non-centrosymmetry of the chalcogen atom, has been explained in detail and also observed 

experimentally by Bahramy M. S. et. al.8 in a variety of TMDCs. Though compensated globally, 

the existence of such a ‘hidden spin polarization’ due to locally broken symmetries can lead to 

interesting transport effects and exotic order parameters such as pair density waves24 in the 

superconducting state of such materials.  

 

Fig. 2.14 Local electric dipoles in 1T structure: The centrosymmetric 1T structure hosts atomic 

sites that lack inversion symmetry leading to electric dipoles of opposite polarity on the chalcogen 

sites and consequently spin polarization and helical spin-momentum locking in the chalcogen-

derived electronic bands. 

  

Let us now digress a bit and discuss the structure of 2H(hexagonal)-TMDCs as the 

structure-property correlations in them are well studied and are understood better. 2H-TMDCs 

have a trigonal prismatic coordination with the transition metal having a D3h point group symmetry 
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that lacks an inversion symmetry. Unlike 1T-TMDCs which are centrosymmetric in the monolayer 

but non-centrosymmetric when considering the atomic site point group symmetry, 2H-TMDCs 

break inversion symmetry at the monolayer level and have it restored in the bilayer by an AB type 

stacking. The electric dipole in this case lies in the plane of atoms as shown in Fig leading to a 

spin-orbit field 𝑩𝑠𝑜   ∝  𝑬  ×  𝒌. This results in a spin-momentum locking in the system that points 

out-of-plane called as Zeeman-type spin momentum locking and alternates with each layer. This 

is reflected in the electronic structure as out-of-plane spin-polarized bands with opposite signs 

around K and K’ valleys in the momentum space as shown through spin- and angle- resolved 

photoemission spectroscopy (SARPES) in Fig. 2.15 for 2H-WSe2
59 and through DFT calculations 

in Fig. 2.16 for a monolayer of 1H-NbSe2 and 1H-TaS2
60. This opposite spin-momentum locking 

at alternating valleys in semiconducting 2H-TMDCs has led to the field of valleytronics, which 

involves controlling the valley degree of freedom of electrons. However, this is outside the scope 

of this discussion and won’t be discussed further. Some examples of TMDCs with this structure 

include MoS2, NbSe2, TaS2, WSe2, etc. 

(a)                      (b)                                     

 

Fig. 2.15 Ising spin-polarization in 2H-WSe2: (a) The 2H structure of WSe2 viewed along the a-

axis. It is non-centrosymmetric in the monolayer and has electric dipoles on the transition metal 
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atom. Consequently, the bands derived from the transition metal atom orbitals have an Ising spin 

polarization. (b) Out-of-plane spin polarization is observed in the spin resolved density of states 

while in-plane spin polarization is absent indicating the presence of an Ising spin-momentum 

locking. Figure reproduced with permission from ref.59, Springer Nature. 

 

 For this discussion, the object of interest in these systems is the superconducting state in 

these spin-polarized systems. Some of the 2H-TMDCs like NbSe2 and TaS2 are known to be 

superconducting. The Fermi surface of NbSe2 and TaS2 computed by density functional theory 

(DFT)60,61 displaying the spin-polarized bands derived from the Nb and Ta orbitals are shown in 

Fig. 2.16. It has a hexagonal Brillouin zone and a Fermi surface with three-fold symmetry as 

reflected from the lattice. As it can be noticed, there are out-of-plane spin-polarized pockets around 

Γ, K and K’ with K and K’ having opposite spin polarizations. As discussed in BCS theory, the 

Cooper pairs are formed between electrons located at opposite points in momentum space with 

net-zero center of mass momentum and of opposite spin angular momentum to conserve the 

momentum and antisymmetric nature of the fermionic wave function respectively. In this case, the 

electrons at opposite momenta have opposite spins with their spin quantization axis only in the 

out-of-plane direction leading to the formation of Cooper pairs with strong spin-momentum 

locking leading to what is known as ‘Ising’ superconductivity. The pairing can occur between 

electrons in pockets centered at Γ point or between electrons in pockets centered at K and K’ 

points. The strong spin-orbit field in thin layers of Ising superconductors provide them immunity 

from depairing effects of the magnetic field applied parallel to the surface plane, leading to upper 

critical fields far above the Pauli paramagnetic limit60,62,63. There has been a recent report of an 

orbital Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state created in NbSe2 under very strong 

parallel magnetic fields as the spins remain unaffected by the strong parallel magnetic fields which 

couple to the orbital angular momentum of the system38. 
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Fig. 2.16 Ising pairing in 1H-NbSe2 and 1H-TaS2: (a) The 2H structure of consisting of a bilayer 

of NbSe2 or TaS2. (b) The Ising pairing mechanism in 2H-superconductors lead to strong 

protection from external pair breaking magnetic fields far above the Pauli paramagnetic limit. 

Pairing of spin-locked electrons occurs in bands centered around the Γ point and in bands 

centered around K and K’ points. Figure reproduced from ref.60 , Springer Nature. 

 

 Now with this in mind, the Cooper pairing in 1T structures can be discussed. As stated 

earlier, 1T structures are centrosymmetric but the presence of electric dipoles pointing out-of-plane 

on the top and bottom chalcogen sites in a monolayer gives rise to an in-plane helical spin-

momentum locking on the bands arising from the chalcogen orbitals8. Let us consider the example 

of 1T-NiTe2. In this system, close to the Fermi level there are spin-polarized topological surface 
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states. The spin-polarized Fermi surface of NiTe2 calculated by DFT is shown in Fig. 2.17. There 

are multiple pockets located around Γ and K  points with an overall helical spin-momentum locking 

structure. Cooper pairing of spin-momentum locked electrons occurs between electrons located at 

𝒌 and −𝒌 points in the momentum space. The spin-momentum locking allows for control of the 

electronic bands with the help of a Zeeman field. A detailed explanation on the creation of non-

zero momentum Cooper pairing and how it leads to the creation of a supercurrent diode effect in 

1T structures is discussed in chapter 4. 

 

 

Fig. 2.17 Fermi surface of 1T-NiTe2: DFT calculations showing the spin-polarized Fermi surface 

of 1T-NiTe2 with hexagonal symmetry and helical spin-momentum locking across multiple pockets. 

Figure reproduced from ref.1 , Springer Nature. 
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 Throughout the thesis, multiple experimental tools are used to fabricate, characterize and 

measure electronic devices pertaining to the Josephson diode effect in certain van der Waals 

transition metal dichalcogenide (TMDC) systems. In this chapter, the working principles of the 

tools and the methods used extensively are explained in detail. Especially the dilution refrigerator 

setup, which I had the privilege to set up and work with on many exciting experiments. The device 

fabrication process includes mechanical exfoliation of the van der Waals crystals, defining the 

electrodes using electron-beam lithography and photolithography, deposition of the 

superconducting electrodes on top of the flakes and lifting off the residual resist. The device is 

then characterized using a scanning electron microscope to find the exact spacing between the 

electrodes and an atomic force microscope is used to measure the thickness of the flake and 

deposited electrodes. The electrical transport characterization that involves the bulk of the data 

presented in the thesis is then performed in a dilution refrigerator setup that is capable of reaching 

temperatures below 10 𝑚𝐾. Some basic electrical characterizations are performed in a Physical 

Property Measurement System (PPMS). 

 

Van der Waals materials or more commonly known as two-dimensional (2D) materials are 

materials that are held together strongly by covalent chemical bonds in two directions (usually the 

crystallographic 𝑎𝑏 directions) while weakly connected by van der Waals force in the third 

dimension64. The van der Waals force is usually very weak and can be broken using either physical 

or chemical forces. This process is known as exfoliation and can be used to break down three-

dimensional bulk crystals of the material to form two-dimensional sheets of the material. The 

reduction in the dimensionality created by this top-down process opened a new door to study the 

physics of materials in lower dimensions. For example, the physics of two-dimensional electron 

gases (2DEG) which was previously studied by fabricating complicated semiconductor 

heterostructures65 can now easily be accessed by exfoliation of van der Waals crystals down to the 



 
 

51 
 

monolayer limit. This was first discovered by A.K. Geim and K.S. Novoselov by mechanically 

exfoliating graphene using scotch tape66, which is a single two-dimensional layer of graphite, for 

which they won the Nobel prize in 2010. 

Mechanical exfoliation is a physical exfoliation process wherein a bulk van der Waals 

crystal is thinned down into few layers by repeatedly peeling it with the help of an adhesive tape 

like Scotch® tape or Nitto® tape and then attached to a clean substrate like silicon coated with SiO2. 

In our case, we exfoliate van der Waals transition metal dichalcogenides (TMDCs) like NiTe2 and 

PtTe2 which have relatively stronger van der Waals force compared to other van der Waals 

materials like graphite or other TMDCs like MoS2, NbSe2, WTe2, etc. and are hence difficult to 

exfoliate down to the monolayer limit. The ratio of 𝑐-axis lattice parameter to 𝑎-axis lattice 

parameter known as 𝑐 𝑎⁄  ratio is a good indicator of the strength of van der Waals force between 

the layers. In the case of graphite, 2H-MoS2 and 2H-NbSe2, the 𝑐 𝑎⁄  ratios are 2.73, 3.90 and 3.65 

respectively, whereas in the case of 1T-NiTe2 and 1T-PtTe2, the 𝑐 𝑎⁄  ratios are 1.34 and 1.29 

respectively.  Hence, we try to find very thin layers of these materials (not down to the monolayer) 

with dimensions reasonable enough to fabricate devices for our studies. Both 1T-NiTe2 and 1T-

PtTe2 are extremely air stable and do not require an inert atmosphere. Exfoliation of the flakes is 

done both under ambient and inert atmospheres and does not produce any significant difference in 

the quality of the devices. The exfoliation process is as follows: 

1) The exfoliation process is done on silicon substrates with 300 𝑛𝑚 SiO2 coating that 

provides electrical isolation of the exfoliated layers (flakes) and provides a good optical 

contrast due to the difference in the optical path of the reflected light to identify and 

distinguish the thickness range of the flakes under an optical microscope. 

2) Prior to the exfoliation process, the silicon substrates undergo a lithography process to 

deposit gold markers on the substrate to locate the flakes and to do the alignment during 

device fabrication. 

3) The silicon substrates then undergo a thorough cleaning process to remove any adsorbed 

impurities. They are cleaned with acetone, ethanol and isopropanol for 10 minutes each 

with ultrasonication. They are then heated on a hot plate for 2 minutes at 100 ℃ to dry 

them and then treated under oxygen plasma for 15 minutes to remove the residual organic 

solvents. 
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4) Meanwhile the flat side of a bulk TMDC crystal of NiTe2 or PtTe2 is placed on the adhesive 

side of blue Nitto tape, covered with the tape on top and pressed thoroughly, applying a 

strong force using the thumbs to make it stick to the tape. The tape is then pulled apart in 

one swift motion to cleave the crystal. This process is repeated three to four times to thin 

the crystal down to a few layers. 

5) The exfoliated crystal on the tape is then transferred on to the silicon substrate by placing 

it on the substrate area and gently rubbing it with a tweezer to remove any air bubbles. 

6) The tape is then gently peeled off the substrate with a very slow motion moving at roughly 

0.5 𝑚𝑚/𝑠 to leave behind some thin flakes on the substrates. It is to be noted that heating 

the substrate during exfoliation doesn’t significantly improve the yield of thin flakes. 

 The substrate is then inspected under an optical microscope to identify flakes of suitable 

thickness. It hard to distinguish the exact thickness of the flakes in this case from the optical 

contrast. Thicker flakes are more reflective and appear brighter while thinner flakes appear 

relatively dull as shown in Fig. 3.1 (d)-(e). Flakes of suitable sizes are selected by comparing their 

sizes with the 10 𝜇𝑚 wide alignment markers and their thickness is checked using an atomic force 

microscopy (AFM).  

(a)       (b)            (c)          (d) 

 

(e)            (f) 
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Fig. 3.1 Mechanical exfoliation of PtTe2: (a)-(d) A schematic showing the mechanical exfoliation 

process of a van der Waals crystal. Figures reproduced with permission from 67. (e)-(f) Optical 

images of thin and thick flakes of PtTe2 on Si/SiO2 under an optical microscope. The thicker flakes 

are highly reflective and have a metallic sheen while the thin flakes appear dull and have a 

different colour. 

 

 Photolithography is the process in which a photosensitive polymer coated on a substrate is 

exposed to a beam of photons on a desired area to produce the required structures. The typical 

resolution that photolithography can achieve is around 1 𝜇𝑚 and is used to make larger structures 

such as contact pads and alignment markers. Photolithography is performed using a Maskless 

Aligner 150 (𝑀𝐿𝐴 150) from Heidelberg Instruments. The Maskless Aligner uses a 375 𝑛𝑚 solid-

state laser and has a high-speed spatial light modulator and an ultrafast 2D sample stage that helps 

expose the substrate without the need for any hard mask. The photolithography process involves 

two types of photosensitive polymers known as positive and negative photoresists. The exposure 

of the positive (negative) resist to the laser softens (hardens) it during the development process. A 

schematic of the photolithography process is shown in Fig. 3.2. Prior to the photolithography 

process, the required design is written in the “.GDS” format using a software such as Layout 

Editor. The photolithography process is as follows: 

1) The silicon substrate is cleaned in acetone, ethanol and IPA for 5 minutes each. Care is 

taken that no strong force that displaces the flakes from the substrates such as an ultrasonic 

force is applied.   

2) The substrate is then heated at 100 ℃ for 2 minutes to dry the solvent residues. 

3) The substrate is spin-coated with a positive (𝐴𝑅 − 𝑃 3540 𝑇) or negative photoresist 

(𝐴𝑅 − 𝑁 4340) from Allresist as required at 4000 rpm for 1 minute and heated at 100 ℃ 

for 1 minute. 

4) The substrate is then exposed to the laser using 𝑀𝐿𝐴 150 with the required design.  

5) The exposed substrate is then developed using a developer such as 𝐴𝑅 300 − 44 (for 

positive resist) or 𝐴𝑅 300 − 475 (for negative resist) for 1 minute to remove the resist 



 
 

54 
 

from unwanted areas, stopped with water for 60 seconds and the developed design is 

checked using an optical microscope. The developed substrate is then used for etching and 

deposition. 

6) The subsequent liftoff of the undeveloped resist is performed by immersing the substrate 

in acetone for 30 minutes followed subsequently by gentle ultrasonication in case no fragile 

structures are present on top of the substrate. 

 

Fig. 3.2 Optical lithography process: A schematic showing the different steps involved in the 

photolithography process with both positive and negative resists. The two resists form structures 

complimentary to each other and can be chosen based on the process requirement. 

 

The electron-beam lithography (e-beam lithography or EBL) process is similar to the 

photolithography process except it uses a high-energy focused electron beam from an electron 

column, which provides a much better resolution in comparison to a photon beam and is used to 

fabricate smaller structures of the order of ~100 𝑛𝑚 and uses a polymer sensitive to the high-

energy electrons (PMMA) rather than photons. The electron beam lithography is performed using 

a Raith Pioneer Two system and has a similar 2D stage like the photolithography system that is 

controlled by a laser interferometer. When using the electron-beam, it is important that the 

substrate used is conducting and grounded to avoid charging effects that might affect the imaging 

and patterning process. Insulating substrates are usually covered with a conductive polymer to 

achieve this. The EBL process involves a lot of parameters like the acceleration voltage, beam 

current, aperture size, dose, working distance, stigmation, etc. that need to be optimized in order 
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to obtain the best results. The optimization of these individual parameters can be found in the Raith 

manual.  

In our case, a double layer e-beam resist where the lower layer is a weak polymer that 

develops faster is used. This creates an undercut in the resist and promotes easier lift-off after 

deposition and helps avoid ultra-sonication of the flake. This undercut can also lead to formation 

of structures that are slightly larger than that intended by the actual design. A dose test is performed 

with closely-spaced wires like in our Josephson junctions to optimize the dose at which the best 

resolution is obtained and to find the difference between the intended separation and actual 

separation between the wires for a given acceleration voltage. The results of this test are presented 

in Fig. 3.3.  The steps to perform the EBL process are as follows: 

1) The silicon substrate is cleaned in acetone, ethanol and IPA for 5 minutes each. Care is 

taken that there is no strong force that displaces the flakes from the substrates such as an 

ultrasonic force is applied.   

2) The substrate is then heated at 100 ℃ for 2 minutes to dry the residual solvents. 

3) The substrate is spin-coated with a positive EBL resist 𝐴𝑅 − 𝑃 669.04 from Allresist at 

4000 rpm for 1 minute and heated at 150 ℃ for 1 minute. The substrate is then cooled 

down for 1 minute and then the same procedure is repeated with the resist 𝐴𝑅 − 𝑃 679.03. 

4) The substrate is spin-coated with a conductive polymer Electra 𝐴𝑅 − 𝑃𝐶 5090.02 from 

Allresist at 2000 rpm for 1 minute and heated at 85 ℃ for 2 minutes. The conductive 

polymer is water-soluble and helps avoid charging of the substrate by the electron beam. 

5) The substrate is then cooled down, attached to the sample holder, loaded into the EBL 

system and pumped down until the vacuum goes below 10−5 mbar. 

6) The sample stage is then moved under the electron column and the electron column is 

activated by setting the acceleration voltage to 10 𝑘𝑉 and aperture size to 10 𝜇𝑚. 

7) The previously optimized settings are loaded followed by the origin correction, angle 

correction and three-point alignment using the markers on the substrate. The design is then 

loaded into the Raith Pioneer Two Litho software and the dose set to 100 𝜇𝐽/𝑐𝑚2 and the 

writefield to 100 𝜇𝑚. The exposure time is calculated and the e-beam exposure is started. 

8) After the exposure is finished, the substrate is unloaded, the Electra is removed by 

immersing in water for 60 seconds and the sample is developed for 90 seconds in 
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𝐴𝑅 600 − 56, stopped with IPA for 30 seconds and the developed design is checked using 

an optical microscope. The developed substrate is then used for etching and deposition. 

9) The subsequent liftoff of the undeveloped resist is performed by immersing the substrate 

in acetone overnight to gently remove the underlying resist without damaging the fragile 

nano-structures present on top of the substrate. The excess deposits on the top are gently 

blown away using a pipette in acetone and the substrate is cleaned with IPA to remove the 

acetone residue on the substrate. 

 

Fig. 3.3 E-beam lithography calibration: A calibration of the EBL process with different doses 

for different electrode separations in the design for 10 kV acceleration voltage and 10 μm aperture. 

The separations are measured with SEM after liftoff. The dashed line is used to infer the design 

separation at which 100 nm actual separation can be achieved at different doses. 

 

 After lithography and development, the substrate is ready for etching and deposition of 

electrode material. This process is performed in the Scia Coat 200 system, which is capable of 
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ion-beam milling and sputter deposition of up to 4” wafer sizes. Ion beam milling uses a broad 

beam of positive charged ions, such as argon ions (Ar+) to physically etch material from the wafer 

substrate by ion bombardment. Controlled etching of the thin films in the system is possible with 

the help of secondary-ion mass spectrometry (SIMS). Ion beam sputtering or ion beam deposition 

(IBD) uses a high-energy ion beam facing the target material. The resulting ion bombardment 

physically removes material from the target, which is deposited on the substrate surface as shown 

in Fig. 3.4(b). The Scia system has low sputtering pressure and has low process temperatures 

enabled by helium cooling on the backside of the wafer. The Scia system can host up to six 

different target materials on a carousel, which makes the deposition of multiple materials without 

breaking vacuum feasible. 

 In our case, the substrate is attached to the 4” wafer holder after the lithography process 

with the help of kapton tape. All etching and deposition processes in the system are fully automated 

with the help of recipes. The substrate is loaded in to the load lock of the Scia system and pumped 

down to 10−6 𝑚𝑏𝑎𝑟 quickly with the help of a turbo pump. The substrate is then automatically 

transferred into the main chamber by a robotic arm. The deposition rates of the targets were 

calibrated by Dr. Jae-Chun Jeon. The substrate is gently etched at 120 degrees at 280 𝑊 power, 

100 𝑉 beam voltage and 500 𝑉 acceleration voltage for 1 minute before deposition to clean the 

surface of the material from residual resist and other surface contaminants before deposition. The 

angle is then set to 155 degrees for the deposition of titanium, niobium and gold of the desired 

thicknesses as described later in the thesis using the following parameters: Power = 500 –  600 𝑊 

(regulated by beam current), Beam Voltage = 1200 𝑉, Accelerator Voltage = 250 𝑉, Beam 

Current ~ 125 𝑚𝐴, Accelerator Current ~ 3 𝑚𝐴, Neutralizer Current = 200 𝑚𝐴, Ar Pressure = 

1 − 2 × 10−4 𝑚𝑏𝑎𝑟 MFC1 (Sputter Source) = 15 𝑠𝑐𝑐𝑚. 
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(a)               (b) 

 

Fig. 3.4 Ion beam milling and deposition chamber: (a) The overall view of the Scia Coat 200 

system showing the load lock, assist ion beam etching source, sputter ion beam source and the gas 

manifold on top used to control the flow of Ar, O2 and N2. (b) Inner view of the Scia process 

chamber showing the relative orientations of the substrate holder, assist ion beam source and the 

target carousel. The substrate holder angle can be changed from 90 (perpendicular to Ar+ ions 

from assist source) to 160 degrees during etching and deposition. Images reproduced from Scia 

Coat 200 manual. 

 

 The Atomic Force Microscope (AFM) consists of a silicon cantilever with a sharp tip used 

to map the surface topography and height of thin films and flakes with sub-nanometer resolution 

based on measuring the van der Waals force between atoms on the tip and the substrate. The AFM 

can be operated in one of two different measurement modes: the tapping mode and the contact 

mode. For both modes, first the tip is brought in close contact with the surface of the substrate. 

When the AFM is operated in the tapping mode, the tip attached with the cantilever is oscillated 

at its resonance frequency with the help of a piezoelectric actuator. The tip comes in contact with 

the sample only during its lowest point. The amplitude of the cantilever oscillation is kept constant 
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and tracked with the help of a laser and a position sensitive photodiode. When there is a change in 

height, there is a deflection in the mean position of the laser beam that activates a feedback loop 

to keep the oscillation amplitude constant, and thus detecting the height change with sub-

nanometer resolution. The tip is then scanned across the sample to map the sample topography. In 

contact mode AFM, the tip is at a constant height from the surface of the sample, essentially in 

contact with the sample, maintaining a constant force and it is moved laterally across the sample. 

Any difference in height would cause a deflection of the cantilever and consequently the laser spot, 

activating the feedback loop of the system to maintain constant height. The lateral forces in contact 

mode can easily scratch soft samples, while the tapping mode can blunt the tip after repeated use. 

The AFM is used in tapping mode to map the height of the exfoliated flakes and thickness of the 

electrodes in the fabricated devices. 

 

(a)                        (b) 

 

Fig. 3.5 Atomic force microscopy (AFM): (a) A schematic of an AFM cantilever with an 

atomically sharp tip mounted on a cantilever. The displacement of the tip is detected by the 

deflection of a laser beam reflected from the cantilever and the feedback loop is controlled by the 

control electronics. The schematic below shows the difference between contact mode and tapping 

mode AFM. Figure reproduced with permission from68 (b) An AFM image of a vertical Josephson 

junction of PtTe2 fabricated with NbSe2 on top and bottom. The thickness of the PtTe2 flake can be 

seen to be around 59 nm.  
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Scanning Electron Microscopy (SEM) is a technique used to image samples using an 

electron beam scanned across a conducting sample with nanometer resolution. The secondary 

electrons reflected off the surface of the sample in combination with the position of the electron 

beam is used to image the surface of the sample. The SEM images are also obtained using the 

Raith Pioneer Two system. The sample is coated with Electra to avoid charging of the sample. 

SEM is used to image the alignment markers during EBL process and the separation between the 

superconducting electrodes in the devices after deposition as shown in Fig. 3.6. 

 

(a)          (b) 

 

Fig. 3.6 Scanning electron microscopy (SEM) images: (a) A scanning electron microscopy 

(SEM) image of a Josephson junction fabricated on an exfoliated PtTe2 flake after lithography, 

deposition and lift-off. (b) SEM image of electrodes fabricated using EBL for dose test and their 

separations measured. 
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 The Physical Property Measurement System (PPMS) DynaCool  is a cryogen-free, 

commercially available automated low-temperature and magnet system for the quick measurement 

of electrical properties of materials at the variable temperature range between 1.9 and 300 𝐾 and 

magnetic fields up to 14 𝑇 (Fig. 3.7 (a)). The PPMS is cooled down to 4.2 𝐾 by helium in a closed-

cycle loop, which is liquefied using a Gifford-McMahon compressor. It can then be cooled down 

to 1.9 𝐾 by controlling the vapour pressure of 4He. The typical cool down or warm up rates in the 

PPMS are 10 − 20 𝐾/𝑚𝑖𝑛 and the magnetic field sweep rates are around 100 𝑂𝑒/𝑠, which allows 

for fast turnaround. The magnet is a superconducting solenoid made of NbTi, which is cooled 

down by a closed loop of liquefied helium and operated around 4.2 𝐾.  

Electrical transport measurements are done on a sample holder with 12 twisted pairs for 

electrically contacting the sample. The standard sample holder shown in Fig. 3.7(b) top, consists 

of a copper base for making thermal contact to the cold finger of the cryostat, bonding pads for 

wire bonding and a 12-pin plug that mates with the internal sockets inside the PPMS chamber. It 

is also possible to use a rotator probe in combination with a rotation sample puck (Fig. 3.7(b) 

bottom) that can be used to rotate the sample over one full 360 degree rotation. The rotator probe 

has a fixed rotation axis perpendicular to the magnetic field direction. Two types of rotator pucks 

are available, one with the sample normal perpendicular to the rotation axis, and another with the 

sample normal parallel to the rotation axis. These two different configurations of the pucks allow 

for rotation of the sample with respect to the magnetic field, with magnetic field changing from 

out-of-sample plane to in-plane of the sample and the magnetic field direction changing completely 

within the plane of the sample, respectively. In our case, the PPMS is only used for quick testing 

of the fabricated devices. 
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(a)                     (b) 

 

Fig. 3.7 Physical Property Measurement System options: (a) A schematic of the inner chamber 

of the PPMS. The puck is loaded in the chamber and sealed. The wires connecting to the puck are 

located in the bottom of the chamber, which helps in thermalizing the system rapidly and 

preventing it from bringing additional heat from the surroundings through the top of the chamber. 

(b) Various sample holders used for electrical transport measurements in the PPMS. The standard 

puck is quite large, can hold samples up to 15mm x 15mm in size. The rotator holder can host 

different pucks with different sample plane orientations allowing for different configurations of 

the sample with respect to the magnetic field with the use of only a single magnet axis. 

 

The LD-400 is a highly automated cryogen-free dilution refrigerator from Bluefors Oy. 

This system was commissioned and installed at the end of 2019 and is capable of reaching 

temperatures below 10 𝑚𝐾. The fridge has a fast sample exchange where in the sample can reach 

the base temperature of the system in about 12 hours. It has a cooling power of 20 𝜇𝑊 at 20 𝑚𝐾 

and it is fitted with a 2-axis 9 𝑇 − 3 𝑇 superconducting vector magnet. It has 24 twisted pairs made 

of high-resistance phosphor-bronze, thermalized at each stage of the cryostat, which makes for 48 
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DC contacts for low-frequency measurements and 21 coaxial lines made up of CuNi and 

superconducting NbTi semi-rigid cables for RF measurements. The system also has six low-

resistance wires that can be used to operate piezo-positioners, rotators, etc. and optical fibers of 

FC/PC type that can be used for optical experiments, in principle. 

The cryostat is mounted on a heavy-duty aluminium frame with a roughly 200 𝑘𝑔 

aluminium plate and suspended from the top to decouple it from the rest of the room and damp 

any vibrations or mechanical noise coming into the system as shown in Fig. 3.8. It also has an 

active damping system to remove any vibrations in the frequency range 1.2 − 200 𝐻𝑧. The 

cryostat has multiple radiation shields made from mylar, aluminium and gold-plated copper to 

shield it from external electromagnetic radiation. 

 

(a) 
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(b)                     (c) 

 

Fig. 3.8 Bluefors LD-400 Dilution Refrigerator: (a) The Bluefors LD-400 cryostat (right) in 

operation mode, located on a sturdy aluminium frame with heavy aluminum plates and active 

damping on top. The fast sample exchange enters the bottom of the cryostat through a gate valve. 

The 3He-4He mixture in the cryostat is pumped by a turbo pump located in the gas handling system 

(GHS) on the left through a large pipe called the still line and is then circulated back into the 

cryostat though the condensation line by a scroll pump. The 3He-4He mixture is stored in the tanks 

in the GHS when not in circulation. (b) The inside of the cryostat with the shields and the magnet 

removed shows the various temperature stages along with the DC and RF wiring. The Still is 

connected to the 4 K plate (HS-STILL) and the MXC is connected to the Still (HS-MXC) by heat 

switches made of stainless steel rods, which have bad thermal conductivity. This rod is filled with 

He gas that transfers the heat from one stage to another at higher temperatures. Active charcoal 

is attached to the top part of these stainless steel rods, which acts as a sorption pump below 10 K, 

effectively adsorbing all the He gas inside the rods and thermally disconnecting the two stages. In 

order to activate the heat switches and thermally connect the two stages, a small heater next to the 

sorption pump is activated, thereby releasing the adsorbed He gas back between the two stages. 

(c) The bottom loader probe with the fast sample exchange (FSE) mechanism to which the sample 

is attached and loaded in the cryostat. As it can be seen, the FSE mechanism also has multiple 
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stages that is used to thermalize the sample while loading and each stage is thermally decoupled 

from the other. 

 

The dilution refrigerator works on a cooling mechanism that involves a mixture of helium 

isotopes (3He and 4He) in a specific ratio called as a ‘dilution mixture’, hence the name. The 

dilution refrigerator is the only cooling mechanism till now that can provide continuous cooling 

power down to 2 𝑚𝐾. The cryostat consists of multiple temperature stages (50 𝐾 plate, 4 𝐾 plate, 

1 𝐾 or still plate, mixing chamber) as shown in Fig. 3.8(b). The 4 𝐾 plate and the magnet are 

cooled to roughly 4 𝐾 by a Gifford-McMahon compressor and a pulse tube from Cryomech Inc. 

using helium gas in a closed circuit. This is also required for the subsequent cool down of the 

incoming 3He gas. The 3He-4He mixture is located in tanks in the Gas Handling System (GHS), 

which is shown in Fig. 3.8(a) left. The sample is attached to a sample holder on a probe (as shown 

in Fig. 3.12(a)), pumped for 3 − 4 hours and loaded in the cryostat using a fast sample exchange 

mechanism (shown in Fig. 3.8(c)) that attaches to the mixing chamber directly from the bottom 

using a pre-optimized recipe that cools down the probe in stages. Then, when all parts attached to 

the 4 𝐾 plate, 1 𝐾 plate and the mixing chamber reach temperatures below 4 𝐾, the recipe for 

condensation is started. The mixing chamber and still plate are thermally disconnected from the 

rest of the cryostat by the use of electrically activated heat switches. The 3He-4He mixture from 

the tank is pushed in stages into a U-shaped tube (mixing chamber) located inside the cryostat 

attached to the mixing chamber plate (MXC), thereby condensing the entire mixture from the tank 

into the chamber. Controlling the vapour pressure of the condensed mixture is used to reach 

temperatures below 4 𝐾 (down to ~ 800 𝑚𝐾) before beginning the dilution process. The phase 

diagram of the 3He-4He mixture is shown in Fig. 3.9(a). 4He has the property that it turns into a 

superfluid at around 2 𝐾. The presence of 3He in the mixture decreases its superfluid transition 

temperature to around 800 𝑚𝐾. If the concentration of 3He in the mixture is above a critical 

threshold as shown in the phase diagram, phase separation can take place leading to the formation 

of two distinct phases as the miscibility of these two isotopes becomes energetically unfavourable. 

At around 800 𝑚𝐾, the 3He and 4He phases are almost immiscible, leading to the formation of 

separated dilute (6.4 %) and concentrated (100 %) 3He regions with the boundary level between 
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these two phases located exactly at the mixing chamber plate. Now, two important properties of 

the dilution mixture make cooling down further possible.  

1) Mixing of 3He and 4He is an endothermic process. The mixing of these two isotopes absorbs 

heat from the surroundings and hence the enthalpy of mixing is positive (∆𝐻 > 0). Though the 

mixing of these two isotopes increases the entropy of the system (∆𝑆 > 0), the free energy change 

is still positive (∆𝐺 = ∆𝐻 − 𝑇∆𝑆 > 0), making this a non-spontaneous process and requiring 

external energy. 

2) 4He is heavier than 3He making the concentrated 3He phase to float on top of the dilute 3He 

phase, which contains only 6.4 % 3He. 

 

(a)         (b) 

 

Fig. 3.9 Thermodynamics of 3He-4He mixture: (a) The phase diagram of the 3He-4He mixture at 

various temperatures and concentrations. At 3He concentration of around 65% and temperatures 

below 850 mK, the 3He-4He mixture separates out into two distinct phases which forms the basis 

for dilution refrigeration. (b) The vapour pressure curves of 3He and 4He shows that at very 

temperatures below 500 mK, 3He has a vapour pressure that is at least three orders of magnitude 

larger than the 4He isotope. This makes pumping 3He much easier than 4He, which is also crucial 

for the dilution process to work. 
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Now when the mixture is pumped with the help of a turbo pump located in the GHS through 

the still line on the side of dilute 3He, the 3He atoms are pumped selectively faster than 4He, as 

they are lighter in size and the vapour pressure of 3He is larger than that of 4He as shown in Fig. 

3.9(b). Since, the dilute phase is driven out of equilibrium, the 3He atoms from the concentrated 

phase move into the dilute phase to maintain the equilibrium 3He/4He ratio of 6.4 %. During this 

process, heat from their surroundings is absorbed, since the mixing of 3He and 4He is an 

endothermic process. Therefore the MXC plate, which is in thermal contact with the interface 

between the two phases get cooled further down to the base temperature of the cryostat. The 

pumped out 3He is injected back into the system by a dry scroll pump through the condensation 

line with flow impedance to cool it back down to liquid helium temperatures. In addition, a heat 

exchanger between the still pumping line and condensation line uses the enthalpy of the cold 3He 

gas, which is pumped away from the still to pre-cool the incoming 3He stream. The cooling power 

of the system is determined by the number of 3He atoms crossing the phase boundary, which in 

turn depends on how fast the 3He atoms are pumped from the dilute phase or the 3He flow rate. 

This can be controlled by changing the temperature of the still plate, which changes the 

temperature of the dilute 3He phase, and hence the vapour pressure (Fig. 3.9(b)) and pumping 

speed of 3He. 

 

In order to maintain the low temperatures obtained in the system by the dilution process, it 

is important to thermally isolate the mixing chamber plate and the sample completely from any 

external sources of heat. Another source of heat is the external electromagnetic radiation from the 

surroundings. While performing any measurement at cryogenic temperatures, it is to be kept in 

mind that the power that can be applied by the probe to the sample is limited by the cooling power 

of the system and hence the measurement probe needs to be used at low-levels which does not 

perturb the sample beyond the required level and modify its energy state significantly. In such low-

level measurements, the obtained signals are also very small and requires the use of instruments 

with extremely high sensitivity. In order for these instruments to be sensitive at such low-levels, it 

is important to minimize the various sources of noise and background signals present in the setup. 

In our case, we predominantly use current bias as the probe and sense the voltage across the 
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junction using a nanovoltmeter. The steps taken to ensure that the sample is thermally isolated and 

the noise is minimized are as follows: 

1) Electromagnetic radiation shielding: The mixing chamber and the still plate are 

thermally isolated from the rest of the cryostat with the help of gas-gap heat switches. The 

cryostat and sample region are further shielded from electromagnetic radiation using 

multiple layers of shielding using gold-plated copper and aluminized Mylar-coated vacuum 

cans. 

2) Low-frequency vibration isolation: The entire cryostat is mounted on an aluminium 

frame with a heavy aluminium plate on top and active vibration isolation to decouple it 

from vibrations in the lab and damp the vibrations coming in from the pumps in the GHS 

and the pulse tube unit, which can increase the base temperature of the system. This also 

helps avoid low-frequency noise in the electrical measurements coming from vibrations. 

3) Shielded cables and breakout boxes: The breakout box used to connect to various 

contacts on the outside and the measurement cable running from the breakout box to the 

top of the cryostat is made by QDevil and is completely shielded and grounded, hence 

shielding the signal from external noise from the breakout box down to the device. The 

wires inside the breakout box and in the cryostat are also made of twisted pair wiring to 

avoid noise from electromagnetic induction. The 24-twisted pairs in the measurement 

cables connect from the breakout box to the top of the cryostat which then runs inside the 

cryostat as twisted pair cables down to the mixing chamber and the sample holder, 

thermalized at each stage to prevent heat or hot electrons from entering the lower 

temperature stages. 

4) High-frequency filters: Though the cryostat is shielded from external electromagnetic 

radiation, the measurement cables from the instrument to the breakout box can still carry 

some high frequency radiation (~ 𝐺𝐻𝑧) that can move into the cryostat and excite the 

electrons present in the mixing chamber and prevent them from reaching the same 

temperature as the phonon bath, which is at 20 𝑚𝐾. In order to filter out this high-

frequency radiation, we use QFilters from QDevil, which was developed at Harvard 

University and the University of Copenhagen69. The QFilter is attached to the mixing 

chamber plate, close to the sample and operated at the base temperature of the cryostat to 

be fully effective. The QFilter typically consists of one audio frequency (RC) and radio 
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frequency (RF) filter bank connected in series. The RC filter consists of one 7-pole Pi filter 

stage followed by two RC filter stages that acts as a low-pass filter that attenuates signals 

above 10 𝑘𝐻𝑧, and is effective up to 80 𝑀𝐻𝑧 range as shown in Fig. 3.10(c) The RF filter 

bank contains three stages of 7-pole Pi filter that attenuates signals from 80 𝑀𝐻𝑧 up to 

tens of GHz with roughly −50 𝑑𝐵 attenuation as shown in Fig. 3.10(b).  

 

(a)          
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(b)             (c) 

 

(d) 

 

Fig. 3.10 QDevil filters and high frequency characteristics: (a) QDevil RC and RF filter banks 

connected in series and mounted on the MXC plate of the Bluefors LD-400. The QFilters are 

further thermalized with the mixing chamber with the help of copper braids. (b) The RF filter bank 

consists of three 7-pole Pi filters with different cut-off frequencies starting from 80 MHz and going 

up to 30 GHz. It has up to -50 dB attenuation at 30 GHz. (c) The RC filter bank consists of one 7-

pole Pi filter with 80 MHz cut-off frequency and two RC filters with cut-off frequency around 10 

kHz. (d) Noise spectrum of the setup measured at low frequencies with an oscilloscope built-in 

with the lock-in amplifier shows that the noise floor is at the nanovolt range, which is ideal for our 

measurements and signals in the 10’s of nanovolt range can be measured with accuracy. The peaks 
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at multiple of 50 Hz correspond to the line frequency noise and its harmonics, which is of the order 

of a few microvolts. 

 

After installing the shielding and filters, it is important to test their effectiveness by 

measuring the electron temperature. This can be done in many different ways by measuring 

quantities that are extremely sensitive to the electron temperature like measuring the Coulomb 

blockade in a quantum dot or the shot noise in a tunnel junction. In our case, the electron 

temperature when the cryostat is at base temperature can be extracted from the differential 

conductance across a superconducting tunnel junction (𝑀𝐴2479) made of Ru (5 𝑛𝑚)/Mn3Ge 

(10 𝑛𝑚)/MgO (2 𝑛𝑚)/AlSi (4.5 𝑛𝑚) which was grown by Dr. Binoy Hazra using hard masks in 

our home-designed and home-built sputtering chamber. The normalized tunneling conductance of 

the sample measured at 20 𝑚𝐾 MXC temperature is shown as red dots in Fig. 3.11(b). The 

differential conductance is directly proportional to the density of states in the superconductor, 

assuming the density of states is constant in the metal over the probed energy range, which is a 

valid assumption. It is then fit with a BCS density of states equation derived by Maki70-72 

considering orbital depairing and spin-orbit coupling effects using a code developed by Dr. See-

Hun Yang at IBM Almaden to derive the temperature. The theoretical density of states is given 

by: 

𝑁𝑠(𝐸) =
𝑁𝑠(0)

2
𝑠𝑔𝑛(𝐸) 𝑅𝑒

(

 
𝑢±

√𝑢±
2 − 1

)
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Here ∆ is the energy gap, which depends on the temperature of the electron (∆=

∆0√1 −
𝑇

𝑇𝑐
), 𝑁𝑠(0) is the normal density of states, 𝜁 is the orbital depairing parameter and 𝑏 is the 
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spin-orbit scattering parameter. The superconducting condensate formed in the system should be 

extremely sensitive to the electron temperature 𝑇 that determines the gap ∆ in the spectrum. Hence, 

by fitting the experimentally obtained differential conductance with the BCS density of states, we 

can get the actual electron temperature of the system. This equation involves the fine-tuning of at 

least four parameters in this case, that needs to be done with care to determine the actual 

temperature 𝑇, however the use of physical intuition can help simplify things and fix some of the 

parameters. The parameter ∆0, which is essentially the superconducting energy gap at zero 

temperature, is given by 1.76 𝑘𝐵𝑇𝑐 and the spin-orbit coupling in aluminum is almost zero. The 

black curve gives the best theoretical fit for the parameters 𝑇 = 75 𝑚𝐾, 𝜁 = 0.008, 𝑏 = 0 and 

∆0= 0.31 𝑒𝑉. Hence, we can roughly estimate the electron temperature in the system to be around 

75 𝑚𝐾. 

 

(a) 
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(b) 

 

Fig. 3.11 Superconducting tunneling spectroscopy and electron temperature: (a) A tunnel 

junction device mounted on a QBoard and bonded, with 4.5 nm AlSi superconductor on top and 5 

nm Ru and 10 nm Mn3Ge as the bottom electrodes separated by a 2 nm MgO tunnel barrier. The 

voltage is applied from the bottom to the top and the differential conductance is measured using a 

standard lock-in technique. (b) The measured differential conductance (red) is normalized and fit 

using a BCS density of states equation derived by Maki. The best fit is obtained at a temperature 

of 75 mK. 

 

The sample holder for performing electrical measurements in the system is also designed 

by QDevil called as QBoard. The QBoard is a PCB-based sample holder with 48 DC contacts and 

16 RF channels. The presence of a large number of contacts allows for high throughput of the 

system. The sample holder is pre-designed to fit perfectly on a Bluefors fast-sample exchange 
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puck. The sample holder is attached to the puck via gold-plated copper adapters and fastened tight 

with titanium screws that are non-magnetic. The QBoard consists of a motherboard, which is fixed 

to the puck, and the daughterboard, which contains the sample, can be exchanged easily. The 

sample is attached to the 10.5 𝑚𝑚 ×  10.5 𝑚𝑚 area of the daughterboard using silver paste and 

wire-bonded using aluminum wires to the DC contacts. After wire bonding, the daughter board is 

screwed tight to the motherboard and they mate together via an interposer layer with gold springs. 

The top of the sample puck has a 51-pin titanium micro-D connector saver, which mates with the 

connector on the mixing chamber. The other end connects to the QBoard via a 51-pin nano-D 

connector with copper wires covered in Teflon. These wires are wrapped around the gold-plated 

parts of the puck and tightly wrapped with Teflon and Kapton tape to help them thermalize better 

as shown in Fig. 3.12(a). 

 

The devices made with van der Waals materials are prone to damage from electrostatic 

discharge (ESD) as they are only held to the substrate by a weak van der Waals force and an 

electrostatic force coming in from the surroundings can easily displace and damage the device, if 

it is not properly grounded. Hence, after device fabrication great precaution is taken in protecting 

the device from any possible damage due to ESD. ESD protective gear such as coats, gloves, and 

shoes are worn at all times, ESD protective tools such as tweezers and sample boxes are used, and 

a wrist strap is used to ground the user. ESD mats are used in the lab to avoid charging from the 

floor during movement. The sample is always kept grounded during and after wire bonding. While 

loading the sample on the holder, the contact pins are connected to the ground via the connector 

saver on top and while the sample is attached to the fast sample exchange mechanism, the sample 

is grounded via the bottom part of the QBoard, which is connected to the grounding wiring. Once 

the sample mates with the MXC from the top with the pins kept grounded from the breakout box, 

the bottom grounding wiring disconnects thermally and electrically and the sample is ready to be 

measured. 
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(a)                   (b) 

 

Fig. 3.12 QBoard mounted on a sample puck: (a) The QBoard sample holder attached to the 

probe that mates with the MXC flange through the FSE mechanism. The wires are thermalized by 

attaching them to the probe with Teflon and kapton tapes. (b) QBoard containing a sample with 

multiple devices and all contacts bonded. The 48 DC contacts available on the QBoard allows for 

a high throughput in the testing of devices at low temperatures. The aluminium wire bonding acts 

as the main source of thermalizing the sample at very low temperatures. Hence multiple bonds, if 

possible, would be encouraged. 

 

 For efficient measurement of the sample, it is important to automate the loading and 

measurement process as much as possible. The control of sample loading (unloading) and cool 

down (warm up) is fully automated with the help of Bluefors software. The measurement control 
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involves multiple instruments such as the current source (Keithley 6221), nanovoltmeter (Keithley 

2182A), lock-in amplifier (MFLI), magnet controller (AMI 430), temperature controller 

(Lakeshore 372), etc. with different interfaces. To make the measurements more optimized with 

an easy and simple user interface (UI), all these instruments are programmed to be controlled in 

unison by LabVIEW with the help of LabVIEW drivers. An example of UI for one such program 

used to measure the current-voltage characteristics of multiple devices at different magnetic fields 

and temperatures is shown in Fig. 3.13. (Thanks to Ivan for help with the temperature control). 

This program is used extensively to map the current-voltage (𝐼 − 𝑉) characteristics of the 

Josephson junctions that are measured throughout the thesis. The critical currents are extracted 

from each 𝐼 − 𝑉 curve from a peak in the 
𝑑𝑉

𝑑𝐼
 using a Python program written with help from 

Avanindra Kumar Pandeya. The programs that I wrote during my Ph.D. tenure can be found at: 

https://github.com/TheDarkKnightUnmasked/Bluefors-DC 

 

 

Fig. 3.13 LabVIEW program for measurement of I-V characteristics: The user interface for a 

LabVIEW program that allows for measurement of current-voltage characteristics in multiple 

devices at the same time with comprehensive control of the temperature, magnetic field vector 

magnitude and angle. 

https://github.com/TheDarkKnightUnmasked/Bluefors-DC
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Ever since the existence of topological materials was predicted theoretically73-75, there has 

been a surge in finding a variety of different topological materials such as topological insulators76-

79, Dirac and Weyl semimetals80,81, higher order topological materials with Chern number greater 

than one82,83, etc. These topological materials are predicted to exhibit a plethora of interesting 

properties/phenomena such as spin-momentum locked surface states77,84,85, quantum anomalous 

Hall effect (QAHE)86,87, chiral anomaly88, etc. In the superconducting state, these materials are 

expected to host exotic Majorana bound states89, which have applications in fault-tolerant quantum 

computing. On a similar note, ever since the discovery of graphene90, a single hexagonal layer of 

carbon atoms, the field of two-dimensional van der Waals materials has been booming. Many 

quantum states or phenomena found in bulk three-dimensional materials have also been found in 

two-dimensional materials, providing a promising platform for the dimensional scale down of 

present-day technologies. The top down approach provided by the mechanical exfoliation 

technique of van der Waals materials also makes for a great platform for making heterostructures 

with clean interfaces, fabricating nano-devices and studying the rich physics offered by these 

interfaces in addition to technological prospects91,92. With the very recent discovery of twisted 

bilayer graphene hosting flat bands with strongly correlated states and superconductivity, the twist 

angle between two layers serves as another knob in tuning different quantum states of matter93. 

In this chapter, we study the Josephson diode effect (JDE or ∆𝐼𝑐) in a material, which 

combines the properties of topological states and reduced dimensionality offered by van der Waals 

materials. NiTe2 is a van der Waals material and a type-II Dirac semimetal with the Dirac cone 

close to the Fermi level, as evidenced from ARPES studies94,95. It also has a surface state with a 

Rashba spin-momentum locking and a large spin-splitting of 120 𝑚𝑒𝑉 close to the Fermi energy. 

Since NiTe2 has these surface states right at the Fermi energy, the spin–orbit coupling emerging 

from these states are expected to dominate its electrical transport characteristics. We study the 

effects of this spin-orbit coupling arising from the topological surface states (TSS) in the 

superconducting phase by fabricating lateral Josephson junctions of NiTe2. The very low resistance 

of NiTe2 and its high stability in air makes it suitable to fabricate lateral Josephson junctions 

without much preclusions. We observe a JDE in the presence of an in-plane magnetic field. JDE 

in this system is quantified and found to have an antisymmetric dependence on the magnitude and 
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direction of the applied magnetic field. We attribute the existence of this effect in this system to 

the Cooper pairs from the helical surface states acquiring a non-zero pair momentum in the 

presence of a magnetic field, as opposed to zero momentum Cooper pairs in a conventional BCS 

superconductor. This phenomenon is called as finite momentum Cooper pairing (FMCP)9,10,33. 

Together with our theory collaborators, Margarita Davydova, Noah Yuan and Liang Fu from MIT, 

we use a simple Ginzburg-Landau analysis to describe the Josephson junction with broken 

inversion and time-reversal symmetries to show the existence of asymmetric critical currents and 

their dependence on temperature and applied magnetic fields. We confirm that this simple model 

captures all the experimental features of our observed JDE. We also perform independent studies 

verifying the existence of finite momentum Cooper pairing in the system by applying in-plane 

magnetic fields along the direction of current and quantify it by looking at the evolution of the 

Fraunhofer interference pattern96,97. We find that the value of finite-momentum obtained from this 

measurement is of the same order of magnitude as the value of finite-momentum along the 

perpendicular direction, determined using the model used to calculate JDE. We suggest two 

possible microscopic mechanisms as the origin of finite-momentum Cooper pairing in the system 

in the presence of a magnetic field: 1) the existence of spin-momentum locked surface states with 

large Rashba spin splitting on the surface of NiTe2 as seen through ARPES and 2) the presence of 

screening currents on the niobium electrodes that generate finite momentum Cooper pairs. We 

estimate that the FMCP created due to screening currents is an order of magnitude lower than that 

created by the spin-orbit splitting in NiTe2.98 

 

Nickel ditelluride (NiTe2) is a transition metal dichalcogenide material that crystallizes in 

the centrosymmetric space group P-3m1 with a trigonal structure similar to CdI2. Layers of NiTe2 

are stacked together via a relatively strong van der Waals force compared to other two-dimensional 

van der Waals dichalcogenides and hence not easily exfoliable down to a monolayer. Fig. 4.1 

shows the crystal structure of NiTe2 in which each layer of nickel atoms is sandwiched between 

two layers of tellurium atoms. The NiTe2 family of materials structurally varies from other 

transition metal dichalcogenides like MoS2, MoTe2, WTe2, NbSe2, TaS2, etc. in the fact that it is 
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found to crystallize only in the octahedral phase as opposed to 1T (trigonal) and 2H (hexagonal) 

phases in the other systems. Other members of the NiTe2 family include PtTe2, PdTe2, PtSe2, 

PdSe2, etc. The NiTe2 family of materials are also extremely stable in air as opposed to most other 

TMDCs and have a wide variety of applications in electro-catalysis99, hydrogen evolution 

reaction100, terahertz photodetection101, etc. NiTe2 also offers the added advantage that it can be 

synthesized layer by layer on a large scale using chemical vapour deposition102 making it viable 

for industrial applications. 

 

 

 

 

 

 

 

Fig. 4.1 Crystal structure of NiTe2: An illustration showing the 1T crystal structure of NiTe2 in 

which the nickel atoms are sandwiched between the tellurium atoms and located in an octahedral 

coordination environment. Each NiTe2 layer is centrosymmetric and separated by a van der Waals 

gap that make it exfoliable. 

 

NiTe2 crystallizes in the P-3m1 space group, with 𝑎 = 𝑏 = 4.025 Å and 𝑐 = 5.22 Å. It is 

a centrosymmetric space group that is not expected to have any asymmetric spin-orbit coupling 

interactions like the Rashba or Dresselhaus effects. Each layer of NiTe2 consists of three sublayers 

with a layer of nickel atoms located in the center and sandwiched by two sublayers of tellurium 

atoms on the top and bottom. Consider a single layer of NiTe2 from the schematic shown in Fig. 

4.1. The nickel atoms are located in the center of the layer with the tellurium atoms at the top and 

bottom in an octahedral fashion. This gives the Ni atoms a D3d point group symmetry, which 

includes a center of inversion. The tellurium atoms on the other hand, have a C3v point group 

Ni Te 
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symmetry, which lacks a center of inversion. This lack of inversion symmetry, locally within the 

unit cell leads to the existence of equal but opposite asymmetric spin–orbit couplings on the top 

and bottom layers of tellurium atoms. Though globally the spin-orbit coupling strength adds up to 

zero, the existence of locally broken symmetries and hence, a ‘local Rashba effect’ in the system 

leads to the existence of a layer-dependent spin-momentum locking in the system where the spins 

in the top and bottom tellurium layers are oppositely spin-polarized. This is known as ‘spin-layer 

locking’ and has been observed through ARPES in few layers of PtTe2
56, PtSe2

57, etc. and in bulk 

MoS2
58. Though expected to be compensated globally, the existence of such a ‘hidden spin 

polarization’ due to locally broken symmetries can lead to interesting effects in transport and 

exotic order parameters in the superconducting state of such materials as we will see in this chapter.  

 

 NiTe2 is a type-II Dirac semimetal, in which pair of Dirac cones94,95 (as shown in Fig. 4.2), 

tilted in energy-momentum space that breaks the Lorentz symmetry of the system, is present. 

While other members of the group-X transition metal dichalcogenides also host a type-II Dirac 

cone, the Dirac cone in NiTe2 is special as it is located very close to the Fermi level and is expected 

to dominate the transport properties of the system. In PdTe2, PtTe2 and PtSe2 the type-II Dirac 

cones lie 0.6, 0.8 and 1.2 𝑒𝑉 below the Fermi energy respectively, whereas in NiTe2 the Dirac 

cones lie just 20 𝑚𝑒𝑉 above the Fermi energy, which can be easily tuned to the Fermi level by 

slight doping. 

In addition to the bulk Dirac nodes, NiTe2 also hosts a series of inverted bandgaps that can 

be shown to arise from the Te 5p manifold simply considering crystal field splitting and spin-orbit 

coupling8. These states with inverted bandgaps are labelled as topological surface states (TSS). 

These TSS are spin-polarized due to the large spin-orbit coupling and there is one very closely 

located to the Fermi energy with a Rashba-type helical spin momentum locking and a very large 

spin splitting of 120 𝑚𝑒𝑉. The strong dominating contribution of this TSS to electrical transport 

in NiTe2 can lead to the formation of finite momentum Cooper pairs in the presence of a magnetic 

field and consequently a Josephson diode effect when proximitized by a conventional 

superconductor, as we will discuss in the following sections. 
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   (a)                                                     (b)                                              (c) 

 

Fig. 4.2 Type-II Dirac cone in NiTe2: (a) Band structure of NiTe2 showing the tilted type-II Dirac 

cone along Γ-Α direction. (b) Three-dimensional Fermi surface of NiTe2 showing the electron and 

hole pockets along with a Dirac point at the intersection of the two pockets. (c) Angle-resolved 

photoemission measurements along Γ-Α direction showing the existence of type-II Dirac like band 

dispersion with the Dirac point just above the Fermi level. Figure reproduced with permission 

from ref.95 

  

 NiTe2 flakes that are just a few layers thick are exfoliated from a commercially purchased 

single crystal of 1T-NiTe2 (from HQgraphene) onto a Si substrate with 300nm SiO2 coating. Thin 

flakes are identified with the help of an optical microscope and an atomic force microscope. 

Josephson junctions on these flakes are fabricated by performing electron beam lithography and 

sputtering titanium (2 𝑛𝑚) / niobium (30 𝑛𝑚) / gold (20 𝑛𝑚) electrodes on top of these flakes 

with varying separations (100 − 700 𝑛𝑚). The liftoff process is then performed in acetone 

overnight. The presence of titanium improves the adhesion of the niobium to the substrate and the 

gold capping on top prevents the niobium from being oxidized thereby improving the quality of 

the junction. These junctions were fabricated by Anirban Chakraborty. The junctions, thus 

fabricated are loaded in a dilution refrigerator to perform electrical transport measurements. The 

resistances of the junctions are measured using a standard 4-probe configuration in which current 
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flows between two consecutive niobium electrodes and the voltage is measured across the same 

niobium electrodes. The resistance of one particular junction (with a 350 𝑛𝑚 separation) as a 

function of temperature is shown in Fig. 4.3(b). The resistance of the junction decreases with 

decreasing temperature and a drop in resistance is observed around 5.5 𝐾 corresponding to the 

superconducting transition of niobium (𝑇𝑐) and the resistance continues to decrease with 

decreasing temperature. Another drop in resistance is observed around 2.5 𝐾, which corresponds 

to the temperature below which the junctions turns completely superconducting (𝑇𝑗). The device 

is cooled down further to the base temperature of the dilution refrigerator (20 𝑚𝐾) where most of 

the measurements are carried out. 

   (a)                                                        (b) 

 

Fig. 4.3 Josephson junction device structure and resistance–temperature profile of 350 nm 

junction: (a) A 20 𝑛𝑚 thick NiTe2 flake exfoliated on top of Si/SiO2 substrate with Ti (2 𝑛𝑚) / Nb 

(30 𝑛𝑚) / Au (20 𝑛𝑚) electrodes on top with varying separations to create Josephson junctions 

of different energy. (b) The pseudo two-probe resistance of the junction with 350 𝑛𝑚 separation 

measured during its cool down in zero field. The drop in resistance around 5.5 𝐾 corresponds to 

the superconducting transition of the niobium electrodes and the drop to zero resistance around 

2.5 𝐾 corresponds to the superconducting transition of the junction. Inset shows the 

superconducting transition temperatures for junctions of various separations. Figure adapted with 

permission from ref.98, Springer Nature. 
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The evolution of the phase across the junction is mapped by studying the variation of 

critical current (𝐼𝑐) of the junction with a magnetic field applied perpendicular to the plane of the 

flake. The critical current oscillates with the magnetic field showing the expected Fraunhofer 

pattern with a period corresponding to a single flux quantum (𝛷0 =
ℎ

2𝑒
) as expected. 

 

Fig. 4.4 Fraunhofer oscillations in 550 nm junction: Graph showing the differential resistance 

measurement and evolution of the critical current and oscillations for the 550 𝑛𝑚 junction as a 

function magnetic field applied perpendicular to the plane of the sample. The differential 

resistance measurement is carried out by sweeping the DC bias on top of a small AC signal of 

around 1 𝜇𝐴. 

 

It is to be noted that the Josephson energy and the temperature below which the junction 

turns superconducting (𝑇𝑗) are expected to decay rapidly with the separation between the 

superconducting electrodes (inset of Fig.4.3(b)). Supercurrents in the NiTe2 junctions are found to 

persist up to separations of 1600 𝑛𝑚, which indicates that, the induced superconducting coherence 

length in NiTe2 is extremely long. Such extremely long coherence lengths have been observed 

only in a handful of materials such as graphene and topological semimetals such as BiSb103 and 
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also in graphene104,105. It is a different study of its own merit, requires further investigations on its 

origin and is outside the scope of this thesis. 

 

𝐼𝑐

The current-voltage characteristics of the junction are measured at the base temperature of 

20 𝑚𝐾 in the absence of any external applied magnetic field. Direct current is applied through the 

junction in the positive direction starting from zero until the positive critical current (𝐼𝑐
+), above 

which the resistance is non-zero, is reached. Experimentally, the critical current is obtained from 

the data as the current at which differential resistance exceeds a specific threshold value. The 

current is then decreased back to zero and the junction then reenters the superconducting state (𝐼𝑟). 

Note that this hysteresis and the difference in 𝐼𝑐
+ and 𝐼𝑟 can arise due to the presence of additional 

intrinsic capacitance of the junction as described by the resistively and capacitively shunted 

Josephson junction (RCSJ) model (as discussed in section 2.2.3). The current is then swept in the 

negative direction starting from zero and the negative critical current (𝐼𝑐
−) is obtained. In the 

absence of any external magnetic field, it is observed that 𝐼𝑐
+ and 𝐼𝑐

− have the same magnitude and 

the difference between them is zero. 

When an external magnetic field is applied along the direction of the current, there is an 

equal decrease in both the positive and negative critical currents (𝐼𝑐
+ and 𝐼𝑐

−), as expected for 

Josephson junctions in a magnetic field yet no difference in their magnitudes is observed. When a 

magnetic field is applied perpendicular to the direction of the current in the plane of the device, 

there is a difference in the magnitudes of 𝐼𝑐
+ and 𝐼𝑐

− that develops and evolves with an increasing 

magnetic field. This difference in the magnitudes of 𝐼𝑐
+ and 𝐼𝑐

− is labelled as Josephson diode effect 

(JDE or ∆𝐼𝑐) and is given by ∆𝐼𝑐 = 𝐼𝑐
+ − |𝐼𝑐

−|. By choosing a magnitude of current between 𝐼𝑐
+ and 

|𝐼𝑐
−|, one can obtain non-reciprocal behavior, in which the junction is superconducting along one 

direction and resistive along the opposite direction as shown in Fig. 4.5(c). The efficiency of the 

diode is defined using the formula: 𝜂 =
𝐼𝑐
+−|𝐼𝑐

−|

𝐼𝑐
++|𝐼𝑐

−|
. The origin of the JDE can be explained due to the 

formation of finite momentum Cooper pairs in the system as we discuss in the following section. 
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(a)                                                                              (b) 

 

(c)                            

 

Fig. 4.5 Josephson diode effect in presence of a magnetic field: (a) shows the current-voltage 

characteristics of a junction at 20 𝑚𝐾 temperature right after cooling it down in zero magnetic 

field. 𝐼𝑐
+ and |𝐼𝑐

−| are equal in magnitude with a value of around ~145 𝜇𝐴 leading to a zero 

Josephson diode effect. (b) shows the current-voltage characteristics of the same junction with a 
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20 𝑚𝑇 in-plane magnetic field applied perpendicular to the direction of the current. This leads to 

a decrease in the critical current and also the appearance of a large ∆𝐼𝑐 of around 20 𝜇𝐴. (c) By 

choosing a current between 𝐼𝑐
+ and |𝐼𝑐

−|, we can obtain supercurrents along one direction while 

obtaining resistive currents along the opposite direction, thus displaying the existence of a 

Josephson diode effect. Figure adapted with permission from ref.98, Springer Nature. 

 

As discussed above, NiTe2 hosts a topological surface state with a very large Rashba-like 

spin-splitting close to the Fermi level. Following a simple heuristic argument, we can try to 

understand how this spin-splitting can lead to the formation of Cooper pairs with non-zero 

momentum and in turn lead to JDE.  

Let us consider a conventional BCS superconductor with inversion and time-reversal 

symmetries and a two-dimensional circular Fermi surface. In a conventional superconductor, 

Cooper pairs are formed at opposite momentum points with opposite spins. For example, electrons 

at (𝒌, ↑) state pair with electrons at their time-reversed state at (−𝒌, ↓) in the ground state as shown 

in Fig. 4.6. In this scenario, the Cooper pairs have a net momentum that adds up to zero leading to 

the formation of zero momentum Cooper pairs.  
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Fig. 4.6 Underlying Fermi surface and Cooper pairs in a conventional BCS superconductor in 

the absence of a current and external magnetic field 

 

When a current is applied along one direction, there is a corresponding shift of the 

underlying Fermi surface along the opposite direction that gives the electrons an additional 

momentum 𝑞 to the system and the Cooper pairs are now formed between electrons at (𝒌 + 𝒒, ↑) 

and (−𝒌 + 𝒒, ↓), leading to a net momentum that adds up to 2𝑞 and to a net current along one 

direction as shown in Fig. 4.7. This corresponds to a kinetic energy of |
2𝒌.𝒒 

𝑚
| and when this value 

of energy, which can lead to the depairing of Cooper pairs, reaches the superconducting energy 

gap of the system, superconductivity vanishes and the current at which this is reached is essentially 

equal to the critical current of the system. As it can be seen, this depairing energy is independent 

of the direction of current and hence the superconducting energy gap remains the same for all 

current directions. However, this is not the case for a system with spin-momentum locking.  
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Fig. 4.7 Underlying Fermi surface and Cooper pairs in a conventional BCS superconductor in 

the presence of a current: In the presence of a current, the Cooper pairs acquire a finite 

momentum that results in net charge transport and a depairing energy that is reciprocal. 

 

Let us look at a simple representation of a system with broken inversion symmetry by 

considering just the two-dimensional outer Fermi surface of the topological surface states of NiTe2 

with Rashba spin-orbit coupling.  In this case, the spin of the electron is locked perpendicular to 

the direction of the current as shown in Fig. 4.8. In the absence of any external magnetic field that 

can break the time-reversal symmetry of the system, the depairing energy due to the application of 

a current is similar to that of conventional superconductors and is independent of the direction of 

current.  
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Fig. 4.8 Underlying Fermi surface and Cooper pairs of a superconductor with Rashba spin-

momentum locking 

 

When an external magnetic field is applied, the spin-locked states are split further by an 

additional Zeeman energy (𝐸𝑧 = 𝑔𝜇𝐵𝑥) which shifts the center of mass of the Fermi surface and 

the system appears to have gained a pseudo-momentum (2𝒒′). In this case, the electrons available 

at states (𝒌 + 𝒒′, ↑) and (−𝒌 + 𝒒′, ↓) can form Cooper pairs leading to the formation of finite 

momentum Cooper pairs with net momentum (2𝒒′) as shown in Fig. 4.9. This net momentum is 

along the direction perpendicular to the magnetic field and can be controlled by the magnitude of 

the magnetic field. Since a non-zero Cooper pair momentum exists in the absence of any applied 

current, this should give rise to spontaneous supercurrents in the junction.  
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Fig. 4.9  Underlying Fermi surface and Cooper pairs of a superconductor with Rashba spin-

momentum locking in the presence of a magnetic field: When a magnetic field is applied to spin-

momentum locked surface, the Zeeman field creates a shift of the Fermi surface that gives an 

additional pseudo-momentum 2𝑞′ to the Cooper pairs in the absence of an external current. 

 

Now when an external current is applied in a direction perpendicular to the magnetic field, 

it provides an additional momentum to the Cooper pairs (2𝑞) and the states are further shifted to 

(𝒌 + 𝒒′ + 𝒒, ↑) and (−𝒌 + 𝒒′ + 𝒒, ↓) as shown in Fig. 4.10. In this case, the net momentum 

depends on the direction of the current relative to the magnetic field and the depairing energy can 

be written as |
2 𝒌.(𝒒′±𝒒) 

𝑚
|. For a given magnetic field direction there are two possible depairing 

energies depending on the direction of current |
2 𝒌.(𝒒′+𝒒) 

𝑚
| and |

2 𝒌.(𝒒′−𝒒) 

𝑚
|. This, in turn, gives rise 

to critical currents (𝐼𝑐
+ and 𝐼𝑐

−) that are unequal in opposite direction and hence giving rise to a 

diode effect. This picture gives us a very intuitive understanding of how spin-momentum locking 

can give rise to a diode effect. 
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Fig. 4.10 Underlying Fermi surface and Cooper pairs of a superconductor with Rashba spin-

momentum locking in the presence of a magnetic field and current: In the presence of an 

additional current, the Cooper pair acquires a momentum that depends on the direction of the 

current, giving rise to non-reciprocal supercurrents. 

 

This theoretical model was proposed by Margarita Davydova, Noah Yuan and Liang Fu 

and it is presented in this thesis for the sake of clarity. To understand better and quantify the effect 

of finite momentum Cooper pairing on the JDE in NiTe2, let us consider a Ginzburg-Landau model 

of a Josephson junction with two superconducting electrodes separated by a weak link. Near the 

superconducting transition temperature of the junction, the free energy of the junction can be 

expanded in terms of the wave functions of the two superconducting electrodes. 

𝐹 = ∑ (𝛼𝑗|∆𝑗|
2
+
1

2
𝛽𝑗|∆𝑗|

4
)

𝑗=1,2

− 𝛾1∆1
∗∆2 −

1

2
𝛾2(∆1

∗∆2)
2 + 𝑐. 𝑐. 

In this case, ∆1 corresponds to wave function of the first electrode and ∆2 corresponds to wave 

function of the second electrode and the term ∆1
∗∆2 denotes the order parameter of the weak link. 
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𝛼𝑗 and 𝛽𝑗 > 0 are Ginzburg-Landau constants corresponding to the two superconducting 

electrodes (𝑗 = 1,2). 𝛾1 and 𝛾2 denote the first and second order Cooper pair tunneling processes 

across the weak link, respectively. 𝛾1 and 𝛾2 can turn complex under the presence of external 

magnetic fields. In this equation, we have included the second order tunneling processes as it is 

typically found in junctions with high transmission, can lead to non-sinusoidal current-phase 

relationships and can lead to non-reciprocal supercurrents as will be shown below. As the transition 

temperature of the superconducting weak link is much lower than that of the superconducting 

electrodes, the equation can be rewritten to focus on tunneling across the weak link. 

                                            𝐹 = 𝐹0 − 𝛾1∆1
∗∆2 −

1

2
𝛾2(∆1

∗∆2)
2 + 𝑐. 𝑐.                                        (4.1) 

The wave function of the superconducting electrodes, which have the same 

superconducting gap can be written in terms of their amplitudes and phases as ∆1= ∆𝑒
𝑖𝜙1 and ∆2=

∆𝑒𝑖𝜙2 where ∆ is the magnitude of the order parameter and 𝜙1,2 are the corresponding phases. 

Substituting these values, the free energy takes the form: 

                                    𝐹 =  𝐹0  −  2|𝛾1|∆
2 cos 𝜑 − |𝛾2|∆

4 cos(2𝜑 + 𝛿)                              (4.2) 

where 𝜑 = 𝜑2 − 𝜑1 + 𝑎𝑟𝑔(𝛾1) is effectively the phase difference between the two 

superconducting regions and 𝛿 = 𝑎𝑟𝑔(𝛾2) −  2 𝑎𝑟𝑔(𝛾1) is the phase difference between the first 

and second order Cooper pair tunneling processes. The Josephson current-phase relationship can 

then be derived from the free energy as: 

                                   𝐼(𝜑) =
2𝜋

𝛷0

𝜕𝐹

𝜕𝜑
=

4𝑒

ℏ
{∆2|𝛾1|sin 𝜑 + ∆

4|𝛾2|sin (2𝜑 + 𝛿) }                      (4.3) 

where 𝛷0 =
ℎ

2𝑒
 is the superconducting flux quantum. 

In order to get the critical current values, we need to maximize this function with respect 

to the phase. Assuming the contribution of the second harmonic term |𝛾2| to be smaller in 

comparison to the first harmonic |𝛾1|, we can maximize 𝐼(𝜑) when 𝜑 = ±
𝜋

2
 giving, 

                                             𝐼𝑐
± ≈ |𝐼 (±

𝜋

2
)| =

4𝑒

ℏ
{∆2|𝛾1| ∓ ∆

4|𝛾2|sin 𝛿 }                                        (4.4)     

The Josephson diode effect can be written as: 
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                                                 𝐼𝑐 ≡ 𝐼𝑐
+ − |𝐼𝑐

−| = −
8𝑒

ℏ
∆4|𝛾2|sin 𝛿                                          (4.5) 

In the following sub-sections, the variation of JDE with temperature, magnetic field 

magnitude and direction are discussed in detail to compare it with the presented model and 

determine its possible origins. 

 

𝑰𝒄

It can be seen that 𝐼𝑐 ∝ ∆
4 and the temperature dependence of the order parameter can be 

written as ∆ ∝ √1 −
𝑇

𝑇𝑗
, where 𝑇 is the temperature of the junction and 𝑇𝑗 is the superconducting 

transition temperature of the junction. Hence, we can say from this derivation just by introducing 

a higher order term in the Ginzburg-Landau equation for a weak link and without the loss of any 

generality that: 

                                                                  𝐼𝑐 ∝  ( 𝑇 − 𝑇𝑗  )
2
                                                     (4.6) 

In the following graph, we have plotted the experimentally measured evolution of JDE at 

12 𝑚𝑇 in-plane magnetic field perpendicular to the direction of current, where 𝐼𝑐 is found to be 

maximum as a function of temperature. It can be seen that 𝐼𝑐 decays with increasing temperature 

and that close to the superconducting transition temperature of the junction (𝑇𝑗), 𝐼𝑐 very closely 

follows a ( 𝑇 − 𝑇𝑗  )
2
 dependence as shown in Fig. 4.11 agreeing well with the Ginzburg-Landau 

model that has been used. 
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Fig. 4.11 Temperature dependence of Josephson diode effect: The evolution of 𝐼𝑐 is shown as 

a function of temperature. 𝐼𝑐  is found to decrease as a function of temperature. Dotted line is a 

guide to the eye. Inset shows 𝐼𝑐 close to 𝑇𝑗 and the black line represents a ( 𝑇 − 𝑇𝑗 )
2
 fit. Figure 

adapted with permission from ref.98, Springer Nature. 

 

𝑰𝒄

In order to study the evolution of 𝐼𝑐 under various conditions and look for consistency 

with our model, the magnetic field magnitude and angular dependence of 𝐼𝑐 were studied 

experimentally. Interestingly, change in the sign of 𝐼𝑐 and decaying oscillations in 𝐼𝑐 as a 

function of the magnetic field magnitude were observed. A sinusoidal behavior of 𝐼𝑐 was 

observed when varying the angle of the in-plane magnetic field with respect to the direction of the 

current. However, as the magnitude of the magnetic field was increased, 𝐼𝑐 displeyed a more 

complex behavior and had more nodes. In order to understand these experimental results, we can 

look again into our GL model and study the evolution of 𝐼𝑐 with respect to magnetic field. We 

can go back to equation (4.5) and look at the order parameter as a function of the magnetic field. 
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The magnetic field dependence of the order parameter can be written as ∆ ∝ √1 − (
|𝐵𝑦|

𝐵𝑐
)
2

 , where 

𝐵𝑐 is the critical field of the junction and 𝐵 is the applied magnetic field. 

                                                𝐼𝑐 ∝ [1 − (
|𝐵𝑦|

𝐵𝑐
)
2

]

2

sin 𝛿 

Now if we consider the presence of finite momentum Cooper pairs in the system induced 

by a magnetic field 𝐵𝑦, the additional momentum 𝑞𝑥 makes the junction behave like a finite 

momentum superconductor and gives it an additional phase shift 𝛿 ≈ 2𝑞𝑥𝑑 as the Cooper pair 

propagates through the junction with seperation 𝑑. In this case with finite momentum Cooper pairs, 

𝐼𝑐 can be written as: 

                                                            ∆𝐼𝑐 ∝ [1 − (
|𝐵𝑦|

𝐵𝑐
)
2

]

2

sin (𝜋
𝐵𝑦

𝐵𝑑
)                                      (4.7) 

where 𝐵𝑑 is a parameter that contains all the properties that are intrinsic to the junction. It can be 

seen that there is a sinusoidal dependence of ∆𝐼𝑐 on the magnetic field 𝐵𝑦 and the magnitude of 

∆𝐼𝑐 decays with increasing magnetic field as we observe in our experiments. The number of 

oscillations that can be expected in ∆𝐼𝑐 depends on the ratio (
𝐵𝑐

𝐵𝑑
). The function sin (𝜋

𝐵𝑦

𝐵𝑑
) changes 

sign whenever 𝐵𝑦 = 𝑛𝐵𝑑 where 𝑛 is an integer. The maximum value that 𝐵𝑦 can reach without 

destroying the superconductivity depends on the critical field 𝐵𝑐. Hence the maximum number of 

oscillations that we can get is given by  𝑛 = 𝑖𝑛𝑡 (
𝐵𝑐

𝐵𝑑
). The value of  𝐵𝑑 can be obtained by looking 

at the magnetic field at which ∆𝐼𝑐 reaches zero and reverses sign. In the case of our junction ∆𝐼𝑐 

reaches zero at a magnetic field of 22 𝑚𝑇 which gives the value of 𝐵𝑑. To get the value of 𝐵𝑐, ∆𝐼𝑐 

is simulated with the obtained  𝐵𝑑 and the same ratio of first and second maxima of ∆𝐼𝑐 as obtained 

from experiments. This yields the value of 𝐵𝑐 to be 45 𝑚𝑇. Correspondingly, we can see two 

oscillations in ∆𝐼𝑐 before this value is reached. Hence, the model is able to successfully capture 

the experimentally observed features with increasing magnitude of the magnetic field. 
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(a)                                                                           (b)  

 

Fig. 4.12 Magnetic field dependence of Josephson diode effect: (a) Experimentally obtained 

curves for ∆𝐼𝑐 as a function of magnetic field at various temperatures. ∆𝐼𝑐 oscillates sinusoidally 

as a function of magnetic field and changes sign periodically. (b) Theoretically calculated ∆𝐼𝑐 as 

a function of magnetic field from the model using the ratio of first two maxima from the experiment 

and 𝐵𝑑 = 22 𝑚𝑇. Figure adapted with permission from ref.98, Springer Nature. 

 

To understand the experimentally observed complex dependence of ∆𝐼𝑐  on the angle of 

magnetic field, we look back at equation (4.7) which gives the total magnetic field dependence of 

∆𝐼𝑐 and substitute the total magnetic field with = 𝐵𝑖𝑝 cos θ , where θ is the angle between the 

current and magnetic field. This gives ∆𝐼𝑐 as: 

                                              ∆𝐼𝑐 ∝ [1 − (
|𝐵𝑖𝑝 cosθ|

𝐵𝑐
)
2

]

2

sin (𝜋
𝐵𝑖𝑝 cosθ

𝐵𝑑
)                                        (4.8) 

It can be noted that ∆𝐼𝑐 changes sign when sin (𝜋
𝐵𝑖𝑝 cosθ

𝐵𝑑
) = 0. With increasing 𝐵𝑖𝑝, the frequency 

of the sign change increases and when 𝐵𝑖𝑝 crosses 𝐵𝑑, more nodes are introduced in the system. 

Using the values of 𝐵𝑐 and 𝐵𝑑 obtained in the previous section, one can model the evolution of ∆𝐼𝑐 

with magnetic field amplitude and angle with respect to the direction of current. This calculated 

evolution of ∆𝐼𝑐 is in great agreement with the experimentally obtained values as shown in Fig. 

4.13 providing further validation to the theoretical model. 
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(a)                                                                      (b)  

 

(c)                                                                      (d) 

  

Fig. 4.13 Angular dependence of Josephson diode effect: (a), (b) Experimentally measured 

angular dependence map of the Josephson diode effect at various magnetic fields. (c), (d) 

Theoretically simulated angular dependence map of the Josephson diode effect using the GL model 

and the value of parameters 𝐵𝑐 = 45 𝑚𝑇 and 𝐵𝑑 = 22 𝑚𝑇 obtained experimentally. Figure 

adapted with permission from ref.98, Springer Nature. 

 

𝑰𝒄

Using all the above experimental data and the GL model, we can estimate the induced 

Cooper pair momentum in NiTe2. From equation (4.5), ∆𝐼𝑐 reaches maximum value when 𝛿 =
𝜋

2
. 
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As discussed before, in the presence of finite momentum the phase shift induced can be written as 

𝛿 ≈ 2𝑞𝑥𝑑. From Fig. 4.11 it can be seen that ∆𝐼𝑐 reaches maximum value when 𝐵𝑦 = 12 𝑚𝑇. 

Hence the value of Cooper pair momentum when ∆𝐼𝑐 at 𝐵𝑦 = 12 𝑚𝑇 can be estimated for the 

350 𝑛𝑚 junction as,  2𝑞𝑥 =
𝜋

2𝑑
≈ 4.5 × 106 𝑚−1 . 

 

In order to independently verify the existence of finite momentum Cooper pairing in NiTe2 

and the value that was estimated from the Josephson diode effect, we study the evolution of the 

Fraunhofer pattern as a function of in-plane magnetic field along the direction of current as shown 

in Fig. 4.14(a). This measurement is quite significant as it would demonstrate that finite 

momentum Cooper pairing exists along the direction of current even though it does not give rise 

to a Josephson diode effect and that there is a Rashba-like spin-momentum locking in the system. 

The Fraunhofer pattern for a Josephson junction gives the actual phase difference between the two 

superconducting electrodes, which can in turn be used to estimate the Cooper pair momentum in 

the system. To calculate the Josephson current as a function of the phase difference, all possible 

quasi-classical trajectories are summed over.  

           𝐼(∆𝜑(𝐵𝑥, 𝐵𝑧)) = ∫ ∫ 𝑑𝑦1𝑑𝑦2
1

𝑑𝑒𝑓𝑓
2 +(𝑦2−𝑦1)

2 sin(∆𝜑(𝐵𝑥, 𝐵𝑧))
𝑊

0

𝑊

0
                (4.9) 

where, 

                                      ∆𝜑(𝐵𝑥, 𝐵𝑧) = ∆𝜑0 +
2𝜋𝐵𝑧𝑑𝑒𝑓𝑓(𝑦1+𝑦2)

𝛷0
+ 2𝑞𝑦(𝐵𝑥)(𝑦2 − 𝑦1)               (4.10) 

is the phase difference for a trajectory that starts at (0, 𝑦1) and ends at (𝑑𝑒𝑓𝑓, 𝑦2) and 𝑑𝑒𝑓𝑓 = 𝑑 +

2𝜆, where 𝜆 = 140 𝑛𝑚  is the London penetration depth of 30 𝑛𝑚 thick niobium. The critical 

current and the Fraunhofer pattern is calculated by maximizing 𝐼(∆𝜑(𝐵𝑥 , 𝐵𝑧)) with respect to 

∆𝜑(𝐵𝑥 , 𝐵𝑧). The actual value of 𝑑𝑒𝑓𝑓 used in the simulations is adjusted by using the position of 

the first node in the Fraunhofer pattern at zero in-plane magnetic fields obtained from experiments. 

This variation in 𝑑𝑒𝑓𝑓 can be due to flux focusing effects in the junction. ∆𝜑0 is the phase 

difference between the superconducting electrodes in the absence of an applied magnetic field. 
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The effect of in-plane magnetic flux through the thickness of the flake is not added to equation 

(4.10) since it is small as can be shown below. For a film of thickness 𝑡, the phase difference due 

to the magnetic flux in the plane of the sample can be written as: 

∆𝜑𝑡(𝐵𝑥) =
𝐵𝑥(𝑦2 − 𝑦1)𝑡

Φ0
 

Comparing the maximum contribution of this phase to that of the phase due to the finite momentum 

Cooper pairing, we get 

∆𝜑𝑡(𝐵𝑥)

∆𝜑𝐹𝑀(𝐵𝑥)
=

𝐵𝑥(𝑦2 − 𝑦1)𝑡
Φ0

2𝑞𝑦(𝐵𝑥)(𝑦2 − 𝑦1)
=

𝐵𝑥𝑡

2Φ0𝑞𝑦(𝐵𝑥)
 

As given by the calculations in references96,97  , we get 
2𝑞𝑦

𝐵𝑧
≈

𝜋𝑑𝑒𝑓𝑓

𝛷0
 

∆𝜑𝑡(𝐵𝑥)

∆𝜑𝐹𝑀(𝐵𝑥)
=

𝑡𝐵𝑥
𝜋𝑑𝑒𝑓𝑓𝐵𝑧

 

By using the value of  (
𝐵𝑥

𝐵𝑧
) ~ 13  from experiment and the value of 𝑡 = 20𝑛𝑚 and 𝑑𝑒𝑓𝑓 ~ 1𝜇𝑚 

we get (
∆𝜑𝑡(𝐵𝑥)

∆𝜑𝐹𝑀(𝐵𝑥)
) ~ 0.08, indicating that the contribution of the in-plane magnetic flux induced 

phase shift is more than ten times smaller than that induced by finite momentum Cooper pairing 

and hence can be neglected in our calculations. Also, considering the ratio of in-plane magnetic 

flux for a 100 𝑚𝑇 magnetic field to a magnetic flux quantum using the device dimensions as 

20 𝑛𝑚 × 350 𝑛𝑚 is (
Φ𝑡

Φ0
) ~ 0.06 which is quite small to have any significant effect. 

The Fraunhofer pattern calculated from equation (4.9) is shown below. It can be seen that 

the interference pattern looks like a conventional one at zero in-plane magnetic field with a 

dependence that looks just like (
𝑠𝑖𝑛(

𝜋Φ

Φ0
)

(
𝜋Φ

Φ0
)
). When the in-plane magnetic field is increased, the central 

peak decreases in magnitude and the intensity of two side branches on the positive and negative 

side of the out-of-plane magnetic field increases in magnitude as shown in Fig. 4.14(b-e), which 

looks as if the intensity of the central peak is transferred to the two side branches due to the finite 

momentum Cooper pairing.  This can be construed as a signature of finite momentum Cooper 
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pairing in the system and the value of the slope at which these side peaks evolve can be used to 

estimate the momentum of the Cooper pairs. 

           (a) 

 

(b)             (c)              (d)               (e) 

 

(f) 
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            (g)                (h) 

 

Fig. 4.14 Measurement of the finite momentum Cooper pairing in NiTe2 Josephson junctions: 

(a) shows the measurement geometry of the finite momentum Cooper pairing in the system by 

applying a magnetic field parallel to the direction of current which shifts the Fermi surface 

perpendicular to the direction of current. Though this does not lead to a Josephson diode effect, 

finite momentum Cooper pairs are still created with a momentum shift perpendicular to the current 

direction. (b)-(e) Theoretical simulations of the evolution of the Fraunhofer pattern under an in-

plane magnetic field. The central peak is found to decrease in magnitude while two new peaks that 

look like horns appear on the side and spread out with increasing in-plane magnetic field. (f) 

Experimentally measured differential resistance (
𝑑𝑉

𝑑𝐼
) is used to track the evolution of the central 

peak of the Fraunhofer pattern with the in-plane magnetic field. The intensity of the central peak 

is found to be split and redistributed to the side branches, as the field strength is increased.  (g) 

Experimentally measured differential resistance after tilting correction. The red data points 

indicate resistance minima used to estimate the slope of evolution of the peak. (h) Theoretical 

simulation of the evolution of critical current with in-plane magnetic field. The slope of the side 

branches, which is determined by the finite momentum, is extracted from the experimental slope. 

Figure adapted with permission from ref.98, Springer Nature. 

 

Experimentally measuring the Fraunhofer pattern for each in-plane magnetic field over a 

large range is a time-consuming measurement. In order to make the measurement more efficient, 

the differential resistance of the sample is mapped as a function of out-of-plane and in-plane 

magnetic fields. This measurement helps to effectively track the position of the central peak with 
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maximum intensity as a low resistance state instead of measuring the complete interference pattern 

over the entire range of magnetic fields. In order to perform this measurement a small AC bias of 

a 300 𝑛𝐴 is applied to the sample at a frequency of 27.777 𝐻𝑧 and (
𝑑𝑉

𝑑𝐼
) is measured as the 

magnetic field is swept to determine the position of the low resistance state. The experimentally 

measured map is shown in Fig. 4.14(f). The measured pattern is tilted due to the flux induced shift 

of the Fraunhofer pattern by the in-plane magnetic field and this tilt is corrected by subtracting a 

slope and the resultant map is shown in Fig. 4.14(g). It can be observed clearly that as the in-plane 

magnetic field is increased the central peak decreases in magnitude and two side branches emerge 

as predicted. The position of these side branches in the experimental data is obtained by fitting the 

sweeps to a polynomial and getting their minima. Then the slope of evolution of these side 

branches is obtained by a linear fit. The slopes (
𝐵𝑥

𝐵𝑧
) for positive and negative 𝐵𝑧 are 15 and 11, 

respectively. The small asymmetry in the slopes can arise due to flux focusing effects which 

change the direction of the applied magnetic fields. So, the average value of the two slopes 

(
𝐵𝑥

𝐵𝑧
~13) is used to estimate the momentum of the Cooper pairs. Theoretically, calculated 

evolution of critical currents in the presence of a magnetic field with slope is shown in Fig. 4.14(h). 

Using the value of slope from experiments, we get the value of the finite momentum Cooper 

pairing to be 2𝑞𝑦 ≈ 1.6 × 10
6 m−1. 

The value of Cooper pair momentum obtained along 𝑦–direction obtained from 

measurement of the evolution of Fraunhofer pattern under an in-plane magnetic field is of the same 

order of magnitude as that along the 𝑥–direction obtained from the GL model using Josephson 

diode effect experiments. Thus, we have strong evidence that points towards the existence of 

FMCP in this system and it possibly giving rise to the observed Josephson diode effect.  

 

𝑰𝒄

 While we have shown clearly that there is a non-zero Cooper pair momentum in the 

presence of a magnetic field in our system and attribute this to the helical spin-momentum locked 

surface states in NiTe2, there is also another possible origin to the observed Cooper pair momentum 

that can give rise to the same effect in the system, that is independent of the junction material. This 
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is due to the Meissner screening currents that arise in the superconducting leads in the presence of 

a magnetic field106.  

 When a Josephson junction made of conventional superconducting leads is placed in a 

magnetic field, screening currents are generated in the superconducting leads due to Meissner 

effect. Correspondingly, the superconducting order parameter on the surface of the electrodes 

gains an additional phase similar to FFLO states due to the finite momentum generated. This finite 

momentum generated on the surface of the electrodes can be transferred from one electrode to the 

other, when the junction is in the ballistic limit. It shows the same characteristics as that induced 

by the Rashba spin-momentum locking present in the system, namely maximum Josephson diode 

effect when the magnetic field is aligned perpendicular to the direction of current and similar 

angular and temperature dependencies. In our case, the thickness of Nb leads (30 𝑛𝑚) is much 

smaller than the London penetration depth and the estimated value of finite-momentum Cooper 

pairing arising from the screening in Nb contacts is therefore 𝑞𝑥 ≈
𝑒

  ℏ
 𝐵𝑦

ℎ𝑁𝑏

2
 . At 𝐵𝑦 = 20 𝑚𝑇, 

this corresponds to 2𝑞𝑥 ≈ 10
6 𝑚−1. Since this is smaller than the value of the Cooper pair 

momentum estimated from the Fraunhofer pattern and the Josephson diode effect measurements, 

it cannot account solely for the observed effect. Moreover, superconducting diode effect has been 

in observed in thin flakes of 2H-NbSe2 in the presence of an out-of-plane magnetic field107, which 

is expected if the FMCP is induced by the Ising spin-orbit coupling in the system.  

 

In conclusion, non-reciprocal supercurrents leading to a Josephson diode effect in lateral 

junctions of exfoliated NiTe2 flakes with a maximum efficiency close to 60% has been observed 

which is one of the largest effects reported so far. In order to comprehend the possible origins of 

the observed diode effect, a Ginzburg-Landau model which takes second order term into account 

with an additional phase shift is used. This additional phase shift is argued to arise from non-zero 

Cooper pair momentum in the presence of a magnetic field. This model captures all experimentally 

observed features such as the magnetic field dependence, angular dependence and temperature 

dependence. Additional measurements to independently measure the Cooper pair momentum, 

point to a value close to the one suggested by measurements of the diode effect, thus confirming 
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the presence of finite momentum in NiTe2 junctions and reinforcing its role in the creation of the 

Josephson diode effect in NiTe2. Finite momentum Cooper pairing, though considered rather 

uncommon, has been observed in Josephson junctions of NiTe2. The value of such large Cooper 

pair momentum at low magnetic fields is commensurate with a very large (
𝑔

𝑣𝐹
) ratio in the system. 

Since, the 𝑣𝐹 in the system is already known from ARPES measurements to be much smaller than 

normal metals, it can be used to calculate 𝑔-factor of the electrons. The Cooper pair momentum 

can be expressed as 2𝑞 =
𝑔𝜇𝐵𝐵

ħ𝑣𝐹
, which gives the 𝑔-factor to be around 170. This value of g-factor 

is extremely large, even larger than typically found in topological semimetals in the normal state108 

and that recently discovered in InAsSb/InSb heterostructures109 of around 104, which warrants 

further investigation in the future. 

The origin of the non-zero Cooper pair momentum in NiTe2 has been attributed to the 

Zeeman shift of the topological surface state close to the Fermi level with a helical spin-momentum 

locking due to a strong Rashba splitting of 120 𝑚𝑒𝑉. An alternative explanation to the origin of 

finite momentum Cooper pairing based on Meissner screening currents106 is also discussed. 

Nevertheless, the possible role of finite momentum Cooper pairing in the creation of a Josephson 

diode effect has been revealed, which could lead to a better understanding and possibly a 

microscopic theory in the future. 
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 Josephson diode effect (JDE or ∆𝐼𝑐) is considered to be of great interest in the creation of 

novel low dissipative superconducting technologies as it allows for unidirectional propagation of 

supercurrents. There have been many theoretical and experimental efforts on understanding the 

various mechanisms that give rise to it. Beyond its utility in novel superconducting technologies, 

JDE can also function as an effective ‘tool’ of a material’s properties in the superconducting state 

as it explicitly requires the breaking of inversion and time-reversal symmetries. JDE can be used 

to demonstrate the existence and the nature of spin-orbit coupling in a system by probing it in 

different directions. The appearance of a spontaneous JDE in a superconducting system can point 

to the existence of an intrinsic spontaneous time-reversal symmetry broken superconducting phase 

or an effective exchange coupling between the Cooper pairs and a magnetic layer in proximity110. 

In the previous chapter, it was demonstrated how the generation of finite momentum Cooper pairs 

(FMCP) could give rise to the JDE in a type-II Dirac semimetal NiTe2. This FMCP manifests as a 

relative phase shift between the two harmonics in the CPR. The presence of tiny second harmonic 

supercurrents is usually hard to detect and requires the use of complicated AC measurements.  

In this chapter, we build further on the results from the previous chapter and show how ∆𝐼𝑐 

can serve as a good pointer for the second harmonic supercurrents flowing through the junction 

and for quantifying it. Lateral and vertical Josephson junctions were fabricated on 1T-PtTe2 flakes, 

another van der Waals material from the same group as NiTe2. The nature of spin-momentum 

locking in the material is established qualitatively through measurements of the JDE. Most 

significantly, other extrinsic mechanisms that can give rise to a ∆𝐼𝑐 in such lateral junctions such 

as self-field and geometrical effects, and ways to identify and minimize them are discussed in 

detail. The current-phase relationship (CPR) that gives rise to a ∆𝐼𝑐 in the system is explored in 

detail and the necessity of a higher harmonic term in the CPR for the observation of a ∆𝐼𝑐 is 

discussed. The evolution of the oscillations in ∆𝐼𝑐 in the presence of magnetic flux is also studied. 

The nodes in ∆𝐼𝑐 are found to have a period of half magnetic flux quantum as opposed to the nodes 

in 𝐼𝑐
+ and 𝐼𝑐

−  which have a single flux quantum period. This shows that ∆𝐼𝑐 is strongly related to 

the second harmonic term in the CPR.  The presence of a strong second harmonic supercurrent 

over large distances is quite unusual for a normal metallic system, which typically has a short mean 

free path. The transparencies of junctions determined from fits of 𝐼𝑐(𝑇) to a diffusive behavior and 
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from the excess currents present in the junction point to the existence of both diffusive and ballistic 

channels. This observation further supports the contribution of ballistic topological states with 

spin-momentum locking to the supercurrents in the system together with the diffusive metallic 

channels. 

 

Platinum Ditelluride (PtTe2) is a transition metal dichalcogenide material that crystallizes 

in the centrosymmetric space group P-3m1 with a trigonal structure similar to CdI2 with 𝑎 = 𝑏 =

4.025 Å and 𝑐 = 5.22 Å. Layers of PtTe2 are held together by a strong Van der Waals force 

compared to other two-dimensional Van der Waals dichalcogenides and hence not easily 

exfoliable down to a monolayer. Fig. 5.1(a) shows the crystal structure of PtTe2 in which each 

layer of platinum atoms is sandwiched between two layers of tellurium atoms. Similar to NiTe2, 

PtTe2 also structurally varies from other transition metal dichalcogenides like MoS2, MoTe2, 

WTe2, NbSe2, TaS2, etc. in the fact that it is found to crystallize only in the octahedral phase as 

opposed to 1T (trigonal) and 2H (hexagonal) phases in the other systems. Other members of the 

PtTe2 family include NiTe2, PdTe2, PtSe2, PdSe2, etc. Just like NiTe2, PtTe2 is also extremely air-

stable making it useful for industrial applications. It can be synthesized layer-by-layer using 

chemical vapour deposition and is useful for a variety of applications including terahertz 

photodetection, near and mid-infrared photodetection, electrocatalysis, etc. 

 Just like NiTe2, the crystal and atomic point group symmetries play an important role in 

determining the properties of PtTe2. PtTe2 crystallizes in is a centrosymmetric space group that is 

not expected to have any asymmetric spin-orbit coupling interactions like the Rashba or 

Dresselhaus effects. Each layer of PtTe2 consists of three sublayers with a sublayer of platinum 

atoms located in the center and sandwiched by two sublayers of tellurium atoms on the top and 

bottom. Consider a single layer of PtTe2 from the schematic shown in Fig. 5.1(b). The platinum 

atoms are coordinated with the tellurium atoms in an octahedral fashion. As in the case of NiTe2, 

the Pt atoms have a D3d point group symmetry, which includes a center of inversion as shown in 

Fig. 5.1(d) whereas the Te atoms have a C3v point group symmetry, which lacks a center of 

inversion that leads to the existence of equal but opposite asymmetric spin–orbit couplings within 
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the unit cell. This creates a ‘local Rashba effect’ in the system which leads to the existence of a 

layer-dependent spin-momentum locking in the system where the spins in the top and bottom 

tellurium layers are expected to be oppositely spin-polarized as shown in Fig. 5.1(c) and (e).  

 

 

Fig. 5.1 Locally broken inversion symmetry in PtTe2: (a)  shows the structure of five layers of 

platinum ditelluride with an octahedral coordination (1T-PtTe2). 1T-PtTe2 is a group-X transition 

metal dichalcogenide composed of two-dimensional layers of PtTe2 stacked on top of each other 

separated by a Van der Waals gap. Each monolayer of 1T-PtTe2 is centrosymmetric with a AA-

type stacking that makes it globally centrosymmetric. (b) A monolayer of PtTe2 consists of a sheet 

of platinum atoms with sheets of tellurium atoms covering it on the top and bottom. (c)-(e) The 

platinum atoms are in an octahedral environment of tellurium atoms giving it a 𝐷3𝑑 point group 

symmetry with a center of inversion, while the tellurium atoms on the top and bottom layers have 

a trigonal pyramidal coordination to the platinum atoms that give them a 𝐶3𝑣 point group 

symmetry that lacks a center of inversion. This gives rise to two equal local electric dipoles with 

moments pointing out of the plane and away from each other. The electric fields corresponding to 

these dipoles give rise to a Rashba type spin-momentum locking that are equal in magnitude but 

have opposite helicities for the top and bottom sub-layers of tellurium atoms and hence leading to 

a staggered Rashba SOC in a single layer. 
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 PtTe2 is a type-II Dirac semimetal, which hosts Dirac fermions that violate Lorentz 

invariance. Naturally arising from its locally broken inversion symmetry are also several bands 

with strong spin-splitting and topologically protected surface states. Spin- and angle-resolved 

photoemission measurements (ARPES) on thin films of PtTe2 of varying thickness grown by 

chemical vapour deposition from literature reveals that it evolves from a 2D metal to a 3D Dirac 

semimetal on increasing the thickness from two monolayers to six monolayers, which is evidenced 

by the appearance of a V-shaped conical dispersion in thicker samples.  

 Of great interest is the nature of spin-momentum locking in the system as revealed from 

the spin-dependent ARPES measurements. At the M’ point in momentum space, a pocket with a 

gapped Dirac-like dispersion is observed with the Dirac point roughly 200 𝑚𝑒𝑉 below the Fermi 

level. Measuring the spin contrast of the energy distribution curves along the in-plane tangential 

direction at four different momentum points of this pocket reveals a strong difference in the spin-

resolved density of states. The lower half of the Dirac cone has an opposite spin polarization 

compared to the upper half of the Dirac cone, which lies at the Fermi energy, leading to a non-zero 

spin polarization. This non-zero spin polarization with a helical spin-momentum locking can give 

rise to a JDE as will be seen later in this chapter. Two other Dirac cones with similar spin dispersion 

are also present as shown in the schematic. 
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Fig. 5.2 Spin- and angle-resolved photoemission spectroscopy of PtTe2: (a)  Intensity maps of 

PtTe2 thin films measured at -600 meV below the Fermi energy shows three different pockets at 

M’ points in momentum space . (b) A gapped Dirac cone-like dispersion is found at each M’ point. 

(c)-(f) Measurement of the spin-resolved energy dispersion curves at 4 different points labelled 

P1-P4 in (a) reveals the presence of a Rashba-like tangential spin polarization which differs in 

sign above and below the Dirac point. (g) Schematic of the gapped Dirac cones with the arrows 

pointing to the helicity of spin polarization. At the Fermi energy, the top Dirac cone is partially 

filled, leading to a net spin polarization in bulk PtTe2. 

 

 Before proceeding to study the properties of PtTe2 in the superconducting state, the 

electrical transport properties of PtTe2 were studied in the normal state. Few layer thick PtTe2 

flakes are exfoliated from a commercially purchased single crystal of 1T-PtTe2 (from 

HQgraphene) onto a Si substrate with 300 𝑛𝑚 SiO2 coating as described in detail in section 3.2.1. 
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Thin flakes are identified with the help of an optical microscope and an atomic force microscope 

and a Hall bar device with Ti (2 𝑛𝑚) / Au (40 𝑛𝑚) contacts was fabricated on a 30 𝑛𝑚 thick PtTe2 

flake using a similar method as described elsewhere in the thesis to measure its electrical properties 

in the normal state as shown in Fig. 5.3. The Hall bar was fabricated with help from Yufeng Wu. 

Electrical measurements are performed using a current source (Keithley 6221) with a constant 

current bias of 10 𝜇𝐴 and the voltage measured using a nanovoltmeter (Keithley 2182A). It is 

found that PtTe2 remains metallic down to 20 𝑚𝐾 temperature and does not turn superconducting. 

It can also be seen from the positive magnetoresistance and linear Hall effect that PtTe2 is non-

magnetic down to the base temperature and hence time-reversal symmetric. The mobility of the 

flake as estimated by fitting the obtained magnetoresistance, using the formula 𝑀𝑅 =

𝑎(1 + 𝜇2𝐵2) is 𝜇𝑀𝑅 = 835 𝑐𝑚2𝑉−1𝑠−1 and the carrier concentration calculated from the Hall 

resistance is 𝑛 = 1.424 × 1028 𝑚−3 indicating that the material is highly metallic.  

(a)                                                                       (b)  

 

(c)                                                                       (d)  
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Fig. 5.3 Electrical transport in PtTe2 Hall bars: (a) Optical image of a Hall bar fabricated on a 

40 nm thick PtTe2 flake. (b) Electrical resistance of PtTe2 as a function of temperature measured 

from the longitudinal voltage in the Hall bar, in the presence of a constant current bias. The 

resistance saturates at lower temperatures but never drops to zero. (c) The magnetoresistance of 

the flake measured with a magnetic field perpendicular to the plane of the flake. PtTe2 displays a 

parabolic positive magnetoresistance as in a non-magnetic material. (d) Hall resistance of the 

PtTe2 flake shows linear behavior with negative slope indicating hole-type carriers with a large 

carrier density and once again confirming the absence of any anomalous Hall behavior due to 

time-reversal symmetry breaking in the system. 

 

Josephson junctions in PtTe2 flakes are fabricated both in lateral and vertical geometries to 

study the JDE along different directions and verify the nature of spin-orbit coupling in the system. 

 

Lateral junctions of PtTe2 are fabricated on a 17.5 𝑛𝑚 thick flake of PtTe2 (as shown in 

Fig. 5.4(a)) exfoliated on a 300 𝑛𝑚 SiO2 coated Silicon substrate using a Nitto tape and standard 

physical exfoliation technique as described in other parts of the thesis. The thickness of the flake 

is measured using AFM (as shown in Fig. 5.4(b)) and the Josephson junctions of varying 

separations (L1-L4) were fabricated on this flake using electron-beam lithography. The substrate 

containing the flake was spin-coated at 4000 𝑟𝑝𝑚 with a positive resist AR-P 669.04 and annealed 

at 150 ℃ for 60 𝑠 followed by the same procedure for AR-P 679.03 (purchased from Allresist 

GmBH). The substrate was then exposed to the electron beam at 10 𝑘𝑉 energy and developed 

using AR 600-56 for 90 𝑠. After developing the substrate, it was gently ion milled for 60 𝑠 at 

100 𝑘𝑉 to remove residual resist on the top surface, superconducting electrodes Ti (2𝑛𝑚) / Nb 

(40𝑛𝑚) / Au (4𝑛𝑚) substrate was sputtered on the substrate. The lift-off was performed by 

immersing the substrate in acetone overnight and removing the underlying resist. An SEM image 

of the fabricated devices along with the separations between the different superconducting 
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electrodes is shown in Fig. 5.4(c) and an optical image is shown in Fig. 5.4(d). The junction L2 is 

shorted by another PtTe2 flake that lies in parallel and couldn’t be used for measurements. 

 

(a)                                                                       (b)  

 

(c)                                                                       (d)  

 

Fig. 5.4 Lateral PtTe2 Josephson junctions: (a) Image of a 17.5 nm thick PtTe2 flake on a 300 nm 

SiO2 coated Si substrate, measured using atomic force microscopy (AFM). Scale bar corresponds 

to 1 μm. (b) The thickness of the flake measured from the region marked by blue in (a). (c) Scanning 

electron microscopy (SEM) image of the PtTe2 flake after fabrication of the lateral Josephson 

junctions with the superconducting electrodes Ti (2 nm) / Nb (40 nm) / Au (4 nm)  on top and the 

varying separations measured. (d) Optical image of the lateral Josephson junction device 

fabricated showing the various electrodes. Inset shows a close-up of the junctions labelled from 

L1-L4 and the coordinate axes used for the measurements. The scale bar corresponds to 1 μm. 
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A vertical junction (V1) of PtTe2 is fabricated using an exfoliated PtTe2 flake of around 

60 𝑛𝑚 thickness and NbSe2 flakes acting as the superconducting electrodes on the top and bottom 

using a dry transfer technique with a polycarbonate (PC) film supported by a polydimethylsiloxane 

(PDMS) stamp as described in the literature111, to look for a Josephson diode effect (∆𝐼𝑐) by 

passing supercurrents along the c-axis. The vertical heterostructure formed is then dropped on pre-

sputtered gold electrodes at 200 ℃. After dissolving the polymer in chloroform, the 

heterostructure is annealed in vacuum at 300 ℃ for an hour to improve the electrical contact to the 

flakes. The optical image of the junction formed is shown in Fig. 5.5. The vertical heterostructure 

was fabricated with help from Dr. Jae-Keun Kim. 

 

Fig. 5.5 Vertical PtTe2 Josephson junctions: Vertical heterostructure consisting of 

NbSe2/PtTe2/NbSe2 sandwich on top of gold electrodes used to probe supercurrent transport in the 

vertical direction, along the c-axis of PtTe2. 
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Of the four lateral junctions fabricated L1-L4 (Fig. 5.4(d)), the junction with the shortest 

separation between the niobium electrodes (L1) is around 390 𝑛𝑚, and the device is roughly 5 −

6 𝜇𝑚 in width with tapering edges. Most of the results and analysis presented in the following 

sections focus on this device (referred to as L1 hereafter). The direction of current bias in these 

devices is fixed along the 𝑥-axis as shown in the inset of Fig. 5.4(d). The resistance of this junction 

is measured with a small alternating current of 350 𝑛𝐴 at 7.919 𝐻𝑧 as the junction is cooled down 

in zero magnetic field (Fig. 5.6(a)). A drop in resistance is observed around 4.5 𝐾 corresponding 

to the superconducting transition of the niobium electrodes and another drop in resistance to zero 

ohm at about 2.7 𝐾 (Fig. 5.6(a) inset), below which the junction becomes fully superconducting 

(𝑇𝑗).  

The sample is allowed to reach the base temperature of the cryostat (20 𝑚𝐾) and 

thermalize before the current voltage characteristics of L1 at zero magnetic field are studied with 

a DC bias (Keithley 6221) and a nanovoltmeter (Keithley 2182A). The critical currents on 

sweeping the current from zero bias in the positive (𝐼𝑐
+) and negative (𝐼𝑐

−) directions are obtained 

at zero magnetic field (Fig. 5.6(b)) and a negligible difference in their magnitude 

(∆𝐼𝑐 = 𝐼𝑐
+ − |𝐼𝑐

−|) or JDE is observed. The presence of retrapping currents in the junction different 

from the critical currents indicate that it is underdamped according to the RCSJ model. The positive 

and negative retrapping currents are also equal in magnitude.  

As the in-plane magnetic field perpendicular to the direction of current (𝐵𝑦) is increased 

and the current-voltage characteristics are measured again, a non-uniform suppression of 𝐼𝑐
+ and 

𝐼𝑐
− and hence the appearance of a non-zero ∆𝐼𝑐 is observed just like in the case of NiTe2. The 

current-voltage characteristic of L1 at 𝐵𝑦 = 8 𝑚𝑇 is shown in Fig. 5.6(c). 𝐼𝑐
+ is around 56 𝜇𝐴 

whereas |𝐼𝑐
−| is around 34 𝜇𝐴. By choosing a magnitude of current between 𝐼𝑐

+ and |𝐼𝑐
−|, one can 

obtain non-reciprocal behavior, in which the junction is superconducting along one direction and 

resistive along the opposite direction. The non-reciprocal behavior with 37 𝜇𝐴 current along both 
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directions at 𝐵𝑦 = 8 𝑚𝑇 is shown in Fig. 5.6(d). The switching characteristic of the junction 

measured over an hour appears stable and robust.  

      (a) 

 

     (b)                                                                  (c)  
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(d) 

 

Fig. 5.6 Non-reciprocal critical currents in PtTe2 Josephson junctions: (a) Resistance-

temperature curve of junction L1 measured while cooling down in zero field. Two transitions at 

around 4.5 𝐾 and 2.7 𝐾 (inset) corresponding to the superconductivity of niobium (𝑇𝑐) and the 

junction (𝑇𝑗) are observed. (b) Current-Voltage characteristics of L1 measured in the absence of 

any external magnetic field after cooling down to 20 𝑚𝐾 in zero magnetic field. The critical 

currents in the positive (𝐼𝑐
+) and negative (𝐼𝑐

−) directions are the same within the limit of error, 

leading to ∆𝐼𝑐 = 0. The retrapping currents in both directions (𝐼𝑟
+ and 𝐼𝑟

−) are also equal. (c) 

Current-Voltage characteristics of L1 measured in the presence of an 8 𝑚𝑇 magnetic field applied 

along 𝑦-axis (𝐵𝑦). In addition to a suppression of the energy gap of the junction, we also observe 

that there is a significant difference in 𝐼𝑐
+ and 𝐼𝑐

− leading to a ∆𝐼𝑐. (d) The non-reciprocal behavior 

of supercurrents or the diode effect measured under 8 𝑚𝑇 magnetic field with a 37 𝜇𝐴 current 

shows that the device is superconducting along one direction but resistive in the opposite direction. 

The switching was measured over a period of one hour and showed robust behavior.  
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 Throughout this chapter, there are several simulations of the critical currents evolution with 

magnetic field presented to support the experimental observations. This is done by considering the 

evolution of phase along different directions in the presence of a magnetic field and solving the 

resulting differential equations self-consistently. All the simulations presented in this chapter were 

done by Dr. Mostafa Tanhayi Ahari from Prof. Matthew Gilbert’s group at University of Illinois 

Urbana Champaign (UIUC). More details of the simulation can be found in the appendix. 

 As it can be observed from Fig. 5.4(c), the shape of the PtTe2 flake is not exactly 

rectangular. It has tapering edges, which gives the junctions the shape of a trapezoid that naturally 

breaks the geometric inversion symmetry of the junctions and can be considered as the source for 

the observed asymmetry in critical currents in the presence of a magnetic field. To eliminate this 

possibility a simple check is performed, wherein the critical currents 𝐼𝑐
+ and 𝐼𝑐

− of two junctions 

(L1 and L3) whose edges taper along the opposite directions are measured in the presence of a 

magnetic field along the same direction. In the case that ∆𝐼𝑐 arises from the geometric inversion 

asymmetry, this measurement would give opposite signs of ∆𝐼𝑐 for the two junctions, as their edges 

taper in opposite directions. In our measurements, we observe that the ∆𝐼𝑐 for both L1 and L3 is 

positive when the magnetic field direction is fixed along 𝑦 direction and the current direction is 

fixed along – 𝑥 direction, suggesting that the geometric inversion asymmetry has a minimal role 

to play in the creation of the observed critical current asymmetries. 
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       (a)                                                                   (b)  

 

      (c)                                                                   (d)  

 

Fig. 5.7 Josephson diode effect in PtTe2 junctions of different geometry:  (a) and (b) Scanning 

electron microscope (SEM) image of lateral PtTe2 Josephson junctions L1 and L3 with an outline 

of their trapezoidal shapes and a measurement of their dimensions. (c) and (d) ∆𝐼𝑐 for L1 and L3 

measured for a positive 𝐵𝑦 with the same direction of current bias reveals that both L1 and L3 

have the same sign of ∆𝐼𝑐 under these conditions indicating the absence of strong geometric 

asymmetry effects. 

 

 In a Josephson junction, when the junction width (𝑤) or the length (𝑙) is shorter in 

comparison with the Josephson penetration depth (𝜆𝐽), which is a characteristic length scale in the 

junction over which magnetic flux variation can take place, the magnetic field due to the current 
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flow across the junction can be neglected. Such a junction is said to be in the ‘short junction limit’. 

In contrast to the NiTe2 junctions discussed in the last chapter, some of the PtTe2 junctions have 

widths (𝑤) that are larger in comparison to 𝜆𝐽. Such Josephson junctions are said to be in the wide 

junction limit (𝑤 > 𝜆𝐽). In L1, the junction channel is between 5 − 6 𝜇𝑚 wide while the estimated 

𝜆𝐽 for the junction is 𝜆𝐽 ≈ 3 𝜇𝑚 (𝛼 ≈ 2) for 𝐵𝑦 ∼ 0, which makes L1 lie strongly in the wide 

junction limit. In such limit, the current bias configuration can play a significant role in the nature 

of current distribution across the junction. In a lateral junction such as L1, when the current source 

is connected to leads on the same side of the device and the voltage probes are connected to the 

leads on the other side (as in Fig. 5.8(a)), this can lead to a highly non-uniform current distribution 

in the junction. This consequently creates local inhomogeneous magnetic fields that can break the 

time reversal symmetry of the junction. This is known in the literature as ‘self-field effect 

(SFE)’40,112,113 and is dictated purely by the geometry of the junction and the magnitude of the 

critical current.  

(a)                            (b)                                                    (c)  

 

(d)                            (e)                                                    (f)  
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Fig. 5.8 Self-field effects in wide PtTe2 junctions: (a) Measurement schematic for a wide lateral 

Josephson junction in which self-field effects were observed in the Fraunhofer pattern. (b) Skewed 

Fraunhofer pattern with large ∆𝐼𝑐 (inset) measured with the current leads on the same side. This 

indicates the current bias across the junction is non-uniform. (c) Simulated Fraunhofer patterns 

for same-side biasing with 𝑤 = 2𝜆𝐽. The self-field effects gives rise to skewed Fraunhofer patterns 

as in experiments. The calculated ∆𝐼𝑐 are shown in the inset. (d) Measurement schematic in which 

the current bias is sourced in the “criss-crossed” configuration, wherein the current leads are 

located on opposite sides of the superconducting electrodes. (e) The Fraunhofer pattern for  𝐼𝑐
+ 

and |𝐼𝑐
−| measured in the criss-cross configuration is symmetric with respect to the magnetic field 

with negligible ∆𝐼𝑐 (inset) indicating the near uniform flow of supercurrents. (f) Simulated 

Fraunhofer patterns for criss-crossed biasing with 𝑤 = 2𝜆𝐽. In this case, self-field effects are 

symmetric and lead to symmetric Fraunhofer patterns where ∆𝐼𝑐 = 0 (inset). In (c) and (f), we plot 

the normalized critical currents as a function of normalized magnetic flux 𝛷/𝛷0.  

 

 The critical currents 𝐼𝑐
+ and |𝐼𝑐

−| of junction L1 with magnetic field applied along 𝐵𝑧 and 

current applied in the same-side configuration is shown in Fig. 5.8(b). It can be seen that 𝐼𝑐
+ and 

|𝐼𝑐
−| in the Fraunhofer interference pattern are clearly skewed in opposite directions leading to a 

significant ∆𝐼𝑐. Fig. 5.8(c) shows the simulated Fraunhofer pattern considering the boundary 

condition (𝑎1, 𝑎2) = (0,1) in equations (𝐴4) and (𝐴5) in the appendix, which agrees well with the 

experimentally observed behavior of the junction. The insets of Fig. 5.8(b) and Fig. 5.8(c) show 

∆𝐼𝑐 from the measurements and the simulations, respectively. ∆𝐼𝑐 in both cases is quite large, 

reaching a maximum value of around 40 𝜇𝐴 when the total critical current is around 73 𝜇𝐴 leading 

to an efficiency (𝜂 =
∆𝐼𝑐

𝐼𝑐
++𝐼𝑐

−) of about 55 %. This ∆𝐼𝑐 with multiple oscillations strongly mimics 

that observed in the case of NiTe2 created by finite momentum Cooper pairing as shown in Fig. 

4.12(a). If not analyzed with caution, this observation would lead to the possible erroneous 

conclusion that there is a Zeeman-type out-of-plane spin-momentum locking in the system that 

leads to a large ∆𝐼𝑐  with a magnetic field along the z-axis similar to Ising superconductors such as 

2H-NbSe2
107. However, this is not true in this case and extra careful analysis is required in the long 

or wide junction limit. It can be clearly shown from the simulations that the observed ∆𝐼𝑐 is from 
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self-field effects present in the junction. It is also to be noted that even though the SFE evidently 

breaks time-reversal symmetry upon application of a current, there is no spontaneous time-reversal 

symmetry breaking that exists in the absence of a current and the inhomogeneous magnetic fields 

induced by the currents in positive and negative directions are the same in magnitude. Hence, there 

is no ∆𝐼𝑐  at zero magnetic field in the presence of SFE-inducing currents. 

Another possible measurement configuration in which the critical currents across the 

junction can be measured is the ‘criss-crossed’ configuration, in which the current source is 

connected to leads on opposite ends of the device and the voltage is measured across the same 

leads, as shown in Fig. 5.8(d). Performing measurements in the ‘criss-crossed’ configuration can 

help reduce the SFE, help improve the current uniformity across the junction and nullify the 

extraneous ∆𝐼𝑐 arising from the SFE as seen from both the experimental and simulation results. 

The Fraunhofer pattern measured in the criss-crossed configuration is shown in Fig. 5.8(e). The 

measured 𝐼𝑐
+ and |𝐼𝑐

−| fall almost on top of each other without any skewing of the curves. The 

Fraunhofer pattern arising from a criss-crossed configuration of the current bias is simulated using 

the boundary condition in (𝑎1, 𝑎2) = (−1/2, 1/2) in equations (𝐴4) and (𝐴5) in the appendix and 

is shown in Fig. 5.8(f). The insets of Fig. 5.8(e) and Fig. 5.8(f) show ∆𝐼𝑐 from the measurements 

and the simulations in the criss-crossed configuration, respectively. In this case, the measured ∆𝐼𝑐 

is strongly suppressed and almost non-existent compared to the previous case. All measurements 

henceforth presented from the lateral junctions in this chapter were done in the criss-crossed 

configuration to avoid SFE.  

 

As we have seen in a previous section on electronic structure of PtTe2 (Section 5.3), PtTe2 

hosts a Dirac cone at M’ point with the Dirac point lying around 200 𝑚𝑒𝑉 below the Fermi level 

and this pocket has a non-zero spin-polarization tangential to the momentum at the Fermi level 

which directs to the presence of a Rashba or helical spin-momentum locking on this surface. This 

Rashba spin-momentum locking can give rise to FMCP and a ∆𝐼𝑐 in the presence of an in-plane 

magnetic field perpendicular to the current (𝐵𝑦) just as in the case of NiTe2. In order to establish 
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the presence of Rashba spin-momentum locking in PtTe2, ∆𝐼𝑐 is measured in L1 as a function of 

the magnetic field magnitude, angle and temperature.

   (a)                                         (b)                                            (c)  

   (d)                                         (e)                                            (f)  

Fig. 5.9 Analysis of ∆𝑰𝒄 with magnetic field magnitude, angle and temperature for junction L1: 

(a) 𝐼𝑐
+ and 𝐼𝑐

− measured as a function of the magnetic field 𝐵𝑦 swept from 150 𝑚𝑇 to −150 𝑚𝑇 at 

20 𝑚𝐾 temperature. (b) ∆𝐼𝑐 measured by sweeping 𝐵𝑦 from 150 𝑚𝑇 to −150 𝑚𝑇, shows that it 

is maximum around 10 𝑚𝑇. (c) The maximum value of  ∆𝐼𝑐 plotted as a function of temperature. 

Inset shows that it follows a quadratic (𝑇 − 𝑇𝑗)
2
 dependence at higher temperatures, as expected 

for a finite momentum Cooper pairing scenario1. (d) The angular dependence of ∆𝐼𝑐 at various 

magnetic fields measured at 20 𝑚𝐾 shows that ∆𝐼𝑐 is maximized when the magnetic field is 

perpendicular to the direction of current and zero when the magnetic field is parallel to the 

direction of current indicating a helical spin-momentum locking in the system. (e) The angular 

dependence of ∆𝐼𝑐 with the magnetic field 𝐵𝑦 = 8 𝑚𝑇 measured at various temperatures. (f) 
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Fraunhofer oscillations in L1 with a 𝐵𝑧 magnetic field and zero 𝐵𝑦 measured in a criss-crossed 

measurement geometry show no JDE. 

Fig. 5.9(a) shows 𝐼𝑐
+ and 𝐼𝑐

− as a function of 𝐵𝑦, with 𝐵𝑦 being swept from 150 to −150 𝑚𝑇 

and the corresponding ∆𝐼𝑐 is shown in Fig. 5.9(b).  It can be seen that  ∆𝐼𝑐 increases linearly with 

𝐵𝑦 at low fields and then starts to decrease non-monotonously. This non-monotonous decrease can 

be attributed to the effect of finite thickness of the sample due to which 𝐵𝑦 also provides an 

additional magnetic flux on the sample and creates a phase difference across the superconducting 

electrodes as will be discussed in a later section. This effect can be corrected for and the actual 

 ∆𝐼𝑐 at higher values of 𝐵𝑦 can be obtained from the Fraunhofer pattern as shown in a later section. 

In this section, in order to minimize finite thickness flux effects, we stick to low 𝐵𝑦 values in our 

measurements. It can also be seen that  ∆𝐼𝑐 has a finite shift from zero at high magnetic fields, in 

the positive direction at negative magnetic fields and negative direction at positive magnetic fields. 

This can be shown to arise from the geometry of the junction.  

The critical currents 𝐼𝑐
+ and 𝐼𝑐

− of L1 at 20 𝑚𝐾 are then measured as a function of the in-

plane magnetic field angle (Fig. 5.9(d)), by controlling the magnitudes of 𝐵𝑥 and 𝐵𝑦 on the 2D 

superconducting magnetic coils. 0 degrees corresponds to the 𝑥-axis, along which the current flows 

and 90 degrees corresponds to the 𝑦-axis, perpendicular to the direction of current (Refer Fig. 

5.4(d)). ∆𝐼𝑐 is measured for the magnetic field vector magnitude ranging from 2 − 7 𝑚𝑇.  ∆𝐼𝑐 is 

maximized when the magnetic field is applied perpendicular to the direction of current (𝐵𝑦) and 

vanishes when the magnetic field is along the direction of current (𝐵𝑥) and is found to increase 

with the magnitude of the magnetic field which indicates that there is possibly a tangential spin-

momentum locking scenario. The angular dependence of ∆𝐼𝑐 is measured at various temperatures 

from 20 − 1000 𝑚𝐾 is shown in Fig. 5.9(e). ∆𝐼𝑐  is found to decrease with increasing temperature. 

It decays with a quadratic (𝑇 − 𝑇𝑗)
2
 dependence close to 𝑇𝑗, as shown in Fig. 5.9(c), and as 

expected for a finite momentum Cooper pairing scenario1,114. Though the error in the data points 

are large, a better fit can be obtained in the ∆𝐼𝑐 vs. 𝑇 obtained from the Fraunhofer pattern as will 
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be discussed later. These results put together indicate the existence of a two-dimensional helical 

spin-momentum locking in PtTe2.  

Furthermore, on measuring ∆𝐼𝑐 in the vertical junction V1 (shown in Fig. 5.5) by passing 

current in the vertical direction, along the c-axis of the crystal, no apparent ∆𝐼𝑐 with an in-plane 

magnetic field along perpendicular directions is found, as shown in Fig. 5.10(a) and (b). This 

observation is opposed to that in vertical junctions of Td-WTe2, fabricated using a similar technique 

where a clear ∆𝐼𝑐  is observed when the magnetic field is applied perpendicular to the 𝑏-axis of the 

crystal115. No ∆𝐼𝑐 was observed in our case, even though the Josephson energy and the magnitude 

of the maximum critical current are quite similar in both the L1 and V1 junctions. This 

demonstrates that there is no spin-momentum locking in the bulk of the sample or any other 

mechanism that can create FMCP and the observation of a ∆𝐼𝑐 in the presence of a magnetic field 

is confined to current flow only along the two-dimensional 𝑎𝑏 plane of the sample. 

 

   (a)                                             (b)   

 

Fig. 5.10 Absence of Josephson diode effect in a vertical junction of PtTe2:  (a) and (b) Critical 

currents 𝐼𝑐
+ (black) and 𝐼𝑐

−(red) of the vertical junction measured as a function of the in-plane 

magnetic field with magnetic field applied along two perpendicular directions show that ∆𝐼𝑐 (blue) 

is almost zero and has no apparent trend. 
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The appearance of ∆𝐼𝑐 in PtTe2 can be understood using a simple model starting from a 

general current-phase relationship (CPR) written as a Fourier series of sine functions, which 

includes higher harmonics and additional phase shifts 𝜑𝑛 that may be present in the system when 

time-reversal symmetry is broken. 

𝐼(𝜑) = ∑  𝐼𝑛 sin (𝑛𝜑 + 𝜑𝑛)
∞
𝑛=1                                              (5.1) 

Expanding this CPR up to the second order gives us:  

               𝐼(𝜑) = 𝐼1 sin (𝜑 + 𝜑1)  + 𝐼2 sin (2𝜑 + 𝜑2)                                      (5.2) 

This is a very generic CPR from which certain well-known special cases can be derived. For 

example, having 𝜑1 = 𝜑2 = 0, gives a CPR that contains only the first and second harmonic terms 

without any additional phases corresponding to typical 𝜑-junctions116,117 with a skewed current-

phase relationship and furthermore setting 𝐼2 = 0 in equation (5.2) gives us anomalous Josephson 

junctions or 𝜑0-junctions with a sinusoidal current-phase relationship shifted from zero by a phase 

𝜑1. Such CPRs have been been observed typically in ferromagnetic Josephson junctions and 

systems with high spin-orbit coupling118-123. Now, without any loss of generality 𝜑 may be replaced 

with (𝜑 − 𝜑1) and the CPR can be rewritten as: 

        𝐼(𝜑) = 𝐼1 sin 𝜑 + 𝐼2 sin (2𝜑 + 𝛿)                                   (5.3) 

where 𝛿 = 𝜑2 − 2𝜑1 is the relative phase between the first and second harmonic terms. This CPR 

is quite different from typical 𝜑 − and 𝜑0 − junction CPRs116-123 and Josephson junction with a 

CPR as that in equation (5.3) is dubbed as a “second order 𝜑0-junction”. This CPR is identical to 

that derived from the Ginzburg-Landau formalism1 in the previous chapter, in which 𝛿 corresponds 

to the phase shift induced by a finite momentum Cooper pairing in the system. This phase 𝛿, can 

be controlled by an in-plane Zeeman field perpendicular to the direction of current (𝛿 ∝ 𝐵𝑦). It is 

to be noted that in addition to NiTe2
1, similar CPRs have been used to explain the presence of a 

∆𝐼𝑐 in InAs-based superconducting junctions124,125 and InSb nanowire junctions126.  
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∆𝐼𝑐 can be determined by looking at 𝐼𝑐
+ and 𝐼𝑐

− from the CPR in equation (5.3). It may be 

seen easily that the first harmonic term varies as sin 𝜑 which is an odd function and hence would 

not have any direct contribution to ∆𝐼𝑐 in the absence of 𝛿. For non-sinusoidal CPRs such as that 

in equation (5.3), critical currents may not always occur at 𝜑 = ±
𝜋

2
 and might need to be solved 

numerically to get the exact values of 𝐼𝑐
+ and 𝐼𝑐

− for different values of 𝛿. To this effect, numerical 

solutions of the critical current are obtained, which can be achieved by defining an envelope 

function 𝑓(Φ, 𝛿) = 𝐼1 +min𝜑 [(𝐼1 + 2𝐼2 cos(𝜑 + 𝛿) cos (
𝜋Φ

Φ0
)) sin𝜑]. In this case, Δ𝐼𝑐 is given 

by 

               ∆𝐼𝑐 = 𝑓(Φ, 𝛿)
sin(πΦ/Φ0)

𝜋Φ/Φ0
                                             (5.4) 

We note that the envelope function 𝑓(Φ𝑛, 𝛿) vanishes at Φ𝑛 = (𝑛 +
1

2
)Φ0 for arbitrary values of 

𝛿 and 𝐼2. Moreover, for  
𝐼2

𝐼1
≪ 1, we obtain the magnitude of ∆𝐼𝑐 as 

          ∆𝐼𝑐 = −2𝐼2(𝐵𝑦) sin 𝛿  
sin(

2πΦ

Φ0
)

(
2𝜋Φ

Φ0
)

                           (5.5) 

where 𝐼𝑖(𝐵𝑦) = 𝐼𝑖(0) (1 −
𝐵2

𝐵𝑐
2)
𝑖

 accounts for the suppression in the critical current components 

due to orbital effects from 𝐵𝑦. From equations (5.3) and (5.5), we can infer three important 

conclusions on the CPR and ∆𝐼𝑐.  

1. Firstly, we find that the existence of a second harmonic term (𝐼2 ≠ 0) and 𝛿 ≠ 𝑛𝜋, 𝑛 ∈ ℤ is 

necessary for the existence of a non-zero ∆𝐼𝑐. So, the presence of a ∆𝐼𝑐 acts as an indicator for 

the existence of a second harmonic term in the current-phase relationship while the converse 

need not be true.  

2. Secondly, the magnitude of ∆𝐼𝑐 is modulated by sin 𝛿, which implies that ∆𝐼𝑐 reaches its 

maximum magnitude when 𝛿 = ±
𝜋

2
. In a system with FMCP, 𝛿 can be tuned precisely with 

an in-plane magnetic field (𝐵𝑦) as a handle. The value of 𝐵𝑦 at which ∆𝐼𝑐 reaches its maximum 

(minimum) value ∆𝐼𝑐
𝑚𝑎𝑥 (∆𝐼𝑐

𝑚𝑖𝑛) corresponds to 𝛿 =
𝜋

2
 (−

𝜋

2
). Using the value of ∆𝐼𝑐

𝑚𝑎𝑥 and 
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equation (5.5), it can be seen that the actual magnitude of second harmonic supercurrents 

flowing through the junction in the limit of Φ going to zero is 𝐼2(𝐵𝑦) = −
∆𝐼𝑐
𝑚𝑎𝑥

2
 .  

3. Thirdly, the unprecedented control over 𝛿 leads to the interesting possibility of tuning the 

relative phase and directionality between first and second harmonic components. For example, 

substituting 𝛿 = 𝜋 in equation (3) gives: 

                       𝐼(𝜑)𝛿=𝜋 = 𝐼1 sin 𝜑 + 𝐼2 sin (2𝜑 + 𝜋) = 𝐼1 sin 𝜑 − 𝐼2 sin 2𝜑                   (5.6) 

In this CPR, it can be seen that the first and second harmonic terms are modulated 

by sin 𝜑 and (−sin 2𝜑) respectively due to the relative 𝜋 phase shift between them. It can 

be imagined that the second harmonic supercurrents have a 𝜋 − character while the first 

harmonic supercurrents have a 0 − character. Hence there can be spontaneous second 

harmonic supercurrents created in the junction when 𝛿 = 𝜋 and the position of 𝛿 = 𝑛𝜋 can 

be easily inferred from the nodes in ∆𝐼𝑐. This is an interesting property unique to second 

order 𝜑0-junctions that can be used to control the relative directions of the two 

supercurrents and exploited to make novel supercurrent devices. This is especially useful 

in the situation that the second harmonic supercurrents originate from the highly 

transparent topological states in the system.  

 

δ 𝝋

Having established the existence of Rashba-spin momentum locking in PtTe2, the evolution 

of the Fraunhofer pattern in lateral PtTe2 junctions in the presence of ∆𝐼𝑐  is studied in order to gain 

insight into the CPR of the system. While superconducting quantum interference devices 

(SQUIDs) are the preferred platforms to deduce the current-phase relationship in a system, 

Josephson junctions have the advantage that the distribution of supercurrents in the system may 

also be obtained by analyzing the Fourier transform of the Fraunhofer pattern. The Fraunhofer 

patterns for the critical currents 𝐼𝑐
+ and 𝐼𝑐

− are measured as the function of the magnetic flux Ф 

along the z-direction, under various 𝐵𝑦 is shown in Fig. 5.11(a)-(d) after correcting for flux 

focusing effects127,128 and the finite thickness effect96,97 of the sample as discussed in detail in the 

appendix.  
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Fig. 5.11 Evolution of the Fraunhofer pattern in the presence of ∆𝑰𝒄 for junction L1: (a)-(d) 

shows the experimentally measured Fraunhofer patterns for 𝐼𝑐
+ and 𝐼𝑐

− in the presence of a 

negative 𝐵𝑦 of different magnitudes up to −24 𝑚𝑇. A 0-π junction-like dip is observed in 𝐼𝑐
+ upon 

increasing the magnitude of 𝐵𝑦. (e)-(h) shows the simulated Fraunhofer patterns using a self-

consistent treatment (as described in the appendix section B) for  
𝐼2

𝐼1
= 0.37. A behavior similar to 

that in the experiment with increasing 𝛿 in the CPR is observed. (i)-(l) shows the increasing ∆𝐼𝑐 

with the increasing magnitude of 𝐵𝑦 reaching the maximum value around −24 𝑚𝑇. (m)-(p) 

Simulated ∆𝐼𝑐 using the CPR in equation (5.3) for similar magnetic fields as in the experiment. 

The experimentally observed features including the dip are captured well by the simulation. (q), 

(r) shows the CPRs corresponding to negative and positive 𝐵𝑦 used in the simulations for 
𝐼2

𝐼1
=

0.37. The non-reciprocal response of 𝐼𝑐
+ and 𝐼𝑐

− under |𝐵𝑦| is evident from these simulations. 

 

When 𝐵𝑦 = 0, 𝐼𝑐
+ and |𝐼𝑐

−| lie on top of each other leading to a negligible ∆𝐼𝑐 and the period 

of oscillations is close to a single magnetic flux quantum (Ф0 =
ℎ

2𝑒
) as expected (Fig. 5.9(f)). As 

𝐵𝑦 is increased in the negative direction to −8 𝑚𝑇 and the Fraunhofer pattern is measured again 

(Fig. 5.11(a)), it is observed that the central maxima of 𝐼𝑐
− increases slightly in magnitude while 

the magnitude of the central peak of 𝐼𝑐
+ starts to decrease. As the magnetic field is increased further 

to −12 𝑚𝑇 (Fig. 5.11(b)), −16 𝑚𝑇 (Fig. 5.11(c)) and then to −24 𝑚𝑇, (Fig. 5.11(d)) the central 

peak of |𝐼𝑐
−| doesn’t decrease much in magnitude while the magnitude of the central peak of 𝐼𝑐

+ 

has a sharp decrease in the middle leading to the formation of a sharp noticeable dip in critical 

current where maximum ∆𝐼𝑐 is observed. The roles of 𝐼𝑐
+ and |𝐼𝑐

−| are reversed when 𝐵𝑦 is swept 

in the opposite direction leading to a non-reciprocal behavior with respect to the direction of the 

magnetic field (Refer appendix section F). 

For junction L1, the maximum value of ∆𝐼𝑐 is around −34 𝜇𝐴 at −24 𝑚𝑇, this would give 

𝐼2(−24 𝑚𝑇) to be around 17 𝜇𝐴 and the actual value of  |
𝐼2(0)

𝐼1(0)
| ≈ 0.37. This value of |

𝐼2

𝐼1
| is quite 

substantial and larger than that measured in some semiconductor junctions with high transparency 

like Sn-InSb nanowire junctions126 and comparable to that observed in Al-InAs planar Josephson 
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junctions11. Calculating the Josephson diode efficiency 𝜂 =
2∆𝐼𝑐

𝐼𝑐
++𝐼𝑐

− for this junction at maximum 

∆𝐼𝑐 gives a large value of around 64 % at −24 𝑚𝑇 (Refer next chapter for comparison). 

In order to corroborate the validity of values estimated from the model, the Fraunhofer 

patterns for 𝐼𝑐
+ and 𝐼𝑐

− and consequently ∆𝐼𝑐, for different values of 𝛿 are simulated with |
𝐼2(0)

𝐼1(0)
| ≈

0.37 as shown in Fig. 5.11(e)-(h) and Fig. 5.11(m)-(p) respectively. The corresponding CPRs for 

negative and positive 𝐵𝑦 are shown in Fig. 5.11(q) and Fig. 5.11(r) respectively where the non-

reciprocal response of the critical currents are captured well. The details of the simulation are 

provided in the appendix section B. It is seen that the features of  𝐼𝑐
+ and 𝐼𝑐

− from the simulation 

are in perfect agreement with the experimentally measured curves. The values of ∆𝐼𝑐 from 

experiment sown in Fig. 5.11(i)-(l) are in quantitative agreement with that calculated in the 

simulations using the CPR in equation (5.3). The lifted nodes in ∆𝐼𝑐 arise due to the presence of a 

diffusive supercurrent component in the junction. It is to be noted that the features of the simulation 

that are also observed in experiment such as the sharp peak in 𝐼𝑐
+ around −12 𝑚𝑇 and the observed 

dip in 𝐼𝑐
+ beyond −16 𝑚𝑇 are quite sensitive to the value of 

𝐼2

𝐼1
 and the origin of these features are 

reflected in the calculated CPR curves (Fig. 3q). It can be seen in the CPR curves that as |𝐵𝑦| is 

increased, the critical current in the negative direction (𝐼𝑐
−) first increases in magnitude and then 

starts to decrease gradually with a steady shift in the value of 𝜑 at which it occurs, while in the 

case of 𝐼𝑐
+ there is initially a gradual decrease in its value as 𝐵𝑦 is increased with a shift in the 

value of 𝜑 and then at some threshold value of 𝐵𝑦, there is a jump in the value of 𝜑 at which it 

occurs. This value at which the jump occurs corresponds to the appearance of dip in 𝐼𝑐
+.  

∆𝑰𝒄

Further, the evolution of 𝐼𝑐
+ and 𝐼𝑐

− as a function of 𝐵𝑦 from the Fraunhofer pattern is plotted 

in Fig. 5.12(a) is well replicated by the corresponding simulation with parameters 𝐼0 = 73 𝜇𝐴, 

𝐼1 = 1 𝜇𝐴, 𝐼2 = 0.37 𝜇𝐴, 𝐵𝑐 = 90 𝑚𝑇 and  𝐵𝑑 = 48 𝑚𝑇 presented in Fig. 5.12(b). This intimate 

correlation between the observed features in experiment and the simulations demonstrates the 
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accuracy of the assumed CPR and the value of 
𝐼2

𝐼1
. Fig. 5.12(c) shows ∆𝐼𝑐 as a function of 𝐵𝑦 as 

derived from the Fraunhofer interference pattern at zero magnetic flux. The evolution of ∆𝐼𝑐 

deviates from the expected sinusoidal behavior and increases in magnitude linearly with 𝐵𝑦 till 

±24 𝑚𝑇 and then decreases linearly towards zero. This behavior can be reproduced successfully 

in the simulations by tuning the 
𝐼2

𝐼1
 ratio as shown in Fig. 5.12(d). While  ∆𝐼𝑐 vs 𝐵𝑦 remains 

sinusoidal for lower values of 
𝐼2

𝐼1
, it gradually turns triangular for larger values of 

𝐼2

𝐼1
, also confirming 

the presence of large second harmonic supercurrents in the junction. The experimentally measured 

∆𝐼𝑐 doesn’t reach zero, as we would expect around ±48 𝑚𝑇 possibly due to slight misalignment 

of the sample with respect to the magnetic field, which results in some additional flux. This can be 

shown to be the case through simulations (Refer Appendix F). 

One of the main observations from equation (5.5) is that ∆𝐼𝑐 is expected to oscillate with 

the magnetic flux Φ with half-flux quantum (
𝛷0

2
) period due to the presence of the second 

harmonic term in the CPR and have nodes at every 
𝛷0

2
. The oscillations in ∆𝐼𝑐 with Φ at 𝐵𝑦 =

20 𝑚𝑇 is presented in Fig. 5.12(e). Though the oscillations are expected to be about zero, the first 

few nodes in ∆𝐼𝑐 are lifted from zero just like in the case of Fraunhofer patterns for 𝐼𝑐
+ and 𝐼𝑐

− 

where the lifted nodes encountered can be accounted for by considering a long junction in the 

simulations. The nodes in ∆𝐼𝑐 are observed to be roughly periodic in 
𝛷0

2
, though the position of the 

nodes are hard to ascertain due to them being lifted from zero. The inset of Fig. 5.12(e) shows the 

oscillations in ∆𝐼𝑐 at 𝐵𝑦 = 20 𝑚𝑇 in comparison with the Fraunhofer oscillations of 𝐼𝑐
+ at 𝐵𝑦 =

0 𝑚𝑇. To confirm the periodicity of ∆𝐼𝑐, a Fourier transform of the measured signal is performed 

as 𝐹(𝑚) = ∫ Δ𝐼𝑐(Φ) sin(2𝜋𝑚Φ)  𝑑Φ and compared with the Fourier transform of the simulated 

signal shown in Fig. 5.12(f). The calculated Fourier components shown in Fig. 5.12(g) indicate 

strongly that the major dominating component in ∆𝐼𝑐 is the second harmonic, while there are no 

signatures of other higher harmonics. This is possibly because the third harmonic is weaker and 

also doesn’t contribute directly to ∆𝐼𝑐, while further higher-order harmonics are even weaker to 

contribute meaningfully to ∆𝐼𝑐. 
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Fig. 5.12 Evolution of ∆𝑰𝒄 with δ and φ in junction L1: (a) The evolution of 𝐼𝑐
+ and 𝐼𝑐

− of the 

central peak in the Fraunhofer pattern at positive and negative 𝐵𝑦 after correcting for shifts due 

to  finite thickness and magnetic field misalignment. (b) Simulated evolution of 𝐼𝑐
+ and 𝐼𝑐

− using 

the CPR in equation (5.3). It is found to fairly replicate the experimentally observed features. (c) 

∆𝐼𝑐 from the Fraunhofer patterns calculated after correcting for finite thickness effects in the 

junction. (d) ∆𝐼𝑐 calculated from the simulated Fraunhofer patterns for a wide junction where |
𝐼2

𝐼1
| 

increases in increments of 0.1. The maxima (minima) corresponds to 𝛿 =
𝜋

2
  (−

𝜋

2
). ∆𝐼𝑐 evolves 

from a sinusoidal dependence at low values of |
𝐼2

𝐼1
| to a triangular behavior at higher values of |

𝐼2

𝐼1
|. 

(e) The evolution of ∆𝐼𝑐 with 𝛷 with 𝐵𝑦 = 20 𝑚𝑇. Inset displays clearly the oscillations in 

∆𝐼𝑐  (blue) with nodes appearing roughly at half magnetic flux quantum (
𝛷0
2
) frequency and is 

almost double the frequency compared to the nodes in critical current (𝐼𝑐
+ and 𝐼𝑐

−) interference 

pattern (red) that happens at every magnetic flux quantum (𝛷0). (f) The simulated evolution of 

∆𝐼𝑐 with 𝛷 and  
𝐼2

𝐼1
= 0.37 at 20 𝑚𝑇. The first few nodes, which are lifted from zero in experiment, 

are also found in the simulation and arise due to the geometry of the junction. (g) FFT of the 

experimentally measured and simulated ∆𝐼𝑐 signals using 𝐹[𝑚] = ∫ 𝛥𝐼𝑐(𝛷) 𝑠𝑖𝑛(2𝜋𝑚𝛷)  𝑑𝛷 

show that the Fourier component present in both signals is closer to the second harmonic and 

higher harmonics are absent in experiment. 

Now, we turn our attention to the origin of such a large second harmonic term in PtTe2. 

The presence of such a large second harmonic component in a metallic Josephson junctions made 

over such long separations is quite surprising as it indicates a large transparency of the interface 

between the superconducting electrodes and PtTe2, and the possible presence of Andreev bound 

states due to phase coherent transport across the junction129. Such large transparencies are 

commonly observed in high-mobility semiconducting130 and semi-metallic junctions104 with 

pristine interfaces but it is not the case in metallic junctions due to shorter mean-free paths of the 
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order of just a few 𝑛𝑚. The mean-free path (𝑙𝑒) reported in literature for single crystals of PtTe2 

is around 180 𝑛𝑚 in the 𝑎𝑏 plane131, which is large in comparison with a normal metal. This large 

mean free path in the junction leads to ballistic transport in the junction and can be attributed to 

the significant contribution of the states with helical spin-momentum locking. However, this value 

can be larger in our case, with the reduction in dimensionality. Transparent superconductor-metal 

interfaces in a junction have large critical currents (~𝐼1) owing to large carrier densities and states 

available in the metal, as in our case. Since the second harmonic supercurrent (𝐼2) scales as the 

square of 𝐼1, the ratio 
𝐼2

𝐼1
∝ 𝐼1 and is typically larger in metallic Josephson junctions with larger 𝐼1 

as in our case (~100 𝜇𝐴) as compared to semiconductor Josephson junctions (~1 𝜇𝐴). This is 

advantageous as it allows for easier and clear observation of higher order effects in the junction 

like the oscillations in ∆𝐼𝑐 that we observe.  

The superconducting coherence length (𝜉 =
ħ𝑣𝐹

𝜋∆0
) of L1 is calculated to be around 200 𝑛𝑚 

at zero temperature using the average value of 𝑣𝐹 ≈ 3.3 × 10
5 𝑚𝑠−1 reported in literature131 for 

PtTe2. It is neither clearly in the short or long junction limit in comparison with the junction 

separation (390 𝑛𝑚) and with change in temperature. It lies in the intermediate regime and it is 

not straight forward to determine the transparency of the junction by fitting 𝐼𝑐(𝑇) using a standard 

model for a long junction as the critical current starts to saturate at temperatures below 500 𝑚𝐾. 

Instead, we look at another property of transparent junctions that is the result of coherent Andreev 

reflections, excess current to extract the total transparency of the junction. Excess currents (𝐼𝑒) are 

obtained by linear extrapolation of the 𝐼 − 𝑉 curve above the critical current back to zero voltage 

as shown in Fig. 5.13(a). The existence of 𝐼𝑒 in a highly transparent junction with phase-coherent 

Andreev reflections is explained by the Octavio-Tinkham-Blonder-Klapwijk (OTBK) model132-

134. The 𝐼𝑒 for L1 at 20𝑚𝐾 is around 9 𝜇𝐴 which corresponds to a transparency parameter of 

around 0.45 for a value of 𝑍 = 1.1134. The presence of large excess currents in the junction is an 

evidence for coherent transport across the junction. 

The 𝐼𝑐(𝑇) for junctions L1, L3 and L4 can be seen in Fig. 5.13 (d), (b) and (c) respectively. 

𝐼𝑐(𝑇) shows concave behavior at higher temperatures but the behavior changes to convex below 

500 𝑚𝐾 and there is plateauing of the critical current. It can be seen clearly that as the separation 

between the electrodes increases, the plateauing nature is pushed towards lower temperatures and 
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vanishes for the largest separation L4. The transparency of the other junctions L3 and L4, which 

are clearly in the long junction limit (𝑑 ≫ 𝜉) can be obtained by fitting the critical current as a 

function of temperature in the long junction limit135,136 given by 𝐼𝑐(𝑇) = 𝜂
𝑎𝐸𝑇

𝑒𝑅𝑛
[1 − 𝑏𝑒

−𝑎𝐸𝑇
3.2𝑘𝐵𝑇] over 

the entire temperature range. 𝑎 and 𝑏 are constants. 𝐸𝑇 is the Thouless energy and 𝑅𝑛 is the normal 

state resistance.  

 

   (a)                                         (b)                                            (c)  

 

   (d)                                         (e)                                            (f) 

  

Fig. 5.13 Transparency of PtTe2 Josephson junctions: (a) The 𝐼 − 𝑉 curve for L1 junction 

measured at 20 𝑚𝐾 shows the presence of excess currents around 9 𝜇𝐴 indicating coherent 

transport across the junction and a transparency of around 0.45 derived from the OTBK model. 

(b), (c) 𝐼𝑐(𝑇) for junctions L3 and L4 are fit with an equation corresponding to the long junction 

limit yielding a transparency of around 0.436 and 0.428 respectively. (d) 𝐼𝑐(𝑇) for junction L1 

with 𝐼𝑐 starting to saturate below 500 𝑚𝐾. (e) 𝐼𝑐(𝑇) for 𝐼𝑐
+ and 𝐼𝑐

− at −24 𝑚𝑇 for L1 shows that 
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𝐼𝑐
− has a larger energy gap at low temperatures (∆0) in comparison with 𝐼𝑐

+ for which ∆0 is strongly 

suppressed by the magnetic field. (f) |∆𝐼𝑐(𝑇)| as derived from 𝐼𝑐
+ and 𝐼𝑐

− measured from the 

Fraunhofer pattern. 

 

The extracted transparency from the fits for L3 and L4 (Fig. 5.13(b) and (c)) is around 

0.436 and 0.428 respectively, which is similar to the value extracted from excess currents for L1. 

The transparency is not close to one due to contribution of the diffusive bulk sates that are not 

spin-momentum locked as expected for a topological metal with multiple bands crossing the Fermi 

level in addition to the spin-momentum locked states. Another signature of coherent transport 

across the junction is the presence of multiple Andreev reflections (MAR)129. Owing to the small 

resistance of the junction (0.372 𝛺), very large currents are required to reach the voltages at which 

MAR can be observed, which are beyond the critical currents of the superconducting electrodes 

and hence can’t be observed directly. However, some signatures of resonance are observed in the 

differential resistance of the junction in the finite voltage state when the critical currents are 

suppressed by high magnetic fields (Refer appendix section F) indicating that the coherence 

persists even in the presence of large magnetic fields. 

 

In summary, we have shown through measurements of ∆𝐼𝑐 that the topological semimetal 

1T-PtTe2 shows a large JDE due to Cooper pair momentum induced by the helical spin-momentum 

locking in the bulk Dirac cones under a Zeeman field. While extrinsic effects such as SFE can also 

give rise to a JDE in wide Josephson junctions, it is shown that near uniform current distribution 

can be achieved by using a criss-crossed measurement geometry and the observed JDE is likely 

arising due to the intrinsic properties of PtTe2 in combination with Meissner screening. 

Furthermore, it is evidenced from the evolution of the Fraunhofer oscillations together with 

simulations that these junctions exhibit a second order 𝜑0-junction behavior with the presence of 

a strong second harmonic term (
𝐼2

𝐼1
≈ 0.37), as calculated from the ∆𝐼𝑐. ∆𝐼𝑐 is also shown to have 

oscillations with nodes occurring at every (
𝛷0

2
) magnetic flux, further confirming the existence of 
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the proposed 𝛿-dependent CPR. Further, the extracted second harmonic supercurrents (𝐼2) in 

different devices (L1, L3 and L4) scale quadratically with 𝐼𝑐  (Fig. 5.15) as expected from equation 

(4.3) validating the analysis of the junctions with this CPR. 

 

 

Fig. 5.14 Coherent Andreev processes promoted by the helical spin-momentum locking in PtTe2: 

The helical spin-momentum locking of the Dirac cones in PtTe2 prevent the normal reflection of 

electrons due to non-availability of spin states to reflect back and thereby promoting the coherent 

Andreev processes leading to higher harmonics in the supercurrent. 

The transparency in these junctions can be attributed to the good interface of the 

superconductor with PtTe2 due to its chemical stability and the presence of ballistic channels with 

long range coherence due to the protection offered by helical spin-momentum locked states of the 

bulk Dirac cone in PtTe2
56

 to normal reflections as has been reported previously in Josephson 

junctions of some topological semimetals and other systems103,137,138. The large spin-orbit coupling 

effect at small magnetic fields as evidenced from the non-zero momentum of the Cooper pairs 

indicates a large (
𝑔

𝑣𝐹
) ratio in PtTe2. Large 𝑔-factors of similar order have been reported in some 

topological semimetals108 and semiconductor heterostructures109,139. The large spin-orbit coupling 
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and Zeeman splitting with small magnetic fields coupled with the reasonable mean free paths in 

the van der Waals Dirac semimetal PtTe2 provides an interesting alternative platform to engineer 

topological superconductivity in planar Josephson junctions140,141 as has been demonstrated before 

in Josephson junctions of HgTe142 and InAs143 quantum well structures. One of the major 

challenges in the current existing platforms for realizing topological superconductivity is the 

engineering of high quality interfaces144,145. The complete air stability of PtTe2 and of the 

topological states allow for creation of high quality interfaces with superconductors without many 

complications. Andreev bound state spectroscopy using a tunnel probe can be used to probe the 

presence of a Majorana bound state in the system and it would also be of interest to study the 

Andreev bound state spectrum in the presence of a diode effect in the future. The 𝛿-dependent 

CPR in second order 𝜑0-junctions provides a mode of continuous phase tuning between the first- 

and second-harmonic supercurrents in the junction thereby separating supercurrents passing 

through the topological channels from that of trivial supercurrents, which can be of use in to useful 

applications in topological quantum circuits and other superconducting electronics. 

PtTe2 

device 

Separation 

𝒅 (𝒏𝒎) 
Critical 

current 

𝑰𝒄 (𝛍𝐀)  

𝑹𝑵 (𝛀) 𝑰𝒄𝑹𝑵 (𝛍𝐕) Second 

harmonic 

𝑰𝟐 (𝛍𝐀) 

Transparency 

𝝉 

L1 390 73 0.37 27.156 19.7 0.45 (from 𝐼𝑒) 

L3 466 24 1.2 28.8 1.898 0.435 

L4 597 13.4 1.72 23.04 0.52 0.427 

 

Table 5.1 Summary of PtTe2 junctions: Table contains the information of the measured 

parameters in lateral PtTe2 junctions with different separations.  
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Fig. 5.15 Evolution of second-harmonic supercurrents with 𝑰𝒄 in PtTe2: The log-log plot of the 

evolution of 𝐼2 with 𝐼𝑐 shows that the extracted second-harmonic supercurrents scale quadratically 

(slope ~ 2) with the critical current as expected from equation (4.3), further validating the CPR. 
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Various aspects of the supercurrent diode effect have been explored in different materials 

along different directions since its discovery in 20206 and it has been the central theme of multiple 

studies published during the time of writing this thesis11,114,115,125,126. Though a lot of emphasis has 

been on improving the efficiency of the diode effect and creating diode effect without an external 

magnetic field, the diode effect can be used to study the properties of the material or the Josephson 

junction as in this thesis.  As mentioned earlier, the inversion and time reversal symmetry breaking 

criteria required for the existence of a supercurrent diode effect is quite interesting as it also the 

condition required for many forms of unconventional superconductivity. This makes the diode 

effect a powerful and useful tool to investigate novel superconducting phases, which are hard to 

probe by other experimental methods. For example, a time-reversal symmetry breaking chiral 

superconducting state has been reported in Sr2RuO4 junctions146 through the appearance of 

spontaneous chaotic diode effect in the absence of an external magnetic field due to the varying 

chiral domain distribution during each cool down. Though a spontaneous diode effect was 

observed in the same system almost 20 years prior147, it was not analyzed from a time-reversal 

symmetry breaking perspective and was attributed to an anomalous Josephson behavior. 

Meanwhile a universal Josephson diode effect based on the Meissner screening currents in short 

lateral Josephson junctions independent of the characteristics of the junction material has also been 

proposed106.  

In this thesis, we have explored in detail the JDE in air-stable, exfoliated 1T-transition 

metal dichalcogenides 1T-NiTe2 and 1T-PtTe2 with helical spin-momentum locking arising from 

the hidden inversion symmetry breaking in the crystal structure. It has been shown that the 

electrical transport properties, especially in the superconducting state strongly reflect this 

structural property. Both these materials show very large diode effect in the separations explored 

at relatively low magnetic fields in comparison with other materials such as InAs. The origin of 

JDE is attributed mainly to the Zeeman shift of the states with helical spin-momentum locking in 

the presence of a magnetic field perpendicular to the direction of current that can provide a finite 

center-of-mass momentum to the Cooper pairs in the direction of current that leads to asymmetric 

and non-reciprocal superconducting energy gaps in the Josephson junction and ultimately a diode 

effect. 
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In the case of NiTe2 Josephson junctions, the JDE is analyzed as a function of the magnetic 

field magnitude, direction and temperature and compared with a Ginzburg-Landau model of a 

Josephson junction with a higher harmonic term to ascertain this. The finite momentum of the 

Cooper pairs has also been measured independently through the evolution of the Fraunhofer 

pattern in the presence of an in-plane magnetic field. Alternative origin of these observations in 

terms of Meissner screening currents is also discussed. The observed diode effect is most likely a 

combination of both these effects. Some basic checks can be performed that the obtained 

momentum shifts are reasonable. The value of the measured finite momentum at 12 𝑚𝑇 is around 

2𝑞𝑥 = 4.5 × 10
6 𝑚−1 which are realistic values of momentum shifts that are 3-4 orders of 

magnitude smaller compared to the size of the Brillouin zone. Moreover, the critical momentum 

of the junction can be estimated from the superconducting coherence length as 𝑝𝑐 =
ħ

√3𝜁(𝑇)
 where 

𝜁(𝑇) =
ħ𝑣𝐹

𝜋∆
 is the coherence length of the junction. This gives the value of critical momentum at 

which depairing occurs to be around 𝑞𝑐 = 3.92 × 107 m–1, which is almost an order of magnitude 

larger than the measured momentum of Cooper pairs. Hence, it is possible to host pairs with such 

momenta without causing depairing in the junction. Similar magnitudes of center-of-mass 

momentum in Cooper pairs have also been obtained in a 2D superconductor Ba6Nb11S28
37. 

 In the case of PtTe2, JDE due to the helical spin-momentum locking in the bulk Dirac cones 

at the Fermi level is measured in lateral Josepshon junctions. JDE characteristics similar to that in 

NiTe2 are observed. No spin-momentum locking is found in the vertical junctions indicating the 

absence of any spin momentum locking along the c-axis of the crystal. Importantly, the role of 

extrinsic mechanisms such as self-field effect and geometric shape inversion asymmetry in 

creating a JDE is discussed in detail. It is shown that the JDE from self-field effects in a wide 

junction can be avoided by using the right terminals of the electrodes to source current. This is 

important to ensure a uniform distribution of supercurrents in the junction and avoid erroneous 

conclusions on the JDE. A generic CPR model is used to study the Fraunhofer pattern and the 

evolution of JDE as a function of the magnetic flux, which was not done in the case of NiTe2. This 

CPR expanded to the second harmonic term is dubbed as a ‘second order 𝜑0 junction’ CPR. 

𝐼(𝜑) = 𝐼1 sin 𝜑 + 𝐼2 sin (2𝜑 + 𝛿) 
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 This CPR is shown to be different from typical 𝜑 − and 𝜑0 − junction CPRs116-123 and has unique 

properties such as the relative tuning of phase difference between the two harmonics in the 

junction. The JDE is found to be directly proportional to the value of second harmonic term in the 

CPR. The value of the second-harmonic term is obtained from the experimental measurements of 

JDE and the ratio of  |
𝐼2

𝐼1
| is used to simulate the Fraunhofer patterns in the wide junction limit. The 

simulated Fraunhofer patterns are in great agreement qualitatively with those measured 

experimentally. Moreover the second harmonic nature of ∆𝐼𝑐  predicted from the CPR is confirmed 

by measuring its oscillations as a function of the magnetic flux. Nodes in ∆𝐼𝑐  are found to appear 

every half flux quantum. The Fourier transform of the measured signal is used to confirm its second 

harmonic nature, hence further validating the CPR used. The origin of the large second harmonic 

term in this metallic junction is discussed in terms of the states with helical spin-momentum 

locking that strongly suppress normal reflections. Fitting the 𝐼𝑐(𝑇) curves with a long diffusive 

junction equation provides a transparency close to 0.42-0.43 for L3 and L4 while excess currents 

are used to evaluate the transparency of L1. The presence of excess currents in the junction is 

already an indication of the presence of coherent Andreev processes occurring in the junction. The 

transparency of the junction estimated from the excess currents is around 0.45. This transparency 

indicates that there are both bulk diffusive channels and ballistic channels contributing to the 

transport of supercurrents. Since the second harmonic supercurrents are primarily carried by the 

helical states, it is possible to isolate them from the first harmonic contribution carried by the 

diffusive states by tuning to specific values in the 𝛿 − Φ phase space. This is a feature quite unique 

to second order 𝜑0 − junctions. 

Thus, the study of JDE in this system has exposed interesting properties of this new CPR 

that help further increase the functionality of Josephson junctions. The presence of self-field 

effects in the junction can also be used to create a Josephson diode effect in the absence of a 

magnetic field using a three-terminal geometry as discussed in appendix section G. This topic 

requires further investigation in the future as it is a technologically promising route to create JDE 

in the absence of an external magnetic field. It can work just by tweaking the geometry of the 

junction and the terminals, without the need for exotic materials that break time reversal symmetry 

in the superconducting state.  
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It is to be noted that though a finite momentum state is created in these systems, it is 

different from a Fulde-Ferrell (FF) state9 that is created when the Fermi surface of the material is 

spin split due to an exchange field. In that case, pairs with center-of-mass momentum 𝒒 and −𝒒 

are created in equal numbers and hence the suppression of the superconducting gap would be 

identical in both directions. Thus in an FF state,  the presence of finite momentum Cooper pairs 

does not host a supercurrent diode effect even though it has finite-momentum superconductivity 

with spatial modulation of the superconducting order parameter. 

 

Fig. 6.1 Evaluation of Josephson diode efficiency in various materials: The efficiency for various 

Josephson junction based diodes is presented1,2,7,110, including the current work. The efficiency of 

∆𝐼𝑐 in NiTe2 and PtTe2 goes up drastically with decreasing separation and increasing the width of 

PtTe2 junctions. 

 



 
 

148 
 

 The chart of materials in which the Josephson diode effect has been explored is shown in 

Fig. 6.1. Field-free Josephson diode effect has been observed in Nb3Br8 junctions and Pt/YIG 

junctions, though with relatively low efficiencies. InAs quantum well Josephson junctions require 

a magnetic field of around 75 𝑚𝑇 to achieve their maximum efficiency of around 60 % and their 

critical currents are typically low due to the semiconducting nature of InAs. NiTe2 and PtTe2 

require relatively low fields to create a Josephson diode effect and have large efficiencies that can 

be controlled by decreasing the separation. As discussed above and in appendix section G, it would 

be of interest to explore the possibility of more efficient field-free Josephson diodes through self-

field effects in junctions made from these materials for practical applications. 

 Though the origin of finite-momentum Cooper pairing is discussed in terms of both the 

helical spin-momentum locking and Meissner screening supercurrents, the presence of a strong 

second-harmonic supercurrents, the presence of excess currents and the non-sinusoidal oscillations 

from SQUID (Fig. F5) all support the significant contribution of phase-coherent channels in the 

junction to the transport of supercurrents. The presence of these channels in a material with a large 

electron density can be attributed to the suppression of normal reflections offered by the states 

with helical spin-momentum locking. Hence, these states either directly or indirectly contribute 

significantly to the observed JDE as there can be no JDE without higher harmonics in the junction 

offered by the transparency of the helical spin-momentum locked states. 

 It would be also of great interest to explore the possibility of engineering topological 

superconductivity in these systems as expected for planar Josephson junctions with high spin-orbit 

coupling in a magnetic field140-143,148. Studying the Andreev bound states through tunneling 

spectroscopy can be used to probe the existence of Majorana bound states but it can also provide 

useful information on the Andreev bound state spectrum in these systems hosting a diode effect 

and help in further demystifying the underlying mechanism. Since, it is possible to tune the  𝛿 − Φ 

parameters to maximize the impact of the highly transparent ballistic channel in the junction; it 

presents the unique opportunity of identifying and isolating topological supercurrents from the 

supercurrents induced by the trivial bulk. 
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 The superconducting diode effect discovered in 2020 required an external magnetic field 

to break the time-reversal symmetry that led to non-reciprocal supercurrents in the 

superconducting heterostructure. However, for applications in superconducting logic devices it 

would be advantageous to obtain the diode effect without the need for external magnetic fields. 

This is possible to obtain in devices with intrinsic time-reversal symmetry breaking. The presence 

of a Josephson diode effect without the application of an external magnetic field was first reported 

in a vertical heterostructure of NbSe2/Nb3Br8/NbSe2. Heng Wu and Yaojia Wang were the lead 

authors of this study and I performed the electrical transport measurements on the diode effect 

with them. A short summary of the results from the publication2 are presented here. 

 

 

Fig. A.1 Schematic of the vertical Josephson junction and 𝑰 − 𝑽 curve for the junction: (a) A 

depiction of the vertical junction with a Nb3Br8 flake sandwiched by two NbSe2 flakes on both 

sides. (b) The current-voltage characteristic of such a junction. Inset shows a close-up optical 

image of the junction. (c) A close analysis of the current voltage curve shows that there is a small 

difference in the magnitudes of 𝐼𝑐
+ and 𝐼𝑐

−at zero field. Figure reproduced with permission from 

ref.2 , Springer Nature. 

 

 Vertical Josephson junctions of three layer thick Nb3Br8 were fabricated with NbSe2 flakes 

on the top and bottom with a dry transfer technique. The whole heterostructure was covered with 
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a hBN (hexagonal boron nitride) on top. The current voltage characteristics of the junction at 

20 𝑚𝐾 is shown in Fig. A.1. In the absence of any external magnetic field, there is a small 

asymmetry between the positive and negative critical currents, around 500 𝑛𝐴. When a current 

between 𝐼𝑐
+ and |𝐼𝑐

−| is applied, zero voltage is obtained along one direction and a finite non-zero 

voltage is observed in the opposite direction as shown in Fig. A.2. The magnetic field dependence 

of ∆𝐼𝑐  shows interesting behavior. Unlike the other supercurrent diode effects discussed 

throughout the thesis which are antisymmetric with respect to the magnetic field, ∆𝐼𝑐 in Nb3Br8 is 

symmetric with respect to an out-of-plane magnetic field and persists within a range of ± 35 𝑚𝑇, 

beyond which it vanishes to zero. Similar field-free effects ∆𝐼𝑐  is observed in a few more junctions 

of Nb3Br8
2. The origin of time-reversal symmetry breaking in these Nb3Br8 junctions are still not 

clear, as Nb3Br8 is not magnetic in nature. A few possibilities are discussed in the paper including 

the obstructed atomic insulating nature of Nb3Br8
2. 

 

 

Fig. A.2 Non-reciprocal voltages in Nb3Br8 junction: (a) Non-reciprocal voltages are observed 

in zero field depending on the direction of the current. Positive current gives a finite voltage while 

negative current gives zero voltage. (b) The observed non-reciprocal effect is robust and lasts over 

multiple cycles. Figure reproduced with permission from ref.2 , Springer Nature. 
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Fig. A.3 Magnetic field dependence of ∆𝑰𝒄 in Nb3Br8 junctions: (a),(b) ∆𝐼𝑐 is non-zero at zero 

magnetic field, found to be symmetric with respect to the magnetic field and vanishes above 35 

mT. Figure reproduced with permission from ref.2 , Springer Nature. 

 

Consider the Josephson junction under a uniform out of the plane magnetic field 𝐵0𝑧. Since 

the superconducting leads’ thicknesses (1 𝜇𝑚) are much larger than the London penetration depth 

of niobium (𝜆𝐿 ∼ 100 𝑛𝑚), we assume that the magnetic field is non-zero only near the junction. 

We are interested in a regime in which the supercurrent flow and the junction geometry affect the 

phase 𝜑, and the changes in the magnitude of the order parameter is considered in the junction 

CPR phenomenologically. In the presence of magnetic fields, the phase 𝜑 obeys the differential 

equations  

       
𝜕𝜑

𝜕𝑦
=

2𝜋𝑑eff

Φ0
𝐵𝑧,

𝜕𝜑

𝜕𝑧
= −

2𝜋𝑑eff

Φ0
𝐵𝑦 ,     

𝜕𝜑

𝜕𝑥
= 0                                              (𝐴1) 

where 𝑑eff = (𝐿 + 2𝜆𝐿) is the effective junction length. Since the junction thickness in the 𝑧 

direction (𝑡 ∼ 17.5 𝑛𝑚) is much less than London penetration depth, we consider a uniform 𝐵𝑦 . 
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This leads to the following solution for the phase 𝜑 = 𝜑(𝑦) −
2𝜋𝑑eff

Φ0
𝐵𝑦𝑧.  As a result, we can 

integrate out the 𝑧 direction in the CPR, which effectively reduce it to a 2D CPR, 𝐽𝑥(𝑦) =

∫ 𝐽𝑥(𝑦, 𝑧)
𝑡/2

−𝑡/2
𝑑𝑧. This effectively decreases the critical current as the penetrated magnetic flux in 

the 𝑦 direction (𝐵𝑦. 𝑡𝑑eff) increases. When the current density is sufficiently strong, the 

supercurrent flow in the junction tends to screen the magnetic field from the interior of the 

junction26, and the magnetic field satisfies the Maxwell equation  

                                                                  
𝜕𝐵𝑧

𝜕𝑦
≈

𝛼

𝑑eff
. 𝜇0𝐽𝑥(𝑦)                                                         (𝐴2) 

The factor 
𝛼

𝑑eff
 is a correction to the 2D current density obtained in literature149 for coplanar 

junctions, 𝛼 is a dimensionless parameter that depends on the junction details, and 𝜇0 is the 

permeability of free space. Now, combining equations (𝐴1) and (𝐴2), we get 

                                                          
𝜕2𝜑

𝜕𝑦2
=

2𝜋𝛼 𝜇0

Φ0
𝐽𝑥(𝑦) =

1

𝜆𝐽
2

𝐽𝑥(𝑦)

𝐽𝑐
                                                    (𝐴3) 

where 𝜆𝐽 = √
Φ0

2𝜋𝛼𝜇0𝐽𝑐
 is the Josephson penetration depth, 𝐽𝑐 is the critical current density. It can be 

noted that when 𝐽2 = 0,   equation (𝐴3) reduces to the usual wide junction limit with a sinusoidal 

CPR, the so-called static sine-Gordon equation. Employing Ampere’s law, we get the following 

boundary conditions for the phase gradient 

         
𝜕𝜑

𝜕𝑦
|
0
= 𝑏0 + 𝑎1𝑏𝑠                                                    (𝐴4) 

         
𝜕𝜑

𝜕𝑦
|
𝑤
= 𝑏0 + 𝑎2𝑏𝑠                                                    (𝐴5) 

where 𝑏0 ∝ 𝐵0𝑧, 𝑏𝑠 =
1

𝜆𝐽
2 𝐽𝑐
𝐼 with 𝐼 = ∫ 𝐽𝑥(𝑦)𝑑𝑦

𝑊

0
 being the total supercurrent flowing in the 

junction. The same-side and opposite-side (criss-crossed) biasing can now be easily adopted by 

(𝑎1, 𝑎2) = (0,1) and (−1/2, 1/2), respectively. These choices satisfy 
𝜕𝜑

𝜕𝑦
|
𝑤
−
𝜕𝜑

𝜕𝑦
|
0
= 𝑏𝑠. It is clear 

that the total current affects the solutions of the phase and the phase, in turn, determines the current 
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density. As a result, these equations are solved self-consistently. In order to obtain the Fraunhofer 

patterns, we find the maximum and minimum total supercurrents that satisfy the boundary 

conditions with the external magnetic field 𝐵0𝑧, that is, 𝐼𝑐
+ = max[𝐼] and 𝐼𝑐

− = min[𝐼]. At zero in-

plane field 𝐵𝑦 = 0, we obtain 𝐽𝑐 = 𝐽1 =
𝐼𝑐

𝑤
≈ 12 𝐴𝑚−1 , which leads to 𝜆𝐽 ≈

1

√𝛼
4.5 𝜇𝑚. Fig. 5.8 

(c) and (f) in the thesis present the simulated Fraunhofer patterns with 𝛼 = 2 and 𝑏0 = 6.6 ×

105𝐵0𝑧(𝑚𝑇) for same-side and opposite side biasing, respectively.  

It has been shown theoretically that in a lateral Josephson junction where the 

superconducting electrodes have different widths, the geometry of the junction can give rise to a 

tunable phase 𝜑0, which can be controlled by the external magnetic flux150. The CPR for such 

junctions is of the following general form: 

𝐼(ϕ) = 𝐼0(Φ) sin[ϕ + φ0(Φ)], 

where 𝐼0(Φ) and φ0(Φ) are geometry-dependent functions. This is because there is a net flow of 

current induced by the orbital response due to the magnetic flux, even at 𝜙 = 0. As a result, the 

anomalous magnetic flux-coupled CPR is such that the equilibrium phase difference is different 

from conventional 𝜙 = 0, i.e., 𝐼(ϕ = −φ0) = 0. The superconducting electrodes in L1 are of 

different widths and obey the modification in the CPR, in this case. 

For junction L1, we observe that I0(Φ) = I1 and 𝜑0(Φ) = arctan [β (
Φ

Φ0
)
2
] can describe 

the cusp-like local minimum of Fraunhofer pattern for 𝐼𝑐
+ found in Fig. 3d of the main text at 𝐵𝑦 =

−24 𝑚𝑇 and |Φ| < Φ0 where the parameter β controls the depth of the local minimum. We note 

that the dip in the critical current of the Fraunhofer pattern is a characteristic feature of 0 − 𝜋 

junctions but we do not observe any 0 − 𝜋 transition in the simulations of the CPR. A crucial 

difference here is that this feature is absent for 𝐼𝑐
− indicating that this dip-like feature arises purely 

due to the geometry of the junction.  

As a result, our CPR used in the simulations of the junction L1 reads 

𝐼 = 𝐼1 sin[𝜙 + 𝜑0(𝛷)] + 𝐼2 sin[2𝜙 + 𝛿], 
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where 𝐼2 is a correction due to the second harmonic term. We note that, in the presence of an in-

plane magnetic field 𝐵𝑦, we have 𝐼𝑘 = 𝐼0𝑘 (1 −
𝐵2

𝐵𝑐
2)
𝑘

 . In the experimental Fraunhofer patterns, we 

have 𝛵𝐼𝑐
+(𝐵𝑦, 𝐵𝑧) = −𝐼𝑐

−(−𝐵𝑦 , −𝐵𝑧), where 𝛵 is the time-reversal operator. As a result, we can 

say that there is no stray magnetic fields in the junction. This implies that 𝛽 ∝ 𝐵𝑦. For Δ𝐼𝑐, we 

obtain  

Δ𝐼𝑐 = 𝐼𝑐
+(Φ, 𝛿) − |𝐼𝑐

−(Φ, 𝛿)|, 

𝐼𝑐
±(Φ, 𝛿) = 𝑓±(Φ, 𝛿) 

sin(
𝜋Φ
Φ0
)

𝜋Φ
Φ0

 

where 

𝑓+(Φ, 𝛿) = max
𝜙
[ 𝐼1sin(𝜙 + φ0(Φ)) + 𝐼2 sin(2𝜙 + 𝛿) cos(𝜋Φ/Φ0)] 

𝑓−(Φ, 𝛿) = min
𝜙
[ 𝐼1sin(𝜙 + φ0(Φ)) + 𝐼2 sin(2𝜙 + 𝛿) cos(𝜋Φ/Φ0)] 

which gives 

Δ𝐼𝑐 =
sin(

𝜋Φ
Φ0
)

𝜋Φ
Φ0

 Δ𝑓, 

where Δ𝑓 ≡ 𝑓+ − 𝑓−. Here, we find the extrema of 𝑓± within the range −𝜋 ≤ 𝜙 ≤ 𝜋. For small 

𝐼2/𝐼1, this reduces to  

Δ𝐼𝑐 = −2𝐼2 sin 𝛿  
sin (

2𝜋Φ
Φ0

)

2𝜋Φ
Φ0

 

which is the same as that obtained in equation (5) of the main text. Though the parameter β 

modifies 𝐼𝑐
+ and 𝐼𝑐

− of L1 under a magnetic flux (Φ), this additional term in the CPR, φ0(Φ) has 
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no bearing on the magnitude or periodicity of Δ𝐼𝑐   at Φ = 0. Hence, the CPR discussed in the main 

text holds in general and can be used to explain the main experimental results on Δ𝐼𝑐  in the main 

text. 

The lifted nodes encountered in the Fraunhofer patterns can be accounted for by adding the 

contribution of a long diffusive junction (assuming 𝐿 > ℓ where ℓ is the electron mean free path) 

as  

𝐼𝐷
± = 𝛼 𝐼𝑐

±(0) 𝐸
−𝜎2(

Φ
Φ0

)
2

, 

where 𝛼 and 𝜎 are constant. As a result,  

𝐼𝑐,tot
± = 𝐼𝑐

±(Φ) + 𝐼𝐷
±. 

 

 In order to properly estimate the period of oscillations in the observed diffraction pattern, 

it is important to precisely calculate the effective area of the junction through which the Josephson 

current flows and the effective magnetic flux through the junction. This is done by first calculating 

the effective area of the junction including the London penetration depth and then the effective 

flux through the junction including flux focusing effects. 

Since the junctions on the PtTe2 flake are shaped like a trapezoid, which is a regular 

quadrilateral, it makes the calculation of the effective junction area easier. While calculating the 

area of the junction, it is important to take into account the London penetration depth (𝜆) of the 

niobium electrodes that can increase the effective separation between the two superconducting 

electrodes. The London penetration depth for thin films of niobium can vary from 37 𝑛𝑚, which 

is the bulk value up to 200 𝑛𝑚 for different thicknesses and temperatures151-153. We use a 𝜆 value 

of ~ 100 𝑛𝑚 as reported in literature151 for films of thicknesses used in our junctions. That would 
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make the effective junction separation to be 𝑑𝑒𝑓𝑓 = (2𝜆 + 𝑑). Then the area of the junction is 

calculated by using the formula for area of a trapezium 𝐴 = (
𝑎+𝑏

2
) . 𝑑𝑒𝑓𝑓, where 𝑎 and 𝑏 are lengths 

of the edges of the junction along the electrodes. Using the values estimated from the SEM image 

in Fig. 5.7, this would give an effective junction area of around 3.5665 𝜇𝑚2 for L1. If we use this 

as the area of the junction, the magnetic flux through the junction can be calculated as Ф = 𝐵𝑧 . 𝐴 

and this magnetic flux normalized to the magnetic flux quantum (Ф0 =
ℎ

2𝑒
) would be (

Ф

Ф0
). The 

Fraunhofer pattern in these units in presented in Fig. S8a. As it can be observed, the period of 

oscillations seem to be around (
Ф0

2
). Ideally, this would only be possible in the case where the 

second harmonic term in the current-phase relationship (CPR) is the dominant term and the first 

harmonic component is virtually non-existent in the junction. The expected Fraunhofer patterns 

for various ratios of the second and first-harmonic components (
𝐼2

𝐼1
) is presented in Fig. C.1. It can 

be seen that in order to obtain prominent second harmonic oscillations, as we do in our 

measurements the second order term (𝐼2) needs to much larger than the first-order term (𝐼1). 

However, we argue that this is not the case in our junctions as the second order term stems as a 

perturbation and can’t be larger than the first-order term. We also argue that the observed period 

is purely coincidental due to the effect of flux focusing that is very well known to occur in lateral 

Josephson junctions.127,128 
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Fig. C.1 The calculated Fraunhofer interference pattern for various values of 𝑰𝟐 𝑰𝟏⁄ :  (a)-(d) 

The simulated Fraunhofer patterns expected for various values of 𝐽2 𝐽1⁄ ≡ 𝐼2 𝐼1⁄ . It can be seen 

that in order to get prominent (
Ф0

2
) −periodic oscillations as we observe in our measurements, the 

ratio of 𝐼2 𝐼1⁄  needs to be very large. 

When a magnetic field is applied to a lateral Josephson junction, the Meissner screening 

currents in the superconducting electrodes deflect a portion of the magnetic flux towards the 

junction that results in an increased effective magnetic flux than that expected. This is known as 

the flux focusing effect, which modifies the expected spacing of nodes in Fraunhofer pattern from 

Φ to some ΓΦ, where the flux scaling factor Γ is given by128: 

Γ =
𝑛Φ0

𝐵𝑧
(𝑛)
𝐿𝑊

, 

where 𝐿 = 590 𝑛𝑚, 𝑊 ≈  6 𝜇𝑚 are the junction length and width (for junction L1). 𝐵𝑧
(𝑛)

is the out 

of the plane magnetic field at node 𝑛. A uniform spacing of the nodes are observed as the niobium 

electrodes are deep in the superconducting state at 20 𝑚𝐾 and the Meissner screening effects are 

constant over the scanned range of 𝐵𝑧. For 𝑛 = 1, we have 𝐵𝑧
(𝑛)

= 0.3 𝑚𝑇, which gives Γ ≈ 1.9 
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that accounts for the observed ~(
Ф0

2
) period of the oscillation in the measurements. The Fraunhofer 

pattern after flux focusing correction is presented in Fig. C.2. The period of oscillations match well 

with the expected Ф0 after accounting for flux focusing effects. 

 

Fig. C.2 The Fraunhofer interference pattern for L1 under before and after correcting for flux 

focusing: (a) The as-plotted Fraunhofer patterns for both 𝐼𝑐
+ and 𝐼𝑐

− are found to have a (
Ф0

2
) 

period before flux focusing correction (𝛤 = 1). (b) The Fraunhofer pattern after correcting the 

applied magnetic flux with the calculated flux scaling factor (𝛤~1.9) matches well with the 

expected Ф0 period. 

 

When the critical current of the junction is measured as a function of the magnetic flux 

along the 𝑧-axis (𝐵𝑧) which induces a phase difference between the superconducting electrodes, 

we see the expected Fraunhofer interference pattern. When the Fraunhofer pattern is mapped as a 

function of different in-plane magnetic fields along the 𝑦-axis (𝐵𝑦), we observe that there is a shift 

of the whole Fraunhofer pattern along the 𝐵𝑧 axis with increasing 𝐵𝑦, which can be identified by 

tracking the position of the central maxima. The reason for this shift is the finite thickness of the 
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sample (17.5 𝑛𝑚), which causes the applied 𝐵𝑦 to produce an additional magnetic flux along the 

𝑥𝑧-plane and hence an additional phase shift that translates the entire Fraunhofer pattern. This shift 

has also been observed previously as a tilt of the entire Fraunhofer map in similar measurements 

used to estimate finite-momentum of the Cooper pairs in Josephson junctions1,96,97. This tilt is then 

corrected by subtracting a linear slope that brings the central Fraunhofer maxima back to zero 𝐵𝑧.  

In our measurements to track the evolution of 𝐼𝑐
+ and 𝐼𝑐

− in the Fraunhofer oscillations with 

𝐵𝑦, we employ a similar procedure to correct for the observed shift of the Fraunhofer pattern by 

fixing the position of the central maxima at 𝐵𝑧 = 0 𝑚𝑇. Below we show the Fraunhofer patterns 

as measured at different values of 𝐵𝑦 (Fig. D.1 (a-d)) and after performing the shift correction (Fig. 

D.1 (e-h)) for junction L1. When 𝐵𝑦 is increased beyond 30 𝑚𝑇 it becomes hard to track the central 

peak, so the slope of the peak shift with 𝐵𝑦 at lower values of 𝐵𝑦 can be used to do the shift 

correction. All Fraunhofer pattern analyses presented in the main text of the thesis are done after 

performing this correction.  
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Fig. D.1 Evolution of Fraunhofer pattern for L1 under an in-plane magnetic field and shift 

correction: (a)-(d) The Fraunhofer patterns for both 𝐼𝑐
+ and 𝐼𝑐

− are found to shift towards the right 

side along positive 𝐵𝑧 values for increasing positive values of 𝐵𝑦 and similarly along negative 𝐵𝑧 

values for negative values of 𝐵𝑦. (e)-(h) The Fraunhofer patterns for different positive 𝐵𝑦 values 

after performing the shift correction setting the central maxima of 𝐼𝑐
+ to be at 𝐵𝑧 = 0 𝑚𝑇. (i) Plot 

showing the linear shift of the Fraunhofer pattern with an in-plane magnetic field 𝐵𝑦. 
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In addition to the results presented in the device above, Josephson diode effect has also 

been observed in other NiTe2 junctions made with flakes of other thicknesses and similar results 

have been found. Josephson junctions of 500 (B1) and 600 𝑛𝑚 (B2) separations have been 

fabricated on a 40 𝑛𝑚 thick flake of NiTe2 as shown in Fig. E.1(a). Large critical currents are 

observed in both devices. Josephson diode effect measured in device B2 is presented in Fig. E.1(b)-

(f). A large critical current of around 200 μA in both positive and negative directions in the absence 

of any applied magnetic field as in Fig. E.1(b). When the in-plane magnetic field is increased, the 

difference in critical currents also increases as shown in Fig. E.1(d) and (e) and reaches maximum 

value around 36 𝑚𝑇. At this value, ∆𝐼𝑐 reaches a value of around 106 𝜇𝐴 as shown in Fig. E.1(c) 

with a maximum efficiency around 40% (Fig. E.1(f)). 

 

 

Fig. E.1 Josephson Diode effect in a 40nm thick NiTe2 flake: (a) Optical microscope image of 

Josephson junctions fabricated on a 40 nm thick NiTe2 flake with junctions labelled as B1 and B2. 

(b) Current-Voltage characteristics of junction B2 in the absence an applied in-plane magnetic 

field a critical current of 246 𝜇𝐴 in both directions and a negligible ∆𝐼𝑐. (c) In the presence of a 
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36 𝑚𝑇 magnetic field perpendicular to the current, ∆𝐼𝑐 reaches a maximum value of around 

106 𝜇𝐴. (d) 𝐼𝑐
+ and |𝐼𝑐

−| plotted as a function of in-plane magnetic field perpendicular to current. 

(e) 𝐼𝑐 is found to increase as a function of magnetic field and reaches maximum value around 

36 𝑚𝑇 and oscillate as the magnetic field is increased further. (f) The efficiency of the diode also 

oscillates with the in-plane magnetic field with a maximum value of 40%. 

 

Another interesting feature observed in these junctions of NiTe2 is the extremely large 

critical currents over such long distances of few hundred nanometers.  In addition, critical currents 

were measured for multiple devices of various separations (𝐿) in order to check the limit of 

supercurrent propagation through NiTe2. Non-zero critical currents were observed in junctions 

with separations up to 1.65 𝜇𝑚. The critical current measured in the junction with the largest 

separation was around 34 𝑛𝐴. 
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Fig. E.2 Distance dependence of 𝑰𝒄𝑹𝒏 in NiTe2 Josephson junctions: The 𝐼𝑐𝑅𝑛 products 

measured in several Josephson junctions with various separations show that the supercurrents 

persist even up to junction lengths of 1.65 𝜇𝑚 and that 𝐼𝑐𝑅𝑛 decays as (
1

𝐿
), as expected for a 

ballistic junction154. 

 

 

Fig. F.1 Evolution of the Fraunhofer pattern in the presence of ∆𝑰𝒄 for L4: (a)-(d) The 

Fraunhofer patterns for both 𝐼𝑐
+ and 𝐼𝑐

− for L4 with increasing 𝐵𝑦. (e)-(h) Corresponding ∆𝐼𝑐 for 

the Fraunhofer patterns. ∆𝐼𝑐 in this case is very small and the oscillations are barely discernible. 
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Fig. F.2 Evolution of the Fraunhofer pattern in the presence of ∆𝑰𝒄 for L3: (a)-(d) The 

Fraunhofer patterns for both 𝐼𝑐
+ and 𝐼𝑐

− for L3 with increasing 𝐵𝑦. (e)-(h) Corresponding ∆𝐼𝑐 for 

the Fraunhofer patterns. ∆𝐼𝑐 for L3 is much smaller compared to L1 as the critical current is also 

smaller but the (
Ф0

2
) period of the oscillations can still be distinguished. (i),(j) Larger image of the 

−10 𝑚𝑇 data with only a couple of oscillations visible in ∆𝐼𝑐. 
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Fig. F.3 The Fraunhofer interference pattern for L1 under positive and negative magnetic fields 

after shift correction:  (a)-(d) The Fraunhofer patterns for 𝐼𝑐
+ and 𝐼𝑐

− measured in the presence of 

a positive 𝐵𝑦 magnetic field as shown in the main text. (e)-(h) The Fraunhofer pattern for 𝐼𝑐
+ and 

𝐼𝑐
− measured in the presence of a negative 𝐵𝑦 magnetic field. The behavior of 𝐼𝑐

+ and 𝐼𝑐
− are 

reversed under opposite 𝐵𝑦 but maintain the symmetry 𝐼𝑐
± (𝐵𝑦, 𝐵𝑧) = 𝐼𝑐

∓ (−𝐵𝑦 , −𝐵𝑧). 
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   (a)                                             (b)  

 

Fig. F.4 Behavior of ∆𝑰𝒄 in presence of a small magnetic flux: In case the magnetic field is not 

perfectly aligned to the plane of the sample, it can give rise to a small flux that can affect the 

behavior of ∆𝐼𝑐 and lead to lifted nodes as observed in the experimental data in Fig. 5.12 (c). 

Simulated ∆𝐼𝑐  for (a) 𝛷 = 0.2𝛷0 and (b) 𝛷 = 0.3𝛷0 and different values of  
𝐼2

𝐼1
. 

 

(a)                                             (b)  

 

Fig. F.5 Accidental SQUID in junction L2: Junction L2 is shorted by another flake of PtTe2 by 

accident forming an asymmetric SQUID loop. The asymmetric SQUID also shows non-reciprocal 
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critical currents with 𝐵𝑦 and highly skewed non-sinusoidal oscillations providing further evidence 

of the presence of higher harmonics in the CPR. 

 

(a)                                             (b)  

Fig. F.6 Possible multiple Andreev reflections : The differential resistance of L1 measured when 

the critical currents are strongly suppressed with a magnetic field display some dips in resistance 

at low currents which is present due to resonance in the tunneling process indicative of coherent 

processes in the junction. Multiple Andreev reflections in the junction are expected to occur at 

voltages, which require very large currents and can only be reached above the critical current of 

the superconducting electrodes. 
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∆𝑰𝒄 

 As discussed in the main text, self-fields arise as a result of the non-uniform current 

distribution present while passing currents in a long or wide Josephson junction. This self-field 

has the ability to break the time-reversal symmetry of the junction without the need for an external 

magnetic field, which can then be used to construct devices that do not require any external 

magnetic fields. This was realized in one of the PtTe2 junctions, that was the widest (L1). The 

junction L1 has two superconducting niobium electrodes with four terminals as shown in Fig. 

5.8(a). Applying a current bias through the terminals located on the same side leads to a self-field 

effect, as evidenced by the skewed Fraunhofer oscillations shown in Fig. 5.8(b). Utilizing this idea, 

a constant current bias was applied between the terminals on the same side to create a self-field 

effect while the current voltage characteristics were measured in the criss-crossed configuration as 

shown in Fig. G.1(a). It is to be noted that the applied current bias creates a shift of the entire 𝐼 −

𝑉 curve by the amount of 𝐼𝑏𝑖𝑎𝑠 applied. However, this does not reflect the actual net current across 

the junction and the as measured critical currents (𝐼𝑐,𝑚𝑒𝑎𝑠
+ , 𝐼𝑐,𝑚𝑒𝑎𝑠

− ) cannot be used for calculating 

the Josephson diode effect. The shift of the 𝐼 − 𝑉 curve must not be confused with the self-field 

effect. 𝐼𝑏𝑖𝑎𝑠 needs to be removed before estimating the actual 𝐼𝑐
+ and 𝐼𝑐

−. (i.e.) 

𝐼𝑐
+ = 𝐼𝑐,𝑚𝑒𝑎𝑠

+ − 𝐼𝑏𝑖𝑎𝑠 

𝐼𝑐
− = 𝐼𝑐,𝑚𝑒𝑎𝑠

− − 𝐼𝑏𝑖𝑎𝑠 

The 𝐼𝑐
+ and 𝐼𝑐

− measured as a function of 𝐼𝑏𝑖𝑎𝑠 is shown in Fig. G.1(b). It can be seen that 

as 𝐼𝑏𝑖𝑎𝑠 is increased the difference between 𝐼𝑐
+ and 𝐼𝑐

−  starts to increase, leading to a ∆𝐼𝑐. When 

the direction of 𝐼𝑏𝑖𝑎𝑠 is reversed, the direction of ∆𝐼𝑐 is reversed as well. In the absence of self-

field effect, typically ∆𝐼𝑐 = 0  after correcting the shift due to 𝐼𝑏𝑖𝑎𝑠. ∆𝐼𝑐 increases linearly with 𝐼𝑏𝑖𝑎𝑠 

as shown in Fig. G.1(c) leading to a maximum diode efficiency of around 14% as shown in Fig. 

G.1(d). This shows that in transparent wide junctions, it is possible to engineer a diode effect 

without the need for an external magnetic field. The magnetic fields created by the non-uniform 

current distribution and ∆𝐼𝑐 in the PtTe2 junction is not as high as that from an external field. 

However, investigating and optimizing controlled geometries that can maximize the self-field 
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effect could be a future direction that could be of great interest as it can be used to create three-

terminal Josephson diodes in which ∆𝐼𝑐 can be easily tuned by the 𝐼𝑏𝑖𝑎𝑠 and doesn’t have  the need 

for an external magnetic field. 

 

 

Fig. G.1 Field-free ∆𝑰𝒄 from self-field effect in PtTe2 junction L1: (a) Geometry of current 

biasing for creating non-reciprocal critical currents with help of self-field currents. (b) The 

difference between 𝐼𝑐
+ and |𝐼𝑐

−| is shown to increase with 𝐼𝑏𝑖𝑎𝑠. (c) ∆𝐼𝑐 can be seen to increase 

linearly with 𝐼𝑏𝑖𝑎𝑠. (d) A maximum efficiency of close to 14% is achieved from the self-field 

currents. 
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