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Abstract

Chromatography is a scientific method that allows individual identification of a substance by
breaking it down into its components and compounds. One of its many types is High Performance
Liquid Chromatography (HPLC), which uses solvents as the mobile phase and small solid particles
as the stationary phase. In this process, the strongly retained components may take longer time
under isocratic conditions, which lowers productivity and increases eluent consumption. For that
reason, gradient operations are used to increase productivity exploiting additional degrees of
freedom.

In this work, two different mathematical models, such as the equilibrium model (EM) and
the equilibrium dispersive model (EDM), are applied to study the effects of forced temperature
gradients generated by an external heat source. The mass balance is related to the applied
temperature by a function called the adsorption isotherm, which is assumed to be linear in
concentration and nonlinear in temperature.

To illustrate the principle, the column is divided into two segments: Segment I and Segment
II. Segment I is kept at reference temperature while segment II is exposed to the aforementioned
heat source placed on its conducting walls. The temperature variations in the later segment are
introduced step-wise.

As a preliminary case, the EM is coupled with the ideal temperature step gradients, whose
analytical solution is derived by a well-known method of characteristics. This method generates
solution trajectories which provides ideal and hypothetical but still useful information about
retention behavior in different temperature regimes.

The EM is then extended to EDM by introducing dispersion term on the right side of the
equation. To obtain more realistic results, this mass balance is coupled with other realistic
temperature profiles governed by an energy balance, as well as with its simplified version. The
updated models are then solved numerically using the finite volume method (FVM). Because of
its reliability in solving conservation laws, the FVM in fluxes form has produced stable solutions.
To ensure this stability, the time step restriction is calculated separately for each model.

Using the above models, periodic switching patterns of temperature are formulated for specific
elution scenarios to achieve a shorter cycle time compared to the conventional isocratic conditions.
The choice of switching times is entirely system specific and may need to be adjusted for each
separation problem. Several operating conditions, including injections of a single component as
well as a ternary mixture, are considered to validate the model equations and propose a numerical
algorithm.

A considerable increase in the column’s productivity, ranging from 16% to 20%, is observed.
Most of the parameters considered in this study are specific to a particular case study taken from
a parallel experimental PhD project [39], the results of which are compared at the end with our
theoretical results. A very good agreement is observed in both sets of results.
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By considering linear equilibria and step gradients, this study provides a useful tool to predict
shorter cycle times in order to make less productive HPLC processes more productive. The study
can be extended by considering nonlinear equilibria in concentration and more sophisticated
forms of gradients instead of step gradients to deal more real world HPLC problems.



Zusammenfassung

Die Chromatographie ist eine wissenschaftliche Methode, die eine individuelle Identifizierung einer
Substanz ermöglicht, indem sie in ihre Bestandteile und Verbindungen zerlegt wird. Eine ihrer
vielen Arten ist die Hochleistungsflüssigkeitschromatographie (HPLC), bei der Lösungsmittel als
mobile Phase und kleine Feststoffpartikel als stationäre Phase verwendet werden. Bei diesem Ver-
fahren können die stark zurückgehaltenen Komponenten unter isokratischen Bedingungen länger
brauchen, was die Produktivität senkt und den Eluentenverbrauch erhöht. Aus diesem Grund
werden Gradientenverfahren eingesetzt, um die Produktivität unter Ausnutzung zusätzlicher
Freiheitsgrade zu erhöhen.

In dieser Arbeit werden zwei verschiedene mathematische Modelle, wie das Gleichgewichts-
Modell (EM) und das Gleichgewichts-Dispersion-Modell (EDM), angewandt, um die Auswirkungen
von erzwungenen Temperaturgradienten, die durch eine externe Wärmequelle erzeugt werden, zu
untersuchen. Die Massenbilanz wird durch eine Funktion, die so genannte Adsorptionsisotherme,
mit der angelegten Temperatur in Beziehung gesetzt, wobei davon ausgegangen wird, dass sie bei
der Konzentration linear und bei der Temperatur nichtlinear ist.

Zur Veranschaulichung des Prinzips wird die Säule in zwei Segmente unterteilt: Segment I
und Segment II. Das Segment I wird auf Referenztemperatur gehalten, während das Segment II
der oben genannten Wärmequelle ausgesetzt wird, die an den leitenden Wänden angebracht ist.
Die Temperaturschwankungen im zweiten Segment werden schrittweise eingeführt.

In einem ersten Fall wird das EM mit den idealen Temperaturgradienten gekoppelt, deren
analytische Lösung durch eine bekannte Methode der Charakteristiken abgeleitet wird. Diese
Methode erzeugt Lösungstrajektorien, die ideale und hypothetische, aber dennoch nützliche
Informationen über das Retentionsverhalten in verschiedenen Temperaturregimen liefern.

Das EM wird dann durch Einführung eines Dispersionsterms auf der rechten Seite der Gleichung
auf das EDM erweitert. Um realistischere Ergebnisse zu erhalten, wird diese Massenbilanz mit
anderen realistischen Temperaturprofilen gekoppelt, die von einer Energiebilanz gesteuert werden,
sowie mit ihrer vereinfachten Version. Die aktualisierten Modelle werden dann numerisch mit
der Finite-Volumen-Methode (FVM) gelöst. Aufgrund ihrer Zuverlässigkeit bei der Lösung von
Erhaltungsgesetzen hat die FVM in Form von Flüssen stabile Lösungen hervorgebracht. Um diese
Stabilität zu gewährleisten, wird die Zeitschrittbeschränkung für jedes Modell separat berechnet.

Unter Verwendung der oben genannten Modelle werden periodische Schaltmuster der Tem-
peratur für spezifische Elutionsszenarien formuliert, um eine kürzere Zykluszeit im Vergleich zu
den herkömmlichen isokratischen Bedingungen zu erreichen. Die Wahl der Schaltzeiten ist völlig
systemspezifisch und muss möglicherweise für jedes Trennproblem angepasst werden. Es werden
mehrere Betriebsbedingungen, einschließlich Injektionen einer einzelnen Komponente sowie eines
ternären Gemischs, betrachtet, um die Modellgleichungen zu validieren und einen numerischen
Algorithmus vorzuschlagen.
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Es wird eine beträchtliche Steigerung der Produktivität der Säule beobachtet, die von 16%
bis 20% reicht. Die meisten der in dieser Studie betrachteten Parameter sind spezifisch für
eine bestimmte Fallstudie aus einem parallelen experimentellen Promotionsprojekt [39], dessen
Ergebnisse am Ende mit unseren theoretischen Ergebnissen verglichen werden. Es wird eine sehr
gute Übereinstimmung zwischen den beiden Ergebnissen festgestellt.

Durch die Berücksichtigung linearer Gleichgewichte und Stufengradienten bietet diese Studie
ein nützliches Instrument zur Vorhersage kürzerer Zykluszeiten, um weniger produktive HPLC-
Prozesse produktiver zu machen. Die Studie kann erweitert werden, indem nichtlineare Gle-
ichgewichte in der Konzentration und anspruchsvollere Formen von Gradienten anstelle von
Stufengradienten berücksichtigt werden, um realitätsnähere HPLC-Probleme zu behandeln.
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Chapter 1

Introduction

This chapter provides an introduction to chromatographic separation techniques and their state
of the art. It briefly describes how temperature gradients can be used to increase the productivity
of high-performance liquid chromatographic (HPLC) columns. It also summarizes the motivation
and objectives of this research and suggests a solution methodology.

1.1 History and Principles of Chromatography

At the beginning of the 20th century, a Russian botanist named Micheal Tswett created chro-
matography as a preparative method [42]. There were no systematic physical means of analysis at
the time. Analytical techniques were mostly focused on sluggish, insensitive chemical processes.
He separated precise mixes of plant origin and obtained pure plant pigments. Chromatography
was employed to do this, and the fractions that were obtained were then examined offline.

Early in the 1930s, chemists studying natural products [43] and biochemists, who continued to
play a crucial role at various stages of development, recognized the significance of chromatography.
Examples are the discoveries of paper chromatography [44], gas chromatography [45], size exclusion
chromatography [46], and affinity chromatography [47], to name a few.

In the late 1940s, analytical and preparative chromatography split apart due to developments in
sensitive detection techniques. The Manhattan Project’s purification of rare earths by Spedding’s
team [8] and the API Project’s extraction of pure hydrocarbons from crude oil by Mair et. al. [9]
were the first significant preparative chromatography operations. Broughton later developed the
very productive multi-column simulated moving bed technology for the company UOP (Universal
Oil Products) [10].

Principles and Mechanisms: Chromatography is a scientific technique for separating a
substance into its various components and compounds for individual identification. It is used
in the pharmaceutical and other processing industries for separation and purification purposes.
For example, this technique can be successfully applied to separate complex mixtures and to
identify very similar target molecules at reasonable production rates and high purity. It has
become an important method for chemical analysis and the production of high-purity products
on a micro and macro scale. Today it is impossible to imagine pharmacy without it. The rapid
development of fine chemistry, pharmaceuticals, and biotechnology over the past years, combined
with pressure from regulatory agencies, has resulted in increased emphasis on the manufacturing

1
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of products for use in the pharmaceutical industry. Their efforts have resulted in the production
of numerous highly purified chemicals to be used as drugs or pharmaceutical intermediates. They
have also identified metabolites of these compounds and completed systematic studies of the
toxicological properties of potential drugs and their metabolites prior to their approval. No
industrial separation process is more versatile than chromatography. It is well-suited for the
rapid production of high-purity products in the milligram to ton range. None has comparable
separation performance. In recent years, preparative chromatography has established itself as an
industrial process in the pharmaceutical industry [2].

A chromatographic process consists of three building blocks, the mobile phase, the stationary
or solid phase and the feed mixture with the molecules to be separated. Depending on the type
of contact between the mobile phase and the stationary phase, the chromatographic technique
can be divided into different types. Planar chromatography and column chromatography are two
of many examples. Planar chromatography is a liquid chromatography in which the stationary
phase is arranged in the form of a flat or plane bed and the mobile phase moves by capillary
action. Thin Layer Chromatography (TLC) is the most commonly used planar chromatography.
In contrast, column chromatography can be performed in a packed column, in which the entire
volume of the tube is filled with the porous substance or the stationary phase through which
the mobile phase seeps away either by gravity or by an external pressure. However, based on
mechanisms, chromatography can be divided into the following types.

• Adsorption Column Chromatography - Separation process in which the compounds (solutes)
to be separated are retained or adsorbed on the surface of the adsorbent (solid stationary
phase).

• Partition Column Chromatography - It is based on the variance of the partition coefficients
of the individual components of the mixture, with both the stationary and mobile phases in
the liquid state.

• Gel Column Chromatography - Here, the separation is done by a gel-filled column that has
a porous stationary phase. It is also referred to as size exclusion chromatography.

• Ion Exchange Column Chromatography - The basis for separation are the specific charge of
the molecules. Separation can occur when certain molecules are specifically attracted to
the oppositely charged stationary phase.

• Gas Chromatography (GC) - Uses gas as the mobile phase.

• High Performance Liquid Chromatography (HPLC) - Use solvents as the mobile phase and
small solid particles as the stationary phase.

The simplest HPLC setup consists of a solvent container, a pump (desorbent), the column, a
selection valve, a detector and one or more valves to collect the waste, see Figure 1.1. The pump
must be capable of delivering the required flow rate against the pressure drop of the column.
The column is packed with a porous medium. The selection valve switches between eluent and
feed. A liquid mixture which contains several solutes is injected into the column by means of the
desorbent. This desorbent pumps the feed mixture using the eluent. Both eluent and feed form
the mobile phase. When the mobile phase meets the porous medium, each of its solutes distributes
differently between the immiscible stationary and mobile phases within the column. During
elution, each component is adsorbed differently by the stationary phase due to their different
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affinities. This fact leads to different migration rates, resulting in the formation of different
composition fronts. These fronts are connected to the courses of the specific adsorption isotherm
and lead to a characteristic retention behavior of the components involved. The separated solutes
are then collected with the desired purity at regular intervals at the exit of the column.

Figure 1.1: Schematic Illustration of an HPLC Process (Source: shimadzu.com [77])

The concept of analytical HPLC was first introduced in the 1960s when stationary phases
with high selectivity became available. At the same time, preparative chromatography was
greatly advanced by engineers’ search for more effective purification techniques. The principle of
improving mass transfer by countercurrent flow, combined with the high selectivity of HPLC,
greatly improved the performance of preparative chromatography in terms of productivity, eluent
consumption, yield, and concentration.

Based on the mode of operation, the concept of chromatographic processes can be classified
according to the following types.

1.1.1 Linear and Nonlinear Chromatography

In linear chromatography, component’s equilibrium concentrations in the stationary and mobile
phases are proportionate. The equilibrium isotherms are thus lines that begin at the origin. The
sample’s composition and volume have no effect on the specific band formation or retention
times. The amount of each ingredient in the injected sample directly relates to the peak
height. As long as the injected quantities of the sample components are maintained low enough,
linear chromatography may be utilized to explain the majority of phenomena seen in analytical
applications of chromatography. Let “c” represents the concentration of a solute or component
in the mobile phase, while “q” represents the concentration of the same solute in the stationary
phase. Then any isotherm may be converted into a second degree polynomial using the formula
q(c) = ac+ bc2, hence we consider any chromatographic experiment to be carried out under linear
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circumstances as long as bc << a.
Column chromatography, TLC, and HPLC are frequently used methods that are based on

the concepts of linear chromatography. These methods are widely utilized in many different
industries, including food testing, environmental monitoring, and pharmaceutical analysis. Good
resolution and consistent elution periods make linear chromatography an effective technique for
frequent separations.

In nonlinear chromatography, the phase equilibrium isotherms are nonlinear. At equilibrium,
the component’s concentration in the stationary phase is no longer proportional to that in the
mobile phase. Any compound’s equilibrium isotherm is also influenced by the concentration of all
other elements in the solution. Thus, the evolution of the feed concentration at the inlet port of
the unit, e.g. the composition of the sample and its amount in the case of an overcharged elution,
determines the concentration profiles of all components along the column(s). It also determines
the concentration trends at the outlet ports of the chromatographic unit, e.g. the band profile,
its height, and retention time in the case of an overcharged elution, etc. This circumstance may
be found in almost all preparative applications. The adsorption of certain sugars on ion-exchange
resins is a sporadic exception. Over the whole concentration range, their isotherms are almost
linear. The interconnectedness of the distinct band profiles and the fact that the quantity of each
component adsorbed relies on the concentrations of all species in the solution make nonlinear
chromatography issues highly difficult. The distinction between ideal and non-ideal models can
help to streamline the study of nonlinear chromatography [1, 2].

Overall, linear chromatography offers predictable separation behavior since it is based on
the equilibrium principle. On the other hand, nonlinear chromatography takes into account
nonlinearities and competition effects and seeks to enhance separation performance in complicated
systems. Nonlinear chromatography is now well understood thanks to recent research, making
possible its use for difficult separations, such as protein separations.

1.1.2 Discontinuous and Continuous Processes

A chromatographic process in which the feed mixture is introduced batch-wise to a single column
is called a discontinuous process. These operations can be performed under different conditions,
e.g.

• Isocratic Operation - Chromatographic operations in which the composition of the solvent
is not changed during elution or (and) the temperature of the system is kept constant, are
referred to as isocratic operations. This method can operate with a simple setup, has a
shorter cycle time since the column does not need to be reconditioned, and solvent workup
and reuse is easier.

• Gradient Chromatography - Under isocratic conditions, the highly retained components
sometimes require a lot of time, leading to a reduction in productivity and high eluent
consumption. To improve the productivity, gradient operations are used because they
provide additional degrees of freedom [35,36]. In such a situation, the course of adsorption
plays a crucial role by influencing the migration rates through gradients and reducing the
cycle time. The following conditions of the process can be changed to achieve the desired
improvement:

1. Mobile phase composition
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2. Mobile phase flow rate

3. Temperature

4. Pressure

The first two are classified as solvent gradients. They have a strong effect on elution strength, but
require re-equilibration after the chromatogram is completed and cause time delays. In contrast,
temperature gradients act instantaneously. However, they have a slower response and they have
typically a weaker effect on the elution strength.

It is a fact that solute binding by adsorption is an exothermic process and desorption is an
endothermic process; the migration rate in chromatographic columns is temperature dependent.
Thermal effects are largely accounted for in gas-phase flows by solid packing [41,48–52]. However,
in liquid chromatography, such effects are usually neglected by (a) assuming that the heat capacities
of the two phases are larger than the adsorption enthalpies and (b) assuming a sufficiently large
value for the thermal conductivity to maintain a uniform temperature in the column. Solvent
gradients are used in most liquid chromatographic procedures to increase productivity. Although
most chromatographers assume isocratic conditions when performing liquid chromatography
processes. There is experimental evidence of temperature variations in liquid chromatography
columns [53,54].

Note that the expansion of the working range to the nonlinear range of head temperature
isotherms is actually the primary distinction between analytical and preparative chromatography.
As a result, it is necessary to understand how the individual components and their mixes behave
over a broad range of concentrations. Adsorptive equilibrium, like all other phase equilibria,
is established by the equality of all interacting components’ chemical potentials throughout all
phases. In the literature [2, 24], the thermodynamic concepts are described in further detail.

In contrast, a chromatographic process in which the feed mixture is processed continuously
in the chromatographic column or usually in several columns is called a continuous process.
Especially on a preparative scale, continuous processes must be performed to increase productivity
and to avoid wasting fresh eluent. Some of the many examples are listed below.

• Column Switching Chromatography – A simple approach to convert batch separation to
continuous (or pseudo) separation by switching the injection from one column to another.

• Annular Chromatography – In this type of chromatography, the feed mixture is introduced
into a rotating column. The stationary phase is packed between two concentric cylinders,
and the liquid moves downward as the column slowly rotates.

• Simulated Moving Bed (SMB) Chromatography – In this concept of chromatography,
the stationary phase is circulated at a constant flow rate and in countercurrent to the
mobile phase. More efficient separation is achieved by this operation with multiple columns
connected. These columns can be connected in series or in parallel. SMB chromatography
can be performed under either isocratic or variable process conditions.

The first method involving countercurrent flow was SMB chromatography for large-scale separation
in the petrochemical and food processing industries [4]. Recently, countercurrent SMB processes
have emerged as key highlights in chromatographic separations. With the goal of increasing
productivity and making chromatographic separations more economical, especially for bioproducts,
SMB principles are becoming a source for developing new and more flexible processes with a
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smaller number of columns. The extreme case here is a proposal for an SMB-like process with
only one column, [7]. There are some other studies that report on the trends and suggestions for
improving SMB processes, for example [5, 6].

A look into the future shows a technology trend towards the use of continuous process flows
and downstream processes for chemical and especially biopharmaceutical products. Costs and
production capacity need to be examined, and more integrated and efficient approaches should be
used. The adaptation of concepts for isolating antibodies from complex fermentation broths in a
countercurrent process will enable more cost-effective production of biopharmaceutical products
in the coming years.

However, in this work we are concerned with a linear and discontinuous HPLC process
associated with a particular system. The process is comparatively run under both isocratic and
selected temperature gradients to show how temperature gradients can be used to achieve a better
production rate.

1.1.3 Brief Overview of Literature

In the 1980s, the pharmaceutical industry first expressed interest in preparative high-performance
chromatography, and in the last 20 years this interest has increased even further [11]. For
the extraction and purification of fine compounds, especially those used as pharmaceutical
intermediates, chromatography is now an accepted commercial technique.

A chromatographic system based on the idea of a SMB was created and patented by Union
Oil in the early 1970s [10,12,13]. While streams of the less retained (the “raffinate”) and more
retained (the “extract”) components are continually extracted from the column at fixed flow rates,
streams of the mobile phase (the “desorbent”) and the feed to be separated are continuously
introduced into the column. The places in the columns where these streams enter or exit are
regularly changed by the rotary valves. For the selective separation of p-xylene, o-xylene, and
ethyl-benzene from the aromatic C7-C8 fraction of light petroleum reformates, for the separation
of olefins from keroses in feed mixtures of hydrocarbons with 10 to 14 carbon atoms, and for the
separation of fructose and dextrose from corn syrup, production plants have been built and are in
operation. It has been demonstrated that forcing the stationary phase to move down the column
may transform chromatography, which is typically a batch operation in both the elution and
displacement modes, into a continuous process. It is not practicable to move the stationary phase
bed physically. However, it is possible to replicate the action of a moving bed, as was done in
the Union Oil process by employing a number of columns set up online and coupled to a rotary
valve [10]. Practical switches may be made to the positions of the desorbent, extract, feed, and
raffinate to enable the machine to run continuously.

Over the past 40 years, proponents of elution have repeatedly made promises of significant
improvements for certain separation tasks [14,15]. However, this strategy has never been used
in actual practice in the tightly controlled pharmaceutical sector. It has been shown that the
assertion that displacement delivers a 100 percent recovery yield is false since the bands’ boxcar
elution. The debate has come to an end because of the gradual realization that isocratic elution,
whenever possible, leads to faster production rates, higher recoveries, and easier operation, even if
it produces more fractions than displacement [16–18]. Because proteins and medium- or large-sized
peptides can often not be extracted or purified by isocratic elution, the balance between the
benefits and drawbacks of displacement and elution techniques has long been ambiguous. Gradient
operations currently seems to be superior. Now that the foundations of nonlinear chromatography
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are better known, much research is still being done on the numerous recycling techniques that
are currently accessible as well as the simulated moving bed approach.

It has been found that temperature gradients broadly influence the production rate, yield,
and efficiency of the column. Some studies suggest that they can reduce viscosity and improve
solubility and diffusivity [55, 56]. Both separation and reactions are significantly affected by
temperature fluctuations. Only a few contributions are available in the literature dealing with
segmented temperature gradients in liquid chromatography [57–65]. One method implemented
is Temperature Gradient Interaction Chromatography With Triple Detection (TGIC-TD). The
method was suggested by Chang et al. to separate branched polymers according to their molecular
weight with a high resolution [66–69].

With the aid of suitable mathematical models, which are typically based on mass, energy,
and momentum balances as well as on equations quantifying the thermodynamic equilibria of
the distribution of the solutions between the different phases, it is possible to quantitatively
describe the band propagation phenomena in chromatography. With respect to model accuracy,
the engineering rule is that a good model should not only be as detailed as necessary, but also as
simple as possible.

The literature has a variety of models for comprehending the dynamical nature of the transport
systems involved in the chromatographic process. Compared to the currently accessible, costly, and
time-consuming experimental approaches, these models offer a better and deeper understanding
of the associated separation and reaction processes [1, 2].

An important modeling approach for quantifying chromatographic processes is the stochastic
theory of chromatography, which is based on the fundamental molecular and dynamic considera-
tions introduced by Giddings and Eyring [25]. There are numerous later developments of this
theory, documented for example by [27], [26] and [19].

1.2 Problem Statement

The selection of the chromatographic system and the best process idea, as well as the scaling-up
of laboratory-scale trials to economically viable plant sizes, are crucial phases in the design of
production-scale chromatographic processes. The amount of time and resources needed for process
analysis and optimization can be greatly decreased by predictions based on approximations and
numerical simulations. Validated process models may be employed to design plants with the
best efficiency and choose the right operational parameters. The clarity produced by process
simulation enhances process comprehension and facilitates effective staff training [3]. Because
mathematical modeling is used to plan, regulate, and optimize system behavior, it has now
become an integral component of chemical engineering.

In chromatography, the influence of temperature on adsorption and thus on process perfor-
mance is a fact. Therefore, temperature gradients have a potential application in the optimization
of separation processes. Examining how induced temperature gradients might increase the perfor-
mance of liquid chromatographic columns is one of the objectives of this study. If the heat of
adsorption is high enough, the system can drastically diverge from isocratic behavior. As a result,
the co-occurrence of heat and concentration fronts should be discussed, and the crucial variables
that control temperature gradients should be found. To achieve this, a specific forced gradients
operation of a liquid chromatographic process is theoretically studied. Particularly, the internal
temperature of the column is changed at a specific position through an external heating or cooling
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source fixed to the surface of the column wall. Heating accelerates while cooling decelerates the
migration speed of the fronts in specific regions of the column.

A chromatographic process involves several interrelated and complex thermodynamic, hydro-
dynamic, and kinetic phenomena such as dispersion, convection, adsorption-desorption, and mass
transfer kinetics. Their mathematical representations are accomplished by taking into account any
or all of these phenomena, which results in a range of models with varying degrees of complexity
(see, for example, [1, 2, 20–24]). The ideal or equilibrium model (EM), the equilibrium dispersive
model (EDM), the general rate model (GRM), the linear driving force model, and the lumped
kinetic model (LKM) are some of the models that are now in use.

Despite the widespread belief that the GRM is an effective and accurate model, many factors
are involved and the calculations are very complex. For that reason, EM and EDM are the main
models in this study because they provide a reasonable approximation with few parameters. The
EM is the simplest model and easy to solve, but still a valuable one, as it provides important
information, while the latter is the extended version that has a significant impact on the study of
chromatographic processes.

Equilibrium theory is incredibly useful for designing and analyzing a variety of complicated
processes. Its ability to effectively anticipate, address, and explain the dynamic behavior of such
intricate systems is one of its significant strengths. We refer to the [71–73] for in-depth studies on
equilibrium theory.

The EM include the linear advection equation, i.e. the axial dispersion of the concentration
is neglected in this model, whereas, the EDM comprises system of convection-diffusion partial
differential equations (PDEs). When the injected sample is either small in volume or diluted, the
equilibrium concentrations of the liquid and solid phases often have a linear relationship, leading
to a linear system of equations.

As a preliminary cases, for the EM and EDM, it is assumed that there are no radial gradients
and that temperature changes are driven progressively and evenly across the column’s cross-
sectional area. In order to convey heat across the column, no energy balance is necessary; instead,
we give the temperature inside the column as a piece-wise step function. These equations can
be analytically solved using the well-known method of characteristics. This method changes the
original coordinate system (z, t) to a new coordinate system (z0, s) to reduce the given partial
differential equation (PDE) to an ordinary differential equation (ODE).

If we consider the column’s temperature as a real temperature profile described by a detailed
energy equation rather than a piecewise function, there is typically a nonlinear relationship
between the equilibrium concentrations of the liquid and solid phases, leading to nonlinear
differential equations. Analytical solutions to the resultant model are either challenging or
perhaps impractical. As a result, effective numerical techniques must be used to produce precise
and entropic (physically realistic) solutions.

Since retention time is the crucial factor when it comes to the productivity, the models are
initially looked at for individual components to determine how different temperature profiles
impact the retention time of a certain component. The models are then expanded to include
a mixture that is periodically injected, first under isocratic conditions and subsequently under
gradients ones, in order to potentially reduce cycle time, which is essential for determining the
performance of the column. Some of the analytical solutions are also compared with the numerical
outcomes.

In summary, we want to study the effects of temperature gradients in a discontinuous
chromatographic process, especially considering a linear isotherm in concentration. By comparing
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the effects of temperature gradients with isocratic conditions, this study focuses on the prediction
and optimization of cycle times. The main objective is to investigate how temperature gradients
can be used to reduce cycle times and increase productivity. This study is theoretical and uses
mathematical modeling and simulations to understand the potential benefits of incorporating
temperature gradients into the HPLC process. For the purpose of experimental validation,
realistic parameters are utilized, ensuring a practical and accurate representation of the proposed
approach.

It is important to carefully select materials that have related parameters such as Henry’s
constants or (and) adsorption enthalpies. Some systems may not be suitable for the present
study. However, in a more systematic research, the analysis of this section can be used to
identify accurate criteria to predict the maximum deviation from isocratic behavior and serve as
a justification for the final reduction of the model to isocratic behavior.

1.3 Solution Methodology

In the present work, the EM is solved both analytically, while the EDM is analyzed both semi-
analytically and numerically for a liquid chromatographic process under isocratic and gradients
conditions. For the analytical solution the method of characteristics is used, while for the semi-
analytical solution the Laplace transformation and for the numerical solution the upwind finite
volume method (FVM) is utilized. Analytical, semi-analytical and numerical results are compared.
Some of them are also compared with experimental results of the parallel PhD Project [39]. All the
aforementioned techniques helped to calculate formulas for the corresponding cycle and injection
times. The effects of varying several key parameters over the temperature profile, influencing the
retention times of certain components, are investigated.

1.3.1 Method of Characteristics

The method of characteristics is a mathematical technique used to solve certain types of PDEs.
It involves converting a given PDE into a system of ODEs along characteristic curves in the
(z, t)-plane, i.e. curves which carry some information and along which the solution of the PDE
remains constant in our case. These curves are particularly relevant to the study of equilibrium
theory, which is actually the beginning of calculating the solutions in this work. By solving the
ODEs, one can determine the solution of the original PDE.

The method of characteristics is particularly useful for linear and quasilinear first order
PDEs [74]. It takes advantage of the fact that the characteristics of a PDE are defined by the
coefficients of the partial derivatives of the unknown function with respect to the independent
variables. By examining the characteristics, one can determine the behavior of the solution.

The method of characteristics has applications in various fields, such as fluid dynamics, optics
and transport phenomena. It is a powerful tool for the systematic analysis and solution of partial
differential equations [71–73].

1.3.2 Finite Volume Method (FVM)

Due to its ability to accurately represent the behavior of values that are conserved over both
space and time, the finite volume approach is frequently employed to solve conservation laws.
The fundamental principles of physics, such as the conservation of mass, momentum, and energy,
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are described by conservation laws [75]. The finite volume approach is frequently used to solve
these conservation laws for the reasons listed below:

1. Conservation property – The finite volume approach is by nature conservative. The domain
is discretized into tiny control volumes or cells, and the fluxes of the conserved quantities are
calculated at the boundaries of these cells. The technique assures that the overall amount
is preserved by adding the fluxes over the control cells.

2. Local and flux conservation – The method maintains local conservation, which ensures that
each control cell properly depicts the quantities acquired. By precisely accounting for fluxes
of conserved quantities across cell boundaries, it also assures flux conservation.

3. Flexibility in dealing with complex geometries – The solution’s discontinuities, irregular
meshes and complicated geometries can all be handled using the finite volume approach. It
enables modification and improvement in certain areas of interest.

4. Numerical stability – The finite volume method in conjunction with upwind fluxes is
reliable for solving conservation laws because it has high numerical stability features. It can
manage any discontinuities that the solution may experience, including shocks and contact
discontinuities.

The finite volume approach is widely used in computational physics and engineering simulations
because it offers an efficient framework for resolving conservation laws, guaranteeing conservation
properties, handling complicated geometries, and preserving numerical stability. In the current
study, we use the finite volume method to calculate all numerical solutions.

1.4 Objectives and Outline

The main goal of this thesis project is to theoretically analyze forcedly implemented thermal
gradients and their role in improving productivity, e.g. performance, in liquid chromatography.
In a systematic and summarized form, this is highlighted as follows

1. Solving the EM together with spatially focused temperature step-gradients (see Section
2.4.2) and providing corresponding analytical solutions using the method of characteristics.
Estimation of formulas for retention and cycle times, and column’s performance under
isocratic and gradients conditions.

2. Numerically solving the extended model, the EDM, along with the same temperature
step-gradients (see Section 2.4.1) using FVM. Estimation of the same quantities numerically
and comparison with the results of the equilibrium model.

3. Providing analytical solutions of the simplified temperature (energy) equation by Laplace
transform and subsequent fitting to the EDM for numerical estimation of concentration
using the FVM (see Section 2.3). We call this approach semi-analytical analysis.

4. Finally generating numerical solutions of the coupled system of EDM and detailed energy
equation (see Section 2.2) using FVM and comparison of the results obtained from this
slower temperature changes with the results obtained from the above models with faster
temperature changes.



1.4. OBJECTIVES AND OUTLINE 11

5. Because of the parallel doctoral project [39], comparing the selected theoretical predictions
with the experimental results, which are described in more detail in the parallel dissertation.
In particular, a comparison is planned for a specific chromatographic separation problem at
selected types of temperature gradients.

The remaining parts of the dissertation are organized as follows.
Chapter 2 introduces the concept of gradient chromatography, mathematical models, and

the column’s production rate. In Chapter 3, the method of characteristics is applied to derive
the solution trajectories of EM. Different scenarios are also analyzed for illustration. Chapter 4
performs numerical analysis and studies the stability conditions for each model. A parameter
study, results of the theoretical study, and its comparison with the experimental results are
presented in Chapter 5. Conclusions are drawn in Chapter 6.



12 CHAPTER 1. INTRODUCTION



Chapter 2

Gradient Concept and Mathematical
Models

This chapter deals with the concept of possible temperature gradients and introduces mathematical
models like the Equilibrium Model (EM) and Equilibrium Dispersion Model (EDM). We also
discuss energy balance equations in detailed and simple forms to use temperature gradients
effectively. By combining these mass and energy balances in different ways, we develop four
models for their solutions in the later chapters.

2.1 A Possible Temperature Gradients Concept

Consider some chemical solutes are injected via a moving stream of solvent into a cylindrical
chromatographic column of length z = [z0, zmax], where z0 = 0 . For illustration of the wider
applicable principle of segmented thermal gradients, we divide the z-domain in two equal segments,
from z0 to zm = zmax

2 , segment I, and from zm to zmax, segment II. We consider that each of the
segments behaves like an individual column and that the overall column is described by connecting
these two segments. The outlet concentration profiles of segment I are the inlet concentration
profiles for segment II.

Let segment I be maintained at a fixed reference temperature TR while the temperature of
segment II is changed uniformly via a fixed source placed at the outer surface of the conducting
wall. We assume for simplicity that it provides instantaneous heating TH or cooling TL to the
whole segment.

To illustrate the effects of the forced periodic regime, we show four different scenarios in
Figures 2.1 and 2.2. In the first scenario, see Figure 2.1a, a single solute pulse (showing total
concentration in the two phases) is shown eluting in the column. Hereby, it is allowed to face,
for example, a lower temperature in segment II. As the pulse starts crossing zm, its right part in
segment II decelerates and its left part in segment I is still moving at the larger reference speed.
As a result, the profile becomes narrower and more concentrated in segment II. After completely
entering into segment II, the whole pulse is migrating at uniform low speed and reaches the
column’s outlet. The second possible scenario is similar to the first one but now the pulse faces a
higher temperature in segment II, see Figure 2.1b. As a result, an opposite effect is observed,
that is the pulse becomes broader and less diluted. The third and fourth possible scenarios are
more complicated. They refer to the intrinsic goal of chromatography to separate components.

13
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Figure 2.1: Case (a) A single-solute pulse is injected one time into the column. The pulse is
allowed to face a low temperature in segment II. As a result, the pulse becomes narrower and
more concentrated. Case (b) Unlike case (a), the injected pulse faces a high temperature in
segment II. Then, the pulse becomes broader and less concentrated.

For illustrative purposes, the third and fourth scenarios consider a three-component mixture.
Suppose the mixture is periodically injected P−times into the column under both isothermal and
gradient conditions, where P ∈ N as shown in Figure 2.2a. In the third scenario, the first two
components are assumed to migrate much faster than the third component, which is referred to
as “Late Eluter” and is shown in Figure 2.2b, while the fourth scenario in Figure 2.2c, which is
referred to as “Early Eluter”, describes the situation in which one of the three components elute
faster and the other two elute slower. Depending on the individual velocities, each component of
the mixture faces temperature changes in the segment II at different times. Figure 2.2d shows the
potential of applying well selected temperature gradients to reduce cycle time for both scenarios,
that is, the shortest possible time difference between two consecutive injections, in the gradients
case, ∆tpc,grad, compared to the isothermal (isocratic) case, ∆tpc,iso > ∆tpc,grad.

If we choose p = 1, 2, 3, ..., P ∈ N, then let tpinj and t
p
n,max be the times at which each component

n of the pth injection of duration ∆tinj enters and leaves the column, respectively. We refer to these
times as injection time and retention time, respectively. We assume that t1inj = 0, tpinj < tpn,max for
p = 1, 2, 3, ..., P . Since the injected concentration remains the same for each pth injection, we do
not need a superscript p over cn. The injection duration ∆tinj for each cn in each injection also
remains the same. We estimate the cycle time ∆tpc at the column exit, which in principle (if no
safety margins are considered) should be equal to the difference between two successive injection
times, i.e. tp+1

inj − t
p
inj.

In the following section, we will introduce the mathematical models that describe the mass
transfer phenomenon in relation to the previously discussed temperature gradients concept.
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a Illustration of a ternary mixture injected multiple
times under isothermal conditions. Each component
has a different Henry constant and adsorption en-
thalpy. The cycle time under isocratic conditions is
given as ∆tpc,iso.

b Case “Late Eluter”: Effluent concentrations at
zmax for isothermal conditions and the correspond-
ing cycle time ∆tpc,iso, which should be equal to that
at z0. In this case the retention times of the first
two components are similar but smaller than the
retention time of the third component.

c Case “Early Eluter”: In this case the retention
times of the last two components are similar but
larger than the retention time of the third compo-
nent.

d Collection goal at the outlet of the column: The
same mixtures are injected under suitable segmented
temperature gradients. The pulses then elute closer
to each other, leading to a reduction in the cycle
time, that is, ∆tpc,grad < ∆tpc,iso.

Figure 2.2: Illustration of the concentration pulses plotted in Figure “a” at the inlet z0 of the
column, while in “b” and “c” they are plotted at zmax. The shaded regions indicate the composition
of the injected mixture.
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2.2 Equilibrium Dispersive Model (EDM) Coupled with Energy
Equation

The principles of equilibrium conditions and dispersion effects in mass transport are combined
in the equilibrium dispersive model. It integrates the dispersion phenomenon, which is the
spreading or mixing of solute in a fluid, and implies quick equilibration. Chemical engineering
has extensively explored this concept, which has found use in a number of systems [31,32]. In
the mathematical community, this dispersion term is recognized as diffusion, emphasizing its
significance in various mathematical models and applications.

Let the number of solutes injected into the column be Nc ∈ N, having concentrations cn in
the mobile phase and qn in the adsorbed phase, such that n = 1, 2, 3, ..., Nc. It is assumed that
the column is filled with spherical adsorbent particles and that the bed is homogeneous. The
evolution of separation is occurs over a time horizon t = [t0, t

P
n,max], where t0 = 0 and tPn,max

is the time when the last component of the last P th injection exits the column, where P ∈ N.
Further, u represents the interstitial velocity, which is assumed to be constant for all temperatures,
and F = 1−ε

ε is the phase ratio based on the porosity ε ∈ ]0, 1[. For a reliable prediction of
concentration profiles, we introduce the apparent dispersion coefficient Dz in the mass balance,
which plays a crucial role in characterizing the transport behavior of components in the system.
The dispersion term is usually component specific and takes into account molecular diffusion,
axial dispersion and mass transfer resistances in its entirety. Our approach simplifies the analysis
by neglecting component-specific differences in molecular diffusion and mass transfer resistances
and treat Dz as a constant apparent axial dispersion coefficient. We will estimate the value of Dz

from the experimentally determined plate number Np.
Let the indexes L and S be the symbolic representations of liquid and solid phases, respectively,

then we define m̊L−S , the mass flowing from the liquid to the solid phase and back, then let the
mass balance for a liquid mixture of Nc components in the mobile phase percolating through a
cylindrical chromatographic column with a fixed bed be given as

εcnt + εucnz = εDzcnzz + m̊L−S , n = 1, 2, 3, ..., Nc (2.1)

and in the solid (adsorbed) phase, it is defined as

(1− ε)qnt = −m̊L−S . (2.2)

For the description of the exchange of mass flow between the two phases, there exist many models.
We will not go deeper into them in this thesis. Instead we will assume permanently established
equilibrium conditions. Adding (2.1) and (2.2), then dividing both sides by ε gives the so-called
equilibrium dispersive model (EDM) as

cnt + Fqnt + ucnz = Dzcnzz . (2.3)

Assuming linear equilibria q(c), we will define the Henry constants an, which are a function
of the temperature T . This temperature dependence is typically expressed via an Arrhenius
function incorporating the enthalpy of adsorption ∆HA,n for each component n and the universal
gas constant R. Furthermore, let TR be any reference temperature. The temperature-dependent
Henry constants with respect to the reference Henry constants an(TR) and the actual temperature
T are then given as



2.2. EQUILIBRIUM DISPERSIVE MODEL (EDM) COUPLED WITH ENERGY EQUATION17

an = an(T ) = an(TR) exp
[−∆HA,n

R
(

1

T
− 1

TR
)
]
, n = 1, 2, 3, ..., Nc. (2.4)

The distribution equilibria of the components between the mobile phases and the solid phases
under equilibrium conditions are described by a function. It is called, for a given constant
temperature, adsorption isotherm. We apply a linear relation in concentration using the above
temperature dependent Henry constants an(T ). Thus the adsorption isotherm equation used in
this thesis is linear in concentration and nonlinear in temperature, as expressed below

qn(cn, T ) = an(T )cn = an(TR) exp
[−∆HA,n

R
(

1

T
− 1

TR
)
]
cn, (2.5)

Let ρ represent the density per unit volume, Cp the heat capacity, λz the effective thermal
conductivities along the axial direction. The density and heat capacity are assumed not to depend
on temperature and composition. Also, let αw and Tw represent the overall wall heat transfer
coefficient and the wall temperature, respectively. If the enthalpy of mixing is neglected, the
energy balance for the temperature T in a differential volume element of a chromatographic
column becomes

(ρLCLp + FρSCSp )Tt − F
Nc∑
n=1

(−∆HA,nqnt) + uρLCLp Tz =λzTzz + αw(Tw − T ) . (2.6)

The combination of the contributions of heat capacity and density from both the liquid phase and
the solid phase ρLCLp +FρSCSp provided in the equation defines the storage term. Understanding
the dynamics of heat transfer within the system depends heavily on this storage term, which
takes into account the combined influence of the two phases.

We know that adsorption is an exothermic and desorption is an endothermic process. This is
the context of the term

∑Nc
n=1 (−∆HA,nqnt) in the equation above, which connects the energy

equation with the mass balance. It offers insights into the overall dynamics of heat transfer and
the energetics of the adsorption-desorption system and provides a thorough description of the net
energy exchange associated to the process.

Let cn,inj be the injected concentrations of components cn and ∆tinj be the corresponding
injection time. The initial conditions for (2.3) and (2.6), taking TR as the room or reference
temperature, are given as

cn(z, t0) = 0, (2.7a)

T (z, t0) = TR. (2.7b)

We use the Dirichlet boundary condition on the left edge z0 of the z−axis, which is as follows

cn(z0, t) =

{
cn,inj, tpinj ≤ t ≤ t

p
inj + ∆tinj

0, tpinj + ∆tinj < t < tpn,max,
for p = 1, 2, 3, ..., P ∈ N. (2.8a)

While for the right edge zmax, we use the Neumann boundary condition as

cnz (zmax, t) = 0. (2.8b)
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We use the same set of boundary conditions for the temperature as

T (z0, t) = TR, (2.8c)

Tz (zmax, t) = 0. (2.8d)

Let us rewrite Eqs. (2.3) and (2.6) in the form

cnt + Fqnt(T ) + ucnz = Dzcnzz , n = 1, 2, · · · , Nc, (2.9)

Tt +
F
∑Nc

n=1 ∆HA,nqnt(T )

ρLCLp + FρSCSp
+

uρLCLp
ρLCLp + FρSCSp

Tz =
λz

ρLCLp + FρSCSp
Tzz+

αw

ρLCLp + FρSCSp
(Tw − T ) .

(2.10)

For simplicity and numerical computations, we will first de-dimensionalize the time t using
the retention time of a non-retained component, tR0

, given as

tR0
=
zmax

u
, (2.11)

whereas, the space z is de-dimensionlized using zmax. The dimensionless time τ and the normalized
space variable x as

τ =
t

tR0

and x =
z

zmax
∈ [0, 1]. (2.12a)

If ∆z and ∆t are the spatial and time steps in dimensional form, respectively, then these quantities
are written in terms of non-dimensional space and time steps, ∆x and ∆τ , respectively, as

∆x =
∆z

zmax
and ∆τ =

∆t

tR0

. (2.12b)

Also, we define relative middle (the interface) and end positions as

xm =
zm

zmax
=

1

2
and xmax =

zmax

zmax
= 1. (2.12c)

After introducing the above definitions in (2.9) and (2.10), a small simplification and rearrangement
yields

(cn + Fqn(T ))τ = −cnx +
tR0

Dz

z2
max

cnxx , n = 1, 2, · · · , Nc. (2.13)(
T +

F
∑Nc

n=1 ∆HA,nqn(T )

ρLCLp + FρSCSp

)
τ

= −
ρLCLp

ρLCLp + FρSCSp
Tx +

λztR0

z2
max(ρLCLp + FρSCSp )

Txx+

αwtR0

ρLCLp + FρSCSp
(Tw − T ) .

(2.14)

Now, consider the following abbreviations

Dx =
Dz

z2
max

, (2.15a)
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Gn =
∆HA,n

ρLCLp + FρSCSp
, n = 1, 2, 3, ..., Nc, (2.15b)

X1 =
ρLCLp

ρLCLp + FρSCSp
, (2.15c)

X2 =
αw

ρLCLp + FρSCSp
(2.15d)

and

X3 =
λz

z2
max(ρLCLp + FρSCSp )

. (2.15e)

In view of the above abbreviations, (2.13) and (2.14) are of the form

(cn + Fqn(T ))τ = −cnx + tR0
Dxcnxx , (2.16a)

(
T + F

Nc∑
n=1

Gnqn(T )

)
τ

= −X1Tx + tR0
X3Txx + tR0

X2(Tw − T ) . (2.16b)

For simplicity, let us consider now just the elution of a single component, i.e. Nc = 1. Then
(2.16a) and (2.16b) considering c1 = c, q1 = q,∆HA,1 = ∆HA, and

∑1
n=1 G1 = G are given as

(c+ Fq(T ))τ = −cx + tR0
Dxcxx, (2.17a)

(T + GFq(T ))τ = −X1Tx + tR0
X3Txx + tR0

X2(Tw − T ) . (2.17b)

After using (2.5) and applying the chain rule to q(T ) = a(T )c in the above equations, we obtain
the coupled system of PDEs in non-dimensionalized form as

[1 + Fa(T )] cτ + cFa(T )TTτ = −cx + tR0
Dxcxx, (2.18a)

GFa(T )cτ + (1 + cGFa(T )T )Tτ = −X1Tx + tR0
X3Txx + tR0

X2(Tw − T ) . (2.18b)

The definitions by (2.12a) also transform the initial and boundary conditions (2.7a) to (2.8d),

considering x0 = z0
zmax

= 0, τ0 = t0
tR0

= 0, τpinj =
tpinj
tR0

, and ∆τinj =
∆tinj
tR0

, as

cn(x, τ0) = 0, (2.19a)

T (x, τ0) = TR, (2.19b)

cn(x0, τ) =

{
cn,inj, τpinj ≤ τ ≤ τ

p
inj + ∆τinj

0, τpinj + ∆τinj < τ < τpn,max,
for p = 1, 2, 3, ..., P ∈ N, (2.20a)
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while, for the right edge, the Neumann boundary condition becomes

cnz (xmax, τ) = 0. (2.20b)

Similarly, for the energy balance, they are given as

T (x0, τ) = TR, (2.20c)

Tz (xmax, τ) = 0. (2.20d)

Equations (2.18a) and (2.18b) can also be written in matrix form as 1 + Fa(T ) cFa(T )T

GFa(T ) 1 + cGFa(T )T


︸ ︷︷ ︸

J

 cτ

Tτ


︸ ︷︷ ︸

x

= −

 cx

X1Tx


︸ ︷︷ ︸

y

+

 tR0
Dxcxx

tR0
X3Txx


︸ ︷︷ ︸

z

+

 0

tR0
X2(Tw − T )


︸ ︷︷ ︸

s

(2.21)
or

J x = −y + z + s. (2.22a)

The solution x could be calculated by inverting the matrix J to the right side to get

x = J−1 (−y + z + s) . (2.22b)

Now we calculate the eigenvalues of the Jacobian matrix J. Let λ1 and λ2 be the two eigenvalues
of J and I be the 2× 2 identity matrix, such that |J− λ1,2I|= 0, the well-known characteristic
equation, i.e.

λ2
1,2 −

(
Fa(T ) + cGFa(T )T + 2

)
λ1,2 +

(
Fa(T ) + cGFa(T )T + 1

)
= 0. (2.23)

By employing the factorization method to solve the quadratic equations, the above equation
implies[

λ1,2 −
(
Fa(T ) + cGFa(T )T + 1

)]
λ1,2 − 1

[
λ1,2 −

(
Fa(T ) + cGFa(T )T + 1

)]
= 0

or [
λ1,2 −

(
Fa(T )− cGFa(T )T + 1

)]
(λ1,2 − 1) = 0. (2.24)

With this we get the two eigenvalues of the Jacobian matrix J as

λ1 = 1, λ2 = Fa(T ) + cGFa(T )T + 1, (2.25a)

which, in view of (2.4) and (2.15b) look like

λ1 = 1, (2.25b)

λ2 = 1 +

[
1 +

c∆H2

RT 2(ρLCLp + FρSCSp )

]
Fa(TR) exp

[−∆HA

R
(

1

T
− 1

TR
)
]
. (2.25c)

Now, from (2.25b) and (2.25c), it is clear that both eigenvalues are positive as well as |J|= λ1λ2 =
λ2. Hence, J is non-singular. Further, the Jacobian matrix J satisfies the following definition:
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Definition 2.1 (M-Matrix). A matrix A ∈ RI×I for I ∈ N, is called an M-Matrix, see [34], if

aαα > 0 for all α ∈ I, (2.26a)

aαβ ≤ 0 for all α 6= β, (2.26b)

A is regular and A−1 ≥ 0. (2.26c)

Hence, the Jacobian matrix J is non-symmetric but positive definite and the evolution problem
for our system of PDEs is well-posed.

This model is solved numerically in Section 4.3.

2.3 EDM Coupled with Simplified Energy Equation

In this valuable simplified model variant, we consider the unchanged mass balance (2.18a) for n
components as

[1 + Fan(T )] cnτ + cnFan(T )TTτ = −cnx + tR0
Dxcnxx , n = 1, 2, 3, ..., Nc (2.27)

and replace the detailed energy equation with its simplified version. This means that in (2.18b),
we neglect the terms containing X3, and the accumulation term G. The energy balance then
reduces to the following form

Tτ = −X1Tx + tR0
X2 (Tw − T ) . (2.28)

The decision to neglect X3 and Gn is made to simplify the analytical solvability of the equation.
By (2.15e), X3 incorporates the axial dispersion λz in the heat transfer, and by neglecting this
term, we assume that the heat transfer within the system is primarily governed by conduction
or convection and that the effects of axial mixing or spreading of heat are not important to the
specific conditions or system under study.

Similarly, by disregarding the term G, it is assumed that the components’ specific enthalpy
changes during adsorption and desorption, represented by ∆HA, have a negligible impact compared
to the combined heat capacities of the liquid and solid phases. This simplification allows for a
more manageable analysis without compromising the overall understanding of the system.

While these simplifications may introduce certain limitations to the usefulness of the analytical
solution, they offer the advantage of making the equation more amenable to mathematical
treatment. By focusing on the key terms and disregarding those with minimal impact, the derived
analytical solution provides valuable insights into the system’s behavior, can serve as a foundation
for numerically solving the mass balance equation and facilitates a comprehensive exploration of
the system’s properties.

The initial and boundary conditions (2.19a) to (2.20c) from the previous model should be
considered to solve this model.

We will now calculate the analytical solution of (2.28) and then numerically estimate the
concentration solution with (2.27). Thus, we prepare (2.28) for the Laplace transform by
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considering a = −X1, b = −tR0
X2, and c = tR0

X2Tw as intermediate parameters. The Eq. (2.28)
can be written as

Tτ = aTx + bT + c . (2.29)

The Laplace transformation L maps T −→ Y and τ −→ s. Let us apply L to the above PDE to
get

L{Tτ} = L{aTx}+ L{bT}+ L{c}. (2.30a)

According to Laplace transform formula, we have

L{T (τ)} = Y (s) =

∫ ∞
0

e−stT (τ) dτ, (2.30b)

which results from PDE (2.29) in an ODE of the following form

sY − TR = a
dY

dx
+ bY +

c

s
(2.30c)

or

dY

dx
=
s− b
a

Y − TR

a
− c

sa
= AY +B, (2.30d)

such that

A =
s− b
a

, (2.31a)

B = −
(
TR

a
+

c

sa

)
(2.31b)

and

B

A
= − TR

s− b
− c

s(s− b)
. (2.31c)

Now, from Eq. (2.30d), we have ∫ Y (x,s)

TR
s

dY

AY +B
=

∫ 1

0
dx (2.32a)

or

1

A
ln
AY (x, s) +B

ATR
s +B

= x, (2.32b)

which after a little simplification gives

Y (x, s) = −B
A

+

(
TR

s
+
B

A

)
eAx. (2.32c)
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After putting Eqs. (2.31a) and (2.31c) in above equation, we get

Y (x, s) =
TR

s− b
+

c

s(s− b)
+
TR

s
e(s−b)x

a − TR

s− b
e(s−b)x

a − c

s(s− b)
e(s−b)x

a .

After a little simplification and setting d = bTR + c, f = −b
a x and g = x

a , yields

Y (x, s) =
TR

s− b
+

c

s(s− b)
− d

s(s− b)
ef+gs

=
TR

s− b
+

c

s(s− b)
− def

b

b

s(s− b)
egs

=
TR

s− b
+

c

s(s− b)
− def

b

(
−1

s
+

1

s− b

)
egs. (2.32d)

Let us put back values of d, f and g and def

b =
(
TR + c

b

)
e−

b
a
x and then do a little simplification

to get

Y (x, s) =
TR

s− b
+

c

s(s− b)
+
[(
TR +

c

b

)
e−

b
a
x
] exa s
s
−
[(
TR +

c

b

)
e−

b
a
x
] e

x
a
s

s− b
(2.32e)

or

Y (x, s) = Z1 + Z2 + Z3 + Z4, (2.32f)

where

Z1 : TR
s−b , Z2 : c

s(s−b) ,

Z3 :
[(
TR + c

b

)
e−

b
a
x
]
e
x
a s

s , Z4 : −
[(
TR + c

b

)
e−

b
a
x
]
e
x
a s

s−b .

(2.32g)

Now we use inverse Laplace transformation, which will transform back Y −→ T and s −→ τ .
For that we use [76], according to which

1
s−α ⇔ eαt, 1

s(s−α) ⇔
eαt−1
α ,

e−αs

s ⇔
{

0 for 0 < t < α
1 for t > α

, e−αs

s+β ⇔
{

0 for t < α

e−β(t−α)for t > α.

(2.33)

Then, using Eq. (2.33) and taking
(
TR + c

b

)
e−

b
a
x = def

b , the back Laplace transformations of
terms in Eq. (2.32g) look like

Z1 : TR
s−b ⇔ TRe

bτ , Z2 : c
s(s−b) ⇔

c
b

(
ebτ − 1

)
,

Z3 : de
f

b
e
x
a s

s ⇔
{

0 for 0 < τ < −x
a , a < 0

def

b for τ > −x
a

, Z4 : de
f

b
e
x
a s

(s−b) ⇔
{

0 for τ < −x
a

def

b e
b(τ+x

a
) for τ > −x

a .

(2.34)
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In view of Eq. (2.32f), for τ < −x
a = x

X1
or x > X1τ , we get

T (x, τ) = Z1 + Z2 (2.35a)

or, after using solutions (2.34),

T (x, τ) = TRe
bτ +

c

b

(
ebτ − 1

)
= −c

b
+
(
TR +

c

b

)
ebτ . (2.35b)

Similarly, for τ > x
X1

or x < X1τ , we get

T (x, τ) = Z1 + Z2 + Z3 + Z4 (2.36a)

and again using solutions (2.34), we get

T (x, τ) = TRe
bτ +

c

b

(
ebτ − 1

)
+
def

b
− def

b
eb(τ+x

a
). (2.36b)

Hence, after putting c
b = −Tw, b = −tR0

X2, def

b = − (Tw − TR) e
−tR0

X2
X1
x and a = −X1 in Eq.

(2.35b) as well as in Eq. (2.36b), we get the final solution of T as

T (τ) = Tw − (Tw − TR) e−tR0
X2τ for τ <

x

X1
(2.37a)

and

T (x) = Tw − (Tw − TR) e
−tR0

X2
X1
x

for x < X1τ. (2.37b)

We will use this analytical solution in Section 4.2 for the numerical analysis of the mass balance
equation given by (2.27). The aim is to establish a comprehensive understanding of the system’s
behavior under a slower temperature change and its impact on the retention times, distribution
of concentration as well as cycle times in comparison to the previous model. Integrating the
analytical solution into the numerical analysis allows for a more efficient and accurate evaluation
of the mass balance equation.

2.4 Overview of Models Analyzed

In this section, two models are proposed, both of which include an ideal temperature profile
known as the temperature step function. Using the step function instead of the energy equation
simplifies the analysis by neglecting convective heat transfer, spatial mixing effects, and the heat
exchange rate with the source connected to the column. This approach provides an initial, but
informative, assessment of the concentration dynamics affected by temperature. The two coupled
models with this function are the EDM and EM, that are described below.

2.4.1 EDM Coupled with Ideal Temperature Step Gradients

In this modeling approach, the EDM (2.27) is analyzed in conjunction with an ideal temperature
profile known as the temperature step gradient. The term “ideal temperature profile” is used
because it assumes that temperature changes at specific switching times happen abruptly when a
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certain pulse crosses the point xm of the column either entirely or partially. Consequently, Tτ = 0
for all τ falling within the closed interval between two consecutive switching times. After this
simplification, equation (2.27) can be expressed in the following form.

[1 + Fan(T )] cnτ = −cnx + tR0
Dxcnxx , n = 1, 2, 3, ..., Nc. (2.38)

The switching times for cooling or heating are denoted in dimensional form by tk, from which
in dimensionless form, according to (2.12a), τk = tk

tR0
results, where k ∈ N0. To each semi-open

interval [τk, τk+1[ and τk < τPn,max, P ∈ N, we associate a constant but adjustable temperature
for segment II. We take a sequence Tk ∈ {TR, TL, TH}, where TR, TL and TH are representing
reference, low and high temperatures, respectively. With this, we define a specific version of the
temperature step function for our theoretical experiment, as

T (x, τ) =


TR for 0 ≤ x ≤ xm, τ ∈ [0, τPn,max],

Tk for xm < x ≤ xmax, τ ∈ [τk,min{τk+1, τ
P
n,max}],

k ∈ N0, τk < τPn,max.
(2.39)

Remember that, k only indicates the number of times the temperature of segment II is changed.
T0 means the initial temperature of segment II, T1 means a first change, whereas, T2 means, a
second change of the temperature, and so on.

It should be kept in mind that for every specific experiment, we will have to consider specific
adjusted finite sequences of Tk for each component of a mixture considering the specific migration
and separation properties. Also the sequence of the switching times τk will depend on the specific
migration speeds of the adsorption and desorption fronts.

Once the pulse reaches the middle zm of the column, it may encounter either a lower or
higher temperature immediately or after a slight delay. These temperature changes are referred
to as Type I and Type II and are explained in detail in Section 3.3.1. Due to the abrupt
change in temperature following the interface, an adjustment is required to account for this
discontinuity in the EDM. The specific adjustment is guided by the shock condition, which ensures
the consistency of the concentration profiles across the interface. The shock condition provides
the necessary information to estimate the amount of concentration in segment II, denoted as cII

n .
This adjustment is applied to the concentration in segment I, denoted as cI

n. The jump condition
for discontinuous solutions with a discontinuity s = dx

dτ is

s
[(

1 + Fan(T I)
)
cn

I −
(

1 + Fan(T II)
)
cn

II
]

+
[
cn

I − cnII
]

= 0. (2.40)

In Type I, we have s = 0. Then the above equation renders

cn
I = cn

II. (2.41)

In Type II, we have a stationary jump in temperature with s =∞. Dividing Eq. (2.40) by s and
taking s→∞ yields

(1 + Fan(T I))cn
I − (1 + Fan(T II))cn

II = 0

or

cn
II =

1 + Fan(T I)

1 + Fan(T II)
cn

I. (2.42)

By incorporating the shock condition, we ensure a smooth transition and a continuous represen-
tation of the concentration dynamics, accounting for the temperature-induced jump in the EDM.
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This adjustment allows for a more accurate analysis and understanding of the solution’s behavior
across the interface.

Under constant temperature conditions, the conservation of mass is upheld as long as there is
conservation of concentration. This principle extends to the conservation of adsorbed mass, as
described by Equation 2.5. However, when there is a jump in temperature, mass conservation
can only be maintained if the concentration is adjusted in accordance with Equation 2.42 at the
internal boundary where there is a flux due to temperature change.

Due to the aforementioned observation, it becomes necessary to establish separate initial and
boundary conditions for each segment as outlined below.

cI
n(x = x0 to xm, τ0) = 0, (2.43a)

cII
n (x = xm to xmax, τ0) = 0 (2.43b)

and for p = 1, 2, 3, ..., P, P ∈ N, we have

cI
n(x0, τ) =

{
cn,inj, τpinj ≤ τ ≤ τ

p
inj + ∆τinj

0, τpinj + ∆τinj < τ < τpn,m,
(2.43c)

cII
n (xm, τ) =

{
1+Fan(T I)
1+Fan(T II)

cI
n(xm, τ

p
n,m), τpn,m ≤ τ ≤ τpn,m + ∆τinj

0, τpn,m + ∆τinj < τ < τpn,max,
(2.43d)

where p = 1, 2, 3, ..., P ∈ N. At the right boundary due to the second order derivative, we have

cII
nx(xmax, τ) = 0. (2.43e)

This model is solved numerically using FVM in Section 4.1.

2.4.2 Equilibrium Model (EM) Coupled with Ideal Temperature Step Gra-
dients

The last, easily solvable and exploitable model is the so-called equilibrium model. This model
disregards molecular diffusion, axial dispersion, and mass transfer resistances in favor of high
mass transfer rates. All these facts are summarized in the term Dxcxx, and neglecting this term
in (2.38), we obtain the equilibrium model for concentration in the following form

[1 + Fan(T )] cnτ = −cnx , n = 1, 2, · · · , Nc, (2.44)

coupled with the same temperature step gradients profile (2.39)

T (x, τ) =


TR for 0 ≤ x ≤ xm, τ ∈ [0, τPn,max],

Tk for xm < x ≤ xmax, τ ∈ [τk,min{τk+1, τ
P
n,max}],

k ∈ N0, P ∈ N, τk < τPn,max.
(2.45)

This model concentrates on obtaining equilibrium conditions, making it possible to analyze
concentration behavior more easily. When fast equilibrium attainment is assumed, it offers useful
insights into the overall system performance and concentration profiles. When investigating
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systems where quick equilibration is anticipated, the equilibrium model is especially helpful in
understanding and improving such processes. [37,40]

Since we plane to solve this model analytically using the method of characteristics, the model
is transformed back to its dimensional form. This conversion is facilitated by the equations (2.12a)
to (2.12c). Therefore, the equations (2.44) and (2.45) are rewritten in dimensional form as

[1 + Fan(T )] cnt = −ucnz , n = 1, 2, · · · , Nc (2.46)

and

T (x, t) =


TR for 0 ≤ z ≤ zm, t ∈ [0, tPn,max],

Tk for zm < z ≤ zmax, t ∈ [tk,min{tk+1, t
P
n,max}],

k ∈ N0, P ∈ N, tk < tPn,max.
(2.47)

Like EDM, in the EM also, separate initial and boundary conditions are considered for segment I
and segment II, given by (2.43a) to (2.43e). These conditions are given in dimensionlized form as

cI
n(z = z0 to zm, t0) = 0, (2.48a)

cII
n (z = zm to zmax, t0) = 0, (2.48b)

cI
n(z0, t) =

{
cn,inj, tpinj ≤ t ≤ t

p
inj + ∆tinj

0, tpinj + ∆tinj < t < tpn,m,
(2.48c)

cII
n (zm, t) =

{
1+Fan(T I)
1+Fan(T II)

cI
n(zm, t

p
n,m), tpn,m ≤ t ≤ tpn,m + ∆tinj

0, tpn,m + ∆tinj < t < tpn,max,
(2.48d)

with p = 1, 2, 3, ..., P ∈ N. This model is solved analytically in Chapter 3, while its numerical
solution is obtained by solving the EDM given in Section 4.1 for Dx=0.

2.5 Performance of the Chromatographic Process

In chromatography, the column production rate (productivity) is defined as the total mass of
each component produced per cycle time. To increase the production rate, the shortest possible
cycle time should be determined. In this work, we tried to obtain a higher production rate of the
column under gradient conditions, Pn,grad, compared to the production rate under isothermal
conditions, Pn,iso. Before introducing the formulas for the production rate in the above cases, we
first define the cycle time.

In HPLC, the cycle time usually refers to the time required for a complete analytical run. It
includes injection of the sample into the column, separation of the solutes, and elution of these
solutes from the column to the detector. This time is important in determining the productivity
of an HPLC system. Let us denote this time variable by ∆tpc for the case of the planned mixture
of n components injected P -times mentioned earlier. We estimate ∆tpc using the retention time
tpn,max of the slower component cn, and the time at which the adsorption front of the fastest
component c1 of the same injection exits the column, i.e., tp1,max,ad, as follows

∆tpc = tpn,max − t
p
1,max,ad, for p = 1, 2, 3, ..., P, P ∈ N. (2.49)
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Now we introduce formulas for production rates in both the isothermal and gradient cases. Let
∆tc,iso be the cycle time in the earlier case and ∆tpc,grad be the cycle time in the later case, which
one wants to achieve shorter than ∆tc,iso. If mn,total is the mass of each component moving from
the column’s inlet to the column’s outlet, then the production rates in the two cases mentioned
above can be written mathematically as

Pn,grad =
mn,total

∆tpc,grad

(2.50)

and
Pn,iso =

mn,total

∆tpc,iso
, for p = 1, 2, 3, ..., P, P ∈ N. (2.51)

From both (2.50) and (2.51), it is obvious that the process with shorter cycle time will have
higher production rate. In the results, we will divide the values obtained from the above formulas
by the volume of the column and convert the time to hours to obtain the productivity in gh−1L−1.
See Tables 3.6 and 3.10 for instance.

The total mass collected at the outlet of the column can reach the injected amount if there
is no overlap between the eluting bands, i.e. mn,total = mn,inj. Only this attractive scenario is
considered in our study.

Since we consider in this dissertation, the same column volume in both isothermal and
gradient operation, we do not touch here on the scale-dependent aspect typically used to evaluate
a productivity as the ratio of production rate to column size.

By multiplying the linear velocity, cross-sectional area, porosity factor and injection time, the
product represents the volume of the injected sample. This volume is then multiplied by the
concentration to obtain the mass of the injected sample in grams. Ensuring that the units are
consistent throughout the calculation is crucial for accurate determination of the mass. Hence,
the mass injected at the column’s inlet z0, denoting the cross-sectional area of the column by A,
is given as

mn,inj = uAε∆tinjcn,inj, n = 1, 2, 3, ..., Nc. (2.52)

The mass inside the segments over the distance z at a specific time t∗, denoted total by mn,total,
is obtained by integrating the sum of concentrations in both the phases over the range from 0 to
max zmax, i.e.

mn,total = A

∫ zmax

0
εcn(z, t∗) + (1− ε)an(T )cn(z, t∗)∂z (2.53)

and to obtain it over t for a selected location z∗ in the column, we multiply it by the specific
velocity of the component at corresponding temperature u

1+Fan(T ) , which is given by

mn,total =
u

1 + Fan(T )
A

∫ tpn,max

0
εcn(z∗, t) + (1− ε)an(T )cn(z∗, t)∂t. (2.54)

At zmax there in no mass inside solid phase ans hence the collected mass, mn,col, is given as

mn,col = uεA

∫ tpn,max

0
cn(zmax, t)∂t, n = 1, 2, 3, ..., Nc. (2.55)

Here, the various parameters are expressed in their respective units. The interstitial velocity u is
measured in centimeters per minute [cm/min], representing the rate at which the solute travels
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through the system. The cross-sectional area A is given in square centimeters [cm2], indicating
the size of the column’s cross-section. The porosity factor ε is a dimensionless quantity that
describes the void fraction of the stationary phase. The concentration cn,inj is measured in grams
per liter [g/L], signifying the solute concentration in the injected sample. Finally, the injection
time ∆tinj is recorded in minutes [min].

Summary of Chapter 2: In this chapter, a gradient concept for increasing the productivity
of liquid chromatographic columns is first proposed. Then four mathematical models have been
proposed to theoretically implement this concept. We explored mass balances in the form of EM
and EDM coupled with energy balance. This energy balance was introduced in detailed as well
as in simplified form. The mentioned mass balances were also presented as coupled with ideal
temperature step gradients. These simple models form the foundation for the subsequent analysis
and exploration within the study.

The models will be initially tested for single-component injections, enabling the observation
of individual concentration and retention behaviors. Subsequently, these models will be subjected
to ternary-component mixture injections. Of key relevance will be to evaluate the potential of
gradients to reduce the cycle time given by (2.49). This strategic adjustment aims to increase
process productivity given by (2.51).



30 CHAPTER 2. GRADIENT CONCEPT AND MATHEMATICAL MODELS



Chapter 3

Equilibrium Model and Method of
Characteristics

In this chapter, we will focus on optimizing liquid chromatographic columns using the equilibrium
model, also known as the ideal model, coupled with ideal temperature profiles described by step
functions. This model is introduced in Section 2.4.2. We will explore the analytical solution of
this model achieved through the method of characteristics. Our study will begin with single-
component injections, where we will analyze concentration profiles in time and space under different
temperature gradients. Building upon this foundation, we will address the challenges posed by
ternary component mixtures, specifically the “Late Eluter” and “Early Eluter” cases introduced
in Chapter 2. By devising an optimal switching strategy, we aim to improve productivity by
optimizing the cycle time under isocratic conditions ∆tpc,isoto obtain the shorter cycle times
∆tpc,grad using gradient operations.

It is noteworthy that a substantial portion of the content in this chapter has been published
in [37].

3.1 EM Coupled with Ideal Temperature Step Gradients

To derive the analytical solution using the method of characteristics, we utilize the dimensional
versions of the EM and ideal temperature step function. This can be restated from equations
(2.46) and (2.47) as

[1 + Fan(T )] cnt = −ucnz , n = 1, 2, · · · , Nc (3.1)

and

T (x, t) =


TR for 0 ≤ z ≤ zm, t ∈ [0, tPn,max],

Tk for zm < z ≤ zmax, t ∈ [tk,min{tk+1, t
P
n,max}],

k ≥ 0, P ∈ N, tk < tPn,max.
(3.2)

According to (3.2), the temperature of segment I is constant, but for segment II it jumps from
one constant value to another. Therefore, we use (3.1) in each spatial segment or time interval as

cnt = − u

1 + Fan(T )
cnz . (3.3)

31
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3.2 Analytical Solution

In this section we derive analytical expressions to quantify the transient concentration profiles,
generally denoted by cn(z, t), under the influence of the described segmented temperature gradients.
For this we first calculate the trajectories, zn(t). Then, the method of characteristic is applied to
reduce PDE (3.3) to an ODE. As a result, analytical expressions for solution trajectories (paths)
are obtained. From the mentioned equation, the characteristic speed of the fronts corresponding
to component n, is given as

dzn
dt

=
u

1 + Fan(T )
for t > t0 with zn(t0) = 0. (3.4)

The solution of (3.4) provides the trajectories of the solutions. Since the temperature T (t) is
piece-wise constant, one can integrate this ODE easily. Furthermore, let tpn,m be the time when
the adsorption front of component n of an injection p reaches the middle of the column zm, where
p = 1, 2, 3, ..., P ∈ N. We already know that tpn,max is the time when the desorption front of the
same component reaches zmax. For t ∈ [0, tpn,m], after introducing p over zn, equation (3.4) gives

zpn(t) =

∫ t

0

u

1 + Fan(TR)
dt =

ut

1 + Fan(TR)
, p = 1, 2, 3, ..., P ∈ N. (3.5)

The above equation gives different space-time positions for each component. Using this equation,
we can easily find the time tpn,m as

tpn,m =
1 + Fan(TR)

u
zm. (3.6)

For tpn,max > t > tpn,m, we have zpn(t) ∈ [zm, zmax]. Now, the characteristics speed is affected
by the temperature change. This effect depends on the particular switching times tk, k ≥ 0,
mentioned in Chapter 2. Suppose that we have th, ..., th+l ∈ ]tpn,m, t] for some h, l ∈ N. This
means that th, ..., th+l are the exploitable switching times in the interval ]tpn,m, t], which may be
different for different components i. Then, Equation (3.5) can be integrated as

zpn(t) =

∫ tpn,m

0

u

1 + Fan(TR)
dt+

∫ th

tpn,m

u

1 + Fan(Th−1)
dt+

p+l−1∑
k=h

∫ tk+1

tk

u

1 + Fan(Tk)
dt+

∫ t

th+l

u

1 + Fan(Th+l)
dt.

(3.7)

The term
∫ th
tn,m

u
1+Fan(Th−1)dt, by setting T0 = TR, in the above equation tells that the

temperature of the pulse stays still TR until the whole pulse enters segment II. This is possible
when both the segments are initially kept at the same temperature. Later, in the case studies, we
will discuss this scenario as a special case, c.f. Section 3.3.1, (Type II). We neglect this term for
the case where both the segments are initially kept at different temperatures, c.f. Section 3.3.1,
(Type I).

We denote the time dependent position of the adsorption (ad) front of the pulse by zpn,ad(t),
while the position of the desorption (de) front by zpn,de(t) for component i. The adsorption front
enters the column at t0 while the desorption front enters at t = t0 +∆tinj. With these initial times,
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the adsorption and desorption fronts can be explicitly determined. After a simple calculation, the
characteristic curve or the space-time trajectory for zn,ad(t) is obtained from Equation (3.7) as

zpn,ad(t) =



u
1+Fan(TR) t, for t ∈ [t0, t

p
n,m[,

zpn,ad(tn,m) + u
1+Fan(Th−1)(t− tn,m), for t ∈ [tpn,m, th[,

zpn,ad(th) +
∑h+`−1

k=h
u

1+Fan(Tk)(tk+1 − tk)+
u

1+Fan(Th+`)
(t− th+`), for t ∈ [th+`, th+`+1[,

` ∈ {0, 1, 2, ..., l − 1},
zpn,ad(th+l) + u

1+Fan(Th+l)
(t− th+l), for t ∈ [th+l, t

p
n,max].

(3.8a)

Furthermore, we set zpn,de(t) = 0 for t ∈ [0,∆tinj] and obtain the trajectories for the desorption
fronts as

zpn,de(t) = zpn,ad(t−∆tinj) for t > ∆tinj. (3.8b)

Consequently, the time tpn,ad(z) required for the adsorption front of component n to reach any
point in z can be derived as

tpn,ad(z) =



1+Fan(TR)
u z, for z ∈ [0, zm],

1+Fan(Th−1)
u z − 1+Fan(Th−1)

u zpn,ad (tn,m) + tn,m, for z ∈ ]zm, zmax],
1+Fan(Th+`)

u z − 1+Fan(Th+`)
u zpn,ad (th)−∑h+`−1

k=h
1+Fan(Th+`)
1+Fan(Tk) (tk+1 − tk) + th+`, for z ∈ ]zm, zmax],

` ∈ {0, 1, 2, ..., l − 1},
1+Fan(Th+l)

u z − 1+Fan(Th+l)
u zpn,ad (th+l) + th+l, for z ∈ ]zm, zmax]

(3.8c)

and for the desorption front, where we do not use subscript “de”, you get it simply as

tpn(z) = tpn,ad(z) + ∆tinj, (3.8d)

such that

tpn,ad(zm) =: tpn,m, tpn(zm) =: tpn,m + ∆tinj (3.8e)

and

tpn,ad(zmax) =: tpn,max,ad, tpn(zmax) =: tpn,max, p = 1, 2, 3, ..., P ∈ N. (3.8f)

The above specified trajectories allow calculating the solution for the components’ concentration
profiles as function of z and t. The solution consists of three parts divided in the time domain by
a first state, α, controlled by the reference temperature, a third (final) state, γ, controlled by a
different temperature in segment II and an intermediate state, β, which is influenced by both
the temperatures via changing migration velocities, c.f. Figure 3.2. The later state gradually
transforms the concentration in state α, cαi = cn,inj, to the concentration in state γ, cγi , via the
concentration in itself, cβi . The concentration in each state depends on the difference between the
trajectories of the adsorption and desorption fronts (space-bandwidths) in the same state because
it varies from state to state. Let Zα be the space-bandwidth of the pulse in state α, and Zγ be
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the space-bandwidth in state γ. These space-bandwidths are certainly constant because both
adsorption and desorption fronts are migrating with same speeds in the corresponding states.
But, the space-bandwidth in state β is not constant because, in this state, the desorption front
of the pulse is in segment I and the adsorption front is in segment II. So both are migrating
with different speeds. As much as, the pulse enters segment II, the space-bandwidth in state
β tends to that in state γ. Let us denote this variable space-bandwidth by Zβ, c.f. Figure 3.3.
Figures 3.2 and 3.3 will be explained later to illustrate state β graphically. We denote the part
of Zβ in segment I, by Zβ,I and its part in segment II, by Zβ,II so that Zβ = Zβ,I + Zβ,II. The
concentration obtained from the characteristic curves is the total concentration present in a given
volume element and at a given time. However, in order to guarantee the mass conservation via
the formulas (2.53) to (2.55), a correct phase-wise distribution of the concentration should be
obtained. Since the temperature changes after zm abruptly, the concentration after this point
must be adjusted by the ratio suggested by the shock condition in (2.41) and (2.42). Hence, by
the conservation of mass, the concentration solutions in the states β and γ are given as

cβn(z, t) =


0 for z < zpn,de(t),
1+Fan(TR)
1+Fan(Tk)

Zα

Zβ
cαn for zpn,de(t) ≤ z ≤ z

p
n,ad(t),

0 for z > zpn,ad(t).

(3.9)

and

cγn(z, t) =


0 for z < zpn,de(t),
1+Fan(TR)
1+Fan(Tk)

Zα

Zγ c
α
n for zpn,de(t) ≤ z ≤ z

p
n,ad(t),

0 for z > zpn,ad(t).

(3.10)

In the case of the temperature change of Type I, the factors 1+Fan(TR)
1+Fan(Tk)

Zα

Zβ
and 1+Fan(TR)

1+Fan(Tk)
Zα

Zγ

both give the value 1. This is due to the fact that each factor involves the multiplication of two
ratios that ultimately cancel each other out. As a result, the mobile phase concentrations cαn, c

β
n,

and cγn remain unchanged for Type I. This fact is already mentioned in (2.41).
In contrast, in temperature change of Type II, the pulses in both the segments have identical

spatial bandwidths whose ratio is equal to 1, so that only the ratio of the retention factors
1+Fan(TR)
1+Fan(Tk) affects the mobile phase concentration. This is due to the temporal temperature jump
, which creates a temperature discontinuity and change the behavior of the ratios. As a result,
the mobile phase concentration in the zone β and the zone γ differs from that in the zone α, i.e.
cαn 6= cβn 6= cγn. This is already mentioned in (2.42).

3.3 Illustration and Discussion of Results

After deriving analytical solutions, we evaluate case studies for four different scenarios discussed
in Figures 2.1 and 2.2. In the considered case studies, the number of components in the mixture
is either 1 (single-component injection) or 3 (ternary-mixture injection).

3.3.1 Analysis of a Single-Component Injection

As explained in Figure 2.1a,b, we first test our analytical solutions for the case where only a
single-component (n = 1) is injected one time (P = 1) as a rectangular pulse into the column. The
superscript P = 1 is not used in the discussion of single-component injections. As discussed earlier,
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upon reaching the midpoint zm of the column, the pulse may immediately or later encounter a
temperature change, categorized as Type I and Type II, respectively. In this context, we assign
the value ` = 0 for Type I and ` = 1 for Type II, while utilizing (3.8a). This means that the value
of ` from 1 here represents the number of switchings of the Type II. They are explained below.
The relevance will be applied for mixture injection in section 3.3.2. The parameters used in the
simulation for single-component tests are listed in Tables 3.1. They represent typical values used
in liquid chromatographic processes.

Table 3.1: Typical parameters used in Section 3.3.1 (single-component injections).

Symbol Quantity Value Used in Simulation
zmax Length of the column 0.1 m
A Cross-sectional area of the column 0.0000196 m2 (diameter d = 0.5

cm)
ε Porosity of the column 0.4
u Interstitial velocity 0.00167 m/s
∆tinj Injection period 20 s
c1,inj Feed concentrations 1 g/L
m1,inj Mass injected of c1 2.62 ×10−4 g
a1(TR = 298 K) Henry constant at reference temperature,

TR

0.75

a1(TL = 270 K) Henry constant at lower temperature, TL 1.73
a1(TH = 360 K) Henry constant at higher temperature, TH 0.18
∆HA,1 Enthalpy of adsorption -20 kJ/g

Type I: Both segments are initially at different temperatures

In this case, segment I of the column has the reference temperature TR and segment II
is maintained either at uniform low or high temperature, that is, T I(z0 to zm, t) = TR and
T II(zm to zmax, t) = TL or TH. As the adsorption front starts crossing the middle of the column
zm, it faces two different temperatures before completely entering segment II, that is, speeds of
both the fronts of the pulse are not the same. Figures 3.2 and 3.3 demonstrate the experiment for
low temperature TL and Figure 3.4 depicts the experiment for high temperature TH, in segment
II. In this case, (3.8a), after removing the superscript p because only one injection is considered,
takes the form

z1,ad(t) =

{
u

1+Fa1(TR) t for t ∈ [0, t1,m],

z1,ad(t1,m) + u
1+Fa1(Tk)(t− t1,m) for t ∈ ]t1,m, t1,max].

(3.11)

Whereas, the corresponding time variable with respect to the space z is obtained as

t1,ad(z) =

{
1+Fa1(TR)

u z, for z ∈ [0, zm],
1+Fa1(Tk)

u z − 1+Fan(Tk)
1+Fan(TR) t1,m + t1,m, for z ∈ ]zm, zmax].

(3.12)

Similarly, we derive the above quantities for the desorption front using the injection period ∆tinj

as by (3.8b) and (3.8d). The concentration solutions are calculated using (3.9) and (3.10).
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All the solutions are plotted in Figures 3.2–3.4. The concentration profiles are plotted along
the z-coordinate of the column at specific times and along t-coordinate, they are plotted at
different locations, including the most important positions zm and zmax. We call the development
of the concentration profiles in time as “t-plot” and in space as “z-plot”. The plot of space-time
trajectories is also given in the middle of the Figure 3.2 where all the three states α, β and
γ (discussed in equations (3.9) and (3.10)) are mentioned. To demonstrate the matching of
space-bandwidths and time-bandwidths, z-plot is placed on the left and t-plot is placed below
the plot of space-time trajectories. State β is highlighted and demonstrated separately in Figure
3.3. In Figure 3.2, the z-plot shows that across z, the space-bandwidth changes but across t the
time-bandwidth between both fronts stays the same. The reason for this is that, although the
space-bandwidths between the fronts vary, their speeds also change accordingly. For example,
in the z- plot of Figure 3.2, the bandwidth between the fronts decreases and the adsorbed
concentration profile becomes more concentrated, although the mobile phase concentration per
unit time remains the same. It causes an decrease in the time-bandwidth, but, meanwhile, the
speeds of the fronts are also decreased and this smooths the change in the time-bandwidth. So
the time-bandwidth inside the two segments stays the same. See t-plot in Figure 3.2. Figure 3.4
tells us the similar story recorded for the higher temperature in the segment II. In this case, the
bandwidth does not get narrower but widens, and the profile of the adsorbed phase q1 is diluted,
while the concentration of the mobile phase c1 remains the same as in segment II. Nevertheless,
the mass flow between the phases for both the high and low temperatures is conserved because
the area under the pulse c1 + q1 remains the same in both segments.
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Figure 3.2: Illustration of the solution behavior in α and γ states for cooling of Type I. Switching
is done from reference temperature, TR, to low temperature, TL. Concentrations, associated
with left axes, are plotted along the axial coordinate z at particular times inside the column
and plotted against the time coordinate t at different locations in the column. The grey area
represents segment II that is kept at a low temperature. Every point in the t-plot corresponds to
two points in the z-plot and every point in the z-plot corresponds to two points in the t-plot.
The blue profile in t-plot is showing the reaching times of the adsorption and desorption fronts
to z0. Corresponding to it is a blue profile in z-plot at tI = ∆tinj = 20 s. The black profile in
t-plot is showing the profile when the fronts reach zm. This crossing is plotted in the z-plot at
several positions, that is, black one when the adsorption front reaches zm and orange one when
the desorption front reaches zm. The pink profile in the t-plot is plotted at zmax. Whereas, the
pink profile in the z-plot illustrates the situation when the adsorption front reaches zmax. As β is
the crucial state, we have marked the area covering this sate and shown it in Figure 3.3 to delve
the transition more clearly.
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Figure 3.3: Illustration of the solution behavior in the intermediate β state during Type I cooling.
This figure refers to the β state, highlighted by the blue dashed boundary in Figure 3.2, and
is rotated clockwise along with the corresponding part of the z- plot. The pulse is represented
in two places by the color cyan, by a dashed line when most of the pulse is in segment I, and
by a dotted line when most of the pulse is in segment II. When the space-bandwidth gradually
changes into the β-state, it becomes shorter and shorter and the corresponding concentration
also increases correspondingly, while the mass remains conserved. All spatial bandwidths (Zα,
Zβ,I, Zβ,II, Zγ) can be obtained using the equations (3.8a) and (3.8b).
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a b

c

Figure 3.4: Illustration of the solution behavior for heating of Type I. The solution behavior is
now showed for a high temperature. In (a), the trajectories are drawn for the accelerated pulse.
In segment II the space bandwidths become wider and the concentration is diluted compared
to that in segment I. The time-bandwidth stays the same as in the previous case. (b) The blue
color shows the position of the pulse at tI = ∆tinj = 20 s, in black color when its adsorption
front reaches zm, in orange color when its desorption front reaches zm, and in pink color when
its adsorption front reaches zmax. (c) The blue color profile is showing the arrival times of both
the fronts at z0, black color, when they reach zm and the pink color profile is showing when they
reach zmax.

Type II: Both segments are initially at the same temperature

This special case is discussed to support the understanding of more complex front propagation
of mixtures (c.f. Section 3.3.2). Here, segment II is initially at the reference temperature.
The temperature changes only when the pulse completely enters this segment, that is, when
the desorption front of the pulse also crosses zm. In this case, T I(z = 0 to zm, t) = TR and
T II(z = zm to zmax, 0) = TR, but after the time t1 = t1,m + ∆tinj, T II(z = zm to zmax, 0) = Tk.
Thus, in contrast to the previous case, both fronts are simultaneously confronted with a sudden
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temperature change and migrate at the same speed in the segment II of the column. Figure 3.5
displays the experiment for both the temperatures TL and TH. The trajectories in this type, given
by Equation (3.8a) for ` = 1, take the form

z1,ad(t) =


u

1+Fa1(TR) t for t ∈ [0, t1,m],

z1,ad(t1,m) + u
1+Fa1(TR)(t− t1,m) for t ∈ ]t1,m, t1[,

z1,ad(t1) + u
1+Fa1(Tk)(t− t1) for t ∈ [t1, t1,max],

(3.13)

while the concentration solutions are calculated in the same way.
Figures 3.5a,b show that across zm, unlike the previous case, the space-bandwidths of the

profile do not change but the time-bandwidths do, that is, duration between the fronts changes in
the time domain. This is due to the fact that both fronts are experiencing the same temperature
at the same time and, thus, their speeds change at the same time. This does not allow any change
in the space-bandwidths but this allows a change in the time-bandwidth. The graphical results
are displayed in Figures 3.5c–f. The solutions behave completely opposite to those in tpye I. The
widths in the z-plot remain constant, but they now vary in the t-plot. The concentration c1 is
diluted and q1 becomes more concentrated for temperature TL, while the two behave in opposite
ways for temperature TH. In this case as well, the total concentration profile c1 + q1 remains the
same in both segments, thus demonstrating the conservation of mass.
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a b

c d

e f
Figure 3.5: Illustration of the solution behavior for both cooling and heating of Type II. (a) The
grey color is representing segment II with low temperature. The temperature is switched from
reference to low at time t1 when the desorption front of the pulse also enters segment II. The
space-bandwidth is marked by black color and stays unchanged. The time-bandwidth of the
pulse is marked by orange color which becomes longer. (b) Here, the grey color is representing
segment II with high temperature. Unlike case (a), here the time-bandwidth decreases. (c, d) are
z-plots for cooling and heating respectively. Whereas, (e, f) are t-plots for cooling and heating
respectively.
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3.3.2 Analysis of Consecutive Injections of Ternary Mixture

After the analysis of single-component injections, we extend our analysis to a mixture of three
components, i.e. Nc = 3, which is injected p−times in succession, where p = 1, 2, 3, ..., P, P ∈ N.
We know that the distances between the components within the mixture depend strongly on
the corresponding Henry constants an(T ) of the component n. We define the separation factor
between two consecutive Henry constant by αi,j = ai

aj
, i < j and i, j = 1, 2, 3. Based on the typical

scenarios in HPLC processes, we choose two groups of Henry constants such that in Group I the
migration at the beginning of elution takes a form where two of the three concentrations c1 and
c2 tend to elute faster. The third c3 elutes slower, i.e. α1,2 > α2,3. In contrast, in the Group II
only c1 tends to elute faster and the remaining c2 and c3 tend to elute slower, i.e. α1,2 < α2,3.
These scenarios are referred to as the “Late Eluter” and “Early Eluter” cases, respectively, as
discussed in Figures 2.2b and 2.2c. The elution pattern in these scenarios could also proceed
under isocratic conditions, but would be less productive. In keeping with the objectives of this
dissertation, we intend to use the forced periodic temperature modulation of the segment II to
achieve improvements in the column’s performance as shown in Figure 2.2d. For this purpose,
we try to speed up the slower eluting components and slow down the faster eluting components
enough to shorten the distance between them and hence reduce the cycle time. Using (3.8e) and
(3.8f) for a pth injection, let tpn,m and tpn,max,ad be the times at which the adsorption fronts of cn
reach the middle of the column at zm and the end of the column at zmax, respectively. Similarly,
we already know that tpn,max are the times when their desorption fronts reach zmax. Since we only
need information about the adsorption front at zm, we omit the suffix “ad” for the associated
arrival time, tpn,m. The injection times tpinj for each pth injection are much more crucial, since
injecting the successive mixtures at different times would result in different temperature regimes,
which directly affect the cycle time ∆tpc and thus the productivity of the column. When two
pulses or concentrations with different gradient requirements elute simultaneously in the segment
II, we must wait for one pulse to leave the segment and then apply the required temperature to
the subsequent pulse. Based on a given scenario, we create specific sets of switching times for the
periodic modulation of temperature. The first experiment is called a Conservative Design Concept
with Safety Margins because we allow the repetition of some initial temperature regimes at each
successive injection time, which leads to an unnecessary time gap, called the safety margin, ∆tpsaf ,
between them. Due to this limitation, the conservative design concept is not useful compared to
the isocratic conditions. Nevertheless, it helps us in finding room for improvement by changing
the strategy of switching times for the second injection. We observe the elution of the first
injection more closely and find better temperature regimes for the second and later injections,
leading to a new Optimal Design Concept without Safety Margins with a shorter cycle time. This
clearly proves to be more a productive scheme as this leads to ∆tpsaf ≈ 0. In the following we
explain these two concepts in detail.

We now shift our attention to optimizing the productivity of mixtures comprising both Group
I and Group II components. By developing a targeted strategy, we aim to enhance separation
efficiency and overall performance. For this case, the parameters used are listed in Table 3.6. Some
important results for both Group I and Group II are shown in Tables 3.10 and 3.14, respectively.
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Table 3.6: Reference parameters used in Section 3.3.2
.

Symbol Quantity Value Used in Simulation
zmax Length of the column 20 cm
A Cross-sectional area of the col-

umn
0.166 cm2 (diameter d = 0.46 cm)

ε Porosity of the column 0.555
u Interstitial velocity 3.26 cm/min
∆tinj Injection period 1.33 min
[c1,inj, c2,inj, c3,inj] Feed concentrations [0.95, 0.95, 0.95] g/L
[m1,inj,m2,inj,m3,inj] Eq.(2.52) Mass injected of [c1, c2, c3] 3.8 ×10−4 g
TR Reference temperature 298.15 K
TL Low temperature 248.15 K
TH High temperature 348.15 K
[∆HA,1,∆HA,2,∆HA,3] Adsorption enthalpies [-8.0,-8.0,-8.0] kJ/g

Henry Constants a1(TR) a2(TR) a3(TR) Separation Factor
αi,j = ai

aj
, i, j = 1, 2, 3.

4.5 5.0 5.5 α1,2 ≈ α2,3

Group I 4.5 5.0 7.0 α1,2 > α2,3

4.5 5.0 9.0 — Gradients α1,2 >> α2,3(Late eluter)

4.5 5.0 5.5 α1,2 ≈ α2,3

Group II 3.0 5.0 5.5 α1,2 < α2,3

1.0 5.0 5.5 — Gradients α1,2 << α2,3(Early eluter)

Group I This group is characterized by an elution pattern, where two of the three concentrations,
namely c1 and c2, tend to elute faster, while the third concentration c3 exhibits a slower elution
profile, i.e α1,2 >> α2,3. By conducting a thorough analysis of the conservative and optimal
design concepts in Group I, we can gain valuable insights into their effectiveness and applicability
in enhancing separation efficiency and productivity. This preliminary study allows us to establish
a baseline understanding of the concepts’ performance and their potential impact on the elution
behavior of the individual components. By examining key performance metrics, such as cycle
time reduction and improved productivity, we aim to assess the advantages and limitations of
each scheme within the context of Group I.

Conservative Design Concept with Safety Margins

To begin, we keep segment I at temperature TR and segment II at TL. Then we inject the mixture
cn for n = 3, each with an appropriate Henry constant. The initial temperature of the segment II
which is set to be TL does not matter before the first component arrives. It is desirable to slow
down component c1 and speed up component c3. But since at the time of cooling c1, components
c2 and c3 also stay in the segment II for a while. They are also slowed down until c1 leaves the
segment II. Then we switch the temperature from TL to TH. The later heating accelerates c2 and
c3, which helps to shorten the distance between c1 and c3. It can be seen that the trajectories
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of c1 contain the temperature TL and those of c2 and c3 contain the temperatures TL and TH

given by (3.16a) to (3.16c). For each injection p there are two switching times, the first is always
heating at time tp1,max and the second is always cooling at time tp3,max. From this, the formula for
the switching times of the entire process is given in generalized form, as

tk =

{
t2k = tp3,max when T = TL and k = 1, 2, 3, ..., P,

t2k+1 = tp1,max when T = TH and k = 0, 1, 2, 3, ...P − 1, P ∈ N. (3.14)

Taking into account the equation (3.2), the specific temperature profile of the entire column is
thus obtained as

T (x, t) =


TR for 0 ≤ x ≤ xm, t ∈ [t0, t

P
3,max],

T2k = TL for xm < x ≤ xmax, t ∈ [t2k, t2k+1[,
T2k+1 = TH for xm < x ≤ xmax, t ∈ [t2k+1,min{t2k+2, t

P
3,max}],

k = 0, 1, 2, 3, ..., P, t2k+2 < tP3,max.

(3.15)

The above temperature profile affects the trajectories of all components in the following way.
Let z1,ad(t), z2,ad(t) and z3,ad(t) be the corresponding solution trajectories of the adsorption

fronts of c1, c2 and c3, respectively. These trajectories for the adsorption fronts are derived for
every pth injection, considering (3.8a) with l = 0 (means no Type II switch) for components c1,
while l = 1 (means one Type II switch) for components c2 and c3, as follows

zp1,ad(t) =

{
u

1+Fa1(TR)(t− tpinj), for t ∈ [tpinj, t
p
1,m],

zp1,ad(tp1,m) + u
1+Fa1(TL)(t− tp1,m), for t ∈ ]tp1,m, t

p
1,max,ad],

(3.16a)

zp2,ad(t) =


u

1+Fa2(TR)(t− tpinj), for t ∈ [tpinj, t
p
2,m],

z2,ad(tp2,m) + u
1+Fa2(TL)(t− tp2,m), for t ∈ ]tp2,m, t2k+1[,

z2,ad(t2k+1) + u
1+Fa2(TH)(t− t2k+1), for t ∈ [t2k+1, t

p
2,max,ad],

(3.16b)

zp3,ad(t) =


u

1+Fa3(TR)(t− tpinj), for t ∈ [tpinj, t
p
3,m],

z3,ad(tp3,m) + u
1+Fa3(TL)(t− tp3,m), for t ∈ ]tp3,m, t2k+1],

z3,ad(t2k+1) + u
1+Fa3(TH)(t− t2k+1), for t ∈ [t2k+1, t

p
3,max,ad].

(3.16c)

The associated time variables for the adsorption fronts with respect to the space z, one obtains

tp1,ad(z) =

{
tpinj + 1+Fa1(TR)

u z, for z ∈ [0, zm],
1+Fa1(TL)

u z − 1+Fa1(TL)
1+Fa1(TR)(tp1,m − t

p
inj) + tp1,m, for z ∈ ]zm, zmax],

(3.17a)

tp2,ad(z) =


tpinj + 1+Fa2(TR)

u z, for z ∈ [0, zm],
1+Fa2(TH)

u z − 1+Fa2(TH)
1+Fa2(TR)(tp2,m − t

p
inj)

−1+Fa2(TH)
1+Fa2(TL) (t2k+1 − tp2,m) + t2k+1, for z ∈ ]zm, zmax],

(3.17b)

tp3,ad(z) =


tpinj + 1+Fa3(TR)

u z, for z ∈ [0, zm],
1+Fa3(TH)

u z − 1+Fa3(TH)
1+Fa3(TR)(tp3,m − t

p
inj)

−1+Fa3(TH)
1+Fa3(TL) (t2k+1 − tp3,m) + t2k+1, for z ∈ ]zm, zmax].

(3.17c)
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Equations (3.16a)–(3.16c) and (3.17a)–(3.17c) also render the trajectories zpn,de(t) and time
variables tpn(z) for the desorption fronts of all the injections, respectively, as

zpn,de(t) = zpn,ad(t−∆tinj) for t > ∆tinj (3.18a)

and

tpn(z) = ∆tinj + tpn,ad(z). (3.18b)

Furthermore, since in segment I the temperature is always TR, for each corresponding component
n in the each pth injection, the following holds

tpn,m = tpinj + t1n,m = tpinj +
1 + Fan(TR)

u
zm, for p = 1, 2, 3, ..., P, P ∈ N and t1inj = 0. (3.19)

The concentration solutions for all components of the mixtures are obtained from the equa-
tions (3.9) and (3.10), taking care to adjust the temperature Tk correctly in the ratio. Note that
in case of isocratic operation, the temperatures can be replaced by the reference temperature TR

everywhere in above equations to get the solution trajectories.
In particular, we compute the cycle time ∆tpc with a conservative bound, which is why we

named it a conservative schem. Since the first and last components of each injection have different
temperature requirements, each new injection must be initiated so that the adsorption front of
its fastest component reaches the middle of the column zm at the same time that the desorption
front of the slowest component of the previous injection leaves the column. In this way, we protect
these two components from each other’s temperature regimes. At this exact time, we switch the
temperature of the segment II back to the initial value and repeat the same sequence after every
time tp3,max. This time is estimated by jointly (3.17c) and (3.18b) as

tp3,max = ∆tinj +
1 + Fa3(TH)

u
zmax−

1 + Fa3(TH)

1 + Fa3(TR)
(tp3,m− t

p
inj)−

1 + Fa3(TH)

1 + Fa3(TL)
(t2k+1− tp3,m)+ t2k+1

(3.20)
and using (3.17a) to estimate tp1,m as

tp1,m = tpinj +
1 + Fa1(TR)

u
zm. (3.21)

So, according to the planned strategy for injecting the mixtures, we must have the following

tp3,max = tp+1
1,m , for p = 1, 2, ..., P − 1, P ∈ N. (3.22a)

After applying (3.20) and (3.21) in above formula we get

∆tinj +
1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
(tp3,m − t

p
inj)−

1 + Fa3(TH)

1 + Fa3(TL)
(t2k+1 − tp3,m) + t2k+1

= tp+1
inj +

1 + Fa1(TR)

u
zm.

(3.22b)
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After a small simplification, the time for each next p + 1th injection considering t1inj = 0 and
replacing t2k+1 by tp1,max from (3.14), is given by

tp+1
inj = ∆tinj +

1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
(tp3,m − t

p
inj)−

1 + Fa3(TH)

1 + Fa3(TL)
(tp1,max − t

p
3,m)

+tp1,max −
1 + Fa1(TR)

u
zm, for p = 1, 2, ..., P − 1, P ∈ N.

(3.22c)

Now we calculate the cycle time ∆tpc . For each pth injection, it is the difference between the
times tp3,max at which the desorption front of the slowest component of the previous injection
reaches zmax and tp1,max,ad when the adsorption front of the faster component of the current
injection reaches zmax. This calculation also involves adding the safety margin ∆tpsaf generated
by the concept’s limitation. Mathematically, it is written as

∆tpc = tp3,max − t
p
1,max,ad + ∆tpsaf . (3.23a)

The safety margin is the difference between the time when the last component of the current
injection leaves and the time when the first component of the subsequent injection arrives zmax,
i.e.

∆tpsaf = tp+1
1,max,ad − t

p
3,max, for p = 1, 2, ..., P − 1, P ∈ N. (3.23b)

After using (3.17a) and (3.20) in above formula and replacing t2k+1 by tp1,max, we get

∆tpsaf =
1 + Fa1(TL)

u
zmax −

1 + Fa1(TL)

1 + Fa1(TR)
(tp+1

1,m − t
p+1
inj ) + tp+1

1,m −∆tinj −
1 + Fa3(TH)

u
zmax

+
1 + Fa3(TH)

1 + Fa3(TR)
(tp3,m − t

p
inj) +

1 + Fa3(TH)

1 + Fa3(TL)
(tp1,max − t

p
3,m)− tp1,max.

(3.23c)

The formula is introduced to compute the safety margin independently. Since the trajectories of
the corresponding components remain the same for each injection under the conservative design
concept, we can decompose all terms in (3.23a) using (3.23b) as

∆tpc = tpinj + t13,max − t
p
inj − t

1
1,max,ad + tp+1

inj + t11,max,ad − t
p
inj − t

1
3,max (3.24a)

and then delete the same terms with opposite signs to get

∆tpc = tp+1
inj − t

p
inj, for p = 1, 2, ..., P − 1, P ∈ N. (3.24b)

From this, it is clear that the cycle time is equal to the time interval between two successive
injections and is the same for all p = 1, 2, 3, ..., P ∈ N. After using (3.22c) in the above equation,
we obtain as

∆tpc = ∆tinj +
1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
(tp3,m − t

p
inj)

−1 + Fa3(TH)

1 + Fa3(TL)
(tp1,max − t

p
3,m) + tp1,max −

1 + Fa1(TR)

u
zm − tpinj.

(3.24c)
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Equation (3.24c) can be used to calculate cycle times ∆tpc,iso and ∆tpc,grad for both isocratic and
the more flexible gradients conditions, because Tk ∈ {TR, TL, TH}. If we neglect the safety margin
∆tpsaf in (3.23a), we call it a hypothetical cycle time, denoted by ∆tpc,iso,hyp and ∆tpc,grad,hyp in the
aforementioned cases, respectively. The term ∆tinj in the expression above shows that longer
injections lead to longer cycle times. By (2.50) and (2.51) this means a decrease in productivity.

At this point it is important to mention that in the conservative design concept, as mentioned
earlier, all p injections are subjected to the same sequence of temperature regimes. This results
in all corresponding components of each injection having the same slope of the trajectories.
Therefore, any time variable associated with a particular component, while also computable using
eqs. (3.17a) to (3.17c), can simply be computed as a recurrence after each cycle time ∆tpc , i.e.

tn(z)p+1 = ∆tpc + tpn(z), for n = 1, 2, 3 and p = 1, 2, 3, ..., P − 1, P ∈ N. (3.25)

It should be noted here that this conservative design concept is not optimum for the segmented
gradients case due to the presence of safety margins. The introduction of this type of temperature
modulation concept was originally pursued with the intention of reducing cycle time and improving
productivity. However, it became clear that this approach did not produce the desired results.
Despite the hope that forced periodic operation would serve as a general solution, it became
clear that its effectiveness depends on carefully chosen Henry constants, adsorption enthalpy,
and well-planned temperature regimes. For this reason, a case-dependent optimal design concept
without safety margins is determined based on doing injections earlier but still avoiding remixing.
The solution to such an interesting optimization problem is presented below.

Optimal Design Concept without Safety Margins

As mentioned in the previous scheme, as a first attempt to achieve a shorter cycle time compared
to the isocratic conditions, different temperature regimes were proposed for the slowest and fastest
components of the successive injections, respectively. But we haven’t succeeded in that, because
an unnecessary time gap, called “safety margin” ∆tpsaf , was created. This was an indication that
we could achieve a shorter cycle time if we avoid this time gap. For this reason, it is obvious
that we must provide analogous temperature regimes for the first and last components of each
injection. This is possible if the subsequent injection is performed early enough so that the
adsorption front of its first component c1 could be eluted in the same temperature regime as the
last component of the previous injection without being mixed together again. In this way, not only
c1, but also c2 of the second injection is heated together with c3 of the previous injection. After
the switching time t2 = t13,max, i.e. when c3 of the first injection leaves the column, switching the
temperature from TH to TL cools the desorption front of c1. This cooling also affects c2, since it
is still near the end of segment II, and then c3, since it has now also entered the segment II. This
complicated temperature regime of TL does not help to shorten the cycle time, but it does preserve
resolution and protects c1 as well as c2 from remixing. Soon c1 leaves the column. We switch the
temperature from TL back to TH after the time t3 = t21,max. This heats up both c2 and c3 and
actually contributes to shortening the cycle time. We then allow the repetition of the sequence of
these temperature regimes for all the successive injections. This has the effect of avoiding the
unnecessary gap created by the conservative design concept, because the component c1 of the
subsequent p+ 1th injection can now simply be collected immediately after the component c3 of
the previous pth injection for p ≥ 1. Mathematically, this statement can be expressed as follows
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tp3,max = tp+1
1,max,ad, for p = 1, 2, 3, ..., P − 1, P ∈ N. (3.26)

To calculate the above times, we first write the expressions for the trajectories of the second
and further injections, and using these expressions we can easily obtain the formulas for the
above times. For the first injection p = 1, these trajectories are given as in the conservative
design concept, i.e. by (3.16a) to (3.16c) and the times are given by (3.17a) to (3.17c). For the
adsorption and desorption fronts of the injections p ≥ 2 and k ≥ 1, however, they are given as
follows

zp1,ad(t) =

{
u

1+Fa1(TR)(t− tpinj), for t ∈ [tpinj, t
p
1,m],

zp1,ad(tp1,m) + u
1+Fa1(TH)(t− tp1,m), for t ∈ ]tp1,m, t

p
1,max,ad],

(3.27a)

zp1,de(t) =


u

1+Fa1(TR)(t−∆tinj − tpinj), for t ∈ [tpinj, t
p
1,m],

zp1,ad(tp1,m) + u
1+Fa1(TH)(t−∆tinj − tp1,m), for t ∈ ]tp1,m, t2k[,

zp1,ad(t2k) + u
1+Fa1(TL)(t−∆tinj − t2k), for t ∈ [t2k, t

p
1,max],

(3.27b)

zp2,ad(t) =


u

1+Fa2(TR)(t− tpinj), for t ∈ [tpinj, t
p
2,m],

zp2,ad(tp2,m) + u
1+Fa2(TH)(t− tp1,m), for t ∈ ]tp2,m, t2k[,

zp2,ad(t2k) + u
1+Fa2(TL)(t− t2k), for t ∈ [t2k, t2k+1[,

zp2,ad(t2k+1) + u
1+Fa2(TH)(t− t2k+1), for t ∈ [t2k+1, t

p
2,max,ad],

(3.27c)

and since the two fronts of c2 are simultaneously confronted with the same temperature changes,
we can simply write

zp2,de(t) = zp2,ad(t−∆tinj), (3.27d)

zp3,ad(t) =


u

1+Fa3(TR)(t− tpinj), for t ∈ [tpinj, t
p
3,m],

zp3,ad(t2k) + u
1+Fa3(TL)(t− t2k), for t ∈ ]tp3,m, t2k+1[,

zp3,ad(t2k) + u
1+Fa3(TH)(t− t2k+1), for t ∈ [t2k+1, t

p
3,max,ad]

(3.27e)

and as for c2 we can simply obtain the trajectory of its desorption front as

zp3,de(t) = zp3,ad(t−∆tinj). (3.27f)

Now, using the above trajectories, we obtain the corresponding time expressions for both the
fronts of the three components, for p ≥ 2 and k ≥ 1, as

tp1,ad(z) =

{
tpinj + 1+Fa1(TR)

u z, for z ∈ [0, zm],
1+Fa1(TH)

u z − 1+Fa1(TH)
1+Fa1(TR)(tp1,m − t

p
inj) + tp1,m, for z ∈ ]zm, zmax],

(3.28a)

tp1,de(z) = ∆tinj +


tpinj + 1+Fa1(TR)

u z, for z ∈ [0, zm],
1+Fa1(TL)

u z − 1+Fa1(TL)
1+Fa1(TR)(tp1,m − t

p
inj)−

1+Fa1(TL)
1+Fa1(TH)(t2k − tp1,m) + t2k, for z ∈ ]zm, zmax],

(3.28b)
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tp2,ad(z) =


tpinj + 1+Fa2(TR)

u z, for z ∈ [0, zm],
1+Fa2(TH)

u z − 1+Fa2(TH)
1+Fa2(TR)(tp2,m − t

p
inj)−

(t2k − tp2,m)− 1+Fa2(TH)
1+Fa2(TL) (t2k+1 − t2k) + t2k+1, for z ∈ ]zm, zmax],

(3.28c)

tp2,de(z) = ∆tinj + tp2,ad(z), (3.28d)

tp3,ad(z) =


tpinj + 1+Fa3(TR)

u z, for z ∈ [0, zm],
1+Fa3(TH)

u z − 1+Fa3(TH)
1+Fa3(TR)(tp3,m − t

p
inj)−

1+Fa2(TH)
1+Fa3(TL) (t2k+1 − tp3,m) + t2k+1, for z ∈ ]zm, zmax].

(3.28e)

and

tp3,de(z) = ∆tinj + tp3,ad(z). (3.28f)

Now for p = 1, we have k = 0, substituting the value of t13,max from (3.17c) and (3.18b) as well as
the value of t21,max,ad from (3.28a) into (3.26), we obtain

∆tinj +
1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
(t13,m − t1inj)−

1 + Fa3(TH)

1 + Fa3(TL)
(t1 − t13,m) + t1 =

1 + Fa1(TH)

u
zmax −

1 + Fa1(TH)

1 + Fa1(TR)
(t21,m − t2inj) + t21,m.

(3.29a)

After applying (3.19), we can replace t21,m − t2inj with t
1
1,m and divide t21,m into t2inj + t11,m, so the

time for a new injection in this scenario after a small rearrangement is as follows

t2inj = ∆tinj +
1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
t13,m −

1 + Fa3(TH)

1 + Fa3(TL)
(t1 − t13,m) + t1

−1 + Fa1(TH)

u
zmax +

1 + Fa1(TH)

1 + Fa1(TR)
t11,m − t11,m.

(3.29b)

Since, in this scheme, the first injection has different temperature conditions than the others, the
injection times t3inj and the following ones must be calculated differently. To find t3inj, we estimate
the cycle time ∆t2c at the exit of the column. This is a sustainable cycle time shorter than that
in isocratic operation, since ∆tpsaf is omitted in (3.23a). Thus, it is the difference between t23,max

and t21,max,ad, i.e.

∆t2c = t23,max − t21,max,ad. (3.30a)

After substituting the values of (3.28f) and (3.28a) and applying (3.19) as we did above, we get
the cycle time as

∆t2c = ∆tinj +
1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
t13,m −

1 + Fa2(TH)

1 + Fa3(TL)
(t3 − t23,m) + t3

−1 + Fa1(TH)

u
zmax +

1 + Fa1(TH)

1 + Fa1(TR)
t11,m − t21,m,

(3.30b)
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such that

t3inj = t2inj + ∆t2c . (3.30c)

This means that in this scheme the cycle time ∆tpc is provided for the calculation of productivity
starting from the second injection, i.e. p = 2, since it is optimal. The injection times tpinj for the
third and further injections can now be written in general form as

tpinj = tp−1
inj + ∆tp−1

c , for p = 3, 4, 5, ..., P ∈ N. (3.30d)

Moreover, the switching times in this scheme are given by the same formula (3.14).
All trajectories and solutions for the Henry constants of the Group II for the isocratic case

are shown in Figure 3.7, and for the conservative design concept in Figure 3.8. For the optimal
(improved) design concept they are shown in Figure 3.9.

Figure 3.8 shows, for three feed components, the development of the concentration profiles
for the conventional isocratic as well as for the forced periodic conservative design concept in
segment II. For the isocratic case, only the first and fourth injections are sighted, whereas for
the conservative regime, all four injections are given. The minimal cycle time under isocratic
conditions, c.f. equation (2.51), is ∆tpc,iso = 23.46 min for the parameters used, guarantees that
there is no overlap between consecutive cycles and no waste of time by waiting too long before
injecting again. On the other hand, in the conservative design concept, if the hypothetical cycle
time, i.e. ∆t1c,niso,hyp = 13.38 min, is applied, there is a risk that the bands of component 1 and
component 3 in the segment II will be bent again, which may lead to undesired remixing. For
this reason the figure illustrates a sample to apply conservative temperature switching regime,
which avoids this remixing but it also does not guarantee that the cycle time in the gradients
case is shorter than in the isocratic case. It means that if we apply the full cycle time, i.e.
∆t1c,grad = 37.6 min, this is still longer than the isocratic one and of course not useful. That is
why, the strategy based on switching in the segment II is changed and a new design concept with
optimal switching is applied, which avoid safety margins, c.f. Figure 3.9. There the temperature
from low to high and then from high to low at the switching times t1 = t11,max = 39.7 min and
t2 = t33,max = 51.8 min, respectively, are the same as in the conservative design concept, but the
switching at t3 = t21,max = 55 min is now earlier than in the conservative design concept. The
temperature switching now occur periodically, shifted just by cycle time ∆tpc,grad = 19.8 min
for p ≥ 2. When this cycle time is used in (2.50), the application of this appropriate strategy
corresponds to a 20% increase in the production rate compared to the isocratic case (see also
table 3.10).

In the conservative design concept, the switching times were not optimally chosen, resulting
in an even larger cycle time compared to the reference isocratic case. This outcome served as
a stark reminder that the effectiveness of such strategies is highly case-dependent and requires
meticulous consideration of various factors. In response to this setback, we pursued an alternative
approach known as the optimal design concept. Through diligent analysis, we discovered a set of
switching times and temperature trajectories that proved to be significantly more productive.
The optimal design concept demonstrated the potential for shorter cycle times and enhanced
productivity, surpassing the results achieved with both the conservative design concept and the
isocratic case. This realization highlights the importance of tailored optimization and reinforces
the notion that a generalized approach may not always yield the desired outcome. By addressing
the limitations of the conservative design concept and introducing the optimal switching strategy,
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we have not only showcased the significance of considering specific concentration trajectories but
also emphasized the need for well-informed decision-making when designing such processes.
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a Trajectories (below) and their corresponding concentration
solutions (on the top) under isocratic conditions when α1,2 ≈
α2,3. t2inj = 6.24 min, t3inj = 12.49 min, t4inj = 18.7 min and
∆tpc = 6.24 min, p = 1, 2, 3, 4.

b Trajectories and their corresponding concentration solutions
under isocratic conditions when α1,2 > α2,3. t2inj = 13.62 min,
t3inj = 27.25 min, t4inj = 40.08 min and ∆tpc = 13.62 min.

c Trajectories and their corresponding concentration solutions
under isocratic conditions when α1,2 >> α2,3. t2inj = 23.46 min,
t3inj = 46.93 min, t4inj = 70.39 min and ∆tpc = 23.46 min.

Figure 3.7: Separation scenarios on the basis of the selected Henry constants of Group I under
isocratic conditions.
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Figure 3.8: Group I conservative design concept with safety margins for “Late Eluter” case–The
space-time trajectories and the corresponding concentration solutions. For isocratic conditions,
only injection 1 and injection 4 are shown, while for gradient conditions, all four injections
are shown. In the gradients case, the first switching of the temperature is done at tp1,max and
second switching at tp3,max and then they shift by ∆tpc,grad alternatively. Isocratic: t2inj = 23.46

min, t3inj = 46.93 min, t4inj = 70.39 min and ∆tpc,iso = 23.46 min. Gradients: t2inj = 37.66 min,
t3inj = 75.33 min, t4inj = 113 min and ∆tpc,grad = 37.66 min.

Figure 3.9: Group I Optimal design concept without safety margins for “Late Eluter” case–The
space-time trajectories and the corresponding concentration solutions, which are now possible for
up to 5 injections to be shown in the given time frame. For isocratic conditions, only injection 1
and injection 5 are shown, while for gradient conditions, all 5 injections are shown. Isocratic:
All times are the same as in the previous figure. Gradients: t2inj = 27.64 min, t3inj = 47.53 min,
t4inj = 67.42 min and ∆t1c,grad = 13.38 min, ∆t2c,grad = ∆t3c,grad = ∆t4c,grad = 19.89 min.
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Table 3.10: Results associated to Figures 3.8 and 3.9 (Group I)

Group I
Symbol Quantity Value Obtained
tpc,iso Cycle time in isocratic case (Eq. (3.24c) for TH =

TL = TR)
23.46 min

∆tpc,grad(Conservative) Cycle time in gradients conservative design concept
(Eq. (3.24c))

37.66 min

∆tpc,grad,hyp Hypothetical cycle time in gradients conservative de-
sign concept (Subtract Eq. (3.23c) from Eq.(3.24c))

13.38 min

∆tpsaf Safety margin in gradients conservative design con-
cept (Eq. (3.23c))

24.28 min

∆tpc,grad(Optimal) Cycle time in gradients optimal design concept (Eq.
(3.30b))

19.90 min

m1,col=m2,col=m3,col Mass collected of c1, c2 and c3 at zmax (c.f. Eq.
(2.55))

3.8 ×10−4 g

Pn,iso, n = 1, 2, 3. Production rate of each component under isocratic
conditions (c.f. Eq. (2.51))

0.10 gh−1L−1 (avg.
of the three)

Pn,grad, n = 1,2,3. Production rate of each component under gradients
optimal design concept (c.f. Eq. (2.50))

0.12 gh−1L−1 (avg.
of the three)

Pinc Percent wise increase in the overall production rate
by gradients optimal design concept

20% (approx.)

Understanding the elution behavior of each component is crucial in chromatographic separa-
tions, as it directly influences the overall performance or productivity. In Group II, the elution
tendencies differ from those observed in Group I, where only c1 tends to elute faster, while c2 and
c3 exhibit a slower elution profile. This contrast in elution behavior, with α1,2 << α2,3, presents a
little different challenge that requires a careful evaluation of the conservative and optimal design
concepts.

Group II After successfully addressing the separation of Group I components using optimized
temperature step gradients, the focus now shifts to Group II components (Early Eluter). The
objective remains the same: to enhance the separation performance and reduce cycle time. To
achieve this, we follow a similar strategy as in Group I, i.e., accelerating the elution of slower
components and decelerating the faster ones. However, due to the distinct elution behavior of
Group II, involving one faster-eluting and two slower-eluting components, a different switching
strategy is required. Nevertheless, we will follow the same conservative and optimal design
concepts as for Group I.

Conservative Design Concept with Safety Margins

As foreseen in the strategy, we start cooling component c1 in segment II. At this point, c2 and c3

have not yet entered the segment II and are still in segment I. As c1 is cooled alone, it leaves the
system at time t1 = t11,max. At this time, we change the temperature from TL to TH, whereupon
c2 and c3 enter the heated segment II and their elution is accelerated. This means that all three
components in this scenario undergo Type I temperature changes, which is why the trajectories
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(3.16a) to (3.16c) can be written even more simply as

zp1,ad(t) =

{
u

1+Fa1(TR)(t− tpinj), for t ∈ [tpinj, t
p
1,m],

zp1,ad(tp1,m) + u
1+Fa1(TL)(t− tp1,m), for t ∈ ]tp1,m, t

p
1,max,ad],

(3.31a)

zp2,ad(t) =

{
u

1+Fa2(TR)(t− tpinj), for t ∈ [tpinj, t
p
2,m],

z2,ad(tp2,m) + u
1+Fa2(TH)(t− tp3,m), for t ∈]tp2,m, t

p
2,max,ad],

(3.31b)

zp3,ad(t) =

{
u

1+Fa3(TR)(t− tpinj), for t ∈ [tpinj, t
p
3,m],

z3,ad(tp3,m) + u
1+Fa3(TH)(t− tp3,m), for t ∈]tp3,m, t

p
3,max,ad].

(3.31c)

In a similar manner, one derives the related time variables for the adsorption fronts with respect
to space z as

tp1,ad(z) =

{
tpinj + 1+Fa1(TR)

u z, for z ∈ [0, zm],
1+Fa1(TL)

u z − 1+Fa1(TL)
1+Fa1(TR)(tp1,m − t

p
inj) + tp1,m, for z ∈ ]zm, zmax],

(3.32a)

tp2,ad(z) =

{
tpinj + 1+Fa2(TR)

u z, for z ∈ [0, zm],
1+Fa2(TH)

u z − 1+Fa2(TH)
1+Fa2(TR)(tp2,m − t

p
inj) + tp2,m, for z ∈ ]zm, zmax],

(3.32b)

tp3,ad(z) =

{
tpinj + 1+Fa3(TR)

u z, for z ∈ [0, zm],
1+Fa3(TH)

u z − 1+Fa3(TH)
1+Fa3(TR)(tp3,m − t

p
inj) + tp3,m, for z ∈ ]zm, zmax].

(3.32c)

Whereas, the above parameters for the desorption fronts, are always described by (3.18a) and
(3.18b).

As in Group I, we use the same formulas in the current case to calculate switching times,
the times of further injections as well as the cycle time. Despite the distinct elution behavior of
Group II components, the fundamental principles underlying the calculations remain consistent.
By employing these well-established formulas, we can efficiently plan the timing of subsequent
injections and optimize the cycle time. The advantage of a fixed sequence of temperature regimes
is that the formula (3.14) for calculating the switching times can be consistently applied here as
well.

Using (3.22a) under the above time formulas, we obtain the time for each next injection p+ 1
in the conservative design concept as

tp+1
inj = ∆tinj +

1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
(tp3,m − t

p
inj) + tp3,m

−1 + Fa1(TR)

u
zm, for p = 1, 2, ..., P − 1, P ∈ N,

(3.33a)

whereas by (3.23a) the unique cycle time for p = 1, 2, ..., P ∈ N is given as

∆tpc = ∆tinj +
1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
(tp3,m − t

p
inj) + tp3,m − t

p
1,m. (3.33b)
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Similar to Group I, the conservative design concept is found to be suboptimal for Group II
components as well. In pursuit of an improved approach, we devise again the optimal design
concept that eliminates the safety margin and achieves enhanced separation performance. The
upcoming section outlines the details of this optimized strategy, tailored specifically to the
characteristics of the early eluter case of Group II.

Optimal Design Concept without Safety Margins

As part of this concept, we have carefully analyzed the analytic solution trajectories of equations
(3.31a) through (3.31c) at p = 1. In this optimized concept, as usually, we plan the first two
temperature regimes, TL and TH, to be fully applied during the first injection as in the conservative
design concept. By strategically initiating the second injection early enough, we ensure efficient
heating of the adsorption front of its component c1, along with c2 and c3 of the first injection.

At t2 = t13,max, we strategically switched the temperature from TH to TL. Since the second
injection is now performed earlier, it effectively heats up the desorption front of c1 of the second
injection. Subsequently, at t3 = t21,max, we return to TH to affect c2 and c3 simultaneously.

Similarly, in the subsequent injections, we repeat the pair of temperature regimes of second
injections, maintaining consistent injection and cycle times. By precisely matching the temperature
switching times to the elution behavior of the individual components, we have once again succeeded
in eliminating the safety margins and achieving efficient elution of the components of the Group
II. This optimized strategy of temperature modulation resulted in an acceptable productivity
increase also for the constituents of Group II, which is slightly higher than that observed in group
I.

The implementation of the distinct temperature strategy resulted in divergent trajectories
and time parameters for the second and subsequent injections, in contrast to the conservative
design concept where the trajectories remained the same for all injections. However, the first
injection retained the same trajectories and times as in the conservative design concept. Here are
the trajectories and associated times for second and onwards injections (with k ≥ 1) obtained
through the optimized temperature modulation for Group II components:

zp1,ad(t) =

{
u

1+Fa1(TR)(t− tpinj), for t ∈ [tpinj, t
p
1,m],

zp1,ad(tp1,m) + u
1+Fa1(TH)(t− tp1,m), for t ∈ ]tp1,m, t

p
1,max,ad],

(3.34a)

zp1,de(t) =


u

1+Fa1(TR)(t−∆tinj − tpinj), for t ∈ [tpinj, t
p
1,m],

zp1,ad(tp1,m) + u
1+Fa1(TH)(t−∆tinj − tp1,m), for t ∈ ]tp1,m, t2k],

zp1,ad(t2) + u
1+Fa1(TL)(t−∆tinj − t2k), for t ∈ ]t2k, t

p
1,max],

(3.34b)

zp2,ad(t) =

{
u

1+Fa2(TR)(t− tpinj), for t ∈ [tpinj, t
p
2,m],

zp2,ad(tp2,m) + u
1+Fa2(TH)(t− tp1,m), for t ∈ ]tp2,m, t

p
2,max,ad]

(3.34c)

and since both fronts of c2 are simultaneously exposed to all temperature changes, we can
straightforwardly express

zp2,de(t) = zp2,ad(t−∆tinj). (3.34d)
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Since c3 is simultaneously heated up with c2, we observe a similar trajectory for c3 as well, as

zp3,ad(t) =

{
u

1+Fa3(TR)(t− tpinj), for t ∈ [tpinj, t
p
3,m],

zp3,ad(tp3,m) + u
1+Fa3(TL)(t− tp3,m), for t ∈ ]tp3,m, t

p
3,max,ad]

(3.34e)

and the trajectory of its desorption front is given as

zp3,de(t) = zp3,ad(t−∆tinj). (3.34f)

Now, utilizing the above trajectories, we can derive the corresponding time expressions for both
fronts of the three components as follows

tp1,ad(z) =

{
tpinj + 1+Fa1(TR)

u z, for z ∈ [0, zm],
1+Fa1(TH)

u z − 1+Fa1(TH)
1+Fa1(TR)(tp1,m − t

p
inj) + tp1,m, for z ∈ ]zm, zmax],

(3.35a)

tp1,de(z) = ∆tinj +


tpinj + 1+Fa1(TR)

u z, for z ∈ [0, zm],
1+Fa1(TL)

u z − 1+Fa1(TL)
1+Fa1(TR)(tp1,m − t

p
inj)−

1+Fa1(TL)
1+Fa1(TH)(t2 − tp1,m) + t2, for z ∈ ]zm, zmax],

(3.35b)

tp2,ad(z) =

{
tpinj + 1+Fa2(TR)

u z, for z ∈ [0, zm],
1+Fa2(TH)

u z − 1+Fa2(TH)
1+Fa2(TR)(tp2,m − t

p
inj)− t

p
2,m, for z ∈ ]zm, zmax],

(3.35c)

tp2,de(z) = ∆tinj + tp2,ad(z), (3.35d)

tp3,ad(z) =

{
tpinj + 1+Fa3(TR)

u z, for z ∈ [0, zm],
1+Fa3(TH)

u z − 1+Fa3(TH)
1+Fa3(TR)(tp3,m − t

p
inj)− t

p
3,m, for z ∈ ]zm, zmax]

(3.35e)

and

tp3,de(z) = ∆tinj + tp3,ad(z). (3.35f)

Having obtained the trajectories and the time variables, we will now calculate the essential
parameters, as in the case of the late eluter, for calculating productivity.

The time for the second injection is calculated according to the optimized case of Group I,
where the last and the first components of two consecutive injections leave the column one after
the other. Thus, (3.26), where (3.32c) is used for the desorption front and p = 1 and (3.35a) is
used for p = 2, replacing t21,m − t2inj with t

1
1,m and divide t21,m into t2inj + t11,m, gives the following

t2inj = ∆tinj +
1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
t13,m + t13,m

−1 + Fa1(TH)

u
zmax +

1 + Fa1(TH)

1 + Fa1(TR)
t11,m − t11,m.

(3.36a)



58 CHAPTER 3. EQUILIBRIUM MODEL AND METHOD OF CHARACTERISTICS

Similar to the optimal design concept in Group I, in this case, we also calculate t3inj due to the
distinct cycle times ∆t1c and ∆t2c , which represent the intervals between the first three consecutive
injections. To determine t3inj, we first calculate ∆t2c , which then allows us to conveniently compute
t3inj. Using (3.35f) and (3.35a) for p = 2 in (3.30a), we calculate ∆t2c as

∆t2c = ∆tinj +
1 + Fa3(TH)

u
zmax −

1 + Fa3(TH)

1 + Fa3(TR)
(t23,m − t2inj)− t23,m

−1 + Fa1(TH)

u
zmax +

1 + Fa1(TH)

1 + Fa1(TR)
(t21,m − t2inj)− t21,m,

(3.37a)

such that

t3inj = t2inj + ∆t2c (3.37b)

and

tpinj = tp−1
inj + ∆tp−1

c , for p = 3, 4, 5, ..., P ∈ N. (3.37c)

All trajectories and solutions for the Henry constants of the Group II for the isocratic case
are shown in Figure 3.11, and for the conservative design concept in Figure 3.12. For the optimal
design concept they are shown in Figure 3.13.

Figure 3.12 presents concentration profiles for three feed components in the early eluter case
(Group II) under conventional isocratic conditions and forced periodic conservative design concept
of temperature modulation. The isocratic case shows only the first and fourth injections, while
the conservative temperature modulation includes all four injections. The minimal cycle time
under isocratic conditions is ∆tpc,iso = 23.46 min, which avoids overlap between consecutive cycles
and renders typical production rate. However, applying a shorter hypothetical cycle time of
∆tpc,grad,hyp = 16.18 min risks undesired remixing of component bands in segment II. To address
this issue, the optimal design concept (Figure 3.13) with more quick temperature changes is
implemented. The application of this appropriate strategy, using a cycle time of ∆tpc,grad = 19.35
min for p ≥ 2, results in a 20% increase in the production rate compared to the isocratic case
(see also table 3.14).
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a Trajectories (below) and their corresponding concentration
solutions (on the top) under isocratic conditions when α1,2 ≈
α2,3. t2inj = 6.24 min, t3inj = 12.49 min, t4inj = 18.7 min and
∆tpc = 6.24 min, p = 1, 2, 3, 4.

b Trajectories and their corresponding concentration solutions
under isocratic conditions when α1,2 < α2,3. t2inj = 13.62 min,
t3inj = 27.25 min, t4inj = 40.08 min and ∆tpc = 13.62 min.

c Trajectories and their corresponding concentration solutions
under isocratic conditions when α1,2 << α2,3. t2inj = 23.46 min,
t3inj = 46.93 min, t4inj = 70.39 min and ∆tpc = 23.46 min.

Figure 3.11: Separation scenarios on the basis of the selected Henry constants of Group II under
isocratic conditions.
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Figure 3.12: Group II conservative design concept with safety margins for “Early Eluter” case – In
isocratic conditions, as in Group I, only Injection 1 and Injection 4 are shown, while in gradient
conditions all four injections are shown. Isocratic: As in Group I. Gradients: t2inj = 23.97 min,
t3inj = 47.94 min, t4inj = 71.913 min and ∆tpc,grad = 23.97 min.

Figure 3.13: Group II Optimal design concept without safety margins for “Early Eluter” case–
For isocratic conditions, again only injection 1 and injection 4 are shown, while for gradient
conditions, all four injections are shown. Isocratic: All times are the same as in Group I.
Gradients: t2inj = 19.35 min, t3inj = 38.71 min, t4inj = 58.07 min and ∆t1c,grad = 16.18 min,
∆t2c,grad = ∆t3c,grad = ∆t4c,grad = 19.35 min.
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Table 3.14: Results of productivity gain in Group II

Group II
Symbol Quantity Value Obtained
∆tpc,grad(Conservative) Cycle time in gradients conservative design concept (Eq.

(3.33b))
23.97 min

∆tpc,grad,hyp Hypothetical cycle time in gradients conservative design
concept (Subtract Eq. (3.23b) from Eq. (3.33b))

16.18 min

∆tpsaf safety margin in gradients conservative design concept
(Eq. (3.23b))

7.78 min

∆tpc,grad(Optimal) Cycle time in gradients optimal design concept (c.f. Eq.
(3.37a))

19.35 min

Pn,iso, n = 1, 2, 3. Production rate of each component under isocratic
conditions (c.f. Eq. (2.51))

0.10 gh−1L−1 (avg.
of the three)

Pn,grad, n = 1,2,3. Production rate of each component under gradients
optimal design concept (c.f. Eq. (2.50))

0.12 gh−1L−1 (avg.
of the three)

Pinc Percent wise increase in the overall production rate by
gradients optimal design concept

20% (approx.)

Summery of the Chapter 3: In this chapter, we explored the equilibrium model, also
known as the ideal model, coupled with an ideal temperature profile as a step function. We
analytically solved the model using the method of characteristics for obtaining generalized
trajectory solutions. These solutions were then applied to single-component injections, allowing us
to analyze concentration profiles over time (chromatograms) and space under various temperature
gradients.

Building upon this foundation, we planned multi-injections of a ternary mixture, considering
the elution patterns in two scenarios: “Late Eluter” and “Early Eluter” cases based on Henry
constant combinations in Group I and Group II, respectively. However, the initially pursued
conservative design concept of temperature modulation considering safety margins proved to be
suboptimal for both groups.

To overcome this limitation, we devised an optimal design concept, eliminating safety margins
and achieving efficient elution of components. This optimized approach led to an acceptable
productivity gains, increasing by up to 20% for both Group I and Group II, surpassing the
isocratic case.

To conclude, the primary objective of this chapter was to provide an analytical estimation
of cycle times under strategically planned temperature gradients, which are notably shorter in
comparison to those experienced under isocratic conditions. Key formulas derived from both
conservative and optimal design concepts are presented. For the late eluter case of Group I, these
formulas are represented by equations (3.24c) and (3.30b), respectively. Similarly, for the early
eluter scenario of Group II, the corresponding formulas in both design concepts are expressed by
equations (3.33b) and (3.37a).
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Chapter 4

Numerical Methods

In this chapter, we will explore the use of numerical techniques to solve the remaining mathematical
models presented in Chapter 2. We start with the EDM, coupled with ideal temperature gradients
(section 2.4.1). We proceed in the opposite direction to the detailed model with the EDM coupled
with the energy equation (section 2.2). In contrast to the previous chapter, some of the parameters
used in this chapter are determined experimentally, which allows for a more realistic approach to
the simulations. We will use the finite volume upwind scheme for the advective terms and central
discretization for the second-order dispersion terms in the numerical solutions. Additionally, we
investigate new properties of the coupled mass and energy equations. We also solve the EDM for
a large plate number Np to compare the results with EM, which was solved analytically in the
previous chapter. Furthermore, we perform stability analysis for all the models to ensure stable
and accurate solutions.

Discretization

To numerically solve the mathematical models, we need to discretize the differential equations.
This involves defining a mesh over the rectangular domain Ω = [0, xmax]× [0, τPn,max], where τPn,max

is the time at which the last component of the process exits the column. Let xi for i ∈ N0 be the
number of grid points, ∆x be the spatial step size and Nx be the number of cells which is chosen
to be an even natural number depending upon the desired resolution of the solution, such that

xi = i∆x, for i = 0, 1, 2, ..., Nx, with ∆x =
xmax = 1

Nx
. (4.1)

All grid points xi correspond to cells σi, c.f. Figure 4.1. At the left boundary, we have σ0 = [0, ∆x
2 ],

at the right boundary, σNx = [1 − ∆x
2 , 1] and in the interior, we have σi = [xi − ∆x

2 , xi + ∆x
2 ]

for n = 1, 2, 3, ..., Nx − 1. Let Nx2 = Nx
2 be the index of the grid point at the middle of the

column. Then, numerically, the grid points x0 to xNx2 form segment I, whereas, xNx2 to xNx
form segment II. The point xNx2 is the common boundary point at the interface of both the
segments. It means that each end point of the segments has a grid point with xNx2 as the most
important one. Corresponding to this point, we have a cell σNx2 = [xNx2 −

∆x
2 , xNx2 + ∆x

2 ], which
lies half in segment I and half in segment II. Now we define, for the time step ∆τ , the number of
time discretization points as Nτ = rd

(
τPn,max

∆τ

)
. In order to get a stable solution, we will have to

estimate ∆τ by doing a proper stability analysis for every specific system of PDE’s.

63
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Figure 4.1: Grid points and corresponding cells for defining the fluxes

4.1 EDM Coupled with Ideal Temperature Step Gradients

To tackle the EDM via the FVM, our initial step involves discretization of the governing partial
differential equations (PDEs) that describe solute transport and dispersion in porous media. By
partitioning the domain into finite control volumes, we approximate the continuous PDE solution.
Upon completing the numerical simulation, we perform a comparative analysis between the FVM
results and analytical solutions of the EM to validate accuracy and reliability. Note that the
results obtained from this model are already published in the article [38].

Let us reconsider Eqs. (2.38), (2.39) and (2.43a)–(2.43e), i.e.

[1 + Fan(T )] cnτ = −cnx + tR0
Dxcnxx , n = 1, 2, 3, ..., Nc, (4.2)

T (x, τ) =


TR for 0 ≤ x ≤ xm, τ ∈ [0, τPn,max],

Tk for xm < x ≤ xmax, τ ∈ [τk,min{τk+1, τ
P
n,max}],

k ∈ N0, τk < τPn,max,
(4.3)

such that

cI
n(x0 to xm, τ0) = 0, cII

n (xm to xmax, τ0) = 0, (4.4a)

whereas, for p = 1, 2, 3, ..., P with P ∈ N, the following boundary conditions are considered

cI
n(x0, τ) =

{
cn,inj, τpinj ≤ τ ≤ τ

p
inj + ∆τinj,

0, τpinj + ∆τinj < τ < τpn,m,
(4.4b)

cII
n (xm, τ) =

{
1+Fan(T I)
1+Fan(T II)

cI
n(xm, τ

p
n,m), τpn,m ≤ τ ≤ τpn,m + ∆τinj,

0, τpn,m + ∆τinj < τ < τpn,max.
(4.4c)

At the right boundary for the second order derivative, we have to take the Neumann boundary
condition, i.e.

cII
nx(xmax, τ) = 0. (4.4d)

In our numerical approach to solve the EDM, we opt for the explicit finite volume method, which
is a popular scheme for discretizing partial differential equations involving transport phenomena.
This method is well-suited for simulating solute transport and dispersion in porous media.

To apply the explicit FVM for solving the EDM, we rearrange the (4.2) to isolate the
time derivative on the left side and move all spatial derivatives with respect to x to the right
side. This allows for efficient explicit time-stepping numerical integration, making the method



4.1. EDM COUPLED WITH IDEAL TEMPERATURE STEP GRADIENTS 65

computationally straightforward and practical for simulating solute transport and dispersion in
porous media. Hence we write the equation as

cnτ = − 1

1 + Fan(T )
cnx +

tR0
Dx

1 + Fan(T )
cnxx . (4.5)

4.1.1 Discretization of Single-Component Injection

Let us examine the elution of a single component, represented by Nc = 1. By applying these
simplifications to equation (4.5), where we take c1 = c, q1 = q, c1,inj = cinj, τ

p
1,max = τmax, and

∆HA,n = ∆HA, the equation can be expressed in the following form

cτ = − 1

1 + Fa(T )
cx +

tR0
Dx

1 + Fa(T )
cxx, (4.6)

where
a(T ) = a(TR) exp

[−∆HA

R
(

1

T
− 1

TR
)
]
. (4.7)

The initial and boundary conditions then become

cI(x0 to xm, τ0) = 0, (4.8a)

cII(xm to xmax, τ0) = 0 (4.8b)

and neglecting “p” as we do only one injection of a single solute, the boundary conditions are
given as

cI(x0, τ) =

{
cinj, τinj ≤ τ ≤ τinj + ∆τinj,
0, τinj + ∆τinj < τ < τm,

(4.8c)

cII(xm, τ) =

{
1+Fa(τI)
1+Fa(τII)

cI(xm, τm), τm ≤ τ ≤ τm + ∆τinj,

0, τm + ∆τinj < τ < τmax,
(4.8d)

cII
x (xmax, τ) = 0. (4.8e)

To externally impose temperature changes in this model, we follow the similar approach as in
the equilibrium theory, which involves two types of temperature changes: Type I and Type II.

In Type I, we maintain segment I of the system at a reference temperature TR, while segment
II is set either at TL or TH. As a result, T0 becomes a set of possible temperatures TL, TH. So, in
this case, there are no switching times τk until time τmax. This means that the only value of k
that exists is 0. As a consequence, the temperature profile, considering equation (4.3), can be
expressed as follows.

T (x, t) =

{
TR for 0 ≤ x ≤ xm, τ ∈ [0, τmax],
T0 for xm < x ≤ xmax, τ ∈ [0, τmax].

(4.9)

In Type II, the initial period from τ0 = 0 to τ1, involves both segments maintained at the
reference temperature T0 = TR. The value of τ1 is estimated in experiments or based on specific
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requirements. After τ1, we switch the temperature of segment II to either T1 = TL or T1 = TH.
As there is only one planned switching event, we have k = 0, 1. As a result, the temperature
profile for this Type II scenario can be described as follows

T (x, t) =


TR for 0 ≤ x ≤ xm, τ ∈ [0, τmax],
T0 for xm < x ≤ xmax, τ ∈ [0, τ1[,
T1 for xm < x ≤ xmax, τ ∈ [τ1, τmax].

(4.10)

In the explicit finite volume upwind method, we handle the time advancement using a forward
difference scheme, which means that the concentration values are updated at each time step
based on information from the previous time step. This explicit nature makes the numerical
integration straightforward and computationally efficient. For the convection terms, we employ a
backward difference scheme. This approach allows us to account for the transport of solutes with
respect to the direction of flow, ensuring accuracy in modeling advection-dominated phenomena.
Additionally, to approximate the dispersion terms in (4.6), we use a central difference scheme of
order two. This central differencing provides higher accuracy in capturing the dispersion effects
while minimizing numerical artifacts associated with numerical diffusion.

By combining the forward difference, backward difference, and central difference schemes,
we obtain a robust and accurate numerical method for solving the EDM. After introducing
these differences in (4.6), the resulting discrete form given by (4.11) demonstrates the numerical
implementation of the explicit finite volume method for the Equilibrium Dispersive Model (EDM).
This equation captures the concentration update at cell i and time step j + 1, while considering
the influence of the equilibrium isotherm through the factor Fa(T ), i.e.

cj+1
i − cji

∆τ
= − 1

1 + Fa(T )

cji − c
j
i−1

∆x
+

tR0
Dx

1 + Fa(T )

cji−1 − 2cji + cji+1

∆x2 (4.11)

or

cj+1
i = cji −

∆τ

1 + Fa(T )

cji − c
j
i−1

∆x
+

∆τtR0
Dx

1 + Fa(T )

cji−1 − 2cji + cji+1

∆x2 . (4.12)

For simplicity, let us use the following abbreviations

b(T ) =
1

1 + Fa(T )
, d(T ) =

tR0
Dx

1 + Fa(T )

1

∆x
. (4.13)

Then (4.12), after rearranging the terms, yields

cj+1
i = cji −

∆τ

∆x

[{
b(T )

(
cji

)
− d(T )

(
cji+1 − c

j
i

)}
−
{

b(T )
(
cji−1

)
− d(T )

(
cji − c

j
i−1

)}]
.

(4.14)
We introduce the symbols ∆±c

j
i to denote the differences in the above equations, so that

∆±c
j
i = ±

(
cji±1 − c

j
i

)
. (4.15)

So, in view of the above notation, (4.14) takes the form

cj+1
i = cji −

∆τ

∆x

[{
b(T )cji − d(T )∆+c

j
i

}
−
{

b(T )cji−1 − d(T )∆−c
j
i

}]
. (4.16)
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To make sure there is no loss in mass, we define fluxes Fc
i+ 1

2

and Fc
i− 1

2

in each cell σi as

Fc
i+ 1

2

= b(T )cji − d(T )∆+c
j
i , Fc

i− 1
2

= b(T )cji−1 − d(T )∆−c
j
i , (4.17)

which are called right and left fluxes, respectively. In view of these fluxes, (4.14) looks like

cj+1
i = cji −

∆τ

∆x

(
Fc
i+ 1

2

− Fc
i− 1

2

)
. (4.18)

The last term −∆τ
∆x

(
Fc
i+ 1

2

− Fc
i− 1

2

)
of above PDE represents a spatial discretization. It calculates

the change in concentration due to flux differences at cell interfaces (i+ 1
2 and i− 1

2). Fluxes Fc

represent the flow of the concentration between neighboring grid points.
The FVM in the flux form is widely used for numerical simulations of transport phenomena

in various scientific and engineering applications. By transforming partial differential equations
into integral conservation equations for each control volume, FVM ensures mass and other
conserved quantities are accurately preserved within the discretized domain. This approach offers
flexibility in handling complex geometries, achieves high spatial accuracy, and exhibits robustness
in dealing with non-uniform grids. Moreover, FVM’s conservative nature and suitability for
parallel computing contribute to its computational efficiency [33,75].

Stability condition: Stability analysis plays a crucial role in numerical simulations of math-
ematical models, particularly when employing numerical methods to solve partial differential
equations (PDEs) or other iterative algorithms. Ensuring the stability of a numerical scheme is
essential to produce reliable and accurate results. A stable numerical method guarantees that
small errors at each step of the computation do not grow uncontrollably over time, preventing
the simulation from converging or producing unrealistic outcomes. By analyzing the stability
of a numerical method, researchers and engineers can determine appropriate time step sizes
and other parameters that maintain numerical stability throughout the simulation. Moreover,
stability analysis provides insights into the behavior and limitations of the numerical scheme
under different conditions, allowing users to select appropriate methods for specific applications.
In the context of the EDM, a thorough stability analysis ensures that the time step size and
spatial discretization are carefully chosen to ensure the reliability of predictions and accurate
representations of solute transport and dispersion in porous media.

We derive a generalized stability condition for the time step ∆τ that holds for all Nc

components, denoted by cn with n = 1, 2, · · · , Nc. To determine the stability constraint, we
make full use of the corresponding Henry constants an(T ) for each component cn, where T = Tk
are the available temperatures. By Equation (2.4), as the provided temperatures Tk form a
monotonic sequence, the corresponding Henry constants, which are inversely proportional to
these temperatures, also follow a monotonic pattern. Consequently, we always have a maximum
and minimum value of an(T ). We define amin(T ) as the smallest Henry constant, which can be
determined by considering the available temperature options. The stability condition for the time
step ∆τ is formulated based on amin(T ) for all the available temperatures T , to ensure accurate
and stable numerical simulations in all injection scenarios. So, let us say that

amin(T ) = min {a1(T ), a2(T ), ..., aNc(T )} . (4.19)
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Now using (4.13), the above Henry constant, consequently, produces largest advection coefficient
bmax(T ) and largest dispersion coefficient dmax(T ), given as

bmax(T ) =
1

1 + Famin(T )
and dmax(T ) =

tR0
Dx

1 + Famin(T )

1

∆x
. (4.20)

As mentioned earlier, Nx is chosen arbitrarily, so ∆x is always available as xmax
Nx

. We calculate
∆τ from ∆x by using the Discrete Maximum Principle (DMP), [70]. Let c̄ji is the solution of
concentration obtained from (4.14), then we must have

min(cji−1, c
j
i , c

j
i+1) ≤ c̄j+1

i ≤ max(cji−1, c
j
i , c

j
i+1). (4.21)

For a well-posed problem, we must also have c̄j+1
i ≥ 0. Using this fact in (4.14), we seek

c̄j+1
i =

(
1− ∆τ

∆x
(bmax(T ) + 2dmax(T ))

)
cji +

∆τ

∆x
dmax(T )cji+1 + (4.22)

∆τ

∆x

(
bmax(T ) + dmax(T )

)
cji−1 ≥ 0, (4.23)

which implies the restrictions

0 ≤ 1− ∆τ

∆x

(
bmax(T ) + 2dmax(T )

)
,

∆τ

∆x
dmax(T ),

∆τ

∆x
(bmax(T ) + dmax(T )) ≤ 1 (4.24)

or

1− ∆τ

∆x

(
bmax(T ) + 2dmax(T )

)
≥ 0. (4.25)

The above inequality can also be written as

∆τ

∆x

(
bmax(T ) + 2dmax(T )

)
≤ 1,

giving the following stability restriction on our time steps

∆τ ≤ ∆x

bmax(T ) + 2dmax(T )
. (4.26)

With this, we define the time vector, for Nτ = τmax
∆τ , as

τj = j∆τ for j = 0, 1, 2, ..., Nτ . (4.27)

We will utilize the time step as defined by (4.26) not only in single-component tests but also
in the experiments involving ternary mixture injections.

Coding in MATLAB (R2017a): Let τs be the switching time that was used in the experi-
ments with which we want to compare our numerical results. We want to run computations with
one change of temperature in segment II at the time τs. Let τm be the time at which the front
of the pulse having concentration cjm reaches xm, i.e. when cjm > 0 for the first time, such that
τm ≤ τs < τmax. In Type I, we have τs = τm, while, in Type II, τs = τ1, the time when the pulse
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is somewhere inside segment II and we switch its temperature suddenly. Remember that in Type
II, the value of τs is a predetermined value taken in the experiments. Based on this selection of
τs, we could write the code for both Type I and Type II concertedly. Note that the time τm is
calculated from the code itself and all the τk are chosen appropriately. Let us explain the code
using space-time graphs given in Figure 4.2.

a b

Figure 4.2: Figure (a) corresponds to Type I temperature change, where the space-time plane is
divided into two zones, in which Zone I corresponds to segment I and cells [σ0, σNx2 ], while Zone
II corresponds to segment II and cells [σNx2+1, σNx ]. On the other hand, Figure (b) is associated
with Type II that has three zones. Zone I corresponding to segment I and Zone II as well as Zone
III forming segment II. In a single-component experiment, we normally have TR in the Zone II,
while in a multicomponent experiment we have Tk in this zone. The line of τs in (b), which is
flexible between τm and τmax, is a type of border between Zone II and Zone III.

As we have noticed in the characteristics solution in Chapter 3, the estimation of concentrations
in segment II of the chromatographic column requires the multiplication of two ratios: the ratio
of retention factors under different temperatures 1+Fa(TR)

1+Fa(Tk) and the ratio of space bandwidths in
the two segments. In Type I temperature change, the two ratios turn out to be reciprocals of
each other, smoothing out each other. This means that the mobile phase concentration remains
unaffected in Type I. The reason for this is that in Type I temperature change, there is no jump
in temperature over time, and the continuity in temperature conditions keeps the ratios reciprocal.
On the other hand, in Type II, the space bandwidths in the two segments are the same and
their ratio gives value of 1, leaving only the ratio of retention factors that affects the mobile
phase concentration. This is because Type II involves a temperature jump over time, leading to
discontinuity in temperature conditions, which affects the behavior of the ratios. Hence, in Type
II, we perform the multiplication of the latter ratio to accurately estimate the concentration in
segment II.

To ensure the well-posedness of the problem, we impose boundary conditions on the half
cells at the edges. The left boundary cell (σ0) follows the left boundary condition (4.8c) which
establishes the concentration value at the very left edge of the spatial domain. Similarly, the right
boundary cell (σNx) adheres to the right boundary condition (4.8e), setting the concentration
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value at the extreme right of the domain, which, after getting split by central difference implies

cj+1
Nx+1 − c

j+1
Nx−1

2∆x
= 0 (4.28a)

or

cj+1
Nx+1 = cj+1

Nx−1. (4.28b)

For the rest of the cells, we use a zone-wise division of the code as given below.
In Type I, corresponding to Figure 4.2a, Zone I maintains temperature TR, while Zone II has

temperature Tk ∈ {TR, TL, TH}. Therefore, in Zone I, i.e. for cells [σ1, σNx2 ] and for all times j,
using (4.14), the PDE has the following appearance

cj+1
i = cji −

∆τ

∆x

[{
b(TR)cji − d(TR)∆+c

j
i

}
−
{

b(TR)cji−1 − d(TR)∆−c
j
i

}]
, (4.29)

while for Zone II corresponding to cells [σNx2+1, σNx−1], it is given as

cj+1
i = cji −

∆τ

∆x

[{
b(Tk)c

j
i − d(Tk)∆+c

j
i

}
−
{

b(Tk)c
j
i−1 − d(Tk)∆−c

j
i

}]
. (4.30)

The scenario of the Type II, shown in the figure 4.2b, implies that zones I and II remain at
temperature TR, since both segments are initially kept at the reference temperature and this is
changed at time τs only for the segment II. The concentration in these two zones is defined by the
PDE (4.29). However, as discussed earlier, the calculation of concentration in Zone III requires
an adjustment after the switching time τs due to the sudden temperature change in our model at
this specific time. In Zone III, the index j starts from `, which is the lowest index where τj ≥ τs.
When τ` ≥ τs > τ`−1, the concentration must be multiplied by the ratio demanded by the jump
condition (2.42), which is given by

1 + Fa(TR)

1 + Fa(Tk)
=

b(Tk)

b(TR)
. (4.31)

So, the concentration entering Zone III from Zone II through line τs is given as

c`n =
b(Tk)

b(TR)
c`n. (4.32)

The computation of the right-hand side in the above equation is based on (4.29), and the resulting
values are used as the initial conditions for the subsequent time step. This effectively employs
the boundary condition (4.8d) to ensure a consistent and smooth transition between time steps,
ensuring the accuracy and stability of the numerical solution.

So, at the boundary between Zone I and III there is a cell σNx2 = [xNx2−
∆x
2 , xNx2 + ∆x

2 ], which
is half in Zone I and half in Zone III. Therefore, the right flux corresponds to the temperature Tk
and the left flux corresponds to the temperature TR. The left flux is adjusted by the ratio (4.31)
and consequently, the concentration in this cell is defined as

cj+1
i = cji −

∆τ

∆x

[{
b(Tk)c

j
i − d(Tk)∆+c

j
i

}
− b(Tk)

b(TR)

{
b(Tk)c

j
i−1 − d(Tk)∆−c

j
i

}]
. (4.33)

And finally, the concentration throughout Zone III, looks like

cj+1
i = cji −

∆τ

∆x

[{
b(Tk)c

j
i − d(Tk)∆+c

j
i

}
−
{

b(Tk)c
j
i−1 − d(Tk)∆−c

j
i

}]
. (4.34)
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Calculation of Important Times: We know that calculating the arrival times at the interface
xm and the column exit xmax holds significant importance as these times play a crucial role in
determining the retention times for each component. This information enables us to determine
the most appropriate injection times for consecutive injections of multicomponent mixtures.
Additionally, the cycle times, representing the time interval between consecutive injections, can
be accurately determined, contributing to the optimization of column productivity and separation
efficiency.

In the MATLAB code, associated to xm and xmax, we use concentration arrays, representing
the concentrations of a particular component at these locations during all the process time, respec-
tively. We use the “find” function to locate the indices in these arrays, where the concentration
values meet a specific threshold. This calculation is given step by step below.

Step 1: Finding Non-zero Concentrations at xm and xmax

In the MATLAB code, we have a concentration matrix “c” representing the concentrations of a
particular component at all time-space mesh points. The variables Nx2 and Nx are the indexes
representing the locations of the interface xm and column’s exit xmax, respectively. We use the
“find” function to locate the indices in the array c(Nx2,:) and c(Nx,:) where the concentration
values are greater than 10^(-2). This means we are looking for the time steps at which the
concentration of the component at the aforementioned locations becomes significant, considering
a threshold of 10^(-2) as significant.

Step 2: Extracting Time Information
The function returns column vectors “fm” at xm and “fmax” at xmax containing the row positions
where the condition is met. Each element of “fm” and “fmax” represents a time index where the
concentration at xm and xmax, respectively, is greater than 10^(-2). The first element of “fm”
represents the earliest time at which the adsorption front of the component reaches xm and the
last element of “fmax” represents the latest time at which the desorption front of the component
reaches xmax.

Step 3: Finding the Times at xm and xmax

The next lines of code “tm” and “tmax” extracts the time information. The line “tm” takes the
first element of “fm” (i.e. the earliest time index where the concentration is greater than 10^(-2)
at xm) and the line “tmax” takes the last element of “fmax” (i.e. the latest time index where the
concentration is greater than 10^(-2) at xmax). The “round” function rounds the values to the
nearest integer (as time indices are discrete), and then accesses the corresponding time value
from the time array τ . The result are stored in the variables “tm” and “tmax”.

The MATLAB code for these calculations is given below.

fm=find (c(Nx2 ,:) >10^(-2)); % Non -zero array of c at xm
tm=t(round(fm(1))); % time for c to reach xm
fmax=find (c(Nx ,:) >10^(-2)); % Non -zero array of c at xmax
tmax=t(round(fmax(end))); % time for c to cross xmax

Calculation of Mass at Column’s Outlet: Maintaining accurate mass balance is funda-
mental in the FVM as it ensures the conservation of mass during numerical simulations. This
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accuracy is of paramount importance for various applications, including chemical engineering,
especially in the field of chromatography. By adhering to mass balance principles, the FVM’s
results can be validated against experimental data or analytical solutions, instilling confidence
in the reliability of the simulations for a wide range of practical and scientific investigations.
The FVM’s precise mass balance capability contributes to optimizing transport processes and
effectively predicting solute behavior in porous media systems, making it a robust and invaluable
tool in tackling real-world challenges in chemical engineering and chromatography.

To determine the mass at x = xmax, we utilize (2.55), but a direct application is not possible
due to the need for a discrete version of the integral. An inherent challenge arises in obtaining
precisely the injected mass, as ∆τinj may not align perfectly with ∆τ , potentially resulting in a
slight surplus or deficit. To address this, we manually adjust ∆τinj to ensure it is a multiple of
∆τ and then subtract any excess mass from the original formula. Introducing a time variable τ̄j
for j = 0, 1, 2, ..., Nτ , with τ̄0 = 0, allows us to modify the formulas (2.53) to (2.55) for all j such
that τj ≤ ∆τinj as follows:

τ̄j+1 = τ̄j + ∆τ for j = 0, 1, 2, ..., Nτ . (4.35)

The mass adjustment at any time τj and location xi is given by cinj (τ̄j −∆τinj). Therefore,
expressing (2.53) to (2.55) in its discrete sum form for n = 1 and mn = m, we obtain the correct
mass for any j∗ ∈ [0, Nτ ] as follows

mtotal = A [ε+ (1− ε)an(T )]

Nx∑
j=0

[
cj

∗

i − cinj (τ̄j −∆τinj)
]

∆x, (4.36a)

for any i∗ ∈ [0, Nx]

mtotal =
u

1 + Fan(T )
A [ε+ (1− ε)an(T )]

Nτ∑
j=0

[
cji∗ − cinj (τ̄j −∆τinj)

]
∆τ, (4.36b)

while, for i = Nx, it is given as

mcol = uεA

Nτ∑
j=0

[
cjNx − cinj (τ̄j −∆τinj)

]
∆τ. (4.36c)

The above newly derived formulas for mass calculation are not only applicable to single-
component injections but also play a crucial role in handling multicomponent injections. As
we move forward to consider scenarios involving multiple solute components, the adjustment
technique remains consistent and ensures accurate mass calculations.

4.1.2 Analysis of Consecutive Injections of Ternary Mixture

In the previous chapter, we explored two groups, Group I and Group II, each comprising three
distinct scenarios based on the relative migration rates of the components. In this section, we will
only focus on the last scenario that resembles the late eluter case of Group I, i.e. α1,2 >> α2,3.
This is also because in the experimental project mentioned at the beginning, this scenario was
considered. To this end, we will use experimentally determined Henry constants and real system
parameters to improve the accuracy and representativeness of our numerical simulations. In this
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way, we hope to gain deeper insights into the performance of the column and explore ways to
improve its productivity.

Our primary focus remains on reducing the cycle time ∆τc while maintaining the integrity of
the numerical solution to validate its accuracy against experimental data.

Let us recall the scenario when α1,2 >> α2,3, where a multicomponent mixture with con-
centrations c1, c2, and c3 is consecutively injected P -times at specific injecting times τpinj where
p = 1, 2, ..., P ∈ N. We use the equations given by (4.2) and (4.3), where Nc = 3 and τP3,max is
the final time of the experiment when the last component of last injection exit the column, i.e.

[1 + Fan(T )] cnτ = −cnx + tR0
Dxcnxx , n = 1, 2, 3, (4.37)

T (x, τ) =


TR for 0 ≤ x ≤ xm, τ ∈ [0, τP3,max],

Tk for xm < x ≤ xmax, τ ∈ [τk,min{τk+1, τ
P
3,max}],

k ∈ N0, τk < τP3,max.

(4.38)

Now, let’s extend the initial and boundary conditions, previously established for a single component
in (4.8), to encompass the n-component scenario, where n = 1, 2, 3 and p = 1, 2, 3, ..., P, P ∈ N,
i.e.

cI
n(x0 to xm, τ0) = 0, (4.39a)

cII
n (xm to xmax, τ0) = 0, (4.39b)

cI
n(x0, τ) =

{
cn,inj, τpinj ≤ τ ≤ τ

p
inj + ∆τinj,

0, τpinj + ∆τinj < τ < τpn,m,
(4.39c)

cII
n (xm, τ) =

{
1+Fan(T I)
1+Fan(T II)

cI
n(xm, τ

p
n,m), τpn,m ≤ τ ≤ τpn,m + ∆τinj,

0, τpn,m + ∆τinj < τ < τpn,max,
(4.39d)

cII
nx(xmax, τ) = 0. (4.39e)

Recall that the injected concentration remains constant for each pth injection, which is why we
do not use a superscript p for each cn. We also know that the injection time ∆τinj for each cn
remains unchanged in each injection.

Associated to each component, we also determine the times τp1,m, τ
p
2,m, and τp3,m corresponding

to when the fronts of c1, c2 and c3 reach the middle of the column xm during the pth injection.
Additionally, we calculate τp1,max, τ

p
2,max, and τ

p
3,max as the times when these components have just

exited the column. While we previously calculated these times analytically using trajectories, in
the numerical analysis we estimate them using computational methods explained in three steps
previously.

In this numerical study, we will apply both the conservative and optimal design concepts to
calculate the injection times tpinj and cycle times ∆tpc in the multicomponent mixture system. The
objective is to examine now the numerically estimated solutions to determine if either of these
concepts can generate shorter cycle times compared to the isothermal case. Having previously
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found that only the optimal design concept without safety margins can achieve shorter cycle
times given arbitrary parameters, we will now re-examine both the concepts in the context of
experimentally determined parameters. By comparing the results from both the concepts, we aim
to identify the most effective approach for reducing the cycle time and increasing the productivity
of the chromatographic column. As these schemes are extensively explained in Section 3.3.2, we
will provide a concise overview here.

Conservative Design Concept with Safety Margins

We start with the same idea of keeping segment I at the reference temperature TR and segment
II at TL. After the the injection of the mixture cn, each with a corresponding experimentally
determined Henry constant, migration takes the form of the late eluter case mentioned earlier.
In the segment II with temperature TL, we aim to slow down the fast eluting component c1,
but by the time it leaves the column, c2 and c3 also enter the segment II and are slowed down.
At the point where c1 has just left the column, that is, at the time τ1 = τ1

1,max, we change the
temperature from TL to TH. Concentrations c2 and c3 which elute somewhere in segment II,
get accelerated by TH due to which the gap between all the three components is reduced, i.e.
α1,2 ≈ α2,3. We keep the temperature until c2 and c3 both leave the column. Then we switch
back the temperature from TH to TL at time τ2 = τ1

3,max and repeat the same sequence of the
temperature regimes for the successive injections.

With this understanding in mind, we can now introduce the formula for switching times
τk, which was already utilized in dimensional form during the analytical analysis in Chapter 3,
equation (3.14). This formula is now given by (4.40) in non-dimensional form which defines the
switching times τk = tk

tR0
corresponding to the changes in temperature during each injection. As

observed, the cooling of segment II continues after times τ2k and heating occurs after τ2k+1, where
k ∈ N0 and τ0 = 0. Consequently, the formula for all the switching times remains unchanged
compared to the one provided by the analytical solution, i.e.

τk =

{
τ2k = τp3,max when T = TL and k = 1, 2, 3, ..., P,

τ2k+1 = τp1,max when T = TH and k = 0, 1, 2, 3, ...P − 1, P ∈ N. (4.40)

After introducing the switching times and the associated sequence of temperature regimes,
we can effectively formulate the temperature profile of the entire column, as demonstrated in
equation (4.38), as

T (x, τ) =


TR for 0 ≤ x ≤ xm, τ ∈ [0, τpn,max],
T2k = TL for xm < x ≤ xmax, τ ∈ [τ2k, τ2k+1[,
T2k+1 = TH for xm < x ≤ xmax, τ ∈ [τ2k+1,min{τ2k+2, τ

p
n,max}],

k ∈ N0, τ2k+2 < τpn,max.
(4.41)

The injection times in this design concept are consistently determined from τp3,max and τp+1
1,m .

This ensures that a successive injection takes place at a time that allows the concentration c1

of the succeeding injection to reach the interface xm precisely when the concentration c3 of the
preceding injection leaves the column. Mathematically, we establish the relationship between
τp3,max and τp+1

1,m as follows

τp3,max = τp+1
1,m , where p = 2, 3, 4, ..., P. (4.42a)



4.1. EDM COUPLED WITH IDEAL TEMPERATURE STEP GRADIENTS 75

Alternatively, utilizing (3.19) enables us to obtain the time for the next injection without the
need for complicated simplifications, yielding

τp+1
inj = τp3,max − τ

1
1,m. (4.42b)

Similarly, considering the arrival time of the adsorption fronts of component c1 at xmax in the pth

injection, denoted as τp1,max,ad, and introducing a safety margin ∆τpsaf between two consecutive
injections, the cycle time ∆τc (previously introduced in (3.23a)) is determined as follows

∆τc = τp3,max − τ
p
1,max,ad + ∆τpsaf , for p = 1, 2, ..., P, P ∈ N, (4.43a)

where

∆τpsaf = τp+1
1,max,ad − τ

p
3,max, for p = 1, 2, ..., P − 1, P ∈ N. (4.43b)

In our numerical analysis, we follow a similar approach to the conservative design concept
explained in chapter 3, i.e. the cycle time ∆τc is determined for calculating productivity starting
from the first injection (p = 1). This cycle time remains constant for all injections, making it a
critical parameter for evaluating the overall performance of the chromatographic column.

The abbreviations (4.13) and (4.15) in the case of multicomponent injection are used as follows

bn(T ) =
1

1 + Fan(T )
, dn(T ) =

tR0
Dx

1 + Fan(T )

1

∆x
, for n = 1, 2, 3, (4.44)

∆±c
j
n,i = ±

(
cjn,i±1 − c

j
n,i

)
. (4.45)

In conclusion, having established the switching times and the corresponding temperature sequences,
we discretize the PDEs governing the behavior of the three eluting components under different
temperature regimes, following the conservative design concept.
c1 :
As c1 undergoes a Type I cooling, its corresponding PDE can be illustrated as shown in Figure
4.2a. In both zones, the PDE for c1 is represented by the following expression

cj+1
1,i = cj1,i −

∆τ

∆x

[{
b1(TR)cj1,i − d1(TR)∆+c

j
1,i

}
−
{

b1(TR)cj1,i−1 − d1(TR)∆−c
j
1,i

}]
, (4.46a)

cj+1
1,i = cj1,i −

∆τ

∆x

[{
b1(TL)cj1,i − d1(TL)∆+c

j
1,i

}
−
{

b1(TL)cj1,i−1 − d1(TL)∆−c
j
1,i

}]
. (4.46b)

c2 :
The component in the middle, c2, undergoes two temperature changes, initially experiencing
cooling of Type I and then heating of Type II. As a result, we have switching times τs = {τ2,m, τ1}.
Figure 4.2b represents this scenario, and the concentration c2 in its Zone I is described by the
following PDE

cj+1
2,i = cj2,i −

∆τ

∆x

[{
b2(TR)cj2,i − d2(TR)∆+c

j
2,i

}
−
{

b2(TR)cj2,i−1 − d2(TR)∆−c
j
2,i

}]
. (4.46c)

In Zone II, it is given as

cj+1
2,i = cj2,i −

∆τ

∆x

[{
b2(TL)cj2,i − d2(TL)∆+c

j
2,i

}
−
{

b2(TL)cj2,i−1 − d2(TL)∆−c
j
2,i

}]
. (4.46d)
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As shown in (4.32), then for j = ` as the lowest index with τj ≥ τ1 and τ` ≥ τ1 > τ`−1, the
temperature jumps from TL to TH. So we have

c`2,i =
b2(TH)

b2(TL)
c`2,i. (4.46e)

Consequently, this adjustment affects the left flux at the cell σNx2 = [xNx2 −
∆x
2 , xNx2 + ∆x

2 ].
Thus, the concentration in this cell is calculated as

cj+1
2,i = cj2,i −

∆τ

∆x

[{
b2(TH)cj2,i − d2(TH)∆+c

j
2,i

}
− b22(TH)

b2(TR)

{
b2(TR)cj2,i−1 − d2(TR)∆−c

j
2,i

}]
.

(4.46f)

Hence, the concentration in the onwards cells [σNx2+1, σNx−1] is calculated as

cj+1
2,i = cj2,i −

∆τ

∆x

[{
b2(TH)cj2,i − d2(TH)∆+c

j
2,i

}
−
{

b2(TH)cj2,i−1 − d2(TH)∆−c
j
2,i

}]
. (4.46g)

c3 :
The last component, c3, is also subject to Type I and Type II temperature variations in the same
sequence as c2. Since c3 enters segment II at time τ3,m, therefore, we have τs = {τ3,m, τ1}. The
scheme remains unchanged from c2, which is why we reconsider Equations (4.46c) to (4.46g) for
c3.

Keep in mind that in the last cell σNx , we utilize the right boundary condition for all three
components using the central difference scheme. As a result, the concentration in the final cell is
obtained as follows

cj+1
n,Nx+1 = cj+1

n,Nx−1. (4.46h)

In a similar way, we can write the scheme for the components of the succeeding injections.
As mentioned earlier, the conservative design concept takes into account safety margins

between the elution of component c3 from the previous injection and the elution of component c1

from the following injection to avoid back-mixing. However, due to the existence of these safety
margins, this concept has not demonstrated promising results and has not improved productivity
compared to the isocratic case. This is because, in this design concept, we are unable to do every
p+ 1th injection earlier than that in isothermal case. This leads to a larger cycle time and loss
in productivity. Therefore, in the next section, we will study the optimal design concept, which
omits safety margins between consecutive injections and helps achieve higher productivity gains
compared to the isocratic conditions.

Optimal Design Concept without Safety Margins

In this design concept, we maintain the same temperature regimes and switching times for the
first injection as in the conservative design concept. However, we introduce a crucial modification
for the second injection to omit the safety margins. Here, we initiate the second injection earlier,
allowing the adsorption front of component c1 to experience heating together with the last
component of the preceding injection before the time τ2 = τ1

3,max. Subsequently, the temperature
is switched to TL, cooling the desorption front of component c1 of the second injection. Although
this intricate temperature profile does not directly reduce the cycle time, it plays a vital role in
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preserving resolution and preventing remixing of components c1 and c2. The acceptable reduction
in cycle time is achieved then by heating the last two components, c2 and c3, of the second
injection after the time τ3 = τ2

1,max. We allow the repetition of the sequence of these temperature
regimes, for the consecutive injections. This has the effect of avoiding the safety margins created
by the conservative design concept, where we applied unanimous temperature regimes to every
injection. By omitting safety margins between consecutive injections and intelligently utilizing
the temperature profiles, the optimal design concept yielded a substantial productivity gains that
we failed to achieve in the conservative design concept. In this case, we are now able to do every
p+ 1th injection earlier than that in isothermal case. This actually leads to a shorter cycle time
and gain in productivity.

We also know from our analytical studies in the previous chapter, that in the optimal design
concept, the calculation of injection times τpinj differs from the conservative design concept. The
goal in the optimal design concept is to ensure that the adsorption front of the component c1 in
the successive injection reaches xmax at the same time as the desorption front of the component
c3 from the previous injection leaves xmax. Unlike the conservative design concept, where elution
times were known in advance due to the same temperature regimes for all the injections, the
optimal design concept requires a different approach. In contrast to the analytical solution for
the optimal design concept, the calculation of the time for the second injection in our numerical
approach takes a more empirical route. We adopt a method where each τ2

inj is determined by
adjusting τ1

1,max with a small time quantity Ω. This choice of Ω is crucial as it directly influences
the level of remixing between the tails of c3 and c1. The formula for second injection is given as
follows

τ2
inj = τ1

1,max ± Ω. (4.47)

Once the second injection is completed, we find the cycle time using the same approach as in the
previous studies of optimal design concept, i.e.

∆τ2
c = τ2

3,max − τ2
1,max,ad. (4.48)

Starting from τ3
inj, we calculate all the successive injection times based on the cycle times previously

calculated at the column’s outlet. This iterative process allows us to determine the injection
times for all subsequent injections, enabling us to perform multiple injections in a more efficient
and productive manner. Mathematically, τ3

inj can be calculated as

τ3
inj = τ2

inj + ∆τ2
c (4.49)

and in its generalized form, we can express the injection time for each new injection as given in
(4.50). This approach ensures that the injections are scheduled at optimal intervals, leading to a
shorter cycle time and higher productivity for the chromatographic process.

τpinj = τp−1
inj + ∆τp−1

c , p = 3, 4, ..., P ∈ N. (4.50)

By carefully adjusting the injection times, we can achieve better resolution and productivity
in our numerical simulations, making the optimal design concept more applicable to real-world
scenarios.

In this scheme, the cycle time ∆τc is provided for the calculation of productivity starting
from the second injection, i.e. p = 2, since it is the optimal one. Moreover, the switching times in
this scheme are given by the same formula (4.40).
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Consequently, the PDEs in this scheme would be similar to those in the conservative design
concept, e.g. equations (4.46a) to (4.46h). The main difference lies in fitting the correct tempera-
tures and ratios at the respective places, which are now influenced by the optimized injection and
switching times. As a result, we do not need to rewrite the PDEs for this concept.

In conclusion, the optimal design concept has proven to be productive, surpassing the
conservative design concept by omitting the safety margins without compromising on remixing
prevention. The success of this approach is attributed to the careful analysis of each component’s
Henry constants, adsorption enthalpies and the available temperature range etc., allowing us to
craft a suitable gradient operation strategy. By selecting precise switching and injection times, we
can achieve the shortest possible cycle time enhancing the performance of liquid chromatographic
columns.

A detailed explanation of the results from this model can be found in Chapter 5, specifically
in Sections 5.2.1 and 5.3.1.

To this point, the distinction between the conservative design concept, which includes safety
margins, and the optimal design concept, which omits them, has been clearly established. The
purpose of presenting both concepts is to highlight the critical role of switching strategies in
chromatographic processes and to demonstrate how the inclusion or omission of safety margins
can significantly impact the results. This underscores the specificity of this study and suggests
that outcomes may vary under different conditions. Given that the optimal design concept has
shown improvement compared to isocratic conditions in our study, we do not see the necessity of
further investigating the conservative design concept in the subsequent sections.

4.2 EDM Coupled with Simplified Energy Equation

In this modeling approach, we replace the ideal temperature gradients with a simplified energy
equation (2.28). We have already solved this simplified energy equation analytically using Laplace
transform in Section 2.3. The solution is given in two forms by (2.37a) and (2.37b). Based on
this analytical solution, we will now estimate the concentration solution using FVM as in the
previous section. For this purpose, we consider again (2.27) together with the aforementioned
solution of T , i.e.

[1 + Fan(T )] cnτ + cnFan(T )TTτ = −cnx + tR0
Dxcnxx , n = 1, 2, 3, ..., Nc, (4.51)

such that

T (τ) = Tw − (Tw − TR) e−tR0
X2τ for τ <

x

X1
(4.52a)

and

T (x) = Tw − (Tw − TR) e
−tR0

X2
X1
x

for x < X1τ. (4.52b)

To initiate the process of estimating the concentration solution, we begin by introducing the
indices 0 ≤ i ≤ Nx for variable x and 0 ≤ j ≤ Nτ for variable τ into the equations mentioned
above, i.e.

Tj = Tw − (Tw − TR) e−tR0
X2τj for τj <

xi
X1
, (4.53a)
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and

Ti = Tw − (Tw − TR) e
−tR0

X2
X1
xi for xi < X1τj . (4.53b)

We know that Nx and Nτ are the number of discretization points for x and τ , respectively. We
calculated them in the the beginning of this chapter.

As a result, the component’s particular Henry constant, following the insights of (4.7),
transforms into the following expression after incorporating the indices i and j, i.e.

an(T ji ) = an(TR) exp
[−∆HA,n

R
(

1

T ji
− 1

TR
)
]
, n = 1, 2, 3, ..., Nc. (4.54)

This adjustment also transforms the abbreviations given by (4.13) into the indexed form, as
follows

bn(T ji ) =
1

1 + Fan(T ji )
, dn(T ji ) =

tR0
Dx

1 + Fan(T ji )

1

∆x
. (4.55)

Next, we establish (4.51) to facilitate the computation process. With a slight rearrangement,
introducing the indices i and j, and then putting the values of (T ji )τ and an(T ji )T from (4.52a)
and (4.54), respectively, equation (4.51) assumes the following form

[1 + Fan(T ji )]cnτ +
F∆HA,nan(T ji )tR0

X2 (Tw − TR) e−tR0
X2τj

R(T ji )2
cn = −cnx + tR0

Dxcnxx . (4.56)

To capture the concentration update in cell i and time step j + 1, we introduce in the above
equation the backward difference terms for convection and central difference terms for dispersion,
as in (4.11), i.e.

[1 + Fan(T ji )]
cj+1
n,i − c

j
n,i

∆τ
+
F∆HA,nan(T )tR0

X2 (Tw − TR) e−tR0
X2τj

R(T ji )2
cjn,i

= −
cjn,i − c

j
n,i−1

∆x
+ tR0

Dx

cjn,i−1 − 2cjn,i + cjn,i+1

∆x2
.

(4.57)

Let us define a new abbreviation gn in the above equation. Given (4.53a) and (4.53b), it has
two possible values since there is the term (T ji )τ , i.e.

gn(T ji ) =

 F∆HA,nan(T ji )tR0
X2(Tw−TR)e

−tR0
X2τj

R(T ji )2(1+Fan(T ji ))
, for τj <

xi
X1
,

0, for xi < X1τj or τj >
xi
X1
.

(4.58)

After rearrangement and introducing the above abbreviations together with those of (4.55), we
get

cj+1
n,i = cjn,i −∆τgn(T ji )cjn,i −∆τbn(T ji )

cjn,i − c
j
n,i−1

∆x
+ ∆τdn(T ji )

cjn,i−1 − 2cjn,i + cjn,i+1

∆x
. (4.59)

To represent the equation in a simpler form, we use the (4.15), which after further simplification
yields

cj+1
n,i = cjn,i −∆τ gn(T ji ) cjn,i

− ∆τ

∆x

[{
bn(T ji ) cji − dn(T ji ) ∆+c

j
i

}
−
{
bn(T ji ) cjn,i−1 − dn(T ji ) ∆−c

j
i

}]
.

(4.60)
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Hence, using the fluxes defined by (4.17), we get the PDE in the final form as

cj+1
n,i = cjn,i −∆τgn(T ji )cjn,i −

∆τ

∆x

(
Fc
i+ 1

2

− Fc
i− 1

2

)
. (4.61)

The above PDE, like previous model uses an explicit time-stepping scheme. It depends on the
function hn evaluated at T ji . The term −∆τgn(T ji )cjn,i accounts for any source or sink of the
concentration due to the function gn and the time step ∆τ .

Stability condition: The computation of the time step in this model follows a slightly different
approach than in the previous section because of the additional term gmax(T )=max

(
−∆τgn(T ji )cjn,i

)
.

Given (4.60), (4.24) will take the form

0 ≤ (1−∆τgmax(T ))− ∆τ

∆x
(bmax(T ) + 2dmax(T )) , (4.62)

∆τ

∆x
dmax(T ),

∆τ

∆x
(bmax(T ) + dmax(T )) ≤ 1.

where bmax(T ) and dmax(T ) are the convection and dispersion coefficients with maximum values
at different temperatures given by (4.20).

(1−∆τgmax(T ))− ∆τ

∆x
(bmax(T ) + 2dmax(T )) ≥ 0. (4.63)

The above inequality can also be written as

∆τgmax(T ) +
∆τ

∆x
(bmax(T ) + 2dmax(T )) ≤ 1

or
∆τ ≤ ∆x

∆xgmax(T ) + bmax(T ) + 2dmax(T )
. (4.64)

This produced a slightly smaller time step than in (4.26), since gn(T ) ≥ 0 yields gmax(T ) > 0.

Coding in MATLAB (R2017a): We know for the single-component injection tests, the
temperature profile has just one significant change. That is why, in MATLAB code, we provide
the value of Tw in (4.53a) simply as follows

Tw =

{
TR for 0 ≤ x ≤ xm,
Tk for xm < x ≤ xmax,

(4.65)

where, Tk = {TR, TH, TL}. However, when we inject ternary mixture multiple times for produc-
tivity calculations, the temperature profile becomes more complex with multiple temperature
changes. To find the concentration solutions in this case in MATLAB, we need to assign different
values to Tw at each switching time. In segment I, it always stays at TR, but in segment II, it is
given as follows

Tw =


TR for 0 ≤ x ≤ xm, τ ∈ [0, τPn,max],

Tk for xm < x ≤ xmax, τ ∈ [τk, τk+1[,
Tk+1 for xm < x ≤ xmax, τ ∈ [τk+1, τk+2[,

k ∈ N0, τk < τPn,max.

(4.66)
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We use the value of Tw from the above function in 4.53a to calculate the temperature profile
of the column. However, this is not so simple. The reason is that at each switching at τk, the
temperature stops at a certain value, say TS(τk), and from there it starts moving in a different
direction till another switch at τk+1. The code needs this value of TS(τk) as a reference value to
calculate the temperature profile. We use the same 4.52a to calculate TS(τk) for each switching
time τk. If we replace TR by TS(τk), τj by τk in the mentioned equation, the corresponding
temperature value T (τk) is given as

T (τk) = Tw − (Tw − TS(τk)) e
−tR0

X2τk . (4.67)

After few easy steps of simplification, we get the expression for TS(τk) as

TS(τk) = Tw − (Tw − T (τk)) e
tR0

X2τk . (4.68)

To calculate the value of TS(τk) from the above formula, we manually enter the values of T (τk)
and τk in the code. Then we replace the term TR in the analytical solution 4.53a with TS(τk) to
calculate the actual temperature profile of the segment II for the whole time τ , which is obtained
as follows

Tj = Tw − (Tw − TS(τk)) e
−tR0

X2τj for τj <
xi
X1
, (4.69)

where TS(τk) is given by (4.68). In our code, we calculate the switching times τk, as mentioned
earlier, by monitoring the retention times of particular concentrations. Whenever the concentration
at xm and xmax reaches a certain threshold of 10−2, we consider it significant and record the
corresponding times. Since we plan to address only the optimal design concept using this model,
all the switching, cycle, and injection times are calculated as in the previous model, given by
equations (4.40), (4.48), and (4.50), respectively.

The outcomes of this model have been elaborated upon in Chapter 5, within Sections 5.2.2
and 5.3.2.

4.3 EDM Coupled with Energy Equation

In this section, we compute solution to the detailed and final model presented in Section 2.2. This
advanced model, which incorporates the EDM of the concentration along with the detailed energy
equation, describes an advancement in the induced temperature profile. In particular, it addresses
not only the effects of external temperature gradients on the propagation of concentration fronts,
but also the resulting heat exchange within the column.

Let us discretize the system by again using the explicit finite volume method. As with the
previous models, we are dealing with a forward difference in time, the backward difference for the
convection terms, and the central difference of order two in the dispersion terms of (2.21), i.e.[

1 + Fa(T ji ) cjiFa(T ji )T
GFa(T ji ) 1 + cjiGFa(T ji )T

][
cj+1
i −cji

∆τ
T j+1
i −T ji

∆τ

]
=

−

 cji−c
j
i−1

∆x

X1
T ji −T

j
i−1

∆x

+

 tR0
Dx

cji−1−2cji+c
j
i+1

∆x2

tR0
X3

T ji−1−2T ji +T ji+1

∆x2

+

[
0

tR0
X2(Tw − T ji )

]
.

(4.70)
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Since, J is non-singular, so J−1 exists and we calculate it as

J−1 =
1

λ2

[
1 + cjiGFa(T ji )T −cjiFa(T ji )T
−GFa(T ji ) 1 + Fa(T ji )

]
. (4.71)

In view of (4.71), (4.70) becomes[
cj+1
i

T j+1
i

]
=

[
cji
T ji

]
− ∆τ

λ2

[
1 + cjiGFa(T ji )T −cjiFa(T ji )T
−GFa(T ji ) 1 + Fa(T ji )

]
 cji−c

j
i−1

∆x − tR0
Dx

cji−1−2cji+c
j
i+1

∆x2

X1
T ji −T

j
i−1

∆x − tR0
X3

T ji−1−2T ji +T ji+1

∆x2

− [ 0

tR0
X2(Tw − T ji )

] .

(4.72)

For simplicity, let us substitute some combinations of constant values as

D1 =
tR0

Dx
∆x , D2 =

tR0
X3

∆x and s = tR0
X2∆τ (4.73)

and differences as

∆±c
j
i = ±

(
cji±1 − c

j
i

)
, (4.74a)

∆±T
j
i = ±

(
T ji±1 − T

j
i

)
. (4.74b)

After introducing the above terms in (4.72) a small rearrangement gives[
cj+1
i

T j+1
i

]
=

[
cji
T ji

]
− 1

λ2

[
1 + cjiGFa(T ji )T −cjiFa(T ji )T
−GFa(T ji ) 1 + Fa(T ji )

]
(

∆τ

∆x

 {
cji −D1∆+c

j
i

}
−
{
cji−1 −D1∆−c

j
i

}{
X1T

j
i −D2∆+T

j
i

}
−
{

X1T
j
i−1 −D2∆−T

j
i

}− [ 0

s(Tw − T ji )

])
.

(4.75)

Let Fc
i+ 1

2

and Fc
i− 1

2

be right and left fluxes of concentration and FT
i+ 1

2

and FT
i− 1

2

of temperature,
respectively, such that

Fc
i+ 1

2

= cji −D1∆+c
j
i , Fc

i− 1
2

= cji−1 −D1∆−c
j
i ,

FT
i+ 1

2

= X1T
j
i −D2∆+T

j
i , FT

i− 1
2

= X1T
j
i−1 −D2∆−T

j
i .

(4.76)

After introducing above fluxes in (4.75), we get[
cj+1
i

T j+1
i

]
=

[
cji
T ji

]
− 1

λ2

[
1 + cjiGFa(T ji )T −cjiFa(T ji )T
−GFa(T ji ) 1 + Fa(T ji )

]
(

∆τ

∆x

[
Fc
i+ 1

2

− Fc
i− 1

2

FT
i+ 1

2

− FT
i− 1

2

]
−
[

0

s(Tw − T ji )

])
.

(4.77)
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Stability condition: In this model, in addition to the mass balance, the energy equation is
used to determine the time step ∆τ . This is due not only to the coupling between the two
equations, but also to their simultaneous discretization. This results in two time step values, and
we select the smallest among them for further computations.

Ignoring the Jacobian matrix in (4.75), the condition (4.22) for the mass balance can be
written as

c̄j+1
i =

(
1−

(
∆τ

∆x
+ 2

∆τ

∆x
D1

))
cji +

∆τ

∆x
D1c

j
i+1 +

(
∆τ

∆x
+

∆τ

∆x
D1

)
cji−1 ≥ 0.

which implies

0 ≤ 1−
(

∆τ

∆x
+ 2

∆τ

∆x
D1

)
,

∆τ

∆x
D1,

∆τ

∆x
+

∆τ

∆x
D1 ≤ 1

or

1−
(

∆τ

∆x
+ 2

∆τ

∆x
D1

)
≥ 0. (4.78)

After using the value of D1 from (4.73), the above inequality gives(
∆τ

∆x
+ 2tR0

Dx
∆τ

∆x2

)
≤ 1

or

∆τ ≤ ∆x2

∆x+ 2tR0
Dx

. (4.79)

Similarly, from (4.75), we also can write the condition for temperature as

T̄ j+1
i =

(
1−

(
∆τ

∆x
X1 + 2

∆τ

∆x
D2 + s

))
T ji +

∆τ

∆x
D2T

j
i+1 +

(
∆τ

∆x
X1 +

∆τ

∆x
D2

)
T ji−1 + sTw ≥ 0,

which implies

0 ≤ 1−
(

∆τ

∆x
X1 + 2

∆τ

∆x
D2 + s

)
,

∆τ

∆x
D2,

∆τ

∆x
X1 +

∆τ

∆x
D2, sTw ≤ 1

or

1−
(

∆τ

∆x
X1 + 2

∆τ

∆x
D2 + s

)
≥ 0. (4.80)

Hence, again using abbreviations (4.73) in above inequality, we get(
X1

∆x
+ 2tR0

X3

∆x2
+ tR0

X2

)
∆τ ≤ 1

or

∆τ ≤ ∆x2

X1∆x+ 2tR0
X3 + ∆x2tR0

X2
. (4.81)

So, both the concentration and energy (temperature) equations have demanded different time
step restrictions. It means that we will have to use the smallest among them, i.e.

∆τ = min

(
∆x2

∆x+ 2tR0
Dx

,
∆x2

X1∆x+ 2tR0
X3 + ∆x2tR0

X2

)
(4.82)

and in dimensionlized form, ∆t = tR0
∆τ .
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Coding in MATLAB (R2017a): In this model, as discussed in section 4.2, we control the
solution in a similar way by setting the target temperature to Tw. This process is even easier to
handle if we only consider (4.65) for single-component injections and (4.66) for ternary mixture
injections. The additional calculations we performed in the previous section are only due to the
adjustment of the analytical solution of temperature to the numerical solution of concentration.
No such manual adjustments are required for this model. However, all the switching, cycle, and
injection times are calculated here as well using the same equations (4.40), (4.48), and (4.50) as
in the previous model.

The outcomes of this model are explained in Chapter 5, Sections 5.2.3 and 5.3.3.

Summery of the Chapter 4: In this chapter, we have estimated the numerical solutions of the
Equilibrium Dispersive Model (EDM) coupled with three different types of temperature profiles.
The first profile involved temperature step gradients, whose solutions were estimated using the
Finite Volume Method (FVM) independently in each segment of the column. Next, we explored
a semi-analytical solution where the numerical solution of the EDM was estimated considering a
simplified energy equation, which was solved analytically using the Laplace transform. Finally,
we estimated the pure numerical solution of the EDM coupled with a detailed energy equation,
which was converted into matrix form. In each case, a specific stability analysis was conducted.



Chapter 5

Computation and Results

In this Chapter we apply the results of the numerical analysis carried out in Chapter 4. The
selected analytical results of the equilibrium theory were already presented in Chapter 3. The
study includes both single-component and ternary mixture injections and provides a comprehensive
overview of the effects of different temperature on the retention behavior.

It is important to highlight that in Chapter 4, we have solved all the models using a non-
dimensional time (τ) and a normalized space coordinate (x). However, for presentation purposes,
we will now present the results in terms of dimensional time (t) in “minutes” and space (z) in
“cm”.

First, the results of the single component experiments for cycloheptanone C7 are presented to
analyze the retention behavior under two different temperature changes for gradient operations:
TR to TL and TR to TH. These results are then compared to those obtained under isocratic
(reference) conditions. This comparison allows us to reveal any shifts or improvements in the
concentration pulses due to the application of the implemented gradients. The system with some
experimental parameters used for these tests is listed in Table 5.1.

Moving on to a more complex scenario, we present the results when we inject several times
the ternary mixture of cycloketones C5, C6 and C7. The additional system parameters for these
injections are listed in Table 5.2. We will present the improvements in cycle times and associated
productivity obtained by implementing gradient operations compared to isocratic conditions in
the models discussed in Chapter 4.

At the end of our study, we will perform a brief comparison between the theoretical predictions
and available experimental results. The latter results, as already mentioned, were obtained in a
parallel PhD thesis project [39]. Most of the parameters used in this work are taken from this
project.

5.1 Parameter Studies

Before discussing the results and outcomes of the numerical calculations, we will explain some
of the important parameters from the two given tables, which will help especially the readers
who are new to the field to understand the importance of these parameters in HPLC processes,
especially when using temperature gradients.
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Table 5.1: Parameters used in single-component injections (connected to experimental study),
ordered as follows

Symbol Quantity Value Used in Simulation
zmax Length of the column 20 cm
A Cross-sectional area of the column 0.166 cm2 (diameter d = 0.46 cm)
ε Porosity of the column 0.555
ρL Density of the liquid phase 0.894 g/cm3

CL
p Heat capacity of liquid phase 3.46 J/g.K

ρS Density of the solid phase 2.65 g/cm3

CS
p Heat capacity of solid phase 0.703 J/g.K

TR Reference temperature 298.41 K
a1(TR) Henry constant of C7 at TR 2.630
∆H̄A,1 Adsorption enthalpy of C7 -8.180 kJ/mol
M1 Molecular weight of C7 112.17 g/mol
∆HA,1 Specific adsorption enthalpy of C7

(
∆H̄A,1

M1

)
-0.0729 kJ/g

u Interstitial velocity 3.26 cm/min
tR0

Retention time of a non-retained solute for mass and
energy balances [ zmax

u , 0.5 zmax

u ]
[6.142 3.07] min

Np Number of the theoretical plates for half of the column [2871 (Experimental), 1000, 200]
Dz Axial dispersions corresponding to Np, Eq. 5.1 [0.006 (Experimental), 0.02, 0.08]
∆tinj Injection time 5 min
c1,inj Feed concentration (as in experiments) 0.956 g/L
TL Low temperature 283.8 K
TH High temperature 313.15 K
X1 Eq. 2.15c [0.13(Experimental), 0.5, 1.0]
X2 Eq. 2.15d [0.17(Experimental), 0.5, 10] min−1

X3 Eq. 2.15e 0.000003
αw Heat transfer coefficient through the wall 0.7768 J/min.cm3.K
tdead Dead time in single component experiments 3.246 min

Table 5.2: In addition to Table 5.1, these parameters are used for ternary mixture injections

Symbol Quantity Value Used in Simulation
∆tinj Injection time 1.33 min
[a1(TR), a2(TR), a3(TR)] Reference Henry constants of

[C5,C6,C7] at TR

[0.693,1.343,2.630]

[∆H̄A,1,∆H̄A,2,∆H̄A,3] Adsorption enthalpies [-5.481,-6.674,-8.180] kJ/mol
[M1,M2,M3] Molecular weights of [C5,C6,C7] [84.12, 98.15, 112.17] g/mol
[∆HA,1,∆HA,2,∆HA,3] Specific adsorption enthalpies(

∆H̄A,n/Mn, n = 1, 2, 3.
) [-0.0652,-0.0680,-0.0729] kJ/g

[c1,inj, c2,inj, c3,inj] Feed concentrations of above comps. [0.949, 0.948, 0.956] g/L
[m1,inj,m2,inj,m3,inj] Eq.(2.52) Masses injected of above comps. 3.8 ×10−4 g (each)
TL Low temperature 278.95 K
TH High temperature 332.51 K
tdead Dead time in ternary mixture exper-

iments
0.25 min
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Number of Theoretical Plates (Np): Theoretical plate numbers are a quantitative measure
of the efficiency of a chromatographic column. A higher Np indicates better separation efficiency
because it suggests that the components of a mixture spend more time interacting with the
stationary phase and thus have more opportunities to separate.

In our PDEs, we need to specify the value of the axial dispersion Dz. This value is calculated
from the number of theoretical plates Np. The value of Np for one of the two segments is obtained
from the experiments. Thus, the value of Dz is calculated as follows

Dz =
uzm

2Np
. (5.1)

Note that for simplicity, the axial dispersion coefficient in the energy equation λz is calculated
with the same formula, so that λz = Dz.

Henry Constants: In liquid chromatography, Henry’s constant is essential for understanding
solute partitioning behavior between the liquid mobile phase and the solid or liquid stationary
phase. It influences elution times, resolution and selectivity of the separation.

In this work, we use reference Henry constants at reference temperature of cyclo-ketones
(C5,C6,C7) estimated in the experimental project mentioned at the beginning. Based on these
reference Henry constants, we estimate temperature-dependent Henry constants using Eq. 2.4.

Enthalpy of Adsorption: The enthalpy of adsorption (∆HA) is a critical concept in chro-
matography. It represents the heat energy associated with the adsorption of molecules onto a
solid surface, such as a chromatographic column’s stationary phase. This phenomenon is crucial
because it helps us understand how strongly or weakly solutes are retained by the stationary
phase in chromatographic separations.

The enthalpy of adsorption, along with Henry’s constant, is a fundamental concept in
chromatography that governs the choice of conditions, columns, and temperature control to
achieve accurate and efficient separations in analytical chemistry.

The values of adsorption enthalpies associated with the tested components are obtained
directly from the experiments. These values act as measurable outcomes that we track during
our experimental activity.

Densities and Heat Capacities: In liquid chromatography, knowledge of the densities and
heat capacities of the liquid and mobile phases is essential. The following explains why they are
so important:

• Density of mobile phase (ρL): Knowing the density of the mobile phase is critical. It
helps us understand how densely packed or distributed the molecules are. Denser mobile
phases can affect separation efficiency because they interact differently with the stationary
phase.

• Density of stationary phase (ρS): The density of the stationary phase is equally
important. It affects how well the sample adheres to the column. Different compounds may
“stick” differently depending on the density of the stationary phase.



88 CHAPTER 5. COMPUTATION AND RESULTS

• Heat capacity of mobile phase (CLp ): The heat capacity of the mobile phase indicates
how much heat energy it can absorb or release. This is important because temperature
changes occur frequently during chromatography. Knowing the heat capacity helps control
the temperature for optimal separations.

• Heat capacity of stationary phase (CSp ): Similarly, the heat capacity of the stationary
phase plays a role in the interaction with the sample. Some compounds require more or
less heat to move efficiently through the column.

Segmentation of the Column: In this work, two equal-sized segments of chromatographic
columns are considered for the implementation of the so-called segmented temperature gradients.
Since only the temperature of segment II is changed while that of segment I is kept constant, we
used the segmentation ratio in the energy balance. This means that the value tR0

(see Table 5.1)
is multiplied by 0.5 when used in the energy balance. Details of this segmentation can be found
in the parallel thesis [39].

Note that along with all the parameters given in the Tables 5.1 and 5.2, the values of Np,
X1, and X2 are given in groups of three values each, one of which comes from the experiments,
while the other two represent typical values used in the literature. By default, we will use only
the experimental values, but in some figures we will show the results for all three values for
comparison purposes.

Moreover, in the experiments, the “dead time” was recorded, a short delay during which the
measurement system cannot immediately respond to new signals in chromatographic experiments.
Dead time is a common feature in chromatography and is critical for data analysis. To match our
theoretical results with experiments where dead time was recorded as part of the parallel PhD
project, we adjusted all our time-based plots for this “dead time” (tdead).

Now we present the numerical results step by step, starting with the injection of single
components and ending with the injections of ternary mixture.

5.2 Results for Single-Component Injections

In this section we will discuss in detail the results of the single-component’s injections obtained
from all the models solved in Chapter 4. We know that we perform the single-component analysis
to better understand the behavior of each component under different temperature regimes, which
helps us to plan and select appropriate temperature regimes for the injection of ternary mixtures
to increase the productivity of the HPLC columns. We start by showing results of EDM coupled
with ideal temperature gradients, and end with results for the same mass balance under more
complex temperature regimes (described by a detailed energy equation).

5.2.1 Results of EDM Coupled with Ideal Temperature Step Gradients

In this section, we discuss the results of the model studied in Section 4.1.1. The provided space
discretization points Nx are 4000, which is a sufficiently high number to obtain a good resolution
of the results. Using the equation (4.26), ∆τ = 0.00041 is generated, which in dimensional form
corresponds to ∆t = 0.0025 min. For a given final simulation time of 50 min, the total number of
time discretization points Nτ = Nt is determined to be 19714.
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Figure 5.3a shows chromatograms (or t-plots) illustrating the behavior of the components
during both heating and cooling of Type I compared to the isocratic state (see Section 4.1.1 for
both Type I and Type II). It can be clearly seen that the retention times differ by more than one
minute. Moreover, it was already explained in Chapter 3 that for a Type I temperature change,
the mobile phase concentration’s peaks remain the same, with the time widths also remaining
constant. This serves as the confirmation of mass conservation. Additionally, it proves that the
numerical results agree with the theoretical results. The dispersion observed in the pulses arises
not only from the prescribed value of Np = 2871 but also from the natural dispersion in the
numerical scheme.

Figure 5.3b shows the pulse behavior for the same three implemented temperature regimes,
but for Type II. We again see a visible difference in the respective retention times, but as always
with the Type II temperature change, both the concentration peaks and the time widths are
affected.

To better understand the concentration distribution between phases under different temper-
ature gradients, we analyze the concentration pulses at different times within the column and
at different locations versus time t, c.f. Figures 5.4 and 5.5. Within the column, we show the
concentrations distribution at three different times tI, tII, and tIII. We remember this plot as
z-plot. Recall that in Chapter 3, the z-plots contain four pulses at four selected time points, but
here we can plot only three pulses at three different time points due to a broader pulse injection.
On the other hand, against time t, we plot the concentration pulses at different positions z0, zm

and zmax, which we call t-plot.
Figures 5.4a and 5.4b are the z-plots in which the concentration of mobile phase c1 is

represented by a dotted line, the concentration of stationary phase q1 is represented by a solid
line, and the total concentration c1 + q1 is represented by a dashed line. The blue colored pulse
at time tI is plotted when the pulse fully enters the column. The black pulse at time tII is the
interesting one, as it clearly shows the transition at the interface. Finally, the pink pulses at time
tIII are plotted when the adsorption fronts just reach zmax. The times tI and tII are the same
for both figures, but tIII is different because the pulses reach zmax at different times at different
temperatures. With this type of temperature change, the concentration peak of the mobile phase
remains constant, but the concentration of the stationary phase and the pulse indicating the total
concentration vary. Recall that the reasons for these changes in the concentration peaks and their
respective widths are explained in detail in Chapter 3 (equilibrium theory). Here we present the
results very briefly for comparison purposes.

Figures 5.4c and 5.4d are the corresponding t-plots or chromatograms which shows c1 at
different locations z0, zm and zmax.

Figure 5.5 shows the results for the same trend of temperature changes, but of Type II. For
this type of temperature change, the concentration in mobile and stationary phases varies, but
the peaks representing the total concentration remain constant.

Figure 5.6 analyzes the effect of different Np on the dispersion tendency of the concentration
c1. As expected, the pulse is dispersed to a large extent for small Np. This raises the concern
of increasing the cycle time in experiments with ternary mixtures, which reduces productivity.
For the extremely large value, i.e. Np =∞, the results reduce almost to equilibrium theory. The
little dispersion in this case is due to the numerical scheme’s inherent dispersion. The numerical
dispersion, while minimal, results in a slightly longer cycle time for EDM compared to EM and
highlights the effects of numerical approximations. Numerical solutions can lead to numerical
dispersion as the model becomes more detailed and the way the calculations are performed. For
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this reason, there may be scatter in the upcoming results where Np =∞ (dispersion coefficient of
zero) is used. The results given are demonstrated for the Type II of temperature change. Other
types of cooling and heating show a similar trend.

a Type I: When both the segments are kept all the time at different
temperatures.

b Type II: When both the segments are at the same temperature
initially. Then the temperature in segment II is changed at ts = 18
min.

Figure 5.3: Illustration of the single-component results of Type I and Type II plotted at z = zmax.
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a z-plot of cooling: tI = ∆tinj=5 min, tII=12 min, and
tIII=19.3 min. Dead time must be added to all these
times for correct correspondence to the figures.

b z-plot of heating: tIII=17.4 min.

c t-plot of cooling d t-plot of heating

Figure 5.4: Concentration behavior in both mobile and stationary phases at different times within
the column (a and b) and at different locations against time (c and d) under temperature changes
of Type I. Left side: TR to TL, Right side: TR to TH.
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a z-plot of cooling – tIII=18.7 min b z-plot of heating – tIII=18 min

c t-plot of cooling d t-plot of heating

Figure 5.5: Concentration behavior in both mobile and stationary phases at different times within
the column (a and b) and at different locations against time (c and d) under temperature changes
of Type II. Left side: TR to TL, Right side: TR to TH.

Figure 5.6: Illustration of the effect of the theoretical plate number Np over the dispersion of the
pulses for cooling of Type II. The result of EM is also provided.



5.2. RESULTS FOR SINGLE-COMPONENT INJECTIONS 93

5.2.2 Results of EDM Coupled with the Simplified Energy Equation

Now we present the semi-analytical results of the model discussed in Section 4.2. The provided
space discretization points Nx are 4000 giving ∆x = 0.00025. Using the equation (4.64),
∆τ = 0.00041 was generated, which in dimensional form corresponds to ∆t = 0.0025 min. For
a given dimensionless simulation time of 10 (61 min in dimensional form), the number of time
discretization points in this model Nτ = Nt is determined to be 24199.

Figure 5.7 is again a plot of single-component tests, but this time we see that the temperature
changes slowly instead of jumping stepwise. We have fixed the value of X1 at 0.13 and vary
the value of X2. The curves in the figure that show different temperatures of segment II are
associated with the right axis, while the concentration pulses are associated with the left axis.

The value of X2 plays a crucial role in determining the rate of temperature change. For the
smaller value of X2 (taken from experiments), a slow temperature change is recorded, causing
lesser effect over the propagation of the fronts. The concentration pulse leaves the column before
the temperature reaches the wall temperature Tw. On the other hand, higher values of X2 (chosen
from the literature) show a faster impact. Its highest possible value leads to a temperature jump,
so that the resulting concentration sees the full wall temperature and the results of temperature
and concentration are reduced to those of EDM under ideal step temperature gradients, c.f.
Figure 5.3a.

This observation suggests that X2 plays an important role in influencing the retention behavior
by affecting the spacing between concentration pulses during cooling and heating processes.

Figure 5.7: The impact of keeping X1 = 0.13 fixed and varying X2 on the rate of temperature
change consequently affecting the retention time of concentration c1. The red color represents
heating, the green color represents cooling, and the black color represents isocratic conditions.
Whereas, each concentration and its associated temperature are indicated by a same line that is
either solid, dashed or dotted.
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Figure 5.8: The impact of keeping X2 = 0.17 fixed and varying X1 on the rate of temperature
change consequently affecting the retention time of concentration c1. Colors selection for different
conditions are like in the previous Figure.

In Figure 5.8, we fix the value of X2 to 0.17 and vary the value of X1, showing an interesting
effect on the behavior of the temperature curve. Notably, with each given value of X1, the
temperature curve maintains a consistent temperature level after the time 1

X1
. The factor tR0

is multiplied to obtain its dimensioned value compatible with the t-axis. For both values 0.5
and 1.0 of X1, the temperature becomes a straight line without reaching the actual implemented
temperature Tw. Therefore, the pulse does not pass through the actual temperature regime and
have a smaller effect on their velocity. For the lower value of 0.13, we have tR0

X1
=51 min, which is

the time before which the temperature has already reached Tw, giving the maximum change in
concentration velocity. All colors and line styles are consistent with those employed in Figure 5.7.

This observation suggests that X1 also plays a role, albeit in a different way, in influencing
retention behavior by altering the spacing between concentration pulses during cooling and
heating processes.

5.2.3 Results of EDM Coupled with Detailed Energy Equation

In this section, we will present the results of the single-component experiments using the solution
of the model discussed in Section 4.3. The provided space discretization points Nx are 2000
which generates ∆x = 0.0005. Using the equation (4.82), ∆τ = 0.00037 was generated, which in
dimensional form corresponds to ∆t = 0.0022 min. For a dimensionless simulation time of 10
(about 61 min.), the number of time discretization points in this model Nτ = Nt is determined to
be 26966.

Comparing this model with the previous one, it’s noticeable that the energy equation coupled
with the EDM incorporates a significant term Gnqn(T ), where Gn and qn(T ) are given by
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equations (2.15b) and (2.5). This term plays a crucial role in accounting for the heat exchange
phenomena during the adsorption and desorption processes. The energy equation also accounts
for the effects of axial dispersion on heat conduction. For simplicity we have taken λz = Dz.

In Figure 5.9, we present the results of the scenario where X1 remains constant while X2 is
subjected to variation. In order to provide a clearer representation due to the complexity of the
temperature curve, we have divided the results into Sub-figures for different values of X2. The
figures use the same colors and line styles for the corresponding temperatures as in Figure 5.8.

The results under isocratic conditions are colored black in the first Sub-figure. The first
two Sub-figures clearly show a wave type in the temperature curve above the adsorption and
desorption fronts of the concentration. This wave proves exothermic and endothermic processes
during adsorption and desorption, respectively. In contrast to the results of the previous model,
we observe a stronger concentration tendency to the right edge of the peak. This phenomenon is
due to the fact that the temperature, which changes during adsorption/desorption, affect the
concentration in the later course. Another fact is that the more we increase the value of X2, the
smoother the exothermic/endothermic wave in the temperature curve becomes, which is clear in
the last Sub-figure.

Moreover, the variation of X2, in terms of retention times, shows a similar trend as in Figure
5.7.

In Figure 5.10, we illustrate, like in Figure 5.8 the influence of keeping X2 fixed and considering
X1 to be 0.5 and 1.0. For X1 = 0.17, it is already shown in Figure 5.9, on the top.

For X1 = 0.5 we see that the temperature becomes constant after the time tR0
0.5 + tdead min to

about 304 K. This time the adsorption/desorption wave occurs earlier and with larger amplitude.
This wave disturbs the straight line that is fixed at 304 K. This causes the pulses to be earlier
and more concentrated at the left edge.

For X1 = 1.0, the temperatures become constant early enough that they have little effect on
the elution, and it can be seen that the pulses are closer together for both heating and cooling. In
addition, the amplitude of the exothermic/endothermic wave becomes smaller so that the peak of
the concentration pulse is smooth.

It is evident that variations of the parameter X2 affect the exothermic and endothermic
processes during adsorption and desorption, with higher values of X2 leading to smoother-like
temperature curves. In addition, changing the parameter X1 has a pronounced effect on the
timing of heat exchange, concentration distribution as well as the spacing between pulses.
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Figure 5.9: The impact of keeping X1 = 0.13 fixed and varying X2 on the rate of temperature
change consequently affecting the retention time of concentration c1.
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Figure 5.10: The impact of keeping X2 = 0.17 fixed and varying X1 on the rate of temperature
change consequently affecting the retention time of concentration c1.

Comparison for the Single-Component Injections by All the Models: At the end of the
presentation of the interesting single-component results, we would like to make a brief comparison
of the results of all three models to see the relationship between them and how the introduction
of the new parameters into the models affects the results.

Figure 5.11a shows the agreement of the results of Type I temperature change in the EDM
coupled with the ideal step gradients (SG) with the results of the EDM coupled with the simplified
energy equation (SEE) and the coupling with the detailed energy equation (EE). The latter
two models give similar results for X1 = 0.13, as suggested by experiment, and X2 = 10, which
happens to be chosen high. At this value of X2, the temperature profiles of our last two models
take the form of near-ideal step gradients, showing similar retention behavior to the EDM at SG.
We see that we have less dispersion in the EDM at SG than in the last two models, with the
EDM at EE having the largest dispersion.

On the other hand, 5.11b compares the results of the above models for a different type of
temperature change. When the EDM coupled with SG operates under temperature change
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of Type II, the results agree with those of the last two models for X1 = 0.13 and X2 = 0.17.
These both values are now from the experiments. This means that this type of temperature
change is closer to the reality. The results of EDM coupling EE are more dispersed compared
to that in Figure 5.11a. Therefore, the concentration peaks are close to each other in both
heating and cooling. The pulse under heating is even less concentrated than under isocratic
conditions. The reason for this scatter is not only the slow temperature change, but also that the
adsorption/desorption process affected the applied temperature and the pulses left the column
before being affected by the fully implemented temperatures. In contrast, the EDM at SEE shows
very good agreement with the EDM at SG.

a Comparison of the results of Type I tempera-
ture change by EDM under SG with the results
of EDM under SEE and EE for X1 = 0.13 (exper-
imental) and X2 = 10 (Randomly taken high).

b Comparison of the results of Type II tempera-
ture change by EDM under SG with the results
of EDM under SEE and EE for X1 = 0.13 and
X2 = 0.17 (Both experimental).

Figure 5.11: Comparison of the single-component results by all the three models discussed in
Section 5.2

5.3 Results for Ternary Mixture Injections

As mentioned earlier and as in Chapter 3, we now present the results of the previously discussed
models for the injection of ternary mixtures, i.e. for Nc = 3, to see to what extent the numerical
calculations predict the productivity of the column. Recall that we have discussed two scenarios
in the aforementioned chapter, namely “Late Eluter” and “Early Eluter”, in order to understand
and present well most of the possible scenarios in the experimental laboratory. Since the concept
was well understood, we have addressed in Chapter 4, the scenario considered in the experiments,
which is not exactly the same as “Late Eluter” one, but a closer one. Because according to the
chosen reference Henry constants given in table 5.2, we have α1,2 ≈ α2,3. Nevertheless, this
scenario could be improved when processed under temperature gradients.

We now start again with the presentation of our results using the simpler model and move
step by step to more detailed models.
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5.3.1 Results of EDM Coupled with Ideal Temperature Step Gradients

In this section we present the results of the model for Nc = 3 discussed in Sub-section 4.1.2. The
provided space discretization points Nx are 2000 and generate ∆x = 0.0005. Using the equation
(4.26), ∆τ = 0.0005 is calculated, which is given in dimensional form as ∆t = 0.0032 min. For the
given simulation time of 65 min, the number of time discretization points in this model Nt = Nτ

is set to 19799. Note that different values of Np result in different time steps and thus different
Nt.

Comparison of the Results of EDM With EM: First, we compare the EDM’s numerical
results under step temperature gradients for Np =∞ with the equilibrium theory results shown
in Figure 5.12. We fit the same parameters given in the Table 5.2 in EM discussed in Chapter 3
and superimpose both results.

In the chromatogram, the rectangular pulses representing the results of EM have a shorter
cycle time, reflecting the idealized fast equilibrium between the mobile and stationary phases.
In contrast, despite the application of an infinite number of theoretical plates (Dz = 0), the
EDM results still exhibit numerical dispersion effects. The reason for this dispersion is explained
in the text accompanying the Figure 5.6. The resulting dispersion is minimal for the faster
eluting components, but increases for the later eluting components. This is because for the
latter components, the longer-lasting interaction with the stationary phase also contributes to
the dispersion in their pulses.

Recall that we calculate the cycle time using the retention times of c1 and c3 while considering
a concentration threshold of 0.01.

Figure 5.12: Illustration of the shift in cycle time in the results of EDM with Np =∞ (Dz = 0)
(shown with bold lines) compared to the analytical solution of EM (shown with dashed lines).
The cycle time reported by EM is 9.77 minutes, which is shorter than that of EDM. The cycle
time in the latter case is 10.03 minutes.



100 CHAPTER 5. COMPUTATION AND RESULTS

Now we discuss independent results generated by this model.
Figure 5.13 shows the evolution of the concentration profiles for both the conventional isocratic

condition and the conservative concept of gradient operation with safety margins. The results are
shown in the latter case for different Np (or Dz) values. The corresponding Np value and the
resulting cycle time as well as the applied safety margins (times) are given separately for each
result. The c1, c2 and c3 components are marked in blue, black and red, respectively.

Each injection is associated with an injection time, two temperature switching times (first
cooling and then heating), and a cycle time. The cycle time is the same for each injection because
each injection has a uniform temperature regime, i.e. ∆t1c = ∆t2c = ∆t3c . All injection times ∆tpinj,
switching times tk and cycle times ∆tpc , with p=3 and k=1,2,...,6, are calculated with the formulas
(4.42b), (4.40), and (4.43a), respectively. The first two types of times are listed in the Table 5.14,
while the consistent cycle time is given in each figure.

The upper Sub-figure shows that in the case of isocratic conditions, since no safety margin is
required, the cycle time of 12.22 is applied. On the other hand, in gradient operation shown in
the rest of the Sub-figures, it can be observed that the smaller the value of Np, the larger the
dispersion, and thus the cycle time increases. As can be seen in Table 5.14, all other times also
become longer as we decrease the value of Np. The cycle time ∆t3c already takes into account the
given safety margin, whose value starts from 15 min for higher Np and goes to 17 min for smaller
Np. This makes it less productive compared to the isocratic operation. The problem is that
when using the cycle time without safety margins, there is a risk of remixing, since the slowest
component of each injection requires a different temperature regime than the fastest component
of the next injection, as was already made clear in Chapter 3. This fact makes this concept less
productive or, in other words, suboptimal. That is why we have introduced an optimal design
concept ignoring the safety margins.

In the optimal design concept shown in Figure 5.15, we handle the switching of temperatures
in such a way that we make earlier injections without applying the safety margins and still avoid
remixing. In the figure, it can be seen that we have achieved the shortest possible cycle time
for the largest plate number, i.e. Np = ∞. The reason for the dispersion in the results of this
figure is already explained in the text associated to the Figure 5.6. For Np = 2871 and 1000, the
applied cycle time is still shorter than that in the isocratic mode, but for Np=200 it has exceeded
the isocratic value, rendering it useless. Therefore, for the application of the concept of this study,
it is imperative to consider this range of Np when selecting a chromatographic column.

The cycle time given in the figure is estimated from the second injection, i.e. ∆t2c , which is
calculated using Eq. (4.48). This is because the cycle times becomes consistent after second
injection, i.e. ∆t1c 6= ∆t2c = ∆t3c . The injection times are calculated using Eq. (4.50). All other
important times are given in table 5.16, and if we compare these values with table 5.14, we clearly
see a useful reduction.
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Figure 5.13: Illustration of solution behavior for ternary mixture injections for a conservative
design concept that considers safety margins. The mixture is injected three times, with the fastest
component c1 marked in blue, the slower component c2 in black, and the slowest component c3 in
red. Above is the isocratic reference case, while below are the results for said gradient case for
different plate numbers Np to show its effect on dispersion and consequently on the cycle time.
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Table 5.14: These results are linked to the Figure 5.13

Charac. Times [min] t1inj t2inj t3inj t1 t2 t3 t4 t5 t6

Isocratic, Np=2871 0.25 12.47 24.69 - - - - - -
Gradients, Np =∞ 0.25 14.79 29.34 11.56 19.47 26.11 34.02 40.66 48.57

Np=2871 0.25 15.48 30.72 11.93 19.91 27.17 35.15 42.41 50.38
Np=1000 0.25 15.784 31.32 12.05 20.14 27.59 35.68 43.13 51.22
Np=200 0.25 17.27 34.30 12.68 21.26 29.70 38.28 46.73 55.31

Figure 5.15: Illustration of the solution behavior of ternary mixture injections for the optimal
design concept that does not consider safety margins. As in Figure 5.13, the results are again
shown for different plate numbers. The color scheme applied is also the same.
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Table 5.16: These results are linked to the Figure 5.15. The given times are in [min].

Charac. Times t1inj t2inj t3inj t1 t2 t3 t4 t5 t6 ∆t1c ∆t2c ∆t3c
Gradients, Np =∞ 0.25 10.56 20.60 11.56 19.47 21.45 29.74 31.49 39.78 9.56 10.03 10.03

Np=2871 0.25 10.83 21.46 11.83 19.79 22.022 30.29 32.65 40.92 10.13 10.44 10.44
Np=1000 0.25 11.25 22.42 12.05 20.14 22.68 31.05 33.85 42.122 10.68 11.16 11.16
Np=200 0.25 13.28 25.93 12.68 21.27 25.71 34.07 38.15 46.72 12.36 12.82 12.82

5.3.2 Results of EDM Coupled with Simplified Energy Equation

In this section, we present the results of the semi-analytical solution of the model for Nc = 3,
as discussed in Sub-section 4.2. The provided space discretization points Nx are the same as in
the previous model: 2000, generating ∆x = 0.0005. Using the equation (4.64), ∆τ = 0.00053 is
calculated, which is given in dimensional form as ∆t = 0.0032 min. For the given non-dimensional
simulation time of 16, the number of time discretization points in this model Nt = Nτ is set to
30477.

Figure 5.17 illustrates the solution behavior for both isocratic and gradient conditions, this
time for a slower temperature change. In the previous model, the cycle time becomes constant
after two injections, but in this case it becomes constant after five injections, which is why we
show seven injections in Figure 5.17. We refer to the first five injections as the start up of the
process, which is marked in grey. The last two injections, marked in sky-blue, are the repetition
of injection cycles that occur under periodic similar temperature regimes and we call it cyclic
steady-state.

The switching strategy remains the same as in the previous model and is given by equation
(4.40). The estimation of cycle and injection times is also the same as in the previous model.
These formulas are given by the Eqs. (4.48) and (4.50), respectively. Since the temperature
change is not so simple, the temperature profile is also shown in green color in connection with
the right axis, while the concentration corresponds to the left axis.

As shown via dashed line, we see that seven injections of the so called ternary mixture are
processed under isocratic conditions in around 96 minutes with cycle time of 12.23 minute. This
is similar to the one given by EDM, shown in the top Sub-figure of Figure 5.13.

On the other hand, if we examine the results of the gradient operation of the optimal design
concept, it is completed in about 88 minutes, resulting in an acceptable reduction in cycle time
of 11.05 minutes (calculated from the seventh injection). The temperature of the segment II
is changed from TR to TL immediately with the start of the injections at z0. After the time
t1 = t11,max = 11.68 min, it is switched to TH and after the time t2 = t13,max = 21.50 min, it
is switched back to TL. However, due to the slow temperature exchange, the pulses are not
completely cooled or heated. Except for the first few injections, the difference between cooling
and heating remains very small and they do not reach the applied values TL and TH, respectively.
Considering the switching time criteria given in equation (4.40), the temperature profile becomes
periodic after 5 injections and then we call it the operating periodic regime. Here, the process
become cyclic steady-state rendering a shorter cycle time compared to the isocratic conditions.
The components of the first injection are slightly more concentrated compared to the rest of the
injections, because for them the temperature difference between the reference and the implemented
is comparatively larger.
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If we compare the rows belonging to Np = 2871 in the tables 5.18 and 5.16, we see that all
times in the latter table are longer than in the former table. Also, the cycle times in the currently
applied model are now comparatively longer. This is due to the complexity of this model because
of the temperature profile, which is closer to reality.

Figure 5.17: Illustration of the results obtained by EDM coupled with the simplified energy
equation when X1 = 0.13, X2 = 0.17. The design concept used is optimal which does not consider
safety margins. Concentrations are plotted on the left axis, and since we now have complicated
temperature regimes, we plot them in green, which corresponds to the right axis. The results
of the gradient conditions and the isocratic conditions are overlaid by solid and dashed lines,
respectively. The sustained cycle time in isocratic operation according to this model is 12.23
minutes. For gradient operation it is 11.05 minutes. All other characteristic times such as
switching, injection and cycle times are given in Table 5.18.

Table 5.18: Results linked to Figure 5.17. All times are in [min]

Charac. Times t1inj t2inj t3inj t4inj t5inj t6inj t7inj ∆t1c ∆t2c ∆t3c ∆t4c ∆t5c ∆t6c ∆t7c
Isocratic 0.25 13.09 25.32 37.55 49.78 62.02 74.25 12.23 12.23 12.23 12.23 12.23 12.23 12.23
Gradients 0.25 12.85 24.23 35.30 46.37 57.42 68.47 11.98 11.33 11.11 11.08 11.06 11.05 11.05

Switch. Times t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

Gradients 11.68 21.50 24.00 33.23 35.24 44.26 46.37 55.31 57.47 66.38 68.48 77.39 79.49 88.40

5.3.3 Results of EDM Coupled with Energy Equation

In this section we present the results of the final and more detailed model for Nc = 3 discussed in
Sub-section 4.3. This model consists of the same EDM but is now coupled with a detailed energy
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balance. This energy balance determines the implemented temperature, which takes into account
the phenomenon of heat exchange during the adsorption/desorption processes. It also takes into
account the axial dispersion of the temperature.

The same space discretization points Nx are considered as in the previous model. Using the
equation (4.82), the ∆τ is now calculated to be 0.00037, which is given in dimensional form as
∆t = 0.0022 min. Since simulation of this model takes more time than the previous model, the
dimensionless simulation time is given as 16. The resulting number of time discretization points
Nt = Nτ are then set to 43145.

Figure 5.19 shows the results when the same ternary mixture is again injected seven times
under both isocratic and gradient conditions. In comparison with Figure 5.17, we explain this
figure, where the cyclic steady-state regime begins operating after the fifth injection. In contrast,
Figure 5.19 suggests a cyclic operation following the third injection. Uncertain about this
observation, we extended the injections for seven periods and once more identified the final two
as the inception of cyclic steady-state operation. This also makes this figure compatible with the
previous figure for comparison purposes.

The calculation of injection, cycle and the sequence of switching times stay the same as for
the previous model. The difference is that the current model becomes more complex with the
introduction of new terms such as Gnqn(T ) and X3 given by Eqs. (2.15b) and (2.15e). This leads
to more delay in the temperature change and causes concentration pulses to be more dispersed.
Consequently, all injection, retention, switching and cycle times become larger. Please take a
comparative look at the Tables 5.18 and 5.20.

As shown by the dashed line, seven injections with this model are processed in about 96
minutes under isocratic conditions with a cycle time of 12.37 minutes, which is similar to the
previous model. The reason is that under isocratic conditions ∆HA,n becomes 0, which makes the
effect of the additional term Gnqn(T ) vanish, see Eq. (2.15b). Thus, under isocratic conditions,
the energy equation reduces almost to that shown in the previous figure.

The gradient process takes comparatively longer than its predecessor to process seven injections.
The process is completed in 92 minutes with a cycle time of 11.69 minutes. In contrast, the
predecessor model required 88 minutes. However, the results of the current model show a shorter
cycle time compared to the isocratic model, which is a success compared to the previous models
because it takes into account more realistic conditions, especially in the area of temperature
gradients within the HPLC process.

Moreover, exothermic/endothermic waves are clearly visible in the temperature profiles of
all injections, since they migrate more slowly and have enough time to affect the heat exchange
within the column. This fact proves the existence of the term Gnqn(T ) in the model.
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Figure 5.19: Illustration of the results for optimal design concept without safety margins obtained
by EDM in conjunction with the detailed energy equation. The parameters applied, colors and
axes for the concentrations and temperature are the same as in Figure 5.17. According to this
model, the cycle time for isocratic operation is 12.37 minutes, which is almost the same as that
of the previous model. For gradient operation, it is 11.69 minutes, which is shorter than the
isocratic cycle time. All other important times are again given in tabular form, c.f. Table 5.20.

Table 5.20: These results are linked to Figure 5.19

Charac. Times t1inj t2inj t3inj t4inj t5inj t6inj t7inj ∆t1c ∆t2c ∆t3c ∆t4c ∆t5c ∆t6c ∆t7c
Isocratic 0.25 12.62 25.00 37.37 49.75 62.12 74.49 12.37 12.37 12.37 12.37 12.37 12.37 12.37
Gradients 0.25 12.16 23.84 35.53 47.22 58.92 70.61 11.91 11.68 11.69 11.69 11.69 11.69 11.69

Switch. Times t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

Gradients 11.69 21.36 23.48 33.28 35.29 45.12 47.11 56.97 58.92 68.81 70.73 80.66 82.54 92.51

Comparison for the Ternary Mixture Injections by All the Models: At the end of the
results of all our models presented in this chapter, we do a very interesting comparison of the
three models studied. Figure 5.21 compares the last two Sub-figures showing the seventh injection
from Figures 5.19 and 5.17 with the same injection that would look like in EDM with ideal step
gradients. That is, if we increase the number of injections in Figure 5.15 to seven, the retention
behavior at the seventh injection will look like the Sub-figure above in Figure 5.21. As it was
seen in the associated Tables 5.20, 5.18 and 5.16, the EDM has recorded a step by step increase
in the cycle time, as much as the coupled temperature profile becomes more detailed.
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From the figure, it can be seen that the seventh injection by EDM is completed in about 84
minutes at ideal temperature gradients (Sub-figure above). The same injection given by the same
mass balance under the simplified energy equation (middle Sub-figure) terminates in about 88
minutes, while under the detailed energy equation (Sub-figure below) it terminates in about 92
minutes. The different dispersion trends in each model and the associated concentration/dilution
are also now well-understood.

Figure 5.21: Comparison of the retention behavior of the seventh injection. The top Sub-figure
shows the results for ideal step temperature gradients, the middle one for the simplified energy
equation, and the Sub-figure at the end shows the results for the detailed energy equation.
Concentration is always plotted on the left axis, while temperature is plotted in green on the
right axis
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5.4 Comparison of Computations with Experiments

In the final section of this dissertation, we give a brief overview of the experiments conducted as
part of the parallel doctoral project [39] mentioned earlier. We have chosen the results of our last
and final model for comparison because they are more appropriate with respect to the conditions
applied. In all cases of our prepared theoretical results for comparison, Np = 2871, X1 = 0.13 and
X2 = 0.17 are considered, since these values are obtained from experiments themselves. First, we
briefly review the material and methods used for the experiments in the laboratory. The details,
figures and results are taken from our previously published article [38]. More details are available
in the aforementioned thesis.

5.4.1 Material and Methods

In the experimental study, cyclopentanone (C5), cyclohexanone (C6), and cycloheptanone (C7)
purchased from Alfa Aesar were employed as solutes of the ternary mixture. Methanol from
Sigma-Aldrich and distilled water filtered with 0.45 µm filter paper from Sartorius Stedim Biotech
GmbH were used as the mobile phase, while a C18 column (Agilent Zorbax Eclipse XDB, Dc= 4.6
mm, L=100 mm, particle size=5 µm) was employed as the stationary phase (50%/50%, v/v). The
matching peaks showed up in the following order under these reverse phase conditions: C5, C6,
and C7. The injection concentrations cn,inj for n = 1, 2, 3 used are 0.1 vol%. By demonstrating
that the main characteristics of the elution profiles remain constant regardless of the injection
volume, the concentrations under consideration were experimentally confirmed in preliminary
experiments to be in the linear isotherm range. Syringe and pump injections were used to
introduce volumes between 50 and 1500 µL. Using Thiourea (Merck) as a tracer, the column
porosity ε was calculated. In order to calculate the extra-column dead times (tdead), which differ
in single-component and ternary mixture injections, marker experiments were carried out.

Figure 5.22 shows the experimental setup of segmented temperature gradient liquid chro-
matography. The system consists of a conventional HPLC apparatus (Hewlett Packard 1100) and
an extended temperature modulation unit with insulation. In this study, the detector wavelength
was set at 280.2 nm. It was found that the detector calibration factors for C5, C6, and C7 were
0.004, 0.005, and 0.005 gL−1mAU−1, respectively. The so-called segment I and segment II are
connected in series, with segment I held in an HPLC oven to maintain the reference temperature
of 298.41K, while segment II is held in a cylindrical water jacket. The temperature of segment II
is gradually adjusted to the low temperature TL or the high temperature TH by circulating the
water externally through two thermostats. These values are also different for the injection of single
components and ternary mixtures, as shown in the Tables 5.1 and 5.2. Two thermocouples were
used to measure the temperatures in the water jacket and at the column exit. The temperature
at the outer surface of the outlet of the column was measured, because it is technically difficult
to measure the actual internal temperature. The two measured temperatures were recorded in
real time. The thermostat assumed that there was an equilibrium between the interior of the
column, its wall and the water surrounding it. To ensure a safe operating range of the column,
the temperature range was set from 279K to 333K. In the experiments, the heat transfer rate
proved to be reasonably quick, allowing for a decent approximation of the expected temperature
gradients.
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Figure 5.22: Illustration of the liquid chromatography experimental system with imposed seg-
mented temperature gradients. It is made up of thermostats, a water jacket, and an HPLC unit.
The pump was programmed with a flow rate of V̇ = uεA = 0.3 ml/min. A countercurrent flow of
two liquids occurs inside and outside the water jacket. The temperature in the oven was kept as
a reference temperature, TR= 298.41K for segment I. Two thermocouples are placed in the water
jacket (Tk = TL or TH for segment II). The actual temperatures are measured for the water and
the outer surface of the outlet tube.

5.4.2 Comparison for Single-Component Injections

In this section, we compare the results of the wide single pulse injection of the experiments
and the results of our last detailed model, which are already shown in Section 5.2.3. In the
experiments, the result of the Type I temperature change (when both segments are initially kept
at different temperatures) agrees with the theoretical results for X1 = 0.13 and X2 = 10 given in
the Sub-figure at the top of Figure 5.9. On the other hand, the result of the temperature change
of Type II (when both segments are initially kept at the same reference temperature TR and
for segment II it is switched to TL or TH at ts = 18 min) agrees with the theoretical results for
X1 = 0.13 and X2 = 0.17. The comparisons in both the types are shown in Figures 5.23 and 5.24
respectively.



110 CHAPTER 5. COMPUTATION AND RESULTS

Figure 5.23: Comparison of the theoretical results (dashed lines) of our detailed model discussed
in section 5.2.3 with the experimental results (solid lines) for the Type I temperature change.
The colors red, green, and black represent heating, cooling, and reference conditions, respectively.
In the theoretical results, X1 = 0.13 and X2 = 10 are used.

Figure 5.24: Comparison of the theoretical results with the experimental results of the temperature
change of Type II. The theoretical results in this figure consider the same values for X1, but a
different value for X2 = 0.17.

The two figures 5.23 and 5.24 show good agreement between the profiles, suggesting that
the numerical solution effectively replicates the temperature variations. Nevertheless, there are
minor differences. These discrepancies could be due to several factors. One possible reason
of these differences is inaccuracies in the Henry constants. Since the temperatures of the two
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segments were controlled in different ways, while the Henry constants were calculated based on
the temperature of the water jacket, the actual temperatures in the two segments may not match
exactly. In addition, the operation of the thermostat itself may cause temperature fluctuations.
Last but not least, in addition to axial thermal dispersion, radial thermal dispersion may also
play a role in the elution profile, for which a more detailed 2D model should be developed.

5.4.3 Comparison for Ternary Mixture Injections

In this section, the results of the experiments using shorter ternary mixture injections are compared
with those obtained with the same detailed model discussed in Section 5.3.3.

Since only two injections are processed in the experiments, Figure 5.25 shows the comparison
of the theoretical results for two successive injections. Again, good agreement can be seen,
with the exception of component 3 (C7), which is more dispersed and diluted compared to the
experiments. EDM results in a slightly longer cycle time than in the experiments, but is still
shorter than under isocratic conditions. The slight shift in cycle time for the experiments is due
to the different criteria used to determine the cycle time.

Figure 5.25: Comparison of the theoretical results for ternary mixture injections with the
experimental results of the temperature change of Type II. The theoretical results in this figure
consider the same values for Np, X1 and X2 as in Figure 5.24. The cycle time in the experiments
was reported to be 11.4 minutes, while EDM under detailed energy balances gave a cycle time of
11.7 minutes. Under isocratic conditions, the cycle time is comparatively longer at 12.37 minutes.
They all are estimated from the second cycle.
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5.5 Predicted Productivity for All Models Compared to Experi-
ments

Finally, we show the increase in productivity achieved in all the models studied. We present
from Chapter 3 productivity of a simple and ideal model, the so-called equilibrium model,
which considers the ideal rectangular injections of concentration with the ideal temperature
step gradients (SG). Then follows the well-known model, EDM. This model is tested under
three different temperature profiles in Chapter 4: SG, simplified energy equation (SEE) and
with the energy equation (EE). The EM proposed the shortest cycle time, as shown in Figure
5.26. After introducing more parameters into the model and gradually coupling them with
the aforementioned temperature profiles, the model become more complex. This leads to more
dispersion in concentration pulses and thus to a shift in the cycle time. In the EM at SG and
EDM at SG and SEE both, the cycle time remains shorter than in experiments, but in EDM
at EE, it exceeds the cycle time recorded in the experiments. Nevertheless, all of these cycle
times applied under gradient operations are shorter than the isocratic conditions, making our
study a successful initiative in modeling and simulating temperature gradients to increase the
productivity of liquid chromatographic columns. The formula for calculating cycle time is given
in the previous discussions for all the models, while the corresponding productivities for gradient
and isocratic conditions are calculated with the formulas (2.50) and (2.51), respectively. Note
that we consider the mass of component C5. To get the value of productivity in gram per hour
per liter (gh−1L−1), we divide the obtained values by column’s volume Vc = zmaxd = 9.2cm3, see
Table 5.1.

Figure 5.26: Cycle times (in blue) and corresponding predictions of productivity (in orange)
for all models studied compared to isocratic conditions and experiments. They correspond to
the left and right axes, respectively. Results are compared with experimental data for EM with
temperature step gradients (SG), as discussed in Chapter 3 and illustrated in Figure 5.12; EDM
with SG, detailed in Section 5.3.1; EDM with simplified energy equation (SEE), described in
Section 5.3.2; and EDM with energy equation (EE), outlined in Section 5.3.3. The following
experimental parameters are considered: Np = 2871, X1 = 0.13 and X2 = 0.17. For example,
when comparing productivity in the case of EE, it is 16% higher compared to the isocratic
conditions, where by EM, it is 20%.
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Conclusions and Outlook

Conclusions

In this work, we have investigated a specific new mode of high performance liquid chromatog-
raphy (HPLC) operation based on the introduction of temperature gradients that can increase
performance, e.g. productivity, compared to conventional (isocratic) operation. Our primary
focus has been on mathematical methods and analysis, although we have been fortunate to have
access to practical experiments conducted by a fellow PhD candidate.

Our research began by considering an HPLC column incorporating two segments of the same
properties of the chromatographic system such that the temperature of the second segment can
be modulated in a flexible manner.

Distinctly established mass balances describing the front propagation processes in the chro-
matographic column were examined: the Equilibrium Model (EM) and the Equilibrium Dispersive
Model (EDM). These mass balances served to illuminate the complicated behavior of concentra-
tions within the HPLC column. Our objective were to control this behavior using temperature
modulations, achieved through an external heat source. This approach was aimed at reducing
cycle times. The nature of this heat source’s contribution was described by the energy balance
we established. This balance took various forms differing in the degree of details captured.
Considered were composite and simplified versions, as well as an idealized representation in the
form of a step function.

The PDE models were linked to mixed Dirichlet and Neumann boundary conditions. Dirichlet
boundary conditions create a rectangular pulse at the column’s inlet, while Neumann boundary
conditions ensure solution consistency with reality at the outlet.

At the core of our models lies the concept of quantitatively describing the concentration “c”
in the mobile phase and “q” in the adsorbed phase over time and position in the column. Their
interaction was determined by a thermodynamic function called the adsorption isotherm. The
adsorption isotherm considered in this study revealed that changes in “c” prompt a straightforward
response, following a linear trajectory. However, when it comes to temperature dependence, the
reaction becomes more intricate, deviating from a linear path. The slope of this trajectory is
controlled by the component specific Henry constants, which depends on both the implemented
temperature and the corresponding enthalpy of adsorption. Essentially, the extent to which a
temperature gradient can improve results relies on the specific Henry constants unique to each
component.

113
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Building on these fundamental concepts, we proceeded to complement our mass balances step
by step with energy balances. Initially, we introduced the idea of ideal temperature step gradients.
Then we used more intricate energy balance concepts. This approach provided insights into how
an array of factors influences the behavior of concentrations and retention times, whether under
the uniform isocratic conditions or dynamic gradient conditions.

First, we considered the Equilibrium Theory of chromatography and the Method of Charac-
teristics. We obtained analytical solutions that have illuminated trajectories for elution profiles,
offering a better understanding of the slopes of the trajectories under varying temperatures.
This knowledge guided us through our subsequent studies, which have encompassed numerical
computations.

We then moved to a semi-analytical approach that focuses on the EDM and a simplified energy
balance equation. This type of heat equation takes into account the main guiding principles of
heat transfer, but ignores several factors such as the exothermic/endothermic phenomenon of
adsorption/desorption and the axial dispersion of temperature. Using the Laplace transform, we
reduced the complexity of this equation and used the finite volume method (FVM) with upwind
fluxes to practically estimate solute concentrations. This method helped us understand how
slower temperature gradients compared to faster gradients affect solute concentrations.

When it comes to numerical solutions, we explored the EDM under two distinct temperature
profiles: the temperature step gradients and the detailed energy equation. Ensuring precision, we
conducted a stability analysis for each model, determining specific time steps that the tool used
to solve the model equations (MATLAB) could effectively manage. This approach enabled us to
acquire stable solutions using the FVM. It’s worth noting that the final model, which coupled
the EDM with the detailed energy balance, yielded particularly more realistic results. In this
case, the delayed temperature profile not only exhibited exothermic/endothermic waves but also
demonstrated their influence on concentration peaks.

The solutions to above the models were estimated first for single-component injections.
Through a range of scenarios, we analyzed how changing factors, such as early switching times and
delayed switching times of temperature impact the solution. Then, we studied multi-injections of
a ternary mixture, examining how controlled temperature adjustments can shrink cycle times and
enhance productivity. Considering various improvement options for testing ternary mixtures, we
presented two interesting potential concepts: the “conservative design concept with safety margins”
and the “optimal design concept without safety margins”. In the first approach, we achieved
a hypothetical cycle time shorter than the isocratic one. However, this method necessitates
considering safety margins to prevent unintended mixing between consecutive injections, rendering
it sub-optimal compared to the isocratic operation. In contrast, a subsequently analyzed optimal
design concept eliminates the need for safety margins, resulting in a shorter cycle time. This
optimized cycle time obtained by the aforementioned models contributed to an 16-20% increase
in productivity for the specific case studies considered. Analyzing profiles before and after the
transition to a different temperature regime showed that the conservation of mass is maintained.
This is essential to obtaining a useful mathematical method.

A substantial benefit to our research was the fact that we could align our models’ predictions
with actual experimental results. The results were available thanks to the parallel work conducted
in the above mentioned parallel PhD project [39]. A very good resemblance between them, with
little differences, validates the significance of our theoretical study. Our theoretical study lead to
a better understanding of the experiments. The step by step inclusion of additional parameters in
the models has resulted in increased cycle time. The cycle times derived from experimental data
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correspond to more realistic conditions, which highlights the discernible discrepancy between
idealized scenarios and the complex conditions encountered in practice.

This research provides valuable insights and tools not only on how different temperature
changes affect the movement of concentrations in columns, but also for estimating useful cycle
times and amplitudes for perturbations in some chromatographic processes. These tools can
be used for other specific separation processes, as long as we understand sufficiently well how
temperature and certain parameters work together. However, we need to understand that gradient
chromatography does not work the same way for all situations. Even though it is effective at
speeding up processes and making columns more productive compared to the isocratic conditions,
we need to remember that it works best under specific conditions and might not be a universal
solution for every case.

In summary, our research bridges the field of numerical computations, mathematical mod-
eling and analysis with empirical reality. It lays the foundation for further improving liquid
chromatographic processes capable to solve mixtures of components.

Outlook

• We used linear chromatography in this study because we worked with a diluted solute
mixture. However, in future work, non-linear chromatography can be applied to more
concentrated systems where solute interactions are significant. This method is particularly
useful for studying systems with high solute concentrations, where non-linear effects such
as saturation and competitive adsorption become prominent.

• More sophisticated forms of gradients can be used instead of step-like temperature gradients.
They are especially useful when dealing with complicated combinations or simulating actual
temperature variations in applications such as pharmaceutical stability testing.

• In this work we considered equilibrium models. Non-equilibrium models can be used when
dealing with systems that do not comply to the equilibrium assumptions. This is typically
the case when substances do not have sufficient time to reach a stable concentration profile
due to dynamic transport phenomena.
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