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This work is devoted to the numerical solution of second kind nonlinear Volterra integral 
equations with highly oscillatory kernel. We use a collocation approach by discretizing the 
oscillatory integrals in the collocation equation using a Filon-type quadrature rule. We investigate 
the convergence of the numerical method in terms of step length ℎ and frequency 𝜔. As ℎ
decreases, the suggested technique converges with order 𝑑, while its asymptotic order as the 
frequency increase, is at least 1 and may reach 2 in some cases. Numerical experiments validate 
theoretical results.

1. Introduction

Numerous mathematical problems in physics, biology, and engineering can be modeled by integral equations. These equations 
cannot often be solved analytically. Thus, numerical solution of integral equations has attracted considerable interest [1,6,10,11,

17]. Among them, Volterra Integral Equations (VIEs) with highly oscillatory kernels are important for various applications. Due to 
the oscillation factor, standard techniques may be costly in this situation. Therefore, specific numerical approaches are needed to 
discretize the highly oscillatory integral of the VIEs. For example, the steepest descent approach [12], the Filon type method [13], 
the exponential fitting method [14], the Levin type method [15], and other approaches [7,18,21,22] have been considered in the 
literature.

VIEs with periodic solutions can be treated as oscillatory problems as well. Some research has been reported on numerical 
approaches for VIEs with periodic solutions. The mixed collocation method, which differs from the polynomial collocation approach, 
is one of them. It includes additional trigonometric requirements for approximation solutions. The mixed collocation approach was 
developed by Brunner [2] to solve problems with periodic solutions. Cardone et al. also developed the Exponential Fitting (EF) 
approach, which solved these VIEs using the EF quadrature formula [5]. Zhao et al. propose the EF collocation method for VIEs 
based on EF interpolation [26].

In actuality, numerical solutions to integral equations with highly oscillatory kernels are the subject of very few publications. 
Xiang et al. studied the first form of VIEs with a Bessel kernel [23]. In order to process the oscillatory integration of the solution, they 
employed analytical expressions and a Filon-type technique to acquire the results. The author in [25] obtained a numerical solution 
by using a Filon-type method directly to the integral problem. In [16], the authors employed an improved Levin approach for solving 
Fredholm oscillatory integral equations.
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There exists a category of numerical methods whose error acts asymptotically like a negative frequency power 𝜔. Such methods 
have asymptotic order 𝛼 if their error is 𝑂(𝜔−𝛼) for 𝜔 ≫ 1, where 𝛼 can be any positive number. Xiang et al. presented linear 
collocation techniques based on the Filon method for weakly singular VIEs of the second class with Bessel kernel in [24]. They 
confirmed that the methods have an asymptotic order. Asymptotic order is desirable for highly oscillatory problems. Additionally, 
they demonstrated that the piecewise ones exhibit classical order. Zhao et al. proposed collocation methods based on the Filon 
method for the second kind of VIEs with an oscillatory kernel in [27]. Based on an asymptotic solution analysis, they studied the 
convergence of the technique. For other schemes based on the Filon type technique, please refer to [9,19] and the references therein. 
Notably, the focus of the abovementioned articles is mainly on the asymptotic order, i.e., on the relationship between the error and 
the frequency. Less focus has been on the exact relationship between error and step size.

In this study we consider second-kind nonlinear Volterra Integral Equations (VIEs) with an highly oscillatory kernel outlined 
below:

𝑢(𝑡) = 𝑓 (𝑡) +

𝑡

∫
0

𝐾(𝑡, 𝑠, 𝑢(𝑠))𝑒𝑖𝜔𝑔(𝑡,𝑠)𝑑𝑠, (𝜔≫ 1), 𝑡 ∈ 𝐼 = [0, 𝑇 ] (𝑇 <∞) (1.1)

where 𝑢(𝑡) is the unknown function and 𝑓 (𝑡) is a given continuous function on 𝐼 . The function 𝐾 = 𝐾(𝑡, 𝑠, 𝑢(𝑠)) is assumed to be 
defined and continuous on Ω𝐵 ∶= {(𝑡, 𝑠, 𝑢) ∶ (𝑡, 𝑠) ∈ 𝐷, 𝑢 ∈ℝ 𝑎𝑛𝑑 |𝑢− 𝑓 (𝑡)| ≤𝐵, }, where 𝐷 ∶= {(𝑡, 𝑠) ∶ 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 }. The oscillating 
frequency 𝜔 is a real positive fixed parameter. Brunner [3,4] has studied the oscillatory behavior of solutions for separable oscillators, 
i.e., 𝑔(𝑡, 𝑠) = 𝑔0(𝑡) − 𝑔0(𝑠). In this paper, we are concerned with the NVIEs for 𝑔(𝑡, 𝑠) = 𝑠.

Following the approach of [1] and based on a similar strategy extended to solve VIEs with the oscillatory kernel in [27], we 
employ the conventional collocation approach with predetermined collocation points for (1.1) to develop approaches for such highly 
oscillatory cases. The oscillatory integrals in the exact collocation are then discretized using a Filon-type method to produce an 
utterly discrete scheme. The theoretical part examines the asymptotic property. The error estimates for exact and discrete collocation 
are then calculated. Our results demonstrate the combined influence of step size ℎ and frequency 𝜔 on error. The approach converges 
with step site ℎ, and adding collocation points enhances the classical order. The approach has an asymptotic order if the frequency 
is substantial. Numerical tests support the theoretical results.

The remaining sections of the paper are structured as follows: Section 2 describes the collocation approach for NVIEs of the 
second kind and applies the Filon technique for NVIEs. Section 3 contains theorems and lemmas that are useful for analyzing 
the solution’s asymptotic property and the approach’s convergence. Section 4 illustrates numerical experiments. Finally, Section 5

discusses conclusions.

2. Collocation method for second kind of NVIE

The exact collocation method and its fully discrete version are presented in this section. The first description is based on Brunner’s 
classical approach [1]. The integrals in the exact collocation are then discretized using a Filon-type technique. Just for simplicity, we 
will use a uniform mesh. Discretize the interval 𝐼 = [0, 𝑇 ] by

𝐼ℎ ∶=
{
𝑡𝑛 ∶= 𝑛ℎ, 𝑛 = 0, ...,𝑁, ℎ ≥ 0,𝑁ℎ = 𝑇

}
. (2.2)

Let 𝜎𝑛 ∶= (𝑡𝑛, 𝑡𝑛+1]. Define the collocation points

𝑇ℎ ∶=
{
𝑡 = 𝑡𝑛,𝑗 ∶= 𝑡𝑛 + 𝑐𝑗ℎ, 0 ≤ 𝑐1 ≤ ... ≤ 𝑐𝑚 ≤ 1 (0 ≤ 𝑛 ≤𝑁 − 1)

}
, (2.3)

with 𝑐𝑗 being collocation parameters. Now, we aim to identify a collocation solution for (1.1) in the space of piecewise polynomials.

𝑆
(−1)
𝑚−1(𝐼ℎ) ∶=

{
𝑃 (𝑠) ∶ 𝑃 (𝑠)|𝜎𝑛 ∈ 𝜋𝑚−1 (0 ≤ 𝑛 ≤𝑁 − 1)

}
, (2.4)

where 𝜋𝑚−1 represents the space of all polynomials of degree less than or equal to 𝑚 −1. Brunner discusses how selecting 𝑐1 = 0 and 
𝑐𝑚 = 1 would result in a continuous numerical solution on 𝐼 [1].

2.1. The exact collocation scheme

The collocation solution 𝑢ℎ ∈ 𝑆
(−1)
𝑚−1(𝐼ℎ), for (1.1) is specifically defined:

𝑢ℎ(𝑡) = 𝑓 (𝑡) +

𝑡

∫
0

𝐾(𝑡, 𝑠, 𝑢ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠, 𝑓𝑜𝑟 𝑡 ∈ 𝑇ℎ. (2.5)

From another point of view, if we consider 𝑈𝑛,𝑖 ∶= 𝑢ℎ(𝑡𝑛,𝑖), the collocation 𝑢ℎ(𝑡) on 𝜎𝑛 could also be expressed as

𝑢ℎ(𝑡) = 𝑢ℎ(𝑡𝑛 + 𝑠ℎ) =
𝑚∑
𝑗=1
𝐿𝑗 (𝑠)𝑈𝑛,𝑗 , 𝑠 ∈ (0,1], (2.6)
2

where 𝐿𝑗 (𝑠) represents the Lagrange basis functions.



Applied Numerical Mathematics 203 (2024) 1–15D. Conte, L. Moradi, B. Paternoster et al.

𝐿𝑗 (𝑠) ∶=
𝑚∏
𝑘≠𝑗

𝑠− 𝑐𝑘
𝑐𝑗 − 𝑐𝑘

. (2.7)

For 𝑡 = 𝑡𝑛,𝑗 the collocation equation (2.5) can be expressed as follows:

𝑢ℎ(𝑡) = 𝑓 (𝑡) +

𝑡𝑛+𝑐𝑗ℎ

∫
0

𝐾(𝑡, 𝑠, 𝑢ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠

= 𝑓 (𝑡) +
𝑛−1∑
𝑙=0

𝑡𝑙+1

∫
𝑡𝑙

𝐾(𝑡, 𝑠, 𝑢ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠 +

𝑡𝑛+𝑐𝑗ℎ

∫
𝑡𝑛

𝐾(𝑡, 𝑠, 𝑢ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠

= 𝑓 (𝑡) +
𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙

1

∫
0

𝐾(𝑡, 𝑡𝑙 + 𝑠ℎ, 𝑢ℎ(𝑡𝑙 + 𝑠ℎ))𝑒𝑖𝜔𝑠ℎ𝑑𝑠+ ℎ𝑒𝑖𝜔𝑡𝑛
𝑐𝑗

∫
0

𝐾(𝑡, 𝑡𝑛 + 𝑠ℎ, 𝑢ℎ(𝑡𝑛 + 𝑠ℎ))𝑒𝑖𝜔𝑠ℎ𝑑𝑠

(2.8)

Putting the local representation (2.6) of 𝑢ℎ into (2.8) and expressing it in terms of 𝑈𝑛,𝑗 yields

𝑈𝑛,𝑗 = 𝑓 (𝑡𝑛,𝑗 ) +
𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙

1

∫
0

𝐾(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ,
𝑚∑
𝑘=1

𝐿𝑘(𝑠)𝑈𝑙,𝑘)𝑒𝑖𝜔𝑠ℎ𝑑𝑠+

ℎ𝑒𝑖𝜔𝑡𝑛

𝑐𝑗

∫
0

𝐾(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ,
𝑚∑
𝑘=1

𝐿𝑘(𝑠)𝑈𝑛,𝑘)𝑒𝑖𝜔𝑠ℎ𝑑𝑠

(2.9)

2.2. The fully discrete scheme

Due to the highly oscillatory integrals, the scheme in the last section could not always applicable in practice. We need a fully 
discrete system ready to utilize for numerical simulation from a computational viewpoint. In order to deal with the highly oscillatory 
integral, we use a Filon-type technique. We recommend citing for additional information about oscillatory quadrature [8,12,13,22,

26]. The new collocation equation considers

�̂�ℎ(𝑡) = 𝑓 (𝑡) +

𝑡𝑛+𝑐𝑗ℎ

∫
0

𝐾(𝑡, 𝑠, �̂�ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠, 𝑡 ∈ 𝑇ℎ, (2.10)

where �̂�ℎ(𝑡) ∈ 𝑆
(−1)
𝑚−1(𝐼ℎ) is the fully discrete collocation solution and ∫ 𝑡0 𝐾(𝑡, 𝑠, �̂�ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠 is the Filon-type approximation of 𝑢ℎ(𝑡) =

𝑓 (𝑡) + ∫ 𝑡𝑛+𝑐𝑗ℎ0 𝐾(𝑡, 𝑠, 𝑢ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠. In fact, we consider quadrature rule of the form

∫ 𝜈0 𝐾(𝑡, 𝑡𝑛 + 𝑠ℎ, 𝑢ℎ(𝑡𝑛 + 𝑠ℎ))𝑒𝑖𝜔𝑠ℎ𝑑𝑠 ≈
𝑚∑
𝑗=1
𝑤𝑗 (𝜈)𝐾(𝑡, 𝑡𝑛 + 𝜈𝑐𝑗ℎ, 𝑢ℎ(𝑡𝑛 + 𝜈𝑐𝑗ℎ)) (2.11)

where 𝑤𝑗 (𝜈) ∶= 𝜈 ∫ 1
0 𝑒

𝑖𝜔𝜈𝑠ℎ𝑑𝑠 can be computed by using the incomplete Gamma function [13]. Replace the integrals in (2.8) with 
the previous quadrature approximations and disregard the quadrature errors to obtain the appropriate fully discrete collocation 
equation. The local representation of �̂�ℎ on 𝜎ℎ, in analogy to (2.6) is

�̂�ℎ(𝑡𝑛 + 𝑠ℎ) =
𝑚∑
𝑗=1
𝐿𝑗 (𝑠) �̂�𝑛,𝑗 , 𝑠 ∈ (0,1], (2.12)

with �̂�𝑛,𝑗 ∶= �̂�ℎ(𝑡𝑛,𝑗 ). Therefore, the fully discrete version is

�̂�𝑛,𝑗 = 𝑓 (𝑡𝑛,𝑗 ) +
𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙

𝑚∑
𝑘=1

𝑤𝑘(1)𝐾(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑐𝑘ℎ,
𝑚∑
𝑘=1

𝐿𝑘(𝑐𝑘) �̂�𝑙,𝑘)+

ℎ𝑒𝑖𝜔𝑡𝑛
𝑚∑
𝑙=1
𝑤𝑙(𝑐𝑗 )𝐾(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑐𝑙𝑐𝑗ℎ,

𝑚∑
𝑘=1

𝐿𝑘(𝑐𝑙𝑐𝑗 ) �̂�𝑛,𝑘)

(2.13)

3. Convergence analysis
3

First of all, the existence and uniqueness of the solution for NVIEs (1.1), are considered by employing some lemmas and theorems.
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Lemma 3.1. [1] Suppose that 𝑧, 𝑔 ∈ 𝐶(𝐼), 𝑘 ∈ 𝐶(𝐼) and let 𝐼 ∶= [0, 𝑇 ] with 𝑘(𝑡) ≥ 0. If 𝑧 satisfies the inequality

𝑧(𝑡) ≤ 𝑔(𝑡) +
𝑡

∫
0

𝑘(𝑠)𝑧(𝑠)𝑑𝑠, 𝑡 ∈ 𝐼. (3.14)

Then

𝑧(𝑡) ≤ 𝑔(𝑡) +
𝑡

∫
0

𝑘(𝑠)𝑔(𝑠) ⋅ 𝑒𝑥𝑝
( 𝑡

∫
0

𝑘(𝜈)𝑑𝜈
)
𝑑𝑠, for all 𝑡 ∈ 𝐼. (3.15)

If 𝑔 is non-decreasing on 𝐼 the above inequality reduces to

𝑧(𝑡) ≤ 𝑔(𝑡) ⋅ 𝑒𝑥𝑝( 𝑡

∫
0

𝑘(𝑠)𝑑𝑠
)
, for all 𝑡 ∈ 𝐼. (3.16)

Theorem 3.1. [1] Set Ω𝐵 ∶= {(𝑡, 𝑠, 𝑢) ∶ (𝑡, 𝑠) ∈ 𝐷, 𝑢 ∈ℝ 𝑎𝑛𝑑 |𝑢− 𝑓 (𝑡)| ≤ 𝐵} and 𝑀𝐵 ∶= max
{|𝑘(𝑡, 𝑠, 𝑢)| ∶ (𝑡, 𝑠, 𝑢) ∈ Ω𝐵

}
. Assume:

a) 𝑓 ∈ 𝐶(𝐼)
b) 𝑘 ∈ 𝐶(Ω𝐵)
c) 𝐾 satisfies the Lipschitz condition for all (𝑡, 𝑠, 𝑢), (𝑡, 𝑠, 𝑧) ∈ Ω𝐵

Then

• The Picard iterates 𝑢𝑛(𝑡) exist for all 𝑛 ≥ 1. They are continuous on the interval 𝐼0 ∶= [0, 𝜎0], where

𝜎0 ∶=𝑚𝑖𝑛{𝑇 ,
𝐵

𝑀𝐵

}

and they converge uniformly on 𝐼0 to a solution 𝑢 ∈ 𝐶(𝐼0) of the NVIEs (1.1).

• This solution 𝑢 is the unique continuous solution on 𝐼0.

Now, we introduce some lemmas that are used to estimate highly oscillating integrals.

Lemma 3.2. [28] Suppose 𝑞(𝑡) is real-valued and smooth in (𝑎, 𝑏), and that |𝑞(𝑘)(𝑡)| ≥ 1 for all 𝑡 ∈ (𝑎, 𝑏). Then|||||||
𝑏

∫
𝑎

𝑒𝑖𝜔𝑞(𝑡)
||||||| ≤ 𝑐(𝑘)𝜔−1∕𝑘 (3.17)

holds when:

• 1) 𝑘 ≥ 2, or

• 2) k=1 and 𝑞′(𝑡) is monotonic.

The bound 𝑐(𝑘) is independent of 𝑞 and 𝜔 and 𝑐(𝑘) = 5 ⋅ 2𝑘−1 − 2.

Lemma 3.3. [28] Under the assumptions on 𝑞(𝑡) in Lemma 3.2, we can conclude that|||||||
𝑏

∫
𝑎

𝑒𝑖𝜔𝑞(𝑡)𝜙(𝑡)𝑑𝑥
||||||| ≤ 𝑐(𝑘)𝜔−1∕𝑘

⎡⎢⎢⎣|𝜙(𝑏)|+
𝑏

∫
𝑎

||𝜙′(𝑡)||𝑑𝑡⎤⎥⎥⎦ . (3.18)

Following the idea of [22], the following theorem is used for oscillating integrals with a specific 𝜙(𝑡), i.e., 𝜙(𝑡) has some zero 
points.

Theorem 3.2. Suppose 𝜙(𝑡) ∈ 𝐶1, 𝑞(𝑡) satisfies the assumptions in Lemma 3.3 and there exists a point 𝑡0 ∈ [𝑎, 𝑏] making 𝜙(𝑡0) = 0. Then 
we have|||| 𝑏

𝑒𝑖𝜔𝑞(𝑡)𝜙(𝑡)𝑑𝑡
|||| ≤ 2 𝑐(𝑘)

‖‖𝜙′(𝑡)‖‖∞ (𝑏− 𝑎). (3.19)
4

|||∫𝑎 ||| 𝜔1∕𝑘
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Moreover, if 𝜙(𝑡) ∈ 𝐶2, 𝑞(𝑡) ∈ 𝐶3 with 𝑘 = 1 and 𝜙(𝑎) = 𝜙(𝑏) = 0, it can be concluded that

|||||||
𝑏

∫
𝑎

𝑒𝑖𝜔𝑞(𝑡)𝜙(𝑡)𝑑𝑡
||||||| ≤ min

{
𝐶1
𝑏− 𝑎
𝜔2 , 𝐶2

(𝑏− 𝑎)2

𝜔
,

}
(3.20)

where 𝐶1 = 6
‖‖‖‖‖
(
𝜙(𝑡)
𝑢′(𝑡)

)′′‖‖‖‖‖∞, 𝐶2 = 3 ‖‖𝜙′′(𝑡)‖‖∞.

Proof. For the proof refer to [27]. □

3.1. Convergence of collocation solution 𝑢ℎ

Put 1 ≤ 𝑑 ≤𝑚 and 𝑦 ∈ 𝐶𝑑 (𝐼). According to Peano’s Theorem [1], on 𝜎𝑛, we can write

𝑢(𝑡𝑛 + 𝑠ℎ) =
𝑚∑
𝑗=1
𝐿𝑗 (𝑠)𝑢(𝑡𝑛,𝑗 ) + ℎ𝑑𝑅𝑑,𝑛(𝑠), 𝑠 ∈ (0,1], (3.21)

where

𝑅𝑑,𝑛(𝑠) ∶=

1

∫
0

𝐾𝑑 (𝑠, 𝑧)𝑢(𝑑)(𝑡𝑛 + 𝑧ℎ)𝑑𝑧, (3.22)

with

𝐾𝑑 (𝑠, 𝑧) =
1

(𝑑 − 1)!
[(𝑠− 𝑧)𝑑−1+ −

𝑚∑
𝑗=1
𝐿𝑗 (𝑠)(𝑐𝑗 − 𝑧)𝑑−1+ ], 𝑧 ∈ (0,1], (3.23)

(𝑠 − 𝑧)𝑝+ = 0 for 𝑠 < 𝑧 and (𝑠 − 𝑧)𝑝+ = (𝑠 − 𝑧)𝑝 for 𝑠 ≥ 𝑧. Therefore, the error 𝑒ℎ ∶= 𝑢 − 𝑢ℎ has the local representation for the exact 
collocation solution

𝑒ℎ(𝑥𝑛 + 𝑠ℎ) =
𝑚∑
𝑗=1
𝐿𝑗 (𝑠)𝜀𝑛,𝑗 + ℎ𝑑𝑅𝑑,𝑛(𝑠). (3.24)

By putting 𝑡 = 𝑡𝑛,𝑗 , in analogy to the proof of Theorem 2.2.3 of [1]

𝑒ℎ(𝑡𝑛,𝑗 ) =

𝑡𝑛,𝑗

∫
0

𝐾(𝑡𝑛,𝑗 , 𝑠, 𝑢(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠−

𝑡𝑛,𝑗

∫
0

𝐾(𝑡𝑛,𝑗 , 𝑠, 𝑢ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠

=

𝑡𝑛

∫
0

𝐾(𝑡𝑛,𝑗 , 𝑠, 𝑢(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠+

𝑡𝑛,𝑗

∫
𝑡𝑛

𝐾(𝑡𝑛,𝑗 , 𝑠, 𝑢(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠

−

𝑡𝑛

∫
0

𝐾(𝑡𝑛,𝑗 , 𝑠, 𝑢ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠−

𝑡𝑛,𝑗

∫
𝑡𝑛

𝐾(𝑡𝑛,𝑗 , 𝑠, 𝑢ℎ(𝑠))𝑒𝑖𝜔𝑠𝑑𝑠

=
𝑛−1∑
𝑙=0
ℎ𝑙𝑒

𝑖𝜔𝑡𝑙

1

∫
0

(𝐾(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑢(𝑡𝑙 + 𝑠ℎ)) −𝐾(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑢ℎ(𝑡𝑙 + 𝑠ℎ)))𝑒𝑖𝜔𝑠ℎ𝑑𝑠

+ℎ𝑛𝑒𝑖𝜔𝑡𝑛
𝑐𝑗

∫
0

(𝐾(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑢(𝑡𝑛 + 𝑠ℎ)) −𝐾(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑢ℎ(𝑡𝑛 + 𝑠ℎ)))𝑒𝑖𝜔𝑠ℎ𝑑𝑠.

(3.25)

Then, as 𝑒ℎ = 𝑢 − 𝑢ℎ, by assuming that 𝐾𝑢(𝑡, 𝑠, .) is continuous and bounded and by denoting with 𝑧𝑙 (𝑙 ≤ 𝑛) the arguments arising in 
5

the Taylor remainder terms, we can write (3.25) in the form
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𝑒ℎ(𝑡𝑛,𝑗 ) =
𝑛−1∑
𝑙=0
ℎ𝑙𝑒

𝑖𝜔𝑡𝑙

1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝑒ℎ(𝑡𝑙 + 𝑠ℎ)𝑒𝑖𝜔𝑠ℎ𝑑𝑠

+ℎ𝑛𝑒𝑖𝜔𝑡𝑛
𝑐𝑗

∫
0

(𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))𝑒ℎ(𝑡𝑛 + 𝑠ℎ)𝑒𝑖𝜔𝑠ℎ𝑑𝑠

=
𝑛−1∑
𝑙=0
ℎ𝑙𝑒

𝑖𝜔𝑡𝑙

1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))(
𝑚∑
𝑘=1

𝐿𝑘(𝑠)𝜀𝑙,𝑘 + ℎ𝑑𝑅𝑑,𝑙(𝑠))𝑒𝑖𝜔𝑠ℎ𝑑𝑠

+ℎ𝑛𝑒𝑖𝜔𝑡𝑛
𝑐𝑗

∫
0

(𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))(
𝑚∑
𝑘=1

𝐿𝑘(𝑠)𝜀𝑛,𝑘 + ℎ𝑑𝑅𝑑,𝑛(𝑠))𝑒𝑖𝜔𝑠ℎ𝑑𝑠.

(3.26)

Then 𝜀𝑛,𝑗 ∶= 𝑢(𝑡𝑛,𝑗 ) − 𝑢ℎ(𝑡𝑛,𝑗 ) implies that

𝜀𝑛,𝑗 − ℎ𝑒𝑖𝜔𝑡𝑛
𝑚∑
𝑘=1

𝑐𝑗

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))𝐿𝑘(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠𝜀𝑛,𝑘

=
𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙

𝑚∑
𝑘=1

1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝐿𝑘(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠𝜀𝑙,𝑘

+
𝑛−1∑
𝑙=0
ℎ𝑑+1𝑒𝑖𝜔𝑡𝑙

𝑚∑
𝑘=1

1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝑅𝑑,𝑙(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠

+ℎ𝑑+1𝑒𝑖𝜔𝑡𝑛
𝑐𝑗

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))𝑅𝑑,𝑛(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠

(3.27)

for 𝑗 = 1, ..., 𝑚. Define the matrices

𝐵𝑙
𝑛
∶=

⎛⎜⎜⎝
𝑚∑
𝑘=1

1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝐿𝑘(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
⎞⎟⎟⎠
𝑗,𝑘=1,...,𝑚

, (0 ≤ 𝑙 < 𝑛 ≤𝑁 − 1), (3.28)

𝐵𝑛 ∶=
⎛⎜⎜⎝
𝑚∑
𝑘=1

𝑐𝑗

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))𝐿𝑘(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
⎞⎟⎟⎠
𝑗,𝑘=1,...,𝑚

, (3.29)

𝜌𝑙
𝑛
∶=

⎛⎜⎜⎝𝑒𝑖𝜔𝑡𝑙
𝑚∑
𝑘=1

1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝑅𝑑,𝑙(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
⎞⎟⎟⎠
𝑇

𝑗=1,...,𝑚

, (𝑙 < 𝑛), (3.30)

and

𝜌𝑛 ∶=
⎛⎜⎜⎝𝑒𝑖𝜔𝑡𝑛

𝑐𝑗

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))𝑅𝑑,𝑛(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
⎞⎟⎟⎠
𝑇

𝑗=1,...,𝑚

(3.31)

and let 𝜉𝑛 ∶=
(
𝜀𝑛,1, ..., 𝜀𝑛,𝑚

)𝑇
. The equation (3.27) then assume the form

[𝐼𝑚 − ℎ𝑒𝑖𝜔𝑡𝑛𝐵𝑛] 𝜉𝑛 =
𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙𝐵𝑙

𝑛
𝜉𝑙 +

𝑛−1∑
𝑙=0
ℎ𝑑+1𝜌𝑙

𝑛
+ ℎ𝑑+1𝜌𝑛, 0 ≤ 𝑛 ≤𝑁 − 1 (3.32)

Here, 𝐼𝑚 denotes the identity matrix.

If the kernel function 𝐾(𝑡, 𝑠, .) is continuous, we can ensure that each of the elements in the matrices 𝐵𝑛 is bounded. According 
to the Neumann Lemma [20], the inverse of the matrix 𝐼𝑚 − ℎ𝑒𝑖𝜔𝑡𝑛𝐵𝑛 exists whenever ℎ ‖‖𝑒𝑖𝜔𝑡𝑛𝐵𝑛‖‖ < 1 for some matrix norm. 
Obviously, this holds when h is small enough. In other words, for any mesh 𝐼ℎ with ℎ ∈ (0, ̄ℎ) where ℎ̄ is suitably small, each matrix 
𝐼𝑚 − ℎ𝑒𝑖𝜔𝑡𝑛𝐵𝑛 has uniformly bounded inverse. Then,

‖‖𝐼𝑚 − ℎ𝑒𝑖𝜔𝑡𝑛𝐵𝑛‖‖1 ≤𝐷0 (3.33)
6

for sufficient small ℎ and 0 ≤ 𝑛 ≤𝑁 − 1. Also, we suppose ‖‖‖𝐵(𝑙)
𝑛
‖‖‖1 ≤𝐷1 for 𝑙 < 𝑛 ≤𝑁 − 1.
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Paying attention to 𝑅𝑑,𝑙(𝑐1) = ... =𝑅𝑑,𝑙(𝑐𝑚) = 0 gives

|||||||
1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝑅𝑑,𝑙(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
||||||| ≤ 𝐶

𝑀𝑑

𝜔ℎ
(3.34)

given 𝑎 = 0, 𝑏 = 1, 𝑞(𝑡) = 𝑡 in Theorem 3.2, where 𝑀𝑑 ∶=
‖‖‖𝑢(𝑑)(𝑡)‖‖‖∞. From now on, we apply 𝐶 to represent a constant that may 

have different values in different places, but does not depend on ℎ and 𝜔. In addition, if 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1 which means that 
𝑅𝑑,𝑙(0) = ... =𝑅𝑑,𝑙(1) = 0, then we have

|||||||
1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝑅𝑑,𝑙(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
||||||| ≤ 𝐶𝑀𝑑 min

{
1

𝜔2ℎ2
,
1
𝜔ℎ

}
. (3.35)

We can deduce in a similar way

|||||||
𝑐𝑗

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))𝑅𝑑,𝑛(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
||||||| ≤ 𝐶

𝑀𝑑

𝜔ℎ
(3.36)

and, for 𝑑 ≥ 2 and 𝑐1 = 0,

|||||||
𝑐𝑗

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))𝑅𝑑,𝑛(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
||||||| ≤ 𝐶𝑀𝑑 min

{
1

𝜔2ℎ2
,
1
𝜔ℎ

}
. (3.37)

Then we have the estimate

‖‖‖𝜌(𝑙)𝑛 ‖‖‖1 ≤ 𝑚∑
𝑗=1

|||||||
1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝑅𝑑,𝑙(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
|||||||

≤ 𝐶𝑀𝑑

⎧⎪⎪⎨⎪⎪⎩
min

{
1

𝜔2ℎ2
,
1
𝜔ℎ

}
, for 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1,

1
𝜔ℎ

otherwise

(3.38)

For ‖‖𝜌𝑛‖‖1, we have

‖‖𝜌𝑛‖‖1 ≤ 𝐶𝑀𝑑

⎧⎪⎪⎨⎪⎪⎩
min

{
1

𝜔2ℎ2
,
1
𝜔ℎ

}
, for 𝑑 ≥ 2 and 𝑐1 = 0,

1
𝜔ℎ

otherwise

(3.39)

Then, (3.32) gives

‖‖𝜀𝑛‖‖1 ≤𝐷0𝐷1

𝑛−1∑
𝑙=0
ℎ‖‖𝜀𝑙‖‖1 +𝐷0

(
𝑛−1∑
𝑙=0
ℎ𝑑+1

‖‖‖𝜌(𝑙)𝑛 ‖‖‖1 + ℎ𝑑+1 ‖‖𝜌𝑛‖‖1
)
. (3.40)

With the discrete Gronwall inequality in general [1], we estimate

‖‖𝜀𝑛‖‖1 ≤𝐷0

(
𝑛−1∑
𝑙=0
ℎ𝑑+1

‖‖‖𝜌(𝑙)𝑛 ‖‖‖1 + ℎ𝑑+1 ‖‖𝜌𝑛‖‖1
)

exp (𝐷0𝐷1𝑇 )

≤ 𝐶𝑀𝑑

⎧⎪⎪⎨⎪⎪⎩
ℎ𝑑−1

𝜔
min

{
1
𝜔ℎ
,1
}
, for 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1,

ℎ𝑑−1

𝜔
otherwise

(3.41)
7

In other words, we have
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‖‖‖𝜌(𝑙)𝑛 ‖‖‖1 ≤ 𝑚∑
𝑗=1

|||||||𝑒
𝑖𝜔𝑡𝑙

1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝑅𝑑,𝑙(𝑠)𝑒𝑖𝜔𝑠ℎ𝑑𝑠
|||||||

≤
𝑚∑
𝑗=1

1

∫
0

|||𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝑅𝑑,𝑙(𝑠)|||𝑑𝑠
≤𝑚�̄�𝑘𝑑𝑀𝑑,

(3.42)

and

‖‖𝜌𝑛‖‖1 ≤𝑚�̄�𝑘𝑑𝑀𝑑, (3.43)

where 𝑘𝑑 ∶= max
𝑠∈[0,1]

∫ 1
0
||𝐾𝑑 (𝑠, 𝑧)||𝑑𝑧 and �̄� ∶= max

𝑡∈𝐼
∫ 𝑡0 ||𝐾𝑢(𝑡, 𝑠, .)||𝑑𝑠. Taking them into (3.40) leads

‖‖𝜀𝑛‖‖1 ≤ 𝐶𝑀𝑑ℎ
𝑑 (3.44)

To conclude this subsection, we summarize the above analysis in the following theorem.

Theorem 3.3. Assume the functions 𝑓 (𝑡) and 𝐾(𝑡, 𝑠, .) ∈ 𝐶𝑑 in (1.1) with 1 ≤ 𝑑 ≤ 𝑚. Then error of the numerical method defined by 
(2.12)-(2.13) is estimated by

max
𝑡∈𝑋ℎ

||𝑢(𝑡) − 𝑢ℎ(𝑡)||
≤ 𝐶𝑀𝑑

⎧⎪⎪⎨⎪⎪⎩
min

{
ℎ𝑑,

ℎ𝑑−1

𝜔
,
ℎ𝑑−2

𝜔2

}
, for 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1,

min
{
ℎ𝑑,

ℎ𝑑−1

𝜔

}
otherwise

(3.45)

with 𝑀𝑑 ∶=
‖‖‖𝑢(𝑑)(𝑡)‖‖‖∞.

Proof. Pursuant to Theorem 3.1, we infer that 𝑢(𝑡) ∈ 𝐶𝑑 . Thus, the regularity condition for 𝑢(𝑡) at the begin of this subsection is 
satisfied and the above method can be done successfully. Combining (3.41) and (3.44) completes the proof. □

3.2. Convergence of collocation solution �̂�ℎ

By taking the quadrature error of (2.11), we have

𝐸𝑙
𝑛
(𝑡, 𝜈) ∶= ∫ 𝜈0 𝐾(𝑡, 𝑡𝑛 + 𝑠ℎ, 𝑢ℎ(𝑡𝑙 + 𝑠ℎ))𝑒𝑖𝜔𝑠ℎ𝑑𝑠−

𝑚∑
𝑗=1
𝑤𝑗 (𝜈)𝐾(𝑡, 𝑡𝑛 + 𝜈𝑐𝑗ℎ, 𝑢ℎ(𝑡𝑛 + 𝜈𝑐𝑗ℎ)) (3.46)

By using (2.11) for fixed 𝜈 > 0, we have

𝐸𝑙
𝑛
(𝑡, 𝜈) ∶= 𝜈 ∫ 1

0

(
𝐾(𝑡, 𝑡𝑛 + 𝜈𝑠ℎ, 𝑢ℎ(𝑡𝑙 + 𝜈𝑠ℎ)) −

𝑚∑
𝑗=1
𝑤𝑗 (𝜈)𝐾(𝑡, 𝑡𝑛 + 𝜈𝑐𝑗ℎ, 𝑢ℎ(𝑡𝑛 + 𝜈𝑐𝑗ℎ))

)
𝑒𝑖𝜔𝑠ℎ𝑑𝑠. (3.47)

In (3.47), the expression in the brackets is the interpolation error for 𝑝(𝑠) ∶=𝐾(𝑡, 𝑡𝑛 + 𝜈𝑠ℎ, 𝑢ℎ(𝑡𝑛 + 𝜈𝑠ℎ)). Thus, by Peano’s Theorem, 
we have

𝐸𝑙
𝑛
(𝑡, 𝜈) = 𝜈ℎ𝑑 ∫ 1

0 �̂�𝑑,𝑛(𝑠) 𝑒𝑖𝜔𝑠ℎ𝑑𝑠, (3.48)

with

�̂�𝑑,𝑛(𝑠) ∶= 𝜈ℎ𝑑 ∫ 1
0 �̂�𝑑 (𝑠, 𝑧)𝑝(𝑑)(𝑡𝑛 + 𝑧ℎ)𝑑𝑧. (3.49)

Then, we have |𝐸𝑙
𝑛
(𝑡, 𝜈)| ≤ 𝐶ℎ𝑑 . Furthermore, it holds �̂�𝑑,𝑛(𝑐1) = ... = �̂�𝑑,𝑛(𝑐𝑚) = 0. Similar to (3.34) and (3.35), quadrature error 

(3.48) has the estimate

|||𝐸𝑙𝑛(𝑡, 𝜈)||| ≤ 𝐶

⎧⎪⎪⎨⎪
min

{
ℎ𝑑,

ℎ𝑑−1

𝜔
,
ℎ𝑑−2

𝜔2

}
, for 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1,{

𝑑 ℎ𝑑−1
} (3.50)
8

⎪⎩ min ℎ ,
𝜔

otherwise
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where the same idea of the last subsection is applied. For 𝜈 = 0, the above result is obvious.

Theorem 3.4. Assume that the given functions 𝑓 (𝑡) and 𝐾(𝑡, 𝑠, 𝑢) ∈ 𝐶𝑑 in (1.1) with 1 ≤ 𝑑 ≤𝑚. Then error of the numerical method defined 
by (2.12)-(2.13) has an estimate

max
𝑡∈𝑇ℎ

||𝑢(𝑡) − �̂�ℎ(𝑡)||
≤ 𝐶𝛾𝑑

⎧⎪⎪⎨⎪⎪⎩
min

{
ℎ𝑑,

ℎ𝑑−1

𝜔
,
ℎ𝑑−2

𝜔2

}
, for 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1,

min
{
ℎ𝑑,

ℎ𝑑−1

𝜔

}
otherwise

(3.51)

with 𝛾𝑑 ∶=𝑚𝑎𝑥{𝑀𝑑, 1}.

Proof. Due to

||𝑢(𝑡) − �̂�ℎ(𝑡)|| ≤ ||𝑢(𝑡) − 𝑢ℎ(𝑡)|| + ||𝑢ℎ(𝑡) − �̂�ℎ(𝑡)|| . (3.52)

The result is conducted in a way that is similar to the last subsection, then we estimate ||𝑢ℎ(𝑡) − �̂�ℎ(𝑡)||.
Let 𝑧ℎ(𝑡) ∶= 𝑢ℎ(𝑡) − �̂�ℎ(𝑡). Then, on 𝜎𝑛,

𝑧ℎ(𝑡𝑛 + 𝑠ℎ) ∶= 𝑢ℎ(𝑡𝑛 + 𝑠ℎ) − �̂�ℎ(𝑡𝑛 + 𝑠ℎ) =
𝑚∑
𝑗=1
𝐿𝑗 (𝑠)𝑍𝑛,𝑗 , (3.53)

with 𝑍𝑛,𝑗 ∶=𝑈𝑛,𝑗 − �̂�𝑛,𝑗 . Due to the (2.9) and (2.13), we have

𝑍𝑛,𝑗 =
𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙

𝑚∑
𝑘=1

1

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑙 + 𝑠ℎ, 𝑧𝑙(𝑠))𝐿𝑘(𝑠)𝑍𝑙,𝑘𝑒𝑖𝜔𝑠ℎ𝑑𝑠+

ℎ𝑒𝑖𝜔𝑡𝑛
𝑚∑
𝑙=1

𝑐𝑗

∫
0

𝐾𝑢(𝑡𝑛,𝑗 , 𝑡𝑛 + 𝑠ℎ, 𝑧𝑛(𝑠))𝐿𝑘(𝑠)𝑍𝑛,𝑘𝑒𝑖𝜔𝑠ℎ𝑑𝑠+ 𝜖𝑛(𝑡𝑛,𝑗 ),

(3.54)

where

𝜖𝑛(𝑡𝑛,𝑗 ) ∶=
𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙𝐸𝑙

𝑛
(𝑡,1) + ℎ𝑒𝑖𝜔𝑡𝑛𝐸𝑛

𝑛
(𝑡, 𝑐𝑗 )

and the functions 𝑧𝑙 (𝑙 ≤ 𝑛) are the arguments arising in the Taylor remainder terms.

Recalling the definition of 𝐵𝑙
𝑛

and 𝐵𝑛 in the last section, the system can be written as

[
𝐼𝑚 − ℎ𝑒𝑖𝜔𝑡𝑛𝐵𝑛

]
Z𝑛 =

𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙𝐵𝑙

𝑛
Z𝑙 + 𝜒𝑛 (3.55)

where Z ∶= (𝑍𝑛,1, ..., 𝑍𝑛,𝑚)𝑇 and 𝜒𝑛 ∶= (𝜖𝑛,1, ..., 𝜖𝑛,𝑚)𝑇 . This structure is as the same structure (3.32) but different from the term 
inhomogeneous. It therefore leads to similar inequality as follow (3.40). For 𝜒𝑛 , we have

‖‖𝜒𝑛‖‖1 = 𝑚∑
𝑗=1

||||||
𝑛−1∑
𝑙=0
ℎ𝑒𝑖𝜔𝑡𝑙𝐸𝑙

𝑛
(𝑡𝑛,𝑗 ,1) + ℎ𝑒𝑖𝜔𝑡𝑛𝐸𝑛𝑛 (𝑡𝑛,𝑗 , 𝑐𝑗 )

||||||
≤

𝑚∑
𝑗=1

(
𝑛−1∑
𝑙=0
ℎ
|||𝐸𝑙𝑛(𝑡𝑛,𝑗 ,1)|||+ ℎ |||𝐸𝑛𝑛 (𝑡𝑛,𝑗 , 𝑐𝑗 )|||

)

≤ 𝐶
⎧⎪⎪⎨⎪⎪⎩
min

{
ℎ𝑑,

ℎ𝑑−1

𝜔
,
ℎ𝑑−2

𝜔2

}
, for 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1,

min
{
ℎ𝑑,

ℎ𝑑−1

𝜔

}
, otherwise.

(3.56)
9

Therefore, the following inequality is established
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Fig. 1. The asymptotic order and the classical order with 𝑐1 =
1
3
, 𝑐2 = 1 for Example 4.1.

‖‖Z𝑛
‖‖1 ≤ 𝐶

⎧⎪⎪⎨⎪⎪⎩
min

{
ℎ𝑑,

ℎ𝑑−1

𝜔
,
ℎ𝑑−2

𝜔2

}
, for 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1,

min
{
ℎ𝑑,

ℎ𝑑−1

𝜔

}
, otherwise.

(3.57)

Combination of inequality (3.52), Theorem 3.3 and (3.57) give us Theorem 3.4. □

Therefore the convergence of the method, for a fixed 𝜔, is proved. Moreover, this theorem shows as our method may produce 
superior results compared to classical collocation method. As a matter of fact if 𝑀𝑑 is bounded independently of 𝜔, our method will 
have asymptotic order 1, and it may reach 2 if 𝑑 ≥ 2 and 𝑐1 = 0, 𝑐𝑚 = 1. Therefore, as 𝜔 increases, numerical results will become 
more accurate under such conditions.

4. Numerical experiments

As demonstrated in the preceding section, Filon’s approaches are practical for solving NVIEs with highly oscillatory kernels. 
According to Theorem 3.4, the errors generated by these approaches decrease significantly as the frequency increases. This section 
focuses on two examples to illustrate the effectiveness of the strategy. In our experiments, we always take 𝑇 = 1. We fix the parameters 
𝜔 = 100 and 𝑁 = 64, 128, 256, 512, 1024 and plot figures to show the corresponding classical orders. We can get that the asymptotic 
order of the error eh is 𝛼 if the absolute error is scaled by 𝜔𝛼 , i.e., 𝜔𝛼|𝑒ℎ| is bounded as 𝜔 ⟶∞. 𝑁 = 3 is used to plot the asymptotic 
orders. Moreover, the following notation will be used to denote the numerical approach employed:

• CC = classical collocation method,

• CF = collocation Filon type method.

Example 4.1. Consider the NVIE

𝑢(𝑡) = 𝑒𝑡 − 1
(𝑖𝜔+ 2)

(𝑒(𝑖𝜔+2)𝑡 − 1) +

𝑡

∫
0

𝑒𝑖𝜔𝑠(𝑢(𝑠))2 𝑑𝑠 (4.58)

such that the exact solution is 𝑢(𝑡) = 𝑒𝑡.
For this example, we want to illustrate that the classical order is 1 when 𝑚 = 2. For parameters 𝑐1 =

1
3 , 𝑐2 = 1 and 𝑐1 = 0, 𝑐2 = 1, the 

right pictures of Figs. 1 and 2 indicate that the classical order is 1. With fix the parameters 𝜔 = 100 and 𝑁 = 64, 128, 256, 512, 1024, 
these figures show the corresponding classical orders along with slope line. By taking 𝑑 = 1, to demonstrate the asymptotic order 
behavior for parameters 𝑐1 =

1
3 , 𝑐2 = 1, we investigate the left picture of Fig. 1. In the left picture of Fig. 1, the absolute errors scaled 

by 𝜔 are bounded, confirming that the asymptotic order is 1, which is consistent well with Theorem 3.4. For parameters 𝑐1 = 0, 𝑐2 = 1, 
Theorem 3.4 predicts that the asymptotic order could reach 2 with 𝑑 ≥ 2. In this example, 𝑓 is continuous and dependent on 𝜔, so 
the solution 𝑢 = 𝑢(𝑡, 𝜔) behaves like 𝑢(𝑡) − 𝑓 (𝑡) = 𝑂(𝜔) as 𝜔 ⟶∞, so ‖𝑢(2)(𝑡)‖∞ = 𝑂(𝜔). In the left picture of Fig. 2, the absolute 
errors scaled by 𝜔 are bounded, confirming that the asymptotic order is 1. This match well with Theorem 3.4. The numerical results 
10

from the Figures demonstrate that CC and CF methods are effective and accurate as frequency increases.
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Fig. 2. The asymptotic order and the classical order with 𝑐1 = 0, 𝑐2 = 1 for Example 4.1.

Table 1

Comparison of absolute errors with 𝜔 = 20 for Example 4.1.

N

Parameters Methods 64 128 256 512 1024

𝑐1 =
1
3
, 𝑐2 = 1 CC 7.63𝑒− 03 3.81𝑒− 03 1.91𝑒− 03 9.54𝑒− 04 4.74𝑒− 04

CF 7.66𝑒− 04 3.80𝑒− 04 1.90𝑒− 04 9.51𝑒− 05 4.75𝑒− 05

𝑐1 = 0, 𝑐2 = 1 CC 2.22𝑒− 02 1.13𝑒− 02 5.69𝑒− 03 2.85𝑒− 03 1.43𝑒− 03
CF 2.23𝑒− 03 1.13𝑒− 03 5.67𝑒− 04 2.84𝑒− 04 1.42𝑒− 04

Table 2

The absolute errors with 𝑐1 = 1
3
, 𝑐2 = 1 for Example 4.1.

N

𝜔 64 128 256 512 1024

50 2.57𝑒− 04 1.23𝑒− 04 6.09𝑒− 05 3.04𝑒− 05 1.52𝑒− 05
100 1.56𝑒− 04 6.61𝑒− 05 3.14𝑒− 05 1.55𝑒− 05 7.74𝑒− 06
200 2.24𝑒− 04 4.22𝑒− 05 1.77𝑒− 05 8.39𝑒− 06 4.14𝑒− 06
400 5.04𝑒− 03 6.27𝑒− 05 1.23𝑒− 05 5.11𝑒− 06 2.42𝑒− 06

Table 3

The absolute errors with 𝑐1 = 0, 𝑐2 = 1 for Example 4.1.

N

𝜔 64 128 256 512 1024

50 7.16𝑒− 04 3.61𝑒− 04 1.81𝑒− 04 9.08𝑒− 05 4.55𝑒− 05
100 3.74𝑒− 04 1.84𝑒− 04 9.25𝑒− 05 4.63𝑒− 05 2.32𝑒− 05
200 3.87𝑒− 04 1.01𝑒− 04 4.96𝑒− 05 2.47𝑒− 05 1.23𝑒− 05
400 5.04𝑒− 03 1.05𝑒− 04 2.95𝑒− 05 1.44𝑒− 05 7.13𝑒− 06

The boundedness of the errors scaled by 𝜔 in the figures indicates that it is 1 for the asymptotic order. To confirm the effectiveness, 
we compare CF with the CC method in [1] and the numerical findings are compared in Table 1 for 𝜔 = 20. One can observe that 
the method converges concerning ℎ. Fig. 3 shows the superiority of the CF method in comparison with the CC method. However, 
our strategy improves the conventional one with the same settings for collocation. The absolute errors are displayed in Tables 2 and 
3. The data in Tables 2 and 3 indicate that our technique is convergent with respect to ℎ. The numerical results show the scheme’s 
effectiveness, and our theoretical analysis is precise. They inform us that the approach proposed here is suited for oscillatory NVIEs, 
particularly 𝜔 ≫ 1.
11

To test performance of the proposed method, we also report the following examples.
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Fig. 3. Comparison of absolute errors with 𝜔 = 100 for Example 4.1.

Table 4

Comparison of absolute errors with 𝜔 = 20 for Example 4.2.

N

Parameters Methods 64 128 256 512 1024

𝑐1 =
1
3
, 𝑐2 = 1 CC 2.73𝑒− 03 1.36𝑒− 03 6.82𝑒− 04 3.40𝑒− 04 1.70𝑒− 04

CF 1.53𝑒− 04 7.62𝑒− 05 3.81𝑒− 04 1.90𝑒− 05 9.52𝑒− 06

𝑐1 = 0, 𝑐2 = 1 CC 8.11𝑒− 03 4.07𝑒− 03 2.04𝑒− 03 1.02𝑒− 03 5.11𝑒− 04
CF 4.54𝑒− 04 2.28𝑒− 04 1.14𝑒− 04 5.71𝑒− 05 2.85𝑒− 05

Example 4.2. Consider the NVIE

𝑢(𝑡) =
√
𝑡− 𝑒𝑖𝜔𝑡( 𝑡

𝑖𝜔
+ 1
𝜔2 ) +

1
𝜔2 +

𝑡

∫
0

𝑒𝑖𝜔𝑠(𝑢(𝑠))2 𝑑𝑠 (4.59)

such that the exact solution is 𝑢(𝑡) =
√
𝑡.

For this example, we want to demonstrate that the classical order is 1 when 𝑚 = 2. For parameters 𝑐1 =
1
3 , 𝑐2 = 1 and 𝑐1 = 0, 𝑐2 = 1, 

the right pictures of Figs. 1 and 2 tell that the classical order is 1. These figures show the corresponding classical orders along with 
slope line for fix the parameters 𝜔 = 100 and 𝑁 = 64, 128, 256, 512, 1024. By taking 𝑑 = 1 in Theorem 3.4, the asymptotic order of 
the method is 1 for 𝑐1 =

1
3 and 𝑐2 = 1 as well, and it is confirmed by the left picture of Fig. 4. Noticing 𝑀2 ∶= ‖𝑢(2)(𝑡)‖∞ = 𝑂(𝜔), 

Theorem 3.4 predicts that the asymptotic order is 1 with 𝑐1 = 0 and 𝑐2 = 1 and it is confirmed by the left picture of Fig. 5. The 
numerical results confirm that the method is more efficient and accurate as of the frequency increases. We also compare the CF 
and CC approaches to investigate superiority. The numerical results are given in Table 4 for 𝜔 = 20. It can be seen that the method 
converges with respect to ℎ. To verify the superiority, Fig. 6 shows the CF method’s superiority in comparison with the CC method. 
Proposed method outperforms the classical one with the same collocation parameters. The absolute errors are presented in Tables 5

and 6. Tables 5 and 6 describe the convergence of the procedure with respect to ℎ and the order 2 is verified by the right pictures of 
Figs. 4 and 5. The numerical results demonstrate the scheme’s effectiveness, and our theoretical analysis is incisive. They inform us 
that the approach shown here is suited for oscillatory NVIEs, particularly 𝜔 ≫ 1.

5. Conclusions

This paper presented efficient collocation methods using the Filon type method for NVIEs with an oscillatory kernel. Based on 
the solution’s asymptotic analysis, the method’s convergence has been achieved. The theorem demonstrates that the approach has a 
12

classical order and, for high-frequency values, an asymptotic order. In addition, by increasing the number of collocation parameters, 
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Fig. 4. The asymptotic order and the classical order with 𝑐1 =
1
3
, 𝑐2 = 1 for Example 4.2.

Fig. 5. The asymptotic order and the classical order with 𝑐1 = 0, 𝑐2 = 1 for Example 4.2.

Table 5

The absolute errors with 𝑐1 = 1
3
, 𝑐2 = 1 for Example 4.2.

N

𝜔 64 128 256 512 1024

50 1.36𝑒− 05 4.49𝑒− 06 3.21𝑒− 06 1.60𝑒− 06 7.99𝑒− 07
100 1.70𝑒− 05 7.16𝑒− 06 3.41𝑒− 06 1.67𝑒− 06 8.36𝑒− 07
200 1.58𝑒− 06 8.40𝑒− 06 3.51𝑒− 06 1.66𝑒− 06 8.21𝑒− 07
400 2.06𝑒− 03 1.21𝑒− 05 3.66𝑒− 06 1.52𝑒− 06 7.22𝑒− 07

Table 6

The absolute errors with 𝑐1 = 0, 𝑐2 = 1 for Example 4.2.

N

𝜔 64 128 256 512 1024

50 3.81𝑒− 05 1.90𝑒− 05 9.56𝑒− 06 4.79𝑒− 06 2.41𝑒− 06
100 4.09𝑒− 05 2.02𝑒− 05 1.01𝑒− 05 5.01𝑒− 06 2.50𝑒− 06
200 3.19𝑒− 05 2.02𝑒− 05 9.87𝑒− 06 4.91𝑒− 06 2.45𝑒− 06
400 2.06𝑒− 03 2.08𝑒− 05 8.81𝑒− 06 4.29𝑒− 06 2.14𝑒− 06
13
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Fig. 6. Comparison of absolute errors with 𝜔 = 100 for Example 4.2.

the classical order could be raised, and in some cases, the asymptotic order 2 can be reached. The theoretical analysis and numerical 
tests confirmed that these methods are efficient and become more accurate as of the frequency increases.
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