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Zusammenfassung 

I 

Zusammenfassung 

Noch heute zählt die Impfung zur wichtigsten Influenzaprävention. 

Influenzaimpfstoffe werden in embryonierten Hühnereiern oder in tierischer  

Zellkultur hergestellt. Klare Vorteile der zellkulturbasierten Produktion sind die 

Unabhängigkeit von Eilieferanten, das Ausschließen möglicher anaphylaktischer 

Reaktionen auf Eiproteine sowie die Möglichkeit, die Produktion schneller an den 

aktuellen Bedarf anzupassen. In allen Prozessen stellt das Glykoprotein 

Hämagglutinin (HA) das Hauptantigen dar. HA ist in der viralen Hülle hoch 

abundant und löst aufgrund seiner hohen Immunogenität schützende 

Immunantworten aus. Viele Eigenschaften eines Glykoproteins, wie z. B. 

Immunogenität, Antigenität, Rezeptorbindungsspezifitäten und Stabilität, können 

jedoch von dessen Glykosylierung entscheidend beeinflusst werden. Ein 

grundsätzliches Verständnis der Einflussgrößen verschiedener zellkulturbasierter 

Kultivierungsbedingungen auf die N-Glykosylierung ist daher essentiell zur 

Verbesserung des Prozessdesigns z. B. zur Auswahl der Zelle. 

Der Einfluss der Kultivierungsbedingungen auf das HA N-Glykosylierungsmuster 

des Influenzavirus A (IVA) wird in dieser Studie mittels kapillarer 

Gelelektrophorese mit Laser-induzierter Fluoreszenzdetektion- (CGE-LIF-) 

basierter Glykoanalytik untersucht. In den resultierenden, gut reproduzierbaren 

Fingerabdrücken repräsentiert jeder Peak mindestens eine bestimmte N-

Glykanstruktur. Auf genomischer Ebene erlaubt die Methode der 

Pyrosequenzierung darüber hinaus die Charakterisierung der viralen 

Quasispecies. Im Rahmen von in vitro und in vivo Mausstudien wird 

abschließend in einem transgenen HA-spezifischem T cell Rezeptor (TCR-HA) 

Modell sowie im BALB/c wildtyp (wt) Modell der Einfluß verschiedener 

Glykovarianten auf die Immunogenität verschiedener Viruspräperationen 

adressiert. 

Diese Studie zeigt, dass vor allem die Wahl des Produktionssystems (MDCK, 

Vero, AGE1.CR.pIX, Cap, MDCK.SUS1, MDCK.SUS2, MDCK.SUS3 Zellinien 

und embryonierte Hühnereier) und des Virusstammes (IVA PR/8/34, H1N1; 
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California/07/2009-Reassortant, H1N1pandemic; IVA Uruguay/716/2007-

Reassortant, H3N2, IVA Victoria/210/2009-Reassortant, H3N2) das N-

Glykosylierungsmuster des HA entscheidend beeinflussen und sowohl das 

Vorkommen als auch die relativen Häufigkeiten verschiedener N-

Glykanstrukturen bestimmen. Bemerkenswert ist, dass eine Adaptation von 

adhärent wachsenden Madin Darby canine kidney (MDCK) Produktionszellen an 

serumfreies Zellwachstum nur relative Häufigkeiten HA-assoziierter N-Glykane 

beeinflusst, während eine Adaptation an Suspensionswachstum in serumfreiem 

Medium das N-Glykosylierungsmuster grundlegend verändert. Im Allgemeinen ist 

zur Prozessoptimierung, oft eine Adaptation des Saatviruses an die 

Produktionszelle notwendig, um optimale Virusausbeuten zu erzielen. Diese 

Arbeit zeigt, dass der Adaptationsstatus des Viruses lediglich die relative 

Häufigkeit HA-assoziierter Glykane beeinflusst. Die Steigerung der Ausbeute ist 

auf erworbene Mutationen während der Adaptation vor allem im HA, aber auch 

im viralen Nukleoprotein (NP), in der Neuraminidase (NA) und im nicht-

strukturellen Protein 1 (NS1) zurückzuführen. Darüber hinaus wird gezeigt, dass 

der Lieferant/Ursprung des zur Virusproduktion verwendeten Saatviruses, die 

Viruspassage, die Kultivierungsgefäße und –medien, sowie der Erntezeitpunkt 

nur einen geringen Einfluss auf relative Häufigkeiten der HA-assoziierten N-

Glykane ausüben. Die Relevanz solcher Glykoanalyse für die Qualitätssicherung 

in der Impfstoffproduktion wird in einem transgenen TCR-HA Mausmodell, sowie 

in einem BALB/c wt Modell hervorgehoben. Ein Vergleich von MDCK- und Vero-

spezifisch glykosylierten Viruspräperationen des IVA PR/8/34 (H1N1) zeigt einen 

signifikanten Einfluss der N-Glykosylierung auf die Immunogenität in vitro und in 

vivo. Außerdem deuten die Daten auf eine ausgeprägtere Unterstützung der 

humoralen Immunantwort durch die MDCK Zell-spezifische Glykosylierung, 

sowie auf eine stärkere Förderung der zellulären Immunantwort durch die Vero 

Zell-spezifische Glykosylierung hin. 
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Abstract 

Vaccination and hygiene measures still represent the best strategies to prevent 

influenza virus infection. Manufactures produce influenza vaccines in different 

host systems, i.e. either in fertilized chicken eggs or in different mammalian cell 

lines. Advantages of cell culture-based virus production include independence 

from egg supply, prevention of anaphylactic reactions caused by egg proteins as 

well as the ability to rapidly scale-up and -down to better match vaccine demand. 

In all processes, the viral glycoprotein hemagglutinin (HA) is purified as the major 

vaccine antigen. HA is highly abundant in the envelope of influenza viruses, and 

able to induce strong and protective immune responses. Quality characteristics 

of glycoproteins, such as immunogenicity, antigenicity, protein stability and 

receptor-binding specificity can strongly depend on the glycan composition with 

respect to N-glycan structures attached as well as their relative abundances. A 

fundamental understanding of the impact of cultivation conditions is necessary to 

support process design, e.g. regarding the choice of host system, in cell culture-

derived influenza vaccine production. 

In this study the impact of cultivation conditions on the HA N-glycosylation 

pattern of influenza A virus (IVA) is investigated by capillary gel electrophoresis 

with laser-induced fluorescence detection- (CGE-LIF-) based glycoanalysis. As a 

result, well reproducible N-glycan fingerprints are obtained, in which one peak 

corresponds to at least one distinct N-glycan structure. Furthermore, for 

characterization of the viral quasispecies, next-generation pyrosequencing is 

applied. Finally, the importance of N-glycosylation on immunogenicity of virus 

preparations is addressed in vitro as well as in vivo using transgenic HA-specific 

T cell receptor (TCR-HA) and wild type (wt) BALB/c mouse models. 

The results demonstrate that peak presence as well as peak abundance mainly 

depend on the host system (MDCK, Vero, AGE1.CR.pIX, Cap, MDCK.SUS1, 

MDCK.SUS2, MDCK.SUS3 cell lines and embryonated hens’ eggs) and the virus 

strain (IVA PR/8/34, H1N1; California/07/2009-reassortant, H1N1pandemic; IVA 

Uruguay/716/2007-reassortant, H3N2, IVA Victoria/210/2009-reassortant, H3N2) 
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chosen. Interestingly, the adaptation of adherently growing Madin Darby canine 

kidney (MDCK) cells to serum-free cell growth only slightly affects relative 

abundances of HA-associated N-glycan structures. In contrast, the adaptation to 

suspension growth in serum-free medium alters HA N-glycan fingerprints 

drastically with respect to relative abundances as well as N-glycan structure 

presence. In particular, the total number of different N-glycan structures is 

reduced, and the N-glycans show a tendency towards smaller structures. In 

general, for process optimization, the adaptation of virus seed is often necessary 

for sufficient virus yields. This work demonstrates that the adaptation status of 

the virus hardly affects the HA N-glycosylation fingerprint, only showing changes 

in relative N-glycan structure abundances. However, after virus adaptation, 

acquired mutations, in particular within the HA, allowed increased virus 

replication and hence improved final virus titers. Additional mutations are 

detected within the viral nucleoprotein (NP), the neuraminidase (NA) and the 

non-structural protein 1 (NS1). Changes in process conditions, including virus 

passages, virus suppliers/origin, virus production media, virus production vessels 

as well as time points of harvest only affect relative abundances of HA-

associated N-glycans. Finally, the relevance of glycoanalysis for quality control 

and assessment for vaccine production is highlighted in transgenic TCR-HA as 

well as wt BALB/c mouse models. A comparison of MDCK and Vero cell-specific 

glycosylated virus preparations demonstrates that N-glycosylation has a marked 

impact on immunogenicity in vitro as well as in vivo. Furthermore, results suggest 

that MDCK cell-specific glycosylation more promotes the humoral immune 

response whereas Vero cell-specific N-glycosylation seems to more promote the 

cellular immune response. 
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Abbreviations, indices and symbols 

2-AA  2-amino-antranillic acid 

AA  amino acid 

Ab  antibody 

2-AB  2-aminobenzamide  

ADCC  antibody dependent cell-mediated cytotoxicity 

Ag  antigen 

AGE1.CR.pIX 

immortalized and modified designer cell line from ProBioGen AG, 

Berlin, Germany; originating from Muscovy Duck 

ANTS  8-aminonaphthalene-1,3,6-trisulfonic 

APC  antigen presenting cell 

APTS  8-aminopyrene-1,3,6-trisulfonic acid 

Asn  asparagine 

BALB/c mice albino, laboratory-bred strain of the house mouse (mus musculus) 

BCR  B cell receptor 

bp  base pairs 

°C  degree Celsius 

Cap immortalized designer cell line from Cevec Pharmaceuticals GmbH, 

Cologne, Germany; originating from primary human amniocytes 

CD  cluster of differentiation 

cDNA  coding DNA 

CE  capillary electrophoresis 

CGE  capillary gel electrophoresis 

CLR  C-type lectin receptor 

CPSF  cleavage and polyadenylation specificity factor 

cRNA  complementary RNA 

CTL  cytotoxic T lymphocytes 

Da  dalton 

ΔRPH  difference of relative peak height 
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ΙΔRPHΙ absolute value of ΔRPH 

DC  dendritic cell 

DC-SIGN DC-specific intercellular adhesion molecule-3-grabbing non-integrin 

DNA  deoxyribonucleic acid 

dNTP  deoxinucleoside triphosphate 

ddNTP dideoxinucleoside triphosphate 

DMSO dimethylsulfoxid 

DO  dissolved oxygen 

Dol  dolichol 

dpi  days post immunization 

dsRNA double-stranded RNA 

e.g.  for example (exempli gratia) 

elF4G1 eukaryotic initiation factor 4 G1 

ELISA  enzyme-linked immunosorbent assay 

ELISPOT enzyme-linked immunosorbent spot assay 

EMA  European medicines agency 

emPCR emulsion PCR 

EndoH endonuclease H 

ER  endoplasmatic reticulum 

et al.  and others (et alii) 

FACE  fluorescence-assisted carbohydrate electrophoresis 

FDA  U.S. food and drug administration 

FLI  Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany 

g  gravity constant (earth: g = 9.81 m/s2) 

GDP  guanine diphosphate 

Glc  glucose 

GlcNAc N-acetylglucosamine 

GMP  good manufacturing practice 

h  hour 

HA  hemagglutinin 

HAI  hemagglutination inhibition 
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HAU  HA units 

HCD  high confidence difference 

HILIC  hydrophilic interaction chromatography 

HPAEC high performance (or high pH) anion exchange chromatography 

hpi  hours post infection 

HPLC  high-performance liquid chromatography 

hps  hours post stimulation 

H2OMQ  ultrapure water (Millipore) 

i.e.  that is (id est) 

IFN  interferon 

IL  interleukin 

i.p.  intraperitoneal 

i.v.  intravenous 

IVA  influenza A virus 

IVA-California 

IVA reassortant California/07/2009 (H1N1pandemic) 

IVA-PR8 IVA Puerto Rico/8/34 (H1N1) 

IVA-Uruguay IVA reassortant Uruguay/716/2007 (H3N2) x IVA-PR8/34 (H1N1) 

IVA-Victoria IVA reassortant Victoria/210/2009 (H3N2) x IVA-PR8/34 (H1N1) 

kDa  kilodalton 

L  liter 

LAIV  live attenuated influenza virus 

LIF  laser-induced fluorescence 

LOD  limit of detection 

M1  matrix protein 1 

M2  matrix protein 2 (also termed proton channel protein M2) 

mAb  monoclonal antibody 

Man  mannose 

MDCK  Madin Darby canine kidney 

MHC  major histocompatibility complex 

min  minute 
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MGL  macrophage galactose-type lectin 

MMR  macrophage mannose receptor 

µL  microliter 

mL  milliliter 

moi  multiplicity of infection 

MPI-KG Max Planck Institute for Colloids and Interfaces, Potsdam – Golm, 

Germany 

mRNA  messenger RNA 

MS  mass spectrometry 

MTU  migration time units 

MTU’  normalized migration time units (equivalent of bp) 

MW  molecular weight 

NA  neuraminidase 

NaBH3CN sodium cyanoborohydride 

NEP  nuclear export protein (also termed NS 2) 

NIBSC National Institute for Biological Standards and Control 

NIBSC-strain IVA-PR8 purchased from NIBSC 

NP  nucleoprotein 

NS1  non-structural protein 1 

NS2  non-structural protein 2 (aslo termed NEP) 

OST  oligosaccharyltransferase 

P  phosphate 

PA  polymerase acidic protein 

PAD  pulsed amperometric detection 

PAGE  polyacrylamide gel electrophoresis 

PAS  periodic acid -Schiff 

PB1 polymerase basic protein 1 (also termed RNA-directed RNA 

polymerase catalytic subunit) 

PB1-F2 protein PB1-F2 

PB2  polymerase basic protein 2 

PCR  polymerase chain reaction 
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PGC  porous graphitized carbon 

PNGaseF peptide: N-glycosidase F 

PP  pyrophosphate 

RFU  relative fluorescence units 

RIG-I  retinoic inducible gene I 

RKI  Robert Koch Institute 

RKI-strain IVA-PR8 obtained from RKI 

RNA  ribonucleic acid 

RNP  ribonucleoprotein complex 

RP  reverse phase 

RPH  relative peak height 

rpm  rounds per minute 

RT  room temperature 

RT-PCR reverse transcriptase PCR 

s  second 

SEC  size exclusion chromatography 

SEM  standard error of mean 

Ser  serine 

SD  standard deviation 

SDS  sodium dodecyl sulfate 

SOP  standard operating procedure 

SP-D  surfactant protein D 

sstDNA single stranded template DNA 

TCID50 tissue culture infectious dose 50 % 

TCR  T cell receptor 

Th  T helper cell 

Thr  threonine 

tmig   migration time 

TPH  total peak height 

Treg  regulatory T cell 

TRIM25 tripartite motif-containing protein 25 
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UDP  uridine diphosphate 

vRNA  viral RNA 

WHO  World Health Organization 

wt  wild type 
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1 Introduction and motivation of work 

Many biopharmaceuticals such as monoclonal antibodies (mAbs), growth factors, 

protein hormones, therapeutic enzymes and coagulation factors are 

glycoproteins. Since it is known that glycosylation impacts essential 

characteristics such as stability, activity as well as immunogenicity of these 

proteins, regulatory agencies like the U.S. Food And Drug Administration (FDA) 

and European medicines agency (EMA) demand N-glycosylation profiles for 

quality control and drug release. Interestingly, however, such regulations are still 

absent for vaccines, where glycoproteins are often the main antigens. In contrast 

to other biopharmaceuticals, there is only little known so far about the impact of 

variations in cultivation condition on the N-glycosylation of vaccine components. 

Accordingly, little is known about the impact of differential glycosylation on 

vaccine efficacy and safety (e.g. [1-3]). 

So far, our understanding of conditions affecting protein glycosylation, limits our 

ability to control final product glycosylation. In general, direct cultivation factors 

such as the production system, the medium composition, the pH as well as 

indirect factors such as the availability of sugar-nucleotides within the cell, the 

residence time of the N-glycan in the Golgi, the host cell’s glycosylation 

machinery and the three-dimensional protein structure have been described to 

markedly impact glycosylation site occupancy and/or types of glycan structures 

attached. 

 

The aim of this work was to investigate the impact of various process conditions 

on the hemagglutinin (HA) N-glycosylation pattern of influenza virus A (IVA) and 

determine possible consequences on characteristics of virus preparations for 

vaccine production. Therefore, high-performance capillary gel electrophoresis 

with laser-induced fluorescence detection- (CGE-LIF)-based glycoanalysis is 

applied for the comparison of HA-associated glycan pools. Different upstream 

processing steps for IVA production are investigated: seed virus (with respect to 

passages, strains, suppliers and adaptation status), host cell (with respect to cell 
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line and adaptation status), cultivation scale and vessel (with respect to T-flask, 

roller bottle and stirred tank reactor, STR, cultivations in varying volumes) and 

virus production medium (with respect to composition and trypsin activity). The 

main focus is laid on MDCK cell-derived IVA PR/8/34 (H1N1, in the following 

termed as IVA-PR8) preparations. However, for multiple cultivation conditions 

such as virus adaptation status, production vessels, etc. other production 

systems (Vero, AGE1.CR.pIX, MDCK.SUS2 cell lines; embryonated hens’ eggs) 

or virus strains (IVA reassortant California/07/2009-like, H1N1pandemic; IVA 

reassortant Uruguay/716/2007-like, H3N2; IVA reassortant Victoria/210/2009-

like, H3N2) complement and confirm the trend of MDCK cell-derived IVA-PR8 

data. 

For seed virus adaptation, factors are addressed, leading to higher virus titers in 

shorter time frames. Therefore, CGE-LIF-based glycoanalysis characterizes HA 

N-glycosylation and next-generation pyrosequencing confirms stable potential 

N-glycosylation sites during virus adaptation and allows the characterization of 

quasispecies composition. Pyrosequencing is performed in cooperation with Dr. 

D. Höper from the Friedrich-Loeffler-Institut (FLI, Greifswald - Insel Riems, 

Germany). Altogether, these data contribute to a better understanding of the 

common requirement for virus seed adaptation to production cell lines. 

Finally, the impact of N-glycosylation on immunogenicity is addressed, which 

is of particular relevance for influenza vaccine potency and efficiency. This is 

done in cooperation with Dr. B. Lepenies and J. Hütter from the Max Planck 

Institute for Colloids and Interfaces (MPI-KG, Potsdam-Golm, Germany). 

Therefore, differentially glycosylated virus preparations are characterized in a 

variety of in vitro and in vivo immunogenicity assays (e.g. whole spleen cell 

assays, adaptive T cell transfer, etc.) using a transgenic mouse model 

expressing a HA111-119-specific T-cell receptor (TCR-HA) presented by class II 

major histocompatibility complex (MHCII) molecules or a BALB/c wt model, 

respectively. 

Finally, potential ‘rescue mutations’, allowing increased virus yields after virus 

adaptation, are identified. Moreover, no-, low- and high- impact process 
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conditions that contribute to HA N-glycosylation are identified. Such information is 

of high value since it not only allows estimating consequences of production 

process modifications but also allows evaluating process failures. 

Immunogenicity studies allow for identification of possible consequences of 

altered N-glycosylation with respect to T cell activation, proliferation and induction 

of HA-specific antibody (Ab) levels. Finally, the importance of N-glycosylation 

assessment for influenza virus preparations is affirmed and favorable 

characteristics of IVA-PR8 glycovariants are identified. 

 

Many aspects of this thesis have been published as first/shared-first [1, 4-7] or 

co-author [8, 9]. Within this work quotations of these publications will not be 

indicated specifically. Whenever parts of phrases, phrases, parts of paragraphs 

or paragraphs are used, the reference will only be given after the phrase or 

paragraph by the reference number [reference]. Throughout this work, text from 

first/shared-first or co-author articles/book chapters is generally only quoted, if it 

was primarily written by myself for the publication. A detailed overview of 

publications is given in section 13, including a statement on authorship. 

Since J. Hütter (shared-first co-author of [1]) may use parts of the published work 

for her dissertation, too, it will additionally be indicated in the beginning of a 

section, if text, analogous text content, structure, figures, figure legends or parts 

of figure legends were taken from the paper published together with J. Hütter, D. 

Höper, P.H. Seeberger, E. Rapp and B. Lepenies, January 2013 in J. Immunol. 

[1]. 
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2 Theory and background 

2.1 Influenza virus 

Influenza virus belongs to the family of Orthomyxoviridae. The virions are 

pleomorphic, i.e. they vary in size and shape between spherical and filamentous 

appearances of 80 nm to 120 nm in diameter [10]. Influenza is an enveloped, 

negative-sense (complementary to mRNA) RNA virus with a segmented genome, 

coding for up to 14 viral proteins. The genome of all influenza viruses encodes for 

the following seven proteins: the polymerase acidic protein (PA), the polymerase 

basic protein 1 (PB1) and the polymerase basic protein 2 (PB2), nucleoprotein 

(NP), matrix protein M1, and the non-structural proteins NS1 and NS2. PA, PB1 

and PB2 represent the three subunits of the RNA-dependent RNA polymerase. 

The polymerase complex together with NP is associated with the viral RNA, 

forming a ribonucleotideprotein complex (RNP) for each segment (figure 1). The 

antigenic specificity of NP determines the type (A, B or C) of the influenza virus 

[11]. The matrix protein M1 is a structural protein. NS1 was described to inhibit 

mRNA transport from the nucleus and to act as an interferon (IFN) antagonist 

inhibiting antiviral host responses. In contrast, NS2 carries out functions during 

nuclear export (hence NS2 is also referred to as nuclear export protein, NEP). 

Besides these seven proteins, the eight segments of the genome of influenza A 

and B viruses (figure 1) additionally encode two glycoproteins the hemagglutinin 

(HA) and the neuramidase (NA), which are integrated into the viral lipid 

envelope. HA mediates host cell binding and following membrane fusion, 

whereas NA finally liberates virus progeny from the host cell. Influenza A viruses 

also encode for the ion channel protein M2. It is located within the viral envelope 

and is described to be activated by low pH of the endosomes, allowing protons 

enter the virions’ core. In particular, it is highly specific for H+ ions [12]. Moreover, 

non-essential proteins derived from alternative splicing or reading frames have 

been described, recently. These include: PB1-F2, N40, PA-X and M42 [13-15]. 

Influenza A viruses are further categorized into different subtypes based on the 

antigenic specificity of their surface antigens HA and NA. Strain designations of 
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influenza viruses contain the type, the host of origin (only if non-human), 

geographical origin, strain number, year of isolation and for influenza A viruses 

the antigenic description of the HA and NA proteins (i.e the subtype) in 

parenthesis, e.g. influenza A virus/duck/USSR/695/1976 (H2N3) [11]. Up to date, 

17 different HA and ten different NA subtypes are described, although not all 

possible combinations of both proteins occur [16]. 

 
figure 1: Influenza A virus. 
(A) The genome consists of 8 segments, coding for up to 14 proteins. (B) Alternative reading 
frames (segments 2, due to alternative initiations; segment 3, due to ribosomal frameshifts; 
attached boxes) and splice variants (segments 7 and 8; free boxes) allow one sequence segment 
to code for different proteins. Modified and reprinted with permission [17]. 

2.2 Influenza – a threatening human pathogen 

So far, only influenza virus B and two IVA subtypes, i.e. H1N1 and H3N2, have 

been described to generally circulate in humans. An infection may cause severe 

illness, potentially leading to death. Once in a while pandemic outbreaks claim 

plenty of victims. Beside the pandemic threads, seasonal epidemics periodically 

demand profound economic losses, numerous hospitalizations and deaths each 

year. Up to date, hygiene and vaccination represent the best measures to 

prevent infection and resulting possible health complications. The periodical 

reoccurrence of pandemic and epidemic influenza outbreaks and hence the need 
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for seasonal vaccine reformulation is mainly attributed to the virus’ ability to 

rapidly adapt to new environments. 

2.3 Virus adaptation 

On the one hand, new influenza variants can originate from the virus’ ability to 

newly reassort (genetic shift) [4, 18]. On the other hand, the high error rate of the 

viral polymerase raises constantly new virus variants [19], which only differ in 

single or few amino acid positions, resulting in variations of the virus genome. 

Further, natural selection leads to the adaptation of a given virus as an 

evolutionary response to ‘new-host-pressure’ [18]. The frequency of a virus 

variant in a population largely depends on its ability to survive and reproduce – 

i.e. its fitness [20]. However, if coupled to high fitness genotypes, low fitness virus 

variants can be maintained at higher levels than expected [4, 21]. 

Virus adaptation is one of the most important processes in virus evolution, and a 

crucial factor to be taken into account for seasonal and pandemic vaccine 

production. Escape from immune pressure, balancing host cell receptor binding 

avidity of infecting virus with the release of progeny virus as well as adjustment to 

altered endosomal pH-values or to different, specific sialic acid containing host 

cell receptors have been described as driving forces for adaptation processes in 

virus evolution [22-25]. On the one hand, adaptation allows the virus to cross 

species boarders, evade immune or therapeutic pressures and optimize its 

replication in a given host system [26]. On the other hand, it challenges 

manufacturers to adapt emerging strains to existing egg-based or cell-culture-

based system processes to obtain maximum yields for formulation of potent 

vaccines [4, 22, 27]. 

2.4 Quasispecies 

In general, due to the viral polymerase’s error-prone nature, influenza replication  

and hence also adaptation processes, result in the co-existence of related virus 

subpopulations on the genomic and hence often on the proteomic level. Such a 

population of related, though differing virus variants is referred to as a 

quasispecies [28-30]. The consensus sequence of such a quasispecies 
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represents the most frequent information for each position. Often, no single virus 

of a vius population carries the consensus sequence, because no mutation is 

present at a sufficient high level. 

During most infections, i.e. during cell culture-based virus production as well as 

during illness, more than one virus particle is involved. Furthermore, each 

infected cell produces plenty of slightly differeing progeny viruses. Altogether, this 

suggests that hardly one seed virus stock matches the other. Moreover, it implies 

that a virus strain obtained from one supplier most likely not matches with the 

same virus strain obtained from another supplier. Hence, varying virus production 

yields during vaccine production processes and differing courses of disease 

during illness may result from such differing viral quasispecies compositions. 

Only recently, new deep sequencing methods, e.g. next generation 

pyrosequencing, allow the detection of different variants within such a 

quasispecies. 

2.5 Glycovariants 

The variation on the genomic level is further increased by the complexity of 

protein N-glycosylation of the two viral surface proteins hemagglutinin (HA) and 

neuramidase (NA). Glycoproteins can be considered as a collection of different 

glycoforms or glycosylation variants [4, 31]. They vary in glycosylation site 

occupancy (macroheterogeneity) and in structure and composition of sugar 

residues (microheterogeneity) attached to the protein backbone [4]. 

2.6 Influenza virus replication 

The glycoprotein HA plays a key role in virus replication and therefore is often 

affected during adaptation processes, resulting in altered amino acid sequences 

and/or altered HA N-glycosylation. However, other viral proteins also contribute 

to virus replication and may also be affected during virus adaptation. In order to 

help interpreting virus genome sequencing data presented in the result section, a 

short overview of the IVA replication cycle will be given in the following. 

The replication cycle of influenza A viruses comprises virus adsorption, entry, 

uncoating, mRNA synthesis (transcription) and replication of viral RNA, 
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synthesis of viral proteins (translation), virus assembly, budding and final 

release of virus progeny [32, 33]. 

2.6.1 Adsorption, entry and uncoating 

In the first step the virus binds to the host cell, which is mediated by interactions 

of the receptor binding domain on the distal tip of the viral HA molecule with sialic 

acid residues of host cell receptors (figure 2). Here, different HA subtypes (H1-

17) have different specificities for sialic acid bond to galactose by either α2,3 or 

α2,6 linkage. A change of this specificity, e.g. due to substituted amino acid 

residues within the receptor binding pocket, can allow to cross species borders. 

In cells of birds intestines for instance α2,3 linkages are predominant, whereas in 

cells of human trachea mainly α2,6 linkages are expressed. In contrast, cells in 

pigs trachea contain both α2,3 and α2,6 sialic acid linkages. This co-expression 

of α2,3 and α2,6 linkages makes them susceptible for avian and human influenza 

strains and turns them into a mixing vessel facilitating genetic/antigenic drift (via  

 
figure 2: Schematic influenza A virus replication cycle. 
The model was simplified by displaying only one vRNP within the virus particle, instead of eight 
and by omitting nonstructural proteins. Transport processes are indicated by dashed arrows, 
whereas synthesis and protein binding are indicated by solid arrows. The virus replication cycle 
comprises (1) virus adsorption, (2) entry by endocytosis, (3) uncoating, (4) nuclear import, (5) 
transcription and (6) replication of viral RNA (cRNA synthesis), (7) translation of viral proteins, (8) 
encapsidation of cRNA with newly synthesized NP and polymerase proteins, (9) replication of 
viral RNA (vRNA synthesis), (10) encapsidation of vRNA with newly synthesized NP and 
polymerase proteins, (11) M1 and NEP binding mediate (12) nuclear export, (13) virus assembly, 
budding and final release [33]. Modified and reprinted with permission. Copyright 2012, American 
Society for Microbiology. 
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mutation) and shift (reassortment). Furthermore, tissue tropism is determined by 

a cleavage site within the HA molecule. The HA molecule, as it is synthesized, is 

referred to as HA0 (molecular weight, MW, approximately 70 kDa). HA0 must be 

cleaved e.g. by host proteases into a HA1 (MW approximately 50 kDa) and a HA2 

(MW approximately 20 kDa) subunit to activate virus infectivity [34, 35]. In 

natively folded, cleaved HA molecules the HA1 and HA2 subunits are linked with 

a single disulfide bond and are considered to be in a metastable state. Adsorbed 

influenza virus is internalized within vesicles by receptor-mediated endocytosis. 

These vesicles begin to fuse with endosomes [12]. On the one hand increasingly 

acidic pH values activate the M2 ion channel [36] and permit the H+ ion flow into 

the virion, destabilizing protein-protein interactions and RNP - M1 interactions 

[12, 37, 38]. On the other hand the low-pH induces a conformational change of 

the cleaved, metastable HA molecule - especially the HA2 subunit refolds – 

leading to fusion of viral and cellular membrane [12] and thus allowing the viral 

RNA to enter the host cell’s cytoplasm. 

2.6.2 Transcription and replication of the virus genome 

Nuclear localization signals within viral proteins trigger specific interactions with 

nuclear transport complexes (so called importins) that interact with nuclear pore 

complexes of the host cell, thus allowing the transport of viral RNPs into the 

cellular nucleus ([39], figure 2). The synthesis of viral mRNA is dependent on the 

cellular RNA polymerase II. The PB2 subunit of the heterotrimeric viral 

polymerase recognizes and binds the 5’ cap of cellular mRNA transcripts of the 

polymerase II [40-42]. In a next step, the endonuclease active part of the PA 

subunit cleaves off the capped RNA fragments from the transcripts. This 

procedure is also known as cap-snatching [42-44]. The fragments of 10 to 13 

nucleotides serve as primers for the viral polymerase and are required for the 

initiation of viral mRNA synthesis [12]. PB1 binds the vRNA, which serves as 

template. A conserved domain within the PB1 subunit catalyzes the elongation of 

the mRNA [42, 45, 46] until a stretch of 4 to 7 uridine residues is reached, where 
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transcription is terminated and polyadenylation occurs. Consequently, viral and 

host cell mRNAs are structurally indistinguishable. 

In contrast to viral mRNA synthesis, the replication of the full-length RNA 

variants, the template cRNA and the vRNA, do not require any primers and are 

not terminated at the poly A site (reviewed in [12]). 

2.6.3 Translation 

PB1, PB2, PA, NP, M1 and NS2 proteins are essential for the nuclear export of 

the vRNA (figure 2). These proteins are translated from the viral mRNA in the 

cytoplasm and are, as described before, actively transported (with the exception 

of NS2, which is supposed to be small enough for diffusion through pores) into 

the cellular nucleus. Here, vRNA, PA, PB1, PB2 and NP assemble to form new 

RNPs. M1 is proposed to bind the RNP complex and NS2 in turn is proposed to 

bind M1. NS2 also interacts with exportin1 (also known as chromosome region 

maintenance protein 1, CRM1), which in turn binds a small GTPase called Ran, 

which again needs to be associated with GTP before the whole RNP-M1-NS2-

CRM1-RanGTP-complex can leave the nucleus (reviewed in [39]). Additionally, 

also NS1 carries nuclear localization signals and is transported into the host’s 

nucleus, where it does not interact with the RNP-export complex but antagonizes 

the cellular immune response [39, 47].  

The viral membrane proteins HA, NA and M2 are synthesized on membrane-

bound ribosomes and are flipped upon a signal sequence across the membrane 

into the endoplasmatic reticulum (ER, figure 2). The glycoproteins HA and NA are 

furthermore modified by N-linked glycosylation in the ER and the Golgi whereas 

HA and M2 are additionally palmitoylated in the Golgi [12]. 

2.6.4 Assembly, budding and release 

After completion of processing during the transport from the ER through the cis-, 

mid- to trans-Golgi, HA, NA and M2 are transported by separate transport 

vesicles to the plasma membrane domains ([48], figure 2). In polarized epithelial 

cells, such as MDCK or primary bronchial and lung epithelial cells, influenza 

viruses assemble at the apical surface of the cells [49], in so-called lipid rafts 
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(cholesterol- and sphingolipid-enriched regions within the plasma membrane). 

HA and NA both possess their own signal(s) for apical transport and lipid raft 

association [49]. Also M2, M1 and vRNPs assemble at the budding site, though 

there is still some discourse about the exact mechanisms (reviewed in [49, 50]). 

Also, the exact processes involved in budding as well as final scission of the new 

progeny viruses from the cellular membrane are still discussed (reviewed in [49, 

50]). Finally NA prevents virus progeny to aggregate to itself or the cell surface 

by removing sialic acid residues thus allowing the spread of virus progeny to 

other cells [12, 51]. 

2.6.5 Role of non-structural proteins 

So far, it is unknown how the multiple functions of NS1 contribute to the IVA 

phenotype (e.g. reviewed in [52]). One function of NS1 is cleavage and 

polyadenylation specificity factor- (CPSF-) binding, hence suppressing cellular 

gene expression. A second function suppresses the export of cellular mRNAs 

into the cytoplasm, impairing cellular protein synthesis and thereby suppressing 

the host’s IFN response. A third function is dsRNA- and tripartite motif-containing 

protein25- (TRIM25-) binding, which prevent retinoic acid inducible gene I (RIG-I) 

mediated IFN-induction. The forth function is the activation of the 

phosphatinositol 3-kinase/Akt pathway suppressing apoptosis in infected cells. 

The interaction of NS1 with eukaryotic initiation factor 4 G1 (elF4G1) represents 

a fifth function, stimulating the translation of viral transcripts. 

2.7 Anti-influenza drugs and influenza vaccines 

All food and drug administration (FDA) approved pharmaceutical substances to 

treat influenza infections interfere with the virus replication cycle: Zanamivir 

(Relenza) and oseltamivir phosphate (Tamiflu) are NA inhibitors, whereas 

amantadine (Symmetrel) and rimantadine (Flumadine) block the M2 ion channels 

[53]. However, due to the virus’ ability to rapidly adapt to environmental 

pressures, developing drug resistances may cause therapy failing. Therefore, 

prevention of infection in the first place is highly recommended. In this regard, 

hygiene and vaccination represent the best measures. Though, also for 
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vaccination, the virus’ ability to rapidly adapt to changing environments makes 

seasonal reformulations of influenza vaccines necessary. In general, the annual 

production circles start with the definition of virus strains recommended for the 

next season’s vaccine formulation by the World Health Organization (WHO). 

Often the recommendation matches the circulating strains, however some risks 

remain that wrong virus strains are selected. For virus seed preparation multiple 

virus variant selection steps are required: In order to minimize the risk of 

contamination with other human pathogens, clinical specimens of the strains 

recommended by the WHO are usually blind-passaged in embryonated chicken 

eggs by WHO Collaborating Centers. In general, human isolates replicate poorly 

in eggs. The manufacturers then usually select variants that replicate well to be 

reassorted to high-yield laboratory viruses to generate virus seeds used in 

production. Due to possible antigenic drift during each of these steps antigen 

identity testing and sequence analyses are required [4, 54, 55]. 

Currently, most commercially available influenza vaccines are inactivated 

vaccines produced in egg/cell culture. These are classified into whole virus, split 

(by detergent disrupted virus particles) or subunit (purified HA and NA) vaccines. 

Seasonal vaccine production requires approximately six month from the definition 

of WHO to commercialization [54]. Principally, seasonal vaccine formulations are 

trivalent, i.e. they comprise two IVA strains and one influenza virus B strain. In 

contrast, the production of a pandemic vaccine, which is usually monovalent, only 

comprising the pandemic strain, takes about five months [56].  

In some places such as the United States, alternatively to inactivated vaccines 

cold-adapted, live attenuated influenza whole virus (LAIV) vaccines are available 

[57, 58]. These are usually administered as nasal spray. 

In addition, other vaccine platforms using recombinant proteins/peptides, DNA, 

virus-like particles-, virosomes or vector-based vaccines have recently been 

described [59]. However, most liscensed vaccines, so far, are not from those 

other platforms. 
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2.8 Cell culture-based inactivated influenza vaccines 

So far, most influenza vaccines are still produced in embryonated hen’s eggs, 

though an increasing number of cell culture-based processes are being 

established (see section 2.8.1). Advantages of such cell culture-based processes 

include independence from egg supply, skills and equipment is transferable to 

production of other cell culture-derived vaccines such as rabies, enormous 

reduction of infectious solid waste (approx. 80 % of mass of eggs), possible rapid 

process adjustment to better match supply with vaccine demand e.g. during 

pandemics and finally cell culture-derived vaccines bear no risk of anaphylactic 

reactions caused by egg proteins [6, 60]. 

2.8.1 Host cells used in production 

So far, few cell culture-based processes using MDCK cells have been licensed 

(e.g. Novartis Behring for Optaflu® and Celtura). MDCK cells have been 

comprehensively characterized since their establishment in 1958 by Madin and 

Darby [6]: absence of contaminating viruses, resistance to prion infections and 

ideal properties for influenza virus replication have been demonstrated [61]. 

Suspension as well as adherently growing cell clones are being used [6, 62]. As 

an alternative, other cell lines such as Vero (Baxter International Inc. for 

Celvapan®, PreFluCel®, Vepacel®; [61, 63-66]), AGE1.CR [67], AGE1.CR.pIX 

[7, 67], PER.C6 [61, 68, 69], EBx [61], Eb14® [62], PBS-1 [70] or SJPL cells [61, 

62, 71] have been described for influenza virus production [6]. Here, the 

importance of host choice shall be emphazised, since the selected production 

cell line not only affects virus propagation dynamics and hence harvest time 

points and virus yields but most likely also the N-glycosylation pattern of HA [6, 

72, 73]. However, for virus seed preparation in all egg- and cell culture-based 

processes, multiple virus adaptation steps are usually required to achieve optimal 

yields. 
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2.8.2 Preparation of virus working seeds 

In general, human IVA isolates replicate poorly in eggs. Nevertheless, in order to 

minimize the risk of contamination with adventitious agents, clinical specimens of 

the strains recommended by the WHO for the next season’s vaccine formulation 

are usually blind-passaged in embryonated chicken eggs by WHO Collaborating 

Centers. Usually, the manufacturers select virus variants that replicate well in the 

particular final production host system, e.g. egg, MDCK cells, Vero cells, etc. and 

reassort these to even higher yielding laboratory viruses to generate virus seeds 

used in production (figure 3, [4, 54, 55]). 

Alternatively, propagation of human influenza virus isolates in mammalian cells 

would circumvent the passaging in embryonated hen’s eggs and thus prevent the 

selection of mutations in the HA, causing altered antigenic properties [74, 75]. 

One option for cell culture-derived virus production is the use of comprehensively 

characterized MDCK cells. However, here the reduction of contaminating 

pathogens due to broad species border may be smaller. The use of avian cell 

lines such as AGE1.CR, AGE1.CR.pIX [76] and EB66 [77] for isolation and 

production would probably combine the reduction of adventitious agents with the 

advantages of cell culture technologies, eliminating the need for additional 

adaptation steps [6, 7]. 

2.8.3  Vaccine production process 

While virus seeds for production are generated, production cells are expanded to 

desired quantities (figure 3): in lab and pilot scale sufficient virus is produced 

under good manufacturing practice (GMP) conditions for phase I and II clinical 

trials to demonstrate the product’s immunogenicity and safety; in industrial scale 

for final commercial vaccine production [60]. After cell expansion (cell growth 

phase), cells are infected with virus seed (virus production phase). 24 hours post 

infection (hpi) to 96 hpi the virus is harvested. During following downstream 

processing the harvest is inactivated (e.g. by formaldehyde or β-propiolactone), 

virus is concentrated, purified (e.g. using diafiltration or centrifugation) and 

contaminating host cell DNA may be degraded, e.g. by benzonase treatment or 
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removed by ion-exchange chromatography. For split and subunit vaccines the 

virus is again diluted. Added detergents such as Triton X-100, sodium lauryl 

sulphate or Tween 80 basically extract proteins from the viral envelope. 

Purification may be performed by e.g. sucrose gradient or diafiltration and the 

dilution in the formulation buffer result in final vaccines. Sometimes, adjuvants, 

stabilizers and/or preservatives are added [60, 78]. The final inactivated, cell-

culture-derived vaccine for human use must not contain more than 10 ng DNA 

per dose [79]. Furthermore, each dose should contain at least 15 µg HA per 

strain and the HA - total protein content ratio should be within the limits approved 

by national regulatory authorities [79]. However, total protein content including 

HA should not exceed 100 µg per strain, i.e. 300 µg per dose of a trivalent 

vaccine. For subunit vaccines the total protein content is even limited to a 

maximum of 40 µg per strain [79]. Additionally to HA, vaccines usually contain 

the lower abundant viral glycoprotein NA, which represents the second important 

antigen in influenza vaccines. 

 
figure 3: Cell culture-based influenza vaccine production process. 
(A) The generation of the production virus seed: The WHO defines the strains for the next year’s 
influenza vaccine. Human isolates of these recommended strains are blind-passaged in 
embryonated chicken eggs by WHO Collaborating Centers and are distributed to vaccine 
manufacturers. Here, well replicating variants are selected for the specific production system. 
These are reassorted with a high yield laboratory strain such as IVA PR/8/34 (H1N1) to high yield 
production strains, carrying the recommended HA and NA antigens. (B) Upstream processing: 
cell expansion from the cell bank to lab or industrial scale for final vaccine production. (C) 
Downstream processing and final fill and finish make the commercial product. 
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Altogether, the ready to administer vaccine has passed through a multitude of 

production steps. Hence, various up- and downstream process conditions such 

as production cells, production scales, media, production temperatures, harvest 

time points, etc. may vary between different established processes (reviewed in 

[62]). However, all processes have the vaccine’s major antigen in common - the 

HA, which is able to induce strong and protective immune responses. Here, 

questions arise concerning the impact of cultivation conditions such as virus 

adaptation, media, production scales, etc. on the N-glycosylation of HA and its 

impact on virus immunogenicity and hence on vaccine quality and savety. 

Glycoanalysis of NA is beyond the scope of this work and furthermore, due to 

lower abundance in the virus particle, bigger sample volumes would be required. 

2.9 N-glycoproteins and their synthesis 

Many antigenic proteins used for vaccination are N-glycoproteins. These 

glycoproteins such as HA from IVA (figure 4) often play key roles in virus 

replication, e.g. by enabling the attachment to and the infection of host cells. 

Glycoproteins can be considered as a collection of different glycoforms or 

glycosylation variants [31], varying in microheterogeneity as well 

macroheterogeneity [4]. With respect to the HA of IVA, depending on various 

factors such as protein conformation and host, various N-glycan structures of the 

high mannose, the hybrid and the complex type have been detected attached to 

the HA protein [73, 80, 81]. In general, differences in N-glycosylation may impact 

proteins’ characteristics such as Ab dependent cell-mediated cytotoxicity (ADCC, 

[82]), specific activity [83], antigenicity [83-85], binding avidity [86], specificity 

[87], immunogenicity and virulence [88]. For IVA in particular, N-glycosylation of 

HA was described to impact on protein folding, receptor binding activity, -avidity 

and –specificity, evasion of host immunity, protein cleavability as well as the 

recognition by the host’s innate immunity e.g. via calcium-dependent (C-type) 

lectins (summarized in [88]). 
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figure 4: Three-dimensional, spherical structure of trimeric, N-glycosylated IVA-PR8 HA. 
Attached N-glycans are couloured in red. (A) Side and (B) top view. The PDB entry 1RU7 and 
Pymol (v0.99, DeLano Scientific LLC, California, USA) software were used for structure display. 
N-glycan modeling was performed with GlyProt [89]. 

 

Viruses use the host cells for protein synthesis as well as the host cells’ 

glycosylation machinery for modifying their glycoproteins. The process of protein 

N-glycosylation takes place in different cell compartments: Briefly, in the 

cytoplasm of eukaryotes monosaccharyl-transferases stepwise attach seven 

monosaccharides (a to g, figure 5) from nucleotide sugar donors (UDP- 

acetylglucosamines, UDP-GlcNAc; GDP-Mannose, GDP-Man) to an ER 

membrane-bound lipid carrier (dolichol-pyrophosphate): two GlcNAc followed by 

five Man residues forming two branches (reviewed in [90]). Subsequently, the 

sugar moiety is flipped into the lumen of the ER by a still controversially 

discussed mechanism (reviewed in [91]). In the ER, additional four Man residues 

(h to k, figure 5) and three Glc residues (l to n, figure 5) are attached by different 

glycosyltransferases from dolichylphosphate-linked monosaccharides (Dol-P-

Man, Dol-P-Glc), finally forming the tri-antennary tetradecasaccharide 

(Glc3Man9GlcNAc2) core N-glycan structure [92]. The last glucose residue (n, 

figure 5) is required for recognition by the oligosaccharyltransferase (OST) 

complex [93], which transfers the core N-glycan structure co-translationally from 

the membrane-bound dolichol-pyrophosphate to the side chain nitrogen of the 

Asn of the N-glycosylation motif Asn-X-Ser/Thr of a growing polypeptide chain. In 

this motif, X represents any amino acid but proline. Proline is suggested to 
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impede the formation of a required loop, bringing the hydroxyl groups of Ser/Thr 

into closer contact with Asn. This close contact increases the nucleophilicity of 

Asn [94, 95], allowing the covalent attachment by a N-glycosidic bond of the 

sugar core N-glycan structure to the protein backbone. Gavel et al. estimated, 

that 90 % of such potential N-glycosylation sites are actually glycosylated [96], 

which leads to differing glycosylation site occupancy – so-called 

macroheterogeneity of glycoproteins. In mammalian cells two OST complexes 

are expressed, varying in substrate selectivity [97]: one uses complete whereas 

the second may also use incomplete oligosaccharide core structures and has a 

higher maximal reaction velocity. As soon as the oligosaccharide is attached to 

the protein-backbone a glucosidase (type I) detaches the last Glc residue (n, 

figure 5), and a further glucosidase (type II) removes the second Glc residue (m, 

figure 5). The monoglucosylated core structure is bound by calnexin and/or 

calreticulin, which support proper protein folding. The removal of the remaining 

Glc residue (l, figure 5) by glucosidase II allows properly folded proteins to leave 

the ER and enter the Golgi complex. Incorrectly folded proteins are either 

modified with a new Glc residue allowing the binding to calnexin and/or 

calreticulin again or ER-associated degradation is initiated (reviewed in [98]). 

Mannose residues are trimmed off (f, g, i, k, figure 5) by different mannosidases 

and a GlcNAc residue is added to mannose residue d (figure 5). After removal of 

mannose residues (h, j, figure 5) further sugars such as GlcNAc, galactose, sialic 

acid and fucose residues are added in the Golgi complex by a variety of different 

glycosyltransferases [99]. The Microheterogeneity of glycoproteins describes the 

resulting variance of attached glycans with respect to their sugar residue 

composition. Depending on the extent and the types of modification within the 

Golgi complex, final N-glycans are divided into three classes: high mannose, 

hybrid and complex N-glycan structures. But even complex IVA-derived 

glycoproteins, e.g. HA molecules, lack sialic acid residues, which is probably 

attributed to the neuramidase activity [73, 100, 101]. 
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figure 5: Scheme of N-linked precursor oligosaccharide. 
In the cytoplasm, monosaccharyltransferases stepwise attach monosaccharides (a-g; ■,N-
acetylglucosamines, GlcNAc; ●, mannose, Man) to ER membrane-bound dolichol-pyrophosphate. 
Subsequently the sugar moiety is flipped into the lumen of the ER. Different glycosyltransferases 
stepwise add additional four Man and three glucose (●, Glc) residues (h-n). The 
oligosaccharyltransferase (OST) complex transfers this precursor N-glycan structure to the 
nitrogen side chain of an asparagine of the N-glycosylation motif. Glucosidase I removes the last 
(n) and glucosidase II removes the second Glc residue (m). The first Glc residue (l) now allows 
binding to calnexin and/or calreticulin, supporting proper protein folding. Glucosidase II then also 
removes the first Glc residue (l), allowing the properly folded protein to leave the ER. 
 

At first sight, this highly conserved biosynthetic pathway appears rather 

energetically unfavorable. Why should a core oligosaccharide be build up and 

straight after its translocation to a polypeptide chain be trimmed down again, just 

to re-synthesize it once again with different sugars? The answer is that the 

different stages of N-glycosylation serve important functions, such as proper 

protein folding and quality control in the ER, intracellular transport and targeting 

in the ER as well as in the Golgi complex and finally various different functions 

specific for the mature glycoprotein [90]. 

What does all this mean for the HA of the IVA-PR8 used throughout this study? 

Each HA monomer of the RKI-strain carries seven potential N-glycosylation sites, 

five within the HA1 (AA positions 27, 28, 40, 286, 304) and two within the HA2 

chain (AA positions 498, 557). However, an analysis of the HA AA sequence by 

NetNGlyc 1.0 [102] predicts no N-glycosylation on residue 27 due to a low N-

glycosylation potential of 0.4 [103]. Since naturally HA occurs as a trimeric 

structure, this makes 18 potentially N-glycosylated sites for each HA trimer 

(figure 6). Taking micro- and macroheterogeneity into account makes numerous 

different isoforms of one and the same HA protein possible. 

The N-glycans attached are likely to determine protein characteristics of HA: e.g. 

it was decribed that HA with terminal mannose induces lower hemagglutination 
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inhibition (HAI) than HA with complex structures or single GlcNAc residues [2, 3]. 

Furthermore, Wang et al. showed that HA carrying single GlcNAc residues 

induced Abs with higher binding affinity and neutralization activity than fully 

glycosylated HA [104]. Interestingly and somewhat contradictory, Lin et al. 

reported that high mannose glycan structures lead to higher levels of HA-specific 

Ab titers due to different antigen presentation efficiencies [2]. However, not only 

the type of attached glycans but also the numbers and/or positions of potential 

HA N-glycosylation sites may significantly impact immunogenicity as well as 

antigenicity. Sun et al. demonstrated that the introduction of HA N-glycosylation 

sites attenuated highly virulent viruses, whereas the removal of sites resulted in 

increased virulence of lower virulent strains [88]. Furthermore, other factors such 

as the presence of a HA polybasic cleavage site may contribute to the virus’ 

pathogenicity.[105]. 

 
figure 6: Three-dimensional cartoon structure of trimeric IVA-PR8 HA. 
HA1 chains are coloured in green, pink and brown, whereas HA2 chains are coloured in yellow, 
cyan and grey. Potentially N-glycosylated asparagine residues are highlighted as red spheres. 
The PDB entry 1RU7 and Pymol (v0.99, DeLano Scientific LLC, California, USA) software were 
used for structure display. 

2.10 Analytics 

2.10.1 N-glycan analysis 

N-glycosylation modifications are as complex and diverse as the methods 

available for their characterization. Therefore, a complete overview and detailed 

description of methods goes far beyond the scope of this work. However, a 

sketch of available methods for glycoanalysis is given in the following: 

So far, no single method is able to provide all structural and site-specific 

information for the complete characterization of a glycoprotein, i.e. sugar residue 
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sequence assigned to a specific N-glycosylation site. All glycosylated molecules 

can be detected by the periodic acid-Schiff (PAS) reaction [106], by which sugars 

are oxidized and subsequently react with the Schiff reagent to a pink color. 

Alternatively, glycan structures whether attached to or released from proteins can 

be detected by specific lectins or antibodies (Ab). Due to the availability of a 

broad range of different specific lectins and Ab some structural information can 

be gained by evaluating glycan’s binding characteristics [107]. In microarray 

approaches this principle of lectin or Ab-based N-glycan detection was 

transferred to high-throughput applications [108]. Furthermore, different 

glycoforms of a protein, varying in molecular weight and/or isoelectric point, can 

be visualized by one- or two-dimensional gel electrophoresis. 

The N-glycans may be released from the protein backbone either chemically by 

ozonolysis (e.g. hydrazinolysis) or enzymatically by specific enzymes, e.g. the 

peptide: N-glycosidase F (PNGaseF, [109], cleaves Asn-GlcNAc linkage of 

almost all N-glycans) or endoglycosidase H (EndoH, cleaves GlcNAc-GlcNAc 

linkage in core of high mannose and some hybrid N-glycans). In contrast to all 

other available enzymes, PNGaseF removes almost all types of N-glycans and 

the cleavage between Asn-GlcNAc retains the complete glycan structure. Other 

enzymes are favoured for structure characterization whereas PNGaseF 

predominantly serves unspecific N-glycan removal. However, factors such as 

accessibility of the N-glycan and the glycan structure itself (e.g. α1-3 core 

fucosylation) may inhibit PNGaseF digestion. 

Unlabeled mono- and oligosaccharides may be detected by pulsed amperometric 

detection (PAD, reviewed in [110]) or mass spectrometry (reviewed in [111]). 

Otherwise, glycans can be radio-labeled or fluorescence-labeled for detection 

[109]. The most common approach is fluorescence-labeling by reductive 

amination commonly using sodium cyanoborohydride (NaBH3CN, [112-114]) or 

more recently the non-toxic reducing agent 2-picoline borane [115]. Depending 

on the label requirements diverse labels are available such as 2-amino-antranillic 

acid (2-AA), 2-aminobenzamide (2-AB), 8-aminonaphthalene-1,3,6-trisulfonic 

acid (ANTS) and 8-aminopyrene-1,3,6-trisulfonic acid (APTS, reviewed in [111]). 
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After labeling, the N-glycans may be separated in an electric field for instance by 

gel electrophoresis (fluorescence-assisted carbohydrate electrophoresis, FACE, 

[116], kit commercially available from www.prozyme.de), capillary electrophoresis 

(CE, [117], charge-based separation) or capillary gel electrophoresis (CGE, [112, 

113], size-based and charge-based separation, separation of α- and β-isomers 

possible). An alternative is the chromatographic separation. Here, multiple 

methods have been described including capillary electrochromatography ([118, 

119], charged-based separation with chromatographic interaction for increased 

selectivity), gas-liquid chromatography (determination of monosaccharide linkage 

and position in complex N-glycans, [120]), or most commonly by adsorption using 

high-performance liquid chromatography (HPLC, [121]). Most widely applied is 

the HPLC in hydrophilic interaction chromatography mode (HILIC, reviewed in 

[122]). For this, a database was established by Rudd et al., allowing 2-AB labeled 

N-glycan structure assignment [123]. Other modes that have been applied for N-

glycan characterization include anion-exchange HPLC [124], high-performance 

(or high pH) anion exchange chromatography (HPAEC), porous graphitized 

carbon (PGC) HPLC and reversed phase (RP) HPLC (reviewed in [111, 125]). 

Furthermore, mixed modes such as HILIC in combination with anion exchange 

separations have been published [126]. 

HPLC-based techniques may be combined with mass spectrometry (MS) 

detection for on-line or off-line N-glycan structure elucidation. However, the great 

advantage of the CGE-LIF-based separation technique is its suitability for high-

throughput applications using multiplex DNA sequencers (e.g. ABI PRISM 3100-

Avant Genetic Analyzer from Applied Biosystems, Foster City, California, USA). 

However, the identification of the detected N-glycan structures is elaborate if no 

detailed database for structure identification is available and requires sequential 

exoglycosidase digestions as well as sample reanalysis. Since such a detailed 

and comprehensive database for N-glycan structure identification is currently 

being established in our group, glycoprofiling within this study was performed by 

CGE-LIF-based glycoanalysis. 
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2.10.2 CGE-LIF-based glycoanalysis 

As already addressed in the previous section, CGE-LIF-based glycoanalysis is 

used in this work to investigate the impact of different process conditions on the 

HA N-glycosylation. The following terms will be used frequently within this study: 

The N-glycosylation pattern of a glycoprotein includes information regarding 

the structures and abundances of attached sugars and if available information 

regarding the location of modification. As described earlier, glycoproteins are 

collections of different glycoforms/glycovariants, which vary in attached 

oligosaccharide structures (microheterogeneity) as well as in potential 

glycosylation site (Asn – X – Ser/Thr) occupancy (macroheterogeneity). Due to 

this heterogeneity and due to limitations of the available glycoanalysis methods, 

the N-glycosylation pattern of a glycoprotein can only be approximated by 

profiling the N-glycosylation of a glycoprotein pool (figure 7A). Specific 

enzymes such as PNGaseF allow release of the N-glycan pool of such a 

glycoprotein pool (set of different glycoforms of a protein, figure 7B). CGE-LIF-

based glycoprofiling of a labeled N-glycan pool results in electropherograms, 

where relative fluorescence units (RFU) are plotted over datapoints. These N-

glycosylation electropherograms show high batch-to-batch as well as day-to-day 

variations regarding the x-axis (figure 7C) due to minimal changes in buffer 

concentration, temperature, etc.. However, normalization of raw data to an 

internal DNA basepair (bp) standard results in N-glycosylation fingerprints 

(figure 7D), also referred to as N-glycan fingerprints, of a glycoprotein pool 

(patented strategy, [127, 128]). In such fingerprints RFU are plotted over 

normalized migration time units (MTU’, figure 7D), which are equivalent to bp. 

In electropherograms as well as in fingerprints one peak corresponds to at least 

one distinct N-glycan structure. Also relative quantification of detected N-glycan 

peaks is possible. Therefore, the y-axis is normalized by calculating the total 

peak height (TPH, summed peak height of all specific peaks) and setting it to 

100 %. Consequently the relative peak height (RPH) in % of each single peak 

corresponds to its relative N-glycan structure abundance (figure 7E). By  
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figure 7: Relevant terms and data processing steps for CGE-LIF-based N-glycoanalysis. 
(A) Glycoproteins can be considered as a collection of different glycoforms varying in attached 
sugars (microheterogeneity) as well as glycosylation site occupancy (macroheterogeneity). The 
N-glycosylation pattern of a glycoprotein can only be approximated. (B) Depending on their 
composition, N-glycans are classified into high mannose (hm), hybrid (h) and complex (c) 
structures. (C) CGE-LIF-based glyco-profiling results in electropherograms, where relative 
fluorescence units (RFU) are plotted over datapoints. Datapoints vary dramatically from run to 
run. (D) Data processing and normalization to an internal standard result in reproducible N-
glycosylation/N-glycan fingerprints of a given glycoprotein pool, in which RFU are plotted over 
migration times (tmig) in normalized migration time units (MTU’). In electropherograms as well as 
in fingerprints one peak corresponds to at least one distinct N-glycan structure. Furthermore, 
large glycan structures have high migration times unless they are sialated (not in case of IVA 
HA). Every sialiation introduces charges reducing the migration time. (E) Relative quantification of 
detected N-glycan structures. Total peak height (TPH, sum height of all specific peaks) is set to 
100 %. Consequently, relative peak heights (RPH) in % of the different peaks correspond to 
relative N-glycan structure abundances. Peaks < 5 % represent low abundant, whereas peaks 
> 5 % represent high abundant N-glycan structures. 
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definition, peaks with RPH < 5 % represent low abundant and peaks with 

RPH > 5 % represent high abundant N-glycan structures. 

2.10.3 Next-generation pyrosequencing for characterizing viral quasispecies 

compositions 

Beside the characterization of attached N-glycans to the major vaccine antigen 

HA, the genomic sequences of virus preparations should be determined during 

virus adaptation to exclude changing potential N-glycosylation sites and 

furthermore, monitor genetic variability/heterogeneity of the virus population [4]. 

Several methods are available for sequencing: 

The oldest method for DNA-sequencing is based on chain termination and was 

developed by Federick Sanger, why it is also referred to as Sanger sequencing. 

Basically, a template DNA is amplified in a polymerase chain reaction (PCR), but 

using additionally to the deoxynucleoside triphosphates (dNTPs) low 

concentrations of fluorescently labeled dideoxynucleoside triphosphates 

(ddNTPs) with a specific label for each of the four bases. Consequently, by 

random ddNTP incorporation chains of all different lengths are amplified. These 

DNA chains are separated by size, e.g. using a capillary DNA sequencer. The 

sequence of the specific label signals corresponds to the base sequence of the 

template DNA. Principally, Sanger sequences the consensus of a population, in 

which low abundant variants disappear. 

In contrast, the more recently developed techniques of next generation 

sequencing sequences variants, from which the consensus is formed. This 

allows characterizing a population consisting of differing genotypes, e.g. the 

composition of a viral quasispecies. All next generation sequencing techniques 

use the principle of sequencing by synthesis. One is called Illumina 

sequencing and uses fluorescently labeled, reversible terminator-bound dNTPs, 

minimizing incorporation bias. During each chain elongation cycle all four 

terminator-bound dNTPs are present. As a dNTP is added to the complementary 

growing DNA-strand and the fluorescently labeled terminator is cleaved off, the 

base-specific fluorescent signal is detected and a next fluorescently labeled, 
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reversible terminator-bound dNTP can be incorporated, and so on. Read length 

of approximately 200 bp can be achieved. Another technique is called next-

generation pyrosequencing using the Roche 454. Here, one dNTP is offered 

for chain elongation after the other. Whenever a dNTP is incorporated into the 

growing DNA chain, pyrophosphate and hydrogen are released. The released 

pyrophosphate is enzymatically converted to ATP, which is used in the 

Luciferin/Luciferase reaction, producing oxyluceferin and light. The latter can be 

detected and signal intensity is proportional to the number of incorporated bases. 

So briefly, whenever a base cycle results in a light signal, this base was 

incorporated. For a detailed scheme of the next-generation pyrosequencing, see 

section 12.10 in the supplementary. A clear advantage of next-generation 

pyrosequencing is that it combines a relatively long read length of approximately 

400 bp with a sequence depth (number of sequences obtained for one position) 

of up to hundreds of reads per base position. Other techniques such as Ion 

Torrent Semiconductor Sequencing have been described, too. As for next-

generation pyrosequencing, one dNTP is offered after the other for 

complementary chain elongation. Here, the released hydrogen ion after chain 

elongation is measured by an ion-sensitive field-effect transistor (ISFET) sensor. 

As for next-generation pyrosequencing a proportionally higher signal (here 

electrical) indicates the presence of homopolymer repeats. Read-lengths of up to 

200 bp have been reported (reviewed in [129, 130]). 

Within this work next-generation pyrosequencing was applied to unravel 

quasispecies composition for the whole coding IVA-PR8 genomes, 

predominantly due to the long read lengths. In this work the limit of detection 

(LOD) of different virus variants is most probably determined by the RT-PCR, 

which is performed prior sequencing to transcribe viral RNA into cDNA for 

sequencing. 

2.11 Immunogenicity and adaptive immune responses 

The combination of different methods such as CGE-LIF-based glycoanalysis and 

pyrosequencing allows a comprehensive characterization of different virus 
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preparations regarding HA N-glycosylation and quasispecies composition. Then, 

questions rise concerning the impact of virus variations on the immunogenicity 

and hence on the efficacy of different virus preparations for vaccine production. 

So what is immunogenicity or better what makes an antigen (Ag) immunogenic? 

To define an Ag such as HA immunogenic, different conditions must be met 

(figure 8): first the Ag needs to be taken up by antigen presenting cells (APC), 

second the Ag needs to be processed within the APC, third processed Ag 

fragments need to be presented by the APC, fourth the presented Ag fragment 

needs to be recognized by a specific T cell expressing a specific T cell receptor 

(TCR) and fifth the specific T cell needs to be activated by the APC to proliferate 

and differentiate [131]. In the following, a brief overview of the immune system, in 

particular of adaptive immunity, will be given, outlining key factors and 

intersections, relevant for the understanding and interpretation of data obtained 

within this study [1]. 

The immune system is divided into two, often closely interacting parts: the innate 

immune system (no memory function; e.g. dendritic cells, DC, CD11c+; 

macrophages, CD19+) and the adaptive immune system (with memory function; 

B and T cells, [132-134]). The adaptive immune system is further divided into a 

cellular arm (T cell-mediated, figure 8A) and a humoral arm (B cell-mediated, 

figure 8B). 

2.11.1 Cellular immunity 

Whenever an Ag, e.g. a viral vaccine after intramuscular application, enters the 

organism, it is taken up by Ag presenting cells (APC) in the peripheral tissues. 

APC are represented either by different cells of the innate immune system such 

as macrophages and DC or by B cells, which belong to the humoral arm of the 

adaptive immune system. Once the Ag is taken up, the APC migrates to 

secondary lymphoid tissues (e.g. spleen, lymph nodes). Meanwhile, the Ag is 

processed into small peptide fragments, which are loaded onto major 

histocompatibility complexes (MHC) of the type I or II. These peptide-MHCI/II-

complexes are transported to the cell surface, where they are presented (figure 
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8A, [135]). In general, with respect to DCs exogenous Ag (e.g. inactivated 

vaccines) is usually presented by MHCII, whereas endogenous Ag is usually 

presented by MHCI (e.g. infected cells). However, the ability of DCs in particular 

to cross-present exogenous Ag results in MHCI-presentation of exogenous Ag 

peptides. Whenever a naive T cell, expressing a specific TCR for the presented 

peptide fragment presented, encounters the Ag presenting DC the TCR binds to 

the peptide-MHC-complex. In general, T helper cells (CD4+) bind to MHCII-

peptide-complexes, whereas cytotoxic T cells (CD8+) bind to MHCI-peptide-

complexes. Additional binding of different cell surface markers triggers 

intracellular signaling series, leading to IL-2 secretion, expression of IL-2 

receptors (IL-2R), T cell activation with CD69 expression (very early T cell 

activation marker, [136]), T cell proliferation and T cell differentiation into effector 

cells ([134, 135, 137, 138], figure 8). However, usually TCR signals are often 

insufficient for complete T cell activation and costimulation by other interactions 

such as CD28/B7.1 (B7.2) are required for full T cell activation and survival [139]. 

The autocrine interaction of IL-2 secretion and IL-2R expression plays an 

essential role for the stimulation of Ag-specific T cells to proliferate, differentiate 

into effector cells and to survive. Different effector cell subtypes have been 

characterized, differing in their secretion of cytokines, their expression of cell 

marker molecules and their function (figure 8A): On the one hand, there are 

CD8+ cytotoxic T lymphocytes (CTL), which kill infected cells and which can 

activate/induce cytotoxic functions in macrophages and granulocytes [135]. On 

the other hand there are CD4+ T helper cells. These are divided into different cell 

types: low abundant cell populations such as T helper cells (Th) 9, Th17 and 

follicular Th (ThFH, [137]) and rather high abundant populations such as Th1, Th2 

and regulatory T cells (Tregs). However, few exceptions (CD4- Th cells) were 

described for special Treg subtypes [137, 138]. Nevertheless, upon activation 

each Th population may be discriminated by specific markers: Th1 cells express 

T-bet and secrete multiple cytokines e.g. IL-2 and IFNγ. Altogether, the Th1 

response activates/induces macrophages, CTL and the production of B cell IgG 

Ab [137]. Th1 responses are generally associated with strong CTL responses,  
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figure 8: Adaptive immune responses. 
Cytokines and cell surface marker proteins quantified in this study are highlighted in red. (A) T 
cell-mediated cellular arm of the adaptive immune response. 1. An antigen (Ag) is taken up by an 
Ag presenting cell (APC), 2. processed and 3. presented on the APC cell surface. 4. When a 
naive, T cell binds with its specific T cell receptor (TCR) to the presented Ag the T cell is 5. 
activated, proliferates and differentiates into different effector cell types such as cytotoxic T 
lymphocytes (CTL, CD8+) or different T helper (Th, mostly CD4+) cells, e.g. Th1, Th2, Th9, Th17. 
So far, it is not known, whether memory cells (TEM: effector memory cells, TCM: central memory 
cells) derive from effector cells or whether they differentiate directly from naive T cells (∙∙∙∙∙►). (B) 
B cell-mediated humoral arm of the adaptive immune response. Once a naive B cell binds with its 
specific B cell receptor (BCR) to the Ag, it is taken up, processed and presented on the B cell 
surface. When a naive, Ag-primed Th cell binds to the Ag-presenting B cell it provides helper 
functions, secretes cytokines and allows cell-cell-contact by CD40-CD154-interactions. Altogether 
this allows B cell proliferation and differentiation into antibody (Ab) producing plasma cells 
(effector cells) or memory cells. 
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predominantly fighting intracellular pathogens [135]. In contrast, Th2 responses 

are associated with Ab-mediated immune responses, predominantly fighting 

extracellular pathogens [135, 140]. Activated Th2 cells express GATA-3 and 

secrete cytokines such as IL 4, IL 5, IL 6, IL 9, IL 10, IL 13 and IL 25 [137, 141-

144]. The Th2 response activates/induces eosinophils, mast cells, basophils and 

the production of B cell IgM, G, A and E Ab [137]. However, most important for 

successful vaccination is the development of memory cells, since most effector 

cells will die once the Ag/pathogen has been cleared. So far, it is not fully 

understood, whether memory cells develop from naive T cells in parallel to the 

effector cells (divergent) or whether they develop from the effector cells (linear, 

[145]). Though, up to date only little research focuses on T cell-mediated vaccine 

function [146]. 

In this study, CD69 expression of CD4+ T-cells and IL-2, IL-4 and IFNγ secretion 

was measured to characterize T cell responses in vitro. The use of TCR-HA 

transgenic mice (i.e. homozygote mice only express a TCR which is specific for 

the HA110-120 peptide) allowed an easy quantification of HA110-120-specific T 

cells. 

2.11.2 Humoral immunity 

So far, most vaccine approaches concentrate on the elucidation of neutralizing 

Ab: Whenever a naive B cell encounters its specific Ag, it binds with its B cell 

receptor (BCR) to the specific epitope (figure 8B). A signaling series leads to the 

transcription of B cell activation-associated genes and the internalization or 

degradation of the BCR. The Ag is processed into small peptide fragments, 

which are loaded onto MHCII molecules and which are transported to the cell 

surface, where they are presented. Whenever a fragment-specific, antigen-

primed T helper cell is encountered, it binds with its specific TCR to the specific 

BCR. Binding induces signaling series leading to complete T cell activation. The 

activated T cell carries out helper functions, such as cytokine secreting and cell-

cell-interaction, finally leading to B cell activation, proliferation and differentiation 
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into effector cells – the Ab-producing plasma cells - and into memory cells (figure 

8B, [135, 140, 141]). 

In this study, B cell responses induced in vivo by differentially glycosylated IVA 

preparations in wild type (wt) BALB/c mice, were characterized by HA-specific Ab 

titers as well as by the ability of induced Ab to inhibit hemagglutination, i.e. the 

ability to block IVA binding to red blood cells. 
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3 Materials and methods 

3.1 Cell lines and cultivation conditions 

An overview of cell lines used during this study is given in table 1 along with 

details including cell growth media and cultivation vessels. Briefly, unless stated 

otherwise, adherently growing MDCK (#84121903, ECACC, Salisbury, UK) and 

adherently growing Vero (#88020401, ECACC) cells were cultivated under 

serum-containing conditions in Glasgow Minimum Essential Medium (GMEM, 

#22100-093, Invitrogen/Gibco, Darmstadt, Germany), supplemented with 5.5 g/L 

glucose (#X997.3, Roth, Karlsruhe, Germany), 2 g/L peptone (#MC33, IDG, 

Lancashire, UK), 10 % fetal calf serum (FCS, #10270-106, Invitrogen/Gibco) and 

4 mg/mL NaHCO3 (#6885.3, Roth) until confluence in T75-flasks (50 mL, 37 °C, 

5 % CO2), T175-flasks (150 mL, 37 °C, 5 % CO2), roller bottles with closed caps 

(250 mL, 37 °C), 1.2 L-stirred tank reactors (STR, cellferm-pro® DasGip, Jülich, 

Germany) with a working volume of 800 mL and parameters set to pO2 40 %, pH 

7.2, 55 rpm, 37 °C as well as 5 L-STR (Biostat C5, B. Braun Biotech International 

GmbH, Melsungen, Germany) with a working volume of 5 L and parameters set 

to pO2 40 %, pH 7.2, 50 rpm, 37 °C (SOP see section 12.9.5). In stirred systems 

the adherently growing cells were cultivated on microcarriers (2 g/L, 

CytodexTM1, #17-0448-03, GE Healthcare, Uppsala, Sweden). For adaptation to 

serum-free growth MDCK cells were cultivated in Episerf medium (#10732-022, 

Invitrogen/Gibco) until at least three consecutive passages of cells were 

successfully propagated using 100 % Episerf medium in total. Suspension 

growth adapted MDCK cells, namely MDCK.SUS1, MDCK.SUS2 and 

MDCK.SUS3 [142] were cultivated in chemically defined, protein- and peptide-

free SMIF8 medium or in SMIF8pgd (both available from Gibco/Invitrogen by 

contact through Prof. Dr. K. Scharfenberg, FH Emden/Leer, Germany) in shaker 

flasks (250 mL with baffles with a working volume of 100 mL, 185 rpm, 37 °C, 

5 % CO2). The new human-derived, suspension cell line CAP was cultivated in 

PEM medium (#12661-013, Invitrogen/Gibco) supplemented with 4 mM 

glutamine (#G3126, Sigma-Aldrich, Steinheim, Germany) and 4 mM pyruvate 
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(#P8574, Sigma-Aldrich) in 1 L-STR (Biostat B-Plus, Sartorius AG, Göttingen, 

Germany) with a working volume of 1 L and parameters set to pO2 40 %, pH 7.1-

7.2, 120 rpm, 37 °C. Duck-derived AGE1.CR.pIX suspension cells (ProBioGen 

AG, Berlin, Germany, [76]) were grown in 250 mL shaker flasks with baffles in a 

total volume of 50 mL in a chemically defined medium (CD-U2, [143]), 

supplemented with 2 mM alanine-glutamine (#G8541, Sigma-Aldrich) and 

10 ng/mL insulin like growth factor (#91590C, Sigma-Aldrich). Flasks were 

shaken at 185 rpm, 37 °C and 5 % CO2 [6, 7]. 

Standard operating procedures (SOPs) for thawing (section 12.9.1) of cells and 

passaging (section 12.9.2) of adherent MDCK cells including the SOP for trypsin 

preparation (1.25 g trypsin Invitrogen/Gibco, #27250018 for 2500 mL 1x trypsin 

solution, section 12.9.7), required for cell passaging are compiled in the 

supplementary section. 

Generally, before infection adherent cells were washed three times with 

phosphate buffered saline (PBS, SOP see section 12.9.3) for complete removal 

of FCS. Cell growth medium of suspension cells was either not changed before 

infection or partly/fully replaced by fresh medium (see table 1 for details). 

 



 

 

 

table 1: Overview of culture conditions and media used for influenza virus A (IVA) production. 
IVA PR/8/34 (H1N1) from the Robert Koch Institute (RKI, RKI-strain) or the National Institute for Biological Standards and Control (NIBSC, NIBSC-
strain) as well as IVA-California/07//2009-like (H3N2, IVA-California), IVA Uruguay//716/2007-like (H3N2, IVA-Uruguay) and IVA 
Victoria/210/2009-like (H1N1, IVA-Victoria) reassortants were produced in cell culture or embryonated hens’ eggs. 

Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 48 SEC yes 0.1 or 1 mL

Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 96 SEC yes 0.1 or 1 mL

Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 120 SEC yes 0.1 or 1 mL

Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 360 SEC yes 0.1 or 1 mL

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 96 SEC yes 1 mL

MDCK IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL 5L-STR 24 SEC yes 0.05

MDCK IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL 5L-STR 72 SEC yes 0.05

Vero Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 96 HILIC yes 0.08

MDCK MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 96 HILIC yes 1

Cap Cap RKI-strain PEM° PEM° + trypsin 3x 10-5 units/cell 1L-STR 72 SEC no 0.025

AGE1.CR.pIX AGE1.CR.pIX RKI-strain CD-U2# CD-U2#+ trypsin 1x 10-6 units/cell 250mL shaker w baffles 24 SEC no 1 mL

egg% egg RKI-strain egg egg 0 U/mL egg 96 HILIC % nd

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 96 SEC yes 1 mL

MDCK RKI-strain Episerf" Episerf" + trypsin 5 U/mL roller bottle 96 SEC no 1 mL

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 96 HILIC yes 1

MDCK.SUS1 RKI-strain SMIF8-Pgd§ SMIF8-Pgd§ + trypsin 1x 10-5 units/cell 250mL shaker w baffles 72 HILIC yes 188

MDCK.SUS2 RKI-strain SMIF8-Pgd§ SMIF8-Pgd§ + trypsin 1x 10-5 units/cell 250mL shaker w baffles 72 HILIC yes 197.3

MDCK.SUS3 RKI-strain SMIF8-Pgd§ SMIF8-Pgd§ + trypsin 1x 10-5 units/cell 250mL shaker w baffles 72 HILIC yes 192.6

MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 SEC yes 0.2 mL

MDCK.SUS1 NIBSC-strain SMIF8-Pgd§ SMIF8-Pgd§ + trypsin 12.5 U/mL 250mL shaker w baffles 48 HILIC partly (90 %) 1.41

MDCK.SUS2 NIBSC-strain SMIF8-Pgd§ SMIF8-Pgd§ + trypsin 12.5 U/mL 250mL shaker w baffles 48 HILIC partly (90 %) 1.17

MDCK.SUS3 NIBSC-strain SMIF8-Pgd§ SMIF8-Pgd§ + trypsin 12.5 U/mL 250mL shaker w baffles 48 HILIC partly (90 %) 1.75

MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 SEC yes 0.2 mL

MDCK IVA-California GMEM* + FCS GMEM* + trypsin 5 U/mL T75 48 HILIC yes 0.2 mL

MDCK IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 SEC yes 0.05

MDCK IVA-Victoria GMEM* + FCS GMEM* + trypsin 5 U/mL T75 48 HILIC yes 0.2 mL

passage 1 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 0.333333

passage 2 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

passage 3 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

passage 4 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

passage 5 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

passage 6 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

passage 7 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

passage 8 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

passage 9 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

passage 10 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 24 SEC yes 1 mL of previous passage

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 2.33 or 0.2 mL

MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 0.028 or 0.2 mL
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* GMEM-medium was supplemented with 5.5 g/L glucose, 2 g/L peptone and 4 mg/mL NaHCO3. 
° PEM-medium was supplemented with 4 mM glutamine and 4 mM pyruvate. 
“ Episerf was supplemented with 20 mM glucose, 2 mM glutamine and 2 mM pyruvate. 
#
 CD-U2 [143] was supplemented with 2 mM alanine-glutamine, 10 ng/mL insulin like growth factor. 

$, §
 SMIF8 and SMIF8-Pdg are available from Gibco/Invitrogen by contact through Prof. Dr. K. Scharfenberg (FH Emden/Leer, Germany). 

%
 virus was produced in cooperation with IDT Biologika GmbH, Dessau-Rosslau, Germany 

SEC: size exclusion chromatography, HILIC: hydrophilic interaction chromatography 



 

 

 

table 1 continued 

passage 1 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 24 SEC yes 2

passage 2 Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 360 SEC yes 1 mL of previous passage

passage 3 Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 120 SEC yes 0.4 mL of previous passage

passage 4 Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 96 SEC yes 0.5 mL of previous passage

passage 5 Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 72 SEC yes 0.5 mL of previous passage

passage 6 Vero RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 48 SEC yes 0.5 mL of previous passage

passage 7 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 96 SEC yes 0.5 mL of previous passage

passage 8 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 72 SEC yes 0.5 mL of previous passage

passage 9 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 96 SEC yes 0.5 mL of previous passage

passage 10 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 72 SEC yes 0.5 mL of previous passage

passage 11 MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 96 SEC yes 0.5 mL of previous passage

passage 1 MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 24 SEC yes 0.0294

passage 2 Vero NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 360 SEC yes 1 mL of previous passage

passage 3 Vero NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 120 SEC yes 0.4 mL of previous passage

passage 4 Vero NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 0.25 mL of previous passage

passage 5 Vero NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 SEC yes 0.25 mL of previous passage

passage 6 Vero NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 48 SEC yes 0.25 mL of previous passage

passage 7 MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 0.25 mL of previous passage

passage 8 MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 SEC yes 0.25 mL of previous passage

passage 9 MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 0.25 mL of previous passage

passage 10 MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 SEC yes 0.25 mL of previous passage

passage 11 MDCK NIBSC-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 0.25 mL of previous passage

passage 1 MDCK IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL T75 24 SEC yes 0.2 mL virus seed

passage 2 Vero IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 1 mL of previous passage

passage 3 Vero IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL T75 264 SEC yes 0.4 mL of previous passage

passage 4 Vero IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL T75 120 SEC yes 0.25 mL of previous passage

passage 5 Vero IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 0.25 mL of previous passage

passage 6 Vero IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 SEC yes 0.25 mL of previous passage

seed MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 24 SEC yes 1 mL

passage 1 AGE1.CR.pIX RKI-strain CD-U2# CD-U2#+ trypsin 1x 10-6 units/cell 250mL shaker w baffles 24 SEC no 0.001

passage 2 AGE1.CR.pIX RKI-strain CD-U2# CD-U2#+ trypsin 1x 10-6 units/cell 250mL shaker w baffles 24 SEC no 1 mL of previous passage

passage 3 AGE1.CR.pIX RKI-strain CD-U2# CD-U2#+ trypsin 1x 10-6 units/cell 250mL shaker w baffles 24 SEC no 1 mL of previous passage

passage 4 AGE1.CR.pIX RKI-strain CD-U2# CD-U2#+ trypsin 1x 10-6 units/cell 250mL shaker w baffles 24 SEC no 1 mL of previous passage

passage 1 egg IVA-California egg egg nd nd nd HILIC % nd

passage 2 MDCK IVA-California GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 HILIC yes 0.15 mL from ampulle

passage 3 MDCK IVA-California GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 HILIC yes 0.2 mL of previous passage

passage 4 MDCK IVA-California GMEM* + FCS GMEM* + trypsin 5 U/mL T75 48 HILIC yes 0.2 mL of previous passage

passage 1 egg IVA-Victoria egg egg nd nd nd HILIC % nd

passage 2 MDCK IVA-Victoria GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 HILIC yes 0.15 mL from ampulle

passage 3 MDCK IVA-Victoria GMEM* + FCS GMEM* + trypsin 5 U/mL T75 72 HILIC yes 0.2 mL of previous passage

passage 4 MDCK IVA-Victoria GMEM* + FCS GMEM* + trypsin 5 U/mL T75 48 HILIC yes 0.2 mL of previous passage

passage 1% egg RKI-strain egg egg 0 U/mL egg 96 HILIC % pool of various mois

passage 2% egg RKI-strain egg egg 0 U/mL egg 96 HILIC % pool of various mois

passage 3% egg RKI-strain egg egg 0 U/mL egg 96 HILIC % pool of various mois

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 2.33 or 0.2 mL

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 96 SEC yes 2 or 0.4 mL

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL roller bottle 96 SEC yes 1 mL

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL 1 L-STR 96 SEC yes 0.025

MDCK IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL T75 24 SEC yes 0.25 or 0.25 mL

MDCK IVA-Uruguay GMEM* + FCS GMEM* + trypsin 5 U/mL 5 L-STR 24 SEC yes 0.05

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T175 72 SEC yes 2.8

MDCK RKI-strain GMEM* + FCS Episerf" + trypsin 5 U/mL T175 72 SEC yes 2.8

MDCK RKI-strain GMEM* + FCS SMIF8$ + trypsin 5 U/mL T175 72 SEC yes 2.8

MDCK RKI-strain GMEM* + FCS GMEM* 0 U/mL T75 120 SEC yes 0.025

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL T75 96 SEC yes 0.025

MDCK RKI-strain GMEM* + FCS GMEM* + trypsin 5 U/mL every 24 h T75 96 SEC yes 0.025
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3.2 Viruses and infection conditions 

Depending on the production cell line, either MDCK cell-, Vero cell- or 

AGE1.CR.pIX cell-adapted influenza A virus PR/8/34 (H1N1) - in the following 

referred to as IVA-PR8 - was used for infections. In the scope of this study IVA-

PR8 from two different suppliers was used: one was purchased from the National 

Institute for Biological Standards and Control (NIBSC, #06/114, South Mimms, 

UK), which is also referred to as NIBSC-strain. The other was provided by the 

Robert Koch Institute (RKI, Berlin, Germany, Amp. 3138) and is referred to as 

RKI-strain. Moreover, the reassortant influenza A virus California/07/2009 

(H1N1pandemic, #09/176, NIBSC), IVA-California, the reassortant influenza A 

virus Uruguay/716/2007 (H3N2) x IVA-PR8/34 (H1N1, #07/360, NIBSC), IVA-

Uruguay and the reassortant influenza A virus Victoria/210/2009 (H3N2) x IVA-

PR8/34 (H1N1, #12/112, NIBSC), IVA-Victoria was used as indicated (table 1). 

Details concerning virus production are summarized in table 1. The SOP for virus 

propagation in culture flasks is provided in the supplementary (section 12.9.6). 

Briefly, unless indicated otherwise, virus was produced in non-serum containing 

cell growth medium supplemented with a final activity of 5 U/mL trypsin 

(Invitrogen/Gibco, #27250-18, Darmstadt, Germany). Trypsin was prepared in 

PBS according to the activity given by the supplier (for SOP see section 12.9.8). 

Generally, volume-based infections using 1 mL virus seed for roller bottles and 

shaker flasks, 0.4 mL/0.5 mL for T175- and 0.2 mL/0.25 mL for T-75-flasks were 

applied (for details see table 1). For microcarrier-based cultivations a multiplicity 

of infection (moi) of usually 0.025 was applied. CAP suspension cells were also 

infected with a moi of 0.025. For infection of AGE1.CR.pIX cells 1x 10-6 units 

trypsin (Invitrogen/Gibco) were added per cell and a moi of 0.001 (passage 1) 

was used. During all virus adaptation experiments and all virus passaging 

experiments subsequent passages were infected using an appropriate volume 

(depending on the vessel) of the supernatant of the previous passage (for details 

see table 1). 
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3.3 Virus quantification by hemagglutination- (HA-) assay 

Influenza virus from cell culture supernatant was titrated by hemagglutination 

based on the method from Kalbfuss et al. [144]. Samples were serially diluted 

1:20.5 in PBS resulting in a final volume of 100 μL using round-bottomed 96-well 

plates. 1.9 – 2.1 x 106 red blood chicken cells in a total volume of 100 μL in PBS 

(SOP see section 12.9.11) were added and incubated for 3 h to 4 h at room 

temperature. Light extinction was measured at 700 nm and plotted over the 

logarithm of the inversed dilutions. The end point was defined as the point of 

inflection. The point of inflection represents the last dilution (d) showing complete 

hemagglutination and corresponds to 1 HAU (HAU = HA Units = -log10 d/100 μL). 

A sample’s HA-titer is calculated by considering the dilution factor of the end 

point. Consequently, if e.g. the end point is reached at a dilution of 1/64 (1/101.8), 

this corresponds to an HA-titer of 1.8 HAU for the undiluted sample. The detailed 

SOP can be found in the supplementary (section 12.9.12, [4]). 

3.4 β-propiolactone inactivation 

For immunogenicity studies and prior to native in-solution virus deglycosylation 

MDCK- and Vero cell-derived virus containing culture broths were harvested 

96 hpi and clarified by centrifugation (100 g for 20 min, 4000 g for 35 min and 

10.000 g for 45 min, Avanti J-20XP, Beckman Coulter, Krefeld, Germany). 

Clarified supernatants were stored at -80 °C and were chemically inactivated by 

β-propiolactone (β-PL, #33672.01, Serva Electrophoresis, Heidelberg, Germany) 

as described by Kalbfuss et al. [86, 145]. Briefly, pH of culture broth was 

stabilized by the addition of 25 mM (final) HEPES-buffer (pH 7.5; stock), and β-

PL prediluted in HEPES-buffer was added to the clarified culture broth (final β-PL 

concentration 3 mM). The broth was transferred into a new vessel in order to 

ensure proper mixing and was incubated at 37 °C for 24 h. Inactivation was 

confirmed when two consecutively infected T75-flasks of confluent MDCK cells 

(1 mL inactivated broth + 50 mL medium) exhibited HA-titers according to the 

dilution used during infection, i.e. when latest, the second passage reached a 

titer of 0 HAU. The detailed SOP for β-PL inactivation can be found in the 
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supplementary (section 12.9.13). All steps were carried out under sterile 

conditions. 

3.5 Protein quantification by bicinchoninic acid assay 

A sample’s protein content was determined by bicinchoninic acid assay (BCA 

assay, #23227, Thermo Fisher Scientific Inc., Rockford, Illinois, USA, [146]) 

according to instructions provided by the manufacturer for micro-plate assays. 

3.6 N-glycosylation pattern analysis 

3.6.1 Workflow 

HA N-glycosylation pattern analysis was performed as described earlier using a 

CGE-LIF-based approach ([4, 6, 7, 73, 112, 147, 148], figure 9). According to 

Schwarzer et al. CGE-LIF-based glycoanalysis has a limit of detection (LOD) of 

at least 5 fmol/L and a linear dynamic range from 2 pmol/L up to 2 nmol/L as 

determined by dilution series using the fluorescent marker molecule APTS [112]. 

Furthermore, they determined a SD of 0.3 % to 1.8 % for the reproducibility of 

RPH for bovine IgG-derived N-glycan fingerprints [112]. With respect to migration 

times, long-term reproducibility was described to be below 0.08 min [112], which 

corresponds to roughly 13.9 datapoints (about 2.9 datapoints per second for four 

capillary 3100 ABI PRISM Genetic Analyzer). 

During the time of this work another student improved the purification step of 

labeled N-glycans from excess label and impurity-salts towards high-throughput 

applications within his student’s project (figure 9, step 6). The optimized protocol 

for sample preparation substituted the SEC by HILIC (figure 9, step 6). 

Therefore, in this work both methods (SEC, HILIC) were used as indicated in 

table 1. However, according to [149] the applied purification method - SEC or 

HILIC – does not impact N-glycan structure presence or absence. It may merely 

affect relative N-glycan structure abundances. 

After harvest of the virus-containing supernatant, the culture broth was cleared 

by centrifugation (usually 100 g for 20 min, 4000 g for 35 min, 10.000 g for 

45 min). Virus isolation was performed at 31000 rpm (g force at average 
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diameter 5.24 mm: about 56300 g; Type 70Ti rotor, Beckman Coulter) in 

OptiSeal tubes (32.4 mL, #361625, Beckman Coulter) for 90 min at 4 °C (figure 

9, step 1). Finally, the virus containing pellet was resuspended in 100 mM Tris 

(pH 7) and virus preparations were stored at -80 °C [8]. 

 
figure 9: Workflow of CGE-LIF-based N-glycosylation pattern analysis for IVA-derived HA. 
After virus harvest and isolation by centrifugation (1), viral proteins are separated in a SDS-PAGE 
(2). HA at approximately 70 kDa is cut out and N-glycans are enzymatically cut off the protein 
backbone (3). The protein may as well be analyzed by e.g. LC-MS/MS in order to verify protein 
identity. N-glycans are extracted (4) and labeled with APTS (5). Excess label and impurity-salts 
are removed by SEC or HILIC (6). Finally, the labeled N-glycans are separated by CGE and 
detected by LIF, resulting in capillary electropherograms (7), which are further processed into 
highly reproducible N-glycan fingerprints (workflow according to [112]). 
 

Approximately 10 μg - 25 μg total virus protein (e.g. BCA, section 3.5) was mixed 

in a ratio 3:1 with 4x non-reducing sample buffer (125 mM Tris, 4 % SDS, 20 % 

glycerole, 8 M urea, bromophenol blue) and was applied to a sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE, #161-1158, Bio-Rad 

Laboratories, Inc., Munich, Germany). Subsequently, viral proteins were 

separated according to their size at 15 mA per gel for approximately 95 min 

(figure 9, step 2). Subsequently, the gels were transferred for 1 h into a fixation 

solution (40 % ethanol, 7.5 % acetic acid), washed in ultra pure water (H2OMQ) for 

re-hydration, and stained in a colloidal coomassie solution (0.5 g coomassie 



3 Materials and methods 

40 

brilliant blue, 10 mL H2OMQ, 50 g ammonium sulfate, 6 mL phosphoric acid 

(85 %), filled up to 490 mL with H2OMQ, 125 mL methanol) over night at room 

temperature. Afterwards, the gels were washed multiple times in H2OMQ until 

protein bands were clearly visible. All incubations were performed on a see-saw-

shaker. The stained SDS-PAGEs were stored sealed at 4 °C [8]. 

In a next step, HA-bands were cut out of the gel, divided into pieces and 

transferred into 1.5 mL tubes. During multiple incubation steps the gel pieces 

were washed, reduced and alkylated using different ammonium bicarbonate-, 

acetic acid-, methanol-, acetonitrile-, dithiothreitol- and iodacetamide- solutions 

[112, 147]. Finally, for in-gel-deglycosylation, the gel pieces were incubated with 

6 μL PNGaseF (#7367, Sigma-Aldrich, Taufkirchen, Germany) and 54 μL 50 mM 

ammonium bicarbonate over night at 37 °C (figure 9, step 3). For N-glycan 

extraction (figure 9, step 4), the supernatant was transferred into a new tube and 

remaining N-glycans were extracted by three rounds of sonication (30 min., 

10 °C, level 6, Ultrasonic cleaner, Model USC6000, VWR), each in 200 μL 

H2OMQ, pooling all extracts in the new tube and then desiccated [8]. 

Then, the extracted N-glycans were labeled (figure 9, step 5) with 8-

aminopyrene-1,3,6-trisulfonic acid (APTS) by reductive amination (5 μL 20 mM 

APTS in 15 % acetic acid, 5 μL 1M NaBH3CN in 15 % acetic acid or the non-toxic 

alternative: 2 μL H2OMQ, 2 μL 20 mM APTS in 3,6 M citric acid, 2 μL 0.2 M 

picoline borane in dimethylsulfoxid, DMSO) overnight in the dark at 37 °C whilst 

shaking. Excess label was removed by SEC for NaBH3CN-based labeling or by 

HILIC for picoline borane-based labeling (figure 9, step 6). Briefly, for SEC a 

2 mL toyopearl® (#19808, Tosoh Bioscience, Stuttgart, Germany) column was 

packed and labeled samples were applied. During following step centrifugation 

H2OMQ was continuously added. Finally, labeled N-glycans eluted before excess-

label and impurity-salts [112]. A detailed SOP for glycoanalysis is given in the 

supplementary (NaBH3CN-based: section 12.9.14; picoline borane-based: 

section 12.9.15). For HILIC, Bio-Gel P10 (#150-4144, Bio-Rad) was equilibrated 

by multiple washing steps using different acetonitril/H2OMQ solutions. Sample 

(diluted in 80:20, acetonitril: H2OMQ) addition and incubation (5 min., shaking) 
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was followed by several washing steps with acetonitril/H2OMQ (80 %/20 %) 

solutions with or without 100 mM triethylamine (TEA) supplementation. Finally, 

the labeled N-glycans were eluted using H2OMQ (SOP in section 12.9.16, [8]). 

For glycosylation pattern profiling (figure 9, step 7) labeled N-glycans were 

separated by CGE (see table 2 for settings) and monitored by LIF detection using 

an ABI PRISM 3100-Avant Genetic Analyzer (Applied Biosystems, Foster City, 

California, USA). The resulting electropherograms were normalized to an internal 

bp-standard with respect to migration times (x-axis). The resulting N-glycan 

fingerprints correspond to the actual N-glycosylation pattern of the analyzed 

glycoproteins and are plotted in relative fluorescence units (RFU) over the 

migration time (tmig) in normalized migration time units (MTU’), which are 

equivalent to base pairs (bp; MTU’ = bp). In original electropherograms as well as 

in N-glycan fingerprints one peak corresponds to at least one distinct N-glycan 

structure [6]. 

In general, data processing was performed as published previously [1, 4-7, 73, 

112, 150]. For all other data an additional baseline correction was performed as 

described by Rödig et al. [6]. Therefore, baseline correction was performed by 

asymmetric least squares smoothing according to Eilers et al. [151], using the 

parameters p = 0.01 for asymmetry and λ=109 for smoothness. Blank samples 

were approximately normally distributed and the difference between mean and 

median was always below 0.05 for all signal intensities. Therefore, the noise 

threshold of the signal was set to the signal intensity where the difference 

between mean and median was < 0.05 for all data points below the threshold [6]. 

As published before [4, 7, 73, 112], the range of tmig = 300 MTU’ - 450 MTU’ in 

HA N-glycan fingerprints was defined for MDCK cell-specific peaks. Within this 

range, all N-glycan peaks were generally taken for MDCK cell-derived IVA-PR8 

comparisons, which reached in at least one of the comparable patterns (table 3) 

a peak height of more than 10x the baseline noise threshold (for peak annotation 

see figures of MDCK cell-derived N-glycan fingerprints, e.g. figure 16). Between 

different IVA-PR8 comparisons, the total number of annotated peaks may vary 

slightly (e.g. 15, 16) due to low abundant peaks droping below the 10x the noise 
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threshold. For all further comparisons such as different host cells as well as 

adherence versus suspension growth for MDCK cells, all peaks between 

150 MTU’ and 450 MTU’ exhibiting in at least one of the N-glycan fingerprints 

peak heights of more than 10x the noise threshold were included. However, 

during virus adaptation to AGE1.CR.pIX cells, all peaks were annotated and 

compared, which exhibited at least 20 % of the RFU of the highst peak [7]. 

Whatever comparison stategy was applied (usually as published previously) the 

conclusions are comparable [6]. 

For quantitative comparison, additional normalization of the LIF-signal (y-axis) 

may be performed. Therefore, the set of major N-glycan peaks was defined and 

the total peak height (TPH, summed height of all major peaks) was calculated 

and set to 100 %. Accordingly, N-glycan abundances can be described by 

percentage of relative peak height (RPH, in %), allowing direct qualitative and 

quantitative comparisons of different HA N-glycosylation patterns. In the 

following, peaks were classified as either low- (RPH < 5 %) or high- abundant 

(RPH ≥ 5 %). In general, peaks were numbered as published previously [8]. 

 

table 2: Settings for ABI PRISM 3100- and 3130-Avant Genetic Analyzer for CGE-LIF-based 
glycoanalysis 

Oven Wait Time 1200 Voltage_Numbers_Of_Steps 20 

Poly_Fill_Vol 66 Voltage_Step_Interval 30 

Cap_Fill_Vol 46 DC_Data_Delay 50 

Leak_Threshold 25 Run_Voltage 15.0 

Max_Current 300 DC_Run_Time 6000 or 7200 or 7800 

Current_Tolerance 100 First_Read_Out_Time 160 

Run_Current 100 Second_Read_Out_Time 160 

Voltage_Tolerance 0.6 DC_RS_Plate_Type A 12 8 

PreRun_Voltage 15.0 DC_RS_CSData Cap1 A1 

DC_PreRun_Time 600 DC_Scale_Divisor 8.0 

Injection_Voltage 15.0 DC_Down_Sample 2 

DC_Injection_Time 5 DC_Laser_Power_Setting 15.0 
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3.6.2 Stability of HA N-glycan fingerprint over different harvest time points 

Preliminary experiments showed that virus with a HA-value lower 1.8 may fail 

later glycoanalysis (data not shown). Therefore, if possible only samples with a 

minimum HA-titer of 1.8 were analyzed. With differences in replication dynamics, 

for instance during adaptation to a new cell line, i.e. slow replication dynamics 

 
figure 10: Impact of harvest time point on the HA N-glycosylation pattern of MDCK cell-
derived RKI-strain. 
(A) Shifted overlay of N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over the 

migration time (tmig) in normalized migration time units (MTU’). An overall stability of the HA N-

glycosylation pattern is demonstrated for 24 hpi (i) and 96 hpi (ii). HA N-glycan fingerprints from 
both harvest time points exhibited the same 15 numbered main peaks (peak no.: 1-4, 6-16) with 
migration times between 300 MTU’ and 420 MTU’. (B) Relative peak heights (RPH) of the 15 
dominating peaks (no.: 1-4, 6-16; numbering according to virus adaptation from MDCK to Vero 
cells and back, section 4.6.2) are represented by grey (24 hpi) or white (96 hpi) columns. 
Modified and reprinted with permission [4]. 
 

during initial adaptation steps and fast progress of infection towards the end, 

different time points for sampling were required to achieve a minimum of 

1.8 HAU [4]. Hence, the impact of harvest time point on HA N-glycosylation is 

essential for the set-up and later interpretation of experiments investigating the 

impact of virus adaptation (result section). Therefore, as part of materials and 
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methods the stability of HA N-glycosylation patterns over different harvest time 

points was investigated for MDCK cell-adapted IVA-PR8 (sampling 24 hpi and 

96 hpi) and IVA-Uruguay (sampling 24 hpi and 72 hpi) in MDCK cells and for 

Vero cell-adapted IVA-PR8 (sampling 48 hpi, 96 hpi, 120 hpi and 360 hpi) in 

Vero cells. 

For all sampling time points of IVA-PR8 during MDCK cell-based virus 

replication, the HA N-glycan fingerprint was dominated by the same 15 main 

peaks (no. 1 - 4, 6 - 16; figure 10A), exhibiting maximum differences in RPH 

≤ 3.3 % (figure 10B, |ΔRPHmax| for peak15, [4]). 

 
figure 11: Impact of harvest time point on the HA N-glycosylation pattern of MDCK cell-
derived IVA-Uruguay. 
(A) Shifted overlay of N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over the 

migration time (tmig) in normalized migration time units (MTU’). Overall stability of HA N-glycan 

fingerprints is demonstrated within the range from 24 hpi (i) to 72 hpi (ii). Both harvest time points 
exhibited the same 21 numbered main peaks with migration times between 150 MTU’ and 
420 MTU’ (also see [5]). (B) Relative peak heights (RPH) of the 21 dominating peaks are 
represented by black (24 hpi) or red (72 hpi) columns. 
 

Similar results were obtained for the impact of harvest time point on the HA N-

glycosylation pattern of MDCK cell-derived IVA-Uruguay (figure 11): Virus 

harvested at either 24 hpi or 72 hpi exhibited 21 MDCK cell-specific peaks above 
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the 10x noise threshold between 160 MTU’ and 400 MTU’. Overall, differences in 

relative structure abundance of all peaks above the 10x noise threshold were 

rather small with a maximal difference of ≤ 0.8 % RPH (figure 11B, |ΔRPHmax| for 

peak 6, table 3). This strongly suggests that HA of virus particles released in the 

supernatant is stable over the time window relevant for influenza virus production 

[5, 152, 153]. 

 
figure 12: Impact of harvest time point on the HA N-glycosylation pattern of Vero cell-
derived RKI-strain. 
(A) Shifted overlay of N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over the 

migration time (tmig) in normalized migration time units (MTU’). An overall stability of the HA N-

glycosylation pattern is demonstrated from 48 hpi (i) over 96 hpi (ii) and 192 hpi (iii) to 360 hpi 
(iv). The harvest time point has an impact on the RPH of the 16 numbered main peaks (peak no.: 
5, 7, 8, 11, 15-25; numbering according to virus adaptation from MDCK to Vero cells and back, 
section 4.6.2)), exhibiting normalized migration times between 220 MTU’ and 380 MTU’. (B) For 
each harvest time point, the relative peak heights (RPH) of all 16 dominating peaks (no.: 5, 7, 8, 
11, 15-25) are represented by a column. Modified and reprinted with permission [4].

 

For relative quantification of attached N-glycans to Vero cell-derived RKI-strain 

16 Vero cell-specific peaks (no. 5, 7, 8, 11, 15 - 25, [4] figure 12A) were defined. 

Regarding the complete time span (sampling points 48, 96, 192, 360 hpi), 
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differences of RPH were ≤14.2 % (figure 12B, |ΔRPHmax| for peak 7). 

Considering only the time span until 96 hpi, comparable maximal differences in 

RPH to the time series of the RKI-strain in MDCK cells were observed 

(|ΔRPHmax| ≤ 3.8 %, table 3). In particular, the RPH of peaks 5 and 7 steadily 

increased (almost twofold for peak 7) and the RPH of peaks 16, 20, 22 to 25 

steadily decreased over time. Taking into account the comparatively long 

sampling period of 360 h, the higher maximal differences in RPH may be caused 

by differential N-glycan degradation or synthesis. Another possible reason may 

be slightly changing growth conditions in roller bottles for increasing cultivation 

times with decreasing pH values. This may also explain why the time series for 

IVA-Uruguay, which was performed in a pH-controlled 5 L-STR exhibited the 

lowest differences in RPH. However, even despite those changes of RPH, the 

HA N-glycosylation pattern itself was stable over 360 h [4]. 

Overall, these results demonstrate a highly reproducible HA N-glycosylation 

pattern for MDCK as well as Vero cell-derived HA from the RKI-strain and IVA-

Uruguay with respect to number of present major N-glycan structures. However, 

the bigger the investigated time frame was, the bigger were maximal differences 

of relative N-glycan structure abundances (ΙΔRPHmaxΙ values) of structures 

(peaks) present in the different glycan pools. 

3.6.3 Distribution of attached N-glycan structures over the HA1 and HA2 

subunits in the HA0-molecule 

A part of this work focused on the impact of different process conditions on the 

N-glycosylation pattern of the IVA HA0-molecule. The HA0-molecule comprises 

two subunits, the HA1- and the HA2- subunits, which are connected by disulfide 

bonds. Altogether the HA0 of the RKI-strain comprises seven potential N-

glycosylation sites. Five of these are located within the HA1-molecule and two are 

located within the HA2-molecule. For later data interpretation it is of interest 

whether the different MDCK cell-specific N-glycans are distributed equally over 

all potential N-glycosylation sites or not. An equal distribution would lead to 

matching N-glycan fingerprints of HA0, HA1 and HA2. Therefore, N-glycan 
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fingerprints of HA0, HA1 and HA2 were characterized within the material and 

method section by applying reducing (HA1, HA2) and non-reducing conditions 

during SDS-PAGE sample processing. Resulting N-glycan fingerprints 

 

figure 13: Heterogeneity of HA N-glycosylation of MDCK cell-derived RKI-strain. 
Shifted overlays (A) and direct overlays (B) of N-glycan fingerprints. Relative fluorescence units 

(RFU) are plotted over the migration time (tmig) in normalized migration time units (MTU’). N-

glycosylation fingerprints from HA0- (i), HA1- (ii) and HA2- (iii) molecules. MDCK cell-specific 

peaks between 300 MTU’ and 420 MTU’ are annotated (no. 1 to 15). (C) Relative quantification of 

MDCK cell-specific peaks of a calculated HA0 (summed-up HA1- and HA2-fingerprint), the 

analyzed HA0-, HA1- and HA2-molecule. HA1 shows a tendency towards larger N-glycan 

structures whereas HA2 shows a tendency towards smaller structures. HA0 calculated (sum of 

HA1 and HA2 N-glycan fingerprints) is comparable to the analyzed HA0 with respect to relative N-

glycan structure abundances exhibiting maximum differences of 1.9 % (peak 2). 
 

demonstrated that all MDCK cell-specific peaks (no. 1 to 15, figure 13A, B) 

detected for HA0 were also present on HA1, slightly favoring the larger structures 

with higher migration times indicating that not every N-glycan structure is equally 

distributed over all potential N-glycosylation sites. This is consistent with the 
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fingerprint of HA2 exhibiting a tendency towards smaller structures. Furthermore, 

the low abundant peaks 1 and 8 were not detected for HA2. The maximum 

difference of relative peak abundance for HA0, HA1 and HA2 was 17.8 % for 

peak 14. Summation of HA1 and HA2 fingerprints (HA0 calculated, figure 13C) 

resulted in comparable relative peak abundances as observed for the analyzed 

HA0, showing maximum differences between HA0 and HA0calculated of 1.9 % 

RPH (peak 2). These findings demonstrate that the HA0 N-glycosylation pattern, 

which is investigated throughout this study, results from combining HA1 and HA2 

N-glycosylation patterns. 

3.7 Native influenza virus deglycosylation 

The following section 3.7 contains text, analogous text content and structure 

taken from a paper published together with J. Hütter, D. Höper, P.H. Seeberger, 

E. Rapp and B. Lepenies, January 2013 in J. Immunol. [1]. As described before 

(section 1, last two paragraphs), scentences and/or paragraphs containing 

quotations are not indicated specifically. The reference will only be given after the 

phrase or paragraph by the number of the quoted reference. 

For immunogenicity studies natively deglycosylated virus preparations, i.e. 

natively folded virus proteins in a non-glcosylated state, were required in order to 

investigate the impact of HA N-glycosylation on immunogenicity. Therefore, an 

aliquot of the MDCK and Vero cell-adapted RKI-strain was natively 

deglycosylated in-solution. All buffers and enzymes used for deglycosylation 

were purchased from Sigma-Aldrich (Steinheim, Germany) unless otherwise 

stated. After ultracentrifugation, the virus pellet was resuspended in 160 μL virus 

infection medium and 6.7 μL protease inhibitor (40x, #11777700, Roche, 

Mannheim, Germany), 50 μL reaction buffer (#R9150), 10 μL endoglycosidase 

F2 (#E0639), 10 μL endoglycosidase F3 (#E2264) and 10 μL α-galactosidase 

(#G8507) were added and the mixture was shaken at 450 rpm and 37 °C for 24 h 

in the dark. Then, 10 μL reaction buffer (#R9025) and 10 μL endoglycosidase F1 

(#E9762) were added and shaking was continued at 450 rpm at 37 °C for 24 h in 

the dark. In the following, 10 μL reaction buffer (#R0266), 10 μL α-mannosidase 
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(#M7257), 10 μL α-neuraminidase (#N8271), 10 μL β-N-acetylglucosaminidase 

(#A6805), 20 U β-galactosidase (#G5160), 2 μL α-galactosidase and 2 μL 

endoglycosidase F3 were added and the mixture was again shaken at 450 rpm 

and 37 °C for 24 h in the dark. As before, the virus was isolated by 

ultracentrifugation at 31000 rpm and 4 °C for 90 min. The pelleted virus was 

resuspended in 100 mM Tris, pH 7 and stored at -80 °C. A detailed protocol is 

attached in the supplementary (see section 12.9.17, [1]). 

3.8 Pyrosequencing and sequence evaluation 

Within this study pyrosequencing was performed in cooperation with Dr. D. 

Höper (FLI, Greifswald - Insel Riems, Germany). The Genome Sequencer FLX 

instrument (Roche, Mannheim, Germany) was used for virus genome 

sequencing of IVA-PR8 during three independent virus adaptation series to 

different host cells (principle of next-generation pyrosequencing workflow is 

summarized in section 12.10, http://www.genomicdisorders.nl/downloads/GSFLX 

_Poster1.pdf to http://..._Poster4.pdf): one adaptation was published by Genzel 

et al. [72], demonstrating that at least three virus passages in the new Vero cell 

host are required to achieve high maximum virus titers and faster increase to 

maximum HA-titers (figure 14A). The final passage 4 of this adaptation was 

stored (-80 °C) as in-house Vero-adapted virus seed and was used for 

immunogenicity studies (see sections 3.10, 4.9) performed in cooperation with 

Dr. B. Lepenies and J. Hütter (MPI-KG, Potsdam-Golm, Germany). Two further 

adaptation series – one using the RKI-strain and one using the NIBSC-strain - 

comprised forward-adaptation over five consecutive virus passages from MDCK 

to Vero cells as well as back-adaptation to MDCK cells (five passages; figure 

14B; see also section 4.6). 

Pyrosequencing of the Vero-adapted seed virus [72] for immunogenicity studies 

was performed as follows: The DNA was prepared as described by Höper et al. 

[154] and resulting DNA was fragmented according to manufacturer’s instruction. 

DNA fragments were converted to a GS FLX Titanium library using SPRIworks 

Fragment Library System II (Beckman Coulter, Krefeld, Germany), a SPRIworks 

http://www.genomicdisorders.nl/downloads/GSFLX%20_Poster1.pdf
http://www.genomicdisorders.nl/downloads/GSFLX%20_Poster1.pdf
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Fragment Library Kit II (Beckman Coulter) and a GS FLX Titanium Rapid Library 

MID Adaptor (Roche). The KAPA Library Quant Roche 454 Titanium Universal 

Kitsystem (Kapa Biosystems, Cape Town, South Africa) and the Bio-Rad CFX96 

Real-Time PCR System (Bio-Rad, München, Germany) was used for library 

quantification. Finally emPCR was performed with 0.08 copies per bead. For final 

sequencing of the amplified library Titanium chemistry was used. Raw data 

analysis was performed using the GS FLX software suite (v. 2.5.3; Roche). For 

sequence assembly, primer sequences were cut off the raw data as described 

previously [154]. For quasispecies analysis, the GS FLX reference mapper 

software (version 2.5.3; Roche) and primer-trimmed, raw sequencing reads were 

used. 

 
figure 14: Scheme of IVA-PR8 adaptation and sampling for glycoanalysis and next-
generation pyrosequencing. 
(A) Adaptation of the RKI-strain performed and published by Genzel et al. [72]. The MDCK cell-
derived seed virus (1

st
 passage) is matching the seed virus from B and is therefore indirectly 

sequenced (striped arrow), too. Virus from the 5
th
 passage, which serves as in-house Vero cell-

adapted virus seed was sequenced within this study (white arrow). HA N-glycan fingerprints were 
published by Genzel et al. and are not part of this work (dashed arrows). (B) The MDCK cell-
derived RKI-strain as well as the MDCK cell-derived NIBSC-strain were adapted to Vero cells and 
back (published in [4]). Sampling for HA N-glycosylation pattern analysis and for next-generation 
pyrosequencing is indicated (short and long arrows, respectively). 
 

Pyrosequencing of samples from the forward and backward adaptation (section 

4.6) was performed as published before [4]: Briefly, DNA was prepared according 
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to Höper et al. [155], with slight modifications as specified by Leifer and 

colleagues [156]. Reverse-transcriptase- (RT-) PCR was performed as published 

by Höper et al. [154]. The Transcriptor High Fidelity cDNA Synthesis Kit (Roche, 

Mannheim, Germany) was used for reverse transcription of the viral RNA 

genome segments. cDNA was amplified using iProof High-Fidelity Master Mix 

(Bio-Rad Laboratories GmbH, München, Germany). Pyrosequencing libraries 

were prepared as described by Wiley et al. [157]. Subsequently, DNA was bound 

to library capture beads. Release of the unbound DNA strands resulted in single-

stranded template DNA (sstDNA) library, which was used to estimate DNA 

quality as well as the amount required for following duplicate emulsion PCRs 

(emPCR). Bead-bound DNA amplification by emPCRs was performed using the 

GS emPCR kit I (Roche, Mannheim, Germany), applying two copies per bead. 

Beads were recovered, enriched and finally sequenced using the Genome 

Sequencer FLX instrument and the GS LR70 sequencing kit (Roche, Mannheim, 

Germany). After sequencing, primer sequences were trimmed off the raw read 

data and GS FLX sequence assembly software newbler (version 2.3; Roche, 

Mannheim, Germany) was used for sorting and assembling reads into contigs. 

Such contigs are sets of overlapping reads – finally each set displaying one virus 

genome segment. Quasispecies analysis was performed by aligning primer-

trimmed, raw sequencing reads to the reference sequence using the GS FLX 

reference mapper software (version 2.3; Roche, Mannheim, Germany) applying 

the default parameters [4]. 

High confidence differences (HCD) were defined by a combination of flow signal, 

quality score and difference type information [4]: Required conditions for HCD 

included the existence of more than two non-duplicate reads showing the 

difference and the existence of both forward and reverse reads showing the 

difference, unless there are more than six reads of quality scores over 20 or 30, if 

the difference is at least a 5mer (GS FLX Software Manual 2.17.1.14). In order to 

remove sequences which have resulted from the same microreactor (water drop 

in water-oil emulsion) the software groups reads with matching start sequences 

to one read. 
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HCDs of the forward and backward adaptation series for segment 4 were taken 

from these grouped results as published in 2011 [4]. A disadvantage of this 

grouping is the accumulation of matching reads within the mean read length, 

when prior to pyrosequencing genomic material is transcribed and amplified by 

PCR. Therefore, all other HCDs have been extracted from ungrouped data. The 

trends of grouped HCDs for segment 4 are comparable with the ungrouped 

results, but may differ in their percentage-values. Only one subpopulation (10 %) 

carrying a silent base substitution (A189G = G63G) was not detected by using 

the grouped reads for the RKI-strain in passage 11. 

The limit of detection (LOD) for this method is most probably determined by the 

sensitivity of prior PCRs. Höper et al. demonstrated a minimum sensitivity for 

fragments from segment 1 and segment 3 of roughly 5.6 x 103 copies/µL [155]. 

All sequences of segment 4 were uploaded to the GISAID EpiFlu database. The 

accession numbers are provided in the supplementary (table S 2). All further 

original sequence data can be requested from Dr. D. Höper (FLI, Greifswald – 

Insel Riems, Germany). The consensus DNA- and translated AA-sequences are 

provided in the supplementary (section 12.7 and section 12.8). 

In the following, amino acid substitutions during the adaptation processes will be 

annotated by the one letter amino acid code for the original residue (in 

passage 1), followed by the position number of the residue, followed by the one 

letter code of the substituting amino acid in the later passage. Insertions and 

deletions are indicated by a minus sign (-) at the first or last position, respectively 

[4]. 

3.9 Sequence alignment, cDNA translation and prediction of N-

glycosylation sites 

Sequence alignments were performed using the Universal Protein Resource 

(UniProt, http://www.uniprot.org/align/, [158]). cDNA sequences were translated 

using ExPASy (Expert Protein Analysis System) the Bioinformatics Resource 

Portal from the Swiss Institute of Bioinformatics (SIB) at 

http://web.expasy.org/translate/ [159]. 

http://www.uniprot.org/align/
http://web.expasy.org/translate/
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Potential N-glycosylation sites were predicted using the NetNGlyc 1.0 Server 

(http://www.cbs.dtu.dk/services/NetNGlyc/, [160]). Here, all N-glycosylation 

sequons (Asn-Xaa-Ser/Thr) are defined as potential N-glycosylation sites. 

3.10 Immunogenicity studies using TCR-HA-transgenic mice 

TCR-HA transgenic mice and BALB/c wt mice were used for immunogenicity 

studies performed at the group for glycoimmunology at the MPI-KG (Potsdam-

Golm, Germany). In vitro studies included TCR-HA transgenic spleen cell assays 

whereas for monitoring T cell proliferation TCR-HA transgenic T cells were 

adoptively transferred to BALB/c wt mice. HA-specific Ab induction was 

quantified in BALB/c wt mice after prime-boost immunization with different 

glycovariants. For more details see [1] or contact Dr. B. Lepenies (MPI-KG, 

Potsdam-Golm, Germany). 

http://www.cbs.dtu.dk/services/NetNGlyc/
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4 Results 

The first part of this work investigates the impact of various process conditions on 

the HA N-glycosylation pattern of IVA-PR8 by CGE-LIF-based N-glycan 

fingerprinting. Throughout all tested process conditions the IVA-PR8 was 

replicated in MDCK cells [4, 6]. Moreover, most results were confirmed and 

supplemented by CGE-LIF-based glycoanalysis data from other viruses and/or 

host cells [5, 7]. An overview of all conditions tested and applied process set-ups 

is given in table 1. Tested conditions include varying host cells, host cell 

adaptation stati, virus strains, virus passages, virus suppliers, virus adaptation 

stati, cultivation vessels and varying virus production media. Results during these 

studies suggested that other factors than HA N-glycosylation essentially 

contribute to improved virus titers after virus adaptation. Therefore, in a second 

part, the impact of virus adaptation was investigated in more detail using next-

generation pyrosequencing in cooperation with Dr. D. Höper (FLI, Greifsald – 

Insel Riems, Germany, [4]). Finally, in the last part, the impact of differentially 

glycosylated virus preparations on immunogenicity was investigated in mice 

models (in vitro as well as in vivo; in cooperation with Dr. B. Lepenies and J. 

Hütter, MPI-KG, Potsdam-Golm, Germany; [1]). 

4.1 Host cell 

Up to date manufacturers produce influenza vaccines in different host systems, 

e.g. in embryonated chicken eggs or in mammalian cell lines (e.g. MDCK, Vero). 

Firstly, this raises questions concerning differential HA N-glycosylation caused by 

the selected host system. Secondly, host cell-specific differences in HA N-

glycosylation would lead to the question wether they impact vaccine quality (e.g. 

immunogenic properties) or not. 

To firstly investigate the impact of host cell on HA N-glycosylation, the RKI-strain 

was produced in MDCK, Vero, Cap, AGE1.CR.pIX cells and in embryonated 

chicken’s eggs (in cooperation with Dr. B. Hundt, IDT Biologika GmbH, Dessau-

Rosslau, Germany). CGE-LIF-based glycoanalysis of the HA was performed and 

HA N-glycan fingerprints were compared. The comparison demonstrated strong 
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host cell-specificity of HA N-glycan fingerprints: all fingerprints, i. e. Vero; MDCK, 

Cap and AGE1.CR.pIX cell-derived as well as embryonated chicken egg-derived 

(produced in cooperation with Dr. B. Hundt; IDT Biologika GmbH, Dessau-

Rosslau, Germany), differed significantly with respect to N-glycan structure 

presence and hence to relative N-glycan structure abundance (figure 12). 

Interestingly, MDCK cell-derived HA showed a tendency towards larger N-glycan 

structures in contrast to all other hosts. Small N-glycan structures below 

300 MTU’ were especially favored, when virus was produced in embryonated 

chickens eggs. 

These results confirm previous studies of our group reporting host cell-specificity 

of HA N-glycosylation for MDCK and Vero cell-derived IVA-PR8 [73]. 

Furthermore, these results extend the host cell-specific nature of HA N-

glycosylation for embryonated chicken eggs-, AGE1.CR.pIX and Cap cell-derived 

IVA-PR8. 

 
figure 15: Impact of host cells on the HA N-glycosylation pattern. 
Shifted overlay of N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over the 

migration time (tmig) in normalized migration time units (MTU’). IVA-PR8 (RKI-strain) was 

produced in adherent Vero cells (i) of African green monkey origin or in adherent MDCK cells (ii) 
of canine origin. Furthermore, suspension cells such as human-derived Cap cells (iii) or duck-
derived AGE1.CR.pIX cells (iv) were used for virus production. Finally, cell culture-derived virus 
was compared with virus produced in embryonated hen’s eggs (v, produced in cooperation with 
Dr. B. Hundt, IDT Biologika GmbH, Dessau-Rosslau, Germany). 



4 Results 

56 

4.2 Host cell adaptation 

4.2.1 Cell growth in serum-containing and serum-free medium 

For the production of biologicals the use of animal-derived products is 

problematic due to risks involved with adventitious agents. Therefore, most 

commercial processes avoid the need for animal-derived medium compounds; 

i.e. generally serum, by host cell adaptation to serum-free growth. Here, HA N-

glycosylation of the RKI-strain produced in non-adapted, serum-requiring MDCK 

cells was compared with virus produced in MDCK cells adapted to serum-free 

growth in Episerf medium. In all N-glycan fingerprints, 16 MDCK cell-specific 

peaks were detected between 300 MTU’ and 450 MTU’ (figure 16A), which have 

been described before [4, 7, 73]. Relative quantification of these peaks revealed 

a subset of 10 high abundant N-glycan peaks for non-adapted cells (2 - 5, 7, 9, 

11 – 13 and 15, figure 15B). For serum-free growth adapted cells a slightly 

different subset of 10 high abundant N-glycan peaks (2, 5, 7, 9 – 15) was found 

(figure 16B). The differences of RPH were in the range between 0.3 % and 8.5 % 

(│ΔRPHmax│for peak 14, figure 15B, table 3, [6]). 
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figure 16: Impact of host cell adaptation to serum-free growth on the HA N-glycosylation 
pattern of the RKI-strain. 
(A) Shifted overlay of HA N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over 

the migration time (tmig) in normalized migration time units (MTU’). MDCK cell-specific peaks 

between 300 MTU’ and 450 MTU’ exceeding the 10x baseline noise threshold in at least one of 
the direct comparable fingerprints (table 3, +) are annotated. The non-adapted, serum requiring 
MDCK cell line (i) was adapted to growth in serum-free Episerf medium (ii). (B) Relative peak 
abundance (RPH) in % of the total peak height (TPH, sum of all annotated peaks). Peaks are 
defined low abundant if RPH < 5 % (---). Modified and reprinted with permission

 
[6]. 



 

 

 

table 3: Differences of relative peak height (ΙΔRPHΙ) of all annotated peaks of all performed fingerprint comparisons (numbered 
according to sections in the manuscript). 
In the following, an example is shown for the calculation of ΙΔRPHΙ (section 3.6.2; harvest time point, RKI in MDCK; peak no. 1): the RPH of peak 
1 is 1.4 % at 24 hpi (figure 10, B, grey column), whereas at 96 hpi the RPH of peak 1 is 1.7 % (figure 10B, white column). Hence, ΙΔRPHΙ = Ι1.4 % 
- 1.7 %Ι = 0.3 %. If more than two peaks are compared (e.g. section 3.6.2; harvest time point, RKI in Vero; peak 5), ΙΔRPHΙ is calculated from the 
highest (figure 11, grid column, 360 hpi) and the lowest abundant peak (figure 11, black column, 48 hpi). Maximal difference (ΙΔRPHmaxΙ) of each 
experiment is highlighted in bold. 
section 4.2.1

peak
harvest time point 

RKI in MDCK*

harvest time point 

URU in MDCK#

harvest time point 

RKI in Vero*

harvest time point 

RKI in Vero until 

96 hpi*

serum↔ 

serum-free+

serum↔serum-free 

suspension 

(MDCKadh,SUS1,2,3)'

serum-free 

suspension 

(SUS1,2,3)'

serum-free 

suspension 

(SUS1,2)'

no. |ΔRPH| (%) |ΔRPH| (%) |ΔRPH| (%) |ΔRPH| (%) |ΔRPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%)

1 0.3 0.5 0.2 1.5 0.0 0.0

2 0.8 0.1 5.5 7.3 7.3 0.0

3 0.0 0.2 2.5 1.8 0.9 0.8

4 0.7 0.2 2.6 8.1 2.7 0.2

5 0.2 2.2 0.6 3.7 4.0 1.8 0.7

6 0.8 0.8 1.8 6.6 1.8 0.8

7 0.0 0.4 14.2 3.8 1.3 9.2 0.0 0.0

8 0.0 0.3 1.7 0.3 0.6 9.7 9.7 0.0

9 0.3 0.4 0.3 3.3 2.3 0.3

10 0.1 0.5 4.5 9.5 9.5 1.0

11 0.3 0.2 0.6 0.1 0.4 11.4 3.6 0.0

12 0.1 0.2 0.3 2.7 1.5 0.1

13 0.7 0.2 1.0 7.2 2.9 0.2

14 0.1 0.2 1.2 0.4 8.4 4.3 4.3 1.1

15 3.3 0.3 3.3 0.2 3.1 9.2 9.2 1.1

16 1.2 0.4 2.5 0.4 1.3 2.1 2.1 0.6

17 0.1 1.1 0.3 14.5 10.2 1.9

18 0.3 0.7 0.3 18.1 18.1 0.2

19 0.1 0.3 0.2 3.7 2.3 1.6

20 0.5 4.2 1.0 1.9 0.6 0.3

21 0.8 3.3 1.4 1.6 1.6 0.3

22 2.1 0.5 2.3 0.0 0.0

23 3.1 0.8 6.8 6.8 0.9

24 1.7 0.2 1.9 0.0 0.0

25 2.0 0.1 14.2 3.7 1.7

26 2.0 1.2 1.0

27

28

29

30

3.6.2 4.2.2

 
*, 

#
, 

+
, ‘, °, ^, 

§
 matching tags indicate identical peak annotation. Hence a comparison across different experiments is possible. 



 

 

 

table 3 continued 
section 4.4 4.5

peak all strains°
H1N1 

strains°

H3N2 

strains°

 diff. virus 

passages 

(no. 1-10)*

RKI↔ NIBSC+

MDCK-derived 

passages      

(no. 1, 7-11)*

Vero-derived 

passages       

(no. 2-6)*

MDCK-derived 

passages        

(no. 1, 7-11)*

Vero-derived 

passages            

(no. 2-6)*

all 

passages 

(no. 1-5)^

AGE1.CR.pIX-

derived passages 

(no. 2-5)^

no. |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%)

1 2.5 1.5 1.0 0.8 0.2 0.5 0.0 0.6 0.0 12.3 0.0

2 2.4 0.9 2.1 2.8 5.0 4.0 0.0 3.7 0.0 3.5 0.0

3 1.5 0.7 0.7 1.4 0.5 1.4 0.0 0.8 0.0 8.6 0.0

4 8.3 0.7 0.6 1.6 3.4 2.9 0.0 2.0 0.0 3.1 2.3

5 2.6 1.9 1.1 2.9 0.0 4.2 0.0 3.9 12.9 0.0

6 1.1 0.2 0.1 1.3 0.4 5.6 0.0 8.5 0.0 8.8 2.8

7 9.4 3.5 0.2 0.9 1.6 1.6 21.0 4.4 14.8 6.2 0.0

8 4.4 2.2 4.4 1.0 1.8 0.7 3.6 0.8 1.1 10.1 0.0

9 9.4 3.7 0.6 1.1 0.8 1.2 0.0 1.3 0.0 2.9 2.2

10 7.8 7.4 0.1 1.8 0.1 2.4 0.0 7.0 0.0 4.1 0.0

11 2.4 0.7 2.3 1.4 0.2 1.6 2.6 2.5 0.7 10.5 0.0

12 15.3 12.4 3.8 1.5 0.4 3.7 0.0 3.4 0.0 3.8 0.0

13 3.5 3.5 0.5 1.9 0.7 3.5 0.0 3.9 0.0 4.9 1.9

14 1.4 1.4 1.0 1.1 1.4 2.9 7.1 4.8 4.0 2.2 1.3

15 3.6 1.0 3.6 3.5 1.5 9.5 5.9 9.9 3.7 2.0 0.8

16 3.5 1.8 3.5 1.5 0.4 3.5 4.1 3.0 2.6 3.0 1.2

17 3.6 0.5 3.1 0.0 2.0 0.0 0.7 2.3 2.3

18 3.9 3.2 0.1 0.0 4.1 0.0 1.0 1.8 1.0

19 3.3 0.9 2.5 0.0 0.6 2.4 2.4 17.0 4.6

20 3.2 0.4 2.5 0.0 5.6 0.9 4.1 3.2 0.0

21 1.2 0.5 1.2 0.0 8.2 5.9 3.2 26.7 13.1

22 25.2 0.7 9.8 0.0 1.0 0.0 1.4 9.3 2.0

23 5.2 5.2 1.5 0.0 5.2 0.0 1.3 5.3 1.4

24 3.7 0.0 0.1 0.0 1.5 0.0 1.5 3.9 2.0

25 2.6 2.0 0.5 0.0 4.9 0.0 2.0 5.7 2.5

26 7.5 2.3 2.5

27 2.0 2.0 0.4

28 4.5 2.5 1.6

29 6.2 0.9 2.8

30 2.5 2.5 0.6

4.3 4.6.1 (RKI-strain) 4.6.1 (NIBSC-strain) 4.6.2 (RKI-strain)

 
*, 

#
, 

+
, ‘, °, ^, 

§
 matching tags indicate identical peak annotation. Hence a comparison across different experiments is possible. 

RKI: RKI-strain 
NIBSC: NIBSC-strain 
SUS1, 2, 3. MDCK.SUS1, MDCK.SUS2, MDCK.SUS3 
IVA-Uru: IVA-Uruguay 



 

 

 

table 3 continued 

section 4.6.3 (RKI-strain) 4.6.5 (IVA-California) 4.6.5 (IVA- Viktoria) 4.7 (RKI-starin) 4.7 (IVA-Uru) 4.8.1 4.8.2

peak

egg-derived 

passages            

(no. 1-3)

all passages 

(seed, no. 1-

5)§

Vero-derived 

passages   

(no. 1-5)§

MDCK-derived passages                   

(no. 1-3)

MDCK-derived passages               

(no. 1-3)
scales & vessels+ scales & vessels#

virus production 

media 

composition+

trypsin activity of 

virus production 

media+

no. |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%) |Δ RPH| (%)

1 2.3 6.9 4.0 1.3 0.5 2.5 0.7 1.5 1.4

2 2.5 2.2 1.8 0.6 0.7 7.3 1.6 3.5 1.1

3 0.9 3.4 2.0 1.0 0.2 5.3 0.1 1.7 0.9

4 0.8 2.2 0.9 2.5 1.1 2.5 0.6 2.7 1.9

5 1.2 4.0 2.1 1.5 0.8 3.7 0.8 1.7 4.6

6 0.7 1.0 1.0 1.1 1.5 0.4 6.6 1.6 0.7

7 3.2 2.1 0.7 3.1 1.1 1.2 0.9 0.7 0.6

8 1.2 3.5 2.6 1.0 1.3 0.2 0.9 0.3 0.8

9 2.0 3.9 2.2 2.9 1.2 5.5 0.8 3.6 5.2

10 0.5 14.9 5.1 0.6 1.1 0.9 3.7 1.3 1.6

11 8.3 5.5 2.8 3.0 0.6 2.5 2.0 1.3 2.6

12 0.9 6.2 0.0 1.5 0.2 5.4 0.4 5.7 4.0

13 5.5 2.0 0.0 0.9 0.2 2.1 3.2 0.2 6.2

14 2.3 2.6 1.3 0.2 0.5 0.7 3.6 2.6 14.0

15 1.9 2.8 0.9 0.6 0.4 6.8 0.6 5.7 8.5

16 1.0 6.7 1.6 1.2 0.7 2.5 2.9 2.6 1.8

17 1.5 2.7 1.3 0.1 0.7 1.3

18 1.0 1.3 0.0 0.5 0.6 2.6

19 0.5 4.5 0.0 1.9 1.3 3.5

20 0.0 2.0 0.0 1.3 0.5 1.4

21 1.0 2.6 0.0 0.4 1.6 4.5

22 0.2 3.3 0.0 0.3 0.9

23 7.9 3.1 0.6 0.2

24 1.9 0.0 1.1 0.4

25 3.0 1.5 0.6 2.0

26 2.4 0.0 1.8 0.2

27 1.1 0.0 2.5

28 3.1 0.0 0.9

29 1.2

30

4.6.4 (IVA-Uru)

 
*, 

#
, 

+
, ‘, °, ^, 

§
 matching tags indicate identical peak annotation. Hence a comparison across different experiments is possible. 
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4.2.2 Adherent versus suspension growth 

Both, the use of adherent and suspension cells has pros and cons [6, 61]. For 

instance, easier passaging without the need of trypsin treatment and no 

requirement of tissue-culture treated vessels or microcarriers represent clear 

advantages of suspension cell lines. In contrast easier washing of microcarrier-

associated adherent cells during stirred cultivations are among the advantages of 

adherent cell cultivations. Therefore, the impact of an adaptation of adherent 

MDCK cells to serum-free suspension growth on the HA N-glycosylation pattern 

was characterized [6]. Briefly, an adherently growing, serum-dependent MDCK 

cell line was adapted to serum-free suspension growth in two independent 

biological duplicates in cooperation with Prof. Dr. K. Scharfenberg (University of 

Applied Sciences, Emden, Germany, [142]). Two suspension cell lines namely 

MDCK.SUS1 and MDCK.SUS3 resulted. The suspension cell line MDCK.SUS1 

was further adapted to improve growth kinetics in suspension, resulting in the 

MDCK.SUS2 cell line [142]. These four cell lines (MDCK, MDCK.SUS1, 

MDCK.SUS2, MDCK.SUS3) were used for RKI-strain production and HA N-

glycosylation was characterized by CGE-LIF-based glycoanalysis. The 

comparison of all four fingerprints revealed significant differences between 

MDCK, MDCK.SUS1 and MDCK.SUS3 cell lines regarding the types of glycans 

attached as well as their relative abundances (figure 17). MDCK cell-derived 

fingerprints exhibit a higher number of high abundant peaks than all MDCK.SUS 

cells. Furthermore, 100 % of all high abundant peaks of MDCK cells have 

normalized migration times above 320 MTU’, whereas 17 % to 50 % of all high 

abundant peaks (number 25) of any MDCK.SUS cell line have migration times 

below 320 MTU’ (figure 17A). A detailed comparison of fingerprints reveals that 

peaks 1, 7, 22 and 24 were only present in MDCK, peak 15 was only present in 

MDCK.SUS1 and MDCK.SUS2, whereas peaks 2 and 8 were only present in 

MDCK.SUS3 (figure 17B). The maximum difference of RPH was 18.1 % 

(peak 18, figure 17C). The comparison of RPH of MDCK.SUS1 and 
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figure 17: Impact of host cell adaptation to serum-free suspension growth on the HA N-
glycosylation pattern of the RKI-strain. 
(A) HA N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over the migration 
time (tmig) in normalized migration time units (MTU’). All peaks exceeding the 10x baseline noise 
threshold in at least one fingerprint are annotated. Serum-requiring adherent MDCK cell line (i), 
MDCK cell line adapted to serum-free suspension growth (ii, MDCK.SUS1) and further adapted 
MDCK.SUS1 cell line to better growth characteristics (iii, MDCK.SUS2) [142]. The first adaptation 
step was performed in biological duplicates (iv, MDCK.SUS3). The number of high abundant 
peaks (RPH > 5 %) with migration times below or above 320 MTU’ is indicated. (B) Overlay of all 
four N-glycosylation fingerprints. (C) Relative N-glycan structure abundance (RPH) in % of the 
total peak height (TPH, sum of all annotated peaks). Peaks < 5 % RPH (---) are defined low 
abundant. 
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MDCK.SUS2-derived fingerprints revealed extensive analogy (max. 

|ΔRPH| = 1.9 %, peak 17; figure 17C). Interestingly, the first adaptation step to 

serum-free suspension growth resulted for both adaptation series (MDCK to 

MDCK.SUS1 and MDCK to MDCK.SUS3) in a totally new cell line, not only with 

respect to their growth characteristics, e.g. reduced doubling times and smaller 

aggregates [142], but also to their HA N-glycosylation characteristics. Therefore, 

figure S 1 (extended figure 15) shows the impact of host system (including 

MDCK.SUS2 and MDCK.SUS3) on the HA N-glycan fingerprint. 

These results were consistent with data obtained from NIBSC-strain production 

in MDCK, MDCK.SUS1, MDCK.SUS2 and MDCK.SUS3 cells (section 12.2, 

figure S 2). 

4.3 Virus strain 

Most manufacturers have their own, approved production cell line, in which 

viruses are propagated for all seasonal or pandemic influenza vaccines. In order 

to investigate the impact of the virus strain on the HA N-glycosylation pattern N-

glycan fingerprints from different MDCK cell-derived IVA were analyzed: two 

strains, namely RKI-strain and IVA-California, belong to the H1N1 subtype and 

two, namely IVA-Uruguay and IVA-Victoria, belong to the H3N2 subtype. The 

comparison of fingerprints demonstrated that most peaks were present for all 

tested viruses (except for low abundant peaks 2, 5, 15, 16, 24 and 30, figure 

18A, B). The relative peak abundance varied with a maximum difference of 

25.2 % (peak 22, figure 18C). Separate consideration of H1N1 and H3N2 strains 

resulted in much smaller maximum differences in RPH of 12.4 % (H1N1-strains) 

and 9.8 % (H3N2-strains), respectively (section 12.3, figure S 4). 
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figure 18: Impact of virus strain on MDCK cell-derived HA N-glycosylation patterns. 
(A) Shifted overlay of HA N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over 
the migration time (tmig) in normalized migration time units (MTU’). IVA-PR8 (i), IVA-California (ii), 
IVA-Uruguay (iii) and IVA-Victoria (iv) were produced in MDCK cell culture. All peaks exceeding 
in at least one of the fingerprints (i-iv) the 10x baseline noise threshold are annotated (no. 1 - 30). 
(B) Direct overlay of HA N-glycan fingerprints. C) Relative N-glycan structure abundances (RPH) 
in % of the total peak height (TPH, sum of all annotated peaks). Peaks are defined high abundant 
if RPH > 5 % (---). 

4.4 Virus passage 

The stability of HA N-glycan fingerprints during multiple virus passages in one 

cell line is one essential condition for the characterization of HA N-glycosylation 

patterns using different cultivation conditions in influenza virus production. 

Therefore, in this study 10 consecutive passages of the RKI-strain were 
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produced in MDCK cells using roller bottles. 24 hpi HA-titers of these 10 virus 

passages ranged between 2 and 2.4 HAU (data not shown). Moreover, 

throughout all passages HA N-glycosylation fingerprints all featured the same 15 

main peaks (no. 1-4, 6-16, figure 19A). Maximum differences of RPH were 3.5 % 

(peak 15, table 3, figure 19B, [4]). Overall, these results demonstrate a high 

stability of the HA N-glycosylation pattern over 10 successive virus passages in 

the same host cell system [4]. 

 
figure 19: Impact of virus passage on the HA N-glycosylation patterns of the RKI-strain. 
(A) Shifted overlays of N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over 
the migration time in normalized migration time units (MTU’). HA N-glycosylation patterns are 
reproducible over 10 successive virus passages in MDCK cells. All 10 patterns exhibit the same 
15 numbered main peaks (no. 1 – 4, 6 – 16, numbering according to virus adaptation from MDCK 
to Vero cells and back, section 4.6.2, table 3 indicated by *) between 300 MTU’ and 420 MTU’. 
(B) Relative peak heights (RPH) of the 15 main peaks. Standard deviations (error bars) for 10 
successive virus passages, range between 0.25 % and 1.14 %. Modified and reprinted with 
permission [4]. 

4.5 Virus supplier 

Next, two IVA-PR8 seed viruses were compared. One was provided from the 

Robert Koch Institute (RKI-strain) and the other was purchased from NIBSC 

(NIBSC-strain). Both strains differ in seven amino acid positions within the HA 

molecule [4]. Both HA N-glycan fingerprints exhibited the set of 16 adherent 

MDCK cell-specific peaks (1-16) between 300 MTU’ and 450 MTU’, (figure 20A). 

For the RKI strain a total number of eight high abundant N-glycan peaks (2, 4, 5, 

7, 9, 12, 15 and 16) was identified (figure 20B). For the NIBSC-strain, the total 

number of high abundant peaks was reduced as peak 7 dropped below 5 % RPH 
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(figure 20B). The minimum and maximum differences of RPH of the two strains 

were calculated with 0.1 % and 5 %, respectively (│ΔRPHmax│: peak 2, table 3, 

[6]). 

Producing the RKI- and the NIBSC-strain in MDCK.SUS2 cells resulted in similar 

findings. Interestingly, the minimal and maximum differences of RPH increased 

to 0.6 % and 11.0 %, respectively (│ΔRPHmax│: peak 9, section 12.3, figure S 3). 

 
figure 20: Comparison of two IVA-PR8 strains from different suppliers with respect to HA 
N-glycosylation patterns. 
(A) Shifted overlay of HA N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over 
the migration time (tmig) in normalized migration time units (MTU’). MDCK cell-specific peaks 
between 300 MTU’ and 450 MTU’ exceeding the 10x baseline noise threshold (---) in at least one 
of the direct comparable fingerprints (table 3, +) are annotated. The virus was purchased from 
either the Robert Koch Institute (i) or NIBSC (ii). (B) Relative peak abundance (RPH) in % of the 
total peak height (TPH, sum of all annotated peaks). Peaks are defined low abundant if 
RPH < 5 % (- - -).Modified and reprinted with permission [6]. 

4.6 Virus adaptation 

4.6.1 Virus replication dynamics 

Usually, viruses require adaptation to new host cells to optimize yields and time 

of harvest [72]. In order to characterize this adaptation process and to investigate 

possible biological mechanisms MDCK cell-adapted virus was propagated for 

24 h in MDCK cells (passage 1). As a result HA-titers of 1.9 HAU and 2.2 HAU 
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figure 21: HA-titers during IVA adaptation to different host cells. 
MDCK cell-adapted RKI-strain (A) or NIBSC-strain (B) served as seed for infection of five 
consecutive passages of Vero cells (no. 2 to 6). Reprinted with permission [4]. (C) MDCK cell-
adapted RKI-strain was adapted to replication in AGE1.CR.pIX cells during 4 consecutive 
passages (no. 1 to 4). (D) MDCK cell-adapted IVA-Uruguay was adapted during 5 consecutive 
passages (no. 1 to 5) to replication in Vero cells. Egg-adapted IVA-Viktoria (E) and IVA-California 
(F) were adapted during 3 consecutive passages (no. 1 to 3) to replication in MDCK cells. * the 
mean value of two measurements is plotted. The 95 % confidence interval of the HA-assay is 
maximum 15 %. All titers at 0 hpi are defined as zero. 
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were obtained for the strains from RKI and NIBSC, respectively (see 

supplementary, table S 1). Supernatant of this passage served as the virus seed 

for a first infection of Vero cells (passage 2). For the RKI-strain virus-release was 

not detected before 288 hpi (0.8 HAU, figure 21A) and the maximal HA-titer of 

1.4 HAU was finally reached 360 hpi. For the NIBSC-strain virus release was first 

detected 216 hpi and virus replication was continued until 360 hpi, exhibiting a 

final HA-titer of 1.95 HAU (figure 21B). An aliquot of these supernatants served 

as virus seeds for the next infections of Vero cells (passage 3) and so on 

(passage 4 to 6). During this virus adaptation to Vero cells, viral fitness of both 

strains, RKI and NIBSC, improved: The time required to achieve specific HAU-

values (≥ 1.4 HAU) decreased, whereas maximum HA-titers increased from 

passage 2 to 4. No significant differences were detected for passage 4 to 6 of the 

RKI-strain, indicating the completion of the adaptation process (figure 21A). For 

the NIBSC-strain, the second passage in Vero cells (passage 3) reached 

2.1 HAU at 120 hpi, and passage 4 reached 2.7 HAU at 96 hpi. For all 

subsequent passages (numbered 5 and 6) the time required to achieve a HA-titer 

of at least 1.8 HAU as well as the maximal titers were more or less the same. 

This indicated the completion of the adaptation process (figure 21B). The 

following five virus passages (7 to 11) were again performed in MDCK cells to 

monitor virus back-adaptation. Here, for the RKI- as well as the NIBSC-strain all 

titers ranged between 2 HAU and 2.5 HAU at 48 hpi and 96 hpi (see 

supplementary, table S 1). In contrast to the adaptation to Vero cells, no impact 

on HA-titer level and virus release dynamics was observed during back-

adaptation [4]. 

Similar results, though less distinct, were obtained for the adaptation of the RKI-

strain from MDCK to duck-derived AGE1.CR.pIX cells (passage 1 to 4, figure 

21C): Virus adaptation to the new avian host cell line allowed an increment of 

virus titers (figure 21C). Accordingly, virus fitness in the new host system has 

improved during the adaptation process. Nevertheless, the virus titer of passage 

1 with 1.9 HAU suggests that the duck-derived AGE1.CR.pIX cell line allowed 

rather efficient virus replication from the beginning [7]. 
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The efficient replication from the beginning in duck cells is consistent with data 

obtained from adaptation of the MDCK cell-derived RKI-strain to replication in 

embryonated chicken eggs, which was performed in cooperation with Dr. B. 

Hundt (IDT Biologika GmbH, Dessau-Rosslau, Germany). For each passage, 

three different virus dilutions (100, 10-1, 10-2) were used to infect three sets of five 

eggs (altogether 15 eggs). The virus was harvested 96 hpi and pooled. The titer 

of the first passage pool already reached 3.0 HAU (two eggs of the 10-2- dilution 

died before harvest at 48 hpi and 72 hpi; data not shown). An aliquot of this first 

passage pool served for the infection of three further sets of embryonated 

chicken eggs. Again, 96 hpi the virus from 13 surviving eggs (two eggs died: 

dilution 10-1/72 hpi and 10-2/72 hpi) was pooled. The titer again reached 3.0 HAU 

(data not shown). The pool of the third passage from altogether 12 eggs (three 

eggs died: dilution 100/72 hpi, 100/96 hpi and 10-1/72 hpi) reached a titer of 

3.3 HAU (96 hpi; data not shown). Interestingly, the titers reached (3.0 HAU to 

3.3 HAU) during the adaptation from MDCK cells to embryonated chicken eggs 

demonstrated that embryonated chicken eggs allowed rather efficient virus 

replication from the very beginning and further increase of virus yield by 

adaptation was not detected. The RKI-strain - as it origins from an egg-adapted 

ancestor - seems to have retained its ability to replicate rather well in avian cells. 

Interestingly, during adaptation of MDCK cell-derived IVA-Uruguay to replication 

in Vero cells the HA-titer of the second passage in Vero cells was even lower 

than the titer of the first passage but in passages 3, 4 and 5 titers increased 

(figure 21D). Taken all data together, the adaptation resulted in a final titer 

increase from 2.1 HAU (passage 1, 96 hpi) to 2.7 HAU (passage 5, 72 hpi). 

Furthermore two egg-derived vaccine strains IVA-Victoria and IVA-California 

were adapted to MDCK cells. Therefore, the egg-adapted virus lyophilisate was 

resuspended in sterile H2OMQ, and was used to infect a first passage of MDCK 

cells. 24 hpi an aliquot of the supernatant was used to infect the second passage 

of MDCK cells and so on. The virus replicated well from the beginning. The 

adaptation resulted in increased maximum virus titers for IVA-Viktoria (2.5 HAU, 

48 hpi, figure 21E). In contrast final titers of IVA-California did not significantly 
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increase by adaptation reaching 1.75 HAU 48 hpi in the third passage (figure 

21F). 

In a next step, it was tested if improved growth characteristics after virus 

adaptation were maintained, even if no selection pressure persisted. Therefore, 

after the adaptation from MDCK to Vero cells (in 5 passages) and back to MDCK 

cells (in another 5 passages) the RKI- as well as the NIBSC-strain were adapted 

again to replication in Vero cells (in 3 passages, numbered passages 12 to 14, 

figure 22). This further adaptation to Vero cells highlighted that the forth- and 

back-adapted virus has somehow acquired and kept (throughout MDCK-

passaging, passages 7-11) the ability to replicate efficiently in Vero cells (figure 

22): HA-titers already increased after one (NIBSC-strain) or two days (RKI-strain) 

in passages 12 and even earlier for the RKI-strain in passages 13 and 14. In 

contrast, a Vero cell-passage (passage 2’) infected with supernatant of non-

adapted virus from passage 1 showed titer increase not before 94 hpi (NIBSC-

strain) and 160 hpi (RKI-strain). This clearly demonstrated an improved viral 

fitness in Vero cells after virus adaptation. 

 

 
figure 22: HA-titers of IVA-PR8 from RKI (blue) and NIBSC (red) during first (▲, ♦) and 
second (Δ, ◊) adaptation to Vero cells. 
MDCK cell-derived virus from passage 1 (no Vero cell contact before) and from passage 11 (Vero 
cell contact during passages 2- 6) was used to infect a passage of Vero cells (passage 2’: filled 
symbol, --- and passage 12: empty symbol, ——), respectively. An aliquot of the supernatant of 
passage 12 was used to infect another passage of Vero cells (passage 13, empty symbol, – – –) 
and so on (passage 14, empty symbol, ----). Viruses, which had Vero cell contact before 
replicated faster in Vero cells than viruses without previous Vero cell contact. Viruses have 
retained the ability to replicate in Vero cells during several passages (7-11) in MDCK cell culture. 
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4.6.2 Host cell-specificity of HA N-glycosylation patterns during virus adaptation 

Next, N-glycan fingerprints were analyzed for all adaptation passages (see also 

section 4.6.1) to investigate the impact of virus adaptation on HA N-glycosylation. 

All HA N-glycosylation patterns of MDCK cell-derived IVA-PR8 samples were 

similar. The same applied to all IVA-PR8 Vero cell-derived virus samples (figure 

23A, B). In agreement with earlier studies the HA N-glycosylation pattern was 

strictly host cell-specific and changed significantly with the switch to the new host 

cells [72, 73]. However, of all Vero cell-derived HA N-glycosylation patterns for 

the RKI- as well as the NIBSC-strain passage 2 revealed the biggest differences 

in RPH (figure 23, figure 24). Here, the RPH of peak 5 and 7 was almost twice as 

high as for all subsequent passages in Vero cells. This is in agreement with the 

time series in Vero cells (also see section 3.6.21.1.1; figure 12) where these RPH 

almost doubled until 360 hpi. Furthermore, the low abundant glycan structure 

represented by peak 11 was missing in passage 2 of both IVA-PR8 strains 

(figure 23, figure 24). This is most likely due to a drop below the detection limit. 

During the adaptation of the RKI-strain the height of peak 16 decreased by a 

factor of two in passage 2 (figure 23A, figure 24A), which was in agreement with 

the steady decrease of peak 16 during time course experiments (also see 

section 1.1.1; figure 12). Besides, peaks 17 and 18 were missing in passage 2 of 

the RKI-strain. In the time series in Vero cells these peaks represented low 

abundant structures with only 0.2 – 2.7 % RPH (also see section 3.6.2; figure 

12). This probably indicates again a drop below the detection limit [4]. 

In table 3 differences of RPH in controls (different virus passages, section 4.4 

and different harvest time points, section 3.6.2) and during adaptation 

experiments are compared for each peak of both host-specific glycosylation 

patterns. The standard deviations (SD) are given in the supplementary (table S 3, 

page 6). A more than 3-fold higher SD compared to the controls was considered 

significant. For the RKI-strain, during adaptation to Vero cells three peaks (11, 14 

and 18) showed a more than 3-fold higher SD of RPH (table S 3; Adaptation 

series H1N1, RKI) compared to the same peaks of the time series experiment 

(also see section 1.1.1; figure 12). Closer examination of the 15 main peaks of all 



 

 
 

 

figure 23: HA N-glycosylation patterns during IVA-PR8 adaptation from MDCK to Vero cells and back to MDCK cells. 

Shifted overlay of HA N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over the migration time (tmig) in normalized migration 

time units (MTU’). Fingerprints represent 11 virus passages during virus adaptation of the RKI- (A) and the NIBSC-strain (B): (1.) MDCK cell-
adapted virus seed, (2.) to (6.) adaptation to replication in Vero cells, (7.) to (11.) back-adaptation to replication in MDCK cells. Modified and 
reprinted with permission [4]. 
 
 



 

 
 

 
figure 24: Relative peak height of IVA-PR8 HA N-glycosylation patterns during virus adaptation.

 

(A) RKI-strain: In passages (1.) and (7.) to (11.) virus was propagated in MDCK cell culture (■). In passages (2.) to (6.) virus was propagated in 
Vero cell culture (■). Most of the 25 different major peaks are host cell-specific. Only the HA N-glycan structures represented by peak no. 7, 8, 11, 
14 to 16 and 19 to 21 are present in virus samples from both host cells. (B) NIBSC-strain: In passage (1.) and (7.) to (11.) virus was propagated in 
MDCK cell culture (■). In passage (2.) to (6.) virus was propagated in Vero cell culture (■). Most of the 25 different major peaks are host cell-
specific. The HA N-glycan structures represented by peak no. 7, 8, 11, 14 to 16 and 19 to 21 are present in virus samples from both host cells. 
Modified and reprinted with permission [4]. 
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MDCK cell-derived HA N-glycosylation patterns during back-adaptation revealed 

a more than 3-fold higher SD in RPH for peaks 6 and 14 (table S 3; Adaptation 

series H1N1, RKI) compared to the time series in MDCK cells (section 3.6.2; 

figure 12) and biological reproducibility experiments (section 4.4, figure 19). Of 

these peaks, only number 6, with an average RPH of 12.1 %, represents a high 

abundant glycan structure. For the NIBSC-strain, during forward adaptation, a 3-

fold higher SD was found for the high abundant glycan structure represented by 

peak 14, as well as for another low abundant glycan structure represented by 

peak 19. Regarding the back-adaptation to MDCK cells the low abundant glycan 

structures of peaks 7 and 14 as well as the high abundant glycan structures of 

peak 6, 10 and 13 exhibited a more than 3-fold higher SD compared to controls. 

Overall, however, a clear trend during the forward and backward adaptation 

process was not evident (figure 23; figure 24). Furthermore, good reproducibility 

of the host cell-specific HA N-glycosylation pattern during virus adaptation to 

different host cell lines was demonstrated for both IVA-PR8 strains [4]. 

Data from adapting MDCK cell-derived RKI-strain to replication in AGE1.CR.pIX 

cells are consistent with the previous data demonstrating host cell-specificity. 

The HA N-glycan fingerprint of the MDCK cell-derived seed virus (figure 25A) 

was dominated by 14 peaks exhibiting at least 20% of the RFU of the highest 

peak. These peaks are numbered 1–3, 5–8, 10–12, 14, 15, 18, and 20. With the 

first passage in AGE1.CR.pIX cells (passage 1, figure 25A), the HA N-glycan 

fingerprint changed significantly. Now, the fingerprint was dominated by the 14 

peaks (no. 4, 6, 9, 13–17, 19, and 21–25). Peaks 6, 13–15, 17–19, and 23 were 

present in both cell line-derived HA N-glycan fingerprint, whereas peaks 1–3, 5, 

7, 8, 10–12, and 20 were MDCK cell-specific, and peaks 4, 9, 16, 21, 22, 24, and 

25 were AGE1.CR.pIX cell-specific. During all four consecutive virus passages of 

the adaptation process the HA N-glycan fingerprint was more or less stable. 

However, peaks 4, 9, 16–18, and 24 dropped below the 20 % threshold of the 

highest peak in the fingerprints of passages 2 to 4. Peak 13 dropped below this 

threshold only in passages 2 and 3 and peak 25 dropped below this threshold 

only in passage 2 (figure 25). For relative quantification, RPH was calculated and 



 

 

 

 

 
figure 25: Adaptation of RKI-strain from MDCK (pink) to AGE1.CR.pIX cells (dark grey). 

(A) Shifted overlay of HA N-glycosylation fingerprints, in which relative fluorescence units (RFU) are plotted over the migration time (tmig) in 

normalized migration time units (MTU’). Threshold (- - -) indicates peaks exceeding 20 % of the highest peak. MDCK cell-derived virus seed was 
adapted over four passages (1.) to (4.) to replicate in AGE1.CR.pIX cells. Peaks annotated in grey are only present in MDCK cell-derived HA, 
whereas peaks annotated in black are only present in AGE1.CR.pIX-derived HA. Annotated peaks in black underlined are present in both cell lines 
above the 20 % threshold, whereas peaks annotated in grey underlined are present in both cell lines, though in one only below the 20 °% 
threshold. (B) Relative peak abundance (RPH) in % of the total peak height (TPH, sum of all annotated peaks). Peaks are defined low abundant if 
RPH < 5 % (- - -). The average RPH from all adaptation samples (1.) to (4.) is indicated by black bars (—), and the standard deviations of the RPH 
of each peak of passages (1.) to (4.) are indicated by black error bars. Modified and reprinted with permission [7]. 
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plotted over the peak number (figure 25B). This highlights the low abundance of 

peaks 2, 6, 10, 12, 13, 17, 18, 19, 20, and 23 as well as the high abundance of 

peaks 1, 3, 5, 7, 8, 11, 14, and 15 in the MDCK cell-specific HA N-glycan 

fingerprints. In contrast, in the AGE1.CR.pIX cell-specific fingerprints, peaks 4, 9, 

16–18, and 24 were low abundant in all analyzed passages, whereas peak 13 

dropped to low abundance only in passage 3 and peak 25 dropped to low 

abundance only in passages 2 and 4. During adaptation, all peaks, except peaks 

19 and 21, showed differences in relative N-glycan structure abundances of 

≤ 2.8 %. Peaks 19 and 21 varied stronger with maximum differences for RPH of 

4.6 % and 13.1 %, respectively. The RPH of peak 21 almost doubled from 

passage 1 to passage 2 and decreased again in passages 3 and 4. This 

suggests that the structure represented by peak 21 is not as stable as other 

structures or more susceptible to minor variations in the culture and infection 

process. Either its synthesis or its degradation seems to vary for all consecutive 

AGE1.CR.pIX cell-derived virus passages. For all peaks no clear trend during the 

adaptation process was detected [7]. 

In line with so far observed host cell-specificity during virus adaptations, the data 

from adapting MDCK cell-derived RKI-strain to replication in embryonated 

chicken eggs demonstrated strict host cell-specificity, too (figure 26). The 

fingerprints of the viral HA changed with the switch of host cell completely (figure 

26A, B). Thereafter, the fingerprint remained more or less robust during the 

following three passages in embryonated chicken eggs: relative peak 

abundances differed with maximal 8.2 % (peak 11, figure 26C). 

Furthermore, the data from the adaptation of MDCK cell-derived IVA-Uruguay to 

Vero cells were consistent with the previous results demonstrating that first and 

foremost the host cell determines the HA N-glycan fingerprint. However, also the 

choice of the IVA strain has an impact on the HA N-glycan fingerprint (as shown 

in section 4.3). In contrast to the 16 MDCK cell-specific peaks of IVA-PR8-

derived HA, the fingerprint of MDCK cell-derived IVA-Uruguay seed exhibited 25 

different characteristic peaks in the range of 160 MTU’ to 400 MTU’. Of these, a 

total number of 11 peaks representing large glycans (275 MTU’ - 400 MTU’; 12,
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figure 26: Adaptation of the RKI-strain from MDCK cell- to embryonated chicken egg-based 
replication. 
(A) Shifted overlay of HA N-glycan fingerprints, relative fluorescence units (RFU) are plotted over 
the migration time (tmig) in normalized migration time units (MTU’). Egg-specific peaks between 
150 MTU’ and 450 MTU’ exceeding the 10x baseline noise threshold (---) in at least one of the 
fingerprints are annotated. MDCK cell-derived seed virus (seed) was adapted over three 
passages (1.) to (3.) to replicate in embryonated chicken eggs. (B) Direct overlay of all 
fingerprints. (C) Relative peak abundance (RPH) in % of the total peak height (TPH, sum of all 
annotated peaks). Peaks are defined low abundant, if RPH < 5 % (---). 
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13, 18 - 22, 24, 26 - 28) were unique to MDCK cell-derived virus (figure 27A, 

seed). The HA N-glycosylation pattern changed significantly with the first 

passage in Vero cells. Here, 15 different peaks between 150 MTU’ and 380 MTU’ 

characterized the Vero cell-specific HA N-glycan fingerprint. Four peaks (no. 3, 5, 

23 and 25) were unique to Vero cell-derived virus (figure 27A, first passage). In 

comparison to MDCK cell-derived HA, the Vero cell-derived antigen showed a 

tendency towards smaller glycan structures. This is in agreement with the 

tendency towards smaller glycan structures attached to HA of Vero cell-derived 

viruses from the RKI- and the NIBSC-strain. The relative abundance of each 

peak over all Vero passages only varied marginally with standard deviations (SD) 

≤ 2.1 % and maximal differences in RPH ≤ 5.1 % (|ΔRPHmax|, peak 10, table 3 

and figure 27B, [5]). 

Consistent with all previous results, also for IVA-Viktoria as well as for IVA-

California host cell-specificity of the HA N-glycosylation during virus adaptation 

was demonstrated: with the first passage in MDCK cells, the HA N-glycosylation 

pattern changed completely (figure 28A - D). During further adaptation the 

fingerprint stayed more or less robust. Differences of relative peak abundance 

were ≤ 2.5 % (|ΔRPH|max for peak 27, figure 28E) and ≤ 3.1 % (|ΔRPH|max for 

peak 7, figure 28F), indicating no significant further impact of the adaptation 

process on the HA N-glycan fingerprint of IVA-Viktoria and IVA-California, 

respectively. 
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figure 27: Adaptation of IVA-Uruguay from MDCK to Vero cells. 
(A) HA N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over the migration 
time (tmig) in normalized migration time units (MTU’). (A) MDCK cell-derived virus (seed) was 
consecutively passaged in Vero cells over five passages (1.) to (5.). Peaks annotated in blue are 
present in MDCK as well as Vero cell-derived HA; peaks annotated in black are MDCK cell-
specific, and red annotation indicates Vero cell-specific peaks. Modified and reprinted with 
permission [5]. (B) Relative peak height (RPH) in % of the total peak height (TPH, sum of all 
annotated peaks). Peaks are defined low abundant if RPH < 5 % (- - -, [5]). 



 

 

 

 
figure 28: Adaptation of IVA-Viktoria (A, C, E) and IVA-California (B, D, F) from embryonated chicken eggs to MDCK cells. 
(A, B) Shifted overlay of HA N-glycan fingerprints, relative fluorescence units (RFU) are plotted over the migration time (tmig) in normalized 
migration time units (MTU’). MDCK cell-specific peaks between 150 MTU’ and 450 MTU’ exceeding the 10x baseline noise threshold in at least 
one of the fingerprints compared are annotated. Egg-derived virus (i) was adapted in three subsequent passages (ii) to (iv) to replicate in MDCK 
cells. (C, D) Direct overlay of all four fingerprints. (E, F) Relative peak abundance (RPH) in % of the total peak height (TPH, sum of all annotated 
peaks) during the adaptation process. Peaks are defined low abundant if RPH < 5 % (---). 
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4.6.3 Changes in quasispecies composition during virus adaptation from MDCK 

to Vero cells and back 

An impact of HA N-glycosylation patterns on virus’ properties, such as virus 

replication, has been described before [104, 161-164]. Interestingly, during all 

analyzed adaptations the N-glycan fingerprint stabilized soon after the first 

passage in the new host. This clearly suggests that further increase in HA-titer, 

e.g. as observed for both IVA-PR8 strains during adaptation from MDCK to Vero 

cells, was not driven by further changes in the HA N-glycosylation pattern. Other 

factors must contribute to higher virus yields. Therefore, changes in the viral 

genome during virus adaptation were investigated in more detail. Each viral gene 

contributes to the virus’ interaction with the host and to resulting infection. 

Understanding the adaptation of each single viral gene to the new host may 

hence provide new insights in the mechanisms of virus adaptation. For this 

purpose, samples of non-adapted (passages 1, section 4.6.1, paragraph 1), Vero 

cell-adapted (passages 6 as well as seed virus for later immunogenicity studies 

[72]) and back-adapted (passages 11) IVA-PR8, either the RKI- or the NIBSC-

strain, were sequenced by massive parallel pyrosequencing. 

All consensus cDNA sequences from passages 1 of the RKI-strain and the 

NIBSC-strain as well as translated and aligned consensus amino acid sequences 

from passages 1 are compiled in the supplementary (sections 12.7 and 12.8). 

The composition of the quasispecies for the RKI- and the NIBSC-strain during 

virus adaptation for all virus segments is presented in table 4 and table 5, 

respectively. 
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table 4: Overview of changes in quasispecies composition of the RKI-strain during virus 
adaptation to Vero cells. 

Adaptation IVA-PR/8 (RKI)

Passage 1 Passage 6 Passage11 Genzel et al.  2010 (Passage 5)

- 333 A 0 0 0 12

T 343 C Y 115 H 0 13 0 0

- 357 A 0 0 0 11

C 588 G C 196 W 0 7§
50 0

ACA 670-672 C 0 11 0 0

T 1212 C F 404 F 0 27 0 10§

T 1227 C C 409 C 0 6§ 1§ 12

T 1338 - 0 16§
0 21

G 1351 A V 451 I 0 20 0 0

C 1362 T I 454 I 0 15 0 0

ACAAAGA 524-530 CAAG NKE 175-177 TR 0 16 0 0

ACA 1037-1039 C 0 47 0 0

- 1043 A 0 0 0 15

A 1286 - 0 87 0 0

- 1445 A 10 0 0 0

T 2000 CTA 12 1§ 15 2§

TAT 2084-2086 A 0 36 0 0

T 150 C D 50 D 0 4§ 35 0

G 301 T E 101 stop 0 0 0 18

- 303 C 0 0 0 17

G 585 A E 195 E 0 0 38 0

G 954 A K 318 K 0 0 0 23

G 1053 A E 351 E 0 10 0 0

A 1087 - 0 54§
0 28

ATG 1728 T 0 40 0 0

CAT 1011-1113 - I 338 - 0 2§ 1§ 46

A 1258 - 0 0 0 37

A 1268 - 0 0 0 18

- 1284 A 0 0 0 19

C 1370 T S 457 L 0 19* 9* 0

A 1378 G K 460 E 0 80* 81* 0

- 1420 A 0 0 0 10

100 few reads# 10 n.d.

- 34 G 0 0 0 15

AA 354-355 - 0 10 0 0

G 359 A W 120 stop 0 10 0 0

G 417 A W 139 stop 11 0 0 0

A 859 C S 287 R 0 17 54 0

G 882 T E 294 D 0 47 9§ 36

A 926 G N 309 S 0 20 0 0

T 1260 - 0 0 0 12

G 1324 A A 442 T 0 12 0 0

G 1414 C A 472 P 0 42 0 12

G 1418 A S 473 N 0 38 0 9§

4 AA 4 AA 3 AA 0

A 21 G I 7 M 0 15 85 0

A 607 - 20§ 24§ 17§ 19

- 610 A 0 0 0 11

A 622 - 12 16§ 5§ 17

A 1258 - 0 0 0 53

M1 - 730 G 0 0 0 15

M2 1 AA 2 AA 1 AA 0

NS1 T 307 C S 103 P 0 100+
100 0

NEP C 27 T F 9 F 0 0 0 100+

Ratio of cDNA / AA Differing from Seed Virus Consensus Sequence 

(%)

Adaptation IVA-PR/8 (RKI)Segment
Coded 

Protein

cDNA / AA Different from Seed Virus Consensus Sequence 

(Consensus Position Substitution) 

Base-Substitution AA-Substitution

1 PB2

frameshift

frameshift

frameshift

frameshift

3

frameshift

2 PB1

frameshift

PA

frameshift

frameshift

frameshift

frameshift

frameshift

frameshift

frameshift

8

frameshift

frameshift

frameshift

frameshift

no AA-substitutions

frameshift

frameshift

frameshift

6 NA

7
last bp missing last AA missing

4 HA

frameshift

frameshift

frameshift

initial seed virus

5 NP

frameshift

frameshift

last bp missing last AA missing

Passage 1 represents the MDCK cell-adapted seed virus. Passage 6 represents the last of five consecutive 
virus passages in Vero cells. Passage 11 represents the last of five subsequent passages in MDCK cells, 
i.e. after final back-adaptation. S457L and K460E in segment 4 are uncoupled in passages 6 and 11. 
Genzel et al. 2010 (Passage 5, [72]) represents the Vero cell-adapted virus seed used for the 
immunogenicity studies. 0% values correspond to below the detection limit. Table content for segment 4 is 
reprinted with permission [4]. 
#
 in Passage 6 only few reads of the original sequence of segment 4 was detected;  

+
 a few reads with the original sequence were detected (difference was detected with a frequency of ≥ 1 %; 

no HCD quality was reached); 
§
 detected frequency of difference was ≥ 1 % and did not reach high confidence quality. 
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table 5: Overview of changes in quasispecies composition of the NIBSC-strain during 
virus adaptation to Vero cells. 

Passage 1 Passage 6 Passage11

1 PB2 T 1287 C N 429 N 0 8§ 15

G 627 A K 209 K 13 1§ 1§

G 747 A R 249 R 10 1§ 1§

- 1479 T 0 0 13

T 2000 CTA 8§
12 9§

0 5 AA 5 AA

A 399 G E 133 E 0 5§
11

C 1365 A A 455 A 0 6§
13

C 1374 T Y 458 Y 2§ 6§
12

T 1687 C L 563 L 6§
28 12

T 70 C Y 24 H 22 0 0

G 1183 A V 395 M 0 41.5 11.3

A 1189 G T 397 A 1.3 0 0

A 1189 T T 397 S 0.6 0 5.4

G 1363 T D 455 Y 21.4 6.1 3.2

G 1363 C D 455 H 0 52 44.1

A 1375 G K 459 E 0 0 44.2

A 1378 G N 460 D 12.2 41.1 10.5

1 AA 0 0

A 59 C Q 20 P 12 0 0

G 684 A G 228 G 0 80 64

A 859 C S 287 R 0 86 77

A 881 T E 294 V 0 11 3§

T 1191 A N 397 K 0 0 15

G 1323 A R 441 R 0 0 12

4 AA 2 AA 4 AA

T 20 C I 7 T 0 85 65

A 904 G I 302 V 0 0 12

G 940 A E 314 K 0 0 12

- 999 T 0 20 0

A 1032 - 0 11 0

G 1038 A R 346 R 5§
20 1§

G 1046 A S 349 N 0 5§
26

T 1269 C T 423 T 0 0 10

A 1300 G N 434 D 0 0 11

G 1352 C S 451 T 0 0 10

Base-Substitution AA-Substitution
Adaptation IVA-PR/8 (NIBSC)

Segment
Coded 

Protein

cDNA / AA Different from Seed Virus Consensus Sequence 

(Consensus Position Substitution) 

Ratio of cDNA / AA Differing from 

Seed Virus Consensus Sequence (%)

last AA missing

3 PA

4 HA

2 PB1 frameshift

frameshift

last bp missing

last AA missing

6 NA

frameshift

frameshift

5 NP

first bp missing first AA missing

last bp missing

 
Passage 1 represents the MDCK cell-adapted seed virus. Passage 6 represents the last of five consecutive 

virus passages in Vero cells. Passage 11 represents the last of five subsequent passages in MDCK cells, 

i.e. after final back-adaptation. 0% values correspond to below the detection limit. In Passage 1, segment 4 

D455Y and N460D are uncoupled. Incomplete coding sequences are indicated. Table content for segment 4 

is reprinted with permission [4]. 

* if coupled GTC->GCA: V -> A; 
#
 if coupled CGT->CAC: R -> H; °substitutions are coupled; 

“ if coupled: GTT->ACT: V -> T; 
§
 detected frequency of difference was ≥ 1 % and did not reach high 

confidence quality (not defined as HCD). 
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table 5 continued 

Passage 1 Passage 6 Passage11

T 33 A V 11 V 15 30 25

G 75 A A 25 A 13 31 30

A 88 G N 30 D 13 28 27

A 105 G K 35 K 14 28 28

AG 215-216 GA Q 72 R 14 0 0

T 255 C N 85 N 13 6§
0

G 280 A D 94 N 7§
36 45

G 289 A V 97 I 1§
13 6§

T 309 C L 103 L 10 23 21

T 328 C Y 110 H 10 24 23

T 336 C A 112 A 11 24 22

A 345 C I 115 I 23 25

G 346 T A 116 S 25 27

C 360 T S 120 S 12 27 27

T 376 A C 126 S 11 27 33

A 409 G T 137 A 12 29 34

T 417 C T 139 T 12 27 34

G 418 A A 140 T 12 28 34

T 428* C V 143 A 28 30

G 429* A V 143 V 28 29

G 499 A A 167 T 15 26 24

G 618 T A 206 A 16 33 30

T 620 G I 207 S 16 33 29

G 623 A R 208 Q 16 34 30

G 630 A R 210 R 15 34 29

G 642 A Q 214 Q 15 35 32

A 645 G A 215 A 15 35 32

G 691 A D 231 N 10 27 21

G 767#
A R 256 H 13 36 22

T 768#
C R 256 R 13 34 22

T 776 G L 259 R 13 33 21

G 780 A K 260 K 12 28 21

T 804 C D 268 D 12 30 20

T 849 G S 283 S 12 28 20

TT 862-863 AC F 288 T 12 28 21

A 869 G K 290 R 12 28 21

A 918 G S 306 S 13 26 21

G 79" A V 27 I 13 36 22

T 80" C V 27 A 13 34 22

T 88 G S 30 A 13 33 21

G 92 A S 31 N 12 28 21

T 116 C I 39 T 12 30 20

T 161 G L 54 R 12 28 20

TT 174-175 AC GL 58-59 GL 12 28 21

A 181 G R 61 G 12 28 21

A 230 G Q 77 R 13 26 21

0 1 AA 1 AA

C 240 A T 80 T 0 0 13

G 301 A D 101 N 0 0 15

G 306 A W 102 stop 0 49 0

C 320 A P 107 H 1§
13 2§

G 547 A G 183 R 0 7§
25

G 551 A G 184 E 0 4§
24

G 565 A D 189 N 0 5§
23

C 778 T L 260 F 1§ 5§
29

G 75 A S 25 S 0 0 26

G 79 A D 27 N 0 0 21

G 93 A M 31 I 0 0 24

C 306 T A 102 A 0 0 29

Base-Substitution AA-Substitution
Adaptation IVA-PR/8 (NIBSC)

Segment
Coded 

Protein

cDNA / AA Different from Seed Virus Consensus Sequence 

(Consensus Position Substitution) 

Ratio of cDNA / AA Differing from Seed 

Virus Consensus Sequence (%)

8

NS1

NEP 

(NS2)

7

M1

11°

12°

M2

last bp missing last AA missing
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4.6.3.1 Segment 4 coding for HA 

At first, particular focus was laid on the sequence coding for HA (segment 4) and 

on possible changes in potential HA N-glycosylation sites: Regarding the 

consensus amino acid sequences of HA, the initial virus seeds from RKI and 

NIBSC differed in 7 amino acid positions. The differences comprise K147-, 

A156E, E158K, I208L, R269M, F309Y and S398T (RKI versus NIBSC, figure S 9 

in the supplementary). For the RKI-strain, sequencing analysis clearly indicated 

that the virus population from the first initial MDCK passage 1 was uniform 

concerning RNA segment 4, i.e. only one virus variant was detected above the 

detection limit. In contrast, segment 4 of the initial virus seed from NIBSC 

(passage 1) already comprised several virus variants. The following variants 

different from the consensus were detected with the specified frequencies, (table 

5): Y24H (22 %), T397A (1.3 %), T397S (0.6 %), D455Y (21.4 %) and 

N460D (12.2 %, [4]). 

After complete adaptation to Vero cells (passage 6), 80% of the RKI-strain virus 

population carried amino acid substitution K460E, where a positively charged 

lysine was replaced by the negatively charged glutamic acid. Another population 

of 19 % carried the S457L substitution, where polar serine was replaced by non-

polar leucine, (table 4). These two substitutions were uncoupled. No single read 

was detected, which carried both substitutions. Hence, 99 % of sequenced 

viruses carried either one of these two substitutions, indicating a crucial region of 

the HA for adaptation to efficient virus growth in Vero cells. Only single reads 

were detected that carried the original sequence of the first passage. This 

suggests that on the one hand, the initial virus did replicate in Vero cells, but only 

poorly. Considering the dilutions of the initial virus seed during the five Vero 

passages without any replication, its concentration would have been below 

0.1 virion/mL in passage 6 and would most likely not have been detected at all. 

On the other hand, only a change in very few single amino acids in this HA-

region is necessary to increase virus fitness for sufficient growth in Vero cells. In 

passage 6 of the adaptation of the NIBSC-strain a new variant carrying a V395M 
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substitution was detected with a frequency of 41.5 %, which introduced an 

additional sulfur containing residue into the HA2 peptide chain. Furthermore, the 

D455Y virus seed subpopulation dropped to 6.1 %, but a new variant D455H, in 

which aspartic acid was substituted by the basic amino acid histidine, was 

detected that dominated the virus population with 52 %. In addition, the N460D 

subpopulation increased to 41.1 % (table 5). Sequencing analysis of the Vero-

adapted virus seed [72] for later immunogenicity studies revealed a different set 

of subpopulations within the HA-coding sequence: Except from a few frameshift-

causing and silent mutations, one deletion (I338-: 46 %) as well as one 

substitution (V459M: 11 %) was detected [4]. 

After back-adaptation of the RKI-strain to MDCK cells the dominating virus 

population (81%) still carried the K460E substitution in the HA. The minor 

subpopulation (19 % after Vero-adaptation) carrying the S457L substitution 

decreased to 9 % after back-adaptation. The remaining population of 10 % 

represented the initial virus seed sequence from passage 1, (table 4). This 

demonstrates that the K460E variant allows good virus replication in both cell 

lines. In contrast, the S457L variant seems to be less efficiently replicating in 

MDCK cells. These results, particularly the fitness of the K460E variant in MDCK 

as well as in Vero cells, strongly suggests that a mutation in this region was 

acquired, rather than an already existing virus subpopulation of the initial virus 

seed was selected. This mutation finally allowed sufficient virus replication in 

passage 2 of the adaptation series to reach an HA-titer of 1.4 HAU at 288 hpi. 

After back-adaptation of the NIBSC-strain to MDCK cells the V395M, the D455Y, 

the D455H, and the N460D variants decreased to 11.3 %, 3.2 %, 44.1 %, and 

10.5 %, respectively. In contrast, the T397S variant that was not detected in 

passage 6, came-up again and made up for 5.4 % in passage 11, (table 5). This 

T397S substitution abolished the only difference of the consensus sequences in 

the HA2 chain from the two IVA-PR8 strains (RKI- and NIBSC-strain, figure S 9 in 

the supplementary). Furthermore a new variant carrying the K459E substitution 

was detected with a frequency of 44.2 % [4]. 
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figure 29: Localization of substitutions during adaptation from MDCK to Vero and back to 
MDCK cells within the 3D HA-structure. 
Structures are displayed in a cartoon diagram with potential HA N-glycosylation sites highlighted 
by red space filled residues. (A, B, C, D) RKI-strain, (E, F, G, H) NIBSC-strain . Trimeric (A-C, E-
G) and monomeric (D, H) HA molecules. (A-D) The HA1 chains are colored in pink, green and 
brown; the HA2 chains are colored in blue, grey and orange. The K460E mutation is highlighted in 
yellow, the S457L substitution by white space-filled residues. (A) Bottom (B) side and (C) top 
view. (D) indicates the close proximity within the monomer of these two substitutions, which are 
one helix turn apart from each other. (E-H) For the isolate from NIBSC the HA1 chains are colored 
in pink, purple and green; the HA2 chains are colored in turquoise, yellow and orange. The 
substitutions already present in the virus seed are highlighted by grey (Y24H), yellow (D455Y) 
and pink (N460D) space-filled residues. Substitutions occurring during virus adaptation are 
indicated by white (V395M, T397S) or yellow (D455H) space-filled residues. (E) Top, (F, H) side, 
(G) bottom view. The PDB entry 1RU7 and PyMOL (v0.99, DeLano Scientific LLC, California, 
USA) software was used for structure display. Reprinted with permission [4]. 

 

All substitutions detected during forward and backward adaptation of both IVA-

PR8 strains are located in the HA2 chain, neither inside nor in close proximity of 

any N-glycosylation site. They are, however, located in the inside of the HA 
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trimer within or in close proximity to the fusion peptide pocket: within the 

subunits’ contact site for the RKI-strain (figure 29A-D) and within the subunits’ 

and monomer contact sites for the NIBSC-strain (figure 29E-H). This position 

belongs to the fusion subdomain [165]. Interestingly, the Vero-adapted virus seed 

[72] used for immunogenicity studies revealed beside a few frameshift-causing 

and silent mutations, one deletion (I338-) in the HA1 just before the HA1-HA2 

cleavage site at residues 344-345 as well as one substitution in the HA2 

(V459M), just between the two mutations observed before for the RKI strain 

(S457L and K460E), located in the inside of the HA trimer within or in close 

proximity to the fusion peptide pocket (figure 30, [4]). 

 

figure 30: Localization of substitution/deletion within the 3D HA-structure in the Vero-
adapted seed virus [72] for the immunogenicity studies. 
Trimeric HA molecules are displayed in a cartoon diagram with potential HA N-glycosylation sites 
highlighted by red (HA1) or orange (HA2) space filled residues. (A-C) The HA1 chains are colored 
in pink, green and rosé; the HA2 chains are colored in yellow, turquoise and grey. The I338- 
deletion is highlighted in grey, the V459M substitution by blue space-filled residues. (A) top (B) 
side and (C) top view. The PDB entry 1RU7 and PyMOL (v0.99, DeLano Scientific LLC, 
California, USA) software was used for structure display. 

4.6.3.2 Virus segments 1 - 3, 5 - 8 coding for all other virus proteins 

Sequence analysis of segment 4 coding for HA revealed no differences with 

respect to potential N-glycosylation sites, neither during the adaptation process 

nor between the two tested IVA-PR8 strains RKI and NIBSC. In contrast, the 

comparison of potential N-glycosylation sites in NA (segment 6) between the 

RKI- and the NIBSC-strain seed virus revealed one potential N-glycosylation site 

more in the RKI-sequence at position 131. In NIBSC, N at position 131 is 

replaced by S, disrupting the N-glycosylation sequon NGT (section 12.8, figure S 

11). Altogether, five (positions 44, 58, 73, 131, 220) and four (positions 44, 58, 

73, 220) potential N-glycosylation sites were predicted for the NA of the RKI- and 
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the NIBSC-strain seed virus, respectively. During the adaptation process one 

additional potential N-glycosylation site was formed by the S349N substitution 

detected in passage 11 of the NIBSC-strain (table 5). 

Furthermore, the sequence information of all other segments (1 - 3, 5 – 8) 

confirmed the findings for segment 4 (HA). The RKI-seed virus (passage 1) was 

uniform for all segments: Only one virus variant was detected except from a few 

stop- and frameshift substitutions (W139stop [NP, segment 5], frameshift at 

nucleotides 622 [NA, segment 6], 1445, 2000 [PB1, segment 2], table 4). On the 

basis of the obtained sequencing data it is difficult to decide whether the detected 

stop codon and frameshifts are sequencing artifacts or non-infective virus 

particles. Different sequencing techniques, e.g. Illumina sequencing, are 

recommended to verify this. In contrast to the uniform RKI-seed, the initial 

NIBSC-seed virus (passage 1) comprised multiple virus variants: silent 

substitutions were found in segments 2 (PB1), 3 (PA), 6 (NA) and 8 (NS1, 

NS2/NEP), although the substitutions in segments 3, 6 and 8 did not reach HCD 

quality before later time points of the adaptation processes (table 5). Segment 5 

(NP) of the NIBSC seed virus comprised one base substitution, whereas 

segment 7 (M1, M2) comprised 39 base substitutions, resulting in one amino acid 

substitution for NP and in 22 amino acid substitutions in the M1 and M2 proteins 

(table 5). 

After complete adaptation to Vero cells (passage 6), different subpopulations 

were detected for the RKI-strain in segments 1 (PB2), 2 (PB1), 3 (PA), 5 (NP) 

and 6 (NA, table 4). Populations making up for more than 50 % of the 

quasispecies were detected in segment 2 (PB1, frameshift: 87 %) and in 

segment 8 (NS1, NS2/NEP; S103P: 100 %). For the NIBSC-strain, the initially 

inhomogeneous segments 2 (PB1), 5 (NP) and 7 (M1, M2) remained rather 

inhomogeneous during adaptation to Vero cells. However, the subpopulations of 

the quasispecies often varied in percentages from the initial ones. Additionally, in 

passage 6, also segments 3 (PA), 6 (NA) and 8 (NS1, NS2/NEP) revealed 

various subpopulations. Some newly derived populations in segment 5 (NP; 
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G228G: 80 %, S287R: 86 %) and segment 6 (NA; I7T:85 %) dominated the virus 

population by passage 6 with ratios above 50 %. 

Interestingly, the substitution S287R in segment 5 (NP) was detected for the RKI- 

(17 %) as well as the NIBSC-strain (86 %). Furthermore, in segment 5 (NP) of 

the RKI-strain the substitution E294D (47 %) was detected, whereas 11 % of the 

NIBSC sequences carried the substitution E294V. The Vero-adapted virus seed 

[72], which was later used for immunogenicity studies, also comprised a 

subpopulation of 36 % carrying the E294D substitution in segment 5 (NP). Also in 

segment 6 (NA) the seventh amino acid was partly substituted in the RKI- (I7M: 

15 %) as well as in the NIBSC-strain (I7T: 85 %). The substitution A472P in 

segment 5 (NP) of the RKI-strain was detected in passage 6 of the forward and 

backward adaptation [4] as well as in the Vero cell-adapted seed virus [72] for 

the immunogenicity studies (table 4, table 5). 

After back-adaptation of the RKI-strain (passage 11), most subpopulations 

dropped below the detection limit, some remained (table 4; segment 5, NP, 

S287R: 54 %; segment 6, NA, I7M: 85 %; segment 8, NS1, NS2/NEP, S103P: 

100 %), though with different frequencies. Other substitutions even newly 

emerged (table 4; segment 1, PB2, C196W: 50 %). A similar dynamic was 

observed after back-adaptation of the NIBSC-strain (passage 11): some 

subpopulations dropped below the detection limit, others remained (e.g. 

segment 5, NP, S287R: 77 %; segment 6, NA, I7T: 65 %) though often with 

different frequencies and yet others newly emerged. The drop below the 

detection limit of the E294D- (RKI) and the E294V- (NIBSC) variants suggests 

less efficient replication of these variants in MDCK cells. In contrast, the S287R 

variant of the Vero cell-adapted RKI (17 %) as well as NIBSC strain (86 %) 

persisted well over five passages in MDCK cells (RKI: 46 %; NIBSC: 77 %). In 

agreement with the significantly delayed HA-titer increase for Vero-inexperienced 

viruses (figure 22), these results again, strongly suggest that mutations were 

acquired to allow sufficient replication in the new host rather than already existing 

virus variants in the initial seed virus were selected. 
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4.7 Cultivation scale and vessel 

In a next step the impact of different cultivation scales and vessels on the HA N-

glycan fingerprint was investigated. As reviewed by Genzel et al. [62] a large 

range of influenza vaccine manufacturing processes up to the 6000 L scale have 

been established. In this study, the RKI-strain was produced in MDCK cell culture 

using T75-, T175-flasks, roller bottles and 1 L-STR. Again, all resulting HA N-

glycan fingerprints exhibited the 16 MDCK cell-specific peaks between 300 MTU’ 

and 450 MTU’ (figure 31A). Relative quantification (figure 31B) revealed eight 

high abundant peaks (2, 4, 5, 7, 9, 12, 15 and 16) for both T-flask cultivations. A 

total of nine high abundant peaks were observed when virus was cultivated in 

roller bottles (2, 4, 5, 7, 9, 11 - 13 and 15) and 1 L-STR (2 - 5, 7, 9, 11, 12 and 

15). For all scales and vessels tested, the differences in RPH were in the range 

of 0.2 % (peak 8) - 7.3 % (peak 2, table 3, [6]). 

These results were confirmed for a H3N2 virus subtype, IVA-Uruguay (figure 

31C, D): A comparison of MDCK cell-derived IVA-Uruguay revealed similar 

robust HA N-glycosylation fingerprints (figure 31C) for virus production in a T75-

flask and a 5 L-STR, showing differences in relative N-glycan structure 

abundances between 0.1 % (peak 3) and 6.6 % (peak 6, figure 31D). 



 

 

 

 
figure 31: Impact of cultivation scale and vessel on the HA N-glycosylation pattern of IVA. 
(A, B) RKI-strain was produced in T75-flask (i), T175-flask (ii), roller bottle (iii) or 1 L-stirred tank reactor (STR, iv) using MDCK cell culture. 
Modified and reprinted with permission [6]. (C, D) IVA-Uruguay was produced in T75-flask (i) and 5 L-STR (ii) using MDCK cell culture. (A, C) 

Shifted overlays of HA N-glycan fingerprints, relative fluorescence units (RFU) are plotted over the migration time (tmig) in normalized migration 

time units (MTU’). Peaks exceeding the 10x baseline noise threshold (---) in at least one of the direct comparable fingerprints are annotated. (B, D) 
Relative peak height (RPH) in % of the total peak height (TPH, sum of all annotated peaks). Peaks are defined high abundant if RPH > 5 % (---). 
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4.8 Virus production media 

4.8.1 Media composition 

To investigate the impact of media composition on the HA N-glycosylation 

pattern of MDCK cell-derived RKI-strain, three different virus production media 

were tested: GMEM, Episerf and the chemically defined, protein- and peptide-

free SMIF8 medium (for details see table 1). Again all N-glycan fingerprints 

exhibited the 16 MDCK cell-specific peaks between 300 MTU’ and 450 MTU’ 

figure 32A). Relative quantification by RPH comparison revealed seven high 

abundant peaks (2, 4, 5, 7, 9, 12 and 15) for all media used and two additional 

high abundant peaks when Episerf was used (10 and 16, figure 32B). Differences 

of RPHs for each peak ranged between 0.2 % and 5.7 % (ΙΔRPHmaxΙ: peak 12, 

table 3, [6]). 

4.8.2 Trypsin activities 

Generally, during virus production trypsin is added for increased virus yields. 

Hence, in a next step the effect of trypsin additions on the HA N-glycosylation 

pattern of MDCK cell-derived RKI-strain was characterized. Therefore, a 

standard trypsin activity of 5 U/mL was added [72] once (at time of infection) or 

every 24 h. As a control, cells were infected without trypsin. Controls reached 

maximum titers of 2.1 - 2.2 HAU (120 hpi), cultivations infected with trypsin at 

time of infection achieved up to 2.5 – 2.7 HAU (96 hpi). Daily addition of trypsin 

resulted in 2.6 – 2.7 HAU (96 hpi, data not shown). As before, the same MDCK 

cell-specific N-glycan fingerprints, consisting of 16 peaks between 300 MTU’ and 

450 MTU’ were obtained for all conditions, (figure 32C). Relative quantification by 

RPH revealed eight high abundant peaks (2, 5, 7, 9, 10, 12, 13 and 15, figure 

32D) for all trypsin containing samples (standard and daily addition) during virus 

production. The control samples showed a slightly different set of eight high 

abundant peaks (7, 9, 10, 11, 12, 13, 14 and 15, figure 32D). For all samples 

differences of relative N-glycan structure abundances ranged from 0.6 % - 



 

 

 

 

 
figure 32: Impact of virus production media compositions (A, B) and trypsin activities (C, D) on the HA N-glycosylation pattern of IVA-
PR8. 

(A, C) HA N- glycan fingerprints, relative fluorescence units (RFU) are plotted over the migration time (tmig) in normalized migration time units 

(MTU’). MDCK cell-specific peaks between 300 MTU’ and 450 MTU’ exceeding the 10x baseline noise threshold (---) in at least one of the direct 
comparable fingerprints (table 3, +) were annotated. (A) The virus was produced in GMEM (i), Episerf (ii) and SMIF8 (iii) medium. (C) Virus was 
produced without (w/o) trypsin (i), with 5 U/mL trypsin (ii) or with an addition of 5 U/mL trypsin every 24 h (iii). Representatives from duplicate 
samples are displayed (B, D) Relative peak abundance (RPH) in % of the total peak height (TPH, sum of all annotated peaks). Peaks are defined 
low abundant if RPH < 5 % (---). Modified and reprinted with permission [6]. 
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14.0 % (ΙΔRPHmaxΙ: peak 14, table 3). These results clearly indicate that the 

addition of trypsin has no significant impact on the HA N-glycosylation pattern 

with respect to HA N-glycan structure presence. However, highest impact on 

relative N-glycan structure abundance has trypsin presence or absence since the 

differences of relative N-glycan structure abundances for all trypsin 

supplemented samples is ≤ 1 % (ΙΔRPHmaxΙ: peak 15,data not shown, [6]). 

4.9 Virus N-glycosylation and immunogenicity 

So far, results demonstrated that some cultivation conditions impact HA N-

glycosylation of produced virus significantly (e.g. host cell), while other conditions 

hardly affect HA N-glycosylation (e.g. cultivation scale and vessel). It is known 

that carbohydrates are involved in antigen uptake, processing, presentation, and 

act in an adjuvant manner as described for saponin from Quillaja saponaria [166] 

or phosphatidylinositol mannosides from Mycobacterium tuberculosis [7, 167]. 

Furthermore, few studies have addressed the impact of HA N-glycosylation on 

anti- and immunogenicity [1-3, 88]. Therefore in cooperation with Dr. B. Lepenies 

and J. Hütter (Glycoimmunology, MPI-KG, Potsdam-Golm, Germany)) 

immunogenicity studies were designed in order to directly address the impact of 

differential N-glycosylation on the immunogenicity of IVA preparations. In the 

following the distribution of work is briefly summarized as well as the results are 

presented (sections 4.9.1 to 4.9.2), which were published in 2013 [1]. 

 

Since the influence of HA N-glycosylation on virus immunogenicity and hence on 

vaccine efficiency would make or break the relevance and value of this work, I 

started early during my thesis to think of possible ways to address the impact of 

N-glycosylation on immunogenicity. After discussion with a former colleague, 

Prof. Dr. Th. Schüler, a cooperation with Dr. E. Rapp and myself (MPI for 

Dynamics of Complex Technical Systems, Magdeburg, Germany), Dr. 

B. Lepenies and J. Hütter (MPI-KG, Potsdam-Golm, Germany) as well as Dr. B. 

Hundt (IDT Biologika GmbH, Dessau-Rosslau, Germany), was initiated. Within 

this cooperation the impact of N-glycosylation on immunogenicity of different 
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virus preparations was investigated during immunogenicity studies using a TCR-

HA transgenic mouse model and in addition a BALB/c wildtype (wt) mouse 

model. T cells from these transgenic mice only express a TCR specific for the 

HA110-120 peptide presented by MHC class-II molecules [168, 169]. The great 

advantage of this transgenic model is that it allows the characterization of HA-

specific CD4+ T cell stimulation by differentially N-glycosylated whole virus 

preparations. The work was distributed as followed: 

Multiple differently glycosylated virus preparations were produced by myself. This 

included cell culture-based virus production, β-PL-inactivation of the virus 

containing culture broth, cell culture-based inactivation testing, virus 

quantification by HA-assay, sterility testing, virus isolation and washing. 

Furthermore, I established and performed native enzyme-based deglycosylation 

procedures for the generation of natively folded, non-glycosylated virus 

preparations. Finally, I quantified all virus preparations for their protein content by 

BCA-assay and characterized each sample’s HA N-glycosylation pattern by 

CGE-LIF-based glycoanalysis. Furthermore, seed viruses were sequenced by 

next-generation pyrosequencing in cooperation with Dr. D. Höper (FLI, 

Greifswald - Insel Riems, Germany) to confirm congruence of potential N-

glycosylation sites as well as presence of HA110-120 peptide, for which transgenic 

HA-TCR T cells are specific. Dr. D. Höper and colleagues performed sequencing 

analysis, processed, sorted, assembled and mapped raw data, whereas the 

analysis and interpretation of sequence information was generally conducted by 

myself. 

J. Hütter (PhD-student, MPI-KG, Potsdam-Golm, Germany) established and 

performed in vitro whole spleen cell assays with TCR-HA transgenic mice or 

BALB/c wt mice (controls). She used magnetic assisted cell sorting- (MACS-) 

isolated spleen cell subsets (CD11c+, CD19+) to identify responsible APC 

population. She analyzed T cell activation by flow cytometry (CD69, CD25) as 

well as ELISA (IL-2, IL-4, IFNγ) using the cell culture supernatant. Furthermore, 

she performed in vivo boost immunizations (day 0 and 14) with BALB/c wt mice, 

quantifying HA-specific IgG/IgM Ab-titers of mice sera by ELISA (14 days post 
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immunization, dpi; 28 dpi) and performed an adoptive transfer of labeled TCR-HA 

transgenic T cells, analyzing their proliferation in the spleen (4 dpi) by flow 

cytometry of spleen cells. For in vivo experiments IL-2 and IFNγ production of 

CD4+ spleen T cells was quantified after restimulation by ELISPOT. The results 

of these immunogenicity studies will also be part of J. Hütter’s PhD-thesis. 

HAI assays to determine titers of Ab in immunized mice sera, which are able to 

inhibit hemagglutination, were performed by Dr. B. Hundt (IDT Biologika GmbH, 

Dessau-Rosslau, Germany) and colleagues. 

4.9.1 In vitro studies 

The following section 4.9.1 contains text, analogous text content, structure, 

figures and figure legends or parts of figure legends taken from a paper 

published together with J. Hütter, D. Höper, P.H. Seeberger, E. Rapp and B. 

Lepenies, January 2013 in J. Immunol. [1]. As described before (section 1, last 

two paragraphs), scentences and/or paragraphs containing quotations are not 

indicated specifically. The reference will only be given after the phrase or 

paragraph by the number of the quoted reference. 

MDCK and Vero cell-derived HA N-glycosylation patterns of the RKI-strain differ 

significantly (figure 33A(i), B(i), section 4.1 and [73]). The impact of HA N-

glycosylation on immunogenicity was investigated by stimulating TCR-HA 

transgenic spleen cells with either β-propiolactone inactivated MDCK or Vero 

cell-derived virus preparations [1]. Stimulations with Vero cell-derived virus 

preparations demonstrated significantly increased frequencies of the activation 

marker CD69 for splenic T cells than with MDCK cell-derived preparations (figure 

34A). Consistent with the enhanced CD69 expression, IL-2 levels in splenocyte 

supernatants were significantly higher when incubated with the Vero than with 

the MDCK cell-derived virus preparations (figure 34B). The same tendency, i.e. 

an increased cytokine secretion after stimulation with Vero cell- in comparison to 

MDCK cell-derived virus, was observed for IFN-γ. Whereas IL-4 secretion was 

comparable upon stimulation with the Vero and the MDCK cell-derived virus 

preparations (figure 34C, D). These findings demonstrate that HA N-glycosylation 
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had a marked impact on CD69 expression as well as on IL-2 secretion and to a 

smaller extent on IFN-γ production, suggesting a marked influence of differential 

HA N-glycosylation on the initiated T cell response [1].  

 
figure 33: HA N-glycan fingerprints of glycosylated (i) and deglycosylated (ii) MDCK (A) 
and Vero (B) cell-derived RKI-strain. 

Relative fluorescence units (RFU) are plotted over the migration time (tmig) in normalized 

migration time units (MTU’). Shifted overlays (i, ii) and direct overlays (iii) of fully N-glycosylated 
(i) and native deglycosylated HA (ii) show efficient but not complete deglycosylation (note the 
different scale in i and ii). Glycoanalysis indicated that at least about 90 % of HA N-glycan 
structures were cut off. New glycan structures detected after deglycosylation on the Vero (B (ii)) 
or MDCK (A (ii)) cell-derived HA are marked with an asterisk (*). Reprinted with permission [1]. 
Inactivated virus samples, figure and respective data were generated and analyzed by myself. 

 

Moreover, T cell activation kinetics using the two influenza glycovariants 

indicated that Vero cell- in comparison to MDCK cell-derived virus induces faster 

T cell activation, thus enhancing T cell proliferation: higher CD69 expression 24 h 

post stimulation (hps) but not 72 hps with Vero cell-derived virus and higher IL-2 
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production 72 hps but not 24 hps after stimulation with the Vero cell-derived virus 

preparations (data not shown, [1]). This differential T cell activation by Vero and 

MDCK cell-derived virus preparations was demonstrated to be mediated by 

CD11c+ dendritic cells (data not shown, [1]). 

 
figure 34: Increased T cell activation upon stimulation with Vero cell-derived RKI-strain in 
TCR-HA transgenic whole spleen cell assays. 
Cells were stimulated with a HA peptide (HA110-120, positive control, white), with the MDCK 
(dotted) or Vero cell-derived RKI-strain (striped) or with an ovalbumin peptide (OVA323-339, 
negative control, black). (A) As measured by flow cytometry, a higher frequency of TCR-HA 
transgenic splenic T cells expressed CD69 (very early T cell activation marker) after stimulation 
with Vero than with MDCK cell-derived virus. Background frequency of CD4

+
CD69

+
 cells is 

indicated (•••). (B, C, D) Bar diagrams represent results from three independent experiments. 
Cytokine levels as measured by ELISA in cell culture supernatants. Stimulation with Vero cell-
derived virus induced significantly higher IL-2 secretion by splenocytes, indicating an impact of 
HA N-glycosylation on T cell proliferation. Data are representative of four independent 
experiments. All data are expressed as mean + SEM. The p-values were determined using paired 
Student’s t-test (*p<0.05, **p<0.01) for MDCK vs. Vero. Significance is indicated by asterisks (*), 
ns= no significance. Modified and reprinted with permission [1]. 
Figure and respective data were generated and analyzed by J. Hütter (MPI-KG, Potsdam-Golm, 
Germany). Inactivated virus samples (MDCK, Vero) were generated by myself. 
 

To further investigate the effect of HA N-glycosylation on T cell stimulation, the 

MDCK and Vero cell-derived glycovariants of the RKI-strain were natively 

deglycosylated using a variety of endo- and exoglycosidases (section 3.7). HA 

bands were shifted to lower molecular weights in the SDS-PAGE indicating 



4 Results 

100 

successful deglycosylation (data not shown). Bands of fully glycosylated HA 

monomers were found at about 70 kDa (MDCK cell-derived just above and Vero 

cell-derived just below). In contrast, deglycosylated preparations exhibited a 

more diffuse and broader band pattern just below the fully glycosylated band 

between about 55 kDa and 70 kD (data not shown). N-glycosylation pattern 

analysis confirmed that both variants were deglycosylated for the most part 

(figure 33A(ii-iii), B(ii-iii)). In particular, the significant reduction of signal intensity 

from about 450 RFU - 500 RFU to below 50 RFU indicates efficient protein 

deglycosylation (this conclusion is only possible, if same samples were used, if 

whole sample preparation was performed in the same batch and if same material 

batches were used for N-glycan analysis). Though, no complete deglycosylation 

was achieved, glycan analysis showed a reduction of N-glycosylation by at least 

a factor of 10. Moreover, glycan analysis suggested that Vero cell-derived N-

glycan structures were removed more efficiently (figure 33B(ii)) than MDCK cell-

derived structures (figure 33A(ii)) (max. RFUVero < max. RFUMDCK). Interestingly, 

deglycosylation resulted in multiple truncated glycan structures of lower 

molecular weight on the Vero cell-derived HA (marked with an asterisk (*) in 

figure 33B (ii)). In contrast, on the MDCK cell-derived HA only one shorter glycan 

structure above 300 MTU’ was detected after deglycosylation (marked with an 

asterisk (*) in figure 33A (ii), [1]). 

The impact of HA deglycosylation on immunogenicity was investigated by 

stimulating TCR-HA transgenic splenocytes with MDCK or Vero cell-derived virus 

preparations as well as with the deglycosylated control preparations in a whole 

spleen cell assay (figure 35). Particularly at lower protein concentrations, 

deglycosylation led for both glycovariants to reduced frequencies of CD69 

expression in the CD4+ T cell population as well as to reduced cytokine 

production levels (figure 35A-D). Though, differences between the glycosylated 

and deglycosylated virus preparations were more pronounced for the Vero than 

for the MDCK cell-derived virus (figure 35A-D, [1]). This might be due to the fact 

that deglycosylation of the MDCK cell-derived virus preparation reduced the HA 

N-glycosylation level by about 90% but without modifying most N-glycan 
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structures. In contrast, HA N-glycans of the Vero cell-derived virus preparation 

were truncated during deglycosylation leading to multiple new glycan structures 

in addition to the reduced level of glycosylation (figure 33B(ii), [1]). 

 
figure 35: Deglycosylation of the RKI-strain reduces T cell activation significantly in vitro. 
TCR-HA transgenic splenocytes were stimulated for 48 h with glycosylated and natively 
deglycosylated MDCK or Vero cell-derived virus preparations. (A) CD69 (early T cell activation 
marker) frequency of CD4

+
 T cells (duplicates each). Upon deglycosylation frequencies of CD69

+
 

T cells decreased markedly. Also cytokine levels of (B) IL-2, (C) IL-4 and (D) IFN-γ, in particular 
for the Vero cell-derived virus decreased after deglycosylation. Bar diagrams are representatives 
of triplicates and represent mean + SEM. Significance was tested by unpaired student’s t-test 
(ns= no significance, (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001) for glycosylated versus 
natively deglycosylated virus preparations. Reprinted with permission [1]. 
Figure and respective data were generated and analyzed by J. Hütter (MPI-KG, Potsdam-Golm, 
Germany). Inactivated virus samples (MDCK, Vero, MDCK deglycosylated, Vero deglycosylated) 
were generated by myself. 

4.9.2 In vivo studies in mice 

The following section 4.9.2 contains analogous text content, structure and 

modified figures taken from a paper published together with J. Hütter, D. Höper, 

P.H. Seeberger, E. Rapp and B. Lepenies, January 2013 in J. Immunol. [1]. As 

described before (section 1, last two paragraphs), scentences and/or paragraphs 



4 Results 

102 

containing quotations are not indicated specifically. The reference will only be 

given after the phrase or paragraph by the number of the quoted reference. 

To investigate the impact of N-glycosylation on immunogenicity in vivo and in a 

wt background, BALB/c mice were prime-boost immunized intraperitoneal (i.p.) 

on day 1 and 14 with fully glycosylated Vero or MDCK cell-derived virus 

preparations or with the deglycosylated controls. IgG/IgM titers of HA-specific Ab 

in mice sera were determined on day 14 and 28 by ELISA. In agreement with the 

in vitro results, deglycosylation led to dramatically reduced HA-specific Ab levels 

in sera of immunized mice for the MDCK as well as for the Vero cell-derived virus 

14 dpi and 28 dpi (figure 36A). Interestingly, immunization with MDCK cell-

derived virus induced significantly higher levels of HA-specific Ab on day 14 than 

immunization with Vero cell-derived virus (figure 36A, left). This effect was no 

more evident on day 28 (figure 36A, right). Consistent with the ELISA, the ability 

of mice sera of day 28 to inhibit hemagglutination in an HAI assay decreased 

significantly when mice were immunized with the deglycosylated virus 

preparations (figure 36B). Interestingly, on day 28 Ab induced by immunization 

with MDCK cell-derived virus still significantly better inhibited hemagglutination 

than the Ab induced by immunization with Vero cell-derived virus (figure 36B, 

[1]). 

Altogether, these results suggest that the N-glycosylation pattern of the MDCK 

cell-derived virus preparation more promotes the B cell-mediated humoral 

immune response whereas the Vero cell-derived virus preparation slightly more 

stimulates the T cell-mediated cellular immune response [1]. 

Furthermore, T cell proliferation in the spleen of wild-type BALB/c mice of labeled 

and adoptively transferred TCR-HA transgenic T cells was comparable after 

immunization with Vero and MDCK cell-derived virus (figure 36C). But consistent 

with the in vitro findings the frequency of IL-2 producing splenocytes was higher 

after immunization with the Vero than with the MDCK cell-derived virus 

preparations (figure 36D, [1]). 
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figure 36: In-vivo immunogenicity of glycovariants of the RKI-strain. 
(A) HA-specific Ab titers in BALB/c wt mice sera after prime- (day 0) boost- (day 14) immunization 
(i.p.) with 10 µg virus preparation (fully glycosylated or deglycosylated M- or V-variants) as 
measured by ELISA (in triplicates). Data on day 14 and 28 are derived from 5 BALB/c wt mice, 
respectively. Data represent means + SEM. Significance was tested by unpaired student’s t-test 
for glycosylated versus natively deglycosylated virus variants (MDCK cell-derived: *; Vero cell-
derived: °) and for glycosylated MDCK versus Vero cell-derived virus variants (#; ns= no 

significance, */°/
#
p<0.05, **/°°p<0.01, ***p<0.001, ****p<0.0001). (B) Inhibition of 

hemagglutination (HAI) titers of immunized mice sera were measured on day 28. One symbol 
represents one mouse. HAI for Vero-deglycosylated was 0, hence no significance could be 
determined for Vero-glycosylated versus -deglycosylated. (C) MACS-purified TCR-HA transgenic 
T cells were labeled with e670 (cell-proliferation dye) on day 0 were i. v. adoptively transferred 
into BALB/c wt mice. On day 1 mice were immunized with 50 µg of glycovariants (MDCK or Vero) 
or with PBS. Proliferation of TCR-HA transgenic T cells and T cell activation were analyzed on 
day 5. Gating on e670

+
CD4

+
 cells was performed for flow cytometric analysis. Frequency of 

transferred and labeled TCR-HA transgenic T cells, which had proliferated. Each symbol 
represents one mouse, derived from altogether three independent experiments. (D) Frequency of 
IL-2 producing splenocytes as analyzed by ELISpot in triplicates, after re-stimulation of isolated 

splenocytes with HA110-120-peptide. Data are normalized to the number of adoptively transferred 

TCR-HA transgenic T cells based on flow cytometry data. Bar diagram represents mean + SEM. 
Modified and reprinted with permission [1]. 
Figure and respective data were generated (except B; Dr. B. Hundt, IDT Biologika GmbH, 
Dessau-Rosslau, Germany) and analyzed by J. Hütter (MPI-KG, Potsdam-Golm, Germany). 
Inactivated virus samples (MDCK, Vero, deglycosylated MDCK, deglycosylated Vero) were 
generated by myself. 
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In conclusion, these studies indicate that differential N-glycosylation has a 

marked impact on IVA-PR8 immunogenicity in vitro and in vivo, in TCR-HA 

transgenic as well as in wt BALB/c mice [1]. 
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5 Discussion 

5.1 Impact of host cells and host cell adaptation on the HA N-

glycosylation pattern 

This study confirms that host cell choice significantly impacts HA N-glycosylation 

patterns of IVA. Previously, Schwarzer et al. demonstrated strict host cell-

specificity for HA N-glycosylation [73]. They showed by exoglycosidase 

digestions, that all N-glycan structures attached to MDCK cell-derived HA are of 

the complex type with either terminal α- or β-galactose. On the other hand most 

N-glycan structures attached to Vero cell-derived HA are of the complex type 

with terminal β-galactose but some other structures are of the high mannose 

type. Interestingly, AGE1.CR cell-derived HA also carried mostly complex N-

glycans with terminal β-galactose and some high mannose structures, but 

additionally hybrid structures were detected [73]. The present work extends the 

data of Schwarzer et al. [73] for a variety of additional cell lines such as 

AGE1.CR.pIX cells, Cap cells and embryonated hens’ eggs (section 4.1, figure 

15). Strict host cell-specificity was demonstrated and is in agreement with Raju et 

al., who showed significant differences in N-glycosylation for IgG produced in 

host cells from 13 different species [170]. Host cell-specificity of glycosylation is 

caused by species-specific differences, e.g. in the complex glycosylation 

machinery with respect to expressed enzyme repertoires and enzyme activities 

[31]. Also, the hosts’ cellular metabolism associated with glycosylation was 

reported to impact glycosylation outcomes due to differences in the availability of 

intracellular sugar-nucleotide donors [171]. Another factor influencing the N-

glycosylation of proteins is the transit time in the Golgi, which may also differ 

from cell line to cell line [31, 171]. 

Interestingly, taking all different host cell-derived HA N-glycan fingerprints 

obtained in this work into account, MDCK cell-derived fingerprints show the 

largest differences compared to all other hosts in terms of migration times 

(tendency towards bigger structures), number of peaks (tendency towards higher 

variety of different structures), and peak intensities (tendency towards higher 
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numbers of different, more or less high abundant N-glycan structures). MDCK 

cell-derived N-glycan structures are in average bigger. This may be either due to 

longer oligosaccharide chains or due to higher numbers of antennae, which 

remains to be investigated e.g. by MS-based N-glycan structure elucidation. 

The comparison of the AGE1.CR.pIX- with the AGE1.CR-derived HA N-glycan 

fingerprint published by Schwarzer et al. [73] shows no significant differences. 

This suggests that no significant changes to the host cell’s glycosylation 

machinery were induced by the stable integration of the adenoviral pIX gene into 

the AGE1.CR genome. The pIX gene was integrated into the genome to promote 

capsid stabilization of cognate adenovirus in particular and may also alter further 

cell line properties [7, 67, 73, 172]. 

The adaptation of adherent MDCK cells from serum-containing to serum-free cell 

growth in Episerf caused no significant changes in peak presence but resulted in 

differences in relative peak abundance (maximum │ΔRPH│ of 8.4 %, table 3) of 

the HA N-glycan fingerprints (section 4.2.1, figure 16). Therefore, this host cell 

adaptation had no significant impact on the host cell’s glycosylation machinery. 

The differences in relative N-glycan structure abundances may be caused by 

differing nutrient concentrations in the media. In particular, it was shown for 

recombinant protein production processes that glucose and glutamine 

concentrations in the media can affect N-glycosylation [173-175]. Furthermore, 

glucose or glutamine limitations can lead to decreased sialylation and increased 

presence of hybrid and high-mannose glycan types [176], which is possibly due 

to reduced intracellular UDP-N-acetylgalactosamine concentrations [177]. 

Moreover, metabolic by-product accumulation of lactate and ammonia, 

influenced by glucose and glutamine concentrations in the medium [6, 178] have 

been previously described to have an impact on N-glycosylation [179-181] 

influencing antennary-, sialylation- [182] or galactosylation- [183] levels of 

glycoproteins. Finally, adaptation-induced changes of enzyme activities of the 

glycosylation machinery or within the hosts’ cellular metabolism associated with 

intracellular sugar-nucleotide donors may also have contributed to differences in 

relative N-glycan structure abundances [6]. 
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In contrast, adaptation of adherent MDCK cells to serum-free suspension growth 

[142] changed peak presence as well as relative peak abundances in HA N-

glycan fingerprints (maximum │ΔRPH│ of 18.1 %, table 3, section 4.2.2, figure 

17). This emphasizes that every repetition of host cell adaptation - as for 

MDCK.SUS1 and MDCK.SUS3 - may result in a totally new HA N-glycosylation 

pattern, showing a distinct fingerprint. This may be explained by adaptation-

induced, altered presence or absence of oligosaccharide-processing enzymes in 

the host cell’s proteome or by host cell-specific differences in the relative 

activities of competitive enzymes involved. For example, glycoengineering allows 

to modulate, knock out or newly introduce specific glycosyltransferases in 

established producer cells to achieve a more suitable glycosylation pattern for 

therapeutic glycoproteins [184-187]. Concerning the effect of enzyme activities, 

e.g. Kobata described transformational changes of sugar chain moieties of the 

human luteinizing hormone due to an enhancement of the fucosyltransferase 

[188]. Such changes in the glycosylation machinery may occur due to 

spontaneous mutations in the host cell genome as Stanley reported for CHO cell 

mutants, which acquired multiple glycosylation defects leading to altered 

glycosylation of endogenous as well as recombinant glycoproteins [189, 190]. 

The occurrence of such mutations is also suggested by proteomic studies, 

revealing significant changes in the host cell’s proteome, acquired after 

adaptation to suspension growth (manuscript in preparation by Kluge et al., MPI 

for Dynamics of Complex Technical Systems, Magdeburg, Germany). In contrast, 

further adaptation of MDCK.SUS1 to MDCK.SUS2 for better growth 

characteristics did not impact the host cell’s N-glycosylation machinery any 

further as indicated by rather stable HA N-glycosylation fingerprints (maximum 

│ΔRPH│ of 1.9 %, table 3, [6]). 

5.2 Impact of virus strain, virus supplier, virus passage and virus 

adaptation status on the HA N-glycosylation pattern 

First and foremost the host cell determines the HA N-glycosylation pattern. In 

addition, the virus strain may influence the HA N-glycosylation. In this study, 
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CGE-LIF-based glycoanalysis revealed distinct N-glycan fingerprints for two 

H1N1 and two H3N2 strains produced in MDCK cell culture (section 4.3, figure 

18). However, mostly RPH, representing relative N-glycan structure abundances 

(maximum │ΔRPH│ of 25.2 %, table 3), vary between the strains. The 

differences in RPH were smaller, if two strains of the same subtype (IVA-PR8 

and IVA-Victoria, H1N1; or IVA-Uruguay and IVA-California, H3N2) were 

compared (maximum │ΔRPHH1N1│ of 12.4 %, maximum │ΔRPHH3N2│ of 9.8 %, 

table 3). This highlights the closer relation of the H1N1-strains and the H3N2-

strains. A few differences with respect to peak presence were detected, when all 

strains were compared: however, these represented mostly low abundant 

structures (e.g. peak 24, not present in both H1N1 strains, figure 18). These 

differences in N-glycan structure abundance as well as presence are most 

probably due to slightly varying three-dimensional conformations between all four 

analyzed IVA strains. Interestingly, Schwarzer et al. showed for MDCK cell-

specific glycovariants by sequential exoglycosidase digestions that all glycans 

attached to IVA-PR8-derived HA were of the complex type with terminal α- and 

β-galactose, while IVA-WSN/67/2005- (H3N2) derived HA only possessed few 

complex N-glycan structures with terminal α- and β-galactose and the highest 

abundant structures were of the high mannose type [73]. Similar digestion 

patterns were found for influenza virus B/Mal/2506/2004-derived HA: highest 

abundant structures were of the high mannose type, but all detected complex N-

glycan structures were terminated by β-galactose [73]. Already in 1997 Mir-

Shekari et al. highlighted the importance of the three-dimensional structure of HA 

for N-glycosylation. They demonstrated that each of the four N-glycosylation sites 

within the HA1 subunit was occupied by conserved N-glycan structures 

depending on specific N-glycosylation site characteristic: in loop regions bi-, tri- 

and tetra-antennary complex N-glycans were present. In contrast, the 

glycosylation site buried in the α-helix was occupied by high mannose structures, 

indicating that these structures are no more accessible for glycosylation 

modulating enzymes after proper protein folding and trimerization of the HA 

molecule [31, 191]. However, beside the three-dimensional structure of the 
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protein, also specific glycosylation characteristics have been described to 

influence further glycan processing: e.g. Harpaz and Schachter demonstrated 

that the presence of bisecting GlcNAc inhibited GlcNAc transferases, which is 

responsible for further glycan branching [192]. 

In addition to different virus strains, the impact of IVA-PR8 origin with respect to 

suppliers (i.e. RKI- versus NIBSC-strain) on HA N-glycosylation was investigated 

(section 4.5, figure 20). The choice of virus supplier did only slightly effect relative 

peak heights (maximum │ΔRPH│ of 5.0 %, table 3). Overall, this suggests that 

N-glycan fingerprints of strains from different suppliers, which may as well slightly 

vary in their HA genome sequence (as shown for RKI- and NIBSC-strain), can 

also show differences regarding relative peak abundance, i.e. probably with low 

abundance. This was expected as these two closely related IVA-PR8 virus seeds 

do not differ in any potential glycosylation site of the HA molecule [4, 6]. Still, the 

two virus seeds differed significantly concerning maximum virus titers obtained, 

interferon and apoptosis induction as well as the activation of general host cell 

responses [193-196]. These variations may be caused by different ratios of 

defective interfering virus particles in seed viruses [197]. Furthermore, Andersen 

et al. suggested in 2000, that the ratio of cells in G0/G1 phase determines the 

glycosylation efficiency [198]. 20 years before, Hakimi et al. reported that virus 

isolated from rapidly growing fibroblasts exhibited a higher number of larger 

glycans compared to virus replicated in non-growing cells [199]. All this suggests, 

that the cell status can affect N-glycosylation and that the slight differences in 

RPH in the HA N-glycan fingerprints between these two tested virus seeds may 

be due to differing virus-induced physiological statuses of the host cells rather 

than caused by sequential differences in the HA [6]. 

The characterization of HA N-glycan fingerprints derived from multiple virus 

passages demonstrated a good reproducibility and an overall high biological 

stability of HA N-glycosylation (maximum │ΔRPH│ of 3.5 %, table 3, section 4.4, 

figure 19). This stability makes further investigations possible, e.g. during virus 

adaptation. However, HA N-glycosylation pattern stability does not allow any 

conclusions concerning occurred mutation events, since slight differences in 
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virus genome sequences do not necessarily lead to significantly altered HA N-

glycan fingerprints, as observed during the comparison of the RKI- and the 

NIBSC-strain. 

Next, the impact on HA N-glycosylation of seed virus adaptation to various host 

cells was investigated (section 4.6.1/2, figure 21 to figure 24). Virus seed 

adaptation is often necessary to optimize virus yields in production cells. The 

results clearly show that predominantly the host cell line determines the HA N-

glycosylation pattern of a specific virus strain (details in section 5.1). For NIBSC- 

as well as RKI-strain-derived HA N-glycan fingerprints, the variation between the 

first passage in Vero cells (passage 2) and the patterns of all subsequent Vero 

cell adaptation passages (passages 3 – 6) cannot completely be explained by 

applied harvest time point. This indicates that in addition to the harvest time point 

(maximum │ΔRPH│ of 14.2 % for RKI-strain in Vero cells, table 3), the viral 

adaptation status (maximum │ΔRPH│ of 21.0 % for RKI-strain to Vero cells, 

table 3) may impact relative N-glycan structure abundances. Interestingly, for all 

tested virus strains and host cells, the glycan pattern stabilized at the latest after 

the first passage in the new cell line. Moreover, the quicker release of virus 

particles and to begin with the increase in HA-titers - as observed for most seed 

virus adaptations – indicates that other factors are involved in the adaptation 

process resulting in improved fitness of virus subpopulations. Such factors 

include the acquisition of changes in the virus genome sequence [4]. 

Taking together data from all adaptation series, the results clearly indicate that 

the impact of virus adaptation status on HA N-glycan fingerprints and virus 

replication dynamics depends on chosen virus strains as well as on selected cell 

lines for virus replication (section 4.6.2, figure 21 to figure 28). This is caused by 

strain- and/or host cell-specific characteristics: e.g. the passage history of a seed 

virus may have already selected fitter virus variants for the new host system or 

the host cells express favoured receptors. For instance, the expression of both 

α2,3 and α2,6 linked sialic acids on cell surfaces may also support the 

propagation of avian (binding α2,3 sialic acids) as well as human (binding α2,6 

sialic acids) influenza strains, as observed for AGE1.CR.pIX cells [200, 201]. 
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5.3 Impact of virus adaptation on quasispecies composition 

5.3.1 Characterization of virus seeds 

The fact, that cDNA sequences are homogenous in the virus seed of the RKI-

strain (passage 1), clearly suggests the presence of only one virus population 

(table 4). In contrast, the initial virus seed population (passage 1) of the NIBSC-

strain comprises multiple virus variants (table 5) regarding segments 2 (silent), 3 

(silent, non-HCD quality), 4, 5, 6 (silent, non-HCD quality), 7 and 8 (non-HCD 

quality): in segment 4 four substituted AA residues (Y24H, T397A/S, D455Y, 

N460D) were detected, whereas in segment 5 one subpopulation carrying the 

substitution Q20P was detected. Q20P is located within a domain interacting with 

cellular proteins, in particular with the splicing factor BAT1 [202, 203]. In 2011 

Ping et al. characterized this Q20P substitution as a mouse adaptive mutation 

[204]. Its presence may be explained by the NIBSC-strain passage history, which 

is not clear. However, in segment 7 coding for M1 and M2 proteins a total 

number of 22 AA substitutions have been detected in the NIBSC seed virus 

(passage 1). These comprise the substitutions N30D, Q72R, A167 T207S, 

R208Q and D231N, which are located within the domain of M1, interacting with 

the ribonucleocapsid protein (RNP) [204]. The sequence conflict SQ207/208IR 

was characterized before by comparing the sequences published by Winter et al. 

in 1980 and by Ghedin et al. in the course of the National Institute of Allergy and 

Infectious Diseases (NIAD) influenza genome sequencing project [205, 206]. 

Further subpopulations detected for M1 carried the substitutions Y110H, A116S, 

C126S, T137A, A140T and V143A, which are all located within α-helices, 

involved in membrane-binding [158, 207]. Subpopulations detected for M2 

comprised the substitutions V27A/I, S30A, S31N and I39T, which are located 

within the ion channel [204]. Of these V27A and S31N have been associated with 

amantadine resistance [208, 209]. Furthermore, a comparison of available 

sequence information for IVA-PR8 reveals the sequence conflicts A27I, L54R, 

R61G, Q77R as well as characterizes I39T as a natural variant of the IVA-

PR8/Mount Sinai-strain [158, 205, 206, 210]. 
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5.3.2 Comparison of two IVA-PR8 virus seeds, RKI- vs. NIBSC-strain 

The comparison of consensus sequences of both IVA-PR8 seed viruses 

(passages 1) – the RKI- and the NIBSC-strain – reveals four AA substitutions for 

segment 1 coding for PB2 (table 6, figure S 5), six AA substitutions for segment 2 

coding for PB1 (table 6, figure S 6), three AA substitutions for segment 2 coding 

for PB1-F2 (table 6, figure S 7), three AA substitutions for segment 3 coding for 

PA (table 6, figure S 8), six AA substitutions and one deletion for segment 4 

coding for HA (table 6, figure S 9), four AA substitutions for segment 5 coding for 

NP (table 6, figure S 10), nine AA substitutions for segment 6 coding for NA 

(table 6, figure S 11), twelve AA substitutions for segment 7 coding for M1 (table 

6, figure S 12), six AA substitutions for segment 7 coding for M2 (table 6, figure S 

13), two AA substitutions for segment 8 coding for NS1 (table 6, figure S 14) and 

two AA substitutions for segment 8 coding for NS2/NEP (table 6, figure S 15). 

Interestingly, the RKI-sequence for segment 7 matches the subpopulations of the 

NIBSC-sequence (carrying the HCD) perfectly on the AA-level. Even on the 

cDNA-level the 33 differences are reduced to one silent substitution (A438G). 

Similar findings were observed for segment 6, though to a lesser extend: the five 

subpopulations (cDNA/AA: A904G/I302V, G940A/E314K, T1269C/T423T, 

A1300G/N434D, G1352C/S451T) arising during the adaptation processes reduce 

sequential differences between the RKI- and the NIBSC-strain from nine to five 

and from fourteen to nine positions at the AA- and cDNA-level, respectively. 

Hence, these data may indicate a possible contamination and subsequent 

reassortment of segment 7 of the NIBSC-seed with the RKI-strain. Or if the 

original NIBSC-sequence matches the RKI-sequence of segment 7, the NIBSC-

seed may have been contaminated with some other virus strain, which already 

dominates the virus population in passage 1. Since the sequences from other 

NIBSC-strain seed virus variants, also comprised a mixture of RKI-specific (e.g. 

G620/S207) and NIBSC-specific (T620/I207) residues in segment 7 (data not 

shown, data obtained by Dr. T. Frensing and B. Heynisch (MPI for Dynamics of 

Complex Technical Systems, Magdeburg, Germany) in cooperation with Dr. D. 

Höper (FLI, Greifswald - Insel Riems, Germany) a possible contamination of the 
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table 6: Sequence differences of viral genomes between the RKI- and the NIBSC-strain. 
Differing AAs for both strains are indicated by the AA found in the RKI-strain, followed by the AA position, 
followed by the AA in the NIBSC-strain. Consensus suquences were used for the alignment. 

1 2 3 4 5 6 7 8 9 10 11 12

segment 1 PB2 M105I V259L V504I R702K

segment 2 PB1 A155T V195M I205M R208K I336V P394S

segment 2 PB1-F2 P43Q K59R Q60R

segment 3 PA K237E V354I L550I

segment 4 HA K147- A156E E158K I208L R269M F309Y S398T

segment 5 NP V353L V425I T430N A442T

segment 6 NA M15L R128K N131S V302I K314E E371K I403M D434N T451S

segment 7 M1 D30N R72Q H110Y S116A S126C A137T T140A A143V T167A S207I Q208R N231D

segment 7 M2 A27V A30S N31S R54L G61R R77Q

segment 8 NS1 E55K E101D

segment 8 NEP (NS2) R88K V89I

segment protein

number of mutations 

 

NIBSC-strain with the RKI-strain during these studies can be ruled out. Another 

possibility is the accumulation of mutations within segment 7 of the NIBSC-strain. 

Previously, the theoretically identical RKI- and the NIBSC-strain have been 

described to differ significantly in infection characteristics such as IFN response, 

apoptosis induction, final virus yields [194, 195] and the activation of general host 

cell response [193, 196]: The NIBSC-strain was characterized to induce higher 

levels of IFN, to express more Mx proteins, to induce apoptosis earlier, and to 

reach lower final titers than the RKI-strain. Seitz et al. hypothesized that two 

amino acid substitutions in the non-structural protein 1 (NS1) might be related to 

these differences. Another approach correlates higher amounts of defective 

interfering virus particles (DIPS) in seed virus preparations to higher apoptosis 

rates, IFN expression and to decreased final virus titers (personal communication 

Pflugmacher, Frensing, MPI for Dynamics of Complex Technical Systems, 

Magdeburg, Germany). Our present findings suggest that lower average virus 

yields, as well as increased IFN responses and apoptosis rates may at least be 

partly due to a broadened quasispecies of the NIBSC-strain virus seed 

comprising low-yield-virus variants [4]. 

5.3.3 Quasispecies of segments 1 to 3 

During virus adaptation the quasispecies of the RKI-strain broadened in 

dependence of the adaptation pressure. The substitutions within segment 1 

coding for PB2 Y115H (located within PB1-binding site), C196W (located within 



5 Discussion 

114 

NP-binding-site) and V451I (located within nuclear localization signal, NLS) are 

all located within regions important for protein-protein contact or protein 

transport, respectively [204]. To the author’s knowledge, these mutations have 

not yet been described before. For the NIBSC strain no AA substitutions were 

detected during the adaptation processes within segments 1, 2 and 3.  

5.3.4 Quasispecies of segment 4 

During all performed IVA-PR8 adaptations from MDCK to Vero cells, additional 

virus variants with mutations in the HA stem region were generated. While the 

quasispecies of the homogenous seed virus of the RKI-strain broadened, the 

heterogeneity of the seed NIBSC-strain persisted during the whole adaptation 

processes: from passages 1 to 11 samples comprised multiple virus 

subpopulations. Thereby, sizes of subpopulations as well as selection and 

extinction of specific virus variants varied in dependence of adaptation pressure, 

i.e. the host. However, no potential HA N-glycosylation sites or AA residue in 

their close neighborhood were affected [4]. 

A comparison of results obtained for both adaptations from MDCK to Vero cells 

and back using the RKI- and NIBSC-strain revealed one interesting similarity: the 

substitution of lysine by glutamic acid at position 459/460 (RKI-/NIBSC-strain). 

The K459E variant of the NIBSC-strain that carries a deletion in the HA1 chain 

(K147-) corresponds to the K460E variant of the RKI-strain. Moreover, all 

substitutions detected during forward and backward adaptation of both IVA-PR8 

strains are located in the HA2 chain, neither inside nor in close proximity of any 

N-glycosylation site. They are, however, located in the inside of the HA trimer 

within or in close proximity to the fusion peptide pocket: within the subunits’ 

contact site for the RKI-strain (figure 29A-D) and within the subunits and 

monomer contact sites for the NIBSC-strain (figure 29E-H). The second 

adaptation of the RKI-strain by Genzel et al. [72] resulted, besides some 

frameshift mutations, in the deletion of AA 338 (I338-). This deletion is located 

within the fusion subdomain [165] of the HA molecule (figure 30). Substitutions in 

the region of HA subunit contacts have been described to be crucial for the 
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stability of the structure of the native protein. Among other factors, the optimal 

stability depends on pH or temperature [22, 211-213]. In this regard lower pH 

environments for instance require higher native structure stability, whereas 

elevated pH-values require less stable structure conformations to mediate 

membrane fusion. In 2010 Reed et al. demonstrated using recombinant H5N1 

influenza viruses that substitutions within the fusion peptide pocket and the α-

helix of HA2 alter the pH of activation of HA, which in term effects influenza virus 

pathogenicity as well as transmissibility in mallards [214]. Furthermore, 

Thoennes et al. showed that different substitutions at HA2 position 111 of a H3N2 

influenza virus strain significantly effected fusion pH, suggesting, a key role of 

this residue for neutral pH structure stability [215]. This is consistent with findings 

of Kawaoka’s group in 2012. They demonstrated, that the N460D (HA2N117D as 

published by Murakami et al.) substitution, we detected after NIBSC-strain 

adaptation to Vero cells, is responsible for improved replication in Vero cells 

without inhibiting growth in MDCK cells [216]. Furthermore, they showed that the 

N460D substitution resulted in an increased or boarded optimal pH range for viral 

membrane fusion in comparison to the wt virus without the N460D substitution. 

Based on two fluorescent dyes – one pH stable, the other pH sensitive – they 

demonstrated a higher intensity ratio for Vero cells then for MDCK cells, 

suggesting higher pH values in the early endosome of Vero cells [216]. Also 

Nakowitsch et al. described mutations in the HA1 and HA2 after passaging a 

H3N2 IVA on Vero cells, which led to impaired virus stability. Interestingly, these 

mutations also led to decreased immunogenicity in ferrets [217]. Other authors 

also reported substitutions within the HA stalk region, altering HA stability and 

hence pH of membrane fusion [22, 214, 218, 219]. Therefore, all substitutions 

within the HA molecule in this study, occurring during virus adaptation from 

MDCK to Vero cell-based replication of the RKI- or NIBSC strain most probably 

modulate the electrostatic balance of the HA molecule and hence alter stability of 

its three-dimensional conformation. Interestingly, Rott et al. [220] described the 

occurrence of virus variants after adaptation to MDCK cells, which exhibited 

elevated fusion pH caused by substitutions within the HA1 chain. However, these 
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experiments indicate a crucial role of the HA stem region for virus adaptation 

from MDCK to Vero cells. Here, inter-monomer or inter-subunit contact is 

mediated, suggesting HA-initiated fusion as a driving factor of adaptation 

pressure. Zaraket et al. reported that altered HA acid stability of a H5N1-strain 

impacts virus growth in the upper respiratory tract and contact transmission in 

ferrets [221]. Furthermore they described an impact on virus replication and 

pathogenesis in mice [4, 222]. 

In this study, all three virus adaptations show a significant change of the HA N-

glycosylation pattern with the change of host cell system as recently published by 

Genzel et al. as well as Roedig et al. [4, 72]. Additionally, all three experiments 

demonstrate that only a small sequence adaptation is required for successful 

infection and fast growth to high titers in new host cell lines. These findings are in 

agreement with results of Wagner et al. and Klenk et al. [163, 164] who reported 

that N-glycans attached to the stem domain of HA efficiently regulate influenza A 

virus replication. The authors showed that a loss of N-glycans in the stem region 

results in increased pH-sensitivity of the virus and that these viruses are also 

temperature sensitive. However, for most detected substitutions (except for 

N460D during NIBSC-strain adaptation), the exact functions remain to be 

investigated, including the question whether these substitutions alter acid stability 

of HA [223], pH of activation, or membrane fusion [224]. Or, whether they simply 

counteract steric hindrance [164] caused by Vero cell-specific changes in HA N-

glycosylation, e.g. on residues 28 and/or 40 in the stem region of HA to achieve 

low-pH conformation required for membrane fusion [4]. 

5.3.5 Quasispecies of segment 5 

In segment 5 coding for NP several substitutions were detected during 

adaptation processes within functional domains of the RKI-strain: the substitution 

S287R is located within the domain for NP-binding, whereas substitutions E294D 

(E294V during NIBSC-strain adaptation), N309S, A442T, A472P and S473N are 

located in a region involved in NP-binding as well as PB2-binding [204]. Although 

mutations occurred in both regions of interaction - in PB2 (C196W) as well as in 
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NP - a correlation between the PB2 and the NP adaptation is not probable due to 

strongly differing mutant population sizes (NP-binding site of PB2: 7 % versus 

NP- and PB2-binding-site of NP: 47 %, 20 %, 12 %, 42 %, 38 %). Furthermore, 

Chen et al. defined the residue 442 as a host-specific genetic signature, where 

avian strains usually carry a T and human strains carry an A [225]. On the one 

hand the A442T subpopulation may have already been present below the 

detection limit in passage 1. The presence of A442T in the virus seed is then 

most likely due to the virus’ passage history: the virus was isolated from humans 

in 1934, passaged in embryonated chicken eggs as all viruses were in former 

times and mostly still are, before the virus was adapted in our laboratory to 

MDCK cell culture-based virus replication. If this was the case, its detection in 

passage 6 is most probably due to selection in Vero cell-based virus replication. 

On the other hand, the fact that a second adaptation of the RKI-strain to Vero 

cells by Genzel et al. did not result in a A442T subpopulation strongly indicates 

that no selection but rather a mutation led to the A442T substitution. However, 

the accumulation of substitutions between AA 294 and 309 (47 % and 20 %) and 

between AA 442 and 473 (12 % - 42 %) suggests that a structural change in this 

region was necessary for successful virus replication in Vero cells. This is 

supported by the data from the second adaptation by Genzel et al. [72] showing 

comparable accumulations of AA substitutions within these two regions. 

Interestingly, all substitutions in these two regions were first detected in 

passage 6 and decreased to under the detection limit in passage 11, which 

strongly indicates a significant advantage of these substitutions for Vero cell-

based, but a significant disadvantage for MDCK cell-based virus replication. In 

contrast the S287R substitution, which was also detected for the NIBSC-strain, 

was first detected in passage 6 (RKI: 17 %, NIBSC: 86 %) and further persisted 

until passage 11 (RKI: 54 %, NIBSC: 77 %) finally representing the major virus 

population in both strains. For segment 5 of the NIBSC strain in passage 11 one 

additional substitution (N397K, region involved in NP-binding as well as PB2-

binding) to the ones also observed for the RKI-strain (S287R and E294V) was 

detected. Naffakh et al. hypothesized a co-evolution of PB2, PA and NP due to 
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strong physical as well as functional interactions [202]. This is in agreement with 

the occurrence of substitutions within the PB2 and NP molecules observed 

during the adaptation processes of the RKI-strain. 

5.3.6 Quasispecies of segment 6 

For segment 6 coding for NA one subpopulation (I7M) was generated during 

virus adaptation processes of the RKI- as well as the NIBSC-strain. This I7M 

subpopulation replicated rather well in Vero as well as in MDCK cells 

(RKI/NIBSC: 0 %/0 % passage 1; 15 %/85 % passage 6; 85 %/65 % 

passage 11). Position 7 is located in the transmembrane domain (7 - 35) of the 

NA molecule and was described as a potential signal-anchor for type-II 

membrane proteins [158, 226]. In contrast to the RKI-strain, further substitutions 

were detected for the NIBSC-strain in passage 11. These comprised the 

substitutions I302K, E314K, S349N, N434D and S451T, which are all located 

within the head of the neuraminidase protein [204]. The comparison of 

sequencing data from Fields et al. with data derived from the NIAID influenza 

genome sequencing project reveals the E314K and S451T sequence conflict 

[205, 227], which may suggest these residue substitutions as frequently 

occurring variants. Interestingly, the substitutions I302V, E314K, N434D and 

S451T result in matching AA sequences at these positions for the RKI- and 

NIBSC-strain. 

5.3.7 Quasispecies of segment 7 

With respect to segment 7 coding for M1 and M2 proteins the RKI-strain stayed 

homogeneous throughout the virus adaptation processes, i.e. no additional 

subpopulation was detected. This is consistent with the persistence of the rather 

broad quasispecies of the NIBSC-strain from passage 1. Only the subpopulation 

Q72R decreased to under the detection limit in passages 6 and 11. These 

findings suggest that the selection pressure during virus adaptation from MDCK 

to Vero cells and vice versa hardly acts on the two matrix proteins M1 and M2. 
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5.3.8 Quasispecies of segment 8 

Differential splicing results in two proteins encoded by segment 8 namely NS1 

and NEP (NS2). During virus adaptations different substitutions within the NS1 

protein have been detected. Interestingly, after virus adaptation from IFN-

competent MDCK to IFN-deficient Vero cells (passage 6) approximately 100 % of 

the viruses of the RKI-strain carried the substitution S103P. Only a few sequence 

reads could be detected carrying the original sequence. This substitution 

persisted and made up for 100 % of the virus population in passage 11 after 

back-adaptation to MDCK cells. This clearly suggests a fitness gain by S103P for 

replication in Vero and definitively no fitness loss for replication in MDCK cells. In 

contrast, after the adaptation of the NIBSC-strain to Vero cells, a subpopulation 

P107H was detected, which decreased again during back-adaptation to MDCK 

cells. Altogether, this suggests a fitness gain for Vero cell-based virus replication 

but a fitness loss for MDCK cell-based replication. Other substitutions, namely 

D101N, G183R, G184E and D189N were detected with high confidence after 

back-adaptation of the NIBSC-strain to MDCK cells. The substitutions S103P 

(RKI-strain), P107H and D101N (NIBSC-strain) are located in the effector domain 

of the NS1 protein within the region involved in interaction with eukaryotic 

initiation factor 4 G1 (elF4G1) as well as the cleavage and polyadenylation 

specificity factor (CPSF), which is involved in the 3’-polyadenylation of cellular 

mRNAs [204]. So far, it is assumed that the ability of an NS1 molecule to interact 

with elF4G1 enhances viral mRNA translation [228, 229], whereas the ability to 

interact with CPSE-30 downregulates host gene expression including IFN 

expression [230, 231]. Recently, Forbes et al. demonstrated that the mutation 

F103L in this region of mouse-adapted IVA-HongKong/1/1968 (H3N2) bound the 

F2F3 domain of CPSF with significantly decreased affinities [232]. Furthermore, it 

was reported that, a hydrophilic S at position 103 of the IVA-PR8 eliminates 

CPSF30 binding affinity, but an unknown viral strategy maintained suppression of 

IFN-β mRNA production [231, 233]. Structural analysis indicated that the 

aromatic side chain of residue 103 interacts with hydrophobic residues of the 
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F2F3 domain of CPSF and contributes to the stability of tetrameric NS1A-F2F3 

complex [233]. Furthermore, the F103L mutation was shown to increase 

significantly virus yields in mouse kidney epithelium cells as well as to increase 

early viral growth (12-24 hpi) in IFN-β primed cells in contrast to wt viruses [232]. 

Interestingly, not only the antagonism to IFN-β was enhanced for the F103L 

mutant but it also induced significantly lower IFN-β expression 1 dpi in the lungs 

of mice [232]. Since MDCK cells are IFN-competent whereas Vero cells are INF-

deficient, it may be assumed that the virus adapted according to IFN competence 

of the host cells. However, this is unlikely since recent studies by Seitz et al. 

demonstrated that IFN expression is no limiting factor for IVA replication in 

MDCK cells [195]. Rather IFN-expression independent functions contribute to 

NS1 mutations during the adaptation processes. The appearance and further 

increase of the G183R, G184E and D189N virus variants during the NIBSC-

strain adaptation may indicate a fitness gain by tuning CPSF interactions. 

Residues 183 and 184 are located in a domain (144 - 188) interacting with 

CPSF, whereas residue 189 is located just outside this domain [204]. Structural 

analysis demonstrated that residues 183/184 belong to the largely hydrophobic 

F2F3 binding pocket within the NS1 molecule interacting with the F3 zinc finger 

of the CPSF complex contributing to CPSF-binding [233]. A strong influence of 

G184 by an unknown mechanism on IVA-PR8 virulence was described, which is 

independent from the IFN system [234]. However, residues F103 and M106 have 

been identified as critical for CPSF binding. Some viruses, e.g. IVA-PR8, vary in 

these positions. As a result, attenuation or even complete loss of CPSF-binding 

was described [231, 235, 236]. 

Altogether, the emergence of NS1 variants with all substitutions located in the 

elF4G1- (AA81 - 113) and/or the CPSF- (AA81 -113, AA147 - 188) binding site or 

nearby (AA189) suggests a fitness gain for all variants in Vero cells and for most 

variants also in MDCK cells, whenever a further increase during back-adaptation 

to MDCK cells was observed. Since Vero cells are IFN-deficient and even in 

MDCK cells IFN is not a limiting factor for virus replication another, IFN-

independent function probably drives NS1 adaptation from MDCK to Vero cells 
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and back. Such a factor may be involved in (i) the suppression of RNAi induction 

[237-240], (ii) the inhibition of host cell mRNA processing by interacting with 

CPSF and the suppression of nuclear export of poly-A-tailed transcripts [233, 

241-244], (iii) suppressing apoptosis in infected cells [245, 246] or (iv) the 

stimulation of the translation of viral transcripts by interacting with elF4G1 [229, 

247]. 

The fact that 100 % of detected viruses of the RKI-strain carried the S103P 

substitution in passages 6 and 11 suggests that either a mutation was essential 

for sufficient virus replication in Vero cells or that this variant had an enormous 

fitness-gain, having outcompeted other virus variants by passage 6. The latter is 

more likely, since after the adaptation by Genzel et al. from MDCK to Vero cells 

no NS1 variants were detected. Consistent with this is the accumulation of some 

substitutions in similar regions during the adaptation of the NIBSC strain. 

Whether the detected substitutions modify CPSF30-, elF4G1-binding or other, so 

far unknown interactions located in this region, remains to be further investigated. 

Regarding the NEP protein, no AA substitutions were detected during both RKI-

strain adaptations, while after back-adaptation of the NIBSC-strain to MDCK cells 

two subpopulations carrying the substitutions D27N and M31I were detected. To 

the author’s knowledge, so far, no specific function was mapped to this region. 

5.3.9 General remarks 

In general, next-generation pyrosequencing was performed to address whether 

sequence changes of the viral genome were required to ensure efficient virus 

replication in the new host system (section 4.6.3). It should be mentioned that on 

the basis of obtained sequencing data, it was difficult to decide whether the 

detected frameshifts are sequencing artifacts or represent non-infectious and/or 

truncated virus particles. Further sequencing by another method e.g. Illumina 

sequencing would be necessary to verify this. Hence, in the previous, only 

sense-mutations were discussed, whereas introduced stop codons and 

nonsense-mutations such as frameshifts were ignored. Moreover, several silent 

substitutions were detected. Some may have occurred by chance, others may 
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have been selected to better match the new host’s codon usage bias, i.e. 

favoured base triplets coding for a specific AA [248]. However, in the previous, 

the focus was laid on substitutions changing the AA sequence. 

5.4 Impact of cultivation scale, vessel and virus production media on the 

HA N-glycosylation pattern 

So far, the host cell line, the host cell line’s adaptation status to adherent or 

serum-free suspension growth and to some extend the virus strain have been 

shown to have an impact on the HA N-glycan fingerprint with respect to N-glycan 

structure presence as well as relative structure abundances. In contrast, different 

harvest time points, different virus passages, different IVA-PR8 virus suppliers as 

well as different virus adaptation statuses only slightly impacted HA N-glycan 

fingerprints, i.e. only affecting N-glycan structure abundances. In a next step, for 

robustness during scale-up, the impact of different cultivation vessels (T75-flasks 

up to microcarrier-based 1L-STR) on the HA N-glycosylation pattern was 

assessed. Again, the use of different cultivation vessels had no significant impact 

on N-glycan structure presence in HA N-glycan fingerprints. Only relative N-

glycan structure abundances were affected, (RKI-strain: maximal ΙΔRPHΙ of 

7.3 % for peak 2; IVA-Uruguay: maximal ΙΔRPHΙ of 6.6 % for peak 6, table 3). 

Nevertheless, one possible cause for such variations can be found in the 

different concentrations of dissolved oxygen (DO) in T-flasks, roller bottles and 

DO-/pH-controlled bioreactors. For example, Kunkel et al. observed different 

galactosylation levels for different DO concentrations for monoclonal antibodies 

[249, 250], and Restelli et al. described DO concentration-dependent fucosylation 

efficiencies for recombinant human erythropoietin [251]. Beside DO 

concentration, also time course of pH differs between pH-controlled STR 

cultivations, T-flasks and roller bottles (both uncontrolled). Variations of the 

extracellular pH in the range of 6.1 to 8.7 have been described, e.g. to influence 

significantly the glycosylation pattern of CHO-derived recombinant mouse 

placental lactogen-I. At low and high pH values a decreased extent of 

glycosylation was found [252]. Furthermore, Zanghi et al. showed that changes in 
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pH as well as partial pressures of CO2 can alter protein glycosylation in CHO 

cells [253]. Other possible causes for variations in RPH are different shear forces 

in T-flasks, roller bottles and STRs. For example, Senger et al. reported shear-

dependent ratios of partially and fully glycosylated recombinant tissue-type 

plasminogen activator protein [254]. Besides, growth in suspension or in 

microcarrier culture can have an impact. Nam et al. observed decreased 

fucosylation and increased sialylation of the recombinant model glycoprotein 

secreted human placental alkaline phosphatase produced in CHO microcarrier in 

contrast to suspension culture [6, 255]. 

The choice of virus production medium only slightly affected relative peak 

abundances (media composition: maximal ΙΔRPHΙ = 5.7 %; trypsin activity: 

maximal ΙΔRPHΙ = 14.0 %, table 3) of the HA N-glycan fingerprints. As 

addressed before, nutrient concentrations in the medium and accumulation of 

metabolic by-products may cause such minor variations of the RPH [6]. 

In summary, except for the choice of host cells, the adaptation of host cells to 

serum-free suspension growth and potentially the selection of virus strain, all 

other investigated process modifications resulted only in minor differences 

regarding relative N-glycan structure abundances. This brings up questions 

concerning the possible impact of such variations on the quality of antigens, i.e. 

immunogenicity or efficacy. Recently, de Vries et al. (2012) investigated the 

impact of N-glycosylation on the immunogenicity of recombinant HA, showing 

that HA antigens carrying terminal mannose residues induced significantly lower 

HAI Ab titers than HA modified by complex glycan structures or single N-

acetylglucosamine side chains. However, using a HA1 antigen microarray they 

demonstrated a comparable breadth of Ab response for all tested recombinant 

HA  glycovariants [3, 6]. 

5.5 Impact of HA N-glycosylation on immunogenicity 

The following section 5.5 contains analogous text content and structure taken 

from a paper published together with J. Hütter, D. Höper, P.H. Seeberger, E. 

Rapp and B. Lepenies, January 2013 in J. Immunol. [1]. As described before 
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(section 1, last two paragraphs), scentences and/or paragraphs containing 

quotations are not indicated specifically. The reference will only be given after the 

phrase or paragraph by the number of the quoted reference. 

To investigate the impact of N-glycosylation on immunogenicity of virus 

preparations in vitro as well as in vivo, mouse studies were performed in 

cooperation with Dr. B. Lepenies and J. Hütter (MPI-KG, Potsdam-Golm, 

Germany). Within these studies it was demonstrated that differences in HA N-

glycosylation have a marked impact on immunogenicity in vitro as well as in vivo 

[1]. Studies were performed with β-propiolactone inactivated MDCK and Vero 

cell-derived as well as natively deglycosylated virus preparations. MDCK and 

Vero cells were selected for virus production due to their industrial relevance [1]. 

Whole spleen cell assays demonstrated higher CD69+ frequencies of CD4+ TCR-

HA transgenic T cells as well as increased secretion of IL-2 after stimulation with 

Vero cell-derived virus. These higher levels of CD69 and IL-2 indicated faster T 

cell activation after stimulation with the Vero than with the MDCK cell-derived 

virus. IL-2 is generally produced very early upon Ag stimulation of Th0 cells, 

promoting division, differentiation and survival of T cells, but may also be 

produced by Th1 cells [1, 256]. Interestingly, secretion levels of IFNγ were less 

affected whereas secretion levels of IL-4 were hardly affected at all. Comparable 

Th1/Th2 effector cytokine levels (IFNγ, IL-4) for both glycovariants and higher 

IL-2 levels for Vero cell-derived virus suggest faster recognition and Ag uptake by 

APC of the Vero cell-derived virus preparation. However, a tendency towards 

higher IFNγ-secretion upon splenocyte stimulation with the Vero cell-derived 

virus was observed, although mostly not significant. IFNγ is predominantly 

produced by stimulated Th1 cells, which are essential for viral clearance [1, 257]. 

The differences observed in T cell activation were predominantly mediated by 

CD11c+ DCs as shown in a DC/T cell co-cultivation assay by Hütter et al. [1]. 

Typically DCs, which are part of the innate immunity, take-up the Ag in the 

periphery, at the site of infection and transport it to the regional lymph node or 

the spleen, where they present specific peptides of the processed Ag, and 

activate specific CD4+ and CD8+ T cells (via cross-presentation) by multiple 
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interactions (see section 2.11 and [258]). Usually CD4+ T cells induce optimal T 

cell activation as well as stimulate Ab-producing B plasma cells [259]. However, 

in this study, DCs were demonstrated being crucial for distinct T cell activation by 

means of CD69+ expression (MDCK vs. Vero cell-derived virus) or IL-2, IL-4 and 

IFNγ secretion (glycosylated vs. deglycosylated virus preparations, [1]). So far, 

different DC subsets have been described, being involved in IVA infections. 

These may cause differential T cell activation induced by MDCK and the Vero 

cell-derived virus preparations. For instance CD103+ CD11blow/neg DCs efficiently 

transport Ag to posterior mediastinal lymph nodes, efficiently load viral peptides 

onto MHCI complexes as well as efficiently present them to CD8+ T cells [260]. In 

contrast, although CD103+ CD11bhigh DCs take up Ag even more efficiently, they 

mainly remain in the lung tissue, where they produce proinflammatory cytokines 

[260]. Another subset is represented by CD8α+ DCs, which play a crucial role for 

CTL priming during various infections including IVA infections [261]. However, 

these data may be mouse-specific and not relevant for human vaccine design. In 

a recent human challenge study preexisting CD4+ T cells, but not CD8+ T cells 

correlated with protection and virus clear before Ab responses were stimulated 

[262], thus, highlighting the need for further experiments in human DC and T cell 

models [1]. 

Furthermore, DCs express pathogen pattern recognition receptors, in particular 

C-type lectin receptors (CLRs), such as the macrophage mannose receptor 

(MMR, [263]). The MMR was recently shown to be involved in macrophage 

infection by IVA [264]. In our study the high mannose N-glycan structures 

attached to the Vero, but not to the MDCK cell-derived virus may be specifically 

recognized by such CLRs on splenic CD11c+ DCs and therefore lead to higher 

immunogenicity in vitro with regard to CD69 expression on CD4+ T cells and IL-2 

secretion. Other receptors identified to interact with glycan moieties of IVA 

include macrophage galactose-type lectin (MGL, [265]) and dendritic cell-specific 

intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN, [266]), 

allowing sialic acid independent virus entry. Also soluble expressed lectins were 

described to interact with glycan moieties of IVA, such as surfactant protein D 



5 Discussion 

126 

(SP-D), which is suggested to contribute to viral clearance via IVA-aggregation 

(reviewed in [267]). Another potential cause of differential immunogenicity of 

differentially glycosylated virus preparations observed in this study may also be 

attributed to masking of antigenic epitopes by N-glycan side chains [1, 268, 269]. 

However, in most studies so far discussed only live influenza viruses were used. 

In order to exclude virus replication in mouse cells and resulting changes in N-

glycosylation of virus preparations, β-propiolactone inactivated virus preparations 

were used in this study. Moreover, β-propiolactone treatment was demonstrated 

an ideal IVA-PR8 inactivation method, hardly affecting HA N-glycosylation at all 

(maximal ΙΔRPHΙ = 0.8, [6]). Thus, solely the impact of HA N-glycosylation on 

immunogenicity could be addressed [1]. 

Furthermore, in this study virus preparations of MDCK as well as Vero cell-

derived virus were natively deglycosylated. T cell activation was dramatically 

reduced after deglycosylation of both glycovariants with respect to CD69 

expression of CD4+ TCR-HA transgenic T cells as well as to IL-2, IL-4 and IFNγ 

secretion. Interestingly, the decrease of T cell activation after deglycosylation 

was more pronounced for the Vero than for the MDCK cell-derived virus. This 

may be explained by differential deglycosylation results: deglycosylation 

efficiency of at least about 90 % was achieved for the MDCK as well as the Vero 

cell-derived virus preparation as indicated by signal intensities of the HA N-

glycan fingerprints. However, while the remaining HA N-glycans on the 

deglycosylated MDCK cell-derived virus still represented predominantly MDCK 

cell-specific structures, the HA N-glycans detected for the deglycosylated Vero 

cell-derived virus also comprised various new, most probably truncated N-glycan 

structures with reduced migration times. Altogether, the marked impact of 

removed glycan moieties, e.g. mannose and β-galactose, on T cell activation, 

confirms the dramatic impact of N-glycosylation on immunogenicity in vitro [1]. 

This is in agreement with obtained in vivo data, demonstrating significantly 

reduced HA-specific Ab levels for the deglycosylated virus variants in contrast to 

the glycosylated ones. Thus, HA N-glycosylation markedly impacts the B cell-

mediated, humoral immunity. Interestingly, 14 days after prime immunization HA-
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specific Ab levels induced by the MDCK cell-derived virus were significantly 

higher than levels induced by the Vero cell-derived virus. HAI-titers in mouse 

sera after prime-boost immunization with the MDCK cell-derived virus were still 

markedly higher at 28 days than HAI-titers induced by the Vero cell-derived virus. 

This is consistent with findings by de Vries et al., demonstrating higher HAI 

activities for HA carrying complex N-glycans or single GlcNAc residues than for 

HA carrying high mannose structures [3]. In agreement with that, Lin et al. 

showed very recently that complex terminally sialated and asialyated-galactose 

type N-glycans induced higher-quality antibodies (i.e. higher neutralizing titers) 

after immunization in mice than pauci-mannose or high-mannose type N-glycans 

did [2]. Interestingly, Lin et al. observed higher total HA-specific Ab titers and 

stronger T cell responses for HA carrying pauci-mannose or high-mannose type 

N-glycans [2]. The second is consistent with our findings of stronger T cell 

activation after immunization with Vero (complex β-galactose and high-mannose 

type N-glycans) than with MDCK cell-derived virus (complex α- and β-galactose 

type N-glycans). Altogether these results indicated differential impact of HA N-

glycosylation on B cell and T cell mediated immune responses [1]. 

Furthermore, TCR-HA splenic T cells were purified, labeled and adoptively 

transferred into wt mice. Although splenic T cell proliferation upon immunization 

was comparable for the MDCK and the Vero cell-derived virus, the frequency of 

IL-2 producing, transferred T cells was higher upon immunization with the Vero 

cell-derived virus. This is consistent with the in vitro data indicating a faster T cell 

activation upon immunization with Vero cell-derived virus. On the other hand the 

MDCK cell-derived virus induced higher HA-specific Ab titers 14 days after prime 

immunization. This clearly indicates that MDCK cell-specific HA N-glycosylation 

triggers a pronounced humoral immune response [1]. 

In summary, these data suggest that Vero cell-specific HA N-glycosylation 

stronger promotes cellular immunity whereas MDCK cell-specific HA N-

glycosylation stronger promotes humoral immunity. Although a dramatic effect of 

HA N-glycosylation on immunogenicity was demonstrated in vitro as well as in 

vivo, further investigations are required to address the impact of HA N-
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glycosylation on vaccine’s efficacy and safety and to finally identify critical quality 

attributes for animal and human vaccines [1]. 
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6.1 Impact of cultivation conditions on HA N-glycosylation 

In this study, multiple process conditions were investigated for their impact on HA 

N-glycosylation. Thereby, most tested process modifications resulted only in 

minor differences in HA N-glycan fingerprints regarding relative N-glycan 

structure abundances. Hence, HA N-glycosylation seems a rather robust protein 

modification, which is only slightly affected with respect to RPH for most process 

variations tested including variation of virus passages, virus seed suppliers, virus 

adaptation statuses, composition as well as trypsin activity of virus production 

media, virus production vessels and time points of virus harvest. Moreover, 

Rödig et al. demonstrated that also different virus production temperatures 

(33 °C, 37 °C, 39 °C) only slightly impacted relative N-glycan structure 

abundances and interestingly final β-propiolactone inactivation did basically not 

change HA N-glycan fingerprints at all, making it an ideal inactivation method for 

manufacturing influenza vaccines [6]. However, this study identified a few 

cultivation conditions, which affect HA N-glycosylation significantly with respect to 

N-glycan structure presence as well as relative N-glycan structure abundances. 

These included the use of different host cell lines, the adaptation status of the 

host cell line to serum-requiring adherent or serum-free suspension growth and 

potentially the selected virus strain. 

Overall, these results demonstrate that the HA N-glycosylation pattern of IVA is 

remarkably stable, regarding changes in the production process. In particular, 

small variations in a production process are unlikely to change the HA N-

glycosylation dramatically and therefore, it can be assumed that wanted and 

unwanted process variations in influenza vaccine manufacturing have only a 

minor or no impact on product quality. However, the impact of changes in glycan 

profiles, i.e. N-glycan structure presence as well as relative N-glycan structure 

abundance, on properties of live and dead vaccines, e.g. safety and efficacy as 

well as its mechanisms should be further characterized in more detail [4, 6]. 
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However, other factors may impact HA N-glycosylation and remain to be 

investigated. These include the host cell status (cell cycle: G1,G0, etc. as well as 

physiological cell status: virus produced in different time slots: e.g. 0-12 hpi, 12-

24 hpi, 24-48 hpi, …), cell density, multiplicity of infection for the virus production 

phase, other media compositions and media supplements, methods for virus 

harvest (e.g. gradient step centrifugation, filtration), virus inactivation by formalin 

and Triton X-100, methods for virus purification and concentration (e.g. sucrose 

density gradient, affinity and pseudo-affinity chromatography, hydrophobic 

interaction chromatography, SEC, ion-exchange chromatography), detergent 

treatment for HA/NA isolation as used for split and subunit vaccines, benzonase 

treatment for DNA reduction and the dilution in formulation buffer. Moreover, the 

impact of cultivation conditions on NA N-glycosylation should be investigated. 

Furthermore, N-glycan structure elucidation is of special importance for further 

data interpretation and project development and could be achieved by parallel 

MS/MS- and CGE-LIF-based approaches. 

In conclusion, monitoring HA N-glycosylation patterns during vaccine production 

processes allows not only to investigate the impact of process modifications on 

antigen quality, but also offers a sensitive tool to evaluate consequences of 

unwanted process variations or process failures [4]. 

6.2 Fitness gain by virus adaptation and identification of key mutations 

Taken together, this study demonstrated that the adaptation of virus seeds to 

new host cell lines was often necessary for sufficient high virus titers. However, 

the degree of titer enhancement by virus adaptation depends on host cell 

characteristics as well as on viruses. For two IVA-PR8 strains significantly 

increased final titers within shorter cultivation times were achieved by virus 

adaptation from MDCK cells to Vero cells. Interestingly, for all virus strains 

investigated, the HA N-glycan fingerprint stabilized latest with the second 

passage in a new cell line. The faster release of virus particles and the further 

increase in HA-titers, which are mostly observed during the first passages in the 

new host indicate that other factors are as well involved in the adaptation 
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process, i.e. changes in the sequence of the viral genome resulting in improved 

fitness of virus subpopulations [4]. 

Amino acid substitutions within the stem region of HA and/or within the NP- 

and/or PB2-binding domain of NP and/or the transmembrane region of NA and/or 

the CPSF30- and/or elF4G1-binding domain of NS1 rescued the virus population 

and ensured efficient virus replication in the new host [4]. The fitness of these 

adapted virus variants during backward adaptation to MDCK cells varies – some 

variants as the K460E (RKI) replicate well and infect either cell line while others 

grow only poorly in one cell line (e.g. S457L (RKI) in MDCK cells, [4]). This 

fitness gain of adapted viruses was also shown in the direct comparison of non-

adapted virus seeds, Vero cell-adapted viruses as well as Vero cell-adapted and 

back-adapted viruses. The non-adapted viruses hardly replicated during the first 

days after infection, whereas Vero cell-adapted as well as back-adapted viruses 

replicated well from the very beginning. The improved virus fitness of adapted 

viruses is consistent with the sequencing data, since several substitutions 

occurring after adaptation to Vero cells, persisted during back-adaptation to 

MDCK cells. This persistence of substitutions strongly indicates no or only small 

disadvantages for replication in MDCK cells. Moreover, quasispecies analysis 

during virus adaptation of MDCK cell-derived virus seeds identified potential key 

mutations allowing sufficient virus replication in Vero cells. In particular mutations 

within the stem region of the HA molecule, tuning the HA pH-stability, seemed to 

be necessary to adapt to Vero cells’ endosomal pH. Furthermore, substitutions 

within the NP- and PB2-binding sites of the NP molecule may significantly 

contribute to Vero cell adaptation of different IVA-PR8 strains. For the NA 

molecule the N-terminal transmembrane region was identified as potentially 

contributing to successful virus adaptation. Last but not least, substitutions within 

the CPSF30- and/or the elF4G1-binding domains of the NS1 molecule were 

identified as potential key factors for efficient virus replication in the new host cell 

line. In a next step, each substitution’s contribution to successful virus adaptation 

should be characterized in more detail using reverse genetics. In general, due to 

the time frame required for efficient virus replication in the new host (RKI- and 
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NIBSC-strain adaptation from MDCK to Vero cells and back; passage 1; HA-titer 

increase not before 216 hpi and 168 hpi, respectively), we can certainly assume 

that most substitutions detected during virus adaptation were caused by 

mutations which were then selected for, rather than solely selection events. 

6.3 Impact of HA N-glycosylation on immunogenicity 

It was demonstrated that the Vero cell-specific HA N-glycosylation shows a bias 

towards the cellular immune response, whereas MDCK cell-specific HA N-

glycosylation more promotes the humoral immune response. In order to identify 

key characteristics for optimal HA N-glycosylation other IVA-PR8 glycovariants, 

including egg-, AGE1.CR/.pIX-, MDCK.SUS2-derived virus preparations should 

be characterized with respect to their immunogenicity using in vitro and in vivo 

approaches and (transgenic) mouse or other animal models (e.g. ferret, pig). 

Moreover, screening of virus preparations derived from glycosylation-deficient 

cell lines such as HEK293S and CHO 15B cells (both deficient in N-

acetylglucosaminyltransferase I) would complement this approach. However, 

glycosylation-deficient cell lines should be selected with care, since some have 

been described as not very susceptible to IVA infections [270, 271]. Another 

approach is the generation of (conditional) knock-out cell lines as well as knock-

in cell lines. This would allow to directly design optimal product glycosylation, i.e. 

HA N-glycosylation for optimal vaccine efficacy [272-274]. Moreover, the 

mechanisms by which the Vero cell-derived virus shows a bias towards cellular 

immunity and the MDCK cell-derived virus towards humoral immunity should 

further be investigated. Therefore, in vitro studies using TCR-HA transgenic and 

wt mouse models would allow focusing on MHCI- and MHCII-mediated 

responses, whereas in vivo studies using wt models would address the complete 

range of immune responses. Within such studies, CD40 expression would 

identify levels of mature/immature DCs, its expression also indicates cell 

adhesion, cell proliferation and signal transduction in B cells [275]. Investigating 

the expression of the co-stimulatory ligands B7.1 (CD80) and B7.2 (CD86) and 

its interaction with CD28 would further characterize the mechanisms how 
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glycosylation impacts T-, B cell and DC activation, co-stimulation and 

immunoregulation. Monitoring CD74 expression would give more insights 

regarding the regulation of T- and B-cell interactions, their development, 

activation, growth and motility. Furthermore, the expression of MHCI and MHCII 

levels on DCs would give more insights into DC Ag processing and presentation. 

Also, T cells (CD3+) and B cells (CD19+, B220+) from other lymphatic organs than 

the spleen should be characterized for CD4, CD8, CD69 expression and CD22 

(B cell activation marker) respectively. However, especially memory CD8 T cells 

and CD4 T cells have been described to mediate heterosubtypic immunity, i.e. 

protection of severe disease by prior infection with a virus of a different subtype 

[276, 277]. Therefore, the ability of the different virus variants (in particular MDCK 

and Vero cell-derived virus) to cross-protect should be investigated for example 

in challenge studies. The most robust protection may be provided by 

simultaneous induction of multiple immune pathways of the cellular as well as the 

humoral immunity. Thus optimal HA N-glycosylation for B cell-, CD4+ and CD8+ T 

cell-mediated immune responses should be identified with respect to 

heterosubtypic (cross-protection) and homotypic (no cross protection between 

different virus subtypes) immunity. Moreover, the relevance of HA N-

glycosylation in humans should be addressed in more detail, using human DCs 

and peripheral blood mononuclear cell (PBMCs). Finally, the role of N-

glycosylation could be evaluated by specifically designed and synthesized 

glycopeptides (most advisable in cooperation with experts in the field). 

Altogether, this would finally allow the definition of ideal cultivation conditions for 

influenza virus vaccine production, the development of an optimally glyco-

engineered production cell line, improved vaccine formulations substituted with 

specific glycan structures and/or directed chemical N-glycan synthesis onto viral 

peptides. 
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12.1 Impact of different IVA production cells on HA N-glycosylation 

(MDCK.SUS2 and MDCK.SUS3 cells included) 

 

figure S 1: HA N-glycosylation fingerprints derived from viruses produced in different host 
cells. 
The RKI-strain (IVA-PR8) was produced in adherently growing Vero cells (i) of African green 
monkey origin or MDCK (ii) cells of canine origin. Furthermore, the adherently growing MDCK cell 
line was adapted to suspension growth in two biological independent settings generating the in 
suspension growing MDCK.SUS2 (iii) and MDCK.SUS3 (iv) cell line. Additional suspension cells 
such as human-derived Cap cells (v) or duck-derived AGE1.CR.pIX cells (vi) were used for virus 
production. Finally, cell culture-derived virus was compared with virus produced in embryonated 
hen’s eggs (vii). 
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12.2 Host cell adaptation to serum-free suspension growth 

 

figure S 2: Impact of host cell adaptation to serum-free suspension growth on the HA N-
glycosylation pattern of the NIBSC-strain. 
(A) HA N-glycan fingerprints, relative fluorescence units (RFU) are plotted over the migration time 
(tmig) in normalized migration time units (MTU’). [6] All peaks exceeding the 10x baseline noise 
threshold (∙∙∙) in at least one fingerprint are annotated. The non-adapted, serum requiring, 
adherent MDCK cell line (i) was adapted to serum-free suspension growth (ii, MDCK.SUS1) and 
further adapted to better growth characteristics (iii, MDCK.SUS2) [142]. The first adaptation step 
was performed in biological duplicates (iv, MDCK.SUS3). (B) Overlay of all four N-glycosylation 
fingerprints. (C) Relative peak height (RPH) in % of the total peak height (TPH, sum of all 
annotated peaks) displaying relative peak abundance. Peaks are defined high abundant if 
RPH > 5 % (---). 
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12.3 Impact of different virus suppliers in MDCK.SUS2 cells 

 

figure S 3: Comparison of HA N-glycosylation pattern of two IVA-PR8 strains from different 
suppliers. 
(A) HA N-glycan fingerprints, relative fluorescence units (RFU) are plotted over the migration time 
(tmig) in normalized migration time units (MTU’). All peaks exceeding in at least one of the two 
fingerprints the 10x baseline noise threshold are annotated (1 - 15). The virus was purchased 
from the Robert Koch Institute (RKI, i) or from NIBSC (ii). (B) Relative peak height (RPH) in % of 
the total peak height (TPH, sum of all annotated peaks) displays relative peak abundance. 

12.4 Similarity of HA N-glycan fingerprints derived from different viruses 

produced in MDCK cells 

 

figure S 4: Differences of relative peak height (|ΔRPH|) for different viruses produced in 
MDCK cells. 
The differences of RPH between two different H1N1 virus strains (□) and two different H3N2 virus 
strains (■) are smaller than the differences over all tested viruses (■): the variation of relative 
peak abundance within a virus subtype is smaller than over different subtypes. 
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12.5 HA-Titers in MDCK cells during virus adaptation 

table S 1: MDCK cell-derived HA-titers during virus adaptation. 
The RKI- and the NIBSC-strain were adapted from MDCK (seed virus, passage 1) to Vero (passages 2-6) 
and back to MDCK cells (passages 7-11). 

passage 

(no.)

hours post infection 

(hpi)

HA-titer 

(HAU)

passage 

(no.)

hours post infection 

(hpi)

HA-titer 

(HAU)

1 24 1.9 1 24 2.2

7 96 2.5 7 96 2.1

8 48 2.0 8 48 2.4

8 72 2.0 8 72 2.4

9 96 2.2 9 96 2.4

10 48 2.3 10 48 2.6

10 72 2.2 10 72 2.5

11 96 2.2 11 96 2.4

RKI-strain NIBSC-strain

 



12 Supplementary 

 

12.6 Supplementary tables 

table S 2: Accession numbers for IVA-PR8 sequences during virus adaptation. 
(1)-(6) Adaptation from MDCK to Vero cells and back or from MDCK to Vero cells (7). The original virus seed was either purchased from the 
National Institute for Biological Standards and Control (NIBSC) or the Robert Koch Institute (RKI). (1, 4) The first virus passages, produced in 
MDCK cell culture (M1), served as virus seed for the first passages in Vero cells. (2, 5) The last of five consecutive Vero cell-derived virus 
passages (V5) served as seed for five consecutive MDCK cell-derived virus passages, of which M6 (3, 6) represents the last [4]. (7) The fourth 
virus passage in Vero cells represents the Vero-adapted seed virus generated by Genzel et al. [72]. This seed was used within the 
immunogenicity studies in cooperation with Dr. B. Lepenies and J. Hütter (MPI-KG, Potsdam-Golm, Germany). All sequences were generated by 
pyrosequencing and are deposited in the GISAID EpiFlu database (www.gisaid.org, [4]). 

no. Segment_Ids Isolate_Name 
Passage 
History 

Seq_Id (HA) 

1 EPI304412 
A/MDCK/Germany/[A/Puerto Rico/8/1934]- 
RKI-M1 (H1N1) 

P5 
utf_rki-m1-ges_unambig_HA_Segment4_00001 
length=1769 numreads=9121 

2 EPI304420 
A/MDCK/Germany/[A/Puerto Rico/8/1934]- 
RKI-V5 (H1N1) 

P10 
utf_rki-v5-ges_unambig_HA_Segment4_00001 
length=1763 numreads=3748 

3 EPI304428 
A/MDCK/Germany/[A/Puerto Rico/8/1934]- 
RKI-M6 (H1N1) 

P15 
mutf_rki-m6-ges_unambig_HA_Segment4_00001, 
1..1761  length=1760   numreads=2824 

4 EPI304436 
A/MDCK/Germany/[A/Puerto Rico/8/1934]- 
NIBSC-M1 (H1N1) 

P4 
mutf_nibsc-m1-ges_unambig_HA_Segment4_00001 
length=1762 numreads=4279 

5 EPI304444 
A/MDCK/Germany/[A/Puerto Rico/8/1934]- 
NIBSC-V5 (H1N1) 

P9 
ctf_nibsc-v5-ges_unambig_HA_Segment4_00001 
length=1760 numreads=3493 

6 EPI304452 
A/MDCK/Germany/[A/Puerto Rico/8/1934]- 
NIBSC-M6 (H1N1) 

P14 
mutf_nibsc-m6-ges_unambig_HA_Segment4_00001, 
1..1759  length=1760   numreads=8589 

7 EF.190974.1 
A/MDCK/Germany/[A/Puerto Rico/8/1934]- 
RKI-V4genzel2010 (H1N1) 

P7 
segment 4 contig00006  gi|145322834|gb|EF190974.1|, 
1..1778  length=1778   numreads=23028 

 

http://www.gisaid.org/
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table S 3: Overview of relative peak height (RPH) averages and according standard (SD) and relative standard deviations (RSD). 
The average RPH and the respective SD and RSD of each peak (no. 1 - 25) within each experiment (control 1: pattern stability for ten consecutive 
virus passages; control 2: reproducibility in Vero or MDCK time series; adaptation series of H1N1 from RKI and adaptation series of H1N1 from 
NIBSC) are listed. The factors indicate x–fold increase (> 1) or decrease (< 1) of respective deviations observed during adaptation compared to 
the maximal deviation during controls. Factors of > 3 are defined as significantly influenced during adaptation and are highlighted in blue bold 
numbers. Reprinted with permission [4]. 
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12.7 cDNA consensus sequences of the RKI- and the NIBSC-strain from 

passage 1 

12.7.1 >Segment_1_RKI_PB2 

aTGGAAAGAATAAAAGAACTAAGAAATCTAATGTCGCAGTCTCGCACCCGCG

AGATACTCACAAAAACCACCGTGGACCATATGGCCATAATCAAGAAGTACAC

ATCAGGAAGACAGGAGAAGAACCCAGCACTTAGGATGAAATGGATGATGGC

AATGAAATATCCAATTACAGCAGACAAGAGGATAACGGAAATGATTCCTGAG

AGAAATGAGCAAGGACAAACTTTATGGAGTAAAATGAATGATGCCGGATCA

GACCGAGTGATGGTATCACCTCTGGCTGTGACATGGTGGAATAGGAATGGA

CCAATGACAAATACAGTTCATTATCCAAAAATCTACAAAACTTATTTTGAAAG

AGTCGAAAGGCTAAAGCATGGAACCTTTGGCCCTGTCCATTTTAGAAACCAA

GTCAAAATACGTCGGAGAGTTGACATAAATCCTGGTCATGCAGATCTCAGTG

CCAAGGAGGCACAGGATGTAATCATGGAAGTTGTTTTCCCTAACGAAGTGG

GAGCCAGGATACTAACATCGGAATCGCAACTAACGATAACCAAAGAGAAGA

AAGAAGAACTCCAGGATTGCAAAATTTCTCCTTTGATGGTTGCATACATGTT

GGAGAGAGAACTGGTCCGCAAAACGAGATTCCTCCCAGTGGCTGGTGGAA

CAAGCAGTGTGTACATTGAAGTGTTGCATTTGACTCAAGGAACATGCTGGG

AACAGATGTATACTCCAGGAGGGGAAGTGAGGAATGATGATGTTGATCAAA

GCGTGATTATTGCTGCTAGGAACATAGTGAGAAGAGCTGCAGTATCAGCAG

ACCCACTAGCATCTTTATTGGAGATGTGCCACAGCACACAGATTGGTGGAAT

TAGGATGGTAGACATCCTTAGGCAGAACCCAACAGAAGAGCAAGCCGTGGA

TATATGCAAGGCTGCAATGGGACTGAGAATTAGCTCATCCTTCAGTTTTGGT

GGATTTACATTTAAGAGAACAAGCGGATCATCAGTCAAGAGAGAGGAAGAG

GTGCTTACGGGCAATCTTCAAACATTGAAGATAAGAGTGCATGAGGGATAT

GAAGAGTTCACAATGGTtGGGAGAAGAGCAACAGCCATACTCAGAAAAGCA

ACCAGGAGATTGATTCAGCTGATAGTGAGTGGGAGAGACGAACAGTCGATT

GCCGAAGCAATAATTGTGGCCATGGTATTTTCACAAGAGGATTGTATGATAA

AAGCAGTTAGAGGTGATCTGAATTTCGTCAATAGGGCGAATCAGCGACTGA

ATCCTATGCATCAACTTTTAAGACATTTTCAGAAGGATGCGAAAGTGCTTTTT

CAAAATTGGGGAGTTGAACCTATCGACAATGTGATGGGAATGATTGGGATAT
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TGCCCGACATGACTCCAAGCATCGAGATGTCAATGAGAGGAGTGAGAATCA

GCAAAATGGGTGTAGATGAGTACTCCAGCACGGAGAGGGTAGTGGTGAGC

ATTGACCGGTTTTTGAGAGTCCGGGACCAACGAGGAAATGTACTACTGTCT

CCCGAGGAGGTCAGTGAAACACAGGGAACAGAGAAACTGACAATAACTTAC

TCATCGTCAATGATGTGGGAGATTAATGGTCCTGAATCAGTGTTGGTCAATA

CCTATCAATGGATCATCAGAAACTGGGAAACTGTTAAAATTCAGTGGTCCCA

GAACCCTACAATGCTATACAATAAAATGGAATTTGAACCATTTCAGTCTTTAG

TACCTAAGGCCATTAGAGGCCAATACAGTGGGTTTGTAAGAACTCTGTTCCA

ACAAATGAGGGATGTGCTTGGGACATTTGATACCGCACAGATAATAAAACTT

CTTCCCTTCGCAGCCGCTCCACCAAAGCAAAGTAGAATGCAGTTCTCCTCAT

TTACTGTGAATGTGAGGGGATCAGGAATGAGAATACTTGTAAGGGGCAATT

CTCCTGTATTCAACTACAACAAGGCCACGAAGAGACTCACTGTTCTCGGAAA

GGATGCTGGCACTTTAACCGAAGACCCAGATGAAGGCACTGCTGGAGTGG

AGTCCGCTGTTCTGAGGGGATTCCTCATTCTGGGCAAAGAAGACAGGAGAT

ATGGGCCAGCATTAAGCATCAATGAACTGAGCAACCTTGCGAAAGGAGAGA

AGGCTAATGTGCTAATTGGGCAAGGAGACGTGGTGTTGGTAATGAAACGGA

AACGGGACTCTAGCATACTTACTGACAGCCAGACAGCGACCAAAAGAATTC

GGATGGCCATCAATTAGTGTCGAAtaGTT 

12.7.2 >Segment_1_NIBSC_PB2 

CGAAAGACAGGTaCAAATAaTATTCAATATGGAAAGAATAAAAGAACTAAGAA

ATCTAATGTCGCAGTCTCGCACCCGCGAGATACTCACAAAAACCACCGTGG

ACCATATGGCCATAATCAAGAAGTACACATCAGGAAGACAGGAGAAGAACC

CAGCACTTAGGATGAAATGGATGATGGCAATGAAATATCCAATTACAGCAGA

CAAGAGGATAACGGAAATGATTCCTGAGAGAAATGAGCAAGGACAAACTTT

ATGGAGTAAAATGAATGATGCCGGATCAGACCGAGTGATGGTATCACCACT

GGCTGTGACATGGTGGAATAGGAATGGACCAATAACAAATACAGTTCATTAT

CCAAAAATCTACAAAACTTATTTTGAAAGAGTCGAAAGGCTAAAGCATGGAA

CCTTTGGCCCTGTCCATTTTAGAAACCAAGTCAAAATACGTCGGAGAGTTGA

CATAAATCCTGGTCATGCAGATCTCAGTGCCAAGGAGGCACAGGATGTAAT

CATGGAAGTTGTTTTCCCTAACGAAGTGGGAGCCAGGATACTAACATCGGA
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ATCGCAACTAACGATAACCAAAGAGAAGAAAGAAGAACTCCAGGATTGCAA

AATTTCTCCTTTGATGGTTGCATACATGTTGGAGAGAGAACTGGTCCGCAAA

ACGAGATTCCTCCCAGTGGCTGGTGGAACAAGCAGTGTGTACATTGAAGTG

TTGCATTTGACTCAAGGAACATGCTGGGAACAGATGTATACTCCAGGAGGG

GAAGTGAGGAATGATGATGTTGATCAAAGCTTGATTATTGCTGCTAGGAACA

TAGTGAGAAGAGCTGCAGTATCAGCAGATCCACTAGCATCTTTATTGGAGAT

GTGCCACAGCACACAGATTGGTGGAATTAGGATGGTAGACATCCTTAGGCA

GAACCCAACAGAAGAGCAAGCCGTGGATATATGCAAGGCTGCAATGGGACT

GAGAATTAGCTCATCCTTCAGTTTTGGTGGATTCACATTTAAGAGAACAAGC

GGATCATCAGTCAAGAGAGAGGAAGAGGTGCTTACGGGCAATCTTCAAACA

TTGAAGATAAGAGTGCATGAGGGATATGAAGAGTTCACAATGGTtGGGAGAA

GAGCAACAGCCATACTCAGAAAAGCAACCAGGAGATTGATTCAGCTGATAG

TGAGTGGGAGAGACGAACAGTCGATTGCCGAAGCAATAATTGTGGCCATGG

TATTTTCACAAGAGGATTGTATGATAAAAGCAGTCAGAGGTGATCTGAATTT

CGTCAATAGGGCGAATCAGCGATTGAATCCTATGCATCAACTTTTAAGACAT

TTTCAGAAGGATGCGAAAGTGCTTTTTCAAAATTGGGGAGTTGAACCTATCG

ACAATGTGATGGGAATGATTGGGATATTGCCCGACATGACTCCAAGCATCG

AGATGTCAATGAGAGGAGTGAGAATCAGCAAAATGGGTGTAGATGAGTACT

CCAGCACGGAGAGGGTAGTGGTGAGCATTGACCGTTTTTTGAGAATCCGGG

ACCAACGAGGAAATGTACTACTGTCTCCCGAGGAGGTCAGTGAAACACAGG

GAACAGAGAAACTGACAATAACTTACTCATCGTCAATGATGTGGGAGATTAA

TGGTCCTGAATCAGTGTTGGTCAATACCTATCAATGGATCATCAGAAACTGG

GAAACTGTTAAAATTCAGTGGTCCCAGAACCCTACAATGCTATACAATAAAA

TGGAATTTGAACCATTTCAGTCTTTAGTACCTAAGGCCATTAGAGGCCAATA

CAGTGGGTTTGTAAGAACTCTGTTCCAACAAATGAGGGATGTGCTTGGGAC

ATTTGATACCGCACAGATAATAAAACTTCTTCCCTTCGCAGCCGCTCCACCA

AAGCAAAGTAGAATGCAGTTCTCCTCATTTACTGTGAATGTGAGGGGATCAG

GAATGAGAATACTTGTAAGGGGCAATTCTCCTGTATTCAACTATAACAAGGC

CACGAAGAGACTCACAGTTCTCGGAAAGGATGCTGGCACTTTAACTGAAGA

CCCAGATGAAGGCACAGCTGGAGTGGAGTCCGCTGTTCTGAGGGGATTCC

TCATTCTGGGCAAAGAGGACAAGAGATATGGGCCAGCACTAAGCATCAATG
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AACTGAGCAACCTTGCGAAAGGAGAGAAGGCTAATGTGCTAATTGGGCAAG

GAGACGTGGTGTTGGTAATGAAACGGAAACGGGACTCTAGCATACTTACTG

ACAGCCAGACAGCGACCAAAAGAaTTCGGATGGCCATCAATTAGTGTCGAAt

AGTTTAAAacgaCc 

12.7.3 >Segment_2_RKI_PB1_PB1-F2 

AcCAttGaATGGATGTCAATCCGACCtTACTTTTCTTAAAAGTGCCAGCACAAA

ATGCTATAAGCACAACTTTCCCTTATACTGGAGACCCTCCTTACAGCCATGG

GACAGGAACAGGATACACCATGGATACTGTCAACAGGACACATCAGTACTC

AGAAAAGGGAAGATGGACAACAAACACCGAAACTGGAGCACCGCAACTCAA

CCCGATTGATGGGCCACTGCCCGAAGACAATGAACCAAGTGGTTATGCCCA

AACAGATTGTGTATTGGAAGCAATGGCTTTCCTTGAGGAATCCCATCCTGGT

ATTTTTGAAAACTCGTGTATTGAAACGATGGAGGTTGTTCAGCAAACACGAG

TAGACAAGCTGACACAAGGCCGACAGACCTATGACTGGACTCTAAATAGAA

ACCAGCCTGCTGCAACAGCATTGGCCAACACAATAGAAGTGTTCAGATCAA

ATGGCCTCGCGGCCAATGAGTCTGGAAGGCTCATAGACTTCCTTAAGGATG

TAATGGAGTCAATGAACAAAGAAGAAATGGGGATCACAACTCATTTCCAGAG

AAAGAGACGGGTGAGAGACAATGTGACTAAGAAAATGATAACACAGAGAAC

AATAGGTAAAAGGAAGCAGAGATTGAACAAAAGGAGTTATCTAATTAGAGCA

TTGACCCTGAACACAATGACCAAAGATGCTGAGAGAGGGAAGCTAAAACGG

AGAGCAATTGCAACCCCAGGGATGCAAATAAGGGGGTTTGTATACTTTGTT

GAGACACTGGCAAGGAGTATATGTGAGAAACTTGAACAATCAGGGTTGCCA

GTTGGAGGCAATGAGAAGAAAGCAAAGTTGGCAAATGTTGTAAGGAAGATG

ATGACCAATTCTCAGGACACCGAACTTTCTTTCACCATCACTGGAGATAACA

CCAAATGGAACGAAAATCAGAATCCTCGGATGTTTTTGGCCATGATCACATA

TATGACCAGAAATCAGCCCGAATGGTTCAGAAATATTCTAAGTATTGCTCCA

ATAATGTTCTCAAACAAAATGGCGAGACTGGGAAAAGGGTATATGTTTGAGA

GCAAGAGTATGAAACTTAGAACTCAAATACCTGCAGAAATGCTAGCAAGCAT

TGATTTGAAATATTTCAATGATTCAACAAGAAAgaagATTGAAAAAATCCGACC

GCTCTTAATAGAGGGGACTGCATCATTGAGCCCTGGaATGATGATGGGCAT

GTTCAATATGTTAAGCACTGTATTAGGCGTCTCCATCCTGAATCTTGGACAA



12 Supplementary 

S11 

AAGaGATACACCAAGACTACTTACTGGTGGGATGGTCTTCAATCCTCTGACG

ATTTTGCTCTGATTGTGAATGCACCCAATCATGAAGGGATTCAAGCCGGAGT

CGACAGGTTTTATCGAACCTGTAAGCTACTTGGAATCAATATGAGCAAGAAA

AAGTCTTACATAAACAGAACAGGTACATTTGAATTCACAAGTTTTTTCTATCG

TTATGGGTTTGTTGCCAATTTCAGCATGGAGCTTCCCAGTTTTGGGGTGTCT

GGGATCAACGAGTCAGCGGACATGAGTATTGGAGTTACTGTCATCAAAAAC

AATATGATAAACAATGATCTTGGTCCAGCAACAGCTCAAATGGCCCTTCAGT

TGTTCATCAAAGATTACAGGTACACGTACCGATGCCATAGAGGTGACACACA

AATACAAACCCGAAGATCATTTGAAATAAAGAAACTGTGGGAGCAAACCCGT

TCCAAAGCTGGACTGTTGGTCTCCGACGGAGGCCCAAATTTGTACAACATT

AGAAATCTCCACATTCCTGAAGTCTGCCTAAAATGGGAATTGATGGATGAGG

ATTACCAGGGGCGTTTATGCAACCCACTGAACCCATTTGTCAGCCATAAAGA

AATTGAATCAATGAACAATGCAGTGATGATGCCAGCACATGGTCCAGCCAAA

AACATGGAGTATGATGCTGTTGCAACAACACACTCCTGGATCCCCAAAAGAA

ATCGATCCATCTTGAATACAAGTCAAAGAGGAGTACTTGAAGATGAACAAAT

GTACCAAAGGTGCTGCAATTTATTTGAAAAATTCTTCCCCAGCAGTTCATAC

AGAAGACCAGTCGGGATATCCAGTATGGTGGAGGCTATGGTTTCCAGAGCC

CGAATTGATGCACGGATTGATTTCGAATCTGGAAGGATAAAGAAAGAAGAGT

TCACTGAGATCATGAAGATCTGTTCCACCATTGAAGAGCTCAGACGGCAAAA

A 

12.7.4 >Segment_2_NIBSC_PB1_PB1-F2 

GGcAaCCATTtGAATGGaTGTCAATCCGACCTTACTTTTCTTAAAaGTGCCAG

CACAAAATGCTATAAGCACAACTTTCCCTTATACTGGAGACCCTCCTTACAG

CCATGGGACAGGAACAGGATACACCATGGATACTGTCAACAGGACACATCA

GTACTCAGAAAAGGGAAGATGGACAACAAACACCGAAACTGGAGCACCGCA

ACTCAACCCGATTGATGGGCCACTGCCAGAAGACAATGAACCAAGTGGTTA

TGCCCAAACAGATTGTGTATTGGAGGCGATGGCTTTCCTTGAGGAATCCCAT

CCTGGTATTTTTGAAAACTCGTGTATTGAAACGATGGAGGTTGTTCAGCAAA

CACGAGTAGACAAGCTGACACAAGGCCGACAGACCTATGACTGGACTCTAA

ATAGAAACCAACCTGCTGCAACAGCATTGGCCAACACAATAGAAGTGTTCA
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GATCAAATGGCCTCACGGCCAATGAGTCTGGAAGGCTCATAGACTTCCTTA

AGGATGTAATGGAGTCAATGAACAAAGAAGAAATGGGGATCACAACTCATTT

TCAGAGAAAGAGACGGGTGAGAGACAATATGACTAAGAAAATGATAACACA

GAGAACAATGGGTAAAAAGAAGCAGAGATTGAACAAAAGGAGTTATCTAATT

AGAGCATTGACCCTGAACACAATGACCAAAGATGCTGAGAGAGGGAAGCTA

AAACGGAGAGCAATTGCAACCCCAGGGATGCAAATAAGGGGGTTTGTATAC

TTTGTTGAGACACTGGCAAGGAGTATATGTGAGAAACTTGAACAATCAGGGT

TGCCAGTTGGAGGCAATGAGAAGAAAGCAAAGTTGGCAAATGTTGTAAGGA

AGATGATGACCAATTCTCAGGACACCGAACTTTCTTTCACCATCACTGGAGA

TAACACCAAATGGAACGAAAATCAGAATCCTCGGATGTTTTTGGCCATGATC

ACATATATGACCAGAAATCAGCCCGAATGGTTCAGAAATGTTCTAAGTATTG

CTCCAATAATGTTCTCAAACAAAATGGCGAGACTGGGAAAAGGGTATATGTT

TGAGAGCAAGAGTATGAAACTTAGAACTCAAATACCTGCAGAAATGCTAGCA

AGCATCGATTTGaaaTATTTCAATGATTCAACAAGAAAGAAGATTGAAAAAAT

CCGATCGCTCTTAATAGAGGGGACTGCATCATTGAGCCCTGGAATGATGAT

GGGCATGTTCAATATGTTAAGCACTGTATTAGGCGTCTCCATCCTGAATCTT

GGACAAAAGaGATACACCAAGACTACTTACTGGTGGGATGGTCTTCAATCCT

CTGACGATTTTGCTCTGATTGTGAATGCACCCAATCATGAAGGGATTCAAGC

CGGAGTCGACAGGTTTTATCGAACCTGTAAGCTACTTGGAATCAATATGAGC

AAGAAAAAGTCTTACATAAACAGAACAGGTACATTTGAATTCACAAGTTTTTT

CTATCGTTATGGGTTTGTTGCCAATTTCAGCATGGAGCTTCCCAGTTTTGGG

GTGTCTGGGATCAACGAGTCAGCGGACATGAGTATTGGAGTTACTGTCATC

AAAAACAATATGATAAACAATGATCTTGGTCCAGCAACAGCTCAAATGGCCC

TTCAGTTGTTCATCAAAGATTACAGGTACACGTACCGATGCCATAGAGGTGA

CACACAAATACAAACCCGAAGATCATTTGAAATAAAGAAACTGTGGGAGCAA

ACCCGTTCCAAAGCTGGACTGCTGGTCTCCGACGGAGGCCCAAATTTATAC

AACATTAGAAATCTCCACATTCCTGAAGTCTGCCTAAAATGGGAATTGATGG

ATGAGGATTACCAGGGGCGTTTATGCAACCCACTGAACCCATTTGTCAGCC

ATAAAGAAATTGAATCAATGAACAATGCAGTGATGATGCCAGCACATGGTCC

AGCCAAAAACATGGAGTATGATGCTGTTGCAACAACACACTCCTGGATCCC

CAAAAGAAATCGATCCATCTTGAATACAAGTCAAAGAGGAGTACTTGAGGAT
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GAACAAATGTACCAAAGGTGCTGCAATTTATTTGAAAAATTCTTCCCCAGCA

GTTCATACAGAAGACCAGTCGGGATATCCAGTATGGTGGAGGCTATGGTTT

CCAGAGCCCGAATTGATGCACGGATTGATTTCGAATCTGGAAGGATAAAGA

AAGAAGAGTTCACTGAGATCATGAAGATCTGTTCCACCATTGAAGAGCTCAG

ACGGCAAAAATGTGAATTTAGCttt 

12.7.5 >Segment_3_RKI_PA 

CAaaaTGGAAGATTTTGTGCGACAATGCTTCAATCCGATGATTGTCGAGCTT

GCGGAAAAAACAATGAAAGAGTATGGGGAGGACCTGAAAATCGAAACAAAC

AAATTTGCAGCAATATGCACTCACTTGGAAGTATGCTTCATGTATTCAGACTT

TCACTTCATCAATGAGCAAGGCGAGTCAATAATCGTGGAACTTGGTGATCCA

AATGCACTTTTGAAGCACAGATTTGAAATAATCGAGGGAAGAGATCGCACAA

TGGCCTGGACAGTAGTAAACAGTATTTGCAACACTACAGGGGCTGAGAAAC

CAAAGTTTCTACCAGATTTGTATGATTACAAGGAGAATAGATTCATCGAAATT

GGAGTAACAAGGAGAGAAGTTCACATATATTATCTGGAAAAGGCCAATAAAA

TTAAATCTGAGAAAACACACATCCACATTTTCTCGTTCACTGGGGAAGAAAT

GGCCACAAAGGCAGACTACACTCTCGATGAAGAAAGCAGGGCTAGGATCAA

AACCAGACTATTCACCATAAGACAAGAAATGGCCAGCAGAGGCCTCTGGGA

TTCCTTTCGTCAGTCCGAAAGAGGGGAAGAGACAATTGAAGAAAGGTTTGA

AATCACAGGAACAATGCGCAAGCTTGCCGACCAAAGTCTCCCGCCGAACTT

CTCCAGCCTTGAAAATTTTAGAGCCTATGTGGATGGATTCAAACCGAACGGC

TACATTGAGGGCAAGCTGTCTCAAATGTCCAAAGAAGTAAATGCTAGAATTG

AACCTTTTTTGAAAACAACACCACGACCACTTAGACTTCCGAATGGGCCTCC

CTGTTCTCAGCGGTCCAAATTCCTGCTGATGGATGCCTTAAAATTAAGCATT

GAGGACCCAAGTCATGAAGGAGAGGGAATACCGCTATATGATGCAATCAAA

TGCATGAGAACATTCTTTGGATGGAAGGAACCCAATGTTGTTAAACCACACG

AAAAGGGAATAAATCCAAATTATCTTCTGTCATGGAAGCAAGTACTGGCAGA

ACTGCAGGACATTGAGAATGAGGAGAAAGTTCCAAAGACTAAAAATATGAAG

AAAACAAGTCAGCTAAAGTGGGCACTTGGTGAGAACATGGCACCAGAAAAG

GTAGACTTTGACGACTGTAAAGATGTAGGTGATTTGAAGCAATATGATAGTG

ATGAACCAGAATTGAGGTCGCTTGCAAGTTGGATTCAGAATGAGTTTAACAA
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GGCATGCGAACTGACAGATTCAAGCTGGATAGAGCTCGATGAGATTGGAGA

AGATGTGGCTCCAATTGAACACATTGCAAGCATGAGAAGGAATTATTTCACA

TCAGAGGTGTCTCACTGCAGAGCCACAGAATACATAATGAAGGGGGTGTAC

ATCAATACTGCCTTGCTTAATGCATCTTGTGCAGCAATGGATGATTTCCAATT

AATTCCAATGATAAGCAAGTGTAGAACTAAGGAGGGAAGGCGAAAGACCAA

CTTGTATGGTTTCATCATAAAAGGAAGATCCCACTTAAGGAATGACACCGAC

GTGGTAAACTTTGTGAGCATGGAGTTTTCTCTCACTGACCCAAGACTTGAAC

CACACAAATGGGAGAAGTACTGTGTTCTTGAGATAGGAGATATGCTTCTAAG

AAGTGCCATAGGCCAGGTTTCAAGGCCCATGTTCTTGTATGTGAGAACAAAT

GGAACCTCAAAAATTAAAATGAAATGGGGAATGGAGATGAGGCGTTGCCTC

CTCCAGTCACTTCAACAAATTGAGAGTATGATTGAAGCTGAGTCCTCTGTCA

AAGAGAAAGACATGACCAAAGAGTTCTTTGAGAACAAATCAGAAACATGGCC

CATTGGAGAGTCCCCCAAAGGAGTGGAGGAAAGTTCCATTGGGAAGGTCTG

CAGGACTTTATTAGCAAAGTCGGTATTCAACAGCTTGTATGCATCTCCACAA

CTAGAAGGATTTTCAGCTGAATCAAGAAAACTGCTTCTTATCGTTCAGGCTC

TTAGGGACAACCTGGAACCTGGGACCTTTGATCTTGGGGGGCTATATGAAG

CAATTGAGGAGTGCCTGATTAATGATCCCTGGGTTTTGCTTAATGCTTCTTG

GTTCAACTCCTTCCTTACACATGCATTGAGTTAGTTGTGGCAGTGCTACTATT

TGCTATCCATACTGT 

12.7.6 >Segment_3_NIBSC_PA 

CTAaaaTGGAAGATTTTGTGCGACAATGCTTCAATCCGATGATTGTCGAGCTT

GCGGAAAAAACAATGAAAGAGTATGGGGAGGACCTGAAAATCGAAACAAAC

AAATTTGCAGCAATATGCACTCACTTGGAAGTATGCTTCATGTATTCAGATTT

TCACTTCATCAATGAGCAAGGCGAGTCAATAATCGTAGAACTTGGTGATCCA

AATGCACTTTTGAAGCACAGATTTGAAATAATCGAGGGAAGAGATCGCACAA

TGGCCTGGACAGTAGTAAACAGTATTTGCAACACTACAGGGGCTGAGAAAC

CAAAGTTTCTACCAGATTTGTATGATTACAAGGAGAATAGATTCATCGAAATT

GGAGTAACAAGGAGAGAAGTTCACATATACTATCTGGAAAAGGCCAATAAAA

TTAAATCTGAGAAAACACACATCCACATTTTCTCGTTCACTGGGGAAGAAAT

GGCCACAAAGGCAGACTACACTCTCGATGAAGAAAGCAGGGCTAGGATCAA
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AACCAGACTATTCACCATAAGACAAGAAATGGCCAGCAGAGGCCTCTGGGA

TTCCTTTCGTCAGTCCGAGAGAGGAGAAGAGACAATTGAAGAAAGGTTTGA

AATCACAGGAACAATGCGCAAGCTTGCCGACCAAAGTCTCCCGCCGAACTT

CTCCAGCCTTGAAAATTTTAGAGCCTATGTGGATGGATTCGAACCGAACGG

CTACATTGAGGGCAAGCTGTCTCAAATGTCCAAAGAAGTAAATGCTAGAATT

GAACCTTTTTTGAAAACAACACCACGACCACTTAGACTTCCGAATGGGCCTC

CCTGTTCTCAGCGGTCCAAATTCCTGCTGATGGATGCCTTAAAATTAAGCAT

TGAGGACCCAAGTCATGAAGGAGAGGGAATACCGCTATATGATGCAATCAA

ATGCATGAGAACATTCTTTGGATGGAAGGAACCCAATGTTGTTAAACCACAC

GAAAAGGGAATAAATCCAAATTATCTTCTGTCATGGAAGCAAGTACTGGCAG

AACTGCAGGACATTGAGAATGAGGAGAAAATTCCAAAGACTAAAAATATGAA

GAAAACAAGTCAGCTAAAGTGGGCACTTGGTGAGAACATGGCACCAGAAAA

GGTAGACTTTGACGACTGTAAAGATGTAGGTGATTTGAAGCAATATGATAGT

GATGAACCAGAATTGAGGTCGCTTGCAAGTTGGATTCAGAATGAGTTTAACA

AGGCATGCGAACTGACAGATTCAAGCTGGATAGAGCTCGATGAGATTGGAG

AAGATGTGGCTCCAATTGAACACATTGCAAGCATGAGAAGGAATTATTTCAC

ATCAGAGGTGTCTCACTGCAGAGCCACAGAATACATAATGAAGGGGGTGTA

CATCAATACTGCCTTGCTTAATGCATCTTGTGCAGCAATGGATGATTTCCAAT

TAATTCCAATGATAAGCAAGTGTAGAACTAAGGAGGGAAGGCGAAAGACCA

ACTTGTATGGTTTCATCATAAAAGGAAGATCCCACTTAAGGAATGACACCGA

CGTGGTAAACTTTGTGAGCATGGAGTTTTCTCTCACTGACCCAAGACTTGAA

CCACATAAATGGGAGAAGTACTGTGTTCTTGAGATAGGAGATATGCTTATAA

GAAGTGCCATAGGCCAGGTTTCAAGGCCCATGTTCTTGTATGTGAGAACAA

ATGGAACCTCAAAAATTAAAATGAAATGGGGAATGGAGATGAGGCGTTGCC

TCCTCCAGTCACTTCAACAAATTGAGAGTATGATTGAAGCTGAGTCCTCTGT

CAAAGAGAAAGACATGACCAAAGAGTTCTTTGAGAACAAATCAGAAACATGG

CCCATTGGAGAGTCCCCCAAAGGAGTGGAGGAAAGTTCCATTGGGAAGGT

CTGCAGGACTTTATTAGCAAAGTCGGTATTCAACAGCTTGTATGCATCTCCA

CAACTAGAAGGATTTTCAGCTGAATCAAGAAAACTGCTTCTTATCGTTCAGG

CTCTTAGGGACAACCTTGAACCTGGGACCTTTGATCTTGGGGGGCTATATG

AAGCAATTGAGGAGTGCCTGATTAATGATCCCTGGGTTTTGCTTAATGCTTC
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TTGGTTCAACTCCTTCCTTACACATGCATTGAGTTAGTTGTGGCAGTGCTAC

TATTTGCTATCCATACTGtaCCAAAAAAaG 

12.7.7 >Segment_4_RKI_HA 

cGTAGCGAAAGCAGGggAAAaTAAAAACAACCAAAATGAAGGCAAACCTACT

GGTCCTGTTATGTGCACTTGCAGCTGCAGATGCAGACACAATATGTATAGG

CTACCATGCGAACAATTCAACCGACACTGTTGACACAGTGCTCGAGAAGAA

TGTGACAGTGACACACTCTGTTAACCTGCTCGAAGACAGCCACAACGGAAA

ACTaTGTAGATTAAAAGGAaTAGCCCCACTACAATTGGGGAAATGTAACATC

GCCGGATGGCTCTTGGGAAACCCAGAATGCGACCCACTGCTTCCAGTGAG

ATCATGGTCCTACATTGTAGAAACACCAAACTCTGAGAATGGAATATGTTAT

CCAGGAGATTTCATCGACTATGAGGAGCTGAGGGAGCAATTGAGCTCAGTG

TCATCATTCGAAAGATTCGAAATATTTCCCAAAGAAAGCTCATGGCCCAACC

ACAACACAAACAAAGGAGTAACGGCAGCATGCTCCCATGCGGGGgAAAGCA

GTTTTTACAGAAATTTGCTATGGCTGACGGAGAAGGAGGGCTCATACCCAA

AGCTGAAAAATTCTTATGTGAACAAGAAAGGGAAAGAAGTCCTTGTACTGTG

GGGTATTCATCACCCGTCTAACAGTAAGGAGCAACAGAATATCTATCAGAAT

GAAAATGCTTATGTCTCTGTAGTGACTTCAAATTATAACAGGAGATTTACCCC

GGAAATAGCAGAAAGACCCAAAGTAAGAGATCAAGCTGGGAGGATGAACTA

TTACTGGACCTTGCTAAAACCCGGAGACACAATAATATTTGAGGCAAATGGA

AATCTAATAGCACCAAGGTATGCTTTCGCACTGAGTAGAGGCTTTGGGTCC

GGCATCATCACCTCAAACGCATCAATGCATGAGTGTAACACGAAGTGTCAAA

CACCCCTGGGAGCTATAAACAGCAGTCTCCCTTTCCAGAATATACACCCAGT

CACAATAGGAGAGTGCCCAAAATACGTCAGGAGTGCCAAATTGAGGATGGT

TACAGGACTAAGGAACATTCCGTCCATTCAATCCAGAGGTCTATTTGGAGCC

ATTGCCGGTTTTATtGAAGGGGGATGGACTGGAATGATAGATGGaTGGTACG

GTTATCATCATCAGAATGAACAGGGATCAGGCTATGCAGCGGATCAAAAAA

GCACACAAAATGCCATTAACGGGATTACAAACAAGGTGAACTCTGTTATCGA

GAAAATGAACATTCAATTCACAGCTGTGGGTAAAGAATTCAACAAATTAGAA

AAAAGGATGGAAAATTTAAATAAAAAAGTTGATGATGGATTTCTGGACATTTG

GACATATAATGCAGAATTGTTAGTTCTACTGGAAAATGAAAGGACTCTGGAT
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TTCCATGACTCAAATGTGAAAAATCTGTATGAGAAAGTAAAAAGCCAATTAAA

GAATAATGCCAAAGAAATCGGAAATGGATGTTTTGAGTTCTACCACAAGTGT

GACAATGAATGCATGGAAAGTGTAAGAAATGGGACTTATGATTATCCCAAAT

ATTCAGAAGAGTCAAAGTTGAACAGGGAAAAGGTAGATGGAGTGAAATTGG

AATCAATGGGGATCTATCAGATTCTGGCGATCTACTCAACTGTCGCCAGTTC

ACTGGTGCTTTTGGTCTCCCTGGGGGCAATCAGTTTCTGGATGTGTTCTAAT

GGATCTTTGCAGTGCAGAATATGCATCTGAGATTAGAATTTCAGAAATATGA

GGAAAAACACC 

12.7.8 >Segment_4_NIBSC_HA 

GTaGCgAAAGCAGGGgAAAATAAAAACAACCAAAATGAAGGCAAACCTACTG

GTCCTGTTATGTGCACTTGCAGCTGCAGATGCAGACACAATATGTATAGGCt

ACCATGCGAACAATTCAACCGACACTGTTGACACAGTACTCGAGAAGAATGT

GACAGTGACACACTCTGTTAACCTGCTCGAAGACAGCCACAACGGAAAACT

aTGTAGATTAAAAGGAaTAGCCCCACTACAATTGGGGAAATGTAACATCGCC

GGATGGCTCTTGGGAAACCCAGAATGCGACCCACTGCTTCCAGTGAGATCA

TGGTCCTACATTGTAGAAACACCAAACTCTGAGAATGGAATATGTTATCCAG

GAGATTTCATCGACTATGAGGAGCTGAGGGAGCAATTGAGCTCAGTGTCAT

CATTCGAAAGATTCGAAATATTTCCCAAAGAAAGCTCATGGCCCAACCACAA

CACAAACGGAGTAACGGCAGCATGCTCCCATGAGGGGAAAAGCAGTTTTTA

CAGAAATTTGCTATGGCTGACGGAGAAGGAGGGCTCATACCCAAAGCTGAA

AAATTCTTATGTGAACAAAAAaGGGAAAGAAGTCCTTGTACTGTGGGGTATT

CATCACCCGTCTAACAGTAAGGAACAACAGAATCTCTATCAGAATGAAAATG

CTTATGTCTCTGTAGTGACTTCAAATTATAACAGGAGATTTACCCCGGAAATA

GCAGAAAGACCCAAAGTAAGAGATCAAGCTGGGAGGATGAACTATTACTGG

ACCTTGCTAAAACCCGGAGACACAATAATATTTGAGGCAAATGGAAATCTAA

TAGCACCAATGTATGCTTTCGCACTGAGTAGAGGCTTTGGGTCCGGCATCA

TCACCTCAAACGCATCAATGCATGAGTGTAACACGAAGTGTCAAACACCCCT

GGGAGCTATAAACAGCAGTCTCCCTTACCAGAATATACACCCAGTCACAATA

GGAGAGTGCCCAAAATACGTCAGGAGTGCCAAATTGAGGATGGTTACAGGA

CTAAGGAACATTCCGTCCATTCAATCCAGAGGTCTATTtGGAGCCATTGCCG
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GTTTTATtGAAGGGGGatGGACTGGAATGATAGATGGATGGTATGGTTATCAT

CATCAGAATGAACAGGGATCAGGCTATGCAGCGGATCAAAAAAGCACACAA

AATGCCATTAACGGGATTACAAACAAGGTGAACACTGTTATCGAGAAAATGA

ACATTCAATTCACAGCTGTGGGTAAAGAATTCAACAAATTAGAAAAAAGGAT

GGAAAATTTAAATAAAAAaGTTGATGATGGATTTCTGGACATTTGGACATATA

ATGCAGAATTGTTAGTTCTACTGGAAAATGAAAGGACTCTGGATTTCCATGA

CTCAAATGTGAAGAATCTGTATGAGAAAGTAAAAAGCCAATTAAAGAATAAT

GCCAAAGAAaTCGGAAATGGATGTTTTGAGTTCTACCACAAGTGTGACAATG

AATGCATGGAAAGTGTAAGAAATGGGACTTATGATTATCCCAAATATTCAGA

AGAGTCAAAGTTGAACAGGgAAAaGGTAGATGGAGTGAAATTGGAATCAATG

GGGATCTATCAGATTCTGGCGATCTACTCAACTGTCGCCAGTTCACTGGTG

CTTTTGGTCTCCCTGGGGGCAATCAGTTTCTGGATGTGTTCTAATGGATCTT

TGCAGTGCAGAATATGCATCTGAGATTAGAATTTCAGAGATATGAGGAAAAA

Cn 

12.7.9 >Segment_5_RKI_NP 

CAACATCATGGCGTCCCAAGGCACCAAACGGTCTTACGAACAGATGGAGAC

TGATGGAGAACGCCAGAATGCCACTGAAATCAGAGCATCCGTCGGAAAAAT

GATTGGTGGAATTGGACGATTCTACATCCAAATGTGCACAGAACTTAAACTC

AGTGATTATGAGGGACGGTTGATCCAAAACAGCTTAACAATAGAGAGAATG

GTGCTCTCTGCTTTTGACGAAAGGAGAAATAAATACCTGGAAGAACATCCCA

GTGCGGGGAAAGATCCTAAGAAAACTGGAGGACCTATATACAGAAGAGTAA

ACGGAAAGTGGATGAGAGAACTCATCCTTTATGACAAAGAAGAAATAAGGC

GAATCTGGCGCCAAGCTAATAATGGTGACGATGCAACGGCTGGTCTGACTC

ACATGATGATCTGGCATTCCAATTTGAATGATGCAACTTATCAGAGGACAAG

AGCTCTTGTTCGCACTGGAATGGATCCCAGGATGTGCTCTCTGATGCAAGG

TTCAACTCTCCCTAGGAGGTCTGGAGCCGCAGGTGCTGCAGTCAAAGGAGT

TGGAACAATGGTGATGGAATTGGTCAGGATGATCAAACGTGGGATCAATGA

TCGGAACTTCTGGAGGGGTGAGAATGGACGAAAAACAAGAATTGCTTATGA

AAGAATGTGCAACATTCTCAAAGGGAAATTTCAAACTGCTGCACAAAAAGCA

ATGATGGATCAAGTGAGAGAGAGCCGGAACCCAGGGAATGCTGAGTTCGA
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AGATCTCACTTTTCTAGCACGGTCTGCACTCATATTGAGAGGGTCGGTTGCT

CACAAGTCCTGCCTGCCTGCCTGTGTGTATGGACCTGCCGTAGCCAGTGGG

TACGACTTTGAAAGAGAGGGATACTCTCTAGTCGGAATAGACCCTTTCAGAC

TGCTTCAAAACAGCCAAGTGTACAGCCTAATCAGACCAAATGAGAATCCAGC

ACACAAGAGTCAACTGGTGTGGATGGCATGCCATTCTGCCGCATTTGAAGA

TCTAAGAGTATTGAGCTTCATCAAAGGGACGAAGGTGGTCCCAAGAGGGAA

GCTTTCCACTAGAGGAGTTCAAATTGCTTCCAATGAAAATATGGAGACTATG

GAATCAAGTACACTTGAACTGAGAAGCAGGTACTGGGCCATAAGGACCAGA

AGTGGAGGAAACACCAATCAACAGAGGGCATCTGCGGGCCAAATCAGCATA

CAACCTACGTTCTCAGTACAGAGAAATCTCCCTTTTGACAGAACAACCGTTA

TGGCAGCATTCACTGGGAATACAGAGGGGAGAACATCTGACATGAGGGCC

GAAATCATAAGGATGATGGAAAGTGCAAGACCAGAAGATGTGTCTTTCCAG

GGGCgGGGAGTCTTCGAGCTCTCGGACGAAAAGGCAGCGAGCCCGATCGT

GCCTTCCTTTGACATGAGTAAtGAAGGATCTTATTTCTTCGGAGACAATGCAG

AGGA 

12.7.10 >Segment_5_NIBSC_NP 

TGGCGTCTCAAGGCACCAAACGATCTTACGAACAGATGGAGACTGATGGAG

AACGCCAGAATGCCACTGAAATCAGAGCATCCGTCGGAAAAATGATTGGTG

GAATTGGACGATTCTACATCCAAATGTGCACCGAACTCAAACTCAGTGATTA

TGAGGGACGGTTGATCCAAAACAGCTTAACAATAGAGAGAATGGTGCTCTC

TGCTTTTGACGAAAGGAGAAATAAATACCTTGAAGAACATCCCAGTGCGGG

GAAAGATCCTAAGAAAACTGGAGGACCTATATACAGGAGAGTAAACGGAAA

GTGGATGAGAGAACTCATCCTTTATGACAAAGAAGAAATAAGGCGAATCTG

GCGCCAAGCTAATAATGGTGACGATGCAACGGCTGGTCTGACTCACATGAT

GATCTGGCATTCCAATTTGAATGATGCAACTTATCAGAGGACAAGAGCTCTT

GTTCGCACCGGAATGGATCCCAGGATGTGCTCTCTGATGCAAGGTTCAACT

CTCCCTAGGAGGTCTGGAGCCGCAGGTGCTGCAGTCAAAGGAGTTGGAAC

AATGGTGATGGAATTGGTCAGAATGATCAAACGTGGGATCAATGATCGGAA

CTTCTGGAGGGGTGAGAATGGACGAAAAACAAGAATTGCTTATGAAAGAAT

GTGCAACATTCTCAAAGGGAAATTTCAAACTGCTGCACAAAAAGCAATGATG
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GATCAAGTGAGAGAGAGCCGGAACCCAGGGAATGCTGAGTTCGAAGATCT

CACTTTTCTAGCACGGTCTGCACTCATATTGAGAGGGTCGGTTGCTCACAAG

TCCTGCCTGCCTGCCTGTGTGTATGGACCTGCCGTAGCCAGTGGGTACGAC

TTTGAAAGGGAGGGATACTCTCTAGTCGGAATAGACCCTTTCAGACTGCTTC

AAAACAGCCAAGTGTACAGCCTAATCAGACCAAATGAGAATCCAGCACACA

AGAGTCAACTGGTGTGGATGGCATGCCATTCTGCCGCATTTGAAGATCTAA

GAGTATTAAGCTTCATCAAAGGGACGAAGGTGCTCCCAAGAGGGAAGCTTT

CCACTAGAGGAGTTCAAATTGCTTCCAATGAAAATATGGAGACTATGGAATC

AAGTACACTTGAACTGAGAAGCAGGTACTGGGCCATAAGGACCAGAAGTGG

AGGAAACACCAATCAACAGAGGGCATCTGCGGGCCAAATCAGCATACAACC

TACGTTCTCAGTACAGAGAAATCTCCCTTTTGACAGAACAACCATTATGGCA

GCATTCAATGGGAATACAGAGGGGAGAACATCTGACATGAGGACCGAAATC

ATAAGGATGATGGAAAGTGCAAGaCCAGAAGATGTGTCTTTCCAGGGGCgG

GGAGTCTTCGAGCTCTCGGACGAAAAGGCAGCGAGCCCGATCGTGCCTTC

CtTTGACATGAGTAATGAAGGATCTTATTTCTTCGGAGACAATGCAGAGGA 

12.7.11 >Segment_6_RKI_NA 

CGTAGCGaaAgcagGGGTTTaAAATGAATCCAAACCAGaAAATAATAACCATTG

GATCAATCTGTATGGTAGTCGGACTAATTAGCCTAATATTGCAAATAGGGAA

TATAATCTCAATATGGATTAGCCATTCAATTCAAACTGGAAGTCAAAACCATA

CTGGAATATGCAACCAAAACATCATTACCTATAAAAATAGCACCTGGGTAAA

GGACACAACTTCAGTGATATTAACCGGCAATTCATCTCTTTGTCCCATCCGT

GGGTGGGCTATATACAGCAAAGACAATAGCATAAGAATTGGTTCCAAAGGA

GACGTTTTTGTCATAAGAGAGCCCTTTATTTCATGTTCTCACTTGGAATGCAG

GACCtTTTTTCTGACCCAAGGTGCCTTACTGAATGACAGGCATTCAAATGGG

ACTGTTAAGGACAGAAGCCCTTATAGGGCCTTAATGAGCTGCCCTGTCGGT

GAAGCTCCGTCCCCGTACAATTCAAGATTTGAATCGGTTGCTTGGTCAGCAA

GTGCATGTCATGATGGCATGGGCTGGCTAACAATCGGAATTTCAGGTCCAG

ATAATGGAGCAGTGGCTGTATTAAAATACAACGGCATAATAACTGAAACCAT

AAAAAGTTGGAGGAAGAAAATATTGAGGACACAAGAGTCTGAATGTGCCTG

TGTAAATGGTTCATGTTTTACTATAATGACTGATGGCCCGAGTGATGGGCTG
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GCCTCGTACAAAATTTTCAAGATCGAAAAGGGGAAGGTTACTAAATCAATAG

AATTGAATGCACCTAATTCTCACTATGAGGAATGTTCCTGTTACCCTGATACC

GGCAAAGTGATGTGTGTGTGCAGAGACAATTGGCATGGTTCGAACCGGCCA

TGGGTGTCTTTCGATCAAAACCTGGATTATCAAATAGGATACGTCTGCAGTG

GGGTTTTCGGTGACAACCCGCGTCCCAAAGATGGAACAGGCAGCTGTGGT

CCAGTGTATGTTGATGGAGCAAACGGAGTAAAGGGATTTTCATATAGGTATG

GTAATGGTGTtTGGATAGGAAGGACCAAAAGTCACAGTTCCAGGCATGGGTT

TGAGATGATTTGGGATCCTAATGGATGGACAGAGACTGATAGTGAGTTCTCT

GTGAGGCAAGATGTTGTGGCAATGACTGATTGGTCAGGGTATAGCGGAAGT

TTCGTTCAACATCCTGAGCTAACAGGGCTAGACTGTATAAGGCCGTGCTTCT

GGGTTGAATTAATCAGGGGACGACCTAAAGaAAAAACAATCTGGACCAGTG

CGAGCAGCATTTCtTTTTGTGGCGTGGATAGTGATACTGTAGATTGGTCTTG

GCCAGACGGTGCTGAGTTGCCATTCACCATTGACAAGTAGTCTGTTCAAAAA

AACtT 

12.7.12 >Segment_6_NIBSC_NA 

GGGGtTTaAAATGAATCCAAATCAGAAAATAATAACCATTGGATCAATCTGTC

TGGTAGTCGGACTAATTAGCCTAATATTGCAAATAGGGAATATAATCTCAATA

TGGATTAGCCATTCAATTCAAACTGGAAGTCAAAACCATACTGGAATATGCA

ACCAAAACATCATTACCTATAAAAATAGCACCTGGGTAAAGGACACAACTTC

AGTGATATTAACCGGCAATTCATCTCTTTGTCCCATCCGTGGGTGGGCTATA

TACAGCAAAGACAATAGCATAAGAATTGGTTCCAAAGGAGACGTTTTTGTCA

TAAGAGAGCCCTTTATTTCATGTTCTCACTTGGAATGCAGGACCtTTTTTCTG

ACCCAAGGTGCCTTACTGAATGACAAGCATTCAAGTGGGACTGTTAAGGAC

AGAAGCCCTTATAGGGCCTTAATGAGCTGCCCTGTCGGTGAAGCTCCGTCC

CCGTACAATTCAAGATTTGAATCGGTTGCTTGGTCAGCAAGTGCATGTCATG

ATGGCATGGGCTGGCTAACAATCGGAATTTCAGGTCCAGATAATGGAGCAG

TGGCTGTATTAAAATACAACGGCATAATAACTGAAACCATAAAAAGTTGGAG

GAAGAAAATATTGAGGACACAAGAGTCTGAATGTGCCTGTGTAAATGGTTCA

TGTTTTACTATAATGACTGATGGCCCGAGTGATGGGCTGGCCTCGTACAAAA

TTTTCAAGATCGAAAAGGGGAAGGTTACTAAATCAATAGAGTTGAATGCACC
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TAATTCTCACTATGAGGAATGTTCCTGTTACCCTGATACCGGCAAAGTGATG

TGTGTGTGCAGAGACAATTGGCATGGTTCGAACCGGCCATGGGTGTCTTTC

GATCAAAACCTGGATTATCAAATAGGATACATCTGCAGTGGGGTTTTCGGTG

ACAACCCGCGTCCCGAAGATGGAACAGGCAGCTGTGGTCCAGTGTATGTTG

ATGGAGCAAACGGAGTAAAGGGAtTTTCATATAGGTATGGTAATGGTGtTTGG

ATAGGAAGGACCAAAAGTCACAGTTCCAGACATGGGTTTGAGATGATTTGG

GATCCTAATGGATGGACAGAGACTGATAGTAAGTTCTCTGTGAGGCAAGAT

GTTGTGGCAATGACTGATTGGTCAGGGTATAGCGGAAGtTTCGTTCAACATC

CTGAGCTGACAGGGCTAGACTGTATGAGGCCGTGCTTCTGGGTTGAATTAA

TCAGGGGACGACCTAAAGAAAAAACAATCTGGACTAGTGCGAGCAGCATTT

CtTTTTGTGGCGTGAATAGTGATACTGTAGATTGGTCTTGGCCAGACGGTGC

TGAGTTGCCATTCAGCATTGACAAGTAGTC 

12.7.13 >Segment_7_RKI_M1_M2 

GTTGAAAGATGAGTCTTCTAACCGAGGTCGAAACGTACGTTCTCTCTATCAT

CCCGTCAGGCCCCCTCAAAGCCGAGATCGCACAGAGACTTGAAGATGTCTT

TGCAGGGAAGAACACCGATCTTGAGGTTCTCATGGAATGGCTAAAGACAAG

ACCAATCCTGTCACCTCTGACTAAGGGGATTTTAGGATTTGTGTTCACGCTC

ACCGTGCCCAGTGAGCGAGGACTGCAGCGTAGACGCTTTGTCCAAAATGC

CCTTAATGGGAACGGGGATCCAAATAACATGGACAAAGCAGTTAAACTGTAT

AGGAAGCTCAAGAGGGAGATAACATTCCATGGGGCCAAAGAAATCTCACTC

AGTTATTCTGCTGGTGCACTTGCCAGTTGTATGGGCCTCATATACAACAGGA

TGGGGGCTGTGACCACTGAAGTGGCATTTGGCCTAGTATGTGCAACCTGTG

AACAGATTGCTGACTCCCAGCATCGGTCTCATAGGCAAATGGTGACAACAA

CCAATCCACTAATCAGACATGAGAACAGAATGGTTTTAGCCAGCACTACAGC

TAAGGCTATGGAGCAAATGGCTGGATCGAGTGAGCAAGCAGCAGAGGCCA

TGGAGGTTGCTAGTCAGGCTAGGCAAATGGTGCAAGCGATGAGAACCATTG

GGACTCATCCTAGCTCCAGTGCTGGTCTGaAAAATGATCTTCTTGAAAATTT

GCAGGCCTATCAGAAACGAATgGGGGTGCAGATGCAACGGTTCAAGTGATC

CTCTCGCTATTGCCGCAAATATCATTGGGATCTTGCACTTGATATTGTGGAT

TCTTGATCGTCTTTTTTTCAAATGCATTTACCGTCGCTTTAAATACGGACTGA
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AAGGAGGGCCTTCTACGGAAGGAGTGCCAAAGTCTATGAGGGAAGAATATC

GAAAGGAACAGCAGAGTGCTGTGGATGCTGACGATGGTCATTTTGtCAGCAT

AGAGCT 

12.7.14 >Segment_7_NIBSC_M1_M2 

gtTGaAAGaTGAGTCTTCTAACCGAGGTCGAAACGTACGTTCTCTCTATCATC

CCGTCAGGCCCCCTCAAAGCCGAGATCGCGCAGAGACTTGAAAATGTCTTT

GCAGGGaAAAACACCGATCTTGAGGTTCTCATGGAATGGCTAAAGACAAGA

CCAATCCTGTCACCTCTGACTAAGGGGATTTTAGGATTTGTGTTCACGCTCA

CCGTGCCCAGTGAGCAGGGACTGCAGCGTAGACGCTTTGTCCAAAATGCC

CTTAATGGGAACGGGGATCCAAATAACATGGACAAAGCAGTTAAACTGTATA

GGAAGCTTAAGAGGGAGATAACATTCTATGGGGCTAAAGAAATAGCACTCA

GTTATTCCGCTGGTGCACTTGCCTGTTGTATGGGCCTCATATACAACAGGAT

GGGGACTGTGACTGCTGAAGTGGTGTTTGGCCTGGTATGTGCAACCTGTGA

ACAGATTGCTGACTCCCAGCATCGGTCTCATAGGCAAATGGTGGCAACAAC

CAATCCACTAATCAGACATGAGAACAGAATGGTTTTAGCCAGCACTACAGCT

AAGGCTATGGAGCAAATGGCTGGATCGAGTGAGCAAGCAGCAGAGGCCAT

GGAGGTTGCGATTCGGGCTAGGCAAATGGTGCAGGCAATGAGAACCATTG

GGACTCATCCTAGCTCCAGTGCTGGTCTGAAAGATGATCTTCTTGAAAATTT

GCAGGCCTATCAGAAACGAATGGGGGTGCAGATGCAACGGTTCAAGTGATC

CTCTCGTTATTGCCTCAAGTATCATTGGGATCTTGCACTTGATATTGTGGATT

CTTGATCGTCTTTTTTTCAAATGCATTTACCGTCTCTTTAAATACGGTTTGAAA

AGAGGGCCTTCTACGGAAGGAGTGCCAAAGTCTATGAGGGAAGAATATCAA

AAGGAACAGCAGAGTGCTGTGGATGCTGACGATGGTCATTTTGTCAGCATA

GAGCTGGAGTAAAA 

12.7.15 >Segment_8_RKI_NS1_NS2 

GTGACAAAGACATAATGGATCCAAACACTGTGTCAAGCTTTCAGGTAGATTG

CTTTCTTTGGCATGTCCGCAAACGAGTTGCAGACCAAGAACTAGGTGATGC

CCCATTCCTTGATCGGCTTCGCCGAGATCAGAAATCCCTAAGAGGAAGGGG

CAGCACTCTCGGTCTGGACATCGAGACAGCCACACGTGCTGGAAAGCAGAT

AGTGGAGCGGATTCTGAAAGAAGAATCCGATGAGGCACTTAAAATGACCAT
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GGCCTCTGTACCTGCGTCGCGTTACCTAACTGACATGACTCTTGAGGAAAT

GTCAAGGGAATGGTCCATGCTCATACCCAAGCAGAAAGTGGCAGGCCCTCT

TTGTATCAGAATGGACCAGGCGATCATGGATAAGAACATCATACTGAAAGC

GAACTTCAGTGTGATTTTTGACCGGCTGGAGACTCTAATATTGCTAAGGGCT

TTCACCGAAGAGGGAGCAATTGTTGGCGAAATTTCACCATTGCCTTCTCTTC

CAGGACATACTGCTGAGGATGTCAAAAATGCAGTTGGAGTCCTCATCGGAG

GACTTGAATGGAATGATAACACAGTTCGAGTCTCTGAAACTCTACAGAGATT

CGCTTGGAGAAGCAGTAATGAGAATGGGAGACCTCCACTCACTCCAAAACA

GAAACGAGAAATGGCGGGAACAATTAGGTCAGAAGTTTGAAGAAATAAGAT

GGTTGATTGAAGAAGTGAGACACAAACTGAGGGTAACAGAGAATAGTTTTG

AGCAAATAACATTTATGCAAGCCTTACATCTATTGCTTGAAGTGGAGCAAGA

GATAAGAACTTTCTCATTTCAGCTTATTTAATAA 

12.7.16 >Segment_8_NIBSC_NS1_NS2 

GGgtGaCaGAcaTAaTGGATCCAAACACTGTGTCAAGCTTTCAGGTAGATTGC

TTTCTTTGGCATGTCCGCAAACGAGTTGCAGACCAAGAACTAGGTGATGCC

CCATTCCTTGATCGGCTTCGCCGAGATCAGAAATCCCTAAGAGGAAGGGGC

AGTACTCTCGGTCTGGACATCAAGACAGCCACACGTGCTGGAAAGCAGATA

GTGGAGCGGATTCTGAAAGAAGAATCCGATGAGGCACTTAAAATGACCATG

GCCTCTGTACCTGCGTCGCGTTACCTAACTGACATGACTCTTGAGGAAATGT

CAAGGGACTGGTCCATGCTCATACCCAAGCAGAAAGTGGCAGGCCCTCTTT

GTATCAGAATGGACCAGGCGATCATGGATAAGAACATCATACTGAAAGCGA

ACTTCAGTGTGATTTTTGACCGGCTGGAGACTCTAATATTGCTAAGGGCTTT

CACCGAAGAGGGAGCAATTGTTGGCGAAATTTCACCATTGCCTTCTCTTCCA

GGACATACTGCTGAGGATGTCAAAAATGCAGTTGGAGTCCTCATCGGAGGA

CTTGAATGGAATGATAACACAGTTCGAGTCTCTGAAACTCTACAGAGATTCG

CTTGGAGAAGCAGTAATGAGAATGGGAGACCTCCACTCACTCCAAAACAGA

AACGAGAAATGGCGGGAACAATTAGGTCAGAAGTTTGAAGAAATAAGATGG

TTGATTGAAGAAGTGAGACACAAACTGAAGATAACAGAGAATAGTTTTGAGC

AAATAACATTTATGCAAGCCTTACATCTATTGCTTGAAGTGGAGCAAGAGAT

AAGAACTTTCTCGTTTCAGCTTATTTAGTACTAA 
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12.8 Alignment of amino acid consensus sequences of the RKI- and the 

NIBSC-strain from passage 1 

 

figure S 5: Alignment of AA consensus sequences of segment 1 coding for PB2 of the RKI- 
and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

http://services.uniprot.org/clustalw
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figure S 6: Alignment of AA consensus sequences of segment 2 coding for PB1 of the RKI- 
and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

 

figure S 7: Alignment of AA consensus sequences of segment 2 coding for PB1-F2 of the 
RKI- and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

http://services.uniprot.org/clustalw
http://services.uniprot.org/clustalw
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figure S 8: Alignment of AA consensus sequences of segment 3 coding for PA of the RKI- 
and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

http://services.uniprot.org/clustalw


12 Supplementary 

S28 

 
figure S 9: Alignment of AA consensus sequences of segment 4 coding for HA of the RKI- 
and the NIBSC-strain. 
The virus seed of RKI (Amp. 3138) corresponds to a homogeneous population. Substitutions in 
the sequence during the virus adaptation processes are indicated in red. In contrast, the virus 
seed from NIBSC (#06/114) comprises various virus variants; substitutions in the sequence are 
indicated in green. The positions of substitutions, acquired during the adaptation processes are 
indicated in blue. The amino acid assembly was performed at http://services.uniprot.org/clustalw. 
Reprinted with permission [4]. 

http://services.uniprot.org/clustalw
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figure S 10: Alignment of AA consensus sequences of segment 5 coding for NP of the RKI- 
and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

 

figure S 11: Alignment of AA consensus sequences of segment 6 coding for NA of the RKI- 
and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

http://services.uniprot.org/clustalw
http://services.uniprot.org/clustalw
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figure S 12: Alignment of AA consensus sequences of segment 7 coding for M1 of the RKI- 
and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

 

figure S 13: Alignment of AA consensus sequences of segment 7 coding for M2 of the RKI- 
and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

 

figure S 14: Alignment of AA consensus sequences of segment 8 coding for NS1 of the 
RKI- and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

 

 

figure S 15: Alignment of AA consensus sequences of segment 8 coding for NS2 (NEP) of 
the RKI- and the NIBSC-strain. 
The amino acid assembly was performed at http://services.uniprot.org/clustalw. 

http://services.uniprot.org/clustalw
http://services.uniprot.org/clustalw
http://services.uniprot.org/clustalw
http://services.uniprot.org/clustalw
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12.9 SOPs and protocols 

12.9.1 Thawing of cells 

Internal SOP (file Z_02_Auftauenzellen_250603_IB.doc). Please ask Dr. habil. Y 

Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of Complex Technical 

Systems, Magdeburg, Germany) for access. 

12.9.2 Passaging MDCK cells 

12.9.2.1 Serum-containing 

Internal SOP (Z_04_Passagieren_MDCK_200606_SK.doc). Please ask Dr. habil. 

Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of Complex Technical 

Systems, Magdeburg, Germany) for access. 

12.9.2.2 Serum-free 

Internal SOP (Z_05_Passagieren_MDCK_serumfrei_211105_SK.doc). Please 

ask Dr. habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of Complex 

Technical Systems, Magdeburg, Germany) for access. 

12.9.3 Preparation of isotonic phosphate-buffered saline (PBS) 

Internal SOP (file M_01_Herstellung_PBS_260907_CB.doc). Please ask Dr. 

habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of Complex 

Technical Systems, Magdeburg, Germany) for access. 

12.9.4 Preparation of caso-bouillon for sterility testing 

Internal SOP (file M_05_Herstellung_Von_CASO_Bouillon_290606_CB.doc). 

Please ask Dr. habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of 

Complex Technical Systems, Magdeburg, Germany) for access. 
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12.9.5 Preparation of cell culture and virus production media 

12.9.5.1 Glasgow-MEM-medium from powder 

Internal SOP (M_03_Herst_von_GMEM_aus_Pulvermedium_231105_SK.doc). 

Please ask Dr. habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of 

Complex Technical Systems, Magdeburg, Germany) for access. 

12.9.5.2 Glasgow-MEM-medium from prepared solutions 

Internal SOP (file M_04_Herst.von Glasgow-MEM-Vollmed._Z-

Med._200606_SK.doc). Please ask Dr. habil. Y Genzel or Prof. Dr.-Ing. U. Reichl 

(MPI for Dynamics of Complex Technical Systems, Magdeburg, Germany) for 

access. 

12.9.5.3 Smif 8 PGd-medium from powder 

H2OMQ       fill up to 10 L 

Smif 8-PGd powdermedium (FH Emden) 30.6 g 

NaCl (Roth)      62.4 g 

NaHCO3 (Roth)     20.0 g 

Ethanolamine (98%, Sigma)   1.6 g 

L-glutaminic acid (Merck)    10 μL 

D- (+)-glucose (H2O-free, Roth)   36.5 g 

Pluronic F68 10% (GIBCO Invitrogen)  100 mL 

pH       7.3 

osmolarity      300 mOs/kg 

12.9.6 Virus propagation 

Internal SOP (file V_03_Virenvermehrung_Kulturgefaesse_260907_CB.doc). 

Please ask Dr. habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of 

Complex Technical Systems, Magdeburg, Germany) for access. 
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12.9.7 Preparation of trypsin-EDTA-stock solution (10x) for cell detaching 

Internal SOP (file M_07_Trypsinherstellung_200607_CB.doc). Please ask Dr. 

habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of Complex 

Technical Systems, Magdeburg, Germany) for access. 

12.9.8 Preparation of trypsin for virus propagation 

Internal SOP (file V_02_Trypsin_fuer_Virus_170107_CB.doc). Please ask Dr. 

habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of Complex 

Technical Systems, Magdeburg, Germany) for access. 

12.9.9 Preparation of peptone solution (20%) 

Herstellungsmenge LAB-M-Peptone Milli-Q-Wasser 

200ml 40g 160g 

500ml 100g 400g 

Peptonpulver in 80°C warmen dest. H2O lösen, in kleine Schottflaschen verteilen 

und bei 120°C 20 min autoklavieren 

12.9.10 Preparation of Alsevers solution 

Internal SOP (file M_13_Alseversloesung_040107_CB.doc).Please ask Dr. habil. 

Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of Complex Technical 

Systems, Magdeburg, Germany) for access. 

Solution should be sterile for stabilizing chicken erythrocytes 

12.9.11 Preparation of chicken erythrocytes 

Internal SOP (file V_07_Erythrocytenloesung_07.06.07_CB.doc). Please ask Dr. 

habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of Complex 

Technical Systems, Magdeburg, Germany) for access. 

12.9.12 Hemagglutination-assay 

Internal SOP, Version: 2.1 and 2.2 (04.12.2006 and 20.01.2011, respectively). 

Please ask Dr. habil. Y Genzel or Prof. Dr.-Ing. U. Reichl (MPI for Dynamics of 

Complex Technical Systems, Magdeburg, Germany) for access. 
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12.9.13 β-propiolactone inactivation 

Internal SOP, Version: 1.1 (26.10.06). Please ask Dr. M. Wolff or Prof. Dr.-Ing. U. 

Reichl (MPI for Dynamics of Complex Technical Systems, Magdeburg, Germany) 

for access. 

12.9.14 N-glycosylation pattern analysis (NaBH3CN-based, V1.2) 

Internal SOP, please ask Dr. E. Rapp or Prof. Dr.-Ing. U. Reichl (MPI for 

Dynamics of Complex Technical Systems, Magdeburg, Germany) for access. 

12.9.15 N-glycosylation pattern analysis (picoline borane-based, V1.5) 

Internal SOP, please ask Dr. E. Rapp or Prof. Dr.-Ing. U. Reichl (MPI for 

Dynamics of Complex Technical Systems, Magdeburg, Germany) for access. 

12.9.16 Purification of labeled N-glycans by HILIC 

Internal SOP, please ask Dr. E. Rapp or Prof. Dr.-Ing. U. Reichl (MPI for 

Dynamics of Complex Technical Systems, Magdeburg, Germany) for access. 

12.9.17 Native influenza virus deglycosylation 

12.9.17.1 Virus concentration 

o isolate virus from virus-containing, cleared supernatant by ultra-

centrifugation (90 min, 4 °C, 31.000 rpm, 70Ti rotor, UZ-tubes) => from 

approx. 240 mL virus-containing supernatant 

o resuspend virus pellets in 20 – 25 L V-medium each making a final 

volume of 160 -200 L 

12.9.17.2 Deglycosylation procedure 

add 190 L of the concentrated, recovered sample from step (1) 

add 6:7 L protease inhibitor (40x in sterile H2OMQ; this corresponds to 1 tablet in 

250 L; #11777700, Roche) 

add 50 L reaction buffer (R9150, Sigma-Aldrich) 

add 10 L endoglycosidase F2 



12 Supplementary 

S35 

add 10 L endoglycosidase F3 

add 10 L -galactosidase (G7163, Sigma-Aldrich) 

incubate at 37 °C, 450 rpm over night 

 

add 10 L reaction buffer (R9025, Sigma-Aldrich) 

add 10 L endoglycosidase F1 

incubate at 37 °C, 450 rpm over night 

 

add 10 L reaction buffer (R0266, Sigma-Aldrich) 

add 10 L -mannosidase (M7257, Sigma-Aldrich) 

add 10 L -neuramidase (N8271, Sigma-Aldrich) 

add 10 L -N-acetylglucosaminidase (A6805, Sigma-Aldrich) 

add 10 L -galactosidase (G0413, Sigma-Aldrich) 

add 2 L -galactosidase (G7163, Sigma-Aldrich) 

add 2 L endoglycosidase F3 

incubate at 37 °C, 450 rpm over night 

 

Isolate virus by ultra-centrifugation at 31.000 rpm (Beckman Coulter, Rotor 70Ti, 

31000 rpm, Ø65.7 mm 70714 g) for 90 min at 4 °C in 100 mM Tris (pH7) 

transfer the supernatant into a labeled falcon tube for later APTS-labelling 

resuspend the virus pellet in 20 - 30 L 100 mM Tris-HCl (pH7) and store 2 

aliquots 1x 7 – 10 L: for later N-glycoanalysis (could be diluted by a factor of 5) 

and 1x 13 – 20 L for immunogenicity studies, pellet should later be washed 

once again in 100 mM Tris pH7) 

Store samples at -80 °C 
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12.10 Principles of next-generation pyrosequencing 

12.10.1 DNA library preparation 

 

 

 

 

 

 

See / from http://www.genomicsdisorders.nl/GSFLX_Poster1.pdf 

http://www.genomicsdisorders.nl/GSFLX_Poster1.pdf
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12.10.2 emPCR – emulsion PCR set up 

 

 

 

 

 

 

 

 

See / from http://www.genomicsdisorders.nl/GSFLX_Poster2.pdf 

http://www.genomicsdisorders.nl/GSFLX_Poster2.pdf
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12.10.3 emPCR – emulsion PCR breaking and enrichment 

 

 

 

 

 

 

 

See / from http://www.genomicsdisorders.nl/GSFLX_Poster3.pdf 

http://www.genomicsdisorders.nl/GSFLX_Poster3.pdf
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12.10.4 Sequencing 

 

 

 

 

 

 

 

 

See / from http://www.genomicsdisorders.nl/GSFLX_Poster3.pdf 

http://www.genomicsdisorders.nl/GSFLX_Poster3.pdf
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