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Abstract

Multi-layer networks have emerged as a powerful tool for representing complex
systems that exist in various domains, such as social networks and biological systems.
These networks are capable of encapsulating diverse interactions and relationships
across multiple dimensions, making them an ideal framework for modeling complex
systems.

This thesis explores the usefulness of multi-layer networks in modeling complex
systems and highlights their advantages in capturing subtle and nuanced relationships.
One domain where this approach is particularly useful is medical research, where
understanding heterogeneity among patient populations is crucial for personalized
treatment strategies.

Traditional clustering methods have been used though they are not able to capture
feature interaction, which can be useful in developing personalized treatment plans.
However, using multi-layer networks, this thesis demonstrates a novel approach to
subgroup discovery in medical research. By integrating various data modalities
such as genetic profiles, clinical variables, and environmental factors into a unified
multi-layer framework, the intricate interplay among these factors can be elucidated.

In addition to that, the thesis focuses on the complexity of patient data and
addresses the issue of cost associated with acquiring and processing features. Tradi-
tional methods tend to include all features available, which can lead to computational
inefficiencies and obscure relevant patterns. To tackle this challenge, the thesis
proposes a framework for feature selection within the multi-layer network paradigm,
taking cost into consideration. This approach aims to balance predictive performance
and resource utilization, making analyses more cost-effective. The proposed method
can be applied in real-world medical settings to derive valuable insights regarding
subgroups of patients/participants.

This thesis showcases the effectiveness of multi-layer networks in identifying patient
subgroups with distinct prognostic or therapeutic responses through a series of case
studies. The proposed methodology offers a comprehensive framework for stratifying
patient populations based on complex interactions, facilitating precision medicine
initiatives. Additionally, the interpretability of multi-layer networks allows for
identifying actionable insights and potential biomarkers, enhancing the translational
potential of research findings.

Overall, this thesis underscores the significance of multi-layer networks in unraveling
the complexity inherent in medical data. By harnessing the power of multi-layer
representations, researchers can gain deeper insights into the underlying mechanisms
driving disease progression and treatment outcomes, ultimately paving the way for
more effective and personalized healthcare interventions.

We introduce in this thesis two new techniques for identifying cost-aware subgroups
in multi-layer networks for both static and temporal data. We test these methods on
four different datasets with varying characteristics in terms of the number of time
points and the scarcity of values. Additionally, we compare the performance of our
methods with traditional clustering approaches that have been commonly used in
research.
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Zusammenfassung

Multi-layer networks haben sich als leistungsfähiges Instrument zur Darstellung
komplexer Systeme in verschiedenen Bereichen, wie z. B. soziale Netzweke und biolo-
gische Systeme, erwiesen. Diese Netzwerke sind in der Lage, vielfältige Interaktionen
und Beziehungen über mehrere Dimensionen hinweg zu erfassen, was sie zu einem
idealen Rahmen für die Modellierung komplexer Systeme macht.

In dieser Arbeit wird die Nützlichkeit von mehrschichtigen Netzweke bei der
Modellierung komplexer Systeme untersucht und ihre Vorteile bei der Erfassung
subtiler und nuancierter Beziehungen hervorgehoben. Ein Bereich, in dem dieser
Ansatz besonders nützlich ist, ist die medizinische Forschung, in der das Verständ-
nis der Heterogenität von Patientenpopulationen entscheidend für personalisierte
Behandlungsstrategien ist.

Die bisher verwendeten, herkömmlichen Clustering-Methoden sind nicht in der
Lage Interaktionen von Merkmalen zu erfassen, was jedoch für die Entwicklung per-
sonalisierter Behandlungspläne nützlich sein kann. In dieser Arbeit hingegen werden
mehrschichtige Netzwerke als neuartiger Ansatz zur Entdeckung von Untergruppen
in der medizinischen Forschung vorgestellt. Durch die Integration verschiedener
Datenmodalitäten wie genetische Profile, klinische Variablen und Umweltfaktoren in
ein einheitliches mehrschichtiges System kann das komplexe Zusammenspiel dieser
Faktoren aufgeklärt werden.

Darüber hinaus befasst sich die Arbeit mit der Komplexität von Patienten-
/Patientinnendaten und mit der Frage der Kosten, die mit der Erfassung und Ver-
arbeitung von Merkmalen verbunden sind. Herkömmliche Methoden sind meist so
angelegt, dass sie alle verfügbaren Merkmale einbeziehen, was zu Ineffizienzen bei der
Datenverarbeitung führen und relevante Muster verdecken kann. Um diese Heraus-
forderung zu bewältigen, wird in dieser Arbeit ein Rahmen für die Merkmalsauswahl
im Rahmen des Paradigmas des mehrschichtigen Netzwerkes unter Berücksichtigung
der Kosten vorgeschlagen. Dieser Ansatz zielt darauf ab, ein Gleichgewicht zwischen
der Vorhersageleistung und der Ressourcennutzung herzustellen, um die Analysen
kosteneffizienter zu machen. Die vorgeschlagene Methode kann in realen medizinis-
chen Umgebungen eingesetzt werden, um wertvolle Erkenntnisse über Untergruppen
von verschiedener Populationen zu gewinnen.

In dieser Arbeit wird die Wirksamkeit von mehrschichtigen Netzwerken bei der
Identifizierung von Untergruppen von Patienten/Patientinnen mit unterschiedlichen
prognostischen oder therapeutischen Verläufen anhand einer Reihe von Fallstudien
aufgezeigt. Die vorgeschlagene Methodik bietet einen umfassenden Rahmen für
die Stratifizierung von Patientenpopulationen auf der Grundlage komplexer Inter-
aktionen und erleichtert damit Initiativen der Präzisionsmedizin. Darüber hinaus
ermöglicht die Interpretierbarkeit von mehrschichtigen Netzwerken die Identifizierung
von umsetzbaren Erkenntnissen und potenziellen Biomarkern, was das translationale
Potenzial von Forschungsergebnissen erhöht.

Insgesamt unterstreicht diese Arbeit die Bedeutung von mehrschichtigen Netzw-
erken bei der Entschlüsselung der Komplexität medizinischer Daten. Durch die
Nutzung der Leistungsfähigkeit mehrschichtiger Darstellungen können Forschende

V



tiefere Einblicke in die zugrundeliegenden Mechanismen gewinnen, die Krankheitsver-
läufe und Behandlungsergebnisse vorantreiben, was letztlich den Weg für effektivere
und personalisierte Gesundheitsmaßnahmen ebnet.

Diese Arbeit stellt zwei neue Verfahren zur Identifizierung kostenbewusster Unter-
gruppen in mehrschichtigen Netzwerken für statische und zeitabhängige Daten vor.
Diese Methoden werden an vier verschiedenen Datensätzen mit unterschiedlichen
Merkmalen in Bezug auf die Anzahl der Zeitpunkte und die Knappheit der Werte
getestet. Außerdem wird die Leistung dieser Methoden mit traditionellen Clustering-
Ansätzen verglichen, die in der Forschung häufig verwendet werden.
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1. Introduction

Precision medicine entails stratifying patients into more homogeneous groupings in
order to customize treatment options to each patient’s unique traits [40]. To collect
data that characterizes patients, it is necessary to gather data from assessments such
as medical tests, questionnaire data, and self-reported interview information. Some of
these assessments have associated costs, such as psychological effort/patient burden,
time required, and/or monetary expenses [74]. Hence, it is crucial to consider these
expenses while extracting information from medical data.

Subgroup discovery is a powerful tool used for detecting patient heterogeneity by
mining medical data. These subgroups can, in aftermath, be handled differently
(e.g. customized treatment designs), depending on their characteristics. In medical
research, the discovery of patient subgroups oftentimes requires high dimensional
data mining. This problem can be translated into the discovery of subgroups of
patients (or, more generally, entities) in high dimensional data, i.e. with a high
number of features and time points.

Time is an important factor that needs to be considered when analyzing data.
Temporal data is widely available in various applications, including medical research.
This type of data provides insights that cannot be obtained through static data
alone. If we have access to time series data, it is important to incorporate it into our
analysis. For example, when performing subgroup discovery, which is a crucial part
of this thesis, it is essential to take the temporal aspect into account.

Before presenting the problem statement, it is essential to define the problem
tackled in this thesis - we aim to find subgroups in an unsupervised manner. This
means that we focus on developing methods that deal with scenarios in which we
have no ground truth available.

1.1. Problem Statement
While traditional unsupervised algorithms are able to separate entities into subgroups
and take many features as inputs, they do not account for inter-feature relationship
which might also be informative. This is one of the main reasons why Multilayer
Networks (MLNs) can provide a more complete representation of entity data. The
layers can represent different features of the data, a node can represent an entity
with respect to a certain feature, and an edge can represent how similar the entities
are.

Data representation is a crucial step to represent the system being analyzed. The
definition of “what is a node, edge or layer” is highly context dependent.

In many applications, nodes are connected by a single edge, which represents the
connection between them, resulting in a single-layer network. However, this approach
oversimplifies the connections between nodes and does not take into account the
complexity of the interactions between them [25]. To address this issue, a better
approach is to introduce layers.

A layered network allows us to represent connections between nodes (edges) in
many different perspectives, depending on the layer. Each layer represents a different
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1. Introduction

type of interaction between nodes, and the edges within a layer represent connections
of the same type. By using multiple layers, we can model the complexity of the
interactions more accurately.

For example, in a transportation network, we can have a layer representing the
traffic between cities (nodes) and another layer representing the quantity of goods to
transport between cities. The edges in the first layer might represent the number
of cars, buses, or other transportation vehicles that travel between cities, while the
edges in the second layer might represent the amount of goods transported between
cities.

When representing a complex system, it is important to first define what the nodes
represent and then decide which interactions between nodes should be represented.
This will allow us to create layers that represent different perspectives on the
connections between nodes, and model the complexity of the system more accurately.
After, we must ensemble these concepts and build the MLN.

Two types of edges may exist: inter- and intra-layer edges. The inter-layer
edges capture the relationship between features which is crucial afterwards for the
detection of communities (or entities’ subgroups) in the data. In comparison to
traditional clustering algorithms (where there is no clear inter-feature distance), this
representation provides additional information regarding the entity. In addition,
MLNs are able to incorporate cost in a flexible way, i.e. cost can be modeled at
feature and/or entity level. To be cost-effective, we must select only the informative
layers. Some layers should be deleted from the MLN if they do not provide useful
information for the subgroup discovery.

Our research is inspired by medical data to uncover subgroups and subsequently
develop subgroup-specific treatments, while accounting for data acquisition cost.

The evaluation is conducted on medical and mHealth data. The approach is
evaluated based on the quality of the partition of the entities into subpopulations as
well as on how an outcome variable differs per subpopulation. The latter will focus
on how much subpopulation specific data enhances the prediction of the outcome
variable compared to a scenario in which all data are used.

In Chapter 2, we will argue in more detail why to use MLNs and not other methods
in the literature.

1.2. Research Questions
This thesis tackles three Research Question (RQ)s that we hereafter present:

RQ1: In which cases are MLN-discovered subgroups of higher quality than
those discovered using traditional clustering techniques?

In the field of data analysis, clustering techniques are widely used to identify
subgroups within a dataset in an unsupervised manner. However, when dealing
with complex real-world problems, the traditional clustering techniques may not be
sufficient in finding an appropriate representation of the underlying complex systems.
In such cases, MLNs are considered to be a more suitable approach because they can
represent complex systems more effectively.

In this research study, we aim to investigate and experiment with the transformation
of a traditional clustering problem into a subgroup detection problem using MLNs. Our
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goal is to determine if this approach is better than the conventional one. Specifically,
we aim to explore how to transform a traditional clustering problem into an MLN
problem and evaluate the effectiveness of this approach in detecting subgroups in
complex systems. By doing so, we hope to contribute to the ongoing efforts to
improve the accuracy of data analysis techniques and their applicability to real-world
problems. For that, we include the following goals for this RQ:

• The development of a tool to represent real-world data into an MLN has to be
proposed and is the first and essential step for the next steps of the approach

• A comparative evaluation has to be performed to compare the performance of
MLN-discovered subgroups and traditional clustering algorithms for different
datasets

• A methodology to compare networks, so that the same factors in different
networks (e.g., age, gender) can be directly compared as in raw data

RQ2: How to model cost in MLN-based subgroup discovery?

In many applications, adding new features to a product or service can be a costly
endeavor. As a result, we want to present an alternative method for incorporating
new features that takes into account the cost component. To achieve this objective,
we will first need to define cost, model it, and then incorporate it accordingly in the
output of RQ1.

The cost of adding new features is often a significant factor that needs to be
considered when making decisions about feature acquisition. Therefore, we will
examine the cost component in greater detail and identify the different factors that
contribute to it. This includes factors such as the cost of research and development,
the cost of training employees to use or generate new features, and the cost of
maintaining and upgrading the “product” over time.

Once we have a clear understanding of the cost component, we will then develop a
model that can estimate the cost of adding new features. This model will take into
account various factors, such as the complexity of the feature and the impact the
feature will have on the product’s overall performance.

Representing complexity in medical data and other applications is essential to
unleash the full potential of the data. Medical datasets often contain intricate
patterns/relationships between various factors. By incorporating complexity into the
data representation, we can gain deeper insights into these interactions. This enhanced
understanding leads to more accurate predictions and personalized treatment plans
tailored to individual patients.

Furthermore, accounting for complexity helps to identify the most relevant features
within the data. Transparent and interpretable representations of complexity ensure
trust and understanding among healthcare professionals and patients. This, in turn,
supports informed decision-making and improves patient outcomes while also being
ethically sound.

Finally, we will incorporate the cost component into the output of RQ1. This will
provide a more comprehensive understanding of the trade-offs involved in feature
acquisition and help decision-makers make more informed decisions.

RQ3: How do MLN-discovered subgroups evolve with time?
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In today’s datasets, data is collected at multiple points in time, which makes the
temporal dimension a constant. Consequently, there is a need for temporal modeling.
To address this issue, we have identified three objectives for our research:

• We aim to develop a method that models time in MLNs. The temporal modeling
of MLNs is crucial for capturing the temporal dependencies between events in
time-series data.

• We aim to develop an approach to discover dynamic subgroups in MLNs. A
subgroup is a subset of entities that share similar characteristics. Identifying
subgroups that evolve over time can provide insights into the dynamics of the
dataset.

• We aim to monitor the evolution of dynamic subgroups and propose visualization
tools to interpret them. Visualization tools can help to understand the changes
in subgroups over time and identify patterns that may be missed in the raw
data.

We tackle the first objective, RQ1, in Chapters 5 and 6. In these chapters, we focus on
designing all the necessary implementations for finding predictive MLN-discovered sub-
groups. In Chapter 7, we demonstrate the application of MLN-discovered subgroups
to identify differences between samples.

RQ2 is approached inside of Chapters 5 and 6. RQ3 is tackled in Chapter 6.

1.3. Summary of Scientific Contributions

Our research delves into the use of multi-layer networks for subgroup discovery in the
context of clinical and mHealth data. We conducted an extensive study to explore
how data can be represented in a multi-layer network. This involved defining the
network’s components, such as nodes, edges, and layers, and understanding their
relationships. By addressing RQ1, we were able to develop a robust method for
representing medical data into an MLN.

In order to find cost-aware subgroups in multi-layer networks, we developed two
methods that are related to RQ2. The first method involves assigning costs to
the edges in a network, while the second method assigns costs to the layers. We
conducted experiments using different datasets to test these methods and refine
them further. We also evaluated the effectiveness of these methods in identifying
cost-aware subgroups in a multi-layer network.

To answer Research Question 3, we included temporal dimensions and combined the
methods proposed for Research Question 1 and Research Question 2. We developed
a tool that discovers subgroups in multi-layer networks considering time and cost.
This tool is capable of handling large and complex datasets, making it a valuable
resource for researchers and practitioners.

Our contributions are:

• A method for representing medical data into a multi-layer network, which
enables the detection of relationships between different layers and nodes.

• Two methods for finding cost-aware subgroups in multi-layer networks, which
enable the identification of subgroups that are sensitive to cost.
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• A method for finding cost-aware subgroups in multi-layer networks, which can
be used to identify subgroups in situations where time is not a factor (static
version).

• A tool that discovers subgroups in multi-layer networks considering time and
cost, which is capable of handling large and complex datasets.

• A node assignment methodology that assigns nodes to subgroups without
recomputing the whole network, which is computationally efficient and reduces
the time required for subgroup discovery.

• A methodology for comparing samples from different populations through
network analysis, which enables the identification of differences and similarities
between populations.

Figure 1.1 illustrates a more detailed view of the scientific contributions of this thesis.
There are six (6) different contributions in the approach proposed in this thesis to
solve the problem of “detecting subgroups using MLNs.”

Representation COBALT Evol-COBALT

State of the art

Own contribution

Added time as a 
dimension in a 

multi-layer 
network

Introduction two cost-
models, one simplified 

version and a new 
version that allows to 
better capture feature 

cost

Introduction of a 
visualization technique to 

illustrate graphs

Node Assignment

Introduction of a 

visualization 

methodology to illustrate 

the evolution of 

subgroups

Introduction of a method 

to monitor evolution 

using evolution indices 

and through its 

visualization

Method for assignment 
of new nodes to 

existing subgroups

Introduction of a 
definition of:

Nodes
Layers

Inter-layer edge 
weights

Intra-layer edge 
weights

Community detection 
using the Leiden 

algorithm

*Layer selection is directly related with cost: layers are costly to acquire and some might be redundant. Therefore, we add the step of 

filtering layers based on their importance for our task: subpopulation discovery.

Method for detection of 
subgroups over time and 
monitor their evolution

Sample Comparison

Method for 
comparison of samples 

from different 
populations using 
network distance

Figure 1.1.: Summary of scientific contributions. Each step is described as a column in
the figure, with colored boxes below each column. The orange contoured
boxes describe the contributions of this thesis, whereas the blue contoured
boxes describe the part of the method that is composed by a method
from the literature.

1.4. Outline of the Thesis

This thesis is composed by 7 chapters, starting with the Introduction and followed
by:

• Chapter 2 (Related Work) introduces related literature to subgroup discovery
in medical data, which is the closest to the topic of this thesis.
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• Chapter 3 (Underpinnings) presents the basic concepts about subgroup discov-
ery in medical data using MLNs and a comprehensive explanation about MLNs,
community detection algorithms for subgroup discovery and quality metrics of
subgroups in MLNs.

• Chapter 4 (Materials) presents all four datasets used in the experiments of this
thesis. We describe each dataset in terms of its content and the variables of
interest in that certain application. Each dataset has different properties, in
terms of data dimensionality and sparsity.

• Chapter 5 (COBALT for Static Data) introduces the COBALT method for the
detection of subgroups in MLNs. We propose a new methodology to find
subgroups of individuals that are informative to predict a certain variable of
interest. We start by proposing a method to represent data into a network.
Then, we show two experiments with two different datasets.

• Chapter 6 (Evol-COBALT for Temporal Data) introduces a novel methodology
to find subgroups in MLNs, extending the method proposed in Chapter 5
by incorporating the temporal aspect. Here, we extend the representation
methodology proposed in the previous chapter by adding a new dimension
to the networks - the time. We also propose a method for monitoring the
evolution of subgroups with time in a qualitative and quantitative manner.

• Chapter 7 (Cross-population Layer Matching) proposes a workflow for iden-
tifying differences between two samples from different populations by first
representing data into a network and then computing the distance between
networks representing the different samples.

• Chapter 8 (Conclusion and Outlook) introduces a comprehensive conclusion
that effectively summarizes the main findings and contributions of the research.
In this conclusion, we not only highlight the successes and accomplishments of
the project, but also address any limitations or areas for further improvement.
Additionally, we outline possible avenues for future research and exploration,
highlighting the potential impact and significance of this work.
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2. Related Work

In this Section, related literature about “subgroup discovery” and its applications
is presented, as well a summary of how different methods for subgroup discovery
compare. This literature is important to position our work. Section 2.1 explains how
subgroup discovery is used with medical data. Section 2.2 explains why building
cost-aware subgroups is relevant. Section 2.3 explores how to model time in subgroup
discovery. Section 2.4 introduces subspace clustering and positions it concerning the
purpose of this thesis. The same is done but with the relevance of using networks to
represent further subgroup discovery in Section 2.5.

More detailed explanations are added throughout the thesis when relevant, along
with the proposed methodology.

2.1. Subgroup Discovery in Medical Data

According to [38], current methods for finding subgroups of patients focus on tech-
niques such as K-means, hierarchical clustering analysis, and latent class analysis.
For instance, in [28], the authors study diabetes disease progression and treatment
response in subgroups detected using k-means. In [114], the authors extended Latent
Dirichlet Allocation to the Poisson Dirichlet Model to find subgroups of patients.

In tinnitus research, phenotyping is a technique to analyze the heterogeneity of
patients [38]. [81] work focuses on tinnitus subgroups, using X-means as well as
visualization tools to present these subgroups. This work also shows how important
subgroups are for the prediction of treatment outcomes.

However, studies on the comparison of K-means with the Louvain method (a
community detection approach for networks by modularity optimization) have shown
that Louvain methods produce better results when it comes to the identification of
more accurate groups [113, 86]. A community can be described as a set of nodes
that are grouped in a graph/network. In this thesis, we often call it “subgroup”
or “subpopulation” when it is referred to subgroups of people. [86] has not only
contrasted the Louvain method with K-means but also with a hierarchical clustering
approach and concluded that the Louvain method has achieved higher accuracy.

In [115], the authors propose a method for identifying disease subtypes from
electronic medical records using topic models. The approach represents patients as
nodes in a graph and captures their interactions through topic modeling. By doing
so, it uncovers hidden disease subgroups and their associated clinical features.

Some state of the art methods for subpopulation discovery focus on the use of a
Graph Neural Network (GNN) [118] and on supervised methods such as Long Short-
Term Memory artificial neural networks (LSTMs) as in [11, 123]. These methods,
however, do not allow for the configuration of similarity based on the perspective
being evaluated. Furthermore, LSTMs, which are used as supervised approaches in
these works, are inapplicable to the situation presented in this thesis because no
ground truth is available (in this thesis, it corresponds to the subgroup/community
memberships). We explain this in more detail in subsection 2.5.
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In order to develop a model that can be effectively utilized by medical researchers, it
is necessary to establish criteria for identifying high-quality subgroups. Quantitative
metrics such as silhouette coefficient for clustering and modularity1 for community
detection are commonly used, but not enough. In 2004, Lavrac et al. [68] conducted
an assessment of subgroups in decision support systems, with a particular focus on
those derived from medical data. Through their research, the authors proposed six
key subjective metrics for evaluating subgroups: usefulness, actionability, operability,
unexpectedness, novelty, and redundancy. These metrics can be applied to assess
subgroups in any context, including medical data. Additionally, a quantitative
approach can be used to measure the quality of subgroups.

In this Section, we have only summarized why and what in subgroup discovery,
focusing on medical data. Next, we introduce why cost is important in subgroup
discovery.

2.2. Building Cost-aware Subgroups

In [57, 71], the authors emphasize the importance of creating cost-effective models
for clinical phenotyping. [71] specifically points out that the cost of acquiring data
should be taken into account when building subgroups. Therefore, it is crucial to
consider the cost factor while creating subgroups of entities, a topic that will be
explored in research question 2 (RQ2).

Yu et al. [120] perform feature selection under a finite budget, in which the cost
of feature acquisition is derived from suggestions by medical experts based on total
financial expense, patient privacy, and patient inconvenience. Kachuee et al. [62]
derive feature costs from the convenience of answering questions and performing
medical examinations, such as blood and urine tests. Feature selection under budget
constraints follows the principle that including irrelevant, costly features is worse
than including irrelevant but inexpensive features.

When it comes to assessing and managing risks, cost-aware subgroup analysis can
come in handy. This method helps identify high-risk subgroups within a population
or portfolio while taking into account the cost implications of different risk factors
or exposure levels. By doing so, organizations can develop targeted risk mitigation
strategies, allocate resources judiciously, and minimize financial losses [22].

As a final note, when conducting cost-aware subgroup analysis, decision-makers
must ensure equitable access to resources and opportunities, and consider how
subgroup-specific interventions may impact vulnerable or disadvantaged populations
[19].

The concept of feature cost through feature selection started to be introduced in
the field of medicine [17], in which medical exams have an associated financial cost.

In the field of feature selection, there are three main types of methods: filter,
embedded, and wrapper methods. The filter method is used in a pre-processing stage
before the learning task. Embedded methods are used during the training of the
learning algorithm. Wrapper methods use the learning algorithm to determine the
best set of features that can maximize prediction quality.

The paper referenced as [91] explains several metrics that are frequently used to
determine the cost of features. The authors specifically concentrate on the filter
methods, which can be applied in unsupervised scenarios where no ground truth
is available, unlike other methods. They compare different feature cost models

1Modularity is a quality metric used to evaluate how well-separated communities are.
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to classify 4 Barabási–Albert [9] networks and distinguish between two protein
interaction network models. For that, they use information theoretic approaches as
mutual information, RelieF, and Random Forest based approaches.

In their works, [16] present a framework of metrics that define feature cost using
correlation-based techniques like mutual information and Minimal-Redundancy-
Maximal-Relevance. In this thesis, we focus on a similar approach, but this time
applied to the similarity of layers that represent features.

In [72] investigate the effectiveness of using mutual information as a similarity
metric for feature selection. The authors compare different feature selection methods
based on mutual information and evaluate their ability to capture relevant features
while minimizing redundancy.

In [94], the authors present a survey of feature selection techniques in bioinformatics,
which includes methods that use similarity metrics. It explains how similarity-based
approaches can be used to select informative features from high-dimensional biological
data and how they have been applied in tasks such as gene expression analysis and
biomarker discovery.

2.3. Time in Subgroup Discovery

[7] discusses the integration of time into subgroup discovery algorithms and its impact
on the identification of temporal patterns in data. Clustering on subsets of features
has been studied as “subspace clustering” [63], and temporal extensions have been
recently proposed [84, 124]. In the domain of MLNs, temporal extensions are rare
and confined to building communities over multivariate time series [101]. However,
these methods are intended to group time series together rather than investigating
to what extent the evolution of subgroups predicts some outcome in the pathways
of the subgroup members. For subgroups in networks, there are several operations
related to community evolution using dynamic community detection methods [93].
For instance, some communities may disappear and re-appear at another time point.
Other examples are “merges” and “splits”. The former corresponds to when two
or more communities are merged into one, and the latter to when one community
is split into one or more [82, 23]. This property is defined as the community life
cycle. An overview of these operations [82, 23] can be summarized as in Table 2.1. A
common problem in dynamic community detection is the instability of the solutions.
More specifically, when a community detection algorithm is executed in a certain
network with minimal topological changes, it leads to great variation in the results
(cf. [8]). This is because many algorithms are greedy and try to find a local optimum.
With small modifications to the network structure (e.g., removal of a node), the local
optimum found might differ. This event is caused by the instability of the algorithm
and not by the evolution of the communities over time stamps [93].

In this thesis, we analyze “merges” and “splits,” to monitor the evolution of entities
with time.

2.4. Subgroup Discovery With Subspace Clustering

Subspace clustering, also known as clustering on subsets of features, has been a
topic of study. Recently, there have been proposals for temporal extensions of this
technique. These extensions have been proposed in papers such as [84, 124]. In the
domain of multi-layer networks, temporal extensions are rarer and mostly confined to
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Operation Description
Birth the first time a community appears
Death when a community disappears

Growth when a community increases in
size of nodes

Contraction when a community decreases
in size of nodes

Merge when two or more communities
are merged into one

Split when one community is split
into one or more

Continue when a community remains the
same within a time-frame

Resurgence when a community that had
disappeared, resurges

Table 2.1.: Community operations in temporal networks

building communities over multivariate time series [101]. Evolution-based clustering
algorithm of high-dimensional data streams (SE-Stream) [1] target dimension selection
in streams. In [1], the authors perform a systematic review of subspace clustering
in streams. They conclude that these types of methods can identify clusters within
different subspaces of a dataset and are designed to handle dimensionality reduction.

Creating clusters using different subspaces can be a difficult and costly task. This is
because the process of clustering involves grouping similar data points together based
on their similarities. However, when multiple subspaces are involved, the process
becomes more complex and may yield less meaningful outcomes. Additionally,
comparing clusters created using different feature spaces at the same time may not
provide useful insights, as the dissimilarities in the subspaces can lead to ambiguous
or irrelevant results. Therefore, it is important to carefully choose the appropriate
subspaces and feature spaces when clustering data to ensure that the resulting clusters
are relevant, interpretable, and useful for analyzing the data.

The paper [50] introduces a subspace clustering approach based on two constraints
- must link (ML) and not link (NL). The must link constraint is used to group
instances that must belong to the same cluster, while the not link constraint is used
to prevent instances that should not belong to the same cluster from being grouped
together. These constraints can be derived from domain knowledge.

The article referenced as [30] delves into the difficulties of interpretability that
arise when using subspace clustering for subgroup discovery. The authors highlight
the challenge of interpreting clustering algorithm results, especially in spaces with
high dimensions, and stress the significance of creating interpretable descriptions for
subgroups.

In [31], the authors discuss the limitations of traditional subspace clustering
methods in dealing with sparse data. It highlights the need for robust clustering
algorithms that can effectively handle datasets with sparse and noisy features.

Sparse data can be effectively represented by MLNs without the limitations of
subspace clustering. Moreover, the similarity between entities typically depends
on the method used, but MLNs provide the flexibility to employ various similarity
functions. We can even use different functions for different features. This is because
representing data through an MLN allows us to define all aspects of the analyzed
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system, providing greater flexibility.
In real-world applications, the features that characterize subgroups may vary over

time and may have different costs at different time points; therefore, we need a
technique that is flexible enough to consider that. Our proposed method involves
representing data using an MLSN. This allows us to capture the complexity of the
system being studied. As far as we know, subspace clustering has not yet been used
to address the problem of using MLSNs instead of raw data. In subspace clustering,
though, the data is not represented in a network, which is something fundamental
that we propose in this thesis as a means to better represent complex systems.

2.5. Subgroup Discovery With Networks

MLNs - a group of interdependent networks in which each network is represented as
a layer - enable the representation of the entity data in a network. Nodes and edges
are properties of a network. Nodes can be in at least one layer, and if in more than
one layer, the node will assume different properties in the different layers [87]. MLNs
present a possible tool to uncover the intrinsic complexity of medical data. They
have been used for finding phenotypes of patients [85, 64].

[69] review methods that use MLNs for the representation of biological systems’
hierarchy. This work focuses on the representation of subgroup and genotype
data with MLNs, but not the detection of the subgroups. [66] use two modularity-
based community detection algorithms (Louvain and Leiden) to find subgroups
representing the data using K-Nearest Neighbors (KNN) and Co-occurence Network
Inference (CoNet). We are concentrating on community detection.

In their paper titled “Constraint-based pattern set mining framework" [46], the
authors present a method for discovering subgroups from graph data. The framework
is extended to subgroup discovery by applying constraints on graph-based patterns.
The authors demonstrate the flexibility and scalability of the method in handling
various types of graph data, making it a versatile approach to subgroup discovery.
In [46] the authors introduce a constraint-based pattern set mining framework,
extendable to subgroup discovery from graph data by imposing constraints on graph-
based patterns. The method demonstrates flexibility and scalability in handling
diverse graph data types, offering a versatile approach to subgroup discovery.

In [111], the authors have suggested a method to discover uncommon substructures
in graphs, which can be used for subgroup discovery tasks. The approach uses a
graph-based scoring scheme and representation to identify subgroups that deviate
significantly from the norm. This helps in identifying new and fascinating patterns.

GNNs are able to process graph structures 2 and learn from them [96] mainly for
supervised and semi-supervised tasks.

[44] have recently proposed a generalization of a GNN that take an MLN as input
and evaluate it on a supervised learning task. In our work, we build a MLN and
derive communities on it, i.e. we have an unsupervised learning task. Closer to our
work is the study of [119], who propose adapting a GNN to the unsupervised task
of discovering clusters/communities, for a given number of clusters. This seems the
closest in terms of relevance for our problem setting. However, the method of [119]
does not take a MLN as input; unsupervised learning with an GNN that takes an
MLN as input is still an open problem. Moreover, our goal is to build an MLN and

2The internal architecture built up by a GNN from the input graph can be described as an MLN,
but of relevance to our work are rather studies that taken a multi-layer graph as input.
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derive communities on it in a cost-aware way rather than to deliver an MLN as input
to an GNN. Therefore, we incorporate the Leiden method into our cost-aware layer
selection algorithm for community learning, rather than incorporating a cost-aware
layer selector mechanism into an unsupervised GNN that takes an MLN as input.

Network analysis is an important tool that handles complex systems and, therefore,
data [93]. Recently, [33] studied whether graph neural network-based models of
electronic health records can predict specialty consultation care needs, finding that
these types of representation into graphs can improve the predictiveness of care
needs.

In general, graph applications are categorized as either node-focused or graph-
focused. The former is concerned with node classification or regression problems
relating to node properties, whereas the latter is concerned with learning the graph
structure. This indicates that applications developed with the purpose of learning
node-properties belong under the “node-focused" group. When the goal is to learn
graph-focused attributes, it falls under the category of “graph-focused" applications.

In [96], the authors propose a supervised neural network model that is suitable
for both node-focused and graph-focused applications. In terms of approximation
capability, graph neural networks have been demonstrated to be universal approx-
imators on graphs [95]. Before that, multilayer feedforward networks have been
also proven capable of approximating any measurable function [53]. Alternative
techniques, such as semi-supervised learning tasks with graph neural networks, have
also been proposed [65].

In our application, we have an unsupervised task (finding subgroups without
ground truth) and aim to model entity similarity across all variables and across
and between every pair of features. More explicitly, we aim to model the similarity
between an entity in feature X and feature Y, but also their similarity in feature
X and Z. Inter-layer edges can model these similarities between every pair of layers
(features in our application).

In [119], the authors utilize an unsupervised GNN derived from a semi-supervised
GNN. In their method, they require to set a variable as “larger than the number
of the ground truth number of clusters". This is information that is not always
available in some applications. Hence, graph neural network methods, including
[119], cannot transfer trivially. In particular, they would need to take an MLN as
input, with some ground truth about the real subgroups, which is unavailable in
our application. We also aim to provide information on which features are the most
important. These impositions are inadequate for our application, although they may
be for many others. Hence, for this work, GNNs are not the most appropriate.

The topology of an MLN, however, differs from that of a graph neural network,
which has an ordered set of layers (input, hidden, and output layers [96]). MLN’s
layers can be ordered or unordered, and the layers of an MLN can connect not only
the following layers, as in a graph neural network structure but every pair of layers.
A graph neural network is an MLN, yet not every MLN is a graph neural network.
As a result, all graph neural network methods, including [119], cannot be trivially
transferred. In particular, they would need to take an MLN as input.
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3. Underpinnings and Advances on MLNs
for Community Construction

This chapter describes the foundations necessary to comprehend MLNs and how to
find subgroups in those structures through community detection algorithms. We also
explain how time and evolution can be modeled in these structures.

3.1. Networks with One or Multiple Layers
3.1.1. Definition of a Network
A network has a certain topology, which may be rooted or not, directed or undirected.
In addition, quantitative information might exist about edges and nodes in the
network [2]. Figure 3.1 illustrates an example of a network. Note that in the figure,
some edges are thicker than others. They denote weighted edges. Plus, note that
there is no direction in the edges, which means that the edges are undirected. Another
important fact is that a node can be isolated - not connected by edges. Plus, edges
connect nodes but might only connect some of them.

More formally, let N be the set of nodes ni with i = 1, 2, ...N and N ∈ N. Each
node can be associated with a state, represented by a canonical vector in RN :
ei ≡ (0, ..., 1, ..., 0) for node ni and ej ≡ (0, ..., 1, ..., 0) for nj , with being the
transposition operator. The ith and jth components of ei and ej are 1 and the others
0, respectively [25].

3.1.2. Multi-layer Networks
An MLN can be defined as multiple single-layer networks. Each single-layer network
can be considered a layer of a bigger structure, which forms an MLN. Each layer can
then be connected to other layer(s), by edges. In this case, there are two types of
edges:

Figure 3.1.: Example of a single-layer network.
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3. Underpinnings and Advances on MLNs for Community Construction

Figure 3.2.: Example of a multi-layer network.

• intra-layer edges: edges that connect nodes inside a layer

• inter-layer edges: edges that connect two nodes from different layers

which can be weighted or not, directed or not.
Figure 3.2 illustrates an MLN, with both intra- and inter-layer undirected edges.
Let L be a set of layers with L layers, where k̃ ∈ L. Two nodes ni and nj can

be connected in the same layer k̃ (by an intra-layer edge), but they can also be
connected in two different layers, for example k̃ and h̃. The latter case corresponds
to inter-layer connections, or edges. To represent a MLN, we follow the same notation
as in [25]. Since we only have one type of relationship between nodes and we model
time, we slightly change the formulation of the multilayer adjacency tensor in [25]
to incorporate time to the one described in Equation 3.1. Let Mt be the multilayer
adjacency tensor at time point t.

Mt =
L∑

h̃,k̃=1

N∑
i,j=1

wij(h̃k̃)(t)Eij(h̃k̃)(t) (3.1)

The main goal is to find the sets of nodes St = S1
t , S

2
t , ..., S

NC
t in Mt, at each time

point t ∈ t0, t1, ..., tNT , where NT is the number of time points and NC is the number
of subgroups, that comprise nodes that are similar to one another but distinct to
nodes in other groups. These are named subgroups or communities.

sectionDefinition of Community The term community started to be used in the
context of social networks to name a subgroup of nodes in the network. In network
science, this term describes a subgroup of nodes in a network.

Commonly, as in traditional clustering, a community can overlap with others when
a node belongs to more than one community. Depending on the approach, it might
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3.2. Community Detection in Multi-layer Networks

Figure 3.3.: Example of an MLN with inter-layer communities. The brown lines
surrounding the nodes indicate different communities that group nodes
across different layers.

be useful to consider overlapping communities. For other applications, it can be
unfeasible.

Figure 3.3 illustrates communities discovered in an MLN. This is different from
single-layer networks, since all layers contribute to the decision of the community
membership of a node.

The detection of communities can be done using many methods, but the most
commonly used is simply finding the partition that maximizes modularity or another
quality metric. The partitions are found in different ways, depending on the method.
Next, we explore that.

3.2. Community Detection in Multi-layer Networks
3.2.1. Notion of a Community
Many community detection algorithms perform well in single-layer networks, but
are difficult to adapt to MLNs [47]. According to [47], there are three key causes
that explain this complexity: (i) relevant communities may be masked by irrelevant
edges, (ii) it is not possible to capture the different relations of the nodes in each
layer and (iii) it is not possible to detect multiplex communities since layers are not
specified. For context, multiplex communities are communities that are detected
across multiple layers in a multiplex network1.

In [54], the authors organize community detection algorithms for MLNs into three
groups:

• aggregation
1a multilayer network that only has inter-layer edges that connect nodes that represent the same

entity.
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• flattening

• direct

For weighted MLNs, [54] highlights the following published studies with different
approaches for the detection of communities: the variational bayes (aggregation
method), Louvain (direct method), Aggregation Pan (flattening method), the Par-
ticleGao (flattening method) and the MNLPA (direct method) algorithms. [55]
also proposes an algorithm to improve the detectability of communities, which is
considered to be relevant to the current work.

The Louvain is a benchmark algorithm that focuses on modularity optimization.
Modularity is a quality metric to measure the quality of the partition of the nodes
of a network into groups (or communities, in our application). We introduce more
formally the definition of modularity later in this chapter, in section 3.4.

3.2.2. From Louvain to Leiden
A widely used algorithm for is the GenLouvain [73], also mentioned by [54] as a
benchmark algorithm. It evaluates the variation of modularity using the same logic
as the Louvain method, but it is able to be used with the multislice modularity
[73]. [26] also introduces a generalization of the Louvain method where it is used
the Weighted Edge Random Walk k-Path Centrality to compute the k-path edge
centrality. After, the pairwise connectivity of nodes is computed by using the k-path
edge centrality. With this pairwise connectivity as edge weights, the partition of the
network is done via the Louvain method. However, it is not stated its application to
the MLNs.

Even though the Louvain approach is one of the most popular among community
detection algorithms, it can often lead to groups that are poorly connected. Thus,
[109] propose the Leiden approach as an improvement to the Louvain method. The
Leiden approach introduces a refinement phase on the partitions found. I.e., while
the Louvain method assigns the node that most improves the quality function to
a community, the Leiden method opts for a random approach. The node will be
assigned to a community if the quality function improves, but not necessarily if this
results in the largest improvement of the quality function. At the same time, the
likelihood of a node being assigned to that community will be higher as higher the
improvement on the quality function.

In summary, there are six steps of the Leiden method:

1. Assign a different community to each node, i.e. every node will be assigned a
different community (Figure 3.4)

Figure 3.4.: First step Leiden
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3.2. Community Detection in Multi-layer Networks

Figure 3.5.: Second step Leiden

2. Moving nodes from one community to other community (Figure 3.5)

3. Refinement phase (Figure 3.6)

Figure 3.6.: Refinement step Leiden

4. Represent nodes assigned to a community in one single node (Figure 3.7)

Figure 3.7.: Aggregation step

5. Move nodes (Figure 3.8)

Figure 3.8.: Moving of nodes

6. Refinement
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3.2.3. Further Advances on Community Detection in Multi-layer
Networks

In the following section, we will provide a comprehensive overview of various com-
munity detection algorithms that have been employed in the literature. These
algorithms have been designed to identify communities or clusters within a network
or graph. However, it is important to note that not all algorithms are suitable for
every application. Some algorithms have limitations that may make them unsuitable
for certain types of networks or data. Therefore, it is crucial to carefully evaluate
the properties of the network and the suitability of the algorithm before deciding to
use it. In the subsequent paragraphs, we will provide a detailed description of each
algorithm, including its strengths, weaknesses, and potential applications.

Variational Bayes with Stochastic Block Model

This approach proposes a method to identify shared and unshared communities in a
multiplex network. In a multiplex network, inter-layer edges can only connect nodes
that represent the same entity. The nodes are represented in a community-wise
connectivity matrix that maps the probability of nodes being connected to other
nodes. Nodes are placed in the same block if their edges are stochastically similar.
The Poisson distribution is used to calculate the probability of nodes being connected.

The optimal number of blocks that represent the nodes is determined using the
Bayes factor [3]. Once the optimal number of blocks is found, communities can be
extracted. [3] has formulated the Weighted Stochastic Block Model (WSBM) adapted
to a multiplex network. However, it is not clear if the results outperform a benchmark
method, such as the Louvain.This proposed approach aims to provide a robust method
for identifying both shared and unshared communities within a multiplex network.
In a multiplex network, inter-layer edges are only allowed to connect nodes that
represent the same entity. To represent the nodes in a community-wise connectivity
matrix, a probabilistic approach is adopted that maps the probability of nodes being
connected to other nodes.

The community-wise connectivity matrix is used to place nodes in the same block
if their edges are stochastically similar. The probability of nodes being connected
is calculated using the Poisson distribution. The optimal number of blocks that
represent the nodes is determined using the Bayes factor [3]. Once the optimal
number of blocks is identified, communities can be extracted.

To achieve this, [3] has formulated the Weighted Stochastic Block Model (WSBM)
that is well-suited to a multiplex network. However, it is currently unclear whether
the results outperform benchmark methods, such as the Louvain method. Overall,
this approach provides a promising way to identify shared and unshared communities
within a multiplex network.

AggregationPan

This algorithm aggregates edge weight matrices and then applies a cut-off, so that
the edge weights with values below a threshold (< τ) are converted to 0 [83]. This is
an aggregation method, which is criticized in the literature since its simplification
may mask the true nature of the initial modular patterns [54]. Plus, there is the
need to define the threshold τ .
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Particle Competition

This technique is based on a particle competition algorithm for multi-layer networks
[37]. The main idea is to insert a certain number of particles K into nodes of the
network. Each of those particles goal is to dominate as many nodes as possible as
well as defending their current dominated nodes from the other particles. When a
particle visits a node, it gets stronger and it weakens the other particles in the same
node. At the end of the algorithm, it is expected that each particle represents a
community. There are two types of moves that the particles may do: random walking
or preferential walking. Random walking arbitrarily selects a node from its neighbors,
and preferential walking consists in visiting a neighbor in which its dominance is high.
These two types of walking are then balanced by a balancing parameter. This means
that the likelihood of a node taking a random or a preferential walk will depend on
this parameter. The experiments were, however, not tested in real-world networks in
their published work.

MNLPA

This algorithm was introduced by [4], and it is a generalization of the label propagation
algorithm to the multiplex networks. In the beginning, each node is assigned a label.
Then, similarity measures are used to compare nodes. If these two nodes have a
certain similarity metric higher than a given threshold, then the label of the two
nodes is replaced by a common label for both. This is done until the stopping criteria
are achieved. However, the survey from [54] states that this method is better suited
for directed and weighted networks rather than for general MLNs. It is also mentioned
that it might be unstable due to the threshold parameter defined, which strongly
impacts the network partition.

Belief Propagation

This algorithm focuses on the detectability of the communities by using the Belief
Propagation approach in SBM (Stochastic Block Model), which is able to deal with
heterogeneous structures of communities across layers (cf. [55]). Constraints are
treated as Bayesian priors. One of the reasons that lead to improved detectability
is related to the labeling of the communities. They ensure that communities that
represent the same nodes across layers have the same label, but the others have
distinct labels. Then, the belief of each node belonging to a certain community is
computed using prior knowledge about the correlation of community assignment
between nodes. Then, the accuracy of the model is evaluated with the ground truth
community assignment. [117] also uses the Belief Propagation method to optimize
modularity, showing that an approximation of the uncertainty of the assignment at
each node can be obtained from its marginal. Marginals reflect, in their work, how
much modularity is impacted when a node moves from one community to another
and thus test how much the node prefers a certain community.

3.3. Advances on Inter-layer Similarity
As previously mentioned, the overarching goal of this research is to develop a method
that finds subgroups in a cost-effective manner, which is recognized as significant
in the field (cf. Section 2.1). The cost of acquiring features is an essential cost to
incorporate in such a model. Taking into consideration that features are represented
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by layers in an MLN, highly similar layers are less useful for detecting subgroups
than those that are very different. The main reasoning behind this statement is that
considerably different layers/features provide complementary information about the
nodes/patients. In contrast, layers with high similarity are deemed as redundant
and, therefore, less useful.

By determining the most relevant layers, one part of the cost-effectiveness compo-
nent will be introduced to the subgroup discovery model. This agrees with the goal
of creating a method that detects patient subgroups with the minimum number of
layers without compromising its quality.

Among the most common metrics to compute layer similarity are the Jaccard
coefficient, the Normalized Mutual Information (NMI), and the adjusted Rand index.
The Jaccard coefficient, introduced in [59], is often used in classification problems
to compare the classifier’s quality. However, it can also compare two vectors and
compute their similarity.

The NMI score is often used to compute the quality of clusters and is a variation
of the mutual information metric [5]. In [61], however, the authors show that this is
a biased score to use for community detection and classification applications.

The adjusted Rand index measures the similarity between two data clusterings.
It is a correction of the Rand Index but has the disadvantage of being sensitive to
chance. The Adjusted Rand Index considers the possibility of chance agreement
between two clusterings and adjusts the Rand Index accordingly [56, 106].

For the specific case of layer comparison, [20] present methods to compare distri-
butions between layers in a multiplex network:

• Dissimilarity index

• Kullback-Leibler divergence

• Jensen-Shannon divergence

• Jeffrey distance

[108] present techniques to compare networks, both for a scenario when the nodes
are aligned and the pairs are known, Known Node Correspondence (KNC) and when
the networks have nodes that are not aligned and therefore different, Unknown Node
Correspondence (UNC). For undirected and weighted networks, some methods are
presented in Table 3.1.

Type of network Techniques
KNC Euclidean, Manhattan, Canberra distances

Weighted Jaccard distance
UNC Global statistics

Spectral adjacency, Laplacian, SNL distances
Matching-based Integrative GRAph ALigner (MI-GRAAL)
netLSD
Portrait divergence

Table 3.1.: Network similarity techniques for KNC and UNC

For UNC, it is stated that global statistics are not a robust method to compare
layer similarity since they are too simplistic. Spectral methods also present some
drawbacks concerning the co-spectrality between different graphs, dependence on the
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matrix representation, and abnormal sensitivity. MI-GRAAL has a high computational
cost, and the portrait divergence is mostly efficient with small to medium graphs
[108].

The netLSD is based on a spectral representation of the graph. The properties of
the graph are represented by the solution to the heat function using the normalized
Laplacian matrix. A crucial property of the netLSD method for this work is the
“size-invariance" property. This means that networks with different sizes can be
compared without compromising the interpretability of the metric. The “size-
invariance” property is especially helpful in the medical context; for example, when
we want to compare different clinical centers and the number of patients at different
clinical facilities varies greatly.

All of the above metrics focus on describing the similarity between networks based
on their edges, nodes, and/or other properties. For the current work, we are interested
in comparing a specific property - the community structures among layers.

Recently, [39] identified some drawbacks when using extrinsic (that require ground
truth) evaluation metrics, such as the direction of the comparison. More precisely, if
we have 2 layers of an MLN, lα and lβ , there are two ways to match the communities
in each one of them. One can use either lα or lβ as the basis of the comparison, and
this may lead to different results. For instance, let C lα = {c1, c2, ..., cr} be the set
of communities in lα and C lβ = {c1, c2, ..., ck} be the set of communities in lβ. Let
nlαC1

= {n1, n2, ..., nm} be the set of nodes in c1 of layer lα and nlβC1
= {n1, n2, ..., nn}

the set of nodes in c1 of layer lβ . In these communities, if we consider lα as the basis
of the comparison (the ground truth) and lβ as the layer to be compared with the
group truth. If we look at node existence, we will check for the number of nodes from
nlαC1

that is in nlβC1
. In the case that nlαC1

has 15 nodes and nlβC1
has 30, from which 15

are the same as in lα, then the similarity metric gives a perfect similarity. Therefore,
a two-way matching is required, in which each layer is considered the ground truth -
one at a time - and then both similarity values are combined into a single metric.
Since purity and F-measure are among the most commonly used metrics for clustering
evaluation, and they allow the comparison between two clustering solutions, they fit
the purpose of the current work.

[39] convert the purity in a two-way matching by computing firstly the purity of
lα against lβ , purity[lα∥lβ ], and vice-versa, purity[lβ∥lα]. The harmonic mean between
both values is computed, and the final purity is as follows:

purity = 2 ∗ purity[lα∥lβ ] ∗ purity[lβ∥lα]

purity[lα∥lβ ] + purity[lβ∥lα] (3.2)

With this metric, we can investigate how “pure" the clustering is in terms of node
presence.

The recall and precision of the clusters are used to compute the F-measure. A
cluster’s precision is the same as its purity. The recall metric calculates the percentage
of common nodes between the ground truth and system-generated clusters.

Finally, a cluster’s F-measure is the harmonic mean of its precision and recall.
Considering F [lα∥lβ ] as the F-measure when lα is the ground truth and lβ as the
system-generated clustering solution and F [lβ∥lα] as the F-measure of the clustering
solution when lβ is the ground-truth and lα as the system-generated clustering
solution. The harmonic mean of both values gives the overall F-measure:

F = 2 ∗ F [lα∥lβ ] ∗ F [lβ∥lα]

F [lα∥lβ ] + F [lβ∥lα] (3.3)
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3.4. Evaluation of Community Detection Algorithms
There are distinct ways to measure the quality of a community. In [105], the authors
mention some metrics usually used for the validation/evaluation of communities.
Even though the most widely used metric is modularity [79], the author also mentions
accuracy, Rand index, adjusted Rand index, and normalized mutual information.
However, these metrics demand a ground truth, except modularity.

The GenLouvain algorithm is a modularity optimization algorithm widely used
and considered a benchmark algorithm [54].

Modularity is a metric that evaluates the quality of the network partition into
communities. The multislice modularity is a metric adapted to MLNs introduced in
[77]. This metric can be defined as follows:

QM =
∑
ijαβ

(Aijα − γ kiαkjα

2mα )δαβ + δijCjαβ
2µ δ(gij , gjβ) (3.4)

where µ is the number of edges in the MLN, γ is a resolution parameter, Aijα is
the value of the edges between i and j in the layer α, Cjαβ is an inter-layer edge
between the same node j that belongs to layer α and β and kiα represents the degree
of node i in the layer α.

The primary difference between the GenLouvain algorithm and the conventional
Louvain algorithm is that the modularity measure has been replaced by the multislice
modularity metric [73]. Despite being one of the benchmark algorithms for community
detection based on modularity optimization, Louvain can result in suboptimal
partitions, as demonstrated by [109]. To address this, the authors propose the Leiden
algorithm as an enhancement to the Louvain algorithm. They include a refinement
step in which the nodes to be relocated to another community do not have to deliver
the greatest improvement in the quality function. This is a noteworthy difference
from Louvain, where nodes are only assigned to another community if it results in
the greatest increase in the quality function. This is a significant difference from
Louvain, where the strategy is greedy, with nodes only being assigned to another
community if it leads to the highest increase in the quality function. Nonetheless,
there is a likelihood linked with the decision on whether nodes should be relocated to
other communities in the Leiden algorithm. The greater the increase in the quality
function caused by shifting a node, the more likely that node will be chosen.

It is crucial to highlight that while modularity assesses the quality of node par-
titioning into communities, this does not imply that the communities reflect the
ground truth entirely, as cited by [105].

Conductance [103, 102] is another metric widely used to evaluate cluster quality
in graphs and looks at the edges between the nodes of a cluster and the nodes of
other clusters. Considering a cluster S of a graph G, the conductance Ø(S) of that
cluster is:

ϕ(S) = |δ(S)|
min(vol(S), 2m− vol(S)) (3.5)

where m is the number of undirected edges, vol(S) is the volume of edges in S,
vol(S) =

∑
v∈S wv, wv denotes the weight of edge v. The boundary of S is δ(S) ∈

{(i, j) ∈ E|i ∈ S and j ̸∈ S}.
Aside from modularity, domain-specific applications necessitate an in-depth assess-

ment of the evaluation strategy, for example, by including domain-specific evaluation
procedures.
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3.5. The Temporal Aspect in Multi-layer Networks
3.5.1. Representation of Time in Multi-layer Networks
Rossetti and Cazabet present two distinct ways of modeling time for community
discovery [93]. In a temporal network (TN), time is one of the dimensions of a
community, while in a snapshot network (SN) time is expressed as a sequence of
snapshots – communities are built at each snapshot and linked together. Snapshot
networks, also referred to as static networks or cross-sectional networks, are visual
representations of the relationships or interactions among different entities at a
particular point in time. These networks are static and do not capture the temporal
dynamics of interactions or changes in the network structure over time. Nodes in
snapshot networks typically represent different entities such as individuals, organiza-
tions, or objects, while edges represent relationships or interactions between them [10].

More formally, a snapshot network GT can be expressed as an ordered set of
snapshots GT = (Gt0 , Gt1 , ..., GtT ), with Gt = (Vt, Et) where Vi is the set of nodes
and Ei is the set of edges from Gt. SNs agrees with our notion of subgroup evolution
monitoring, so we use SNs as basis of our approach. For our task of community
evolution monitoring, we use SNs. We can model time in networks for community
discovery by using a Temporal Network (TN) or a Snapshot Network (SN) [93]. TNs
and SNs are intended for different problems though:

A temporal network can be expressed as a graph G = (V,E, T ), V denotes the
set of vertices between time of birth and time of death of v. E is the set of edges
over time, E = (ni, nj , ts, te) with ni, nj ∈ V and in this case, ts, te denote the time
of birth and death of the edge connecting ni to nj , respectively. We can categorize
temporal networks like a normal graph as directed or undirected, depending on the
nature of the edges.

In certain contexts, we might have aggregated data in the form of daily or monthly
measurements. In this case, snapshot networks are the most common representation.

Since SNs are sets of single networks and thus represent an aggregated set of
networks, traditional single-network analysis methods can be applied, thus resulting
in a lower complexity compared to TNs. Moreover, the The complexity of SNs is
determined by the number of time points [93].

Subfigure 3.9a shows an example of a snapshot network (without edges between
time points), and Figure 3.9b shows an example of a temporal network, where
time-stamped data is connected by inter-layer edges. In these figures edges represent
the similarity between nodes.

The selection criteria to choose between TNs or SNs depend on the data represen-
tation and complexity [93]:

• Representation: when the data is aggregated (e.g. monthly/yearly), SNs are
the most commonly used. If there is non-aggregated time point data, then
both SNs and TNs can be used.

• Complexity: the complexity of SNs is determined by the number of time points.
To identify structures like communities, a community detection algorithm must
be run at each point in time, and the results must be consolidated in some
way. The number of network modifications that occur over time dictates the
complexity of community detection approaches in TNs.

It is important to note that snapshot networks only provide a snapshot of the
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t1 t2 t3

(a) Snapshot network

t1 t2 t3

(b) Temporal network

Figure 3.9.: Snapshot and temporal network. Each time point (t1, t2, t3) in the figure
represents a single-layer network at that point in time. Colored dots
represent nodes and the colored surrounding circles around them denote
the subgroup of that node. Each color represents a subgroup. The
temporal network illustrated in subfigure 3.9b has edges across time
points, which connect pairs of nodes from different points in time.
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network structure at a specific moment in time and do not show how this structure
changes over time. Therefore, they cannot capture the evolution or history of
interactions between entities. Snapshot networks have numerous applications in
various domains, including social network analysis, biological networks, transportation
networks, and communication networks. They are particularly useful in analyzing
the network structure, identifying communities, measuring centrality, and studying
diffusion processes [116, 10].

In social network analysis, snapshot networks are used to study the structure of
social groups, identify key players, and analyze social dynamics. In biological networks,
they are used to study protein-protein interactions, gene regulatory networks, and
metabolic pathways. In transportation networks, they are used to analyze traffic flow
and identify congestion points. In communication networks, they are used to analyze
email communication patterns, social media interactions, and phone call networks.
Overall, snapshot networks are an important tool for understanding the structure
and dynamics of complex networks at a specific moment in time [80].

3.5.2. Community Evolution in Multi-layer Networks
In [112], the authors present a method to quantify how much communities expand,
shrink, merge, and split. For that, they create a migration matrix Tt, in which the
rows are the communities of a timepoint t and the columns are the communities of
the subsequent timepoint t+ 1.

Let C⃗ = {C1, ..., Ct} be the vector of the set of communities at each timepoint t.
At each time point, we have a set of communities in the network Ct = {c1,t, ..., cn,t},
where ci,t is a community i in timepoint t and n is the total number of communities
of Ct.

The cells of the matrix reveal the number of members of a community ci,t that
migrated to cj,t+1. For the cases in which members of a ci,t disappear in t+ 1, the
matrix has an extra row for members that disappear, Nullt. For members that are
“born" in t+ 1, there is a column Nullt+1.

Then, with these values, we can compute the percentage of members that transi-
tioned from one community to the other:

ψi,j = ft(ai,j)
ft(ct,i)

, and ηi = ft(bi)
ft(ct,i)

(3.6)

where ft(ai,j) denotes the number of members of ct,i that migrated to ct+1,j , ft(ct,i)
denotes the total number of members of ct,i, ft(bi) denotes the number of members
of ct,i that did not migrate to the ci,t+1.

For cases in which members transition from many communities to one, we have:

ϕi,j = ft+1(ai,j)
ft+1(ct+1,j)

, and µj = ft+1(dj)
ft+1(ct+1,j)

(3.7)

where ft+1(ai,j) denotes the number of members of ci,t that migrated to cj,t,
ft+1(cj,t+1) the sum of members of cj,t+1 and ft+1(dj) denotes the number of members
of ct+1,j that appear for the first time ("are born") in t + 1 and did not exist in t.
Considering m+ 1 (the +1 is the rest of the nodes that appeared in t+ 1, Nullt+1)
communities in t+ 1, which denote the m communities in Ct+1 and Nullt+1 with the
respective weights of the nodes’ migration [ψi,1, ..., ψi,m, ηi]. More specifically, ψi,1
measures the number of nodes from ct,i that migrated to ct+1,1, which is community
1 in t. Then, the weights are normalized as in:
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ψ̂i,j = ψi,j∑m
j=1 ψi,j

(3.8)

The split index can be calculated as follows:

Iψct,i
= (1− ηi)Hct,i (3.9)

and the shrink index can be calculated as follows:

Iηct,i
= ηi(H∗

t−→t+1 − Iψct,i
+ σηi) (3.10)

where
Hct,i = −

m∑
j=1

ψ̂i,j log2(ψ̂i,j), and H∗
t−→t+1 = − log2( 1

m
) (3.11)

σηi =
{

0.5ηi, if m = 1
0, otherwise

(3.12)

Ct+1,1

Ct+1,j

Ct+1,m

Nullt+1

Ct,i

Ct+1,jCt+1,jCt+1,jCt+1,jCt+1,jCt+1,jCt+1,jCt+1,jCt+1,jCt+1,jCt+1,jCt+1,j

Ct+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,mCt+1,m

Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1Nullt+1

Ct+1,j

Ct,1

Ct,i

Ct,n

Nullt

Figure 3.10.: Graphical explanation of the metrics used to compute the shrink and
split indices. ct,i denotes a subgroup/community i at time point t.
Similarly, ct+1,1 denotes subgroup 1 at the next time point, t+ 1.

The graphical representation shown in Figure 3.10 provides an explanation of how
the metrics used to calculate the indices are computed.

In practical terms, Iψct,i
refers to how much community i at time points t split,

with comparison to the subsequent time point t + 1. Higher values mean that
the community split more than others with a lower split value. Lower split index
values are better if we aim for stability, but if we aim for change, higher values are
better. This is highly dependent on the application - if we want stable subgroups
or subgroups that change rapidly (e.g., many features of a particular product are
introduced and customers start to buy different but more personalized/expensive
products.) Similarly, Iηct,i

measures how much a community i shrank from t to t+ 1.
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4. Materials

In our work, we use 4 different datasets, which we introduce hereafter:

• Dataset 1: questionnaire and socio-demographic data from tinnitus patients of
a clinical center in Regensburg, Germany

• Dataset 2: questionnaire and socio-demographic data from a Randomized
Clinical Trial (RCT) of tinnitus patients

• Dataset 3: Ecological Momentary Assessment (EMA) of mHealth App users
that assesses cognitive performance by completion cognitive task digitally

• Dataset 4: questionnaire and socio-demographic data from two clinical centers

We use data from three datasets of patients who have been diagnosed with tinnitus.
Tinnitus is a medical condition that can be characterized as a phantom perception
of sound, as first described in [60]. This condition can manifest in a variety of ways,
such as ringing, hissing, or buzzing in the ears, and can have a significant impact on
the quality of life of those affected. Tinnitus is multifactorial and is associated with
further morbidities and co-morbidities, which affect treatment planning and treatment
outcome [81]. Therefore, clinicians use several questionnaires and assessments for
diagnosis. However, in practice, patients do not fill all of them as we show in [89].
Hence, we use tinnitus datasets with high or low amount of missingness to showcase
the potential of cost-aware feature selection for community detection, where a feature
is a questionnaire which is modeled by a layer. These three datasets are 4.1, 4.2 and
4.3.

Next, we explain each of the datasets in more detail. In the other chapters, we
refer to these datasets as they are used in the experiments. We also present a table
with a summary of the most essential information of each dataset.

4.1. UHREG: Data Before and After Treatment
This dataset refers to chronic tinnitus patients admitted to the University Hospital
of Regensburg in Germany. The data was gathered between January 3, 2016 and
May 28, 2020.

The studies involving human participants were reviewed and approved by the
ethics committee of the University Regensburg. The patients/participants provided
written informed consent to participate in this study.

At admission, each patient fills out a series of questionnaires meant to assess some
of the patient’s mental and physiologic symptoms. These questionnaires are endorsed
in the guidelines for chronic tinnitus (cf. [104]).

The questionnaire data used in this research was gathered from five question-
naires: TQ [42],THI [75], Tinnitus Functional Index Questionnaire (TFI) [76], Major
Depression Inventory Questionnaire (MDI) [12], and Tinnitus Impairment Question-
naire (TBF12) [45]. Table 4.1 shows the description of the dataset. One important
insight from this brief overview is that the majority of the patients are male.
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4. Materials

Table 4.1.: Source data: Dataset UHREG 4.1. Data description of the socio-
demographics and questionnaire scores per treatment visit.

Two-time points are considered: t0 denotes the so-called “screening”, where all
questionnaires are answered, and the treatment is scheduled to start; t1 denotes the
moment of the last visit of the patient at the end of the treatment, whereby some of
the questionnaires are answered again, and the scores are compared. We also use the
expressions “pre-treatment” and “before treatment” (moment) synonymously for t0
and “post-treatment” and “after treatment” (moment) synonymously for t1.
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4.2. RCT: With Three Time Points

4.2. RCT: With Three Time Points
This dataset contains data from an RCT with tinnitus patients [97]. Each arm of
the RCT participants received a different treatment: four single treatments and
six pairwise combinations of these four treatments. Among them was Cognitive
Behavioral Therapy (CBT), designed explicitly for tinnitus patients, according to [35].
This treatment requires clinician certification, which may still be needed for each
tinnitus facility. The patients have a baseline visit in which the treatment starts,
and data about their symptoms is gathered. Then, there is an interim visit at which
the patients fill out the same set of questionnaires, as well as at the final visit. We
use data from three clinical centers (Berlin and Regensburg, Germany, and Granada,
Spain).

Table 4.2.: Source data: Dataset RCT 4.2. Data description of the target variable of
the train set used in the prediction task of predicting THI at t2 using the
information at t0.

Questionnaires used in this RCT are also endorsed in the guidelines for chronic
tinnitus [104]. The questionnaire data used from this dataset was gathered from five
questionnaires: tinnitus questionnaire (mini-TQ) [51], tinnitus handicap inventory
(THI) [75], tinnitus functional index (TFI) [76], major depression inventory (MDI)
[12], tinnitus impairment questionnaire (TBF12) [45], patient health questionnaire
(PHQ9) [67] and the fear of tinnitus questionnaire (FTQ) [36]. Table 4.4 describes
the data used in the experiments.

Table 4.2 shows the train and test set used later in this thesis for the prediction of
the THI questionnaire at t2, for both clinic centers, using for training data at time
point t0.

Table 4.3 displays the train and test sets used for predicting the THI questionnaire
at t2, for both clinic centers, using training data at time point t1 in this thesis.

29



4. Materials

Table 4.3.: Source data: Dataset RCT 4.2. Data description of the target variable of
the train set used in the prediction task of predicting THI at t2 using the
information at t1.

30



4.2. RCT: With Three Time Points

Ta
bl

e
4.

4.
:S

ou
rc

e
da

ta
:

D
at

as
et

R
C

T
4.

2.
D

at
a

de
sc

rip
tio

n
fo

r
ea

ch
cl

in
ic

al
ce

nt
er

an
d

tim
e

po
in

t.

31



4. Materials

4.3. COGN: With Many Time Points

Table 4.5.: Overview of the dataset distribution of the variables of the dataset over
all time points (weeks)

Dataset 3 contains mHealth data from users that are exposed to cognitive tasks.
The experiment is introduced in [14] and is composed of three tasks:

• Mnemonic Discrimination Task for Objects and Scenes (MDT-OS): this task
assesses pattern separation in a short-term memory task
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4.4. CLINICS: With Data From Two Different Clinics

• Object- In-Room Recall (ORR): assesses pattern completion in both short- and
long-term memory tasks

• Complex Scene Recognition (CSR): assesses long-term memory with recognition
of photographic scenes

Each participant is requested by the mHealth app to complete one of the three
randomly selected memory tasks every week. The participants are asked to complete
the tasks by push notifications on their mobile devices. After completing each
task, each participant is asked how well they perceive that they performed. Other
questions about how the participant perceives their well-being are asked and stored.
The actual performance of the task(s) is also available for analysis. Table 4.5 shows
the number of users across the 16 weeks and briefly describes age, sex and Body
Mass Index (BMI).

4.4. CLINICS: With Data From Two Different Clinics
This dataset contains data from patients with chronic tinnitus who were admitted
to the University Hospital of Regensburg and the Tinnitus Center, Charité Univer-
sitätsmedizin Berlin. The Regensburg University Hospital collected the data between
January 3, 2016 and May 28, 2020. The data from the Tinnitus Center, Charité
Universitätsmedizin Berlin were gathered between January 1, 2011 and October 15,
2015. Despite the fact that both datasets contain data from many questionnaires and
socio-demographic data, some variables appear only in one dataset and vice versa.
Table 4.6 shows the number of patients with available data at different time points
as well as the number of different treatments that were assigned. Two time points
were considered: t0 and t1. The former denotes the time point at admission, while
the latter represents the time at the final visit of the patient to the clinical centre.
For the sake of simplicity, University Hospital of Regensburg is denoted by UHREG,
and the Tinnitus Center, Charité Universitätsmedizin Berlin, is denoted by CHA.

Specific data pre-processing steps are required depending on the type of analysis
performed. The three research questions require different filters. I.e., for RQ1, we
consider all patients from both centres who filled out the age and gender questions
among all questionnaires at admission. RQ2 and RQ3 require a match on the
questionnaire data being compared. This phase is critical for juxtaposing the medical
centres’ questionnaires and ensuring the feasibility of the comparison.

Table 4.6 summarizes the available questionnaires per centre. In order to compute
the treatment outcome, the scores at admission and after treatment are used. As
a consequence, the shared questionnaire (in this case, TQ) has to be available at
both time points (t0 and t1) in order to learn a model that predicts the treatment
outcome.

Table 4.7 shows the description of the patients from the clinical center “CHA”.
Please note that the patients from “UHREG” in this dataset are the same ones as in
4.1, with precisely the same data. In this dataset, we aggregate the data shown in
Table 4.7 with the ones shown in 4.1.
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Category Questionnaire CHA REG Citation
Tinnitus distress TQ ✓ ✓ [42]

TLQ ✓ [43]
THI ✓ [75]
TFI ✓ [76]
TBF12 ✓ [45]
CGI ✓ [121]

Physical strain BI ✓ [18]
Depressivity ADSL ✓ [49]

BSF ✓ [52]
MDI ✓ [41]

Stress PSQ ✓ [70, 32]
Quality of life SF8 ✓ [13]
Coping SWOP ✓ [98]
Socio-demographics SOZK ✓

[age, gender] ✓ ✓

Table 4.6.: Questionnaire categories and the available questionnaire data per cen-
tre. TQ: tinnitus questionnaire, TL: tinnitus localization and quality
questionnaire, THI: tinnitus handicap inventory, TFI: tinnitus functional
index, TBF12: tinnitus impairment questionnaire, CGI: clinical global
impression, BI: Berlin complaint inventory, ADSL: general depression
scale—long form, BSF: Berlin mood questionnaire, MDI: major depres-
sion inventory, PSQ: perceived stress questionnaire, SF8: short-form 8
health survey, SWOP: self-efficacy- optimism-pessimism scale, SOZK:
socio-demographics questionnaire.

Table 4.7.: Source data: Dataset CLINICS 4.4. Data description of the 500 patients
from the clinical center “CHA”.
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5. COBALT for Static Data

5.1. Overview
We present COBALT, a cost-based layer selector that finds subgroups in MLNs in an
improved cost-aware manner. COBALT has a successor named Evol-COBALT, which
includes a temporal dimension and is introduced in the next chapter.

The method can be summarized into the steps illustrated in Figure 5.1.

• Definition of nodes
• Definition of edges (inter-

and intra-layer edges)
• Definition of edge weights

Representation
1

Removal of non-statistically 
significant edges (inter- and 
intra-layer edges)

Graph Pruning
2

Definition of cost:
• Availability ratio term
• Community similarity 

term

Cost model for
layer selection

3
COBALT

4

Definition of a cost-aware 
method that selects layers 
and detects phenotypes*

...

C2C1

C4

C3

C5 Deleted layer

... ...

Pruned edgeNode: patient

*Intra-layer edge: reflects the similarity of patients according to the 
feature represented by that layer
**Inter-layer edge: reflects the similarity of patients across the different 
features
***Edge weight: The higher the similarity between nodes, the higher 
the edge weight (represented by thicker edges)

Layer: 
feature

*****

Community

*

Maximize availability ratio term (prefer layers with a 
high number of nodes)
Minimize community similarity term

Assuming that the 
blue nodes in C3 
and C5 are the 
same, the last layer 
has a high 
community 
similarity to the 
prior layer and so 
becomes less 
valuable

4 Goals*

Figure 5.1.: Content structure of the proposed method, COBALT. Each block repre-
sents a stage of the approach, which are presented in the next sections.

In this workflow, we have 4 main blocks, which occur in order from left to right.
First, the representation of data in a network. Then, pruning of edges. These
two blocks refer to the pre-community detection stage, which begins with block 3
(Cost model for layer selection). In this block, we first incorporate the notion of
feature/layer cost into a quantitative cost function. After, we incorporate it in the
community detection algorithm, leading to COBALT. The cost model should consider
the previously stressed problem of considering data missingness and feature cost.

This chapter is based on the following publications:

• C. Puga, U. Niemann, V. Unnikrishnan, M. Schleicher, W. Schlee, and M.
Spiliopoulou, “Discovery of Patient Phenotypes through Multi-layer Network
Analysis on the Example of Tinnitus,” 2021 IEEE 8th Int. Conf. Data Sci.
Adv. Anal., pp. 1–10, 2021, doi: 10.1109/dsaa53316.2021.9564158.

• C. Puga, U. Niemann, W. Schlee, and M. Spiliopoulou, “A cost-based multi-
layer network approach for the discovery of patient phenotypes,” Int. J. Data
Sci. Anal., 2023, doi: 10.1007/s41060-023-00431-7.
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5.2. Entity Similarity Representation in Sparse Multi-layer
Networks

The first step towards the discovery of subgroups using multilayer networks is to
represent the data into an MLN. The main goal is that the MLNs are able to represent
the real system.

The first step is to model the essential components of an MLN:

• Nodes

• Edges

Inter-layer edges (weighted/unweighted, directed/undirected)

Intra-layer edges (weighted/unweighted, directed/undirected)

• Layers

Figure 5.2 illustrates the steps we use to represent real-world data into an MLN.

Nodes Edges Layers

Layer 

Inter-layer edges Network

Figure 5.2.: Steps for representation in an MLN.

For this chapter, we use dataset 4.1 as an example and use the questionnaire scores
as layers.

When building the inter-layer edges, two types of edges may exist:

1. edges of a node with itself between two layers

2. edges between different nodes located in different layers

We generate the inter-layer edges to incorporate the different perspectives given by
different features of a node. Hence, only inter-layer edges between the same nodes in
different layers are incorporated [88, 90].

The distances between nodes within a layer are represented by intra-layer edges.
A layer represents a feature of the dataset. These features can be questionnaires
(as in datasets 4.1, 4.2,4.3) or can be simply a numerical feature that represents the
system.

Considering two nodes pi and pj in the same layer, the edge between them is
defined by the difference between their feature values. Assuming a numerical feature
l ∈ L, valuei,l and valuej,l denote the values of nodes i and j in layer l, respectively.

The larger the discrepancy in values between nodes, the lower their edge weight.
This ensures that their connection is represented by a “weak" edge weight if their
values are not close. To accommodate for this, we define the weight as in Equation
5.1, which describes the transformation 1/x.

wi,j,l = 1
|value′

i,l − value′
j,l|

(5.1)
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In Equation 5.1, wi,j,l denotes the edge weight that connects i and j in layer l. The
values are then normalized by subtracting the mean and dividing by the standard
deviation.

Equation 5.2 shows how to compute the weight w(i,lα),(i,lβ) of an inter-layer edge
that connects (i, lα) and (i, lβ).

w(i,lα),(i,lβ) = 1
|value′

i,lα
− value′

i,lβ
|

(5.2)

value′
i,lα

and value′
i,lβ

denote the normalized value of layer lα and lβ for node i,
respectively. lα, lβ ∈ L correspond to layers α and β, respectively.

5.3. Graph Pruning

Graph pruning is a network simplification filtering strategy [58]. Graph pruning
improves computation for algorithms that have difficulty in large networks. Pruning is
a dimensionality reduction technique used to remove noisy and unneeded edges/nodes
from networks. These methods are divided into three categories: (i) centrality-based,
(ii) node-layer relevance-based, and (iii) model-based. The first two are node removal
and edge pruning, respectively. In this study, we use the Maximum Likelihood
Filter (MLF) introduced in [29], as described in [58], as an unbiased edge-filtering
technique with maximum entropy.

The fundamental concept of MLF is to develop a null model that generates a
“realized graph," which is a graph with the same total weight and degree sequence
as the original graph. Then, the “realized graph" is used to compute the statistical
significance of each edge compared to the “realized graph". Edges with p-values
greater than a certain alpha (significance level) are pruned. The nodes in the “realized
graph" are the same as in the original graph, with the same degree sequence. Edges
are assigned to a pair of nodes with a probability of being selected. For example, a
node with a high degree is more likely than a node with a low degree to be allocated
an edge. The binomial distribution used to compute this likelihood is as follows:

Pr(σij = m|ki, kj , E) =
(
E

m

)
pm(1− p)E−m (5.3)

where m is an edge from the set of edges E that connected the pair of nodes (i, j);
ki, kj are the degrees of nodes i and j, respectively; σij is the weight of the undirected
edge between i and j, p = kikj

2E2 and E = 1
2
∑
i ki. The p-value of an edge connecting

nodes i and j with a weight of wij is denoted as sij(wij). Equation 5.4 shows the
calculation of the p-value of an edge with weight wij .

sij(wij) =
∑

m≥wij

Pr(σij = m|ki, kj , E) (5.4)

5.4. Incremental Cost-aware Layer Selection

In this section, we propose two versions for the feature/layer cost model of static
COBALT. The first, we name the “simplified version” and the enhanced version
we call the “full-fledged version”. Both versions though have the common goal of
maximizing the diversity of information in the network, so that the system can be
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Symbol Description Algorithm
G Set of graphs/layers 5.1
Q Modularity 5.1

gbestsingle
first graph chosen for the MLN,
with the partition with the best modularity 5.1

corr
Set of correlation values between gbestsingle
and gi ∈ G\gbestsingle

5.1

Sall Set of partitions 5.1
Qall Set of modularity values of Sall 5.1
L the network structure: a single or MLN 5.1

Ssingle
set of community memberships of the
nodes of each single-layer network g ∈ G 5.2

Table 5.1.: Notation table of the static COBALT.

best represented, but always considering minimization of redundancy. We assume
the following statement:

max diversity ≡ min feature redundancy (5.5)

Following the definition of the cost for each version, we then show how we initialize
COBALT.

5.4.1. Cost Models

Simplified Cost Model

We start by defining the way in which we compute the redundancy. Considering that
the goal is to minimize redundancy, we define two redundant layers(features) as two
layers that have a high association between them. Considering that the edges of the
networks denote the similarity between nodes, then we focus on the edge weights to
understand how layers compare. For the numerical case, we propose to use Pearson’s
correlation between the edges of two layers.

the cost computation between two layers, linc and lα can be computed as follows:

Clinc,lα = CSlinc,lα = similarity(linc, lα) (5.6)

where Clinc,lα is the cost between layers linc and lα, CSlinc,lα is the community/subgroup
similarity between both layers and similarity(linc, lα) is the similarity function chosen
between the three mentioned: Jaccard coefficient, adjusted rand index of normalized
mutual information.

To conclude, the higher the similarity between two layers, the higher the cost C.

Full-fledged Cost Model

In the previously introduced “simplified cost model” [88], the Pearson coefficient was
used to compute layer similarity. However, this metric requires a direct correspondence
of edges (e.g., an edge connecting two nodes i and j in both layers so that they
are comparable). In many real-world scenarios, networks are not fully connected;
therefore, a more sophisticated approach is necessary. This was tackled in [90], which
will be explained later.
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In [90], only edges that connect the same pair of nodes are filtered and compared,
disregarding the other edges. We modify the method and use instead the “F-
measure,”(cf. Section 3.3) a metric that does not require correspondence and is
therefore better suited to the problem.

Data availability is also a factor to consider - the edge weights of one layer may be
highly correlated with the edge weights of another layer, which has a higher number
of edges. However, the latter has more data, and those exceeding edges may provide
helpful information about the nodes. In [90], we propose COBALT, a cost-sensitive
community detection algorithm with a different metric for layer similarity. We
analyse the impact of missingness (missing nodes) on the quality of the communities
discovered.

Particular layers may be more likely to be available than others (due to how easy
it is to gather that data). This aspect should be considered while deciding on the
next layer to be added to the MLN. For example, in the medical setting, a Magnetic
Resonance Imaging (MRI) might be more difficult to gather (higher cost) than a
blood test. Due to the difficulty of having an MRI for every patient, this data has a
low availability.

The similarity of communities between layers is a second criterion of relevance.
We intend to add a layer that contains additional information about the nodes. In
other words, we avoid adding redundant information. The more distinct the layers
are concerning their community structure, the less redundant they are. The goal is
to add a layer with a low community similarity.

Hence, the cost of a layer is calculated by combining these two ideas into two
terms: an availability ratio term (A) and a community similarity term (CS).

We formulate the function to measure the cost of a layer lα, Clinc,lα , with respect
to the incumbent set of layers in the network (linc) as:

Clinc,lα = 1
Alinc,lα

+ CSlinc,lα (5.7)

where Alinc,lα denotes the availability ratio term and CSlinc,lα the community simi-
larity term. These two terms are described hereafter.

We term the percentage of nodes in which a feature is available as the availability
ratio. Alinc,lα denotes the availability ratio of layer lα against linc. It is the ratio of
nodes that are not missing in lα from the nodes that are already in linc.

Considering the set of nodes in layer lα as plα = {p1, p2, ..., pm} and in the
incumbent layer or layer set, linc, as plinc = {p1, p2, ..., pn}, Alinclα is given by:

Alinc,lα = |p
lα ∩ plinc |
|plinc |

(5.8)

The higher the number of missing nodes in a layer, the fewer the number of nodes
added to the MLN. The goal is to add the maximum information about the nodes in
each iteration. Therefore, we aim to maximize the availability ratio term.

We define the community similarity term as a measure of how similar communities
are between layers with respect to the assigned nodes. More specifically, we focus on
quantifying the shared nodes between communities of different layers.

We use the bi-directional F-measure to quantify this term. There are two reasons
for this choice: (i) the metric includes both the purity/precision and the recall of the
solution, and (ii) it handles the absence of ground truth by considering ground truth
one layer at a time.
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5. COBALT for Static Data

The community similarity between layers lα and the incumbent layer or set of
layers linc is modeled as:

CSlinc,lα = 2 ∗ F [linc∥lα] ∗ F [lα∥linc]

F [linc∥lα] + F [lα∥linc] (5.9)

As previously stated, we intend to use layers that provide the maximum additional
information about the nodes. If the community structure of two layers is substantially
similar, they are seen as redundant. We intend the exact opposite: to add layers with
a community structure that differs from that of the incumbent (current) network.
As a result, CSlinc,lα should be minimized.

5.4.2. Initialization: Simplified Cost Model

In this subsection we present the initialization of our community-detection algorithm
using the simplified cost model previously described (cf. subsection 5.4.1) Firstly,
we select the first layer of the MLN by choosing the graph g ∈ G with the higher
modularity value q. In this phase, where we have no layer, we choose the layer with
the higher modularity q. For that, we need to detect the subgroups in each g, which
we do by using the Leiden (cf. 3.4) algorithm. The Leiden algorithm detects the
subgroups in g, which we denote by s, which is stored in Sall, and then we compute
the q of s, which is also stored in Qall.

The layer with the highest q indicates the best partition s, meaning that it is the
layer in which subgroups are the most dissimilar. With this criterion, we aim to
obtain the layer/feature that can better separate the nodes.

After the first layer is chosen, g1, the next layer to add should be the one that
provides the most additional information to the current layer. Therefore, we use the
Pearson correlation between the edge weights of g1 and the other layers from G. The
layer with the lower correlation with g1 is selected. The Pearson correlation can be
computed in two directions:

• correlation of the edge weights of gbestsingle with the other layers gi ∈ G\gbestsingle

• correlation of the original values of the variables represented by the layers, i.e.
all values before pruning

The two options above differ because the nodes in one layer, for example gbestsingle
might not be all represented in other layers. Therefore, the direction of the comparison
matters here. In our experiments, we try both and perform a comparison analysis.

The output is then a two-layer network. Algorithm 5.1 shows how the initial
solution is generated.

After the selection of gbestsingle and gbestsecond, the algorithm proceeds on detecting
the subgroups in the two-layer network, which is presented hereafter.

After, the cost of each layer is computed by using the Jaccard coefficient, adjusted
rand index or the normalized mutual information. These metrics evaluate the
similarity between two subgroup partitions. We aim to minimize the similarity
between the layers that are added to the structure L, since we aim to add only
additional information and minimize redundancy.

Please note that in this initialization, we have already selected the first 2 layers.
The main idea behind this is to use the Pearson correlation in the first step because
it is simpler and faster to compute than the full-fledged initialization that we present
later. However, the limitation of this Pearson correlation is that it does not consider
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Algorithm 5.1 COBALT Initialization Simplified: Pseudo Code for generating
the first multi-layer network
Require: G
Ensure: gbestsingle; gbestsecond

1: Ssingle ← ∅
2: corr ← ∅
3: for each g ∈ G do
4: S, q ← Leiden(g) ▷ compute Leiden for all g
5: Ssingle ← Ssingle ∪ S
6: Qall ← Qall ∪ q
7: gbestsingle ← g with max(Qall)
8: ▷ iterate over each combination of 2 graphs
9: for each gi ∈ G\gbestsingle do

10: corrgi ← correlation(gbestsingle, gi) ▷ compute correlation
11: add corrgi to corr
12: gbestsecond ← g with min(corr) ▷ minimum correlation with gbestsingle
13: Output: gbestsingle, gbestsecond

the availability component (missingness rate). In the following section, we will present
the initialization algorithm that we use when considering the full-fledged model.

5.4.3. Initialization: Full-fledged Cost Model

On the basis of the full-fledged cost model defined in subsection 5.4.3, we now present
our algorithm COBALT for cost-based layer selection and community construction.

Algorithm 5.2 shows the pseudo-code for the generation of the starting solution.

Algorithm 5.2 COBALT Initialization Full-fledged Cost Model Version:
Pseudo code for choosing the first layer
Input: G
Output: gbestsingle

1: Ssingle ← ∅
2: gbestsingle ← NULL
3: Sbestsingle ← NULL; qbestsingle ← −∞
4: for g ∈ G do
5: S, q ← Leiden(g)
6: Ssingle ← Ssingle ∪ {S}
7: if qbestsingle < q then
8: gbestsingle ← g
9: Sbestsingle ← S ; qbestsingle ← q

10:
11: Output: gbestsingle, Sbestsingle,Ssingle

The input of Algorithm 5.2 is the set of all single-layer graphs G. For each g ∈ G,
COBALT invokes the Leiden algorithm (cf. Section 3.2.2 for a detailed explanation
of this algorithm) which builds a set of communities and returns two objects: the
‘partition’ S, which encompasses the community membership of each node for the
incumbent graph g ∈ G, and q – the modularity of S. The partition Sbestsingle with
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the largest modularity and the corresponding graph gbestsingle are returned as initial
solution of COBALT, together with the set of all single-layer partitions.

Please note that at this point are not yet computing cost because we are simply
selecting the first layer. It would be impossible to compute the community similarity
component described earlier, since we need at least 2 layers for that.

The main difference between this initialization and the initialization of the simplified
cost model is that for the simplified cost model, the initialization corresponds to
selecting the first 2 layers already.

5.5. Community Detection

The next step after initialization (cf. algorithms 5.1 and 5.2) is the mounting of the
MLN structure and the global search for the structure that provides the subgroup
solution with the least cost. For that, we implement our cost model by adding one
layer at a time, in an ascending order of cost. The cost computation depends on the
methodology previously mentioned.

Algorithm 5.3 presents the pseudo-code of the global search for the final solu-
tion. The input of the algorithm differs depending on the chosen cost model. For
the simplified version, we have already the initialization with a two-layer network
(gbestsingle and gsecondbest). The solution that comes from the initialization algorithm
becomes now L, the variable that stores MLNs. Then a list of candidate layers is
created, GcandidateS , which are the set of layers that are to be added to the structure.
Naturally, the layers that were already in the initial solution cannot be added again
and therefore we define Gcandidates according to the selected initialization. For each

Algorithm 5.3 Iterative Layer Selection: Pseudo-code of the subsequent iterations
of COBALT
Input: G, gbestsingle, Sbestsingle,Ssingle and gbestsecond if simplified version of cost
Output: Sbest (best set of communities)

1: if simplified version then
2: Gcandidates ← G \ {gbestsingle, gbestsecond}
3: L ←MLN({gbestsingle, gbestsecond}) ▷ multi-layer network composed by
{gbestsingle, gbestsecond}

4: else if full-fledged version then
5: Gcandidates ← G \ {gbestsingle}
6: L ← gbestsingle

7: while Gcandidates ̸= ∅ and SC is False do
8: g ← NULL; c← +∞
9: for u ∈ Gcandidates do

10: cu ← cost(L, u,Ssingle, Su)
11: if cu < c then
12: g ← u ; c← cu

13: extend L with g
14: (SL, qL)← Leiden(L)
15: Gcandidates ← Gcandidates \ {g}
16: return SL

candidate, a cost is computed. The cost computation requires 4 variables: the L
which is the incumbent Single-layer Network (SLN) or MLN structure, the candidate
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u, the subgroups of each layer Ssingle and of the subgroups of the candidate layer Su.
The algorithm iterates over all the candidates g ∈ Gcandidates to find the g that has
the lower cost to the structure. The candidate with the lower cost is selected and
added to L.

This procedure continues until there are no more candidates (Gcandidates =) and
while the stopping criteria (SC) is not met (in the algorithm, this corresponds to
False).

In the simplified cost model, there is a significant drawback that has been mentioned
several times. The similarity between layers does not guarantee that we are adding a
layer that contains a substantial amount of new information to improve the subgroups.
This is because the availability of data is not taken into consideration.

For the full-fledged cost model, layers are chosen on the basis of availability ratio
and community similarity, and since both factors take positive values, cost cannot be
negative for the full-fledged cost model. Availability ratio may increase or drop from
one iteration to the next, though.

The stopping criteria can are distinct for the simplified and the full-fledged cost
model version:

• Simplified Cost Model
SC1: COBALT stops when the modularity decreases compared to the

previous iteration
SC2: COBALT stops when the similarity score is lower than a threshold

• Full-fledged Cost Model
SC1: COBALT stops when the availability ratio decreases towards the

previous iteration
SC2: COBALT stops when the availability ratio drops and the community

similarity increases

where the “previous iteration” is the 2nd (i.e. the 1st after the initialization) or a
later one.

For the simplified version, we choose to stop when the modularity of each iteration
and stop when it decreases, compared to the previous iteration (SC1 ).

For the full-fledged cost model version, we choose SC1 as the stopping condition in
the while-loop. In our experiments, SC1 is not used because we study the behavior of
COBALT as each layer is added. We instead report at which iteration COBALT would
have stopped and what would have been the effect on the communities’ contribution
to predictive power.

5.6. Experiment Design

In this section, we will discuss how we evaluate the results obtained from COBALT,
which was presented previously. As we do not have ground truth, we have developed
an evaluation workflow that includes not only the typical subgroup quality metrics
(such as modularity) but also domain-specific information. Our aim is to create a
comprehensive evaluation process that takes into account as much relevant information
as possible.

Figure 5.3 provides an overview of the evaluation strategy carried out in the
experiments of COBALT. We use 4 different quality strategies in order to cover the
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Figure 5.3.: Evaluation workflow of the COBALT algorithm.

majority of dimensions that can provide information about how good the subgroups
are.

As can be interpreted from Figure 5.3, we propose both qualitative and quantitative
evaluation steps. The workflow proposed aims to define a good solution in scenarios
without ground truth. Hereafter, we describe each step of the evaluation workflow in
detail.

5.6.1. Subgroup quality as modularity

The first step of the evaluation strategy is the calculation of modularity (cf. Equation
3.4) as a quality metric of the discovered subgroups. This metric assesses how well-
connected the nodes inside each subgroup are and how well-separated the different
subgroups are. This metric depends solely on how we model the system in an MLN.
We cannot rely on the modularity values if the system is poorly represented. On the
other hand, if the system is well described, then modularity can assess the quality of
the subgroups.

Regarding the interpretation of values, higher modularity values are better because
they suggest that subgroups are well-separated.

5.6.2. Subgroup visualization scheme

We use the Fruchterman-Reingold layout [34] as the basis for network visualization
to gain insights into how communities develop after selecting each new layer: Nodes
that are near to one another have stronger connections than those that are far apart.
In this type of design, we use colors to represent communities. Thus, each node takes
on the color of the subgroup to which it belongs. As a result, “excellent” communities
are depicted as graph partitions with only one hue. On the other hand, multiple
colors in one location of the depicted network show that the subgroups are mixed up.

To demonstrate how the colors/subgroups vary across levels, we contrast the
visualizations of the layers used in each iteration of community detection. The abso-
lute horizontal and vertical positions of nodes have no relevance; only their relative
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positions do, with closer nodes positioned near each other and solid connections
between them (represented by darker edges).

5.6.3. Contribution of Subgroups to Predictive Quality
The predictive quality of subgroups relies on their contribution to a specific domain-
specific variable. Defining this variable is crucial, as it is highly dependent on the
application. The aim is to create subgroups that enhance the accuracy of predicting
this variable of interest. By doing so, we hope to gain further insights into this
variable of interest.

Therefore, another step of our evaluation strategy focus on the domain of the
application. More specifically, we add a step that uses domain knowledge to assess
the quality of the subgroups.

We propose to define a target variable that is of interest to the specific application
and then build the following subsets:

• Baseline subset: subset of variables without subgroup information

• COBALT-based subset: subset of variables in “Baseline” plus the COBALT-
discovered subgroups

• Clusterer-based subset: subset of variables in “Baseline” plus the clusterer-
discovered subgroups

The first subset refers to the subset of variables which are domain specific that are
used to predict the chosen target variable, in that application.

The second subset corresponds to the “Baseline” subset plus a variable/feature
that contains information about the subgroups discovered on that dataset, using
COBALT.

The “Clusterer-based subset” corresponds to the “Baseline” subset plus a variable
that contains information about subgroups detected using traditional clustering
algorithms on that dataset.

We train one regression model per feature subset mentioned above to predict the
defined target variable. With this experiment, we aim to analyze to what extent is
subgroup information predictive of the target variable. Plus, we also use subgroups
discovered using traditional clustering algorithms to understand how they compare
to the COBALT-detected subgroups in terms of predictive power.

For regression we use linear regression, ridge, LASSO and SVR (support vector
regression). To set the hyperparameters, we apply a grid search. We perform 10-fold
cross validation on the training set, and we evaluate with mean absolute error (MAE),
mean squared error (MSE) and R2. The dataset is split into a test set of 30% and a
training set of 70%.

The clustering techniques used are: (i) agglomerative hierarchical clustering [24],
which we denote as ‘AHS’; (ii) BIRCH [122], (iii) Gaussian Mixture Models with
the Expectation Maximization algorithm [15, 27], which we denote as ‘GMM_EM’;
(iv) HDBSCAN [21], (v) k-means [48] and (vi) OPTICS [6]. It must be stressed
that these clustering models serve only as baselines, because they operate under
different conditions than COBALT: they are cost-insensitive, since they exploit all
questionnaires/layers, while COBALT uses only the layers up to a given iteration.

Moreover, these clustering algorithms do not handle missing values, hence they are
trained only on nodes present in all layers. There is an interplay between modularity
and predictive power. Modularity is not independent of quality. Higher modularity
reflects well connected subgroups, which allows for better interpretability.

45



5. COBALT for Static Data

5.6.4. Evaluating the Effects of Missingness

COBALT is designed to deal with layers that contain only few nodes, i.e. layers for
which only few entities have delivered data. To measure the influence of missingness,
we gradually introduce missingness into a dataset that originally has no missing data.
We perform this experiment to dataset 4.1. When removing a node, we remove its
corresponding node from all layers.

The complete workflow is as follows. If the dataset in use contains missing values,
we extract from it the subset D that has no missing values on the target variable.
In the next step, we specify the maximum and minimum of the “missingness ratio”,
which we define the percentage of nodes to be randomly selected and eliminated
from D. Next, we perform a grid search between the minimum and maximum
percentage and derive the corresponding subset of D for each value in the grid; for
our experiment, we vary the missingness ratio from 0.1(10% of entities removed)
to 0.9(90% of the entities removed), with a step of 0.1, i.e. of 10%. Finally, we
run COBALT on each derived dataset and measure quality as (i) modularity at each
iteration and (ii) predictive quality for the iteration with the best modularity.

To conduct a sensitivity analysis of the impact of missing data in our model, we
examine the modularity of the partitions with different missing data ratios, as well
as the performance of the prediction of the target variable, using the COBALT-based
subset.

5.7. Results
In this section, we have two main blocks: subsections 5.7.1 and 5.7.2. They correspond
to two different experiments, in which we apply the simplified cost model version
of the algorithm presented in Section 5.4.1 and the full-fledged cost model version
presented in Section 5.4.3.

5.7.1. Simplified Cost Model

For this experiment, we use dataset 4.1 to collect questionnaire data from tinnitus
patients who visit a clinic center. The patients are assigned to a treatment and
respond to the questionnaires at different times between the beginning and end of
treatment.

To represent this system into an MLN, we consider the patients as nodes of a
network and the questionnaires as the layers of the MLN. Since there are multiple
time points (pre-treatment and post-treatment) and we are now focusing on the
static algorithm, we represent the system using the pre-treatment data to represent
the system.

The structure can be defined as follows:

• Nodes: patients

• Layers: questionnaire scores (1 layer per questionnaire) which means 5 layers
(THI, TFI, TQ, TBF12 and MDI questionnaires)

• Intra-layer edges: weighted edges that represent the similarity of pairs of nodes
according to the same questionnaire/layer

• Inter-layer edges: weighted edges that represent the similarity of the same node
across two different questionnaires/layer
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Both intra- and inter-layer edge weights are computed using the Equations 5.1 and
5.2, where valuei,lα represents a score of questionnaire lα of patient i. For example,
valuei,THI is the THI score of patient i.

Edge Pruning

Edge pruning is applied to every single layer, using the MLF to filter only statistical
significant edges. When applying this filter, two scenarios may occur:

1. No edges are pruned and the network stays as is.

2. Some edges are pruned and the network gets less dense, leading to a not-fully
connected network.

3. All edges are pruned. When all edges are pruned and the network is not
connected, it is a significant piece of information. This indicates that the
feature being represented by that network is not able to distinguish the nodes,
especially when all edge weights are very similar and there is little difference
between them.

Figures 5.4a and 5.4b show one example of a layer before pruning and after pruning.

(a) Layer before pruning (b) Layer after pruning

Figure 5.4.: Two networks, one before pruning (subfigure 5.4a) and therefore fully
connected and the other after pruning (subfigure 5.4b) . The nodes are
represented by gray dots and the edges are represented by gray links.

The former represents the fully-connected layer before pruning. The latter corre-
sponds to the pruned layer.

We apply the MLF method to every feature in 4.1: THI, TQ, TBF12, TQ and
MDI scores.

Figure 5.5 shows the proportion of kept and pruned edges per layer. In this dataset
(cf. 4.1), most layers have a pruning ratio > 50%. This means that most of the edges
were not statistically significant.

Figure 5.6 shows the distribution of the questionnaires scores across each sub-
group/community for dataset 4.1.

All subgroups comprise a majority of male patients, but there are differences in the
relative proportion of female patients. For instance, subgroup C5 has a higher-than-
average proportion of female patients. Looking at the bar plots, we can conclude
that C5 is also the subgroup with the highest scores among all questionnaires.
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Figure 5.5.: Proportion of “kept” edges per layer and per weight. A set of barplots
is illustrated, per layer. For instance, for the MDI layer, in the first
barplot, we see that the higher proportion of kept/not pruned edges
have a weight between 1.4 and 11.2. In contrast, for the TBF12 layer,
the majority of the edges kept are the ones with weight between 0 and
0.334.
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Figure 5.6.: Description of each community per variable. On the leftmost part of
the figure, each horizontal bar represents each community/subgroup and
the pink part of the barplot denotes the proportion of female patients
and the blue part denotes the proportion of male patients. For each
questionnaire, we represent the distribution of that questionnaire per
community using boxplots, each one with a color that represents the
correspondent subgroup.
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Figure 5.7.: Evolution of Modularity, NMI and Adjusted Rand Score values as layers
are incrementally added. There are 5 iterations, because there are 5
possible layers to be added.

Evolution of Modularity as Layers are Added

Figure 5.7 shows the results from the COBALT using both types of correlation
mentioned in 5.4.1. The graph shows the modularity score over the 5 iterations,
for both cases where the NMI score is used and the Adjusted Rand score is used
for computing the layer similarity/layer cost. From Figure 5.7, we can understand
that modularity decreases or keeps the same value with the iterations when using
the correlation of edge weights as a criterion to compute layer cost. The NMI and
the adjusted rand scores decrease more when using the correlation of original values
for the cost model. However, we can see that by iteration 4, both models achieve
a partition into subgroups that have the same Q. Regarding modularity, using the
correlation of edge weights is a better choice when comparing subgroup structures.
This conclusion is used as an insight for the next version that is introduced and the
later works.

Evolution of Communities as Layers are Added

The figures presented below represent the graphs of each layer of each iteration. At
the first iteration, only one layer is selected, which for the dataset 4.1 was the layer
that represents the THI questionnaire of all patients. Figure 5.8 illustrates this. We
see that nodes colored with the same color are placed next to each other. This means
that the nodes that belong to the same subgroup have a higher similarity (strong
connection/higher edge weight) according to their THI score similarity. For example,
nodes colored in pink are mostly placed next to one another, with the expectation of
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Figure 5.8.: Layer that displays the THI score of patients with detected communities
at iteration 1 with modularity value of Q = 0.752. The nodes are
represented by colored dots. The colors represent the community to
which the node belongs to. The edges are represented by gray links.
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(a) THI graph (b) TQ graph

Figure 5.9.: THI and TQ layers with detected communities at iteration 2 with
modularity value of Q = 0.358. The nodes are represented by colored
dots. The colors represent the community to which the node belongs to.
The edges are represented by gray links.

(a) THI graph (b) TQ graph (c) TBF12 graph

Figure 5.10.: THI, TQ and TBF12 layers with detected communities at iteration
3 with modularity value of Q = 0.362. The nodes are represented by
colored dots. The colors represent the community to which the node
belongs to. The edges are represented by gray links.

4 nodes that appear in the border between the green and the blue subgroups. The
green and the blue subgroups are better connected according to their THI score since
they group together nodes that are closer to each other. Figure 5.9 shows the second
iteration, in which the TQ layer is added. In this iteration, it is noticeable that the
nodes are more dispersed, and nodes with different colors are sometimes placed in
nearby areas of the graph. This happens because the algorithm is now not using
simply one layer but two, trying to separate the nodes according to both layers. In a
2D graph, it is hard to visualize the partition in these cases. For example, the violet
nodes in the middle of Figure 5.9(a) are very similar, regarding their THI score, to
some of the green nodes since they are connected by a strong edge weight. However,
according to the TQ score, they are not that similar, and that makes the violet nodes
in 5.9(a) appear next to the green nodes. Looking at Figure 5.9(b), the colors are
well separated, leading us to believe that the algorithm had to allocate the nodes in
Figure 5.9(a) like that because it optimizes the modularity Q.

In the next iteration, the TBF12 layer is added. The number of different subgroups
detected is again lower: we can observe only the orange and the purple subgroups.
Figure 5.11 shows iteration 4 in which TFI layer is added. Figure 5.12 shows iteration
5 with the last layer, with the MDI information. For both these iterations, the
modularity Q is close to 0, indicating that there is no underlying structure in the
MLN.
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(a) THI graph (b) TQ graph (c) TBF12 graph

(d) TFI graph

Figure 5.11.: THI, TQ, TBF12 and TFI layers with detected communities at iteration
4 with modularity value of Q = 0.002. The nodes are represented by
colored dots. The colors represent the community to which the node
belongs to. The edges are represented by gray links.

(a) THI graph (b) TQ graph (c) TBF12 graph

(d) TFI graph (e) MDI graph

Figure 5.12.: THI, TQ, TBF12, TFI, and MDI layers with detected communities at
iteration 5, with a modularity value of Q = 0.001. The nodes are
represented by colored dots. The colors represent the community to
which the node belongs to. The edges are represented by gray links.
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Layer N C Model MAE MSE R2

THI 17 1 Lasso 9.7 110.0 0.183
THI 17 2 Ridge 15.2 274.5 0.034

TQ, THI 28 1 Lasso 13.2 280.5 0.189
TQ, THI 28 0 Lasso 13.1 245.0 -0.152

THI, TQ, TBF12 32 0 Ridge 11.1 197.7 -0.115
THI, TQ, TBF12, TFI 57 0 Ridge 19.3 535.3 0.049

THI, TFI, TQ, TBF12, MDI 57 0 Lasso 19.7 573.7 0.049
Baseline 247 All Lasso 9.1 529.9 -0.027

Table 5.2.: Performance of the prediction of TQ score after treatment with and
without subgroup information. We train different models with subgroups
detected using different layers. The column “Layers” denotes the layer(s)
of the MLN used to detect afterward the subgroups, which here we call
communities, or “C”. “Baseline” corresponds to a model that does not
use subgroup information.“N” denotes the number of data points and “C”
the community identifier.

Subgroups for Prediction

We present in table 5.2 the performance results of a regression model trained to
predict TQ score at the final visit.

The results are presented per community, i.e., per subgroup. For the network at
iteration 1, with only the THI, we present the results for two communities, C = 1
and C = 2. The others could not be used because there are not enough data points
to train a regression model using cross-validation. For the MLN with layers TQ and
THI, we report only communities 0 and 1 for the same reason.

The “Baseline” prediction model achieves relatively poor performance when com-
pared with the regression models that use subgroup information. The regression
model that has the highest R2 is trained with subgroup information discovered by
detecting communities in an MLN with the TQ and THI layers, which is trained only
using the patients allocated in subgroup 1 (C = 1). The separation between subgroup
1 and the other subgroups makes the model achieve a higher performance, which
means that these patients are easier to predict, according to the used variables than
the ones in the other subgroups.

5.7.2. Full-fledged Cost Model

In this subsection, we present the results for the full-fledged cost model, and we use
the same dataset 4.1.

Layer Selector Results

Figure 5.13 shows the evolution of the modularity Q per iteration using COBALT as
in [90], as well as the layer cost and availability ratio of the selected layer at that
iteration. Note that there are 5 iterations because there are five possible layers to be
added.
Q starts around 0.75 in the first iteration and then decreases until the last layer is

added, in which the Q is 0.6. This evolution is expected since we start by optimizing
by Q when the first layer added is the one with the highest Q. Therefore, all other
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Figure 5.13.: Evolution of modularity (uppermost subfigure), cost (middle upper
subfigure), availability ratio (middle lower subfigure) and community
similarity (lowermost subfigure), computed as layers are added by
COBALT, one at a time.

layers that are added have, as single layers, a lower Q. Even though there is a drop
in the Q value, the values are still above 0.55, which means that there are underlying
structures in the MLN.

Layer cost has a decrease at iteration 4, which points to the fact that, at iteration
4, the layer that is added has one of the following properties:

• Higher data availability than the layer at iteration 3

• Lower subgroup similarity, CS, with the MLN at iteration 3

• the sum of the inverse of AR and CS is lower than the one at iteration 3

From the CS yellow line plot, we observe that the cost component of AR in iteration
4 is more than in iteration 3, while the CS component is similar. Therefore, the data
availability of the layer added at iteration 4 is higher than that added at iteration 3.
One question remains, though, why layer cost decreased, which can be understood
by understanding the equation in 5.8, in which we compare the nodes of the layer to
be added with the last selected layer. It is then possible that the AR cost decreases
because it depends on the layer with the lowest number of nodes.

The stopping criteria SC1 could be activated, for example, when CS increases
again (iteration 4).

Figure 5.14 depicts the distribution of the questionnaire scores for each of the 6
communities of this 1st iteration of COBALT.

The first column of Figure 5.14 shows the value distribution for sex, with one
row per community. We present the data in a tabular format, with one column
representing each questionnaire and one boxplot for each community. Our analysis
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Figure 5.14.: The 6 communities of the THI network added by COBALT as 1st layer,
depicting the value distributions inside each questionnaire.

indicates that the communities are quite consistent in their responses to the THI
questionnaire, as evidenced by the small boxes indicating low variance. However, we
observed an increase in variance for the other questionnaires, which is not surprising
as COBALT used only the THI data to create the communities.

There are notable differences among some of the communities. Community C1,
represented by green boxes in the questionnaires, has the lowest average score in
each questionnaire, while community C2, represented by faded yellow boxes, has
the highest average score. This suggests that C1 and C2 have significantly different
characteristics. Based on the data used, it appears that C1 groups patients with
mild tinnitus symptoms, whereas C2 groups those with severe tinnitus symptoms.
Furthermore, there are differences in gender between the communities, with C1
having a lower proportion of female patients.

Evolution of Communities as Layers are Added

Figures 5.15 to 5.19 show the subgroups as COBALT adds layers. The visualization is
two-dimensional, as the one presented for the “simplified cost model version”. Each
subfigure illustrates a layer of the network.

Figure 5.15 depicts the 6 communities in the THI layer, which is chosen by COBALT
in the first iteration. The colors of the nodes are well-separated, which means that
same-subgroup nodes have similar THI scores, while nodes in different subgroups can
be distinguished by their different THI scores.

There are two exceptions, which concern the blue and green communities and the
purple and pink communities. There are areas of the graph where there is a mix
between green and blue nodes and purple and pink nodes. However, this is minor in
comparison with the total number of nodes.

Figure 5.16 illustrates the 5 communities discovered in the 2nd iteration, where
COBALT adds the MDI layer with the lowest cost. The COBALT algorithm identifies
communities by analyzing data from both layers, which results in a different commu-
nity structure when compared to iteration 1. In iteration 2, the MDI layer is chosen
to be added as it has the lowest cost. In Figure 5.13, the evolution curves show that
iteration 2 caused a cost increase and a slight decrease in modularity. This would
have stopped the iterative procedure of COBALT in a real setting. The visualization
of the communities in the THI and MDI networks makes this evident. There is a clear
separation of colors in the THI network, while the colors in the MDI network are
mixed. This indicates that the use of the inter-layer similarities and the similarities
inside the MDI network did not contribute to a good modularity score.

In Figure 5.17, the 4 communities found in the third iteration are shown, where
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Figure 5.15.: First iteration: 6 communities on the THI at t0 layer
. The modularity value is of Q = 0.730. Different colors represent different

communities.

(a) THI layer (b) MDI layer

Figure 5.16.: 2nd iteration with MDI questionnaire at t0 as second layer: 5 communi-
ties detected. The modularity value is of Q = 0.632.
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COBALT added the TQ layer. From this iteration, community induction is driven by
the node similarities inside the MDI layer, leading to more homogeneous communities
in the MDI layer. In contrast, the community colors in the other layers are mixed.

(a) THI layer (b) MDI layer (c) TQ layer

Figure 5.17.: 3rd iteration with TQ questionnaire at t0 added as 3rd layer: 4 com-
munities detected. The modularity value is of Q = 0.613.

Figure 5.17 reveals a noteworthy observation: the MDI network has a high density,
which indicates that the patients are quite similar to each other within this layer and
could lead to communities that are not clearly separated. This could explain why the
graph pruning step had a smaller effect when compared to other layers. In contrast,
the partition in Figure 5.18, which shows the 4 communities found when COBALT
adds TBF12 as the 4th layer, appears to be well separated with respect to the MDI
layer. On the other hand, the colors in the other two layers appear dispersed in many
areas of the networks. Similar to the third iteration, the nodes are still well-separated

(a) THI layer (b) MDI layer

(c) TQ layer (d) TBF12 layer

Figure 5.18.: 4th iteration with TBF12 questionnaire at t0 added as 4th layer: 4
communities detected. The modularity value is of Q = 0.592.

into communities based on the MDI layer but not in the other layers. The number
of communities remains the same as before, although this does not guarantee that
the communities are exactly the same. The addition of the TBF12 layer did not have
a significant impact on the community structure detected. However, this does not
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mean that the communities are identical to those in iteration 3. Our primary goal
when using a cost-based model is to keep the layers that provide the least additional
information for the final iterations. The results of the fourth iteration suggest that
adding the TBF12 layer does not contribute much relevant information to the previous
MLN.

Finally, Figure 5.19 shows the 4 communities found in the 5th iteration, when the
TFI layer is added as the last one.

(a) THI layer (b) MDI layer (c) TQ layer

(d) TBF12 layer (e) TFI layer

Figure 5.19.: 5th iteration, last layer (TFI questionnaire at t0) added: 4 communities
detected. The modularity value is of Q = 0.591.

The MDI network shows clear separation between communities, while the other
networks do not. The communities discovered using the 5 layers are displayed, with
the TFI layer being the last and most expensive addition. The algorithm identified 4
communities, which are well separated in the MDI network. The modularity value of
this partition is 0.591, which is very close to the modularity value of the 4th iteration
(0.592).

In summary, the visualization scheme shows a deterioration of community quality
as layers are added. The evolution of layer cost and its two factors capture this
deterioration well; the SC1 stopping criterion would have stopped the MLN expansion
after the 3rd iteration by the latest.

In our scenario, communities are phenotypes for prediction. Here we report their
contribution to predictive quality.

Subgroups for Prediction

As per our evaluation design, we compare the quality of predictions achieved using
COBALT communities to that achieved by the "Baseline" regression model and
traditional clustering algorithms instead of COBALT.

We evaluate the extent to which we can predict a post-treatment score for a layer
without using the pre-treatment data of that layer. To achieve this, we use the
communities learned over the layers l1 (first iteration) and l2 (second iteration) as
input and the post-treatment score (at t1) of each layer as a target.

For instance, suppose that the target is the post-treatment score of question-
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Questionnaire Total Training set Test set
THI 123 86 37
MDI 109 76 33
TQ 70 49 21
TBF12 35 24 11
TFI 87 61 26

Table 5.3.: Number of data points in the train and test set size used, per question-
naire score, for the prediction of the treatment outcome (post-treatment
questionnaire score).

naire/layer l, and the inputs are the communities learned over the layers l1 and l2,
where l ̸∈ {l1, l2}. Suppose the prediction quality is high in the evaluation setting for
a given phenotype. In that case, we expect that we can predict the score of l at t1
without recording layer l for this phenotype at all.

In contrast to the simplified cost model, we expand the experiment by incorporating
several target variables instead of solely relying on the TQ score. Consequently, this
experiment is more comprehensive and aims to determine which questionnaires are
easier to predict post-treatment scores for. Table 5.3 displays the training and testing
sizes of each questionnaire prediction task.

We present our findings in Table 5.4, and will now explain them in detail. For
each of the 5 scores at t1, we have provided the performance in terms of MSE and
MAE (where lower values are better), as well as the explained variance R2 (where
higher values are better). The best values for predicting a questionnaire score are
highlighted in boldface.

To evaluate how much the subgroups identified by COBALT contribute to phenotype-
sensitive treatment, we created a Baseline’ group of regression models. Each model
predicts the score of a given questionnaire (or layer) at t1. For each patient, the
models use the following features: age, gender, and their score for that questionnaire
at t0.

In our study, we perform a comparison of "Baseline" models with the regression
models that incorporate community information. The regression models comprise the
ID of the patient’s community for each patient/layer node. This information proved
to be particularly useful as COBALT adds layers, causing a patient’s community to
change. To account for this, we train a regression model for each iteration using
community-augmented data. By doing so, we are able to analyze the impact of
community information on the accuracy of the models. This approach allows us
to evaluate the effectiveness of incorporating community data into the regression
models.

In Table 5.4, the upper section displays the quality of the phenotypes in the MLN
network for each COBALT iteration in the first column. The quality is measured by
modularity Q in the third column. The best values achieved in a COBALT iteration
are underlined for each predicted score. The COBALT-augmented regression model
outperforms the corresponding “Baseline” regression model for each score, as seen by
the underlined values. When observing the phenotypes of each iteration, it is clear
that the COBALT-augmented regression model consistently performs better.

• iteration 1: According to the evaluation results, the performance of COBALT
is better than the Baseline when it comes to measuring the THI score, MDI,
and TBF12 scores. The MAE values for these measures are identical for both
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COBALT and the Baseline. However, the Baseline outperforms COBALT when
it comes to measuring the TQ and TFI scores. Overall, the evaluation results
suggest that COBALT is a more reliable and accurate tool for measuring certain
aspects of the performance, while the Baseline performs better in other areas.

• iteration 2: COBALT performs better than the Baseline for TQ, TFI, and
TBF12 scores. Regarding the THI score, COBALT outperforms the Baseline in
terms of MSE and MAE. The results show that for the MDI score, the Baseline
outperforms COBALT. This is surprising because the MDI layer was included in
the 2nd iteration. However, upon examining the communities in Figure 5.16, it
is evident that they are more focused on THI.

• iteration 3: COBALT outperforms the Baseline for the TQ and TBF12 scores
and for the THI score with respect to MSE and MAE. With respect to the MDI
score and the TFI score, the Baseline is superior.

• iteration 4: COBALT outperforms the “Baseline” model for all scores except
TFI.

• iteration 5: COBALT outperforms the “Baseline” model for the THI score, but
it is inferior to it for all other questionnaire scores.

To summarize, the COBALT phenotypes on the THI and MDI layers are sufficient to
predict 4 out of 5 scores at t1 with better Mean Absolute Error (MAE) and Mean
Squared Error (MSE) than the “Baseline” that uses the scores of all 5 questionnaires
at t0. The THI layer alone is enough to predict 3 out of 5 scores at t1. This shows
that using phenotypes during prediction is advantageous, and the advantage is even
greater when adding the least-cost layer.

The influence of the MDI layer may be considered an artifact because this layer
improves predictive performance but not for the MDI score itself. This could be due
to the density of the layer, which may have resulted in poor-quality communities
inside it.

Table 5.4 shows the performance of clustering algorithms in constructing phenotypes
for prediction instead of COBALT on MLNs. We modified the number of clusters to
optimize silhouette and reported the clusters found for that optimal number. For
instance, for k-means, the best silhouette was found for k = 2.

At least one clustering algorithm outperformed the Baseline model for each of the
five scores. This suggests that taking advantage of subgroups during prediction is
beneficial, similar to the COBALT approach. However, unlike COBALT, no clustering
algorithm was significantly better than the others. For the THI score, all algorithms
delivered models superior to the Baseline. For the TFI score, none of them did. For
the remaining scores, some models were better than the Baseline, while others were
worse.

Regarding the prediction of the TFI score (iteration 2) and the TBF12 score (iteration
3), COBALT outperformed the clustering approaches. However, this was before the
corresponding layers were added. On the other hand, ML outperformed all clustering
algorithms while predicting the MDI score, TFI score, and TBF12 score.

For the MDI score, iteration 4 delivers the best R2 value, but OPTICS is superior to
MLN with respect to MSE and MAE. For the TFI score, the 2-layer network provides
the best results, and for the TBF12 score, it is the 3-layer network.

When it comes to the THI score, K-Means returns the best results. However,
there is no clear winner among the clustering approaches with respect to phenotype
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Partition quality THI score at t1 MDI score at t1 TQ score at t1
Q (best) n NL MSE MAE R2 n NL MSE MAE R2 n NL MSE MAE R2

Ratio of node missingness
0% 0.740 48 1 8.0 102.3 0.850 47 1 7.1 90.0 0.601 29 1 7.5 88.6 0.703
10% 0.741 48 4 9.1 149.0 0.789 47 4 5.5 45.4 0.574 29 4 9.8 142.5 0.635
20% 0.742 48 4 7.9 89.9 0.847

Table 5.5.: Prediction quality for each percentage value of missingness, showing the
iteration (equiv. number of layers NL) that achieves the best modularity.
Number of patients used for training (n) is different for each questionnaire,
since only patients that filled the questionnaire represented in each column
at t1 are considered if and only if they files all questionnaires at t0.

Note that ‘n’ is then partitioned into two: train and holdout sets (cf. Figure 5.3 and
subsection 5.6.3)).

contribution. For each of the 5 scores, another algorithm is best for one or more
of the three measures. Unlike COBALT, all clustering algorithms are trained on all
scores at t0. In contrast, the phenotypes returned by COBALT on the first two layers
outperform the baseline for all scores except the MDI.

The comparison of COBALT and clustering based on community homogeneity is not
feasible. Therefore, we resort to using silhouette instead of modularity for clustering
purposes. Our analysis reveals that BIRCH produces subgroups with the highest
silhouette value among different clustering algorithms. However, these subgroups
have limited potential for prediction compared to those generated by other clustering
algorithms. This observation aligns with our findings on modularity for COBALT:
although the subgroups obtained at iteration 1 have the highest modularity, the
regression models utilizing them are of inferior quality.

To provide more detailed insight, the COBALT method has been found to produce
more consistent and reliable predictive results when compared to individual clustering
algorithms. Despite the latter method using all scores at t0, the results are not as
accurate as those generated by COBALT. This is particularly evident in iteration
2, where a layer is selected in a cost-sensitive manner before the stopping criterion
SC1 is triggered. It is interesting to note that the quality of the subgroups, such as
the modularity in MLNs or the silhouettes in clustering, is not a reliable indicator of
predictive performance. However, using a cost-sensitive approach to create subgroups
with COBALT leads to highly competitive predictive performance. Therefore, the
COBALT method is recommended for generating subgroups with superior predictive
performance.

Impact of missingness

In Figure 5.20, we can observe the trend in modularity as data missingness increases
from 10% to 90%. This figure provides information about the changes in modularity
values across different iterations. The top-left subfigure corresponds to the initial
iteration, while the bottom-right subfigure corresponds to the final iteration. It
is important to note that each subfigure displays a dashed line, which represents
the modularity value for data with 0% missingness. By analyzing this figure, one
can gain a deeper understanding of the relationship between data missingness and
modularity values, and how this relationship changes over time.

The plotted curves suggest that the modularity of the MLN is not significantly
impacted by missing data. The curves always decline towards 0.4 and remain close
to the reference line of 0% missing data. Although sometimes the curves fall below
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Figure 5.20.: Modularity per iteration as missingness ratio is increased from 10% to
90%.
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the reference line, they are mostly above it.
The findings of the study suggest that specific subsets of nodes within the MLN

have intra/inter-layer edges and weights that create communities of similar quality
to the ones that do not have any missing data. This indicates that the missing data
in the MLN can be predicted accurately to a certain extent.

The prediction quality table (Table 5.5) demonstrates that COBALT was only able
to accurately predict THI, MDI, and TQ scores at time point 1 when the missing data
was 0% and 10%. However, when the missing data was increased to 20%, only THI
could be predicted with sufficient accuracy. Unfortunately, in this dataset there was
not enough data to train and test for the TFI and TBF12 questionnaires.

To select the best iteration, we choose the one with the highest modularity for
each missing data value. This value is then presented in the “NL” column, which
indicates the number of layers used. The number of patients used for training varied
depending on the questionnaire score being predicted and is shown in the “n” column.
Overall, these findings provide useful insights into the predictability of the missing
data in the MLN and suggest that specific subsets of nodes can be used to create
accurate predictions.

As shown in Table 5.4, decreasing modularity does not necessarily indicate a
decline in prediction quality measures. This is supported by the results presented in
Table 5.5, where sets of communities with the best modularity were selected, but
prediction quality measures varied in both directions. Overall, the prediction quality
is good, indicating that a small increase in missingness does not lead to a significant
deterioration of the quality.

When the number of missing nodes increased from 0% to 10%, the THI score
prediction quality dropped, although not by a significant margin, based on R2.
However, it increased again when node missingness was increased to 20%. For
MDI and TQ questionnaire score predictions, prediction quality decreased with node
missingness. However, the amount of training data was so small that generalization
was not possible.

5.8. Discussion

The results mentioned above raise the question of whether modularity is equally
important as prediction quality. Although modularity maximization is not an end
goal, creating well-connected communities has contributed to better prediction quality.
Communities play a crucial role in the cost-aware selection of questionnaires, thereby
reducing the cost and eventually the burden on patients without compromising
prediction quality.

Additionally, the impact of missing data on modularity was not significant, indicat-
ing that communities can be identified even with a smaller sample size. This points
out that the removal of nodes does not significantly impact the relative strength of
the edges in the structure for this specific dataset. More specifically, communities
that were before very well-connected remain well-connected despite the removal of
several nodes. We can say that the system is then “robust” to the removal of nodes.
This can be an indication that the system was well represented into an MLN, since
some properties of the network are maintained.

However, this only applies to the dataset studied here. Please note that different
systems require different representations, and the first step that we emphasized in
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the beginning of this thesis - the representation - is the most important to ensure a
robust system representation.

Two modalities are presented to define cost, and they are tested in the same
dataset. The first one, the simplified cost model version, does not allow for missing
data, i.e. only considers patients that have available data for every questionnaire.
In the full-fledged cost model version, we allow for missing data. This is noticeable
already in the first iteration, as seen in Table 5.6.

Simplified version Full-fledged version Simplified version Full-fledged version
Iteration number Layers Q
iteration 1 THI THI 0.752 0.730
iteration 2 THI, TQ THI, MDI 0.358 0.632
iteration 3 THI, TQ, TBF12 THI, MDI, TQ 0.362 0.613
iteration 4 THI, TQ, TBF12, TFI THI, MDI, TQ, TBF12 0.002 0.592
iteration 5 THI, TQ, TBF12, TFI, MDI THI, MDI, TQ, TBF12, TFI 0.001 0.591

Table 5.6.: Modularity values, per iteration, of the “simplified version” and “Full-
fledged version”. The column “Layers” denotes the used layers at each
iteration. For instance, at iteration 1, both models used the same layer.

In the first iteration, both models choose the same layer (named THI), but the Q
values are different. The only explanation for this is the different subset of nodes
used since the dataset is the same. As previously stated, the “simplified version” is
less complex not only because of the cost model but also because it does not account
for missing values. Therefore, at iteration 1 of the “simplified cost model version,”
we have only nodes that have information about all layers. On the other hand, we
have in the “full-fledged cost model version” all the nodes irrespective of their values
on the other layers.

Upon comparing the modularity values and selected features of both methods, it
can be observed that the order of selected layers/features differs, with the previous
work selecting THI, TQ, TBF12, TFI, MDI, and the current work selecting THI, MDI,
TQ, TBF12, TFI. The difference in modularity obtained in the first layer can be
attributed to the fact that COBALT uses all patient data, whereas [88] only uses
patients with available data in all layers. Essentially, COBALT’s modularity in the
first layer is different due to the inclusion of all patient data, while [88] only includes
patients with available data in all layers.

Regarding prediction performance, it is not possible to compare the “simplified
version” [88] with the “Full-fledged version” because the former predicted for each
community separately and only for the TQ score at t1, considering only those
communities that had sufficient data for learning and testing. The difference in the
layer selection order between the “simplified version” and the “Full-fledged version”
is a result of a cost-aware approach. If the layer order were the same and missing
nodes were allowed, the predictive quality would be the same, given that the detected
communities would also agree. Both studies use the Leiden algorithm and the same
dataset.

The prediction task conducted in [88] produced a R2 of 0.183 with data from only
one community. In contrast, we achieved a R2 of 0.720 when predicting THI at t0 but
using communities as a feature in our work. This new prediction task uses data from
all communities as features, whereas in [88], the prediction task only uses patient
data from one community at a time. As a result, there are fewer data points per
regression model.

Nonetheless, we can state that COBALT is superior to the predecessor approach of
[88] by design since it allows for missing values.
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6. Evol-COBALT for Temporal Data

6.1. Overview
In this chapter, we present Evol-COBALT, which extends COBALT by considering the
temporal dimension. Not only does it add the temporal aspect to it, but it also
captures the evolution of communities.

Figure 6.1 illustrates where Evol-COBALT stands in the workflow previously intro-
duced.

Representation COBALT Evol-COBALT

State of the art

Own contribution

Added time as a 
dimension in a 

multi-layer 
network

Introduction two cost-
models, one simplified 

version and a new 
version that allows to 
better capture feature 

cost

Introduction of a 
visualization technique to 

illustrate graphs

Node Assignment

Introduction of a 

visualization 

methodology to illustrate 

the evolution of 

subgroups

Introduction of a method 

to monitor evolution 

using evolution indices 

and through its 

visualization

Method for assignment 
of new nodes to 

existing subgroups

Introduction of a 
definition of:

Nodes
Layers

Inter-layer edge 
weights

Intra-layer edge 
weights

Community detection 
using the Leiden 

algorithm

*Layer selection is directly related with cost: layers are costly to acquire and some might be redundant. Therefore, we add the step of 

filtering layers based on their importance for our task: subpopulation discovery.

Method for detection of 
subgroups over time and 
monitor their evolution

Sample Comparison

Method for 
comparison of samples 

from different 
populations using 
network distance

Figure 6.1.: Evol-COBALT: content structure of the approach.

The addition of a temporal aspect extends COBALT to Evol-COBALT. A new step
is added for that in block number 5 (block on the rightmost part of Figure 6.1).

In this chapter, part of the work is published in:

• C. Puga, L. Basso, J. Simoes, B. Mazurek, and J. A. Lopez-escamez, “Predicting
Treatment Outcome Through Patient Subgroup Evolution - A Multi-Layer
Snapshot Network Approach,” submitted to the Machine Learning Journal,
2024.

• C. Puga, M. Spiliopoulou, and D. Berron, “MINERVA : Multi-layer Network
Subgroup Evolution Tracker To Predict the Cognitive,” submitted to JDSA,
2024.

6.2. Representation of Entities in the Temporal Space
We modify the representation presented in subsection 5.2 of the static approach to
account for adding the time dimension to the structure.
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...

Node

2

Each different variable 
layer is represented by 
a different color

Intra-layer
Edge/similarity
(gray link)

Inter-layer
Edge/similarity
(red dashed link)

12

Week

Figure 6.2.: The figure displays an MLSN in a graphical form. The vertical axis
represents time, measured in weeks. Each week is represented by a
separate MLSN in 3D format. Each MLSN has a unique set of colored
layers that represent different variables that define the nodes. The
nodes themselves are shown as spheres on each layer, colored with the
same color as their respective layer. If data is available for a node, the
similarity between nodes is illustrated with gray edges.

Figure 6.2 illustrates how the representation in COBALT can be incorporated with
the time dimension. In the example, the time axis is weeks, and for each week (in
Figure 6.2, one for week 2 and one for week 12), there is an MLN that has the data
of the nodes for that time point. This mapping type is as a snapshot-MLN. This is
because we take a snapshot of the data at each point in time. In summary, we have
the following structure:

• Nodes: represent an entity, which in our application is a mHealth application
user or a patient

• Feature layers: each feature layer is a network with nodes and edges that
represent a specific feature of the node

• Time layers: each time layer is a network with nodes and edges that represent
a specific feature of the node

• Edges: links between nodes
Intra-feature-layer edges: weighted, undirected edges that connect two

nodes inside the same layer
Inter-feature-layer edges: weighted, undirected edges that connect two

nodes located in different layers

The intra-layer and inter-layer edges that we use are regarding the feature layers
since we have no edges across time layers.

Figure 6.3 illustrates more formally the structure of the network.
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6.2. Representation of Entities in the Temporal Space

Figure 6.3.: Formal representation of a set of MLSNs with detected communities. The
y-axis represents the time layers, and the x-axis represents the feature
layers. Each layer has a set of circles surrounding nodes. These circles
illustrate the communities/subgroups at each variable and time-layer.

Consider a layer lα ∈ L where L is the set of feature layers. As in the previous
chapter, questionnaire scores are represented by feature layers that measure different
aspects of the node numerically. To compute edge weights, we standardize the feature
values. We denote by valuei,lα and valuej,lα the feature value of nodes i and j in lα.
The standardization is done by subtracting the mean from each value and dividing it
by the standard deviation of the sample.

The larger the difference in values between nodes, the weaker their edge weight,
which results in a lower edge weight. The weight of an intra-layer edge between i
and j in layer lα is denoted by wij(lα, lα) in Equation 6.1.

wij(lα, lα) = 1
|valuei,lα − valuej,lα |

(6.1)

Inter-layer edges are computed as in Equation 6.2.

wij(lα, lβ) = 1
|valuei,lα − valuei,lβ |

(6.2)

where wij(lα, lβ) denotes an inter-layer edge that connects node i in variable layer
lα and node j in variable layer lβ.

Note that both wij(lβ, lβ) and wij(lα, lβ) represent the similarity between nodes.
The similarity should be the maximum when both nodes i and j have the same value
for a certain variable layer. Hence, we account for this case to both formulations of
the edge weights in equations 6.1 and 6.2.

Figure 6.3 illustrates our proposed representation of the data into a set of MLSNs.
Notice that each node belongs only to one subgroup in each time point. For the
different time points, subgroups are assigned to the same node. One example is node
i, which belongs to the orange subgroup in all layers of t0, but belongs to the blue
subgroup in tT . Each MLN in each time point corresponds to a snapshot network.
Thicker edges indicate greater similarity between nodes.
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Symbol Description Algorithm

wij(lα, lα)
intra-layer edge weight of the edge connecting
nodes i in layer lα and j
in layer lα

wij(lα, lβ)
inter-layer edge weight of the edge connecting
nodes i in layer lalpha and j
in layer lβ

t vector of time points 6.1,6.3

Mtn
multi-layer network tensor, at time point tn
it contains the structure of the MLN 6.1

Q(Stn) modularity of the partition Stn 6.1
ctn,i community i of partition Stn 6.1,6.2, 6.3

Ø(ctn,i)
conductance of community ctn,i in
partition Stn

6.1

Iηctn,i
shrink index of the community ctn,i 6.2, 6.3

Iψctn,i
split index of the community ctn,i 6.2, 6.3

ψi,j refers to ψctn,i,ctn,j 6.2
ϕi,j refers to ϕctn,i,ctn,j 6.2
ηi,j refers to ηctn,i,ctn,j 6.2
µi,j refers to µctn,i,ctn,j 6.2

Table 6.1.: Notation table for Evol-COBALT. We describe briefly the symbol and make
reference in which algorithms these symbols are used. The other symbols
that are not time-dependent are presented in Table 5.1.

6.3. Graph Pruning
The graph pruning step is similar to the one mentioned for COBALT. The main
difference is that we apply the graph pruning for each layer of the MLN of each time
point. Therefore, the MLF method is applied for every layer of each MLSN.

6.4. Mathematical Formulation
We run COBALT for each time point, which uses the Leiden algorithm [109] to identify
communities. Therefore, we filter the most important layers based on the cost model
presented in COBALT.

Algorithm 6.1 Evol-COBALT

Require: Mtn , t
1: Q← {}; Ø(S)← {}; S ←{}
2: for each tn ∈ t do
3: Stn ← COBALT(Mtn) ▷ Get partition
4: Qtn ← Q(Stn) ▷ Get modularity
5: Add Q(Stn) to Q
6: Add Stn to S
7: for each ctn,i ∈ Stn do ▷ Iterate over communities
8: Compute Ø(ctn,i) ▷ Get conductance
9: Add Ø(ctn,i) to Ø(Stn)

10: Output: Q, Ø(S),S
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6.5. Computation of Subgroup Evolution

Algorithm 6.1 shows our approach to detect subgroups for each time point tn ∈ T .
After having the representation of the multi-tensors for each tn, Mtn , we run COBALT
for that snapshot multi-layer network. We then compute modularity Q for each
subgroup partition and conductance Ø(Stn) for each community ctn,i in Stn .

Both modularity and conductance are evaluation metrics used to evaluate the
quality of partitions of nodes into groups. However, but conductance is applied at
the level of the community/subgroup, whereas modularity is applied at the partition
level. This is why we need to compute the conductance for each community in
partition Stn , which is itself a partition of a single snapshot MLN since it refers only
to time point tn.

6.5. Computation of Subgroup Evolution
After detecting the subgroups over time, it is also relevant to monitor how the
subgroups change over time. For that, we compute the split and the shrink index per
community and timepoint in order to understand how a community changes in size.

Algorithm 6.2 Compute metrics
Require: tn, tn+1,Stn ,Stn+1

1: for tinc ∈ [tn, tn+1] do
2: for each ctinc,i ∈ Stinc do
3: if tinc = tn then
4: Compute ψi,j ▷ migration ratio of nodes from ctinc,i to ctinc+1,j
5: Compute ϕi,j ▷ migration ratio from other communities to ctinc+1,i
6: else
7: Compute ηi
8: Compute µj
9: disloyalty index ← ηi

10: ComputeIηctinc,i
, Iψctinc,i

▷ Compute shrink and split indices

11: Compute ψ̂i,j ▷ Average of nodes that migrated to other communities in tn+1,
across all communities

12: Output: Iηctn,i
, Iψctn,i

, disloyalty index

Please note that, for the sake of readability, we simplify ψctn,i,ctn,j to ψi,j . The
same applies for ϕi,j , ηi and µj .

We use ηi to compute an index that we introduce as the “disloyalty index”. It can
be computed as presented in Equation 6.3.

disloyalty index = ηi (6.3)

This index is computed per time point for each subgroup solution.
Consider t ∈ [t0, t1, ..., ttp], which denote the tp time points in the dataset. In 6.3,

we explain the process of computation of the metrics necessary for the computation
of the shrink and split indices.

6.6. Experiment Design
We test Evol-COBALT in two datasets presented in subsections 4.2 and 4.3. The two
datasets are of different natures, which helps to evaluate to what extent our method
can apply to completely different tasks.
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Algorithm 6.3 Computation of migration matrices
Require: S,L, t

1: t⇒ [t0, t1, ..., ttp−1] ▷ all timepoints except the last
2: n = 0
3: for each tn, tn+1 ∈ t do ▷ for each subsequent pair of timepoints
4: Iηctn,i

, Iψctn,i
← compute_metrics(tn, tn+1,Stn ,Stn+1)

5: n = n+ 1
6: Output: Iηctn,i

, Iψctn,i
, disloyalty index

6.6.1. Predictiveness of Subgroups
Table 6.2 summarizes the experiments that are performed in 4.2 and 4.3 regarding
the predictiveness analysis of subgroups. We train a regression model as in 5.6.3 to
predict a target variable.

The target variable differs for the two datasets:

• Target variable dataset 4.2: the TFI score of the patients at the final visit of
the treatment (t2)

• Target variable dataset 4.3: “pct_corr_total,” the percentage of correct answers
to the cognitive tasks by participants, at a certain time point t.

Dataset Set Time Feature I Feature II
Domain
related
feautres

Communities Clusters

Dataset 2 Baseline
t0

age sex t0 ✗ ✗

Evol-COBALT age sex t0 t0 ✗

Clustering age sex t0 ✗ t0
Baseline

t1

age sex t1 ✗ ✗

Evol-COBALT age sex t1 t1 ✗

Clustering age sex t1 ✗ t1
Dataset 3 Baseline

t
todl pc_delay ✗ ✗ ✗

Evol-COBALT todl pc_delay ✗ t ✗

Clustering todl pc_delay ✗ ✗ t

Table 6.2.: The table outlines the feature sets used for prediction-based evaluation.
Variables that are included in the feature set are marked with a checkmark
(✓), while variables that are not included are marked with a cross (✗).
The notation t0 indicates that the feature value is taken from the pre-
treatment visit, t1 indicates that the feature value corresponds to the
value at time point t1, and t represents any time point in the series.

The “Set” in Table 6.2 refers to the feature sets used to train the regression model.
We propose to use three, each with different characteristics:

• Baseline Set: it includes feature I, feature II, and domain-specific features (for
dataset 4.2, since medical researchers asked for it). It does not contain any
information about subgroups (neither from communities nor clusters).

• Evol-COBALT Set: it includes the “Baseline Set” plus the subgroups detected
by Evol-COBALT

• Clustering Set: it includes the “Baseline Set” features plus the subgroups
detected using traditional clustering algorithms
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6.6. Experiment Design

Please note that for dataset 4.2, we train two regression models using domain-
related features. One model is trained using data from t0, and the other one is
trained using data from t1. This is because we have three-time points in this dataset.
On the other hand, for dataset 4.3, we mention t because we have multiple time
points, specifically 16 weeks. In this case, t takes the value of each time point.

6.6.2. Subgroup Evolution Visualization

There are many components of the structure that require interpretation in order to
draw conclusions. We developed a visualization strategy so that we could show the
results in an intelligible manner.

To begin with, it is crucial to visualize the subgroups at every point in time in
order to understand the differences between them. To accomplish this, we opt to
create a radial plot with a separate region for each subgroup. These regions are then
equipped with a barplot that displays the variables that differentiate that particular
subgroup.

It is important to note that variables that characterize subgroups often have varying
ranges, which can make it difficult to compare and contrast them. To overcome this
challenge, we apply z-score normalization to each variable of each subgroup. This
normalization technique ensures that the z-score of a variable of a specific subgroup is
0 if the subgroup’s average variable value is equivalent to that of the entire population.
A z-score value greater than 0 indicates that the data points of that variable in that
subgroup are above the population’s average. This normalization technique helps to
standardize the variables, making them more comparable across subgroups.

The main objective of these plots is to make it easier to compare the composition
of each subgroup. By visualizing each subgroup’s unique characteristics in a clear and
concise manner, we can better understand the factors that differentiate them from
one another. Ultimately, this information can be used to make informed decisions
and take appropriate actions based on the needs and priorities of each subgroup.

Afterward, we include the temporal aspect in the visualizations. For that, we
opt for an alluvial diagram that represents the transition of the nodes/users across
time/weeks. We have represented a subgroup as a white rectangle for each time
point. The size of the rectangle represents the size of the subgroup. Then, we
draw chords that connect rectangles in subsequent time points. These chords exit a
subgroup/rectangle at a one-time point and enter one or many in the subsequent
time. The color of these chords corresponds to the color of the subgroup that it exits.
The width of the chord is proportional to the number of users that exit and enter the
subgroups at each end of the chord. The absence of a chord between two subgroups
means there is no user migration between them.

After computing the evolution indices as described in Section 6.5, we create a
multi-line plot for each subgroup. In each plot, there are three lines, each with a
different color, representing the shrink, split, and loyalty indices. These indices are
calculated for each time point.

Two datasets are tested with Evol-COBALT: datasets 4.2 and 4.3. Those data come
from different sources and represent completely different systems. However, we use
the same representation method and show that it is possible to generalize it.
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6.7. Results

6.7.1. Subgroups for Prediction

Hereafter, we present the prediction performance of the regression models trained
with and without subgroup information. We divide it per dataset since the prediction
tasks are entirely different.

Dataset 2

The Evol-COBALT set produced the best results for predicting treatment outcomes
using t0 data of patients from center B, for both patients who received CBT and
those who did not. It outperformed other models by using t1 questionnaire data for
patients who did not receive CBT, and by using "hdbscan"-discovered subgroups with
data from t1 for those who did receive CBT.

When predicting treatment outcomes at center “R” using subgroups discovered at
t0, the “Evol-COBALT Set" produced the best results for patients who did not receive
CBT. The “Ridge" regression model was used for this prediction.

For predicting treatment outcomes using subgroups discovered at t1, the “knn"
and “ahc" methods produced the most predictive subgroups for center R. The
“Lasso" regression model was used for this prediction. The clustering algorithms
identified subgroups based on four questionnaire variables: TFI , Mini-Tinnitus-
Questionnaire (Mini-TQ), Fear of Tinnitus Questionnaire (FTQ), and Patient Health
Questionnaire (PHQ9) score. On the other hand, Evol-COBALT only used the TFI
score to identify all subgroups, except for center B at t0, which used TFI and PHQ9
score. This suggests that the communities provide valuable information that helps
the model predict the treatment outcome more accurately. In fact, they outperform
the treatment outcome prediction without subgroup information (referred to as
"Baseline Set") and those found with traditional clustering algorithms for four out of
the eight prediction tasks presented.

It is also worth noting that Evol-COBALT uses fewer features to build subgroups,
as it is cost-aware. In contrast, traditional clustering algorithms and the "Baseline
Set" do not account for cost.

In conclusion, the study shows that models using subgroup information (whether
from Evol-COBALT or traditional clustering) perform better than models that do not
use subgroup information for all prediction tasks.

Note that communities are not discovered at this stage for center “G”. Instead, we
use it as a test center, employing the node assignment approach outlined below.

The performance of Evol-COBALT was evaluated by adding new nodes and training
on centers B and R, then adding nodes from center G. The results were compared to
a “Baseline” and other subgroup discovery algorithms, as shown in Table 6.2. The
table indicates that using a subgroup discovery algorithm leads to better performance
than the “Baseline Set."

For the test center G, clustering algorithms produced better results for subgroups
found, even though, for example, for subgroups assigned using center B and t1,
Evol-COBALT achieved 0.77± 0.01 and the best clustering set achieved 0.78± 0.03.
Looking at the standard deviation of the predictions, we can conclude that both
models produce comparable results.

Unlike the clustering approach, our methodology finds subgroups with fewer
features. Since Evol-COBALT optimizes both the number of features used and the
partition quality (modularity), we can conclude that even when using less information
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to generate subgroups, subgroups identified using Evol-COBALT are comparable
in terms of their predictiveness of treatment outcome for some of the presented
experiments.

Dataset 3

In order to facilitate a deeper comprehension of the experimental procedure and the
corresponding outcomes, we have included Figure 6.4. This figure is intended to
provide a more detailed visual representation of the setup of the experiments and
the analysis described in this section.

Figure 6.4.: Overview of the experimental setup and analysis using Evol-COBALT for
dataset 4.3.

As previously mentioned, dataset 4.3 has multiple time points, more specifically 10.
Evol-COBALT is applied and different layers are used to build subgorups at each week.
For that reason, we start by presenting Table 6.5 with the variables/layers selected
by Evol-COBALT to be used for subgroup discovery, which may vary weekly. We can
see that layer “Freshness” is the most often selected, which means that it is the
most informative layer concerning building subgroups with the highest modularity,
meaning with the subgroups that can be better separated.

Figure 6.5 displays the modularity of the subgroups identified using the set of
layers that achieved the highest modularity. The bubble plot shows a bubble for each
week, with the size of the bubble representing the number of users with available
data for that week.

We observe that the largest bubbles occur between week 4 and week 11, while
after that, the size of bubbles decreases significantly. This observation is consistent
with the dataset description presented earlier (refer to dataset 4.3). The highest
modularity is achieved in week 12, followed by week 5. The lowest is at week 13,
with number of data points lower than 50.
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Figure 6.5.: Modularity of subgroups discovered at each week.

78



6.7. Results

Variable week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13
Static variables
Age
Sex
BMI
Variables associated with test session that might influence performance
TimeOfDayLearning
Delay Period
Self-assessment questionnaires
Part I: Questions regarding test session
Concentration
Distraction
Subjective Performance ✓ ✓ ✓
Part II: Questions concerning the previous 8 days
Memory Performance
HappinessWk
Calmness
EnergyWk ✓
Freshness ✓ ✓ ✓ ✓ ✓ ✓
InterestWk ✓
SubjectiveMemoryWk
ConcentrationWk
ThinkingWk
PlanningWk
Mood

Table 6.5.: List of variables selected by Evol-COBALT for subgroup discovery, updated
on a weekly basis. A crosscheck denotes that the correspondent variables
(in that row of the table) was used to find subgroups at the corresponding
week.

Next, we present Table 6.6, which summarizes the predictiveness of ”Memory
Performance” of subgroups per week, comparing two types of scenarios: with and
without subgroup information.

In most weeks, incorporating subgroup information (discovered with Evol-COBALT)
leads to better predictive performance of the user’s cognitive task performance
compared to not using subgroup information. However, for weeks 10, 12 and 13, the
model that does not use subgroup information achieves a higher R2 than the one
using subgroup information. The cause may be that we have a lower number of data
points for later weeks. The most common reason for this is that participants drop
out of the study and stop completing the cognitive tasks.

6.7.2. Subgroup Visualization and Evolution

In this subsection, we visualize the subgroups discovered for each dataset in order
to characterize the subgorups in a qualitative way. Sections 6.7.2 and 6.7.2 show
the qualitative evaluation for the dataset 4.2 and 4.3, respectively. Please note that
dataset 4.3 has more time points than 4.2 and therefore the visualizations are more
complex.

Dataset 2

The dataset discussed in Section 4.2 contains comprehensive data from an RCT that
focused on patients with tinnitus who received various therapies. Our primary interest
is in the data collected during the “baseline," “interim," and “final" visits, which offer
insights into the patients’ questionnaire scores and other relevant information.

Figure 6.6 visualizes the questionnaire score values of each subgroup, with radial
plots highlighting the differences between the subgroups. During the first visit,
patients in subgroup “B3" had the lowest scores on the five questionnaires, indicating
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Table 6.6.: Table with prediction results of a learning model that predicts “Memory
Performance” using subgroup information and not using it. The column
“type” contains information on whether the learning model used subgroup
information as a feature of the model or not. Column “q” denotes the
modularity of the subgroups. Naturally, prediction models not trained
with subgroup information have no “q” value. The explained variance
(“exp_var”) column has a pink bar, which is as long as the value of the
“exp_var”. The notation of MAE, MSE, and Mean Absolute Percentage
Error (MAPE) can be found in the acronyms section.
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final visit
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Figure 6.6.: Radial plots of different subgroups that were discovered at different time
points using Evol-COBALT. We show baseline (a), interim (b), and final
(c) visits. For each variable, subgroup, and clinical center, error bars are
generated to represent the z-score of the subset. The higher the z-score,
the higher the variable value is for that particular subset. Each error
bar has a different color and is accompanied by a label starting with
"B" or "R". The error bars with the label starting with "B" represent
subgroups from the clinical center "B", while those starting with "R"
represent clinical center "R".
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Figure 6.7.: Subgroups and their transitions across time for the centers Regensburg
(subfigures (a),(b)) and Berlin ((c),(d)). (a,c) Dynamic communities
in an SN from questionnaire data. (b,d) Patient transitions between
communities from t0 to t1 and t1 to t2. Moon charts depict within-
community TFI score averages, whereas larger gibbous portions represent
higher scores. “Merge” transitions where the majority of a community’s
patients move to the same community at the subsequent time point are
highlighted by chord color.

that they may have been struggling with tinnitus symptoms more than other sub-
groups. Interestingly, these patients’ age was close to the average, suggesting that
age may not be a significant factor in tinnitus severity.

At center R, patients in subgroup “RG1" had the highest questionnaire scores,
indicating that they may have had the most severe tinnitus symptoms among all
subgroups. In contrast, patients in “RG4" were the oldest on average, compared to
center “B," suggesting that age may play a role in tinnitus severity.

Regarding the interim visit, subgroups “B2" and “RG1" had the highest question-
naire scores, indicating that their tinnitus symptoms may have been more severe
than other subgroups during this period.

Finally, during the final visit, the subgroup with the lowest average score on the
questionnaire was “B3" (except for the CGI! (CGI!) score), along with “RG2," which
may suggest that the therapies provided to these subgroups may not have been as
effective as other subgroups.

Next, we illustrate the subgroups over time. Figure 6.7 shows on the left, per
clinical center (“Regensburg” and “Berlin”) the “TFI” questionnaire score layer of
each MLN for the pre-treatment, interim, and final visit.

In Figures 6.7a and 6.7c, we can observe three layers that represent the TFI score
at different time points for the two clinical centers. The subgroups detected (black
dots surrounded by a black fine line) are composed of tiles with similar colors. The
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6. Evol-COBALT for Temporal Data

color gradient of red denotes the TFI score of the nodes, which indicates that nodes
with similar TFI scores are grouped together. Therefore, we can conclude that the
subgroups detected are formed by nodes with similar TFI scores.

Figures 6.7b and 6.7d display alluvial diagrams for each clinical center. The diagram
for center Regensburg shows that the subgroups “PV.1" and “PV.4" (subgroups 1
and 4 at pre-treatment visit) have the majority of their members migrating together
to the interim visit. Similarly, subgroups “IV.1" and “IV.4" have the majority of
their members migrating together to the final visit subgroups, “FV.1" and “FV.4".
These subgroups have members with the highest (subgroup 1) and the lowest average
(subgroup 4) TFI score, and they are also the ones with the highest stability in terms
of members.

Dataset 3

Figure 6.8 shows the radial plots that show the composition of the subgroups
discovered with Evol-COBALT with the dataset presented in Section 4.3.

Subgroup “D” of week 3 is the one composed of users with the highest-than-average
weight, body mass index (BMI), and height. On top of that, it is also the subgroup in
which users learned the task later in the day since the time of day learning (TODL)
z-score is higher than the other subgroups.

In week 9, the composition of subgroups was analyzed based on variables that
were not considered by the model. The results are shown in Figure 6.8k. Subgroup
“C" was found to have lower-than-average task performance.

Overall, the z-scores are higher for subgroups with a few members. This is expected
because it compares the variable values of a small number of members. This can still
be interesting since these members could not fit into any other subgroup and thus
were separated, even if that means they were in a minimal subgroup. Examples of
those subgroups are the following:

• subgroup “F” (yellow): subfigure 6.8c

• subgroup “F” (yellow): subfigure 6.8e

• subgroup “F” (yellow): subfigure 6.8g

• subgroup “D” (pink): subfigure 6.8m

• subgroup “E” (green): subfigure 6.8q

The subgroups previously mentioned contain a small number of members when
compared to the other subgroups. These are subgroups that are specially interesting
to study because they have members that present properties very different from the
others.

Figure 6.9 illustrates the evolution of the subgroups across the 10 weeks. Users
in subgroup “A" stay in the same subgroup over time, while subgroups “E" and
“D" appear, disappear, and reappear. Subgroup “F" emerges at time point 4 and
disappears at week 10, possibly due to data availability and subgroup merging.

Most users of subgroup “D” in week 5 migrate to subgroup “C” in week 6. This is
an example of a subgroup with a significant change in its membership. Subgroup
“D” at week 6 comprises users of many other subgroups but also has new users that
were not at week 5. Note that if the total width of all chords that enter a specific
rectangle is not equal to the rectangle’s lateral dimension, then new users in this
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(c) Radial plot for week 5.
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week 5.

subgroup appear at this point. Figure 6.10 complements the understanding of the
evolution of subgroups visualized in Figure 6.9.

In Figure 6.10a, we can observe that subgroups that shrink the most are not
necessarily the largest in size. For instance, during week 5, subgroup “D" has the
same shrink index as subgroup “F" in week 6. However, subgroup “F" is already
quite small, while “D" is much bigger. This suggests that, in this context, subgroup
"F" is closer to the phenomenon known as “subgroup death" than subgroup “D".

It is worth noting that the subgroup labeled “A" frequently has lower shrink index
values compared to the other subgroups, except for week 2. This indicates that the
subgroup has relatively low shrinkage. Furthermore, by examining the size of the
bubbles of subgroup A over the weeks, we can infer that the size fluctuates but is
consistently smaller than the bubbles of the other subgroups.

The graph labeled as Figure 6.10b shows a relatively high split index for subgroup A
during the period of weeks 4 to 8. Although this subgroup is not shrinking significantly,
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Figure 6.8.: Subgroup composition. Role of hidden variables in the model in explain-
ing the discovered subgroups. Each subgroup is labeled by a letter. For
each subgroup, a set of variables is represented by its z-score and a color
that represents the subgroup. The opacity of the bars is proportional to
the number of users in that subgroup. The lower the opacity, the lower
the number of users. For example, subgroup “D” in week 3 is described
by unseen variables that are colored pink. The gray error bars represent
the confidence interval of the value range of each variable. Next to the
radial plot, we have a pie plot, which illustrates the number of users per
subgroup.
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Figure 6.9.: Alluvial diagram on the evolution of subgroups. Each white rectangle
at each week denotes the subgroup. If a label A, B, and C appears at
two subsequent time points, then the subgroups have survived. The
y-axis denotes the number of users. Each subgroup is associated with a
color. For example, subgroup A is represented in pale green. From each
rectangle, we see chords of the subgroup’s color that exit the rectangle
and enter a rectangle of the next week. These chords represent the
migration of users from a subgroup to subgroup(s) of the next week. For
example, in week 4, there are two thick pale green chords exiting the
rectangle of subgroup A. One of them enters the rectangle of subgroup
A in week 5, and the other the rectangle of subgroup B in week 5. The
thickness of each chord reflects the proportion of users of the original
subgroup that arrive/migrate to the corresponding subgroup of the next
week.
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Figure 6.10.: Shrink and split indices of each subgroup over time. Each bubble is
assigned a color that corresponds to a specific subgroup, and its size
varies in proportion to the size of the subgroup. Therefore, the larger
the bubble, the larger the subgroup. Additionally, the opacity of the
bubbles varies in proportion to the indices. The more opaque, the
higher the index value.
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it is splitting. This indicates that new members are joining this subgroup every week,
thereby maintaining its size at a relatively stable level.

The shrink and split indices help to understand which subgroups mutate and how.
There are different ways to interpret these values.

• Shrink index > 0: During a specific week, some users from a subgroup either
disappeared or split into different subgroups, resulting in a smaller subgroup
in the following week.

• Shrink index = 0: The users of a subgroup in a given week either all moved to
the same subgroup in the following week or split into different subgroups.

• Split index > 0: During a certain week, some or all users in a subgroup moved
to different subgroups the following week.

• Split index = 0: All the users who did not disappear were moved to the same
subgroup. Additionally, if there are no users from a certain subgroup in a given
week who appear in the next week, it means that the shrink or split index is
missing.

• Eta/disloyalty index > 0: some of the users of that subgroup migrated to other
subgroups

• Eta/disloyalty index = 0: no user migrated to another subgroup, which means
a high loyalty

In this analysis, we are conducting a thorough examination of a metric called the
disloyalty index, which is represented by the symbol ηi. The subscript i represents
one of the subgroups, which we have categorized as “A," “B," “C," “D," “E," or “F".
The disloyalty index is an important metric that helps us understand how loyal
members are to their respective subgroups over time.

We have noticed that subgroup “A" has a high split index, which indicates that
there is a significant amount of subgroup splitting occurring. However, despite the
high split index, the disloyalty metric for subgroup “A" is relatively low between
weeks 3 and 10. This suggests that members of subgroup “A" are quite loyal to their
subgroup during this period.

However, from weeks 11 to 15, the disloyalty index for subgroup “A" increases,
despite the subgroup having a low splitting index during this period. This may
appear contradictory at first, but it actually means that even though fewer members
are leaving the subgroup, more members are not staying in it at the next time point,
resulting in a high disloyalty index. This can be due to various reasons, such as
dissatisfaction with the subgroup or a lack of engagement.

On the other hand, from weeks 4 to 8, the splitting index of subgroup “A" is high,
indicating that many members are leaving the subgroup during this period. However,
there were relatively fewer members who transitioned to other subgroups during that
period. This indicates that while members of subgroup “A" may be splitting, they
are not necessarily moving to other subgroups.

Overall, examining both the split index and disloyalty metric for each subgroup can
provide valuable insights into the dynamics of these subgroups and help us identify
patterns and trends over time.

In the previous radial plots, we did not illustrate the differences between partici-
pants based on their responses to self-assessments. To gain a more comprehensive
understanding of the subgroups, we present the self-assessment values for subgroup
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Figure 6.12.: Distribution of self-assessment questionnaires for the participants of
subgroup F at week 4. On the right side of the plot, we see a gra-
dient of colors which denote the answer to the questionnaire. The
higher the number for self-assessments, the better. For example, when
“Concentration” equals to 5, this means the participant thinks that
their concentration level was high when completing the task. The only
exception in this plot is “Sex”, in which 1 denotes the male and 0 the
female.

“F." This particular subgroup consists of participants who scored lower in cognitive
tasks, specifically in “Memory Performance" (refer to Figure 6.8a).

The data presented in Figure 6.12 provides insightful details about the participants
belonging to a specific subgroup. The analysis shows that most individuals in this
subgroup are male (represented by sex=1). Another significant observation is that
more than half of the participants rated their performance higher than 3, indicating
that they believe that they performed well. Interestingly, despite reporting lower
cognitive performance, this group’s self-assessment suggests otherwise, which can be
seen as a notable finding. These statistics could help researchers in understanding
the underlying reasons behind the discrepancy between self-assessment and actual
performance and can aid in developing effective intervention strategies.

6.8. Discussion

In this chapter, we present Evol-COBALT, a cost-aware algorithm that efficiently
detects dynamic subgroups in MLNs. Our method captures the evolution of subgroups
in MLNs and improves the prediction of target variables in real-world applications.
We provide details on two such applications, and demonstrate that subgroups are
not only predictive, but also offer valuable insights. Overall, our results show that
subgroup analysis is a powerful tool for understanding complex systems.
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We introduced Evol-COBALT, a method that identifies dynamic subgroups to predict
a variable of interest. It builds subgroups based on multi-layer networks and captures
their evolution and dynamics.

Firstly, we experimented on medical data from tinnitus patients, in which we
discovered that Evol-COBALT are predictive of treatment outcome and mostly more
predictive than the subgroups discovered with clustering methods.

We also presented our strategy for allocating new nodes to pre-existing subgroups,
outperforming predicting treatment outcomes without subgroup knowledge. This
strategy is of great importance in real-world applications, since re-computing a
network requires much higher computational effort than simply using the node
assignment tool proposed.

Secondly, we tested our method with mHealth data with cognitive performance data
from many users. We also discovered that subgroups detected with Evol-COBALT offer
insightful information about the users’ cognitive performance detected at different
points in time. In summary, our main conclusions are as follows:

1. Subgroup evolution can be described visually and quantitatively and improves
the interpretability of user similarity

2. User characteristics unseen by the method are also statistically significantly
different among the majority of the subgroups of the majority of the weeks

3. Description of a "disloyalty index" that helps interpret how stable are the
members in a subgroup

Evol-COBALT is appropriate for datasets that include one or more numerical features
as well as one or more timestamps. The critical advantage of Evol-COBALT is that it
discovers subpopulations using the minimum set of features (layers).

However, the proposed technique has some limitations. For example, Evol-COBALT
cannot directly represent categorical features. To address this, edge weights must be
computed differently, using an appropriate function for categorical data similarity.
Secondly, the number of nodes, layers, and time points heavily influence edge
computation and computational effort. Regarding design, Evol-COBALT is suitable
when time is modeled as snapshots. An adaptation to a temporal network is required
to model time points continuously.

Furthermore, the interpretation and analysis of communities is challenging, given
that communities are detected through layers and time periods, making it difficult to
interpret. To increase interpretability, we focused on visualizing them in our study.
However, additional work in this direction is required.

In summary, we highlight the importance of the architecture of MLNs when modeling
a real-world problem, which we demonstrate with tinnitus patients. Representing a
complex system is a challenging task, which we tackle in this chapter by modeling
intra- and inter-feature interaction with edge weights. This is a significant component
of the proposed approach and distinguishes it from existing designs.

In summary, our method has the potential to be a foundation for personalizing
treatment plans for specific patient subgroups in clinical settings, as demonstrated
by our research. Additionally, we have explored other potential applications of our
method, such as using an mHealth app to monitor cognitive status in participants.
Our method can also be adapted for use in various other fields beyond healthcare.
The key is to ensure that the system of analysis is accurately represented within a
machine learning social network and then apply Evol-COBALT to identify subgroups
within that system.

95





7. Cross-population Layer Matching

7.1. Overview

In this chapter, our primary focus is on comparing samples using network analysis.
The comparison of samples from different populations is not straightforward, but it
is sometimes of great relevance. In this chapter, we propose a methodology that first
transforms raw data into a network and then uses that representation to infer the
distance between different samples.

We are interested in finding the differences between tinnitus patients’ characteristics
and the overall population. Figure 7.1 summarizes the proposed methodology in this
chapter.

In [89], we carry out a network similarity analysis to compare tinnitus patients
across and within clinical centers and genders. This comparison allows the comparison
of patient data with different characteristics and sizes. This chapter explores how
network-based data representations can be used to juxtapose clinical centers, which
is also a valuable approach for medical researchers. We use the netLSD, a metric
that allows comparing networks from different population bases. Networks that
represented patients from different patients are compared using the dataset described
in Section 4.4.

The work presented in this chapter is published in:

• C. Puga et al., “Juxtaposing Medical Centers Using Different Questionnaires
Through Score Predictors,” Front. Neurosci., vol. 16, no. March, pp. 1–12,
Mar. 2022, doi: .

7.2. Proposed Method

In this section we explain the proposed method to compare samples from different
populations. We organize it into three main blocks: (i) data description and statistical
testing, (ii) statistical testing and (iii) network comparison.

Figure 7.1.: Proposed methodology to compare samples from different populations.
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7.2.1. Data Description and Statistical Testing
In order to examine how age variables differ between the general German population
and tinnitus patients, we use a method that compares the two distributions by creating
a kernel density estimation plot. This helps us identify the similarities and differences
between the two distributions. We also analyze the age distribution differences
between genders and centers. For instance, we compare the age distribution of female
tinnitus patients in one center to that of another center. The same comparison is
made for male tinnitus patients. We also compare gender between centers and with
the distribution in Germany. To compare the centers with each other and with the
general population, we use statistical testing and visualization tools.

We analyze the age distributions of two samples of tinnitus patients, s1 and s2,
which were collected from two different clinical centers. We perform this analysis
separately for each gender and correct it for multiple testing over the six comparisons
that are made using the Bonferroni correction method. To check whether the samples
follow a normal distribution, we use the Shapiro-Wilk test [100]. If the samples
follow a normal distribution, we apply the student’s test [107] on the means of the
samples. However, if the samples do not follow a normal distribution, we conduct
the Mann–Whitney U test [78] instead. All tests are performed with a significance
level of α = 0.05.

7.2.2. Visualization
We use kernel density estimation plots to visualize the distributions. Specifically, we
plot the age distributions of the German population and the tinnitus patients from
both clinical centers. To make a comparison, we calculate the percentage of people at
a certain age for both data sets. We use a kernel density estimation plot to identify
the age intervals where both the German population and tinnitus patients have
similar percentages. This helps us to understand the zones where both distributions
behave similarly. We aim to identify the age intervals where the percentage of people
in both populations is similar or different. By doing so, we can explore the extent to
which the two distributions agree.

We also plot the female and male ratio in Germany and each clinical center using
a bi-directional bar plot. This helps us to understand the gender distribution in both
populations.

7.2.3. Network Comparison
We utilize a network-based approach to compare two populations. We use it in the
example of tinnitus, by examining the similarity between tinnitus patients, taking
into account gender and clinical center.

Data Representation

each patient is represented as a node, with the distance between them serving as
an edge. To calculate edge weights, we employ the TQ score. Prior to this, we
standardize scores using a transformation equation as shown in Equation 7.1.

valuei,X = vi,X − µf,X
σf,X

(7.1)

where i,X denotes a patient i from the clinical center X, vi,X is the original value of
the questionnaire score of that patient iX , µf,X and σf,X are the mean and standard
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deviation of the questionnaire scores (or feature) f in the clinical center (or sample)
X, respectively.

The higher the score difference between patients, the weaker the connection between
them. To account for that, a transformation 1/x is applied, as shown in Equation
7.2, representing the edge weight.

wij(X,X) = 1
|valuei,X − valuej,X |

(7.2)

where wij,(X,X) as the edge weight between patient pi and pj in clinical center X.

Network-Based Approach for Cross-Population Matching

According to a study by [110], there are three main approaches to comparing graphs or
networks: direct methods, kernel methods, and statistical representations. However,
Tsitsulin’s approach is different and is based on spectral representation.

Tsitsulin [110] introduced the netLSD method, which creates a vector for each
network using the "heat equation." The method computes the difference between
these vectors, and the final distance is the NetLSD metric. This method has the
ability to meet three important properties simultaneously, which sets it apart from
other approaches. These properties are permutation invariance, scale-adaptivity, and
size-invariance.

Permutation invariance ensures that the distance between two isomorphic graphs
is always zero. Scale-adaptivity is based on the representation of both local and
global graph properties. Lastly, size-invariance takes into account the magnitude of
the graphs and can differentiate between graphs with similar features but different
magnitudes. It is important to note that datasets from various clinical centers may
differ in size, resulting in graphs of varying sizes. The size-invariance feature of netLSD
is crucial in this context since it allows for the comparison of graphs of different sizes.

7.3. Results

Previous research into tinnitus has focused on analyzing demographic variables,
such as age, and their relationship with the condition. However, there has been a
lack of exploration into the possibility that age distribution may be influenced by
other variables, such as life expectancy and population fluctuations. For example,
in Germany, the population over the age of 70 is comparatively smaller due to life
expectancy.

To address this gap, we propose conducting a detailed analysis of the age distribu-
tion of tinnitus patients from clinical centers and comparing it to the age distribution
in Germany. By doing so, we aim to gain a better understanding of the factors that
contribute to the prevalence of tinnitus among different age groups.

To gather data on the age distribution in Germany, we have accessed statistics
from a reliable and publicly available source, the German Federal Statistical Office
(“Statistisches Bundesamt") 1. This will help us to accurately compare the age
distribution of tinnitus patients with the age distribution of the general population
in Germany.

1https://www.destatis.de, site accessed in March 2021.
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Figure 7.2.: Barplot and a Kernel density estimation plot that compare the age
distribution in Germany with that of two clinical centers. The bar plots
will show the age distribution of the German population in red, and the
age distribution of patients from the clinical center “UHREG" in gray
(subfigure (a)). The age distribution of tinnitus patients from the “CHA"
clinical center will be shown in yellow. The Kernel density estimation
plot will be used to visualize the age distribution in each of the three
groups.

7.3.1. Comparison of Data Distributions
Figure 7.2 shows the age distribution of the tinnitus patients of two clinical centers
compared to the age distribution of the German population.

The figures, Figure 7.4 and Figure 7.2, present histograms and kernel density
plots displaying the age distribution of three groups: two clinics and the German
population. First, it is noticeable that the centers of all three distributions are
within the age range of 50 to 60 years. However, the distributions themselves differ
significantly in their shape and spread.

Upon careful inspection, we observe that the curves of the two clinics intersect
with the curve of the German population in two age ranges: the first range is between
30 to 40 years of age, and the second range is slightly before 80 years of age. These
observations suggest a difference in the age distribution patterns between the two
clinics and the German population.

We conduct statistical tests to compare the age distributions between different
centers and determine if there is any statistical evidence to confirm that they are
different. As the hypotheses of normality (Shapiro Wilk test) are rejected for all
subsets in Table 7.1, we have chosen the Mann-Whitney test to compare location
measures between samples.

Specifically, we test the following:

• whether female (1st line of Table 7.2) and male tinnitus patients (2nd line)
have similar age distributions in the two centers
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Figure 7.3.: Comparison of age distribution between clinical centers. The age distri-
bution of tinnitus patients at the “UHREG” clinical center is displayed
in gray, while the age distribution of those at the “CHA” clinical center
is displayed in yellow.

• whether female and male patients have similar age distributions within each
center (3rd line for “UHREG”, 4th line for “CHA”)

• whether female tinnitus patients in one center have similar age distributions as
male patients in the other center (last two lines)

In the table 7.2, it is evident that male and female patients in the same center
have a similar age distribution (H0 cannot be rejected). However, the other null
hypotheses are rejected.

After analyzing the histograms, we can conclude that the age distribution in
“UHREG” is consistently higher than that in “CHA”, regardless of gender.

Moreover, when comparing the age distribution between male and female tinnitus
patients from the same center, the null hypothesis is not rejected at 95% confidence.
Therefore, we cannot claim that the age distribution of male patients in the same
clinical center is significantly different from that of female patients.

Figure 7.5 displays the gender distribution in Germany, sourced from the “Statis-
tisches Bundesamt” 2 as well as in both clinical centers. The data shows that the
gender distribution in “CHA” is similar to that of Germany. However, “UHREG” has
a higher percentage of male individuals compared to the general German population.

7.3.2. Network Analysis

Figure 7.6 shows the four networks and the netLSD distance between them.
2https://www.destatis.de, accessed in March 2021.
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(a) Female patients
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(b) Male patients

Figure 7.4.: Age distribution of patients is shown per gender and clinical center. The
age distribution of female patients from both centers is displayed on
the left in vivid pink (labeled as “CHA") and light pink (labeled as
“UHREG"). On the right side (subfigure (b)), the age distribution of
male patients is illustrated in vivid blue (labeled as “CHA") and light
blue (labeled as “UHREG").
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Data N min max mean SD (σ) p-value (Shapiro)
ageuhreg 1087 19 91 53.7 12.9 3.796 ∗ 10−8

agecha 500 18 83 50.3 12.2 0.001 ∗ 10−1

ageuhreg,f 397 19 90 53.5 13.8 0.001
ageuhreg,m 690 19 91 53.9 12.5 2.080 ∗ 10−6

agecha,f 260 18 79 50.3 12.4 0.006
agecha,m 240 21 83 50.4 12.1 0.021

Table 7.1.: Descriptive statistics of age distributions for tinnitus patients at each
clinical center, categorized by gender. For instance, ageuhreg represents
the age distribution of all tinnitus patients at the clinical center "UHREG",
while ageuhreg,f refers only to the female patients within ageuhreg. SD:
standard deviation, f: female, m: male, N: number of data points.

0.00.10.20.30.40.50.6

Germany

CHA

UHREG

female

0.0 0.1 0.2 0.3 0.4 0.5 0.6

male

Figure 7.5.: Barplot with the gender distribution per clinical center and for Germany.
The pink bars correspond to the sample with female patients and the
green-blue one to the male patients.
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Sample 1 (s1) Sample 2 (s2) Median (s1) Median (s2) U (statistic) p-value
ageuhreg,f agecha,f 55 51 59233.0 < 0.01*
ageuhreg,m agecha,m 55 51 97328.5 < 0.01*
ageuhreg,m ageuhreg,f 55 55 138974.5 0.69
agecha,m agecha,f 51 51 31163.0 0.98
ageuhreg,m agecha,f 55 51 105214.0 < 0.01*
ageuhreg,f agecha,m 55 51 54711.5 < 0.01*

Table 7.2.: Medians, Mann-Whitney U-statistic and p-value of a Mann-Whitney two-
sided test for comparison of two samples. An asterisk* indicates statistical
significance after the Bonferroni correction of the critical value. Therefore,
the pcrit = α/ncomparisons = 0.05/6 ≈ 0.008 . ageuhreg,f denote the age of
female tinnitus patients in “UHREG”, agecha,f the age of female tinnitus
patients in “CHA”, ageuhreg,m denotes the age of male tinnitus patients
in “UHREG” and agecha,m the age of male tinnitus patients in “CHA”.

As previously mentioned, in the network representation, each node represents a
patient, and the edges connecting them indicate the similarity between them. The
denser areas in each network reflect patients who are similar to each other in terms of
their TQ score. The darker and thicker edges indicate a stronger connection between
patients, indicating a high similarity.

The netLSD score provides a measure of the distance between networks. The lower
the netLSD score, the higher the similarity between the networks. In this chapter, we
focus on the difference in the distance values only. Figure 7.6 shows that, compared
to the respective other networks, female patient networks in “UHREG” and “CHA”
are the most similar, while male patient networks in “UHREG” and “CHA” are the
most dissimilar with respect to the TQ score.

The distance values in this analysis are only used for comparison purposes. As a
result, the absolute values are not the focus of the analysis, but rather the difference
between them.

Despite the statistically significant differences in the age distributions of female
patients within centers, as shown in Table 7.2, the TQ scores indicated that the
female patients’ networks were the most similar. On the other hand, male tinnitus
patients, who also had significant differences in their age distributions, differed the
most in terms of their TQ scores.

The blank spaces on the graphs indicate the absence of connections between nodes
located on opposite sides of the graph. This is due to the graph pruning phase,
which is a process of removing non-statistically significant edges. During this phase,
edges that do not contribute significantly to the overall structure of the graph are
eliminated in order to simplify the visualization and analysis of the graph.

The empty areas on the graphs are unique to each graph and vary according to
their characteristics. Some graphs may have more statistically significant edges than
others. These edges create more connections between nodes, making the graph more
connected. As a result, the empty spaces on these graphs would be fewer, and there
would be a greater number of nodes with connections between them. Conversely,
graphs with fewer statistically significant edges would have more empty spaces,
indicating fewer connections between the nodes.
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TQ score female CHATQ score female UHREG

TQ score male UHREG
TQ score male CHA

NetLSD=0.00059

NetLSD=
0.00323NetLSD=

0.01727

NetLSD=0.02109

Figure 7.6.: netLSD distances of graphs with TQt0 per clinical center and gender. Net-
works with blue nodes represent the male patients of the correspondent
clinical center. Magenta nodes represent the female patients. The edges
connecting the networks represent the similarity between the networks.
The thicker the edge, the more similar the networks are, and therefore,
the lower the netLSD distance.

7.4. Discussion

In this chapter, we conducted an analysis to compare the TQ scores of male and
female patients across different clinical centers. They found that the scores at the
initial assessment (t0) were similar for both genders, indicating that males and
females experience similar levels of tinnitus-related distress.

The research on tinnitus has identified age and gender as essential variables to
consider. A recent study by [81] explored the relationship between gender and
tinnitus-related distress. They found that women were more likely to experience
depression and higher levels of tinnitus-related distress than men. Another study by
[99] investigated the factors that predict tinnitus distress, and age and gender were
found to be the most significant predictors.

[92] conducted a study to investigate the impact of various factors on the success
of internet-based CBT for tinnitus patients. The study included age, gender, and
education level as features. Interestingly, the authors found that education level had
the most significant impact on the outcome of the treatment, with higher education
levels associated with better treatment outcomes. This highlights the importance of
considering a patient’s educational background when designing and implementing
interventions for tinnitus.

We observed that the age distribution of tinnitus patients in the two centers
partially reflects the age distribution of the general population in Germany.

All three distributions show a decrease in the age group of 75 years and above.
This could be due to the fact that elderly patients, especially those living in rural
areas, are less mobile. Another possible explanation is that as age increases, the
likelihood of having other medical conditions also increases, which may lead to a
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perception of tinnitus as being less distressing. However, these are just hypotheses
and further investigation is required to fully understand this pattern among elderly
patients with chronic tinnitus.

It has been observed that middle-aged individuals are more likely to seek medical
care for tinnitus compared to other age groups. This is evident from the fact that
the tinnitus centers have a higher proportion of middle-aged patients than what
is expected based on the general population of Germany. This trend cannot be
attributed to the demographic characteristics of the German population.

Although patients of the same gender within a center showed significant differences
in age, female patients from different centers were found to be the most similar
in terms of their TQ score, according to the results from the netLSD distances.
Additionally, the ages of female and male patients from different centers did not show
any significant statistical difference.

In summary, this chapter provides valuable insights into the similarities and
differences between male and female patients with tinnitus, the impact of gender and
age on tinnitus-related distress, and the importance of education levels in predicting
treatment outcomes.
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Subgroup discovery is a widely researched topic, although the methods are compli-
cated to evaluate. In this thesis, we propose a novel method for subgroup discovery
and evaluate it with domain-specific data. Real-life data is often a complex system
with interactions between entities.

Our approach acknowledges that complex systems are difficult to represent as data
and proposes that instead of using raw data and clustering on it, we first take the
time to understand the system and represent it as closely as possible to reality.

8.1. Main Contributions

8.1.1. Contributions to the Computer Science Field

Our main contributions can be organized according to the RQs. We answer to RQ1,
by proposing a novel method named COBALT and presented in Chapter 5 that finds
subgroups on data represented into MLNs. The representation of complex systems
into multi-layer networks is proposed by us and is based on trying to reflect the
system as well as possible. Then, we apply a community detection algorithm to it
and find subgroups in those data. We thoroughly evaluate by comparing COBALT
with traditional clustering approaches. We show how our method works evaluating
it not only using traditional partition quality metrics, but also using domain-specific
knowledge. We could conclude that COBALT outperforms the traditional clustering
methods for the dataset in which we tested it.

These methods are used when an MLN represents data from the same population.
However, in some cases, we might want to compare cross-population data; for that,
we also propose a method for comparing cross-population networks.

For RQ2, we developed two cost models that model feature cost, which, in our
case, we denote as layer cost. We propose two feature cost models, one simplified
and a full-fledged one. Both cost models are based on the principle that redundant
features are costly since they bring little information to the system, considering their
acquisition cost. With these models, we concluded that we could find high-quality
subgroups using a small feature set, which is, in some cases, higher quality than
those found by traditional clustering algorithms that use all feature space.

Finally, for RQ3, we developed a novel method to find subgroups over time,
Evol-COBALT, presented in Chapter 6. With this novel approach, we propose a
different type of data representation into an MLSN. Evol-COBALT is evaluated using
two datasets with different temporal data sizes - one with small temporal data, and
the other with more time points. This enabled us to have a broader view of how
applicable our method is. Our findings revealed that for time points in which we
have a relatively high amount of data, subgroups found with Evol-COBALT are more
predictive of domain-specific target variables than traditional methods.

In order to keep track of the changes in subgroups within an MLSN, we use a
number of different metrics to measure the extent of their evolution over time. This
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helps us to gain a better understanding of how these subgroups change and adapt
with time. Additionally, we have developed a novel metric named “disloyalty index",
which provides a more direct measure of how much a subgroup changes over time. By
using these various measures, we can gain comprehensive insights into the evolution
of subgroups in a more detailed way, since we focus on each subgroup. With this,
we can better understand in what way are the subgroups evolving and, eventually,
help a medical researcher/stakeholder make more informed decisions based on these
findings.

Finally, we produce a set of visualizations for a qualitative evaluation of the
subgroups, an in-detail view of subgroup composition using radial plots, and the
evolution of subgroups over time.

8.1.2. Contributions to Different Stakeholders
The proposed methods that this thesis entails also contribute to different stakeholders
of different types:

1. Medical Researchers: Our innovative method enables a deeper understanding
of the characteristics of patients and therefore can improve diagnosis for patients.
Medical researchers can utilize the COBALT-output static subgroups to perform
a comprehensive analysis of patients, identifying unique factors that set them
apart from others. This approach deepens their comprehension of the diagnostic
process, enabling them to create customized treatment plans that cater to the
specific needs of each subgroup, rather than relying on a generic approach.
Moreover, to complement COBALT, the Evol-COBALT model enables medical
researchers to monitor subgroups over time or treatment, leveraging this data
to create more efficient treatment plans tailored to each patient’s unique needs.

2. Medical Doctors: The data output from COBALT enables medical doctors
to provide more personalized treatment to their patients. Firstly, the doctors
can evaluate the questionnaire and demographic data of a patient and let
COBALT assign them to a particular subgroup. By doing so, the physician
can identify the subgroup to which the patient is most similar and provide
a tailored treatment based on the subgroup-specific treatments developed by
medical researchers. This approach can lead to better outcomes for the patient.
With Evol-COBALT, physicians can monitor the patient’s progress and determine
if they are still in the same subgroup or have transitioned to a different subgroup.
They can then analyze the data and make informed decisions. For example, if
the patient remains in the same subgroup and their treatment is improving, it
is a positive scenario. However, if there is an abrupt transition to a different
subgroup with more severe symptoms, then the doctor may need to adjust the
treatment plan accordingly.

3. Other Stakeholders: Although this thesis was initially motivated by the
medical field, the proposed models can be applied to other fields as well. In
the representation step, nodes, edges, and layers can be defined differently.
For example, in machine maintenance, nodes and components can be used, or
even one component that has sub-components, which can be defined as a node.
Components’ similarities can be characterized based on their interactions while
functioning, for example. Subgroups can then help to understand which groups
of components should be maintained first.
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Another example could be in the transportation or logistics field. Nodes can
be cities, countries, or even neighborhoods, and edges can define the traffic
between the nodes, the goods to be transported, or the number of flights. Each
of them would be a layer- one for flights, one for car traffic and another for
transported goods. The subgroups could group nodes according to traffic,
for instance. Then, the model’s insights could help to make decisions about
highway construction, for instance.

8.2. Limitations

The proposed method has some limitations regarding the type of data it handles. The
current configuration does not allow for the representation of categorical variables.
One would have to use a distance function for categorical values, such as the Jaccard
index, to account for categorical features. This distance function would then be
converted as a similarity function, for example, by using the inverse of that function.
Then, this could be used as an edge weight, and the rest of the proposed method
could be applied.

Another case is for mixed-type datasets, in which we have both categorical and
numerical values. In that case, the inter-layer edges are difficult to draw since
they denote the similarity between two entities across a categorical and a numerical
feature. One possible solution to this scenario is ignoring inter-layer edges between
categorical/numerical layers. The subgroups will be discovered only by considering
the similarity of the entities within each layer, but both categorical and numerical
layers will be considered. The only difference would be that the interaction between
categorical and numerical features would not be accounted for.

Finally, the interpretation of subgroups/communities in MLNs is not a straight-
forward task and demands much effort on the visualization and explainability of
the solutions. We tackle this with elaborate visualizations, but an interactive user
interface where we could click on each subgroup and analyze its composition would
be the next step to make it easier to understand.

8.3. Future Work

For future work, we plan to extend Evol-COBALT to account for categorical data by
using a similarity function between categorical variables. This would be an extension
of the first phase of the proposed method, the representations, in which we define
edge weights. After, we plan to evaluate it with appropriate datasets in which we
have mixed-type data.

In this thesis, even though we use datasets from different sources, all are directly
related to health. In the future, we will evaluate our approach using a variety of
datasets since our methodology is not limited to a particular domain. For example, we
can use this method in predictive maintenance in which the entities/nodes are machine
elements, and the edges measure the dependency on each other. Subgroups of machine
elements might be interesting for predicting the next maintenance/substitution of an
element or set of elements.

It would be helpful to rank the variables based on their significance or predictiveness
to enhance the analysis. This would help identify the order of importance of factors
that distinguish the entities/patients/participants and are crucial for the analysis.

In analyzing networks, the number of nodes, layers, and time points significantly
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impact edge computation and computational effort. An optimization can be imple-
mented to improve computation efficiency. One solution is to use parallel computing
when computing the intra-layer edges. This is possible because the memory of one
layer is not needed to produce the other during the first part of the representation
phase.

Furthermore, when modeling time as snapshots, Evol-COBALT is an appropriate
choice. However, to model time points continuously, an adaptation to a temporal
network is necessary. This depends highly on the domain and is a future task directly
related to experimenting with datasets from other real-world problems.
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A.1. Materials
A.1.1. Dataset 3: Detailed Materials
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Table A.1.: Detailed overview of dataset 4.3.
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A.2. Evol-COBALT
A.2.1. Quantitaive Evaluation
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Figure A.1.: Explained variance of the regression models that use subgroup infor-
mation (in green) and that do not use subgroup information (in red)
per week. Each yellow point in the graph has a label that denotes
the modularity value of the subgroups used on the regression model
represented by that point. For example, for week 4, the green point rep-
resents the regression model that uses subgroup information to predict
“Memory Performance”. That subgroup solution has a modularity value
of 0.22. The red point represents the regression model that does not use
subgroup information to predict “Memory Performance”, which, in that
case, has a lower explained variance.
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A.2.2. Qualitative Evaluation
For the sake of simplicity, we show all subgroups from week 4 and 9 below only.
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Figure A.2.: Description of the self-assessment questionnaires of subgroup E at week
4.

self_assessment_1 self_assessment_2 static

Co
nc
en
tra
tio
n

Di
str
ac
tio
n

Pe
rfo
rm
an
ce

Ca
lm
ne
ss

Co
nc
en
tra
tio
nW
k

En
er
gy
W
k

Fr
es
hn
es
s

Ha
pp
ine
ss
W
k

In
te
re
stW
k

M
oo
d

Pl
an
nin
gW
k

Su
bje
cti
ve
M
em
or
yW
k

Th
ink
ing
W
k

Se
x

0

25

50

75

100

P
er
ce
nt
ag
e

0

1

2

3

4

5
value

Figure A.3.: Description of the self-assessment questionnaires of subgroup F at week
4.
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Figure A.4.: Description of the self-assessment questionnaires of subgroup A at week
9.
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Figure A.5.: Description of the self-assessment questionnaires of subgroup B at week
9.
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Figure A.6.: Description of the self-assessment questionnaires of subgroup C at week
9.
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Figure A.7.: Description of the self-assessment questionnaires of subgroup D at week
9.
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Figure A.8.: Description of the self-assessment questionnaires of subgroup E at week
9.
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Figure A.9.: Description of the self-assessment questionnaires of subgroup F at week
9.
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A.2.3. Subgroup Evolution
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Figure A.10.: Evolution of the shrink, split and loyalty index per subgroup and per
timepoint.
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