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Abstract

Ultrashort laser pulses impinging on magnetic materials generate a quenching of the
magnetization on a subpicosecond time scale. To explain this rapid demagnetization
various spin flip and spin transfer mechanisms are discussed in literature.
This work introduces a versatile computational approach to investigate such ultra-

fast magnetization dynamics by tuning the underlying mechanisms. The presented
approach is based on a real-space tight-binding model and includes optical excita-
tion as well as coupling to an external heat bath. The occupation matrix yields the
system’s observables and is evolved in time by the Lindblad equation.
The present study examines factors that promote efficient demagnetization: In

the magnetic/nonmagnetic bilayer systems the demagnetization is dominated by the
spin transport across the interface, while in homogeneous ferromagnetic systems spin
transport from the front to the backside as well as initial disorder of the spin align-
ments yield important contributions to ultrafast demagnetization.

Ein ultrakurzer Laserpuls verursacht in einem magnetischen Material eine Entma-
gnetisierung innerhalb von weniger als einer Pikosekunde. In der Literatur werden
verschieden Spin-Flip und Spin-Transport Mechanismen zur Erklärung dieses Phä-
nomens diskutiert.
In der vorliegenden Arbeit wird ein flexibles Berechnungsverfahren vorgestellt, wel-

ches es ermöglicht diese ultraschnelle Magnetisierungsdynamik durch Manipulation
der zugrundeliegenden Mechanismen zu untersuchen. Dieser Ansatz basiert auf der
Tight-Binding-Methode im Realraum und beinhaltet sowohl optische Anregung als
auch Kopplung an ein externes Wärmebad. Die Besetzungsmatrix enthält die Syste-
mobservablen und wird mithilfe der Lindblad-Gleichung in der Zeit propagiert.
In dieser Arbeit werden verschiedene Einflussfaktoren auf eine ultraschnelle Dema-

gnetisierung herausgearbeitet: In magnetisch-nichtmagnetischen Doppelschichten do-
miniert der Spintransport über die Grenzfläche die Demagnetisierung, wohingegen in
homogenen Ferromagneten Spintransport von der Vorder- zur Rückseite der Probe,
sowie eine Störung der kollinearen Ausrichtung der Spins zu Beginn der Simulation
die Demagnetisierung begünstigen.
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1. Ultrafast magnetization dynamics

In recent years and especially in the last decade huge interest in ultrafast magne-
tization dynamics emerged. A wide palette of experiments was and is performed
on this topic. Likewise, a multitude of explanatory approaches and simulations was
delivered from the theory side. But what is so fascinating about this topic?
Magnetization dynamics is of general interest in information technology because it is
linked to magnetic storage devices. The recording time of such a device is limited by
the time for switching a magnetic subsystem. With magnetic field pulses switching
times in the regime of several hundred picoseconds can be achieved [1]. Applying
novel mechanisms this limit can be reduced only slightly farther until it reaches its
ultimate limit of about 100 ps [2], [3].
Manipulation by optical pulses is a promising new method to overcome this time

limit of magnetic switching. By using an ultrashort laser pulse a demagnetization
can be achieved in less than a picosecond. This was first demonstrated in the famous
experiment by Beaurepaire [4] in 1996. His results caught a lot of attention and lead
to intense research in ultrafast demagnetization.
Just a few works shall be named here to represent the multitude of investigations.

By utilizing ultrashort laser pulses also a reversal of an antiferromagnetic state can
be achieved, as demonstrated by Radu et al. [5]. In ferromagnetic layers, switching
of magnetic order within 7 ps by only one single laser pulse was achieved by Gorchon
et al. in 2017 [6].
The generation of spin currents and spin torques is another promising field of ultra-

fast spin dynamics [7]. To this end magnetic/nonmagnetic bilayers are constructed.
The interface acts as a source of spin current which is then converted into a transver-
sal charge current via the inverse spin Hall effect. The transversal charge current
emits a pulse of terahertz radiation [8]–[10]. This effect facilitates not only the de-
tection of spin currents but is also the foundation for the development of new types
of terahertz emitters [11], [12].
Ultrafast magnetization dynamics are not only interesting with respect to poten-

tial technical applications. They are also a worthwhile topic in order to understand
fundamental physical processes [13]. The label “ultrafast” refers to the subpicosec-
ond time regime. A typical ultrafast laser pulse has a duration from 10 fs up to
100 fs. Those are just slightly longer times than the period of visible light. And
even more important: also microscopic processes and involving quasiparticles hap-
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pen on those timescales. Therefore experiments on ultrafast magnetization dynamics
deliver the necessary time resolution to open up the window towards observing and
distinguishing those microscopic interactions.

Optical excitation and subsequent dynamics of demagnetization and relaxation to-
wards the initial state cover multiple scales in terms of time as well as of space. This
complicates simulations and theoretical models as they often apply only to their indi-
vidual regime of time span and spatial extent. The discussion and understanding of
ultrafast magnetization dynamics has to include different approaches and provides no
simple answers. After a decade of intense research it still remains a highly interesting
topic.
In this work a simulation scheme for the dynamics of heterogeneous systems will

be presented. To this end a real-space tight-binding model will be introduced in
Chapter 2, which includes the coupling to an electromagnetic field as a main ingre-
dient for ultrafast optical excitation. An occupation matrix will be used to track the
system’s temporal evolution.
Chapter 3 deals with the actual time evolution of the occupation matrix. The

Lindblad equation will be derived and adapted to the problem. Furthermore, we will
formulate charge and spin currents within the model.
In Chapter 4 finally the results will be presented.
The remainder of Chapter 1 gives an overview over processes during optical exci-

tation, how they result in ultrafast demagnetization and how they can be simulated
and described theoretically.

1.1. Modelling ultrafast demagnetization

To describe the events during optical excitation, at first we examine the energy
changes in the electronic subsystem. This consideration does not explain the ob-
served phenomena but provides an initial image and overview about laser-induced
changes. A laser pulse excites electrons from lower to higher energy levels according
to selection rules. This excitation process happens as long as the pulse irradiates the
sample - for 10 fs up to 100 fs. Directly during and shortly after the laser excitation
this results in a highly unthermal distribution of the electrons. The demagnetization
sets in as soon as electrons are excited by the laser pulse. It reaches its maximum
between several femtoseconds and about 1 ps after the pulse peak. After laser ex-
citation the excited electrons thermalize towards a high temperature Fermi-Dirac
distribution. Depending on the system this can take from 15 fs up to 150 fs [14]. The
increase of electronic temperature corresponds to the energy transferred from the
laser to the electronic system. By electron-phonon interactions energy is transferred
from the electrons to the lattice. The lattice and the electron temperatures equi-
librate. Subsequently both systems cool down again and the electronic occupation
returns to its initial ambient temperature Fermi-Dirac distribution. During these
events also the lattice is heated up locally before it cools down again together with
the remagnetization of the electronic system. The remagnetization depends on the
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excited material, the applied laser fluence and the electric field but takes at most 1
ns [15].

Pathways of demagnetization

The timescale of demagnetization, setting in directly with the laser pulse, inspires
the question, whether the laser light directly manipulates the electronic spin state.
Indeed, the coupling between electron spin and the magnetic field associated with
the laser pulse is by far too weak to be responsible for just a fraction of the observed
demagnetization (cf. Section 2.2.1). Other pathways have to be responsible for the
angular momentum change during ultrafast demagnetization.
Two main questions arise with respect to the demagnetization and their answers

differ from material to material and also between the different modeling approaches:
Is the demagnetization governed mainly by spin flip or spin transfer processes [16],
[17]? And second, is the quenching of magnetization better described by a reduction
of exchange splitting or by magnon generation [18], [19]? While the first mechanism
belongs to itinerant magnetism, the second one belongs to the localized magnetism
in the Heisenberg picture. In the studied materials itinerant as well as localized mag-
netic moments are present and both mechanisms are not easy to disentangle. In the
context of itinerant magnetism spin flips reduce the magnetization. This quenches
a magnetization dependent exchange splitting, which further reduces the magneti-
zation resulting in a feedback effect [20]. These local spin flips are explained by the
occupation profile after excitation, which enables the impact of spin-orbit coupling.
The spin momentum is thereby transferred to the orbital angular momentum of the
electron. The orbital angular momentum is then ultimately transferred to the lattice
by interaction of electrons with the crystal potential [21]. The spin-orbit coupling is
thus the main ingredient of global demagnetization.
Nevertheless, spatial redistribution and spin transport are discussed as dominant

and fastest processes of local demagnetization. Globally the angular momentum is
quenched more slowly by subsequent spin flip processes. In this context, redistri-
bution means an exchange of angular momentum between neighboring sites with
different spin polarization for example in alloys or at interfaces [22], [23], whereas
spin currents describe this relocation of momentum on a larger length scale. They
are often discussed in connection with spin-flip scattering events in which the spin
momentum is transferred to phonons or magnons [24], [25].
In the Heisenberg picture the magnetic moments are localized. The demagneti-

zation manifests in an enhanced tilting of the moments with respect to the global
magnetization axis. The orientation of localized moments is perturbed either in form
of a collective excitation, a magnon [19], [26]–[28]; or as random spin fluctuations
connected with a breakdown of nearest neighbor spin correlation [21].
This diversity of mechanisms is hard to be united in a single theoretical framework.

Therefore a theoretical model usually concentrates on only some of the mentioned
mechanisms. For example it captures the dynamics of either local processes or spin
currents in a better way. All the more it is important to regard the scope and
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approximations included in the respective approach.

Approaches to model ultrafast magnetization dynamics

The multitude of possible mechanisms of demagnetization complicates the choice of a
theoretical framework and also reversely the applied framework affects the possibility
to observe a certain mechanism.

A descriptive approach is the three-temperature model (3TM). It focuses on the
energy transfer between the subsystems. The 3TM describes the electronic, phononic
and spin system and their interactions by means of temperatures and transfer rates [29].
The 3TM is also used in connection with atomistic spin dynamics simulations. They
describe the dynamics of the spin system via the Landau-Lifshitz-Gilbert equation
and are also used in connection with semiclassical transport equations [28]. With
this method large inhomogeneous systems can be treated and demagnetization rates
can be reproduced very accurately, if realistic approximations of heat transfer rates
calculated from microscopic scattering rates are available. However, the concept of
temperature is highly questionable during excitation and shortly after due to the
nonthermal distribution of electronic occupation. Furthermore both approaches do
not address the microscopic pathways of the angular momentum.
Semiclassical approaches are focused on propagation and scattering by applying

the Boltzmann transport equation [14], [30], a wave-diffusion equation [31] or a su-
perdiffusive transport equation [32], [33]. The dynamics of hot carrier density is used
to calculate spin currents and changes of magnetization. Spin-dependent scattering
rates and spin-dependent reflectivity of the interface is taken into account. There-
fore these methods are suitable for large systems and in materials with a strong
contribution from spin transport to demagnetization. Also interfaces can be treated
realistically. Due to a coarse resolution of the electronic distribution in k-space and
of the optical excitation which is included as an effective source term, these methods
yield only limited microscopic insights.
A microscopically detailed treatment is realized by time-dependent density func-

tional theory [34] and by exact many-body time propagation [21], [35]. Both methods
include the coupling to laser light explicitly, offer insights into microscopic processes
and are almost parameter-free. On the other hand they are computationally demand-
ing and hence limited with respect to accessible system size and time span. Therefore
they are optimal to reproduce local processes in small systems, but less favorable to
simulate extended phenomena like magnons or spin currents.
The method of choice in this work is a real-space tight-binding Hamiltonian. Con-

trary to TDDFT and many-body calculations it is not parameter-free but it offers
insights into microscopic processes as well as the access to spin currents through
inhomogeneous systems composed of up to 100 atoms. With the coupling to an ex-
ternal heat bath relaxation is included into the time evolution of the system, which
can be calculated for up to several picoseconds.
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2. Constructing the system: electronic
structure and density matrix

It is one goal of this work to simulate the time evolution of electrons in a metallic
heterostructure subsequent to manipulation by a laser beam. Due to the optical
excitation the electron system is elevated to a higher energy state, which is displayed
by a change in the electronic structure. Within our model we will not account for the
excited energy levels explicitly but rather track their changes in terms of a modified
occupation of the atomic orbitals (cf. Section 2.2.6). Within the local basis the
occupation translates directly into the physical quantities – magnetization and orbital
occupation. Moreover the occupation matrix enables to include the coupling to an
external heat bath. This allows to simulate the loss of energy and remagnetization
after laser excitation. Taken together there are two main foundations of our model:
The Hamiltonian and the occupation matrix.
We will study the time evolution of the system in terms of its occupation or den-

sity matrix. The propagation in form of a differential equation will be derived in
Chapter 3. But beforehand, within the present chapter, some basic concepts will be
introduced. We will start in Section 2.1 with describing the electronic structure of
the system. In Section 2.2 we will present two different approaches to incorporate the
optical excitation. Finally, the concept of the occupation matrix will be introduced
in Section 2.3.

2.1. A real-space tight-binding approach
In order to characterize the electronic system with its eigenstates and eigenenergies a
real-space tight-binding approach is used. We plan to study magnetization dynamics
in extended real-space clusters composed of various atomic species. Furthermore,
the approach shall enable a flexible geometry of the system, like chains or flakes, and
local inhomogeneities, for example interfaces. Therefore many of the investigated
systems will have at least one open boundary1 and thus a reciprocal space cannot be
defined in the corresponding direction. Quantities will just be discussed concerning
their spatial dependence. That is why the usual formulation of the tight-binding

1In this work an open boundary indicates a material-vacuum border, in analogy to open and closed
circuits.
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Figure 2.1.: Sketch of a cluster for simplicity in two dimensions. A unit cell is spanned
by vectors a1 and a2. In this example three times three unit cells form
a supercell (highlighted in orange). This supercell at R = 0 is repeated
along the directions of periodicity, in the present case just a1.

formalism in reciprocal space is omitted in the following, even though the common
introduction is motivated by facilitating the calculation of wave-vector-dependent
quantities.
The structure of a cluster is sketched in Figure 2.1. The real-space model con-

tains N atoms at positions ri, i = 1, . . . ,N . These atoms are arranged in unit cells,
which form a finite supercell. A unit cell is spanned by the lattice vectors a1, a2
and a3. The supercell has an extent of a specified number of unit cells n1, n2
and n3 along the corresponding lattice vectors. Accordingly the supercell lattice
vectors are n1a1, n2a2 and n3a3. If periodicity is applied along a specific direc-
tion, the whole supercell together with all the atoms is identically repeated along
those supercell vectors. A combination of these new lattice vectors defines the posi-
tion Ri = (i1 ⋅ n1a1, i2 ⋅ n2a2, i3 ⋅ n3a3) of a supercell within the superlattice. If open
boundaries are applied along a specific direction, the respective factors i1, i2 or i3
have to be zero. In most simulations the system is finite at least along one of the
spatial directions. Our calculations apply to the cluster at R = 0, which in general
can also be finite along every direction.
Atomic orbitals φα(r) = φlσ(r − ra) are centered at each site within the system.

The multi-index α = (a, l, σ) comprises their position ra within the supercell, their
spin character σ =↑, ↓ and their orbital index l. The spin quantization axis is aligned
parallel to the z-axis and the orbital index contains information about the geometrical
shape and orientation of the orbital. Within the scope of this work s, p and d orbitals
are included. This sums up to a basis set of Ntot = 18 ⋅N atomic orbitals within the
supercell at R = 0. These atomic orbitals provide an intuitive basis set to express a
wave function of the total system

ψn(r) =
1√
Ñ
∑
Ri

∑
α

cn,α φα(r −Ri) . (2.1)

The normalization condition is ensured by the prefactor if the number of supercells
Ñ goes to infinity in case of periodicity. An electronic state ∣ψn⟩ within the clus-
ter is localized with the weighting factor cn,α in the respective atomic orbital ∣φα⟩.
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The ansatz (2.1) is therefore a linear combination of atomic orbitals (LCAO) and
is based on the assumption of strongly attractive core potentials. This justifies the
use of localized orbitals as an appropriate basis set, which is required to fulfill the
normalization and orthogonality condition

⟨φα,Ri
∣φβ,Rj

⟩ = δα,βδRi,Rj , (2.2)

where ∣φα,Ri⟩ is given by φα(r −Ri) = ⟨r∣φα,Ri⟩.
The number of states in the system coincides with the number of basis orbitals. In

excited systems enough high energy orbitals have to be included into the basis set to
sufficiently represent higher energy states. The wave functions ∣ψn⟩ are the systems’
eigenstates with the corresponding eigenenergy En

Ĥ ∣ψn⟩ = En ∣ψn⟩ . (2.3)

The Hamiltonian
Ĥ = V̂pot +

p̂2

2m
(2.4)

describes an electron with momentum p̂ in a crystal potential V̂pot. Its eigenvalues
are the eigenenergies

En =
1
Ñ
∑
α,β

c∗n,αcn,β ∑
Ri,Rj

⟨φα,Ri
∣Ĥ ∣φβ,Rj

⟩ . (2.5)

Due to the periodicity the summation over Ri yields Ñ identical contributions and
can be omitted. Just the distance vector δR = Ri −Rj is relevant. Hamiltonian and
atomic orbitals are now condensed into the tight-binding matrix elements

HTBα,β = ∑
δR

⟨φα,0∣Ĥ ∣φβ,δR⟩ , α, β ∈ {1, . . . ,Ntot} . (2.6)

The weighting coefficients are combined into a coefficient vector

cn = (cn,α)α=1,...,Ntot . (2.7)

As a consequence of the normalization of the wave functions ∣ψn⟩ and the basis
functions ∣φα,Ri⟩ the set of vectors cn as well has to fulfill the orthogonality and
normalization condition

c†
n ⋅ cm = δn,m and ∑

α

∣cn,α∣2 = 1 for all n,m ∈ {1, . . . ,Ntot}. (2.8)

By using the tight-binding matrix, the equation of energy eigenvalues (2.5) is trans-
formed to

∑
αβ

c∗n,αEncn,β − c∗n,αHTBαβ cn,β = 0 (2.9)

and can finally be mapped to the following matrix eigenvalue problem

HTBcn = Encn . (2.10)
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With the knowledge of the tight-binding matrix HTB this can be solved numerically.
To determine its matrix elements (2.6) is however not a trivial problem. It in-

volves knowledge of the spatial dependence of the atomic orbitals φα(r) to perform
the corresponding integration. Therefore Slater and Koster introduced a method
to decompose the resulting integrals into several constants, the Slater-Koster pa-
rameters [36]. By postulating periodicity and extending the above definitions and
equations to k-space, a tight-binding band structure can be calculated and compared
to an ab initio band structure at selected k-points. The Slater-Koster parameters are
then optimized to minimize the deviation between ab initio and tight-binding energy
eigenvalues at selected k-points.

To reduce the number of necessary parameters several approximations have to be
performed. The first one is to consider only a finite number of atomic orbitals φα, as
has been discussed before. In a next step a cutoff radius is introduced to the range of
interaction. The atomic orbitals are of Slater-type and their radial part ∼ rn−1e−ζr
decays exponentially at long distances [37]. With this also the summands in (2.6)
decay rapidly with increasing distance d = (rb + δR − ra). Therefore the interaction
between far apart orbitals can be neglected. Usually the sum (2.6) is restricted to
include on-site contributions and the interactions between first and second nearest
neighbors. These three types of interaction were also taken into account within this
work.
Now the orbital symmetry will be exploited to further reduce the number of neces-

sary parameters. For this analysis the Hamiltonian Ĥ(r) is decomposed into a sum
of localized atomic potentials. Different scenarios of relative position between the
atomic potential at and orbital centers at ra and rb are distinguished. If all three
are located at the same position the corresponding summand in (2.6) is called an
on-site contribution. Such contributions can be expressed by using merely six on-site
energies Eσs , Eσp and Eσd for each atomic species in the cluster. Interactions between
orbitals of different type α ≠ β at the same position vanish due to orthogonality. In
another configuration both orbitals are centered at different positions but the poten-
tial is located at one of those positions. This is called a two-center integral. The
three-center integral with both orbital centers as well as the potential located at
different positions will be neglected. Also a two-center integral with both orbitals at
the same position but the potential at a different position will be neglected.
The left over type of a two-center integral between orbitals α and β is expressed

in terms of (αβγ), the Slater-Koster parameters [38], [39]. In doing so the integral
is split into different contributions according to the orientation of the overlap region
with respect to the connecting axis d, the distance vector between both orbitals. This
orientation determines the type of the bond γ = {σ,π, δ, . . .}. The orbitals α and β
are construed into their fractions orthogonal and parallel to d. Their orientation in
relation to this axis can be expressed by the direction cosines

k = ex ⋅
d
∣d∣
, l = ey ⋅

d
∣d∣
, m = ez ⋅

d
∣d∣

. (2.11)

Different matrix elements (2.6) can now be expressed by combinations of a relatively
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small set of parameters. For example it is

⟨p↑x∣Ĥ ∣p↑y⟩ = kl(p↑p↑σ) − kl(p↑p↑π) . (2.12)

Tables of those matrix elements in terms of Slater-Koster parameters can be found
in [36], [38], [40].
Collinear ferromagnetic materials are usually simulated by spin-split on-site ener-

gies. In addition we will also use spin-dependent Slater-Koster parameters. In this
way it is possible to simulate not just a rigid energy shift between bands of different
spin character but also different band shapes. Applied to the discussed real-space
model this translates to spin-dependent group velocities.
Up to this point we considered the interaction of both orbitals within the crystal

potential but disregarded any relativistic effects. Spin-orbit coupling (SOC) however
introduces spin-mixing to the system by coupling orbitals of opposite spin charac-
ter and is therefore an essential ingredient for modeling demagnetization. It also
significantly affects the electronic band structure and symmetry of the system. In
Ref. [41] Jaffe and Singh introduced a method to include a spin-orbit coupling cor-
rection to the tight-binding formalism. On this account a term has to be added to
the tight-binding Hamiltonian (2.4)

Ĥtot = Ĥ + ĤSOC . (2.13)

Within the present model only on-site contribution of the SOC will be considered.
Furthermore a centrosymmetric potential is assumed, so that the strength of the
spin-orbit interaction only depends on the relative orientation of spin and orbital
momentum

ĤSOC = λ L̂ ⋅ ŝ . (2.14)

In a simple picture, the SOC arises due to the circular motion of the electron inside
the gradient of the atomic potential. The parameter λ quantifies this interaction and
can be flexibly tuned within this model. Usually it is proportional to the atomic
number and increases rapidly for strongly localized orbitals. Therefore a large SOC
effect is to be expected especially in d orbitals of heavy atoms, like Cu, Co and Pt -
the materials of interest within this work.
The extension of the Hamiltonian yields new matrix elements. In this work all

SOC contributions between orbitals located at different sites will be neglected and
just matrix elements with both orbitals and the potential centered at the same site
will be taken into account. To evaluate the contributions

(HSOC)
α,β

= ⟨φα∣Ĥso∣φβ⟩ , α, β = 1, . . . ,Ntot (2.15)

the respective orbitals are expressed as a sum of spherical harmonics to evaluate the
product L̂ ⋅ ŝ. All relevant matrix elements for p, d and even f orbitals can be found
for example in Ref. [42]. The effect vanishes in case of s orbitals due to their orbital
angular momentum of l = 0.
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The resulting Hamiltonian contains the tight-binding matrix as well as SOC matrix
elements (2.15)

Htot = HTB +HSOC . (2.16)

All matrices are structured with respect to spin and orbital character

Hσσ
′
= ⟨lσ∣Ĥ ∣l′σ′⟩ ∈ C9×9, l, l′ ∈ {s, px, py, pz, dxy, dyz, dzx, dx2−y2 , dz2} (2.17)

H = (H
↑↑ H↑↓
H↓↑ H↓↓) (2.18)

The eigenvalue problem (2.10) is solved for the extended Hamiltonian (2.16) to get
the corresponding eigenvector coefficients.

2.2. Optical excitation
To account for an optical excitation the vector potential A(r, t) is a representation
of the laser light. The electric field associated with the vector potential yields an
additional contribution to the electron’s momentum operator whereas the magnetic
field component interacts with the electron’s spin. An electron exposed to an elec-
tromagnetic field is described by the following time-dependent Hamiltonian [43]2

Ĥ(r, p̂, t) = Vpot(r, (p̂ − eA(r, t))) + (p̂ − eA(r, t))2

2m
− e

m
ŝ ⋅B(r, t) . (2.19)

In a first step we will neglect the last term, the interaction of laser light and spin
momentum. This omission will be justified in the next section. With this simpli-
fication the remainder of the Hamiltonian (2.19) can be expressed in terms of the
unperturbed Hamiltonian

Ĥ0(r, p̂) = Vpot(r, p̂) + p̂2

2m
. (2.20)

It will be the general form of the time-independent Hamiltonian introduced in (2.13)
during the course of this and the following sections. By performing

p̂→ p̂ − eA , (2.21)

the canonical momentum is replaced by the kinetic momentum to account for the
field momentum eA. The time-dependent Hamiltonian emerges now from Ĥ0 by
performing substitution (2.21)

Ĥ(r, p̂, t) = Ĥ0(r, p̂ − eA(t)) = Vpot(r, (p̂ − eA(r, t))) + (p̂ − eA(r, t))2

2m
. (2.22)

This procedure is called minimal coupling [44] or, in the context of a tight-binding
framework, the Peierls substitution [45], [46]. It is the most simple way to couple

2The charge of the electron is e = −∣e0∣.
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an electromagnetic field to charged matter while being gauge invariant. Because
in the following all higher order interactions between electron and electromagnetic
radiation will be neglected, it is indeed a minimal coupling. By omitting the last term
of (2.19) we already neglected all magnetic dipole and multipole transitions and in the
following we will also neglect electric multipole transitions and solely consider electric
dipole transitions. The necessary approximations and premises will be presented in
the following section. The derivations presented therein and in Section 2.2.2 are
mainly guided by Ref. [47] and Ref. [43] but can be found in many textbooks.
We will introduce two different methods to derive the time-dependent perturbed

Hamiltonian (2.22). In the first method the transition from Ĥ0 to Ĥ will be realized
by straightforwardly performing the replacement of momenta (2.21). This method
can be applied in case of a momentum-independent crystal potential Vpot(r). While
in the second approach a unitary transformation will be performed to transform Ĥ0
allowing also for momentum-dependent potentials like in (2.22). But beforehand the
electric dipole approximation will be introduced by some considerations concerning
the vector potential of the laser pulse. In the last part of this section the evaluation of
the optical transition matrix elements within our model system will be demonstrated
and resulting selection rules will be discussed.

2.2.1. The electric dipole approximation

In the following the electric dipole approximation will be derived to express the exci-
tation of the ground state system by the laser pulse. For now we assume monochro-
matic laser light in vacuum with a well-defined frequency ν and the corresponding
radial frequency ω = 2πν. In that case the wave equation for A simplifies to the
Helmholtz equation

∇2A + k2A = 0 . (2.23)

A solution of the Helmholtz equation is a set of plane waves with frequency ω trav-
elling in k-direction. The vector potential can now be written as

A(r, t) = A0ε

2
(ei(k⋅r−ωt+φ) + e−i(k⋅r−ωt+φ)) , (2.24)

with A0 being the amplitude, ε the polarization vector of the laser field and an
arbitrary phase φ. The Coulomb gauge ∇ ⋅ A = 0 yields E = −∂tA. Therewith the
electric field can be written as

E(r, t) = iωA0ε

2
(ei(k⋅r−ωt+φ) − e−i(k⋅r−ωt+φ)) . (2.25)

Its amplitude can be expressed in terms of the amplitude of the vector potential
E0 = iωA0. Similarly the magnetic field is given by B = ∇ × A and its amplitude is
B0 = ikA0. The comparison of magnetic and electric field amplitudes yields B0

E0
= 1
c .

The magnetic field amplitude of the laser light scales with the inverse speed of light
in comparison with the electric field amplitude. Therefore the interaction of laser
light and spin momentum is significantly weaker and is neglected in most simulations
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concerning ultrafast demagnetization. This interaction would allow for a change of
the spin during the optical transition. However, TDDFT calculations that accounted
for a coupling between spin and magnetic field did not show a notable change of the
magnetization dynamics due to the additional term [48]. Neglecting the spin of the
electron in optical excitation is thus the first important simplification on the way to
the electric dipole approximation.

To further simplify the interactions the exponential in (2.24) is expanded to

eik⋅r = 1 + ik ⋅ r +O(k ⋅ r)2 . (2.26)

The argument of the exponential can be estimated by means of the Bohr radius and
the laser wave length

∣k ⋅ r∣ = 2πa0
λ

≪ 1 . (2.27)

Common laser light has a wave length of several hundreds of nm whereas the Bohr
radius is just about 0.05 nm. In other words, the spatial variation of the laser
field can be neglected on the range of an atom. Even throughout the total cluster
within our simulation, which has an extent of less than 10 nm, the laser field can
be treated as homogeneous. Therefore the exponential (2.26) can be truncated after
the first term. As a consequence the interaction between electric field and all higher
multipole moments is neglected. Only a coupling between the electric field and the
electric dipole is considered. In pursuance of this approximation the vector potential
looses its spatial dependence and becomes

A(t) = A0ε cos (ωt + φ) . (2.28)

Now the matrix elements of p̂ ⋅ A, the interaction of the momenta, can be trans-
formed to the electric dipole interaction µ̂ ⋅E = e r̂ ⋅E, as demonstrated later on in
equations (2.33) and (2.34). The resulting electric dipole formulation is eponymous
for the presented approximation. The underlying physical process is the interac-
tion of the laser light with the electric charges within an atom. The light induces a
dipole moment which again interacts with the electric field component of the laser
light. The interacting electric dipole moment has to be generated by the laser light
initially, because any initial permanent electric dipole moment is precluded by the
symmetry of the atomic wavefunctions. Within the electric dipole approximation the
coupling between laser field and higher atomic multipoles is neglected. Therefore the
selection rules derived in Section 2.2.4 are just valid in the context of the presented
approximations.

2.2.2. Minimal coupling by replacement

To derive an expression for the optical perturbation we start with a simplified version
of the time-dependent Hamiltonian (2.22)

Ĥ(t) = V̂pot(r) +
1

2m
(p̂ − eA(t))2 . (2.29)
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The dependence of the crystal potential on momentum is omitted, because it lies
outside the scope of our model. The expansion of the squared term results in a term
that is second-order in the vector potential A. To estimate the impact of this term
we will utilize the amplitudes presented in (2.24) and (2.25). Analyzing the ratio of
momentum and vector potential amplitude yields

eA0
p

≈ eE0a0
h̵ω

. (2.30)

The momentum is estimated based on the ground state of the hydrogen atom as
p = h̵/a0 by means of the Bohr radius a0. The denominator represents the energy
of the laser light, which is usually larger than 1 eV. The numerator depends on the
amplitude of the electric field and can be estimated to about 10−2 eV. In comparison
with the remainder of equation (2.29) the term ∝ e2A2

0 becomes only important for
high laser intensities and in highly excited states with a small energy spacing. Hence
it will be omitted in the rest of this work.
To evaluate the remainder of the squared term in (2.29) the Coulomb gauge again

proves favorable. Since within this gauge momentum operator p̂ and vector potential
A commute and the mixed terms can be merged. The resulting expression for the
time-dependent Hamiltonian is the sum of the ground state Hamiltonian Ĥ0 (2.16)
and a time-dependent perturbative term ĤL(t)

Ĥ(r, t) = V̂pot(r) +
p̂2

2m
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ĥ0

+ −p̂ ⋅ eA(t)
m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ĤL(t)

. (2.31)

At this point we apply the result of the electric dipole approximation (2.28) and the
matrix elements of the time-dependent term in (2.31) accordingly simplify to

⟨ψf ∣ĤL(t)∣ψi⟩ = ⟨ψf ∣p̂∣ψi⟩ ⋅ ε
−eA0
m

cos (ωt + φ) . (2.32)

They describe a transition from an initial state ψi to a final state ψf in consequence
of the optical excitation. With the aid of the Heisenberg equation the momentum
operator can be rewritten as

p̂ =mdr̂
dt

= im
h̵

[H0, r̂] (2.33)

to evaluate its matrix elements

⟨ψf ∣p̂∣ψi⟩ =
im
h̵

(Ef − Ei) ⟨ψf ∣̂r∣ψi⟩ . (2.34)

The energy spacing defines the transition frequency ωfi =(Ef − Ei)/h̵ between initial
and final orbital. With this the matrix elements of the laser perturbation (2.32) are
reformulated

⟨ψf ∣ĤL(t)∣ψi⟩ = −e
ωfi

ω
⟨ψf ∣E ⋅ r̂∣ψi⟩ cos(ωt + φ) = −

ωfi

ω
⟨ψf ∣V̂ (t)∣ψi⟩ . (2.35)
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2.2.3. Minimal coupling by unitary transformation

The transition from an unperturbed Hamiltonian to the expression (2.22) involving
the vector potential can also be realized by a unitary transformation. The corre-
sponding procedure is presented and carried out in [49] and will be introduced in the
following. In contrast to the previous approach this second approach can be applied
to a more general Hamiltonian. Although this property is not needed for our model,
the following transformation will also be accurate for a non-local or momentum de-
pendent potential. We will thus obtain a more general expression of coupling between
electrons and electromagnetic radiation.

The time-dependent Hamiltonian is generated by performing a unitary transfor-
mation

Ĥ(r̂, p̂ − eA(t)) = Û(r̂, t)Ĥ0(r̂, p̂)Û †(r̂, t) . (2.36)

To determine an appropriate unitary matrix Û(r̂, t), we use the relation

g(r̂, p̂ − h̵∂f(r̂)
∂r̂

) = eif(r̂)g(r̂, p̂)e−if(r̂) (2.37)

which can be proven by means of the commutation relation between the conjugate
variables r̂ and p̂. To adapt this relation to the left-hand side of equation (2.36), we
choose

f(r̂) = e

h̵
χ(r̂, t) , (2.38)

where χ(r̂, t) is a scalar function that fulfills ∇χ(r̂, t) = A(t). This can be realized
for example by

χ(r̂, t) = A(t) ⋅ r̂ . (2.39)

By establishing this definition we assumed the vector potential to be spatially con-
stant, which is synonymous to the electric dipole approximation. The interaction of
the electrons with the magnetic field of the laser light was already neglected before.
By combining definitions (2.37), (2.38) and (2.39), we identify the unitary matrix

Û(r̂, t) = e
ie
h̵
χ(r̂,t) (2.40)

to perform the transformation (2.36). The unitary transformation can be explicitly
calculated by using the operator property [50]

eλBÂe−λB = Â + λ[B̂, Â] + λ
2

2!
[B̂, [B̂, Â]] + . . . , (2.41)

with the scalar factor λ and the operators Â and B̂ as Ĥ0 and χ as defined in
(2.39). Obviously this expression also includes all terms of higher order with respect
to the perturbative field A(t). If only terms linear in A(t) are considered, the time-
dependent Hamiltonian is given by

Ĥ(t) = Ĥ0 +
ie
h̵
[χ(r̂, t), Ĥ0] = Ĥ0 +

ie
h̵
[r̂ ⋅A(t), Ĥ0] . (2.42)
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As performed in the previous section, the amplitude of the vector potential can be
expressed by the electric field amplitude to calculate the matrix elements

Ĥ(t)mn = (Ĥ0)mn + cos(ωt + φ)eE0
ωh̵
∑
l

((r̂ ⋅ ε)ml(Ĥ0)ln − (Ĥ0)ml(r̂ ⋅ ε)ln) . (2.43)

Using the transition matrix elements V̂ab between states a and b as defined in (2.35),
we get

Ĥ(t)mn = (Ĥ0)mn +∑
n

((V̂ (t))ml
(Ĥ0)ln
h̵ω

− (Ĥ0)ml
h̵ω

(V̂ (t))ln) . (2.44)

Similar to (2.31) the time-dependent Hamiltonian is a sum of the equilibrium Hamil-
tonian and a term representing the optical excitation. However, in contrast to (2.31)
the time-dependent excitation matrix V̂ (t) is not just added to Ĥ0 but the equi-
librium Hamiltonian itself enters the excitation term in form of a commutator with
V̂ (t).

2.2.4. The transition matrix elements

The results of both approaches, 2.2.2 and 2.2.3, involve as essential ingredient (2.35),
the time-dependent perturbation V̂ (t) = eE(t) ⋅ r̂. Its matrix elements embody the
geometric configuration of the electric field’s polarization vector and the position
operator. Given a specific polarization of laser light they characterize the possibility
of a transition between initial and final orbital. The strength of interaction induced
by the laser pulse depends on its polarization and its orientation towards the orbitals
within the sample. But it also depends on the azimuthal and magnetic quantum
numbers of the interacting orbitals.
The laser pulse impinges upon the sample at the polar angle θph with respect to

the z-axis and the azimuthal angle φph with respect to the x-axis. The corresponding
electric field is divided into its components parallel and perpendicular to the plane of
incidence. This plane is defined by the direction of incidence and the surface normal,
which is assumed parallel to the z-axis in the following

E(t) = E∥(t) +E⊥(t) = E∥(t)
⎛
⎜
⎝

− cosφph cos θph
− sinφph cos θph

sin θph

⎞
⎟
⎠
+E⊥(t)

⎛
⎜
⎝

− sinφph
− cosφph

0

⎞
⎟
⎠
. (2.45)

To model elliptically and circularly polarized light it is necessary to introduce a phase
shift between the two orthogonal contributions of the electrical field. For the sake
of flexibility in our code each component E∥ and E⊥ is modeled with its individual
phase shift φ∥ and φ⊥

E◇(t) = E◇ cos(ωt + φ◇), ◇ =∥,⊥ . (2.46)

We will omit the time dependence during the following derivation for clarity of no-
tation. In the end it will be retrieved as a scalar factor for each component of the
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electric field individually. However, for now the time dependence is irrelevant to
predict the existence of specific optical transitions.

Based on the geometric decomposition of the electric field, also the transition
matrix (2.35) is split into different contributions

V̂
∥
fi = e ⟨ψf ∣E ⋅ r̂∣ψi⟩z + e ⟨ψf ∣E ⋅ r̂∣ψi⟩∥ and V̂ ⊥fi = e ⟨ψf ∣E ⋅ r̂∣ψi⟩⊥ . (2.47)

The position vector r̂ is expressed in spherical coordinates with the radial distance r
and the solid angle Ω = (θ, φ). With this the contributions (2.47) to the electric
dipole operator can also be expressed in terms of spherical harmonics [51]

⟨ψf ∣E ⋅ r̂∣ψi⟩⊥ =
iE⊥√

2

√
4π
3

⟨ψf ∣r̂ (eiφphY −1
1 (Ω) + e−iφphY 1

1 (Ω))∣ψi⟩

⟨ψf ∣E ⋅ r̂∣ψi⟩∥ = cos θph
E∥√

2

√
4π
3

⟨ψf ∣r̂ (eiφphY −1
1 (Ω) − e−iφphY 1

1 (Ω))∣ψi⟩

⟨ψf ∣E ⋅ r̂∣ψi⟩z = − sin θphE∥

√
4π
3

⟨ψf ∣r̂Y 0
1 (Ω)∣ψi⟩ .

(2.48)

In the same way the initial and final orbital are described as a product of radial
function and spherical harmonics

ψi(r) = ϕi(r)Y m
l (Ω) and ψf(r) = ϕf(r)Y o

n (Ω) . (2.49)

The integration embodied within the matrix elements is divided into a radial inte-
gration and an integration over the solid angle Ω. The former one leads to the radial
matrix element

Rfi =
√

4π
3 ∫

ϕ∗f(r)r
3ϕi(r)dr . (2.50)

It measures the overlap and with it also the probability of a transition between the
interacting orbitals. The spherical integration on the other hand yields the Gaunt
coefficients [52], [53]

Cojmnil = ∫ Y o
n
∗(Ω)Y j

i (Ω)Y m
l (Ω)dΩ . (2.51)

The indices n and o refer to the azimuthal and magnetic quantum number of the
final orbital, while l and m refer to the corresponding quantum numbers of the initial
orbital, as introduced in (2.49). The orientation of the position vector is described
by the indices i = 1 and j = 0,−1,1. Now the components of (2.47) can be expressed
as

⟨ψf ∣E ⋅ r̂∣ψi⟩z = −E∥ sin θphRfiCo0mn1l , (2.52)

⟨ψf ∣E ⋅ r̂∣ψi⟩∥ =
1√
2
E∥ cos θphRfi [−eiφphCo1mn1l + e−iφphCo−1m

n1l ] and (2.53)

⟨ψf ∣E ⋅ r̂∣ψi⟩⊥ = −
i√
2
E⊥Rfi [eiφphCo1mn1l + e−iφphCo−1m

n1l ] . (2.54)
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The resulting perturbation matrices V̂ ∥ and V̂ ⊥ are Hermitian. This property extends
to the time-dependent Hamiltonian Ĥ(t) and guarantees a unitary time evolution.
The symmetry of the integrands represented by the matrix elements (2.47) implies

several selection rules [43]. If an integrand exhibits odd symmetry with respect to
the position vector the integration yields zero and the corresponding transition does
not occur. In the scope of the respective approximation it is then called a forbidden
transition.
The presented electric dipole approximation yields the following selection rules:

n = l ± 1 and o = m,m ± 1. The azimuthal quantum number has to change with
∆l = lf − li = ±1. Possible transitions within our model are therefore just between
orbitals s↔ p and between orbitals p↔ d. The magnetic quantum number however
does not have to change. Within our simulation we did not consider the influence of
the magnetic field associated with the laser light. Therefore the spin quantum number
does not change ∆s = sf − si = 0 and transitions only happen between orbitals with
the same spin. In view of the desired application of our model it is important to keep
in mind that the simulated change of magnetization will never happen as a direct
result of the optical excitation, because the laser light itself leaves the electronic spin
unchanged. It can however induce a spin polarization in connection with spin-orbit
coupling introduced spin-mixing.
If terms of higher order in the perturbation A are taken into account, also so-called

forbidden transitions can occur. For instance the sets of quadrupole and octupole
selection rules can be found in common literature. Yet transitions generated by the
coupling of the laser field to a higher order multipole take place with a much lower
transition rate and would barely change the results.

2.2.5. A finite pulse

To meet the conditions of a real experiment a laser pulse has to be simulated. On that
account we have to include its finite temporal duration into the model. In evolve
the laser beam can be described using a Gaussian or a Lorentzian envelope function,

λ(t) = exp(−2(t − t0)2

τ2 ) or λ(t) = (τ/2)2

(t − t0)2 + (τ/2)2 . (2.55)

The envelope function determines the peak time t0 and duration of the laser pulse.
It reaches its maximum E0 at t0 and has a width of τ at half maximum. This
envelope function was not taken into account in the course of the above derivations.
Nevertheless these derivations still hold if the pulse width is not too short compared
to the laser frequency (cf. Sec. A.1 in the appendix). The perturbation matrix as
defined in equation (2.35) is now replaced by

V̂ (t) = [(V̂ ∥ ⋅ cos(ω(t − t0) + φ∥)) + (V̂ ⊥ ⋅ cos (ω(t − t0) + φ⊥))] ⋅ λ(t) . (2.56)

V̂ ◇ are the time-independent components of the interaction matrix as defined in (2.47).
Parallel and transversal components are each multiplied by a time dependence with
individual phase shifts according to the polarization of the laser light (2.46).
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A continuous wave laser is assumed to emit an electromagnetic wave of infinite
temporal duration. It exhibits just a single frequency defined by the photon energy

Eph = hν . (2.57)

In order to achieve an excitation the transition frequency ωfi, determined by the level
spacing, has to coincide with the laser frequency ω. In case of our model with discrete
energy eigenvalues a sharply defined excitation frequency would almost surely not
match with an energy spacing and therefore not yield any excitation. However, in
case of a laser pulse with a finite temporal duration ν = ω/2π is the carrier frequency
of a broader frequency spectrum. Long pulses exhibit a very sharp peak at the well
defined carrier frequency ν. In case of ultrashort laser pulses the pulse duration can
be equivalent to only just about 4 optical cycles. This leads to a relatively broad
range of frequencies around the primary frequency. Spectral width ∆ν and temporal
width τ are connected by the Fourier transform. The spectral width is not just
determined by the pulse length but also by the shape of the laser pulse. In case of a
Gaussian pulse the product of temporal and spectral width is limited by [54]

∆ν ⋅ τ ≥ 0.44 . (2.58)

For example a pulse with a duration of only τ = 10 fs exhibits a spectral width of
more than ∆ν = 44 THz, whereas a pulse width of 100 fs yields a spectral width of
only ∆ν = 4.4 THz. This are 10 % in contrast to 1 % compared to a carrier frequency
of ν = 400 THz.

2.2.6. A comment on basis sets

By defining a time-dependent Hamiltonian we also introduced a set of time-dependent
eigenenergies. However, we are not primarily interested in these eigenenergies’ time
evolution but foremost in the time evolution of the corresponding eigenstates’ occupa-
tion numbers. The occupation is expressed in terms of a density matrix as explained
in Section 2.3. To calculate its time evolution and relevant observables the density
matrix has to be expressed in terms of a basis set. For this purpose in principle any
basis set can be used. In the following lines the choice of the equilibrium eigenbasis
shall be discussed.

As described in the preceding sections in equations (2.31) and (2.44) the laser ex-
citation is added to the ground state Hamiltonian in form of a perturbative term re-
sulting in a time-dependent Hamiltonian Ĥ(t). Nevertheless the ground state Hamil-
tonian Ĥ0 as introduced in Section 2.1 defines the equilibrium basis set, that will be
used to perform the time propagation as presented in Chapter 3. The excitation
terms in (2.31) and (2.44) containing V̂ (t) will merely be treated as a perturba-
tion that is added to the ground state Hamiltonian. Alternatively for every time
step the newly defined and fast oscillating eigenlevels of Ĥ(t) have to be calculated
and therewith also in every time step the change of the basis set becomes necessary.
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Figure 2.2.: Transient eigenenergies of a 4 four-atomic system with s and p levels
located at each site.

Instead of accounting for the change of level energies it is computationally more effi-
cient to represent the changing occupation matrix in terms of the fixed equilibrium
eigenstates.
This approach is appropriate as long as the transient basis set can be adequately

represented by the fixed basis set. The unperturbed eigenlevels have to cover an en-
ergy range sufficiently broad to describe also the transient states excited by the laser
pulse. The approach fails if the perturbation is so strong, that extremely high ener-
gies become populated, which are badly represented by the ground state eigenbasis.
This is however a general issue if a finite basis is applied to describe a system. Fur-
thermore, the chosen approach overlooks effects that go beyond simple shifts of the
energy levels. On top of those shifts the optical excitation can also change essential
features of the band structure, like band crossings and band gaps. The closing of a
band gap for example is crucial for an insulator-metal transition. Since no insulators
but metals shall be simulated, luckily this effect is of minor importance in case of the
presented model system.
To justify the chosen approach the modification of the electronic structure by the

electric field of the laser pulse shall be estimated. Dependent on the strength of the
laser field the time-dependent eigenenergies can differ distinctly from the unperturbed
band structure. The optical excitation manifests in form of shifted and oscillating
eigenenergies synchronous with the applied laser pulse. This effect is illustrated
in Figure 2.2 on a system similar to those investigated in Section 4.2.1. Also all
excitation parameters, like pulse length and strength, were adopted from this section.
However, for reasons of clarity and comprehensibility d orbitals were omitted and just
four sites with s and p orbitals were taken into account. Since the d levels are located
in a narrow central energy window the overall energy range does not change. In this
way the extent of excitation and perturbation on the eigenlevels can still be estimated
also for larger systems. The perturbations of the eigenenergies due to the optical
excitation are clearly visible. But the modified eigenenergies do not significantly
exceed the range of ground state eigenenergies. Therefore the equilibrium basis set
proves applicable to also express excited energy states.

19



From an experimental point of view the transient band structure is represented
by a series of time-resolved photoemission spectra which exhibit intensity changes.
These changes can be attributed to either the changes of electronic structure or to
shifts of the spectral weight - which means to the change in occupation probabilities
of the energy levels. Both approaches are not mutually exclusive but complemen-
tary. By using a density operator approach we describe the effects of excitation by
changing occupation within the fixed ground state eigenlevels which yields an easier
interpretation.
While the time propagation of the system is performed in terms of the equilibrium

eigenstates we switch back to the basis of local atomic orbitals to express and calculate
the system observables. This basis set is favourable to account for local differences
which will be of paramount importance in magnetic/nonmagnetic interface systems
as investigated in Section 4.2. All relevant system properties such as changes of
occupation and magnetization are therefore calculated in terms of the local atomic
basis.
As explained above we are interested in the occupation numbers to perform the

time evolution. Therefore in the next section the concept of a density matrix will be
introduced.

2.3. Effective single-particle density matrix
Throughout the following section the properties of the density operator will be dis-
cussed. The density matrix is its representation in a certain basis set. Although
strictly speaking the former one describes a quantum mechanical operator and the
latter one its specific matrix representation, mostly the designation density matrix
will be used synonymously for both objects. Again this topic is covered in many
textbooks like [55], [56], but an extensive pedagogical introduction to density ma-
trices especially if in contact with an external bath can be found in the book by
Schlosshauer [57].
Up to this point the Hamiltonian of the system was introduced. Each eigenstate

of the Hamiltonian represents a specific wavefunction which encodes information
like corresponding eigenenergy, spin polarization and localization. Usually such a
wavefunction is used to calculate all information that is available about a quantum
system. By using a density matrix though the handling of the wavefunction can be
avoided. The density matrix is a more general concept to represent information about
the system. It comprises all the information that is contained in the wavefunctions of
the system but in addition also provides probabilistic information about all possible
outcomes of measuring an ensemble of identically prepared systems.
A density matrix is advantageous compared to a wavefunction because it can ex-

press a lack of knowledge about the system. If the system can be represented by a
single wave function it is in a so-called pure state. Sometimes however we cannot
find a single wave function to represent the quantum state of the system because
there is no complete knowledge about it. In such situations the system is in a mixed
state and has to be represented by a density matrix. Mixed quantum states can arise
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firstly due to lack of information about the preparation of the system. Actually the
system is in a pure quantum state, but to the observer it is not known in which.
All possible outcomes of a measurement are then described by a statistical ensemble.
The density matrix contains the information about this set of pure states and their
corresponding probabilities. Secondly, mixed quantum states can describe a situation
of entanglement with an external system. A density matrix that only characterizes a
subsystem of a composite system is called a reduced density matrix and is associated
with a loss of knowledge. This is because information about the interaction with
the external system is missing within the reduced density matrix and therefore it
describes a mixed quantum state. Such a situation is called an improper mixture
because the total system could indeed be in a pure quantum state.
The scenario of a reduced density matrix is of importance to describe dynamics

with relaxation due to coupling to an external reservoir. Exactly this is the scenario
that shall be implemented in our model. Therefore open quantum systems and their
time evolution will be further expanded upon in Section 2.3.1 and the following
Chapter 3.
These two distinct approaches also historically motivated the introduction of the

concept of a density matrix. On the one hand, as evident by the name, the density
matrix is considered in analogy to a probability density function to describe statistical
ensembles as proposed by Wigner [58] in 1932. But already in 1927 von Neumann
introduced the concept of a density matrix in order to describe the statistical aspects
of quantum mechanics [59]. On the other hand Landau introduced a density matrix
to describe mixed quantum states in a subsystem of a larger system [60].
To summarize, wavefunctions can just express pure quantum states whereas density

matrices can express mixed quantum states like in a statistical ensemble. Instead of
assigning a single particular state to the system, a density matrix describes a system
that can be found in different pure states with corresponding different probabilities.
Within the present work the density matrix is needed to describe mixed quantum
states due to the coupling to an external bath and to perform the corresponding time
evolution by means of a master equation.
To finally give a formal definition, let H be a Hilbert space. A density operator

describes the probability to measure the system in different states ∣Ψi⟩ ∈ H in terms
of the tensor product

ρ̂ = ∑
ij

∣Ψi⟩ρij ⟨Ψj ∣ . (2.59)

Just like the wave function, the density matrix can be used to calculate the expecta-
tion value of a system’s observable

⟨Â⟩
ρ̂
= tr (ρ̂Â) = ∑

ki

ρkiAik , (2.60)

with Aik = ⟨Ψi∣Â∣Ψk⟩ being the observable’s matrix elements. To describe an actual
physical system a density operator ρ̂ has to comply with several requirements. ρ(H),
the space of such density operators on the Hilbert space H, is a convex set of linear
operators on H and all its elements are
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• positive,

• of trace 1

• and as a consequence also Hermitian.

The first requirement ensures, that for no state ∣Ψ⟩ ∈ H the expectation value of ρ̂
can be negative:

ρ̂ ≥ 0 if ⟨Ψ∣ρ̂∣Ψ⟩ ≥ 0 for all ∣Ψ⟩ ∈ H . (2.61)

This is equivalent to constrain the probability to measure a specific state to never be
less than zero. This condition ensures the physicality of the corresponding occupation
number and of the associated measurement’s outcome. The second requirement
concerns the trace of the density matrix. With its diagonal elements regarded as
a probability to measure the corresponding state, this second requirement sets the
total probability to measure any state to one, fulfilling a basic principle of probability
theory and quantum physics. Finally the Hermiticity, as general property of any
physical observable, is simply a consequence of points one and two.
Another consequence of these attributes is the condition

P(ρ̂) = tr ρ̂2 ≤ 1 . (2.62)

This quantity is called the purity of the density matrix ρ and measures the very same
on a scale between 1

d and 1. The lower boundary is determined by the dimension
d of the Hilbert space. It corresponds to a density matrix of minimal purity and a
maximal degree of mixedness and is achieved if every state is equally probable. In
case of a pure quantum state it is ρ̂2 = ρ̂ and expression (2.62) holds with equality.
Moreover, the density matrix of a pure quantum state has rank one – the system is
characterized by one single wave function. Whereas the density matrix of a mixed
quantum state has to be described by at least two wave functions and has a rank
greater than one. At least two of its eigenvalues are nonzero. Independent of the
basis set the trace in equation (2.62) is strictly smaller than one in case of a mixed
quantum state.
Let’s for the moment restrict to a so-called single-electron density matrix to discuss

the meaning of its matrix elements ρij = ⟨Ψi∣ρ̂∣Ψj⟩. A diagonal element ρii of this
density matrix represents the occupation of the corresponding state ∣Ψi⟩. Therefore,
a diagonal element of this density matrix describes the probability to find the electron
in a specific state. In contrary, the offdiagonal elements are not directly related to
physical observables. They are called coherence or interference terms and are far
more elusive. The element ρij , i ≠ j for example describes a coherent superposition
of states ∣Ψi⟩ and ∣Ψj⟩. As ρ̂ is Hermitian, there is always a basis set in which it
takes the diagonal form. The existence of coherences therefore also depends on the
representing basis set, what makes them even more difficult to comprehend. For
example

(ρ̂)σ̂z = (1 0
0 0) and (ρ̂)σ̂x =

1
2
(1 1

1 1) (2.63)
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are both density matrices representing a spin-up state with respect to the z-axis, first
in terms of eigenstates of σ̂z and second in terms of eigenstates of σ̂x. Within the
second density matrix (ρ̂)σ̂x , the offdiagonal elements describe a coherent superposi-
tion of spin-up and spin-down states with respect to the x-axis. This is necessary to
represent a spin-up state with respect to the z-axis within this basis set. At this point
it is important to distinguish between mixed and superimposed states. Likewise the
existence of coherences does not permit conclusions about the degree of mixedness.
Despite the presence of offdiagonal elements in (ρ̂)σ̂x both density matrices embody
the same pure quantum state.
In Section 2.1 it was demonstrated how to calculate the electronic structure of a

realistic material by means of a tight-binding model. Now we seek to simulate the
occupation within this structure using a suitable realistic number of valence elec-
trons. The goal is therefore to simulate not just one but Ne electrons, according to
the chosen material. A system of Ne electrons is described by the many-body wave
function Ψ(x1, x2, . . . , xNe). The coordinate xi represents the ith electron. In the
context of many-body theory it is often used to comprise for example spatial and
spin coordinates. Already with a discrete basis of M atomic orbitals instead of the
continuous coordinates xi the many-body wave function as well as the correspond-
ing many-body density matrix are enormously large objects of dimensions MNe and
(MNe)2, respectively. Accordingly the solution of the corresponding master equa-
tion is a big computational problem which scales exponentially with the number of
electrons.

If the Hamiltonian just contains single-particle or two-particle operators it is possi-
ble to reduce the problem tremendously since all electrons in the system are identical.
If for the moment the exchange interaction is neglected, then the many-body Hamil-
tonian can be decomposed into Ne times the same single-particle Hamiltonian Ĥ(1),
each describing one separate non-interacting electron. The energy of the system can
now be calculated as the sum of Ne identical one-particle energies

E = ⟨ĤMB⟩
ρ̂MB = Ne ⟨Ĥ(1)⟩

ρ̂(1)
. (2.64)

The corresponding expectation value is calculated by means of the one-particle den-
sity matrix ρ̂(1). This mean-field-like approximation is comparable to the approach
suggested by Pershin et al. [61]. However, they map the many-body problem to
Ne different single-electron problems each with its own density matrix and Lindblad
operator.
Similarly the one-particle density matrix can be extracted from the many-body

density matrix since all electrons are identical. According to the Pauli principle
the many-body wave function only changes sign if the positions of two electrons are
swapped. Therefore in case of non-interacting electrons it is possible to reduce the
problem by integrating over the redundant degrees of freedom

ρ̂(1)(x,x′) = ∫ Ψ∗(x′, x2, . . . , xNe)Ψ(x,x2, . . . , xNe)dx2 . . .dxNe

= ∫ ρ̂MB(x′, x2, . . . , xNe ;x,x2, . . . , xNe)dx2 . . .dxNe .
(2.65)
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In case of the discrete basis set of atomic tight-binding orbitals introduced before the
integration of the many-body density matrix (2.65) takes the form of a summation

(ρ̂(1))
mn

= ∑
k

ρMB
mk,nk . (2.66)

Indices m and n refer to the first electron, while the multi-index k comprises the
degrees of freedom of all other electrons. Equations (2.65) and (2.66) are equivalent
to perform a partial trace over all electron coordinates but one. Together with
the Hamiltonian Ĥ(1), which is equivalent to the tight-binding Hamiltonian (2.16),
the many-body problem can now be reduced to Ne times a single-electron problem.
These Ne single-electron density matrices behave completely identical and thus can
be summed up to

P̂ = Ne ρ̂
(1) . (2.67)

We will call this object the occupation matrix and treat it as a density matrix that
is normalized to tr P̂ = Ne. By doing so the diagonal elements can be interpreted
as the mean occupation numbers of the respective states. The trace of P̂ gives the
total number of particles in the system and has to be conserved throughout the
entire time evolution. To recover the features of a probability density function the
occupation matrix has of course to be rescaled by a factor of 1/Ne. By substituting
ρ̂(1) by P̂ not just one but Ne electrons are simulated. But this simplification leads to
some problems. By replacing the many-body problem with a single-particle problem
we tremendously reduce the computational cost, but we also omit electron-electron
interaction and with that we omit correlations between electrons. An electron will
not be repelled by another electron, because technically the occupation matrix P̂
still represents just one electron that is scaled up by a factor. As a consequence
occupation numbers pii > 1 bigger than one can arise. This is however forbidden
by the Pauli exclusion principle. To ensure physicality of the occupation numbers it
is therefore necessary to explicitly implement the Pauli principle. As the diagonal
elements of P̂ are representing the orbital occupation numbers the condition

0 ≤ pii ≤ 1 for all i ∈ {1, . . .M} (2.68)

has to be fulfilled. If so, the corresponding single-particle density matrix ρ̂(1) is called
ensemble Ne-representable. That means, there exists at least one Ne-particle density
matrix that, after contraction, yields the density matrix ρ̂(1). The ensemble Ne-
representability conditions were first discussed by Coleman [62]. For a single-particle
density matrix they coincide with the Pauli principle (2.68). A special difficulty arises
in connection with the time evolution of ρ̂(1) in an open system. The preservation
of the ensemble Ne-representability conditions during the evolution is a nontrivial
problem and often discussed, especially in connection with a Lindblad-like evolution
[63], [64]. We address this problem heuristically by inserting Pauli blocking factors
into the bath induced transition rates. This approach will be specified by the time
the coupling to an external bath is introduced in Section 3.4.
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Figure 2.3.: Sketch of system and environment with its respective Hilbert space,
Hamiltonian and density matrix.

While the restriction of the occupation numbers is the main and most obvious prob-
lem because it disrespects the physicality of the system, electron-electron interaction
is also important for magnetism effects. For example the exchange coupling is deter-
mined by correlation effects between electrons and can be modified in the process of
demagnetization. This issue is however of minor importance in this context, because
we use a fixed electronic structure with orbitals that were constructed by fitting to
ab initio calculations which include correlations in terms of the exchange-correlation
functional.
By these presented procedures the many-body problem is now mapped to a set of

effective single-particle systems, which are condensed in the occupation matrix. This
approach may be understood as a mean-field approximation.

2.3.1. Open quantum systems

In consequence of the laser perturbation high-energy states of the system are popu-
lated. Under realistic conditions the energy thus accumulated in the system is lost
by interaction with the environment. To account for this loss of energy, we have
to introduce coupling to an external system, the environment. Such a scenario is
described by a composite system as depicted in Figure 2.3. A small part of the total
system represents the actual system of interest - the finite electronic system S. It
is coupled to the environment B. Adopting the denomination of Breuer and Petruc-
cione [65] we will call this environment a heat bath, if it has infinitely many degrees
of freedom and is in a thermal equilibrium state. In the following we will assume this
special environment, as it will be very useful to derive the system dynamics. The
corresponding Hilbert spaces of system and bath are HS and HB. The total Hilbert
space is the outer product of both H = HS ⊗HB. Let B(H) be the space of bounded
operators on a Hilbert space H. Accordingly there are Hamiltonians ĤS ∈ B(HS)
acting just on the system, ĤB ∈ B(HB) acting just on the bath and the Hamiltonian
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of the total system

Ĥtot = ĤS ⊗ 1̂B + 1̂S ⊗ ĤB + α ĤI, Ĥtot ∈ B(H) . (2.69)

The interaction between system and bath is described by the Hamiltonian ĤI ∈ B(H)
and the parameter α is a measure of the coupling strength. The system S is called
an open quantum system, if interactions with the environment are allowed. The
parameter α will be of importance later on to estimate the validity of the applied
approximations. The density matrix of the total system ω̂ ∈ ρ(H) is a large and
complex object that can not be accessed numerically. It is therefore impossible to
simulate the full dynamics of the total system. However, within this work we are only
interested in the dynamics of the finite system S, whereas the detailed dynamics and
composition of the heat bath are unimportant. Therefore the simulation is restricted
to the dynamics of S, which are embodied in ρ̂ ∈ ρ(HS). This is the reduced density
matrix of the system and can be obtained from the total density matrix ω̂ by tracing
out the environmental degrees of freedom,

ρ̂ = trB ω̂ = ∑
i

⟨φi∣ω̂∣φi⟩ . (2.70)

These degrees of freedom are represented by the set {∣φi⟩}, which is an orthonormal
basis of HB. By restricting the simulation to the reduced density matrix also the
computational problem is reduced tremendously and only ρ̂ has to be propagated in
time.
To analyze the implications of the reduction (2.70) let’s revisit the discussion of

pure and mixed states launched in Section 2.3. If there is no interaction between the
system and the bath, then system and bath states can be separated into a product
form. It exists a wavefunction to describe the system and if we knew it we could
in principle represent the system by a pure state. For α ≠ 0 system and bath are
entangled and their wavefunctions can no longer be separated. It exists no single well-
defined wavefunction to describe the system S separately because the bath induces
correlations between the system states. The system is in a mixed state now and has to
be described by a density matrix. That means omitting the bath degrees of freedom
involves also a loss of information. It is not possible to ascribe the system with
certainty to a particular state but instead the system is with different probabilities
in different states. It hence is represented by a probabilistic mixture of states and all
possible outcomes of measurements are described by the reduced density matrix ρ̂.
The Hamiltonian (2.69) and the scenario as depicted in Figure 2.3 will be the foun-

dation for calculating the time evolution in Chapter 3. Therefore also the nomencla-
ture introduced in this section will further be valid.

2.3.2. Quantum state measures

The irradiation with a laser pulse perturbs the electronic system by excitation of low
energy electrons to higher levels. This can also trigger a subsequent local redistri-
bution of occupation before the system finally evolves back to its initial low-energy
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state by interaction with an external heat bath. Throughout all these processes the
density matrix ρ̂(t) can change significantly. Moreover, the degree of excitation can
differ from one system to another though identical laser parameters are applied, or as
characterized in experiments - an identical laser fluence. This difference in excitation
is explained by the varying absorption of the laser light, which is caused by a different
spacing and occupation of the systems’ eigenlevels. The laser fluence is thus not suf-
ficient to quantify and compare the degree of perturbation. Therefore it is necessary
to introduce some measures of perturbation which only analyze the density matrix
and do not regard observables or the source of perturbation. The first two of the
following measures, the purity and the von Neumann entropy, quantify the degree of
mixedness or disorder within the density matrix. The remaining measures embody
a comparison of two density matrices. Thereby they can measure the agreement or
deviation of the perturbed density matrix from an initial unperturbed state.

Throughout the simulation we always operate on the occupation matrix P̂(t)
in (2.67). The definition of a quantum state measure will therefore be applied to
its rescaled counterpart, the reduced one-electron density matrix ρ̂(t). However, due
to the condition of Ne-representability in form of the constraint (2.68), the accessible
range of the measures is modified in case of an effective one-particle density matrix
in comparison to a many-body density matrix.
All presented measures are invariant under unitary transformations. Therefore

they are also independent of the applied basis set. Solely the number of excited
electrons is defined only in the unperturbed system’s eigenbasis as it is expressed in
terms of the system’s energy eigenlevels.

Purity

The purity of a density matrix was already introduced in (2.62).

P(ρ̂(t)) = tr ρ̂(t)2, P(ρ̂(t)) ∈ [1
d
,

1
Ne

] . (2.71)

As pointed out above the accessible range has narrowed, its upper bound of 1
Ne

is
decreasing with the number of simulated electrons. In the general case a maximal
purity of 1 is possible and equivalent to a pure state which can be represented by a
single wavefunction. It is however never possible in our model to represent Ne elec-
trons with a one-electron wavefunction. The decreased range of the purity represents
therefore the lack of knowledge by using a single-particle density matrix, an object
too small to represent the information of Ne electrons. If the reduced density matrix
in our simulation would reach a purity of 1, some state would have an occupation
of pii > 1 in contradiction to the Pauli principle (2.68). At equilibrium and at a
finite temperature the density matrix starts the time evolution with a purity near to
the maximal value of 1/Ne which is decreased by the laser perturbation and slowly
recovers afterwards.
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Von Neumann entropy

Also the von Neumann entropy measures the degree of mixing. In contrast to the
purity it increases under perturbation and reaches its maximal value at a perfectly
mixed state. The von Neumann entropy can be easily calculated in terms of eigen-
values λi(t) of ρ̂(t) [65], [66]

S(ρ̂(t)) = − tr (ρ̂(t) ln ρ̂(t)) = −∑
i

λi(t) lnλi(t) S(ρ̂(t)) ∈ [lnNe, lnd] . (2.72)

In case of a general density matrix a minimal value of 0 is achieved for a pure state.
However, for the same reasons as before the accessible range of the von Neumann
entropy is modified due to constraint (2.68). The smallest possible von Neumann
entropy in our simulation is therefore lnNe. The maximal entropy of lnd is unchanged
and corresponds to an equipartition of the electrons between all states.

Fidelity

The fidelity measures the agreement between two quantum states. As the reference
matrix we choose the rescaled occupation matrix ρ̂0 = P̂0/Ne, which corresponds to
the equilibrium density matrix before the laser perturbation. It represents the initial
equilibrium state at the specified ambient temperature. We measure the agreement
between ρ̂0 and the evolving occupation matrix ρ̂(t) of the excited system. The
fidelity is defined as [67]

F (ρ̂(t), ρ̂0) = (tr
√√

ρ̂0 ρ̂(t)
√
ρ̂0)

2
, F (ρ̂(t), ρ̂0) ∈ [0,1] . (2.73)

For identical matrices the fidelity equals 1 and for density matrices expressing or-
thogonal states it is 0.
The fidelity is a quantity that is originated in quantum information theory, where

it is used to measure the deviation of a qubit while traveling through an operating
device. During the course of the time evolution the fidelity starts with a value of 1,
indicating perfect agreement. With the laser excitation its value decreases until
finally the equilibrium density matrix is recovered by interaction with the external
bath and the fidelity reapproaches 1.

Trace distance

Also the trace distance embodies a comparison between two density matrices [68]. In
contrary to the fidelity it increases with growing differences between the two matrices.
It yields 0 only for identical matrices and reaches a maximum of 1 for matrices of
orthogonal states. Again the equilibrium matrix ρ̂0, defined as above, is chosen as a
reference. By exploiting the Hermiticity the trace distance can be easily calculated
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in terms of eigenvalues ξi(t) of (ρ̂(t) − ρ̂0)

T (ρ̂(t), ρ̂0) =
1
2

tr [
√

(ρ̂(t) − ρ̂0)†(ρ̂(t) − ρ̂0)] = ∑
i

∣ξi(t)∣
2

, T (ρ̂(t), ρ̂0) ∈ [0,1] .

(2.74)
Both quantities, the fidelity as well as the trace distance, are used to measure

distances in the space of density matrices. However, among the presented measures
only the trace distance is a metric according to the mathematical definition, whereas
the fidelity can be used to define a metric, but is not a metric itself.

The number of photo-excited electrons

The number of excited electrons is accessible by experiment [69]. For this reason it
is a very useful quantity to adjust pulse parameters within the simulation in order
to achieve a realistic degree perturbation.
As indicated by the name, the number of electrons above the Fermi energy per

atom is calculated via

Nex(P̂(t)) = 1
N
∑
n

En>EF

(pnn(t) − pnn(t0)) . (2.75)

The number of atoms N is used to get a comparable, normalized result. Prior to the
laser excitation the eigenlevels are populated according to the Fermi-Dirac statistics.
At a reasonable temperature there is a very small amount of electrons above the
Fermi energy. These thermally excited electrons are subtracted to get the purely
photo-excited electrons. During the laser excitation Nex(t) increases rapidly and
then returns to its initial value on a timescale according to the interaction with the
bath.
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3. Time evolution of a density matrix

3.1. Unitary time evolution and time evolution in open quan-
tum systems

The purpose of this work is the observation and investigation of an electronic system
after ultrashort laser excitation. To analyze the induced changes it is necessary to
simulate and track the time evolution of the respective system. In the previous
chapter it was demonstrated how to describe the system’s electronic structure by
means of a tight-binding Hamiltonian and how to represent its occupation by using
a density or occupation matrix. Now we show how to evolve the density matrix in
time. In doing so, we simulate the changes of occupation during optical excitation
and subsequent relaxation of a system in contact with a heat bath. On this account,
we start with the unitary time evolution of ω̂, the density matrix of the total system
introduced in Section 2.3.1. As for every closed system its time evolution is given by
the von Neumann equation in the Schrödinger picture

ih̵∂ω̂
∂t

= [Ĥtot, ω̂] , (3.1)

which follows from the Schrödinger equation

ih̵ ∂
∂t

∣ψ(t)⟩ = Ĥtot ∣ψ(t)⟩ . (3.2)

The dynamics entailed by the von Neumann equation (3.1) are called unitary, because
the evolution of the corresponding density matrix ω̂ can be expressed by a unitary
transformation. The time evolution of the total system is given by

ω̂(t) = Û ω̂0Û
† , using Û = e−

i
h̵

Ĥtott , (3.3)

the operator of time evolution. A unitary evolution is isometric, it does not change
the norm of the state vectors. Eigenstates of Ĥtot only change by an oscillating
phase. Consequently, inner products between quantum states are preserved during
unitary time evolution and the coherence of quantum states is maintained. This can
be considered as the conservation of information under unitary time evolution. A
unitary process is therefore always reversible in time.
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Since the Schrödinger equation describes the time evolution of pure states, the uni-
tary evolution in Equation (3.3) only holds for the total system. Whereas a subsystem
of a composite system has to meet the premise of complete isolation to exhibit a uni-
tary time evolution. This condition is violated if interaction with the environment is
permitted. As a consequence information is lost to the environment, the entropy of
the system changes and the subsystem exhibits a non-unitary time evolution. This
especially concerns the evolution of a reduced density matrix as introduced in (2.70)
and is exactly the scenario of interest. Therefore non-unitary dynamics are necessary
to describe the evolution of a subsystem with loss of energy and decoherence due to
the coupling to an external system. Because non-unitary time evolution can express
decay, decoherence and dissipative behavior, like thermalization, it is in general not
time-reversible. Since the time propagation of the reduced density matrix cannot be
achieved by the von Neumann equation (3.1), the Lindblad equation will be derived
in the following sections.
The Lindblad equation is a Markovian quantum master equation. It describes the

time evolution of not just one state but of the entire density matrix. Its structure can
be deduced by establishing only two demands: Markovianity and the conservation
of the density matrix properties defined in Section 2.3. Therefore it describes the
time-evolution of a quantum system in the most general way. The Lindblad equation
includes the coherent as well as the incoherent time evolution of the density matrix.
It thus contains also non-unitary terms which yield irreversible dissipative processes.
They describe the loss of energy and information to the environment. The Lindblad
equation is therefore an appropriate method to describe the time evolution in an
open system, as for example a fermionic system in contact with a thermal heat bath.
The equation which in this work is called Lindblad equation, actually circulates

also under other designations, thereof the longest is Gorini-Kossakowski-Sudarshan-
Lindblad equation. These other names are based on fundamental works leading up to
the final theory. Already since the late 50s the theory of quantum master equations
was developed to describe the general time evolution of a reduced density matrix.
The Nakajima-Zwanzig equation based on papers published in 1958 [70] and 1960
[71] is such a quantum master equation. It describes the dynamics of a reduced
density matrix by projecting on the relevant subsystem of a total system. However,
it still contains the exact dynamics of the system and is similarly hard to solve as
the original problem.
Another approach to describe the time evolution of a reduced density matrix is

the concept of quantum dynamical semigroups. It was established under that name
by Kossakowski in 1972 [72]. A quantum dynamical semigroup comprises the total
development of a density matrix and the corresponding generator describes its time
evolution. Lindblad [73] and Gorini, Kossakowski and Sudarshan [74] published their
works on the generator of such a quantum dynamical semigroup almost simultane-
ously in 1976. While they find the same results about the shape of the generator,
they formulate their mathematical proofs based on different preconditions. Gorini et
al. assume a finite-dimensional Hilbert space, whereas Lindblad works with a sepa-
rable Hilbert space of countable dimension but assumes all operators to be bounded.
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Therefore the operators in Section 2.3.1 were defined accordingly. Even so in real-
ity this assumption is not fulfilled, unbounded operators can be approximated by a
sequence of bounded operators. The above approach derives the Lindblad equation
based on structural requirements for the corresponding propagator. It will therefore
be called the geometrical derivation.
The Lindblad equation can also be derived by a series of microscopic assumptions

and approximations based on the Hamiltonian dynamics of the total system. This mi-
croscopic approach is at times complicated and tedious but it delivers clearer insight
into the physical implications of the applied approximations, whereas the geometrical
approach stays rather abstract. Although the geometrical approach delivers a clear
and straight forward derivation it is harder to access for the physical intuition.
In the following sections the geometric as well as the microscopic derivation of the

Lindblad equation will be presented. Many reviews and books cover the topics of
quantum dynamical semigroups and time evolution in open quantum systems. The
following derivations are mostly guided by the book of Breuer and Petruccione [65]
and an introductory article by Manzano [75]. The lecture notes of Alicki and Lendi
and the review article by Alicki [76] provide an insight into the theory of quantum-
dynamical semigroups. In the latter one the approaches to the problem that are
called geometric and microscopic in this work are called axiomatic and constructive.

3.2. Geometric derivation of the Lindblad equation
The geometric approach coincides with the historical origins in the mentioned articles
by Lindblad and Gorini, Kossakowski and Sudarshan [73], [74]. Therein the Lind-
blad equation arises due to general and mathematical considerations about the time
propagation of a quantum system. Hence the structure of the Lindblad equation is
the consequence of some very basic requirements for the time evolution of the density
matrix. In [77] Pearle demonstrates very pedagogically how to derive the Lindblad
equation based on those structural requirements. He postulates a linear behavior of
the form

ρij(t0 + t) = ∑
kl

aij,klρkl(t0) (3.4)

and analyzes the conditions imposed on the coefficients aij,kl. The above equation
already establishes the Markovianity of the time evolution by assuming that the
density matrix after a time step t can be written as a linear combination of matrix
elements of the density matrix at time t0. By demanding Hermiticity and positivity
for ρ̂(t0 + t) and ρ̂(t0), constraints can be imposed to the structure of (a)ij,kl and
the Lindblad equation can be formulated. In the following however the historical
pathway of a more abstract view on time evolution shall be reconstructed.

3.2.1. Time evolution - a dynamical map

To perform the time evolution of ρ̂ an operator on the space of reduced density
matrices ρ(HS) is needed, that yields this density matrix at a later time. Such an
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operator is called a dynamical map

ˆ̂Λt ∶ ρ(HS) → ρ(HS), with ˆ̂Λtρ̂(t0) = ρ̂(t0 + t) . (3.5)

By taking the density matrix ρ̂0 = ρ̂(t0) at time t0 to time t0 + t the dynamical map
ˆ̂Λt performs a time step of length t. To ensure that the result ˆ̂Λtρ̂(t0) is again a
density matrix, the superoperator ˆ̂Λt has to be

• trace-preserving

• and completely positive.

A positive superoperator ˆ̂Λt maps a positive operator onto a positive operator.

ˆ̂Λt is positive iff Â ≥ 0⇒ ˆ̂ΛtÂ ≥ 0, ∀Â ∈ ρ(HS) . (3.6)

However, in the scenario under consideration, wherein the system is coupled to a
bath with arbitrary degrees of freedom, this condition is not enough. To account for
the bath we need the stronger condition of complete positivity. Let n ∈ N be the
dimension of the bath Hilbert space HB. We introduce a superoperator ˆ̂Λt⊗ ˆ̂1n, that
maps positive operators of the composite system HS ⊗HB to positive operators.

ˆ̂Λt is completely positive iff ˆ̂Λt ⊗ ˆ̂1n is positive ∀n ∈ N . (3.7)

If the parameter t is allowed to take variable positive values, { ˆ̂Λt∣t ≥ 0} becomes
a one-parameter family of dynamical maps and describes the entire future of the
system [78]. A quantum dynamical semigroup is defined as such a one-parameter
family { ˆ̂Λt∣t ≥ 0} that additionally fulfills the semigroup property

ˆ̂Λt + ˆ̂Λs = ˆ̂Λt+s . (3.8)

This requirement is equivalent to claiming Markovianity for the corresponding sys-
tem. A quantum dynamical semigroup thus describes systems with Markovian-type
behavior. That means, the time evolution at a special time t is solely determined by
the state of the system at this time t and does not depend on any earlier state of the
system. This is why the time evolution from time 0 to time t+s can be broken down
into many shorter time steps in which each ˆ̂Λti does not contain information about
any earlier state. In short, the system has no memory.
At this point already an implicit assumption about the nature of the external

bath has been made. The system under consideration exhibits such Markovian-type
behavior if the bath correlations vanish very fast compared to the timescale of the
systems’ time evolution. Only such a system without memory can be described by a
quantum dynamical semigroup.
Using now the unitary time evolution of the total system (3.3) we already know

the form of ˆ̂Λt, which gives the time propagation of the total system density matrix

ρ̂(t) = ˆ̂Λtρ̂0 = trB Û ω̂0Û
† . (3.9)
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This expression, however, involves calculation within the total spaceHtot. Technically
it is possible to derive a matrix representation of the map ˆ̂Λt already based on the
unitary evolution within the total space given above, as demonstrated in [65]. Instead
we follow the approach of [75] to exploit the complete positivity of the map. An
extensive result about the exact form of the dynamical map is delivered by the Choi-
Kraus theorem [79], [80]. It states that a map, as defined in (3.5), is completely
positive and trace-preserving if and only if it can be expressed by Kraus operators
V̂i(t) ∈ B(HS)

ˆ̂Λtρ̂ = ∑
l

V̂ †
l (t)ρ̂0V̂l(t), with ∑

l

V̂l(t)V̂ †
l (t) = 1̂HS . (3.10)

The Kraus operators depend on the time parameter t. They are now expanded in
terms of {F̂i}i=1,...,d2 , an orthonormal basis of B(HS), the space of bounded operators
on HS

V̂l(t) =
d2

∑
i=1

⟪F̂i∣ V̂l(t)⟫ F̂i . (3.11)

The scalar product of operators Â, B̂ ∈ B(HS) therein is defined as

⟪Â ∣B̂⟫ = tr [Â†B̂] . (3.12)

By inserting the expansion (3.11) into Equation (3.10) the map ˆ̂Λt becomes

ˆ̂Λtρ̂0 =
d2

∑
i,j=1

cij(t)F̂iρ̂0F̂
†
j (3.13)

The time dependence is now included solely within the coefficients

cij(t) = ∑
l

⟪F̂i∣ V̂l(t)⟫⟪V̂l(t)∣ F̂j⟫ = ∑
l

tr [F̂ †
i V̂l(t)] tr [V̂ †

l (t)F̂i] . (3.14)

We choose the last element of the basis {F̂i}i=1,...,d2 to be proportional to the identity
F̂d2 = 1√

d
1̂d. As a consequence every other element of this basis has to have a van-

ishing trace to ensure the orthogonality of the basis elements. Due to the definition
of the scalar product and the invariance of the trace upon permutations, the matrix
of these coefficients (cij)i,j=1,...d2−1 is Hermitian and thus can be diagonalized. This
property allows to find a diagonal representation in the next section.

3.2.2. The generator of a semigroup

Up to this point a dynamical map was established to perform a specific time step.
However, the actual goal is to find a set of differential equations that describe the
system’s time evolution. This is only possible due to the Markovianity implicated by
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the semigroup property (3.8). Under this condition one can find the generator ˆ̂L of
the semigroup, which gives the time evolution in terms of a differential equation

d
dt
ρ̂(t) = ˆ̂Lρ̂(t) . (3.15)

In the following the time argument of ρ̂ will be omitted. Using the generator ˆ̂L, the
dynamical map can also be expressed by means of an exponential ˆ̂Λ∆t = e ˆ̂L∆t. But
first of all an explicit and preferably simple form of the generator ˆ̂L has to be found.
This is achieved by inserting (3.13) into the left-hand side of Equation (3.15)

d
dt
ρ̂ = lim

∆t→0

Λ∆tρ̂ − ρ̂
∆t

= lim
∆t→0

1
∆t

⎛
⎝

d2

∑
i,j=1

cij(∆t)F̂iρ̂F̂ †
j − ρ̂

⎞
⎠
. (3.16)

The dependence on the time step ∆t is contained solely in the prefactors and can be
eliminated by performing the limit ∆t→ 0. The new prefactors are

bij = lim
∆t→0

cij(∆t)
∆t

. (3.17)

Resulting from the construction of the operator basis, the double sum over its ele-
ments contains also summands with at least one operator F̂i or F̂j proportional to
the unity operator. Therefore this sum is split into a sum with no basis element
proportional to unity and two sums with either F̂i or F̂j proportional to unity. The
remaining summand with i, j = d2 is combined with the last term of (3.16) into the
new coefficient

b̃ = bd2d2 − d . (3.18)

By applying the specified segmentation, Equation (3.16) is rearranged to

d
dt
ρ̂ =

d2−1
∑
i,j=1

bijF̂iρ̂F̂
†
j +

1√
d

d2−1
∑
i=1

bid2F̂iρ̂ +
1√
d

d2−1
∑
j=1

bd2j ρ̂F̂
†
j +

1
d
b̃ρ̂ . (3.19)

The second and third term can be further simplified by splitting into Hermitian and
antihermitian parts and introducing an abbreviation

F̂ = 1√
d

d2−1
∑
i=1

bid2F̂i = F̂ + F̂ †

2
− i F̂

† − F̂
2i

= Ĝ − iĤ . (3.20)

As both terms are complex conjugated of one another, their sum transforms to

F̂ ρ̂ + ρ̂F̂ † = {Ĝ, ρ̂} − i[Ĥ, ρ̂] . (3.21)

The last term of (3.19) is inserted into the anticommutator as follows

{ ˆ̃G, ρ̂} = {Ĝ + b̃

2d
, ρ̂} . (3.22)
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As a result the derivative of the density matrix can be expressed as

d
dt
ρ̂ =

d2−1
∑
i,j=1

bijF̂iρ̂F̂
†
j + { ˆ̃G, ρ̂} − i[Ĥ, ρ̂] . (3.23)

At this point we exploit the conservation of the trace of ρ̂ under time evolution. Since
the trace of a density matrix does not change, also the trace of its derivative vanishes
tr[ d

dt ρ̂(t)] = 0. By using the cyclic property of the trace tr[ÂB̂Ĉ] = tr[B̂ĈÂ], the
commutator can be eliminated and the anticommutator can be simplified to

0 = tr
⎡⎢⎢⎢⎢⎣

⎛
⎝

d2−1
∑
i,j=1

bijF̂
†
j F̂i + 2 ˆ̃G

⎞
⎠
ρ̂

⎤⎥⎥⎥⎥⎦
. (3.24)

This holds true for every density matrix ρ̂. By choosing a series of appropriate density
matrices, one iteratively finds that every summand in (3.24) has to vanish separately.
This leads to the replacement

ˆ̃G = −
d2−1
∑
i,j=1

bij

2
F̂ †
j F̂i (3.25)

with which we arrive at the nondiagonal form of the Lindblad master equation

ˆ̂Lρ̂ = d
dt
ρ̂ =

d2−1
∑
i,j=1

bij (F̂iρ̂F̂ †
j −

1
2
{F̂ †

j F̂i, ρ̂}) − i[Ĥ, ρ̂] . (3.26)

The coefficient matrix B = (bij)i,j=1,...d2−1 is the limit of the coefficient matrix (3.14).
Therefore B is also Hermitian and diagonalizable and it exists a unitary matrix
U = (uij)i,j=1,...d2−1 with

Γ = UBU † =
⎛
⎜⎜⎜
⎝

γ1 0 0 0
0 γ2 0 0
0 0 ⋱ 0
0 0 0 γd2−1

⎞
⎟⎟⎟
⎠
. (3.27)

Replacing

F̂i =
d2−1
∑
k=1

ukiÂk (3.28)

finally yields the diagonal form of the generator ˆ̂L and the Lindblad equation

ˆ̂Lρ̂ = d
dt
ρ̂ = −i[Ĥ, ρ̂] +

d2−1
∑
k

γk (Âkρ̂Â†
k −

1
2
{Â†

kÂk, ρ̂}) . (3.29)

This is the outcome of this section and the most general Markovian time evolution
of a density matrix. The generator ˆ̂L is called the Lindbladian and is a superoper-
ator working on the space of density matrices ρ(HS). The resulting time evolution
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includes both coherent contributions within the first term, as well as incoherent dis-
sipative contributions in the second term, the dissipator D(ρ̂). We merely imposed
the conditions of Markovianity and the preservation of the density matrix’ proper-
ties - positivity and unit trace. Any time evolution fulfilling these conditions can
be written in form of (3.29). The physical meaning is achieved by the choice of ap-
propriate operators Âk and prefactors λk. They can be understood for example as
jump operators and corresponding rates. The operator Ĥ in (3.29) is not necessarily
identical to the equilibrium Hamiltonian ĤS of the system. It simply describes the
coherent part of the time evolution but can also contain contributions induced by
interaction with the reservoir. Time evolution of the density matrix ρ̂S generated by
this first term, the commutator, always conserves energy. Whereas the second term,
the anticommutator, simulates exchange of energy with an external bath and induces
decoherences.

3.3. Microscopic derivation
The Lindblad equation (3.29) can also be derived without introducing the concept of
quantum dynamical semigroups and their generators. As mentioned in the beginning
of this chapter we start with the unitary time evolution of the total system (3.3) to
perform the microscopic derivation. By applying several approximations and assump-
tions we will step by step receive Equation (3.29). The microscopic approach is more
challenging than the geometrical approach with respect to involved mathematical
considerations and manipulations. On the other hand the applied assumptions will
be linked more directly to the underlying physical processes than within the more
abstract geometrical approach. The following derivations can be found in similar
form in an introductory article by Manzano [75] and more extensively in the book
by Breuer and Petruccione [65].
First of all throughout the following derivation we assume to be in the weak-

coupling limit. The interaction parameter α introduced in (2.69) is small compared
to other energy scales of the system which corresponds to a relatively weak coupling
between system and reservoir. We start the microscopic derivation with the von
Neumann equation (3.3). It gives the derivative of the total systems’ density matrix
within the Schrödinger picture. In the Schrödinger picture the time evolution is
entirely contained within the wave functions, whereas the operators do not change.1
For the sake of simplicity we will change to the interaction picture from now on.
In this case operators do change due to individual time evolution of system and
bath respectively. Accordingly an operator Ô ∈ B(H) written in the interaction
picture is Ô(t) = ei(ĤS+ĤB)tÔ e−i(ĤS+ĤB)t. Whereas the state vectors experience a time
evolution, which is caused by the interactions between system and reservoir. Within
the interaction picture the density matrix changes according to

d
dt
ω̂(t) = −iα [ĤI(t), ω̂(t)] , (3.30)

1The operators are assumed to exhibit no explicit time dependence.
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which after integration yields

ω̂(t) = ω̂(0) − iα∫
t

0
ds [ĤI(s), ω̂(s)] . (3.31)

All following transformations are aiming at reducing the enormous complexity of this
equation. Its intricacy arises firstly due to the calculation in the total Hilbert space
and secondly due to the dependence of ω̂(s) on all former times. To address the
second problem we insert Equation (3.31) into Equation (3.30) and receive

d
dt
ω̂(t) = −iα [ĤI(t), ω̂(0)] − α2∫

t

0
ds [ĤI(t), [ĤI(s), ω̂(s)]] . (3.32)

Repeating this procedure by changing the bounds of integration in (3.31) to t and s
yields

d
dt
ω̂(t) = −iα [ĤI(t), ω̂(0)] − α2∫

t

0
ds [ĤI(t), [ĤI(s), ω̂(t)]] + O(α3) . (3.33)

The dependence on all previous states ω̂(s) is now contained in O(α3). In the context
of the weak-coupling limit a small interaction between system and bath is assumed
and it is justified to neglect these terms of higher order in the interaction parameter.
This approximation is a first step toward Markovianity.
As a next step we trace out the reservoir’s degrees of freedom in order to avoid

calculation in the total Hilbert space

d
dt
ρ̂(t) = −iα trB [ĤI(t), ω̂(0)] − α2∫

t

0
ds trB [ĤI(t), [ĤI(s), ω̂(t)]] . (3.34)

Despite of expression (3.34) being an equation for the reduced density matrix, calcu-
lations still have to be performed in the total Hilbert space. To address this problem
a next approximation is implemented. We assume that at time t = 0 there are no
correlations between system and bath. At this point of time both subsystems did
not yet interact or exhibit only very short-lived interactions. If this is the case the
system and the bath are in a separable state

ω̂(0) = ρ̂(0) ⊗ ρ̂B(0) . (3.35)

A further initial condition is imposed by assuming the bath to be in a thermal state
at time t = 0

ρ̂B(0) =
e−βĤB

tr e−βĤB
, (3.36)

with the inverse thermal energy β = 1/(kBT ). Also the interaction Hamiltonian can
be decomposed into system operators Ŝi ∈ B(HS) and bath operators B̂i ∈ B(HB)

ĤI(t) = ∑
i

Ŝi(t) ⊗ B̂i(t) . (3.37)
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Both, system and bath types of operators, act on different Hilbert subspaces and
therefore each type commutes with one of the separable states of the total density
matrix. As a consequence thereof the first term of expression (3.34) can be trans-
formed according to

trB [ĤI(t), ω̂(0)] = ∑
i

Ŝi(t)ρ̂(0) trB [B̂i(t)ρ̂B(0)] − ρ̂(0)Ŝi(t) trB [ρ̂B(0)B̂i(t)] .

(3.38)

In a next step the expectation value of every bath operator ⟨B̂i⟩ = trB [ρ̂B(0)B̂i(t)]
is set to 0. This can be achieved by a simple transformation and is equivalent to
shifting the energies scale by a constant amount. As a consequence expression (3.38)
and thereby also the first term of Equation (3.34) vanishes. The time evolution of
the reduced density matrix is now solely determined by the second term of (3.34),
an integration which still contains the total density matrix.
The bath is infinitely large compared to the system, hence its eigenstates are neg-

ligibly affected during the interaction with the system. This assumption is justified
especially for a very small coupling parameter α. Consequently correlations between
system and bath are very short-lived. Excitations of the bath have to relax on a
timescale that is very small compared to the characteristic timescale of the system
τB ≪ τsys. Under these conditions the bath stays in its initial thermal state and at
every time the total density matrix is separable

ω̂(t) = ρ̂(t) ⊗ ρ̂B(0) . (3.39)

This is called the Born or factorization approximation and is a very common concept
of quantum Markovianity [81], [82]. The underlying assumption however implies
that the system’s time evolution can not be resolved for timescales on the order of
magnitude of the bath correlations τB. In this manner the Born approximation limits
the temporal resolution of the simulation such that we can just track processes on a
timescale that is rather coarse compared to τB.

By applying the previous approximation, Equation (3.34) can be written as
d
dt
ρ̂(t) = −α2∫

t

0
ds trB [ĤI(t), [ĤI(s), ρ̂(t) ⊗ ρ̂B(0)]] . (3.40)

This expression still depends on the complete history of the interaction Hamiltonian
and the initial state of the bath. By neglecting higher order terms O(α3) already all
terms related to the history of ρ̂(s) were eliminated. Proceeding towards Markovian-
ity, we rewrite the integration by substituting the integration variable s by t − s and
extending the upper limit of the integration to infinity. This extension is valid only
if the integrand vanishes fast enough for s ≫ τB. This condition is fulfilled under
the same circumstances as discussed before, namely that the timescale of variations
within the system state is much larger than the timescale of bath correlations. The
result is the so-called Redfield equation [83]

d
dt
ρ̂(t) = −α2∫

∞

0
ds trB [ĤI(t), [ĤI(t − s), ρ̂(t) ⊗ ρ̂B(0)]] . (3.41)
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Together the above transformations are called the Born-Markov-approximation. De-
spite being Markovian now, Equation (3.41) does not necessarily preserve the pos-
itivity of the density matrix ρ̂ and thus does not describe the generator of a dy-
namical semigroup. On that account the rotating wave approximation is performed
to average over rapidly oscillating terms. To eliminate the dependence on s within
relevant system dynamics contained in the system operators Ŝi, the decomposition
(3.37) is applied. This allows to separate system dynamics and integration and to
condense the latter one into a prefactor. In order to rewrite the interaction Hamilto-
nian we first define the commutator with the system Hamiltonian as superoperator
ˆ̂MÔ = [ĤS, Ô] , ∀Ô ∈ B(HS). The decomposition of the interaction Hamiltonian

ĤI (3.37) is also valid in the Schrödinger picture. To omit the time dependence we
take the system operators Ŝi within the Schrödinger picture and decompose them
further into eigenoperators of the superoperator ˆ̂M

Ŝi = ∑
ω

Ŝi(ω) with Ŝi(ω) = ∑
ε′−ε=ω

Π(ε)ŜiΠ(ε′) . (3.42)

ε, ε′ are energy eigenvalues of HS and Π(ε),Π(ε′) are projections onto the correspond-
ing eigenspaces. Due to this definition the operators Ŝi(ω) are eigenoperators of the
commutator ˆ̂M and the energy differences ω are their corresponding eigenvalues.
They satisfy the following relations

[ĤS, Ŝi(ω)] = −ωŜi(ω) (3.43)

[ĤS, Ŝ†
i(ω)] = +ωŜ†

i(ω) . (3.44)

Transforming these expressions back into the interaction picture yields

eiĤStŜi(ω)e−iĤSt = e−iωtŜi(ω) (3.45)

eiĤStŜ†
i(ω)e

−iĤSt = e+iωtŜi(ω) . (3.46)

These relations are used to rewrite the interaction Hamiltonian and modify Equa-
tion (3.41) as demonstrated in appendix A.2. The effect of the bath and the depen-
dence on the integration variable can now be separated into the factor

Γij(ω) = α2 trB∫
∞

0
ds eiωs trB [B̂†

i(t)B̂j(t − s)ρ̂B(0)] . (3.47)

It contains the dependence of the bath on the history of the time evolution. By
inserting (3.47) into Equation (A.7) the Redfield equation (3.41) is transformed to

d
dt
ρ̂(t) = ∑

i,j
ω,ω′

(ei(ω′−ω)tΓij(ω) [Ŝj(ω)ρ̂(t), Ŝ†
i(ω

′)]

+ ei(ω−ω′)tΓ∗ji(ω) [Ŝj(ω′), ρ̂(t)Ŝ
†
i(ω)]) .

(3.48)
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The factor Γij can be understood as the one-sided Fourier-transform of the reservoir
correlation functions ⟨B̂†

j(t)B̂i(t − s)⟩ = trB [B̂†
j(t)B̂i(t − s)ρ̂B(0)] . Earlier on we de-

clared ρ̂B(0) to be a stationary state of the bath. Therefore it commutes with the
bath Hamiltonians contained in B̂i(t) = eiĤBtB̂ie−iĤBt. This implies that the reservoir
correlation function is homogeneous in time ⟨B̂†

j(t)B̂i(t−s)⟩ = ⟨B̂†
j(s)B̂i(0)⟩ and does

only depend on the time difference s. The heat bath represented by the factor Γij
is therefore completely independent of the actual time t. Again this conclusion does
only hold if the reservoir correlation functions are decaying sufficiently fast, just as
postulated when introducing the Born approximation. The presented approximation
is exact in the limit of an infinitely large reservoir with a continuum of frequencies.
However, in case of discrete frequencies we can not necessarily assume the bath cor-
relations to decay sufficiently fast. To perform the rotating wave approximation we
analyze the frequency difference in the exponential of (3.48). In case of unlike values
ω ≠ ω′ the terms in (3.48) are oscillating much faster than the typical timescale τsys
of the system and do not contribute to the evolution of the system. Especially in
the limit of weak coupling α → 0 it is ∣ω −ω′∣ ≫ α2 and these terms can be neglected
because they are oscillating on the timescale τB of the bath. Since we only keep
the resonant, or secular, terms of Equation (3.48), with ω = ω′ , the rotating wave
approximation is also called the secular approximation. It yields

d
dt
ρ̂(t) = ∑

i,j,ω

(Γij(ω) [Ŝj(ω)ρ̂(t), Ŝ†
i(ω)] + Γ∗ji(ω) [Ŝj(ω), ρ̂(t)Ŝ

†
i(ω)]) . (3.49)

Similar to procedure (3.20) in the geometric derivation, we now separate coherent
and non-coherent time evolution of the system by splitting the prefactor (3.47) into
Hermitian and antihermitian parts

Γij(ω) =
1
2
(Γij(ω) + Γ∗ji(ω)) − i i

2
(Γij(ω) − Γ∗ji(ω)) =

1
2
γij(ω) + iπij(ω) . (3.50)

According to this definition the coefficient matrices πij and γij are Hermitian and as
the Fourier transform of a positive function the coefficient matrix

γij(ω) = γ∗ji(ω) = α2∫
∞

−∞
ds eiωs⟨B̂†

i(t)B̂j(t − s)⟩ (3.51)

is also positive. Inserting decomposition (3.50) into (3.49) gives the time evolution
in the interaction picture

d
dt
ρ̂(t) = ∑

i,j,ω

⎛
⎝
γij(ω) (Ŝj(ω)ρ̂(t)Ŝ†

i(ω) −
1
2
{Ŝ†

i(ω)Ŝj(ω), ρ̂(t)})

− iπij(ω) [Ŝ†
i(ω)Ŝj(ω), ρ̂(t)]

⎞
⎠
.

(3.52)

The above expression can easily be transformed back into the Schrödinger pic-
ture by adding the system Hamiltonian ĤS to ĤLS = ∑i,j,ω πij(ω)Ŝ

†
i(ω)Ŝj(ω), the
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Hamiltonian-like term within the time evolution. This is allowed due to the def-
inition of the operators Si(ω) in (3.42). As a result of the properties (3.43) and
(3.44) the Hermitian operator ĤLS commutes with ĤS. ĤLS is called the Lamb shift
Hamiltonian and leads to a renormalization of the initial unperturbed energy lev-
els of the system due to the coupling to the external bath. By thus transforming
Equation (3.52) back to the Schrödinger picture and condensing the notation of Her-
mitian and dissipative time evolution we finally arrive at the well-known form of the
Lindblad equation

d
dt
ρ̂(t) = ˆ̂Lρ̂(t) = −i [ĤLS + ĤS, ρ̂(t)] + ˆ̂D(ρ̂(t)) . (3.53)

The last term of Equation (3.53)

ˆ̂D(ρ̂(t)) = ∑
i,j,ω

γij(ω) (Ŝj(ω)ρ̂(t)Ŝ†
i(ω) −

1
2
{Ŝ†

i(ω)Ŝj(ω), ρ̂(t)}) (3.54)

contains the noncoherent time evolution and is called the dissipator. In a last step the
above expression is diagonalized analogously to the procedure presented in the geo-
metric derivation. This is possible due to the positivity of the coefficient matrix γij .
Finally only one relevant frequency ω has to be considered and the dependence on
the frequency can be omitted. This results, together with the diagonalization, in a
Lindblad equation of the standard form (3.29).

3.4. The Lindblad equation for a d-level system
In this section the so far still abstract Lindblad equation shall be adapted to the tight-
binding model and the corresponding occupation matrix P presented in the previous
chapter. We will introduce a set of jump operators and corresponding transition
probabilities to present a specific numeric form of the dissipator. In our model the
object of time evolution will not be a density matrix but an occupation matrix P.
Since both objects only differ by a factor, in principle the same equations as presented
before apply also for the occupation matrix. However, as already mentioned, some
modifications are necessary to preserve the Pauli principle.
Let us commence now with a dissipator similar to (3.54), but in diagonal form

γij = δijγi and without frequency dependence. Let furthermore as before d refer to
the number of eigenstates in the system, the dimension of the Hilbert space. To
describe the equilibration mediated by an external bath we choose jump operators

Ŝi = F̂nm = ∣n⟩ ⟨m∣ , n,m = 1, . . . , d . (3.55)

Each operator F̂nm describes a transition of a particle from state m into state n.
And each such operator adds a summand to the dissipator. The explicit structure
of an individual summand is given by adapting a specific jump operator and the
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occupation matrix (2.67) to the parenthesized term in (3.54)

L̂nm = F̂nmP̂F̂ †
nm − 1

2
(F̂ †

nmF̂nmP̂ + P̂F̂ †
nmF̂nm)

= pmm ∣n⟩ ⟨n∣ − 1
2∑i

(pmi ∣m⟩ ⟨i∣ + pim ∣i⟩ ⟨m∣) .
(3.56)

The time dependence of P̂ is omitted in favor of a compact notation. Written as a
matrix L̂nm has just two nonzero diagonal elements (L̂nm)nn = pmm = −(̂Lnm)mm

L̂nm =
n

m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1
2p1m

⋱
pmm −1

2pnm
0 ⋮

−1
2pm1 . . . −1

2pmn . . . −pmm . . .
⋮

−1
2pdm 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

n m

. (3.57)

Since the diagonal elements of the occupation matrix represent the eigenstate oc-
cupation numbers, the diagonal elements in the matrix form of the generator ˆ̂L(P̂)
represent the change of the eigenstate occupations. In the demonstrated case of a
jump from state m to state n, the occupation in state m is reduced and the same
amount of occupation is added to state n. In this way the dissipator is traceless and
the number of particles in the system is conserved.
The offdiagonal elements of the occupation matrix represent coherent superposi-

tions of different states, which are a characteristic feature of quantum mechanical
systems. The matrix L̂nm, as contribution of the jump F̂nm to the dissipator, has
nonzero offdiagonal elements within the mth column and the mth row, implying de-
creasing coherence of state m with all other states. This reduction of coherences is
called dephasing and involves a reduction of quantum phenomena such as interference
effects.
Each summand in (3.54) corresponds to a matrix L̂nm that incorporates a specific

jump F̂nm into the time evolution of the quantum system. The total dissipator is the
sum of all of these jump contributions each weighted with an individual prefactor γnm.
This weighting factor γnm of each jump m→ n indicates the rate or probability of the
corresponding process as well as the coupling to the heat bath. The bath is assumed
to be composed of bosons, for example phonons or magnons. In the previous section
the bath was preassigned to be in a thermal state. Therefore it is characterized by a
Bose-Einstein distribution

fBE(∆E , µ, T ) = 1
e(∆E−µ)/kBT − 1

, (3.58)

which also determines the transition probability γnm. The temperature T of the
bosonic heat bath defines the ambient temperature in a simulation. In equilibrium
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it coincides with the temperature of the Fermi-Dirac distribution of the electronic
occupation numbers. The energy difference ∆E is the amount of energy that is
exchanged between the system and the heat bath. It corresponds to the energy that
is absorbed or emitted during the jump F̂nm and therefore is defined by the energy
difference ∆E = ∣En − Em∣ of the corresponding eigenstates. The chemical potential
of the bosons is usually set to a value infinitesimally below zero to avoid numerical
problems in case of a vanishing energy difference. For a jump with a small energy
difference the distribution yields a very high value – there are more bosons available
than for jumps between eigenstates with distant eigenenergies. While in the first case
the jump Fnm happens with a very high probability γnm, it will hardly ever happen
in the latter case.
Now we have to revisit Section 2.3 and the discussion about Ne-representability.

As the system is described by the occupation matrix, there is effectively just one
particle in the system whose particle number is scaled up to Ne, the total number
of particles in the simulation. There is no interaction between the different electrons
included in this simulation. Therefore compliance with the Pauli principle (2.68)
has to be ensured artificially. Within our model with mean occupation numbers
this is realized by an additional scaling factor entering the transition rate γnm. As
well established within e.g. the Boltzmann theory, the probability of a transition
is increased with higher occupation of the initial state m and reduced by higher
occupation in the final state n. In case of a fully occupied final state the transition
is prohibited by the Pauli blocking factor

πnm(t) = pmm(t)(1 − pnn(t)) . (3.59)

Similar blocking factors are used in a Lindblad equation in [84]. The implications of
such scattering rates will be briefly discussed in Section 3.4.1.
Finally also the different spin character of states m and n has to be taken into

account. To differentiate between spin-flip and spin conserving transitions the spin
alignment of both eigenstates has to be incorporated. Therefore two different transi-
tion probabilities γsf and γsc are introduced. They can be understood as rates for spin
conserving or spin-flip scattering events, respectively. The spin-dependent transition
probability between two states with sn and sm, as degree of spin polarization along
z-direction, is defined as

γspin =
1 + sn ⋅ sm

2
γsc +

1 − sn ⋅ sm
2

γsf . (3.60)

Combining these three ingredients - Bose-Einstein distribution, Pauli blocking, and
spin-dependent scattering rate yields [23]

γnm(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γspin πnm(t) [fBE(∆E , µ, T ) + 1] Em > En
γspin πnm(t) fBE(∆E , µ, T ) Em < En
γdp n =m

(3.61)
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This definition includes a distinction between de-excitation and excitation depending
on the relation of initial and final energy. In a scattering-process picture this trans-
lates into emitting and absorbing a boson. Between both cases the boson occupation
factor differs by 1. The first case is associated with a transition from a higher en-
ergy level to a lower energy level. Thereby the electron system looses energy which
is transferred to the bosonic bath. Vice versa this holds for an excitation process.
Both, excitation and de-excitation processes, happen simultaneously but with indi-
vidual rates differing by the occupation factor and the Pauli blocking. Therefore the
coupling to an external bath in form of the dissipator does not just allow to include
the loss of the laser energy from the electronic system to the heat bath. Even more
it enables an exchange of energy that leads to thermalization of the system. Starting
with an arbitrary artificial occupation of the electron system the interaction with the
bath will bring the system back to a Fermi-Dirac occupation with a temperature T
defined by the heat bath.
The definition (3.61) contains also the rates γnn, appertaining to the operator F̂nn.

In this particular case it does not represent a jump but instead a transition from state
n back into state n. As evident from (3.57) the associated matrix L̂nn is traceless, the
occupation of the eigenstates is unchanged and the system energy is conserved. How-
ever, the offdiagonal elements of the occupation matrix are reduced. As mentioned
before this process is called dephasing and since in this case the diagonal elements
are not affected it is a pure dephasing. It takes place on an individual timescale
defined by the parameter γdp.
Including all previous definitions the total dissipator is the sum of all real and

improper transition processes (3.56) and their individual weighting

ˆ̂D(P̂(t)) = ∑
nm

γnmL̂nm . (3.62)

Eventually, the equation of motion is now given by

d
dt

P̂(t) = −i [Ĥ(t), P̂(t)] + ˆ̂D(P̂(t)) . (3.63)

The optical excitation is included in the time-dependent Hamiltonian Ĥ(t) according
to one of the demonstrated procedures (2.31) or (2.44) and yields a coherent time
evolution.

3.4.1. Nonlinear quantum master equations

To enforce the Pauli principle we introduced Boltzmann-like weighting factors (3.59).
These depend on the time-dependent occupation numbers pii(t), and with this the
Lindbladian for the time-dependent occupation matrix depends on the occupation
matrix itself. Consequently, the generator of the associated time evolution is no
longer linear. Instead the generator is of a parametric Lindblad form [65]

d
dt
ρ̂(t) = ˆ̂L[ρ̂(t)] ρ̂(t) . (3.64)
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For each fixed density matrix ρ̂ this equation is a Lindblad-type master equation
and its generator ˆ̂L depends on the density matrix. The existence of a unique so-
lution is discussed by Alicki and Messer [85]. They formulate certain conditions to
the boundedness of the generator ˆ̂L. As defined in Section 3.2.1 the solutions are
represented by a one-parameter family of nonlinear maps. Again these maps have to
be trace-preserving, fulfill the semigroup property and be continuous in t for every ρ̂.

Nonlinear master equations emerge especially in the context of mean-field ap-
proaches. If, like in our case, a many-body system is approximated by a one-particle
density matrix, the dynamics of this one-particle density matrix is described by a
nonlinear master equation. Also the quantum Boltzmann equation can be expressed
in a parametric Lindblad form. For example Rosati et al. [84] derive a Boltzmann-
type scattering equation by using a nonlinear Lindblad superoperator.

3.5. Charge and spin currents
To obtain an expression for currents within the presented model we follow a derivation
by Mahan [55]. Since there is no direct representation of velocities within the model,
we will instead use the polarization operator

P̂ = ∫ d3r r̂ρc(r) . (3.65)

By inserting the continuity equation for the charge density ρc

∂

∂t
ρc(r, t) = −∇ ⋅ ĵ(r, t) (3.66)

its time derivative is connected to the particle current

∂

∂t
P̂ = −∫ d3r r̂∇ ⋅ ĵ(r, t) = − (̂j(r, t)r) ∣∞−∞ + ∫ d3r ĵ(r, t)∇r = ĵ(t) . (3.67)

The first term vanishes assuming symmetric boundary conditions with equal incom-
ing and outgoing currents into the sample. Within the tight-binding model the
polarization operator comprises a sum over sites Ri, each with its individual mean
occupation numbers. Using second quantization the polarization operator and the
tight-binding Hamiltonian are defined as

P̂ = ∑
i

Riĉ
†
i ĉi (3.68)

and
Ĥ = ∑

k l

tklĉ
†
l ĉk , (3.69)

with the matrix elements tkl = ⟨k∣Ĥ∣l⟩ and creation and annihilation operators ĉ†
l

and ĉl of an electron at site l. ĉ†
l ĉl is thus the corresponding number operator. The
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current can now be calculated as the time evolution of the polarization operator

ĵ = i
h̵
[Ĥ, P̂] = i

h̵
∑
kli

(tklĉ†
l ĉk ĉ

†
i ĉiRi −Riĉ

†
i ĉiĉ

†
l ĉktkl)

= i
h̵
∑
kl

tklĉ
†
l ĉk (Rk −Rl) .

(3.70)

The above summation includes all sites and therefore gives the total current. To
obtain the specific current from Rk to Rl the summation has to be restricted to
the orbitals located at these sites. At this point the single index is replaced by an
extended index k → (kiσ) to represent site, orbital and spin separately. Switching
back to Dirac notation the current from site k to site l reads

ĵlk =
i
h̵
∑
iσ,jσ′

∣liσ⟩ tliσ,kjσ′ ⟨kjσ′∣ (Rl −Rk) . (3.71)

Since tkl = t∗lk and pkl = p∗lk due to the Hermiticity of Hamiltonian and occupation
matrix, we arrive at the condensed expression

J lk = ⟨̂jlk⟩ =
i

2h̵

⎡⎢⎢⎢⎢⎣
∑
iσ,jσ′

pkjσ′,liσtliσ,kjσ′(Rl −Rk) + ∑
jσ′,iσ

pliσ,kjσ′tkjσ′,liσ(Rk −Rl)
⎤⎥⎥⎥⎥⎦

= −(Rl −Rk)
h̵

∑
iσ,jσ′

Im [pkjσ′,liσtliσ,kjσ′] . (3.72)

If only spin conserving hoppings are taken into account, which is a reasonable as-
sumption for collinear systems, this expression reduces further to a sum over pure
spin-up and spin-down currents

J lk = −
(Rl −Rk)

h̵
∑
ij

Im [pkj↑,li↑tli↑,kj↑ + pkj↓,li↓tli↓,kj↓] . (3.73)

From here on we can proceed to formulate spin currents. A proper definition of a
spin current and its continuity equation is however not trivial because the spin is not
a conserved quantity [86], [87]. Here we will proceed with the common definition of
a spin current

Jµlk =
1
2
⟨Σµĵlk + ĵlkΣµ⟩ , (3.74)

with the Pauli matrices Σµ, µ = x, y, z. Using matrix notations

(pσσ
′

kl )
αβ

= pkασ,lβσ′ and (tσσ
′

kl )
αβ

= tkασ,lβσ′ (3.75)

one arrives at a compact formulation

Jµlk =
i

4h̵
(Rl −Rk) tr(p↑↑kl p↑↓kl

p↓↑kl p↓↓kl
){Σµ,(

t↑↑lk t↑↓lk
t↓↑lk t↓↓lk

)}
+
+ (k↔ l) . (3.76)
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The trace includes also all orbital indices. The resulting sums contain spin-mixing
elements within the occupation pσσ′kl or within the hopping component tσσ′kl . In par-
ticular currents Jxlk and Jylk are composed of such spin-mixed summands.

Throughout this work we maintain a scenario of collinear spins aligned along the
z-axis and neglect all spin-mixing contributions σ ≠ σ′. As a consequence the spin
current vanishes for µ = x, y. This corresponds to the intuitive two-current picture.
Results of evolve beyond two-current approximation are published in [88]. However,
in the present work the spin current takes a form similar to the charge current (3.73),
it is not the sum but the difference of spin-up and spin-down currents

Jzlk = −
(Rl −Rk)

h̵
Im∑

αβ

(pkα↑,lβ↑tlβ↑,kα↑ − pkα↓,lβ↓tlβ↓,kα↓) . (3.77)

The direction of the current is specified by the sign of the resulting sum and the vector
between sites k and l. Expressions (3.73) and (3.77) contain the hopping parameters
and the delocalized occupation between orbitals at different sites. In contrast, the
more conventional definition of currents uses the velocity instead. Within our model
we do not have access to velocities as it is a simulation of occupation at fixed orbitals
and not a simulation of moving particles. Nevertheless the above derivation is valid
on its own and the connection from hopping and delocalized occupation to velocity
is just a question of interpretation.
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4. Results

4.1. Technical and numerical details
To construct a system, at first its geometry has to be defined, like illustrated in
Figure 2.1. An appropriate number of cells along the respective lattice vectors, the
boundary conditions as well as the atomic positions within the cell have to be chosen.
In the following mostly an fcc lattice is used to simulate Co or CoCu layers. To model
CoCu layers with a (100) interface and magnetization parallel to this interface [89] a
tetragonal two-atomic unit cell is applied. Its lattice vectors in terms of the lattice
constant a are

a1 = (a,0,0), a2 = (0,−a/2, a/2) and a3 = (0, a/2, a/2)
with basis atoms at b1 = (0,0,0) and b2 = (a/2,0, a/2) .

(4.1)

Next the Slater-Koster-parameters and the number of electrons have to be defined
to simulate a specific material. The Slater-Koster-parameters are obtained by fitting
the tight-binding to an ab initio band structure. This is either realized with home-
made data and code or by using values from literature [40]. The interface hopping
parameters between orbitals of different atomic character are chosen as the mean
values of corresponding neighboring atoms in first approximation.
The parameters for SOC of d orbitals are chosen in comparison to ab-initio cal-

culations for Co and Cu. For other materials parameters form literature were used
[40], [90], [91]. The influence of SOC of p orbitals was assumed to be negligible.
The chosen geometry does not just affect the possibility to observe extended phe-

nomena like currents throughout the system. It also directly affects the magnetiza-
tion, excitation and relaxation. This is due to the increasing number of eigenstates
with increasing number of sites. The simulation of just one atom with periodic
boundary conditions yields the eigenenegergies at the Γ-point of the corresponding
band structure. By adding more and more sites new eigenvalues emerge belonging to
higher k-values. This way gradually the band structure is sampled and more eigenen-
ergies become accessible. A dense spectrum of eigenstates is necessary to properly
simulate demagnetization and relaxation of large systems. The dynamics can also be
affected by exclusion of hoppings between special orbital pairs due to a restriction
in the system geometry. For all these reason it is essential to choose an appropriate
geometry and a sufficient system size.
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The available eigenstates are filled by a fixed number of electrons from lowest to
highest energy, according to the Fermi-Dirac distribution. The Fermi-Dirac distri-
bution emerges automatically by interaction with a thermal heat bath of the given
temperature.

To include laser excitation the pulse length, strength, polarization, angle of inci-
dence and excited sites or orbitals have to be defined. In general we apply a laser
with a pulse width of τ = 10 fs and a photon energy of h̵ω = 1.55 eV. These val-
ues were chosen based on common experimental setups [17], [92]. The electric field
amplitudes were chosen as to generate a number of excited electrons compatible to
experiments [69]. The electric field amplitudes are in a range of 1.4 ⋅ 109 V/m up
to 2.8 ⋅ 109 V/m and the corresponding fluences F =

√
π
8 cε0τE

2
0 lie in a range of

3 mJ/cm2 to 13 mJ/cm2 and sometimes even higher fluences were used. The range
of applied fluences includes also very high fluences beyond the scope of most exper-
iments. However, in small model systems with a finite number of sites a different
energy absorption is expected than in large model system or in experiment, due to
the limited number of discrete energy levels in the small systems in comparison to an
(approximately) continuous energy spectrum in larger ones [93]. Therefore in com-
parison with experiments it is more convenient to measure the degree of excitation
in terms of the number of excited electrons.

As a default linearly polarized light is used with the corresponding electric field
at an angle of 30○ towards the z-axis. This setting was chosen to avoid any loss
of generality because it includes components parallel as well as orthogonal to the
interface and the magnetization, respectively. The influence of various polarizations
will be discussed in detail in Section 4.2.6.
In realistic samples with layer thicknesses of several tens of nm the intensity of the

laser is decreased due to absorption in previous layers. In the following simulations
nevertheless a constant laser intensity throughout the entire system is applied. The
influence of a declining laser intensity and arising additional effects are presented in
detail in Section 4.4.1.

The Lindblad parameters as defined in (3.61) are set to approximately reproduce
experimental relaxation times. The chosen relaxation rates of γsc = 2 ⋅ 10−4 fs−1,
γsf = 2 ⋅ 10−6 fs−1 and γdp = 5 ⋅ 10−2 fs−1 correspond to timescales of 5 ps, 500 ps and
20 fs for spin conserving transitions, spin-flip transitions and dephasing, respectively.
The ambient temperature is set to 300 K in all simulations.

To perform the time propagation (3.63) different Runge-Kutta methods are im-
plemented. Mostly the Bogacki-Shampine method is used [94]. This is an adaptive
solver of order 3 with flexible time-steps. The local truncation error is estimated with
a second order method. In this way both the laser excitation with fast oscillating
occupation number as well as the following relaxation can be modeled efficiently with
an appropriate step width.
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Figure 4.1.: Outline of an ultrafast demagnetization experiment at an FM|NM inter-
face. FM material in cyan and NM material in magenta.

4.2. Ferromagnetic/nonmagnetic heterostructures
The first experiments on ultrafast demagnetization were realized in ferromagnetic
bulk systems such as nickel or cobalt. Soon the bulk ferromagnets were comple-
mented by another highly investigated material class: systems containing ferromag-
netic/nonmagnetic (FM|NM) interfaces. Such an interface triggers new additional
phenomena that are as well interesting for potential device applications as also useful
to exert different measurement techniques.
The first experiments on heterogeneous systems did not use FM|NM systems but

instead differently aligned ferromagnetic materials separated by a spacer [95]–[97].
The intention was to enhance demagnetization by enabling a flow of angular momen-
tum between layers with an antiparallel alignment of magnetization in contrast to
a parallel one. In a similar way demagnetization can be enhanced by an adjacent
nonmagnetic layer. In addition to local exchange of angular momentum, a superdif-
fusive spin transport of hot electrons within the nonmagnetic material was proposed
[32] and discussed [98] as an important contribution to demagnetization. Angular
momentum is carried away from the ferromagnet by an ultrafast generated spin cur-
rent. The generation of this spin current is already interesting on its own. Firstly
the details of its generation process are still to be comprehended thoroughly. Sec-
ondly this mechanism can be utilized to deliberately generate spin currents by laser
irradiation, to trigger further spintronic phenomena. For example when reaching the
backside of the NM layer, the spin current can exert a spin-orbit torque on an addi-
tional ferromagnetic layer. In this way it can be used to rotate the magnetization of
the adjacent layer. This mechanism can be utilized for magnon generation within an
adjacent layer [7].
While the spin current traverses the nonmagnetic layer, a charge current is gener-

ated via the inverse spin Hall effect. As shown in Figure 4.1, the charge current is
transversal to both, the directions of the spin current and spins. The inverse spin Hall
effect depends crucially on the strength of spin-orbit coupling. Therefore usually 3d
heavy metal materials are used as nonmagnetic layer. The generated charge current
builds up and subsides again together with the spin current on an ultrafast timescale.
It induces an oscillating electric dipole which emits radiation with a frequency de-
termined by the built up and subsiding timescales of the spin current. Its frequency
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Figure 4.2.: The evolution of normalized magnetization in a two-dimensional CoCu
cluster is shown on the left. The result for the entire sample (black) is
decomposed into contributions from the Co region (cyan) and Cu region
(magenta), respectively. The laser pulse is indicated as a thin grey line
in arbitrary units. A schematic outline of the system geometry is shown
on the right-hand side.

usually is in the range of several terahertz. This is exactly the so-called terahertz gap.
Therefore ferromagnetic nonmagnetic interface system attract attention as possible
terahertz sources for diverse applications [11], [12].
Due to the ultrafast timescale, the charge current is hard to measure electrically.

Instead the emitted THz radiation can be detected electro-optically. As a result of
the ulftrafast demagnetization also the FM layer emits a magnetic dipole radiation.
The resulting terahertz signal is however one order of magnitude smaller than that
emitted by the NM layer [8], [10].
The FM|NM setup allows to access the dynamics of the spin current in the NM and

corresponding demagnetization in the FM layer experimentally [9]. The crucial point
is the generation of the spin current at the interface. Understanding the mechanisms
its generation allows to predict and tune the emitted frequency. This enables to design
interfaces made of optimized material combinations, that will yield an amplified and
broadened THz radiation [11], [12].
Summarizing, ultrafast dynamics in ferromagnetic/nonmagnetic interface systems

are as well interesting for potential applications and also exhibit interesting mecha-
nisms yet to be fully understood. This makes them a worthwhile object for theoretical
investigation.

4.2.1. Excitation within CoCu

The results presented in the following two sections are published in [23].
As a first FM|NM model system we study a two-dimensional cluster of Co and Cu

atoms. Both layers contain 4 × 5 atoms forming a magnetic/nonmagnetic (100) in-
terface. Periodicity is applied along the lattice vectors parallel to the interface. The
magnetization is aligned along z-direction. This is also parallel to the interface. We
assume a uniform fcc lattice for both atomic species. Cobalt usually crystallizes in an
hcp lattice. But for a thin Co layer on a Cu substrate the fcc structure chosen for the
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simulation is experimentally verified [89]. The time evolution of in total 40 atoms is
simulated under the influence of ultrashort laser excitation. The details of the laser
excitation and the Lindblad parameters are defined as introduced in Section 4.1. A
sketch of the model geometry is presented in Figure 4.2.
At first the time evolution of magnetization under excitation shall be investigated.

Within the basis of atomic orbitals the magnetization is defined as the difference of
occupation in spin-up orbitals versus occupation in spin-down orbitals normalized to
the total number of electrons,

M(t) = N
↑(t) −N ↓(t)

N ↑(t) +N ↓(t)
. (4.2)

The magnetization of the Co or the Cu layer is defined similarly but with the corre-
sponding occupation constrained to just Co or Cu orbitals, respectively.

Mx(t) =
N ↑x(t) −N ↓x(t)
N ↑x(t) +N ↓x(t)

, x = Co, Cu, tot... . (4.3)

The time evolution of these observables is depicted in Figure 4.2. The magnetization
of the individual layers and the total system are all presented in relation to the
initial magnetization of the total system M0 =Mtot(t = 0). With the rise of the laser
intensity the magnetization of the Co layer starts to decrease down to a minimum of
almost 60 % at 20 fs after the pulse peak. The demagnetization of the total system
follows with a delay of 5 to 10 fs. Its magnetization drops down to around 70 % of its
initial value 33 fs after the pulse peak. Within the initially almost nonmagnetic Cu
layer an increase of magnetization is observed. It reaches its maximum already during
the laser pulse 6 fs after peak time. Combined with the delayed demagnetization of
the total system this observation already answers the controversy of demagnetization
by spin flip versus spin transfer in CoCu. In agreement with experimental results we
find that in CoCu spin transport is the dominant contribution to demagnetization
[16], [92]. The fast transfer of angular momentum from Co to Cu is indicated by
the simultaneous fast decline of magnetization in the Co layer and enhancement
of magnetization in the Cu layer. Within this process the global magnetization is
not reduced but the magnetic moments are redistributed. The spin flip processes
reduce the global magnetization and happen on a slightly longer timescale. Majority
spins are converted to minority spins via spin-orbit coupling and the accumulated
magnetization in Cu is decreased.
Next the time evolution within the occupation of the system’s eigenstates shall

be investigated. Figure 4.3 shows snapshots of the discrete distribution based on
the eigenstates of the equilibrium Hamiltonian H0 at four different times: 50 fs prior
to the pulse peak at equilibrium, exactly at the pulse peak and at 10 fs and 100 fs
after the pulse peak in Panels a,b,c and d. Long before the laser pulse the eigenstate
occupation reproduces a room temperature Fermi-Dirac distribution at 300 K.
Under the pulse peak the distribution is strikingly perturbed and differs signif-

icantly from a thermal distribution. As expected the occupation is decreased at

55



5 0 5 10 15 20 25
 (eV)

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

pa
tio

n

spin up
spin down

-50 fs
a

5 0 5 10 15 20 25
 (eV)

10 fs
c

5 0 5 10 15 20 25
 (eV)

100 fs
d

5 0 5 10 15 20 25
 (eV)

0 fs
b

Figure 4.3.: Energy- and spin-resolved mean occupation numbers of eigenstates of the
Hamiltonian Ĥ0. The spinpolarization of each eigenstate with respect to
the z-axis is represented on a color scale from red (majority spin) to blue
(minority spin). Results are shown for times t = −50 fs (a), 0 fs (b), 10 fs
(c), and 100 fs (d), respectively. The chemical potential is 0 eV.

states below and increased at states above the Fermi energy. The distribution is
highly unthermal with a striking amount of occupation in very high-energy states.
This phenomenon can be assigned to the discrete nature of the systems’ energy spec-
trum. Since just a limited number of states is available in vicinity to the Fermi
energy, the energy delivered by the laser irradiation is distributed to higher energy
states. In addition to that, two kinks are visible at about −3 eV and at 0 eV.

Already at 10 fs after the pulse peak the electronic distribution starts to thermalize.
Less high-energy states are occupied, but the remarkable structure around the Fermi
energy is still visible. The origin of this structure will be discussed in detail in
the following section. For now it shall just be pointed towards the prevalence of
eigenstates with minority spin character within this structure.
At 100 fs the outstanding kinks have vanished and the distribution has adapted to

a high temperature Fermi-Dirac distribution. The electronic system has thermalized.
Nevertheless in comparison with a Fermi-Dirac distribution there are still too many
excited states at the high-energy tail. A Fermi-Dirac distribution fitted to the almost
thermalized distribution belongs to an unphysically high temperature.
Figure 4.3 proves that the electronic temperature is not well defined during the

first hundreds of femtoseconds of optical excitation. Therefore a comparison of the
perturbedly occupied eigenstates with a Fermi-Dirac distribution is not the best
way to estimate the magnitude of the laser excitation and also the three-temperature
model is highly questionable throughout this time span. Other approaches to quantify
the extent of laser excitation were presented in Section 2.3.2. The number of excited
electrons as defined in (2.75) was also applied experimentally by Rhie et al. [69] by
evaluating the photoemission intensity above EF . They found a number of up to 0.5
excited electrons per atom which is within the same order of magnitude as our result
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of up to 1.2 excited electrons per atom. In the presented simulation we admittedly
applied a rather strong laser excitation causing a strong demagnetization of 60 %,
but the amount of excited electrons seems still realistic.

4.2.2. Minority spin backflow across the interface

Different explanatory approaches concerning the origin of the spin current at the
interface will be discussed in this section. The first explanation concentrates on the
excitation of majority carriers by the laser pulse. This approach is mostly used in
the context of superdiffusive spin transport [7], [30], [32], [33]. Therein the demag-
netization of the ferromagnetic layer is explained by the spin- and energy-dependent
velocity and transmittance of the ferromagnetic/nonmagnetic interface. This trans-
mittance is high just for high-energy majority carriers. It is argued that, for this
reason, mainly the excited majority carriers can traverse the interface and form a
spin current propagating through the nonmagnetic layer. In the same way the differ-
ence of spin- and energy-dependent carrier velocities within the nonmagnetic layer is
used to substantiate the primacy of the majority carriers. While the minority carri-
ers’ velocity stays low over a broad energy range, the majority carriers exhibit up to a
five times higher velocity. Because of these reasons, the theory of superdiffusive spin
current proclaims the high-energy majority carriers to be the main constituent of the
ultrafast spin current, whereas the contribution of minority carriers is supposed to
be almost negligible. The contribution of vacancies below the Fermi energy created
by the excitation of electrons, namely holes, is not taken into account at all. They
are assumed too slow and therefore of no significance.
Indeed the dynamics of holes and refilling of vacancies is of increased importance

if the reoccupation between neighboring interface atoms of different species is con-
sidered. This kind of redistribution of occupation is for example described by the
mechanism of optically induced inter-site spin transfer (OISTR; Ref. [22]). Firstly
applied to antiferromagnetic materials it was shown that the laser pulse triggers a
transfer of magnetic moments between neighboring sites of antiparallel spin. A possi-
ble result is the reversal of magnetic moments in one of the antiferromagnetic layers.
This mechanism happens on an even shorter timescale than the ultrafast demag-
netization in ferromagnetic bulk materials. The same intersite transfer mechanism
could be demonstrated by Hofherr et al. in ferromagnetic alloys [99]. Also ferromag-
netic/nonmagnetic interfaces and alloys were investigated. Chen et al. [92] analyzed
a CoCu interface, just like presented within this work, while Willems et al. [100]
and Borchert et al. [101] used Pt as a nonmagnetic material in combination with Fe,
Co or Ni. All these experimental works identify a transfer of minority carriers from
the nonmagnetic layer back across the interface into the magnetic layer as a relevant
mechanism.
Our simulations establish a similar mechanism and are in agreement with the ex-

perimental results. We likewise observe a reflow from the nonmagnetic Cu d orbitals
into empty Co minority-spin d orbitals across the interface. Hints towards an impor-
tance of this minority backflow mechanism within our results shall be presented in
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Figure 4.4.: Results of Figure 4.3 Panel c resolved with respect to orbital in Panels
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the following.
On this account, we analyze the excited occupation of the system eigenstates pre-

sented in the previous section in Figure 4.3. We focus on the distribution of the
excited electronic system at 10 fs after the pulse peak (Panel c). It shows a promi-
nent structure within the distribution of minority electrons. To identify the origin of
this structure in Figure 4.4 the results are analyzed further by projecting the eigen-
states onto the involved orbitals. Eigenstates with s and p character are spread over
a broad energy range, with former ones being more centered at low energies and the
latter ones more at the very high-energy tail. In contrast, the eigenstates with d
orbital character are located within a narrow energy window around and below the
Fermi energy. While s and p eigenstates follow approximately a high temperature
Fermi-Dirac-distribution the d eigenstates are highly nonthermal by forming the two
kinks described before. The projection with respect to the atomic species, Co or Cu,
identifies the eigenstates related to the first kink at about −3 eV as Cu states and
the eigenstates related to the second kink at EF as Co states. This insight com-
plies with the shape of the corresponding electronic band structures. Within the Cu
band structure there are just s bands at the Fermi energy and d bands are at about
3 eV below, whereas in Co the Fermi energy is located right in the middle of the d
bands. The Cu d states are completely occupied whereas the Co d states are just
partially filled with many empty states available. Therefore also in our simulation a
strong depletion of the minority Cu d states can be observed while occupation within
the minority Co d states ist increased. The reduction of Cu d↓ occupation and the
enhancement of Co d↓ occupation hints at a transfer of d↓ electrons from Cu to Co.
These results can also be extracted by studying the time evolution within the local

basis set. On this account, we switch from the 2D supercell to a 1D supercell as
depicted in Figure 4.5. The new supercell in form of a chain consists of 10 Co and
30 Cu atoms with periodicity parallel to the interface. Both setups resemble a thin fcc
Co layer on a Cu substrate with a (100) interface. The elongated geometry facilitates
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the analysis of transfer as well as currents passing through the nonmagnetic layer due
to the larger extent of the system orthogonal to the interface. All other settings are
unchanged.
In Figure 4.5 the change of occupation is shown for two neighboring interface atoms

in orbital resolution and for majority and minority occupation separately. A common
behavior for majority and minority orbitals as well in Co as in Cu is a depletion
of d orbitals and a population of p orbitals, shown in blue and green respectively.
The main process and direct influence of the laser pulse is a dipole transition of d
electrons into higher-energy p states. The transition from d to p orbitals is further
substantiated by similar slopes with opposite sign of both occupation numbers. In
contrast the occupation of s orbitals, shown in red, is modified just slightly and with
a short time delay. With s orbitals initially not fully occupied and almost empty p
orbitals an excitation between s and p orbitals is less probable in the beginning. In
comparison between all panels a significant difference can be observed in the time
evolution of Co minority occupation. Therein, instead of a depletion an enhancement
of d orbital occupation takes place. As pointed out before, this can be ascribed to
a transfer of occupation from minority Cu d orbitals to minority Co d orbitals as
indicated by the blue arrow between the corresponding panels. An exception are the
dyz orbitals. They are not involved in this transfer process because they have minimal
overlap in x-direction across the interface. Therefore also a loss of occupation can be
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Figure 4.6.: Temporal change of magnetization in spatial resolution. The magnetiza-
tion of each site is shown in relation to its equilibrium magnetization at
t = −50 fs. The y-axis represents the extent of the chain.

Figure 4.7.: Change of majority and minority occupation along the CoCu chain.

observed in Co minority dyz orbitals.
The larger longitudinal extent of the chain system yields visualization of the propa-

gation of occupation and magnetization throughout the system. Figure 4.6 illustrates
the temporal change of magnetization ∆M(t,R) =M(t,R)−M0(R) along the chain.
While a considerable demagnetization takes place in the Co area , the Cu atoms
acquire additional magnetization. Furthermore this dynamics is at first and most
distinctly visible at the interface atoms. Only afterwards with a delay of a few fem-
toseconds it propagates further through the corresponding layer. That is to say,
the additional magnetization gained by the Cu interface atoms spreads through the
Cu layer and equally the loss of magnetization travels through the Co layer. With
the propagation velocity determined by the hopping constants the transferred spin
momentum reaches the end of the chains after not more than 5 fs.

These transfer processes can be analyzed furthermore by studying the loss and
gain of occupation at each site in spin and orbital resolution. This is realized in
Figure 4.7. The changes of majority occupation are much weaker than the changes
of minority occupation. But in both cases occupation is lost in the Cu layer and
redistributed to the Co layer. While this is just faintly visible in case of majority
orbitals, the contrary is the case regarding the change of minority occupation. A
distinct gain of occupation can be observed within the Co minority orbitals while
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Figure 4.8.: Currents along the extent of the chain (y-axis). Left panel: charge and
spin currents. Right panel: currents between majority d orbitals or mi-
nority d orbitals only. Note the different color scales in arbitrary units,
which also indicates the transport direction towards the upper Cu edge
(red) or the lower Co edge (blue) of the sample. The colored dashed lines
facilitate en estimation of velocities.

the Cu minority orbitals are depopulated. Just like the previous observations, this
disparity within the sample hints to a transfer mechanism between the Co and the
Cu layer.
Finally it has to be mentioned, that within a many-body calculation, and also

in physical reality, the observed charge accumulation would not persist for such a
long time. On the contrary, due to electrostatic repulsion between the electrons an
additional redistribution would be observed, which homogenizes any charge accu-
mulation. However, within our effective single-particle-density matrix approach this
effect is not yet reproduced.

Currents

Figure 4.8 presents the calculated charge currents and spin currents as well as major-
ity and minority currents within the d orbitals of the CoCu chain. Since the discussed
model system is collinear with the spin quantization axis along the z-direction the
currents can be calculated according to the definition (3.73) and (3.77). In case of
the d currents this summation is restricted to just d orbitals. Both, the charge as well
as the spin current are presented in the following without the prefactors shown in the
definitions, the site distance and e or h̵

2 , respectively. By omitting these factors the
currents show the sum or the difference of spin-up and spin-down particle currents.
In 2D plots with color maps the results were multiplied by a factor of 100.
For all plots of currents holds: red color represents currents moving along the x-
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axis from the FM layer towards the NM layer, whereas areas of blue color reversely
represent currents moving from the NM layer back to the FM layer. In Figure 4.8
the left panel shows clear signals from charge and spin currents flowing in opposite
directions. While the charge current flows from Cu into Co, a spin current flows
from Co into the Cu layer. Both consist of a fast and a slower contribution and
are initiated at and centered around the interface. From there both currents expand
covering almost the entire sample. This expansion happens at a high velocity of more
than 0.9 nm/fs, as indicated by the left dashed red line.
In both cases disturbance at the edges and oscillations occur. Most pronounced

such oscillations are visible in s currents shown in Figure 4.15 as alternating blue and
red stripes which are evenly distributed throughout the whole chain. The oscillations
can be ascribed to components of the electric field of the laser light parallel to the
chain direction. These are triggering a motion of electronic charge together with the
electromagnetic oscillations. After the laser pulse is gone also the oscillating charge
currents rapidly subside.
The currents between d orbitals, shown in the right of Figure 4.8, likewise exhibit

some small oscillations during the laser excitation and also some weak dynamics at
the interface and the chain edges. However, in the minority d orbitals the propagation
from the Cu layer to the Co layer is strongly pronounced and dominates the dynamics.
Especially within the Cu layer the currents between minority d orbitals exhibit a
distinct structure that reveals a backflow from Cu into Co and is visible as a broad
blue stripe. This corroborates the backflow of minority occupation deduced from
Figure 4.4. Starting at the interface initially only minority d orbitals of the first Cu
atoms are depleted and then refilled by minority d electrons of subsequent Cu atoms
creating a current pointing in −x-direction back to the Co layer. In this manner the
minority d current propagates through the Cu layer eventually being reflected at the
sample edge and finally attenuated and quenched due to dephasing. This reversely
also happens within the Co layer where the minority d occupation provided by the Cu
layer spreads from the interface to the sample edge. The currents in the Co regions
are strongly modulated due to reflection of electrons at the sample’s Co edge and at
the interface.
The current of minority d electrons flowing from Cu to Co contributes to the spin

current in the reverse direction. It is the slow component of the spin current visible
in the left panel of Figure 4.8 and indicated by the second dashed red line. With an
estimated velocity of 0.26 nm/fs this minority d current is relatively slow compared
to the rest of the spin current, as illustrated by the different slopes of the lines. The
calculated velocities associated with the ballistic currents in the Cu region agree with
energy-dependent velocities calculated for gold and iron (nickel) [30], [102].
By this analysis we distinguished two induced currents within the sample: a flow

of hot, highly mobile s and p electrons complemented by a reflow of ‘tepid’, weakly
mobile d electrons. In the presented model system the backflow of minority d elec-
trons seems comparably weak with respect to faster processes. Both contributions
will be quantified in Figure 4.24.
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Origin of the spin current

The interface can clearly be identified as the source of the spin current, which strongly
reinforces the demagnetization in the magnetic layer. But what triggers the transfer
mechanism across the interface? In case of diffusive transport particles move along a
gradient. In the presented model a conventional global gradient can not be identified.
Within this model it is more appropriate to speak instead of local imbalances. Before
excitation with the laser the interface occupation reaches an equilibrium situation.
Then the laser pulse excites Co and Cu atoms in a different way and thus causes a
local imbalance of occupation at the interface atoms. An interface may therefore be
regarded as an additional source of nonequilibrium.
Another origin of local imbalances is for example the excitation at a sample edge.

Also in this case the local inhomogeneity of occupation at the edge atoms leads to
different excitations and can trigger a transfer mechanism. In fact this also happens
within the studied model systems but the local imbalances created at the edge are
small compared to those at the interface.
Furthermore a gradient within the laser intensity or a gradient of an external

magnetic field can cause such transfer mechanisms. This will be discussed in Chap-
ter 4.4.1. However, in case of the presented chain system the same laser intensity
was chosen for each atom and no external magnetic field was considered. Therefore
none of these effects is present in this simulation.

4.2.3. Quantum state measures

In this section the Quantum state measures, as introduced in Section 2.3.2, will be
discussed using the example of an optical excited chain of 10 Co and 30 Cu atoms.
Similar results are presented in publication [103].
Figure 4.9 presents all introduced measures together with an outline of the tem-

poral evolution of the electric field of the laser pulse in Panel d. The depiction
focuses mainly on the perturbation of the measures under the laser pulse. At longer
timescales, not shown here, the system relaxes back to its initial state by interaction
with the heat bath and also the QSMs will return back to their initial value.
Panel a in Figure 4.9 shows the number of excited electrons per atom, starting at

0, oscillating under the pulse, then settling at a level of 1.0 before slowly declining
towards 0 on longer timescales. The number of excited electrons was used to coarsely
adjust the degree of excitation of simulation and experiment ([69]) by varying the
applied electric field amplitude.
The distance measures, fidelity in Panel f and trace distance in Panel e, as well as

the number of excited electrons exhibit strong oscillations with twice the frequency
of the laser pulse. After the laser excitation they settle on a lower value of pertur-
bation and relax back to their initial values afterwards. The redoubled oscillation
frequency can be explained by Fermi’s golden rule, which states that the transition
rate is proportional to the square of the perturbation matrix element. The matrix
element (2.35) contains the time dependence, which under the square transforms as
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∣cos(ωt)∣2 = 1
2[1 + cos(2ωt)] . Therefore the transition probability between initial and

final state does not depend on the sign of the electric field. It is largest at the electric
field’s minimal and maximal values. The electrical dipole matrix elements induce
excitation as well as de-excitation, depending on the occupation of participating or-
bitals. Nevertheless both are not reciprocal, because especially in inhomogeneous
samples occupation propagates to neighboring sites.
The purity measures, purity in Panel b and von Neumann entropy in Panel c,

exhibit a smooth course from their initial value to the value of excitation, with only
very slight oscillations together with the laser pulse.
Finally, Panels g and h compare the time evolution of QSMs with the simulated

magnetization in terms of rescaled values. Panel g shows that the purity measures P
and S exhibit a time evolution very similar to that ofMCo. While the time evolution
of the distance measures T and F shows a similar behavior as MCu.

In that sense the perturbation of the density matrix can be linked to observables.
In the present work QSM are used to identify setups that yield large perturbations.
While in quantum information theory, their usual area of application, QSMs are used
to identify least possible perturbed setups.

4.2.4. Influence of spin-orbit coupling

To pinpoint the origins of demagnetization it is necessary to tune various parameters.
As a coupling between spin and orbital momentum spin-orbit coupling (SOC) is
the most promising candidate to affect demagnetization. The influence of SOC on
demagnetization is tested by varying SOC parameters in a ferromagnetic system and

65



40 20 0 20 40 60 80 100 120 140
t (fs)

0.7

0.8

0.9

1.0

M
X
(t)

/M
0

SOC
SOC Cu
SOC Co
no SOC
MCo

Mtot

40 20 0 20 40 60 80 100 120 140
t (fs)

0.0

0.1

0.2

M
Cu

(t)
/M

0 SOC
SOC Cu
SOC Co
no SOC

Figure 4.11.: Magnetization dynamics in a CoCu chain calculated with SOC (blue),
without SOC (red), with SOC just at Cu atoms (orange) or just at Co
atoms (green). Left: demagnetization of the Co layer (full lines) and
the total system (dashed lines). Right: Enhancement of magnetization
in the Cu layer.

a FM|NM system. These are a chain of 20 Co atoms and a chain of 10 Co and 10 Cu
atoms, both with open boundaries in direction of the chain and periodic boundaries
otherwise. For this investigation the parameter λsoc is also set up to high values
beyond the regime of realistic material parameters considered in this work (cf. 4.23).
Figure 4.10 shows the decrease of initial magnetization M0 with increasing SOC.

The influence of SOC is stronger in CoCu but in both systems almost negligible for
small SOC parameters below 0.1 eV, the regime of SOC values of Co or Cu.

As expected in both systems the demagnetization increases with increasing SOC
up to almost 40 %. At higher parameter values the demagnetization saturates. Dif-
ferences between the ferromagnetic system and the bilayer system manifest in the
regime of realistic parameters. At λsoc = 0.03 eV, the material parameter of cobalt,
the ferromagnetic setup demagnetizes only by a few percent while the bilayer de-
magnetizes by more than 20 %. At zero SOC the demagnetization vanishes in the
ferromagnetic system. In contrast, in the bilayer system there is a minimal demag-
netization of about 20 % even without SOC.
These tests show that in our model the demagnetization of a ferromagnetic sys-

tem is generated by SOC and can be manipulated by SOC over a broad range (0
- 40 %). This holds also for the demagnetization of the magnetic layer in FM|NM
systems, but here the contribution of spin transfer to demagnetization is dominant
in the regime of small SOC parameters. This conclusion should similarly hold for
antiferromagnetic systems, bilayer or multilayer systems as well as for alloys; for any
system in which a transfer of angular momentum can take place between neighbor-
ing sites of differing spin polarization. To prove the minor influence of SOC in such
systems the simulations of the previous section were repeated without considering
SOC. The results thereof are presented in Figure 4.11. It shows the same results
as Figure 4.2 but in comparison to calculations with the SOC parameter set to zero
for either just Co atoms, just Cu atoms or for both. Again the results of the total
system are decomposed into contributions of Co and Cu layer, respectively.
The demagnetizations of the Co layer, shown as full lines in the left panel, coincide
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during the beginning of excitation. Only at about 5 fs after the pulse peak the
demagnetization in Co without SOC reaches a level of saturation. If SOC is taken
into account the demagnetization continues longer and reaches a lower minimum.
These findings are similar to TDDFT calculations presented in Fig. 3 of [92]. The
results with SOC in only one of both materials lay in between the other ones and
exhibit the same characteristic features. The steep decrease in magnetization at the
ultrashort timescale and directly after the laser excitation is however not affected by
SOC. This very strong and fast demagnetization is therefore an interface-generated
transfer mechanism.
In contrast, the demagnetizations in the total system behave very differently. With-

out SOC the conservation of angular momentum is only broken by the spin-flip scat-
tering rate γsf. This results in dynamics on a timescale of several hundred ps and is
visible on the presented timescale of 200 fs only as a very slight decrease of the total
magnetization, shown as a red dashed line. If this effect is accompanied by SOC, the
demagnetization of the total system happens on a timescale of about 10 fs, shown as
the blue dashed line.

The steep drop of Co magnetization is mirrored by the steep increase of Cu mag-
netization, presented in the right of Figure 4.11. In Cu the enhancement of mag-
netization is largest without any SOC, followed by the setup with SOC only within
the Co layer. Simulations with SOC in Cu and SOC in both layers are almost iden-
tical and exhibit a lower enhancement together with a stronger subsequent decline
of magnetization. In both cases fast enhancement of magnetization is attenuated by
the SOC in Cu. It serves as an exchange channel between majority and minority
occupation and leads to an equalization of both carrier species. In this way excess
magnetization obtained by angular momentum transfer between Co and Cu layers is
removed again.

The influence of SOC on the charge and spin currents is illustrated in Figure 4.12.
Again, positive values correspond to a current flowing along the x-direction from Co
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to Cu, whereas negative values correspond to a current along the opposite direction,
from the Cu layer into the Co layer. Panel a shows the time dependence of the spin
current between Co and Cu interface atoms. It is strongly centered around the pulse
with a maximum already shortly before the pulse peak at 0 fs. This indicates a
strong spin current flowing from Co to Cu which builds up and recedes together with
the laser pulse.

The above observations equally hold for simulations with and without SOC. How-
ever, spin transport seems to be just very slightly weakened by SOC. It shall be
emphasized that there is also no acceleration of spin current generation by consider-
ing SOC. The time evolution of the spin current in both simulations coincides.
Panel b of Figure 4.12 shows for each site individually the spin and charge currents

integrated over the simulation time from -50 fs to 200 fs. Both, the transferred charge
as well as the transferred spin, exhibit a similar profile throughout the sample with a
maximum directly at the interface and a decrease towards the edges. As in Panel a,
there are also no major differences between results for integrated currents with SOC
and without SOC.
From the analysis above can be concluded that in the present interface system

demagnetization in the magnetic layer and spin current injection into the nonmag-
netic layer have the same origin. And this is the transfer of electrons across the
interface. This holds true within the very first femtoseconds directly after the optical
excitation. Only more than 5 fs after the pulse peak, other mechanisms of demagne-
tization continue and become dominant. This conclusion differs from the conclusion
by Rouzegar et al. [104]. While in our simulation the interface is the main driver
of demagnetization, Rouzegar et al. state that already in a pure FM the demagne-
tization has the same magnitude and temporal evolution and thus the same origin
as the spin current generated in an interface system. A possible explanation for this
disparity are the different regimes of excitation, with a fluence of 0.1 mJ/cm2 and a
change of electronic temperature of 160 K in the experiment compared to a fluence of
13 mJ/cm2 in our simulation. A minimal degree of excitation to launch the transfer
mechanism at the interface could explain, why a interface-generated demagnetization
by spin transfer may be absent in those experiments. On the other hand such minute
excitations as in the experiment my be too small to be represented adequately on
the discrete energy scale of the simulation even for larger sample sizes.

4.2.5. A comparison with the OISTR mechanism

Results calculated with the evolve code and with TDDFT codes, such as Elk [105],
are in very good agreement with respect to timescale and degree of demagnetization
if applied to heterogeneous structures, just as FM|NM interfaces [92], [101]. Both
approaches are hinting to a strong contribution of a rapid transfer mechanism to the
demagnetization, in which minority d electrons are transferred from the nonmagnetic
to the ferromagnetic atoms. However, this agreement holds only for pulses with a
temporal duration significantly longer than 1 fs. The exact details of the mecha-
nisms implemented in both codes are fundamentally different, which manifests when
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considering subfemtosecond timescales.
In evolve the transition matrix elements induced by the laser excitation are calcu-

lated and added to the ground state Hamiltonian in form of a perturbation matrix.
Whereas in TDDFT calculations, as the Elk code, the vector potential associated
with the laser light is included directly into the system Hamiltonian. As a result not
just the optical transition as a complete process is modeled but also the displacement
of electron density in accordance with the electric field of the laser light is simulated.
An optical perturbation of the electron density needs a specific minimal amount of
time to be regarded as a completed transition process. In case of excitation times
below this threshold the description of the perturbation by a transition matrix is
oversimplifying if not questionable. It describes the results of the completed transi-
tion process and not its generating dynamics. The electric dipole approximation as
introduced in Section 2.2.2 gives the following limitation of its applicability: the time
of the excitation has to be significantly larger than the inverse frequency ∆t≫ 1/ω.
That is to say, to describe the process as an excitation by a sinusodial perturba-
tion the electric field has to perform at least some oscillatory cycles during the time
of oscillation defined by the pulse width. For shorter time intervals the sinusodial
character of the perturbative field is lost and the description in terms of transition
elements is no longer applicable [43].
Additionally, in TDDFT simulations the bandstructure and eigenstates are repre-

sented in k-space. Therefore local information has to be extracted by a projection.
Due to the mixed atomic character of the eigenstates an optical transition in the
band structure-picture does generally include more than one atomic site. If the
atomic character of the corresponding eigenstates is different the excitation process
can be viewed as a transition between different atoms. Yet this is not to be inter-
preted as a relocation process but rather as an on-site transfer between overlapping
orbitals of neighboring atoms. All together the crucial point in TDDFT simulations
is the start of a transfer process directly and simultaneously with the laser pulse.

Within evolve we chose a local representation of the system states and only ac-
counted for on-site optical excitation. Therefore, optical transition matrix elements
are nonzero only if the interacting orbitals are centered at one and the same atomic
site. Thus, the transfer mechanism as depicted in the previous section cannot be
achieved directly by an optical excitation. The optical excitation rather introduces
a local inhomogeneity within the occupation numbers which acts like a gradient and
causes a transfer between the overlapping orbitals centered at neighboring atoms. In
the tight-binding model this transfer is realized by the interatomic hopping. In this
case the laser induced transfer does not happen simultaneously with the laser excita-
tion but rather as a two-step process of on-site excitation and subsequent interatomic
hopping. Within our evolve approach the limiting timescale of about one femtosec-
ond for transfer generated demagnetization is therefore determined by the hopping
parameter between neighboring atoms. The transfer mechanism is initiated as soon
as a perturbation of occupation numbers builds up. Therefore, it can already start
and also happen during the optical excitation. For all excitation processes happen-
ing on even shorter timescales, like for example attosecond excitation, the transfer
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and with it also the demagnetization process will happen mostly when the optical
excitation is already over. Within evolve an attosecond optical excitation would ex-
hibit a minimal demagnetization time of about 1 fs. In contrary the demagnetization
simulated by the elk code would mostly happen during the laser pulse.
TDDFT and evolve results therefore can only coincide if the pulse width is long

compared to the hopping timescale. This is realized for a pulse width of at least 10 fs.
Keep in mind that the above considerations are true for transfer generated demag-

netization processes. In ferromagnetic bulk materials the demagnetization times are
mainly determined by the strength of spin-orbit interaction.

4.2.6. Varying laser polarization

The polarization of the applied laser light can be oriented differently with respect
to the interface and the magnetization of the sample. As a result the direction
of the corresponding electric field in combination with the orbital orientation does
enable or forbid certain transitions and therefore allows certain components of spin
polarization. If a mirror symmetry Mi ∶ (ijk) → (−ijk) is present in the system it
prohibits spin polarization parallel to its mirror plane, in this case in direction j and
k. Only Si is even underMi and allowed in the system. In order to optically induce
a spin polarization the electric field of the laser has to break mirror symmetries of
the system.
Copper exhibits the symmetriesMx,My andMz. Therefore, no global spin po-

larization can be achieved if the electric field is aligned parallel to a Cartesian axis.
In cobalt the symmetryMz is already broken by the finite magnetization Mz and in
the bilayer system the symmetry is reduced further by the presence of the interface.
A similar symmetry analysis is presented in [88], illustrated by evolve-simulations
of Cu, Co and CoCu systems, while an extended analytical analysis can be found
in [51]. The above suggests a more effective excitation and demagnetization for elec-
tric field directions far away from the symmetry axes of the system. This shall be
investigated in the following.
In Figure 4.13 the influence of laser polarization on the demagnetization is inves-

tigated systematically. The model system under considerations is the same as in
the previous sections: a chain of 10 Co and 30 Cu atoms along the x-direction. In
addition a three-dimensional cluster of 16 Co atoms and 16 Cu organized in cubic
4-atomic unit cell is investigated. By choosing this geometry an equal extent of the
cluster along all Cartesian axes is ensured. In both geometries the interface normal
points along the x-direction and periodic boundaries are applied along y- and z-
directions. Certain variations were introduced to the original setup shown in orange.
The blue line represents a system with the magnetization of the Co atoms pointing
along the x-axis, orthogonal to the interface. The red graph shows results of the op-
tical excitation calculated by the substitution introduced in Section 2.2.2. And the
green graph shows demagnetization in a pure Co system. Each system is set up in the
same size and geometry as the original CoCu system under consideration and each
data point represent the maximal demagnetization generated by the corresponding
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Figure 4.13.: Top: demagnetization in the Co layer of a CoCu chain excited by differ-
ently polarized light. In case of linearly polarized light (left), the x-axis
shows the direction of the electric field and the angle α with respect to
the prior coordinate axis on the left. RD shows the results for one of
the space diagonals. Equivalently the incidence direction of the laser is
indicated for circularly polarized light. In this case the electric field is
orthogonal to the respective direction and empty markers represent the
reversed helicity. Bottom: maximal number of excited electrons shown
in the same way.
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optical excitation.
Unfavorable alignments of the electric field along the symmetry directions are easily

visible in Figure 4.13. They are indicated by high values of min(MCo(t)/M0) which
correspond to small demagnetizations. Throughout all systems the most prominent
feature is the minimum of demagnetization for electric fields along the x-axis, point-
ing along the interface normal. Optimal electric fields are pointing between x- and z-
or x- and y-axis, with the exact optimal angle varying between the different setups.
Whereas electric field directions between y- and z-axis yield a second minimum of
demagnetization. This minimum can be explained by missing links in the correspond-
ing direction in the chain system. The theory of spin polarization, as in Ref. [51],
can explain a single minimum or maximum between two axes, as in case of the red
and orange lines between z- and x- or x- and y-axis. However, the restricted model
geometry that causes several minima or maxima as between the y- and z-axis is
beyond the scope of the theory.
In most cases the circularly polarized light induces a demagnetization comparable

to that of linearly polarized light with the corresponding electric field components.
For example circularly polarized light incident along the x-direction corresponds to
linearly polarized light with the the electric field between y- and z-directions. Results
for different helicities are mostly in good agreement.
The interpretation of the above results is not straightforward as the demagnetiza-

tion is a consequence of many factors. First, there is the optical excitation of spin
polarization, which is favored by a breaking of symmetries. But on the other hand
demagnetization is also facilitated by transfer of angular momentum through the in-
terface. Therefore one could assume a high demagnetization by excitation of charge
currents along the electric field and through the interface. However, considering the
weak demagnetization for E = Ex, the opposite seems to be true.

The main features discussed regarding demagnetization can also be observed when
investigating the strength of excitation in terms of max(Nex), the maximal number
of excited electrons, in dependence on the laser polarization. This is shown in the
bottom of Figure 4.13. The comparison of both quantities reveals that the charac-
teristic maxima and minima of demagnetization result from optima and minima of
optical excitation. This suggests a minor influence of the alignment of electric field
with possible transfer directions and instead an influence of the restricted dimension-
ality in a chain system. In other words, the number of sites within the model along a
specific direction seems to influence the degree of excitation by an electric field along
the same direction. Thus the choice of a specific geometry influences the polarization
dependence in our simulations.
To exclude the model-induced dependencies as much as possible, the simulations

were repeated with the symmetric 3D cluster in Figure 4.14. Indeed the pronounced
structure of the polarization dependence and the protruding character of the electric
field E = Ex have vanished. In the elongated system the demagnetization between
different polarizations varied by more than 15 %, while it only changes by a few
percent in the symmetric 3D cluster. But still electric fields along the Cartesian axes
yield less demagnetization than along most other directions.
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Figure 4.14.: The dependence of demagnetization on the laser polarization is shown
as in Figure 4.13 for linearly polarized light, but for a three-dimensional
system with a cubic unit cell.

In both geometries the setups with magnetization orthogonal to the interface are
demagnetized more strongly, despite showing the same degree of excitation and de-
spite their higher number of mirror symmetries. Without spin transfer across the
interface, the pure ferromagnetic setup exhibits the least demagnetization. While
the alternative excitation routine, in red, mostly shows higher excitation and demag-
netization.
In principle there are two ways to change the vector of spin polarization. First,

an electric field can induce spin polarization orthogonal to the magnetization of the
material. For example an E-field Ezx induces spin polarization along the y-direction.
Second, the electric field induces spin polarization parallel or antiparallel to the
magnetization, as in case of Exy which induces Sz. This can generate a reduction
of ∣S ∣, the length of the vector of spin polarization. In contrast, the first scenario
corresponds to a tilting of the spin moment out of its equilibrium axis. But in
Figure 4.13 those two different scenarios of changing the spin momentum result in
almost the same demagnetization.

Figure 4.15 shows the different current dynamics resulting from electric fields along
the x- or z-axis, respectively. If the electric field is parallel to the chain direction a
current is induced along the chain and its sign oscillates strongly together with the
frequency of the laser light. This is clearly visible in case of the s currents. After
excitation with an electric field E = Ez no oscillation of occupation along the chain
direction is induced. Accordingly very clear signals of a spin current from Co into
Cu and a charge current in opposite direction can be observed. In comparison the
signals of charge and spin currents under excitation with E = Ex are quite blurred,
although the overall directions are still recognizable.
The amount of charge and spin transport along the chain is quantified in Fig-
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Figure 4.15.: Visualization of currents in a CoCu chain excited with differently po-
larized light: E = Ex on the left and E = Ez on the right. The top row
shows charge and spin currents and the bottom row shows majority and
minority currents between s orbitals.
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Figure 4.16.: Profile of charge and spin transport through different sites as introduced
in Figure 4.12. Here results for differently polarized light are compared.
The interface is indicated by the dashed line.

ure 4.16 for electric fields along the Cartesian axes. Results for electric fields E = Ey
and E = Ez are almost identical. But for E = Ex the transport through the in-
terface as well as along the chain is less efficient despite strongly oscillating charge
currents visible in Figure 4.15. Also, in this case the spin current into the Cu layer
seems to subside quite fast, just about 10 sites away from the interface. The reduced
spin transport for E = Ex is in good agreement with the weakened excitation and
demagnetization observed in Figure 4.13.
In summary, the dependencies on polarization presented in Figures 4.13, 4.15 and

4.16 are mainly caused by the restricted geometry of the model system. In a symmet-
ric setup (Fig. 4.14) and in experiments the degree of excitation and demagnetization
is barely perturbed by changes of the laser polarization.

4.2.7. Varying photon energy

The frequency of the applied laser light does crucially determine the details of the ini-
tiated excitation process. The frequency is proportional to the photon energy (2.57)
and allows for transitions between states with corresponding energy difference. By
varying the frequency the excitation occurs between different regions of the band
structure. Therefore one might assume that the exact frequency of the applied laser
light can drastically affect the magnetization dynamics. In fact the opposite seems
to be true. At least in the linear regime the demagnetization process appears to
be fairly robust with respect to changes of the applied frequency. This was demon-
strated for ferromagnetic/nonmagnetic layers in [106] and [107] and by Chekhov et
al. with optical and terahertz pulses in a homogeneous iron layer [108]. As this
variation is not just a slight but a drastic change in frequency, the resemblance of
the respective demagnetization behavior is even more remarkable. Despite the very
distinct details of the excitation process the magnetization dynamics were found to
be identical. This indicates the importance of the amount of introduced energy in
contrary to the details of excitation and thermalization of the distribution.
We simulate the experiments on Fe by Chekhov et al. but also on CoCu clus-

ters. In comparison to the experiments we use relatively high excitation energies.
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material CoCu 1d CoCu 3d Fe
Eph in eV 0.1 1.5 3.1 0.1 1.5 3.1 4⋅10−3 3.1
τ in fs 50 10 10 50 10 10 3000 100

F in mJ/cm2 0.1 10.6 33.6 0.18 13.1 33.6 2⋅10−4 32.9

Table 4.1.: Fluences applied in simulations with different photon energies and pulse
widths shown in Figures 4.17 and B.2.
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Table 4.1 lists applied frequencies and fluences for systems under examination: a
CoCu chain and a 3D CoCu cluster as introduced before and a 10×2-atomic bcc iron
cluster. The fluences were chosen as to receive a consistent degree of excitation. For
this purpose the maxima of Nex(t) were compared. The corresponding graphs are
presented in Figure 4.17 together with the temporal evolution of magnetization. For
low frequencies longer pulse widths were chosen with a sufficient number of optical
cycles. The different pulse widths are indicated by faint lines. Unlike in [108] the
temporal magnetization signal was not refolded. Therefore in case of a broader pulse
width also the magnetization dynamics are stretched over a longer time span. Apart
from this the time evolution of demagnetization coincides very well throughout all
simulations. In CoCu three different photon energies were applied: 0.1 eV, the de-
fault value in this thesis of 1.5 eV and 3 eV. While the Fe sample was excited with
an optical radiation of 3 eV and a THz radiation of 4 meV. This corresponds to an
enormous difference in timescales. In this case very broad pulses were applied and
the dynamics are shown on the scale of picoseconds. But nevertheless a compara-
ble demagnetization was achieved for both frequencies. A small delay in de- and
re-magnetization can be explained by the broader pulse width. Further results can
be found in Figure B.2 in the appendix.
To conclude, the evolve code can simulate also very low excitation frequencies if

pulse width and amplitude are tuned accordingly. Furthermore the statement of [108]
is corroborated: Throughout different excitation regimes the underlying microscopic
processes may be quite different but a similar demagnetization is generated, if the
amount of absorbed energy is comparable.

4.2.8. Varying bath parameters

The bath comprises the interaction of the electron system with other quasiparticles.
In our simulation such scattering events are not accounted for microscopically but in
form of transition probabilities. The bath yields the possibility to include relaxation
into the simulation of magnetization dynamics by mediating transitions between
eigenstates at different energies. An important feature of the bath is therefore to take
the laser energy out of the system and to enable a simulation of remagnetization.
The coupling to an external heat bath also introduces dephasing, a reduction

of coherences embodied in the offdiagonal elements of the occupation matrix (cf.
Section 2.3 and Ref. [57]). The excitation triggers such coherences that manifest for
example as currents and yield oscillations of the occupation in the atomic orbitals.
In realistic systems reflections of currents at the edges and the interface and also
scattering events with impurities destroy the coherence of the quantum mechanical
states. The dephasing damps the currents and establishes a locally stable situation.
In this sense the dephasing contribution is within the current implementation and at
the timescales observed, a crucial effect of the external bath.
The interaction with the bath is simulated without considering the details of the

underlying microscopic scattering processes. The bath is implemented on the level of
eigenstates and information of atomic character and localization are not taken into
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Figure 4.18.: Magnetization dynamics of the total system (top left), of the Co layer
(top right) and of the Cu layer (bottom left), after excitation in a chain
of 10 Co and 30 Cu atoms. The colors represent different bath pa-
rameters which are specified in Table 4.2. In the lower right panel the
integrated currents are compared as introduced in Figure 4.12.

account. In other words, the transition probability just depends on the energy, the
occupation and the spin character of the corresponding eigenstates. Eigenstates can
be distributed over several atoms or localized at various specific positions within the
sample. Therefore a bath-generated transition between different eigenstates can at
the same time also be a local displacement of occupation or a redistribution between
different atomic species. These can, to a certain degree, be considered unphysical
effects.
Since the bath operates on longer timescales, changes of corresponding parameters

have just minor impact on the demagnetization which happens on much shorter time
scales. Instead the transition rates influence the subsequent remagnetization behav-
ior. Within the applied setting (see Section 4.1), the pure dephasing contribution
is the only fast acting component of the bath with a timescale of about γ−1

dp = 20 fs.
This contribution is energy conserving and does not imply any transition or yield
any remagnetization dynamics as a direct effect. It only suppresses oscillations of
occupation and magnetization, as can be clearly seen in Figures 4.18 and 4.19.
These Figures demonstrate the influence of various bath parameters on magneti-

zation dynamics in the CoCu chain introduced before. While in Figure 4.19 only the
dephasing parameter γdp is varied independently, in Figure 4.18 each graph repre-
sents a coupling to the bath, specified in Table 4.2. The mentioned oscillations are
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1 2 3 4 5 6
γsc (ps−1) 0.0 0.2 0.0 0.2 0.2 2.0
γsf (ps−1) 0.0 0.002 0.0 0.0 0.002 2.0
γdp (fs−1) 0.0 0.0 0.05 0.05 0.05 0.05

Table 4.2.: Bath parameters applied in Figure 4.18 as defined in (3.61). The first
row shows the spin conserving transition rate, the second row the spin-
flip transition rate and the third row the dephasing rate.
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Figure 4.19.: Magnetization dynamics of the total system (left) and integrated cur-
rents as in Figure 4.18 for varying γdp.

clearly visible in Graph 1 (blue) and Graph 2 (orange). They represent calculations
without and with a coupling to the heat bath, but both without a pure dephasing
contribution. In all other settings the oscillations are present merely in form of a
delicate modulation during or directly after optical excitation.
The counterparts of Graphs 1 and 2 are Graph 3 (green) and Graph 5 (purple),

which are both calculated including a pure dephasing. This correspondence is slightly
visible in the magnetization dynamics of the Cu layer. In calculations with a coupling
to the heat bath (Graphs 2 and 5) the excess magnetization therein is reduced, while
in Settings 1 and 3 no energy is lost to the environment and the magnetization
stays at an reduced level in Co and an enhanced level in Cu. Setting 5 corresponds
to the default parameters that were used throughout the previous sections. The
corresponding results are almost identical to Graph 4 (red), where no bath mediated
spin-flip transitions are allowed. Within the investigated time regime the spin-flip
parameter does almost not influence the dynamics.
The strongest demagnetization is observed at Graph 6 (brown), with an unrealistic

high coupling to the bath associated to high transition rates on the order of 2 ps−1.
But it also exhibits the lowest accumulation of magnetization within the Cu layer.
The demagnetization of the total system follows the demagnetization of the Co layer
almost instantly. The strong coupling to the bath seems to immediately remove the
excess magnetization in the Cu layer. In this setting the magnetization can exceed
the initial magnetization during the remagnetization process. In this case, a gain of
magnetization is an unphysical phenomenon, which reveals a limitation of our model.
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In general the demagnetization of the total system is slightly enhanced together
with pure dephasing or the transition rates, while the accumulation of magnetization
in the Cu layer is slightly decreased. The transport of spin across the interface stays
constant for a broad range of parameters. Only its extent into the respective layers
is slightly reduced for higher dephasing parameter values. Figure 4.18 shows that
the transport across the interface is instead reduced by large transition rates γsc and
γsf . The weakest demagnetization is observed if no coupling to the bath is applied at
all. Bath-generated transitions described by γsc and γsf accordingly seem to enhance
the demagnetization of the total system. But they only have a minor effect on the
demagnetization within the Co layer.
A possible improvement of our model is the usage of an energy-dependent electron-

phonon scattering probability to calculate the transition rates. In an even further
elaborated approach the atomic character of the corresponding eigenlevels is taken
into account and an energy- and material-dependent scattering probability can be
applied.

4.3. Other material combinations

Throughout the preceding sections the physical mechanisms at an FM|NM interface
were investigated using the example of a cobalt-copper bilayer system. In this section
further material combinations shall be examined. Apart from copper also aluminum,
platinum and gold are used as nonmagnetic materials, while nickel replaces cobalt
as magnetic layer in some simulations. As described in Section 4.1 the interface
was constructed in a simplistic manner. No relaxation of the lattice was taken into
account and the interfacial hopping parameters were taken as the mean value of
both materials. To simulate an interface realistically a more sophisticated model is
needed. The ambition of this section is not to claim technical feasibility or correctness
of the interface model, but to identify different mechanisms of spin transport and
demagnetization.
The simulations were performed for the geometries presented in the previous sec-

tions: a chain of 10 magnetic and 30 nonmagnetic atoms, and a two-dimensional
cluster of 20 magnetic and 20 nonmagnetic atoms. Both setups exhibit periodic
boundaries parallel to the interface. First the time evolution of magnetization is
studied and it follows an analysis of spin and charge currents through the chain
systems.

4.3.1. Comparison of magnetization dynamics

The results for the magnetization dynamics are shown in Figures 4.20 and 4.22 and
are analyzed as described in Equation (4.3). The contributions of the total system,
the magnetic layer and the nonmagnetic layer to the change of magnetization are
each shown with respect to the initial magnetization of the total system M0. In this
way these figures show the percental change of magnetization in the respective layer.
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Figure 4.20.: Magnetization dynamics in a chain after laser excitation centered at 0 fs
for different material combinations. Total magnetization and number of
excited electrons are shown in the top row left and right; magnetization
of FM (NM) layer is shown in the bottom row left (right).
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Figure 4.21.: Results of Figure 4.20 presented as changes to their initial value in µB.
The time evolution of magnetization in the FM (NM) layer is shown on
the left (right).
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Since Co and Ni exhibit different initial magnetic moments, additionally the ab-
solute change of magnetization is presented in Figure 4.21. Evolve simulations of
FM|NM chains yield magnetic moments of about 2.4µB for Co and 1.3µB for Ni
atoms. Those values are a little higher than values from literature of 1.8µB and
0.7µB for Co and Ni bulk systems, respectively [109], but show a correct tendency.
The simulated as well as the measured magnetic moments change with the cluster
geometry. The restricted geometry of the chain-like supercell explains the deviation
between values from literature and simulation. Despite the significant difference of
initial magnetization Ni as well as Co layers exhibit a comparable degree of abso-
lute demagnetization, shown in the left of Figure 4.21. Though in terms of percental
changes as in Figure 4.20 the Ni layers exhibit the largest demagnetization. Similarly
the excess magnetization in the NM layer is quite large in combination with Ni, when
compared to M0. But in terms of µB this translates to rather small values (Fig. 4.21
right). In the following mostly the percental changes will be discussed.
The observation of Figure 4.11 is confirmed by a comparison of all material com-

binations, which reveals the importance of the spin-orbit coupling of both layers for
the degree of demagnetization. The respective strength of the SOC within the var-
ious materials is visualized in the right-hand side of Figure 4.23. Of all magnetic
materials nickel exhibits the strongest SOC. Therefore a higher demagnetization can
be achieved in equivalent systems just by replacing Co with Ni atoms. SOC intro-
duces spin-mixing into the Hamiltonian which converts majority-spin to minority-spin
electrons and vice versa. In addition to the strong demagnetization by spin transfer
across the interface a high SOC yields a considerable demagnetization by spin flips
already within the magnetic layer.
But on top of that also a strong SOC within the nonmagnetic layer generates a

higher demagnetization. The nonmagnetic layer serves as a reservoir for angular
momentum transferred to it from the magnetic layer either as a majority current
from or a minority current into the magnetic layer. This leads to an accumulation
of majority electrons or a depletion of the minority orbitals within the nonmagnetic
layer, respectively. In this way the corresponding transfer process across the interface
is mitigating itself in its progress. The SOC on the other hand counteracts the
depletion or filling of only one spin channel. The coupling between both spin channels
distributes the accumulation or depletion from one to both spin channels. In this way
the transfer mechanism across the interface can proceed as there are empty majority
orbitals or occupied minority orbitals available in the NM layer for a longer time.
The simulations of both geometries, depicted in Figures 4.20 and 4.22, corrobo-

rate the assumption about the importance of SOC in the nonmagnetic material. In
the two-dimensional setup, shown in Figure 4.22, the strength of demagnetization
displays precisely the strength of SOC in the nonmagnetic layer. The weakest de-
magnetization is observed by far in CoAl. In CoCu the demagnetization is roughly
twice as strong, followed by even higher demagnetizations in CoPt and CoAu. Also
the setups with Ni exhibit a stronger demagnetization if Pt is used instead of Cu.
These results are in line with the order of SOC strengths displayed in Figure 4.23.
In the one-dimensional setup this order is slightly disturbed. The CoCu chain

82



40 20 0 20 40 60 80 100 120 140
t (fs)

0.6

0.7

0.8

0.9

1.0
M

to
t(t

)/M
0

20 0 20 40 60
t in fs

0.0

0.5

1.0

1.5

N
ex

(t)

CoAl
CoCu
CoPt
CoAu
NiCu
NiPt

40 20 0 20 40 60 80 100 120 140
t (fs)

0.5

0.6

0.7

0.8

0.9

1.0

M
FM

(t)
/M

0

40 20 0 20 40 60 80 100 120 140
t (fs)

0.00

0.05

0.10

0.15

0.20

M
N

M
(t)

/M
0

Figure 4.22.: A comparison of different material combinations as presented in
Fig. 4.20 but for a two-dimensional setup.

exhibits an especially strong demagnetization, almost of the same order as in the
CoAu chain. Possibly this is due to a particularly large spin transfer or effective
excitation in the CoCu chain. The degree of excitation quantified by the number
of excited electrons is depicted in the upper right of Figures 4.20 and 4.22, while
transfer mechanisms and currents will be compared in the following section.
The number of excited electrons shows moreover also a weak excitation in CoAl.

The reason thereof is the orbital occupation of aluminum with 3 valence electrons
distributed mainly within the s orbitals and also sparsely in the p orbitals. In this case
an electric dipole transition primarily happens between the s and p orbitals. Thus
there are only few available orbital pairs with possible optical transitions. The optical
excitation is thus less efficient than in materials with occupied d and vacant p orbitals.
An excitation of electrons to higher energy orbitals and creation of empty orbitals in
the NM layer facilitates the transport across the interface. In that sense the degree
of optical excitation of the NM material is also relevant for the demagnetization of
the FM layer. Therefore the outstanding orbital occupation of aluminum amongst
the other nonmagnetic materials affects demagnetization by influencing the transfer
mechanism across the interface.
The magnetization dynamics of the nonmagnetic layer is presented in the lower

right of Figures 4.20 to 4.22. As for CoCu, an enhancement of magnetization in
the nonmagnetic layer together with the demagnetization of the magnetic layer can
also be observed for the other material combinations. Again the CoAl system stands
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through the interface integrated up to a time t, represented by the
x-axis. Right: SOC parameters in d orbitals of different materials.

out among the other material combinations. The magnetization in the Al layer is
enhanced similarly as in the other materials. But in contrast to the other materials
the acquired magnetization in Al is not removed again right afterwards. Instead
it exhibits a long lasting behavior. For one thing, the very small SOC parameter
of Al retards the spin flip mechanism. For another, as visible in Figure 4.26, the
occupation of Al changes mainly in the s and p orbitals and only slightly within the
d orbitals. While the SOC is already very small in the aluminum d orbitals it is
negligible in s and p orbitals. Therefore SOC induced spin-flips can only happen in
the very scarcely occupied d orbitals.
Among the other material combinations those with a nonmagnetic Cu layer exhibit

the strongest enhancement of magnetization followed by a rapid reduction of the
same. In terms of absolute changes as shown in Figure 4.21 the CoCu system stands
out even more clearly, also against the NiCu system. In Pt and Au layers with a
very high SOC the magnetization exhibits a similar behavior. Here the quenchching
of excess magnetization manifests even more in the two-dimensional system. In the
gold layer it exhibits a very strong and seemingly instantaneous quenching and drops
even below the initial value. This is clear in contrast to the long-lasting excess
magnetization in Al with minor SOC.
In summary, a stronger SOC in the FM layer and a stronger SOC in the NM

both intensify the demagnetization. A strong SOC in the NM layer leads to a fast
quenching of the magnetization received from the FM layer. While a weak SOC in
the NM layer results in a long lasting excess magnetization.

4.3.2. Comparison of interface currents and spin transport

To shed more light on the underlying mechanisms of demagnetization it is necessary
to also analyze the currents between both materials. Both, spin and charge current
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across the interface are strongly oscillating (cf. Fig. B.3 in the appendix). To bet-
ter quantify the importance of the currents for demagnetization both currents were
integrated over time. Even though the currents are presented as sum or difference
of spin-up and spin-down particle currents, for convenience the terms “transported
charge” and “transported spin” will be used for the integrated values.

Transported spin by time

The integrated currents at the interface bond of the chain systems are presented
in Figure 4.23 for a varying upper bound of the integration. The graph shows the
amount of spin or charge transported through the interface up to a time t. Before
the pulse no transport has happened yet and all graphs equal zero. The transport
happens primarily during the laser excitation, where the biggest changes are visible
in the signals. After the pulse at about 10 fs only weak currents are flowing through
the interface, visible as minor changes. At 40 fs after the pulse peak the signal stays
constant: the currents have disappeared.
The integrated spin current has a positive sign: It is flowing from the ferromag-

netic into the nonmagnetic layer in all material combinations. The integrated charge
current however shows a diverse behavior. In CoCu, NiCu and CoAu it shows a clear
negative signal. In these cases the direction of the charge transport is opposite to
the spin transport. The opposite signs together with very similar absolute values of
charge and spin transport hints towards an almost pure minority current, flowing
from the nonmagnetic into the magnetic layer.
In CoPt and CoAl, there is almost no net charge transport, while NiPt even shows

a charge transport parallel to the spin transport. This suggest that in those cases
the majority currents become relevant or even dominant. However, in those samples
there is less net spin transport across the interface. The largest net spin transport is
observed across the interface in CoCu, followed by CoAu and NiCu chains. A pure
minority or majority current seems favorable for a large spin transport. Also it is
noteworthy that, while both Ni systems exhibit a high peak value of transported spin,
they are not among the systems with high absolute demagnetization (Fig. 4.21).
In case of the NiPt chain the amount of transported spin reaches a fairly high value

during optical excitation. But afterwards it decreases and in the end it shows the
lowest net spin transport of the investigated material combinations. This behavior
can be explained by a strong spin current from Ni to Pt followed by a weaker spin
current in the opposite direction. This reversal of the spin current direction can be
observed also in NiCu, although less pronounced.
Finally in comparison with Figure 4.20 one can observe that a high net spin trans-

port across the interface not necessarily corresponds to a high demagnetization and
vice versa. On the contrary, NiCu, the system with the least net spin transport
across the interface exhibits the largest total demagnetization. It seems that the
crucial magnitude in Figure 4.23 is not the final value but the slope during opti-
cal excitation. The graphs with the fastest increase of transported spin show the
strongest demagnetization within the ferromagnetic layer. A better correspondence
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with the net transported spin can be found in comparison to the peak of excess
magnetization in the nonmagnetic layer, shown in the bottom right of Figure 4.20.
However, in case of a high SOC in the nonmagnetic layer, as CoAu and CoPt, this
correspondence fails.

Site- and orbital-resolved spin transport

Further detailed information about the currents is presented in Figure 4.24. For each
material combination it shows the local distribution of the integrated currents. As in
Panel b of Figure 4.12 the integration was constrained to the relevant time interval,
starting at the beginning of the simulation, 50 fs before the pulse, until 70 fs after the
pulse peak when the currents have vanished. The values at the interface are identical
to those shown in Figure 4.23 at t = 70 fs.
In addition, the orbital composition of the involved currents is shown for this in-

terface bond. Each bar represents the amount of occupation transported by currents
between specific orbitals. For example jsp shows the amount of occupation trans-
ported by currents flowing from s to p orbitals and vice versa. The color of the bars
highlights the spin character of the orbitals, while the sign gives the direction of the
transport. Therefore the sum of all contributions translates to the integrated charge
current at the interface, displayed by the blue line, while the difference of contribu-
tions from spin-up and spin-down currents translates to the integrated spin current
at the interface, displayed by the orange line.
Throughout all material combinations the transport of spin along the x-direction,

from the magnetic into the nonmagnetic layer, is maximal at the interface. This sub-
stantiates again the importance of the interface as source and origin of spin current.
In Cu and Al layers the maximal value at the interface decreases slowly, almost lin-
early towards the boundary of the sample. Therefore in the middle of the Cu layer,
far away from the interface, there is still a significant spin transport happening along
the chain direction. Within the Au layer the amount of transported spin decays at
first very abruptly and then also almost linearly with the distance from the interface.
In Pt layers the behavior of spin transport is more irregularly and vanishes already

at about 15 sites away from the interface. After reaching a maximum the integrated
spin current in NiPt decreases (Figure 4.23). This behavior suggests the existence
of a spin current in Pt counteracting the dominant spin current in x-direction at
later times. Therefore the results from Figure 4.24 are reevaluated in Figure 4.25
with the upper bound of the integration reduced to t = 5 fs after the pulse peak. In
this way just the immediate dynamics during the pulse peak contribute to the result,
while the subsequent dynamics is excluded. The color plot in the left-hand side of
Figure 4.25 visualizes in red the strong initial spin current along the x-direction from
Ni into Pt, followed by a weaker spin current in opposite direction in blue. The new
results of the integration are shown on the right-hand side. Therein, the irregular
behavior and the fast decay visible in Figure 4.24 are absent. Instead the amount
of transported spin and charge decays almost linearly from the interface towards the
end of the Pt layer, with a prominent peak directly at the interface. From this it is
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face sites (dashed line) the orbital contributions are shown.
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evident that the irregular behavior and fast drop of the signal within the Pt layer is
caused by the contribution of the secondary spin currents flowing back from Pt into
Ni. Furthermore, the agreement of signals from spin and charge transport reveals
that in this sample the early dynamics is almost solely caused by majority currents
from Ni into Pt. Indeed the breakdown of the orbital composition shows a major
contribution of majority sp currents along x-direction, followed by s and sd currents.
This is in clear contrast to other material combinations (CoCu, CoAu and NiCu),

where the spin transport is contrasted by a charge transport in the opposite direction,
indicating a spin transport dominated by minority carriers flowing in −x-direction
instead of majority carriers in x-direction. In these materials the orbital breakdown
shows almost no transport between majority orbitals. Especially in CoCu and NiCu
only the minority currents determine the dynamics. Mostly sp followed by s and
sd minority currents in −x-direction are the driving force of the spin current in +x-
direction. While minority p currents are flowing from the FM into the NM material,
thereby counteracting the dominant spin transport.
The minority d currents that were discussed for a CoCu chain in connection with

Figure 4.8 are also visible. However, their contribution to the spin current is sig-
nificantly smaller than the contributions of minority s and sp currents. Minority d
currents flowing from the NM into the FM material are strongest in CoAu. CoCu,
CoPt and NiPt exhibit weaker minority d currents. While in NiCu they cannot be
observed at all. This difference can be attributed to the band structure of nickel. In
comparison with cobalt in nickel there are less available empty minority d orbitals.
Therefore the transfer of minority electrons is weaker from Cu into Ni than from Cu
into Co. Borchert et al. [101] discussed the amount of empty minority d orbitals
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in the ferromagnetic material to explain the difference in demagnetization of NiPt,
CoPt and FePt. And indeed by comparing CoPt and NiPt we find a stronger minor-
ity d current in CoPt. Nevertheless this minority d current is not the only transfer
process that generates a fast and strong demagnetization. As discussed before, in
NiPt instead majority currents are dominant. So that in the end the simulated
demagnetization is even higher in the NiPt chain than in the CoPt chain.
In CoPt and CoAl current contributions in x- and in −x-direction are balanced.

Therefore, there is no significant charge transfer in these samples. The transfer
processes in CoPt are similar to those in NiPt whereas CoAl shows a very unique
behavior. This is due to the electronic structure of aluminum which is a light metal
with only three valence electrons in contrast to the other nonmagnetic materials
which are heavy metals with 10 or 11 valence electrons. The d levels in Al are located
at high energies. They are unoccupied before the laser excitation and d currents can
just flow from Co into Al. Therefore, compared to other NM materials, the minority
d current in Al can only be observed along the reversed direction, counteracting the
spin transfer from Co to Al. Analogously to Figure 4.5 for CoCu, Figure 4.26 shows
the change of orbital occupation at the interface sites of a CoAl chain. In Al the laser
pulse induces transitions from occupied s orbitals to unoccupied p orbitals, visible
as loss of occupation in s orbitals (in red) and gain of occupation in p orbitals (in
green). An optical transition between p and d orbitals becomes relevant only in later
times, when enough occupation was already excited to the p orbitals. The loss in one
of the Al p orbitals can be attributed to the minority pd current flowing from Al into
Co. Figure 4.24 shows that the spin current from Co into Al seems to be generated
by minority s and minority pd currents in −x-direction and by a majority p current
in x-direction. All in all the less favorable transport conditions in aluminum explain
also the less efficient demagnetization.
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Finally, it must be noted that the transport properties are depending also on the
dimensionality of the simulated system. In the paragraphs above chain systems were
analyzed. Here only one nearest neighbor link connects both materials across the
interface. While at a real two-dimensional (100) interface transport can happen
along more links and along links pointing not just in xz- but also in xy-direction.
Those differences in cluster geometry and their influence on simulated transport have
yet to be analyzed.
In summary, there is a multitude of parameters that influence the demagnetization

and transport behavior of FM|NM systems under optical excitation. The electronic
structure of the materials determines available occupied and empty orbitals. This
does not only influence the efficiency of excitation but also the efficiency of transport
across the interface. The major factor in demagnetization is the strength of spin-
orbit coupling. Furthermore, a strong transport across the interface also promotes
demagnetization. In this it is important to consider not only the total net transport
but also subsequent transfer processes. An orbital breakdown of these transfer pro-
cesses reveals a variety of mechanisms. While in some systems minority currents are
dominant, in others it is majority currents or a mixture of both. Therefore there
is no simple scheme, which attributes the degree of demagnetization to the number
of occupied or unoccupied states of just one spin or orbital character. Instead all
orbitals and associated currents have to be taken into account.

4.4. Ferromagnetic systems - extending the model
During the previous sections it was shown that simulations with evolve yield good
and interesting results for FM|NM systems in a regime of relatively strong excita-
tion. However, in case of pure ferromagnetic systems the model does not sufficiently
represents the relevant physics of demagnetization.
An approach to simulate more realistic demagnetizations is the so-called feed-

back effect. It involves a reduction of exchange splitting and will be examined in
Section 4.4.3.
Further discussed mechanisms are enhanced spin precession and enhanced stochas-

tic dynamics as simulated in atomistic spin dynamics simulations and, coming along
with this, a breakdown of nearest neighbor spin correlation. On the other hand a
collective rearrangement of the spin orientation axis is interpreted as demagnetiza-
tion by magnon generation. For both cases it would be necessary to incorporate a
dynamical tilting of the spin axis into the simulation. As a first step towards a dy-
namic spin orientation axis it is necessary to extend the model to static noncollinear
setups. With this it is possible to account for “initial magnetic disorder” [48]. A
finite tilting of the local spin quantization axis with respect to the global quantiza-
tion axis results in additional spin-mixed Hamiltonian elements and can thus lead to
enhanced ultrafast demagnetization.
A third approach explains demagnetization on the basis of spin currents. Here

the magnetic moment is not decreased in the first place, rather it is primarily redis-
tributed to other parts of the sample and eventually reduced by subsequent spin-flip
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Figure 4.27.: The left graphic shows as a black line the decrease of the electric field
throughout the sample as applied in simulations and as colored lines the
weighting profile to segregate contributions from the front- and backside
of the sample. On the right, results from [17] show the demagnetization
measured at front- and backsides of Co and Ni samples.

processes. Such a spin current is always driven by a gradient. In the bilayer systems
discussed in the previous sections, this gradient was the local imbalance of excited
occupation at the interface. In a homogeneous ferromagnetic systems the dominant
gradient is the decay of laser intensity with the distance to the surface. By shrinking
the length scales this mechanism can also be investigated with evolve despite the
limited cluster sizes. The corresponding results will be presented in the following
Section 4.4.1 .

4.4.1. Spin current generated demagnetization in ferromagnets - excita-
tion with an intensity profile

Within an authentic simulation a sample of several monolayer width is not excited
by the laser homogeneously. Instead the laser intensity decreases as in every layer of
the sample some laser light is absorbed. Within in a large metallic system therefore a
gradient of excitation is present, which can influence the subsequent dynamics. Due
to this gradient a transport takes place and contributes to the demagnetization at the
foremost layers. For irradiation in x-direction the intensity of the light is attenuated
exponentially while passing through a medium

I(x) = e−αx , with α = 4πκ(λ)
λ

. (4.4)
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Figure 4.28.: Magnetization dynamics in a chain of 30 (left) and 100 (right) atoms
of Co. The applied laser intensity decays towards the backside of the
layer. The dashed lines show results calculated without SOC.

Its penetration depth depends on its wavelength and can be calculated from the
absorption coefficient κ(λ), the imaginary part of the material-dependent complex
refractive index n(λ) = n(λ) + iκ(λ). The laser intensity is proportional to the square
of the electric field. Accordingly the electric field amplitude decreases with

E0(x) = e−
α
2 xE0 . (4.5)

Values for κ(λ) can be found in material databases [110], [111]. In the considered
transition metals the amplitude is typically reduced to 50% in the range of 18 nm
to 30 nm. For test simulations a laser profile as presented in Figure 4.27 is chosen
and applied to Co and Ni layers likewise. The damping of a much thicker layer can
be modeled by applying an artificially strong absorption coefficient. In this way the
influence of the gradient in excitation is more pronounced in the simulation results.
By this procedure thick layers can be simulated, which are otherwise not treatable
with the evolve code in reasonable computational time.

Figures 4.28 and 4.29 present simulation results for pure Co and pure Ni chains.
By applying periodic boundary conditions orthogonal to the chain and a tetragonal
unit cell as in the previous sections, those setups correspond to layers of various
thickness as used by Shokeen et al. [17] (Figure 4.27 right). In an experimental
setup magneto-optical measurements average over many sites, with the contribution
of the sites also decaying exponentially from the front to the interior of the sample.
To observe the enhancement of magnetization by transport, a measurement at the
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Figure 4.29.: Magnetization dynamics in a chain of 30 Ni atoms (left) and 100 Ni
atoms (right). As in Figure 4.28 the dashed lines show results without
consideration of SOC.

backside of the sample is necessary. In accordance to those optical measurements
of front- and backside, also the results of the simulation are separated into a front-
and a backside signal. To that end the contribution of each site along the chain is
multiplied with a weighting function as shown in Figure 4.27.
In the case of a thin Co layer (10 nm) Shokeen et al. measured a demagnetiza-

tion at the front and enhanced magnetization at the back of the sample. A similar
magnetization behavior was measured in a thicker Co layer (40 nm). However in this
case no clear enhancement of magnetization could be observed at the backside. The
simulation results presented in Figure 4.28 nicely reproduce the decrease of magne-
tization at the front and enhancement of magnetization at the backside of the layer.
However, within the simulation both thicknesses are in good agreement to the thin
layer experiments, while the thick layer is not reproduced as well. Additionally in
the simulations a uniform contribution of magnetization is visible already after 50 fs.
In the model the dephasing contribution acts on a timescale of 20 fs and smoothes
local imbalances. Therefore front- and backside signal become identical on a simi-
lar timescale. In the experiment front- and backside magnetizations keep a distinct
difference also for times longer than 300 fs.

Calculations of a Ni sample excited with a decreasing laser pulse are in good
agreement with the experiment, too. Results from the simulation in Figure 4.29
as well as from the experiment exhibit no significant enhancement of magnetization
at the backside, as they did in the Co sample. Instead a strong demagnetization
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Figure 4.30.: Charge and spin currents in chains of Co and Ni, with 100 atoms each.

is observed at both sides. In the thin Ni layer even a stronger demagnetization is
measured at the backside of the sample. In contradiction to that the simulation
shows slightly stronger demagnetization at the frontside, even though front- and
backside signal are quite similar and meet already at 25 fs. In the thick layer the
demagnetization at the backside is much weaker than at the frontside, which is again
in good agreement with the experiment. In general in Ni the overall dynamics is
governed by a strong demagnetization at every site of the chain. This is caused by a
relatively strong spin-orbit coupling.
In this simulation two different mechanisms contribute to the ultrafast demag-

netization of the front-side: transfer of spin momentum to the backside and SOC
induced spin-flips. The only global channel of ultrafast demagnetization is the SOC,
besides the bath which works on longer timescales. To compare the importance of
spin transport and SOC-induced spin-flip for demagnetization, calculations without
SOC were performed. They are represented by dashed lines in Figures 4.28 and
4.29. In homogeneously excited systems no demagnetization is expected without
SOC. But by using a decreasing laser profile also calculations without SOC exhibit
a finite demagnetization at the frontside. In Co calculations with and without SOC
are almost identical, while a huge difference is visible in case of Ni. Both signals of
demagnetization coincide at the beginning of time evolution and optical excitation.
They differ when the contribution of SOC starts to dominate the dynamics. This
happens very early, a few fs after the pulse peak. In this sense we do not really
find two separate time regimes as is claimed in [17]. Instead both mechanisms, SOC
and spin transport, are visible from the beginning of excitation. However, on longer
timescales demagnetization by SOC determines the temporal evolution.
The transport through Co and Ni layers can also be studied in terms of spin and
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Figure 4.31.: Majority and minority currents in chains of Co and Ni, respectively.

charge currents, shown in Figure 4.30. In both materials a spin current starting at
the frontside and propagating to the backside is clearly visible. This proves, that
there is a strong spin transfer from the frontside to the backside in Ni as well. But
in Ni both currents are slightly weaker than in Co. Figure 4.31 shows majority
and minority currents in both systems. It is noteworthy that in both materials
majority and minority currents contribute equally to the spin transport and not just
majority currents as proclaimed by the theory of superdiffusive spincurrents. Indeed
the contribution of minority currents, especially between s orbitals is even bigger than
of majority currents. This is apparent also from the analysis of orbital contributions
in Figure 4.32. On the other hand the majority currents seem to extend over the
whole chain, while the minority currents are located more at the frontside. Also
the influence of SOC on spin and charge currents is shown by comparing solid and
dashed lines in the top panels of Figure 4.32. While without SOC both currents
do not change in Co, in Ni the spin current is visibly reduced by SOC. But even
without SOC spin currents in Ni are weaker than in Co. On top of this the amount
of transported spin is remarkable in both materials. Its magnitude is comparable to
that of interface generated transport presented in Figure 4.24.
The different signals from Co and Ni therefore arise from differences in SOC and

transport behavior of both materials. Already without SOC Ni develops a weaker
spin transfer to the backside, which is suppressed further by the presence of SOC.
On top of that the strong SOC in Ni generates a stronger overall demagnetization
and superimposes any other behavior. Demagnetization by transport is thus less or
not visible.
The above leads to the following conclusions: Upon excitation with a declining

laser profile in homogeneous ferromagnets spin transport and SOC both contribute
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Figure 4.32.: Charge and spin currents integrated from −30 fs to 10 fs through bonds
along a chain of 100 Co (left) and 100 Ni (right) atoms. Calculations
without SOC are depicted as dashed colored lines. Orbital contributions
to currents through the bond indicated by the dashed black line are
represented by the bar charts.

to the demagnetization at the frontside. In general spin transport is the dominant
contribution, but it is more important for materials with weak SOC. The magni-
tude of spin transport generated by a decreasing laser profile is comparable to the
magnitude of spin transport generated by an FM|NM interface.
Finally it shall be noted, that in principle any kind of inhomogeneity in a system

yields an inhomogeneously excited occupation. This in turn translates to a local
gradient of occupation numbers which can generate spin transport. The decreasing
laser intensity generates a uniform gradient in excitation and therefore is an impor-
tant source of spin transport in every experiment. On the other hand inhomogeneities
of occupation at surfaces mostly generate an oscillating profile of excited occupation
and yield a disruptive signal in addition to the dominant signal. The importance of
interfaces as sources of spin transfer was already discussed extensively. In addition a
magnetic field gradient could be a further possibility to generate a uniform gradient
in excitation and generates similar transfer results as presented above.

4.4.2. Noncollinearity

So far all spins were aligned along the z-axis. This constraint has to be eliminated
in order to simulate also noncollinear structures. On the one hand noncollinear
antiferromagnets are a promising material class for further investigation, on the other
hand noncollinearity is needed to simulate initial disorder of the spin alignment as
described by Chen et al. [48].
In a noncollinear spin texture each site i has its individual, local coordinate system

and its z-axis is the local spin quantization axis (SQA). In the global frame the
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local SQA points along ni, a vector that is tilted towards the global z-axis by an
azimuthal angle ϕi and a polar angle θi. In the local frame of site i χ+loc

i = (1,0)T

and χ−loc
i = (0,1)T are eigenspinors of σz. In the global frame the up and down

spinors obey
+χ↑ gl

i = ni ⋅σχ↑ gl
i , −χ↓ gl

i = ni ⋅σχ↓ gl
i . (4.6)

They are eigenspinors of ni ⋅σ, with the vector of Pauli matrices σ. The components
of these new eigenspinors are comprised in the matrix [112]

D(ϕ,ϑ) = (e−iϕ/2 cos(ϑ/2) −e−iϕ/2 sin(ϑ/2)
eiϕ/2 sin(ϑ/2) e+iϕ/2 cos(ϑ/2) ) , χgl

i =D(ϕi, θi)χloc
i . (4.7)

It transforms a spinor from local into global frame. Its inverse D−1 = D† transforms
a spinor from global back into local frame.
The Hamiltonian and the eigenenergies as well as all observables are calculated

within the global frame. Therein the z-axis is the SQA for the basis set of all atomic
orbitals. Therefore the hopping elements stay unchanged in the global frame also in
noncollinear structures.
However, the spin-split on-site energies apply to the local frame, in which the SQA

is parallel to the z-axis of the local coordinate system and the on-site energies are
diagonal with respect to spin. Therefore in the global frame of a noncollinear set-up
the on-site energies can become spin-mixed. The on-site energy of an orbital α at
site i is

εα = ⟨χloc
α ∣Êloc

α ∣χloc
α ⟩ = ⟨χloc

α D†
i ∣DiÊ

loc
α D†

i ∣Diχ
loc
α ⟩ = ⟨χgl

α ∣Êgl
α ∣χgl

α ⟩ (4.8)

with according matrix representations

Eloc
α = (E

↑
α 0

0 E↓α
) and Egl

α =DiEloc
α D†

i . (4.9)

The latter one can be expressed as

Egl
α = (E +∆ cos(θi) ∆ e−iϕi sin(θi)

∆ eiϕi sin(θi) E −∆ cos(θi)
) (4.10)

by means of spin-independent on-site energies and spin splitting

E = E
↑
α +E↓α

2
, ∆ = E

↑
α −E↓α

2
. (4.11)

For example in case of an SQA along the x-axis the spin-dependent energy splitting is
completely contained in the off-diagonal elements. Whereas, if a site is aligned along
the −z-axis, there are no off-diagonal elements, instead the on-site energies change
roles.
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1 2 3 4 5 6 7
δ 0° 0.5° 1° 3° 4.9° 9.7° 22°

M0/M col
0 in % 100 99.996 99.99 99.9 99.74 99.0 95.6

Table 4.3.: Noncollinear configurations presented in Figures 4.34, 4.36 and 4.35: The
average angle δ between two sites and the reduced initial magnetization.
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Figure 4.33.: For Co, Ni, and Fe it is shown on the left the exchange splitting within
the on-site energies of d orbitals and on the right the temperature depen-
dence of magnetization [115]. The room temperature and the reduced
magnetization of Configuration 7 are indicated as grey lines.

To obtain a thermal configuration of SQAs the von Mises-Fisher distribution
(Eq. (B.1) in the appendix) was used to generate a set of vectors on the unit sphere
distributed randomly around the z-axis [113], [114]. This results in a reduced initial
magnetization M0/M coll

0 , the initial magnetization of the disordered configuration in
comparison to that of the collinear alignment.
Table 4.3 gives for a specific set of SQAs the reduced initial magnetization in

percentage of the collinear case, as well as the average angle δ between SQAs of two
different sites. Simulation results can differ for small numbers of 20 to 40 randomly
distributed vectors. Therefore results for different realizations of Configuration 7
are shown in the appendix in Figure B.5. Also a different arrangement of SQAs is
calculated in form of a Co cluster with an alternative geometry (Table 4.4). These
tests ensure that the chosen configuration and geometry are representative for the
dynamics.
By comparing with experimental M(T ) curves, the reduced magnetization can be

ascribed to an ambient temperature. However, this assignment is quite rough as the
M(T ) curve is very flat in the regime of low temperatures. Figure 4.34 presents
the exchange splitting and the M(T ) curves of Co, Ni, and Fe. The horizontal
grey line indicates the reduced magnetization of Configuration 7, the set with the
highest tilting. In case of Ni this configuration corresponds to room temperature,
also indicated as a grey line. The exchange splittings of Co and Fe are more than
twice as large as the one of Ni and a high magnetization survives up to higher
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material Co A Co B Ni A Ni B Fe
atoms 2×(3×2×2) 2×(5×2×1) 2×(3×2×2) 2×(3×2×2) 3×3×3

F in mJ/cm2 13.1 13.1 14.1 3.5 13.2

Table 4.4.: For each ferromagnetic cluster of various size and material the extent in
terms of lattice vectors is given as well as the applied fluence F.

temperatures. Therefore in Co and Fe Configuration 7 corresponds to significantly
higher temperatures. But with respect to the Curie temperature Configuration 7
leads to a similar value of T /TC ≈ 40 % in all three materials.
In this way for each material and each set in Table 4.3 a temperature can be es-

timated. This temperature is based on the average tilting of the sites and therefore
represents the temperature of the magnetic system in thermodynamic equilibrium.
To completely represent this magnetic temperature of course the inter-site tilting
should be dynamic. Note that within the following simulations all noncollinear con-
figurations are static.
The assignment of a temperature to a specific set of SQAs and its reduced magne-

tization is very inaccurate. Therefore in the simulations the temperature of the heat
bath and with it the initial electronic temperature are left at room temperature. In
thermodynamic equilibrium the electronic temperature, the temperature of the heat
bath and the magnetic temperature should coincide. However, the influence of the
initial electronic temperature is negligible and the bath temperature only becomes
important for remagnetization at very low temperatures. In this sense the following
simulations show only the dependence on the magnetic temperature in terms of ran-
dom static tilting, but should not differ to much from simulations of full temperature
dependence in our framework.

In the following simulation results of noncollinear setups of cobalt, nickel and iron
will be presented. Table 4.4 provides an overview of all simulated setups. In this
section calculations are performed without the coupling to an external heat bath.
Selected results of simulations with a heat bath are shown in the appendix. The
laser parameters were chosen in order to achieve a comparable optical excitation in
terms of the maximal number of excited electrons as shown in Figure 4.34 on the
right. The corresponding fluences as well as the geometry of the respective cluster
are listed in Table 4.4. In the fcc setups Co A and Ni A and in the bcc setup of Fe
the degree of excitation coincides.
Figure 4.34 shows the demagnetization in the setup Co A for different noncollinear

configurations. Table 4.3 lists the corresponding data. The demagnetization is clearly
enhanced already for the smallest tilting of SQAs. In case of the collinear configura-
tion of Co, depicted as a blue line, a demagnetization can not be calculated with our
code, while Configuration 2 shows a tiny demagnetization of about 3 % upon optical
excitation. By introducing a minute tilting of 0.5○ between two neighbouring sites,
this configuration is still almost collinear with an initial magnetization of 99.996 %
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Figure 4.34.: The left graphic shows the enhancement of demagnetization by disor-
dered alignment of initial SQAs in the cluster Co A. The time depen-
dence of the laser pulse is indicated in grey. Likewise the position of
minima is indicated by a dashed grey line. The right graphic shows
the number of excited electrons within the collinear configuration for
all setups listed in Table 4.4.

compared to the collinear setup. However, already a minute tilting introduces finite
spin-mixed elements in the on-site energy (4.9) and thereby also the demagnetization
is enhanced or even enabled. By introducing a higher inter-site tilting the demagne-
tization is enhanced further. But also the process of demagnetization is accelerated.
This is visualized by a dashed grey line through the positions of minima. Finally for
Configuration 7 with an angle of about 22○ between two sites and a reduced initial
magnetization of 95.6 % a demagnetization of almost 20 % is simulated, which is
already comparable to experimental values. These results are verified by simulations
of alternative realizations of Configuration 7 and of the altnative geometry Co B
in B.5.
While the improvement of the simulation seems to work quite well for a Co cluster,
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Figure 4.35.: Demagnetization in noncollinear configurations (see Table 4.3) of Fe
after optical excitation.
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Figure 4.36.: Demagnetization in noncollinear configurations (see Table 4.3) of Ni
after strong optical excitation (setup Ni A).

the results for Fe and Ni clusters are not so evident.
The setup for a bcc Fe lattice is a three-dimensional cluster of 27 atoms, three

along the direction of each lattice vector. Figure 4.35 shows that also in case of Fe a
remarkable enhancement of demagnetization can be achieved, from about 10 % up
to almost 40 % for an inter-site angle of 22°. However, in case of small tiltings almost
no changes are visible.
The Ni cluster, shown in Figure 4.36, exhibits already a very strong demagnetiza-

tion without introducing any noncollinearity. Large tiltings add only slightly to the
demagnetization of about 40 %. This also holds for smaller excitations (Ni B in B.4)
just at a lower demagnetization.
The demagnetization in collinear configurations follows the strength of spin orbit

coupling (Figure 4.23). Co with a small SOC shows only a faint demagnetization of
less than 3 %. Fe already exhibits a demagnetization of 10 %, which goes up to 40 % in
Ni. Furthermore the tilting induced spin-mixing elements in (4.10) are proportional
to the exchange splitting ∆ ∼ λxc. In Ni for small tiltings the SOC is larger and
dominates the demagnetization. Only in Configurations 6 and 7 the spin-mixed
elements (4.10) become comparably large or larger than the SOC and a difference
in magnetization dynamics is visible. In case of Co and Fe with a large exchange
splitting and a weaker SOC in almost all configurations the tilting induced spin-mixed
elements exceed the spin-mixing by SOC and thus dominate demagnetization. In Fe
this holds only for Configurations 5 to 7, while configurations with smaller tiltings
lead to comparable magnitudes of SOC and tilting induced spin-mixed elements.
In summary, the influence of inter-site tilting on demagnetization depends on the

ratio of SOC and exchange splitting. A minimal inter-site angle to observe an in-
fluence can be estimated as δmin = sin−1(λsoc/λxc). This corresponds roughly to
minimal angles of 1° in Co, 2° in Fe and 8° in Ni and is in good agreement with the
above results. The dependence of demagnetization on inter-site tilting is stronger
for materials with weak SOC and strong exchange splitting. If the static tilting is
interpreted as an ambient temperature, the dependence of demagnetization on that
ambient temperature is stronger for materials with weak SOC, while the influence
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of λxc on the temperature dependence is smaller. Because on one hand a high ex-
change splitting increases the influence of the tilting, but on the other hand it tends
to correspond to a higher Curie temperature and thus a weaker tilting at the same
temperature.
The temperature dependence of Ni was investigated experimentally by Roth et

al. [116]. At small temperatures almost no different demagnetization behavior could
be observed. At room temperature the demagnetization is only slightly enhanced
while it is enhanced significantly at higher temperatures. This is in good agreement
with the above results calculated with the evolve-code, but could not be repro-
duced as well by simulations based on a magnetic three-temperature-model [116] or
the Boltzmann equation [20]. Both give very good results primarily in the higher
temperature regime. Simulations presented in rt-TDDFT calculations using "initial
magnetic disorder [48] seem to show significant changes for angles bigger than 30°
but also an enhancement of demagnetization from 15 % to 20 % between a zero
temperature and a room temperature scenario.

4.4.3. Dynamical exchange splitting

Finally it shall be mentioned, that a so-called feedback effect is also discussed as
an important mechanism of demagnetization. The implementation of a dynamical
exchange splitting was tested and proposed in [20], [117]. The idea is to use a dy-
namical magnetization-dependent exchange splitting. If the magnetization is reduced
by optical excitation, also the exchange splitting is reduced which in turn reduces
the magnetization. Thus a feedback loop is unleashed which enhances the simulated
demagnetization.
This effect can also be realized within our framework. Similar to (4.11) the Hamil-

tonian
H0(t) = (H̃ −H∆(t) H↑↓0

H↓↑0 H̃ +H∆(t)) (4.12)

is divided into a spin-independent and a spin-dependent part

H̃ = 1
2
(H↑↑0 +H↓↓0 ) and H∆(t) = 1

2
(H↑↑0 −H↓↓0 ) ⋅ λ(t) . (4.13)

The latter one contains the exchange splitting and acquires a time dependence by the
factor λ(t). This factor introduces the feedback effect by scaling the energy splitting
in dependence on the magnetization

λ(t) = f (M(t)
M0

) = (M(t)
M0

)
α

. (4.14)

At the beginning of time evolution it is λ = 1.0. According to the above definitions
H0 and with it all eigenvalues and eigenvectors become time-dependent and have to
be updated in every time step.

Included into the evolve simulations this approach indeed yields a significant
enhancement of demagnetization. With this also in pure ferromagnets realistic values

102



of demagnetization can be reached. However, the detailed results depend on the
system and on the chosen function f . For example, in some setups α ≥ 4 is a necessary
condition for the enhancement of demagnetization. In principle also dependencies
other than (4.14) are possible [20], [117]. For some forms of f this approach introduces
steps into the time evolution of demagnetization, which are probably unphysical
artifacts. Beyond that the choice of the dependence is somewhat arbitrary. It seems
that calculating a change of the electronic structure can more validly be achieved by
ab initio calculations.
Based on the abovementioned reasons we did not pursue this approach further,

although the mechanisms can be reproduced in our framework and can yield high
demagnetizations.
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5. Summary

Throughout the previous chapters a versatile approach to address ultrafast magne-
tization dynamics was presented. It is a real-space tight-binding model which treats
optical excitation in terms of the electromagnetic dipole approximation. Coupling to
an external heat bath simulates the exchange of energy with the environment. The
time evolution of the system and the observables are studied by means of an occu-
pation matrix. All this was implemented in the computational framework evolve.

The functionality of the code was demonstrated using the example of a CoCu bi-
layer system. Upon optical excitation demagnetization was simulated and influences
of the external bath, SOC, photon energy and polarization were analyzed. Detailed
information about the underlying dynamics can be achieved by analyzing the system
in the basis of atomic orbitals as well as in the eigenbasis.
Spin transport across the interface was studied on the basis of ultrafast spin cur-

rents. It was found to be the dominant contribution to demagnetization in the CoCu
bilayer system. The breakdown of the spin current into contributions from individ-
ual orbitals reveals the underlying mechanisms: a current of minority carriers from
Cu into Co. An analysis of material combinations shows however a diverse behavior
with dominant majority currents in other cases. Throughout all material combina-
tions demagnetization was favored by a high SOC.
Spin transport was also studied in inhomogeneously excited systems without an

interface. Its contribution to demagnetization was significant and its magnitude com-
parable to that of spin currents generated at an interface. The extension of the code
to noncollinear magnetism allows a better simulation of homogeneous ferromagnetic
materials. Especially in case of weaker spin orbit couplings the spin transport due
to a gradient in excitation and finite tilting are important contributions to demag-
netization and should be taken into account.
The presented approach evolve can easily be modified to include new mecha-

nisms. The observed mechanism depends on the exact parametrization. This is
not a disadvantage. Instead, underlying mechanisms can be revealed clearly due to
the ability to flexibly manipulate the corresponding parameters. Evolve can treat
large inhomogeneous systems and offers access to microscopic processes. The present
approach may be improved by including electron-electron interaction to prevent un-
physical charge imbalance. Furthermore the interaction with the external bath can
be realized with energy-dependent scattering rates based on ab initio calculations.
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Evolve offers plenty opportunities for further investigation. Ongoing works consider
for example spin polarization and spin currents beyond the two current model as well
as orbital polarization and orbital currents [118], [119].
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A. Additional derivations

A.1. Influence of the envelope function
The vector potential (already without local dependence) of a laser pulse is

A(t) = A0ε sin(ωt) exp(−2(t − t0)2

τ2 ) . (A.1)

Its derivative is

−E(t) = ∂

∂t
A(t) = A0ε exp(−2(t − t0)2

τ2 )(ω cos(ωt) − 4 sin(ωt) t − t0
τ2 ) . (A.2)

The second term inside the bracket results from deriving the Gaussian envelope
function. To estimate its influence, the full expression is compared with a reduced
version of E(t), which does not include the second term.

20 10 0 10 20
t in fs

0.25

0.00

0.25

0.50

= 0.587475 fs 1

E(t) full
E(t) reduced

20 10 0 10 20
t in fs

1.0

0.5

0.0

0.5

1.0

= 1.17495 fs 1

E(t) full
E(t) reduced

20 10 0 10 20
t in fs

2

0

2

= 2.3499 fs 1

E(t) full
E(t) reduced

20 10 0 10 20
t in fs

5.0

2.5

0.0

2.5

5.0
= 4.6998 fs 1

E(t) full
E(t) reduced

Figure A.1.: Full and reduced expression of the electric field of the laser pulse.
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The left illustration in the bottom of Figure A.1 shows the usual configuration with
τ = 10 fs and ω = 2π ⋅ 0.374fs−1, with almost no visible deviation. The neglected term
becomes only important if the frequency is too low compared with the pulse width,
as can be seen in the top row. Therefore it is justified to neglect the derivative of the
envelope function in (2.25) if configurations are restricted to those with a sufficiently
broad pulse width.

A.2. Modifying the Refield equation
All terms within the Redfield equation (3.41) are written explicitly by expanding the
commutators

d
dt
ρ̂(t) = −α2 trB∫

∞

0
ds(ĤI(t)ĤI(t − s)ρ̂(t) ⊗ ρ̂B(0) − ĤI(t)ρ̂(t) ⊗ ρ̂B(0)ĤI(t − s)

−ĤI(t − s)ρ̂(t) ⊗ ρ̂B(0)ĤI(t) + ρ̂(t) ⊗ ρ̂B(0)ĤI(t − s)ĤI(t)) .
(A.3)

The decomposition into the eigenoperators Ŝi(ω) is used to rewrite the interaction
Hamiltonians in one of the two forms

ĤI(t) = ∑
i,ω

e+iωtŜ†
i(ω) ⊗ B̂†

i(t) = ∑
i,ω

e−iωtŜi(ω) ⊗ B̂i(t) . (A.4)

In the first and third term of (A.3) we replace

ĤI(t) = ∑
i,ω′

e+iω′tŜ†
i(ω

′) ⊗ B̂†
i(t) and ĤI(t − s) = ∑

j,ω

e−iω(t−s)Ŝj(ω) ⊗ B̂j(t − s) (A.5)

and in the second and fourth term we set

ĤI(t) = ∑
j,ω′

e+iω′tŜj(ω′)⊗ B̂j(t) and ĤI(t−s) = ∑
i,ω

e+iω(t−s)Ŝ†
i(ω)⊗ B̂†

i(t−s) . (A.6)

Inserting the introduced decompositions into (A.3) leads to

d
dt
ρ̂(t) = − α2 ∑

i,j
ω,ω′

trB∫
∞

0
ds

(e+iω′tŜ†
i(ω

′) ⊗ B̂†
i(t)e

−iω(t−s)Ŝj(ω) ⊗ B̂j(t − s)ρ̂(t) ⊗ ρ̂B(0)

− e−iω′tŜj(ω′) ⊗ B̂j(t)ρ̂(t) ⊗ ρ̂B(0)e+iω(t−s)Ŝ†
i(ω) ⊗ B̂†

i(t − s)

− e−iω(t−s)Ŝj(ω) ⊗ B̂j(t − s)ρ̂(t) ⊗ ρ̂B(0)e+iω′tŜ†
i(ω

′) ⊗ B̂†
i(t)

+ ρ̂(t) ⊗ ρ̂B(0)e+iω(t−s)Ŝ†
i(ω) ⊗ B̂†

i(t − s)e
−iω′tŜj(ω′) ⊗ B̂j(t)) .

(A.7)

By exploiting the invariance of cyclic permutation under the trace the factor Γij
defined in (3.47) can be separated from the system dynamics.
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B. Additional results

B.1. Polarization dependence

Similar features are visible in the polarization dependence of the total number of
excited electrons as observed for the demagnetization in the Co layer.
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Figure B.1.: The dependence of the number of excited electrons on the laser polar-
ization is shown as the demagnetization of the three-dimensional cluster
in Figure 4.14.
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B.2. Frequency dependence

Also for an alternative geometry of the CoCu cluster a comparable demagnetization
was simulated for three different photon energies.
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Figure B.2.: The results of Figure 4.17 calculated for a three-dimensional system of
16 Co and 16 Cu atoms. The left panel shows the demagnetization of
the Co layer in a 2D CoCu cluster excited by laser light with different
frequencies. The laser pulses of different frequencies are indicated as
thin dashed lines. The right panel presents the corresponding number
of excited electrons.

B.3. Interface currents
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Figure B.3.: Charge and spin currents across the interface from the ferromagnetic
into the nonmagnetic layer.
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B.4. Noncollinear setups
The von Mises-Fisher probability density function for a random vector x on the unit
sphere is defined as [114]

f(x;κ) = (κ
2
)

0.5 1
Γ(1.5)I0.5(κ)

exp (κeT
z x) . (B.1)

Ia(κ) are the modified Bessel functions. The resulting vectors are distributed with
the concentration parameter κ around ez. A low value of κ corresponds to a low
expectation value ⟨Sz⟩.

Figure B.5 confirms the results of Section 4.4.2. The simulations presented in
Figure 4.34 are recalculated with a coupling to a heat bath, and additionally for a
different shape of the two-dimensional Co cluster, labeled Co B in Table 4.4. In both
cases the behavior as shown in Figure 4.34 is repeated. With the coupling to a heat
bath the strong oscillations of magnetization after the optical excitation vanish, but
the degree of demagnetization remains unchanged. In case of the alternative setup,
Co B, also the completely collinear configuration exhibits a small demagnetization.
Apart from this the enhancement of demagnetization by increasing the tilting of SQAs
is completely equivalent to the setup Co A. Different realizations of Configuration 7
exhibit a similar qualitative behavior.
In agreement to Figure 4.36 simulations of weakly excited Ni show an influence

only for large initial tiltings.
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Figure B.4.: The simulations of Figure 4.36 are repeated with a weak excitation
(setup Ni B in Table 4.4).
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Figure B.5.: Demagnetization in Co clusters with a finite inter-site tilting as pre-
sented in Figure 4.34, but with coupling to an external heat bath. On
the left the calculations of the setup Co A are repeated. On the right
results for an alternative geometry of Co atoms (setup Co B) are shown.
The numbers refer to noncollinear configurations specified in Table 4.3.
In the bottom row different realizations of Configuration 7 in the Co A
cluster are compared without coupling to a heat bath.
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[F1] F. Töpler, A. Hönemann, K. Tauber, D. V. Fedorov, M. Gradhand, I.
Mertig, and A. Fert, “Nonlocal anomalous hall effect in ternary alloys
based on noble metals,” Physical Review B, vol. 94, no. 14, Oct. 19, 2016.

[F2] V. Popescu, P. Kratzer, P. Entel, C. Heiliger, M. Czerner, K. Tauber,
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