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1.  Introduction  

1.1 Protease activated receptor’s expression and structures of protease activated 

receptors in brain 

The protease-activated receptors (PAR) are seven transmembrane-domains G-protein-

coupled receptors (GPCRs) with wide expression in the central nervous system (CNS). The 

four isoforms are named PAR-1, PAR-2, PAR-3, and PAR-4 which were detected in many 

kinds of neural cells, for example, neurons, astrocytes, oligodendrocytes and microglia. In rat 

primary neural cells, all of these four PAR are expressed abundantly [1].  

1.1.1 Expression and structures of protease activated receptors  

As shown in Fig. 1.1.1 modified based on the studies of Adams et al [2], the PAR 

contain seven transmembrane (TM) helices, an extracellular amino terminal domain (N-

terminal) and three intracellular loops (ICL1-3), three extracellular loops (ECL1-3) and an 

intracellular carboxyl tail. An important disulfide bond connects ECL2 with TM3 to form 

most conserved structure amongst GPCRs and contributes to receptor structural stability [3]. 

Activation of PAR was demonstrated via proteolytic cleavage, which results in irreversible 

removal of an N-terminal peptide and unmasking of the new N-terminus. The newly 

generated N-terminus subsequently binds to ECL2, and therefore receptors are activated [4]. 

PAR-1 and PAR-3 contain a hirudin-like binding domain to facilitate thrombin binding and 

proteolysis. However, a cluster of anionic residues, D57, D59, E62 and D65 slows the 

dissociation of thrombin, which enables the activation of PAR-4 by thrombin [5, 6].  

The protease agonists and synthesized peptides are found to activate PAR. For example, 

thrombin, trypsin, mesotrypsin, FVIIa, FXa, APC, and Arginine-specific gingiains-R are the 

protease agonists for PAR-1 and PAR-4. The peptide agonists of PAR-1 include SFLLR-

NH2; TFLLR-NH2
a
, Trag, and TFRIFD. The most common protease agonists for PAR-2 are 

trypsin and tryptase. Moreover, FVIIa and FXa are found to stimulate PAR-2 either. The 

peptide agonists of PAR-2 contain SLIGKV-NH2, SLIGRL-NH2, and SFLLR-NH2. However 

there is no other protease or peptide agonist observed to activate PAR-3, except for thrombin. 

The agonists for each subtype of PAR are well summarized by Luo et al [7]. 
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Fig. 1.1.1. PAR structural features. First, the N-terminal sequence alignments are shown of 

the signal (green lettering) and pro-peptide (orange lettering) regions. Consensus sites for N-

glycosylation are highlighted yellow. The mature amino terminus, and the sequences of 

extracellular loop (ECL) regions 1, 2 and 3, sequences of intracellular loop (ICL) regions 1, 2 

and 3, and the carboxyl terminal domain of the four human PAR are listed. Among them, the 

blue boxes specify the tethered ligand, hirudin-like domain, cysteines contained in ECL2. 

Besides, the putative palmitoylation sites are highlighted in red. Highlighted grey and blue 

residues indicate post-translational modification sites for ubiquitination and phosphorylation. 

The boxed residues in the PAR-1 carboxyl terminal display the tyrosine-based motif related to 

receptor trafficking [2]. 

 

1.1.2 Thrombin activates PAR-1, PAR-3 and PAR-4 

Thrombin is generated by the cleavage of prothrombin in the presence of activated 

factors Xa and Va, calcium and membrane phospholipids [8]. Prothrombin is mainly 

produced in the liver, and secreted into the bloodstream [9], where it is converted into mature 

thrombin during the coagulation cascade in response to injury that requires the formation of a 

blood clot [10]. In this pathway, the main function of thrombin is working as coagulant to 

cleave fibrinogen into fibrin molecules to form the bulk of the clot or thrombus. In contrast, 

thrombin can also act as an anticoagulant through activation of protein C. Apart from the 

functions as coagulant and anticoagulant, thrombin has other activities, such as wound 

healing, inflammation, and atherosclerosis, emphasizing a broader physiologic role of 

thrombin as a cellular bioregulatory factor [11]. 
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Two thrombin interaction sites have been proposed on the PAR-1 receptor: one is the 

cleavage site at Arg41/Ser42, while the second one, between residues 53 and 64, shows 

sequence similarity to a C-terminal region of hirudin and is involved in the thrombin anion-

binding exosite [12]. PAR-3 is the second thrombin receptor with the cleavage site in the N-

terminal sequence at Lys38/Thr39 of human PAR-3, and a hirudin-like binding domain 

positioned C-terminally to the cleavage site, were identified [13]. In addition, thrombin shows 

the ability to activate PAR-4 with cleavage at Arg47/Gly48 in the N-terminal sequence. 

However, PAR-4 requires relatively higher levels of thrombin for activation, possibly because 

of the lacking of hirudin-like thrombin binding sequence [14].  

The cleavage of different sites of PAR-1 is connected to different functional results. For 

example, activated protein C (APC) preferentially cleave PAR-1 at R46, which enhanced the 

endothelial barrier function and decreased staurosporine toxicity in endothelial as well as in 

HEK 293T cells. These data suggest that cleavage at R46 but not R41 is required for 

cytoprotective APC signaling. Furthermore, in PAR-3, it was reported that the distinct 

cleavage site is K38 for thrombin and R41 for APC [15]. 

1.1.3 Collaboration of PAR for physiological functions of cells 

Thrombin modulates a variety of cell functions through the activation of PAR-1, PAR-3 

and PAR-4, including cell proliferation and differentiation, cytoprotection, cell migration, and 

controlling inflammatory mediator release from cells. 

The crosstalks among the PAR were continued to be found. For instance, the effects of 

thrombin on experimental metastasis of tumour cells are commonly thought to be mediated by 

PAR-1. However, the further study pointed out that PAR-1 activation is not sufficient. In 

contrast, a combination of peptides agonist of PAR-1 and PAR-2 mimics the thrombin effect 

on migration, whereas the PAR-2 agonist alone has no effect. Moreover, agonist peptides for 

the thrombin receptors PAR-3 and PAR-4 used alone or plus PAR-1 agonist also have no 

effect. These results demonstrate that thrombin-mediated cancer cell migration needs the 

collaboration of PAR-1 and PAR-2 [16]. 

PAR-3 cooperates with PAR-1 to mediate the effect of thrombin on cytokine IL-6, IL-8 

production and vascular cell adhesion protein 1 expression in endothelial cells and on cell 

proliferation in malignant B cells [17]. Furthermore, collaboration between PAR-1 and PAR-

4 is important for the platelet secretion and aggregation. [18]. 



Introduction 

4 

1.2 Thrombin: A Double-edged sword acting as the PAR-1 agonist in brain 

Thrombin has been shown to play either protective or harmful roles in brain. Thrombin 

was found to be expressed in neural cells at both mRNA and protein levels which were 

associated with both extra- and intracellular neurofibrillary tangles in Alzheimer's disease 

(AD) and parkinsonism-dementia complex of Guam. This result suggested that thrombin 

failed to metabolize tau, which leads to tau aggregation in neurodegenerative diseases [19]. 

Thrombin was found in neuritic plaques in AD. The high level of thrombin is the hallmark of 

traumatic brain injury, and the traumatic brain injury is correlated with an increased incidence 

of AD. In addition, thrombin was suggested to enter brain tissue directly by increasing blood-

brain barrier permeability during brain injuries.  

Thrombin was demonstrated to induce neurotoxicity in rat hippocampus which is 

connected with cognitive deficits [20]. Especially, thrombin was shown to produce reactive 

oxygen species (ROS), such as superoxide (O2
-
) and O2

-
   ---derived oxidants through activation 

of microglia, inducing or exacerbating neurotoxicity [21]. In cultured hippocampal neurons, 

thrombin-induced neurotoxicity is partially caused by neuronal NADPH oxidase-mediated 

oxidative stress. This strongly suggests that thrombin can act as an endogenous neurotoxin, to 

trigger ROS production which may contribute to the neurodegeneration occurring in AD [22]. 

Moreover, thrombin caused rapid tau hyperphosphorylation and aggregation in murine 

hippocampal neurons, which contributes to the pathogenesis of Alzheimer's disease [23]. This 

is believed to occur through stimulation of PAR-1 and PAR-4. In addition, thrombin might be 

responsible for neurodegenerative processes observed after various insults, like stroke, 

traumatic brain injury, and heart arrest or as a frequent consequence of bypass surgeries [24-

27].  

However, accumulating evidence suggests that stimulation of PAR-1 produces bimodal 

biological effects in CNS, which largely depends on the concentration of agonist used in 

clinical or experimental studies. For example, low level PAR-1 activation in astrocytes exerts 

a protective effect against deleterious stimuli [24], whereas high level of PAR-1 activation 

compromises neural cell viability [28, 29]. In vitro studies suggested that PAR-1 activation 

can have neuro-protective roles, which was consistent with neuro-protection through low 

doses of thrombin treatment in stroke models [30]. Stimulation of PAR-1 by thrombin 

induced release of cytokine-induced neutrophil chemo attractants (CINCs) from astrocytes 

and further prevented apoptosis of neurons and astrocytes due to chemical insults [31]. The 

neuroprotection through thrombin treatment was also examined in vivo. For example, PAR-1 

mediated neuroprotection in a 6-hydroxydopamine model of Parkinson's disease [32, 33]. In 
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addition, thrombin was confirmed to increase the neuronal cell density in CNS. 1-7 days’ 

injection of thrombin or PAR-1 agonist was reported to be effective in increasing the density 

of astrocytes and Flouro-Jade C positive cells in hippocampus[34]. Flouro-Jade C stains all of 

the degenerating neurons. These studies highlighted that either proliferative or degenerative 

effects can be produced by thrombin or agonist-activated PAR-1 in the mammalian brain. 

The activation of PAR isoforms in CNS has protective effects through stimulation of 

various signaling cascades which has been studied in our laboratory over the last 10 years. For 

instance, thrombin or PAR-1-specific agonists stimulated proliferation of astrocytes through 

extracellular signal-regulated kinases 1/2 (ERK1/2) activation [35]. Moreover, the activation 

of PAR-1 by thrombin rescued astrocytes from C2-ceramide-induced cell death through 

stimulating c-Jun N-terminal kinases (JNK) and ERK1/2 to increase the levels of the 

chemokine growth-regulated oncogene/cytokine-induced neutrophil chemoattractant-1 

(GRO/CINC-1) [36]; on the other side, PAR-2 activation in astrocytes remarkably protected 

the cells from C2-ceramide-induced cell death. PAR-2 activation elicited the upregulation of 

JNK, P38 (p38 mitogen-activated protein kinase) and ERK1/2. Low concentrations of 

thrombin (10 pM-10 nM) protected hippocampal neurons or astrocytes from cell death caused 

by oxygen-glucose deprivation, hypoglycemia, growth supplement deprivation, oxidative 

stress or C2-ceramide [30, 31, 37]. However, the detailed mechanisms of the protection by 

thrombin-activated PAR-1 are still largely unknown. 



Introduction 

6 

1.3 The good and the bad roles of thrombin–caused mitochondrial ROS production 

Reactive Oxygen species (ROS) are well known as by-products of the normal 

metabolism. Mitochondria are believed to be the key target of oxidative damage and the 

major producer of ROS in cells. The largest part of mitochondrial ROS is generated at the 

electron transport chain [38]. Mitochondrial ROS can be produced under the different stimuli 

such as non-esterified polyunsaturated fatty acids [39]. Increased mitochondrial ROS 

production damages brain contributing to AD [40], PD [41], and stroke [42]. The potential 

mechanisms accounting for these pathologies are the decreased ATP production, abnormal 

mitochondrial membrane potential, permeability transition pore activation, and reduced 

mitochondrial Ca
2+ 

capacity [43].  

Accumulating studies show that ROS release inflicts cellular damage such as cell death. 

However, ROS can regulate the normal cellular growth and metabolism. The contradictory 

roles of ROS played in the cellular physiological effects highlight the two ‘faces’ of it. One 

face is that the excessive ROS plays a harmful role in cellular effects through oxidization of 

cellular protein, lipids and nucleic acids. Moreover, ROS targets mitochondrial DNA, which 

is probably a major factor of mitochondrial genomic instability leading to respiratory 

dysfunction [43]. The other face is that ROS works like a positive signaling molecule to 

mediate signal transduction of growth factors and cytokines [44].  

Thrombin is reported to produce ROS in various cell types, such as human vascular 

smooth muscle cells (VSMC), endothelial cells, retinal pigment epithelial (RPE) cells, and 

hippocampal neurons [45] which is demonstrated to depend on the phosphorylation status of 

ERK1/2 in neurons from rat hippocampus [46]. The brain ROS production was confirmed to 

cause degeneration of hippocampal [47], cortical [48, 49], and mesencephalic neurons [50], in 

vivo and/or in vitro [22]. The mechanism of ROS production initiated by thrombin was found 

to be related with the activation of NADPH oxidase complex in VSMC, which, in turn, 

generates ROS and oxidative stress [51]. One of the potential mechanism is that the newly 

produced ROS targets to p38 MAPK and subsequently regulates thrombin-stimulated 

migration of VSMC [52].  

Thrombin induced-ROS production was believed to induce cell death or apoptosis. For 

instance, in human platelets, thrombin induces ROS production and H2O2 generation, which 

was demonstrated to induce apoptosis [53]. Later, it was confirmed by the same group that 

thrombin induced activation and mitochondrial translocation of Bid, Bax and Bak, which was 

likely to be one of the mechanisms accounting for apoptotic events in human platelets [54].  
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In addition, ROS was demonstrated to play also a positive functional role in physiology. 

For example, thrombin-linked mitochondrial ROS production failed to alter mitochondrial 

function or trigger cell death, but rather contributed to activation of nuclear factor kappa B 

(NF-κΒ) and leukocyte cell adhesion [55]. Thrombin-induced ROS production is involved in 

thrombin-induced pulmonary vasoconstriction [45].  

1.4 The mechanisms accounting for cell proliferation induced by thrombin 

Thrombin, as a mitogen, was reported to stimulate the proliferation of many kinds of 

cells, such as RPE, astrocytes, endothelial cells, tumour cells and VSMC. Moreover, 

thrombin-induced ROS production contributed to cell proliferation, which was associated 

with a transcription factor, UPBEAT1. UPBEAT1 directly regulated the balance of ROS 

between cell proliferation and cell differentiation [56].  

1.4.1 Thrombin-induced ROS/MAPK is responsible for the cell proliferation 

MAPK signal transduction is an important mitogenic factor to induce cell proliferation. 

It is well known that thrombin effectively induces production of ROS and activation of 

MAPK signaling pathways. ROS as second messenger activates MAPK signal transduction, 

which in return regulates ROS generation and contributes to cell proliferation [57]. 

1.4.2 Thrombin stimulates the PI3K/cyclin D1 signal transduction pathway to 

regulate cell cycle 

Thrombin triggered-phosphatidylinositol 3-kinase (PI3K), an important signaling 

pathway involved in cell survival, is implicated in regulating cell cycle protein-cyclin D1 

[58]. Cyclin D1 is a key regulator of the G1-S transition. Several lines of evidence suggest 

that cyclin D and associated kinases (Cdks) 1 are among the targets of cell growth signals. 

Thrombin-caused increased expression of cyclin D1 promotes cell proliferation [58]. In 

contrast, inhibition of cyclin D1 expression either by antisense methodology or antibody 

microinjection extends the duration of the G1 phase, resulting in the blockade of proliferation 

[59, 60]. 

1.4.3 Thrombin activates the secretion and release of growth factors 

Thrombin also activates the secretion and release of growth factors, like vascular 

endothelial growth factor (VEGF) [61], fibroblast growth factor (FGF) family members [62], 

and platelet-derived growth factor (PDGF) [63], which are suggested to interact in cell 

growth. Treatment of human RPE cells with thrombin results in dose and time-dependent 

increases in VEGF mRNA levels and protein secretion. Thrombin- caused VEGF expression 

is correlated predominantly with PAR-1. Moreover, inhibitory assays reveal that MAPK, 
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protein tyrosine kinase (PTK), PI3K, PKC, NF-κB, and ROS are involved in VEGF 

expression induced by thrombin [64]. 

FGF family members are demonstrated to have a variety of biological activities 

including angiogenesis, tissue regeneration, inflammation, and pathogenesis of some tumours. 

Thrombin, through activation of the PAR-1, rapidly induces FGF1 expression and its release 

[62]. 

PDGF is one of the numerous growth factors regulating cell growth and division. 

Enzyme immunoassay and RT-PCR demonstrated that thrombin induced the secretion and 

expression of PDGF from bronchial and alveolar epithelial cells. This cellular effect of 

thrombin is demonstrated to occur via a PAR-1-mediated mechanism, since PAR-1 agonist 

peptide is found to induce PDGF secretion from epithelial cells [63]. Thrombin significantly 

stimulates the proliferation of human A172 glioblastoma cells, and the increased growth of 

the cells primarily depends on the enhanced secretion of PDGF by thrombin. The effects of 

thrombin completely depend on its proteolytic activity, which is consistent with a PAR-

mediated mechanism [65]. 

Endothelins, including Endothelin-1 (ET-1), Endothelin-2 (ET-2), and Endothelin-3 

(ET-3), are vasoactive peptides found in brain endothelial cells, neurons and astrocytes. ET-1 

works as a growth factor to promote proliferation of astrocytes [66]. Moreover, thrombin is 

capable of inducing the synthesis and secretion of ET-1 in RPE cells via PAR-1 [67]. 

Thrombin-caused ET-1 release to the cell culture medium contributes to the proliferation of 

rat gingival fibroblasts [68].  

1.4.4 Thrombin triggers the glucose metabolism signaling cascades to mediate 

cell proliferation 

As described in the paragraphs above, ET-1 behaves like a growth factor to stimulate 

astrocytes proliferation [66]. The mechanisms accounting for ET-1-induced cell proliferation 

are linked to the increased rate of glucose uptake, which is targeted for the nucleic acids 

synthesis required for cell proliferation. ET-1 is able to increase the rate of glucose-6-

phosphate utilization through the pentose phosphate pathway [69], which supplies the ribose 

phosphate to synthesize nucleic acids for astrocytes proliferation [70]. Another explanation 

for the increased glucose uptake occurring in responses to ET-1 is that ET-1 up-regulated the 

glucose transporter type 1 (GLUT-1) and induced the expression of the glucose transporter 

type 3 (GLUT-3), an isoform not found in astrocytes in normal situation. As a result, 

intracellular glucose is phosphorylated by hexokinases (HKs) to glucose-6-phosphate, which 

is a charged molecule that cannot pass back through the plasma membrane, and therefore 
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glucose-6-phosphate is trapped within the cell. In this situation, both type I (HK1) and type II 

(HK2) hexokinases are found to be unregulated by ET-1 in astrocytes [71]. Thrombin is able 

to induce the secretion and release of ET-1 in primary astrocytes [72]. Moreover, thrombin is 

reported to stimulate glucose uptake in rat thoracic aortic smooth muscle cells via Src and 

subsequent p38 MAPK activation [73]. As a result, it can be proposed that thrombin is able to 

promote the secretion of ET-1, which subsequently upregulates the HKs to increase glucose 

uptake. Therefore, the cell proliferation is accelerated. 

Hypoxia inducible factor-1 (HIF-1), a heterodimer composed of the constitutively 

expressed HIF-1β subunit and the highly regulated HIF-1α subunit, plays a critical role in 

glucose uptake, angiogenesis, glycolysis, pH balance, and metastasis. Moreover, HIF-1 as 

transcription factor mediates transcription of multiple genes, such as GLUT-1, GLUT-3, HK1 

and HK2 [74]. HIF-1 was primarily identified because of its response to low O2 

concentrations, which led to the stabilization of HIF-1α in the intracellular environment. 

However, it is now apparent that HIF-1α can be accumulated under normoxia situation. For 

example, activation of the PI3K pathway results in HIF-1α accumulation in normoxia [75]. In 

spite of this, oncogene activation or losses of tumour suppressors also mediate HIF-1 

accumulation. For example, HIF-1 accumulates in tumour cells after activation of oncogenes, 

such as Ras, SRC and PI3K [76]. In addition, HIF-1α is responsive to hormones such as 

insulin [77], growth factors such as IGF [78], thrombin [79], and vasoactive peptides such as 

angiotensin II [80]. 

HIF-1 regulated-genes are largely associated with glucose metabolisms, which is well 

described and reviewed by Denko [74]. The following table lists genes which are important for 

glucose metabolism regulated by HIF-1. 

Product(s) of HIF-1 target genes Metabolic Functions 

Glucose transporters (GLUT-1 and -3)  Glucose uptake by cells 

HK2 Phosphorylation of glucose 

PGI, PFK1, aldolase, TPI, GAPDH, PGK 

PGM, enolase, PK, PFKFB1-4 

  

Glycolysis 

LDHA Conversion of pyruvate to lactate 

MCT4 Removal of lactate from the cell 

PDK1, MXI1 Decreased mitochondrial activity 

COX4i2, LON protease Increased O2 consumption in hypoxia 

Table 1.4.4. Gene regulated by HIF-1 [74]. For the abbreviations, please refer to the 

abbreviations list.  
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It has also been proposed that ROS generated as by-products of electron transport at the 

mitochondria can stabilize HIF-1α in hypoxia [81-83]. The interaction of mitochondrial 

superoxide with the HIF-1 degradation machinery is not well-established, but it has been 

reported that hydrogen peroxide can oxidize the Fe
2+

 that is required as a cofactor for prolyl 

4-hydroxylase (PHD) activity. The resulting Fe
3+

 cannot function in hydroxylation and the 

loss of PHD activity, in turn, results in HIF-1α stabilization [84]. However, this still remains 

to be confirmed.  

In addition, there are still some open questions that need to be answered. It is not clear 

whether thrombin-induced ROS will work as signaling molecule to trigger the MAPK and 

PI3K/Akt signaling cascades to promote the proliferation of astrocytes. Further, it needs to be 

clarified whether mitochondrial ROS are involved in the regulation of glucose uptake 

signaling transduction to promote proliferation of astrocytes.  

1.5 PAR-2 signal transduction and interaction partners 

The human PAR-2 gene codes for a protein with 397 amino acids, sharing 30% amino 

acid identity with the human PAR-1 protein. PAR-2, ubiquitously expressed receptor found in 

every tissue and organ is activated by multiple trypsin-like serine proteases including trypsin, 

tryptase, and coagulation proteases. It is known that PAR-2 mediates the cellular effects 

through activation of heteromeric G-proteins. Other studies revealed that the predominant α 

subunit involved in mediating PAR effects are the pertussis-toxin-insensitive Gαq/G11 and 

G12/G13 subunits [85]. The response to activation of these G-proteins is the elevation of 

intracellular Ca
2+

 via the Cαq phospholipase C /IP3 pathway, as has been shown for PAR-2 in 

cultured hippocampal neurons [86]. 

The activated PAR-2 communicates mainly through two separate signaling arms, one is 

through Gαq with Ca
2+

 mobilization, and another is through the recruitment of β-arrestins (β-

arrestin 1 and β-arrestin 2) scaffolds. β-Arrestins act as molecular switches which are capable 

of modifying the signals generated by the receptor. On the one hand, downstream targets of 

the Gαq/Ca
2+

 signaling arm are directly inhibited by β-arrestins; on the other hand, the two 

pathways are synergistic; For example, PAR-2 activates adenosine monophosphate-activated 

protein kinase (AMPK), a key regulator of cellular energy balance, through Ca
2+

-dependent 

kinase kinase b (CAMKKb), while it inhibits AMPK through interaction with β-arrestins [87]. 

Recently, neuronal PAR-2 has been linked to the stimulation of the ERK subfamily of 

MAPK following middle cerebral artery occlusion [88]. The increase in ERK activity was 

neuron-specific and was significantly inhibited in PAR-2 knock-out mice, which is beneficial 

to neuronal survival, suggesting that the neuroprotective role of PAR-2 is directly connected 
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to ERK activation. The activation of ERK via PAR-2 is thought to rely on the β-arrestins-

dependent internalization of the receptor and the formation of a complex to conduct the 

signaling cascades [89]. 

PAR-2 also couples to a number of signaling pathways usually stimulated strongly by 

cytokines, such as NF-κB pathway and the stress-activated protein kinases, p38 MAP kinase 

and JNK which has been demonstrated in transfected cells, human blood eosinophils, and rat 

pancreatic stellate cells. However, the exact mechanisms involved in these signaling pathways 

remained unclear. 

It has been reported that phosphorylation plays a role in desensitization of activated 

PAR-2 signaling [90]. Previous studies showed that pharmacological inhibitors of PKC 

enhance PAR-2-mediated calcium responses in transformed rat kidney epithelial (KNRK) 

cells and Berkeley rat intestinal (hBRIE 380) cells, indicating a role for phosphorylation in 

PAR-2 regulation [91]. Other studies also displayed that PAR-2 activation caused a rapid and 

robust increase in phosphorylation of PAR-2 wild type, rather than mutants in which all 

serines and threonines in the cytoplasmic tail were converted to alanines. This result indicated 

that the major sites of PAR-2 phosphorylation occur within the cytoplasmic tail [90]. 

Phosphorylation is important for PAR-2 coupling to β-arrestins, since mutants of PAR-2 in 

which all serines and threonines in the cytoplasmic tail were converted to alanines, lose the 

capacity of desensitization, implying that β-arrestins mediate activated PAR-2 desensitization, 

presumably through phosphorylation, internalization and signaling to downstream effectors. 

However, less is known how β-arrestins regulate the PAR-2 downstream signaling upon 

the activation of receptors under different stimuli. Moreover, it is not well elucidated what are 

the functional roles of the cluster of serines/threonines located in the cytosolic carboxyl tail in 

controlling the downstream signaling of PAR-2 receptor and cellular functions.  

1.5.1 PAR-1 and PAR-2 interaction partners: β-arrestins 

Several partner-proteins of PAR were identified in our laboratory over the past 10 years. 

For example, -crystallin interacts with PAR-2 to rescue astrocytes from cell death, and the 

PAR-2-interacting protein Jab1 controlled PAR-2-induced activation of activator protein-1 to 

regulate c-Jun activation [92]. β-Arrestins were confirmed interacting with PAR-1 and PAR-

2. There was strong evidence indicating that β-arrestin 1 was essential for PAR-1 

desensitization, but dispensable for receptor internalization [93]. The situation was different 

for PAR-2, since both β-arrestin 1 and β-arrestin 2 have been confirmed to be crucial for 

receptor internalization as well as signaling desensitization [94].  
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Over the last decade, β-arrestins, the two members of the arrestin family with ubiquitous 

distribution have emerged as pleiotropic scaffold proteins mediating numerous diverse 

responses to multiple receptor agonists. The GPCR-stimulating β-arrestin signals are 

sometimes synergistic with, and sometimes independent from the heterotrimeric G-protein 

signals. Previous studies confirmed that β-arrestins are involved in PAR-2 receptor 

internalization [95] and mediated downstream cascades of PAR-1 stimulated by thrombin 

[96].  

β-Arrestins have been demonstrated to be coupled to many signaling proteins, such as 

MAPKs and PI3K. β-Arrestins mediate the long-lasting ERK activation, which is quite 

different from the rapid and transient ERK activation mediated by G-proteins. The MAPK 

signaling pathways ERK, JNK3 and p38 are regulated by β-arrestins. It is worth to mention 

that protein kinase B (Akt) activation is either up-regulated or down-regulated by β-arrestins-

dependent mechanisms, depending on the types of stimuli and receptors involved. Stimulation 

of the insulin receptor leads to β-arrestin 2-dependent phosphorylation of Akt at Thr 308 and 

Ser 473, respectively [97]. On the other hand, β-arrestin 2 can deactivate Akt by the formation 

of a β-arrestin 2/protein phosphatase 2A/Akt complex under the challenge of the dopamine 

D2 receptors [98]. Since activation of PI3K/Akt signaling pathways plays a pivotal role in cell 

proliferation, differentiation and survival, important studies have put emphasis on these 

signaling pathway-related molecular effectors. For example, it was found that β-arrestin 2 

mediated phosphorylation of BAD through the PI3K/Akt signaling pathway, which protected 

cells from apoptosis [99]. β-Arrestins are involved in PAR-induced cellular protection. For 

instance, APC-activated PAR-1 cyto-protective signaling is mediated by β-arrestins 

recruitment and activation of the dishevelled-2 scaffold but not by Gαi [100].  

Accumulating studies emphasized the functional role of β-arrestins, especially when they 

work as the signaling adaptors. β-Arrestins were reported to mediate cytoprotection in 

different kinds of cell types through stimulation of various signaling pathways. For example, 

in β-arrestin 1/2
-/-

 mouse embryonic fibroblasts, the apoptosis happened because without β-

arrestins, the stimulation of the N-formyl peptide receptor initiated cell apoptosis followed by 

cell death. The reintroduction of either β-arrestin 1 or β-arrestin 2 inhibited the apoptosis 

[101]. Moreover, PAR-1 receptor stimulated by APC promoted cytoprotection through β-

arrestin-mediated Ras-related C3 botulinum toxin substrate 1 signaling in human endothelial 

cells [100]. Activation of insulin-like growth factor 1 receptor initiated β-arrestin-dependent 

activation of Akt, and therefore protected the cells from apoptosis. The overexpression of β-
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arrestin 2 significantly inhibited opioid-induced apoptosis, and β-arrestins prevented cell 

apoptosis through ERK1/2 and p38, Akt pathways [102, 103]. 

However, there is still limited information about the functional roles of β-arrestins in 

regulating PAR signaling cascades which block cell death in CNS cells. Here, we intend to 

investigate the potential role of β-arrestins in survival signaling pathways located downstream 

of PAR-1 and PAR-2 receptors in astrocytes.  

1.5.2 PAR-2 interaction partner α-crystallin 

-Crystallin is the major structural protein of the mammalian lens, comprising two 

subunits, A-crystallin and B-crystallin. These two subunits belong to the small heat shock 

protein family of molecular chaperones, which has multiple functional effects on retinal 

diseases, multiple sclerosis, and cell apoptosis [104]. Accumulating studies over the past 15 

years have confirmed the expression of -crystallin in brain, spleen, lung, kidney, cornea, and 

skin and their roles in regulation of cell survival, and functions in the central nervous system. 

-Crystallin was demonstrated to interact only with PAR-2 among the PAR. αB-

crystallin is one of the interaction partners of PAR-2 identified in our laboratory [105]. The 

functional role of α-crystallin is mainly focused on the chaperone activity. In the past five 

years, the intracellular protective effects of α-crystallin have been confirmed.  

As the molecular chaperones, -crystallin plays the functional roles not only in the 

extracellular matrix, and cell membrane, but also in some intracellular organelles including 

the nucleus. For example, -crystallin targets extracellular components decreasing the 

damage to cells [106]. Extracellular application of -crystallin promotes rat olfactory 

ensheathing cells survival and proliferation [107]. Apart from this, -crystallin was pointed 

out that it can keep the cell membrane from rupturing induced by several stimuli [108]. 

Intracellular -crystallin was believed to stabilize and prevent denaturation of proteins under 

the stimulation of stress through binding to the target protein [109]. Later it was confirmed 

that -crystallin binds to the denatured proteins to promote the recovery of protein activity 

[110]. Other studies provided evidence to show that -crystallin translocates from cytosol to 

nucleus and regulates gene expression [111, 112]. 

B-Crystallin has been reported to colocalize or interact with the mitochondria [113] and 

protect retinal pigment epithelium cells against endoplasmic reticulum stress by restoring 

mitochondrial functions [114]. The astrocytes from inflammatory mice showed a decreased 

level of ROS when mice were pre-treated with -crystallin, emphasizing that -crystallin 

might serve as a potent pharmacological reagent in neuroinflammation [115]. Besides, 
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upregulation of -crystallin was found during the early phase of experimental autoimmune 

uveitis against mitochondrial oxidative stress and stress-mediated apoptosis [116]. 

Signaling pathways are well documented that are integrated in physiological effects 

mediated by -crystallin in vitro and in vivo. For instance, B-crystallin prevented lens 

epithelial cells from ultraviolet A (UVA)-induced apoptosis through repression of UVA-

induced activation of the Raf/MEK/ERK pathway, whereas A-crystallin activated the Akt 

survival pathway to block the UVA-induced apoptosis. Beside this, it was found that calcium-

activated Raf/MEK/ERK signaling pathway mediated p53-dependent apoptosis which was 

suppressed by B-crystallin-activated Ras [117]. In vivo investigation showed that -

crystallin decreased the Ras homolog gene family member A (RhoA) protein activity and the 

phosphorylation of both cofilin and myosin light chain, and therefore promoted the axonal 

growth in rat [118]. Furthermore, -crystallin has been shown to bind the proapoptotic 

molecules p53, Bax and Bcl-XS to inhibit these proapoptotic molecules translocating from 

cytoplasm to mitochondria. As a result, release of cytochrome c from mitochondria to activate 

apoptosis was blocked [118-121]. 

It was previously confirmed that overexpression of -crystallin and the phosphorylation 

status of -crystallin are important for protecting astrocytes from cell death induced by C2-

ceramide and staurosporine [122, 123]. Compared to the large amount of reports on the 

functions of -crystallin in the intracellular environment, there is still limited information to 

help understanding the functional role of -crystallin when applied as extracellular protein. 

The interaction of β-arrestins with sHSP was implied to be associated with cytoprotective 

effects. For instance, Formation of β-arrestins/HSP27 complex was confirmed to confer 

cytoprotective consequence of β-adrenergic receptor activation [124]. Similarly, 

phosphorylated HSP27 interacting with β-arrestin 2 to regulate TRAIL-triggered activation of 

Src-Akt/ERK pro-survival signaling in Hela cells [125]. As the interaction partners of PAR-2, 

we are interested in exploring whether β-arrestins and B-crystallin will interact to each other 

upon the activation of PAR-2 receptor and whether some of the biological effects will be 

produced by these two protein interactions. 
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1.6 Aim of study 

The aim of this project was to investigate how activation of PAR-1 and PAR-2 will 

initiate the intracellular signaling transductions to mediate astrocytes proliferation and 

cytoprotection. Moreover, we are interested in how β-arrestins and B-crystallin as the 

interaction partners of PAR-1 and PAR-2 are involved in the protective and/or proliferative 

signaling pathways induced by activation of these two receptors. Our specific aims of this 

project are divided into four parts: 

Part 1. Study of the possible cytoprotective effects induced by activation of PAR-1 

and PAR-2. 

 

 

1 Investigation of the role of β-

arrestins in astrocytes apoptosis and how 

β-arrestins are involved in PAR-1 and 

PAR-2 signaling. 

2  Elucidating the signaling pathways 

which account for protection of 

astrocytes possibly induced by thrombin-

activated PAR-1. The PI3K/Akt 

signaling pathways will be the focus in 

this issue. 

 

Part 2. Investigation of the signaling pathways responsible for the proliferation of 

astrocytes induced by thrombin-activated PAR-1. 

 

 

1. To find out whether thrombin 

triggers the glucose metabolism 

signaling pathway to accelerate the 

proliferation of astrocytes. 

2. To clarify how MAPK, PI3K/Akt 

are involved in regulation of 

glucose metabolism in astrocytes. 
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Part 3. Functional study of the phosphorylation sites located in C-terminus of PAR-2.  

1. In this part we will generate a series of PAR-2 truncation mutants as depicted in 

scheme (3). Our purpose of generation these mutants is to identify the functional roles 

of the phosphorylation sites in controlling intracellular Ca
2+

, ERK, Akt signaling 

pathways. 

2. Find out whether the truncations of PAR-2 carboxyl-tail will influence the 

receptor localization, expression and cell survival. 

 

 

 

Part 4. Functional study of αB-crystallin in cytoprotection and proliferation of 

astrocytes induced by PAR-2. 

 

 

 

 

1. We will find out if β-arrestin 1 and 

2 interact with αB-crystallin under 

the sitmulation of PAR-2 by 

trypsin. 

2. We will investigate whether α-

crystallin exerts protective and 

proliferative effects on astrocytes 

through activating MAPK and 

PI3K/Akt signaling pathways. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and reagents 

Name of chemicals Company 

Bio-Rad protein assay dye reagent concentrate Bio-Rad 

Ammonium peroxodisulfate,  

sodium azide paraformaldehyde (PFA) 

Fluka 

Fura-2 AM Molecular Probes 

lipofectamine 
TM

 2000 Life Technologies Invitrogen 

Bovine thrombin 

Typsin 

Sigma, Steinheim, Germany 

Sigma, Steinheim, Germany 

Staurosporine Sigma, Steinheim, Germany 

Nitrocellulose Transfer Membrane Whatman, Dassel, Germany 

Roti block buffer and Roti-PVDF Carl Roth, Karlsruhe, Germany 

Syto 59 Invitrogen, Karlsruhe, Germany 

Dulbecco’s modified Eagle’s medium Biochrom, Berlin, Germany 

fetal calf serum Biochrom, Berlin, Germany 

penicillin and streptomycin Biochrom, Berlin, Germany 

Accutase PAA, Pasching, Austria 

DOTAP Roche, Mannheim, Germany 

Antimycin A Sigma, Steinheim, Germany 

siRNA of β-arrestin 1 Qiagen, Hilden, Germ 

Non-specific target siRNA of control Qiagen, Hilden, Germ 

Protein G sepherose beads Sigma, Deisenhofen, Germany 

PAR-2 agonist (SLIGAL) Polypeptide laboratories France 

Amplex Red Invitrogen, Eugene, Oregon, USA 

Horse radish peroxidase Invitrogen, Eugene, Oregon, USA 

Antimycin A Sigma, Steinheim, Germany 
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2.1.2 Experimental Assay kits 

 

Kits company 

Accu Prime  Invitrogen, Karlsruhe,Germany  

Cell Proliferation Reagent WST-1 assay kit Roche, Dassel, Germany 

Fluorescein (FITC) annexin V/ Dead cell apoptosis kit Invitrogen , Eugene, USA 

Glucose uptake assay kit Cayman Chemical Company 

HotStarTaq
TM 

Master Mix kit  Qiagen,Hilden,Germany 

HiSpeed Plasmid Midi kit Qiagen,Hilden,Germany 

MinElute PCR Purification kit Qiagen,Hilden,Germany 

MinElute Gel Extraction kit  Qiagen, Hilden, Germany 

Magnet Assisted Transfection (MATra) IBA GmbH, Göttingen, Germany 

Supersignal West Pico Chemiluminescent Substrate  Pierce, Rockford, IL, USA 

Site-directed mutagenesis kit Stratagene, Amsterdam Netherlands 

Taq Master Mix kit Qiagen, Hilden, Germany 

 

2.1.3 Inhibitors and antagonist 

Inhibitors company 

BAPTA (cellular Ca 
2+

 chelator) Tocris, Bristol, UK 

TcY-NH2 ( PAR-4 antagonist) Tocris, Bristol, UK 

RWJ 56110 (PAR-1 antagonist) Tocris, Bristol, UK 

Rapamycin (mTOR inhibitor) Selleckchem, München, Germany 

AG1478 (inhibitor of EGF receptor tyrosine kinase) Calbiochem, Nottingham, UK 

AG1296 (inhibitor of PDGF receptor) Calbiochem, Nottingham, UK 

PD98059 (ERK inhibitor) Tocris, Bristol, UK 

SB203580 (p38 MAP kinase inhibitor) Tocris, Bristol, UK 

SP600125 (JNK inhibitor) Calbiochem, Nottingham, UK 

LY294002 (PI3K inhibitor) Sigma, Steinheim,Germany 

Diphenyleneiodonium (mitochondrial ROS inhibitor) Sigma, Steinheim,Germany 

protease inhibitor Roche, Mannheim,Germany 
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Primary antibodies and secondary antibodies 

Primary Antibodies company 

Rabbit p42/44 MAPK antibody Cell signaling, Frankfurt, Germany 

Rabbit β-arrestin 1 antibody Cell signaling, Frankfurt, Germany 

Rabbit β-arrestin 2 antibody Cell signaling, Frankfurt, Germany 

Phospho-Akt (Ser473) antibody Cell signaling, Frankfurt, Germany 

Rabbit total Akt antibody Cell signaling, Frankfurt, Germany 

Rabbit Caspase 3 antibody Cell signaling, Frankfurt, Germany 

Rabbit GAPDH antibody Cell signaling, Frankfurt, Germany 

Mouse monoclonal antibody against myc Invitrogen, carlsbad, CA, USA 

Mouse Hexokinase I (HK1) LifeSpan Bioscience, Inc 

Rabbit Hexokinase 2 (HK 2) Cell signaling, Frankfurt, Germany 

Rabbit phospho -p38 (Thr180/ Thr182) antibody Cell signaling, Frankfurt, Germany 

Rabbit (phospho) p42/44 MAPK Cell signaling, Frankfurt, Germany 

Rabbit polyclonal antibody against phospho- 

B-crystallin (Ser59) Stressgen, Victoria, Canada 

Rabbit phospho-SAPK/JNK antibody  

(Thr183/Thr185) Cell signaling, Frankfurt, Germany 

Rabbit HIF-1  BIOZOL, Eching, Germany 

Rabbit Cyclin D1 antibody  
Cell signaling, Frankfurt, Germany 

Rabbit affinity isolated antibody against HA tag Sigma, St Louis, MO, USA 

Rabbit affinity isolated antibody against GAPDH tag Santa Cruz Biotechnology 

Mouse antibody against GAPDH tag Millipore, Temecula, CA 

Seconday antibodies company 

Alexa Fluor 555 goat anti-mouse IgG  Invitrogen Molecular Probes  

Goat anti-Mouse IgG 
Jackson Immuno Researc 

Goat anti-Rabbit IgG 
Jackson Immuno Researc 
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2.1.4 Experimental facilities and instruments 

Instruments  company 

T3 Thermocycler from Biometra  Biometra, Göttingen, Germany 

Electrophoresis power supply,  

Semi-dry Transfer Cell  

GS-800 Calibrated Densitomete  

Gel document system and Gene pulser II  

Chemi Doc 
TM

 XRS , Molecular imager 

Bio-Rad, Munich, Germany  

Bio-Rad, Munich, Germany  

Bio-Rad, Munich, Germany  

Bio-Rad, Munich, Germany  

Bio-Rad, München, Germany  

Cell culture incubator IBS, Fernwald, Germany 

Gel-blotting-papers Schleicher & Schuell, Dassel, 

Germany 

LSM510 laser scanning confocal microscope 

Axiovert 135 fluorescence microscope 

Carl Zeiss, Jena, Germany 

Microplate reader Molecular Devices, CA, USA 

Thermomixer comfort Eppendof 

UV/visible Spectrophotometer Pharmacia Biotech 

Biofuge pico and 13 R centrifuges,  

Megafuge 1.0 R centrifuge,  

Sorvall
® 

RC-5B Refrigerated Superspeed Centrifuge,  

Sorvall
® 

discovery
TM 

90 ultraspeed centrifuge  

 
 

Hanau, Germany  

 

UV/visible Spectrophotometer Pharmacia Biotech 
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2.1.5 Buffers 

Modified 1× RIPA buffer: 

50 mM Tris, 150 mM NaCl, 0.25% Na-deoxycholate, 1 mM NaF, 1 mM Na3VO4 and 

protease inhibitor cocktail tablets (pH=7.4) 

TBST 

20 mM Tris/HCl, pH 7.6, 137 mM NaCl, 0.1% Tween 20  

NaHBS buffer  

145 mM NaCl, 5.4 mM KCl, 1 mM MgCl
2
, 1.8 mM CaCl

2
, 25 mM glucose, 20 mM 

HEPES, pH 7.4 adjusted with Tris (hydroxymethyl) aminomethane  

PBS 

137 mM NaCl, 2.6 mM KCl, 8.1 mM Na2PHO4, 1.4 mM KH2PO4, pH 7.4 

Puck’s D1 solution 

137 mM NaCl, 5.4 mM KCl, 0.2 mM KH2PO4, 0.17 mM Na2HPO4, 5.0 mM glucose, 

58.4 mM sucrose, pH 7.4 

HBSS buffer  

50 mM KCL, 0.44 mM KH2PO4, 0.34 mM Na2HPO4
.
2H2O, 0.41 mM MgSO4

.
7H2O, 

87.4 mM NaCl, 10 nM HEPES, 1.25 mM CaCl2, 4.2 mM NaHCO3, 5.6 mM Glucose, 

pH=7.3 

1 × TAE buffer 

40 mM Tris, 20 mM acetic acid, 1 mM Na2EDTA 

Resolving buffer (SDS-PAGE-Laemmli) 

750 mM Tris/HCl, pH 8.8 

SDS solution 

10% (w/v) SDS in H2O 

PER solution 

10% (w/v) Ammoniumperoxodisulfat in H2O 

1× Transfer buffer 

100 ml of 10 × Transfer buffer (Bio-Rad, München, Germany), 200 ml of Methnol and 

700 ml of H2O 

1× Running buffer 

100 ml of 10 × Running buffer (Bio-Rad, München, Germany) in 900 ml of H2O 

Membrane stripping buffer 

Membrane stripping buffer is from Thermo, Rockford, USA. 
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2.1.6 Molecular mass markers 

2.1.6.1 Nucleic acid standard marker 

GeneRuler DNA Ladder Mix (100bp, 1kb and 10 kb) were from MBI Fermentas, 

Germany. 

2.1.6.2 Protein standard marker 

Precision Plus (All Blue) (250-10 kDa) Bio-Rad, München, Germany. 

LMW-SDS marker GE Healthcare, München, Germany. 

PageRuler Plus Prestained Protein Ladder was from Fermentas. 

2.1.7 Primers 

Gene  species Paris of Primers for amplification (5’       3’) Tm 

β-arrestin 1 

(HindIII/SacII) 

Human  Fw:GAC AAG CTT GCC ACC ATG GGC GAC AAA GGG ACC  

Re: TCC CCG CGG TCT GTT GAG CTG TGG AGA GC   

56°C 

β-arrestin 1 

(HindIII/XhoI) 

Human Fw:GAC AAG CTT GCC ACC ATG GGC GAC AAA GGG AC 

Re:CCG CTC GAG CGT CTG TTG AGC TGT GGA GAG C 

56°C 

β-arrestin 1 

(NotI/ XbaI) 

Human Fw: ATA AGA AT G CGG CCG CTA GCC ACC ATG GGC GAC AAA 

GGG ACC 

Re: CTA GTC TAG ATC TGT TGT TGA GCT GTG GAG 

56°C 

β-arrestin 2 

(NotI/ XbaI) 

Bovine Fw: CGG GCG GCC GC AAG CCA CCG GTC TTC AAG AAA TCG 

AGT CCT AAC  

Re: CCG TTC TAG A CTA GCA GAA CTG GTC GTC ATA GTC 

58°C 

β-arrestin 2 

(BgLII/HindIII) 

Bovine Fw: CCA AGA TCT CGC CAC CAT GGG GGA GAA ACC CGG GAC 

Re: CTT AAG CTT GCA GAA CTG GTC ATA GTC CTC G 

58°C 

 

2.1.8 Plasmid Vectors 

pEGFP-N1 and ptdTomato-N1 were from Clontech. 

pcDNA3.1-Myc-His (B), and pVL1392 were from Invitrogen. 

2.1.9 Enzymes and Buffers 

T4 DNA Ligase was from Invitrogen, Carlsbad, CA, USA. 

T4 DNA Polymerase was from Invitrogen, Carlsbad, CA, USA. 

All of the restriction enzymes were from MBI Fermentas, Germany. 

The digestion reactions were done by different restriction enzymes corresponding to the 

suggested buffers.  



Materials 

23 

2.2 Methods 

2.2.1 Methods of molecular biology 

2.2.1.1 RNA extraction and RT-PCR 

Total RNA was extracted from cultured cells using RNeasy Mini kit (Qiagen, Hilden). 1 

µg of the harvested RNA was reverse-transcribed by Omniscript™ Reverse Transcription kit 

(Qiagen), and the resulting cDNA was used as template to amplify the indicated gene.  

2.2.1.2 DNA amplification 

As for the PCR reaction, the pairs of primers were used which are listed in (Table 2.1.8). 

The PCR reaction mixture was prepared: 

10×Accu Prime 
TM 

pfx Reaction mix                  5 µl  

Primer FW                                                           1 µl 

Primer RV                                                           1 µl 

Template DNA                                                   200 ng 

Accu Prime 
TM

 DNA Polymerase                       0.5 µl 

H2O                                                                     X µl 

 

Final volume of reaction mixture                        50 µl 

 

The program applied to amplify the gene of β-arrestin 1 and β-arrestin 2 as follows: 

95°C -----1 min 

 95°C -----  30 sec       

                                               56°C / 58°C -----40 sec           30 × cycles 

  72°C-----1 min 

  72°C-----5 min 

    4°C----- pause 

The PCR products were analyzed by electrophoresis with 1% agarose gel containing 

ethidium bromide, and visualized by Bio-Rad gel document system (Bio-Rad). 

2.2.1.3 Plasmid constructs 

The cDNA fragments of human β-arrestin 1 and Bovine-β-arrestin 2 containing 

upstream of restriction enzyme sites and the initiator ATG were amplified by PCR and cloned 

into the vectors with different tags indicated in the following table respectively.  
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No. Inserted DNA vector Tag 

1 Human-β-arrestin 1 pEGFP GFP 

2 Human-β-arrestin 1 pEYFP YFP 

3 Human-β-arrestin 1 pCDNA3.1(+) His-myc 

4 Human-β-arrestin 1 pvL1392 GST 

5 Bovine-β-arrestin 2 ptdTomato-N1 Tomato-red 

6 Bovine-β-arrestin 2 PvL1392  HA 

 

2.2.1.4 Generation of the mutated gene 

Site-directed mutagenesis kit was used to generate truncations of PAR-2 receptor. Two 

complimentary oligonucleotides containing the desired gene fragment coding the indicated 

mutants were synthesized. PAR-2 wild type gene inserted into pEGFP vector was used as 

template to amplify the target gene. Reaction was performed in a T3 Thermocycler 

(Biometra), using the following programme: 

 

 

Initial denaturation at 98 °C for 30 sec 

 

Denaturation at 95°C for 30 sec 

  

Annealing at 55-57 °C for 40-60 sec                       18 × cycles 

 

Extension for x min at 72°C (2 min/kb) 

 

Extension at 72°C for 5 min 

 

4°C pause 
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The primers used in the PCR reaction are listed in the follow table 

Name  Species Sequences of the paired primers  

S348Z Rat 5’-TTTGTCTACTACTTTGTTAAGCTTCGAATTCTGCAG-3’ 

5’-CTGCAGAATTCGAAGCTTAACAAAGTAGTAGACAAA-3’ 

C361Z Rat 5’-GCCAGAAACGCGCTCCTCAAGCTTCGAATTCTGCAG-3’ 

5’-CTGCAGAATTCGAAGCTTGCAGGAGCGCGTTTCTGGC-3’ 

K368Z Rat 5’-CGAAGCGTCCGCACCGTGAAGCTTCGAATTCTGCAG-3’ 

5’-CTGCAGAATTCGAAGCTTCACGGTGCGGACGCTTCG-3’ 

S379Z Rat 5’- TCGCTCACTCCAACAAGAAGTCTTCGAATTCTGCAG-3’ 

5’-CTGCAGAATTCGAAGCTTCGTGTTGGAGGTGAGCGA-3’ 

S386Z Rat 5’TCCAGGAAATCCAGCTCTAAGCTTCGAATTCTGCAG-3’ 

5’-CTGCAGAATTCGAAGCTTAGAGCTGGATTTCCTGGA-3’ 

 

After the PCR reaction, 1 μl of the Dpn I restriction enzyme (10 U/μl) were added to 

each tube of PCR production. The mixture was immediately incubated at 37°C for 1 h to 

digest (Adeno) methylated GATC sites, which was useful for removing plasmid template 

from PCR samples.  

For the selection of the positive mutated plasmid, 10 μl of the reaction were used for 

transformation of DH5α competent cells. Positive clones were selected using Kan
r
 or Amp

r
 

LB agar plates. 

2.2.1.5 Isolation and purification of DNA fragment from agarose gel 

The prospected DNA fragments amplified from PCR reactions were identified by 

electrophoresis with 1% agarose gel. The specific bands of the target genes embedded in gel 

were harvested by MinElute Gel Extraction kit (Qiagen, Hilden, Germany) and purified by 

MinElute PCR Purification kit (Qiagen, Hilden, German).  

The purified DNA fragments and selected vectors were digested by the pairs of 

restriction enzymes (Table 2.1.8) with the suggested buffers from MBI Fermentas Company. 

The programme used to digest DNA fragments and vectors as follow: 

DNA                                                              1 μg 

Enzyme A (10 U/μl)                                      2 μl 

Enzyme B (10 U/μl)                                      2 μl 

Buffer (10x)                                                  2 μl 

H2O                                                               variable 

Final volume                                                 20 µl 
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2.2.1.6 Ligation reaction  

Plasmid vector                          1x 

DNA                                         3x 

T4 DNA Ligase (1 U/μl)           1 μl 

Ligase buffer (5x)                     4 μl 

H2O                                         variable 

Final volume                            20 µl 

 

2.2.2 Methods of cell biology 

2.2.2.1 Preparation and culture of primary astrocytes 

Primary astrocytes-enriched cell cultures were obtained from newborn rats, as described 

previously [126]. In brief, the newborn rats were decapitated; total brains were removed and 

collected in ice-cold Puck’s-D1 solution (137 mM NaCl, 5.4 mM KCl, 0.2 mM KH2PO4, and 

0.17 mM Na2HPO4, 5.0 mM glucose, 58.4 mM sucrose, pH 7.4). The brains were gently 

passed through nylon mesh (256 μM and 136 μm diameter) and centrifuged at 400 g for 5 

min. The cells were collected and resuspended in DMEM containing 10% heat-inactivated 

FCS, 100 U/ml of penicillin and 100 μg/ml of streptomycin. Astrocytes were seeded in flasks 

and kept in culture for 10-13 days; thereafter the cells were detached by accutase and reseeded 

on 6-well plate at the density of 1.95×10
6 

cells/well, or 10,000 cells/well of 96-well plates for 

24 h before the functional induction or transfection. All of the cell culture and sub-culture 

were kept in the humidified incubator with 10% CO2 at 37°C. The medium was changed for 

the first time after 5 days and thereafter every 2 or 3 days. 

2.2.2.2 HEK 293 cell culture  

 

HEK 293 (Human embryonic kidney, epithelial) cells were cultured in DMEM 

(Dulbecco minimum essential medium) / HAM’S F12 (1:1) with 2 mM Glutamine, 10% FCS 

(fetal calf serum), 100U/ml Penicillin and 100 μg/ml of Streptomycin (Biochrom, Berlin, 

Germany). HEK 293 cells were cultured in the incubator with humidified atmosphere of 95% 

air, 5% CO2 at 37°C.  

2.2.2.3 Synthesis of small Interfering RNA (si-RNA) and Transfection  

The pre-validated double-stranded siRNA sequences targeting rat β-arrestin 1 (NM -

012910.1): 5’-AGCCUUCUGUGCTGAGAAC-3’corresponding to positions 441–459 and 

the non-silencing siRNA duplex: 5’-UUCUCCGAACGUGUCACGU-3’ with 2-nucleotide 

3’-dtdt overhangs were from QIAGEN GmbH (Hilden, Germany).  
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2.2.2.4 Transfection of astrocytes with lipofectamine 
TM

 2000 

One day before transfection, astrocytes were reseeded in 6 well plates with 1.95×10
6
 

cells/well. Astrocytes were transfected with the mixture containing 60 nM siRNA and 6 μl of 

lipofectamine
TM

 2000 in 500 μl of FCS-free medium. Thereafter, astrocytes were kept in 

culture for 48 h after transfection before checking the knocking down efficiency of specific 

genes by Western blot. 

2.2.2.5 Transient Transfection of HEK 293 cells with MATra 

HEK 293 cells were split in 60 mm dishes and grown until a cell density of 50-60%. 6 

μg DNA was mixed with FCS-free media and 6μl of MATra-solution. The mixture was 

incubated for 30 min at room temperature. During incubation of the mixture, cell complete 

medium was changed to 4 ml of serum-free medium; thereafter the DNA/MATra-Mix was 

added and incubated for 30 min on a magnetic plate at 37°C in incubator. 8 h later, complete 

media was added to replace with the serum-free medium. 24-48 h post transfection, cells were 

subsequently used for functional treatments. 

2.2.2.6 Stable transfection of HEK 293 cells with DOTAP 

To generate the stable cell lines of PAR-2 truncations, the plasmids carrying with PAR-

2 mutated genes were transfected into HEK 293 cells with DOTAP liposomal transfection 

reagent according to the manufacturer’s protocol (Roche Diagnostics, Germany). 24 h post 

transfection, G418 were added to select the positively transfected cell lines. 

2.2.2.7 SDS-PAGE  

Astrocytes or HEK-293 cells were homogenized in 1×RIPA buffer. After the 

measurement of protein concentration by the Bradford method, 30-50 µg of protein were 

separated by 10% to 12.5% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) and followed by electro-transfer to nitrocellulose membranes or polyvinyliden 

difluoride membranes. The membranes were probed with respective primary antibodies 

overnight at 4°C after blocking by 10% Roti-block for 1 h at room temperature. Further, 

membranes were incubated with different secondary antibodies corresponding to the sources 

of primary antibodies for 1 h at room temperature, and proteins were visualized by enhanced 

chemiluminescence. Membranes were developed by Fuji images and the OD values of bands 

were quantified by Quantity One quantification software (Bio-Rad) with normalization to the 

control (GAPDH or total Akt). Or membranes were visualized by molecular imager system 

(Bio-Rad, München, Germany). 
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2.2.3 Methods of cellular functional studies 

2.2.3.1 Induction of cell death or cell protection  

Astrocytes were detached by accutase and reseeded on 6-well plate at the density of 

1.95×10
6 

cells/well for 24 h. Then astrocytes were deprived of serum overnight before 

transfection of siRNAs. Astrocytes were transfected with control siRNA or siRNA of β-

arrestin 1 for 48 h. Thereafter, the transfected cells were going to deprivation of serum 

overnight before the treatments. 

For the cell death induction, cells were incubated with 0.5 µM staurosporine in fetal calf 

serum-free DMEM in the absence or presence of thrombin to induce the possible protection 

through activating PAR-1 for 24 h. The staurosporine and thrombin were added at the same 

time in the cases of the co-treatment. For Western blot, equal amount of protein were loaded 

to 12.5% SDS-PAGE gel. Cell apoptosis or protection was checked by quantification of 

cleaved caspase 3 under the indicated treatments.  

2.2.3.2 Cell viability / proliferation assay 

Astrocytes were incubated in 96-well plates (10,000 cells / well) with complete medium 

for 48 h, thereafter the medium was replaced by serum-free medium for another 24 h. After 

that, astrocytes were treated in the presence of either staurosporine or thrombin plus 

staurosporine for 48 h. Cell viability was measured by WST-1 assay. In brief, 10 µl WST-1 

solutions with 90 µl serum-free medium was added to each well containing astrocytes without 

disturbance of cells. After 2 h incubation in a humidified atmosphere (37°C, 10% CO2), the 

absorbance at 450 nm was measured using a microplate reader. The wells only with medium 

and WST-1 solution were set as blank. 

2.2.3.3 Glucose uptake assay 

Astrocytes were seeded in 96 black-clear bottom plates with the density of 10,000-

50,000 cells / well. Cells were kept culture for 24 h. After that, astrocytes were deprived of 

serum over night. The next morning, serum-free medium were replaced by glucose- and 

serum- free medium for 6 h. Thereafter, astrocytes were treated with or without thrombin at 

the presence of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-

NBDG, 150 µg/ml) dissolved in glucose- and serum- free medium. The plate was incubated 

for 10 min in incubator. 10 min later, the assay buffer was applied to wash cells twice. 

Immediately after washing, 100 µl of assay buffer were added and 2-NBDG taken up by cells 

was read by microreader at excitation of 485 nm and emission of 535 nm. 
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2.2.3.4 Preparation of rat whole brain mitochondria and ROS determination 

Mitochondria (RBM) was isolated from 5 months old Rat brain according the method 

described before [127]. Protein concentration was measured by Bradford assay. ROS 

generation was estimated as release of H2O2 using the Amplex Red (AR) Invitrogen (Eugene, 

Oregon, USA)/horse radish peroxidase (HRP) (Sigma-Aldrich Chemie GmbH, Sternheim, 

Germany) system. The fluorescence was determined in standard black 96 well plates with 50 

µg RBM and 1 µM of Antimycin A (Sigma, Steinheim, Germany) in the presence of 

glutamate and malate (5 mM respectively) as substrate. Besides, each well also contains 2 

U/ml HRP and 5 µM Amplex Red. Then the different concentrations of αB-crystallin were 

added to evaluate the possible inhibitory effects on ROS release from RBM. The signal from 

the wells which contained RBM and Antimycin A without Glutamate and Malate were set as 

control. Before reading the data, αB-crystallin was incubated with mitochondria for 20 min. 

2.2.3.5 Intracellular ROS production measurements 

Astrocytes were seeded in 96 black-clear bottom plates with the density of 10,000 -

50,000 cells / well for 24 h. Then astrocytes were incubated in serum-free medium overnight. 

The next day, astrocytes were incubated with 25 µM DCFH2-DA dissolved in 200 µl of 

HBSS buffer in the presence or absence of different concentrations of thrombin for 15 min at 

37°C. 15 min later, the basal level of ROS production were read immediately by microreader 

at 504 nm excitation, 530 nm emission. Then the plate was kept at 37°C in the drawer of the 

microplate reader for 30 min to obtain the data of the ROS production in this period. 

DCFH2-DA is a stable non-fluorescent cell permeable compound. When astrocytes 

uptake this reagent, DCFH2-DA is hydrolyzed to DCFH2 by intracellular esterases and rapidly 

oxidized to the highly green fluorescent component, 2,7-dichlorofluorescein (DCF) by 

endogenous hydroperoxides. As a result, the ROS production level can be measured by DCF 

fluorescence. The formula used to calculate ROS production as follow: 

 

 

Ft0 = basal level of ROS, Ft30 = 30 min of ROS production 

 

2.2.3.6 Immunoprecipitation (IP) 

HEK-293 cells were transiently co-transfected with human β-arrestin 1 or Bovine β-

arrestin 2 genes inserted into pcDNA 3.1(+) vector with myc-his tag and αB-crystallin 

inserted into PEAK 10 vector with HA tag. The cells transfected only with αB-crystallin-HA 
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were set as negative control. 36 h after transfection, cells were incubated with serum-free 

medium for another 30 min, and then 100 nM of trypsin was added to activate PAR-2 for 

another 30 min. Agonist was removed after 30 min through aspirating medium immediately, 

and cell lysates were prepared by 1×RIPA buffer and quantified by the Bradford method. 

Equal amounts of lysates were rotated with the anti-myc antibody (1:200, Invitrogen) together 

with protein G beads at 4 °C overnight. The next morning, beads were centrifuged (4800 rpm) 

for 3 min and washed by 1×RIPA buffer without protease inhibitor three times. The protein 

bound beads were boiled in Laemmli buffer for 10 min at 96°C, then separated by SDS-

PAGE, and immunoblotted with the anti-HA antibody (1:5000, Sigma). 

2.2.3.7 Immunostaining  

HEK-293 cells were seeded on the cover slides 24 h before transient co-transfection of 

β-arrestin 1/2 with GFP or YFP tag and αB-crystallin with myc tag. 36 h post transfection, 

cells were deprived of serum for 30 min. Then the transfected cells were exposed to 100 nM 

trypsin to activate the PAR-2 receptor for different time periods. Cover slides were washed by 

cold PBS twice after the treatment of trypsin. Cells were fixed with 4% paraformaldehyde 

solution (PFA)(4% sucrose, 120 mM Na-Phosphate buffer, pH 7.4) for 30 min at RT, after 

removal of PFA, fetal serum blocking buffer (FSBB; 6% FCS, 20 mM Na-phosphate buffer, 

0.45 M NaCl, 0.1% Triton-X100, pH 7.4) was added for 20 min to block unspecific binding. 

Coverglasses were washed three times in low salt (0.15 mM NaCl and 10 mM phosphate), 

three times in high salt (0.5 mM NaCl and 20 mM phosphate) buffer. Cells were then 

incubated with primary myc antibody (1:500) overnight.  

After the incubation of primary antibody, cells were washed again by high salt buffer 

three times (10 min for each washing). Cells were exposed into the FBSS solution with 

secondary antibody (goat anti-mouse alexa 555; 1:200) for 90 min at RT without light 

exposure. 

After incubation with secondary antibodies, cells were washed once with high salt 

buffer, once with 120 mM Na-phosphate, and once with 5 mM Na-phosphate. After washing 

with PBS (pH 8.9), cover slides were drained and mounted onto microscope slides. 

Fluorescence images were captured sequentially at excitation of 488 nm, and 543 nm with a 

LSM510 laser scanning confocal microscope (Carl Zeiss, Jena, Germany). 

2.2.3.8 Fluorescence imaging analysis 

Astrocytes were seeded on the 35 mm disposable dishes with the optical quality of glass 

for superior high resolution microscopy image. Astrocytes were seeded at the density of 

1.5×10
5 

cells/well and cultured for 24 h. After the cell death inducement, cold PBS was used 



Materials 

31 

to wash cells three times. Then the cells were dyed with 500 µl of 1× annexin-V dye solution 

containing 5 µl annexin V-conjugated to fluorescence (excitation of 488 nm), 1 µl (100 

µg/ml) of PI (excitation of 543 nm), 10 µl RNase, 1:20,000 of Syto 59 (excitation of 633 nm). 

Among them, annexin V recognizes the apoptotic cells with green fluorescence, PI is 

incorporated into the late apoptotic /dead cells with red fluorescence and Syto 59 stains the 

RNA and DNA in both live and dead cells displaying blue fluorescence. After 15 min of 

incubation with dye solution at room temperature, cells were gently washed by 1×PBS for 

three times. After that, 1 ml of 1×annexin-V binding buffer was added to the cells. Cell death 

or protection were immediately examined by a Zeiss inverted LSM 510 laser scanning 

confocal microscope. The percentage of dead cells was the ratio of PI positive cells to Syto 59 

positive cells. The proportion of apoptotic cells was evaluated by the ratio of annexin-V 

positive cells to Syto 59 positive cells. For each treatment, two areas were randomly selected 

and counted. 

2.2.3.9 Cytosolic Ca
2+

 measurement 

To monitor the Ca
2+ 

mobilization in different PAR-2 truncations, the stable transfected 

HEK-293 cells carrying different mutants of PAR-2 were challenged under a series of 

different concentrations of trypsin. For experiments, cells were loaded with the Ca
2+ 

sensitive 

Fura-2AM (2 μM, 0.02% Pluronic, 30 min at 25 °C). The dye remains intracellular after 

cleavage by non-specific esterase activity. Fluorescence signals were acquired at 510 nm 

emission during alternate excitation at 340 nm (Fura-2AM bound to free Ca
2+

) and 380 nm 

(unbound Fura-2AM molecule) every 3 sec. The intracellular Ca
2+

 concentrations were 

measured with an imaging system (Agilent Technologies/TILL Photonics, Gräfelfing, 

Germany) attached to a Zeiss Axioscope microscope (Carl Zeiss, Jena, Germany).  

The data were obtained from at least three independent experiments. Only cells with a 

clearly membrane-localized GFP-signal and with the typical calcium response kinetics upon 

challenge of agonist were included in the data analysis. 

2.3. Statistical analysis 

Data were expressed as means ± SEM and analyzed for statistical significance by using 

one-way analysis of variance (ANOVA), followed by Dunnett's test to evaluate the data with 

comparison of control, or by Newman–Keuls test to assess the statistical meaning between 

different experimental groups. The criterion for statistical significance was p < 0.05. 
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3 Results 

3.1 Activation of PAR-1 rescues β-arrestin-1-silenced astrocytes from apoptosis 

through PI3K/Akt signaling pathway. 

3.1.1 Knock-down of β-arrestin 1 reduces resistance to staurosporine-induced 

apoptosis in astrocytes. 

To clarify the role of β-arrestin 1 plays in apoptosis of astrocytes, the cells were 

transfected with specific siRNA to reduce the endogenous β-arrestin 1 level (Fig. 3.1.1a). 

Thereafter, the apoptotic process was induced through incubation of astrocytes with 0.5 µM 

of staurosporine for 24 h. The level of cleaved caspase 3 was monitored by Western blot of 

astrocytes transfected with the siRNA of β-arrestin 1 or control siRNA. Application of 

staurosporine to astrocytes caused apoptosis, which was demonstrated by the increased 

production of cleaved caspase 3 (Fig. 3.1.1b).  

An increased level of cleaved caspase 3 was detected in β-arrestin 1-siRNA-transfected 

astrocytes compared to non-silenced astrocytes (Fig. 3.1.1b). Quantitative analysis revealed 

that in β-arrestin 1-lacking astrocytes, a level of 324% of cleaved caspase 3 as compared to 

non-silenced astrocytes with the same treatment (Fig. 3.1.1c). Thus, under the challenge of 

staurosporine, β-arrestin 1-lacking astrocytes displayed a higher level of apoptosis compared 

to non-silenced cells. 

 

Fig. 3.1.1 Down regulation of β-arrestin-1 in astrocytes exacerbates apoptosis in astrocytes.  

Astrocytes were transfected with non specific targeted sequence of siRNA (Non-silenced) or siRNA of 

β-arrestin-1 for 48 h (a). The gene knock down efficiency were evaluated by Western blot. (b) For the 

apoptosis induction, the transfected astrocytes were deprived of FCS over night and then the 

transfected astrocytes were incubated with 0.5 µM staurosporine (STS) in FCS- free DMEM medium 

for 24 h. 50 µg of protein were loaded for each lane. The experiments were repeated for at least three 

times independently and the representative blots were shown. (c) The level of cleaved caspase 3 under 

the different conditions as described and normalized to the value of GAPDH. The level of cleaved 

caspase 3 in non-silenced astrocytes under the treatment of staurosporine was set as control (100%). 

Data shown in Fig. 3.1.1c represents the mean ±SEM of three independent experiments. # p <0.001 as 

compared with control (n=3). 

3.1.2 Concentration dependence for thrombin to protect astrocytes. 
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Staurosporine (STS; 0.5 µM) was used to induce cell death in astrocytes and cell 

viability was checked by the WST-1 assay as shown in Fig. 3.1.2. Compared to the cells 

treated with STS, the untreated cells showed 40% higher in viability. On the other hand, 0.1 

U/ml to 10 U/ml of thrombin were added in the simultaneous presence of STS to the 

astrocytes. Upon treatment with 0.5 U/ml and 1 U/ml of thrombin, the viability of astrocytes 

was significantly increased from 100% to 154% and 159%, respectively. When the 

concentration of thrombin was increased to 5 U/ml and 10 U/ml, the viability of astrocytes 

failed to show any significant protection. STS-treated astrocytes displayed a dose-response 

curve for thrombin. Thus, 1 U/ml of thrombin was used in the following experiments as the 

optimal concentration for cytoprotection. 

 

 

Fig. 3.1.2 The concentration dependence of thrombin to protect astrocytes from apoptosis. 

Astrocytes were incubated with 0.5 µM staurosporine (STS) or 0.5 µM STS plus various 

concentrations of thrombin (THR), or serum-free medium (Untreated) for 48 h. Protection by 

thrombin against treatment with STS in astrocytes was checked by WST-1 assay. The viability 

of cells treated only with 0.5 µM STS was set as 100%. The bars show the mean value ± S.E.M. 

(* p<0.05, compared to 100%, n=4). 
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3.1.3 Thrombin decreases the levels of cleaved caspase 3 and cell death in β-

arrestin 1-deficient astrocytes. 

Thrombin protects astrocytes from staurosporine-induced cell death. It promoted the 

survival of astrocytes, as shown in the cell protection assay above in Fig. 3.1.2. We examined 

whether thrombin also rescued the astrocytes from apoptosis caused by staurosporine in β-

arrestin 1-siRNA-transfected astrocytes. In the experiments, we used 1 U/ml thrombin which 

was identified as the optimal concentration to exert cytoprotection applied to astrocytes. 

Western blot results showed that the level of cleaved caspase 3 induced by the apoptotic 

stimulus staurosporine was reduced by thrombin treatment in β-arrestin 1-silenced astrocytes 

(Fig. 3.1.3a and b, lane 7 vs lane 8). However, the reduction was only slightly apparent in β-

arrestin 1 non-silenced astrocytes (Fig. 3.1.3b, lane 3 vs lane 4). 

Furthermore, astrocytes were monitored the proportions of early apoptotic and late 

apoptotic thrombin annexin V and PI staining with methods described in 2.2.3.6. The data 

from fluorescence imaging analysis showed that staurosporine caused a significantly higher 

percentage of PI-positive cells (dead cells) in β-arrestin 1-deficient astrocytes than in non-

silenced astrocytes (45% vs 24 %). Interestingly, the percentages of dead cells in β-arrestin 1-

silenced astrocytes were largely decreased (from 45% to 10 %) as compared to that in non-

silenced astrocytes (24% to 11%) when the cells were co-treated with STS and thrombin (Fig. 

3.1.3c). However, there were no significant differences in the percentages of apoptotic cells 

detected by annexin V staining between β-arrestin 1-silenced and non-silenced astrocytes. In 

addition, thrombin treatment failed to reduce the number of apoptotic astrocytes in both β-

arrestin 1-silenced and non-silenced astrocytes (Fig. 3.1.3d). 
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Fig. 3.1.3. Thrombin potently protects β-arrestin 1-deficient astrocytes from cell death. 

(a) Thrombin reduced the cleaved caspase 3 protein level in control si-RNA-transfected (Non-

silenced) and si-β-arrestin 1 (si-βarr1) astrocytes. Apoptosis or protection was induced by 

staurosporine (STS, 0.5µM) without or together with thrombin (THR; 1 U/ml) treatment for 24 h. The 

cells treated with buffer were used as control (lane 1). (b) The quantification of cleaved caspase 3 was 

normalized to GAPDH and STS-treated non-silenced cells were taken as 100% (n=3). (c) Astrocytes 

were stained with PI after each treatment indicated to get the ratio of late apoptotic cells to total cells. 

STS induced significant higher percentage of PI-positive astrocytes in β-arrestin 1-deficient astrocytes 

as compared to that in non-silenced astrocytes. And thrombin significantly reduced the percentage of 

PI positive cells in both non-silenced astrocytes and β-arrestin 1 lacking astrocytes (# p <0.001). (d) 

After the indicated treatments, astrocytes were stained with annexin V to evaluate the ratio of early 

apoptotic cells to total cells. There were no differences in the percentages of annexin-V positive cells 

in both non-silenced astrocytes and β-arrestin 1-lacking astrocytes under STS treatment. At the same 

time, thrombin failed to show any significant effects on decreasing the number of annexin-V positive 

cells in both non-silenced astrocytes and β-arrestin 1 lacking astrocytes. The numbers under the X-axis 

in (b) correspond to the respective lane numbers given in the Western blot in (a). 
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3.1.4 Downregulation of β-arrestin 1 enhances the long-term Akt (Ser 473) 

phosphorylation stimulated by thrombin. 

The PI3K/Akt signaling pathway is the most important pathway related to cell survival, as 

revealed in many studies. We wanted to find out whether the protection effects of thrombin 

treatment was connected to activation of the PI3K/Akt signaling pathway in both non-silenced 

and β-arrestin 1-deficient astrocytes. Cells were incubated in the absence or presence of 1 

U/ml thrombin together with staurosporine for long time periods lasting up to 24 h. 

Interestingly, after long time incubation with thrombin (24 h), β-arrestin 1-deficient astrocytes 

showed a higher level of Akt phosphorylation, as compared to the control siRNA-transfected 

astrocytes. This indicated that β-arrestin 1 has a negative control over the thrombin-activated 

long-term Akt (Ser 473) phosphorylation (Fig. 3.1.4a).  

We quantified the thrombin-stimulated phosphorylation of Akt after long time stimulation 

(Fig. 3.1.4b). It can be seen from the quantification of phosphorylation of Akt that only the β-

arrestin 1-silenced cells exposed to the combined treatment of thrombin and staurosporine 

(lane 10) showed a significant increase in phosphorylation of Akt compared to the untreated 

control cells. The non-silenced untreated cells were set as control, which was taken as 100% 

(lane 1). Moreover, in β-arrestin 1-silenced astrocytes, in the presence of staurosporine, the 

24-h application of thrombin significantly stimulated the phosphorylation of Akt, as compared 

to the cells treated with staurosporine alone (lane 10 vs lane 9). Strikingly, in β-arrestin 1-

deficient astrocytes, co-treatment with staurosporine and thrombin for 24 h significantly 

enhanced the Akt phosphorylation as compared to that in the control si-RNA transfected 

astrocytes with the same co-treatment with staurosporine and thrombin (lane 10 vs lane 5).  

Taken together, in staurosporine-treated astrocytes, β-arrestin 1 negatively regulates the 

long-term Akt (Ser 473) phosphorylation under the challenge of thrombin. The inhibition 

exerted by β-arrestin 1 apparently disappears in the absence of this protein. This causes the 

positive overshoot in Akt (Ser473) phosphorylation seen in Fig. 3.1.4b. 
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(a) 

 

(b) 

 

Fig. 3.1.4 β-Arrestin 1 inhibits thrombin-activated long-term Akt phosphorylation in 

astrocytes. (a) Astrocytes were transfected with control si-RNA (Non-silienced) and si-β-

arrestin 1 (si-βarr1) for 48 h. Then the transfected cells were treated with the STS or the 

combination of staurosporine (STS) and thrombin (THR). Phosphorylation of Akt (Ser 473) was 

determined by Western blot and total Akt was used to verify equal loading. (b) Quantification of 

phosphorylation of Akt (Ser 473). Quantity One Densitometry software was used to determine 

the values for the ratio of phosphorylated Akt to total Akt at 12 h and 24 h. The value of 

phosphorylated Akt (Ser 473) from non-silenced si-RNA-astrocytes without any treatment was 

set as 100%. Data are shown as the means ± S.E.M from 4 independent experiments. The 

significances were got from the comparisons between different bars signified by lines otherwise 

the comparison were made to 100% (* p<0.05, n=4). The numbers under the X-axis correspond 

to the respective lane numbers given in the Western blot in (a). 
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3.1.5 Blockade of the PI3K/Akt signaling pathway by specific inhibitor 

abolishes the cytoprotection through thrombin. 

To evaluate whether the PI3K/Akt signaling pathway plays an important role in the 

cytoprotection caused by thrombin, the compound LY294002 was used as an inhibitor to 

block the PI3K/Akt signaling pathway. Astrocytes transfected with control siRNA or siRNA 

of β-arrestin 1 were incubated with 20 µM of LY294002 together with 1 U/ml of thrombin. 

The inhibitory effects exerted by LY294002 on phosphorylation of Akt were studied to 

confirm the potency of the inhibitor. In a time series we determined the change of 

phosphorylation of Akt at Ser 473. Results from the Western blot demonstrate that LY294002 

potently blocks the PI3K signaling pathway. LY294002 significantly inhibits the 

phosphorylation of Akt (Ser 473). After 10 min, the phosphorylation was clearly reduced and 

after longer stimulation (up to 2 h), the phosphorylation of Akt was nearly undetectable (Fig. 

3.1.5a). This confirms that LY294002 is an effective inhibitor of the PI3K/Akt signaling 

pathway in astrocytes. Therefore, we used it for our further experiments. 

The inhibitor LY294002 was applied to astrocytes to block the PI3K/Akt signaling 

pathway to verify whether the PI3K/Akt signaling pathway is crucial for survival of 

astrocytes. Cell death was induced with staurosporine both in the non-silenced control and β-

arrestin 1-lacking astrocytes. We stimulated these cells with 1 U/ml of thrombin in the 

absence or presence of LY294002. The apoptosis was checked by the quantification of 

cleaved caspase 3 level under the respective treatments. Examples, as given in Fig. 3.1.5b, 

were used for the quantitative analysis displayed in Fig. 3.1.5c. The latter shows that 

staurosporine caused more than three times higher level of cleaved caspase 3 in β-arrestin 1-

lacking astrocytes compared to control siRNA-transfected astrocytes (lane 8 vs lane 3). This 

confirms that β-arrestin 1 is necessary for astrocytes to resist the apoptosis induced by 

staurosporine.  

In addition, thrombin treatment in the presence of staurosporine significantly inhibited 

the formation of cleaved caspase 3 in β-arrestin 1-deficient astrocytes (lane 9 vs lane 8). 

Furthermore, in β-arrestin 1 siRNA-transfected astrocytes, blockade of the PI3K/Akt cascade 

by LY294002 caused an about 400% higher level of cleaved caspase 3 than in the control 

siRNA-transfected cells under staurosporine treatment (lane 10 vs lane 3). The latter was 

taken as 100%. Thus, the decreased cleavage of caspase 3 resulting from the thrombin co-

treatment was dramatically reversed by the application of LY294002 ((lane 9 vs lane 10) and 

(lane 4 vs lane 5). Also in the non-silenced astrocytes, application of staurosporine / thrombin 



Results- Part 1 

39 

/ LY294002 leads to 270% increase in cleaved caspase 3 level, as compared to the control 

non-silenced siRNA-transfected cells under staurosporine treatment (lane 5 vs lane 3).  

 

(a) 

 

Fig. 3.1.5 The PI3K inhibitor 

LY294002 blocks the protection by 

thrombin in both non-silenced and β-

arrestin 1-depleted astrocytes.  
 
(a) Astrocytes were transfected with 

control siRNA (Non-silenced) or si-β-

arrestin 1 (si-βarr1) under incubation 

with inhibitor of PI3K (LY294002) and 

thrombin (THR) for different times, the 

phosphorylation of Akt (Ser 473) was 

determined by Western blot. 10 min 

after application of LY294002, the 

phosphorylation of Akt (Ser 473) 

stimulated by thrombin was effectively 

inhibited. A representative Western blot 

of phosphorylation of Akt (Ser 473) is 

shown here (n=3). The numbers above 

the pAkt blot indicate the different lanes 

in the blot. 
(b) Representative Western blot of 

cleaved caspase 3 in astrocytes treated 

with staurosporine (STS) or STS / THR 

or STS / THR / LY294002 for 24 h. 

GAPDH was used to verify the equal 

amount of protein loaded.  
(c) Quantification of cleaved caspase 3 

values is given as the ratio of cleaved 

caspase 3 to GAPDH. The value of 

cleaved caspase 3 from control siRNA 

transfected astrocytes, which were 

treated by 0.5 µM staurosporine was 

normalized and taken as 100%. 

Statistical analysis for difference of 

cleaved caspase 3 values from 

staurosporine-treated cells are compared 

between the two different bars 

delineated by lines otherwise the 

comparison was made to 100% with the 

indication by # p<0.001 (n=7). The 

numbers under the X-axis correspond to 

the respective lane numbers given in the 

Western blot in (b). 

(b) 

 

(c) 
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3.1.6 Thrombin-induced transactivation of PDGF and EGF receptors 

contributes to the Akt (Ser 473) phosphorylation in β-arrestin 1-silenced 

astrocytes. 

The transactivation by thrombin of the EGF receptors rather than of the PDGF receptors 

initiates the Akt signaling pathway. This connection was established in retinal psigment 

epithelium cells [58]. To investigate whether thrombin induced-transactivation of EGF or 

PDGF receptors contributed to Akt activation which protects astrocytes from cell death, we 

tested the effects of specific PDGF receptor and EGF receptor inhibitors on thrombin-induced 

Akt (Ser 473) phosphorylation. The representative blots are shown in Fig. 3.1.6a. First, 

thrombin induced a significant increase of Akt (Ser 473) phosphorylation in β-arrestin 1-

lacking astrocytes as compared to that in non-silenced astrocytes under the combined 

treatment of staurosporine for 24 h. On the other side, the application of LY294002 

completely abolished the phosphorylation of Akt (Ser 473) in astrocytes transfected with both 

kinds of siRNA (lane 3 and 8).  

Blockade of the activity of EGF receptors by AG1478 or PDGF receptors by AG1296 

reduced the phosphorylation level of Akt (Ser 473) activated by thrombin in the β-arrestin 1-

deficient astrocytes (lane 9 and 10). However, neither the blockade of EGF receptors nor of 

PDGF receptors had an effect on thrombin-stimulated Akt (Ser 473) phosphorylation in non-

silenced astrocytes. In conclusion, thrombin-induced transactivation of EGF receptors and 

PDGF receptors contributes to thrombin-induced Akt (Ser 473) phosphorylation in β-arrestin 

1-silenced astrocytes (Fig. 3.1.6a and b).  
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(a)                                                                        (b) 

 
 

Fig. 3.1.6 Blockade of EGF and PDGF receptors decreased the level of phosphorylation of Akt 

(Ser 473) caused by thrombin in β-arrestin 1-deficient astrocytes. The control siRNA (Non-

silenced) and si-β-arrestin 1 (si-βarr1)-transfected astrocytes were stimulated as indicated for 24 h. 

AG1478 (10 µM) is used to inhibit EGFR tyrosine kinase activity and AG1296 (10 µM) is used to 

block the PDGF receptor. (a) Astrocytes were incubated with the respective inhibitors throughout the 

experiments. A representative Western blot is shown. (b) Quantification of the Akt (Ser 473) 

phosphorylation normalized to total Akt. The value of phosphorylation of Akt (Ser 473) from control 

astrocytes or si-β-arrestin 1-transfected astrocytes which were treated with staurosporine (STS) alone 

was normalized and set to 100%. Significant differences of phosphorylation of Akt (Ser 473) levels 

under various treatments are analyzed between the two different bars delineated by lines or compared 

to 100% (n=4, # p<0.001). The numbers under the X-axis correspond to the respective lane numbers 

given in the Western blot in (a). 
 

 

3.1.7 β-arrestin 2 is not involved in regulation of apoptosis in astrocytes. 

In order to investigate whether β-arrestin 2 plays cytoprotective functional role in 

astrocytes, β-arrestin 2 was downregulated in astrocytes with the same method used to silence 

β-arrestin 1. After the confirmation of the knockdown efficiency (Fig. 3.1.7a), the cells were 

incubated with staurosporine 24 h or combination of staurosporine, thrombin and LY294002. 

The cleaved caspase 3 were firstly checked as the apoptotic marker protein by Western blot 

(Fig. 3.1.7b), and the cleaved caspase 3 were quantified. The quantification value was got by 

the ratio of cleaved caspase 3 to GAPDH and then normalized to staurosporine-treated (Fig. 

3.1.7c). According to the quantification data, STS in the β-arrestin 2-deficient astrocytes 

failed to induce a significant higher cleavage of caspase 3 than that seen in the control siRNA 

transfected astrocytes (lane 8 vs lane 3). The application of thrombin was able to decrease the 

level of cleaved caspase 3 in β-arrestin 2-silenced astrocytes slightly (lane 9 vs lane 8). When 

inhibiting the PI3K signaling pathway by LY294002, the cleaved caspase 3 was significantly 

increased in both non-silenced astrocytes and β-arrestin 2-silenced astrocytes (lane 5 and lane 

10), but the levels of cleaved caspase 3 show no significant differences between these two 

groups. To sum up, unlike β-arrestin 1, β-arrestin 2 is unimportant for antiapoptosis in 

astrocytes.  
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(a) 

 

Fig. 3.1.7. β-arrestin 2 is 

dispensable for astrocytes to resist 

apoptosis. 
(a) Down regulation of β-arrestin 1 

and 2 in astrocytes for 48 h, then the 

knockdown efficiency was evaluated 

by Western blot, and the 

representative Western blot was 

shown to confirm the knock down 

efficiency.  
(b) Astrocytes were transfected with 

the non-silenced si-RNA and β-

arrestin 2-silenced siRNA for 48 h, 

and then cells were incubated with 

FCS free medium over night. The 

next morning, astrocytes were 

incubated with staurosporine (STS), 

or the combination of thrombin 

(THR) and STS, or the mixture of 

STS, THR and LY294002 (LY) for 

24 h. All of the reagents were added 

to the cells at the same time and 

incubated during the whole 

procedure. Western blot were done 

to detect the levels of cleaved 

caspase 3 to assess the apoptosis and 

protection, and the house-keeping 

protein GAPDH was used as loading 

control. The representative blot is 

shown here. 
 
(c) The quantification of the cleaved 

caspase 3 under the various 

treatments from two independent 

experiments. The data from non-

silenced astrocytes with STS 

treatment was set as 100% (n=3). 

The numbers under the X-axis are 

corresponding to the respective lane 

numbers given in the Western blot in 

(a). 

(b) 

 

(c) 
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3.2 Thrombin-activated PAR-1 promotes the proliferation of astrocytes by multiple 

mechanisms 

3.2.1 The concentration dependence of thrombin-promoted proliferation of 

astrocytes. 

Thrombin was demonstrated to promote astrocytes proliferation [128]; however, there is 

no evidence showing the optimal concentration of thrombin to increase astrocytes 

proliferation. Here we used a series of concentrations of thrombin from 0.1 U/ml up to 5 U/ml 

to determine which will be the optimal concentration for inducing astrocytes proliferation. 

According to the data, 0.5 and 1 U/ml significantly increased the cell proliferation with 174% 

and 175%, respectively, as compared to the control (100%). When the concentration of 

thrombin was increased to 5 U/ml, the percentage of the proliferation declined to 149% (Fig. 

3.2.1). Consequently, the optimal concentration of thrombin to stimulate astrocytes 

proliferation is between 0.5 U/ml to 1 U/ml. We used 1 U/ml for the further experiments. 

 

Fig. 3.2.1 Proliferation of astrocytes induced by different concentrations of thrombin. 

Astrocytes were seeded on 96 well plates one day before the induction of proliferation by 

thrombin. Then astrocytes were deprived of FCS overnight. The next morning, astrocytes were 

incubated with different concentration of thrombin in serum free medium. 48 h later, cell 

proliferation were estimated by WST-1 assay. The cells only with FCS-free medium incubation 

were set as control (100%). (n=3, * p<0.05, ** p<0.01) 

 

3.2.2 Thrombin induces intracellular Ca
2+

 increase in astrocytes 

Thrombin was reported coupling to Ca
2+

 signaling through activation of thrombin-

receptors [129]. That means thrombin-induced intracellular Ca
2+

 increases correlate with 

activations of PAR-1, PAR-3 and PAR-4 receptors. To make it clear which is the most 

important receptor involved in thrombin-induced intracellular Ca
2+

 increases, we monitored 

the Ca
2+ 

responses under different concentrations of thrombin in the absence or presence of 

the antagonists for PAR-1 (RWJ) and / or PAR-4 (tcY) (PAR-3 antagonist is not available 

currently). Briefly, astrocytes were preincubated with antagonists for 1 h in FCS-free 
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medium. Then astrocytes were loaded with Fura-2AM in HBSS buffer with the same 

concentration of antagonists used in the last step. Astrocytes were challenged by different 

concentrations of thrombin. Ca
2+ 

was detected at the respective 510 nm emission intensity of 

the ratiometric calcium-sensitive dye Fura-2AM after excitations at 340 nm and 380 nm. The 

ratio of the emission intensities of 340 nm and 380 nm excitations indicates the intracellular 

calcium concentration. 

As data show in Fig. 3.2.2, with treatment of 0.1 U/ml of thrombin, the maximum value 

of the ratio of F340/F380 was 0.9. Under the same concentration of thrombin, the ratio was 

only slightly decreased when the astrocytes were incubated with thrombin in the presence of 

PAR-1 antagonist (column 2 vs. 1). Interestingly, when PAR-4 receptors were blocked by 

tcY, the ratio was largely increased to 2.1 (column 3). However, inhibition of PAR-1 and 

PAR-4 together resulted in the dramatic decrease of the Ca
2+ 

response caused by thrombin 

(column 4). The data indicate that the PAR-4 receptor may play an inhibitory role in Ca
2+ 

responses, since without activation of PAR-4, the maximum of the Ca
2+ 

responses was 

observed (column 3). Moreover, it may also imply that co-activation of PAR-1 and PAR-3 

contributes to the maximum Ca
2+ 

responses (column 3). Blockade of PAR-1 and PAR-4 

together eliminates the possibilities of collaboration between PAR-1 and PAR-3, or the 

collaboration between PAR-4 and PAR-3 to couple to the Ca
2+

 signaling, resulting in the 

dramatic decrease of Ca
2+

 level (column 4). 

Similarly, upon 0.5 U/ml and 1 U/ml of thrombin, the Ca
2+ 

responses were quite similar 

to each other under the same experimental conditions (column 5 vs 9, column 6 vs 10, column 

7 vs 11, and column 8 vs 12). In detail, the ratio of thrombin caused maximum value of Ca
2+ 

responses was 2.1 to 2.15 (column 5 and 9). More interesting phenomena was that the level of 

Ca
2+ 

response induced by thrombin in the presence of PAR-1 receptor antagonist was lower 

than the ratio obtained under PAR-1 plus PAR-4 antagonists (column 6 vs 8; column 10 vs 

12), suggesting that PAR-1 played an important role in inducing the maximum Ca
2+ 

responses 

under 0.5 U/ml and 1 U/ml of thrombin (column 5 and 9). Furthermore, treatment of PAR-4 

antagonist failed to decrease the maximum Ca
2+ 

response induced by thrombin (column 7 and 

11), indicating that PAR-4 played a dispensable role in coupling Ca
2+ 

signaling under 0.5 

U/ml and 1 U/ml of thrombin treatment. Overall, the data manifested that under 1 U/ml of 

thrombin challenge, thrombin increased the intracellular Ca
2+

 signaling mainly through 

activation of PAR-1 receptor. 

Under the stimulation with 5 U/ml of thrombin, the Ca
2+ 

response was increased to 2.7 

(column 13), which was the largest value among the different concentrations of thrombin-
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caused Ca
2+ 

responses. It is thought that PAR-1 and PAR-4 are responsible for this maximum 

ratio, since blockade of PAR-4 receptor is capable of lowering this maximum value (column 

15 vs 13). Inhibition of PAR-1, the Ca
2+ 

response was decreased to the lowest value (column 

14). 

In conclusion, thrombin is able to increase intracellular Ca
2+ 

level under different 

concentrations of thrombin. The maximum of Ca
2+ 

responses induced by 1 U/ml of thrombin 

is mainly through PAR-1 activation. However, the highest Ca
2+ 

response caused by lower 

concentration (0.1 U/ml) of thrombin is attributed to the stimulation of PAR-1 and PAR-3. 

Ca
2+ 

responses caused by 5 U/ml of thrombin are because of the activation of PAR-1 and 

PAR-4 receptors. 

 

Fig. 3.2.2. The Ca
2+ 

responses under different concentrations of thrombin. Astrocytes were 

cultured on the coverslides. 10 µM of PAR-1 inhibitor (RWJ) or PAR-4 antagonist (tcY) 

dissolved in FCS-free medium were incubated with astrocytes for 1 h. After that cells were 

prepared as described above to evaluate intracellular Ca
2+

 responses. The numbers under the X-

axis are corresponding to the respective bar’s number. The experiments were repeated 3 times 

and each time more than 15 cells were selected to analyze (# p<0.001).  
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3.2.3 Thrombin causes intracellular ROS production in astrocytes 

Thrombin was reported to produce ROS release in microglia and activate the NADPH 

oxidise, which contributed to thrombin-induced loss of hippocampal neurons [50]. To check 

whether thrombin induced intracellular ROS production also in astrocytes, astrocytes were 

treated with different concentrations of thrombin, and then the ROS production was 

monitored for 30 min and measured by the method described in 2.2.3.4. Fig. 3.2.3 shows that 1 

U/ml and 5 U/ml of thrombin significantly induce ROS production in astrocytes. 

 

 

Fig. 3.2.3 Thrombin-induced intracellular ROS release in astrocytes. Astrocytes were 

prepared and the ROS releases induced by thrombin were measured according to the methods 

described in 2.2.3.4. Then the different value of ROS production were collected and calculated 

according to the formula shown in 2.2.3.4. Data from the control cells which are treated with 

HBSS buffer without thrombin was taken as 1. (n=4, * p<0.05, ** p<0.01) 

 

3.2.4 Thrombin-induced intracellular Ca
2+

 and ROS contribute to astrocytes 

proliferation 

We are aiming at investigating whether intracellular Ca
2+

 elevation and ROS release 

produced by thrombin will be beneficial for the astrocytes proliferation. The inhibitor 

Diphenyleneiodonium (DPI) which has been frequently used to inhibit ROS production 

mediated by flavoenzymes, particularly NADPH oxidase was used here. DPI was also 

demonstrated to block mitochondrial ROS production through inhibiting NADH-ubiquinone 

oxidoreductase (complex I) [130]. At the same time, we used BAPTA-AM as the chelator of 

intracellular Ca
2+

.  

From WST-1 assay Fig. 3.2.4 (see also in Fig. 3.2.1), it can be seen that thrombin 

significantly induces astrocytes proliferation (bar 2). With the cotreatment of thrombin plus 

DPI (bar 3) or the cotreatment of thrombin and BAPTA (bar 4), the cell proliferation caused 

by thrombin is significantly decreased (bar 3 vs bar 2, and bar 4 vs bar 2). Astrocytes 
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incubated with DPI or BAPTA-AM alone displays a lower proliferation as compared to the 

control (bar 5 vs bar 1 and bar 6 vs bar 1). In consequence, we conclude that thrombin-

initiated intracellular Ca
2+

 and ROS production make contributions to astrocytes proliferation. 

 

 

Fig. 3.2.4. Inhibition of thrombin-caused intracellular Ca
2+

 increases or ROS production 

abolishes thrombin-induced astrocytes proliferation, respectively. Astrocytes were seeded 

and prepared for WST-1 assay according to the description of the method in 2.2.3.2. After the 

starvation of astrocytes overnight, astrocytes were treated with 1 U/ml of thrombin (THR) with 

or without 500 nM of Diphenyleneiodonium (DPI) or 50 µM of BAPTA-AM (BAPTA) for 48 

h. Thereafter, WST-1 assay were done and the data were collected. The cells without treatment 

were set as control (CNT). (n=4 * p<0.05, ** p<0.01). 

 

3.2.5 Thrombin increases the astrocytes proliferation through ERK and JNK 

rather than p38 signaling pathways 

It is reported that thrombin enhanced astrocytes proliferation through the ERK signaling 

pathway [35]. We study whether JNK and p38 will be also involved in thrombin-induced 

astrocytes proliferation. We did Western blot after treating astrocytes with 1 U/ml of thrombin 

for different times. As a result, thrombin significantly increases the level of the 

phosphorylation of ERK and JNK at 1 h and 24 h (Fig. 3.2.5a and b). However, thrombin 

failed to significantly activate the phosphorylation of p38 in these time scales (Fig. 3.2.5c).  
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(a)                                                                        (b) 

             

 

(c) 

        

Fig. 3.2.5 Thrombin stimulates the phosphorylation of ERK and JNK rather than p38. 

Astrocytes were cultured on the 6-well plates with the density of 1.95×10
6
 cells/well one day 

before the treatment. Then astrocytes were deprived of FCS overnight. For the induction, 1 U/ml 

of thrombin (THR) were added into the serum-free medium to astrocytes and kept in culture for 

time scales indicated in the figures. 50 µg of proteins were obtained and loaded for Western blot 

experiments. The representative blot and the quantifications of the protein level were shown. 

Statistical analysis was made comparison to control (CNT). (n=4, * p<0.05, # p<0.001) 

 

3.2.6 Blockade of ERK and JNK signaling pathways eliminates thrombin-

induced proliferation in astrocytes 

It is shown that thrombin enhanced the phosphorylation level of ERK and JNK rather 

than p38 (Fig. 3.2.5). In order to make clear if thrombin-stimulated ERK and JNK signaling 

cascades mediate astrocytes proliferation, we used a series of inhibitors to block the relative 

signaling cascades as indicated in Fig. 3.2.6. Our data clearly show that blockade of thrombin-

activated ERK and JNK signaling pathways significantly decrease astrocytes proliferation 

triggered by thrombin (Fig. 3.2.6). Interestingly, the combination of thrombin and p38 

inhibitor does not change the proliferation rate of astrocytes, suggesting that thrombin is able 
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to accelerate astrocytes proliferation through ERK and JNK rather than p38, which is in 

accordance with our result showing that thrombin failed to stimulate p38 phosphorylation 

(Fig. 3.2.5). 

 

Fig. 3.2.6 Thrombin-initiated ERK and JNK activation contributes to astrocytes 

proliferation. Astrocytes were prepared as mentioned in cell proliferation assay in 2.2.3.2. Then 

astrocytes were incubated with 1 U/ml of thrombin (THR) in the presence or absence of 20 µM 

of ERK inhibitor (PD98095); or p38 inhibitor (SB203580) or JNK inhibitor (SP600125) or with 

inhibitors alone for 48 h. Cell viability was determined by the WST-1 assay, astrocytes without 

thrombin and inhibitors treatment were set as control, and the proliferation data from it were 

taken as 100%. (n=4, ** p<0.01, # p<0.001, ns=not significant) 

 

3.2.7 Thrombin activates PI3K signaling pathway to increase phosphorylation 

of Akt, which needs transactivation of EGF and PDGF receptors 

Thrombin was demonstrated to protect β-arrestin 1-lacking astrocytes from apoptosis 

through activation of Akt signaling pathway (Fig. 3.1.5). We are wondering whether thrombin 

stimulates Akt signaling pathway to accelerate astrocytes proliferation. Moreover, we want to 

elucidate whether blockade of the transactivation of EGF and PDGF receptors will affect the 

phosphorylation of Akt. We first treated astrocytes with thrombin for different times, and then 

the Western blot method was used to detect the changes of phosphorylation of Akt. According 

to the data shown in Fig. 3.2.7, thrombin significantly induced phosphorylation of Akt. 

Blockade of transactivation of EGF and PDGF receptor by AG1478 and AG1296 attenuated 

thrombin-induced Akt phosphorylation. When LY294002 was used to inhibit the PI3K, the 

thrombin-caused Akt phosphorylation was completely abolished. The results strongly support 

that thrombin induces phosphorylation of Akt which needs transactivation of EGF and PDGF 

receptors. 

(a)                                                                   (b) 
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Fig. 3.2.7 Thrombin activates PI3K/Akt signaling pathway and induces transactivation of 

EGF and PDGF receptors. Astrocytes were treated by 1 U/ml of thrombin (THR) in the 

absence or presence of 10 µM of AG1478, 10 µM of AG1296, or 20 µM of LY194002 to block 

the transactivation of EGF receptor, PDGF receptor and PI3K signaling pathway for 24 h. the 

untreated cells (untreated) were set as control. (a) The representative Western blot and (b) the 

quantification of the band density of phosphorylation Akt are shown. (n=3, * p<0.05, ** 

p<0.01). 

 

3.2.8 Thrombin caused-phosphorylation status of Akt determines the level of 

cyclin D1 

Akt was indicated to regulate cyclin D1 to promote β-cell proliferation [131]. To 

explore whether thrombin-induced Akt phosphorylation will regulate cyclin D1, we used the 

Western blot method to monitor the protein level of cyclin D1 upon the stimulation of 

thrombin in astrocytes at different time points. At the same time, to make it clear whether 

thrombin caused-phosphorylation status of Akt determines the level of protein cyclin D1, 

AG1478 and AG1296 were used to block transaction of EGF and PDGF receptors to attenuate 

Akt phosphorylation, and LY294002 was used to block phosphorylation of Akt. Under this 

situation, we checked whether cyclin D1 expression was affected or not. The data showed that 

thrombin successfully and significantly upregulated intracellular cyclin D1 after 10 h and 24 h 

incubation with thrombin (Fig. 3.2.8a). With the attenuation of thrombin-induced 

phosphorylated Akt by AG1478 and AG1296, the level of cyclin D1 was also significantly 

decreased. Strikingly, blockade of PI3K signaling pathway not only abolished Akt 

phosphorylation (Fig. 3.2.7), but also dramatically decreased the protein level of cyclin D1 

induced by thrombin (Fig. 3.2.8b). 
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(a)                                                                               (b)        

 

Fig. 3.2.8 Thrombin-caused phosphorylation status determines cyclin D1 accumulation. 

Astrocytes were treated without or with thrombin (THR) in the absence or presence of 10 µM 

of AG1478, 10 µM of AG1296, or 20 µM of LY194002 to block the transactivation of EGF 

receptor, PDGF receptor and PI3K signaling pathway for 24 h. The untreated cells were set as 

control (CNT). (a) Thrombin upregulated the protein level of cyclin D1. (b) Inhibition of Akt 

phosphorylation decreased the upregulation of cyclin D1 induced by thrombin. All of the 

comparisons were made to control (CNT) (n=4, * p<0.05, ** p<0.01, # p<0.001). 

 

3.2.9 Blockade of Akt signaling pathway influences thrombin-induced 

astrocytes proliferation 

We already confirmed that cyclin D1 was unregulated by thrombin-stimulated Akt 

phosphorylation (Fig. 3.2.8a). We next wanted to check whether the phosphorylation of Akt 

contributes to astrocytes proliferation induced by thrombin. Since it was already found that 

thrombin-induced Akt activation was related with the transactivation of PDGF and EGF 

receptors [58], the inhibitors of PDGF, EGF receptors and inhibitor of PI3K were applied in 

the presence of thrombin.  

Our data showed that thrombin generated 101% of increases of cell proliferation as 

compared to the control (Fig. 3.2.8, column 2 vs. column 1), see also Fig. 3.2.1. Moreover, the 

application of inhibitors (AG1296) of the PDGF receptors and PI3K (LY294002) 

significantly decreased the rate of astrocytes proliferation, the percentage was reduced from 

201% to 140% (Fig. 3.2.8, column 2 vs. column 3) and 60% (Fig. 3.2.8, column 2 vs. column 

5) respectively. However, thrombin was capable of accelerating astrocytes proliferation in the 

presence of inhibitor (AG1478) of EGF receptor. The obtained cell proliferation results 

strongly indicate that astrocytes proliferation induced by thrombin is correlated to the 
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phosphorylation status of Akt, suggesting that the axis of PI3K/Akt/cyclin D1 plays a key role 

in thrombin-mediated astrocytes proliferation. Surprisingly, blockade of transactivation of 

EGF receptor did not affect cell proliferation induced by thrombin. However, thrombin-

induced transactivation of PDGF receptor contributes to astrocytes proliferation. 

 

Fig. 3.2.9 Inhibition of the phosphorylation of Akt decreases the rate of astrocytes 

proliferation induced by thrombin. Astrocytes were seeded on 96 well-plates to measure cell 

proliferation rate as described in 2.2.3.2. Astrocytes were treated with 1 U/ml of thrombin 

(THR) in the presence or absence of 10 µM of AG1478 to block the activation of EGF receptor, 

or 10 µM of AG1296 to block the activation of PDGF receptor, or 20 µM of LY294002 to 

inhibit the activation of PI3K/Akt signaling pathway. The WST-1 assay was done 24 h post 

addition. Cells without thrombin or/and inhibitors treatment were set as control. (n=4, ** 

p<0.01, # p<0.001). The numbers under the X-axis represent the corresponding column. 

 

3.2.10 Thrombin induced increase of intracellular glucose uptake, which is 

responsible for astrocytes proliferation 

In order to find out whether thrombin-induced astrocytes proliferation occurs through 

stimulating glucose uptake or not, astrocytes were treated with 1 U/ml of thrombin for 10 

min, then the D-glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-

glucose (2-NBDG) uptake by astrocytes was evaluated. The assay is based on direct 

incubation of astrocytes with a fluorescent D-glucose analog 2-NBDG followed by measuring 

the intensity of fluorescence emitted by the cells, reflecting the amount of 2-NBDG taken up 

via GLUT.  

The data from glucose uptake assay showed that thrombin may enhance the glucose 

uptake in astrocytes. Co-application of thrombin and Apigenin or Apigenin alone attenuated 

the rate of glucose uptake (Fig. 3.2.10a). Apigenin is a natural product belonging to the 

flavone class, which is demonstrate to inhibit GLUT-1 mRNA and protein expression to 

decrease glucose uptake in cancer cells [132]. The data with Apigenin were used as negative 

control for the assay, as indicated by the manual. 



Results- Part 2 

53 

To further confirm that thrombin did increase glucose uptake in astrocytes, which 

promoted astrocytes proliferation, the Apigenin was used in the cell proliferation assay. 

Similarly, thrombin significantly induced astrocytes proliferation as compared to the cells 

without thrombin treatment. Strikingly, when astrocytes were incubated with thrombin in the 

presence of Apigenin, thrombin-induced increases of astrocytes proliferation were 

significantly eliminated, with the percentage declined from 180% to 80% (Fig. 3.2.10b). The 

WST-1 assay data strongly support our hypothesis that thrombin enhanced glucose uptake in 

astrocytes to accelerate astrocytes proliferation. 

(a)                                                                       (b) 

    

Fig. 3.2.10. Thrombin increased-glucose uptake contributes to astrocytes proliferation. 
Astrocytes were seeded according to the protocol described in 2.2.3.2 and 2.2.3.3. (a) 

Astrocytes were treated with 1 U/ml of thrombin (THR) in the absence or presence of Apigenin 

(50 µM) for 30 min, or cells were treated with Apigenin alone which was set as negative 

control. The cells without treatment were set as control and the data were taken as 100%, (n=3, 

* p<0.05). (b) Astrocytes were treated with 1 U/ml of thrombin in the absence or presence of 

Apigenin for 48 h, then the rate of proliferation were assessed by WST-1 assay (n=4, ** 

p<0.01, # p<0.001). 

 

3.2.11 HK2 is up-regulated by thrombin, which manifests the enhancement of 

glucose uptake in astrocytes 

Glucose plays a key role in producing ATP by all cells in both the presence and absence 

of molecular oxygen (O2). The first step in glycolysis is the phosphorylation of glucose by 

hexokinases. The up-regulated glycolysis which is mediated by hexokinase confers 

accelerated proliferative effects in cells. To understand if thrombin-caused enhancement of 

glucose uptake is because of the upregulation of hexokinases, we treated astrocytes with 1 

U/ml of thrombin for 24 h, then the protein levels of hexokinase 1 (HK1) and hexokinase 2 

(HK2) are evaluated by Western blot. In parallel, we wanted to find out Apigenin also inhibits 

hexokinases protein expression to decrease glucose uptake. 

According to Fig. 3.2.11a, application of thrombin led to increased protein level of 

HK2. The quantification data manifested that the level of HK2 is 2 times higher in thrombin-
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treated astrocytes than that in the control cells (100%). Combination of thrombin and 

Apigenin decreased HK2 protein level to 80% (Fig. 3.2.11c). However, it seems that thrombin 

has little effects on regulation of HK1 in astrocytes (Fig. 3.2.11b). The consequences are that 

thrombin conferred to increase of glucose uptake in astrocytes mainly through upregulating 

HK2. 

(a) 

 

(b)                                                                    (c) 

 

Fig. 3.2.11. Thrombin upregulates HK2 rather than HK1 in astrocytes. Astrocytes were 

treated with 1 U/ml of thrombin (THR) in the absence or presence of Apigenin for 24 h. Then the 

cells were harvested to do Western blot. 50 µg of protein for each lane were loaded. The primary 

HK1 and HK2 antibodies were used to detect the levels of respective protein. (a) The 

representative Western blot showed that HK1 and HK2 under the conditions indicated. (b) 

Quantification of the level of HK1 and (c) quantification of the level of HK2 under the indicated 

conditions (n=4, * p<0.05).  
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3.2.12 Thrombin-triggered MAPK/HIF-1α and PI3K/Akt/HIF-1α signaling 

pathways synergistically mediate HK2 in astrocytes 

HIF-1α was reported to be incorporated in the ET 1-mediated signaling pathways to 

promote astrocytes proliferation through increasing glucose uptake [133]. Our hypothesis is 

that thrombin may also stimulate HIF-1α, which subsequently upregulates HK2 to promote 

glucose uptake in astrocytes. Moreover, we wondered if MAPK and PI3K/Akt are also 

integrated in thrombin-mediated HIF-1α stabilization. To examine the hypothesis, thrombin 

was applied to astrocytes in the absence or presence of inhibitors of ERK, JNK, and 

LY294002 in FCS-free medium for 24 h. Then the protein levels of HIF-1α and HK2 were 

examined by Western blot. 

The data presented in Fig. 3.2.12a demonstrated that thrombin significantly stabilized 

HIF-1α in astrocytes. The quantified data of band density emphasized that thrombin induced 

accumulation of HIF-1α was almost 3 times higher than that in the untreated cells, which were 

used as control (100%). In addition, blockade of ERK, JNK and PI3K signaling cascades by 

the specific inhibitors decreased the accumulation of HIF-1α caused by thrombin. The 

percentages of thrombin-induced HIF-1α accumulation declined from 290% to 140%, 73%, 

and 87% by inhibition of ERK, JNK and PI3K, respectively, suggesting that these signal 

transduction pathways are very important for thrombin stabilizing HIF-1α. 

We next checked the protein levels of HK2 under the same conditions. Coincidently, the 

HK2 level correlated to the HIF-1α level. Thrombin significantly upregulates HK2 (Fig. 

3.2.12c) which was also demonstrated by Fig. 3.2.11a and c, and inhibitors of ERK, JNK, and 

PI3K significantly decreased the protein level of HK2 induced by thrombin. The OD value of 

HK2 was decreased from 220% to 122%, 146% and 82%, respectively (Fig. 3.2.12c). Our 

data support that thrombin activated HIF-1α / HK2 signaling cascade to mediate glucose 

metabolism in astrocytes. 
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(a) 

 

 
Fig. 3.2.12. ERK, JNK and 

PI3K signaling cascades is 

important for thrombin-

induced HIF-1α accumulation 

and HK2 upregulation.  
Astrocytes were treated with 1 

U/ml of thrombin (THR) in the 

absence or presence of 10 µM of 

PD98095, which is the ERK 

inhibitors (THR+PD98095), or 20 

µM of SP600125 which is the 

JNK inhibitor (THR+SP600125) 

or 20 µM of LY294002 

(THR+LY294002) which blocks 

PI3K or these inhibitors alone for 

24 h. After the induction, 

astrocytes were harvested to do 

Western blot to probe protein 

level of HIF-1α and HK2. The 

untreated cells were set as control 

(CNT); the ratio of HIF-1α and 

HK2 to GAPDH were taken as 

the relative value of each protein 

level.  
(a) The representative blot 

showed the thrombin-stimulated 

HIF-1α and HK2 in astrocytes 

under the indicated conditions. 
(b) The quantification data 

showed the relative level of HIF-

1α.as compared to the CNT (n=4, 

** p<0.01, # p<0.001). 
(C) The quantification data of 

HK2 under the indicated 

conditions as compared to the 

CNT (n=5, * p<0.05, ** p<0.01). 

 

(b) 

          

(c) 

         

 

3.2.13 Thrombin-induced mitochondrial ROS has no effects on signaling of ERK, 

JNK and Akt. 

 ROS, as a “second messenger” in intracellular signaling cascades was demonstrated to 

regulate cell proliferation or cell differentiation through MAPK and Akt cascades [134] [135]. 

To explore whether thrombin-activated ROS work as signaling molecule to target on the 

ERK, JNK, or Akt signaling pathways, we treated astrocytes with thrombin in the absence or 

presence of the ROS inhibitor DPI and ROS inducer Antimycin A. Then we monitored the 

changes of phosphorylation of ERK, JNK and Akt. The data from Western blot demonstrated 

that thrombin plus Antimycin A significantly induced the hyper phosphorylation of ERK and 
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JNK as compared to that level in thrombin-treated cells. However, when DPI was used to 

block thrombin-induced ROS production, there were no significant changes in 

phosphorylation of ERK and JNK. Moreover, phosphorylation of Akt was also failed to be 

affected by blockade of ROS by DPI (Fig. 3.2.13). 

 

(a) 

 

(b) 

 

(c) 

                                                           

(d) 

 

Fig. 3.2.13. Thrombin-induced ROS production was not responsible for activation of ERK, JNK, 

and Akt in astrocytes. Astrocytes were treated with 1 U/ml of thrombin without or with the cotreatment 

of Antimycin A (10 mM) or DPI (500 nM) for 24 h. Then astrocytes were harvested for Western blot. β-

tubulin was used to control the equal loading of protein in each lane. (a) The representative blot was 

shown here and (b) quantification of phosphorylated ERK, (c) quantification of phosphorylated JNK and 

(d) quantification of phosphorylated Akt were shown, respectively (n=4, ** p<0.01,# p<0.001). 
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3.3 The functional studies of PAR-2 carboxyl tail in intracellular signaling and cell 

death 

3.3.1 Constructions of PAR-2 truncated mutants  

To examine the functional role of PAR-2 carboxyl tail in receptor internalization, and to 

find out which cluster of serine/threonine is important for signaling and cell survival, the 

various truncated mutants were generated by PCR mutagenesis as described in the methods. 

Briefly, the template DNA used to amplify the PAR-2 truncated mutants is the rat wild type 

PAR-2 receptor inserted into the pEGFP-N1 vector. The GFP tag was linked to the C-terminal 

of PAR-2. The template DNA was generously supplied by Dr. Rongyu Li. PAR-2 carboxyl 

tail truncation mutants were generated by deletion of certain gene fragments from the 

indicated residues. The detailed serine/threonine clusters contained in C-terminal truncations 

are shown as Fig. 3.3.1. The mutants were named 348-Del, 361-Del, 368-Del, 379-Del, and 

386-Del. 

 

Fig. 3.3.1 The serine/threonine residues contained in the carboxyl-tail of PAR-2 in the different 

truncation mutations. The red characters point out the cluster of the serine/threonine included in the 

different mutations. The grey boxes indicate the residues deleted in each mutant. At the same time, in 

the carboxyl-terminus of each mutant, the GFP tag was attached. 

 

3.3.2 The expression and internalization of PAR-2 carboxyl-tail mutants 

To investigate whether the phosphorylation sites of serines and threonines located in the 

carboxyl tail of PAR-2 are essential for the receptor internalization, the truncation mutants of 

PAR-2 were treated with 100 nM trypsin for 30 min.  

In unstimulated cells, the major portion of the truncated receptors was expressed nicely 

on the cell membrane, except for 348-Del, in which all the serine and threonine 

phosphorylation sites were deleted. Without the whole carboxyl-tail, the truncation 348-Del 

lost one of the important and typical characters of membrane receptor which is expressed 

mainly in the cell plasma membrane. It can be seen that 348-Del distributes mainly in the 

cytosol with low level of expression in the cell membrane. Under the challenge of trypsin, the 

348-Del receptor failed to show any obvious changes in receptor localization. Unlike 348-

Del, PAR-2 carboxyl tail truncation mutants, 361-Del, 368-Del, 379-Del, and 386-Del, which 
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were lacking different phosphorylation sites of serine or threonine at the carboxyl tail region, 

were expressed mainly on the cell membrane as wild type receptors do. Importantly, the 

expression level of these mutants was comparable with that of the wild-type receptor. 

Interestingly, under the stimulation with trypsin for 30 min, a similar internalization pattern 

for carboxyl tail mutants was observed as for PAR-2 wild type receptor. The internalized 

receptors with green fluorescence were nicely colocalized with lysosome tracker with red 

fluorescence, as indicated by white arrows. At the same time, with the receptor going into the 

cytoplasm upon the stimulation by trypsin, decreasing numbers of PAR-2 truncation mutants 

were observed on the cell membrane in Fig. 3.3.2. The results of truncation mutants 

internalization and expression are summarized in Table. 3.3.2. Taken together, these findings 

imply that a short peptide present in 361-Del was sufficient for preserving the membrane-

expressed pattern and internalization, highlighting that Ser 349 may play a key role in 

maintaining the receptor on the cell membrane or Ser 349 is important for receptor 

internalization. 

 

Table. 3.3.2 The expression and internalization of PAR-2 mutant truncations. 

Name of receptor Expression Internalization 

348-Del Cell membrane and cytoplasma No 

361-Del Cell membrane yes 

368-Del Cell membrane yes 

379-Del Cell membrane yes 

386-Del Cell membrane yes 

PAR-2 (wild type) Cell membrane yes 
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Time (min) 

 

 

 
Fig.3.3.2. The 

internalization assay 

of PAR-2 

truncations.  
HEK 293 cells were 

stably transfected 

with PAR-2 mutants 

with GFP tag, (green 

fluorescence), 

designated as 348-

Del, 361-Del, 368-

Del, 379-Del, 386-

Del, and PAR-2 (wild 

type receptors).  
The transfected cells 

were cultured until 

70% confluence, and 

then the cells were 

used for receptor 

internalization assay.  
Briefly, the 

transfected cells were 

incubated with 0.5 

mg/ml of lysosome 

tracker (red 

fluorescence) for 30 

min in serum free 

medium at 37°C. 

After washing cells 

with pre-heated 

HBSS twice, cells 

were exposed in 100 

nM trypsin dissolved 

in HBSS at 37°C; the 

targeted cells were 

selected and 

monitored for 30 min 

to visualize receptor’s 

trafficking. Images 

were processed with 

Zeiss confococal 

microscopy software. 
The experiments 

were repeated at least 

three times, and 

similar results were 

obtained (Scale bar = 

20 µm). 
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3.3.3 Calcium Responses of PAR-2 mutants under the challenge with different 

concentrations of trypsin  

To determine whether the constructed PAR-2 mutants have different abilities to trigger 

the intracellular Ca
2+

 release, we measured the Ca
2+

 mobilization under the challenge of 

different concentrations of trypsin. Intriguingly, Ca
2+

 responses in mutants 348-Del, 361-Del, 

and 368-Del showed little differences as compared to the HEK-GFP cells under all the 

different concentrations of trypsin treatments, but lower than that in PAR-2 wild type 

receptor-transfected cells. The initiation of comparable Ca
2+

 responses was found in 368-Del 

upon higher concentration of trypsin treatment (100 nM). In contrast, the initiation of 

comparable Ca
2+

 responses under the lower concentration of trypsin (0.01 nM, 0.1 nM and 1 

nM) occurred in the mutant 386-Del. Compared to the wild type receptor, the mutants Del-

379 and 386-Del showed comparable Ca
2+

 responses, which are higher than that in mutants 

348-Del, 361-Del, and 368-Del under the corresponding concentrations of trypsin.  

 

 

Fig. 3.3.3. The intracellular Ca
2+

 mobilization in different PAR-2 truncations. The stably 

transfected HEK293 cells expressing different mutants of PAR-2 were challenged by the indicated 

concentrations of trypsin. The intracellular Ca
2+

 responses were measured with Fura 2 dye by 

imaging system attached to a Zeiss Axioscope microscope. For experiments, cells were treated and 

the Ca
2+

 concentrations were analyzed as mentioned in method 2.2.3.8. The data are obtained and 

analyzed from three independent experiments. Only cells with the obviously membrane-localized 

GFP-signal and with the typical calcium response kinetics upon trypsin pulses were taken into 

account in the data analysis. For each measurement, at least 15 cells were selected for analysis and 

totally 60 cells were selected and analyzed for each measurement. Data shown here represent the 

mean ± SEM (n>3). 
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3.3.4 The capacity of PAR-2 mutants of activating the ERK and Akt 

phosphorylation 

To assess whether loss of the different clusters of serine/threonine at the carboxyl tail 

affect PAR-2 signal transduction, we monitored the phosphorylation level of ERK and Akt 

under the stimulation with 100 nM trypsin for 30 min. As shown in Fig. 3.3.4, transient 

phosphorylation of ERK was completely abolished in the 348-Del mutant. Compared to the 

wild type receptor, the mutant truncations show the significant reduction in ERK 

phorphorylation upon the activation by trypsin. However, no significant differences in Akt 

phosphorylation were observed in different mutant truncations as compared to wild type 

receptors.  

(a)                                                                     (b) 

         

        

Fig. 3.3.4 Trypsin-stimulated levels of phosphorylation of ERK1/2 and Akt in truncation 

mutants.The transiently transfected HEK 293 cells were deprived of serum overnight. The next 

morning, cells were incubated with 100 nM trypsin dissolved in serum-free medium for 30 min. 

Thereafter, the cells were washed and lysed. The same amounts of extracted proteins were loaded 

to SDS-PAGE gel. (a) Western blots were done to monitor the level of phosphorylation ERK, and 

the quantified bars show the mean value ± SEM of four independent experiments (** p<0.01, # 

p<0.001). (b) The representative Western blot is shown here and the levels of phosphorylation of 

Akt in PAR-2 mutants, and the quantification of these levels show the mean value ± SEM of three 

independent experiments. 
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3.3.5 The cell viability of the HEK 293 cells transfected with different PAR-2 

truncation mutants under the stimulation with PAR-2 agonist 

Activation of endogenous PAR-2 receptor with the specific peptide agonist or trypsin 

was demonstrated to induce proliferation of the endometriotic stromal cells [136] and rat 

pancreatic stellate cells proliferation [137]. In this study, our hypothesis was that stimulation 

of HEK 293 cells with overexpression of different PAR-2 mutants might lead to cell death at 

different extents. The explanation of this hypothesis was that the receptor over-expressing 

cells would produce long-lasting signal transduction in the intracellular environment upon 

agonist treatment. The excess signaling might finally be harmful to the cells. 

In order to examine our hypothesis, the various stably transfected PAR-2 mutants HEK 

293 cells were treated with 50 µM of PAR-2 agonist for 48 h. Finally, the viabilities of 

differently transfected cell were evaluated by WST-1 assay. From the data shown in Fig. 

3.3.5, we did not observed a difference in cell viability between the PAR-2 agonist-treated 

HEK-GFP cells and the untreated HEK-GFP cells. Similar results were observed in 348-Del 

cells, which is in agreement with the signaling investigation. The initiation of significantly 

decreased cell viability was observed in mutant 361-Del, which showed that 32% of cell death 

after 48 h incubation with PAR-2 agonist as compared to the HEK-GFP cells. The 

percentages of cell death were increased in the mutant truncations containing more 

serine/therione phosphorylation sites in the carboxyl tail. Especially in the cells expressing 

386-Del, the cell death was similar as that in the cells carrying wild type receptors; around 

74% of cell death was observed. 

 

 

Fig. 3.3.5 Stimulation of PAR-2 

mutant truncations induced cell death 

by PAR-2 AP. Stable-transfected PAR-

2 mutants were seeded on the 96 well-

plates at the density of 15,000 cells per 

well for 24 h. After that, cells were 

deprived of FCS overnight. The next 

morning, cells were treated with 50 µM 

of PAR-2 agonist for another 48 h. The 

untreated cells were set in parallel as 

control. The cell death was evaluated by 

WST-1 assay. Data shown here 

represent the mean ± SEM of at least 

three independent experiments. The one-

way analysis of variance (ANOVA), 

followed by Newman–Keuls test to 

assess the statistical significances of the 

differences between the PAR-2 agonist-

treated cells. There were no differences 

in cell viability between the untreated 

transfected cells (# p <0.001). 
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3.4 The possible interaction between αB-crystallin and β-arrestin 1/2, and their 

functional roles in the cell death 

3.4.1 Colocalization of αB-crystallin and β-arrestin 1/2 without or with the 

activation of PAR-2 

It was reported that formation of β-arrestin1/2 and Hsp27 complex in response to the 

selective β adrenergic receptor agonist isoproterenol was sufficient for protection against 

programmed cell death initiated by staurosporine in a human urothelial cell line [124]. β-

arrestin was well studied as cytosolic protein associated with receptor desensitization and 

internalization of some 7 transmembrane receptors, including PAR-1 and PAR-2.  

To make it clear whether the activation of PAR-2 will initiate the β-arrestin1/2 and αB-

crystallin complex formation, we transiently co-expressed β-arrestin 1 with GFP tag or β-

arrestin 2 with YFP tag and αB-crystallin with myc tag in HEK293 cells, which were seeded 

on coverslides. 36 h later, cells were deprived of FCS for 30 min, and then we incubated the 

transfected cells in 100 nM of trypsin to activate the PAR-2 receptor for different times. 

Thereafter cells were prepared for immunostaining, as described in 2.2.3.6. All specimens 

were examined with a confocal laser-scanning microscope. As for single scanning for 

detection of the fluorescence of YFP, a 488 nm laser wavelength filter was used. Single 

scanning for detection of the fluorescence of Alexa Fluor 555, a 546 nm laser was used.  

Here we show the representative immunostaining pictures demonstrating the interaction 

between β-arrestin 2-YFP and αB-crystallin-myc. Moreover, the similar interaction was found 

between β-arrestin 1 and αB-crystallin (not show). Based on the results shown in Fig. 3.4.1, 

without trypsin treatment, a small number of αB-crystallin colocalized with β-arrestin 2 on the 

cell membrane (at 0 min). Similar results were observed after application of trypsin for 2 or 5 

min. Upon the activation of PAR-2 by trypsin for 30 min, the increasing number of αB-

crystallin and β-arrestin 2 were colocalized on the cytoplasm and cell membrane. The results 

support the idea that αB-crystallin and β-arrestin 1 and 2 interacted with each other not only 

on the cell membrane in the non-stimulation station, but also colocalized with each other 

under trypsin treatment. 
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Time 

(min) 

 

     β-arrestin 2             αB-crystallin              overlay   

 
Fig. 3.4.1 The interaction 

between β-arrestin 2 and 

αB-crystallin.  
HEK293 cells were 

cotransfected with β-arrestin 

2-YFP and αB-crystallin-

myc for 36 h. Thereafter, the 

transfected cells were 

deprived of serum for 30 

min before treating cells 

with 100 nM of trypsin for 

different times as indicated 

in figures.  
Fluorescence images were 

captured sequentially at 

excitation of 488 nm, and 

543 nm with a LSM510 

laser scanning confocal 

microscope.  
The experiments were 

repeated at least twice with 

similar results for each. 
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3.4.2 Co-immunoprecipitation of β -arrestin1/2 with αB-crystallin 

In order to confirm the interaction results obtained with the confocoal microscope, 

HEK293 cells were co-transfected with β-arrestin1/2 with myc tag and αB-crystallin with HA 

tag plasmids. The cells transfected with αB-crystallin-HA alone were set as negative control. 

36 h after transfection, cells were incubated with FCS-free medium for another 30 min, and 

then 100 nM of trypsin was added to activate PAR-2 for another 30 min. Agonist was 

removed after 30 min through aspirating medium immediately, and cells lysates were 

quantified to ensure the same quantity of protein contained in each protein sample. For the 

immunoprecipitation experiments, cell lysates were incubated with protein A/G beads and the 

following steps were carried out as described in the methods 2.2.3.5. 

From the IP results in Fig. 3.4.2, it can be found that β-arrestin 1 shows a strong 

expression level in HEK 293 cells (in lane 6) and β-arrestin 1 interacts with αB-crystallin 

when PAR-2 was activated by trypsin for 30 minutes (lane 1). In addition, we found low 

expression of β-arrestin 2-myc in HEK 293 cell lysates from cells that were co-transfected 

with β-arrestin 2-myc and αB-crystallin-HA (lane 7). However, the interaction between β-

arrestin 2-myc and αB-crystallin-HA still can be detected slightly (lane 2, red box), indicating 

that β-arrestin 2 interacts with αB-crystallin either. The IP results favour our hypothesis that 
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β-arrestins interact with αB-crystallin under the stimulation of PAR-2 by trypsin, which is 

also in accordance with the results obtained from immunostaining of cells.  

In the control (lane 3), when β-arrestins were absent in the HEK 293 cells, no 

immunoprecipitated protein were detected in 20 Kd. Lanes 4 and 5 show that αB-crystallin 

are well produced in HEK-293 cells which are co-transfected with αB-crystallin and β-

arrestins. 

 

Fig. 3.4.2 Identification of the interaction between β-arrestins and αB-crystallin by IP 

experiments. HEK293 cells were cotransfected with with β-arrestin1/2 with myc tag and αB-

crystallin with HA tag plasmids for 36 h. Then the cells were incubated with FCS-free medium 

for another 30 min, thereafter 100 nM of trypsin was added to activate PAR-2 for another 30 

min. The whole cell lysates were prepared for IP experiments as described in 2.2.3.5. Lanes 4-7 

show the input control of respective protein in the same cell lysates used for IP experiments. 

The experiments were repeated three times to get consistent results. The representative figure is 

shown here. 

 

3.4.3 β-arrestin-1 is involved in the PAR-2-activated phosphorylation of αB-

crystallin at Ser59 

The phosphorylation of αB-crystallin at Ser 59 induced by agonist-induced PAR-2 

activation is demonstrated to be important for protecting rat brain astrocytes from C2-

ceramide- and staurosporine-induced cell death [123]. To understand deeply whether β-

arrestin 1 is involved in regulation of αB-crystallin phosphorylation at Ser 59, β-arrestin 1 was 

down-regulated by transfection of astrocytes with siRNA of β-arrestin 1, the knockdown 

efficiency was shown in Fig. 3.1.7a. In the absence of β-arrestin 1, the specific PAR-2 agonist 

lost the capacity to transiently activate αB-crystallin phosphorylation at Ser 59. This 

phenomenon was clearly confirmed by Western blot data (Fig. 3.4.3a). With stimulation of 

PAR-2 agonist for 1 h, there is a relatively lower level of αB-crystallin phosphorylation at Ser 

59 in β-arrestin 1-silenced astrocytes as compared with this level shown in the non-silenced 

astrocytes (Fig. 3.4.3 a and b). Interestingly, there are no differences observed in αB-crystallin 
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phosphorylation level of Ser 59 in the the long time activation of PAR-2 at 6 and 24 h. In 

conclusion, our data support that β-arrestin 1 is necessary for maintaining the transient αB-

crystallin phosphorylation at Ser 59 under the challenge of PAR-2 activation. 

(a) 

 

(b) 

 

Fig. 3.4.3. β-arrestin-1 regulates the transient phosphorylation of αB-crystallin at Ser59 

in astrocytes. (a) The β-arrestin-1-deficient astrocytes were deprived of FCS overnight, and 

then the astrocytes were incubated with 100 µM of PAR-2 agonist for indicated times. The 

representative blot is shown here to display the changes of phosphorylation at different time 

points. (b) The level of the phosphorylation αB-crystallin at Ser 59 was quantified and 

normalized to GAPDH. The value of phosphorylated αB-crystallin at Ser 59 in untreated non-

silenced astrocytes was set as 1. The data show the mean value± SEM, n=5. 

 

3.4.4 Activation of PAR-2 failed to save astrocytes from STS-induced apoptosis 

in β-arrestin-1-deficient astrocytes. 

β-Arrestin-1 was demonstrated to negatively regulate PI3K/Akt signaling pathway upon 

thrombin-activated PAR-1, which played a pivotal role in cytoprotection in previous results 

(3.1.3). In order to investigate whether β-arrestin 1 played any functional roles in PAR-2 

downstream signaling cascades, we checked the functional changes upon the activation of 

PAR-2 receptor in β-arrestin 1-deficient astrocytes. Similarly, to the experiments described in 

3.1.3, the β-arrestin 1-deficient astrocytes were treated with staurosporine to induce cell death. 

At the same time, the specific PAR-2 agonist (PAR-2-AP) was given in the absence or 

presence of staurosporine.  
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From the data in Fig. 3.4.4b, quantification of the level of cleaved caspase 3 shows that 

staurosporine caused 2 times higher level of cleaved caspase 3 in β-arrestin-1-silenced 

astrocytes as compared to that in the non-silenced cells. However, it is not observed that 

activation of the PAR-2 receptor protected astrocytes from staurosporine-induced cell death in 

both non-silenced and β-arrestin 1-silenced astrocytes, because the level of cleaved caspase 3 

in the co-treatment of PAR-2 agonist and staurosporine showed the similar level as in 

staurosporine-treated non-silenced and β-arrestin-1-silenced astrocytes. In contrast to the 

activation of PAR-1 which prevented apoptosis occurred in β-arrestin 1-deficient astrocytes 

(see Fig. 3.1.3); the activation of PAR-2 was incapable to rescue astrocytes from cell death in 

β-arrestin 1-deficient astrocytes.  

 

(a) 

 

Fig. 3.4.4 PAR-2 activation failed to 

protect astrocytes from 

staurosporine-induced cell death. 
(a) The FCS-starved non-silenced or β-

arrestin 1-silenced astrocytes were 

treated with 0.5 µM staurosporine 

(STS) in the absence or presence of 100 

µM of PAR-2 agonist (AP). 24 h later, 

the cells were harvested and Western 

blots were done to assess the level of 

cleaved caspase 3 under the indicated 

treatments. The representative blot of 

cleaved caspase 3 from one of three 

independent experiments is shown. (b) 
The value of cleaved caspase 3 is 

obtained by the ratio of cleaved caspase 

3 divided to the sum of cleaved caspase 

3 and caspase 3. The level of cleaved 

caspase 3 in non-silenced cells in the 

presence of STS was taken as 1. Data 

shown in b represent the mean ± SEM 

of three independent experiments.  
*p< 0.05 as compared to the non-

silenced cells treated with 

staurosporine, which was taken as 1. 

(b) 
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3.4.5 αB-crystallin promotes astrocytes viability and facilitates the 

phosphorylation of MAPK and Akt 

B-crystallin was reported to have protective effects on astrocytes from chemically 

induced cell death [105]. Newly published data suggest that αB-crystallin applied in the 

extracellular environment will be absorbed by the cells, and then exert antiapoptotic effects as 

intracellular player [138]. However, compared to the large amount of data explaining the 

functions of endogenous B-crystallin, the functions exerted by exogenous αB-crystallin on 

cells are largely unknown.  

To evaluate whether exogenous αB-crystallin has any effects on astrocytes survival, the 

cell viability was evaluated after deprivation of serum in the absence or presence of B-

crystallin for 48 h. The viability of astrocytes was checked by WST-1 assay. It can be seen 

that extracellular application of different concentrations of αB-crystallin promotes astrocytes 

survival at different extents (Fig. 3.4.5a). In detail, application of 1 µg/ml of αB-crystallin to 

astrocytes yields a small elevation of astrocytes viability, while 10 µg/ml and 100 µg/ml of 

αB-crystallin lead to 1.6 times and 1.9 times higher viability of astrocytes, respectively, as 

compared to the control. 

Since the MAPK and PI3K/Akt were implicated in cell survival and cell proliferation, we 

were wandering whether αB-crystallin works like a signaling molecule which activates these 

signal transductions in astrocytes. The primary astrocytes were incubated with 100 µg/ml of 

αB-crystallin in serum-free medium for 24 h or 48 h. After that, Western blots were done to 

monitor the activation of ERK1/2, p38, JNK and PI3K/Akt signaling pathways. It was shown 

that the phosphorylation of ERK, p38, JNK and Akt was enhanced after application of the 

exogenous 100 µg/ml of αB-crystallin for 24 h as well as 48 h (Fig. 3.4.5b).  
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(a) 

 

(b) 

 

Fig. 3.4.5. B-crystallin increases the viability of astrocytes and stimulates MAPK and Akt 

signaling pathways. (a) Astrocytes were exposed to FCS-free medium in the absence (control, 

CNT) or presence of 1 µg/ml, or 10 µg/ml, or 100 µg/ml of B-crystallin for 48 h. The cell 

viability was analysed by WST-1 assay. The results show the percentage changes of cell viabilty 

upon treatment with different concentrations of B-crystallin as compared to control cells 

(CNT), (* p<0.05, # p<0.001, n=3). (b) Astrocytes were incubated with 100 µg/ml of B-

crystallin for 24 h or 48 h in FCS-free medium, thereafter the phosphorylation of Akt, ERK1/2, 

p38 and JNK was detected by Western blot. The experiments were repeated for three times with 

similar results and representative Western blots are shown here. 

 

3.4.6 Blockade of MAPK and Akt signaling pathways eliminates αB-crystallin-

enhanced astrocytes survival. 

In order to clarify if the stimulation of MAPK and PI3K/Akt signaling pathways by B-

crystallin are the potential mechanisms accounting for the improved survival of astrocytes, the 

cell viability induced by αB-crystallin in the presence of the following inhibitors was 

assessed. Inhibitors PD98095, SP600125, LY294002 and Rapamycin were used to block the 

ERK, p38, JNK, PI3K/Akt and mTOR signaling pathways, respectively.  
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As a result, all the inhibitors, when applied alone, induce decrease of cell viability, 

suggesting that inhibition of the MAPK and PI3K/Akt signaling pathways in FCS-free 

medium has harmful effects on astrocytes survival. Furthermore, αB-crystallin induced a 

higher percentage (160%) of cell viability as compared to the control (100%). The increases 

of cell viability were significantly hampered by the co-application of all the inhibitors used 

here. The percentage of cell viability in the presence of αB-crystallin declined from 160% to 

103% or 100%, when inhibiting the ERK and p38, respectively. Moreover, restraining of the 

JNK and PI3K signaling pathways dramatically decreased the viability of αB-crystallin-

treated astrocytes, with percentages of 64% and 57%, respectively. At the same time, when 

inhibiting mTOR, the suggested signaling cascade located downstream of PI3K/Akt, a 

significantly reduced cell viability was also observed. 

To sum up, exogenous application of αB-crystallin triggers MAPK and 

PI3K/Akt/mTOR signaling pathways to accelerate the survival of astrocytes in the serum-

starved situation. 

 

Fig. 3.4.6 MAPK and PI3K/Akt/mTOR signaling pathways are responsible for the viability 

of astrocytes promoted by B-crystallin. Astrocytes were treated without or with 10 µg/ml of 

B-crystallin (CRYAB) plus one of following inhibitors respectively: 2 µM mTOR inhibitor 

(Rapamycin), or 20 µM PI3K/ Akt inhibitor (LY294002), or 10 µM ERK1/2 inhibitor 

(PD98095), or 10 µM p38 inhibitor (SB203580), or 20 µM JNK inhibitor (SP600125) for 48 h. 

The cell viability was evaluated by WST-1 assay. The untreated cells were set as control which 

was viewed as 100%, (** p<0.01, # p<0.001, n=3). 

 

3.4.7 Extracellular application of αB-crystallin protects astrocytes from 

apoptosis through stimulating the Akt signaling pathway. 
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It was previously well documented that overexpression of αB-crystallin and the 

increased level of specific phosphorylation of B-crystallin at Ser 45 and Ser 59 protect 

astrocytes from cell death induced by C2-ceramide and staurosporine [122, 139]. 

Correspondingly, downregulation of B-crystallin increased the astrocytes death. It was also 

proven that αB-crystallin was capable of promoting the survival of astrocytes under serum 

deprivation (Fig. 3.4.5). To understand whether αB-crystallin has antiapoptotic effects, we 

treated astrocytes with staurosporine for 48 h to induce apoptosis without or with extracellular 

application of 10 µg/ml or 100 µg/ml of αB-crystallin. The apoptosis was estimated by the 

protein level of cleaved caspase 3 in Western blots. Under the treatment with staurosporine, 

there was an increase of cleaved caspase 3. Interestingly, this level was significantly reduced 

after the co-treatment of astrocytes with αB-crystallin (10 µg/ml or 100 µg/ml) (Fig. 3.4.7).  

The Akt signaling pathway is involved in cell survival and proliferation, which was seen 

in many studies. To investigate whether the phosphorylation status of Akt was correlated with 

the antiapoptotic effects of αB-crystallin, the level of Akt phosphorylation was probed in 

parallel. With staurosporine, there was a decreased level of phosphorylation of Akt. With the 

combination of 10 µg/ml or 100 µg/ml αB-crystallin, the level of phosphorylation of Akt was 

significantly increased as compared with the treatments only with staurosporine (Fig. 3.4.7c). 

In conclusion, extracellular application of αB-crystallin protected astrocytes from apoptosis 

through Akt signaling pathway.  

MAPK were suggested to be related with the protective processes of αB-crystallin [140, 

141]. In our current studies, it seems that the ERK signaling pathway played an unimportant 

role in cytoprotection, because we failed to observe the significantly increased level of 

phosphorylation of ERK after treatment of αB-crystallin (Fig. 3.4.7d).  
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(a)                                                                        (b)  

           

(c)                                                                        (d) 

      

Fig. 3.4.7 αB-crystallin protects astrocytes from apoptosis through stimulating the Akt 

signaling pathway (a) Astrocytes were incubated with 0.2 µM of staurosporine (STS) in the 

absence or presence of different concentrations of αB-crystallin (CRYAB). The apoptosis 

determined by the cleaved caspase 3 as marker under different conditions in astrocytes was 

checked by Western blot. In parallel, the phosphorylation levels of Akt and ERK were also 

checked. Representative blots are shown (n=3). (b) The band density of cleaved caspase 3 under 

the indicated treatments was quantified and divided by the density value of GAPDH. The 

percentages of cleaved caspase 3 level are normalized to STS-treated cells. The value of cleaved 

caspase 3 under STS-treatment was taken as 100% (** p<0.01, n=3). (c) Akt phosphorylation 

was compared to that in the STS-treated cells, which was set as 100%. (d) The quantification of 

phosphorylation of ERK was compared to that in STS-treated cells which was taken as 100% (* 

p<0.05, n=3). 

3.4.8 αB-crystallin blocks ROS generation in RBM 

In order to investigate if αB-crystallin has any functions on ROS generation in RBM, the 

effects of treatment with αB-crystallin for 10 min on ROS production were tested. Glutamate 

and malate as the complex I-linked substrate are oxidized by dehydrogenases with reduction 

of nicotinamide adenine dinucleotide, then finally feeding electrons into Complex III which is 
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a key site for ROS production. Antimycin A inhibits complex III at the Qi centre and 

increases superoxide generation from the Q0 centre. In the presence of SOD, superoxide was 

metabolized to H2O2, and therefore ROS were measured as generated H2O2 using the Amplex 

red assay described in methods. The wells which contained only Antimycin A and RBM were 

set as control value (Fig. 3.4.8, bar 1). Without respiratory substrates (-(G+M)), there are no 

obvious differences between the level of ROS generation induced by Antimycin A in RBM 

upon the treatment with different concentrations of αB-crystallin (Fig. 3.4.8, bar 3, 5, and 7) 

and control situation (Fig. 3.4.8, bar 1). Antimycin A caused 200% of ROS induction in the 

presence of glutamate, malate which were used as the respiratory substrate in RBM (Fig. 

3.4.8, bar 2) as compared to the control (100%), confirming that the mixture containing 

Antimycin A, glutamate, malate, and RBM is an effective model to induce ROS. After 

application of 1 µg/ml of αB-crystallin in the presence of glutamate and malate, the level of 

Antimycin A-induced ROS production failed to show obvious changes (Fig. 3.4.8, bar 4 vs 

bar 2). When the concentration of αB-crystallin was elevated to 10 µg/ml and 50 µg/ml in the 

presence of the substrate and Antimycin A, a significant reduction of ROS production was 

observed (Fig. 3.4.8, bar 6 vs bar 2; bar 8 vs bar 2), with the percentages of ROS production 

declining from 200% to 130% and 126%, respectively. To sum up, αB-crystallin is capable to 

reduce the level of ROS generation in RBM. 

 

 

 

 

Fig. 3.4.8 The effect of αB-crystallin on 

ROS production in RBM treated with 

Antimycin A. Rat brain mitochondria were 

prepared as described in 2.2.3.4. ROS 

production was measured according to the 

protocol indicated in methods 2.2.3.4. 

Antimycin A was used as the inducer of 

mitochondrial ROS production in the 

presence of glutamate (Glu)/ malate (Mal) as 

substrates, which caused 200% of ROS 

generation (bar 2). The wells containing only 

the mixture of 50 µg of RBM and 1 µM of 

Antimycin A were set as control 

(CNT=100%). Treatment with 1 µg/ml of 

B-crystallin (CRYAB) on RBM failed to 

reduce ROS generation induced by 

Antimycin A in the presence of Glu/Mal (bar 

4 vs bar 2). With 10 µg/ml of αB-crystallin, 

ROS production is inhibited (130% vs 200%, 

bar 6 vs bar 2). With 50 µg/ml of αB-

crystallin, the mitochondrial ROS production 

declined from 200% to 126% (bar 8 vs bar 2) 

(# p<0.001, n=3). The number under the X-

axis indicates the bar’s number as described 

in results. 
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4 Discussion  

4.1 β-arrestin 1 as the signaling adaptor and interaction partner of PAR mediates 

cellular functions 

A striking novel finding of our current study was that β-arrestin 1, an interaction partner 

of PAR-1, promotes anti-apoptotic effects in astrocytes and is involved in the PAR-

1/PI3K/Akt survival signaling pathway activated by thrombin. Several partner-proteins of 

PAR were identified in our laboratory. For example, α-crystallin interacts with PAR-2 to 

rescue astrocytes from cell death [142], and the PAR-2-interacting protein Jab1 controls PAR-

2-induced activation of the transcription factor activator protein-1 to regulate activity of c-Jun 

[92]. β-Arrestins were demonstrated to interact with PAR-1 and PAR-2. β-Arrestin 1 is 

essential for PAR-1 desensitization, but dispensable for receptor internalization [93]. The 

situation is different for PAR-2, because both β-arrestin 1 and β-arrestin 2 have been found to 

be crucial for receptor internalization as well as desensitization signaling.  

Accumulating evidence emphasizes the functional role of β-arrestins as signaling 

adaptors. β-Arrestins were reported to mediate cytoprotection in different cell types by 

stimulation of various signaling pathways. For example, in β-arrestin 1/2
-/-

 mouse embryonic 

fibroblasts, cell death occurred upon stimulation of the N-formyl peptide receptor. The 

reintroduction of either β-arrestin 1 or β-arrestin 2 inhibited the apoptosis [101]. Moreover, in 

human endothelial cells, PAR-1 receptor stimulated by APC promoted cytoprotection through 

β-arrestin-mediated Ras-related signaling of C3 botulinum toxin substrate [100]. Activation of 

insulin-like growth factor 1 receptor initiated β-arrestin-dependent activation of Akt, and 

therefore protected the cells from apoptosis [143]. The overexpression of β-arrestin 2 

significantly inhibited opioid-induced apoptosis and β-arrestins prevented cell apoptosis 

through ERK1/2 and p38 MAPKs and Akt pathways [102, 103, 144].  

However, there is still limited information about the functional role of β-arrestins in 

regulating PAR signaling cascades which block cell death in CNS cells. Here, we for the first 

time explored the potential role of β-arrestin 1 in survival signaling pathways in astrocytes. 

We found that β-arrestin 1 played a pivotal role in inhibiting apoptosis, since the deficiency of 

β-arrestin 1 in astrocytes caused a much higher apoptosis (Fig. 3.1.1c and 3.1.5c). The 

molecular mechanisms accounting for the enhanced apoptosis in the absence of β-arrestin 1 in 

astrocytes is still not clear. It is possible that the over-stimulated G-protein signaling pathway 

without the inhibition from binding of β-arrestin 1 is responsible, or lacking of the β-arrestin 1 

signal transduction contributes to apoptosis. 
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Activation of the PAR isoforms in the CNS has multiple biological effects including the 

stimulation of various signaling cascades, which has been detected in our laboratory. For 

instance, thrombin and other PAR-1-specific agonists stimulated proliferation of astrocytes 

through ERK1/2 activation [35]. In our current study, we also observed that different 

concentrations of thrombin promote the proliferation of astrocytes to different extents (Fig. 

3.2.1). Moreover, the activation of PAR-1 by thrombin rescued astrocytes from C2-ceramide-

induced cell death through stimulating JNK and ERK1/2 to increase the levels of GRO/CINC 

[36]. On the other side, PAR-2 activation in astrocytes remarkably protects the cells from C2-

ceramide-induced cell death. PAR-2 activation elicited the upregulation of JNK, P38 and 

ERK1/2 [145]. Thrombin as PAR-1 agonist has either protective or toxic effects in the CNS. 

Low concentrations of thrombin (10 pM-10 nM) protect hippocampal neurons or astrocytes 

from cell death caused by oxygen-glucose deprivation, hypoglycemia, growth supplement 

deprivation, oxidative stress or C2-ceramide [24, 30, 146]. However, the high concentration 

of thrombin (500 nM) induces a more severe cellular damage than oxygen-glucose 

deprivation alone [30]. We found in the present study that the activation of PAR-1 by 

thrombin concentration-dependently exerted cytoprotection; the optimal concentration for 

protection is between 0.5 and 1 U/ml (Fig. 3.1.2).  

In this study, we elucidated whether activation of PAR produces the protective effects, 

when β-arrestin 1 is silenced in astrocytes. The specific PAR-2 agonist was studied firstly in 

this situation. However, we did not observe that the activation of the PAR-2 receptor 

protected astrocytes from staurosporine-induced cell death in both non-silenced and β-arrestin 

1-silenced astrocytes (Fig. 3.4.4). The situation was quite different when the PAR-1 receptor 

was activated by thrombin. In this case, the activation of PAR-1 significantly promoted the 

cell viability under the exposure to staurosporine (Fig. 3.1.2 and Fig. 3.1.3). 

To make it clear whether the cell death caused by staurosporine was due to apoptosis or 

necrosis, we investigated the protein level of a typical apoptotic protein that is cleaved 

caspase 3. We studied cell death or cell protection. We detected that this apoptotic marker was 

increased after staurosporine treatment and decreased with the combined treatment of 

thrombin and staurosporine (Fig. 3.1.3a and b). However, we could rule out that thrombin 

decreased the population of early apoptotic cells (Fig. 3.1.3d), but thrombin significantly 

reduced the number of late apoptotic cells / dead cells (Fig. 3.1.3b and c). As a result, we 

speculated that thrombin could hamper the early apoptotic cells going to the stage of late 

apoptotic period or the stage of cell death. This could explain why we detect a decreased level 
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of cleaved caspase 3 after thrombin treatment, but not a significant reduction in the number of 

early apoptotic cells.  

Another quite interesting finding was that β-arrestin 1 negatively regulated the protective 

signaling pathway stimulated by thrombin. In β-arrestin 1-deficient astrocytes, activation of 

PAR-1 initiated a significant increase of phosphorylation of Akt as compared to the control 

situation (Fig. 3.1.4). This result confirmed that thrombin-activated PAR-1 protected β-

arrestin 1-deficient astrocytes from cell death through the PI3K/Akt signaling pathway.  

Thus, we conclude that the thrombin-stimulated phosphorylation level of Akt plays a 

pivotal role in the cytoprotection effects. Thrombin may trigger growth factors to facilitate the 

Akt phosphorylation in astrocytes. This hypothesis was investigated by using specific 

inhibitors to block EGF and PDGF receptors in both non-silenced and β-arrestin 1-silenced 

astrocytes. In the absence of β-arrestin 1, the transactivation of EGF and PDGF receptors 

contribute to thrombin-induced Akt phosphorylation, which is necessary for the thrombin-

induced cytoprotection (Fig. 3.1.6). 

We summarize our data in Fig. 4.1.  

 

Fig. 4.1 Signaling pathways in staurosporine-caused apoptosis and signaling pathways in 

thrombin-induced protection in astrocytes under the influence of β-arrestin 1. 

Staurosporine is an effective inducer of apoptosis in both non-silenced astrocytes and β-

arrestin 1-deficient astrocytes through increasing the cleavage of caspase 3 (Fig. 4.1a). The 

possible mechanism of the staurosporine-induced apoptosis in wild-type astrocytes implies 

inhibition of the phosphorylation of Akt (signal transduction ①). In contrast, this mechanism 

cannot explain the apoptosis induced by staurosporine in β-arrestin 1-deficient astrocytes (see 

Fig. 4.1b). In β-arrestin 1-lacking astrocytes, staurosporine-induced signal transduction results 
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in a considerably higher level of cleaved caspase-3 caused by staurosporine as compared to 

the control situation (Fig. 3.1.3a and b) (signal transduction ② in (a)). 

The signal transductions initiated by thrombin-activated PAR-1 via both the β-arrestin 1 

and G-protein signaling arms are displayed in Fig. 4.1b. On the one hand, thrombin initiates 

signal transduction after PAR-1 activation in the absence of β-arrestin 1 in gene-silenced 

astrocytes (signal transduction ③), in which the PI3K/Akt signaling pathway is triggered only 

by G-protein. There Akt is over-phosphorylated (Fig 3.1.4b, bar 10). On the contrary, in β-

arrestin 1-containing astrocytes (signal transduction ④), thrombin induced an increased level 

of phosphorylation of Akt that is lower than that seen in the β-arrestin 1-deficent astrocytes 

(Fig. 3.1.4b, bar 5 vs bar 10). Therefore, we conclude that β-arrestin 1 inhibits the long-term 

(24 h) phosphorylation of Akt (Ser 473). Blockade of the sustained PI3K/Akt signaling 

pathway by the specific PI3K inhibitor LY294002 decreased thrombin-induced Akt (Ser 473) 

phosphorylation level (Fig. 3.1.5a) and abolished the protection exerted by thrombin 

treatment (Fig. 3.1.5b and c). Thus, the thrombin-induced activation of the PI3K/Akt 

signaling pathway accounts for the protection of astrocytes from cell death induced by 

staurosporine. In addition, the thrombin-induced transactivation of the EGF and PDGF 

receptor contributes to the phosphorylation of Akt (Ser 473) in β-arrestin 1-deficent astrocytes 

rather than in the non-silenced astrocytes (Fig. 3.1.6). The latter is not included in Fig. 4.1. 

Astrocytes in the CNS are responsible for neuronal survival and functioning, 

neurogenesis and neuronal repair. As a result, the survival of astrocytes under different 

stimuli is important for neuroprotection. Thrombin has neuroprotective effects, which have 

been confirmed in several independent studies. Therefore, it is important to understand the 

signal transduction initiated by thrombin to protect astrocytes from cell death. Our present 

study points out that the thrombin-stimulated PAR-1 activation initiates the PI3K/Akt 

signaling pathway to rescue astrocytes from cell death. This signal transduction is negatively 

regulated by the PAR-1-interacting partner protein β-arrestin 1. Our work provides knowledge 

on the question how to save astrocytes from apoptosis through controlling the activation of 

the PI3K/Akt signaling pathway. This could help to improve potential therapeutic methods to 

reduce neurotoxicity. 
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4.2 Multiple mechanisms account for thrombin-accelerated astrocytes proliferation  

4.2.1 The important role of Ca
2+

 / MAPK and PI3K/Akt signaling pathways in 

cell proliferation 

Mitogen-activated protein kinase (MAPK) cascades have been shown to play a key role 

in transduction of extracellular signals to cellular responses to promote cell proliferation. The 

classical MAPK family includes ERK, C-Jun N-terminal kinase/ stress-activated protein 

kinase (JNK/SAPK) and p38 kinase. Stimulation of GPCRs or exposure to growth factors 

results in the activation of ERK, p38 and JNK, which were very well summarized by Zhang et 

al [147] more than 10 years ago. Based on the published information, the scheme in Fig. 4.2.1 

explains the activator-triggered MAPK signal transduction and induced cell responses, such 

as proliferation and differentiation. In our current study, thrombin was found to stimulate the 

ERK and JNK signaling cascades to promote astrocytes proliferation; the interesting founding 

is that the p38 signaling cascade was not involved in the proliferative activities (Fig. 3.2.6) 

 

 

Fig. 4.2.1 Scheme of MAPK signalling transductions mediating cell proliferation. 

MAPK signaling cascades play a pivotal role in controlling cell cycle progression. ERK/JNK 

cross-activation was observed to be important for accelerating progression of cell cycle from 

phase G1 to S phase, in which DNA synthesis happens [148], which is the hallmark of cell 

proliferation. In our current study, the specific inhibitors of ERK and JNK abolished 

thrombin-induced astrocytes proliferation. It is reasonable to conclude that thrombin-induced 

activation of ERK and JNK is necessary for accelerating the cell cycle transition from G1 

phase to S phase, as described before. 
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Although numerous signaling cascades may be involved in mediation of cell 

proliferation, one of the destinations of these signals is the well-known check point: the 

enhanced transition of cell cycle phase G1/S. Among the multiple signaling cascades, Ca
2+

 

signaling has attracted much attention. The Ca
2+

 signaling pathway was implicated in 

mediating G1/S and G2/M transition. Ca
2+

 signaling triggered the genes responsible for 

stimulating resting cells (G0) to re-enter the cell cycle, and subsequently initiates DNA 

synthesis at the G1/S transition [149]. According to our results, thrombin activates PAR-1-

induced intracellular Ca
2+

 increase and also contributes to astrocytes proliferation, since the 

BAPTA-AM-intracellular chelator of Ca
2+

 eliminates thrombin-caused astrocytes 

proliferation (Fig. 3.2.4). This implies that thrombin-activated PAR-1 eliciting Ca
2+ 

may also 

contribute to the G1/S transition and therefore result in cell proliferation. 

The PI3K/Akt pathway has been well documented as an eminent signaling pathway, 

which is capable of proceeding cell cycle progression. The PI3K/Akt pathway is believed to 

induce cell cycle progression by stabilizing cyclin D and p21Cip1 to inhibit Cdks. The 

suggested mechanism is that Akt can directly phosphorylate p21Cip1 on S146 to increase its 

stability. Moreover, Akt may prolong the half-life of both p21Cip1 and cyclin D through 

inactivation of GSK-3, which phosphorylates p21Cip1 and cyclin D to induce their 

degradation [150]. Alternatively, the stimulation of PI3K/Akt, in a Ras-dependent or -

independent manner, increases the translation of cyclin D [151]. Here we also found that 

thrombin induces increases of Akt Ser 473 phosphorylation, which needs the transactivation 

of EGF and PDGF receptors (Fig. 3.2.7). Furthermore, thrombin causes the accumulation of 

cyclin D1 in astrocytes in time-dependent way (Fig. 3.2.8a), which is also dependent on the 

phosphorylation status of Akt at Ser 473 (Fig. 3.2.8b). Another observation is that blocking 

PI3K signaling pathway by LY294002, both the phosphorylation of Akt Ser 473 and 

accumulation of cyclin D1 were largely decreased (Fig. 3.2.7 and Fig. 3.2.8b). Further, it was 

found that the level of accumulated cyclin D1 stimulated by thrombin declined by the 

treatment with EGF and PDGF inhibitor (Fig. 3.2.8b). In sum, the data strongly support that 

thrombin induced accumulation of cyclin D1 depends on the activation of Akt Ser 473 which 

leads to accelerated proliferation of astrocytes. 

In the present study, we tried to explore the signaling cascades which are responsible for 

thrombin-induced astrocytes proliferation. It is observed that thrombin caused intracellular 

Ca
2+

 increase, activation of ERK and JNK, phosphorylation of Akt, and accumulation of 

cyclin D1, which contribute to astrocytes proliferation. If the check point of the cell 

proliferation is selected as the accumulation of cyclin D1 which is an important linkage 
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between cell cycle progression and PI3K/Akt signaling cascades, it is possible that 

accumulation of cyclin D1 is the destination of thrombin-activated phosphorylation of ERK, 

JNK and PI3K/Akt. This possibility has been confirmed by Lavoie et al [152]. In their study, 

activation of the Raf/MKK1/p42/p44MAPK cascade was sufficient to fully induce cyclin D1. 

However, the p38 cascade showed an opposite effect on the regulation of cyclin D1 [152]. 

Coincidentally, in our study, thrombin failed to activate the phosphorylation of p38 (Fig. 

3.2.5c). Further, it was demonstrated that blockade of the p38 signaling pathway has no 

obvious inhibitory effects on astrocytes proliferation stimulated by thrombin (Fig. 3.2.6). 

4.2.2 Thrombin-activated ROS stabilizes HIF-1, which might be involved in 

increased glucose uptake to promote astrocytes proliferation 

Indeed, there has been a long-lasting debate about the role of ROS in oxygen sensing. 

The debate mainly focuses on three points: first, whether ROS work as signaling molecules; 

second, whether ROS derived from the mitochondrial respiratory chain could contribute to 

oxygen signaling; and third, whether ROS production is linked to the activity of signaling of 

HIF-1α such as hydroxylases or kinases [153]. Currently, ROS is appreciated as signaling 

molecule to regulate a variety of pathways in physiology, and many reports transduction 

provide evidence to highlight the important role of mitochondrial ROS in mediating signaling 

in a variety of systems [154]. 

It has been proposed that ROS generated from the mitochondrial complex I and complex 

III can stabilize HIF-1 under hypoxia [81]. HIF-1 increases the expression of glucose 

transporters, such as GLUT-1, GLUT-3 and GLUT-4 which are important for the entry of 

glucose into cells. In our present study, with the increase of glucose uptake in astrocytes (Fig. 

3.2.10a), the protein level of HK2 in astrocytes was also upregulated by thrombin after 24 h 

(Fig. 3.2.11a and c), and blockade of HK2 accumulation by Apigenin eliminates astrocytes 

proliferation induced by thrombin (Fig. 3.2.10b). Moreover, it is observed that thrombin 

induced the accumulation of HIF-1α after 24 h (Fig. 3.2.12a). As a result, we speculate that 

HIF-1α may be involved in increasing HK2 to accelerate the utilization of increased glucose 

uptake and to stimulate astrocytes proliferation.  

Since other studies already pointed out that activations of the Ras-MAPK and Akt 

pathways lead to the accumulation of HIF-1α [75, 155], we were wondering whether 

thrombin-triggered ERK, JNK and PI3K/Akt impinge also on the accumulation of HIF-1α. 

From our data, thrombin induced HIF-1α accumulation can be decreased by cotreatment with 

inhibitors of ERK, JNK and PI3K (Fig. 3.2.12a). These data imply that accumulation of HIF-

1α induced by thrombin is dependent on the activation of the ERK, JNK, and PI3K/Akt 
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signaling cascades. Moreover, our data confirmed that inhibition of these pathways 

significantly decreased the proliferation of astrocytes stimulated by thrombin (Fig. 3.2.6 and 

Fig. 3.2.9), indicating that increases of HIF-1α in astrocytes is an important mechanism to 

account for thrombin-induced astrocytes proliferation.  

As mentioned before, thrombin-stabilized HIF-1α may be involved in the increase of 

glucose metabolism through mediating protein level of HK2 in astrocytes. To demonstrate our 

hypothesis, we checked the protein level of HK2 under the inhibitors of ERK, JNK and PI3K 

(Fig. 3.2.12b). Interestingly, thrombin-induced increases of HK2 were attenuated by these 

three signal pathways’ inhibitors, which highly correspond to the level of HIF-1α under these 

inhibitors (Fig. 3.2.12a). In addition, our preliminary data suggested that blockade of 

thrombin-initiated mitochondrial ROS also eliminated the stabilization of HIF-1α. Moreover, 

thrombin-caused mitochondrial ROS can be blocked by the inhibitors of ERK, JNK, and 

PI3K. In conclusion, our data help to depict the following three axes of thrombin-induced 

astrocytes proliferation: (1) ERK, JNK/ROS/HIF-1α/HK2, (2) PI3K/Akt/ROS/HIF-1α/HK2 

and (3) PI3K/Akt/cyclin D1. 

We summarized the signaling pathways triggered by thrombin which are responsible for 

astrocytes proliferation in Fig 4.2.2. 

 

Fig. 4.2.2. Scheme of thrombin-triggered signaling cascades responsible for 

astrocytes proliferation. 

According to Fig. 4.2.2., 1 U/ml of thrombin mainly activates the PAR-1 receptor to 

induce the intracellular Ca
2+ 

increase and activation of ERK, JNK pathways, which 

subsequently stimulated ROS production (Signaling transduction ①). The generated ROS 

stabilized HIF-1α. In addition, thrombin stimulates PI3K/Akt, which contributed to 
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stabilization of HIF-1α (Signaling transduction ②). As a result, HIF-1α accelerated glucose 

uptake in astrocytes, with upregulating HK2. When DPI was used to block the mitochondrial 

ROS production induced by thrombin, there were no changes observed in the phosphorylation 

of ERK, JNK and Akt (Fig. 3.2.13). These results indicate that phosphorylation of ERK, JNK 

and Akt was not triggered by thrombin-induced mitochondrial ROS. To clarify whether 

thrombin-stimulated ERK, JNK and Akt signaling pathways regulate mitochondrial ROS 

production, we measured the ROS level under thrombin in the presence of inhibitors of ERK, 

JNK and Akt. Our preliminary study support that mitochondrial ROS are the downstream 

signaling cascade of ERK and JNK, since inhibitors of these two pathways eliminated the 

increase of ROS production induced by thrombin. However, we did not observe similar 

results when the inhibitor of PI3K was applied. 

These data indicate that ROS was downstream signaling molecule of ERK, JNK, and 

PI3K. The stabilized HIF-1α upregulated HK2 is frequently taken as the hallmark to manifest 

the increased glucose uptake. Data from glucose uptake assay showed that thrombin was able 

to accelerate glucose uptake in astrocytes (Fig. 3.2.10a), demonstrating that the ROS/HIF-

1α/HK2 pathway was responsible for glucose metabolism signaling to regulate astrocytes 

proliferation. 
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4.3 Functional roles of PAR-2 carboxyl tail in regulating receptor’s trafficking and 

intracellular signaling to cell death 

4.3.1 The carboxyl tail of the PAR-2 receptor controls the receptor 

internalization and desensitization 

The role of phosphorylation in desensitization of activated PAR-2 has been documented. 

Activation of PAR-2 was observed to induce a transient and robust increase in 

phosphorylation of wild type PAR-2. However, the mutant receptor, in which all serines and 

threonines in the cytoplasmic tail were modified to alanines (PAR-2 0P) lost the capacity of 

desensitization [90]. The authors concluded that all the PAR-2 phosphorylation sites within 

the cytoplasmic tail are essential for receptor desensitization. However, a discrepancy existed, 

since Stalheim et al. found that a mutant of PAR-2 with the double mutation: S363A/T366A 

showed comparable internalization and desensitization like the wild-type PAR-2 in both 

COS-7 and HeLa cells, implying that these two residues were dispensable for desensitization 

and internalization [156]. This implication can be confirmed by our present study. Our study 

of internalization showed that all the different truncations of PAR-2 receptor except for the 

348-Del were capable of internalization upon trypsin stimulation. Although it was not 

explored whether lack of the different phosphorylation sites has any influence on 

desensitization, our data strongly demonstrate that the short peptide containing 13 amino 

acids in 361-Del in the carboxyl tail of PAR-2 receptor are definitely sufficient for the 

receptor’s internalization (Fig. 3.3.2). Interestingly, in the carboxyl tail of 361-Del, there is 

only one serine phosphorylation site, Ser 349. The expression and internalization assay of 

361-Del highlighted the important role of Ser 349, which might play a key role in maintaining 

PAR-2 receptor localization on the cell membrane and the ability of the receptor to internalize 

upon trypsin stimulation.  

In the current study, the expression of the mutated PAR-2 receptors in HEK-293 cells 

was investigated. On the one side, it is obvious that the mutant 348-Del which is the PAR-2 

receptor truncation lacking the complete carboxyl tail, diffused in the whole cytosol with a 

quite low expression level at the cell membrane (Fig. 3.3.2). This observation was partially in 

accordance with the suggestions of Stalheim’s study, in which the authors found a rather low 

expression level of this mutant in HeLa cells [156], but did not mention whether they failed to 

localize it on the cell membrane or not. Moreover, according to their study, mutant 361-GFP 

also shows relatively low expression on the cell membrane. On the other side, it was shown 

that PAR-2 0P mutant, in which all serines and threonines in the cytoplasmic tail were 

modified to alanines, diffused in the cytosol of the transfected cells [90], which might be 
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attributed to the deficiency of phosphorylation site Ser 349, since mutant 348-Del in our study 

showed the same expression pattern as observed for the PAR-2 0P mutant. However, the 

mutant 361-Del, in which the phosphorylation site Ser 349 was included, was capable to 

internalize and to localize on the cell membrane. As a result, our data highlight that the 

phosphorylation site Ser 349 plays an important role in receptor expression and internalization.  

4.3.2 The carboxyl tail of PAR-2 is responsible for the interaction with multiple 

adaptor proteins to signal transduction 

The most prominent adaptor proteins of activated PAR-2 are β-arrestins. The binding of 

β-arrestin to the activated receptor facilitates signal transduction, which is independent of 

heterotrimeric G protein coupling [157]. Interesting findings show that β-arrestins transiently 

interact with activated PAR-2 independent of the carboxyl tail, which is sufficient to promote 

desensitization and internalization. However, the carboxyl tail is essential for stable PAR2-β-

arrestins interaction and prolonged ERK1/2 activation, but is not essential for rapid β-arrestin 

recruitment nor β-arrestins-dependent receptor desensitization or internalization [156]. 

Although it is still unclear which cluster of the serine/threonines in the carboxyl tail is 

important for the interaction with β-arrestin, our present study confirms that the carboxyl tail 

of PAR-2 is responsible for the transient peak of ERK1/2 activation, since after 30 min of 

stimulation by trypsin, different abilities of PAR-2 truncations coupling to the ERK signal 

were found (Fig. 3.3.4a). As shown in HEK-GFP cells, we can see that 348-Del completely 

lost the capacity to cause the fast phosphorylation of ERK. The ERK phosphorylation signal 

appears in 361-Del, which emphasizes that Ser 349 is also important for initiating ERK 

signaling. Moreover, in the truncation mutants 361-Del, 368-Del, 379-Del, and 386-Del show 

almost the similar level of ERK phosphorylation, which is lower than that in wild type 

receptor. These data point out that the clusters of phosphorylation sites between 387 to 397 

are important to obtain maximum responses of ERK phosphorylation. As to the Akt signaling, 

there were no significant differences as shown in Akt phosphorylation for the different 

mutants. It is obvious to find that the mutants 348-Del, 361-Del, 368-Del, 379-Del have the 

similar level of Akt phosphorylation as compared to that in HEK-GFP cells. However, 386-

Del shows the comparable Akt phosphorylation level as compared to the wild type receptor 

(Fig. 3.3.4b). 

In addition to β-arrestins, it has been investigated in our laboratory that Jun activating 

binding protein-1 (Jab1) binds to PAR-2 to stabilize the complexes of c-Jun or Jun D with the 

transcription factor AP-1 DNA binding sites. The overexpression of Jab1 facilitates the fast 

phosphorylation of c-Jun [92]. These data also delineate that the carboxyl tail of PAR-2 and 
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the intracellular loop 3 are mainly responsible for the interaction with Jab1. The examples 

mentioned above highlight that the carboxyl tail is important for multiple adaptors binding 

and signaling.  

4.3.3 The carboxyl tail of PAR-2 is important for the ERK signal transduction 

which might be responsible for cell survival 

The activation of PAR-2 was demonstrated to couple to multiple heterotrimeric G 

protein subtypes, such as Gαq, Gi, and Gα12/13. In addition, PAR-2 can mediate the signal 

transduction pathways independent from G proteins through interacting with β-arrestins, 

which was well documented by Soh et al. [158].  

The hypothesis of the present study is that the mutant 348-Del will lose the capacity to 

react with PAR-2 agonist. The results shown here support this hypothesis, since the 

phosphorylation of ERK was undetectable in this mutant under trypsin stimulation for 30 min. 

Moreover, in the HEK 293 cells transfected with 348-Del, the long term incubation with the 

specific agonist of PAR-2 did not change the cell’s survival curve (Fig. 3.3.5), which in 

parallel confirmed that this mutant totally lost the typical characterisation of PAR-2 receptor, 

with rather low expression on the cell membrane and distribution among the whole cytosol 

without the obvious biological effects after treatment with PAR-2 agonist such as Ca
2+

 

responses (Fig 3.3.3). In conclusion, the carboxyl tail of PAR-2 maintains the localization of 

the receptor and initiation of intracellular signaling under the challenge with the agonist. 

The long-lasting activation of the PAR-2 receptor promotes proliferation of 

endometriotic stromal cells [159]. However, it is unknown what will happen if the 

overexpressed PAR-2 receptor in cells is activated. Here, we for the first time investigated 

activation of PAR-2 receptor in the mutant-transfected HEK 293 cells. The data manifested 

that without the treatment with PAR-2 agonist, HEK-293 cells transfected with the PAR-2 

truncation mutants showed no differences in cell survival for 24 h culture (Fig. 3.3.5). 

However, when the truncations-transfected HEK-293 cells were treated with PAR-2 agonist 

for 48 h, the proportions of live cells were changed as compared to the unchallenged situation 

(Fig. 3.3.5). The cell survival assay implied that mutants which have the higher responses of 

intracellular signaling have the higher ratio of dead cells when exposed to PAR-2 agonist for 

long time. 

We summarize the possible functions of different clusters of serines and threonines at 

the PAR-2 receptor carboxyl tail in Fig. 4.3.3. 
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Fig. 4.3.3. Functional roles of different serine/threonine clusters at PAR-2 carboxyl tail 

 

The serine 349 is supposed to be important for localizing receptor on cell membrane, 

internalization and signaling to ERK pathway. The clusters of serine/threonine underlined by 

light blue are suggested to be responsible for Ca
2+

 signaling under the high concentration of 

trypsin. The clusters of serine/threonine underlined by blue are important for giving Ca
2+

 

responses under the low concentration of trypsin. Moreover, the serines and threonines 

underlined by green are suggested to account for the Ca
2+

 responses under the very low 

concentration of trypsin. The black underlined phosphorylation sites control the maximum 

ERK phosphorylation upon trypsin challenge. The summarized functions of different 

serine/threonine clusters are also given in Table. 4.3.3. 

Table. 4.3.3. Functional roles of different serine/threonine clusters at PAR-2 

carboxyl tail 

Clusters of Ser/Thr Functional role in intracellular signaling 

Ser 349 Receptor localization, internalization 

Initiation of ERK signaling 

 

Ser364/Thr367 Ca
2+

 responses to high concentration of trypsin 

 

Ser373/Thr375/Ser376 Ca
2+

 responses to low concentration of trypsin 

 

Ser380/Ser383/Ser384/Ser385 Ca
2+

 responses to very low concentration of trypsin 

 

Ser387-390/Thr391/Ser392 

/Thr395/Ser396 

ERK maximum responses 
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4.4 The interaction between αB-crystallin and β-arrestins and the functional roles 

of extracellular and intracellular αB-crystallin on astrocytes 

Previously it was found in our laboratory that overexpressed αA-crystallin in the 

intracellular environment is involved in protection of astrocytes from C2-ceramide- and 

staurosporine-induced cell death [122]. Specific phosphorylation of αA-crystallin at Ser122 

and Ser148, or αB-crystallin at Ser45 and Ser59 are required for the -crystallin-induced 

protection of astrocytes against chemical induced-toxicity [139, 160]. We here investigated 

whether the interaction between αB-crystallin and β-arrestins happened by the activation of 

PAR-2. Our results demonstrated that as the binding proteins of PAR-2 receptor, αB-

crystallin and β-arrestins were capable to interact with each other under the stimulation of 

PAR-2 by trypsin. Previous study confirmed that activation of PAR-2 induced increase of 

phosphorylation of αB-crystallin at Ser 59, which is important for cytoprotective effects 

[123]. In the current study, we found that β-arrestin 1 modulated the phosphorylation of αB-

crystallin at Ser 59 under activation of PAR-2. Specifically, the transient phosphorylation of 

αB-crystallin at Ser 59 was largely decreased upon the stimulation of PAR-2 in β-arrestin 1-

deficient astrocytes (Fig. 3.4.3b). This might explain why we failed to detect the 

cytoprotective effects upon the activation of PAR-2 in β-arrestin 1-deficient astrocytes (Fig. 

3.4.4).  

We further studied whether extracellular application of αB-crystallin protein has 

protective effects on astrocytes. Astrocytes were exposed to serum-free medium in the 

absence or presence of αB-crystallin. As a result, the cells with exogenous αB-crystallin 

treatment showed higher survival (Fig. 3.4.5a).  

α-Crystallin was demonstrated as anti-apoptotic protein that provides protection against a 

wide range of cellular stress in several kinds of cells by binding to the proapoptotic molecules 

p53, Bax and Bcl-X(S), and therefore to block their translocation to mitochondria during 

apoptosis [120, 121]. However, it was not fully understood how the anti-apoptotic functions 

are produced by α-crystallin in the CNS. With the increasing amount of data implicating that 

the apoptosis of astrocytes is also involved in brain injury, the regulation of astrocytes 

apoptosis became an important target in understanding the physiological and pathological 

processes in the CNS.  

To examine if exogenous αB-crystallin has anti-apoptotic effects in astrocytes, different 

concentrations of αB-crystallin were applied in the absence or presence of staurosporine. 

Staurosporine is used to induce apoptosis by activating caspase 3 [161], or inhibiting ERK, 

and Akt kinase activities [162]. In our previous study, we found staurosporine-induced 
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elevation of cleaved caspase 3 through inhibiting Akt phosphorylation in astrocytes [163]. In 

the current study, astrocytes exposed to staurosporine in the absence of αB-crystallin suffered 

from a higher apoptosis with a higher level of cleavage of caspase 3. However, astrocytes co-

treated with 10 µg/ml or 100 µg/ml of the exogenous αB-crystallin and staurosporine were 

observed to have a lower level of cleaved caspase 3 (Fig. 3.4.7a and b). These data 

demonstrate that αB-crystallin potently blocks the apoptosis of astrocytes. 

MAPK were suggested to be involved in the protective processes of αB-crystallin [140, 

141]. In the present study, our data support that αB-crystallin works as signaling ligand to 

trigger the ERK1/2, p38, JNK and Akt signaling cascades to promote the viability of 

astrocytes under the serum-deprived situation (Fig. 3.4.5b). When specific inhibitors were 

used to block these pathways, the protective effects on the survival of astrocytes stimulated by 

αB-crystallin were largely reduced and even abolished (Fig. 3.4.6). In addition to the MAPK 

signaling pathways, the PI3K/Akt/ mTOR might play a pivotal role in astrocytes viability 

activated by αB-crystallin (Fig. 3.4.6). Although MAPK signaling pathways and the PI3K/Akt 

signaling pathway are demonstrated to be important for astrocytes viability under the serum-

free conditions, αB-crystallin rescues astrocytes from staurosporine-induced late apoptosis 

only through the intracellular PI3K/Akt signalling pathway, since αB-crystallin inhibits the 

cleavage of caspase 3, and at the same time induced the enhanced phosphorylation of Akt 

without any effects on ERK phosphorylation (Fig. 3.4.7). Therefore, we summarize the signal 

transduction pathways initiated by αB-crystallin which contribute to the cytoprotection and 

the increased cell viability in Fig. 4.4. 

Fig. 4.4 The cytoprotective and cell survival signaling pathways initiated by αB-

crystallin. 

 

αB-Crystallin has been recently reported to prevent the arrhythmogenic effects of 

particulate matter isolated from ambient air by attenuating ROS generation [164]. The 
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production of ROS by mitochondria is believed to account for the oxidative damage in 

pathology, contributing to retrograde redox signaling from the organelle to the cytosol and 

nucleus. Pre-treatment with α-crystallin has been demonstrated to decrease the level of ROS 

production in astrocytes, hepatocytes and lymphocytes from mice that suffered from the silver 

nitrate-induced inflammation Moreover, αB-Crystallin was reported to prevent the 

arrhythmogenic effect by attenuating ROS generation and CaMKII phosphorylation [165]. 

However, less is known about drugs which can be used to protect brain mitochondria from 

oxidative stimuli. In this study, we found that αB-crystallin inhibits the production of ROS in 

RBM under complex III inhibition by Antimycin A (Fig. 3.4.8), which emphasized the 

important role of αB-crystallin in dealing with oxidative damage in brain. 

The mechanisms of α-crystallin carrying out the antioxidative effects in mitochondria can 

be suggested as follows: α-crystallin as molecular chaperon binds to the outer membrane of 

mitochondria to prevent the damage by oxidative stimuli, and finally reduces the production 

of mitochondrial ROS. Alternatively, the oxidative damage happened prior to the α-crystallin 

binding, and then -crystallin works as the scavenger to clear the excessive ROS released by 

the damaged mitochondria. It is also reasonable to speculate that both of them work 

synergistically to reduce the level of mitochondrial ROS. Further studies should be done to 

investigate the molecular mechanisms of αB-crystallin in inhibiting mitochondrial ROS 

production in RBM to pave the way for pharmaceutical development. 

How does αB-crystallin work like an extracellular signaling ligand? A previous study 

provides a clue to the answer. It was reported that exogenous of αB-crystallin is internalized 

and then protected retinal pigment epithelial cells under oxidative stress [166]. The authors 

observed that the uptake of exogenous αB-crystallin happened in adjacent retinal cells 

providing protection from oxidant stress. To this point, we tried to find out whether B-

crystallin could translocate from extracellular to intracellular environments. Astrocytes were 

incubated with 100 µg/ml of αB-crystallin for 48 h, and then the cells were harvested for 

Western blot. The interesting finding was that a higher level of αB-crystallin could be 

observed than that seen in non-B-crystallin treated astrocytes (data are not shown). It is quite 

possible that the uptake of exogenous αB-crystallin happened in astrocytes. Thus, αB-

crystallin could work like a chaperon molecule or as a signaling ligand to exert the protective 

properties. However, it is quite possible that exogenous αB-crystallin stimulates the 

expression of endogenous αB-crystallin through still unknown mechanisms. As a 

consequence, a tag attached to αB-crystallin protein will be a useful method to monitor 
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whether the trafficking of αB-crystallin from extracellular to intracellular environment really 

happened through tracking the tag.  

In sum, our current study illustrates that exogenous αB-crystallin inhibits the ROS 

production from RBM, suggesting an important role of αB-crystallin in the anti-oxidative 

effect by blocking ROS production in RBM. Moreover, exogenous αB-crystallin protects 

astrocytes from cell death under serum deprivation and different toxic stimuli. The 

mechanisms of the protective process include the stimulation of MAPK signaling pathways 

and PI3K/Akt/mTOR. In addition, the PI3K/Akt signaling pathway was also important for the 

anti-apoptotic effects from exogenous αB-crystallin treatment in astrocytes. Finally, this study 

highlights that the striking functional properties of exogenous αB-crystallin in promoting the 

viability of astrocytes and anti-oxidative effects make it a good candidate to deal with 

degenerative CNS diseases. 
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5 Abstract 

Protease-activated receptors are seven transmembrane-domains G-protein-coupled receptors 

(GPCRs) with four members PAR-1, PAR-2, PAR-3, and PAR-4. Thrombin is the serine protease 

generated from the proenzyme prothrombin, which has been confirmed to cleave PAR-1, PAR-3 or 

PAR-4 in many kinds of cells, while PAR-2 is activated by trypsin. The scaffold proteins β-arrestin 1 

and β-arrestin 2 have been shown to mediate responses of various agonists of GPCRs, including PAR-

1 and PAR-2. B-crystallin, a member of the superfamily of small heat shock proteins was 

demonstrated to interact with only PAR-2 among PARs. The aim of this study was to investigate 

whether activation of PAR will initiate the intracellular signaling transductions to regulate astrocytes 

proliferation and cytoprotection. Moreover, we were interested in how the interaction partners, β-

arrestins and B-crystallin, are involved in the cytoprotective and/or proliferative signaling pathways 

initiated by PAR-1 and PAR-2 stimulation.  

We found that β-arrestin 1 is necessary for astrocytes to resist to staurosporine-induced 

apoptosis. Moreover, β-arrestin 1 is also involved in the thrombin-activated PI3K/Akt signaling 

pathway, which is important for antiapoptotic effects exerted by thrombin. In detail, thrombin rescues 

β-arrestin 1-lacking astrocytes from apoptosis through enhanced increase in Akt (Ser473) 

phosphorylation. β-arrestin 1 inhibits long-term phosphorylation of Akt (Ser 473) that is stimulated by 

thrombin. In addition, we also found that thrombin-induced phosphorylation of Akt (Ser473) is 

increased by transactivation of PDGF receptor and EGF receptor in β-arrestin 1-deficient astrocytes. 

In this study, we clarified whether thrombin-activated PAR-1 will affect the glucose 

metabolism signaling pathways to accelerate the proliferation of astrocytes. In addition, we 

investigated if thrombin has any effects on cell cycle transition to promote astrocytes proliferation. It 

was firstly observed that thrombin activated PAR-1 to induce the increases of intracellular Ca
2+

 and 

ROS production which contribute to the proliferation of astrocytes. We further confirmed that ROS 

stabilized HIF-1. The latter subsequently accelerated glucose uptake in astrocytes. On the other hand, 

we observed that thrombin triggered PI3K/Akt/cyclin D1 signal transduction, which promoted the cell 

cycle transition, contributing to astrocytes proliferation. As a result, three main signaling pathways 

were discovered accounting for cell proliferation induced by thrombin: (1) thrombin-stimulated ERK, 

JNK/ROS/HIF-1α, (2) PI3K/Akt/ROS/HIF-1 pathways increase expression of hexokinase 2 (HK2) 

which mediates glucose metabolism in astrocytes, and (3) thrombin stimulates PAR-

1/PI3K/Akt/cyclin D1 to promote the cell cycle transition and finally to increase cell proliferation.  

We next investigated the functional roles of the phosphorylation sites located in the PAR-2 

carboxyl tail in cellular signaling and cell death. PAR-2 carboxyl tail was suggested to be important 

for the binding of β-arrestin 1 or other adaptor proteins. We generated a series of truncated mutants 

containing different clusters of serine/threonine. Firstly, it was observed that lack of the whole C-

terminus of PAR-2 in the mutated receptor gave a relatively low expression on the cell membrane. 

Secondly, the HEK293 cells expressing these truncation mutants showed deficient capacity in 

coupling to intracellular Ca
2+

 and signaling to ERK but not Akt upon trypsin challenge. Moreover, 

HEK293 cells carrying different PAR-2 truncation mutants displayed the decreased levels of cell 

viability after long-lasting stimulation by trypsin.  

αB-crystallin was found to interact with PAR-2, and activation of PAR-2 resulted in the increase 

in phosphorylation of B-crystallin at Ser45 and Ser59, which played a pivotal role in cytoprotection. 

β-arrestin1/2 were also demonstrated to interact with PAR-2 to regulate the intracellular signaling, 

such as ERK. We studied whether there exits an interaction between αB-crystallin and β-arrestin1/2. 

β-arrestin1/2 colocalized with αB-crystallin detected by microscopy. Further data from co-immuno-

precipitaton supported the hypothesis that these two proteins interact with each other. In addition, 

downregulation of β-arrestin 1 in astrocytes inhibited the transient phosphorylation of αB-crystallin at 

Ser59 stimulated by the PAR-2 agonist. We conclude that the binding of β-arrestin 1 to αB-crystallin 

is important for the phosphorylation of B-crystallin at Ser59. We further demonstrate that extra-

cellular application of αB-crystallin has protective effects preventing cell apoptosis. Exogenous αB-

crystallin improves the viability of astrocytes through MAPK and PI3K/Akt/mTOR signaling path-

ways. In contrast, extracellular application of αB-crystallin exerts antiapoptotic effects through the 

PI3K/Akt signaling pathway. αB-crystallin is also confirmed to block ROS production in isolated 

RBM, emphasizing the potential antioxidative activity exerted, which may also contribute to the 

cytoprotective effects.  
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6 Zusammenfassung 

Die Familie der Protease-aktivierten Rezeptoren zählt zu den heptahelikalen G-Protein-

gekoppelten Rezeptoren (GPCR), welche die vier Mitglieder PAR-1, PAR-2, PAR-3 und 

PAR-4 umfasst. PAR's werden durch proteolytische Spaltung im N-terminalen Bereich 

aktiviert, wodurch ein den Rezeptor aktivierender neuer N-Terminus entsteht. An zahlreichen 

Zelltypen wurde gezeigt, dass die Serinprotease Thrombin, welche aus dem Proenzym 

Prothrombin generiert wird, PAR-1, PAR-3 und PAR-4 spaltet, wohingegen PAR-2 von 

Trypsin aktiviert wird. Die Adapterproteine β-Arrestin 1 und β-Arrestin 2 vermitteln 

Zellantworten auf verschiedenste Agonisten von GPCR's, einschließlich PAR-1 und PAR-2. 

Weiterhin wurde beschrieben, daß αB-Crystallin, ein Mitglied der Familie der kleinen 

Hitzeschock Proteine, spezifisch mit PAR-2, aber nicht mit anderen PAR's, interagiert. Das 

Ziel der vorliegenden Arbeit war es, PAR-abhängige intrazelluläre Signaltransduktionswege 

hinsichtlich der Regulation von Proliferation und Zytoprotektion von Astrozyten zu 

untersuchen. Ferner waren wir an der Rolle der PAR-Interaktionspartner β-Arrestin und αB-

Crystallin in den protektiven und/oder proliferativen Signalwegen interessiert, welche durch 

PAR-1 und PAR-2 Stimulation initiiert werden. 

Wir konnten zeigen, dass β-Arrestin 1 eine protektive Wirkung hinsichtlich 

Staurosporin-induzierter Apoptose in Astrozyten hat. Außerdem ist β-Arrestin 1 im 

Thrombin-aktivierten PI3K/Akt Signalweg involviert, welcher für die von Thrombin 

ausgelösten anti-apoptotischen Funktionen wichtig ist. Im Detail konnten wir zeigen, dass 

Thrombin Astrozyten, welche nicht über β-Arrestin 1 verfügen, vor Apoptose schützt, indem 

es zu einer verstärkten Phosphorylierung von Akt an Serin 473 führt. β-Arrestin 1 inhibiert 

die durch Thrombin stimulierte Langzeit-Phosphorylierung von Akt an Serin 473. Zusätzlich 

konnten wir zeigen, dass die Thrombin-induzierte Phosphorylierung von Akt an Serin 473 

durch die Transaktivierung von PDGF- und EGF-Rezeptoren in β-Arrestin 1-defizienten 

Astrozyten verstärkt wird. 

Thrombin ist bekannt dafür, die Proliferation von Astrozyten zu stimulieren. Wir sind 

hier der Frage nachgegangen, inwieweit die Aktivierung von PAR-1 durch Thrombin mit dem 

Glucose-Metabolismus verknüpfte Signalwege beeinflusst, um damit die Proliferation von 

Astrozyten zu beschleunigen. Zusätzlich haben wir mögliche Einflüsse von Thrombin auf den 

Zellzyklus untersucht, welche die Proliferation von Astrozyten vermitteln könnten. Wir 

konnten zum einen beobachten, dass Thrombin PAR-1 aktiviert und damit einen Anstieg des 

intrazellulären Ca
2+

 sowie die verstärkte ROS-Produktion auslöst, was zur Proliferation der 

Astrozyten beiträgt. Ferner konnten wir bestätigen, dass ROS HIF-1 stabilisierten. Letzteres 
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führte zu einer beschleunigten Glucoseaufnahme in den Astrozyten. Zum anderen konnten wir 

eine Thrombin-induzierte Aktivierung der PI3K/Akt/cyclin D1-Signaltransduktion 

beobachten, was den Zellzyklus-Übergang und damit die Proliferation der Astrozyten 

vermittelte. Es konnten im Rahmen dieser Studie drei hauptsächliche 

Signaltransduktionswege identifiziert werden, die für die Thrombin-induzierte Proliferation 

der Zellen maßgeblich waren: (1) der durch Thrombin stimulierte ERK, JNK/ROS/HIF-1 

Signalweg, (2) die durch den PI3K/Akt/ROS/HIF-1 Signalweg ausgelöste Verstärkung der 

Expression der Hexokinase 2 (HK2), welche den Glucose-Metabolismus in den Astrozyten 

reguliert, und (3) der durch  Thrombin-induzierte PAR-1/PI3K/Akt/cyclin D1 Signalweg, 

welcher einen Zellzyklus-Übergang auslöst und in der Folge zu einer erhöhten 

Zellproliferation führt.  

Des Weiteren haben wir die Funktion der Phosphorylierungsstellen im C-terminalen 

Bereich von PAR-2 hinsichtlich ihrer Rolle in zellulären Signalwegen und Zelltod untersucht. 

Der C-Terminus von PAR-2 wurde mit der Interaktion mit β-Arrestin 1 und anderen 

Adapterproteinen in Verbindung gebracht. Wir haben dazu eine Reihe verkürzter Mutanten 

von PAR-2 erzeugt, welche verschiedene Serin/Threonin-Regionen enthielten. Erstens wurde 

eine relativ schwache Expression des PAR-2 an der Zellmembran beobachtet, wenn der 

gesamte C-Terminus deletiert wurde. Zweitens zeigten Trypsin-behandelte HEK 293-Zellen 

eine defiziente Kopplung an den intrazellulären Ca
2+

- und ERK-Signalweg, aber keine 

Beeinträchtigung des Akt-Signalweges, wenn sie die verkürzten Mutanten exprimierten. 

Außerdem wiesen HEK 293-Zellen mit verschiedenen PAR-2 Mutanten eine verminderte 

Zellviabilität bei Langzeitstimulation mit Trypsin auf.  

B-Crystallin interagiert mit PAR-2 und die Aktivierung von PAR-2 resultiert in der 

Phosphorylierung von B-Crystallin an Serin 45 und 59, was eine ausschlaggebende Rolle für 

die Zellprotektion spielt. Für die Interaktion von β-arrestin1/2 mit dem PAR-2 wurde zudem 

eine Regulation intrazellulärer Signalwege, wie ERK, demonstriert. Wir untersuchten, ob eine 

Interaktion zwischen αB-Crystallin und β-Arrestin1/2 stattfindet. Mittels mikroskopischer 

Untersuchungen konnte eine Co-Lokalisation von β-Arrestin1/2 und αB-Crystallin 

nachgewiesen werden. Co-Immunoprezipitations-Experimente bestätigten die Hypothese daß 

diese beiden Proteine miteinander interagieren. Außerdem hemmte die Herunterregulierung 

von β-Arrestin 1 in Astrozyten die PAR-2-Agonist-stimulierte transiente Phosphorylierung 

von αB-Crystallin an Serin 59. Wir schlussfolgern, dass die Bindung von β-Arrestin 1 an 

αB-Crystallin wichtig für die Phosphorylierung von αB-Crystallin an Serin 59 ist. Des 

Weiteren konnten wir zeigen, dass die extrazelluläre Gabe von B-Crystallin eine protektive, 
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anti-apoptotische Wirkung hat. Exogenes αB-Crystallin verbessert die Viabilität von 

Astrozyten über MAPK und PI3K/Akt/mTOR Signalwege. Im Gegensatz dazu werden die 

anti-apoptotischen Wirkungen von der extrazellulären Applikation von αB-Crystallin über 

den PI3K/Akt Signaltransduktionsweg vermittelt. αB-Crystallin blockiert außerdem die 

Produktion von ROS in isolierten Hirnmitochondrien aus Ratte, was eine potentielle 

anti-oxidative Wirkung hervorhebt, die zu den zytoprotektiven Effekten beitragen kann. 

Zusammenfassend zeigt die vorliegende Arbeit, daß β-arrestin 1 anti-apoptotische Effekte 

vermittelt und an der Regulation der PAR-1/PI3K/Akt Signal-Kaskade beteiligt ist, welche 

eine zentrale Role bei der Zellprotektion spielt. Darüberhinaus, konnte gezeigt werden daß 

verschiedene Serin/Threonin-reiche Regionen im carboxyterminalen Teil von PAR-2 die 

intrazelluläre Ca
2+

 und ERK Signaltransduktion, sowie das Überleben der Zellen 

kontrollieren. αB-Crystallin ist in der Lage die PI3K/Akt und/oder MAPK Signalwege zu 

aktivieren und Astrozyten vor Apoptose zu schützen. 
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8 Abbreviation list 

 
AP activating peptide 

AD Alzheimer's disease 

AMPK Adenosine monophosphate-activated protein kinase 

Akt Protein Kinase B 

APC Activated protein C 

CAMKKb Ca
2+

-dependent kinase kinase b 

Cdks Cyclin D associated kinase 

CINC Cytokine-induced neutrophil chemoattractant 

CNS Central nervous system 

CRYAA A-crystallin 

CRYAB B-crystallin 

COX4i2  Cytochrome c oxidase subunit 4 isform 2 

ECL Extracellular loops 

EGF Epidermal growth factor  

ERK Extracellular signal-regulated kinase 

ET Endothelins 

FCS fetal calf serum 

FGF Fibroblast growth factor 

FITC Fluorescein 

GPCRs G-protein-coupled-receptors 

GRO Growth Related Oncogene 

GLUT-1 Glucose transporter-1 

HA Haemagglutinin epitope 

HIF-1 Hypoxia-inducible factor-1 α 

HK1(2) Hexokinases type 1(2) 

ICL Intracellular loop 

IL interleukin 

Jab1 Jun activation domain-binding protein 1 

JNK c-Jun N-terminal kinase 

LDHA Lactate dehydrogenase A 

MAPK mitogen-activated protein kinases 

MCT4 Monocarboxylate transporter 4 

MEK mitogen-activated and extracellular signal-regulated kinase 

mTOR mammalian target of rapamycin 

MXI Max interactor 

NF-κB nuclear factor κ B 
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OD Optical Density 

PAR protease-activated receptors 

P38 p38 mitogen-activated protein kinases 

PI3K Phosphatidylinositol 3 kinase 

PD Parkinson’s disease 

PDGF platelet-derived growth factor 

PDK Pyruvate dehydrogenase kinase 

PFK Phosphofructokinase 

PGK Phosphoglycerate kinase 

PGI Phosphoglucose isomerase 

PGM, Phosphoglycerate mutase 

PHD Prolyl 4-hydroxylase 

PI Propidium iodide 

PKC Protein kinase C 

PTK Protein tyrosine kinases 

PK Pyruvate kinase 

PFKFB Phosphofructokinase-2/Fructose-2,6-bisphosphatase 

Ras Rat sarcoma member A 

RBM rat brain mitochondria 

RPE Retinal pigment epithelial cells 

ROS reactive oxygen species 

RhoA Ras homolog gene family 

Src steroid receptor coactivator 

siRNA small interfering RNA 

SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

STS staurosporine 

sHSPs small heat shock proteins 

THR Thrombin 

TM Transmembrane  

TPI Triosephosphate 

UVA Ultraviolet A 

VSMC Vascular smooth muscle cells 
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