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Abstract

In this thesis, the structure of different polymer gels consisting of star precursors is in-
vestigated using 1H-NMR and small-angle x-ray scattering (SAXS). Due to their ability
of potentially forming networks with a predictable model-like structure, they provide a
promising toolbox for wet applications such as biological matrices, separation membranes,
water desalination, or drug-release systems. To better understand the fundamental proper-
ties of such networks, and ultimately optimize them for applications, we rely on model-like
structures, thus motivating research of methods that can provide quantitative information
on the local chain-level architecture of these type of gels. To this end, 1H Multi-Quantum
NMR is used to extract quantitative information on the connectivity motif distribution for
different variations of gels synthesized utilizing both permanent and transient crosslinks.
To better understand the influence of the synthesis conditions on the emerging network
structure, variations on preparation concentration, temperature, solvent, and precursors
were investigated. The results are complemented by an in-depth structural investigation
of the amphiphilic tetraPEG-tetraPCL system using Pulsed-Field Gradient NMR for the
characterization of the diffusion of probe molecules and SAXS for an estimate on correla-
tion length and length scales of microphase separation. Both methods were performed with
the network being swollen in selective (water) and nonselective (toluene) solvents, allowing
for a comparison of these parameters. Finally, 1H MAS DQ NMR is used to demonstrate
an immobilization effect of the PEG chain along the PCL cluster surface.

Zusammenfassung

In dieser Arbeit wird die Struktur verschiedener Polymergele, die aus Sternpolymeren
bestehen, untersucht. Dafür werden 1H-NMR und Röntgenkleinwinkelstreuung (SAXS)
verwendet. Aufgrund ihres Potenzials, Netzwerke mit einer vorhersagbaren und modellar-
tigen Struktur zu bilden, stellen sie eine vielversprechende Grundlage für lösemittelhaltige
Anwendungen wie biologische Matrizen, Trennmembranen, Wasserentsalzung oder Drug-
Release-Systemen dar. Um die grundlegenden Eigenschaften solcher Netzwerke besser zu
verstehen und sie für Anwendungen zu optimieren, sind modellartige Netzwerke unabding-
bar. Daher werden Methoden benötigt, die quantitative Informationen über die lokale Net-
zwerkstruktur von Gelen auf Kettenebene liefern können. Hierfür wird 1H-Multiquanten-
NMR verwendet, um die Verteilung der Konnektivitätsmotive für verschiedene Varianten
von Gelen (permanent und transient vernetzt) zu quantifizieren. Um den Einfluss der Syn-
thesebedingungen auf die entstehende Netzwerkstruktur besser zu verstehen, wurden Varia-
tionen in Präparationskonzentration, Temperatur, Lösungsmittel und Sternpolymeren un-
tersucht. Die Ergebnisse werden durch eine detaillierte strukturelle Untersuchung des
amphiphilen TetraPEG-TetraPCL-Systems ergänzt. Hierbei wurden Feldgradienten-NMR
zur Charakterisierung der Diffusion von Sondenmolekülen und SAXS zur Abschätzung
von Korrelationslänge und Längenskala der Mikrophasenseparation eingesetzt. Um einen
Vergleich der genannten Parameter im präparierten und phasenseparierten Zustand zu
ermöglichen, werden beide Methoden sowohl im nicht-selektiven Lösemittel (Toluol) als
auch im selektiven Lösemittel (Wasser) angewendet. Zusätzlich wurde mittels 1H MAS
DQ NMR im phasenseparierten Zustand ein Immobilisierungseffekt der PEG-Ketten ent-
lang der PCL-Clusteroberfläche festgestellt.
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Chapter 1

Introduction

Polymer networks are three-dimensional structures emerging from permanent or transient

crosslinking of polymeric precursors with more than two functional sites per precursor. For

that, telechelic polymer chains (’strands’) are crosslinked with functional groups (’junc-

tions’ with a given functionality f) in order to constitute a macroscopic ’infinite polymer’

(the network). Due to the typically high flexibility and large conformational space of the

strands, a high degree of entropic elasticity is achieved, yielding a flexible material suit-

able to countless applications of the modern age [1, 2]. By combining different monomer

architectures, crosslinking methods and other chemical variables, a plentiful toolbox of

building blocks is available for producing networks with different properties [3, 4]. While

the choice of the specific precursor broadly dictates the type of network and its solution

properties (e.g., what is considered a "good solvent" or a "poor solvent"), the size of the

network strands and the choice of crosslinking method are factors that strongly determine

the mechanical properties such as the elastic modulus and stretchability [5]. Especially for

transiently-linked networks, the kinetics of the linking agent determines the timescale of

elastic response and flow [6–8].

Polymer gels

A popular subclass of polymer networks are polymer gels, which constitute networks that

are swollen in a solvent with the solvent commonly being the majority volume fraction of

the system. As an approximation, their high degree of swelling is determined by a balance

of the entropic elasticity of the chain and the free energy of mixing dominated by the solvent

quality [9]. With high equilibrium degree of swellings beyond up to hundreds of times of

their dry weight [10], they are uniquely suitable to wet applications, including e.g., superab-

sorbers [10], water desalination [11] or translational applications in the medical sector [12].

A subset of swollen polymer gels is constructed by exchanging parts of the precursors with

a precursor of different polarity, resulting in the synthesis of an amphiphilic structure - so

called qmphiphilic polymer co-networks (APCNs). Their unique solution behavior makes

them especially interesting for applications requiring phase-specific molecular transport,

such as eye lens material [13], conductive layers in batteries [14], separation membranes

[15], cell growth matrices [16, 17] or drug-release systems [18].

It is immediately apparent that most of these applications rely on a predictable and efficient
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polymer-solvent interaction (e.g., equilibrium degree of swelling or efficient diffusion of

surrounding liquid/probe molecule) or a certain mechanical strength, both of which depend

on a controlled and reproducible network architecture that will be addressed later on in

more detail. To this end, many different synthesis strategies were successfully pursued to

better understand the relationship of synthesis and remove this restrictive factor, paving

the way for more advanced applications. Early works pursuing this path by mentioning the

idea of model networks with a controlled crosslink molecular weight and crosslink density

date back until at least 1976, where Allen et al. [19] synthesized model polyurethane

networks made from linear and trifunctional precursors, already discussing the impact of

cyclic chain defects ("closed loop structures within the network") on the elastic modulus.

Only one year later, Mark et al. [20] published on a model PDMS network already making

use of tetrafunctional precursors while trying to reduce entanglements between the chains.

A major improvement was achieved by the team of Takamasa Sakai in 2008 [21], who

developed a procedure where two different 4-functional PEG precursors ("tetra-PEG" or

"tPEG") are heterocomplementary end-linked for achieving a network with low overall

defect content (in the sense of dangling chain ends) and high homogeneity [22]. The success

of this synthesis is attributed to two facts: Usage of a heterocomplementary synthesis (also

called A-B type synthesis) prevents highly probable intra-precursor end-linking reactions

that result in elastically inactive structures, while the usage of multifunctional precursors

with f > 2 (here f = 4) suppresses another probable elastically inactive loop defect where

a linear chain would occupy two functional groups of the same precursor. Nevertheless, a

combined NMR and Monte Carlo simulation study of Lange et al. [23] in 2011 revealed,

that even in this case, major contributions from other cyclic connectivity defects (e.g., the

end-linking of more than one arm between two given precursors) remain and influence the

mechanical properties of the emerging gel [24, 25].

Since then, many variations of these two important key messages from the study of Sakai

et al. have been published, resulting in a wide range of networks and synthetic proce-

dures currently available. As reviewed in detail by Nakagawa et al. [3], these include both

chemically-crosslinked variations [26–29], systems that vary the functionality of the pre-

cursors [30–32] or transiently-crosslinked variations (using e.g., ion-mediated bonds) [33,

34]. The latter systems are of special interest, as their transient links enable a degree of

self-repair by structure equilibration, thus potentially reducing network defects [35, 36].

For the aforementioned special subclass, ACPNs, where precursors of different polarity

are linked, an additional challenge in the form of proper solubilization and mixing of the

precursors may arise. Most commonly, this is circumvented by adding a common good

solvent in combination with varying synthetic approaches. Pioneering experiments for the

synthesis of model ACPNs were done in the 1980s [37], using living carbocationic poly-

merization [38], whereas today a variety of approaches has been investigated, such as fast

click-reactions [39–41], condensation reactions [42, 43], GTP [44], RAFT [45] or end-linking

using small crosslinkers [46]. In this work, the comparably slow heterocomplementary end-

linking of benzoxazinone- / amino-terminated star precursors is investigated in more detail

[47].
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Structural investigation of polymer gels

Due to the complex structure of polymer gels, spanning length scales from the near molec-

ular chain-level (1− 10 nm) up to level of multiple junctions (10− 100 nm), a multitude of

methods has been developed to characterize both the network structure and the applica-

tion properties. In this work only the former will be treated and discussed (although some

of these methods will be applicable to both topics).

It is known that the chain-level structure and its corresponding defects (e.g., unreacted

chain ends and cyclic defects) have a significant impact on the emerging mechanical prop-

erties of the network due to their influence on the chain-level elasticity with the details

yet to be fully understood [24, 25]. However, research on the architecture of networks on

this scale is still ongoing due to the difficulty in accessing these. While different meth-

ods such as simulations [48] or mechanical experiments [49] are used to deduce chain-level

information, these strictly rely on strong assumptions that cannot always be tested [50]

such as the type of deformation (affine or phantom model) or are strong simplifications

(e.g., neglecting elastically active loop defects). Recently, the analysis of the non-linear

deformation response for the analysis of "stress-supporting strands" joined this toolbox,

while remaining yet to be applied more frequently [51]. So far, there are only two methods

that can successfully infer fractions of cyclic defects from a single measurement. One of

these is Network Disassembly Spectroscopy (NDS), which quantifies these by preparing a

chemically labelled network, which after gelation will be cleaved (’disassembled’) and the

cleaved products will be analyzed in terms of molar mass. By precise positioning of the

cleaving sites along the backbone, this can result in a precise quantification of dangling

ends as well as higher order loop structures [52]. The second is solid-state MQ NMR

(see e.g., refs. [23, 53, 54]), which analyzes the residual dipolar order remaining due to

anisotropic chain motion in solids. Different topological features can be distinguished via

an effective molecular weight - induced contrast between the cyclic defect structures or/and

via differences in their relaxation dynamics [55]. Quantification of defect structures using

MQ NMR will be a major topic of this work.

For the characterization of the network structure beyond the chain-level scale, scattering

methods have continuously proven themselves to be one of the most informative methods

(see e.g., the review of Seiffert [56]). For swollen networks without crystalline moieties a

focus is put on small-angle x-ray scattering (SAXS) and small-angle neutron scattering

(SANS) with the former being extensively used in this work. While correlations between

junctions themselves are not observed due to a lack of scattering contrast, it can yield

information about the correlation length ξc or frozen inhomogeneities Ξ. The former are

obtained by applying a suitable model function such as the Ornstein-Zernike function [57],

whereas the latter is commonly analyzed with either an Ornstein-Zernike-like function (see

e.g., ref. [22]) or a power law [58], both of which yield qualitative information. Given a

suitable polymer-solvent contrast, SLS can be used to extend the SANS measurements to

shorter q values for quantitative information on the length scales of frozen inhomogeneities

[56].

Other methods and approaches used in the literature include imaging techniques such
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as SEM, TEM or AFM for characterizing, e.g., the surface of the material [59–62] or

measurements of probe diffusion using, e.g., FRAP [63–65] or PFG-NMR [66–68] which

can yield information on the length scale dominating the diffusion process.

Aim and outline

Despite at least five decades of synthetic approaches and structural characterization of

polymer gels, many open questions remain. From the structural perspective, one of the

least investigated aspects is the quantity and role of cyclic chain-level defects that are found

even in model star polymer networks (SPNs) including the famous tPEG network of Sakai

[23]. Although the pioneering work of Lange et al. [23] established a low-field solid-state

NMR methodology for characterizing the most predominant cyclic defect (the double link -

DL) in the latter type of network, only few studies were performed to establish relationships

between the preparation conditions and the emerging distribution of connectivity motifs

(see e.g., refs [24, 25, 48, 52, 69]) - none of which included MQ NMR and only Johnson

et al. tackled this problem experimentally [24, 52, 69]. This work aims to go beyond the

current-state of research by addressing open questions in the methodological procedure of

Lange et al. by quantifying both measurement and analysis errors in the procedure and

increasing the overall repeatability of the analysis. Furthermore, it adds empirical value by

applying the given method to different SPNs, covering both transiently end-linked tPEG

networks (published in [30, 55] and permanently-linked networks (published in [47, 70,

71]).

A better empirical understanding of the relationship of cyclic defects and the distribution

of connectivity motifs is provided by investigating the amphiphilic tPEG-tPCL and a

complementary tPEG-tPEG network in good solvents with respect to variations in key

synthesis parameters (concentration cprep, temperature T , solvent). Detailed MQ NMR

reveals that the heterocomplementary oxazinone-based synthesis is capable of producing

gels nearly free of elastically inactive defects. However, across all variations, the network

showed a dominating DL fraction that was significantly higher in comparison to that of the

Sakai gel, thus revealing that the DL fraction can depend on not yet understood influences

of the synthesis. A homocomplementary end-linked tPEG-SH system was investigated

with a variation on cprep up to several times the overlap concentration c∗, which yielded

the surprising result that even a homocomplementary reaction is able to produce networks

reaching primary defect fractions and connectivity motif distributions comparable to the

Sakai network. Although the synthesis itself is barely used in current research, the result

challenges the need for a heterocomplementary reaction at least for cprep ≫ c∗.

For the transiently-linked networks one of the main motivations arises from the potential

self-repair of network defects as mentioned before. While this behavior has already been

studied in literature in terms of e.g., rheological modulus, a discussion on the connectivity

motif distribution is yet missing. In this work, the latter aspect is discussed phenomeno-

logically by studying different transient networks. A defect-rich tPEG-linPEG (A4-A2)

metallo-supramolecular dual network with an additional ion-mediated terpyridine binding

site (therefore a mixture of permanent and transient links) is studied with and without

ions [55]. While the overall connectivity motif distribution is not impacted by the addi-
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tional transient links, it could be shown that networks could be successfully reinforced to

the expense of the addition of ion-mediated chain clusters. A later chapter on an A4-A4

tPEG network utilizing a similar chemistry in combination with a variety of ions and an

alternative (more sterically demanding) phenantroline end group focuses on the question

of the feasibility of utilizing the concept of steric hindrance of different supramolecular

coordination complexes as a tool for regulating the degree of self-repair. Again, MQ NMR

was able to quantify chain-level connectivity motif distributions and provide successful

insights into this synthesis strategy.

Finally, the microstructure of the amphiphilic tPEG-tPCL network is studied on the nm-

scale using a mixture of SAXS, MAS DQ NMR (an extension of the aforementioned MQ

NMR method with chemical resolution under magic-angle spinning) and pulsed-field gradi-

ent (PFG) NMR for information on the diffusion of polysaccharide (PSC) and polystyrene

(PS) probes within the network. The aim of this venture is a characterization of the

network morphology in a non-selective and selective solvent to characterize the changes

occurring upon microphase separation (MPS) allowing for a better understanding of the

interplay of MPS and network constraints by crosslinked chains. Intuitively, it can be

assumed that the crosslinks pose a constraint on the rearrangement induced by the solvent

change. Using SAXS, these length scales (cluster distance and size) were estimated and

compared with a bond-fluctuation model (BFM) simulation prediction provided by collab-

orators, revealing a quantitative match. Additionally, it allowed for a critical test of the

validity of the Teubner-Strey model (originally used only for liquid micro-emulsions [72])

for the case of MPS of an ACPN. The use of MAS DQ NMR allowed for a prediction of

the orientation of the PEG chains after MPS, revealing a strong orientation effect along

the cluster surface.

Open questions concerning the diffusivity of probes are addressed using PFG-NMR. While

the current literature addresses predictions mainly for colloidal probes (see e.g. a recent

review of Amsden [73] using ideas of a well-defined "mesh size", this work refrains from

these models as non-colloidal probes are used. Instead, it follows up a model motivated

by polymer chain diffusion in the semi-dilute regime developed by Michael Lang [74] and

estimates the characteristic length scales in terms of a hydrodynamic screening length ξh.

With that, discussions and open questions on the meaning of extracted length scales for

"mesh sizes" and related discussions on the ambiguity of the term (with definitions that

easily span a decade of length scales from the correlation blob size ξc to the geometric

distance) [75, 76] are laid to rest for this particular system. By measuring ξh for both

selective and non-selective solvent, it could be shown that MPS does not significantly affect

the diffusion of probe molecules, as the surrounding PEG matrix leaves enough volume for

a comparable diffusion of probe molecules.
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Chapter 2

Polymer chains and networks

2.1 Polymer chains: Conformations and length scales

Many properties of polymer networks, such as the residual dipolar coupling (RDC), the

corresponding correlation length scale ξc and length scales occurring upon microphase

separation (MPS), depend on the spatial extent and orientation of the respective chains

in solution. To understand the changes that occur to a chain after it is immersed in a

solvent at finite concentrations, the relevant single-chain equilibrium length scales will be

discussed first for establishing a foundational understanding.

The most simple description of the length scale occupied by a polymer chain can be made

using the approximation of freely jointed straight rods of length lc equal to the sum of the

absolute values b of the individual bond vectors b⃗. This results in a quantity called the

contour length and serves as the absolute maximum length a polymer chain can realize.

Lc =
N
∑

i=1

|⃗bi| = bN (2.1)

However, it is clear that the contour length alone is a non-descriptive measure for the

effective size of a chain given the intricate spatial arrangements and conformations that

polymer chains may adopt, neglecting e.g., chain flexibility, self-avoidance and topological

constraints. Due to the typically high number of monomers that constitute a polymer,

stochastic quantities and distributions of length scales are typically used. The most simple

model relying on a stochastic description is the freely jointed chain model, which assumes

a random walk of conformations along the chain without further restrictions due to, e.g.,

steric hindrance. It results in a 3D-Gaussian distribution of end-to-end vectors as follows:

PN(r⃗) =

(

3

2πb2N

)3/2

exp

(

−
3r⃗2

2b2N

)

(2.2)

From this, the n-th statistical moment ⟨r⃗n⟩ can be easily obtained and used as a descriptor

for the length scales. The square root of the second moment, being the mean squared end-

to-end distance Ree, is typically used, which is a non-vanishing quantity by definition.

Compared to contour length, the scaling exponent of N is significantly smaller (ν = 0.5
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instead of ν = 1), indicating much smaller distances and coil-like structures.

Ree =
√

⟨r⃗2⟩ = bN1/2 (2.3)

While this model accurately predicts a few cases where polymers have nearly ideal chain

structures, it fails as a basis to accurately predict many polymer properties due to the fact,

that conformational correlations of neighbouring monomers are ignored (mathematically,

it is assumed that the ensemble average over the bond angle θij converges towards zero),

which is a not borne out by reality on a single-monomer level. However, instead it con-

verges towards a finite value Cl, whose sum over all monomers Cn is referred to as Flory’s

characteristic ratio which typically is found to be on the order of 4 . . . 10 (see ref. [5] and

references therein) with a finite limit value C∞ for long chains (n ≫ 100). With that, we

can approximate Ree as follows:

Ree = C1/2
∞

· bN1/2 (2.4)

The exact values of C∞, as well as the values of N at which the limit value is reached,

depend on the stiffness of the chains, which is translated into the correlation of the bond

angle between neighboring monomers.

C∞ =
⟨r⃗2⟩
Nb2

=
lk
b

(2.5)

A useful model is the projection of a real chain onto an equivalent freely-jointed chain

that has the same Ree and scaling law as described in eq. 2.3. with an effective number

of freely-jointed monomers Nk and bond length lk which are called Kuhn monomers and

Kuhn length respectively.

√

⟨r⃗2⟩ = lkN
1/2
k = C1/2

∞
· bN1/2 (2.6)

Similarly to C∞, the properties of the Kuhn chain (Nk, lk) depend on the number of

monomers N needed to realize a complete conformational decoupling (⟨cos θij⟩k = 0) of

the resulting Kuhn monomers Nk.

There are numerous more models available to accurately describe the end-to-end distance

of polymer chains. These models cater to general cases as well as specific scenarios such

as stiff chains, while often incorporate assumptions about bond angle (referred to as the

"Freely rotating chain model") or torsion angle (known as the "hindered rotation model"),

or even employ alternative theoretical approaches (like the "Worm-like chain model").

However, for the purpose of this work, none of these models is necessary, and thus are not

discussed here.

As a last note concerning the actual end-to-end distance of a polymer chain, it should

be noted that in all models presented, the possibility of the chain crossing itself was not

considered. While this is not necessary for very short chains, it becomes increasingly

probable with an increasing number of monomers. It was found by Flory and Fischer

[77, 78], as well as subsequent numerical calculations [79], that the implementation of an

excluded volume changes the exponent of eq. 2.3 qualitatively. The Flory-Fischer argument
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predicts a scaling of Ree ∼ N0.6, while numerical calculations of this behavior (commonly

referred to as a self-avoiding walk - SAW ) predict a scaling law of Ree ∼ N0.588.

Although the provided end-to-end distances will be useful in the following chapters on

microphase separation, additional limitations arise from the specific types of monomers

(with more than two chain ends) used in this work. In this case, the end-to-end distance

is not defined and the approximation of chains with functionality numbers f > 2 by linear

chains (f = 2) is not accurate. Thus, the radius of gyration RG can be used as another

measure to describe the size of a polymer chain yielding good approximations for higher

functionalities as long as the respective arms are of similar size (which is equivalent to the

assumption of a globular macromer). Then, the average distance of each monomer to the

center of mass (r⃗c) of the chain is defined as follows:

R2
G =

1

N

n
∑

i=1

(r⃗i − r⃗c)
2 (2.7)

For a linear polymer chain with Nk Kuhn monomers of length bk

⟨R2
G⟩ =

1

6
Nkb

2
k (2.8)

is found. For the special case of f -arm star-shaped polymers (and the common case of

f = 4), this equation is reduced to the following form [5]:

⟨R2
G⟩ =

[

Nkb
2
k

6f

](

3−
2

f

)

f=4
≈

1

10
Nkb

2
k (2.9)

Hence it is shown that the radius of gyration of a 4-arm star polymer chain can be approxi-

mated by a linear chain with 3/5th of the number of Kuhn monomers, which is higher than

the intuitive estimate of 1/2 obtained by considering that the diameter of a star equals the

length of two arms.

Using the Gaussian distribution function of the end-to-end distance of a polymer chain

presented in eq. 2.2, one can immediately derive a "0th order" approximation of the

response of a polymer chain upon external deformation as follows: With prior knowledge

of the distribution function, the entropy of the chain can be described by resorting to its

definition as S = kB lnΩ, where Ω is the probability distribution of all states the system

can realize (and therefore conveniently equals eq. 2.2).

S(N, r⃗) = kB lnPN (r⃗) = −
3

2

kBr⃗
2

b2N
+ S(N, 0) (2.10)

Therefore, the Helmholtz free energy F = U−TS ≈ −TS and the (microscopic) retractive

force fel = −∂F/∂r arising from an external deformation of size ∆r can be written as:

fel = −
(

∂(U − TS)

∂r

)

r=∆r

= −
3

2

kBT

b2N
∆r (2.11)

Here, U = 0 was used, since it is usually assumed that the chain is treated as a free chain

at thermodynamic equilibrium without additional internal interactions. The result of this

treatment is a micro state-reducing retractive force of entropic origin (entropic elasticity),
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that expresses the urge of the system to maximize the number of accessible micro states.

Although this treatment is valid only for small deformations (it is easily seen that this

expression does not include any arguments of finite extensibility), it will be sufficient for

the following sections and used to explain the behavior of a single polymer chain in solution.

2.2 Thermodynamic properties of polymers in solution

So far, polymer chains have been discussed only in the context of a set of coexisting, but

not interacting, single chains, which while a useful concept, is unrealistic for practical

considerations. An extension of the concept of isolated chains to polymer solutions and

subsequently polymer networks needs consideration of several effects. A first extension to

a single chain immersed in a solvent will describe the interaction of a chain and solvent

molecules and the resulting impact on its conformation. In the second step, the impact of

a finite polymer concentration (or volume fraction) will be discussed.

For describing concentration-dependent effects in polymer solutions, it is intuitive to move

away from absolute concentration measures and consider relative descriptions such as the

overall polymer volume fraction φ or the internal polymer volume fraction φi within the

pervaded volume of a single chain. Choosing again a single chain as a starting point, one

can estimate φi by comparing the volume of N monomers with a respective size of b with

the chain volume (described by the sphere spanned by the end-to-end distance Ree = bNν).

φi ≈
b3N

(bNν)3
= N1−3ν (2.12)

Thus, it is easily seen (e.g., N = 50 and ν = 3/5 ⇐⇒ φi ≈ 0.04) that an isolated chain

in solution is internally highly diluted.

2.2.1 Polymer chains in solution

A possible description of the thermodynamic behavior of polymer chains in solution is

provided by the Flory-Huggins lattice theory, where the constituents of a binary mixture

(being either two polymers or a polymer and a solvent) are placed on a lattice under the

assumption of an average interaction potential that is constant across the lattice (mean-

field theory), since the occupation probability of a specific lattice site is based only on

average compositions (neglecting spatial correlations arising from chain connectivities).

The Gibbs free energy of mixing is considered as the sum of an enthalpic and entropic

component, for which expressions will be derived.

∆Gmix = ∆Hmix − T∆Smix (2.13)

The entropic component can be derived by counting the possible states of each molecule

in the lattice and deriving the entropy according to its thermodynamic definition using

S = kB lnΩ. This results in the following equation that describes the entropy per lattice

site, where R is the gas constant, φ1,2 are the respective volume fractions and N1,2 the
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number of lattice sites occupied.

∆Smix = −R

(

φ1

N1
lnφ1 +

(1− φ1)

N2
lnφ2

)

(2.14)

The enthalpic part of eq. 2.13 is obtained considering the change in enthalpy after replacing

a molecule at a lattice site with a molecule of the other kind. For that, we consider

the pairwise interaction energies between molecules of the same kind (ϵ11) and between

molecules of different types (ϵ12 and ϵ21). While the probability of each pairwise interaction

is governed by the respective volume fractions φ1,2, the interaction parameter (also called

Flory-Huggins parameter) itself is defined independent of the respective volume fractions

as follows:

χ ∝
1

T
(ϵ12 − 0.5(ϵ11 + ϵ22)) (2.15)

With that definition, the enthalpy of mixing is obtained in the following way:

∆Hmix = χφ1(1− φ1)kT (2.16)

With that, the Gibbs free energy of mixing for a polymer in a solution (N2 = 1) becomes:

∆Gmix

RT
= (1− φ1) ln(1− φ1) +

φ1

N
ln(φ1) + χφp(1− φ1) (2.17)

From this, it can be easily seen that for large N one of the two entropic terms vanishes,

resulting in a mixing process that is dominated by energetic contributions and most im-

portantly, the magnitude of χ. In most cases, χ is positive and large (> 0.5), owing to

the preference of chains to be surrounded by a chemically similar environment and thus

rendering the overall process of mixing polymers difficult. With this in mind, it should

be evident that, in polymer reactions involving two different compounds, such as ACPNs,

one should always consider the possibility of component demixing as part of the overall

assessment of potential issues.

While the Flory-Huggins theory provides a description for the change in the Gibbs free

energy arising from "dropping" a single chain in a solvent, it neglects the entropic contri-

bution manifested in the elastic free energy of the chain as discussed previously in eq. 2.11.

Flory’s approach of describing the swelling of a single chain in a good solvent is based upon

the assumption that the equilibrium structure is determined by the balance of these two

energy contributions and reached once the change in total free energy due to swelling equals

0 [80]. Using this idea, Flory obtained several relationships for the end-to-end distance in

both, good and θ solvent (negligible influence of the solvent).

For a θ solvent, the chain maintains its initial conformational state because of the cancel-

lation of both energy contributions. However, for a good solvent, the chain swells until it is

limited by the elastic energy, resulting in the well-known scaling of Ree ∝ N3/5, indicating

that a single polymer chain in a good solvent will always behave as if it were a real chain

independent of the exact value of χ. It should be noted, however, that this consequence

of Flory’s may not reflect the behavior of real systems, and thus, the latter equation is

usually generalized to the more well-known equation.
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Ree ∝ bNν (2.18)

with ν taking intermediate values in between the ideal and the real chain (1/2 ≤ ν ≤ 3/5)

[76]. So far, the case of a poor solvent (resulting in a collapse of the chain) was not covered

and will be only briefly mentioned as Ree ∝ bN1/3. For more information on its derivation,

the reader is referred to the concept of the Mayer-f function as a way to quantify this

exponent as shown in e.g., ref. [5].

2.2.2 Concentration-dependent conformational changes in polymer

solutions

Now, the concept of a single chain in solution will be extended to higher concentrations,

revealing conformational changes arising from inter-chain correlation effects. When dis-

cussing these effects, one can easily imagine that these correlations will be strongly depen-

dent on the size (number of monomers N) and concentration of polymer chains in solution,

as well as the conformation. For this, one commonly introduces the concept of the overlap

concentration c* or the overlap volume fraction φ∗, both of which can be used to describe

the occupied volume of the chain compared to its pervading volume as follows:

φ∗ =
vmonN

R3
ee

=
b3N

(bNν)3
= N1−3ν (2.19)

c∗ = ρφ∗ (2.20)

Here, ν is the excluded volume exponent (1/2 . . . 3/5 under the assumption of a non-

selective solvent), leading to overall exponents between −1/2 and −4/5 for the power law.

At a polymer volume fraction of φ = φ∗, it is assumed that the solution is filled by spheres

of pervaded chain volumes, with the chains itself being on the verge of overlap. Using this

property, polymer solutions are classified into dilute systems (φ < φ∗), semi-dilute systems

(φ∗ < φ < φ∗∗), concentrated systems (φ > φ∗∗) and polymer melts (φ = 1).

In the dilute state, a chain will not interfere with its neighbors; therefore, its size is pre-

served according to R ∼ Nν with ν = 1/2 for ideal chains (θ solvent) and ν = 3/5 for

chains in good solvent. Upon removal of the solvent (= polymer melt), this changes to

R ∼ N1/2 independent of the initial conditions, as the chains in the melt always behave

as if the chains were ideal [81]. From this, the semi-dilute and concentrated system can be

extrapolated (as changes should be gradual and not step-wise), with details given below:

At concentrations above φ∗, chains will either need to shrink to avoid overlap with neigh-

boring chains (called the isolated model), or alternatively favor a mixture of shrinking and

chain overlap (called the mixed model), which in both cases leads to a reduction in the

overall end-to-end distance. However, since experiments indicate that the mixed model is

more plausible, only the mixed model will be briefly explained here. Although the effective

chain pressure due to the crowding condition leads to chain overlap on a large scale, it

is assumed that excluded volume effects will dominate the chain conformation on a small

scale. Therefore, a concentration blob ξc is constructed that is roughly equivalent to the

volume of the pervaded chain. It is constructed such that, at its border, the probability
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of finding a monomer of the same chain and the probability of finding a monomer of a

different chain are equivalent. At the overlap φ = φ∗ it is assumed to be equivalent to

an ideal chain (see eq. 2.3). Additionally, it is assumed that it does not depend on the

molecular weight of the polymer, since the blob itself (and therefore the whole system) can

simply be rescaled without changing the relative length scales. With these assumptions, a

scaling law is created in the following way:

ξc = RF

(

φ

φ∗

)z

(2.21)

Eq. 2.21 is used to fulfill the assumption that at φ = φ∗ the concentration blob is equivalent

to the Flory radius, while it will shrink at higher concentrations. Using this equation in

conjunction with eq. 2.19, we arrive at the following:

ξc = bN3/5

(

φ

N−4/5

)z

∼ N (3+4z)/5 (2.22)

Using the obvious assumption stating that ξ ∼ N0 (since it depends only on φ), the

exponent can be calculated to z = −3/4, resulting in a power law of the form:

ξc ∼ φ−3/4 (2.23)

Upon further increase in concentration, the correlation length will decrease toward the

size of the thermal blob ξT (which is the size at which the excluded volume effects are

smaller than kT and thus negligible), whose size itself is independent of the concentration.

Using the result of the semi-dilute solution (eq. 2.22), we arrive (calculation not shown

here) at the following simple expression for the threshold volume concentration φ∗∗ of the

concentrated regime:

φ∗∗ ≈
v

b3
(2.24)

As the correlation blob size in the concentrated regime is crossing the thermal blob size,

at which the chain behaves like an ideal chain with R = bN1/2, it automatically follows

that the entire chain will behave as if it were an ideal chain.

For a θ-solvent, the exponent in Nν and N1−3ν of eq. 2.22 changes from 3/5 to 1/2, thus

resulting in a scaling of ξc in the semi-dilute regime of ξc ∝ φ−1.

2.2.3 Diffusion of chains in solutions

The diffusion of a polymer chain within a solution of chains is one of the fundamental

physical processes occurring in polymer solutions. Its conceptual treatment can take many

forms, such as the treatment as a colloidal particle or a chain "reptating" along its own

curvature through a dense and crowded solution of chains. This section will start by

recalling the well-known diffusion principles of a simple hard-sphere probe, and extend

this idea to more complex polymer chains.

As investigated by the pioneering work of Einstein and Smoluchowski [82, 83], the three-

dimensional mean-square displacement of a free colloidal particle due to Brownian motion
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has a linear dependence on the observation time and is connected via a proportionality

called the diffusion coefficient D:

⟨(r⃗(t)− r⃗0(t))
2⟩ = 6Dt (2.25)

Therefore, we find the average distance as the square root of the latter equation with a

scaling of t1/2.

The motion of this hard-sphere probe is considered to be influenced by friction, thus

raising the need for a model of the frictional force f⃗ , which will depend on the velocity of

the molecule in question, as well as a size- and shape-dependent parameter ζ, called the

friction coefficient. With that, the diffusion coefficient can be expressed in dependence of

the friction coefficient, leading to the Einstein relation D = kT ζ−1. For the case of a hard-

sphere probe and a Newtonian liquid of a given viscosity η, the Stokes-Einstein equation

is obtained using the Stokes law substituting ζ by a suitable hydrodynamic radius Rh of

the probe and the solution viscosity η.

D =
kT

6πηRh
(2.26)

For polymeric materials, which are not necessarily represented by the simple hard-sphere

model, both the Rouse model or the Zimm model can be considered as possibly suitable

approximations of the overall chain diffusion coefficient. The Rouse model considers a

mapping of the polymer chain onto a construct of spherical beads that are interconnected

by springs. Between the beads, there is no hydrodynamic interaction, which results in a

friction coefficient ζ that is independent of position and the same for each bead, which in

turn results in a simple additive chain friction coefficient ζc = Nζ. Thereby, it is assumed

that solvent molecules will drain freely through the chain (’free-draining limit’). Using the

Einstein relation above, we can formulate an alternative equation similar to eq. 2.26 for a

Rouse chain:

D =
kT

Nζ
(2.27)

As the relationship of the end-to-end distance Ree (which instinctively can be assumed as

a crude alternative measure to Rh) is nonlinear to the number of monomers N − 1 (see eq.

2.18), one immediately finds a distinct difference in eq. 2.26 and eq. 2.27 (as ν < 1).

However, the modeling of polymer diffusion using the Rouse model does not always reflect

experimental observations, because of the violation of the "free-draining solvent" condition.

Movement of the beads on the chain may drag surrounding solvent, resulting in an effective

hydrodynamic interaction between the beads. This drag effect will result in modified

hydrodynamic friction and is referred to as the "non-draining" limit. Therefore, Zimm

provided a modification of the Rouse model (details in [84]) and is known as the Zimm

model. Because of the drag effect on the solvent molecules, the pervaded chain volume

is assumed to be a solid ("sphere-like") object with a size approximated by the overall

coil size according to eq. 2.18. With the chain now being treated as a solid object, the

Stokes-Einstein equation is now valid with the radius of the sphere R being approximated
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Figure 2.1: Tentative picture illustrating the diffusion models explained in this chapter.
For all processes, the "random force" from the diffusive process is shown as a red arrow.
a) Diffusion of a polymer chain with N = 20 Kuhn segments (light blue ellipsoids) with a
beads and springs representation according to the Rouse model. Random forces act on each
subchain, ignoring the surrounding solvent molecules (spheres). b) The diffusive process of
each subsegment induces a viscous drag effect on the solvent molecules that are close (dark
blue arrows), leading to an effective diffusion of the chain + solvent as a solid sphere. c)
Reptation motion of a chain along its primitive tube (blue) in a strongly-confined matrix
of other chains (grey tubes).

by the chain size (up to a constant factor), resulting in the following variation of the

Stokes-Einstein relation:

D =
kT

ηbNν
∝ M−ν

w (2.28)

As shown by Michael Lang in ref. [74], this transition can be described by considering that

in a semi-dilute solution, the hydrodynamic screening length ξh can be approximated by

the static correlation length ξc of the solution (or e.g., network) [85].

ξh ≈ ξc ≈ b

(

b3

v

)(2ν−1)/(3ν−1)

φ−ν/(3ν−1).

Here, φ is the polymer volume fraction of the surrounding matrix and b denotes the root-

mean-square end-to-end distance of a Kuhn monomer. Following steps outlined in ref. [74],

the ratio of the diffusion coefficient D0 of a chain of size Rh in a dilute solution vs. the

diffusion coefficient D in the crossover regime where ξh < Rh (but Rh still not comparable

to the tube diameter) can be described by the following relation:

D

D0
≈

gbNν

ξN

≈
(

b3

v

)

2(2ν−1)
3ν−1

(

φ

φ∗

)

−
1−ν

3ν−1

N−(1−ν).

(2.29)

If the diffusing chain experiences additional spatial constraints due, e.g., to pores or a

comparably dense mesh of a polymeric matrix, the resulting power law D ∼ N−ν will
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qualitatively change to the reptation regime with D ∼ N−2 as shown by de Gennes [86],

where diffusion can only occur along the primitive path (’tube’) of the polymer chain.

2.3 Star polymer networks

In the preceding sections, we primarily examined the physical properties of polymers in

terms of their individual chain structure and the interactions between chains in a solution

at finite concentrations. However, it is crucial to note that the majority of polymer ap-

plications center around their mechanical properties, which are typically created through

a process called crosslinking. By formation of chemical or physical bonds between the

chains, a macroscopic elasticity can be achieved due to the spatial fixation of the chains’

ends. Given a diversity of crosslinking methods paired with a a wide selection of monomer

architectures (e.g., linear precursors, star precursors or block star precursors) and different

synthesis strategies (e.g., bulk and solution synthesis or homo - and heterocomplementary

end-linking reactions), a plethora of different gel morphologies can be realized (see e.g., refs.

[3, 4] for comprehensive reviews). Here, two important aspects of these diverse systems

are shortly presented: their mechanical behavior, as well as deviations from the desired

behavior due to network defects arising on a chain-level or nm-scale. As this work has a

strong focus on star precursors (precursors with f > 2 - but typically f = 4 - end-linking

sites), the latter aspect of network defects will only be discussed in this context.

2.3.1 Network elasticity

Generally, mechanical properties of gels (or elastomers in general) can be characterized in

terms of e.g., (engineering-) stress σeng - elongation ratio λ curves, that characterize the

uniaxial stretching process of a chain. Both are defined as follows:

σ =
F

A0

λ =
L

L0

Here, F is the applied force applied on the given material area A0, and L0, L are the

respective lengths pre- and after stretching. Often, an alternative formulation is used

based on the strain ϵ = (L−L0)/L0. As shown in section 2.1, the ratio of the unperturbed

end-to-end distance Ree and the contour length (being the equivalent of a fully stretched

chain) scales with ∝ N1−v, explaining experimentally observed stretching ratios of the

order of 10 in terms of conformational rearrangements and rubber elasticity (see eq. 2.11).

Using the definition of engineering stress above, we can define a criterion for a polymer

solution to be treated as a polymer gel (or in a more general sense: polymer network) using

an empirical observation. By measuring the time-dependent stress relaxation of the com-

pound upon exertion of a certain stress, a fundamental difference between liquids (polymer

solutions) and solids (polymer networks) is found. Viscoelastic behavior in solutions (and

also polymer melts) is only observed for short time scales, resulting in an overall flow of

the sample at long times and σ(t = ∞) = 0. Once a significant amount of crosslinks has
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Figure 2.2: Left panel: Visualization of the differences of engineering stress σ over time
for a liquid (e.g., polymer solution) or solid (e.g., network). Right panel: Qualitative plot
of an oscillatory shear experiment for a permanent crosslink (e.g., a chemical network) or
a dynamic crosslink (e.g., a physical network with transient bonds). Regimes other than
the rubbery plateau are only shown for the sake of completeness, but not mentioned in
the text. For the chemical (permanent) crosslink, no terminal flow is observed, whereas
the physical (transient) crosslink displays a finite plateau width with an adjacent terminal
flow region. For more information, the reader is referred to e.g., ref. [5].

been reached (called the gel point), the overall behavior switches from a viscoelastic liquid

towards a viscoelastic solid with σ(t = ∞) > 0 (see Figure 2.2).

In many experiments, the mechanical properties of the emerging network are character-

ized by the shear modulus G, being the linking factor between stress and deformation.

The storage (G′) and loss modulus (G′′) of a sample are commonly measured under the

influence of an oscillating strain of frequency ω [87]. Crosslinked samples will experience a

plateau with a weak or no dependence of G′ on ω (the so-called rubber regime or rubbery

plateau), while a viscoelastic liquid will show a terminal flow regime with G′(ω) ∝ ω2 (see

Figure 2.2). The height of the plateau is determined by the crosslink density (see next

paragraph for two simple models), whereas the width of the plateau is characterized by

the type of crosslinking and the glass transition temperature. The high-frequency limit of

the plateau (equivalent to unchanging frequency but lowered temperature by application

of time-temperature superposition [5]) is dominated by the transition to the glassy state,

whereas the low frequency (or high temperature) limit is either non-existent (permanent

chemical crosslink) or dominated by the bond lifetime (transient/physical crosslink). As

will be discussed in section 3.3, a well-defined plateau value of the shear modulus G′ (trans-

lated to an unchanging bond order parameter Sb of the crosslink) is needed for successful

application of the MQ NMR analysis used in this work (see section 3.3).

Modulus prediction

One of the most simple yet applicable models of predicting the shear modulus (among

other mechanical properties) of a polymer network is the affine network model. The model

is based on assumption that network junctions are fixed in space, thus resulting in the idea

of macroscopic network deformation carrying over to the microscopic chain deformation.

Thus, a deformation of an arbitrary factor λ will result in a deformation of the end-to-end
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distance of each chain by the same λ. With derivations expanding on the idea of entropic

rubber elasticity of eq. 2.11 as shown in e.g., ref. [5], the shear modulus is predicted to be

Gaff =
ρRT

Mc
(2.30)

where ρ is the material’s density, R is the gas constant, T is the temperature and Mc is

the molecular weight of a crosslink (or network strand).

While the affine model yields satisfactory predictions for the case of ideal bulk networks,

it fails to predict networks of higher dilutions (= gels) and those with a significant number

of inelastic material (see section 2.3.2 for more information) or topological peculiarities

such as entanglements. For the latter example, the reason is, that the assumption of static

network junctions is easily violated once their surroundings are not fully integrated into

the network. For this case, the phantom model can be applied, correcting the affine model

by incorporating the possibility of crosslink fluctuations. It considers that the ends of the

strands can move, subject to the given hierarchy of network connectivities (instead of of

being completely fixed in space), thus allowing for fluctuations. With derivations, again,

given in e.g., ref. [5], the phantom model modulus can be given in terms of the affine

modulus given before:

Gph =

(

1−
2

f

)

Gaff =

(

1−
2

f

)

ρRT

Mc
(2.31)

Here, Gaff is the affine modulus prediction according to eq. 2.30 and f is the functionality

(number of active crosslinks per strand) of the network. Given that spatial fluctuations of

the junctions are allowed, it results in a modulus significantly lower than the affine modulus

(a factor of e.g., 0.5 for tetra-functional networks with f = 4).

Equilibrium swelling of networks

Given the entropic chain elasticity discussed before (see eq. 2.10), it is clear that - even for

a good solvent - swelling until chains are fully stretched is not expected. The equilibrium

degree of swelling can be determined using the Flory-Rehner relation [9], which arises from

minimizing the total free energy F = ∆Fmix + ∆Fel (see eq. 2.11 and eq. 2.13) that is

assumed to be a superposition of contributions from the mixing free energy ∆Fmix and the

entropic elastic contribution ∆Fel. Under the further assumption of an isotropic and affine

swelling process, it follows:

ln(1− φ2) + φ2 + χφ2
2 +

ρν1

Mc

(

φ
1/3
2 +

φ2

2

)

= 0 (2.32)

Here, φ2 is the polymer volume fraction (associated to the equilibrium degree of swelling

as φ2 = Q−1
eq ), χ is the Flory-Huggins parameter between polymer and solvent, ρ is the

bulk polymer density, ν1 is the molar volume of the solvent and Mc is the molecular weight

of the crosslink.

It should be noted that the above relation only suits as an estimate, as it comes with

several limitations, including that it requires the network to be prepared under solvent-
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free conditions, assumes affine stretching of the chains and requires a Gaussian distribution

of end-to-end distances. For all these limitations, numerous corrections have been provided

that will not be discussed in more detail [5, 88]. The key conclusion for this work is that

the equilibrium degree of swelling is strongly influenced by the molecular weight of the

crosslink and the solvent quality, thus e.g., providing a qualitative argument for the low

Qeq observed in ACPN swollen in selective solvent.

2.3.2 Defects in star polymer networks

Before discussing the different types of network defects that can be found in star polymer

networks (SPN), a definition of ideal SPNs will be given, such that defects can be defined

as deviations from the ideal structure. The swollen (equilibrium) structure arising from

crosslinking star-shaped precursors of a given functionality f should yield a homogeneous

network, where every precursor is crosslinked to exactly f different neighboring precursors.

Network homogeneity can be defined by quantifying the end-to-end distance of the strands

between two crosslinking points and its distribution. In an ideal network, this distribution

will have a vanishing width.

Chain-level connectivity defects

A deviation from this ideal structure can arise on local chain-level scales (l ≈ 1−10 nm, see

Figure 2.3) and on a mesoscopic length scale much larger than the size of a single precursor

star (l ≈ 10 − 100 nm). The most simple defect is a dangling chain end, which is an

unlinked precursor arm, arising from either a non-functionalized arm, a non-stochiometric

ratio of precursors or (in usually small amounts [48]) from remaining end groups once the

synthesis is terminated after a certain time. Its occurrence results in a reduction of the

storage modulus of the resulting network, as it provides a structure with reduced elastic

effectiveness. Another large class of defects only found in SPNs is cyclic defects (see Figure

2.3), whose classification derives from graph theory that considers the crosslinked chains

as abstract edges and the crosslink points as vertices. With that, each connectivity motif

(aside from unlinked precursors or dangling chain ends) is assigned a cycle rank ζ that is

equal to the minimum number of paths needed to start from and reach the same vertex

without crossing any path twice [89]. For example, a connection of two arms of a single

star (commonly called primary loop) can be classified as a cyclic defect of order ζ = 1.

If two stars are connected by two of their arms each (commonly called "double link", see

Figure 2.3), its order will be ζ = 2. Furthermore, junctions can be classified as active (=

contributing to the phantom modulus) if at least three edges point towards the network [90].

If a junction would only consist of two edges, it would merely be an extension between two

vertices. Although not shown in Figure 2.3, it can easily be imagined by considering two

adjacent 4-arm stars and taking away two arms from one of these two stars, transforming

it into a linear extension between two stars, both of which are now connected by a single

chain of twice the molecular weight.

Quantification of the fraction and cycle rank of these defects (using e.g., network disas-

sembly spectroscopy [24, 52], MQ NMR as shown in section 3.4.2 or BFM simulations
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Figure 2.3: Tentative sketch of a polymer network made of homocomplementary 4-arm star
precursors (see green star). The picture visualizes different kinds of connectivity defects,
such as unreacted arms (’dangling chain end’), stars being connected by two instead of
one arm (’double link’), entangled arms and intra-star connectivities (’primary loop’).
Additionally, a more complex cyclic defect, namely a 4-loop, is shown. Three-dimensional
structure and tetrahedral bond angles are neglected for simplicity.

[48]) allows for a prediction of the overall phantom modulus using e.g., RENT (real elastic

network theory) [24] or simulations [25]. Both of these (and respective consecutive works)

show that not only primary loops, but also elastically active higher-order cyclic defects,

such as the double link, reduce the phantom modulus [24, 25]. Naturally, the impact of

the fraction of elastically inactive structures is significantly higher, resulting in significant

reduction of the resulting plateau modulus due to its tendency to also destabilize its sur-

roundings. For the two other predominant connectivity defects found in SPNs with f = 4

[23], being the double link (DL, ζ = 2) and a set of connectivity defects with ζ = 3 (re-

ferred to as higher-order connectivity defects, HOC), RENT predicts respective values of

elastic effectiveness ϵ of ϵ2 ≈ 0.35 and ϵ3 ≈ 0.9. For all connectivity motifs with ζ > 3,

no significant reduction in elastic effectiveness is predicted for tetra-star precursors, thus

rendering their mechanical properties close to those predicted for the ideal structure.

A major aim of research on swollen polymer networks is the reduction of these defects

and establishing synthesis conditions that serve this aim. A popular way of suppressing

a significant part of cyclic defects (more specifically, all odd-numbered defects with ζ =

2n+ 1) is the usage of a heterocomplementary reaction (or A-B type reaction), as shown

by the pioneering work of Sakai et al. [21, 91]. This type of reaction uses two types

of f -functional star precursors (f = 4 in the aforementioned work) which cannot react

with their own type of precursor (hence "A-B type" reaction). Thus, one of the most

prevalent types of defects, the loop with ζ = 1 where two arms of the same precursors are
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Figure 2.4: Visualization of concentration-dependent large-scale network defects (’frozen
fluctuations’) on a polymer network based on 4-arm star precursors. The top panel visual-
izes the situation for c < c∗, where inhomogeneities are produced due to the non-existing
overlap in pervaded volume (dotted circles) of the stars. This feature is not found in the
bottom panel (c > c∗). The shown concept is strictly based on the assumption of a hete-
rocomplementary end-linking reaction.

linked, is completely prevented by chemical means. When this type of reaction is combined

with carefully chosen reaction conditions that ensure proper mixing of precursors and slow

reaction kinetics (shifting the overall process to reaction-controlled kinetics [92]), even

most of the unlinked chain ends (ζ = 0) can be prevented, resulting in a network with

the predominant defect being the double link connection with ζ = 2 [23], which - unlike

the other defects mentioned above - is an elastically active connectivity motif. Thus, more

mechanically stable network properties can be achieved.

Another well-known factor influencing the amount of chain-level defects is the preparation

concentration. At concentrations higher than the overlap concentration c∗, the overall vol-

ume is homogeneously filled with star precursors (per definition, see section 2.2.2), thus

reducing the chance of built-in spatial heterogeneities that originate from heterogeneities

already present in the precursor solution (see Figure 2.4). Therefore, many model net-

works aim for concentrations around or above the overlap concentration to significantly

reduce defective connectivity motifs [23, 52, 93]. As will be shown in section 6.3, a sig-

nificant increase in preparation concentration can even overcome the disadvantages of a

homocomplementary reaction, yielding gels with an overall structure that is comparable

to the heterocomplementary tPEG-water system.

Trapped entanglements

Another defect, which occurs only at higher polymer volume fractions, is trapped entangle-

ments. At concentrations c > c∗, the star precursors may intrude the pervaded volume of

their neighbors and lead to entanglements. Upon crosslinking, these interpenetrated struc-

tures can be connected to the overall network, leading to a trapped entanglement as shown

in Figure 2.3. Experimental studies have shown that entanglements for the 10 kDa tPEG-
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water system are negligible [94] even with each arm being above the molecular weight for

entanglements (Me = 2.2 kDa for a linear PEG chain in bulk; c ≤ 2c∗ was studied), whereas

mixtures of star precursors and linear extenders are more prone to form these structures.

A reason for this behavior can be speculated to be that star precursors are less prone to

interpenetration effects due to a higher monomer density within their pervaded volume as

compared to their linear counterpart (see e.g., ref. [95] for empirical evidence found for the

polystyrene-benzene system). Due to a trapped entanglement, an additional crosslink-like

structure is introduced, hence changing both the effective crosslink density (resulting in a

small-scale network inhomogeneity) while also decreasing the effective molecular weight of

the crosslink.

Nano- to microscale inhomogeneities

Finally, these small-scale defects introduced in the previous paragraphs may result in larger-

scale inhomogeneities upon swelling (length scales are typically several times larger than the

length scale of a crosslinked chain) [56] as most of these defects result in a heterogeneous

distribution of crosslinks. As exemplarily shown in a combined SANS + SLS study in

the tPEG-water system [22], a minimization of the chain-level inhomogeneities mentioned

above can also result in a strong reduction in these nanoscale inhomogeneities. Although

these inhomogeneities have a strong impact on the equilibrium degree of swelling (thus,

play an important role on the properties of the swollen material), they will not be discussed

further, as this work does not employ methods by which these can be detected (e.g., SANS,

SLS).
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Chapter 3

NMR methodology

The following chapter will provide a basis for the principles needed for the methods used

in this thesis. While it will provide a short general introduction, its focus will be mainly

on multiquantum (MQ) NMR, as well as pulsed-field gradient (PFG) NMR. For additional

information on relevant topics not discussed in this thesis, such as technical details, relax-

ation phenomena, and derivations of some used concepts, the reader is referred to, e.g. ref.

[96–98].

3.1 Basic principles

The most basic principle used in Nuclear Magnetic Resonance (NMR) is the Zeeman in-

teraction of a nucleus with a spin quantum number I ̸= 0, which, in short, results in a

splitting of the energy levels of a spin into 2I + 1 distinct levels in the presence of an

external magnetic field B0. For the nucleus most commonly used in NMR, hydrogen with

I = 1/2, two different energy levels (called α-sate and β-state) with an energetic difference

of

∆E = −γh̄B0 = h̄ωL

are found, where γ is the gyromagnetic ratio and ωL is defined as the Larmor frequency.

According to Boltzmann statistics, the energy difference will be translated into a popula-

tion difference in states with the result of a net magnetic moment µ⃗ based on the population

difference between the α and β states. Treating this magnetic moment in the electrody-

namical ’classical’ sense, it will be oriented parallel to B0 due to an acting torque T of

magnitude

T = µ×B0

and result in a build-up of so-called longitudinal magnetization Mz = dµ/dV [96] over a

time scale T1 (called spin-lattice relaxation). An additional consequence of this electrody-

namic treatment is the precession of µ around the director of B0 with the Larmor frequency

with ωL = 400MHz for all high-field measurements (B0 ≈ 9.4T) and ωL = 20MHz for all

low-field (B0 ≈ 0.5T) in this work.

As NMR does not detect Mz, but only parts of the magnetization that are perpendicular to

B0, the longitudinal magnetization is manipulated by applying radiofrequency (rf) pulses
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with a much smaller magnetic field B1 (and a director usually perpendicular to B0) that

is in resonance with the precession frequency ωL [96]. Application of these pulses for a

suitable duration (pulse length) results in a rotation of Mz around the director of B0 onto

the transversal x-y plane and a transformation of Mz to Mx or My.

The precession of Mx/y with ωL (for the case of an isolated single spin) can be detected by

a coil within the probe head part of the spectrometer, as the rotating magnetic field will

induce a current of the same frequency within the coil due to Ampère’s circuital law (or

Maxwell’s 4th law).

The resulting signal will be an oscillation modulated by a decaying exponential function

(other shapes may arise due to technical specifications or multispin interactions), which

is called the Free Induction Decay (FID). The decay time scale is characterized by the T2

relaxation time, which in turn depends on a variety of factors, including magnetic field

homogeneity and spin-spin interactions.

Using this as a basis, NMR can access structural information on the molecular level about

substances by studying shifts of the energetic gap (and therefore the measured frequency

ω = ωL ±∆ω) based on additional spin-based interactions, such as chemical shifts, dipo-

lar couplings or J-couplings. In general, it can be said that nearby nuclei will influence

the precession frequency of an observed nucleus/spin by partially shielding it from the

static magnetic field (chemical shift), via through-space coupling of spins through their

local magnetic fields (dipolar coupling) or by indirect coupling through chemical bonds

(J-coupling). In the simplest case, the chemical structure of a probe can be identified via

a Fourier transform of the superposed FID signal of the individual spins; more refined

statements on, e.g., molecular dynamics can be made by studying the interactions through

rigorous application of quantum mechanics and thereof derived pulse sequences (see the

following sections for exemplary applications). Depending on the specific sample and the

timescale of its molecular reorientation through Brownian motion, e.g. a small molecule

in solution (fast) vs. a polymeric chain in a rubber (slow), some of the aforementioned

interactions can be neglected, as their orientational dependence will result in averaging of

the interactions toward zero. Although the chemical shift will have an isotropical average

unequal zero, leaving the possibility of studying molecules in solution (solution NMR), the

dipolar interaction will be fully averaged out and only be relevant once molecules exhibit

molecular motions slower than the interaction frequency (≈ kHz) or have significant mo-

tional constraints. The latter regime, being dominated by dipolar couplings, is commonly

called Solid-state NMR and will be discussed in the following section.

3.2 Dipolar interaction in solid-state NMR

As mentioned above, the regime of solid-state NMR is mainly governed by orientation-

dependent interactions, which being the chemical shift anisotropy (orientation-dependent

shielding effects of the observed nucleus from the external magnetic field B0 by surrounding

electrons), the dipole-dipole interaction (through-space coupling of nearby nuclei with I ̸=
0 due to their local magnetic fields), and the quadrupolar interaction (local electric field

gradients for spins with I > 1/2). As a result, it is found that the spectral line of a given
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nucleus depends not only on its environment but also on the orientation of the respective

interaction vector with respect to B0. Although fundamentally different in physical nature,

they unite as a consequence of a change in the observed interaction frequency w by a few

Hz to several tens of kHz [99]. Although, generally speaking, these interactions must be

discussed separately in terms of their interaction matrices, this work refrains from doing

so because only the homonuclear dipolar coupling between neighboring protons will be

relevant for the upcoming chapters. It has the special property of an underlying axial

symmetry (parallel to the connecting vector), hence the relevant calculus can be broken

down to a scalar value, as well as a single angle θ, being the angle between the proton-

proton connection vector and B0, which will be briefly mentioned below.

Generally, the dipolar coupling interaction between two neighboring nuclei is caused by

their magnetic moment µ⃗ (assuming that they have a non-zero nuclear spin) and can be

described by a Hamilton operator (equivalent to the textbook case of two magnetic dipoles

in spatial vicinity):

HDD =
∑

i<j

h̄µ0

4π

γiγj

r3ij

(

I⃗j · I⃗i − 3
(I⃗i · r⃗ij)(Ij · r⃗ij)

r2ij

)

(3.1)

Here, γ are the respective gyromagnetic ratios, r⃗ij is the internuclear vector (pointing

from one nucleus to the other) and I⃗ are the spin operators. The distance-dependent

prefactor of the brackets can be condensed into D12 and is then called the dipolar coupling

constant and serves as a measure of the interaction strength. Depending on the relative

orientation (parallel or antiparallel), two different potential energies are accessible, resulting

in a possible spectral doublet. The resulting spectral shift can then be described by ω0

(the interaction strength) and the second Legendre polynomial P2(cos θ) (the orientation

dependence), which yields the following form:

ω(θ) = ±ω0P2(cos θ)
homo.
= ±

3

2
D12P2(cos θ) (3.2)

Consequently, the real part of the observed FID (within the rotating frame) will be modified

by the emerging spread of spectral lines, leading to a signal of the form

I†
FID ∝ cos

(

ω0(3 cos
2 θ − 1)t

)

(3.3)

for a single spin pair orientation, as well as

IFID ∝ ⟨I†
FID⟩θ =

∫ π

0
cos

(

ω0(3 cos
2 θ − 1)t

)

sin θ dθ (3.4)

as the result for a sample with isotropic distribution of orientations, where ⟨...⟩θ denotes the

average over all orientations and will be referred to as powder average. The emerging shape

I(ω) in the spectral domain is called Pake pattern (see Figure 3.2) and will have a width

equivalent to 3D with two distinct peaks separated by 3/2D (see Figure 3.2). In practical

applications, however, isolated spin pairs are rarely observed. Instead, complex multi-spin

systems are more commonly encountered. As a result, the distinct and well-defined Pake
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pattern of most substances becomes washed out, making it difficult to use the spectral

response to determine the value of D12 or even the average value Davg.. To access intra- or

intermolecular distances, as described in e.g., ref. 3.2, more sophisticated techniques are

required. These techniques mostly operate in the time domain because there is simply no

advantage of using the Fourier transform because of the presence of multi-spin interactions

and the chemical simplicity of many polymers. The following sections will delve into one

of these advanced methods, being Time-Domain Multi-Quantum (MQ) NMR, that can be

used to access the dipolar coupling values of substances within the rubbery plateau.

3.3 Relationship of dipolar interactions and local chain

motion

As mentioned before, the orientation dependence of the dipolar couplings of a spin pair

follows the second Legendre polynomial P2(cos θ). It will be reasoned that a similar

observable (following the same orientational dependence) is found in polymers and thus

the suitability of mapping observable dipolar couplings onto polymer dynamics will be

shown. For now, it is assumed that the polymer chain of interest will be far above the

glass transition temperature Tg, therefore displaying fast intra-segmental motions. The

set of spin pairs is assumed to be rigidly attached to the moving chain, which, as shown

by Cohen-Addad et al. [100, 101] and Brereton et al. [102, 103] leads to a pre-averaging

of the individual dipolar coupling (see Figure 3.1). Therefore, a chain can be thought

of as a set of NMR submolecules (an idea that strongly resembles the idea of the Kuhn

segment of eq. 2.6) with each of these having its own dipolar coupling vector being close to

parallel to the backbone chain, as long as the chain segment of interest is not motionally

decoupled by, e.g. residing in a side chain or other pecularities. Note that the exact

size of the NMR submolecule is vastly different for both authors (see ref. [102]), which,

however, for the following discussion does not matter due to another effect: The dipolar

truncation effect, see [104, 105], which describes how the presence of strong dipolar-coupled

spin pairs can influence the observation of long-rage weakly coupled protons, causes an

apparent narrowing of the range of observed dipolar couplings. Therefore, we can assume

for simplicity that our chain will have a measurable effective dipolar coupling value (Deff),

which is then mapped to the polymer chain by introducing the concept of the segmental

order parameter s [106, 107] as will be shown in the next equations. The segmental order

itself is defined as

s =
1

2

[

(3⟨cos2(β)⟩ − 1)
]

=
3

5

(

lR2

R2
0

)2

(3.5)

Here, s is the segmental (tensor) order parameter, β is the angle between the orientational

vector of the polymer segment and the end-to-end vector, ⟨...⟩ denotes the thermal average

over all conformations and [...] denotes the bulk average over all segments. For this to be

valid (and additionally converge to a non-zero value), it is assumed that the chain experi-

ences orientational constraints at the chain ends due to e.g. crosslinks or entanglements.

The same order parameter can also be defined in terms of the above-discused Deff by mea-

suring its reduction due to chain motions. The residual dipolar coupling that survives the
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Figure 3.1: Left: visual representation of the dipolar coupling tensor of a CH2-group with
the definition of the angle θ and the external magnetic field B0 as a reference. Right:
tentative picture of the definition of the NMR submolecule (and the pre-averaged dipolar
coupling vector shown as red arrow) according to Cohen-Addad within a polymer chain
consisting of CH2-groups. It can be seen that it comes close to the simplification procedure
of a complex polymer chain used for the definition of a Kuhn monomer.

(incomplete) thermal average over all conformations is defined in terms of an orientational

autocorrelation function (OACF) C(t) as follows:

C(|ta − tb|) = ⟨P2(cos θb)P2(cos θa)⟩ (3.6)

For the case of an isotropically-moving chain, the structural average for both eq. 3.5 as

well as eq. 3.6 will approach zero, while structural constraints will result in a non-zero

average due to incomplete sampling of all angles θ. For the case of the OACF, this results

in a functional form, as shown in Figure 3.2, where the order parameter Sb is found as

the squared long-term limit value. Both order parameters are of the same value up to a

constant k (originating from the pre-averaged Deff) that cannot be estimated a priori, as it

depends on the specific molecular structure of interest. Therefore, we can now define the

non-zero residual dipolar coupling (RDC) in terms of an order parameter Sb, as well as in

terms of the length of a network strand (using eq. 3.5) as follows:

Sb = k
Dres

Dstat
=

3R2

5N
(3.7)

From this, it is immediately evident, that the accessibility of the RDC allows the investi-

gation of polymeric samples in terms of e.g., rubber-, network-, or swelling theory, as will

be shown in Chapter 6. It should be noted that the latter equation is only valid when

C(t) shows a flat plateau value (and thus Sb can be properly defined as shown in Figure
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Figure 3.2: Left: Exemplary plot of an ideal Pake pattern for a rigid solid. Right: Con-
ceptual sketch of the orientational autocorrelation function (OACF) explained in section
3.3 for an elastomer with two different residual dipolar couplings (RDCs) after incomplete
averaging of Deff due to motional constraints.

3.2). From now on, it is always assumed that the discussed system is a crosslinked polymer

network, therefore fulfilling this requirement.

3.4 Static 1H MQ NMR

Proton Multi-Quantum NMR (1H MQ NMR) is an umbrella term for a set of methods

whose aim it is to quantify the non-zero RDCs in systems where the motion of the respective

moieties is constrained, such as entangled or crosslinked polymer systems, as well as liquid

crystals or even some biological systems. In general, this subclass of pulse sequences follows

the scheme given in Figure 3.3, which is a set of two blocks constructed equally but phase

shifted (called the excitation block and the reconversion block). During the excitation block,

a set of pulses and delays is used to generate coherences of even order (but predominantly

second order double quantum (DQ) coherences) through the dipolar coupling of spin pairs.

However, the hereby generated magnetization is not detectable and needs to be converted to

observable magnetization, relying on the usage of a reconversion block that is symmetric

to the excitation block. After the reconversion block, the longitudinal magnetization is

converted to transversal (observable) magnetization.

For the case of the (improved) Baum-Pines sequence [108] used in this work, all pulses

are executed with a certain relative phase shift φref or φDQ. Depending on the phase

shift, cycled in four 90◦ steps, either a so-called double-quantum build-up curve intensity

IDQ, comprising all excited multi-quantum (MQ) coherence orders (4n + 2), or a refer-

ence curve Iref comprising all 4n coherence orders that did not evolve into MQ coherences,

can be detected. Then a time dependency is introduced by repeating the latter pulse

sequence for different DQ evolution times τDQ by increasing either the number of excita-

tion/reconversion cycles or by increasing the delay within a single cycle i.

iFor all hereby presented static 1H MQ NMR experiments the latter variant was used due to technical

advantages on the used low-field machine
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Figure 3.3: Top: Schematic representation of the MQ NMR sequence used (the improved
Baum-Pines sequence [110, 111]). The STI (spin temperature inversion) block indicates an
additional composite pulse to remove unwanted longitudinal magnetization [112]. Although
not strictly necessary, it improves the reliability towards the regime where τDQ ≈ T1. The
phases of the read-out pulse at the end follow phase cycles of φ = [x,−x, x,−x] for recording
IDQ and φ = [x, y,−x,−y] for recording Iref, while the overall sequence and receiver phase
follow a CYCLOPS supercycle (not described here, see e.g., ref. [113]) .

For the case of polymers, the RDC values corresponding to elastically active network

chains are found in IDQ in the form of a build-up curve with a superimposed exponential

relaxation function, whereas all magnetization that has not evolved into 4n+ 2 coherence

orders (including all 4n quantum coherences, as well as sample moieties with RDC=0 )

are found in Iref with the same exponential term. Therefore, by adding both functions and

quantifying the exponentially decaying excess component (often called tail) towards long

τDQ (where the corresponding IDQ(τDQ) = 0, one can, e.g., quantify the relative proton

fraction of the isotropic component (e.g., isotropically moving defects, unlinked precursors

(sol) or protonated solvent), allowing for an estimate of network defects.

In the following, a short overview of possible evaluation methods of the data obtained from

the Baum-Pines MQ NMR sequence will be given (more details can be found, for example,

in [54, 109]). A rather complex procedure is necessary, because the desired RDC values

cannot be easily extracted from IDQ, as it is a multiplicative superposition of the RDC-

encoded build-up curve and an exponential T2-like relaxation term that is dominated by

the segmental motions of the polymer backbone. However, due to recording of the reference

function Iref, prior knowledge of the relaxation term can be obtained by calculating the sum

function IΣMQ = IDQ + Iref, which is equivalent to a fully refocussed (=relaxation-only)

dipolar echo. This leads to two possible ways of handling it: In short, it can be eliminated

by manipulating the IDQ data or the nonlinear regression procedure can be modified so

that it handles both data sets IDQ and IΣMQ, simultaneously.

3.4.1 Evaluation by point-by-point normalization

One way to evaluate the pairwise sets of (Iref , IDQ) data obtained by the Baum-Pines ex-

periment makes use of a point-by-point normalization approach to eliminate the relaxation

function and thus access the non-relaxing normalized DQ intensity contribution InDQ. To
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be applied successfully, two small empirically motivated assumptions are made: (1) For a

given dipolar coupling Dres,i, there is no significant difference in the transverse relaxation

time T2,i for the coherence orders 4n+ 2 (MQ signal) and remaining coherence orders 4n

(reference signal) of the associated spins, thus justifying that both curves can be fitted

using the same relaxation function. (2) The IΣMQ signal will consist of a superposition of

one relaxing component (T2,el) corresponding to the elastically active sample fraction, as

well as a singular isotropic tail that relaxes with a monoexponential decay (T2,tail) with

β = 1. Under these assumptions, the tail can be quantified by fitting the long-time com-

ponent of IΣMQ towards long τDQ (see Figure 3.4) and the result used for a calculation of

the pure DQ build-up function by point-by-point normalization as follows.

InDQ =
IDQ(τDQ)

Iref(τDQ) + IDQ(τDQ)− ftail · exp (−τDQ/T2,tail)
(3.8)

The normalized DQ intensity InDQ has to reach the plateau value of I = 0.5 due to an equal

partitioning of excited 4n and 4n + 2 coherences over Iref and IDQ after subtracting the

isotropic fraction Itail [53]. The modeling of InDQ itself can be realized by a set of different

functions, depending on the specific use case. While originally an inverted Gaussian of

the form InDQ = 0.5 (1 − exp (−kD2
resτ

2
DQ)) was used (see ref. [114] for explanations and

application of the second-moment approximation), nowadays an empirical function found

by Chassé et al. [115], the so-called Abragham-like (A.-l.) function is used, as it models the

true multi-spin build-up curve of the observed InDQ functions more accurately. It reads as

follows:

InDQ(τDQ) = 0.5[1− exp(−(0.378DresτDQ))
1.5

· cos(0.583DresτDQ)]
(3.9)

For networks that display a smoothly distributed RDC (due to, e.g., spatial crosslinking

inhomogeneities), one can evaluate InDQ using a distribution function:

InDQ =

∫ +∞

−∞

P (Dres)InDQ(Dres) dDres (3.10)

The most sensible distribution function here would be a numerically calculated log-normal

distribution, as the simple approach of using a Gaussian distribution (matching motivations

from both limit theorem) can lead to the appearance of negative, and therefore nonphysical,

RDC values simply due to allowing an unconstrained distribution of RDC values. In

contrast, the distribution function for the log-normal distribution allows only for positive

values and is therefore more suitable. It reads:

Plog(Dres) =
1

σ
√
2π

exp

[

−(lnDres − lnDmed)
2

2σ2

]

(3.11)

3.4.2 Evaluation by multi-component fitting approach

While the latter approach is sufficient for many cases, such as well-defined elastomers (see

e.g., ref [116] and references therein), it rigorously fails for the special case investigated in
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Figure 3.4: Exemplary point-by-point normalization MQ NMR fitting procedure on natural
rubber at T = 70 °C as described in the text. Left: The tail-fitting procedure is shown
using the relaxation data with the trick of plotting Iref − IDQ in order to make use of the
fact that Itail = Iref − IDQ when InDQ has reached the plateau. As can be seen, the tail
can be easily identified and reliably fitted, yielding about 12% of isotropic defects (in this
case mostly dangling chains). Right: Plot of all relevant data sets for full evaluation. InDQ

was estimated using eq. 3.8 and fitted using the A.-l. function of eq. 3.9, yielding an RDC
value of Dres = 160± 6Hz

.

this work, being gels made from star-shaped networks. As explained in detail in section

2.3.2, this special type of network mainly displays a certain set of discrete chain connec-

tivity motifs, each of which has a distinct effective molecular weight and associated RDC

value. Hence, investigations of IDQ of this type of material display a superposition of

discrete A-l. functions weighted by the proton fraction (ai) with a different tuple of pa-

rameters (ai , Dres,i , T2,i ,βi). Therefore, the two signal functions can now be written as a

superposition of n distinct connectivity motifs:

IDQ =
1

2

(

n
∑

i=1

aiIa.-l.(τDQ, Dres,i) · exp[−τDQ/T2,i]
βi

)

(3.12)

IΣMQ =

(

n
∑

i=1

ai exp[−τDQ/T2,i]
βi

)

+ atail exp [−τDQ/T2,tail] (3.13)

While one may be tempted to use the approach described above and correct for the discrete

components by defining a InDQ as a superposition of A.l.-functions, care should be taken,
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as the point-by-point normalization now rigorously fails due to the following fact:

InDQ =

∑n
i=1 aiIa.-l.(τDQ, Dres,i) · exp[−τDQ/T2,i]

βi

∑n
i=1 ai exp[−τDQ/T2,i]βi

̸=

∑n
i=1 aiIa.-l.(τDQ, Dres,i)

∑n
i=1 ai

̸=
n∑

i=1

aiIDQ,i(τDQ)

In order to circumvent the fact that InDQ cannot be calculated by this approach, Lange

et al. [23] developed an alternative approach that analyzes the data ’as acquired’ by fit-

ting the IDQ using the A.-l. function (eq. 3.9) in conjunction with a stretched exponential.

However, since a regression procedure based on IDQ is not possible due to the sheer number

of parameters needed (3 per component + 2 for the tail fit), Lange et al. invented a simul-

taneous fitting procedure where the number of parameters is dealt with by simultaneously

fitting both the IΣMQ and the IDQ signals to the eq. 3.4.2. Therefore, the parameters for

the relaxation functions (’shape parameters’) and the individual proton fractions ai are

shared among both curves during the regression procedure. In the following, an exemplary

evaluation procedure on a tPEG-tPCL gel will be given.

As already mentioned in section 2.3, the synthesis of polymer gels based on well-defined

star-shaped precursors results in a network, where individual chain-level connectivity motifs

are few and well-known. Additionally, each of the motifs results in an effective molecular

weight of crosslinking Mc that is very different from the other. Consequently, the RDC

value of each of the different motifs will be narrowly distributed and highly different (see eq.

3.5), allowing for a quantification of the relative (proton-weighted) amounts of connectivity

motifs ai according to eq. 3.4.2 and a top-bottom argumentation in such a way that the

highest RDC value that is found must correspond to the lowest Mc if there is confidence

that no structures with higher restricted motional anisotropy exist (such as chain clusters)

(see Figure 3.5 for a scheme). Then, the obtained MQ NMR data can be evaluated as

shown exemplarily in Figure 3.5. Although in the initial publication of Lange et al. [23], a

simultaneous annealing algorithm was used to further aid the regression procedure, in this

work a modified approach was developed that will be explained later in section 6.1.

3.5 1H MAS DQ-NMR: The POST-C7 Experiment

Due to the solid nature of the samples typically investigated by the static Baum-Pines

experiment, the acquired spectrum of substances with RDC ̸= 0 will always be a featureless

one, as the chemical shifts induced by RDCs usually exceed most naturally occurring

chemical shift differences. Therefore, the aforementioned static Baum-Pines sequence will

not be able to yield information on RDC values with chemical information. A common

solution to this problem is magic-angle spinning (MAS), which is able to remove remaining
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Figure 3.5: Left panel: Evaluation of a tPEG-SH (cprep = 2.5 c∗) sample in water (see
section 5.1.2 for details) by the multi-component fitting procedure described here. Right
panel: visualization of the assignment strategy used in the left panel. By knowing all
possible connectivity motifs in advance, a top-bottom approach of assigning these by com-
parison of RDC values can be used. As a result, both proton fraction and corresponding
RDC value can be quantified.

RDCs by macroscopically rotating the sample around an axis that is tilted by an angle

θm = 54.7◦ with respect to the external magnetic field B⃗0. It is found [117, 118], that

a rotation by a frequency νrot faster than the respective interaction frequencies ωd,ωCSA

yields a high-resolution spectrum of the substance, where only the isotropic lines (and

spinning sidebands, that will not be discussed in this work) are found. The specific value

of the magic angle is related to the dipolar Hamiltonian (see eq. 3.1) and the fact that it

vanishes for θ = θm.

Although the application of MAS alone produces spectra with high resolution, a simple

usage of the Baum-Pines sequence on top of the rotation will fail for τDQ > 0.5 τrot, due to

the averaging of the RDCs upon completion of a rotor period. With conventional spinning

speeds as low as about 1 kHz without sacrificing spinning stability, an upper limit is found

at τDQ ≈ 0.5ms. Hence, an alternative approach called recoupling was developed that

essentially makes use of rotor-synchronized pulse sequences such as DRAMA [119], BABA

[120] and C7 [121] in order to reintroduce the dipolar interaction during acquisition of a

high-resolution spectrum. In this work, only the C7 sequence is relevant and will be briefly

discussed in the following.

The C7 pulse sequence is a recoupling sequence proposed by Lee et al. [121] which was

later abstracted into a general framework of symmetry-based sequences, referred to as

CNν
n sequences [122]. In short, the sequences make use of the rotational properties of the

NMR interaction tensors and separate concerns based on external "space" rotations and

internal "spin" (interaction tensor) rotations into multiplicative terms. It can be shown

[122], that suitable pulses ("spin space rotations") can lead to changes, suppression, or

reintroduction of certain interactions, such as the homonuclear dipolar coupling Hamilto-

nian. CNν
n sequences subdivide n rotational MAS periods into equal intervals N , where

each interval experiences a radio frequency pulse of phase k · 2πν/N with k being the

incremented index of the interval. This results in an increasing rotation of the nuclear

spins by integer multiples of 360◦, which, depending on the specific rotational properties

of the desired interaction, can lead, for example, to a reintroduction or suppression. For
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the C7 (or more specifically the CN1
2 ) sequence, this translates into a set of two pulse

trains with seven pulses each, where each pulse has a phase incremented by k · 2π/7. The

pulse length is adjusted so that ωnut = 7 νrot, which means that the pulse train provides

a nutation frequency seven times the spinning frequency. An additional improvement was

found by Hohwy et al. [123], who proved that the usage of a composite pulse of the form

C143
φ = (π/2)φ(2π)φ+π(3π/2)φ - instead of a single pulse as the basic element - provides

greater stability against accidental deviations from ωnut, as well as cancelation of unwanted

interaction terms up to a higher (5th) order in theoretical calculations (see Figure 3.6 for

a scheme). This slightly modified sequence is called POST-C7.

Eventually, a high-resolution MAS spectrum is obtained with an additional excitation of

DQ coherences for a time τDQ ≈ 2nc (1/νrot), where nc is the number of cycles / pulse trains

that the experimenter chooses. Small deviations from this may arise from experimental

imperfections such as phase switching times between the pulses and additional needed

delays. Therefore, repeated use of this experiment for different nc yields a 2D data set

with a set of high-resolution MAS spectra at incremented DQ evolution times. Using the

same phase trick as in the Baum-Pines experiment described above, one can now obtain

Iref and IDQ signals with chemical resolution (see Figure 3.7). After slicing along the

indirection dimension, the data can, similar to the static version, be evaluated using, e.g.

the A.-l. function. However, due to a caveat of the CNν
n sequences, the observed RDC

values will be scaled by a factor ϵ ∈ (0, 1), leading to a slightly modified A.-l. function as

follows:

InDQ(τDQ) = 0.5[1− exp(−(0.378ϵDresτDQ))
1.5

· cos(0.583ϵDresτDQ)]
(3.14)

For the case of the POST-C7 experiment, it takes a value of ϵ = 0.232 [123].

Figure 3.6: POST-C7 sequence according to ref. [123]
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Figure 3.7: Exemplary experimental of a MAS DQ NMR experiment on a PEG-PCL ACPN
swollen in d8-Toluene at T = 30◦ C and a spinning speed of νrot = 5000Hz. Left: Obtained
Iref spectra from the POST-C7 experiment separated along the indirect (τDQ) dimension.
Right: Obtained IDQ spectra from the POST-C7 experiment separated along the indirect
(τDQ) dimension. Towards long τDQ, the IDQ data display a nonzero fluctuating value
possibly arising from magnetic field inhomogeneities along the radial dimension of the
sample.

3.6 Pulsed-Field Gradient NMR

Pulsed-field gradient (PFG) NMR is an experimental method for encoding spatial infor-

mation into the spins by applying pulsed gradients to determine translational self-diffusion

coefficients. The groundwork was laid by Hahn [124] and Carr and Purcell [125], assessing

changes in the refocusing efficiency of Spin Echoes (SE) in the presence of self-diffusion

in inhomogeneous magnetic fields. Later, Stejskal and Tanner [126] expanded on this idea

by proposing an experiment based on the variation of the strength g(z) = g0z of a linear

external field gradient as a way to spatially encode the spins and interfere with the effi-

ciency of the spin echo based on its relative position change along the axis z. Although

the chosen echo sequence, being the spin echo (SE) [126] or the stimulated echo (STE)

[127], comes with certain sets of specific implementations, the overall theory is similar and

contains only minor differences. In the following, a brief explanation will be given on the

example of the PFG-SE pulse sequence (see Figure 3.8 for a sequence scheme):

The sequence starts with a simple excitation based on a 90◦ pulse in order to rotate spins

to the transverse plane, where they will start to dephase with different Larmor frequencies

based on chemical shifts, T2 relaxation, and magnetic field inhomogeneities. During that

time, the pulsed gradient will act for the first time, producing a rectangular ii gradient

of duration δ and strength g(z), where z is the axis parallel to the static magnetic field.

Therefore, the spins will experience an additional phase shift ∆φ in addition to the ’regular’

evolution, which depends on their position along the z axis as follows:

∆φg(z) = γgz · δ

The gradient pulse is followed by a delay of duration ∆, in which diffusion is supposed to

iiIn practice, many different gradient shapes are common. As long as
∫
g(t)dt can be mapped upon a

single equivalent rectangular gradient, the following calculations will be valid.
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Figure 3.8: Schematic representation of the two NMR sequences used in this work. Top:
Spin-Echo (SE) sequence with unipolar gradients. Bottom: Stimulated-Echo Sequence
with (optional) bipolar gradients (STEbp).
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occur. At t = ∆/2 a 180◦ pulse will be applied to refocus the dephasing spins by inverting

the accumulated phase shifts. Finally, a second pulsed gradient of equal length and strength

is applied, which will cancel out the effects of the first gradient pulse, assuming that the

spins have not changed their position along the z-axis due to translational diffusion. The

overall phase shift of a spin i can be written as [126]:

∆φi(z(t), z(t+∆)) = (γ g z(t) δ + ωL
∆

2
)− (γ g z(t+∆) δ + ωL

∆

2
)

= −γ g δ (z(t)− z(t+∆))

=

⎧

⎨

⎩

0 for z(t) = z(t+∆)

−γ g δ (∆z) otherwise

(3.15)

From eq. 3.15 it is easily found that the phase mismatch acquired during the PFG-SE

sequence is zero when no diffusion along the z-axis occurs, while it equals a nonzero value

in the other case. Here, a nonzero value will translate to a lower efficiency in the spin echo,

therefore, a loss in intensity in the spectrum, with the specific amount dependent on the

overall distance (which can be mapped onto the mean-square displacement using eq. 2.25).

For an analytical expression of I(g), several assumptions need to be made, which will be

briefly mentioned in the following. For a more comprehensive explanation, the reader is

referred to ref. [128].

(1) Gaussian Phase Distribution (GPD): The distribution of phases during dephasing fol-

lows a Gaussian distribution that can be characterized by the mean square phase change

⟨φ2⟩. Generally, a phase distribution function P (φ,∆) is needed to characterize the decay

of spectral intensity I(g).

(2) Short Gradient Pulse (SGP) Approximation: It is assumed that the samples do not

move during the gradient pulse, as the short time in which movement would need to be

considered cannot be expressed analytically. The validity of this approximation is vital for

the following expression for I(g) and therefore experimental realization is crucial. In the

simplest case, it is realized by keeping δ much shorter than ∆.

(3) Constant T2 relaxation: For cancelation of overlapping signal decays due to T2 relax-

ation, only the relative change in intensity is evaluated. If the T2 relaxation is assumed to

be constant across all applied gradients, it will cancel out, leaving a relaxation-free signal

decay. This assumption is usually fulfilled to a great extent, as the relative changes (B0

vs. g) are small.

Using the assumptions above [126, 128], we arrive at the following equation for the decay

of the normalized echo amplitude under varied gradient strength g and constant diffusion

time ∆:
I(g)

I(0)
= exp(−γ2g2D δ2(∆− δ/3)) (3.16)

It is easily seen, that this equation only depends on a single parameter, being the long-term

diffusion coefficient D, whereas all other parameters are either spin-specific properties (γ)

or experimentally defined timescales (δ,∆).

Common restrictions of PFG-NMR arise due to very short T2 relaxation times of the

studied samples, which cause the signal to decay significantly during the diffusion time, as
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it is not uncommon for proteins, colloidals, or other macromolecules to have T2 relaxation

times on the order of 10 − 100ms. As a workaround, the STE-based sequence [127] (see

Figure 3.8 bottom) can be used, which has the advantage of storing the magnetization

along the external field B0 during ∆, therefore limiting the signal decay to the usually

much larger T1 relaxation. However, it comes with the disadvantage of recording only

50% of the overall signal due to the nature of the stimulated echo, and the other 50%

being dephased during ∆ (either by waiting a sufficient time or by applying a small spoiler

gradient). It should be noted, however, that the T2 filtering effect of the SE sequence

may not always be a disadvantage, as it can be used to clean the spectrum of unwanted

background signals, as long as these have T2 values significantly shorter than the actual

diffusing species. This is the case, for example, for the diffusion of probe molecules within

a static matrix/porous material. However, if the probe is heterogeneous and displays, for

example, a smooth distribution of molecular weights, the same T2 filtering effect will cause

a bias for mobile species, as they will be less affected.

Other restrictions may arise from technical or experimental issues and can include eddy

currents that are being induced in the coils due to strong gradients being pulsed over a very

short amount of time or artificially short diffusion coefficients due to background gradients

arising from discrete susceptibility jumps at the sample surface (most commonly found in

ion-containing samples, but also found in e.g., porous samples to an, albeit significantly

lesser, extent). For specific examples, orders of magnitude, and possible solutions, the

reader is referred to ref. [128], as these problems are not relevant to this work.

Figure 3.9: Left: Pseudo 2D data as acquired from a PFG-NMR experiment on a 5 wt%
solution of Dextran-10 kDa in D2O with a variation of the gradient strength (plotted as a
reduced quantity according to eq. 3.16). Right: Reduction of the data to a 1D plot by
integrating over the full spectral range. As can be seen, two components are necessary for
the fit as residual HDO signal results in a two-step decay with the steeper one corresponding
to D = 1.8 · 10−9 m2s−1 of water, while the long-time decay corresponds to D = 9.4 ·
10−10 m2s−1 of the investigated Polysaccharide (PSC).
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Chapter 4

X-Ray Scattering

4.1 Basic Concepts of X-Ray Scattering (SAXS)

The central concept of x-ray scattering is based on the interaction between the x-rays,

most commonly produced by Bremsstrahlung of metallic anodes, and the electrons of the

irradiated matter. The incident x-ray waves excite the outer electrons of the atomic shell,

which, as a consequence, start to oscillate and show dipole behavior. This leads to an

emitted spherical wave of a certain amplitude A, wave vector k and wave length λ. Under

the assumption of elastic scattering, the wave length λ of the emitted wave is equal to the

wave length of the incident wave λ0. For a single scattering process, which is excited by a

monochromatic incident wave with wave vector k0, the scattering amplitude A(r⃗) can be

presented in the following way:

A(r⃗) = b exp−i 2π
λ
(k⃗0−k⃗)r⃗ (4.1)

Here, b is used to characterize the scattering cross section and r⃗ denotes the positional

vector. Extending this to an atom (depicted as a continuous media of electrons character-

ized by the electron density ρ(r⃗)), one obtains the so-called atomic Form Factor amplitude

F atom as follows:

F atom(q⃗) =

∫

atom

ρ(r⃗) expiq⃗·r⃗ dr (4.2)

Here, the commonly used scattering vector q = kout − kin is defined as the difference of

these two wave vectors, which leads to the well-known relationship of scattering angle and

magnitude of the wave vector (see e.g., ref. [129]):

| q |=
4π

λ
sin(θ) (4.3)

The scattered intensity I(q), or I(2θ), is detected as |F |2 at a fixed distance R between

the sample and the detector and is commonly calculated as a normalized quantity of

scattered photons per time and per solid angle (see Figure 4.1), which is often referred to

as the differential scattering cross section dσ
dΩ . Corrections are usually needed to account

for background scattering (which can be subtracted from the measured scattering curve)
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Figure 4.1: A basic sketch showing the geometry of a scattering experiment. An incident
x-ray beam is scattered on a sample at an angle 2θ and the emerging spherical wave is
traversing towards the detector. Here, dΩ denotes the solid angle.

and additional corrections for sample absorption according to Lambert-Beer’s law for a

well-defined sample thickness d are needed if absolute scattering intensities are of concern.

To obtain model equations for more complex many-atom systems, one needs to consider

the spherical waves arising from the scattering at each scattering center N and how they

interact with each other. One subsequently obtains the molecular form factor amplitude

as follows:

Fmol(q⃗) =

N
∑

i=1

F atom
i expi∆φ (4.4)

Further abstractions of a similar kind can be made for more complex scatterers such as

e.g., particles, monomers of a polymer chain or clusters of chains. For given geometries,

a variety of form factors have been derived in literature, e.g. for spheres, cylinders, etc.

A special case for hard spheres will be discussed in the next sections. In the following,

a rough introduction to the modeling of particulate and non-particulate systems will be

given, following mainly the books of Roe et al. and Strobl [130, 131].

4.1.1 Modelling of particulate systems

As described in the previous section, the observed scattering intensity I(q) of a complex

material depends both on the structure of a single repetition unit (which can be an atom, a

molecule, a monomer, or even clusters of chains) and on the arrangement of the constituents

in space (size, distance, composition). The former is represented by the aforementioned

form factor, while the latter is called the Structure Factor or Interference Function, as the

underlying mechanism of its functional form can be described by scattering interference of

the respective constituents. The overall scattering intensity is therefore commonly written

as a product of the isotropic form factor intensity P (q) - the mean-square average over all

orientations of F (q) - and the structure factor S(q).

I(q) ∝ P (q) · S(q) (4.5)

For a given continuous system of scattering constituents with number density n0, Zernike

and Prins showed [132] that the structure factor can be written in dependence of the

radial distribution function g(r) of these substructures, which describes the probability

distribution function to find a second entity of the same type at a given distance r.

S(q) = 1 + n0

∫

∞

0
4πr2g(r)

sin(qr)

qr
dr (4.6)
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The advantage of this equation lies in the reduction of a complex many-body scattering

expression to an equation that yields explicit results of S(q) based on a certain model

of distribution g(r) of scattering entities, which in the case of simple periodic systems

can even yield analytical results, while also allowing for any degree of simplification or

specification by changing g(r) to more simple or complex model functions. However, a

peculiarity of that equation lies in the fact that both the density of the scatterers n0,

as well as g(r) depend on the volume fraction φ of the scattering moieties, transforming

this rather innocently-looking equation into an integral equation that does not yield a

specific solution without having a model of g(r) (a so-called closure) that provides an

explicit dependence in the form of g(r,φ), while still satisfying physical motivation. In

recent decades, many closures have been shown to provide rather accurate information

for certain systems. A more detailed discussion of a certain closure used for a solution of

hard spheres is discussed later in subsection 4.2.2. In the special case of dilute particulate

systems (n0 → 0), the structure factor can be approximated by unity. However, with an

increasing fraction of scattering moieties, the increasing influence of g(r) (reflecting, for

example, spatial arrangement) will be visible in the total scattering intensity I(q).

4.1.2 Modelling of non-particulate (continuous) systems

For non-particulate systems, one does not consider both form factor and structure factor

as separate parts of the scattering intensity, but rather a continuous system of scattering

entities with no inherent distinction from each other (same form factor for each sub unit).

However, even in these systems, a scattering contribution can be found, as explained, e.g.

[129] due to fluctuations of its scattering density ρ(r) (in real space) that occur within the

sample. These fluctuations are commonly characterized by a real-space autocorrelation

function γ(r). Then, we can find the scattering intensity in the q-space by using the

following expression analogous to the structure factor described in eq. 4.6, where ⟨η2⟩ is a

measure of the fluctuation of the mean square density, and V is the volume probed:

I(q) = 4πV ⟨η2⟩

∫

r2γ(r)
sin qr

qr
dr (4.7)

While the general form of the given equation 4.7 is universally applicable (compare eq.

4.6), it should be noted that eq. 4.7 refers to the overall observed scattering intensity

I(q), while 4.6 is only the general formulation for the structure factor. This treatment

is consistent in so far that the modeling of non-particulate systems can be treated as

a special case of particulate systems with a uniform scattering length density ρ(r⃗) and

therefore q-independent form factor intensity P .

The important behavior of non-particulate systems towards small scattering vectors (small

q) is commonly described by a power law (also called Porod’s Law [133]), which will be

sketched out briefly (following the derivation presented e.g., in ref. [131] and [130]). For

its derivation, we consider an ideal two-phase system, which implies that both regions are

well defined with sharp borders, while being irregularly mixed on larger length scales (=

no long-range order). Therefore, the system is fully characterized by knowing only the

respective volume fractions φ1/2 and the ratio between the interface and the volume S/V ,
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which will be shown to be obtainable from Porod’s law. The scattering length density

ρ(r⃗) within the phases is assumed to be constant (= ρ1 and ρ2 respectively); therefore,

any contribution from the individual scattering subunits is neglected. Using geometric

arguments not covered here (see ref. [130] and the appendix of ref. [131]), it can be shown

that the periodic electron density correlation function Γ(r) - which describes the electron

density fluctuation with respect to the mean electron density - can be approximated by

the initial decrease of its first oscillation (for large r), which is assumed to be a decreasing

linear function and reads:

Γ(r) =

⎧

⎨

⎩

V ⟨η2⟩
(

1− r
lpor

)

for 0 ≤ r ≤ lpor

0 otherwise
(4.8)

Here, lpor = 4V ⟨η2⟩S−1(∆ρ)−2 is used as an abbreviation, following the definitions of

the variables used above. As the Fourier transform (FT) of the linearly decaying Γ(r)

does not exist within the standard Lebesgue integral framework, it is approximated by an

exponential function (in the limit of r → ∞) of the form Γ(r) = V ⟨η2⟩ exp(−r/lp), whose

FT is a Lorentzian. Again, by considering the aforementioned limit (now as q → 0 after

FT) and q > 0 (effectively reducing the Lorentzian to a single power-law decay), this leads

to the final version of Porod’s Law, that takes the following functional form (prefactors

neglected):

I(q) ∝
1

φ1φ2

S

V

1

q4
(4.9)

Significant deviations from this equation commonly occur due to a number of different

reasons that justify a violation of the "ideal two-phase system" condition. One of the most

common issues is that the surface/volume ratio S/V is only defined in terms of a fractal

dimension, which leads to an alternative version of Porod’s law, where I(q) ∝ q−(6−d),

where d is the fractal surface dimension [134]. For regular surfaces (d = 2) this reduces to

the usual dependence q−4.

4.2 SAXS as a Tool for Polymer Network Characterization

SAXS is capable of detecting scattering density fluctuations on length scales of 1− 60 nm,

which - in terms of the structure of the polymer network - covers the realm where spatial

concentration fluctuations and its consequences are visible. More specifically, this includes

fluctuations arising from chemical or physical chain associations (e.g., the network correla-

tion length ξc ∼ 1− 10 nm), as well as moieties arising from undesired concentration fluc-

tuations (e.g., as a result of network defects and mesoscopic crosslinking inhomogeneities

∼ 10 − 100 nm). Due to limitations in the range of scattering vectors accessed by SAXS,

only the thermal concentration fluctuations are in the regime that can be described quan-

titatively. While in most cases the large-scale inhomogeneities need to be modelled by

a suitable function, the relevant regime is usually not fully accessed, rendering obtained

values qualitative. Below, models and challenges for a homogeneous polymer network and

a more complex network with clusters emerging from microphase separation are discussed.
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4.2.1 Homogeneous polymer networks: correlation blob size

For now, we consider a polymer network that is regularly crosslinked with roughly equal

solubility for each involved precursor and a comparable scattering contrast density. While

the latter assumption is true for most polymer networks, it can be strongly violated in

e.g. metal-organic frameworks (MOFs), where a significant amount of clustered heavy

atoms is found, leading to a strong increase in scattering contrast. But in most cases,

this resembles the situation discussed in section 4.1.2, where no specific contrast within

the network is found. Scattering contrast will arise only when a significant difference in

scattering density between the polymer and solvent is present. Once this is found, we can

distinguish between scattering responses from the low q region and the high q region. In the

high-q region (∼ 1− 10 nm) we find scattering arising from thermal osmotic concentration

fluctuations [57, 88] that yield information on relevant length scales of correlation ξc of the

system [75, 135]. Although originally described for polymer solutions where the graphical

picture of a length scale of thermal osmotic concentration fluctuations is valid, it was found

[22, 136–139] that the same model is also valid for crosslinked polymer networks to some

extent.

I(q) =
I0

[1 + (qξ)2]1/(2ν)
(4.10)

It should be noted, that in cases of small polymer concentrations, a significant portion of

that function is usually found at q ∼ 10−2A−1 making it very difficult to achieve a proper

fit using only SAXS. In many of the aforementioned works in this section, SANS was used

to access the relevant length scales. However, for polymer networks with relatively low

molecular weights between crosslinks (e.g., ≤ 5 kDa per star) and/or higher relative con-

centrations upon synthesis (e.g., ≥ 2 c *), there is a realistic chance of at least qualitative

estimates using SAXS.

As mentioned above, the scattering contribution arising from large-scale frozen inhomo-

geneities dominating the behavior towards small q is commonly not fully accessed by

SAXS. However, its modeling is essential for a successful regression due to the predom-

inant intensity contribution. Due to its inaccessibility, this work will limit itself with a

simple characterization using functions with minimal parameters that are still physically

motivated such as Porod’s Law (see above) or a functional form suggested by Debye and

Bueche [140] that describes the scattering behavior of an inhomogeneous solid with a

smooth interface by usage of a real-space correlation function. This function is assumed

to be of a simple exponential form γ(r) ∝ exp(−r/Ξ) that describes the loss of scattering

signal due to inhomogeneities of a length scale Ξ. Using eq. 4.6, the functional form in

reciprocal space is the following:

IDB(q) =
1

(1 + (qΞ)2)2
(4.11)

Using that, the large-scale concentration fluctuations of homogeneous polymer networks

can be qualitatively described with limitations arising predominantly from a non-sufficient

access to very low q values.
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4.2.2 Phase-separated polymer networks: domain length scales

Bicontinous microphase separation (Teubner-Strey)

One of the most famous models for the modeling of scattering peaks exhibited by phase

separation in polymeric soft matter was proposed by Teubner and Strey [72] in order to

explain the origin of a broad scattering peak found in microemulsions of water and oil. At

its core, this derivation is based on a Landau expansion of the free energy of interaction in

a partially immiscible two-component system, parametrized by an order parameter, which

in the end yields a functional form I(q) that can be used to model the scattering intensity

as follows:

I(q) =
1

a2 + c1q2 + c2q4
(4.12)

Here, a2, c1 and c2 are arbitrary coefficients without a direct physical meaning that arise

from the aforementioned expansion of the Landau free energy. The corresponding cor-

relation function g(r) takes a shape somewhat similar to the Debye-Bueche model [140]

for random two-phase morphologies and describes a similar loss of long-range correlation

on a length scale of ξTS. The peak in the scattering intensity arises from an additional

contribution to the correlation function which is assumed to reflect the phase-separated

microphases (which appear at a periodic distance d), which are hereby modeled using a

sine function with periodicity of d/2πr.

γ(r) = exp(−
r

ξTS
) sin(

2πr

d
) (4.13)

A relationship of the arbitrary modelling parameters of eq. 4.12 and the physically moti-

vated parameters of eq. 4.13 can be found by the Fourier transformation of the correlation

function (yielding I(q)). A subsequent comparison of parameters and usage of eq. 4.6

yields the following equations for the periodicity d and the domain decay length ξTS of the

investigated morphology:

d = 2π

[

1

2

(

a2
c2

)1/2

−
1

4

c1
c2

]

−1/2

(4.14)

ξTS = 2π

[

1

2

(

a2
c2

)1/2

+
1

4

c1
c2

]

−1/2

(4.15)

It should be noted, that the actual assessment of the length scales as done in e.g., ref.

[141] should be carried out with care, as the definition of both d and ξTS takes place in

terms of correlation length scales, rendering the mappings of these values onto real space

structures only qualitative. Although empirical arguments for the quantitative nature of

d can be found, for example, by comparisons of the extracted value with values obtained

from visual inspection using the simple relation d = 2π/q, the domain decay length ξTS ,

being merely defined as the characteristic value of a decaying exponential function (see eq.

4.13), should be used with care in quantitative evaluations. As a last remark, it is found

that for the limit of very large separation of small scatterers (d ≫ ξTS), the correlation

function γ(r) converges to the functional form used by Debye and Bueche (see eq. 4.11).
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Figure 4.2: Comparison of the (pure) emerging signal I(q) from the hard-sphere model
of Kinning and Thomas in comparison to the Teubner-Strey model. Shown is a variation
of the hard-sphere volume fraction ηKT (left), a variation of the effective ratio R1 : R2

(middle) and a comparison of the Teubner-Strey model and the Kinning-Thomas model
(with and without lognormal distribution of size s with ’physically’ matched parameters
such that ξTS , dTS are equivalent counterparts of R1, R2.

Particulate Hard-Sphere Model (Kinning-Thomas)

The Kinning and Thomas model [142] was originally derived for the case of diblock copoly-

mers containing spherical domains. The purpose was to connect the form factor scattering

arising from the spherical shape of these domains with the particular interference contri-

bution of their arrangement at higher concentrations, where the simplification S(q) → 1 is

not valid. In the following paragraph, a short summary of the mathematical and physical

construction of this model from eq. 4.5 is given.

For the form factor P (q) of the spherical domains, one assumes a homogeneous radius

sphere R1, which immediately leads to an analytical expression in dependence on the

volume of the sphere v0 and the scattering contrast ρ0 between the sphere and the matrix.

P (q) = 9ρ20v
2
0(qR1)

−6[sin (qR1)− (qR1) cos (qR1)]
2 (4.16)

Using the integral equation 4.6 in conjunction with an assumption for the correlation

function g(r) that explicitly assumes the dependence on the particle volume fraction φ

(known as Percus-Yervick closure [143], validated by Wertheim [144] and Thiele [145]),

one can now solve the integral equation for the case of hard spheres with an effective

radius R2 and sphere volume fraction η:

S(q,R2, η) =
1

1 + 24η(G(A)/A)
(4.17)

where A = 2qR2 and G(A) is:

G(A) =
α

A2
(sin(A)−A cos(A)) + · · ·

β

A3
(2A sin(A) + (2−A2) cos(A)− 2) + · · ·

γ

A5
(−A4 cos(A) + 4[(3A2 − 6) cos(A) + (A3 − 6A) sin(A) + 6])

(4.18)
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Here, the following abbreviations were used:

α = (1 + 2η)2/(1− η)4 (4.19)

β = −6η(1 + η/2)2/(1− η)4 (4.20)

γ = 0.5η(1 + 2η)2/(1− η)4 (4.21)

Common applications for the Kinning-Thomas model include block copolymers with ag-

gregation or micelle formation of a small non-miscible additive [146, 147] or in the case of

micelle formation due to aggregation of functional groups in polymer matrices [8, 148–150].

45



Chapter 5

Samples and experimental setup

5.1 Samples

5.1.1 Benzoxazinone-based tetra-star networks

Amphiphilic tPEG-tPCL networks

Functionalized precursors as a basis for tPEG-tPCL networks with a benzoxazinone-based

crosslinking agent were synthesized by Carolin Bunk i with chemical details published

in [47]. The tPEG precursors (Mw = 10 kDa) were end-functionalized with an amino

group, whereas the tetra-arm star poly(ϵ-caprolactone) (tPCL) precursors (Mw = 11 kDa)

were end-functionalized with a 2-(4-Nitrophenyl)-benzoxazinone group, resulting in the

possibility of a hetero-complementary click reation between the stars, whereas traditional

end-linking processes between stars of the same type are prevented. Subsequently, Car-

olin Bunk prepared amphiphilic polymer co-networks (ACPNs) by mixing stochiometric

ratios of precursor solutions in different common good solvents (d8-Toluene, d4-THF, d1-

Chloroform) at a variety of temperatures (T= 25, 40, 60, 80 °C) at different preparation

concentrations between c = 0.5 − 7 c∗ (with c∗ = 70 gL−1) over a reaction time period of

approximately 4 days per sample. Later in the research process, the click reaction was car-

ried out, exclusively using d8 -toluene as the solvent and maintaining a constant reaction

temperature of T = 50 °C for all prepared networks. This was done by myself, following

the steps of the initial work done by Carolin Bunk.

However, networks under selective solvent conditions were prepared in a common good

solvent and then fully dried using a vacuum oven (T = 50 − 70 °C, p = 20 − 30mBar)

at least once. Samples for diffusion measurements in particular were additionally washed

several times in excess solvent before drying in order to remove sol. Subsequently, the

samples were swollen in D2O for at least 24 h to equilibrium with measured degrees of

equilibrium swelling degrees of Q = 4± 0.5.

iCarolin Bunk, Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden,
(Germany)
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Conventional tPEG-tPEG networks

The tetra-arm star poly(ethylene glycol) stars were end-functionalized by Carolin Bunk

(see ref. [47] for details) with a 2-(4-Nitrophenyl)-benzoxazinone group (Mw,star = 11,kDa),

thus enabling the possibility of preparing complementary non-amphiphilic co-networks us-

ing the same amino-terminated PEG stars in conjunction with the aforementioned strategy.

All chemical preparation steps are kept equal to those described above.

Block-star tPEG-b-PCL networks

Analogously to the ACPNs described above, Carolin Bunk prepared and provided a set of

tPEG-b-PCL networks. The networks were synthesized in d6-DMSO at different temper-

atures by heterocomplementary end-linking reaction of pre-structured amphiphilic 2-(4-

nitrophenyl)-benzoxazinone- and amino-terminated tetra-arm poly(ethylene glycol)-block -

poly(ϵ-caprolactone) (tPEG-b-PCL) star block copolymers with a molar mass of Mn ≈

10 kg mol−1 and a dispersity of D = 1.04. Synthetic details and procedures are described

in detail in [151]. Networks of this type were investigated at different preparation concen-

trations, enabling a comparison with the tPEG-tPCL ACPNs in terms of the influence of

star architecture and mixing inhomogeneities.

5.1.2 Self-reactive tPEG-SH hydrogels

A set of disulfide-crosslinked tPEG hydrogels was prepared by Zhao Meng ii using commer-

cially available tetra-poly(ethylene glycol)-SH (Laysan Bio., Mw = 10,kDa) as described

in ref. [71] in more detail. The precursor solutions at the desired concentrations were

mixed in a D2O phosphate buffer (pH= 7.4), and the networks were formed by facilitating

the crosslinking reaction at room temperature by adding an oxidation agent (0.2,vol.%

H2O2). The concentrations of the precursor solutions ranged from c = 0.5 to 3.5c∗ with

c = 60 gL−1.

5.1.3 Metallo-supramolecular hydrogels

tPEG-TPy networks with varied functionality

The tPEG-TPy networks described here with varied end functionality (4-arm tPEG and

8-arm tPEG) were synthesized by Paola Nicolella iii with chemical details published in

ref. [30]. In summary, TPy (terpyridine) functionalized tPEG precursors with a different

number of arms and degree of end functionalization Fend (4 arms: [Mw, star = 20 kDa,

Mw, arm = 5 kDa, Fend = 95%] and 8 arms: [Mw, star = 40 kDa, Mw, arm = 5 kDa, Fend =

90%]) were synthesized and mixed in different ratios (0:100, 20:80, 50:50, 80:20, 100:0) in

D2O at c = 35 gL−1 ≈ c∗ in order to obtain transiently end-linked tPEG networks with

different fractions of a star with higher functionality compared to the classical Sakai gel

iiZhao Meng, Ecole Polytechnique Fédérale de Lausanne (EPFL) Institut des Matériaux, Laboratoire
des Polymères, STI - IMX - LP MXD 133 (Batiment MXD), Station 12CH-1015 Lausanne (Switzerland)

iiiPaola Nicolella, Johannes Gutenberg-Universität Mainz, Department of Chemistry, Duesbergweg 10-
14, D-55128 Mainz, (Germany)
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[21]. The precursor solutions were rigorously mixed in a vial before the addition of the ion

in order to minimize freezing in the mixing inhomogeneities.

tPEG-TPy/Phen networks at different self-sorting regimes

The tPEG-based networks described here were synthesized by Mostafa Ahmadi iv with

chemical details provided in ref. [152] and references therein. Tetra-arm OH-terminated

PEG precursors (Mw = 20 kDa, PD= 1.03) were end-functionalized with two kinds of end

functionalization, being Phenantroline (Phen) and Terpyridine (TPy) respectively (see

Figure 6.26). Networks are formed from homoleptic and heteroleptic crosslinking at a

preparation concentration of c = 40 gL−1 ≈ c∗ upon excess exposure (ligand to ion ratio

1:2) to suitable ions (Cu+, Co2+ and Fe2+) to a stochiometric mixture of tPEG-Phen /

tPEG-Phen, as well as tPEG-Phen / tPEG-TPy precursors. Due to the differences in

the preferred coordination geometry of the ions and sterical hindrance induced from the

crosslinker, subsequent differences in the network structure are expected.

tPEG-linPEG-TPy dual-network hydrogels

The tPEG-linPEG-based networks described here were synthesized by Mostafa Ahmadi iv

with chemical details published in ref. [55]. Linear PEG precursor (Mw = 6 kDa) were

functionalized with terpyridine (TPy) and N-hydroxy succinimide (NHS) ester function-

alities at both ends. Tetra-arm PEGs (Mw = 10 kDa) were functionalized with an amine

group at each arm. The networks were then prepared in a D2O phosphate buffer at a

concentration of c = 100 gL−1 (being a little higher than the overlap concentration for

pure 10 kDa tPEG precursors) and then a second set of physical crosslinks is introduced

by adding different ions. A set of 4 samples was prepared with a stochiometric addition of

a different ion per sample, Mn2+, Zn2+, Co2+ and Ni2+ respectively.

5.2 Experimental setup

5.2.1 Low-field 1H-NMR

All low-field MQ NMR measurements in this work were performed on a Bruker mq20 de-

vice operating at a Larmor frequency of 20MHz (resulting in B0 = 0.47T). Pulse lengths

used are in the range of 1.5 − 3µs for p90 and 3.0 − 5µs for p180 with significant ranges

being caused by the usage of different devices and radio frequency pulse-generating hard-

ware. The temperature of the investigated sample was controlled by Bruker BVT-3000

temperature unit controllers yielding an accuracy of ±1.0K. Most samples in this thesis

were investigated using 1.5mL Agilent vials with a PTFE-insulated screw top, enabling

the use of volatile and aggressive solvents as swelling agents (such as d-THF) while still

controlling the degree of swelling, which would not be possible by using standard 10mm x

200mm glass tubes with a huge free volume.

ivMostafa Ahmadi, Johannes Gutenberg-Universität Mainz, Department of Chemistry, Duesbergweg
10-14, D-55128 Mainz, (Germany)
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Figure 5.1: Graphical (simplified) overview over all the different star precursors and cou-
pling reactions described in this chapter.
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5.2.2 High-field 1H-NMR

1H MAS NMR spectra and double-quantum magic-angle spinning NMR experiments were

carried out on a Bruker Avance III 400 MHz spectrometer with a 4mm triple-resonance

MAS probe at a spinning frequency of νrot = 5±0.02 kHz. As the high frequency spinning

of elastic gel pieces results in an unstable rotor spinning frequency (and therefore poses

a danger to the equipment), a technique was developed to minimize this effect. A small,

round 4 mm x 0.2 mm slice of a swollen polymer network was cut out of the network and

tightly packed into a rotor, surrounded by manufactured PTFE cylinders with a tight fit.

This results in significant stabilization of the rotor, reducing the spinning instabilities from

several hundred Hz to about 20Hz. A Bruker BVT 3000 was used to keep the temperature

stable at T = 30 ± 1◦C. As a chemical shift reference for all networks investigated, the

values obtained in ref. [47] were used. POST-C7 experiments were carried out using pulse

lengths (power) of p90 = 2.5− 3µs (39W) and p7 = 3µs (6.8W) respectively, such that the

necessary condition of ωnut = 7 νrot is met.

5.2.3 PFG-NMR

Measurements of translational diffusion coefficients were conducted on a Bruker Avance

II spectrometer with a proton 1H resonance frequency of 400 MHz which is used together

with a Diff60 probe head. All measurements were performed at a temperature of 30◦C ±

1◦C. Solutions of probe molecules were studied using a 4mm PTFE gastight rotor insert

to avoid solvent evaporation. For convenience in sample handling of the swollen gels, but

also to minimize convection effects during longer diffusion times, the investigated pieces of

swollen gel were filled into a standard 4mm MAS rotor with a rubber sealing ring. This

prevents the evaporation of solvent (which for toluene is relevant even at T = 30 ◦C).

Test measurements of a D2O/H2O mixture with a varied diffusion time ∆ between 20 and

200ms revealed no systematic change in diffusion coefficient, confirming that convection

effects are successfully minimized.

5.2.4 Viscosimetry

Viscosity measurements were performed using a RheoSense m-Vroc equipped with a 20µL

sample cell and a 500µL Hamilton syringe. All investigated solutions were measured at

T = 30 ± 0.2 ◦C (being regulated by an external water bath) using 4 different flow rates

between 100 − 800µL/min, and two measurements per flow rate per sample. The final

value was determined using the average of the 8 viscosity values obtained. If the standard

deviation of the mean remains below the error given by the manufacturer (2.5 %), the latter

number is used.

5.2.5 SAXS

SAXS experiments were performed using a Retro-F laboratory setup (SAXSLAB) equipped

with a microfocus X-ray source and an ASTIX multilayer X-ray optics as a monochromator

for Cu Kα radiation (λ = 0.154 nm). Measurements were recorded in vacuum (p < 1mBar)
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using a PILATUS 3 R 300K detector at two sample-to-detector distances (1 m and 3 m,

respectively) to cover both the SAXS and the WAXS regime. All measurements were made

at room temperature (∼20◦C) and in transmission mode, where the transmission factor for

all samples was between 20 – 50%. To conduct experiments on swollen gel pieces within

the vacuum, all gels were carefully cut into small pieces (< 2mm x 2mm x 2mm) using a

scalpel and placed in a 2-piece screw-top hollow metal cylinder with a circular opening on

both ends and a stiff PTFE O-Ring in between for ensuring a gas tight atmosphere between

the two screwable parts. The circular openings in the middle were sealed with Mica plates

with a thickness of 8-10µm (purchased at SAXSLAB). The 1 cm opening allows the beam

to traverse the sample with minimal influence from the setup itself. Initial measurements

of the sample holder with only Mica plates (no gel) have shown no significant contribution

in the SAXS regime but only sharp and easily identifiable peaks in the WAXS regime. All

2D data sets were reduced by azimuthal averaging using SAXSGUI v2.19.02.
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Chapter 6

Chain-level investigation of gels

using MQ-NMR

This chapter will provide results obtained from applying the outlined MQ NMR methodol-

ogy to different networks. First, a more refined method for analyzing discrete distributions

of residual dipolar coupling values is presented, followed by a short empirical investigation

of the influence of pulse settings on the experimental accuracy. Afterward, several types of

swollen polymer networks (see Figure 5.1 for a simplified overview) will be investigated, all

of which are synthesized using star-shaped precursors to obtain well-defined connectivity

motif distributions within the networks. These include chemically-linked networks such as

the amphiphilic oxazinone end-linked tPEG-tPCL network and the homocomplementary

end-linked disulfide tPEG networks, as well as physically-crosslinked tPEG networks using

a terpyridine/ion-based end-linking reaction.

6.1 Improvements of the Baum-Pines evaluation procedure

6.1.1 Global optimization strategy

A major part of this work is concerned with the quantification of specific connectivity motifs

in well-defined gels synthesized from star-shaped precursors under varying preparation

conditions. An integral part of this process is the procedure developed by Lange et al. [23]

(see section 3.4.2 for more details); hence it is worthwhile to explore both limitations and

possible improvements. The baseline given by Lange et al. is a simultaneous fit using a

Simulated Annealing strategy [153] for the regression of the measured data to avoid being

trapped in local minima. Specific implementations (loss function, residual definition, and

estimation of errors) are not specified further in the given work. Therefore, this chapter

aims to provide a clearly outlined strategy for answering the following problems.

(1) In ref. [23], no specifications regarding the simultaneous fit itself were given. Typically,

these fits are most easily approached by constructing a loss function (or residual function)

that is a sum of the individual functions as L(τDQ) = LΣMQ(τDQ) +LDQ(τDQ). However,

as can be seen, for example, in Figure 6.1, the intensity differences in IΣMQ and IDQ can

lead to a strong underrepresentation of the residuals belonging to IDQ. Here, simultaneous
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regression of both IDQ and IΣMQ is carried out by constructing a unifying loss function

L(τDQ) that tries to incorporate the importance of the regression parameters (SL frac-

tion/RDC + defect fraction > DL fraction > HOC fraction), while also incorporating the

physics behind. Therefore, it is constructed so that the residuals of IDQ (which "encode"

the RDC values and are the most limiting factor of the SL fraction) are as significant as

the residuals of IΣMQ despite an overall lower intensity (due to the physics behind the

experiment). Therefore, a normalized loss function is used as follows to create the residual

vector:

L(τDQ) =

∣

∣

∣

∣

∣

IΣMQ(τDQ)− ÎΣMQ(τDQ)

max(IΣMQ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

IDQ(τDQ)− ÎDQ(τDQ)

max(IDQ)

∣

∣

∣

∣

∣

(6.1)

A construction of the loss function in that way ensures that both functions are weighted in

the same manner, while keeping a respective "internal weighting" according to the point-

wise intensities. Therefore, the parts of the curve where the SL fraction is encoded (usually

close to the maximum of IDQ), as well as the corresponding relaxation part, are effectively

weighted the most, while the diminishing intensity of the anyway poorly-defined HOC

component does not influence the fit much.

While the given L(τDQ) solves the presented problem, it comes with the caveat that the

tail fraction (the single exponential decay of IΣMQ toward long τDQ), which in nearly all

cases is a region of high confidence, is underrepresented due to its low intensity. Therefore,

the usage of this loss function comes with an additional trick: a preliminary fit of the

data points clearly belonging to the tail is used to determine the tail parameters (without

any further model assumption). Then, the corresponding parameters (atail, T2,tail) can be

initialized with the preliminary values and restricted so that only small variations (e.g.,

10%) of the initial parameters are allowed.

(2) The Simulated Annealing algorithm used in ref. [23] is a powerful tool for increasing

the chance of not being trapped in a local minimum based on mimicking a physical process

following Boltzmann statistics [153]. However, it suffers greatly from the fact that it re-

quires an initialized system state ("starting Boltzmann statistics representing the system")

and a custom temperature series to work properly. Once these are not set properly, the

algorithm does not always ensure the convergence of the result towards a global minimum.

As there exists no secondary method that is able to quantify chain connectivities based on

their microscopic anisotropy of motion, there exists no reference system that can be used

to test or validate these values and make sure that the found result is indeed the global

minimum. Hence, a global optimization strategy, such as simulated annealing, which re-

lies on delicate control parameters, has the inherent disadvantage of not being able to

test whether the local minimum is indeed a global minimum. Due to this, an alternative

approach was developed.

As described in section 3.4.2 and shown in Figure 3.5, the most interesting parameter is

the SL fraction (parameter a1 in eq. 3.4.2) and its corresponding RDC value (Dres,1).

As it is also the parameter that will be among those having the greatest influence on the

overall shape of the fit, a partial brute-force procedure was implemented [154] to ensure a

global minimum for the given parameter. Empirically, it was found that fixing a1 already
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Figure 6.1: Exemplary evaluation according to section 6.1.1 on a tPEG-SH sample at
cprep = 2.5 c∗. Top: measured data and multi-component fitting procedure. Bottom:
Residual surface for the a1-variation, as well as the normalized percentual deviation of the
regression model from the data for both curves.

strongly reduces the overall uncertainty of the fit and reduces the number of local minima.

Therefore, the parameter a1 was fixed and varied within a given range [amin, amax] ⊂ (0, 1)

with a step size of ∆a1 = 0.01. For each a1,i, both the individual residuals according

to the paragraph above, as well as their average (which is proportional to the sum, but

more practical in terms of automated visualization) are analyzed, and the minimum of

the average residual is extracted. In addition, a second looping procedure (characterized

by a repetition number nr) with a set of random starting parameters (excluding the tail

fraction as explained above) is performed. It repeats the same procedure and replaces the

values once the obtained residual is smaller. This reduced the bias effect of the starting

parameters chosen (see the final exemplary result in Figure 6.1). Although this method is

computationally expensive (about 10 min run time on a single core), it is a safe method of

obtaining a realistic estimate for the SL fraction.

So far, no reliable procedure has been found to estimate the error of the parameters ob-

tained from the fit. It is evident that the parameter standard deviations from the procedure

itself are of no use, as these commonly (strongly) underestimate the actual uncertainties in

non-linear multi-component fitting procedures [155]. Using the a1-variation approach from

above, information is obtained about the residual surface of a1. An empirical estimate

of the uncertainties of the extracted parameters is found by visual inspection of the fit

result for systematic variations of a1 away from the minimum. It can be immediately seen
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from the residual surface that there exists usually a broad plateau in which no distinction

can be made, as in many cases the minima for both residual functions are not perfectly

overlapping. Regression boundaries are then estimated by tracking the visual difference of

the model and data, yielding an empirical value of about 10% deviation in the residual

that would correspond to a model fit that can be visually categorized as not sufficient.

However, the specific value should be estimated on a per-sample or per-sample series basis.

While this is still not optimal, other statistical measures cannot be applied, as it can nei-

ther be ensured that the distribution function of the residuals is a Gaussian, which is the

most common assumption for statistical measures, nor is the fit linear or/and unrestricted

(simplifying the treatment).

6.1.2 Pulse length offset influence

As is evident, the Baum-Pines sequence will need properly calibrated pulses such that

theoretical assumptions are met, and signal curves without distortions or systematic bias

can be obtained. However, during the course of this work, it was observed many times

that the calibration experiment (a "nutation curve") run on the Bruker mq20 machine

to estimate the pulse lengths of the 90◦ and 180◦ pulses shows a flat maximum. This

limits the accuracy of the estimation of the 90◦ pulse to approximately ± 0.1− 0.2µs. So

far, no publication has been found that investigates the implication of this limitation and

the resulting uncertainty arising from the experiment itself. Therefore, a slice of natural

rubber of approximately 1mm thickness was taken and heated to T = 80◦C to fulfill the

requirement of being in the rubbery plateau regime as explained in section 3.3. An initial

visual inspection of the FID ensured that there is no initial Gaussian-like behavior of the

signal (corresponding to a glassy component [156]).

The corresponding nutation experiment revealed an optimal set of pulse durations of p90 =

1.65 ± 0.15µs and p180 = 3.45 ± 0.05µs, which results in an MQ NMR data set that can

be well reproduced with a single component and defect fraction according to eq. 3.4.2

even with a low number of points (see Figure 6.2). The small deviation in IDQ is probably

due to a very small distribution of RDC values, which will be ignored, as the practical

implications for this experiment are negligible.

The Baum-Pines sequence was then adjusted such that it will be nested within two loops

that iterate over 14 different values for p90 and p180 centered roughly around the optimum

values with a step width of about ∆τ = 0.05µs. This results in a tight experimental mesh

of 196 experiments that sample the space of possible values that are within the uncertainty

given by a flat nutation curve, as well as a bit beyond this part. Due to the automated

way the experiment is realized, the low number of points, and the low recycle delay of

d1 = 1 s needed for the recovery of most of the rubber signal, the whole experiment can be

efficiently run within 2 days of run-time, while providing an accurate and practical way to

determine the implications of a pulse offset caused by experimental limitations.

A Python script was developed such that the evaluation of the 196 experiments is carried

out in an automatized fashion. As a result, one obtains a set of 14x14 matrices with the

entries being the respective RDC values, tail fractions, and R2 values (as a rough measure

of the goodness of fit). As can be seen in Figure 6.2, there exists a clear maximum region
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Figure 6.2: Surface visualization of the parameter obtained from the automated evaluation
of the rubber experiment for different pairs of pulse lengths, as well as an exemplary fit
for the supposed optimal settings. Optimal settings according to the visual inspection of
the nutation curve are marked by dotted red lines in each of the surface plots.

for the RDC value with pulse deviations that result in a reduction of the observed RDC

value. Within the pulse length error discussed above (∆τ ≈ 0.1µs), the resulting deviation

in the RDC values is in the range of 5% (210 ± 10Hz) with the error mainly caused by

the offset of p90. The corresponding defect fraction ranges from 7.2 − 9.6% with only a

rough trend visible that is overshadowed by noise. However, the range of values obtained

is still very precise and is on par with the precision of commonly used methods such as sol

extraction upon swelling. Lastly, inspection of the R2 surface ensures that the automated

fitting procedure does not bias the results due to systematic distortions of the expected

A.l.-function line shape. Within the relevant region, no systematic decrease in fit quality

is observed.

6.2 Model tPEG-tPEG and amphiphilic tPEG-tPCL

co-networks

One of the main objectives of this thesis is the microstructure investigation of amphiphilic

co-networks (ACPNs) made from amino-functionalized tPEG and 2-(4-Nitrophenyl)-benz-

oxazinone-functionalized tPCL precursors (see Figure 6.3 for a graphical representation

of the system) that mimics the famous heterocomplementary end-linked tPEG system of
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Figure 6.3: Overview of the system described in section 5.1.1. 10 kDa tPEG stars and
11 kDa PCL stars are heterocomplementary crosslinked by a benzoxazinone-based coupling
agent under different temperatures, solvents and concentrations.

Sakai et al. [21]. Chemical specifications on the investigated systems are found, e.g., in

ref. [47] and section 5.1.1. The gels were prepared using different preparation concen-

trations (cprep), temperatures before (T1) and after reaching the gel point (T2), solvents

and monomer architecture (e.g., switching the tPCL precursor with a similarly function-

alized tPEG precursor or using a tPCL-b-PEG block-star precursor). As will be shown,

switching the coupling chemistry will produce a microstructure that is different from that

of the well-known Sakai-type tPEG gels. Additionally, a peculiarity of the PEG-water

system and post-curing effects are highlighted with conclusions based on the connectivity

motif distribution (single links (SL), double links (DL), higher-order connectivity motifs

(HOCS) and isotropic defect fraction (defs)) identified by MQ-NMR. The specific reaction

conditions and the general results used are displayed in Table 6.1 (samples synthesized

by Carolin Bunk and published in [47]) or presented where needed in text and figures.

Generally, all samples presented here are investigated using the experimental conditions

described in section 5.2 in conjunction with the Baum-Pines sequence and the evaluation

procedure discussed in section 3.4.2 and at regulated temperatures between 25−30±1 ◦C.

Specifications and more details can be found in reg. [47] and [151].

First, a set of three samples consisting of a resynthesized "Sakai-type" tPEG gel at c = 3c∗

(details described in ref. [21]), as well as two different networks (sample references PEG1-3

and CN5-3 according to Table 6.1) synthesized using the chemistry of Bunk are measured,

evaluated, and compared (see Figure 6.4). The aim of this initial comparison is to estab-

lish a baseline by comparing the connectivity motif distributions of these samples and to

optimize the synthesis on the basis of the SL fraction and the number of defects. Recalling

again (see section 6.1) that the error bars given in Figure 6.4 are of systematic nature, it

becomes immediately evident that the networks that use oxazinone-based chemistry are

worse in terms of fraction of regular single link connectivities (Sakai: 54%, PEG-1: 41%

CN5-3: 35%). Although one may speculate that CN5-3 (the tPEG-tPCL network) dis-

plays a slightly lower apparent SL fraction due to small differences in the residual dipolar

coupling values of the respective PEG and PCL network chains (resulting in a slight broad-
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Table 6.1: This Table presents all amphiphilic PEG-PCL co-network samples investigated
by MQ-NMR. d denotes samples that were dried before and reswollen to preparation
condition before measurements were performed. fi denotes the respective fraction of
connectivity motifs (SL - single link, DL - double link, HOC - higher order connectivity
motifs, defs - isotropic defect fraction). Solvents used for the synthesis, as well as applied
temperatures pre- (T1) and post-gel point (T2) are shown in their respective columns.
Sample notation follows the pattern CNa-b where a is the index for a certain sample set of
comparable reaction conditions and b indicates the preparation concentration in multiples
of c∗. It matches the notation as published in ref. [47]. Adapted with permission from ref.
[47]. Copyright 2023 American Chemical Society.

sample cprep/c
∗ fSL/% fDL/% fHOC/% fdefs/% solvent T1/

◦C T2/
◦C

CN3-1d 1 24 65 10 0.1 d4-THF 25 60

CN1-3d 3 39 51 9 1 d4-THF 25 25

CN2-3d 3 39 49 11 1 d4-THF 25 40

CN3-3d 3 36 52 10 2 d4-THF 25 60

CN3-5d 5 52 39 8 1 d4-THF 25 60

CN4-1 1 22 32 38 9 d4-THF 40 80

CN5-1 1 26 34 35 5 d4-THF 60 60

CN4-3 3 32 47 19 2 d4-THF 40 80

CN5-3 3 35 51 13 1 d4-THF 60 60

CN6-1 1 23 33 41 3 d8-toluene 40 80

CN7-1 1 26 32 39 3 d8-toluene 60 60

CN6-3 3 35 51 13 1 d8-toluene 40 80

CN7-3 3 34 50 15 1 d8-toluene 60 60

CN8-1 1 24 31 17 28 d-chloroform 40 80

CN8-3 3 38 46 15 0 d-chloroform 40 80

CN9-3 3 31 52 17 0 d-chloroform 60 60

PEG1-3 3 54 16 20 10 D2O 25 25

PEG2-3 3 41 46 12 1 d-chloroform 25 25

ening of the first maximum of the IDQ curve), the difference of ∆ SL= 13− 19% is beyond

experimental peculiarities. Compared to an older study [23], this difference is even more

pronounced. Furthermore, a surprising and systematic difference is observed in the RDC

values of the SL and DL connectivity motif, which is approximately a factor 2 − 3 in the

average RDC value (34Hz vs. 70 − 90Hz) that is also reflected in the individual RDC

values. Although a small portion may be attributed to the significant difference in the

primary defect fraction (10% vs. 1%), the overall shift observed is attributed to conforma-

tional differences in the crosslink, which will be discussed later. As shown in ref. [47], the

decrease in the overall fraction of the SL motif does not significantly influence the mechanic

stability (plateau moduli) compared to the Sakai-type gel, since the higher conversion and

the overall different microstructure compensate for this disadvantage. Nevertheless, further

experiments will try to optimize the SL fraction, as a higher SL fraction will result in a

more model-like network and the dependence of these topological changes on the reaction

conditions is a topic not yet sufficiently explored.
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Figure 6.4: Left panel: fractions of connectivities and corresponding residual dipolar cou-
plings for a set of three gels, being a classical ’Sakai’ tPEG-tPEG gel (PEG-1), as well as
a tPEG-PEG gel (PEG-2) and a tPEG-tPCL gel (CN5-3). Sample details can be found in
Table 6.1. Reprinted with permission from ref. [47]. Copyright 2023 American Chemical
Society. Right panel: assignment scheme used for the extraction of the parameters shown
in the left panel.

6.2.1 Influence of reaction conditions

In a next step, the influence of the solvents used is investigated by studying the connectivity

motif distribution for three different solvents (d4-THF, d8-toluene and CDCl3) each of

which has a slightly different polarity. It should be noted that using D2O for matching

the synthesis conditions of Sakai et al. is not feasible (even for the tPEG-tPEG networks),

as the coupling agent constituting the crosslink is not soluble in D2O. Surprisingly, no

differences were found in either the connectivity distribution or the RDC values in the

three solvents used (see Figure 6.5). Although this implies that the SL fraction is below

the expectations for all solvents, the gained flexibility in the choice of solvent also allows for

a more in-depth characterization of our networks (applying e.g., dynamic light scattering

in d4-THF as done in ref. [47]). Furthermore, the solvent comparison also indicates that

minor differences in hydrodynamic radii (Rh,PEG is assumed to be different from Rh,PCL for

at least d8-toluene) and overlap concentrations (c∗PEG = 55.2 gL−1 and c∗PCL = 76.2 gL−1

according to ref. [47] at T = 25◦C) do not significantly influence the distribution of the

connectivity motif obtained, which was not clear before, as both the original experiments

by Lange et al. [23], as well as simulations [48] use only one type / size of precursor.
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Figure 6.5: A comparison of fractions of connectivities and residual dipolar coupling val-
ues of different tPEG-tPCL gels (details found in Table 6.1) at different polymer volume
fractions φ during synthesis, temperature programs and solvents used. Reprinted with
permission from ref. [47]. Copyright 2023 American Chemical Society.

To check the response of the connectivity motifs to the reaction speed (controlled by

the reaction temperature), the experiments mentioned above were repeated at a different

temperature, resulting in two experiments per solvent, per concentration at T=40 ◦C pre-

and T=80 ◦C post- gel point, as well as T=60 ◦C for both, pre- and post-gel point. As

shown in ref. [47], T=40 ◦C corresponds to a gelation time of t = 46min (determined by

NMR), whereas T=60 ◦C corresponds to t = 36min. Theoretically, it is expected that the

synthesis performed at a lower temperature results in gels with higher homogeneity (less

defects and a higher SL fraction), as a result of the lowered reaction rate. It is expected that

the lowered reaction rate allows for a relaxation of the formed network chains in comparison

to the formation of new crosslinks. Practically, no differences are found (see Figure 6.5)

for all temperatures and solvents, indicating that the reaction rate is already within the

limit where the network relaxes faster than crosslinks are formed for both temperature

protocols used, or alternatively, the lower temperature can lead to an increased difference

in the c∗ values, which negatively impacts homogeneity. However, since different solvents

have previously been investigated and no influence of c∗ mismatches was found, the former
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hypothesis may be more probable.

Therefore, it can be summarized that the synthesis used is highly stable against changes

in solvent, temperatures, reaction rate, and differences in c∗ values, while only resulting in

sub-optimal connectivity motif distributions with a lowered SL fraction. Nevertheless, all

obtained networks show very little content of dangling chain ends and unreacted precur-

sors, which still allows them to compete with the classical tPEG-gel in terms of mechanical

properties and large-scale structural homogeneity (which is mostly driven by primary de-

fects).

6.2.2 Solvent-dependent conformational changes in the PEG backbone

As discussed in the previous section, the investigated networks show RDC values that are

unusually high (about ≈ 110 − 150Hz for the SL motif at c = c∗) in comparison to the

Sakai-type tPEG gel (about ≈ 60Hz for the SL motif at c = c∗). Possible causes have

previously been discussed and empirically checked only in terms of synthesis-related reasons

(such as solvents used during synthesis). However, none of these could explain the observed

differences so far. Therefore, it was speculated that solvent-induced intrinsic changes in

the chain conformation could be a reason, such as PEG having a different conformation in

polar and unpolar solvents. In fact, a set of Raman spectra of PEG in the melt, aqueous

solution, as well as in an unpolar solvent (chloroform) was analyzed by Koenig et al. [157],

revealing that the repeat unit of PEG in the aqueous solution is more likely to retain the

typical TGT structural motif (trans-gauche-trans) found in the crystalline state. However,

measurements in the molten state and diluted in an unpolar solvent seem to indicate a more

disordered structure. This observation was also confirmed by simulations (see, e.g., ref.

[158]) and by measuring the temperature-dependent CH-vector order parameters [159] of

the ethylene glycol repetition unit in water. As it is not clear whether this could influence

the RDC values of the overall backbone, a tPEG-tPEG gel was synthesized at c = 2c∗

and T = 50 ◦C in d8-Toluene. Subsequently, it was dried and split into two equal pieces.

Each of the two pieces was swollen in a different solvent (being d8-Toluene and D2O) to

a swelling degree of Q = 5. As the hypothesis of the PEG chain conformation in water

that changes the observed RDC values cannot be tested by using D2O as a solvent during

synthesis (because the coupling agent is not soluble in D2O), it will be tested after a drying

step and swelling of the already cross-linked gel in water.

The results of this experiment are shown in Figure 6.6. While both gels show nearly

identical connectivity motif distributions (within ±2%), the respective RDC values differ

significantly. Therefore, it is immediately found that the RDC values of the tPEG-tPEG

gel revert back to the known values of ref. [23] once swollen in water, while the same gel

in d8-toluene shows significantly increased RDC values. Toluene is known to be a good

solvent for PEG (see ref. [47], where χ = 0.38 is found), whereas water is a near θ-solvent

for PEG (χ = 0.485 at T = 20◦ according to [22]). However, these differences do not

explain the observed effect, which is why the idea of conformational changes (discussed

above) is deemed plausible, whereas any relation between the increase in the RDC values

and the quality of the synthesis is no excluded. Finally, this result is confirmed by the

rheological experiments of Fribiczer et al. in ref. [160], where the plateau modulus G∗

61



Figure 6.6: Connectivity motif fractions (left panel) and corresponding RDC values (right
panel) for a tPEG-tPEG gel synthesized at cprep = 2c∗ in d8-toluene, cut into two pieces
and reswollen in d8-toluene and D2O to Q = 5 respectively.

of the same system was investigated in both solvents. It is found that the RDC values

quantitatively follow the expected behavior (Dres ∝ G∗) as the plateau moduli obtained in

ref. [160] (G∗

tol./G
∗

water ≈ 1.6− 2.2).

On a last note, it should be mentioned that the high relative precision of the hereby used

MQ NMR experiment (and the evaluation procedure) is proved again by this experiment.

While both systems show changes in the RDC value up to a factor of nearly 2, the extracted

connectivity motifs are perfectly overlaying. Although the systematic error for the tPEG-

toluene system is significantly smaller (because of an increase in the "effective contrast"

as the RDC values are more spread apart), even the tPEG-water system, where the RDC

values are relatively close to each other, allows for quantification of all motifs.

6.2.3 Additional crosslinking after drying

During the course of the investigation of the ACPNs, the peculiarity of a decreasing equi-

librium degree of swelling with an increasing number of swelling + drying cycles has been

observed. As shown by Bunk et al. [47], it decreases from Qeq ≈ 20 (cprep = c∗) to about

Qeq = 10 for all solvents and temperatures investigated. As Q ∝ ρ−1
c in an ideal rubber

with ρc being the crosslink density, this decrease would imply an increase of ρc by a factor

of two, which strongly contradicts both the 1H-NMR spectra (revealing a conversion of

at least 95%) and the MQ NMR results presented above (revealing an upper limit of 9%

for dangling chain ends + sol + protonated solvent). Therefore, the following hypothesis

seems more likely: It is assumed that open chain ends are much closer to each other while

in the dried state (as c∗ ∝ φ1/(6ν−2) with ν=0.588), therefore resulting in the formation

of crosslinks spanning parts of the sample that would be far apart from each other in

the swollen state. Therefore, a small number of additional crosslinks may influence the

macroscopic degree of swelling by a significant margin.
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Figure 6.7: Comparison of fraction of connectivities (top) and RDC values (bottom) the
three samples with stochiometric ratios (tPEG:PCL) r as-prepared (blue bars) and after
a single drying-reswelling to Qprep cycle (red bars). Stochiometric ratios (r = 1.0; 1.1; 1.2)
correspond to the respective bars ordered from left to right.

This postcured state has been investigated using both MQ NMR and small-angle x-ray

scattering (SAXS). For the SAXS results, which comprise a study of the change in the

correlation length ξc, the reader is referred to section 7.1.1. For the MQ NMR investigation,

a set of three samples with slightly different stochiometry (r=1, r=1.1, r=1.2) synthesized

at c = c∗ and T = 80◦C are investigated both "as-prepared", as well as after drying +

reswelling to c = cprep step. The results for both the connectivity fractions and the RDC

values are shown in Figure 6.7. In the as-prepared state, no changes in the microstructure in

terms of a distorted connectivity distribution for r = 1−1.2. The only noticeable difference

is an expected increase in the isotropic defect fraction with an increasing deviation from

r = 1. The post-cured samples, however, show a noticeable trend compared to the as-

prepared samples, including a lower defect fraction (1% for the three samples) and an

apparent increase in the RDC value of the single link fraction (about 50Hz). On top,

the SL fraction shows a small but systematic increase (about 5 − 10%), which suggests

that additional (strongly stretched) crosslinks may be included in that fraction (since

fitting an additional component is not feasible due to the number of parameters). This
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Figure 6.8: Fraction of connectivities and residual dipolar couplings for a set of tPEG-tPCL
gels (see Table 6.1) after drying and reswelling to synthesis degree of swelling. Reprinted
with permission from ref. [47]. Copyright 2023 American Chemical Society.

may also explain the observed increase in the corresponding RDC fraction. For the other

connectivity motifs (DL, HOC) no systematic changes are found.

Finally, a concentration variation (1c∗, 3c∗, 5c∗) of tPEG-tPCL-ACPNs after drying and

reswelling to cprep is investigated in Figure 6.8. Due to the additional crosslinking in the

dried state no significant defect contribution is found across all concentrations, while the

typical connectivity motif distribution is preserved. At high concentrations (c = 5c∗), the

SL motif eventually dominates the overall structure of the network. However, comparing

the average RDC value with the as-prepared networks explained in the previous section,

even at c = 3c∗, where the defect contribution was already very low in the as-prepared state

(≈ 1−2%), a significant increase in the average RDC value is observed (from 70−90 Hz to

about 120 Hz). This strengthens the assumption that a minority component of additional

crosslinks of only 1−2% is able to significantly influence the whole network chain mobility

due to the superposition of a small fraction of highly-stretched chains.
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Figure 6.9: Scheme depicting the reaction strategy for the tPEG-b-PCL block star net-
works. Image reprinted from ref. [151].

6.2.4 Pure precursors vs. block-star precursors

Another aspect of the investigation was the comparison of microstructural differences be-

tween networks synthesized by end-linking of purely hydrophilic (tPEG) and hydrophobic

(tPCL) components and networks synthesized using a similar chemistry but block-star

precursors where both components are included in each precursor (see Figure 6.9). As de-

scribed in 5.1.1, precursors of a similar molecular weight and end group functionalization

were prepared by Carolin Bunk (see Table 6.2 for specifications), with the difference being

that each star is comprised of an inner PCL core with PEG wings attached instead of the

separated tPEG and tPCL precursors. All results presented in this section are published

in [151].

A set of 4 networks with preparation conditions (and results that will be discussed in this

section) noted in Table 6.2 was prepared at preparation concentrations ranging from from

cprep = 0.5 − 2.5 c∗ (with c∗ = 76 g L−1 [151]) and investigated using 1H static low-field

MQ NMR and a setup comparable to the one used in section 6.2. Due to the overall low

defect fraction found in all samples, a subtraction procedure for protonated solvent was

not feasible because the error is on par with the obtained values.

A strong concentration dependence is observed for the networks synthesized at c = 0.5c∗

and c = 1c∗, indicating an increase in the overall SL fraction from 4% to 33% that is

accompanied by an increase in the corresponding RDC value from 90Hz to 123Hz. For

networks above c∗, the observed increase in these values is present but less steep, aligning

well with theoretical expectations [48] and experimental observations for the previously

discussed tPEG-tPCL ACPNs. It is found that the absolute RDC value of the SL motif is

significantly lower than the corresponding value observed in the ACPNs discussed before.

One reason may be the usage of a different solvent (d6-DMSO instead of e.g., d8-toluene)

and a connected change in the microstructure of the PEG chain, as already observed

for the case of D2O vs. d8-toluene (see section 6.2.2). The observed defect fractions

are in alignment with the conversion rate obtained from high-resolution 1H-NMR spectra

displayed in Table 6.2 and follow the overall expected concentration dependence dictated

by the available number of reaction partners. For all gels synthesized above c∗, MQ NMR

finds a network structure that is nearly free of elastically inactive structures occurring in
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Figure 6.10: Fractions of connectivites and corresponding residual dipolar couplings for a
set of tPEG-b-tPCL gels (see Table 6.2 for details). Reprinted with permission from ref.
[151]. Copyright 2023 American Chemical Society.

heterocomplementary end-linked networks (dangling chain ends and unbound precursors)

and a structure that can be analyzed in terms of a discrete connectivity motif distribution,

indicating a model-like network structure.

However, it should be noted that a more in-depth comparison of the differences in network

topology arising from the usage of pure or block-star precursors is not possible, as the

overall accuracy is overshadowed by experimental issues related to the usage of DMSO as

a co-solvent. Not only exists a possibility that it changes the RDC values of the network

strands by inducing conformational changes in the PEG chain (which was noticed after

this data was acquired) but on top it complicates the overall synthesis procedure because

of its hygroscopic properties. In ref. [151] extensive monitoring of the reaction kinetics was

realized by usage of e.g., rheology, which shows a two-step reaction process that significantly

deviates from the similar data observed for ACPNs in ref. [47]. It is assumed that the

66



hygroscopic properties of DMSO lead to a surface layer of water that easily influences the

overall synthesis conditions, as both the coupling agent and the PCL core are insoluble in

water. As a result, a complicated and strongly temperature-dependent reaction kinetics

is observed, thus disabling the possibility of generating physically-motivated conclusions

based on a comparison of the tPEG-tPCL and tPEG-b-PCL systems. Future experiments

will require a change in solvent to e.g., d8-toluene to quantitatively explore changes in the

network topology based on the precursor type used.

6.3 Hydrogels from homocomplementary tPEG precursors

In contrast to the A4-B4-type networks investigated before, here a homocomplementary

equivalent of similar molecular weights and concentrations is studied. By changing the type

of reaction, odd-numbered cyclic defects (see section 2.3.2) such as primary loops are no

longer suppressed and are expected in significant numbers. However, so far no experimental

analysis of the connectivity motif distribution of end-linked homocomplementary networks

has been performed, which motivated this study. As explained in more detail in section

5.1.2, tPEG stars were end-functionalized with a disulfide group by Zhao Meng to allow

for S-S bonds as an end-linking reaction. While other systems discussed later on (such as

the TPy-Zn system) allow for non-selective crosslinking as well, the hereby-used chemistry

consists only of a comparably small end-linking group, which neither has the possibility to

cluster nor does it need the addition of ions as coordination centers, both of which induce

another layer of complexity.

Again, static time-domain MQ NMR is applied to characterize networks in terms of connec-

tivity motifs and directly compare them to existing data [23, 69] and theoretical predictions

[48]. Therefore, a set of 5 gels at different preparation concentrations was measured as-

prepared at T = 30C using the low-field NMR setup described in section 5.2 with the

samples stored in gas-tight vials to prevent solvent evaporation during the course of the

experiment. All measured MQ NMR curves display a well-defined shape that can be re-

produced by using the 3-component model for extraction of SL, DL and HOC fraction, as

well as the isotropic defect contribution. It can be immediately seen from the raw data,

that the samples show a very strong concentration dependence with a "narrowing shape"

towards higher preparation concentrations (see Figure 6.11). This indicates both a con-

Table 6.2: Overview over the tPEG-b-PCL samples measured using MQ-NMR. The Table
displays preparation concentration (c), connectivity motif fractions extracted from MQ
NMR (fi), reaction conversion measured by Carolin Bunk using 1H-NMR (p), solvent and
gelation temperature (T ).

c/g L−1 fSL/% fDL/% fHOC/% fdefs/% p solvent T/◦C

38 4 14 75 7 ≥ 0.90 d6-DMSO 30

76 33 38 26 3 ≥ 0.95 d6-DMSO 30

114 34 44 19 3 ≥ 0.95 d6-DMSO 30

190 40 47 11 1 ≥ 0.95 d6-DMSO 30
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Figure 6.11: Experimental curves (IΣMQ and IDQ) as measured by MQ NMR are shown
for various preparation concentrations (cprep, at which they are also measured.

tinuous increase in the regular linking fraction, as well as the corresponding RDC value

towards higher values, respectively. Additionally, there is a nearly continuous downward

shift of the long tail of the IΣMQ data (with an exception being the highest concentration),

resulting in the expected strongly concentration-dependent fraction of isotropic defects.

Quantitative results of the data deconvolution can be found in Figure 6.12.

Generally speaking, the observed behavior is expected for any kind of gel (see e.g., [5, 47,

48, 52, 69, 88]. However, the very steep changes observed are rather exceptional, indicating

a unique feature of systems that do not use a heterocomplementary coupling reaction and,

therefore, do not suppress the formation of odd-order loops (most dominantly primary

loops). From a theoretical point of view, Schwenke et al. [48] predicted the frequency of

occurrence of primary loop defects in these kind of systems by using bond-fluctuation model

simulations. For the lowest concentration used here (c = 0.5c∗), a primary loop fraction

of stars with a single intra-star loop f1 ≈ 0.2 is predicted, plus an additional fraction of

stars with two intra-star loops (therefore a completely unbound precursor) of f2 ≈ 0.01 is

found. Comparisons from the experimental side can only be made on heterocomplementary

reactions with A4-B2 systems, which are able to form inter-star primary loops. For that,

Zhou et al. claims a primary loop fraction of about 0.3 as a turn-over point at which their

A2-B3 gels will fall apart into a solution of macromers, while in the A4-B2 gels of Ahmadi

et al. (see section 6.4 and ref. [55]) an overall defect fraction (including sol) of 40− 50%

is found. However, in this work most of this is attributed to dangling ends and primary

loops. Therefore, a high fraction of defects is expected a priori, due to the fact that a

non-heterocomplementary reaction is used.

As seen in Figure 6.13, the overall conversion rate from the precursors to the gel is above
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Figure 6.12: Extracted values of relative fractions of connectivity motifs (top), as well as
corresponding RDC values (bottom) are plotted against the cprep. All plots reveal a strong
and clear dependence of the fraction of regular crosslinks (single links) and the primary
defect fraction on cprep.

95% for all gels synthesized at or above the overlap concentration. The one sample below

the overlap concentration at c = 0.5c∗ shows a strong drop in the conversion (61%) which

is accompanied by an equally sudden drop in the non-defect fraction obtained by NMR

(1 - defect fraction). As the conversion only tracks the sol content, the difference in these

two values can be taken as a measure for the primary loop content and dangling chain

ends. In addition, shown in 6.13 is a visual comparison of the simulation data of [48] and

the primary loop + dangling chain fraction obtained by MQ-NMR. It is found that the

values obtained here are consistently higher (with one outlier as an exception) than the

simulation data. One reason may be the prevalence of nonfunctionalized tPEG precursors,

which results in an overall increase in the defect fraction, as both the sol and the dangling

chain content increases. Another reason may be unfavored (fast) reaction kinetics, which

results in a surplus of large-scale frozen inhomogeneities, which in turn results in an increase

in dangling chains as well.

Concerning the distribution of connectivity motifs, a strong dependency of the SL fraction

on the overlap concentration is found. Below the overlap concentration, a nearly vanishing

number of single links of only 3 − 5% is found, while the fraction of isotropic material

(75%) is dominating. While this generally indicates a poorly crosslinked network, it may

be that the SL fraction is underestimated due to the overall destabilizing influence of
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Figure 6.13: Left: Comparison of non-defect fraction from MQ NMR with measurements
of the sol after synthesis. The difference in these two values can be attributed to mostly
dangling chain ends and first order primary loops, as MQ NMR detects the sum of sol
and dangling chain ends, whereas [100% - gel fraction] is only a measure of the sol. Right:
Reprint of data from ref. [48], as well as the difference between the gel fraction and the
non-defect fraction from MQ-NMR. Error bars for the data of Schwenke et al. are increased
in comparison to ref., as the data needed to be extracted by eye from the given graphs.

the defect fraction. As this strongly violates the base assumption of a set of well-defined

connectivity motifs, fractions cannot be estimated with certainty. With increasing con-

centration, the probability of intra- vs. inter-star connections is shifted towards elastically

active crosslinks simply due to the stochastical argument of an increased chance of find-

ing a another precursor within a certain radius due to a decreasing spatial distance. At

these concentrations, distinct components are easily identified in the experimental data,

resulting in the identification of fractions with relatively high certainty.

The residual dipolar couplings obtained here are generally in agreement with the data

expected for a tPEG network with a precursor molecular weight of Mc = 10 kDa. The RDC

values of the regular links are found between ≈ 25− 70Hz with the variation arising from

the dominating presence of the defects. The corresponding RDC values of the double link

motif are found between ≈ 1− 20Hz and roughly correspond to the postulated factor of 3−4

with the exception of the sample with c < c∗. For c < 2.5 c∗ there are distinct deviations

from the original tPEG system, whereas above no distinctions are found regarding not only

the average RDC value, but also the fraction of single links (see Figure 6.14).

Lastly, the results from MQ NMR are compared to results obtained from rheology (mea-

sured by Zhao Meng, see section 5.1.2). Both datasets show a near perfect agreement (see

Figure 6.15) when comparing the average RDC value with the plateau modulus. For low

concentrations, both the modulus and average RDC values reflect the dilution effect from

the signification fraction of defects, while at higher concentrations the overall connectivity

distribution dominates the behavior. As no deviations are to be found, it is concluded that

the gels do not tend to form structures that may affect rheology but not MQ NMR (such

as, e.g., clusters) due to differences in microscopic and macroscopic elastic responses.
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Figure 6.14: The Figure shows characteristic values (fraction of single links [top] and
average RDC value [bottom]) obtained from the MQ NMR analysis. Plotted reference
values for the typical tPEG + D2O system from Sakai et al. are taken from ref. [23] with
increased error bars.

Figure 6.15: Shown are the weighted average of the measured RDC as obtained from MQ
NMR (left axis), as well as the plateau storage modulus (right axis) as obtained from
rheological measurements. In order to show the expected proportionality between these
values, the RDC axis was scaled accordingly by definition of the upper limit value.

The results presented here are a snapshot of an A4-type gel, which is rarely studied in the

literature due to the advantages of the A4-B4 architecture in preventing odd-numbered

loop structures (with the primary self-loop being the most dominant one). However, this

study shows that at higher concentrations the performance of these gels in terms of rheo-

logical behavior and microscopic network structure is comparable to that of gels obtained

by hetero-complementary reactions, while simultaneously allowing for a more simple chem-

istry.

6.4 Quantification of ion-mediated structures in metal

dual-networks

A special subset of PEG-based hydrogels are dual-network hydrogels, where the network

crosslink is not only facilitated by a chemical end group reaction but additionally, a second
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Figure 6.16: Overview of the system described in section 5.1.3. Linear 6 kDa PEG chains
and 10 kDa tPEG stars are heterocomplementary crosslinked by both conventional chem-
ical (NHS-amine group crosslink) reactions, as well as by an additional physical metal
ion-mediated bond. Reprinted from [55] under the Creative Commons Attribution Li-
cense.

set of crosslinks of either chemical or physical origin is present. General reinforcements due

to the second set of crosslinks can lead to improved mechanical properties, such as a higher

dynamic modulus or mechanical extensibility [161]. Here, a set of metallo-supramolecular

dual-network hydrogels is investigated (with all presented results published in [55]), where

ion-mediated physical bonds are present throughout the network, reinforcing the overall

structure and leading to a set of unique topological features that can be detected by MQ-

NMR. A graphical representation of the investigated system can be found in Figure 6.16.

All networks (with chemical structures and details given in section 5.1.3) were measured

as-prepared using the experimental setup described in section 5.2 at T = 40◦ C. All samples

were subjected to a simple time-domain FID measurement, as well as a saturation recovery

experiment and the Baum-Pines sequence (see section 3.4). The longitudinal T1 relaxation

times of all samples were measured not only to optimize the recycle delay for all measure-

ments, but also to separate the fraction of isotropic defects (’tail’) from the Baum-Pines

sequence into a solvent contribution (long T1) and the actual content of sol + dangling

chains (short T1). Therefore, a regression of the normalized relaxation curves is performed

using a multi-component extension of the well-known equation for the saturation recovery

build-up curve [162].

ISatRec(t) = apoly(1− exp (−t/T 1
poly)) + (1− apoly)(1− exp (−t/T 1

solv)) (6.2)

Once the fractions apoly and asolv and corresponding T1 values are estimated, we can

identify the fraction of sol and dangling chains by using the following equation [23]:

fsol+dang =
B −Asolv[1− exp (−τrd/T

1
solv)]/Isatrec(τrd)

Apoly

(6.3)

Then, the Baum-Pines MQ NMR sequence is used to identify local inhomogeneities and

the distribution of topological connectivity motifs which are induced by the addition of the

ions. Therefore, a reference network (DN-0) without the addition of metal ions is measured
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Table 6.3: Results from the saturation recovery experiments depicted in Figure 6.17.
Here, ai denote the respective normalized fractions of solvent and polymer, whereas
T 1
i are the corresponding longitudinal values. τdiss denotes relative values of the

bond dissociation times that are further discussed in the text.∗While not applicable to
the chemical network, an arbitrary value of 1 was assigned for the sake of data visualization.

Sample τdiss / - apoly T 1

poly / s asolv T 1

solv / s

DN-0 1∗ 76% ± 1% 0.61 24% ± 1% 13± 1.5

DN-Zn 13 60% ± 10% 0.52 40% ± 10% 12± 2

DN-Co 274 40% ± 2% 0.9 60% ± 2% 3.5± 0.2

DN-Ni 218888 41% ± 5% 0.2 59% ± 5% 0.9± 0.1

Figure 6.17: Measured normalized saturation recovery buildup curves for the dual-network
metallo-gels investigated in this section. Adapted from [55] under the Creative Commons
Attribution License.

and evaluated. Surprisingly, the multi-component fitting procedure explained in section

3.4.2 was not necessary, as the data only consisted of a single broad peak, which was

evaluated using the point-by-point normalization explained in section 3.4.1 and fitted with

the log-normal-distributed A.l.-function (see eq. 3.9) with results shown in Figure 6.18.

From this, one can obtain the proton-weighted fraction of isotropic defects (fdef = 48%)

by correcting the extrapolated tail fraction shown in Figure 6.18 and correcting the value

obtained by the solvent contribution as described above. Furthermore, the monomodal

(but strongly distributed) local amplitude of motion of the crosslink is obtained in terms

of a residual dipolar coupling (RDC) value, which amounts to Dres = 2Hz, as well as a

distribution parameter of σ = 0.5. The values obtained here are notable when compared

with the tPEG-tPEG water reference system of Sakai et al. [23], where a much lower

defect fraction of fdef = 7% and a significantly higher Dres value of Dres ≈ 70Hz at a

preparation concentration of c = c∗ are reported. The reason for the highly increased

fraction of primary loops is speculated to be the influence of the linear 6 kDa crosslinker

used in the synthesis, which, in contradiction to the A4-B4 chemistry of Sakai et al., does
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not suppress the formation of primary loops (see Figure 6.21 for a sketch of the expected

general topology). Furthermore, with the strong increase in primary loops being explained,

the strongly lowered Dres value can be put into context. From the overall difference in the

molecular weight of the crosslink (11 kDa here vs. 5 kDa in the Sakai et al. tPEG system)

we find an expected difference of a factor of 2.2 according to eq. 3.7. An additional

factor is found as a result of the incorporation of a significant portion of primary loops

into the network. Given a high number, one can assume that, on average, each tetra-star

will contain at least one primary loop, which consequently turns the star-shaped precursor

into a linear extender. The results of Lang [25] mention a factor roughly equal to 2 in

this case. Although this is not in precise agreement with the mobilization effect of the

crosslink observed by the MQ NMR data, it provides a rough direction of the effects that

strongly contribute to the observations. However, it can be speculated that the presence

of a significant number of primary loops additionally fosters the presence of more complex

connectivity motifs, such as adjacent structures that will be weakened due to the overall

maintained force balance across the network.

Figure 6.18: Experimental data obtained from the Baum-Pines experiment on DN-0. Left:
Normalized DQ buildup curve with a lognormal A.l.-function fit. The extracted values are
Dres = 2Hz and σ = 0.5. Right: Exemplary plot showing the tail subtraction procedure.
Here, Iref − IDQ was used to ensure that no contribution of IDQ is fitted accidentally.
The extracted tail fraction is f = 48%. Adapted from [55] under the Creative Commons
Attribution License.

With a baseline now established, three gels of the same structure but with a different

ion were investigated. More precisely, the ions used and their respective relative bond

dissociation times were zinc (Zn; τdiss ≈ 101), cobalt (Co; τdiss ≈ 2.5 · 103) and nickel (Ni;

τdiss ≈ 2 · 105), covering a broad range of physical bonds with different kinetic stability

(Zn < Co < Ni). Compared to DN-0, dual-network gels with added ions (DN-Zn, DN-Ni,

DN-Co) show a distinctively different MQ NMR response as shown in Figure 6.19:

(1) A single tail fraction does not result in an appropriate reduction of the data with a

second relaxing component visible. Therefore, a second single exponential function with a
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significantly reduced T2 relaxation time (indicating a slightly more immobilized structure)

was used to properly model the experimental data. The results of the respective tail

fractions are given in Figure 6.19.

(2) A point-by-point normalization as used for DN-0 was not possible and results in an

oscillating curve that does not reach the plateau with InDQ = 0.5 as required by the

underlying physics. Therefore, a regression was performed using the multi-component

fitting approach after subtraction of the first tail fraction. The second tail fraction was

incorporated into the fit to ensure a more smooth overall fit.

As a result of the general evaluation procedure, two sets of values with distinct meaning,

the two tail fractions, as well as the three connectivity fractions with respective RDC values

and their proton-weighted fraction (see Figure 6.20), were obtained. In the measured RDC

values, the same dipolar coupling already found in DN-0 can be recognized. Therefore,

it is assumed that it corresponds to a simple chemical network structure. Two additional

RDC values, roughly 6 − 10Hz and 60 − 70Hz respectively), are found. The latter value

is surprisingly high, being much higher than anything that can be reasonably expected

from the network structure (even considering a non-significant effective reduction of the

crosslink molecular weight due to the ionic bonds). Additionally, the observed fraction of

high RDC directly correlates with the relative bond dissociation times of the respective

TPY-ion complexes, whose values are used as a measure to characterize the time scale of

bond dissociation and related bond stability [163]. Relative bond dissociation times for

these complexes are derived from rheological measurements presented in ref. [33]. The ob-

served correlation between cluster fraction and bond dissociation times (and therefore bond

stability) suggests the hypothesis of the existence of a competing gel-forming mechanism

that may be related to the introduced ions. Under the assumption of static clusters, the

bond dissociation times may follow the trend (while not necessarily connected in a causal

way) of the overall reactivity in forming the ionic bonds; hence, an effective imprinting of

the ion-related inhomogeneities during gel formation can be reasonably assumed. Emerging

cluster-like structures would explain the topologically distinct fraction observed. Alterna-

tively, the clusters may be of dynamic nature and the MQ NMR experiment measures the

equilibrium partition between ions participating in clusters and network structure, respec-

tively. The partitioning could depend on the bond dissociation times, which leads to a

higher observed cluster fraction for more stable bonds.

The remaining fraction with RDC values around 6−10Hz is not too far from the chemical

structure and therefore can reasonably be assumed to be related to the shortened crosslinks

arising from the overall reinforcement of the weak chemical structure by the additional

ion-related bonds. Neither its value nor its fraction shows any dependency on the overall

bond dissociation time, which is assumed to be reasonable considering that MQ NMR

will measure a quasi-static (therefore constant) property once the critical timescale of

milliseconds is surpassed.

The remaining question of the interpretation of the additional fraction of defects can be

easily explained in a pictorial way by using Figure 6.21, which shows possible types of

loop defects that can arise from the chemical structure and the ions. It can be seen that

a smaller (and therefore slightly more immobilized) loop structure is formed during the
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Figure 6.19: Left: Normalized InDQ curves for all networks investigated in this section. It
can be clearly seen that the normalization procedure fails and the resulting signal shows
oscillations arising from the respective RDC fractions. Right: Corresponding fractions for
all networks in dependence on their relative bond dissociation time. Here, the chemical
network is artificially set to τdiss = 1. Although no specific trend is found, it should be
noted that the overall defect fraction is surprisingly high. Adapted from [55] under the
Creative Commons Attribution License.

Figure 6.20: Values (left) and corresponding proton fractions (right) of the extracted resid-
ual dipolar coupling values. The proton fractions are normalized after subtraction of the
tail components. It can be seen that Dres,1 has a direct correlation to the kinetic bond
stability. Adapted from [55] under the Creative Commons Attribution License.

reinforcement of the network comprising 2 arms of the tPEG precursor, as well as a short

piece of the linear PEG crosslinker up to the functional terpyridine group.

Lastly, the obtained Dres values are compared with the correlation length obtained from

static light scattering. The correlation length scale obtained from static light scattering
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Figure 6.21: Left: Correlation of the inverse square-root proton-weighted average of the
dipolar coupling after tail subtraction and the observed correlation length in static light
scattering experiments measured by Mostafa Ahmadi. While the error bars of D−0.5

res,avg are
large, there is still a clear proportionality found between both measurements. Adapted
from [55] under the Creative Commons Attribution License. Right: Tentative sketch of
the most common cyclic defect structures that are expected in the investigated system.
Reprinted from [55] under the Creative Commons Attribution License

can be expressed as follows:

Ξ ∝ lNν

where N is the effective number of Kuhn segments of the PEG chain. Meanwhile, the MQ

NMR experiment accesses the effective number of monomers constituting a crosslink N

via

Dres ∝ N−2ν

In both cases, ν is the excluded volume exponent and is assumed to be ν = 0.6 for

a good solvent. Using the inverse square root of the average Dres value, we project both

quantities on the same dependence of ∝ N and can therefore check the expected correlation

independently of ν. As shown in Figure 6.21, both quantities of values have a nearly perfect

overlap, indicating the expected correlation and fortifying the assumption that the values

obtained Dres accurately reflect the overall network crosslink topology despite the complex

local inhomogeneities.

6.5 Defect-controlled transient tPEG networks

In this section, another aspect of the tPEG-TPy-ZN2+ system is characterized in more

detail. To this end, mixtures of homocomplementary tPEG precursors of different func-

tionality f (with f = 4 and f = 8) (see section 5.1.3 for details) are studied by MQ NMR

and changes in the overall chain-level microstructure are investigated. As derived from

the phantom model (see eq. 2.31), the functionality f is supposed to influence the emerg-

ing properties of a gel by increasing the storage modulus with increasing functionality [5],

thus predicting mechanically superior gels with increasing number of crosslinks per arm.

However, due to an experimental shortcoming (being an effective decrease in the degree
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of functionalization of the 8-arm tPEG stars to about 90% in comparison to the degree of

functionalization of the 4-arm stars of < 95%), this effect is found to be negligible. How-

ever, it will be shown that the gels emerging from these inferior precursors can be used

for defect engineering (see Figure 6.22 for a tentative sketch), while still yielding an MQ

NMR signal that predicts a rather well-defined connectivity motif distribution. The data

presented in this chapter is published in ref. [30].

Figure 6.22: Overview of the system described in section 5.1.3. Different mixtures of
PEG stars with a molecular weight of 5 kDa per arm and functionalities of 4 and 8 were
crosslinked using the TPy-metal ion complex, yielding different extents of inhomogeneities
depending on the volume fraction of 8-arm stars. For φ8−arm = 0, a model-like network
structure was found despite the expected shortcomings of a homocomplementary reaction
(see text for more information). Reprinted from ref. [30] under the Creative Commons
Attribution License with permission from the Royal Society of Chemistry (RSC).

As seen in Figure 6.23, the signal curves obtained from the MQ NMR experiment show

a consistent behavior for both the IΣMQ, as well as the IDQ curve. The former shows a

consistent increase of the mono-exponential tail fraction (starting at about τDQ = 250ms)

with increasing polymer volume fraction φ40k of 8-arm tPEG stars, revealing a strong

dependency. Simultaneously, the IDQ curves show a consistent decrease of a well-defined

"bump" that is found for φ40k = 0 with increasing φ40k. As the data presented show clear

signs of different connectivity motifs, it is evaluated using the 3-component fitting approach

described in section 3.4.2. As a result, 3 modes with different respective dipolar couplings

are extracted and shown in Figure 6.24. The associated chain-level structure of the highest

measured RDC value is either the regular crosslink (single link; SL) or a cluster of TPy-

functionalized end groups, as previously discussed (see Section 6.4). With the regular

crosslink structure having an expected molecular weight of about Mc = 2·Mstar/f = 10 kDa

and the well-known corresponding RDC value of Dres,SL ≈ 40 − 80Hz from Lange et al.

[23] for Mc = 5 kDa, the expected value in this case will (according to eq. 3.5) equal to

roughly D ≈ 20− 40Hz, whereas clusters of TPy-functionalised end groups were found to

show RDC values being orders of magnitude higher than the regular crosslink structure.

As the values measured here vary between 30 and 50Hz, it indicates that the SL fraction

is measured.

In addition, the secondary fraction extracted from the fitting procedure is of a dipolar

coupling that is lower by a factor of 4, suggesting that secondary loop structures are

measured, which are known to have RDC values lower by a factor of 2− 4 [23]. Lastly, a

surprisingly high fraction of a very mobile structure with RDC values between 0.7 and 2Hz

is found, which in this work is associated with higher-order connectivity defects (HOCs).
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Figure 6.23: Measured data from the MQ NMR experiment for networks made from dif-
ferent fractions of 8-arm PEG stars (φ40k). Shown are both the IΣMQ data (top curves)
and the IDQ data (bottom curves). Adapted from ref. [30] under the Creative Commons
Attribution License with permission from the Royal Society of Chemistry (RSC).

Evaluating the fractions of connectivities and isotropic defects, the most striking feature

of this sample series is the strongly increasing number of isotropic material from an unex-

pectedly low defect fraction of about 1% towards up to 51%. Although protonated water

from H-D exchange may contribute to this fraction, it is assumed that it is negligible,

as all samples are prepared in the same way, using the same solvent and concentration.

Therefore, since one sample shows a total isotropic fraction of only 1%, this assumption

seems justified. Given the fact that the tPEG-TPy-Zn system is able to perform primary

intra-star loops, the measured (low) defect fraction is highly surprising. As the TPy-Zn

complex is a transient one (average lifetime about 800ms [164]), one could assume that a

distance equilibration of star centers took place, which may result in a strong reduction of

primary loops. However, it should be noted that this phenomenon (or type of network) was

not studied before using MQ NMR or similar methods that quantify the primary defect

fraction, thus no proof or reference can be provided. For the strong dependence of the

overall increasing defect fraction on φ40k, two reasons can be provided: 1) 8-arm tPEG

stars have a known lower overall degree of functionality (90%), which compared to the

4-arm stars (> 95%) will inevitably lead to an increase in the fraction of dangling chain

ends not bound to the overall network. However, an upper boundary can be formulated

as twice the fraction of nonfunctionalized material, assuming that each dangling end will

cause at maximum a single other dangling end as a consequence. Even using this overesti-

mated value, there is an increase in defects of at least 30% being unexplained. Therefore,
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Figure 6.24: Residual dipolar coupling values (top) and corresponding proton fractions of
connectivity motifs (bottom) that were extracted from the data shown in Figure 6.23. A
clear decrease of the overall proton-weighted average RDC value (red line), as well as a
clear increase in the primary defect fraction (red bar) is observed. Adapted from ref. [30]
under the Creative Commons Attribution License with permission from the Royal Society
of Chemistry (RSC).

it is concluded that the addition of 8-arm tPEG stars to the 4-arm tPEG star system

will result in the formation of a significant number of primary loop defects. Although this

is not a priori expected from theoretical considerations (which predict an increase in the

plateau modulus obtained from rheological experiments with increasing number of arms

and therefore exclude a significant increase in the primary loop fraction), one can specu-

late that this observation is tied to the fact that homocomplementary coupling chemistry

was used. Once an 8-arm tPEG star is bound to the emerging network structure and the

gel point already surpassed, the probability of intra-star crosslinks (primary loops) may

be comparable to the probability of inter-star crosslinks (regular crosslinks or other con-

nectivity defects). While, generally speaking, this line of argumentation is valid for any

f-arm star precursors, the increase in the number of arms may cause additional sterical

challenges tipping the scale, while the increased fraction of nonfunctionalized arms may

also slow down the overall reaction, leaving more time for intra-star crosslinks to occur.

Overall, it can be concluded that the expected relationship of modulus and RDC values

vs. functionality is not only not reproduced, but a contrary behavior was measured (G∗ ≈

12.5 kPa for φ40k = 0 vs. G∗ ≈ 3 kPa for φ40k = 1 ) as shown in Figure 6.25. Nevertheless,
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Figure 6.25: Proton-weighted average of the residual dipolar coupling values shown in
Figure 6.24 are plotted and the axis rescaled to overlap with the storage moduli measured
on the same networks by Paola Nicolella. It can be seen that the moduli show a stronger
response to the change in φ40k than the Dres,avg. values. However, a qualitative trend is
preserved. Adapted from ref. [30] under the Creative Commons Attribution License with
permission from the Royal Society of Chemistry (RSC).

the results of these experiments are valuable, as fortunately an interesting set of defect-

engineered gels with a rather well-defined set of connectivities was found. Interestingly,

a recent work of Darby et al. [31] investigates a similar system of tPEG stars with a

molecular weight of crosslinking of Mc = 5.0 kDa (being half the Mc used here) and a similar

non-selective metal-ion chemistry. However, they arrive at a different result, showing

that the plateau modulus G∗ increases from ≈ 18 kPa (10wt% 10 kDa 4-arm PEG) to

≈ 32 kPa (10wt% 20 kDa 8-arm PEG), as expected, with increasing functionality. So far,

the reason for this discrepancy is not fully explained, as the only observable differences

are the differing molecular weight, as well as the difference in end group conversion (being

98% for Darby et al.). For now, this independent set of experiments is interpreted as

a confirmation of the hypothesis posed above, which states that the strong difference in

conversion may be the driving factor of the observations given here. While it can now

be corrected that the homocomplementary coupling chemistry itself is not enough of a

deciding factor, it may dominate the overall behavior in conjunction with the relatively

low end group functionalization and the distorted kinetics of forming intra- vs. inter-star

crosslinks.

6.6 Connectivity motifs of transient networks at different

self-sorting regimes

So far, the investigated networks using metal ion-based crosslinking chemistry have shown

a significant influence of primary loops because of the nonselective nature of the cou-

pling chemistry. Here, a set of metallo-supramolecular tPEG-based gels is synthesized by

Mostafa Ahmadi, by using a metal-ion-facilitated reaction (see Figure 6.26) of tPEG pre-
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cursors functionalized with a sterically demanding 2,9-bis(mesitylene)-1,10-phenanthroline

(DMPhen) and tPEG precursors functionalized with a slim phenanthroline (Phen) or ter-

pyridine end group (TPy). Due to the transient nature of the bond, these networks are

supposed to facilitate a certain degree of self-healing and structure equilibration, with

the extent (related to the bond dissociation time) depending on the overall degree of

self-sorting. When ions that prefer certain coordination geometries and two different end-

linking groups are used, the kinetic bond stability can be varied systematically. This

mechanism is assumed to be capable of overcoming the inherent disadvantage of frozen

permanent defects and is therefore assumed to yield networks with a reduced content of

primary loops. All results presented in this section are published in ref. [152].

A set of six networks was analyzed using three different ions (Cu+, Zn2+, Co2+) and two

different combinations of end-linking (DMPhen-TPy and DMPhen-Phen). Baum-Pines

MQ NMR measurements were performed on a Bruker MiniSpec mq20 at T = 25◦C with

the samples kept in glass tubes with a diameter of 10mm and a height of 8mm to exclude

sample evaporation (see section 5.2). The experiment is used to quantify the distribution

of connectivity motifs and the primary defect fraction.

Figure 6.26: Reprinted from ref. [152] with permission. Copyright 2023 American Chemical
Society.

As the primary loop fraction (or rather its absence) is of particular interest in this set

of experiments, it is mandatory to deconvolute the isotropic sample fraction obtained

from MQ NMR into the primary loop fraction and the solvent contribution, respectively.

Therefore, a saturation recovery experiment is recorded on top to quantify the proton

fraction of solvent and consequently extract the proton fraction of the primary loops using

the procedure and equations mentioned in section 6.4. With the results shown in Table 6.4,

it is evident that, depending on the ion, highly different values of the longitudinal relaxation

times of the solvent Tsolv are found, while being consistent within a comparison of two

samples containing the same ion. This intermediary result strongly undermines the need

for an additional saturation recovery experiment when paramagnetic ions (significantly

shortening the T1 relaxation times) are used and even more when cross-sample comparisons

are made.

The obtained data sets were evaluated using the multicomponent fitting approach (see

82



Figure 6.27: Experimental data sets of all samples obtained from the MQ NMR experiment.
The upper set of curves is the IΣMQ data, whereas the bottom set of curves is the IDQ

data. Used sample abbreviations are: "PP: DMPhen/Phen" ; "PT: DMPhen/TPy".

section 3.4.2) under the already previously justified assumption of 3 distinct connectivity

motifs, being single links (SL), double links (DL) and higher order connectivity motifs

(HOC) with all data sets shown in Figure 6.27. As can be seen from the exponential tail

of IΣMQ toward long τDQ, all samples show a significant contribution of protons attached

to the isotropic material prior to correction using the saturation recovery data. However,

after correction, a rather clear pattern is visible, as shown in Figure 6.28. Both samples

containing Cu+ as a coordination center essentially show no primary loop defect frac-

tion, and the final result even shows signs of slight overcompensation due to the relatively

large error bars arising from the saturation recovery decomposition. This shows that Cu+

tends to mainly form heteroleptic crosslinks between DMPhen-functionalized tPEG pre-

Table 6.4: Experimental results obtained from the saturation recovery experiment. Here,
fpoly denotes the polymer fraction, T1,poly is the longitudinal relaxation time of the
polymer, fsolv is the fraction of the solvent, and Tsolv is the longitudinal value for solvent.

Sample fpoly T1,poly (s) fsolv Tsolv (s)

DMPhen/Phen/Cu+ 0.80± 0.07 289± 33 0.20± 0.07 1500± 527

DMPhen/TPy/Cu+ 0.69± 0.06 174± 23 0.31± 0.06 1808± 608

DMPhen/Phen/Zn2+ 0.33± 0.03 533± 61 0.67± 0.03 5860± 472

DMPhen/TPy/Zn2+ 0.50± 0.02 432± 30 0.50± 0.02 6109± 528

DMPhen/Phen/Co2+ 0.88± 0.07 461± 45 0.12± 0.07 2709± 2410

DMPhen/TPy/Co2+ 0.89± 0.04 475± 27 0.11± 0.04 3878± 2034
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Figure 6.28: Shown are both the mobile/isotropic component estimated from the MQ
NMR experiment, as well as the extracted fraction of sol, dangling chains and primary loop
defects after data reduction using the saturation recovery data. Used sample abbreviations
are: "PP: DMPhen/Phen" ; "PT: DMPhen/TPy".

cursors and tetraPhen/tetraTPy-functionalized tPEG precursors by achieving the required

tetrahedral or triagonal-bipyramidal coordination geometry. For both Co2+ and Zn2+ a

significant amount of primary loops was found even after data reduction, indicating that

they do not prefer the formation of heteroleptic complexes, as both prefer a higher coor-

dination number. Therefore, it is hypothesized that the partial formation of heteroleptic

complexes is driven by a (weaker) π-stabilisation incentive rather than a preference for

the coordination geometry. The final MQ NMR data shows a slight but systematic dif-

ference (fdef,Zn2+ > fdef,Co2+) in the overall primary defect fraction, which, however, is

not reproduced by a simultaneous increase in the plateau modulus measured by Mostafa

Ahmadi (see ref. [152], where G∗

Zn2+ ≈ 2.8 kPa and G∗

Co2+ ≈ 2.3 kPa). It is assumed that

the overall measurement error is underestimated (leading to larger error bars) or that the

basic assumption of a well-defined order plateau of the OACF (see section 3.3) - detectable

by a plateau in the rheological data - is not fulfilled. As shown in ref. [152], the ZN2+-

system shows a rubbery plateau value only up to about 100ms, while the MQ NMR data is

acquired for a slightly longer timescale of about 400ms. Therefore, for the Zn2+ system, a

necessary assumption is not satisfied for the extraction of RDC values from the MQ NMR

experiment, rendering the corresponding parameters questionable.

Concerning the estimated RDC values, as well as the corresponding proton fractions, the

following statements can be made: the highest RDC value that can be observed is within

20−40Hz, which is in perfect agreement with the values obtained from Lange et al. [23] on

the 10 kDa tPEG-NH2 ’Sakai’ system (40− 70Hz), considering the difference in molecular

weight. Therefore, the existence of ion-mediated clusters found in a rather similar system

discussed in section 6.4, can be excluded and the correspondence of this extracted compo-

nent with the SL fraction can be confirmed. The second component extracted spans RDC

values from 6−10Hz, which is a factor of 3-4 lower than the RDC values of the SL fraction.

Again, this is in agreement with the expectations, confirming that indeed the second-order
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Figure 6.29: Residual dipolar coupling values (top) and corresponding proton fractions
of connectivity motifs (bottom) that were extracted from the data shown in Figure 6.27.
Used sample abbreviations are: "PP: DMPhen/Phen" ; "PT: DMPhen/TPy".

loop structure (DL) or structures with similar orientational mobility are measured. Fi-

nally, a third barely distinguishable component is extracted with RDC values spanning

the range of 1− 3Hz. Due to its uncertain nature, as well as the increasing complexity of

connectivity motifs towards higher-order defect structures, it is not further discussed. A

comparison of the RDC values with the rheologic moduli (see [152] for details) reveals that

the difference in plateau moduli (G = 5 kPa for DMPhen/Phen/Cu+ and G = 2.3 kPa for

DMPhen/TPy/Cu+) is consistent with the ratio of nearly 3 that is found in the proton

fraction-weighted average RDC values, which confirms the well-known proportionality of

G ∝ Dres,avg. The reduced capacity of the Co2+/Zn2+ ions to form heteroleptic complexes

is found not only in MQ-NMR but also verified by rheological measurements, which yields

another agreement. However, the difference in the average RDC values of the Co2+/Zn2+

samples itself is not consistent with rheological experiments and expectations, with the

only explanation being the relatively large error bars of the MQ NMR measurements.

Interestingly, despite the differences in the number of primary loop defects, nearly no

systematic differences were found in the distribution of connectivity motifs. While it is

expected that the preferences in certain coordination geometries do not directly influence
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the SL/DL ratio, it is a rather surprising conclusion that the (non-)existence of primary

loop defects does not significantly influence the overall connectivity distribution. Therefore,

the hereby presented system allows for an interesting tuning mechanism of the fraction of

primary loop defects by simply changing the coordination center ion of the used end-linking

chemistry while leaving the rest of the network architecture untouched. In terms of defect

engineering of the rheological properties, the resulting effective mesh sizes, and permeability

properties, this system provides an interesting option because of the separation of concerns

driven by the used chemistry.
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Chapter 7

Structural investigation of ACPNs

So far, all gels presented in this thesis were investigated only by MQ NMR which studies

the local chain anisotropy. Thus, it does not allow for direct conclusions on scales larger

than the crosslink and only (limited) indirect conclusions by predicting changes in the

macroscopic structure based on the RDC value as a microscopic observable. While it

was shown that e.g., the proton fraction of small-scale clusters embedded in a polymer

matrix (see section 6.4) can be quantified, information on length scales and aggregation

numbers cannot be obtained. Therefore, two methods, being small-angle x-ray scattering

(SAXS) and Pulsed-Field gradient NMR (PFG-NMR) that are able to quantify length

scales determining macroscopic properties such as permeability are used to characterize

the amphiphilic tPEG-tPCL system described before. For a description of the system, the

reader is referred to section 5.1.1, while for an investigation of the chain-level connectivity

motif distribution in good and theta solvent the reader is referred to section 6.2. It should

be noted that most of the content of this chapter has been published in ref. [74].

7.1 SAXS on swollen polymer networks

7.1.1 Estimation of correlation blob size in PEG-PCL networks in

good solvent conditions

Most of the applications that make use of diffusion of probe molecules inside a polymer

matrix rely on a controlled diffusion coefficient. In some publications (see e.g., refs [141,

165, 166]) the corresponding polymer length scale is expressed in terms of a so-called mesh

size, whose definition is rather ambiguous and may relate to length scales spanning the

whole range from the chain correlation blob ξc up to the geometrical mesh expressed as

the average center-center distance of two neighboring precursors. Here, the investigated

ACPNs will be characterized in terms of the correlation blob size ξc. For that, a set of

tPEG-tPEG co-networks and a set of amphiphilic tPEG-tPCL co-networks were synthe-

sized at different preparation concentrations cprep in d8-toluene (using precursors provided

by Carolin Bunk, see section 5.1.1) and measured as-prepared using the experimental setup

described in section 5.2.

Generally, the curves obtained by SAXS consist of a characteristic superposition of func-

tions arising from the scattering of different moieties on different length scales. In a common
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Figure 7.1: Scattering curves (combined SAXS+WAXS) were obtained for various ACPNs
(top row) and PEG-PEG networks (bottom row) in a good solvent (d8-toluene) at various
concentrations. The solid lines represent the complete fit in accordance with Equation
7.1, along with the corresponding components. Reprinted with permission from ref. [74].
Copyright 2023 American Chemical Society

good solvent, the following model function is used:

I (q) = Ibg + IDB + IOZ (7.1)

For more details on the specific functions, the reader is referred to section 4.2.1. Here, the

length scale Ξ of frozen fluctuations is described by a Debye-Bueche function IDB [140]

following eq. 4.11. It should be noted that the relevant length scale is not fully accessed

by SAXS and only the "tail" of IDB can be fitted. Therefore, the length scale Ξ obtained

is only qualitative in nature and a lower estimate. However, due to the strong contribution

to the overall signal, it is still needed. The thermal fluctuations (or the correlation blob)

is characterized by ξc and is modeled by a generalized Ornstein-Zernike function [57] with

the good solvent exponent ν = 0.588 (leading to an overall dependence of q−1.7, see eq.

4.10). Lastly, the incoherent background scattering is modeled by a constant function

Ibg = const.

As shown in Figure 7.1, the characteristic length scale of interest (ξc) is clearly identifiable

for most samples and can be deconvoluted using eq. 7.1. However, for the PEG-PEG
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Figure 7.2: The correlation length ξ was determined through the evaluation of different
networks measured in a good solvent and as-prepared (or reswollen to preparation condi-
tion) in dependence on the preparation condition and fits with power laws φα. The value
for ξh displayed in this Figure will be discussed later on in section 7.2.2. Reprinted with
permission from ref. [74]. Copyright 2023 American Chemical Society

networks at c = 0.7c∗, the distinction between IOZ and IDB is ambiguous, leading to a larger

error bar. Figure 7.2 shows the result of the fitting procedure, revealing a surprisingly low

scatter among the data obtained. The data is fitted using a power-law model ξc(φ) = a ·φβ

(with φ being the polymer fraction) as is expected for polymers in solution (see ref. [88]

and eq. 2.23). For the PEG-PEG networks, a scaling exponent of β = −0.83 ± 0.2 is

found and for the PEG-PCL networks a scaling exponent of β = −1.08 ± 0.05 is found.

Although the scaling exponents may differ by 20%, the values of ξc at high φ are perfectly

overlaying, while differences at low φ are within the given error bars, suggesting that both

networks probably show no significant difference in their ξc values. Therefore, mixing

inhomogeneities based on the existence of two different precursors (tPEG and tPCL) are

very unlikely.

According to ref. [88], for a semi-dilute solution of polymer chains in asolvent,olvent an

exponent of β = −0.75 is expected. Although βPEG−PEG is still within that range, the

value of βPEG−PCL is considerably larger, possibly indicating an additional concentration

dependence whose origins have yet to be found. Comparing the values obtained for ξc

with the same length scale extracted by Matsunaga et al. [22] on the tPEG-water system

(θ-solvent, Mw = 10 kDa), a significant discrepancy is found. Here, at a preparation

concentration of c = c∗ (φ∗ = 0.06) values of ξc = 4.9 ± 0.2 nm and ξc = 4.7 ± 2.0 nm are

found for the PEG-PCL and PEG-PEG networks, respectively, whereas from Matsunaga

et al. an interpolated value of ξc ≈ 2.2 nm and a value of β = −1.23 can be obtained.

Although these two values are not directly comparable (owing, e.g., to the different solvent

qualities; χ = 0.485), they may serve as a rough guideline that indicates a significant

increase for our systems. Reasons for this may include an increase in the overall amount of

inhomogeneities present in our system. A more detailed study of the reasons is not possible

due to several factors; e.g., the length scale accessible with SAXS is not enough to model

the frozen fluctuations. For a more direct comparison, small-angle neutron scattering

(SANS) would be needed to access the length scale, while also allowing for a contrast
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variation to extract the geometrical mesh size (defined as the center-center distance between

neighboring star precursors).

Lastly, a set of SAXS experiments was conducted to follow up on the results obtained

in section 6.2.3, which implied a post-curing effect, observed in the equilibrium degree of

swelling and RDC values, in bulk due to the spatial proximity of a small amount of open

chain ends. Here, a set of PEG-PCL networks was prepared in d8-toluene at 3 different

concentrations, being cprep = [1c∗, 3c∗, 5c∗] and subjected to a drying+reswelling cycle.

It was observed that the original degree of swelling was not exactly reached for all three

networks (because Qeq being lower after drying), however, the values reached are at least

close (as observed in the small shift of φ for these three networks in Figure 7.2). It is

observed that the correlation blob strongly decreases by a factor of 4 − 5 at c = c∗ and

a factor of 2 at c = 3c∗, resulting in a strong shift of the exponent ν to lower values

(ν = −0.23). However, it is not clear whether this shift really indicates a strong decrease

in ξc, or is a result of the strongly stretched chains possibly having a different Ornstein-

Zernike exponent ν = νstretch, resulting in a second contribution to IOZ. As measurements

do not allow a quantification of νstretch (since the overall signal can be fitted using only

a single IOZ), it must be assumed that ν = 0.588 for all chain species. Therefore, the

values of ξc found in that evaluation serve only as an apparent measure with an underlying

systematic error. Again, contrast-matched SANS is needed for more detailed statements

on ν.

7.1.2 Characterisation of the phase-separated structures under

selective solvent conditions

Additional SAXS measurements were performed on a set of PEG-PCL ACPNs that were

dried and reswollen in a poor solvent (D2O) to equilibrium to study the microphase sepa-

ration (MPS) behavior of these gels. A priori, it is not clear what kind of phase-separated

structure will emerge due to the topological constraints imposed by the network. Although

PCL precursors will undergo macroscopic phase separation in D2O, the crosslinked PCL

precursors have a decreased range of motion and therefore phase separation may be in-

hibited or only occur on a local scale (MPS, leading to a decreased degree of swelling

Q > 1).

Comparing the SAXS curves observed in D2O (poor solvent) with the curves obtained

in d8-toluene (good solvent), which were discussed in the previous section, a significant

difference is found in the form of a strong peak at about ≈ 0.1Å at all concentrations (see

Figure 7.3 for an example). The observed curve is again supposed to be a superposition of

different contributions and reads as follows:

I (q) = Ibg + IDB + IOZ + IMPS (7.2)

This equation is similar to eq. 7.1 and uses the same function. The only, however dominant,

difference is found in IMPS, which is used to describe the peak arising from the MPS of

the PCL chains. In this work, two different models, the Teubner-Strey model for MPS

in emulsions (TS) and the hard-sphere model of Kinning and Thomas (KT), will be used
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Figure 7.3: Exemplary scattering curves, along with their corresponding evaluation, for
the investigated PEG-PCL ACPN in a non-selective solvent (left; merged SAXS+WAXS)
and a selective solvent (right; SAXS). Reprinted with permission from ref. [74]. Copyright
2023 American Chemical Society

Figure 7.4: Scattering curves (only SAXS) of ACPN at various preparation concentrations,
swollen in water, with fitting results displayed as lines. In the top row, fits of the structural
peak are shown as a black solid line using the KT model, and in the bottom row, the same
data is fitted to the TS model. Reprinted with permission from ref. [74]. Copyright 2023
American Chemical Society

and the results will be compared. For the theoretical foundation used in both models, the

reader is referred to section 4.2 and references therein. A visual comparison of the fits and

the data obtained for all concentrations is found in Figure 7.4. Lastly, it should be noted

that while IOZ is necessary for the evaluation, its overall value is poorly defined and is

therefore not subject to any evaluation. Reasons for this are on the one hand the fact that

the network chains belonging to the PCL are not expected to participate in the regular

network structure, while on the other hand no singular ξc value is expected, as the MPS

may lead to a radial dependence ξc(r) with r being the distance from the PEG chain to

the cluster.

Application of the TS model yields two different length scales reflecting the distance be-
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Figure 7.5: Left panel: Overview of the length scales obtained, including domain distances
(denoted d) and the domain-associated correlation length scale (ξ), calculated using equa-
tions 4.14 and 4.15 for the Teubner-Strey (TS) and d = 2R1 for the Kinning-Thomas (KT)
model. Right panel: Tentative model representation of the MPS (Microphase Separation)
of the tPEG-tPCL ACPN under investigation, as viewed through the two models employed
for SAXS data analysis. Please note that, for the sake of simplicity, some chain ends are
either not depicted or are represented with arrows. Reprinted with permission from ref.
[74]. Copyright 2023 American Chemical Society

tween the scattering centers (dTS) and an associated decay length ξTS (see eq. 4.14 and

4.15). While the distance dTS can be interpreted rather straightforwardly as an average dis-

tance between the scattering moieties, the interpretation of the decay length ξTS is rather

ambiguous. It yields a length scale associated with the range of constructive interference

of the radial oscillations g(r) belonging to the scatterers, which in some works is compared

with the size of the scatterer [141]. As, however, both length scales are determined in terms

of correlations functions that do not show a Heaviside-like jump but a continuous decay,

the extent of accuracy of these extracted length scales is not clear. It is observed that both

values do not change significantly across the whole range of preparation concentrations and

yield values of dTS ≈ 18.5 nm and ξTS ≈ 7.8 nm respectively (see Figure 7.5 for results).

Here, a simplistic model of bulk-like PCL clusters (QPCL = 1) interconnected by PEG

chains (QPEG = 2Qeq − 1 due to the PCL phase accommodating hardly any solvent, thus

QPCL = 1) is chosen to assess the distances obtained. In this model, the maximum distance

allowed should equal the length of a stretched PEG chain plus a collapsed PCL chain that

will be found within the spherical cluster. With an equilibrium degree of swelling observed

of approximately Qeq ≈ 4 (and therefore QPEG ≈ 7) and the characteristic properties of

the PEG chain (b = 0.38 nm, C∞ = 4, N=113 for Mw = 10 kDa) [167, 168], one can

calculate the mean-squared end-to-end distance Ree of a PEG chain in bulk using eq. 2.4

and extrapolate it to a swelling degree of Q = 7 as follows:
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RQ = Q1/3 ·Ree = 15.8 nm

For the fully stretched PEG chain (R = lK) a similar calculation using lK = bN yields lK =

40.6 nm, which easily accommodates the observed distance of dTS = 18.5 nm. Therefore,

it can be assumed that the PEG chains will be slightly stretched, but are not close to their

contour length. As discussed above, ξTS cannot be used as an accurate estimate of the

size of the domain, which is why the distance and the degree of swelling measured will

be used. By assuming a certain spatial distribution of the clusters and the corresponding

packing density ρ, e.g., simple cubic lattice (scc, ρ = 0.5236) or a close-packing of spheres

(fcc, ρ = 0.7506), one immediately finds that both do not reflect the packing density

as determined by the equilibrium degree of swelling (ρ = 1/8 = 0.125). Hence, it is

concluded that, under the assumed distribution, the spheres will not be in direct contact

as a result of their smaller size. The respective shrinking factors can be calculated as

kscc = (0.125/0.5236)1/3 and kfcc = (0.125/0.7406)1/3, which immediately results in a

quantitative relation of cluster distance (dTS) and the desired cluster radius rcluster. For

both models, the following values are found:

rcluster =

⎧

⎨

⎩

0.31 dTS = 5.73 nm for scc arrangement

0.28 dTS = 5.18 nm for fcc arrangement

With rcluster being estimated, one can calculate the respective aggregation numbers AN

(number of PCL stars in a cluster) as

AN =

4

3
πr3

cluster

Mstar/(ρstar ·NA)

≈
rcluster[nm]3

3.81 nm3

(7.3)

For the PCL stars, a molecular weight of Mstar ≈ 11 000 g mol−1 as well as a density of

ρstar = 1.145 g cm−3 are assumed. Using this, the aggregation numbers for both cases can

be calculated as ANscc = 49 and ANfcc = 36. Therefore, the TS model alone is not suitable

for determining aggregation numbers, as specific assumptions on the spatial configuration

need to be made, whose small differences in rcluster amplify due to the fact that AN ∝

r3cluster. To aid the estimation, BFM simulations on this specific system were performed by

Reinhard Scholz and Michael Lang i, yielding an independent estimate for rcluster and AN .

As shown in Table 7.1, both values show a slight dependence in preparation concentration

that is not captured by the experiments. So far, it is not clear whether experimental

issues (such as post-curing during drying) or simulation issues (e.g., no reliable literature

values for χPCL−H2O are found, but the cluster size has a dependence on χPCL−H2O) are

the cause of this slight deviation. However, the obtained radii of gyration (with a slight

polydispersity) of the PCL clusters (4.7 − 6.3 nm) are in agreement with both calculated

values, while the aggregation numbers are too small by a factor of ≈ 2. Reasons for this may

iReinhard Scholz, Michael Lang - Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6,
01069 Dresden, (Germany)
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Figure 7.6: Snapshot of the simulated microphase-separated PEG-PCL system in a poor
solvent, investigated using BFM simulations for φ = 3φ∗. In the left panel, all simulated
monomers are visible, with PEG chains in light blue and PCL chains in red. In the right
panel, PEG chains are made invisible, revealing the ellipsoidal shape of the PCL domains.
The crosslinking groups (outermost monomer of the PEG star branches) are highlighted
in yellow, indicating their predominant location at the outer shell of the PCL cluster.
Reprinted with permission from ref. [74]. Copyright 2023 American Chemical Society

be the anisotropic shape of the clusters that is easily detected by the BFM simulations but

cannot be extracted from the scattering data without assuming more complicated models,

which in turn may lead to overfitting issues. Nevertheless, a snapshot of the simulation

(see Figure 7.6) confirms the general assumptions made for the calculations (QPCL = 1

and isolated spheres/ellipsoids with a PEG matrix in-between).

Table 7.1: Selected real-space simulation results for different preparation concentrations
φ0 normalized by φ∗. ⟨N⟩: average number of stars in the clusters; σ: distribution width
(polydispersity) given by ⟨N2⟩/⟨N⟩2 ; Rg: cluster radius of gyration; lxyz: relative axis
length after projection onto an ellipsoid, quantifying the cluster anisotropy. Reprinted
with permission from ref. [74]. Copyright 2023 American Chemical Society

φ0/φ
∗ ⟨N⟩ σ Rg (nm) lx : ly : lz

1 17.39 1.15 4.69 1.42 : 1.17 : 1

2 20.52 1.16 5.16 1.66 : 1.20 : 1

3 24.49 1.17 5.70 1.86 : 1.24 : 1

4 24.70 1.26 6.32 2.02 : 1.22 : 1

An alternative evaluation of the same scattering data can be performed using the model

of Kinning and Thomas (KT), which assumes a hard-sphere form factor of radius R1 for

the PCL clusters and a soft repulsive corona of radius R2 from a PEG phase of higher

concentration that surrounds the clusters. Although it is assumed that R2 does not partic-

ipate in the scattering (no contrast), it provides the distance between the spheres needed

for the Percus-Yervick hard-sphere structure factor. Evaluation using the KT model yields

nonphysical values of R1 = 9 nm and R2 = 9 nm (with a log-normal distribution parameter

of σ = 0.3−0.4), because both values seem to converge towards each other (R1 ≈ R2) sug-

gesting that the radius of the repulsive sphere and the inner PCL cluster converge towards
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each other.

Reasons for this peculiarity may be related to the fact that the "invisible" PEG corona

may, in fact, have a scattering contrast with a radial dependence, as the PEG chains

emerging from the PCL clusters could be interpreted as a brush structure with decreasing

density with increasing distance from the core. This may lead to an overestimate of the

R1 radius, thus leaving no possibility to determine the cluster size directly. Assuming

the opposite (R1 as the correct radius of the PCL spheres and a vanishing R2) results

in a strong contradiction, as the observed swelling degree of Qeq ≈ 4 indicates a (semi-

)diluted system of PCL clusters (volume fraction of f = 0.125), while the above-mentioned

assumption indicates spheres in close or direct contact with each other. Therefore, it is more

reasonable to assume an overestimated R1 and continue using R2 as the repulsive sphere

radius, resulting in a distance between the clusters of dKT = 2R2. Taking into account

that dKT ≈ dTS, this assumption would be in accordance with the results obtained from

the TS model.

Additionally, it should be noted that the Percus-Yervick structure factor assumes a contin-

uous spatial distribution of clusters starting from a (minimal) critical distance R∗, which

may not be fulfilled due to the topological constraints imposed by the interconnected

PEG chains. Lastly, the aforementioned BFM simulation results indicate a non-spherical

structure of the PCL clusters that for high concentrations even becomes highly ellipsoidal

(see Table 7.1), which cannot be fitted using more elaborate models due to limitations in

the data quality. Given these limitations, it is surprising that both models are able to

yield a reasonable overlap (under the aforementioned strong assumptions) despite being

fundamentally different.

7.2 Diffusion of probe molecules inside a polymer matrix

In this section, the PEG-PCL networks will be characterized using pulsed-field gradient

NMR (PFG-NMR, see section 3.6 for a theoretical background) in order to understand

its transport capacities for probe molecules of different sizes and the effect of microphase

separation (MPS) on it. Therefore, two sets of probe molecules, being linear polystyrenes

(PS) and linear dextrans/polysaccharides (PSC), will be characterized in their respective

solvents (d8-toluene and D2O) and after swelling the network in the solution. Results will

be analyzed using a simple colloidal diffusion model (neglecting effects of polymer dynamics

on the probe molecule chain) and a more realistic scaling law model developed my Michael

Lang. Most results of this chapter, with the exception of the colloidal model, are published

in [74].

7.2.1 Viscometric and PFG-NMR measurements of probe molecules in

solution

Initially, probe molecules were studied in 5wt% solutions (which will be equivalent to the

concentrations used later on) using PFG-NMR without the surrounding polymer network

to obtain reference values for diffusion coefficients at the given concentrations, while ad-

ditionally confirming that the concentrations used do not yet influence diffusivity through
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Figure 7.7: Top: In this log-log plot, the relationship between the inverse diffusion coef-
ficient D in m2s-1 and the molecular weight Mw in 5 wt% solutions of PSCs and PSs is
presented. The data is fitted using equation 2.28, resulting in exponents of α = 0.58±0.03
for PSCs in D2O and α = 0.63± 0.04 for polystyrenes in d8-toluene. Reprinted with per-
mission from ref. [74]. Copyright 2023 American Chemical Society

polymer-polymer interactions. Therefore, 5wt% solutions of PSCs in D2O and PS in d8-

toluene were prepared and diffusion coefficients obtained at T = 30 ◦C using the STE

sequence (see section 5.2 for technical details on the spectrometer used).

Inverse logarithmic diffusion coefficients were plotted over the logarithmic molecular weight

Mw (as provided by the supplier) in the top panel of Figure 7.7. The data was fitted to

a simple power law model D ∝ M−α
w (see eq. 2.28). For the PSCs an exponent of

α = 0.58± 0.03 is found and for the PS probe molecules an exponent of α = 0.63± 0.04 is

found. While αPS overlaps with other works (using PFG-NMR among other things) [169,

170], a slight deviation for αPSC in comparison to Wallace et al. is found [171] (again,

using PFG-NMR to measure the diffusion coefficients). Nevertheless, the hereby-obtained

values of α match the scaling law expected from theoretical models of self-diffusion in good

solvent and dilute solution [88].

An additional factor that has to be studied are polymer-polymer interactions due to the rel-

atively high concentrations used for the solutions. As more dilute solutions are not feasible

for PFG-NMR, they are instead studied by viscosimetry and comparing the hydrodynamic

radii obtained in conjunction with PFG-NMR to predictions that were validated on dilute
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solutions. For the PSCs, other works report overlap concentrations of e.g., 80 g/L and

120 g/L for a ≈ 2000 kDa dextran [172, 173]. As this is significantly larger in both, con-

centration and molecular weight, a concentration dependence of the diffusion coefficient

due to surpassing c∗ is not expected. However, for the PS probes an overlap concentra-

tion of c ≈ 4.5 wt% is reported in ref. [174] for a linear PS with a molecular weight of

Mw = 48.8 kDa. Therefore, a significant deviation from the Stokes-Einstein equation (see

eq. 2.26) may be expected at least for the PS probes.

According to Braeckmann [175], the following relationship between the hydrodynamic ra-

dius Rh and the molecular weight Mw for PSC in water is expected:

Rh[nm] = 0.015(Mw[kgmol−1])0.53±0.02 (7.4)

This relationship was checked in the bottom left panel of Figure 7.7 using the measured

viscosity η and the diffusion coefficient D, of the solutions and converting them to Rh using

the Stokes-Einstein equation. It is found that the hydrodynamic radii are consistently

smaller than predicted by eq. 7.4 which is in accordance with ref. [171]. Although Wallace

et al. attribute this systematic difference to the presence of PSCs with lower molecular

weight, the diffusion experiments conducted in this work (see Figure 7.8) show a straight

slope, indicating a mostly monomodal distribution according to eq. 3.16. Additionally,

Wallace et al. find a significantly lower exponent of α supporting their argument, while

here the expected exponent is retained. This observation would indicate a consistently

smaller size of PSCs across all molecular weights or, alternatively, hint a significant amount

of intramolecular branches that reduce Rh.

Figure 7.8: Diffusion decays obtained for PSC of different molecular weights (see plot
titles). The bimodal diffusion decay arises from the overlap of the PSC resonances with
the water resonance, thus the non-changing fast decay corresponds to water, whereas the
more shallow slope is proportional to the diffusion coefficient of the respective PSC.

For the PS probes, a similar relationship Rh(Mw) was reported by Fetters et. al [176], which

summarizes existing literature on hydrodynamic properties of PS in toluene, arriving at a

97



unified regression model for a variety of methods:

Rh[nm] = 0.0108(Mw[kgmol−1])0.569 (7.5)

As discussed, the diffusion data of the PS probes alone do not indicate any unusual be-

haviour with αPS matching the expected scaling law. However, the hydrodynamic radii

obtained by using the measured viscosities in conjunction with eq. 2.26 shows an agreement

with eq. 7.5 only for PS with a molecular weight up to Mw = 30 kDa (see bottom-right

panel of Figure 7.7). As discussed previously, for the measured PS molecules above 30 kDa

the overlap concentration is exceeded, thus both polymer-polymer interactions as well as

chain interpenetration effects are expected. As a result, literature values calculated by eq.

7.5 will be used as a reference for the hydrodynamic radius.

7.2.2 Diffusion inside a polymer matrix

With the probe molecules being characterized by PFG-NMR and viscosimetry in the pre-

vious section, this part will follow up by applying PFG-NMR to PEG-PCL gels swollen

in solutions of probe molecules matching these conditions. Gels studied in selective sol-

vent (D2O + 5wt% PSC) are swollen to equilibrium, while gels studied in good solvent

(d8-toluene + 5wt% PS) are fixed at Q = 5. While the aim was to have both set of

gels at roughly the same degree of swelling, it was neglected that the "effective degree of

swelling" for the selective solvent is much higher, as the PEG phase will accommodate as

much solvent as possible, whereas the PCL will hardly accommodate any solvent. Hence,

the effective degrees of swelling are Q = 7 for the PEG phase in D2O and Q = 5 for the

whole network in d8-toluene.

In the following sections, an improved version of the standard evaluation procedure for

PFG-NMR is presented and used to quantify the length scales that govern the diffusion

processes for probe molecules within the PEG-PCL system using two different models.

The first model will be a simplistic hydrodynamic model that assumes a colloidal probe

within a network of a defined mesh size ξmesh, while the second model is motivated by

polymer dynamics described in section 2.2.3 and defines the length scale of interaction as

the hydrodynamic screening length ξh.

Data evaluation

The common procedure for evaluating PFG-NMR data involves the localization of a suit-

able peak in the NMR spectrum and quantifying the changes in its height (or integrated

area) across all gradient strengths g applied during the course of this experiment. As

described in section 3.6, the resulting normalized decay can be fitted by a single exponen-

tial function I(b) = exp (−b ·D), with b being the reduced x-dimension, resulting in the

diffusion coefficient D. In the case of multiple overlapping peaks associated to different

species of respective diffusion coefficient Di, this function can be modified to a multimodal

approach with a proton fraction-weighted superposition. As shown in Figure 7.9, no well-

isolated peaks are visible in the PEG-PCL system swollen in a solution of PSCs due to

multiple reasons: Most importantly, the network itself behaves like a solid in the sense
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of NM, meaning that the 1H-1H dipolar couplings are not fully averaged to zero as is ex-

pected for liquids. Instead, the display a residual value of about ≈ 100Hz (as previously

discussed in the DQ NMR section), leading to an additional broadening of the peaks of

roughly ≈ 0.25 − 0.5 ppm. Additionally, the sample preparation of the gels (especially

the drying and reswelling in a selective solvent) does not allow for a homogeneous filling

of the sample in e.g., a tube or rotor, but only allows for solid pieces tightly packed in-

side the container. The additional broadening is empirically estimated to be of the size

of ≈ 0.5 − 1 nm, resulting in a total broadening of the peaks beyond 1 ppm. Hence, the

resulting NMR spectrum does not allow for any quantification of peaks belonging to the

network itself, while additionally strongly overlapping any peaks from the 5wt% of probe

molecules. Therefore, the chemical resolution is (nearly) lost, and the simple approach

of tracking peaks of a singular probe molecule fails in the case of PSC. However, for PS

probes, the strong styrene resonance at 7.3 ppm is fortunately far enough from the network

peaks (see [47] for a detailed HR-MAS spectrum and Figure 7.9d for a qualitative MAS

spectrum), resulting in a strong enough separation to utilize the standard procedure.

Due to the inapplicability of the common evaluation procedure for the PSC probes, a new

procedure was developed, which will now be explained. The usual alternative evaluation

procedure used for overlapping peaks is integration of the whole spectral region to evaluate

the resulting multimodal decay using a regression with multiple exponential decays. How-

ever, even this procedure is barely possible in this case, as the overall intensity arising from

the probes itself is, due to the concentrations used, very small in comparison to e.g., the

network or even the solvent (which, despite being deuterated, usually still has a significant

contribution of protons due to exchange processes).

The algorithm (see Figure 7.9 for a pictorial representation on an example) starts with

assuming that all contributions arise from either solvent, probe or network, therefore jus-

tifying the following regression model:

I(b) = asolvIsolv(b,Dsolv) + aprobeIprobe(b,Dprobe) + anet (7.6)

Here, ai are the normalized proton-weighted prefactors with asolv + aprobe + anet = 1

and Ii = exp (−bDi) are the single-exponential decays for solvent and probe molecule

respectively. As Dnet ≈ 0 is observed, the network itself can be approximated by a constant

offset. In a second step, the 2-dimensional PFG-NMR data set is divided into equal slices

(with the width being e.g., 0.5 ppm) along the ppm dimension. Now, for each slice, the

integral intensity will be evaluated according to eq. 7.6, yielding a set of parameters (ai, Di)

for each slice. For the procedure to be realized efficiently (as there can be > 20 slices per

sample), these steps are automated using Python 3.10 and the LMFIT library [154].

The advantage of this procedure lies in the fact that while the chemical resolution is

"nearly" lost (no peaks are visible), there are parts of the overall NMR spectrum that

show intensity but most likely do not contain a contribution from the probe molecule.

The strong broadening of the peaks will be centered around their original positions (see

Figure 7.9d), hence their signal is not distributed equally among the spectral region. By

slicing the signal in suitable width (here a trade-off between signal-to-noise to number
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of evaluated slices must be made), one can identify regions where the probe signal is still

strong enough to be evaluated by a suitable visualization of both, proton-weighted fractions

ai and corresponding diffusion coefficients Di obtained for each slice (see Figure 7.9a and

b).

The disadvantages of this method include the possibility of a diverging fit for some slices

and the false attribution of diffusion coefficients obtained to either the solvent or the probe

fraction. This commonly happens in regions where either fraction is close to zero or the

overall constant background, arising from the network, is dominating (see the shaded area

of Figure 7.9). Although this is easily identified, it should be kept in mind when evaluating

data in this way. Additionally, this evaluation procedure relies on high quality data where

each slice has a good enough signal-to-noise ratio such that the slicing itself is not impacting

the data quality, while still needing many points in the second dimension to allow the

complex deconvolution of two exponentials and a constant background. Finally, it should

be noted that the latter deconvolution is only successful if the exponentials themselves are

separated enough in their respective diffusion coefficients.

Table 7.2: Free probe diffusion coefficients (D0) in solution and the corresponding reduced
diffusion coefficients in the networks (D/D0) for the different probes at T = 30◦C. Data
published in ref. [74]

PSC PS

Mw (kDa) D0 (10−10 m2/s) D/D0 Mw (kDa) D0 (10−10 m2/s) D/D0

0.18 6.04 ± 0.74 1.10 ± 0.18 1.0 4.09 ± 0.87 0.78 ± 0.24

2.5 2.66 ± 0.15 0.64 ± 0.17 10.0 1.29 ± 0.23 0.41 ± 0.07

6.0 1.87 ± 0.06 0.73 ± 0.09 30.0 0.45 ± 0.08 0.27 ± 0.06

10.0 0.94 ± 0.12 0.42 ± 0.22 70.0 0.32 ± 0.08 0.13 ± 0.04

20.0 0.46 ± 0.03 0.37 ± 0.16 100.0 0.24 ± 0.01 0.11 ± 0.02

40.0 0.25 ± 0.07 0.29 ± 0.09

60.0 0.21 ± 0.03 0.24 ± 0.11

Summing up, the procedure presented here allows for an estimate of the probe diffusion

coefficients within a complex PEG-PCL matrix under the assumption of the validity of eq.

7.6 by careful evaluation of the sliced data. However, as can be seen in both Figure 7.9

and the error bars of the data (discussed in the following section), the values obtained only

serve as a rough guideline and do not allow for an evaluation beyond simple models.

Network mesh size estimated from a hard-spherical-particle approach

One possibility of estimating the relevant length scale governing the diffusion of a probe

molecule through the network is by using, e.g., hydrodynamic or obstruction models that

describe the interaction of the probe with the surrounding (well-defined) network "mesh".

Therefore, two critical assumptions are commonly made: (i) the probe molecule is a hard

(no chain dynamics effects) particle of spherical shape, whose diffusion can be described

by D ∝ R−1
h and (ii) the surrounding network can be described by a singular average

length scale ξ. As the data quality of the diffusion coefficients obtained is not suitable for
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Figure 7.9: Exemplary analysis results for the PGSE experiment involving Dextran-20 kDa
within the PEG-PCL network, as explained in the text. a) The bar plot illustrates fractions
for each slice (∆=0.15 ppm) within the ppm region, according to eq. 7.6. The shaded
area corresponds to the region where the automated fit procedure exhibits instability. b)
Diffusion coefficients for both the fast (solvent) and slow (probe) components corresponding
to each slice. c) T2-filtered (∆diff = 25 ms) proton 1H-NMR spectrum for different gradient
strengths. The constant background originating from the remaining network after the T2-
filter is highlighted in blue. d) Exemplary 1H MAS NMR spectrum of the investigated
ACPNs in D2O, along with the theoretical peak positions of dextran (red rectangles).
Fitting instabilities are the result of the significant contribution of the network, making it
challenging to accurately attribute the network component to the dextran fraction. The
substantial overlap of network and PSC resonances around 3.6–4 ppm limits integration to
the broadened –OH resonance at around 5 ppm. Reprinted with permission from ref. [74].
Copyright 2023 American Chemical Society
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a regression with complex multi-parameter models, only simple ("one parameter") models

will be discussed here.

A popular model for describing the probe-network interaction proposed by Cukier [177]

assumes that the unhindered diffusion coefficient D0 of the probe of radius R is continuously

reduced by the hydrodynamic friction ζ of the surrounding mesh that can on average be

described by the screening constant κ which itself is dependent on the correlation length

ξc as κ ∝ ξ−1
c . Therefore, the following relation between the reduced diffusion coefficient

D/D0 and ξc is assumed:

D

D0
= exp

(

−
Rh

ξc

)

(7.7)

An empirical relation for the diffusion of small (solvent) molecules was found by Fujiyabu

et al. [178], by comparing the reduced diffusion coefficient of water molecules within a

tPEG network with the correlation length ξc obtained from small-angle neutron scattering

(SANS) measurements on the same type of sample. The resulting equation is similar to

eq. 7.7 with differences arising only from the fact that the diameter d of the probe has to

be used instead of the hydrodynamic radius Rh.

D

D0
= exp

(

−
d

ξc

)

(7.8)

As shown in Figure 7.10, both data sets can be reasonably fitted to the Cukier hydrody-

namic model, using the hydrodynamic radii obtained from the viscosity and Stokes-Einstein

equation for the PSCs, while for the PS probes the empirical equation of Fetters et al. (see

eq. 7.5) was used. The correlation lengths obtained from eq. 7.7 amount to ξc = 3.78 nm

for the PEG-PCL networks in water and ξc = 1.96 nm for the PEG-PCL networks swollen

in toluene. Comparing these values to ξc obtained at matching polymer volume fractions

and sample conditions (= after a drying+reswelling cycle) by SAXS (see section 7.1 and

Figure 7.1), a significant discrepancy is found. While PFG-NMR predicts ξc = 1.96 nm in

good solvent, SAXS finds about a factor of two less (ξc ≈ 1 nm) under similar conditions.

While for the phase-separate state the value of ξc cannot be estimated by SAXS, the hereby

obtained value of ξc = 3.96 nm seems suspiciously high, as the clusters themselves should

either reduce the diffusion or not interact with the probe at all. The difference in the

effective degrees of swelling (QD2O ≈ 7 and Qtol. ≈ 5) may contribute to this, but is not

large enough to justify the observed difference since ξc ∝ φ−1 ∝ Q1 (semi-dilute solution

in a θ solvent) is not strong enough for a scaling.

The most obvious issue in the application of this model to the data is the assumption that

the probe molecules will behave like hard sphere particles of a defined radius Rh, which

is similar to the assumption that the investigated system is in the dilute Zimm limit. At

least for the PS probes, the latter assumption is easily discarded by the observation that

even without the surrounding network the solutions of PS chains surpass their overlap con-

centration for at least some molecular weights, contradicting the idea of "isolated particles

surrounded by solvent volume" which the Zimm limit relies on. Moving toward the Rouse

limit, the effective solvent cage becomes smaller and localized in the chain segments, re-

sulting in a decrease in the effective chain size, which - when neglected or not corrected by
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Figure 7.10: Analysis of the diffusion of PSC and PS probes of different Rh (calculated
using Mw) within a PEG-PCL network. The regression of the data follows the colloidal
model described by eq. 7.7.

unknown prefactors - can result in an overestimate of the correlation length ξc. Therefore,

any model used to characterize the present datasets cannot rely on a dilute solution of

isolated probes.

Hydrodynamic screening length estimated from the Zimm-Rouse transition

model

As mentioned in the previous section, the application of a model that assumes hard-

sphere probes is not sufficient for the experimental setup used. Therefore, another model

motivated by chain dynamics and scaling laws (see section 2.29 and ref. [74] as developed

by M. Lang) is used. Both datasets, for the PEG-PCL network in good and selective

solvent respectively, are presented in a log-log plot (see Figure 7.11) and regressed by the

previously discussed power law for D/D0(Mw) describing the cross-over regime from the

Zimm limit to the Rouse limit. Data points belonging to very small molecular weights that

are - judged by eye - not part of the power law behavior are excluded for the regression, as

D/D0 ≈ 1 is expected for all probes in the Zimm limit (in contradiction to the hard-sphere

models discussed before) when arguing in terms of polymer dynamics. The transition

between the behaviors is expected once the hydrodynamic radius of the probe chain Rh

reaches the size of the hydrodynamic screening length ξh. Therefore, ξh is estimated by the

intercept of the power law scaling with D/D0 = 1 and converting the critical molecular

weight to a length scale using the data measured in section 7.2.1 (for the PSC probes) or

by using literature values (eq. 7.5, for the PS probes).

First, the slopes of the regression curves are analyzed, yielding scaling exponents of αPS =

−0.53± 0.08 and αPSC = −0.42± 0.13, both of which are reasonably close to −0.42 (good

solvent for PS probes) and −0.5 (θ-solvent for the PSC probes), respectively (see sec-

tion 2.2.2). The intercepts of both curves yield critical molecular weights of Mw,PSC =

2.83 ± 1.5 kDa and Mw,PS = 1.88 ± 0.8 kDa, corresponding to hydrodynamic radii of
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Figure 7.11: Reduced probe diffusion coefficients against their respective Mw. In the Zimm
limit, an expectation of D/D0 ≈ 1 is held for small Mw, whereas an anticipated transition,
as per the scaling defined in equation 2.29, is expected as Mw increases. Extrapolating
from the latter regime to determine D/D0 yields Mw = 1.88± 0.8 kDa for the PS probes
and Mw = 2.83 ± 1.5 kDa for the PSC probes, resulting in hydrodynamic radii of Rh =
0.78±0.19 nm (PS in d8-toluene) and Rh = 0.83±0.23 nm (PSC in D2O). Reprinted with
permission from ref. [74]. Copyright 2023 American Chemical Society

Rh,PSC = 0.83 ± 0.23 nm and Rh,PS = 0.78 ± 0.19 nm. Thus, no significant differences

were observed in the permeability of the studied amphiphilic network in both good and

selective solvents, even when the small differences in the swelling degree are taken into ac-

count. The primary reason for this finding may be the selective swelling of the PEG phase

that comprises all the solvent, leading to a PEG phase with probably slightly stretched

PEG chains. Interestingly, the topological constraints of the crosslinked network structure

do not significantly reduce the permeability of the investigated network, while also allow-

ing for a localized MPS that does not influence the diffusion of probe molecules (within

the large error of the measurement). Finally, it should be noted that the hydrodynamic

screening length obtained here for the network swollen in a good solvent is qualitatively in

agreement with the correlation blob size of ξc = 1.01± 0.06 (see Figure 7.1) obtained from

SAXS at an equivalent polymer volume fraction of 1/Q ≈ 1/6 after a drying+reswelling

process although both are estimated by two independent methods.

7.3 MAS DQ NMR for phase-specific estimates of dipolar

couplings

Due to the induced microphase separation (MPS) and thereby connected increased topolog-

ical complexity of the PEG-PCL ACPNs when swollen in a selective solvent (D2O), usage

of the low-field Baum-Pines sequence as done in chapter 6 without chemical resolution is

not feasible. Therefore, the 1H MAS POST-C7 sequence was used to study changes in the

RDC values of the respective moieties (PEG backbone, PCL backbone and coupling agent)

in both, good and selective solvent. For the experimental setup, the reader is referred to
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Figure 7.12: 1H MAS NMR spectra of the ACPN, both prepared at c = c∗, with ν = 5
kHz spinning. Top: Spectrum recorded at preparation conditions in d8-toluene. Bottom:
Spectrum obtained after drying and subsequent reswelling in D2O at Qeq ≈ 4. The brackets
denote the integration regions for the DQ build-up curve analysis presented in Figure 10.
The overlap with solvent peaks presents no issue due to the isotropic tumbling, which allows
for separation during the analysis. Reprinted with permission from ref. [74]. Copyright
2023 American Chemical Society

section 5.2 and for a basic introduction to the POST-C7 sequence the reader is referred to

section 3.5.

Two PEG-PCL ACPNs were synthesized at c = c∗ in d8-toluene and one of the networks

was dried and reswollen in D2O (Qeq ≈ 4), whereas the other network was measured under

preparation conditions. The reduction of the obtained 2D dataset towards InDQ build-up

curves was performed by defining three regions of interest corresponding to the respective

polymer backbones and the crosslinker region (see Figure 7.12 for 1H MAS spectra) and

integrating over the respective ppm regions for all DQ evolution times τDQ. Surprisingly, no

traces of multiple components are found in the signal curves obtained (Iref and IDQ), hence

a normalization procedure for obtaining InDQ according to section 3.4.1 and subsequent

regression using the A.l.-function (eq. 3.9) could be performed (see Figure 7.13 for plots

and Table 7.3 for the data obtained). Reasons for the unimodality of IDQ may include the

strong rotational forces arising from the MAS rotor spinning that most likely lead to an

inhomogeneous and radial compression of the sample onto the rotor wall. This may also

explain the unusual shape observed of InDQ.

It is found that the RDC values in the sample undergoing MPS are elevated in comparison

to the as-prepared state, which is expected when considering that the PCL chains will

be accommodated in clusters with no solvent inside, being comparable to e.g., melt-like

chain dynamics. An RDC value of RDCPCL = 251Hz is found for the PCL backbone which
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Figure 7.13: Comparison of normalized DQ build-up curves providing the fitted RDC values
of CA, PEG, and PCL in ACPNs swollen in either a good solvent (d8-toluene) or a poor
solvent (D2O). Bottom: BFM simulation results for the vector order parameter ’m’ for a
chain, under as-prepared and after switching to a selective solvent conditions, respectively.
Here, ’k’ denotes the index in the crosslinked chain, starting from the PCL star core. The
observable spike in the selective solvent conditions corresponds to the coupling position
and its immediate surroundings. Reprinted with permission from ref. [74]. Copyright 2023
American Chemical Society

closely aligns with values obtained on an entangled PCL melt (≈ 200−300 )Hz in ref. [179]

despite the significant topological differences in both systems, such as network constraints

and the MPS itself. Furthermore, it is observed that the RDC value of the PEG chain is also

strongly increased by a factor of approximately 2.2, which may be explained by stretching

Table 7.3: Site-specfic RDC values of the ACPN in different solvents at c = c*
from DQ build-up curve analysis. Both the value and the error of the RDC value for
the coupling agent (CA) in D2O can only be roughly estimated due to the steep initial rise.

solvent RDCCA (Hz) RDCPEG (Hz) RDCPCL (Hz)

tol.-d8 74 ± 2 97 ± 4 149 ± 7

D2O 748 ± 100 212 ± 20 251 ± 6
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effects due to the MPS of the PCL phase or the fact that a significant amount of solvent

is now selectively accommodated by the PEG phase as observed by the equilibrium degree

of swelling of Qeq ≈ 4. Lastly, it is found that the RDC value of the coupling agent shows

a very strong increase by a factor of roughly 10 to values of around ≈ 750Hz, reaching

the upper limit of what can be resolved by the experiment. This significant increase is

assumed to be mediated by a strong orientation of the end groups along the normal of the

PCL cluster surface, as the coupling agent will, by design, always exist at the boundary of

the clustered PCL phase and the stretched PEG phase.

All of these qualitative observations are supported by bond-fluctuation model (BFM) sim-

ulations performed by Michael Lang [74] on the same system. Although it should be noted

that the simulation results presented are expected to follow the experimental results only

qualitatively (due to e.g., assumptions needed concerning the interaction parameters χ

of PCL and water), it will be shown that surprisingly, all simulation results are even in

quantitative agreement with the experimental observations. For a screenshot of the simu-

lated system that will be discussed later, the reader is referred to Figure 7.6. The BFM

simulations confirm the clustered PCL phase with a strongly ordered "outer corona" of

crosslinking agent molecules and the existence of only slightly stretched PEG chains in

between. As these simulations are able to yield qualitative estimates of the vector order

parameter m [107], the obtained ratios (as-prepared vs. selective solvent) are compared

with the ratios obtained from the experiment (fPEG = 2.2, fPCL = 1.6, fCA = 10). As

the simulations predict Qeq = 5.8 whereas Qeq = 7 is observed in the experiment, the

vector order parameter of the PEG chain needs to be scaled accordingly, leading to the

following final ratios obtained from the simulation as shown in Figure 7.13: fPEG,sim = 2.0,

fPCL,sim = 1.1 and fCA,sim = 9. Within the significant error of the experimental values,

all of the ratios obtained here are in near perfect agreement and support the experimental

observations.

Finally, it can be concluded that by a combination of 1H MAS DQ NMR and BFM sim-

ulations a qualitative understanding of the microscopic chain dynamics of the PEG-PCL

ACPNs in a selective solvent could be obtained and preliminary conclusions regarding the

topological arrangement of the respective moieties can be made.
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Chapter 8

Summary

In this work, 1H static MQ NMR was used for a quantitative analysis of the discrete dis-

tribution of connectivity motifs found in different types of star polymer networks. During

the course of the thesis, it was found that the well-known point-by-point normalization

approach commonly used for analyzing rubber samples, fails to describe data obtained on

the latter type of gel samples. Using a multi-component approach that is more suited for

discrete distributions, several gel systems with different layers of complexity were success-

fully characterized in terms of their connectivity motifs and other structural features, such

as small chain-scale clusters. A special focus was placed on the characterization of the

amphiphilic tPEG-tPCL system, which was heavily inspired by the infamous tPEG-water

system. A thorough characterization of the preparation state in good solvent was expanded

by an investigation of the correlation length using SAXS, hydrodynamic screening length

via the quantification of diffusion coefficients of probe molecules using PFG-NMR and fi-

nally a study on the length scales of clusters arising upon microphase separation by SAXS

experiments.

Overall, the main experimental method of this thesis, which is 1H static low-field MQ-NMR,

was applied to 5 types of swollen polymer networks, all of which are based on star-shaped

precursors for enabling the quantification of well-defined connectivity motifs. The main

difference between all these systems is the used coupling chemistry, consequently changing

the emerging network structure. Broadly speaking, these can be divided into networks

synthesized from the transient ion-mediated TPy coupling chemistry used by the Seiffert

Lab Mainz and networks made from a stable chemical crosslinking reaction, including both

the oxazinone-based reaction from the IPF Dresden and the disulfide-based chemistry from

the ETH Zürich.

The most thoroughly investigated system of this thesis is the chemically-crosslinked tPEG-

tPCL ACPN. whose connectivity motif distribution was studied in several good solvents in

dependence of different synthesis-related factors. In close cooperation with the FOR-2811

research unit, networks were synthesized and analyzed using MQ-NMR, resulting in an

overall assessment of these networks to be inferior in terms of SL fraction compared to the

Sakai-type tPEG network. Despite this, the average RDC values, mechanical properties,

and overall fraction of isotropic defects were found to be superior. Systematic investiga-
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tions of temperature programs and solvents revealed no significant dependencies of these

properties, leading to the conclusion that the synthesis procedure is adaptable and yields

reproducible results. During the course of this investigation, additional peculiarities such

as a post-curing effect upon drying of the gels and a significant change in the orientational

order of the PEG chain upon switching from water to an non-polar solvent were observed.

Eventually, the microphase-separated state of the tPEG-tPCL ACPNs was explored by

studying the diffusion of probes in good and selective solvent, yielding estimates for the

hydrodynamic screening length governing the diffusion process of penetrants through the

network. Connected to this, an automated procedure for the evaluation of PFG-NMR

data with indistinguishable peaks was presented and successfully applied. The values

in good solvent showed qualitative agreement with the correlation length obtained from

SAXS data, confirming empirical assumptions, while providing additional insights into the

post-curing effect previously observed by NMR. Additional SAXS experiments in selec-

tive solvent and successive evaluation using both the Kinning-Thomas and Teubner-Strey

models revealed that significant assumptions were needed to evaluate the data beyond the

cluster distance. Additional bond-fluctuation model simulations on a qualitatively similar

system were needed to narrow down the radius of gyration and aggregation number of the

clusters. Lastly, the local chain dynamics of the different moieties after MPS were studied

by POST-C7 NMR experiments and quantitatively confirm the BFM simulation predic-

tions of a surface-localized immobilization of the crosslinking end group and the respective

changes in the order parameter of the melt-like PCL chains and slightly oriented PEG

chains.

An investigation of a homocomplementary chemically-crosslinked network, being the homo-

complementary tPEG-SH system swollen in water, allowed for a quantification of changes

occurring when switching to a coupling chemistry that does not prevent the formation

of odd-numbered cyclic defect structures such as the primary loop defect. The system re-

vealed a fraction of single links and average RDC value that displays a considerably steeper

dependency on the relative preparation concentration c/c∗ than predicted and measured

for the heterocomplementary end-linked Sakai-type network. While this was expected con-

sidering the self-reactivity of the used precursors, the analysis of samples at preparation

concentrations above c∗ revealed SL fraction and RDC values, both of which are surpris-

ingly comparable to the Sakai-type network. This may emphasize the importance of spatial

distance between precursors and thereby-connected reaction kinetics in overcoming issues

of the formation of elastically-inactive primary loops for the formation of networks from

homocomplementary precursors.

A study of a of PEG-linPEG-TPy networks utilizing the active ester chemistry of Sakai

et al. with an additional transient crosslink based on functional TPy groups and ions of

different strength was performed using 1H static MQ-NMR. It produced several results

that confirm theoretical findings concerning the expected strong increase in the primary

loop content due to the usage of a linear chain as a crosslinker. A variation of the ion

species (and the thereby connected cluster fraction) revealed that MQ NMR is not only

sensitive to this type of localized chain-scale cluster, but additionally is able to distinguish
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these from more mobile defect structures based on the respective relaxation times.

The overall possibilities of this kind of linking chemistry on the emerging network struc-

ture was further investigated by studying a set of tPEG-tPEG gels that were transiently

crosslinked using a combination of either terpyridine or a more sterically demanding

phenantroline end group in combination with different ions. While MQ NMR was not

able to detect large differences in the overall distribution of connectivity motifs, a clear

correlation between the observed defect fraction and the preferences of the ions for certain

coordination geometries competing with the sterical hindrances of the end groups, was

observed. Thus, it could be confirmed that the defect content of these transient tPEG

networks can be controlled by the degree of the self-sorting, which generally speaking may

lead to a feasible platform for controllable gels with a reduced amount of large-scale frozen

inhomogeneities.

Lastly, the connectivity motif distributions of networks resulting from mixtures with dif-

ferent ratios of tPEG-TPy precursors and 8-arm PEG-TPy precursors were investigated.

The overall behavior - a strong increase in defects with an increase of the fraction of 8-arm

PEG precursors - is in contradiction to both theoretical and recent experimental findings,

both of which predict the opposite trend. The assumed reason is an underlying strong de-

pendence of the emerging network structure on the overall conversion rate of the synthesis,

which was strongly impacted by the low end group conversion of the 8-arm PEG precur-

sors. Nevertheless, the experiments fortunately revealed a defect-controlled system whose

mechanical and permeation properties could be precisely controlled by the introduction of

defective precursors.

Summing up this work, a study of the chain connectivity motifs of several different types of

tPEG-based networks, utilizing different cross-linking agents and both physical and chem-

ical bonds, was performed. One of the generalized findings is that the crosslinking agent

is the dominating factor that drives the overall microstructure and therefore the macro-

scopic properties. While MQ NMR excels in a surprisingly precise (but model-dependent)

description of the microstructure, most of its value is accessed when compared with more-

established methods such as rheology, swelling experiments or scattering. Nevertheless, for

all systems it can be concluded that usage of one method alone might result in a severe

mischaracterization of these samples, as the general (hierarchical) structure of gels tends

to be complex. This work aims for providing a foundation when using MQ NMR as a

connecting link in-between other methods for the characterization of such networks.
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