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Abstract
Scheduling practices are critical decision-making processes that substantially influence the overall
performance of cloud and manufacturing environments. Therefore, scheduling problems have been
a primary concern of practitioners and scholars in this field for decades. The majority of scheduling
problems are known NP-hard optimization problems. Hence, heuristic and improvement methods
have been conventionally adopted to address scheduling concerns. Heuristic methods exhibit a light
execution time but fail to sustain high solution quality for solving complex problems. Improvement
methods deliver high-quality solutions but are associated with high computational effort.

To mitigate the individual limitations of both methods, scholars started investigating hy-
brid solution methods that may combine their advantages. The individual limitations of the
conventional methods, in addition to the complex nature of the scheduling problem, result in a
poor practical adoption of presented scheduling methods. Recently, Deep Reinforcement Learning
(DRL) methods substantiated a fundamental breakthrough and have been successfully adopted
in the gaming domain. The foundational design of DRL methods includes optimization elements,
making them suitable for addressing scheduling problems.

Therefore, a scheduling methodology is presented that efficiently facilitates the combined
utilization of heuristic, metaheuristic, and deep reinforcement learning methods to solve scheduling
problems in cloud and manufacturing environments. Since most industrial scheduling problems are
subject to multi-objective optimization measures, the methodology addresses scheduling concerns
considering system efficiency and customer satisfaction objective measures. Parallelization and
scalability technologies have been adopted to design and develop the presented artifact to achieve
computational efficiency.

To conduct the research systematically, the proposed methodology relies on the Design Sci-
ence Research (DSR) framework and adheres to its fundamental design activities. The identified
research gap, validated by the theoretical findings and the needs of application environments, is
translated into functional and non-functional requirements of the artifact. The derived functional
and non-functional requirements are then mapped into functionality layers to define the overall
functional structure of the proposed methodology. The artifact is designed using component and
modular design practices to address single-stage and multi-stage scheduling problems in cloud and
manufacturing, respectively.

The combined utilization of simulation, heuristic, improvement, and deep reinforcement learn-
ing methods was achieved by designing and developing a scheduling data model, several optimiza-
tion encoding models for scheduling problems, DRL scheduling models, and a DRL evaluation
model. The developed scheduling data model facilitates flexible instantiation of the methodology
to address single-stage or multi-stage scheduling problems considering multiple objective mea-
sures. The subsequent implementation of the artifact design is presented as a proof of concept
and evaluated based on the DRS framework. The developed prototype is designed to support a
multi-architecture infrastructure deployment and execution. The simulation and heuristic, as well
as the artifact’s optimization and machine learning subsystems, are developed and deployed with
parallelization and scalability features.

The developed prototype is evaluated on multiple use cases to address multi-objective schedul-
ing problems in cloud and manufacturing environments. Its utility was evaluated for solving real
multi-stage scheduling problems in manufacturing environments. Compared to related works, the
artifact’s optimization and DRL methods delivered, on average, 31.7% improved solutions in mini-
mizing the system efficiency objective measures. The solutions also minimized penalties and delays
by 33.3%, contributing to higher customer satisfaction.
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Abstract in German
Planungsabläufe sind entscheidende Prozesse, die die Gesamtleistung von Cloud- und Produktions-
umgebungen maßgeblich beeinflussen. Daher beschäftigen sich Praktiker und Wissenschaftler seit
Jahrzehnten intensiv mit Planungsproblemen. Die meisten Maschinenplanungsprobleme gelten als
NP-schwere Optimierungsprobleme, weshalb häufig Heuristiken und Optimierungsmethoden zur
Lösung eingesetzt werden. Heuristische Methoden zeichnen sich durch kurze Ausführungszeiten
aus, können jedoch bei komplexen Problemen keine hohe Lösungsqualität garantieren. Im Ge-
gensatz dazu liefern Optimierungsmethoden hochwertige Lösungen, sind jedoch mit erheblichem
Rechenaufwand verbunden.

Um die Nachteile beider Methoden zu überwinden, haben Wissenschaftler hybride Lösungs-
methoden erforscht, die die Vorteile beider Ansätze kombinieren. Aufgrund der individuellen Ein-
schränkungen herkömmlicher Methoden sowie der Komplexität von Maschinenplanungsproblemen
finden diese Ansätze jedoch selten praktische Anwendung. In den letzten Jahren haben Methoden
des Deep Reinforcement Learning (DRL) bedeutende Fortschritte erzielt und wurden erfolgreich
im Gaming-Bereich eingesetzt. Das Grundkonzept von DRL-Methoden beinhaltet Optimierungs-
elemente, was sie für die Lösung von Maschinenplanungsproblemen besonders geeignet macht.

Deshalb wird eine neue Scheduling-Methodik vorgestellt, die eine effiziente und präzise Kom-
bination von heuristischen, metaheuristischen und Deep Reinforcement Learning-Methoden zur
Lösung von Maschinenplanungsproblemen in Cloud- und Produktionsumgebungen ermöglicht. Da
die meisten industriellen Maschinenplanungsprobleme multikriteriellen Optimierungsmaßnahmen
unterliegen, berücksichtigt diese Methodik sowohl die Systemeffizienz als auch die Kundenzufrie-
denheit als Zielgrößen. Bei der Konzeption und Entwicklung des vorgestellten Artefakts wurden
Technologien zur Parallelisierung und Skalierbarkeit genutzt, um eine hohe Recheneffizienz zu
gewährleisten.

Um die Forschung systematisch durchzuführen, stützt sich die vorgeschlagene Methodik auf
den Rahmen der Design Science Research (DSR) und folgt deren grundlegenden Designakti-
vitäten. Die identifizierte Forschungslücke, die durch theoretische Erkenntnisse und praktische
Bedürfnisse validiert wurde, wird in funktionale und nicht-funktionale Anforderungen an das Arte-
fakt übersetzt. Diese Anforderungen werden dann in verschiedene Funktionalitätsschichten abge-
bildet, um die gesamte funktionale Struktur der Methodik zu definieren. Das Artefakt wird unter
Verwendung komponenten- und modularer Techniken entwickelt, um sowohl einstufige als auch
mehrstufige Maschinenplanungsprobleme in Cloud- und Fertigungsumgebungen zu lösen.

Die integrierte Nutzung von Simulations-, Heuristik-, Verbesserungs- und Deep Reinforcement
Learning-Methoden wurde durch den Entwurf und die Entwicklung eines Datenmodells, mehrerer
Optimierungskodierungsmodelle für Maschinenplanungsprobleme, DRL-modelle und eines DRL-
Evaluierungsmodells erreicht. Die anschließende Implementierung des Artefaktdesigns wird als
Proof of Concept vorgestellt und auf der Grundlage des DRS-Frameworks evaluiert. Der entwi-
ckelte Prototyp ist so konzipiert, dass er den Einsatz und die Ausführung einer Multi-Architektur-
Infrastruktur unterstützt. Die Simulation und Heuristik sowie die Teilsysteme für Optimierung
und maschinelles Lernen des Artefakts werden mit Parallelisierungs- und Skalierungsfunktionen
entwickelt und eingesetzt.

Der entwickelte Prototyp wurde anhand mehrerer Anwendungsfälle evaluiert, um multikrite-
rielle Maschinenplanungsprobleme in Cloud- und Produktionsumgebungen zu lösen. Sein Nutzen
wurde für die Lösung realer mehrstufiger Maschinenplanungsprobleme in Produktionsumgebungen
evaluiert. Im Vergleich zu verwandten Arbeiten lieferten die Optimierungs- und DRL-Methoden
des Artefakts im Durchschnitt 31, 7% bessere Lösungen bei der Minimierung der Makepan und
der Gesamtzahl der Hauptrüstzeiten, was zu einer höheren Systemeffizienz beitrug. Die Lösungen
minimierten auch Penalties und Lieferterminverzögerungen um 33, 3%, was zu einer höheren Kun-
denzufriedenheit beitrug.
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1 Introduction

In this chapter, we present the motivation of the dissertation, which systematically dis-

cusses the relevant research foundations and application environments to highlight the

challenges. We express the identified challenges and possible opportunities in the form of

research hypotheses, which this thesis aims to validate. Based on the research hypotheses,

we articulate the overall research objective of the dissertation. We thoroughly discuss the

adapted research methodology and highlight the research questions to accomplish the re-

search objective. Following, we provide an overview of the author’s main published works

and communicate their contribution to the intended artifact of this research. Finally, we

present the outlines of the thesis based on the adopted methodology.

1.1 Motivation

In Information Technology (IT) and advanced manufacturing, the introduction and es-

tablishment of certain cloud and Industry 4.0 technologies have fundamentally changed

business needs. For instance, efficient and accurate decision-making processes become

necessary to sustain competitive advantages in different markets (Pinedo, 2012, p. 1). A

crucial subset of these decision-making processes enforces scheduling and sequencing prac-

tices in various cloud and manufacturing environments (Pinedo, 2012, p. 3; Baker and

Trietsch, 2009, p. 4). Scheduling is the process of allocating limited resources to complete

a set of tasks in some technological order (Pinedo, 2012, p. 1). Scheduling practices are

present and crucial in every service or manufacturing sector (Pinedo, 2012, pp. 1-6), such

as scheduling patients in some healthcare clinics (Nahhas et al., 2017b), scheduling orders

or jobs to be processed in a manufacturing environment (Nahhas et al., 2017a; Pinedo,

2012, p. 5), or scheduling jobs for processing in cloud environments (Nahhas et al., 2021a;

Jiang et al., 2020). For four decades, scholars and practitioners have been intensively

investigating different variations of scheduling problems due to their essential role in the

daily operations of these industries (Pinedo, 2012, p. 537; Baker and Trietsch, 2009, p. 2).

Depending on a considered system, scheduling activities can be reduced to single-

stage or multi-stage scheduling problems. In cloud environments, scheduling activities are

overwhelmingly formulated as single-stage scheduling problems (Arunarani et al., 2019,

p. 413; Pires and Barán, 2015, p. 165), while few research deals with multi-stage or work-

flow scheduling in cloud environments (Arunarani et al., 2019, p. 413). In a single-stage

scheduling environment, a set of m number of physical machines available in parallel to

process or host a set of application instances, virtual machines, or jobs. In manufacturing
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environments, scheduling activities are significantly more complex since jobs may require

processing in multiple production stages, in which machines are available to process them

in parallel. In terms of problem formulation, multi-stage scheduling in manufacturing is al-

most identical to workflow scheduling in cloud environments. However, they are addressed

by considering slightly different objective measures.

In operations research, these scheduling problems are referred to as Hybrid Flow Shop

(HFS) scheduling problems (Neufeld et al., 2023, p. 1). HFS scheduling problems represent

a wide range of industrial manufacturing systems since they formally express multi-stage

assembly production systems (Pinedo, 2012, p. 151; Ruiz and Vázquez-Rodŕıguez, 2010,

p. 5; Ribas et al., 2010, p. 1449). An HFS production environment consists of S processing

stages in series. Each processing stage offers m parallel machines. Usually, the operations

of such systems are subject to technological constraints expressed in specific processing

orders of jobs. Each job Jj has to be processed in each processing stage by one of the avail-

able machines (Pinedo, 2012, p. 15). For decades, scheduling theory mediated the transfer

of theoretical scheduling concepts to industrial practices. However, presented mathemat-

ical models and formulation of scheduling problems in scheduling theory are dominated

by NP-hard problems (Challita et al., 2017, p. 345; Neufeld et al., 2016, p. 58; Pinedo,

2012, pp. 26-28; Gupta and Stafford, 2006, p. 703; Koulamas, 1994, p. 1036; Lenstra et al.,

1977, pp. 344-349; Lenstra et al., 1977, pp. 117-123). Consequently, traditional analytical

solutions are too computationally expensive and often cannot be applied to find optimal

or sub-optimal solutions.

Therefore, conventional solution techniques for solving industrial scheduling problems

are overwhelmingly dominated by the adoption of heuristic and improvement methods

(Neufeld et al., 2023, pp. 4-7; Arunarani et al., 2019, p. 408; Challita et al., 2017, p. 348;

Neufeld et al., 2016, p. 63; Pires and Barán, 2015, p. 9). A constructive heuristic is usually

designed to construct a solution with no further improvement mechanism. In practice,

constructive heuristics are developed using simple procedural logic that often relies on

some priority index describing job characteristics. Priority Dispatching Rules (PDRs) are

well-established constructive heuristics often used in different industrial contexts to deal

with scheduling problems (Oukil and El-Bouri, 2021, p. 389; Rolf et al., 2020a, p. 443;

Baker and Trietsch, 2009, pp. 58-59; Blackstone et al., 1982, pp. 27-29). The Earliest Due

Date (EDD) is a PDR, which ranks jobs according to their due date. It is often applied

to schedule jobs in a manufacturing environment (Rolf et al., 2020b, p. 1588; Blackstone

et al., 1982, p. 29) or processing in a cloud environment (Menaka and Sendhil Kumar,

2022, pp. 2-3; Moges and Abebe, 2019, p. 4; Murad et al., 2024, p. 233). The simple

design of these heuristics makes them very attractive since they do not require expert

engineering skills to be developed (Pinedo, 2012, pp. 376-377; Ross, 2005, pp. 530-531).

However, constructive heuristics lack performance and quality of solution if business needs

necessitate optimizing multiple objective concerns (Pinedo, 2012, p. 377).

Therefore, improvement methods are usually applied to solve multi-objective schedul-

ing problems (Kruekaew and Kimpan, 2022; Nahhas et al., 2021a,b; Ross, 2005). Typically,

improvement heuristics are based on combining simple constructive heuristics to construct
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an initial solution and improvement mechanism, which is employed to enhance the quality

of the initial solution iteratively. Metaheuristics are a subset of improvement techniques,

which are often inspired by different natural concepts such as evolution theory in the case

of Genetic Algorithms (GA) presented by Holland (1975), the behavior of swarm in the

case of Particle Swarm Optimization (PSO) (Liao et al., 2007), or annealing of metal in

the case of Simulated Annealing (SA) proposed by Kirkpatrick et al. (1983). The improve-

ment mechanism of the metaheuristic technique is designed to systematically revise the

initial solution or population of solutions to achieve improvement in terms of minimizing

or maximizing some objective values (Ross, 2005, p. 530). They are often used to address

multi-objective scheduling problems and can deliver high-quality solutions (Neufeld et al.,

2023, pp. 4-7; Pires and Barán, 2015, pp. 164; Ross, 2005, pp. 530-531). However, im-

provement methods are usually subject to high computational effort for achieving superior

solutions (Ross, 2005, p. 531).

The computational effort limitation of improvement methods motivated scholars and

practitioners to pursue more efficient techniques that deliver acceptable solutions using

hybrid solution methods (Bhattacharyya, 2018; Dey et al., 2018). A hybrid solution tech-

nique combines any two different types of solution techniques for solving a given problem.

Although the term is relatively recent, the notion has been used for decades to describe

algorithmic solutions that inherit a mix of any kind as presented in (Crowston et al., 1963).

Many contributions can be found in the literature combining heuristic and metaheuristic

techniques for addressing scheduling problems (Remesh et al., 2023; Rashida et al., 2020;

Rolf et al., 2020a; Nahhas et al., 2017a; Amoretti et al., 2013; Ross, 2005). Although

hybrid methods maintain an acceptable execution time compared to improvement methods

for solving a given problem, they are still vulnerable to modification in a considered sys-

tem. As a result, they might lack robustness and adaptivity to constantly adopting new

technologies.

1.2 Research gap

In addition to individual limitations of previously discussed solution methods, the major-

ity of them share a common adoption drawback. Despite the extensive research efforts

invested in the field of scheduling, a lack of industrial adoption of these solution methods is

evident in various application fields (Romero-Silva et al., 2022, p. 4; Ross, 2005, pp. 530-

531; Reisman et al., 1997; Maccarthy and Liu, 1993). Reisman et al. (1997) reviewed

forty years of research effort in scheduling and raised concerns that point to oversimplifi-

cation of real-world scheduling problems, which leads to neglecting the multi-objective and

dynamic nature of scheduling in practice. Furthermore, the authors stressed that 3 % of

found methods can be deemed applicable for addressing scheduling problems in practice.

Although the findings of Reisman et al. (1997) are quite surprising, the reasoning behind

his findings is not. Already in the early nineties, Maccarthy and Liu (1993) discussed

that ideal problem setup and abstraction practices in scheduling theory are far away from

normal practical environments (Maccarthy and Liu, 1993, p. 70). Middle of two thou-
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sand, Ross (2005) opened the same discussion and stressed the high development costs

associated with problem-specific solution methods Ross (2005, pp. 530-531), that lack

flexibility. Finally, two years ago Romero-Silva et al. (2022, p. 4) revisited the discussion

and reiterated similar concerns by systematically analyzing the theory-practice gap in the

scheduling field.

Eventually, the combinatorial nature of scheduling problems from a research per-

spective and the realistic application of researched methods in practice is an ever-to-be-

addressed dilemma. Many scholars emphasized this gap and encouraged authors to ad-

dress some of these limitations (Swan et al., 2022, p. 400; Romero-Silva et al., 2022, p. 4;

Urquhart et al., 2019, p. 1345; Neufeld et al., 2016, p. 70; Ruiz and Vázquez-Rodŕıguez,

2010, p. 21; Reisman et al., 1997, p. 326). Therefore, this dissertation presents a schedul-

ing methodology that combines the utilization of simulation, heuristic, metaheuristic, and

Deep Reinforcement Learning (DRL) methods to address multi-objective scheduling prob-

lems. The objective is to leverage their combined potential and mitigate some of their

limitations through their combined use.

Simulation methods are powerful techniques for modeling, simulating, and partially

constructing solutions for complex optimization problems (Chica et al., 2020, pp. 324-325).

In contrast to all discussed methods, adopting DRL methods for solving scheduling prob-

lems is poorly researched and may contribute to achieving adaptivity in solving scheduling

problems. DRL methods inherit optimization character by design, which is based on the

concept of Markov Decision Process (MDP) (Papadimitriou and Tsitsiklis, 1987a). A

DRL algorithm, referred to as an agent, interacts with the environment according to a

well-defined mechanism called the action space. The environment is typically an abstract

model of the real system. Given the action space, the agent selects an action that is ap-

plied in the environment. Based on the quality of the suggested action, the agent earns a

reward, which it seeks to maximize. Iteratively, the agent learns to optimize its behavior

and enhance interaction with the environment.

In addition to integrating methodologically different solutions methods in the pre-

sented artifact, the notion of learning from solutions to scheduling problems is very

promising from academic and industrial perspectives. Therefore, we aim to harmonize

the integration of these methods to address realistic multi-objective scheduling problems.

Incorporating expert experiences to solve complex scheduling problems using DRL meth-

ods may yield an adaptive scheduling methodology that leverages conventional methods’

potential and DRL methods’ adaptivity. The research and development efforts required

to develop the pursued methodology are the core subject matters of this dissertation. The

next section presents the design and objective of the thesis at hand.

1.3 Research design and objectives

We briefly discussed the lack of adaptivity of existing scheduling techniques in the litera-

ture (Romero-Silva et al., 2022) and stressed the importance of addressing multi-objective

optimality concerns (Neufeld et al., 2023; Pires and Barán, 2015). Ideally, modern schedul-
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ing techniques must deliver high-quality solutions with acceptable computational effort

(Ross, 2005). Designing such a solution technique is subject to research and development

challenges, which we intend to point out in this section. We express these challenges in

the form of research hypotheses and articulate the overall research objective of the thesis.

To meet the research objective, we formulate research questions that the thesis focuses on

answering. The main research objective of the presented thesis relies on three research

hypotheses, which we systematically investigate in the course of the thesis to develop the

research artifact. Investigating the adoption of DRL methods promises to address com-

plex scheduling problems if DRL methods can be trained to learn scheduling solutions.

Therefore, we express the first hypothesis as follows:

Hypothesis 1

Learning from solutions to scheduling problems in cloud and manufacturing environ-

ments could be a significant step in instantly supporting scheduling decision-making

processes. Therefore, deep reinforcement learning methods might be adopted to learn

from solutions to scheduling problems.

In this hypothesis, we presume that DRL methods can be trained using solutions

to scheduling problems. After sufficient training, they can be used to solve scheduling

problems in cloud and manufacturing environments. The fact that DRL methods inherit

an optimization nature motivates this assumption (Papadimitriou and Tsitsiklis, 1987a).

Learning from solutions to scheduling problems or imitating expert behavior requires inte-

grating multiple solution methods. Our previous discussion highlighted the key advantages

and disadvantages of various solution methods often adopted to solve scheduling problems.

It is crucial to establish a profound understanding of how we can integrate these techniques

to develop a hybrid one that leverages their combined advantages. Therefore, the second

hypothesis results from the first one and can be expressed as follows:

Hypothesis 2

Achieving an adaptive scheduling mechanism requires leveraging the light computa-

tional efforts of heuristic methods, robustness and high-quality solutions ofmetaheuris-

tic methods, and the adaptive capabilities of deep reinforcement learning methods.

Therefore, scheduling problems in cloud and manufacturing environments can be ad-

dressed using a methodology that integrates the utilization of heuristic, metaheuristic,

and machine learning methods. This combination may adapt to the dynamic nature

of these environments.

Scheduling problems in cloud and manufacturing environments are subject to various

operational constraints and objective values. The majority of conventional optimization

methods are usually designed or adopted to address single-objective scheduling problems

(Neufeld et al., 2016; Pires and Barán, 2015). Furthermore, authors often argue that

no single algorithm addresses all objective concerns at all times (Ghafari et al., 2022;

Nahhas et al., 2019a; Ross, 2005). Therefore, employing multiple heuristics combined
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with a metaheuristic method may yield better performance in solving multi-objective

scheduling problems. To this extent, based on the first and second hypotheses, the third

hypothesis discusses the prospect of utilizing several algorithms during a scheduling period,

as presented here:

Hypothesis 3

Scheduling problems are inherently complex due to the dynamic nature of real cloud

and manufacturing systems. Therefore, employing multiple heuristic methods con-

trolled by a metaheuristic method during a scheduling period may yield better results

than using them independently. The quality of the solution is subject to multiple

objective measures that consider system efficiency and customer satisfaction.

In the course of this work, we will examine the previous hypotheses to seek their

validation. Validating the third hypothesis may define how we should efficiently employ

various heuristics during a scheduling period, which may deliver better results for ad-

dressing multi-objective optimization concerns. This, in turn, would require utilizing a

metaheuristic method as a controlling or guiding mechanism to achieve high-quality so-

lutions. Efficient integration of these methods lays out a road map to integrate them

with deep reinforcement learning methods to achieve adaptivity of the pursued scheduling

method and validate the second hypothesis. Finally, learning from solutions to schedul-

ing problems confirms the first and foremost research hypothesis to achieve the overall

research objective. Hence, we may express the overall research objective of the thesis at

hand as follows.

Research objective

The research goal of the presented thesis is to present a scheduling methodology

that facilitates efficient and accurate combined utilization of heuristic, metaheuristic,

and deep reinforcement learning methods to solve scheduling problems in cloud and

manufacturing environments. We strive to achieve the research objective by concep-

tualizing, designing, and developing a scheduling methodology that rapidly deploys

integrated simulation, optimization, and deep reinforcement learning methods to solve

scheduling problems. To achieve computational efficiency, parallelization and scalabil-

ity technologies must be adopted. The majority of industrial scheduling problems are

subject to multi-objective optimization measures. Therefore, the intended method-

ology must address scheduling concerns considering system efficiency and customer

satisfaction objective measures.

One must rely on an appropriate scientific methodology to conduct research and de-

velopment projects with a clear definition of scientific requirements and objectives. The

nature of conducted research in information systems and comparable disciplines is usu-

ally characterized as behavioral or constructional (von Hevner et al., 2004). The research

at hand exhibits a strong constructional nature. Based on the presented study by von

Hevner et al. (2004), the Design Science Research (DSR) framework is suitable for in-

vestigating, designing, developing, and evaluating IT research artifacts that reflect actual
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utility in their perspective environments. Therefore, the research is conducted following

the DSR framework (von Hevner et al., 2004). Based on the DSR framework presented

by von Hevner et al. (2004), the research artifact is presented in Figure 1.1. The intended

research artifact is a flexible, scalable, and distributed scheduling methodology that inte-

grates the utilization simulation, heuristic, metaheuristic, and deep reinforcement learning

methods for solving multi-stage scheduling problems considering multi-objective optimal-

ity concerns.

The adapted research methodology is founded on three core pillars: The application

environment, the Information Systems (IS) research artifact, and the Knowledge base (von

Hevner et al., 2004). In contrast to (Orlikowski and Barley, 2001), the research artifact is

positioned by von Hevner et al. (2004) as a broad ”core subject matter”, which includes

instantiations, constructs, models, or methods. To design the research artifact, we rely on

several research foundations from the knowledge base due to the interdisciplinary nature

of scheduling problems and their solution techniques, as presented in Figure 1.1.

Among others, we first investigate challenges in cloud operation management and

resource planning in just-in-time manufacturing with a primary focus on scheduling prob-

lems to determine relevant requirements that must be addressed. Furthermore, we analyze

and investigate the performance of formal heuristic and metaheuristic methods to design

an efficient scheduling methodology. To integrate DRL methods, we explore the potential

of the DRL technique for addressing scheduling concerns. We present a proof-of-concept

following algorithm engineering practices to evaluate the performance of the scheduling

methodology and rely on simulation techniques to develop evaluation and solution con-

struction components. We further explore utilizing various open-source and cloud tech-

nologies to implement the prototype, considering flexibility, scalability, parallelization, and

efficiency to address scheduling problems.

Methodology for Self-Adaptively Solving Multi-
Objective Scheduling Problems (MESEAS) 

Publication of intermediate 
results and the thesis

Foundations

• Cloud operation 
management

• Industry 4.0 and just-in-
time manufacturing

• Decision making
• Scheduling problems
• Heuristic, metaheuristic, and 

hybrid optimization 
Techniques

• Deep reinforcement learning 
techniques

Methodologies

• Algorithms engineering
• Applied optimization and 

machine learning
• Modeling and simulation
• Service-oriented architecture
• Multi-objective optimization

People

• Cloud operation managers
• IT infrastructure managers
• Strategic resources planners
• Shop floor planners
• Capacity planning managers

Organization

• Resources planning and 
optimization

• Resources operation 
management

• Scheduling optimization
• Optimization services

Technologies

• Cloud technologies
• Cyber-physical systems
• Parallelization technologies

 

Applicable knowledgeBusiness needs
Knowledge BaseEnvironment IS Research

Develop and Build

Methodology for Self-Adaptively Solving Multi- 
Objective Scheduling Problems (MESEAS) 

Evaluate and assess

Performance Analysis of Optimization Techniques 
Experimental Case Studies

Prototypical Implementation
Real World Application

Assess Refine

Figure 1.1: Adopted design science research methodology to conduct this research.
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Every research artifact and its associated proof-of-concept is, in essence, an experi-

ment that answers open question/s in the respective environment (von Hevner et al., 2004)

based on (Newell and Simon, 1975). The epistemology of design science can be expressed

in three phases forming three distinct levels of research: Conceptual, descriptive, and pre-

scriptive research (Iivari, 2007). The descriptive research phase includes investigating and

validating various hypotheses (Iivari, 2007) to derive grounded observations and empirical

results (Daase et al., 2024). These results are used to conduct prescriptive research by de-

signing/continuously refining novel research artifacts (von Hevner et al., 2004; Sonnenberg

and vom Brocke, 2012). We conducted prescriptive research activities, making informed

and well-investigated decisions in designing the research artifact of the thesis (Sonnenberg

and vom Brocke, 2012). The thesis at hand answers the following main research question,

which may contribute to achieving the overall objective of this research:

Research Question

How to conceptualize, design, and develop a scheduling methodology that integrates

and facilitates the combined utilization of simulation, heuristics, metaheuristic, and

deep reinforcement learning methods to address multi-objective scheduling problems

in cloud and manufacturing environments?

To break the complexity in the design and development of the intended research

artifact and answer the main research question, we follow a component-based approach

(Turowski, 2003, 2001). The intended research artifact comprises four main components:

a simulation component, a heuristic library component, an optimization component, and a

machine learning component. Similarly, the design and development of each component are

associated with sub-questions, whose answers contribute to answering the overall research

question. The first sub-question explores the body of the knowledge base in search of

appropriate solutions for addressing multi-objective scheduling problems in cloud and

manufacturing environments.

Sub-Research Question 1

What are the key methods frequently adopted to address multi-objective scheduling

problems, and how do they perform in cloud and manufacturing environments?

In addition to analyzing the performance of identified heuristic and metaheuristic

methods individually, it is necessary to investigate their combination in terms of perfor-

mance for solving multi-objective scheduling problems in cloud and manufacturing envi-

ronments. Therefore, the second sub-question investigates the design and performance of

an efficient optimization component of the research artifact. We pursue a hybrid method

combining heuristics and improvement methods to leverage their advantages.
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Sub-Research Question 2

How do we efficiently combine heuristic and metaheuristic methods for solving schedul-

ing problems in cloud and manufacturing environments?

The third hypothesis of this research presumes that combining various heuristic or

metaheuristic methods yields better performance for solving multi-objective scheduling

problems during a scheduling period. The fact that most scheduling problems are NP-

hard in the strong sense contributes to this assumption (Cook, 1971; Conway et al., 1967).

However, for this statement to hold true, efficient integration is required. Validating the

third hypothesis aligns with answering the previous sub-question and next sub-question.

The objective is to make informed design decisions for the simulation, optimization, and

heuristic library components to achieve high-quality solutions, which is the focus of the

third sub-question.

Sub-Research Question 3

Will a scheduling methodology that facilitates the combined utilization of heuristic

and metaheuristic methods outperform their individual use for solving multi-objective

scheduling problems in cloud and manufacturing environments?

Validating the first hypothesis and second hypothesis requires investigating the adop-

tion and integration of deep reinforcement learning methods with the respective heuristic

methods to address scheduling problems. Hence, the final sub-question can be expressed

in the following:

Sub-Research Question 4

How to adopt deep reinforcement learning techniques to learn from solutions to multi-

objective scheduling problems?

Designed artifacts in information system and business informatics disciplines are de-

veloped following either routine design or design research practices (von Hevner et al.,

2004). Routine design is usually adopted to apply known methods from the knowledge

base while following well-established guidelines to address known business needs through

a conventional IT artifact (e.g., integrating a financial solution for billing in a company)

(von Hevner et al., 2004). However, design research must produce an innovative and

unique artifact that attends to business needs with improved solutions that may be more

effective or efficient in solving a given problem (von Hevner et al., 2004). In essence, the

DSR artifact must address changes and meet new requirements of the application environ-

ment following scientific methods. The primary distinctions of a DSR artifact are a clear

definition of the contributions to the body of the knowledge base and a viable utility in

the application environment. On the one hand, translating the needs of the application

environment to design useful artifacts that can be adopted in industry is fundamental. On

the other hand, communicating intermediate and final results with the respective research

communities is necessary to ensure consistent enrichment of the research foundations and
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methodologies. The main contribution of the research artifact at hand is discussed in the

next section in chronological order.

1.4 Publications of the author

The presented thesis summarizes years of extensive research and development efforts, in

which over 50 scientific contributions have been published to communicate the results to

the international scientific community. The thesis at hand integrates the author’s most

significant contributions into a single harmonized scientific artifact. As discussed earlier,

we followed a component-based approach (Turowski, 2003, 2001) to conceptualize, design,

and develop the research artifact. Therefore, in chronological order, we present an overview

of published materials and their contribution to the individual component of the overall

research artifact.

Analysis of existing methods in various application fields- Appropriate scheduling prac-

tices significantly impact the overall performance of businesses and service centers in var-

ious fields such as emergency departments (Nahhas et al., 2017b), data centers and cloud

operations (Nahhas et al., 2018a), manufacturing (Nahhas et al., 2017a), or supply chain

(Nahhas et al., 2023a; Daase et al., 2023). Around the beginning of the research project,

we investigated conventional solution techniques often employed to deal with scheduling

problems. We also studied various formulations of scheduling problems in different ap-

plication fields. For instance, in Nahhas et al. (2017b), we integrated heuristic methods

with discrete event simulation methods to optimize the scheduling of patients into various

healthcare givers and resources such as procedures or examination rooms in an emergency

department. The formulated scheduling problem was a single-stage scheduling problem,

although patients with critical conditions might undergo several processes in multiple

stages. The presented heuristic optimization addressed minimizing the number of patients

treated before leaving the emergency department and the center’s operational and staffing

costs.

In the manufacturing field, we addressed a multi-stage scheduling problem consid-

ering the minimization of the makespan and the total tardiness (Nahhas et al., 2017a,

2016; Aurich et al., 2016). In this research, we developed a heuristic algorithm to deal

with the problem subject to sequence-dependent setup time constraints. The research’s

second objective is to quantitatively investigate the performance of some metaheuristic

techniques for solving multi-stage scheduling problems. Therefore, we implemented Simu-

lated Annleaning (Kirkpatrick et al., 1983) and Tabu Search (TS) (Glover, 1989) to solve

the problem given the discussed objective values. The experimental setup focuses on the

performance of the solution techniques for minimizing the objective values, taking into

account the required computational effort to achieve high-quality solutions. Computa-

tional results suggest a slight outperformance of the developed heuristic for minimizing

the makespan while failing to achieve complete dominance compared to the metaheuristics.

In conclusion, the adopted metaheuristic techniques require significantly more com-
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putational time to achieve robust results compared to the presented heuristic. Therefore,

in Nahhas et al. (2017a), we investigated the adoption of population-based metaheuris-

tics to mitigate the computational effort drawback in the previous study. The results

of an initial literature analysis encouraged the adoption of Genetic Algorithms (Holland,

1975; Goldberg, 1989) as a prominent population-based metaheuristic technique. Given

the same discussed problem, we evaluated the performance of the GA against the previ-

ous methods for solving four real problem instances. The computational results showed

that the GA outperforms SA and TS in solving the problems and achieved better objec-

tive values. However, computational efforts remained an open challenge since only slight

improvements could be made. These observations are consistent and further signified

in an extended study, in which we considered additional operational constraints such as

machine availability (Aurich et al., 2017). The investigation also shows that adopting

population-based metaheuristic techniques guarantees an edge in performance compared

to other metaheuristics since they can avoid the so-called local optima phenomena.

To address scheduling problems in a cloud environment, we investigated the perfor-

mance of heuristic methods for workload management in (Nahhas et al., 2018a). In this

study, we focused on collecting data to model the considered cloud environment using

discrete event simulation methods. Based on the collected data and conducted interviews,

a simulation model combined with heuristics was built to investigate workload patterns

of 290 SAP application systems that were hosted and maintained in the considered cloud

environment. The objective of the conducted study was to investigate the potential of

heuristic methods to minimize the overall energy consumption of the considered environ-

ment. The experimental results demonstrated that applying heuristic methods to manage

the workload of the considered cloud environment may yield up to a 70 % reduction

in energy consumption. However, the study also revealed that many jobs were resched-

uled during the operation, which obviously negatively impacted the performance of the

customers. Optimizing multiple objective values requires employing different heuristics

during a scheduling period to target every objective value independently.

State-of-the-art and literature analysis - The initial investigations into the performance of

heuristic and improvement methods in the analyzed fields of applications demonstrated the

importance of developing novel solutions that leverage the advantages of both techniques.

The light execution time of heuristic methods, alongside the robustness and high-quality

solutions of metaheuristic methods, are essential features for designing and developing

advanced scheduling methods. Inheriting the advantages of these methods may allow us to

mitigate their disadvantages. To confirm our preliminary observations, we investigated the

state-of-the-art scheduling techniques in the fields of manufacturing and cloud in (Nahhas

et al., 2018b), and (Nahhas et al., 2019b) respectively.

Nahhas et al. (2018b) investigated the influence of various technological advances in

manufacturing on scheduling practices. The research focused on the introduction of Indus-

try 4.0 initiatives and Cyber-Physical Systems (CPS) and their promised potential for the

industry, which was recently further discussed by Kharitonov et al. (2024). The experimen-
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tal results, which included a systematic comparison of heuristic, metaheuristic, and newly

developed hybrid methods, showed that new technologies necessitate efficient scheduling

solutions to achieve a competitive edge in markets. The study also covered an investigation

of several real-time operational constraints, which suggested limitations of conventional

heuristic and metaheuristic methods for solving complex multi-stage scheduling problems.

These limitations were either in terms of solution quality or required computational effort

to solve the scheduling problems. The combination of both heuristic and metaheuristic

methods sustained acceptable computational effort for achieving good solutions. In this

research, we emphasized the importance of multi-objective scheduling solutions to sys-

tematically close the gap between the research done in scheduling theory and adopted

solutions in the industry.

Similarly, Nahhas et al. (2019b) presented a holistic view of the scheduling problems

in cloud environments. In this research, we investigated how emerging IT technological

advances influenced the formulation of scheduling problems and their complexity. We

conducted a structured literature review to understand the impact of these technologies

on scheduling problems in cloud environments and answer some research questions, such

as ”How the formulation of problems changed the design of often adopted solution tech-

niques?”. The related literature was investigated in terms of the problem formulation,

the pursued objective function, the adopted solution methods, and the architecture of the

proposed solutions. The research shows that the IT industry experienced a similar indus-

trial revolution marked by key well-established technologies. Among others, virtualization

strategies, live migration algorithms, cloud computing service models and their associated

advances, and major breakthroughs in ML have constituted focal points in the IT industry

in the last decade.

Similar to the manufacturing field, the analysis results demonstrated that the com-

plexity of scheduling problems significantly increased in the last decade due to new in-

dustrial requirements. Most server consolidation problems, virtual machine placement

problems, dynamic virtual machine placement problems, and job scheduling in cloud en-

vironments are NP-hard combinatorial scheduling problems. This finding largely agrees

with the results published in (Challita et al., 2017; Katal et al., 2023), especially if the

problems are subject to multi-objective optimization measures considering performance

and energy consumption. That fact excludes using exact optimization methods to solve

them due to high computational efforts. Hence, most identified solutions in the litera-

ture adopted heuristic, improvement, or some hybrid methods to maximize performance

or minimize operational costs. Although our investigation revealed that some machine

learning-supported scheduling techniques are present in the literature, further research is

necessary to investigate the development of adaptive scheduling to address the dynamic

nature of these environments. In our conclusion, we emphasized the dominance of per-

formance as the objective function and the scarcity of multi-objective solution techniques

that also consider minimizing energy consumption and its associated carbon footprint.
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Design and evaluation of the scheduling methodology - Based on the analysis of conven-

tional solution methods for scheduling problems and the literature analysis, we presented

initial results combining simulation, heuristic, and optimization components of the artifact

in cloud environments (Nahhas et al., 2019a) and manufacturing environments (Nahhas

et al., 2018b). We communicated the component-based design of the artifact and briefly

discussed the integration of the simulation, heuristic, metaheuristic, and machine-learning

methods for addressing scheduling problems in cloud environments. The proposal was

based on the findings that we communicated in (Nahhas et al., 2017a) and (Nahhas et al.,

2018a) emphasizing the complexity of multi-objective scheduling problems. In this re-

search, we investigated whether combining different heuristic methods during a scheduling

period would outperform the performance of the individual heuristic for solving schedul-

ing problems in cloud environments to contribute to the validation of hypothesis 2 and

hypothesis 3 . We relied on GA to implement an overreaching control strategy to switch be-

tween heuristics during the scheduling period. The collected results demonstrated substan-

tial improvement in minimizing energy consumption and the total number of rescheduled

jobs during the scheduling period. The experimental analysis showed that the proposed

methodology adapted to workload changes and switched between heuristics during the

scheduling period to leverage their suitability under various workload conditions.

To investigate the performance of the scheduling methodology on large-scale problems,

we conducted an extensive evaluation for solving single-stage and multi-stage scheduling

problems in cloud (Nahhas et al., 2021a) and manufacturing (Nahhas et al., 2021b) envi-

ronments. In (Nahhas et al., 2021a), we also adopted a GA to control different heuristics

during a scheduling period. To establish a comparison, we designed the experiments using

real-world cloud workloads based on the known PlanetLab benchmark. The experiments

are subject to the same conditions and problem formulation presented in (Beloglazov et al.,

2012a) and (Moges and Abebe, 2019). The problems were solved with the objective of

minimizing energy consumption and violations in Service Level Agreements (SLA). The

collected results demonstrated that the scheduling methodology contributes to minimizing

energy consumption by at least 30 % and reaching up to 47 % compared to several heuris-

tics proposed in (Beloglazov et al., 2012a; Moges and Abebe, 2019). However, the results

also showed inferior performance in terms of minimizing the SLA violation, amounting to

a 0.04 % increase compared to the same heuristic methods. The considered objective mea-

sures are obviously of a conflicting nature. It is for a decision maker to evaluate whether

a 47 % reduction in energy consumption justifies a 0.04 % increase in SLA violations.

Similarly, we carried out an extended evaluation of the scheduling methodology for

solving multi-stage scheduling problems in the field of manufacturing in (Nahhas et al.,

2021b). Multi-stage scheduling problems are inherently more complex than single-stage

ones since scheduling decisions in the first stage significantly impact the system’s over-

all performance. We evaluated the presented methodology for solving four-stage HFS

scheduling problems considering four objective values: the minimization of the makespan,

the total tardiness, the number of penalties, and the number of major setup times. The

evaluation is conducted to solve thirty problem instances provided by our partner. The
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problem instances are extracted based on the production backlog of a manufacturing

system in printed circuit board production. The presented scheduling method achieved

complete dominance compared to known heuristics in the literature for solving 77 % of

the problems and found the best solutions to minimize all objective values. In 23 % of the

problem instances, the scheduling method found solutions that partially dominate GA for

minimizing at least three objective values. Regarding computational effort, it maintained

a robust performance, with up to 10 times quicker searching for reported solutions than

GA. However, parallelization could further reduce the required computational effort to

support real-time decision-making processes.

The author of this thesis supervised a master thesis to investigate further the potential

of the approach using the NASA and KTH cloud workload traces (Dror G. Feitelson et al.,

2014). These traces also included thousands of jobs that must be scheduled in a single-stage

cloud environment. Based on the same experimental setup, the obtained computational

results showed that the presented method dominates baseline heuristic methods for solving

the problems in terms of minimizing the makespan, the average flow time, and the average

waiting time. A detailed analysis of the computational results indicated that the potential

improvement increases as the number of jobs that must be scheduled increases. It implies

that the method’s outperformance of heuristics would increase with the increase in problem

complexity. The results were presented in (Remesh et al., 2022) and (Remesh et al.,

2023). The first study focused on investigating the technique’s performance given various

combinations of objective values such as the makespan, the average waiting time, the

throughput, and the average flow time (Remesh et al., 2022). The second study concluded

the final results (Remesh et al., 2023).

In previous evaluations, we formulated multi-objective scheduling problems and solved

them as mono-objective using a weighted approach, which limits the search process. Hence,

to address this limitation, we relied on a pure multi-objective control strategy and replaced

the GA with the Non-Dominated Sorting Genetic Algorithm three (NSGA III) in Nahhas

et al. (2022a). To fully harness the potential for scalability in modern hardware, we de-

veloped a parallelization layer, which distributes the evaluation of solution individuals on

available physical resources. The main components of the artifact were already developed

using open-source technologies for simulation and parallelization. We collaborated with

colleagues to investigate the use of open-source discrete event simulation core as an alter-

native for commercial simulation packages in (Lang et al., 2021a). Finally, we validated

the intended improvements of the methodology for solving multi-stage HFS problems from

related works. The computational experiments showed that the pure multi-objective op-

timization outperformed all previously presented best solutions in (Nahhas et al., 2022a)

and (Lang et al., 2020) for minimizing four considered objective values. Given the dis-

cussed results, it is evident that pure multi-objective optimization explores the solution

space significantly better than the weighted-sum approach.

Meanwhile, research and development efforts were committed to designing and devel-

oping the machine-learning component of the artifact. We presented the evaluation of the

DRL scheduling model and its integration into the artifact in (Nahhas et al., 2022b). The
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first objective of this research was to investigate the first research hypothesis and propose

a prototypical implementation of the machine learning component of the research arti-

fact. The second objective was to evaluate the design and the performance of the machine

learning component of the presented artifact. We adopted two prominent DRL techniques,

Proximal Policy Optimization (PPO) and Asynchronous Advantage Actor-Critic (A3C),

for solving multi-stage scheduling problems considering multi-objective values. The pre-

sented prototypical implementation relied on the same simulation engine used in (Nahhas

et al., 2021b) to the machine learning component with the rest of the artifact compo-

nents. The results of our computational analysis demonstrated that the presented method

successfully approximates appropriate scheduling policies. To establish a comparison, we

replicated a two-stage scheduling problem, investigated in (Lang et al., 2021b), and eval-

uated the performance of the DRL methods to solve them. The computational results

showed that the A3C is more stable than PPO, especially when agents are exposed to un-

known problems. Compared to NEAT presented in (Lang et al., 2021b), the A3C delivers

superior solutions in terms of minimizing all objective values for solving three problem

instances while sharing comparable solution quality with NEAT for solving the fourth

one. The presented research was nominated and awarded the Best Paper award by the In-

ternational Scientific Committee of a top-ranked scientific conference in the analytic and

decision science track.

In conclusion, the empirical analysis suggests that DRL methods can learn from solu-

tions to multi-stage scheduling problems. However, we encountered generalization issues

when DRL agents were exposed to unknown, significantly different problems that led to

a slight degradation in the quality of solutions. DRL agents steadily recover after further

training and adjust their scheduling policy accordingly. Our observation of the general-

ization matter largely agrees with the results published by Google Brain and DeepMind

in their paper on DRL methods (Zhang et al., 2018) and later extended in (Zhang et al.,

2021).

Therefore, in Nahhas et al. (2024a), we presented an investigation of the generaliza-

tion issue and communicated a service-oriented architecture of the scheduling methodology.

Based on our previous work in Nahhas et al. (2022b), we demonstrated the use of Imita-

tion Learning (IL) principles by combining the utilization of multi-objective optimization

methods and DRL methods to propose a (DRL-based IL). The notion of imitation learning

strives to utilize expert knowledge to achieve behavioral cloning. In other words, a DRL

agent imitates desired behavior, cloned by an expert, such as an optimization compo-

nent, for solving a scheduling problem. Therefore, we adopted the Monotonic Advantage

Re-Weighted Imitation Learning (MARWIL) method (Wang et al., 2018) in combination

with the NSGA III (Nahhas et al., 2022a) as an expert policy to address multi-objective

scheduling problems. The computational results of the study confirmed that the DRL-

based IL achieves superior results compared to the pure DRL technique. With up to ten

percent higher mean reward, the DRL-based IL partially mitigates generalization issues

when agents are exposed to solving completely unknown scheduling problems.

In Nahhas et al. (2024b), we investigated the problem from another perspective and
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adopted an image-based observation space for training A3C and PPO DRL methods.

The methods were used to solve scheduling problems in a two-stage supply chain retailing

environment subject to multiple objective values. In this research, we encoded the collected

observations from the simulation component in images and passed them to the DRL agents

in addition to rewards during training. The computational results demonstrated that the

agents learn to solve schedule product families to retail stores, taking into account the

minimization of the average time of selling and the makespan.

Other works that contributed to design and evaluation decisions of the artifact - The

author collaborated with many researchers on scheduling problems and related fields.

We will briefly discuss some published works in chronological order to which the author

contributed.

Objective values for solving scheduling problems in manufacturing, such as the maxi-

mum completion time, the total tardiness, or the machine utilization, are straightforward

optimization measures that have been well-studied in the literature in the last decades

(Baker and Trietsch, 2009; Graham et al., 1979; Conway et al., 1967). However, they are

insufficiently investigated in cloud environments (Pires and Barán, 2015). For decades,

the performance of an IT system has been overwhelmingly the sole concern of IT service

providers until recent environmental crises and current energy entanglements (Koomey,

2011; Katal et al., 2023).

Therefore, we systematically analyzed different functional and non-functional require-

ments models of performance in IT systems (Alwadi et al., 2018). The objective was to

construct relevant numerical performance models which can be used for optimization.

We concluded the analysis with a proposal for a new performance requirements model

of the IT system. However, the interdependencies between the identified performance

requirements remained an open issue, which we addressed in (Alwadi et al., 2019). In

this research, we highlighted the importance of certain requirements, such as scalability,

efficiency, and resource utilization. These requirements were significant in designing the

artifact of this thesis, as we will discuss in Chapter 3. We evaluated the presented perfor-

mance requirements model, which included functional and non-functional requirements,

in a survey distributed to IT experts and practitioners.

In cloud environments, shortly after introducing a new carbon emissions taxation

law, we investigated the potential of scheduling methods for load consolidation to mini-

mize costs and carbon emissions. We relied on real-world workloads of 20 data centers

hosting standard enterprise systems (Bosse et al., 2020). To solve the single-stage schedul-

ing problems, we investigated the use of heuristic, metaheuristic, and hybrid methods

considering five virtual machine types, five tax levels, and two power mixes (fossil and

renewable). Computational results demonstrated that significant optimization potential

can be achieved, especially if a high-emissive power source is used for operating a cloud

environment.

In manufacturing, Rolf et al. (2020a) adopted the GA algorithm to select different

PDRs for solving two-stage scheduling problems with family setup time constraints based
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on Nahhas et al. (2017a) and Nahhas et al. (2018b). In this implementation, the GA

decides which heuristic should be used for scheduling every job. The presented technique

is evaluated for solving four problem instances to minimize the makespan and total tar-

diness. The computational results showed that the presented scheduling method entirely

dominates the individual heuristic techniques for solving the problems. To increase the

quality of achieved solutions, Rolf et al. (2020b) applied the concept of decision points be-

tween heuristics following the same design presented by Nahhas et al. (2018b) and Nahhas

et al. (2019a). The experiments showed that the presented approach achieves high-quality

solutions, superior to the metaheuristic methods presented in (Aurich et al., 2017).

To achieve automatic simulation model construction in the presented artifact of the

thesis, we had to rely on an open-source discrete event simulation engine. Lang et al.

(2021a) present a systematic comparison between several open-source simulation engines

and other counterpart commercial simulation packages. The results demonstrated that

relying on an open-source simulation engine grants engineers higher flexibility in combining

developed models with machine learning and/or other optimization technologies.

In (Müller et al., 2022), server consolidation problems were investigated to minimize

energy consumption while addressing performance concerns. This work relied on ma-

chine learning techniques as a supporting component to an optimization component for

approximating the performance of new system placement instead of using a simulation

model. The reason behind such practice is to minimize the modeling effort required to

build simulation models for complex IT system landscapes. The use of machine learn-

ing techniques for addressing predictive business concerns, such as detecting anomalies

or workload spikes that cause performance degradation, was also investigated. Similarly,

we analyzed different conventional machine-learning methods for detecting anomalous be-

havior in manufacturing systems in (Kharitonov et al., 2022). Production logs were used

to detect machine breakdowns, which might cause violations in delivery dates. The em-

pirical results compared the performance of ten conventional machine learning methods.

The computational results concluded with recommendations on using certain conventional

methods that performed best to detect anomalies in manufacturing environments.

A detailed description of the designed research artifact and its underlying functional-

ities will be discussed in Chapter 3. The following section will provide an overview of the

structure of this research.

1.5 Thesis structure

This thesis is structured into five distinct chapters and follows the design science research

framework. The current chapter started with a motivation for the thesis and articulation

of the research gap. Based on the research gap, the research design based on the DSR

framework was thoroughly discussed to designate the objectives of the thesis from research

and development perspectives.

The second chapter presents the reader with theoretical foundations and literature

analysis of the work. It is structured in six sections and starts with an overview of schedul-
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ing foundations and preliminaries. Then, we present and discuss the methods that we

adopted and integrated to design the thesis’s artifact in chronological order: scheduling,

simulation, heuristic, metaheuristic, and DRL methods. We start with an introduction

to simulation methods. Then, we thoroughly discuss the conventional solution methods

used to address scheduling problems with a primary focus on heuristic and metaheuristic

methods. Afterward, we present the required foundation and preliminaries of DRL in gen-

eral. Finally, the results of the literature analysis are presented and thoroughly discussed

before concluding the chapter with a summary that refers back to the research gap.

The third chapter thoroughly discusses the overall design of the presented artifact.

It incorporates six sections and follows the same logical flow in the the second chapter.

The objective of this chapter is to elaborate on the design and integration of the artifact’s

components. The motivation and research gap of the thesis, supported by the findings

of the theoretical foundations, are translated into design requirements. The derived re-

quirements are grouped into functionality layers, which conclude the requirements stage

and introduce the foundation of the design chapter. Based on the functionality layers, the

design of the thesis artifact is presented using component and modular design practices.

The reader is first presented with the design of the modeling and simulation components,

followed by the design of heuristic library components, and finally, the design of the op-

timization and machine learning components. Throughout the design chapter, we discuss

the intermediate results to summarize evaluation activities that are conducted during the

design of the artifact.

The fourth chapter presents the conducted results and the analysis of the conducted

evaluation activities. This chapter is structured based on the evaluation activities sug-

gested by Sonnenberg and vom Brocke (2012) and follows the adopted research framework

presented by von Hevner et al. (2004). The chapter encompasses five sections and starts

with a summary of the first evaluation activity. The first activity concludes the state-of-

the-art analysis and supports the discussed research gap. The second activity elaborates

on evaluating the adopted design tools and their suitability to produce the blueprints of the

artifact’s components and their integration. Afterward, the implementation of the artifact

is presented as a proof of concepts to evaluate the proposed methodology following the

DRS framework (von Hevner et al., 2004). Section 4.3 discusses the implementation and

deployment of the artifact, which integrates the utilization of simulation, heuristic, meta-

heuristic, and DRL methods to address multi-objective scheduling problems. It provides

an overview of the most significant adopted technologies in the presented methodology to

achieve parallelization, scalability, and efficient multi-architecture execution.

After summarizing the implementation and deployment, the artifact is instantiated

to solve single-stage and multi-stage scheduling problems in cloud and manufacturing

environments. Throughout the third and partially fourth evaluation activities, the arti-

fact’s applicability and performance are measured in solving real multi-objective scheduling

problems using real problem instances. We concluded each evaluation phase with a sum-

mary that highlights the main findings of the collected results. Finally, the fifth chapter

recaps the presented thesis and highlights the main findings and scientific contributions.
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2 Theoretical foundation and literature
analysis

This chapter is structured into six sections that present the reader with an overview of

scheduling problems and an analysis of the literature. The first section discusses the nec-

essary preliminaries of scheduling problems. The second section is dedicated to describing

modeling and simulation methods that are necessary for designing the intended artifact.

The third section presents a holistic view of solution methodologies that are often adopted

to solve scheduling problems. It covers heuristic and improvement techniques and their

adoption in addressing scheduling concerns. The fourth section highlights the required pre-

liminaries of deep reinforcement learning methods for designing the intended methodology.

To summarize, the reader is presented with an overview of scheduling problems, simula-

tion, heuristics, improvement, and machine learning methods. Then, the fifth section

concludes the theoretical foundation chapter with a structured analysis of the literature.

Finally, the last section summarizes the findings of this chapter.

2.1 Scheduling

A scheduling problem can be expressed using a three-field tuple ⟨α | β | γ⟩ as suggested

by Graham et al. (1979) and further used in (Pinedo, 2012, p. 14). The first field, α

denotes the machine environment and configuration. The second field, β, represents the

characteristics of jobs and the operational constraints that must be considered. The third

field, γ, expresses the perused objective functions for solving a given scheduling problem.

In addition to the three-field tuple representation, one must present and discuss the re-

quired notations for the data that describes jobs, such as processing times on every stage,

deadline, or required capacities (Graham et al., 1979; Pinedo, 2012, p. 14). This sec-

tion provides the required preliminaries for formulating single- and multi-stage scheduling

problems. For further reading references on job shop scheduling, one might refer to the

works presented by (Pinedo, 2012), (Baker and Trietsch, 2009), and (Graham et al., 1979).

2.1.1 Variations of scheduling problems

A scheduling problem depends strongly on the structural shape of a considered cloud or

manufacturing environment and is denoted in the α = α1α2 field. The α1 describes the

type of physical machines that are available for processing different jobs. The α2 dictates

the number of available physical machines for processing jobs. Depending on the opera-
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tional nature of a considered environment, jobs either require certain resources on a single

machine at a single stage to be completed or might undergo multiple stages to be processed

using several machines before completion. The former type of scheduling problem is very

common in cloud environments, in which a set of virtual machines must be scheduled on

a set of available physical machines given some objective function. Multi-stage scheduling

problems are inherently more complex. They are more common in manufacturing environ-

ments and workflow scheduling in cloud environments. Both types of scheduling problems

often encompass an underlying allocation and a sequencing sub-problem (Baker and Tri-

etsch, 2009, p. 221). The allocation and sequencing dimensions of a scheduling problem

are usually formed by the description of the machines within a considered system. In

scheduling theory, three types of machine descriptions are often used: identical parallel

machines, uniform parallel machines, and unrelated parallel machines.

For any scheduling problem, we may assume, given a scheduling period, that the

number of jobs and the number of available machines are known and finite till the next

point in time. The number of jobs in scheduling theory is usually denoted by n and the

number of machines by m. To define the rest of the mathematical sets, we bound the

size of a set using cardinality. We will also use the subscript i to refer to an arbitrary

operation or machine and the subscript j to refer to an arbitrary job. Given a set of

jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} that must be scheduled. We also have a set of

machines M = {Mi, . . . ,Mm} : ∀ i ∈ {1, . . . ,m} that are available to process jobs. A

job Jj ∈ J consists of a set of operations Oj =
{
Oo,j , . . . , O|O|,j

}
: ∀ o ∈ {1, . . . , |O|}.

Each operation Oo,j of a job Jj is associated with a processing time and is denoted by

pi,j ∈ R+. Every operation must be completed on a machine Mi ∈ M . Based on these

introductory notations, we will discuss the most important machine configurations in

scheduling practice. We generally rely on the works presented by Pinedo (2012), Baker

and Trietsch (2009), and Graham et al. (1979).

Single machine scheduling problem α1 = 1:

The single-machine scheduling problem is the simplest variation of scheduling problems

in the literature, and it has also been studied the most. As the name suggests, a set of

jobs Jj ∈ J must be scheduled on a single machine M = m = 1 to be processed subject to

achieving some objective(s). Solving a single-machine scheduling problem degenerates into

solving a sequencing problem where the order of processing jobs is optimized to maximize

or minimize some objective function.

Identical parallel machines scheduling problem α1α2 = Pm:

In such environments, a set of identical machines is available to process jobs in parallel.

Every job Jj ∈ J consists of a single operation Oi,j that must be processed on a machine

Mi ∈ M . Since the processing time of a job is identical on all machines, it is denoted by

pj omitting the i subscript that points to a machine. Identical parallel machine scheduling

problems are very common in cloud environments.
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m computing servers
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Figure 2.1: Parallel machines scheduling in a cloud or a manufacturing environment.

For instance, a set of virtual machines or jobs must be scheduled on a set of identical

physical machines.Figure 2.1 demonstrates a classical parallel machine scheduling problem

in a cloud or a manufacturing environment. Solving Pm scheduling problems underlines

dealing with allocating jobs to machines and optimizing the sequence in which jobs are

processed on every machine (Baker and Trietsch, 2009, p. 221). During the design and

development phase of the research artifact, we addressed several Pm scheduling problems

(Nahhas et al., 2019a; Nahhas et al., 2018a).

Uniform parallel machines scheduling problem α1α2 = Qm:

It is a generalization of the identical parallel machines problem. Every job Jj ∈ J also

consists of a single operation, which must be carried out on one of the parallel machines

Mi ∈ M . However, these machines’ processing speeds may be different, resulting in a

different processing time pi,j , which refers to the machine Mi that processed the job. In

this thesis, we evaluated several components of the research artifact for solving different

variations of Qm scheduling problems in cloud environments in (Remesh et al., 2023, 2022;

Nahhas et al., 2021a, 2019a).

Flow shop scheduling problem α1α2 = Fm:

There is a set of machines Mi ∈ {Mi, . . . ,Mm} : ∀ i ∈ {1, . . . ,m} that are available in

series. Given a set of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n}, every job Jj must be

processed following the exact technological order to complete all operations.
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Machine 1 Machine 2 Machine 3 Machine m

Figure 2.2: A classical flow shop scheduling environment.

For instance, every job must be processed on the first machine, followed by the second

and third until all operations are completed as depicted in Figure 2.2. This type of problem

is also common in cloud environments, where a workflow must be scheduled on computing

resources given a strict technological order of operations.

Hybrid Flow shop scheduling problem α1α2 = HFSm:

The Hybrid Flow Shop Scheduling problem (HFS) is a generalization of the parallel ma-

chines and flow shop scheduling problems. In these environments, there is a set of pro-

cessing stages S =
{
Ss, . . . , S|S|

}
: ∀ s ∈ {1, . . . , |S|}. At every stage Ss, a set of parallel

machines M = {Mi, . . . ,Mm} : ∀ i ∈ {1, . . . ,m} are available to process all types of jobs.

In such environments, the operations Oj =
{
Oo,j , . . . , O|O|,j

}
: ∀ o ∈ {1, . . . , |O|} of a job

Jj are completed sequentially at the processing stages using one of the available parallel

machines. All jobs must follow the same technological order, meaning all jobs are first

processed in the first stage, then the second, and finishing, for example, with the third

using one of the available machines. Figure 2.3 represents a classical HFS scheduling envi-

ronment with multiple stages. HFS are fairly more complex problems than the previously

discussed types. They are more common in manufacturing than in cloud environments.

In the Literature, they are interchangeably referred to as ”flexible flow shop” in indus-

trial engineering literature or ”multi-processor flow shop” in computer science literature

(Pinedo, 2012, p. 15).

Machine 𝑆1, 4

Machine 𝑆1, 3

Machine 𝑆1, 2

Machine 𝑆1, 5

Machine 𝑆1, 6

Machine 𝑆1, 1

Machine 𝑆1,𝑚

Machine 𝑆2, 3

Machine 𝑆2, 2

Machine 𝑆2, 1

Machine 𝑆2, 4

Machine 𝑆2, 𝑚

Machine 𝑆𝑠, 2

Machine 𝑆𝑠, 1

Machine 𝑆𝑠, 𝑚

…

…

…

Figure 2.3: Hybrid flow shop scheduling environment.
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In the thesis at hand, we investigated several real-world HFSm scheduling problems

in manufacturing. We extensively evaluated the performance of the artifact’s machine

learning, optimization, and simulation components in Nahhas et al. (2022b), Nahhas et al.

(2021b), Nahhas et al. (2017a) respectively.

Job shop scheduling problem α1α2 = Jm:

In job shop environments, there are also M = {Mi, . . . ,Mm} : ∀ i ∈ {1, . . . ,m} that are

not subject to any processing stages or technological orders. Every job Jj ∈ J has its

own set of operations and associated processing routes on the machines. Additionally, all

jobs must be processed at one of the machines at least once and may also be processed on

the same machine several times. In this case, the recirculation constraint must be taken

into account. In this work, we do not address job shop scheduling problems. We briefly

describe them since some works in the literature, which we will discuss in the thesis, deal

with job shop problems.

2.1.2 Operational constraints

Release date β = rj:

The release date of a job Jj ∈ J is denoted by rj and indicates the time of the job being

released for scheduling (Sousa and Moreira, 2007) and (Pinedo, 2012, p. 15). For instance,

in cloud environments, periodical jobs such as updates, maintenance, and security are

already planned but not released for scheduling up to a specific point in time. In the

manufacturing context, considering release date constraint is usually part of the scheduling

model when the objective function involves the minimization of inventory costs (Sousa and

Moreira, 2007; Ebben et al., 2005). For instance, despite available resources for processing

a job, starting early with processing an order leads to an increase in invested capital for raw

materials and higher inventory costs (Baker and Trietsch, 2009, p. 16-17). After discussing

common objective values in solving scheduling problems, we will elaborate more on the

release date constraint. In the majority of studied problems, we pursued the minimization

of delivery date violations, which is indirectly affected by this constraint (Nahhas et al.,

2022a, 2017a). However, we did not consider it to be a hard constraint in our problem

formulation.

Preemptions β = prmp:

Including this constraint in the formulation of a scheduling model implies allowing jobs

that are already in processing to be interrupted. The interrupted operation Oi,j of a Jj ∈ J
on the machine Mi ∈M may be resumed later during the scheduling period. That means

the invested processing time is not lost, and the processing might be completed on the

same machine or another available parallel machine. For instance, pausing batch work-

load processing in cloud environments is usual when a higher-priority job is released for

scheduling. In manufacturing, however, it is not typical to allow interruption of processing
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a job since it negatively impacts system efficiency due to machine setup and preparation

time (Pinedo, 2012, p. 16).

Precedence β = prec:

The precedence constraints in scheduling restrict mainly the sequencing part of a schedul-

ing problem by imposing dependencies between jobs. For instance, a job Jj ∈ J may

not be scheduled unless Jj−1 is completed. In cloud environments, it is usually a hard

constraint in some workflow scheduling problems because some types of workflows are

decomposed into smaller interdependent jobs that must be processed on some computing

resources (Jayanetti et al., 2022, p. 15). In manufacturing environments, it is in working

station manufacturing plants.

Sequence dependent setup times β = sj,k:

The sequence dependency constraint is present when two jobs Jj ∈ J and Jk ∈ J require

certain configurations on a processing machine Mi ∈ M . This configuration time is re-

quired to prepare the machine after finishing the job Jj to start processing the job Jk. It

is denoted by sj,k, which is dependent on the types of jobs and their exact position in a

sequence on a machine. This constraint substantially complicates a scheduling problem

since the overall system efficiency heavily depends on minimizing the overall setup times

during the scheduling period (Graham et al., 1979; Lenstra et al., 1977). The majority

of scheduling problems that include the setup times constraint are NP-Hard problems

(Gupta and Kyparisis, 1987; Graham et al., 1979; Lenstra et al., 1977). This constraint is

significantly more relevant in manufacturing than in cloud environments.

Family dependent setup times β = fmls, fg,h:

In some scheduling environments, we may have a set of families f =
{
fg, . . . , f|f |

}
:

∀ g ∈ {1, . . . , |f |}. Similar to the sequence-dependent setup times constraint, an fg,h

amount of time is required to reconfigure the machine after finishing a job Jj ∈ fg to

start processing a job that belongs to another family Jk ∈ fh. Early contributions on

scheduling problems with family setup times date back to the early nineties by (Wittrock,

1990; Kut C. So, 1990). Both studies addressed scheduling problems with major and

minor setup times. This constraint is also more evident in manufacturing environments

than in cloud ones. As the name suggests, jobs of certain types sharing, for instance,

raw materials, are grouped into families. Switching a machine after finishing a job to

start processing the next one within the same family requires minimal reconfiguration

time. However, significantly more preparation time is required when a machine must be

prepared to process a job from another family than the current one. Since the majority of

assembly manufacturing environments are characterized by family-dependent setup time,

we investigated this constraint in several variations of multi-stage scheduling problems in

Nahhas et al. (2022a) and Nahhas et al. (2021a).
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Machine breakdowns β = brkdwn:

As the name suggests, indicating the brkdwn constraint in the β field implies that the

availability of a machine is subject to interruptions during a scheduling period. This

constraint on scheduling problems is not often considered in the cloud and manufacturing

literature. It is usually treated in an independent stream of research that deals with

predictive or preventive maintenance problems, as presented by Wongchai et al. (2022) or

Allaoui and Artiba (2004). In the context of this thesis, we studied the impact of machine

breakdowns on the performance and robustness of the optimization component in dealing

with multi-stage scheduling problems in Nahhas et al. (2018b).

Machine eligibility restrictions β = Mj:

The Mj constraint is declared in the β field to model the incapability of some machines

to process some types of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} during the scheduling

period. Here, the Mj ⊂ M denotes a set of machines in a Pm or Qm environment, which

is capable of processing a job Jj . For instance, we investigated scheduling problems,

taking into account the constraint of family setup times. When a job Jj ∈ fg is being

processed on some machineMi ∈M , the remaining machines on the same processing stage

are not eligible to process any other job from the same family as, for instance, Jk ∈ fg.
This constraint can contribute to a higher complexity of a considered scheduling problem

(Pinedo, 2012, p. 17).

Machine capacity constraint β = MC:

The MC indicates that every machine MC
i ∈ MC is associated with a set of resource

capacities C. In such a scheduling environment, every job JR
j ∈ JR is also associated with

a set of resource requirements R. A job JR
j can be processed on a machineMC

i if the set of

resources capacities in a machine C can satisfy the set of resources requirements R subject

to the conditions in Υ as presented in Equation 2.1. In Equation 2.1, |C| and |R| denote the
number of capacity dimensions in a machine and the number of requirement dimensions of

a job, respectively, based on the cardinalities of their sets. This constraint is fundamental

for the majority of scheduling problems in cloud environments. For instance, a virtual

machine is usually associated with computational requirements such as main memory

capacity, number of CPU cores, and storage capacity (Lopez-Pires and Baran, 2015; Pires

and Barán, 2015). Depending on the operation of a cloud environment, a virtual machine

may be allocated to a physical machine only if this physical machine has enough capacity

for each of the requirements. Many similar problems are reduced to bin-packing problems

(Akhter and Othman, 2016, p. 1171). In scheduling theory, other constraints such as

batch processing: β = batch(b), Blocking: β = block, No-wait: β = nwt, Permutation:

β = prmu, and Recirculation: β = rcrc might be relevant for developing solutions for

scheduling problems. For further reading, one can refer to the works presented by Brucker

(2007, p. 4-5) and Pinedo (2012, p. 16-17).
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C =
{
Cc, . . . , C|C|

}
⊂ R+ : ∀ c ∈ {1, . . . , |C|}

R =
{
Rr, . . . , R|R|

}
⊂ R+ : ∀ r ∈ {1, . . . , |R|}

Subject to : Υ = {(Rr, Cc) | Rr ∈ R and Cc ∈ C and Rr ≤ Cc} ⊆ R× C

(2.1)

2.1.3 Objective values

After formalizing the structural characteristic of a considered system and declaring the

considered operational constraints, the objective function is expressed in the γ field based

on the triple notation ⟨α | β | γ⟩ presented by Graham et al. (1979, p. 288). Possible

schedules are explored and evaluated based on a defined objective function that expresses

some objective values (Pinedo, 2012, p. 18; Baker and Trietsch, 2009, p. 12). Before

discussing the most prominent objective measures in the field of scheduling, we will present

some preliminaries that describe jobs and ultimately define the objective values of the

scheduling problem.

Preliminary notations

• Waiting time Wj: The waiting time for a job Jj ∈ J is defined by the amount

of time while it is awaiting dispatching by some machine Mi ∈ M in a single-stage

scheduling environment, for instance, Pm. In a multi-stage environment such as a

HFSm, it is the accumulated waiting time of all operation Oj =
{
Oo,j , . . . , O|O|,j

}
:

∀ o ∈ {1, . . . , |O|} to complete a job Jj as presented in Equation 2.2.

Wj =

n∑
i=1

Wi,j : ∀i = 1, . . . , n (2.2)

• Completion time Cj: The completion time of a job Jj can be computed by

summing up the waiting time and processing time of all operations Oj in addition to

its release time as presented in Equation 2.3 based on (Conway et al., 1967, p. 11).

It is, in essence, the point in time the job left the system after all its associated

operations are completed (Pinedo, 2012, p. 18).

Cj = rj +W1,j + p1,j +W2,j + p2,j + · · ·+Wi,j + pi,j

= rj +

n∑
i=1

pi,j +

n∑
i=1

Wi,j : ∀i = 1, . . . , n
(2.3)

• Flow time Fj: It is the amount of time a job Jj ∈ J spends inside a scheduling

environment from the moment it is released for scheduling as presented in Equa-

tion 2.4.
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Flow Time Fj = Cj − rj (2.4)

It is computed by subtracting the release date rj of a job Jj from its completion

time Cj .

• Lateness Lj: Let dj be a time unit during a scheduling period that dictates the

due date of a job Jj ∈ J . The lateness of a job Jj is computed by subtracting the

due date from the completion time of a job as presented in Equation 2.5 (Baker

and Trietsch, 2009, p. 12; Pinedo, 2012, p. 18). If the value is negative, it means

that the job was processed earlier than its due date. The result is positive if a job is

completed after its due date. Usually, we want to pursue a value of lateness that is as

near as possible to the due date to avoid penalties and may contribute to minimizing

inventory costs (Kianpour et al., 2021, p. 361).

Lateness Lj = Cj − dj (2.5)

• Tardiness Tj: The tardiness of a job Jj ∈ J is a computed based on it’s due date

dj and completion time Cj as presented in Equation 2.6 (Pinedo, 2012, p. 18). In

essence, a job is tardy if it is completed after the due date.

Tardiness Tj =

{
(Cj − dj) if (Cj − dj) > 0

0 Otherweise
(2.6)

• Unit penalty Uj: Based on the definition of the lateness and tardiness of a job

Jj ∈ J , a unit penalty is usually computed for every violation in the delivery date

of jobs during a scheduling period as presented in Equation 2.7.

Unit penalty Uj =

{
1 if Cj > dj

0 Otherweise
(2.7)

Generally, violations of delivery dates in both cloud and manufacturing environments

are associated with financial penalties, deterioration of customer satisfaction, and even

loss of reputation. Figure 2.4 present a summary of the previously discussed terms. The

left-upper side of the figure depicts the negative or positive Lj of a job Jj ∈ J depending

on its completion time and due date.
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Figure 2.4: Lateness, tardiness, and penalty functions (Pinedo, 2012, p. 18).

The right-upper side of the figure explains the tardiness Tj of the job, which is always

positive if the job is completed past its due date. Finally, the lower part of the figure

summarizes a simple penalty function, which is usually extended and multiplied by actual

financial costs associated with violations of delivery dates or some SLAs.

The makespan γ = Cmax:

The makespan is the maximum completion time among the set of jobs J = {Jj , . . . , Jn} :
∀ j ∈ {1, . . . , n} during a scheduling period. It can be identified based on the completion

times of all jobs relying on Equation 2.3 and is presented in Equation 2.8. It is basically the

completion time of the last job during a scheduling period (Pinedo, 2012, p. 18; Brucker,

2007, p. 6). Based on the presented preliminaries, the first and most pursued objective

function in the scheduling literature is the makespan (Neufeld et al., 2016, p. 70).

The popularity of the makespan is associated predominantly with the parallel ma-

chines problem variations. It is pretty intuitive to pursue the minimization of the makespan

in a Pm scheduling problem, especially in cloud environments, since it would indirectly

contribute to a workload distribution and balancing between the machines (Baker and

Trietsch, 2009, p. 221). The workload balance between machines is sometimes adopted to

address scheduling problems, especially in cloud environments. In this thesis, we will refer

to the Workload Balance between machines in a scheduling environment by MLB.

Minimize Cmax = maxCj : ∀ j ∈ {1, . . . , n} (2.8)

The mean flow time γ = F :

Based on the preliminary notations and the flow time of a job Jj ∈ J in Equation 2.4,

the mean flow time of a scheduling problem is computed by dividing the sum of flow
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times of jobs by the number of jobs during a scheduling period. Equation 2.9 explains the

calculations of the mean flow time of a set of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n}. The
γ = F is often adopted to address scheduling problems in cloud (Remesh et al., 2022),

manufacturing (Niu et al., 2012), and supply chain (Selvarajah and Zhang, 2014). In

the literature, several objective functions are derived from the flow time, such as the

Fmax = max(Fj) : ∀ j ∈ {1, . . . , n} based on Equation 2.4 (Baker and Trietsch, 2009,

pp. 15-16), the total flow time (Baker and Trietsch, 2009, pp. 16-19). Similar to the

makespan Cmax, the popularity of the flow time in different fields is explained by its direct

correlation with the overall efficiency of any scheduling environment. Moreover, early

investigations of the average flow time suggested that pursuing the minimization of the F

yield to indirectly minimize the mean completion time C and the mean lateness L (Brah

and Hunsucker, 1991; Blackstone et al., 1982; Conway et al., 1967).

F =
n∑

j=1

Fj/n : ∀ j ∈ {1, . . . , n} (2.9)

The total tardiness γ = T :

As the name suggests, the total tardiness is computed by summing up the tardiness values

of all jobs during a scheduling period as presented in Equation 2.10. It is an objective value

that we usually adopt to address customer satisfaction concerns(Baker and Trietsch, 2009,

p. 86). Unfortunately, the popularity of system efficiency concerns such as the makespan

led to overlooking the total tardiness concerns in the scientific literature (Neufeld et al.,

2016, p. 61; Ribas et al., 2010, p. 1451). Similarly to the average flow time, total tardiness

is also associated with several other objective values. For instance, it is common to combine

the minimization of total tardiness with the minimization of the total number of penalties

during a scheduling period (see. Equation 2.7) to address customer satisfaction concerns.

The maximum tardiness, denoted by Tmax, is another variation of the tardiness-based

objective values. It is computed by identifying the maximum tardiness value of a set of

jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} during a scheduling period. It is often used to

determine the quality of scheduling policies (Baker and Trietsch, 2009, pp. 21-25).

T =

n∑
j=1

Tj , Tj = max (Cj − dj) : ∀ j ∈ {1, . . . , n} (2.10)

The total number of major setup times γ = MS:

If a scheduling environment is subject to the family setup times constraint, the total

number of family major setup times has a significant impact on its performance. The setup

time is a lost configuration time, which is required to prepare a machine before starting

to process a job. The total number of major setup times can be computed according to
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Equation 2.11. Given a set of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} that are grouped

into the set of families f =
{
fg, . . . , f|f |

}
: ∀ g ∈ {1, . . . , |f |}. They must be processed

using the set of available machines M = {Mi, . . . ,Mm} : ∀ i ∈ {1, . . . ,m}. The number

of major setup times during a scheduling period is increased by one every time a machine

Mi finishes processing a Jj ∈ fg and starts processing a job Jk ∈ fh (Wittrock, 1990; Kut

C. So, 1990).

MS =
m∑
i=1

MSi, MSi =

{
1 if Jj ∈ fg ∧ Jk ∈ fh : Jj ≺ Jk
0 Otherweise

(2.11)

The total energy consumption γ = E:

As the name suggests, this objective value is used to seek the minimization of the overall

consumed energy. Equation 2.12 depicts a generalized computation of the overall energy

consumption in a scheduling environment. It is computed by summing up the average

energy consumption Ei,j of every machine Mi ∈M for processing every job Jj ∈ J during

a scheduling period. This objective function has recently been quite popular for solving

scheduling problems in cloud environments (Jayanetti et al., 2022; Ghafari et al., 2022;

Challita et al., 2017; Pires and Barán, 2015; Mouftah and Kantarci, 2013). For the sake of

consistency, we presented a generalized definition of energy consumption in Equation 2.12.

Depending on the considered scheduling environment, a machine’s energy consumption is

an integral of the machine utilization function over time (Beloglazov and Buyya, 2010,

p. 759).

In cloud environments, a physical machine’s energy consumption profile depends on

the current workload on the machine (Beloglazov and Buyya, 2010, p. 759). Many studies

presented methods that aim to minimize the number of active machines to reduce energy

consumption (Chen et al., 2021; Nahhas et al., 2019a; Varasteh and Goudarzi, 2017). This

practice is motivated by several studies, which systematically associated the increase in

energy consumption of cloud environments with the increase in the number of machines

(Koomey, 2011, p. 9; Koomey, 2008, p. 4). We will refer to this objective value in asso-

ciation with the energy consumption by min(Mm). In manufacturing, the total energy

consumption is not well-researched and started emerging as a new objective measure for

solving industrial scheduling problems (Neufeld et al., 2023, p. 3; Chou et al., 2020).

E =
m∑
i=1

n∑
j=1

Ei,j ∗ pi,j : ∀ i ∈ {1, . . . ,m} ∧ ∀ j ∈ {1, . . . , n} (2.12)
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2.1.4 Summary of scheduling

Based on the presented preliminaries of scheduling problems and the presented nota-

tion of (Graham et al., 1979), we must account for four main elements while modeling

a scheduling problem before designing a solution technique. During the design, develop-

ment, and evaluation stages of the research artifact, we addressed several single-stage

scheduling problems in cloud environments ⟨Qm | prmp, MC | E, U, Cmax⟩ taking

into account the minimization of energy consumption while accounting for SLA viola-

tions. Similarly, we studied various variations of the multi-stage scheduling problems

⟨HFSm | fg,h | Cmax, T, U⟩. The problems are investigated with the objective of mini-

mizing the makespan, the total tardiness, and the number of penalties in a manufacturing

environment. For the evaluation, we conducted extended experiments on rather more

complex multi-stage scheduling problems in manufacturing, such as the two-stage system

to minimize the makespan ⟨HFS2 (P5, P4) | fg,h | Cmax, T ⟩, a four-stage scheduling en-

vironment ⟨HFS4 (Q5, Q5, P2, P2) | fg,h | Cmax, T, U, MS⟩ taking into account multiple

objective optimality criteria.

2.2 Simulation

Simulation methods are popular techniques for modeling and investigating different phe-

nomena in complex environments. The process of building a simulation model starts with

designing a conceptual model of a considered environment. A conceptual model for sim-

ulation sketches the structure of the considered environment, either exactly or subject to

some level of abstraction, to produce initial blueprints for a considered environment. En-

gineers can start building the digital simulation model based on the conceptual model. A

simulation model is a digital computer program that emulates the considered environment

subject to applied abstraction practices. It is a collection of rules, procedures, equations,

or flow diagrams that determine how the modeled system will behave in the future based

on its current state (Borshchev and Filippov, 2004).

Based on the nature of the analyzed environment, two simulation paradigms are

widely adopted, namely, discrete event and system dynamics or continuous (Angerhofer

and Angelides, 2000; Reggelin and Tolujew, 2011). If modeling a considered system re-

quires foundational elements from both paradigms, engineers usually resort to some hybrid

simulation frameworks such as discrete rate or mesoscopic simulation methods (Borshchev

and Filippov, 2004; Reggelin and Tolujew, 2011). The foundations of system dynamics

were initially introduced by Forrester in 1968 under the name ”Industrial Dynamics”. It

was presented to describe and illustrate the dynamic behavior of complex systems, in-

ternal communication flows, and their interconnectivity. The concept had been refined

as a modeling method and eventually became what we know today as System Dynamics

(SD) (Forrester, 1968). The SD is a widely adopted simulation technique characterized

by continuous behavior and dynamic change of its elements. Real-world processes in SD

are represented as stocks (e.g., of material, knowledge, people, and money), flows between
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these stocks, and information that affects the values of the flows (Borshchev and Filippov,

2004). The transformation of the processes into flows requires a high level of abstrac-

tion. Hence, processes are represented in a rather aggregated form and support strategic

decision-making processes instead of operative ones (Reggelin and Tolujew, 2011). There-

fore, such models are often referred to as macroscopic models (Pierreval et al., 2007).

However, simulating complex production or scheduling processes requires high accu-

racy and granularity, necessitating the adoption of discrete event simulation practices. The

fundamentals of Discrete Event Simulation (DES) were first introduced by Gordon in 1961

(Gordon, 1961). DES is a widely utilized approach to model complex manufacturing sys-

tems by mapping people, tasks, and resources as objects (Helal et al., 2007; Borshchev and

Filippov, 2004). The modeling of a system using the DES approach involves transforming

all system elements into active or passive objects. Objects that move in the system, such

as jobs, are active or dynamic objects. Passive or static objects are, for instance, resources,

queues, or machines that perform operations on the dynamic objects (Krahl, 2008). Un-

like SD models, DE models do not change continuously over time; instead, changes in

the system’s state and its elements are associated with specific events triggered during a

well-defined simulation period. Due to their ability to represent workstations, equipment,

transportation, and raw material units as individual objects, DE models can achieve a

high-level microscopic representation of a considered environment (Pierreval et al., 2007;

Reggelin and Tolujew, 2011).

Additionally, DE models are often adopted to visualize and investigate detailed op-

erational workflows of a system in order to collect precise and detailed information (e.g.,

production planning) (Helal et al., 2007). Hence, discrete event simulation models have

often been combined with optimization strategies to address scheduling problems (März

et al., 2011). However, modeling such complex and large-scale systems comes with sub-

stantial challenges in terms of the high computational power and the extensive modeling

effort required to build these models (Reggelin and Tolujew, 2011). Therefore, automation

is crucial to operating and maintaining complex simulation models. In this work, we uti-

lize the foundations of the discrete event simulation paradigm to build simulation models

and simulate phenomena of discrete nature.

2.3 An overview of conventional solution methods

Given the preliminaries we discussed in previous sections, we may classify scheduling prob-

lems into single-stage Pm, multi-stage HFSm, or job shop Jm (Baker and Trietsch, 2009;

Pinedo, 2012). Similarly, since the adopted solution methods strongly depend on the com-

plexity of a studied problem, we may classify them based on the degree of complexity to

achieve optimal solutions. The term complexity refers to the amount of computational

power necessary to solve an arbitrary problem using some algorithm. An algorithm is a

finite collection of procedures and instructions that is assembled into a script to solve a

given problem or perform a predefined task (Sipser, 2012). An important area of theoret-

ical computer science is specifically focused on complexity theory. This theory classifies
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optimization problems into complexity classes according to the computational power re-

quired to solve them.

One of the earliest works in this area was the introduction of the NP-complete class

in the early seventies by Cook (1971). This class contains many well-known hard com-

binatorial optimization problems. Given the current technological stand, an algorithm

cannot solve these problems optimally in polynomial time. For some of these problems,

the complexity is measured even higher, falling into the NP-hard class (Johnson, 2012).

To find the optimal solution for a scheduling problem, we may fully explore the solution

space to guarantee optimum since we must compute the quality of every solution given an

objective function. Searching the solution space of a problem entirely is usually referred

to as complete enumeration. However, even for a small scheduling problem, an enormous

number of possible solutions may exist, and that number usually grows exponentially.

For example, Gupta and Stafford (2006) elaborated through a simple example of how

the complexity of a scheduling problem can grow. They demonstrated that a scheduling

problem with five jobs and five different machines may have (5!)5 number of possible solu-

tions, given some objective function. Their objective is to emphasize how quickly expensive

it can be to explore all possible solutions to a small scheduling problem fully. Several years

after the introduction of the NP theorem in general (Cook, 1971), Lenstra et al. (1977)

investigated and summarized the complexity of scheduling problems in particular. The

authors followed the logical flow of Cook (1971) and surveyed classical scheduling problems

in pursuit of their categorization. They emphasized known scheduling problems that are

found to be NP-Hard. The study also summarized other scheduling problems, which can

be solved in polynomial time using some algorithms. Lenstra et al. (1977) reiterated the

central role of operational constraints in increasing the complexity of typical scheduling

problems.

For instance, the sj,k constraint greatly affects the complexity of the scheduling prob-

lem since sequence-dependency leads to high setup times (Maccarthy and Liu, 1993). A

practical example is the ⟨1 | sj, k | Cmax⟩, which is an NP-Hard problem since constrain-

ing the minimization of the makespan by sequence dependency leads to an exponential

increase in the number of possible solutions (Gupta and Kyparisis, 1987). This complexity

is deduced by reducing the single machine problem to the well-known traveling salesman

problem, which is NP-hard (Gilmore and Gomory, 1964).

In general, depending on their solution quality and implementation approach, meth-

ods for solving scheduling problems can be divided into two main groups as presented in

Figure 2.5. We derived this classification based on literature analysis and aligned it with

various proposals and analyses presented in (Ribas et al., 2010, p. 1445; Reza Hejazi and

Saghafian, 2005; Stützle, 1998, p. 1560).
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Figure 2.5: Classification of solution methods for scheduling problems extend based on
(Ribas, 2010, p. 1445; Reza Hejazi and Saghafian, 2005)

The first group encompasses exact solution methods that pursue optimal solutions

or their approximation (Baker and Trietsch, 2009). For instance, Dynamic programming

(Held and Karp, 1961) or branch and bound (Kis and Pesch, 2005) are particularly effective

for addressing small- to possibly medium-sized scheduling problems. These methods,

among the exact approaches, are commonly used for solving scheduling problems. In

addition to these methods, several special algorithms can guarantee optimal solutions for

solving certain types of problems (Gupta, 1988; Gupta and Kyparisis, 1987; Johnson,

1954). For instance, in 1954, Johnson (1954) contributed an influential paper in the flow

shop scheduling research. He investigated the two-stage flow shop scheduling problem

⟨F2 (1, 1) | sj, k | Cmax⟩. He introduced an exact algorithm capable of minimizing the

makespan with sequence-dependent setup time in polynomial time for a two-stage flow

shop scheduling problem with a single machine at every stage. Although the size of the

considered problem is still quite small, his algorithm has been combined to solve larger

problems in the flow shop literature, for instance, in (Gupta, 1988).

Kis and Pesch (2005), have undertaken a thorough review of exact methods for solv-

ing multi-stage HFSm scheduling problems and focused on the branch-and-bound solution

method. Although these solution techniques guarantee optimal or bounded optimal so-

lutions for a given scheduling problem, they become computationally very expensive as

problem complexity increases. This conundrum has always been approached by excessive
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abstraction in modeling a problem. That, in turn, leads to an oversimplification of real-

world environments. As a result, a transfer gap between scheduling theory and industrial

practices is evident. This problem has been well-recognized since the early nineties by a

study presented by Maccarthy and Liu (1993, p. 70).

In this thesis, we deal with complex single- and multi-stage scheduling problems.

Therefore, we focus on the second group, which encompasses heuristic solution methods

as presented in Figure 2.5. Although heuristic methods may not guarantee optimal solu-

tions, they provide viable and efficiently implemented solutions for large-scale scheduling

problems. Under heuristic methods, we categorize often adopted solution techniques for

solving scheduling problems into constructive and improvement methods. First, we will

start with constructive methods. Then, we will provide an overview of common improve-

ment techniques before focusing on methods related to this work.

2.3.1 Constructive heuristic methods

As the name suggests, these methods are designed to construct a solution for a scheduling

problem following certain procedural logic (Ribas et al., 2010, p. 1445; Reza Hejazi and

Saghafian, 2005, p. 2906; Stützle, 1998, p. 1560). It means that after a solution for a

scheduling problem is constructed, no further improvements are researched. In practice,

scheduling problems in cloud (Pm, Qm) and manufacturing HFSm environments are pre-

dominantly approached by heuristic solution methods (Ghafari et al., 2022, p. 1045; Pires

and Barán, 2015, p. 164; Ruiz and Vázquez-Rodŕıguez, 2010, p. 21; Ribas et al., 2010,

p. 1452).

Historically, the scheduling research field evolved during the third industrial revolu-

tion and mass production. Therefore, the majority of simple constructive heuristics are

presented in the field of manufacturing and later on adopted or modified for addressing

scheduling problems in cloud environments. Consequently, a very important sub-class

of constructive heuristic methods encompasses the so-called Priority Dispatching Rules

(PDRs) in manufacturing environments. A priority dispatching rule is usually designed

to prioritize released jobs by constructing a sequence that defines their importance. The

significance of a job is computed based on some job and/or capacity data that is associ-

ated with some pursued objective values. In essence, most of the PRDs act as a ranking

mechanism ranging from simple to complex (Blackstone et al., 1982, p. 27).

Already by the early eighties, dozens of PDRs were developed and adopted for ad-

dressing scheduling concerns in the industry (Blackstone et al., 1982, p. 27; Hunsucker and

Shah, 1994, p. 104). One of the earliest surveys of PDRs is presented by Blackstone et al.

(1982), in which the authors investigated and discussed 34 PDRs that are already utilized

in industry (Blackstone et al., 1982, pp. 33-43). The authors emphasized the intuitive

and simplistic nature of developing such constructive heuristics. They added in their final

remarks that it is impossible to identify the best rule for all circumstances (Blackstone

et al., 1982, pp. 27-28). PDR techniques are efficient when we pursue the optimization of

a single objective in solving a scheduling problem.
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Algorithm 1 Example of Earliest Due Date for Pm

/* Equation 2.6 - We sort ascending in terms of due date dj */

1: procedure EDD (J , M)

2: Zsolution ← ∅
3: Jsorted ← sortAscendingByDueDate (J, index = dj)

4: Msorted ← sortAscendingByWorkload (M, index = li)

5: while Jsorted ̸= ∅ do
6: Jj ← getFirstJob (Jsorted)

7: Mi ← getFirstMachine (Msorted)

8: Zsolution ← constructSolution (Jj , Mi)

9: Jsorted ← remove (Jsorted, Jj)

10: M ← updateWorkload (M, Mi, pj)

11: Msorted ← SortAscendingByWorkload (M, index = li)

12: end while

13: return Zsolution

14: end procedure

For instance, the Earliest Due Date (EDD) rule is a simple constructive heuristic

that sorts a set of released jobs for scheduling in an ascending order according to their

due date to construct a scheduling sequence taking into account the available machines.

It implies that the job with the earliest due date is dispatched first for processing. This

rule is repeated until the last job is processed. Algorithm 1 depicts a pseudocode for the

EDD algorithm for solving the single-stage scheduling problem with parallel machines.

We may have a set of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n}, which we want to schedule

for processing. In our environment exists a set of machines M = {Mi, . . . ,Mm} : ∀ i ∈
{1, . . . ,m}. Let their workload be denoted by a set l = {li, . . . , lm} : ∀ i ∈ {1, . . . ,m}.
In the case of parallel machines, machines are also sorted in terms of their workload in

ascending order (Algorithm 1, Lines 4 and 11).

The EDD rule is often applied to address scheduling concerns subject to the min-

imization of the total tardiness and/or the total number of penalties during a schedul-

ing period. In this algorithm, we assume that machines have buffer capacities and jobs

await processing over time according to the obtained solution. For the sake of simplifi-

cation and generality, we omit some sorting logic and other simple operations to sustain

a simple pseudocode presentation. For instance, we assume that there are some sorting

functions that we can directly use without explaining their logical flow, such as sorting

(sortAscendingByDueDate), get functions (getF irstJob), (getF irstMachine), update

function (updateWorkload), or mapping function (constructSolution). We will follow the

same conventions when presenting all algorithms in the thesis.

Another well-known and often adopted PDR is the Shortest Processing Time (SPT)

heuristic. The algorithm was applied to deal with a machine reparation problem in the

fifties by Phipps (1956, p. 76). Many works followed investigating the performance of the

SPT rule in solving scheduling problems (Schrage and Miller, 1966; Schrage, 1968).
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Algorithm 2 Example of Shortest Processing Time for Pm

/* See. Subsection 2.1.1 - We sort ascending in terms of processing time pj */

1: procedure SPT (J , M)

2: Zsolution ← ∅
3: Jsorted ← sortAscendingByProcessingTime (J, index = pj)

4: Msorted ← sortAscendingByWorkload (M, index = li)

5: while Jsorted ̸= ∅ do
6: Jj ← getFirstJob (Jsorted)

7: Mi ← getFirstMachine (Msorted)

8: Zsolution ← constructSolution (Jj , li)

9: Jsorted ← remove (Jsorted, Jj)

10: M ← updateWorkload (M, Mi, pj)

11: Msorted ← SortAscendingByWorkload (M, index = li)

12: end while

13: return Zsolution

14: end procedure

The SPT rule ranking system is mainly based on the job processing time. Algorithm 2

shows an example of the SPT for solving a scheduling problem with parallel machines Pm.

As shown in Algorithm 2, given a set of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n}, the
SPT heuristic sorts jobs according to their processing time pj in ascending order before

dispatching (Algorithm 2, line 3). Given a set of machines M = {Mi, . . . ,Mm} : ∀ i ∈
{1, . . . ,m}, let their workload be denoted by a set l = {li, . . . , lm} : ∀ i ∈ {1, . . . ,m}.
Every machineMi is associated with its current workload li. Machines are sorted in terms

of their workload in ascending order before scheduling released jobs (Algorithm 2, lines 4

and 11).

The SPT rule shows significant performance for minimizing the flow time-related

objective values such as F or
∑
F , especially in the flow shop scheduling environments

(Baker and Trietsch, 2009, p. 58). It can also be effective for minimizing the Cmax (Baker

and Trietsch, 2009, p. 234) as we could see in the Johnson (1954) algorithm. The SPT is

interchangeably called Min-Min in many scientific works addressing scheduling problems

in cloud environments. The first Min stands for the minimal job, and the second Min

stands for the minimally loaded available machine.

Similarly, the Longest Processing Time (LPT) is another popular PDR for addressing

scheduling concerns in practice. Algorithm 3 presents the logical flow of the SPT heuristic

for the parallel machines problem. The ranking of jobs is also based on the processing

time. In contrast to the SPT, the jobs are sorted in descending order (Algorithm 3, line

3) before being scheduled while following a similar logical flow of the previous PDRs. The

LPT is referred to as Max-Min in many scientific works addressing scheduling problems in

cloud environments. The Max refers to the maximum length of overall jobs and the Min

points to the machine that is minimally loaded.
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Algorithm 3 Example of Longest Processing Time for Pm

/* Equation 2.3 - We sort descending in terms of processing time pj */

1: procedure LPT (J , M)

2: Zsolution ← ∅
3: Jsorted ← sortDescendingByProcessingTime (J, index = pj)

4: Msorted ← sortAscendingByWorkload (M, index = li)

5: while Jsorted ̸= ∅ do
6: Jj ← getFirstJob (Jsorted)

7: Mi ← getFirstMachine (Msorted)

8: Zsolution ← constructSolution (Jj , Mi)

9: Jsorted ← remove (Jsorted, Jj)

10: M ← updateWorkload (M, Mi, pj)

11: Msorted ← SortAscendingByWorkload (M, index = li)

12: end while

13: return Zsolution

14: end procedure

After almost thirty years of application in industry, the most popular priority dis-

patching rules are once again investigated for addressing multi-stage problems HFSm

(Hunsucker and Shah, 1994). In their investigation, Hunsucker and Shah (1994) system-

atically studied the performance of the SPT, LPT, and several other PDRs. They focused

on testing the performance of previous PDRs for solving the ⟨HFSm | | Cmax, Fmax, F ⟩.
For instance, they analyzed the Shortest Remaining Processing Time (SRPT) and the

Longest Remaining Processing Time (LRPT) in addition to the First-In-First-Out (FIFO)

and Last-In-First-Out (LIFO). The SRPT and LRPT rules are also based on the processing

time of released jobs during a scheduling period similar to the SPT and LPT, respectively

(Baker and Trietsch, 2009, p. 168). However, we consider not only the processing time of

a job in the first processing stage but also the processing time of all upcoming processing

stages.

The makespan, mean flow time, and maximum flow time are common objectives

in HFSm scheduling environments. Taking into account different workload levels and

system configurations, the findings showed that the SPT PDR is very effective and out-

performs all rules for addressing the HFSm scheduling problems subject to the min-

imization of the makespan (Hunsucker and Shah, 1994, pp. 110-112). Obviously, the

⟨HFSm | | Cmax⟩ scheduling problems are significantly simpler given a single objective

and no constraints. A rather more recent study on the performance of PDRs with due

date characteristics is presented by (Durasević and Jakobović, 2020) for addressing the

⟨Qm | | Cmax⟩ subject to the minimization of the makespan. The authors compared var-

ious rules against automatically developed rules for solving small problem instances with

11 jobs and three parallel machines. The computational results suggest that the auto-

matically generated rules outperform standard PDRs in the literature. A couple of years

later, Almeida et al. (2022) revisited the performance of PDRs for addressing flow shop
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problems ⟨Fm | |
∑
F, U, Mutilization⟩. The maximization of the Mutilization objective

value is usually achieved through the minimization of the machine’s idle time. The authors

surveyed the performance of EDD, SPT, LPT, FIFO, LIFO, and some other rules based

on the Number of Operations (NOP) or Ratio of Criticality (RC). The authors conducted

experiments on randomly generated problem instances. The computational results suggest

that most PRDs are, on average, 14 % better than the FIFO rule (Almeida et al., 2022,

p. 264), which is often used in industry. The results indicate that the EDD and SPT rules,

once again, are superior in terms of minimizing the U and the average machine utilization

Mutilization in flow shop environments.

Around the same time Ashwin et al. (2022) presented a comprehensive analysis of

PDRs and their possible combination for solving the ⟨Jm | | Cmax, Tmax, T, F ⟩. The

authors focused in their analysis on flow time- and tardiness-based objective values. They

evaluated the performance of the EDD, Minimum Slack Time (MST), SPT, LPT, FIFO,

and four proposed variations of their combination. The slack time is computed by sub-

tracting the earliest possible finish time of a job from its due date (Baker and Trietsch,

2009, p. 353). The authors evaluated the concepts by solving small problem instances

comprising 6 and 6 machines as well as ten jobs and ten machines. The computational

results showed that the proposed combinations yield better performance in minimizing

the objective values (Ashwin et al., 2022, p. 343). The EDD rule remains effective for ad-

dressing tardiness-related objective measures. The SPT proved outperformance in terms

of minimizing the mean flow time for solving the smaller problem instance.

In contrast to previous studies, Spanos et al. (2022) analyzed various PDRs to in-

clude them in the development of a decision support system for a small company. The

authors surveyed experts to finalize the included list of rules that included EDD, SPT,

LPT, MST, Shortest Setup Time (SST) , and Pre-Subcontractor First (PSF). The PSF

rule prioritizes certain customers compared to others. The authors suggested hierarchical

interactive scheduling, where experts select among available rules and objective values to

construct a solution for every machine given a partial set of jobs. The computational

results demonstrated that the SPT, once again, is superior for minimizing the F , while

the EDD with weights delivers the best results for minimizing the weighted Tmax. As

expected, the authors recommended the combination of various PDRs to achieve the best

results when the problem is subject to multiple objective values (Spanos et al., 2022, p. 13).

Weng et al. (2022) investigated a rather complex job shop problem with multiple

processing stages. The authors focused on due-date-related objective measures such as the

minimization of total tardiness and earliness. They proposed several modified PDRs that

are based on the classical EDD, MST, and FIFO PDRs and relied on the decomposition of

the problem to apply the rules. The computational results demonstrated that the proposed

rules are effective for minimizing the considered objective values. The authors argue that

the computational results of the proposed rules outperform several improvement methods

for solving randomly generated problem instances that involved up to 96 jobs (Weng et al.,

2022, pp. 12-14). A similar proposal was presented by Kasper et al. (2023), in which the

authors presented a system-based dispatching method that relies on modified variations
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of standard dispatching rules and system information. The author presented an extensive

analysis of the method for solving flow shop scheduling problems to minimize the average

tardiness and percentage of late jobs. The reported computational results demonstrated

an outperformance of the presented method compared to standard PDRs such as SPT,

EDD, and MST.

The vast adoption of PDRs for addressing scheduling problems in the manufacturing

environment makes it impossible to survey all rules. Their popularity extends beyond

manufacturing environments. Their adoption is surely notable for addressing scheduling

problems in cloud environments. However, we may notice slight differences in the naming

of these PDRs. For instance, (Sindhu and Mukherjee, 2011) presented a brief analysis

of the performance of the Shortest-Job-First, the Longest-Job-First, and the First-Come-

First-Served, which are equivalent to the SPT, LPT, and FIFO, respectively. To maintain

consistency, we will use the conventional naming of PDRs in scheduling. The analysis is

conducted to solve a simple parallel machine scheduling problem to minimize the makespan

⟨Pm | | Cmax⟩. The authors relied on simulation techniques to investigate the problem.

The simulation results suggest that the SPT and the LPT outperform the FIFO rule,

especially when the number of jobs to be scheduled is increased. However, the conducted

analysis is subject to a small number of jobs.

Similarly, Murad et al. (2021) investigated the performance of several PDRs for ad-

dressing the single-stage scheduling problem ⟨Qm | | Cmax,Mutilization, Frelated⟩. The

authors compared the performance of the SPT and LPT. They also adopted a simple

ML classifier to solve the problem. The computational results demonstrated that the

SPT rule effectively schedules jobs subject to the considered objective values. The ex-

perimental setup included only five machines. Similarly, Murad et al. (2023) proposed

a new PDR for scheduling jobs in parallel machines cloud environments considering the

⟨Qm | | Cmax, F, T ⟩. Given minimizing the makespan, flow time, and total tardiness,

the authors proposed a rule that relies on the release and due date of the job. Finally, this

rule combines various SPT and EDD ranking mechanisms for scheduling jobs on machines.

The paper presented computational results that compare the performance of the new rule

against known PDRs such as the EDD, SPT, LPT, FIFO, Min-Min, and Max-Min. The

Min-Min and Max-Min rules are some variation of the SPT and the SPT, respectively (Al-

gorithm 2 and Algorithm 3), that are used for parallel machine problems. The proposed

rule achieved a similar performance to the SPT in terms of minimizing the flow time. The

experiments demonstrated that the new rule finds a trade-off solution that minimizes the

total tardiness and the flow time Murad et al. (2023, p. 174).

For addressing a similar problem ⟨Qm | | Cmax, ⟩, Bandaranayake et al. (2020) pro-

posed a new PDR called Total Resource Execution Time Aware Algorithm (TRETA) for

scheduling jobs in cloud environments. In addition to the minimization of the makespan,

the authors also reported results on the throughput and workload balance between ma-

chines. The proposed rule is based on the processing time of a job, in which the job is

scheduled on the fastest and first available machine. The authors compared the perfor-

mance of TRETA against the FIFO, SPT, Min-Min, and Max-Min priority dispatching
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rules. To investigate practicality, the authors relied on the NASA benchmark for gener-

ating jobs in a simulation model. The simulation results demonstrated the superiority of

TREAT against all PDRs for solving several scheduling problems with different numbers

of jobs that must be scheduled.

Shin et al. (2022) addressed a rather more complex scheduling problem in which jobs

must undergo several processing steps ⟨Pm | prec | Cj , Cmax⟩. In essence, a job Jj ∈ J
consists of a set of operations Oj =

{
Oo,j , . . . , O|O|,j

}
: ∀ o ∈ {1, . . . , |O|} forming a work-

flow that must be scheduled for processing in a cloud environment. The authors proposed

a new rule combining the Maximum Children (MC) and the weighted job completion time

(wj ∗ Cj), where wj denotes a weight assigned to a job Jj indicating its importance. The

MC rule sorts jobs in descending order in terms of their number of operations. The au-

thors compared the performance of the presented rule against the SPT, FIFO, and MC for

scheduling ten jobs on 20 machines. The experimental results showed that the proposed

rule outperforms individual rules for solving the problem.

In Subsection 2.1.3, we discussed the minimization of energy consumption in schedul-

ing as an emerging objective measure. Especially in cloud environments, minimizing en-

ergy consumption became crucial since some regulations on CO2 emission have been posed

in many countries. Therefore, many research efforts have been dedicated to proposing

scheduling methods that take into account energy efficiency. Akhter and Othman (2016)

reviewed and thoroughly discussed open challenges in reducing energy consumption in

cloud environments. The authors stressed the role of energy-aware scheduling methods

in reducing energy consumption in large cloud environments. Several years later, Gha-

fari et al. (2022) surveyed the past ten years of research and development efforts in the

field of scheduling in cloud environments, focusing on energy-ware solutions. The authors

stressed in their findings the dominance of heuristic and improvement methods for propos-

ing energy-efficient scheduling methods (Ghafari et al., 2022, p. 1045). They also studied

other popular objective values in addition to minimizing the energy consumption E. Their

summary suggests that around 73 % of proposed methods also pursue minimizing the av-

erage completion time C, and some 32 % concentrate on minimizing the makespan Cmax.

As a result, other objective values, such as penalties U or violation of SLAs, are somewhat

overlooked.

Many energy-aware solutions in cloud environments are presented to address the vir-

tual machine placement problem. We will revisit our discussion regarding the machine

capacity constraint and energy objective value in Subsection 2.1.2. Suppose we have a set

of jobs (virtual machines, JR) that must be scheduled on a set of machines (computing

servers, MC). The set of jobs is denoted by JR =
{
JR
j , . . . , J

R
n

}
: ∀ j ∈ {1, . . . , n}. Let

the set of available parallel machines denotes MC =
{
MC

i , . . . ,M
C
m

}
: ∀ i ∈ {1, . . . ,m}.

Many similar problems are reduced to bin-packing problems (Akhter and Othman, 2016,

p. 1171). In a parallel machine scheduling environment, depending on the considered

objective function, we may have to deal only with the allocation dimension of a schedul-

ing problem (Baker and Trietsch, 2009, p. 221). In this example, a job JR
j ∈ JR may

be allocated to a machine MC
i ∈ MC , only if the machine can satisfy all its resources
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requirements (⊢ Υ, Equation 2.1).

For instance, a job JR
j can be scheduled on a server only if there is enough compute

RCPU , memory RRam, and storage RSSD to process it. Algorithm 4 is a generalized

heuristic method, which we may use to allocate jobs to the machines given the capacity

constraint considering the minimization of the overall energy consumption. The algorithm

is a modified version of the First-Fit-Decreasing (FFD) algorithm (Yue, 1991), taking into

account the energy consumption. The FFD logic is based on the LPT priority dispatching

rule, in which a set of jobs are sorted in descending order in terms of their capacity

requirements Rr (Algorithm 4, Line 5). Here, we assume that the energy consumption to

process a job JR
j ∈ JR is strongly dependent on some resource requirement Rr, which we

use as an index for sorting (e.g., RCPU ).

After initialization, the algorithm loops over the sorted list of jobs starting in (Algo-

rithm 4, Line 6). Then, the first job is selected for scheduling, and a set of requirements

is extracted using some simple function. Finally, the heuristic procedure loops over all

available machines starting in (Algorithm 4, Line 12). Then, we check if the current

selected machine MC
i has enough capacities to process the job JR

j (Algorithm 4, Lines

13-20). Depending on the results, we estimate the incurred energy consumption for pro-

cessing the job using some simple procedures and assume that it is, for the moment, the

minimal one (Algorithm 4, Lines 21-27). We repeat this process for all available machines

until. Finally, if we find a suitable machine, we will update our intermediate schedule and

update the workload of our machines (Algorithm 4, Lines 29-32). Otherwise, we add this

job to unscheduled jobs and start investigating the next one back-in (Algorithm 4, Lines

6). After looping over all jobs, we get our solution, which is a map that schedules jobs to

corresponding machines. We may also get a set of unscheduled jobs that must be planned

later.

The FFD selects the first job in the sorted job list and attempts to place it on the

first machine. In our example, we iterate over all parallel machines to find a machine with

enough capacity to satisfy the requirements of the job and consume the least energy to

process it (Algorithm 4, Lines 14-28). The logical flow of the classical FFD would stop

after finding the first possible fit (machine) for the job that can satisfy its requirements.

If we add a break statement in (Algorithm 4, after Line 24) to stop the iteration, we have

a classical FFD. Of course, we still need to update the workload of the selected machine

and the intermediate solution.
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Algorithm 4 Example Energy-Aware Algorithm Qm

/* Equation 2.1 - We sort according to the first requirement in line 5 */

1: procedure EnergyAware (JR, MC)

2: Zsolution ← ∅
3: JnotScheduled ← ∅ ▷ A partial set of jobs that may have to wait

4: R← getJobRequirments(JR) ▷ Extract the set of job requirements

5: JR
sorted ← sortDescendingByResourceRequirement(JR, index = Rr)

6: while JR
sorted ̸= ∅ do

7: E
min
j ←MAX ▷ The minimal energy consumption of a job as max

8: MC
i,j ← NULL ▷ The job is not scheduled on any machine yet

9: satisfied← False ▷ Boolean to check requirements are met

10: JR
j ← getFirstJob (JR

sorted)

11: R← getJobRequirments(JR
j ) ▷ Extract the set of job requirements

12: for each MC
i ∈MC do

13: C ← getMachineCapacities(MC
i )

14: for each (Rr ∈ R) and (Cc ∈ C) do
15: if Rr ≤ Cc then ▷ Machine capacity satisfies job’s requirement?

16: satisfied← True

17: else

18: satisfied← False

19: end if

20: end for

21: if satisfied == Ture then

22: Ej ← estimatePowerConsumption(JR
j , M

C
i )

23: if Ej < E
min
j then

24: MC
i,j ←MC

i ▷ Pick the machine with lower energy

25: E
min
j ← Ej ▷ update the lowest energy

26: end if

27: end if

28: end for

29: if MC
i,j ̸= NULL then

30: Zsolution ← constructSolution (JR
j , MC

i,j)

31: JR
sorted ← remove (JR

sorted, J
R
j )

32: MC ← updateWorkload (MC , MC
i,j , J

R
j )

33: else ▷ No machine can satisfy the requirements of a job

34: JnotScheduled ← addNotScheduledJobs(JnotScheduled, J
R
j )

35: JR
sorted ← remove (JR

sorted, J
R
j )

36: end if

37: end while

38: return Zsolution, JnotScheduled

39: end procedure



44 Methodology for Self-Adaptively Solving Multi-Objective Scheduling Problems

The logical design of the FFD heuristic method aims mainly at minimizing the number

of machines that are actively used. Similarly, the Best-Fit-Decreasing (BFD) heuristic

method schedules a job on the most loaded machine that can satisfy its requirements

(Moges and Abebe, 2019, p. 4). It implies that we may also sort all machines (including idle

ones) in terms of their available capacities in descending order before starting to schedule

jobs. Then, we break our loop that searches for a suitable machine in (Algorithm 4, at

line 24) directly after we find the fullest machine that meets the requirements of the job.

Finally, we need to update the workload of the selected machine and the intermediate

solution. In contrast, the Worst-Fit-Decreasing (WFD) logical design is opposite to the

BFD. A job is scheduled on the least loaded machine that meets the requirements (Moges

and Abebe, 2019, p. 4). Back to our example, we may sort jobs similarly and then sort

available machines in ascending order in terms of their available capacity before we start

scheduling (Algorithm 4, after line 5). Then, we break our search similarly in (Algorithm 4,

after line 24).

These simple constructive heuristic methods are often adopted with various modifi-

cations to address scheduling problems in cloud environments. For instance Beloglazov

et al. (2012a) presented one of the earliest and most influential contributions among energy-

ware heuristic methods for scheduling in cloud environments. The authors addressed a

single-stage scheduling problem with machine capacity constraints ⟨Qm | MC | U, E⟩.
The presented heuristic methods aim to minimize energy consumption and the number

of penalties due to SLA violations. Here, it is important to discuss that the MC can

sometimes be considered as a soft constraint. It implies that jobs may be scheduled on

machines that may not fully meet their requirements at a later point in time during a

scheduling period. In a cloud scheduling environment, this phenomenon is widely asso-

ciated with the notion of overloading or ”over-subscription” (Beloglazov et al., 2012b,

1401). The presented methods by Beloglazov et al. (2012a) are inspired by a modifica-

tion of the FFD, taking into account energy consumption and a rescheduling method to

avoid penalties. The authors relied on the CloudSim simulation package to model a cloud

environment to conduct the evaluation (Buyya et al., 2009). They named the presented

heuristic method Power Aware Best Fit Decreasing (PABFD). The authors compared the

PABFD heuristic methods against a random scheduling policy. Simulation results suggest

that the presented methods significantly reduced the overall energy consumption of the

considered cloud environment (Beloglazov et al., 2012a, p. 762). The authors followed up

on their previous research and presented an extended analysis of the presented heuristic

methods focusing on the rescheduling processes and its potential to reduce the number

of penalties imposed by violation of SLAs (Beloglazov et al., 2012b). The CloudSim and

the CloudSim Plus (Silva Filho et al., 2017) simulation packages will discussed in the

implementation overview section in the evaluation chapter (cf. Section 4.3).

After several years, Moges and Abebe (2019) revisited the single-stage problem ⟨Qm |
MC | U, E⟩ that is considered by Beloglazov et al. (2012b). They proposed several

energy-aware heuristic variations that are also inspired by the FFD (Yue, 1991) and the

proposed method by Beloglazov et al. (2012a). They named the heuristic methods as
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follows: the Modified Best-Fit Decreasing (MBFD), the Medium-Fit Power Efficient De-

creasing (MFED), the Power Efficient First-Fit Decreasing (PEFFD), and the Power Effi-

cient Best-Fit Decreasing (PEBFD). The authors relied on simulation methods to evaluate

the performance of the presented algorithms using the CloudSim Plus simulation package

(Silva Filho et al., 2017). Moges and Abebe (2019) relied on the PlanetLab benchmark

(Park and Pai, 2006), which is widely used for evaluating scheduling heuristic methods in

cloud environments (Beloglazov et al., 2012a,b). The computational results over multiple

setups suggest that the proposed PEFFD and PEBFD slightly outperform the previous

energy-aware heuristic for minimizing energy consumption and SLA violations. Several of

the previously discussed heuristics are included in the heuristic library component of the

research artifact.

Sun et al. (2024) addressed single-stage workflow scheduling problems in a cloud

environment in which a job encompasses multiple operations. The authors considered the

minimization of energy consumption and the number of penalties ⟨Qm | prec | E, U⟩. They
approached the problem by developing a constructive energy-ware heuristic that considers

the energy consumption of machines. The computational results show that the heuristic

method outperforms known PDRs in the literature, such as random, round-robin, and

ROSA. ROSA heuristic is an EDD-based rule that schedules jobs taking into account due-

date related objective measures (Sun et al., 2024, p. 177). The experiments are conducted

on known benchmarks in literature with eight machines available for processing jobs.

Evidently, PDRs are problem-specific constructive heuristic methods that deliver rea-

sonable solutions for rather simple problems. The complexity of a scheduling problem

substantially increases if we consider operational constraints (Romero-Silva et al., 2022,

p. 2; Gupta and Stafford, 2006, p. 701; Wittrock, 1990, p. 331) or conflicting objective

values (Neufeld et al., 2023, p. 2; Gupta and Stafford, 2006, p. 701; Wittrock, 1990,

p. 331). Complex PDRs, which might construct solutions subject to multiple objective

values, are usually associated with high development effort (Ross, 2005, p. 531). To de-

velop such techniques to address specific problems, We require appropriate algorithmic

and field knowledge and close communication with domain experts (Ross, 2005, p. 531).

Therefore, conventional improvement techniques are quite popular for addressing complex

scheduling problems that are subject to multiple objective concerns.

2.3.2 Improvement methods

Improvement methods are conceptually designed with optimization in mind. In the con-

text of scheduling problems, improvement methods start with an initial solution and then

seek to refine that solution iteratively to minimize or maximize some objective values.

The refinement process is usually based on conducting some changes to the initial solu-

tion in pursuit of a better one (Pinedo, 2012, p. 382). Local search algorithms are, for

instance, popular improvement methods that are capable of systematically investigating

and optimizing an initial solution based on well-defined modification mechanisms. The

modification mechanisms must be carefully defined and impartially applied to all investi-
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gated solutions (Pirlot, 1996). However, as the name suggests, they are often applied to

find optimized solutions in a specific region ”neighborhood” of the solution space (Pirlot,

1996, p. 494). In the context of scheduling, two solution candidates can be considered

neighbors if a change to one schedule generates the other neighbor’s schedule (Pinedo,

2012, p. 382; Pirlot, 1996, p. 494). The changes are performed iteratively on the explored

solutions until no improvement can be achieved or some termination condition is satis-

fied. The modification procedure, which is applied to find the next solution, defines the

computational complexity of the algorithm because it determines the size of the explored

neighborhood in the solution space Orlin et al. (2004).

The literature contains an enormous number of improvement methods that address

different variations of scheduling problems. Hence, we will provide a general overview of

conventional improvement methods and their adoption for solving single-stage and multi-

stage scheduling problems. The preview is structured based on the problem’s complexity,

from simplest to most complicated.

For instance, Wittrock (1990) investigated identical parallel machines scheduling

problem ⟨Pm | fg,h | Cmax⟩. The considered environment was solved subject to the family-

dependent major and minor setup times constraint aiming at minimizing the makespan.

The author briefly discussed the NP-hard complexity of the problem. Hence, an improve-

ment heuristic method was presented to solve the problem. The proposed improvement

heuristic consists of three main components. The first component computes the upper and

lower bounds on the makespan found so far. The mean of the two bounds is used to find

a preferred makespan, which is then passed to the allocation component. The allocation

component looks for possible allocations of families to machines and constructs schedules

whose makespans are less than the currently calculated average bound. Finally, the third

component executes the allocation proposed by the second component. The computa-

tional results presented were within three percent of a proven lower bound for optimal

makespan, demonstrating the potential of the proposed heuristics to achieve near-optimal

schedules.

However, the author made a number of assumptions when presenting the problem

definition, such as not taking into account the due date of jobs. It was also assumed

that the sequence of production jobs belonging to a single family is trivial as long as they

are processed consecutively on the same machine (Wittrock, 1990). These assumptions

were made to simplify the sequencing part of the problem and minimize its impact on the

overall results by concentrating on the allocation component.

Fiew years earlier, Gupta (1988) addressed an extension of the identical parallel ma-

chines with a single machine available on the second stage ⟨HFS2(Pm, 1) | | Cmax⟩. The

problem was investigated with the intention of minimizing the makespan. A single ma-

chine in the second processing stage results in a hybrid flow shop scheduling environment.

Despite the fact that both authors intended to minimize the makespan, the form of the

problem considered by Gupta is different from the previous problem since no sequence

dependency is taken into account. The author proved the complexity of the problem as

NP-Complete and justified his proposal of an improvement method to solve it.
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Gupta (1988, p. 360) suggested splitting the allocation part of the problem from the

sequencing one to produce the solution. Based on this premise, the author assumed a

two-stage flow shop scheduling problem that must be solved to minimize the makespan

⟨F (1, 1) | | Cmax⟩. The two-stage flow shop problem is a well-known variation of the

flow shop problem, especially after Johnson (1954) proposed an exact algorithm that

guarantees optimal solution. Hence, Gupta (1988) utilized the Johnson algorithm to solve

the sequencing part of the scheduling problem and proposed an improvement method to

solve the allocation part of the problem. The rationale of the proposed method was based

on minimizing the overall idle time of the single machine in the second stage and the

number of active machines in the first stage. The reported results demonstrated that

the proposed heuristic method achieves near-optimal makespan to solve the randomly

generated problem instances. The analysis was limited to only two machines in the first

stage, reasoning that the heuristic would perform worst due to the machines’ unavailability.

A couple of years after these investigations, Voß (1993) revisited the discussion and

introduced a Tabu search implementation to address the complicated form of the problem

⟨HFS2(Pm, 1) | sj,k | Cmax⟩. The author considered the sequence-dependent setup time

constraint, which significantly contributes to a higher complexity if the objective function

includes the minimization of the makespan. Voß (1993) relied on Gupta’s method to pro-

duce an initial solution, which is then iteratively refined using Tabu search to minimize the

makespan. In his work, Voß (1993) proposed a single-move modification strategy, which

swaps the position of two consecutive jobs to obtain the new makespan. The implemented

tabu search yielded improved solutions compared to the initially generated ones. The em-

pirical results showed that the presented method achieves a superior makespan compared

to the presented method by Gupta (1988), which is used as a baseline. Voß (1993) closed

his paper by emphasizing the importance of investigating practical constraints and their

significant role in real scheduling environments.

Several years after Voß proposal, Li (1997) presented an improvement method to

address two-stage hybrid flow shop scheduling problems. Li (1997) considered, in fact,

an opposite variation of the problem with respect to machine environment, in which the

first stage contains a single machine and the second stage comprises a set of identical

parallel machines ⟨HFS2(1, Pm) | fg,h | Cmax⟩. The author investigated the problem,

which was subject to family major and minor setup time constraints. Similarly, Li (1997)

justified his proposal of improvement method by the NP-completeness of the problem,

which can be reduced to the problem addressed by Gupta (1988). The rationale of the

proposed method was also based on solving the allocation and the sequencing parts of the

problem independently. The authors presented two forward and backward heuristics to

deal with the allocation problem. They relied on three priority dispatching rules to solve

the sequencing part of the problem in the first processing stage with a single machine. Li

(1997) concludes by presenting the results of the two proposed heuristics with the rules

and compares their performance with existing PDRs in the literature. In all previously

discussed approaches and improvement methods, neither total tardiness nor penalties were

considered.
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Although local search algorithms often yield good solutions with reasonable com-

putational efforts, they are bound to search only in the neighborhood of some starting

solution. Hence, they may likely find the optimal solution in this region, which, however,

may not be the global optimal solution for a given problem (Ross, 2005, pp. 529-530).

Consequently, many potential feasible solutions that might lead to finding the global op-

timum are disregarded Voudouris and Tsang (2003). The problem of local optima has

been a widely known limitation of these techniques, which compelled many academics to

investigate more generalized methods. As a result, numerous advanced optimization im-

provement methods were proposed under the umbrella of metaheuristic methods Glover

and Kochenberger (2003). In general, metaheuristic methods are supervised local search

methods (Ross, 2005, pp. 529). Their rationale design incorporates a local search method

and an overarching control mechanism. The local search algorithm method is guided and

regulated by the controlling mechanism Ross (2005). The ground premise of designing a

controlling mechanism is to encourage a local search algorithm, leaving an investigated

region of the solution space to explore improvement in another one. However, leaving the

explored region of the solution space is conditioned by a reasonable assumption that the

local optimum can be mitigated (Crainic and Toulouse, 2003).

For instance, Simulated Annealing (SA) is a widely adopted metaheuristic method

for solving scheduling problems (Aurich et al., 2016; Mirsanei et al., 2011; Allaoui and

Artiba, 2004). SA was proposed by Kirkpatrick et al. (1983) and empirically evaluated

for solving several combinatorial optimization problems. Kirkpatrick et al. (1983) adopted

the annealing process of solid physical substances to develop the rationale of his proposed

guiding strategy. The annealing process starts by melting down a solid physical substance

of some form and then cooling it down gradually to achieve the desired form (Kirkpatrick

et al., 1983).

Applying high temperatures on solid particles significantly increases their energetic

movement in a random manner (Kirkpatrick et al., 1983). As an improvement method,

SA simulates the annealing process and permits random behavior at the beginning of the

optimization process to allow investigating solutions in different regions of the solution

space. It, in essence, tolerates rather inferior solutions with the objective of finding a

better one later during the search process (Pinedo, 2012, p. 385). When the cooling

process begins, SA gradually decreases the random behavior of the local search algorithm

using a cooling schedule and starts searching in the same region of the solution space

instead of jumping to the other one. The start temperature, the cooling schedule, and the

number of iterations before changing the temperature are critical parameters of SA. They

must be carefully tuned as they have a substantial influence on the quality of the final

solution and the efficiency of the search process (Aarts et al., 2005).

The Tabu Search (TS) improvement metaheuristic is another example, which was

introduced several years after SA to address the same limitation. From a design perspec-

tive, both methods rely on local search methods and have been successfully applied to

solve complex combinatorial optimization problems of various complexity, particularly in

the area of scheduling Ben-Daya and Al-Fawzan (1998); Adamuthe and Bichkar (2012).
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TS was originally proposed by Glover (1989) to enable local search methods to overcome

local optima problems. Tabu Search is quite similar to simulated annealing in terms of

modification mechanism. It also permits accepting inferior solutions and non-improving

steps while inferring a new solution schedule from the previous one (Pinedo, 2012, p. 386).

SA and TS have been widely adopted to address scheduling problems. For instance,

Mirsanei et al. (2011) investigated hybrid flow shop scheduling problems with sequence-

dependent setup times. The problem was solved considering the minimization of the

makespan ⟨HFS2 | sj,k | Cmax⟩. In their work, the authors introduced two modification

strategies and adopted SA as a control strategy. The first strategy was a classical pairwise

job position swap. The second strategy selected two jobs in the sequence and inverted their

position to generate the new candidate solution. Both presented strategies were incorpo-

rated into the body of their algorithm. The experimental results presented demonstrated

slightly improved results compared to the obtained results of a genetic algorithm, which

was regarded as a baseline.

A further example that compared the performance of SA and TS for addressing hybrid

flow shop scheduling problems was presented by Aurich et al. (2016). The investigated

scheduling environment was subject to the family setup time constraint. It was solved

to minimize the makespan and the total tardiness ⟨HFS2(P4, P5) | fg,h | Cmax,
∑
Tj⟩.

Establishing the complexity of the problem to be NP-Hard was done based on reducing it

to the considered identical parallel machine problem by Wittrock (1990).

The core idea of the proposed solution was to decouple the sequencing part of the

problem from the allocation part. To address the sequencing in the considered problem,

the authors introduced a heuristic method in which the production sequence is constructed.

The objective function is to minimize the total number of major setup times under the

constraint that the delivery dates of the jobs must be met if possible. To handle the

allocation part of the problem, SA, tabu search, and a heuristic were implemented. The

authors conducted their evaluation using real problem instances. The SA and Tabu search

techniques were based on a single move modification strategy, where a family is selected

and reassigned to another machine in the first production stage. Both metaheuristics

slightly outperformed the presented heuristic in terms of total tardiness, with the presented

heuristic reporting an improved makespan for all problem instances.

Another class of metaheuristics that has been widely applied for solving various com-

binatorial problems is population-based methods. Genetic Algorithms (GA) is a popular

optimization method that is widely adopted to address scheduling problems. The concept

of GAs is founded on replicating the biological evolutionary process of species by us-

ing a population-based genetic representation and its associated natural phenomena (i.e.,

mutation, crossover, fitness, and genetic survival) to solve optimization problems. The

fundamental elements of genetic algorithms are natural selection and genetic inheritance

(Pirlot, 1996). The notion of genetic representation was first proposed by Holland (1975)

within the adaptive systems research, later discussed in the context of artificial intelli-

gence, and further extended and applied for solving optimization problems by Goldberg

(1989).
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Applying genetic algorithms to address scheduling problems depends significantly on

the genetic encoding and representation of the problem (Cheng et al., 1996). Each poten-

tial solution or chromosome is then evaluated using an objective function to determine its

fitness (Ruiz and Maroto, 2006). Following this evaluation, an offspring population of po-

tential solutions must be generated using a selected set of solution individuals. The parents

that have been selected are crossed over to reproduce the chromosomes of the next gener-

ation, also referred to as ’offspring’ (Reeves, 2003). The process of crossover will result in

a certain amount of recombination of the parental chromosomes. The offspring solution

candidates will iteratively carry the dominant fit characteristics of the parent solutions,

mimicking the process of the natural evolution of species (Ruiz and Vázquez-Rodŕıguez,

2010). To maintain the diversity of solution candidates and to mimic the natural muta-

tion process of species, some of the offspring solution candidates are randomly selected

to mutate their genes. The current generation is evaluated before the evolutionary pro-

cess is repeated. This process is iteratively executed until some breaking condition is met

(Whitley, 1994). The premise here is that applying evolutionary concepts may result in

the fittest individuals surviving during the emulated evolutionary process. Hence, the best

solution individuals maintain the genotypes that express the best characteristics to solve

a given scheduling problem.

GA is substantially different from classical metaheuristic methods such as simulated

annealing or tabu search, where a population of solution candidates is investigated at each

iteration instead of just one solution individual (Geem et al., 2001). Hence, multiple re-

gions in the solution space of a problem can be explored simultaneously. Consequently, this

behavior significantly advantages GA or other population-based algorithms over conven-

tional metaheuristic methods. From a solution search perspective, GA can explore more

freely in different regions of the solution space and is less likely to be trapped in local

optima (Geem et al., 2001). From an efficiency perspective, parallelization technologies

can be adopted to accelerate the optimization process using population-based methods

(Swan et al., 2022, p. 396).

Genetic algorithms are generally viewed as a more sophisticated approach than con-

ventional improvement strategies, therefore requiring careful encoding of the problem

(Cheng et al., 1996; Whitley, 1994). If the encoding process is implemented incorrectly,

there is a high chance that the offspring solutions will be infeasible for a given problem

(Cheng et al., 1996). Poorly developed encoding can, in essence, lead to a high computa-

tional effort to achieve high-quality solutions for a scheduling problem (Andersson et al.,

2008; Whitley, 1994). For instance, let us consider a scheduling problem with a single

machine with ten jobs. Jobs must be scheduled subject to the sequence-dependent setup

time constraint, and the objective is to minimize the makespan. The problem can be

encoded as a sequence by modeling the positions of the jobs in the sequence as a chromo-

some (Pinedo, 2012, p. 389-390). We may apply a single-point crossover that swaps part of

the sequence to derive the offspring chromosome from the combination of the two parent

genes. The process begins by randomly selecting a piece of of the first parent chromosome.

The empty genotypes in the second parent chromosome are then filled in to complete the
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offspring chromosome. The same sequence of positions in the second parent is used to fill

the missing positions in the offspring solution. The solution becomes infeasible if there is

a duplication in any of these positions. We will discuss the role of encoding models in the

performance and quality of solutions in the design chapter. In addition, a comprehensive

overview of the various crossover operators and the encoding strategies for GA can be

found in (Goldberg and Deb, 1991; Whitley, 1994; Picek and Golub, 2010).

For addressing scheduling problems, Reeves (1995) presented one of the earliest works

dealing with flow shop problems. The authors investigated minimizing the makespan in

permutation flow shop ⟨Fm | prmu | Cmax⟩. The NP-Hard complexity of the problem

justifies the adoption of an evolutionary improvement method such as GA. In the permu-

tation flow shop, the processing sequence in the first stage is maintained and used further

in the upcoming processing stages. It implies that the FIFO principles are applied to

prioritize jobs starting from the second processing stage. The authors empirically investi-

gated the performance of GA compared to SA and a conventional local search algorithm to

solve the problem. As expected, SA and GA proved superior to local search algorithms in

solving the problems. Reeves (1995) emphasized in their final remarks the computational

efficiency of GA against SA in achieving comparable quality for solving larger scheduling

problems (Reeves, 1995, p. 8).

Investigating the same problem, Zheng and Wang (2003) explored the potential of

combining GA and heuristic methods to achieve better solutions. The authors similarly

examined the minimization of the makespan in a permutation flow shop scheduling en-

vironment ⟨Fm | prmu | Cmax⟩. Unlike the previous approach, Zheng and Wang (2003)

relied on NEH constructive heuristic, originally presented by Nawaz et al. (1983), to gener-

ate an initial population instead of a randomly generated one. Many authors emphasized

the high quality of the solutions obtained by NEH to solve permutation flow shop schedul-

ing problems (Allaoui and Artiba, 2004; Kalczynski and Kamburowski, 2007; Ruiz and

Maroto, 2006). Hence, the intention of the authors was obviously to leverage a high-quality

starting population to accelerate the optimization process and achieve better scheduling

solutions. The encoding of the problem was based on the processing sequence. In ad-

dition to conventional evolutionary operators, the authors proposed using SA to control

the mutation process. The computational results demonstrated that the proposed method

outperformed the NEH algorithm for solving problem instances with up to 75 jobs.

For addressing a rather more complex problem, şerifoğlu and Ulusoy (2004) proposed

a genetic algorithm to address scheduling jobs on multiple central processing units. The

problem is a hybrid flow shop scheduling problem ⟨HFSm || Cmax⟩. Conventionally, the

problem is investigated considering the minimization of the makespan. The NP-hard

complexity of the problem can be confirmed by reducing the problem to two-stage and a

single machine in the second stage results in the considered problem by Gupta (1988). The

genetic representation of the problem by the authors was based on the sequence of jobs

in the first processing stage. In essence, GA was utilized to solve the sequencing problem.

After the first stage, a simple Last-In-First-Out (LIFO) rule was used to prioritize jobs for

processing. The proposed method was evaluated using a benchmark that included up to
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100 jobs. The evaluation demonstrated that GA outperforms several priority rules, such

as SPT and LPT, in scheduling jobs on the available CPUs.

Oĝuz and Ercan (2005) built up on the work of şerifoğlu and Ulusoy (2004) and

proposed an improved allocation method to replace the LIFO rule to address job scheduling

multiple processors ⟨HFSm || Cmax⟩. While using the same genetic representation of the

problem, several allocation heuristics after the first production stage were proposed. They

introduced a list-based allocation heuristic that stores a list of the completion time of

all jobs in previous stages, which is then used for allocation after the first stage. Oĝuz

and Ercan (2005) empirically investigated various crossovers and mutation operators and

proposed a new crossover operator. The presented computational results demonstrated

that GA delivered better scheduling solutions than TS for solving the same problems.

To address scheduling problems in cloud environments, Ye et al. (2019) presented

a scheduling method that combines the use of a Genetic Algorithm and due-date-based

PDRs for scheduling jobs to a set of virtual machines. The formulated parallel machines

scheduling problem is solved to minimize the makespan ⟨Qm | prec | Cmax⟩. The au-

thors relied on the EDD rule and assigned intermediate deadlines for the interdependent

operations of the jobs to minimize the makespan and reduce the communication time be-

tween jobs. The experiments that were conducted included a comparison of the presented

method against various PDRs, such as the Min-Min and the Max-Min. The main differ-

ence is that the machines’ workloads are considered, and dispatched jobs are scheduled

to the least loaded machine, which we discussed in both algorithms. The computational

results show that the authors achieved superior results for solving small problem instances

and lost on performance compared to other rules for solving larger problems.

An example of applying GA to address allocation problems in a virtualized cloud

environment was presented by Xu and Fortes (2010). In this paper, the authors used

the genetic algorithm to address scheduling virtual machines (VMs) to a set of available

physical machines. Unlike many of the discussed contributions, the authors formulated

a multi-objective scheduling problem to minimize the overall power consumption, total

waste of resources, and further costs. The authors proposed a modified Grouping Ge-

netic Algorithm (GGA) and relied on fuzzy-logic techniques to evaluate different objec-

tives. The proposed GGA algorithm is evaluated in terms of performance, scalability, and

robustness against traditional offline bin-packing algorithms through a series of simula-

tion experiments conducted in a wide range of environments. The presented evaluation

demonstrated that the proposed method outperforms known bin-packing algorithms and

single-objective approaches.

Similarly, Anuradha and Sumathi (2014) demonstrates the effectiveness of adopting

GA for allocation problems. In their study, the author conducts a comparative analysis

of various resource allocation methods used in cloud computing, as well as their strengths

and limitations. The obtained findings demonstrate that GAs can yield better results for

resource allocation tasks. GA has also been adopted to address load balancing problems in

cloud environments, as presented by Chandrasekaran and Divakarla (2013). The authors

utilized GA balance workload in a distributed cloud environment, taking into account
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the minimization of rescheduled jobs. The proposed GA calculated the node load before

scheduling a job, relying on the fitness function, and provides the best load-balancing

solution. The results obtained by the GA show that the performance of the proposed

approach is superior to that of the Greedy and Round-Robin algorithms.

Although traditional genetic algorithms can be effective in solving single-objective

problems, many real-world decision-making problems require the optimization of multi-

ple business objectives. Scheduling problems are complex environments associated with

multiple business objectives that are often of a conflicting nature. Unlike single-objective

optimization methods, a multi-objective method does not yield a single best solution. A

multi-objective method seeks to find a set of solutions that are better than the remaining

solutions in the search space considering all objectives but worse than other solutions in

one or several objectives. To address this problem, Srinivas and Deb (1994) proposed

a new Nondominated Sorting Genetic Algorithm (NSGA) as a method for solving opti-

mization problems with multiple conflicting objectives. NSGA is based on the principles

of genetic algorithms but incorporates non-dominated sorting and sharing mechanisms to

maintain diversity and drive convergence toward the Pareto optimal front. The Pareto

optimal front refers to the trade-off solutions where no solution can be improved in one

objective without compromising at least one other objective. These solutions are also of-

ten described as Pareto optimal or non-dominated solutions (Chankong and Haimes, 2008,

p. 113).

An important feature of the NSGA algorithm is non-dominated sorting, a sorting

method introduced by Goldberg (1989), which works on the principle of grouping solu-

tions into different fronts according to their dominant relationship, where the first front

includes non-dominated solutions (Pareto-optimal front), the second front includes solu-

tions dominated only by those in the first front. A solution is considered dominant if it

yields a better value for one objective without losing quality in any other objective. This

sorting procedure facilitates identifying and preserving the solutions that provide the most

optimal trade-offs between conflicting objectives (Goldberg, 1989, p. 198-201). A further

essential feature of NSGA is the sharing mechanism, the metric used to calculate the dis-

tance between two members of the population, which is embedded to encourage diversity

in the population. Hence, it contributes to avoiding premature convergence to suboptimal

solutions. This mechanism penalizes solutions that are too near to each other in the search

space, thereby prompting the population to explore different regions (Srinivas and Deb,

1994).

Despite the effectiveness of NSGA for multi-objective optimization, it has often been

criticized for the high computational complexity of the nondominated sorting, making

NSGA computationally expensive, especially when dealing with large population sizes

(Srinivas and Deb, 1994). In addition, scholars have pointed to the lack of elitism in the

algorithm, which has been known to accelerate the performance of the GA significantly.

They also advocated for an automated procedure to mitigate the manual setting of the

sharing parameter. To address the limitations of NSGA, its improved variations like

NSGA-II Srinivas and Deb (1994) and NSGA-III Deb and Jain (2014) were introduced.
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In the presented NSGA-II, the sharing mechanism was replaced with a crowding distance

method to preserve the diversity of the solutions. The crowding distance is a metric that

quantifies how ”crowded” a solution is considering its proximity to its neighbors in the

objective space. Solutions with higher crowding distances are favored as they inhabit less

dense regions of the objective space, therefore resulting in a more diverse set of solutions.

Unlike the sharing approach, the crowding distance does not depend on user-predefined

parameters to ensure diversity among population members. In addition, the proposed

method is less computationally expensive, which mitigates some of the aforementioned

limitations of NSGA Srinivas and Deb (1994).

NSGA III was proposed by Deb and Jain (2014) as an improved version of NSGA II

to allow simultaneous optimization of more than four objectives. The basic principle of

NSGA-III is analogous to the NSGA-II, with the exception that the diversity preservation

in NSGA-III is achieved by the use of the pre-defined reference points instead of the

crowding distance approach. Reference points represent the set of points in the objective

space that assist the algorithm in exploring different regions along the Pareto optimal

front. These reference points operate as markers for the algorithm to navigate towards

during the optimization process (Vesikar et al., 2018). A set of reference points can be

defined following a systematic approach (Das and Dennis, 1998), or specified by the user.

Based on the reference points, the NSGA III allocates each solution to the closest

reference point based on its proximity within the defined objective space. The allocation

indicates which region of the Pareto front the solution belongs to. Solutions that are

located closer to a specific point are considered to be more optimal in regard to the

objectives represented by that point. This rationale preserves diversity in the solutions

seeking to optimize conflicting objectives. Furthermore, this approach encourages the

exploration of Pareto optimal solutions while simultaneously improving the quality of

solutions in explored regions Deb and Jain (2014).

A couple of years after the introduction of the NSGA III, Campos Ciro et al. (2016)

empirically investigated its performance compared to its predecessor, the NSGA II, in

addressing scheduling problems. The computational results indicated a superior perfor-

mance of NSGA III compared to NSGA II for solving the problems. The NSGA III is often

adopted to address allocation problems in cloud environments, for instance (Kharitonov

et al., 2023). In this thesis, we investigate single-stage and multi-stage scheduling prob-

lems that must be addressed by considering multiple objective measures. For instance, in

Nahhas et al. (2022a), we adopted the NSGA III to address hybrid flow shop scheduling

problems that were subject to several operational constraints such as priority groups and

family setup times ⟨HFSm | fg,h, Dpr, Mj | Cmax, T, U, MS⟩. The considered problems

are solved to minimize the makespan, the major setup times, the total tardiness, and the

total number of penalties. The computational results demonstrated a complete dominance

of the proposed method compared to conventional GA with a weighted-sum approach.
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2.3.3 Summary of conventional methods

In the previous section, we explored the adoption of conventional solution methods for

solving scheduling problems. The analysis started with a brief overview of scheduling

problems and their complexity, which prompted scholars and practitioners to resort to

heuristic and improvement methods to address scheduling concerns. The majority of com-

plex scheduling problems are NP-hard. There is an enormous number of heuristic and

improvement methods in the literature that are proposed to address different variations of

scheduling problems. The presented overview does not cover all proposals but rather high-

lights the design and adoption of constructive and improvement methods for addressing

scheduling problems.

However, the majority of proposed methods in the literature are evaluated to address

single-objective scheduling problems to reduce complexity. Constructive heuristic meth-

ods are efficient techniques for addressing single-objective scheduling problems but may

significantly lose performance when complex constraints or additional objective measures

are considered. Therefore, under improvement methods, we discussed local search algo-

rithms and some metaheuristics that are often adopted to address more complex problems.

Finally, we closed our analysis by discussing population-based evolutionary methods and

their utilization to solve multi-objective scheduling problems. Figure 2.6 summarize the

explored methods in the previous section and highlight in dark grey the most relevant

methods in the context of this thesis.

Conventional solution methods for
scheduling problems

Exact methods
Heuristic solution 

methodologies

Branch and 
bound

Dynamic 
programming

Constructive 
methods

Improvement
methods

Priority-
Dispatching-

Rules

Local and 
global search 

methods

Population-
based methods

…

……

Tabu search

Custom 
heuristics

Neighborhood  
search

Evolutionary 
methods (GA) ……

…

Simulated 
annealing

…

Figure 2.6: Relevant scheduling solution methods for this work.
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2.4 Deep reinforcement learning methods

2.4.1 Reinforcement learning

Many hypotheses on learning and intelligence are founded on the notion that humans learn

via interaction with their environment. The concept “learning from interaction” lies at

the essence of Reinforcement Learning (RL) (Sutton and Barto, 2018b, p. 3-4). Scientific

literature offers various definitions of Reinforcement Learning. For instance, Großmann

and Poli (1999) views RL as a problem formulation, where the interaction between the

agent and the environment is defined by means of states, actions, and rewards. Sutton

and Barto (2018b, p. 2) describe RL as a third ML paradigm (along with supervised

and unsupervised learning), in which a goal-oriented learning agent interacts with its

environment to maximize the reward signal. Szepesvari (2010) characterizes RL as a

learning paradigm with the objective of maximizing the numerical performance value.

A typical RL problem is comprised of several elements. As stated by (Sutton and

Barto, 2018b, p. 2), two central components of RL are the agent and the environment.

The agent is the learner that interacts with the environment and makes decisions (actions)

based on the obtained experience (also called observations). The environment is the entity

that includes everything outside the agent itself. The agent-environment interaction is

divided into episodes or trials. An episode may be seen as a gameplay that terminates

when the game is lost or won.

Furthermore, (Sutton and Barto, 2018b, p. 6-7) emphasized such critical RL com-

ponents as a policy, a value function, a reward, and an environment model. The policy

defines an agent’s behavior by mapping the observations into actions. The agent’s goal

is to determine a policy that maximizes the reward. A reward, which is commonly rep-

resented by a scalar number, defines the goal of an RL problem and serves as the basis

for policy modification. The obtained reward is determined by the agent’s action at the

moment and the state in the environment. Compared to the reward signal, which delivers

an immediate response, a value function calculates the overall amount of rewards an agent

can collect, starting from a specific state. Finally, an environment model simulates the

behavior of a given environment and enables projections on its potential behavior (Sutton

and Barto, 2018b, p. 2).

The fundamental concept of RL can be depicted as Markov Decision Process (MDP).

MDP is a mathematical framework for modeling decision-making processes in a certain

environment (Buduma and Locascio, 2017, p. 249). It comprises four components that can

be represented as a tuple ⟨ S, A, T, R ⟩ (Papadimitriou and Tsitsiklis, 1987b; Kaelbling

et al., 1998). The first field of the tuple, S, denotes a set of the environment states

(observation space). The second field, A, represents a set of agent’s actions (action space),

and the third field, T , defines the state transition probability T [st+1 | st, at] at a time

step t+ 1 given the state st and an action at the time step t. The last field, R, denotes a

reward value rt ∼ ρ(st, at) obtained by the agent in the state st performing action at.
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2.4.2 Deep reinforcement learning

Despite its earlier success (Zhang and Dietterich, 1995; Tesauro, 1995; Kohl and Stone,

2004), RL methods have demonstrated limited practical achievements in dealing with

large-scale, complex real-world problems (Arulkumaran et al., 2017). To address exist-

ing constraints, RL methods were frequently combined with different approaches, one of

which is Deep Learning. According to (Goodfellow et al., 2016, p. 13), Deep Learning (DL)

models are computational representations of biological learning that attempt to mimic how

learning may occur in the brain. The part ”deep” in deep learning implies that the net-

work consists of multiple layers, resulting in the Deep Neural Network (DNN) (Gustineli,

2022). DL has made a significant improvement in the performance of reinforcement learn-

ing for robotics (Levine et al., 2016) and inspired novel applications, such as differentiable

neural computers (Graves et al., 2016), asynchronous methods (Mnih et al., 2016), dueling

network architectures (Wang et al., 2016) and many others. The success of DL in han-

dling complex tasks and its integration within the existing RL framework resulted in the

formation of a new field of Deep Reinforcement Learning. Deep Reinforcement Learning

(DRL) is a machine learning technique that integrates RL and DNNs (Cals et al., 2021).

The DRL uses DNNs to approximate policy and/or value functions. The approximation

becomes crucial when dealing with high-dimensional state spaces, which are common in

real-world scenarios. DNNs perform excellently as a function approximation mechanism

since they can discover complex structures and patterns, allowing DRL agents to navigate

in high-dimensional and continuous state spaces (Yi and Liu, 2023).

A significant milestone in the field of DRL is the presentation of the Deep Q-Network

(DQN) algorithm, which was capable of playing various Atari games while achieving

human-level performance (Mnih et al., 2013). This work demonstrated the ability of

DRL agents to learn optimal policies from the high-dimensional sensory data. The suc-

cess of DQN was followed by the triumph of AlphaGo (Silver et al., 2016a), in which DNN

defeated the professional player in the game of Go. In recent years, DRL has been success-

fully applied to various problem domains, starting from playing games (Mnih et al., 2013),

supply chain problems (Alves and Mateus, 2020), robotics, finance, healthcare, Industry

4.0 (del Real Torres et al., 2022), and scheduling jobs (Hammami et al., 2022; Waubert de

Puiseau et al., 2022).

The underlying structure of a DRL problem resembles the one in RL, meaning it can

be represented with MDP, with the only difference being that the agent relies on DNNs

when defining the policy. The DNN’s input layer accepts the encoding of a state as the

input data, and the output layer generates an action (or a set of actions) that the DRL

agent can execute with regard to the current state. The obtained rewards or penalties for

actions are used to tune the parameters of DNNs (Cals et al., 2021). Figure 2.7 depicts

an example DRL architecture.

DRL-based (and RL) algorithms can be classified as value-based (off-policy) and

policy-based (on-policy) (Alves and Mateus, 2020; Arulkumaran et al., 2017). There are

also hybrid, actor-critic-type algorithms that combine elements of both. The main prin-
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Figure 2.7: General DRL architecture modified based on the RL architecture presented by
Sutton and Barto (2018b).

ciple behind the value-based algorithms is to evaluate how valuable it is for the agent to

be in the current state (Sutton and Barto, 2018b, p. 58). The evaluation is conducted by

computing a value function for each state and action combination. The computed value

provides the highest feasible expected return starting from a certain state and facilitates

the determination of the policy for the agent (Szepesvári, 2022).

Unlike value-based methods, policy-based algorithms look for the optimal policy di-

rectly instead of deriving it from the value function (Alves and Mateus, 2020). The main

concept behind policy-based algorithms is to maximize the expected return by continu-

ally updating the configurations of the parameterized policy. The update is achieved by

applying either gradient-based or gradient-free (also called derivative-free) optimization

(Arulkumaran et al., 2017). According to (Schulman et al., 2017a) most policy-based

algorithms fall into one of three major categories. The first category includes policy itera-

tion approaches, which alternate between calculating the value function given the existing

policy and improving the policy (Bertsekas, 2005; Lee and Sutton, 2021).

The second group includes policy gradient approaches, which employ an estimate of

the gradient of the expected return derived from sample trajectories (Peters and Schaal,

2008). The examples of the gradient-based algorithms are REINFORCE (Williams, 2004)

and Trust Region Policy Optimization (TRPO) algorithms (Schulman et al., 2017a). Fi-

nally, the third category comprises derivative-free optimization techniques such as the

Cross Entropy Method (CEM) (Szita and Lörincz, 2006), Covariance Matrix Adaptation

(CMA) (Hansen, 2023) and natural evolution strategies (Wierstra et al., 2008), which

regard the return as a black box function that can be improved using policy parame-

ters (Szita and Lörincz, 2006). The derivative-free optimization approaches can address

a number of practical problems since they produce good results while being simple to

understand and apply. However, they tend to scale poorly when the number of param-

eters increases (Schulman et al., 2017a). Due to the existing limitations of gradient-free

techniques, gradient-based learning is still the preferred approach for the majority of DRL

algorithms (Arulkumaran et al., 2017).
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The third type of DRL algorithm includes the actor-critic method, which combines

the elements of both previously described approaches. An actor-critic algorithm learns

both policy and a value function, in which the value function is employed to evaluate the

policy Wang et al. (2022b). The actor-critic architecture is a frequently used framework

that is based on the policy gradient theorem and consists of two interacting components,

namely actor and critic Silver et al. (2014). The actor is responsible for determining policy

by selecting actions and continually interacting with the environment. The critic, on the

other hand, is responsible for evaluating (”criticizing”) the agent’s actions and is often

represented by a state-value function (Sutton and Barto, 2018a, 257-258). The evaluation

(critique) is expressed as a Temporal Difference Error (TDE), which is a scalar signal

generated by the critic to drive the learning. A positive TDE indicates the tendency

towards favoring a particular action in the future, whereas a negative TD error indicates

that the tendency should be lowered.

The standard actor-critic architecture includes two main components. The first com-

ponent is a parameterized approximation function (e.g., neural networks), where the actor

learns the policy function. The second component is the critic learner value function,

which is eventually used to adjust the actor’s policy parameters toward the overall per-

formance enhancement. Combining the policy gradient and the value function methods

facilitates leveraging their combined advantages. It somewhat mitigates their individual

shortcomings, such as high variation of gradient estimators or poor training convergence

(Konda and Tsitsiklis, 2000).

Many advanced DRL algorithms, such as Deep Deterministic Policy Gradient algo-

rithm (DDPG) (Lillicrap et al., 2019), Asynchronous Advantage Actor Critic algorithm

(A3C) (Mnih et al., 2016), Proximal Policy Optimization (PPO) (Schulman et al., 2017b),

and Twin Delayed Deep Deterministic Policy Gradient algorithm (TD3) (Fujimoto et al.,

2018), rely on the actor-critic structure. In this thesis, we focus on PPO and A3C, which

we adopted to address scheduling problems. Hence, we will briefly discuss some details of

PPO and A3C algorithms.

PPO is a trust-region-based algorithm proposed by (Schulman et al., 2017b) and

is considered to be the improvement of the TRPO algorithm. Before looking into the

principles of PPO, it is important to explain the TRPO algorithm and the trust region

as a concept. TRPO is a policy-based algorithm that optimizes the policy by restricting

the update of the new policy within a predefined trust region (Buduma and Locascio,

2017, p. 260). The too-large updates can cause the policy to deviate significantly from

the previous one, resulting in training instability and poor performance. To address this

problem, TRPO utilizes the Kullback-Leibler (KL)-Divergence to constrain the updates

between the old policy and the new policy and prevent large step sizes. The bound on the

KL divergence between policies is referred to as the trust region Schulman et al. (2017a).

Despite its efficiency and training stability, the TRPO algorithm is prone to a number of

drawbacks, such as implementation complexity and lack of scalability. These limitations

inspired the development of the PPO algorithm that simultaneously preserves TRPO’s

strengths while addressing its weaknesses (Schulman et al., 2017b).
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Algorithm 5 PPO algorithm, Actor-Critic Style, adopted from (Schulman et al., 2017b)

1: procedure PPO
2: for iteration = 1, 2, . . . do
3: for actor = 1, 2, . . . , N do
4: Run policy πθold in environment for T time steps

5: Compute advantage estimates Â1, . . . , ÂT

6: end for
7: Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
8: θold ← θ
9: end for

10: end procedure

The PPO algorithm operates by performing multiple training epochs of stochastic

gradient ascent on the same data sample to ensure data efficiency. To optimize policy

using the PPO algorithm, (Schulman et al., 2017b) propose the clipped surrogate objective

function, which computes the probability ratio of actions taken under the old and new

policies and clips the ratio within a predefined interval. The proposed clipping mechanism

prevents large policy updates and ensures steady convergence. Based on the conducted

experiments, the authors conclude that the clipped probability ratio performs better than

other variations of the surrogate objective.

Based on Schulman et al. (2017b), Algorithm 5 outlines the procedure of the PPO

algorithm with the clipped surrogate objective. Every iteration, each of N (parallel) actors

independently interacts with the environment, collects T timesteps of data, and computes

the advantage estimates (Algorithm 5, Lines 2-5). The surrogate clip loss function is

then constructed using the data collected over T steps and optimized using minibatch

stochastic gradient descent for K epochs (Algorithm 5, Lines 7-8) (Schulman et al., 2017b).

PPO became one of the most extensively used DRL algorithms due to its straightforward

implementation and steady performance, demonstrating its effectiveness in a variety of

application fields such as gaming (Schulman et al., 2017b; Cui and Tang, 2023), industrial

optimization problems (Cals et al., 2021), autonomous driving (Siboo et al., 2023), and

several others.

The A3C is an actor-critic-based algorithm introduced by (Mnih et al., 2016) in 2016

as a lightweight DRL framework that optimizes DNNs by applying asynchronous gradient

descent. In contrast to the DQN algorithm, where there is only one agent (represented

by the parameterized network) and only one environment, the A3C algorithm comprises

a global parameterized network and multiple workers (agents) with its own set of param-

eters. The workers are being trained concurrently, regularly updating the global network.

The parameter updates do not take place simultaneously, which is where the concept of

asynchronous originates from. Following every update, the agents return to the global net-

work’s parameters and continue the exploration of their environments (Mnih et al., 2016).

The procedure of A3C algorithm is demonstrated in the Algorithm 6. Following the ini-

tialization phase for a global network and each distinct thread, each worker generates a

copy of the global network with the corresponding parameters θ′ and θ′v (Algorithm 6,
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Line 1-5).

Algorithm 6 A3C algorithm, adopted from (Mnih et al., 2016)

//Assume global shared vectors θ and θv and global shared counter T = 0

//Assume thread-specific parameter vectors θ′ and θ′v
1: Initialize thread step counter t← 1

2: repeat

3: Reset gradients: dθ ← 0 and dθv ← 0.

4: Synchronize thread-specific parameters θ′ = θ and θ′v = θv

5: tstart = t

6: Get state st

7: repeat

8: Perform at according to policy π(at|st; θ′)
9: Receive reward rt and new state st+1

10: t← t+ 1

11: T ← T + 1

12: until terminal st or t− tstart == tmax

R =

0 for terminal st

V (st, θ
′
v) for non-terminal st // Bootstrap from last state

13: for i ∈ {t− 1, ..., tstart} do
14: R← ri + γR

15: Accumulate gradients wrt θ′ : dθ ← dθ +∇θ′ logπ(ai|si; θ′)(R− V (si; θ
′
v))

16: Accumulate gradients wrt θ′v : dθv ← dθv + ∂(R− V (si; θ
′
v))

2/∂θ′v
17: end for

18: Perform asynchronous update of θ using dθ and of θv using dθv.

19: until T > Tmax

The policy and value function are adjusted after each tmax action or when the terminal

condition is reached (Algorithm 6, Lines 10-14). In the final stage, the agent calculates

the gradients (Algorithm 6, Lines 18-19), after which it asynchronously updates the global

shared network (Algorithm 6, Line 21) (Lin et al., 2022). Due to its multiple advantages,

the A3C has been successfully applied to various tasks such as gaming and robot control

(Sartoretti et al., 2019; Gu et al., 2019), where it has demonstrated great performance

compared to other algorithms. Thus, for example, the A3C outperformed DQN in playing

various Atari games, additionally demonstrating faster training abilities (Mnih et al.,

2016).

2.4.3 Summary of reinforcement and deep reinforcement learning

Deep Reinforcement Learning can be defined as a subfield of Machine Learning that relies

on Deep Neural Networks for the approximation of optimal policies and value functions.

The formation of DRL as a research field was primarily motivated by the need to overcome
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the existing limitations of RL, like handling high-dimensional data and continuous action

spaces using the capabilities of Deep Learning. The DRL concept, like its predecessor’s,

can be defined by means of the Markov Decision Process, with the only difference being

that the agent encompasses a DNN that accepts the input data from the state and turns it

into the policy. Since DRL is a trial-and-error method, it suffers from the exploration vs.

exploitation problem, where the agent is expected to maximize the reward while exploring

unknown states. To attain the balance between both, a wide range of algorithms were

proposed. The most prominent and widely utilized DRL algorithms are DQN, PPO, and

A3C. Due to their relevance to the artifact of the thesis, we dedicated particular attention

to the PPO and A3C algorithms by providing an extensive overview of their fundamentals.

The scientific breakthrough of DRL took place when (Mnih et al., 2015) proposed

its novel algorithm, known as deep Q-network (DQN), which demonstrated human-level

competence in playing Atari games. The DQN’s success story was followed by DNN’s

triumphant victory over a professional Go player presented in the work of (Silver et al.,

2016a). The DRL’s ability to operate excellently in gaming-like environments motivated

researchers to investigate its potential in other domains like robotics (Duan et al., 2016),

object recognition (Li et al., 2018), supply chain (Alves and Mateus, 2020), manufacturing

(del Real Torres et al., 2022) and many others. Nonetheless, despite DRL’s remarkable

performance in these domains, examples of its application to optimization and, particu-

larly, scheduling problems remain poorly investigated. In this thesis, we conceptualize,

design, and develop DRL scheduling and evaluation models to adopt DRL methods for

solving scheduling problems. To identify works related to the presented methodology in

this thesis, we conducted a structured literature analysis. The findings of the literature

analysis will be discussed in the next section.

2.5 State of the art and literature analysis

In the course of our analysis, we aim to present a systematic comparison of identified

solution techniques that exhibit such a combination nature. The analysis is dedicated

to providing insights into current trends and future challenges in conceptualizing and

designing such solution methods. The objective is to highlight the gaps from a research

perspective and suggest solutions from a practical perspective. First, we present a brief

overview of the adopted research methodology for conducting this literature analysis.

Then, we discuss the search process to highlight our early statistical findings. Afterward,

we build on the statistical findings and present an in-depth analysis of selected papers.

Finally, we conclude the analysis with a systematic comparison before closing the review

with a summary of the main findings.

2.5.1 Research scope and methodology

We argue in our first hypothesis the necessity of combining different methods to design

adaptive solutions for addressing scheduling problems. Therefore, this section presents
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a systematic literature analysis of state-of-the-art scheduling techniques that combines

the use of heuristic, metaheuristic, and RL methods for addressing scheduling problems.

We reduced our focus to two application fields: cloud and manufacturing environments.

In the former application field, the efficiency of such large cloud computational systems

heavily depends on the quality of the scheduling mechanisms employed to distribute the

workload between available computational resources. The later application field includes

well-studied scheduling problems in assembly production systems, such as single-stage

parallel machine (PM) or multi-stage Hybrid Flow Shop (HFS) scheduling problems. In

such industrial environments, scheduling concerns are inevitable in daily operations. To

summarize, the objective of the presented literature analysis is to contribute partially to

answering the first sub-research question of the thesis at hand.

The adopted methodology to conduct the literature analysis is based on the works

presented by (Webster and Watson, 2002) and (vom Brocke et al., 2009). We conducted a

Systematic Literature Review (SLR) to answer the first sub-research question. The review

started with an explorative phase, in which we defined relevant articles and derived search

strings. The representation of the results is structured following the recommendations

presented by (vom Brocke et al., 2009).

2.5.2 Literature search

Based on the defined scope of the research and presented research question, the conceptu-

alization of the topic is discussed in this section. The goal of the topic conceptualization

is to derive appropriate search strings that are then used to query relevant articles from

the scientific databases. In order to conduct a structured literature review, search queries,

databases, and year ranges are predefined. For analysis, the scientific database Scopus is

selected, which references a broad spectrum of peer-reviewed publications and provides

access to all major scientific databases and journals (Baas et al., 2020). To constrain

the search, the year range between 2010 and 2023 is defined. The selected year range is

motivated by the fact that some of the utilized approaches (like DRL-based algorithms)

are relatively novel and have been scientifically formed less than a decade ago.

Only peer-reviewed publications in English are subjected to the analysis. Table 2.1

presents the utilized search and refinement search strings in the Scopus database. The

original string yielded a large number of publications, 3224 dated back to 21.02.2023. The

refinement string is applied to the title, abstract, or keywords to focus the research on

the relevant fields of application, namely, cloud and manufacturing environments. Finally,

a filtration string is applied to the title, abstract, or keywords of the publications that

address multi-objective scheduling problems. Selected articles are subjected to the three

filtration stages based on the title relevance, abstract reading, and final examination. We

want to explicitly point out that any SLR is subject to several limitations. In essence, it

is unfair for unfound contributions to claim conclusive results. For instance, missing the

investigation of other scientific databases that Scopus does not index is a limitation of

this SLR. Therefore, we conducted statistical analysis on the analyzed application fields
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and compared our findings to other reviews such as (Omotehinwa, 2022) and (Pires and

Barán, 2015) to increase our confidence in the applied search strings.

Table 2.1: Utilized search and refinement strings.

Description Search string

General search string Find articles with these terms: (Reinforcement
Learning OR DRL) AND (Heuristic OR Meta-
heuristic OR Hybrid) AND (Scheduling)

Application field search string Title, abstract or author-specified keywords:
AND (Manufacturing OR Production OR Data-
center OR Cloud Computing)

Refinement search string based
on the objective of the research

Title, abstract or author-specified keywords (AND
(multi-objective OR many objective))

In the first stage, the titles of all initially selected papers are analyzed. If a selected

publication is theoretical in nature (e.g., literature review) or its application field falls

beyond the scope of our research, it is not deemed relevant. In the second stage, the

remaining papers are evaluated based on the relevance of their abstract. An article is not

considered relevant if it is clear from the abstract reading that the study has no imple-

mentation component and is purely theoretical. Articles that focus on single-objective

optimization instead of multi-objective are also excluded. The rest of the publications

are subjected to a brief overview in the following screening stage. Publications lacking

conceptual clarity or focusing on single-objective optimization instead of multi-objective

are excluded from the evaluation. Finally, the remaining publications undergo an in-depth

analysis, in which the content of a paper is profoundly examined, and a review is provided.

2.5.3 Statistical overview

Figure 2.8 illustrates a yearly comparison of the initially retrieved publications based on

the predefined application field. The horizontal axis depicts the yearly distribution of the

discovered publications within the predefined year range from 2010 to 2023. The vertical

axis depicts the number of retrieved publications. The orange- and blue-colored bars in

the graph represent papers that address different variations of scheduling problems in

the cloud environment and manufacturing domains, respectively. The initial observations

from the collected results demonstrated a consistent increase over the past five years in

the number of contributions in which optimization and reinforcement learning techniques

are combined to address scheduling problems. Some breakthroughs in the field of RL can

explain these observations, for instance, Silver et al. (2016b). The robust performance of

optimization techniques for solving combinatorial optimization problems (Neufeld et al.,

2023). Despite the slight predominance of research efforts in the field of manufacturing in
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2022, the literature analysis results demonstrated comparable findings in both application

fields within the period of investigation.
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Figure 2.8: Overview of published works in cloud and manufacturing environments.
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Figure 2.9: Adoption of RL combined with heuristic methods by discipline.

In Figure 2.9, we analyzed subject areas of collected contributions according to the

data collected from the Scopus database. The horizontal axis denotes the number of

discovered publications. The vertical axis represents the research (subject) areas in which

the retrieved publication was published. The orange- and blue-colored bars in the graph

represent papers that address different variations of scheduling problems in the cloud

environment and manufacturing domains, respectively. The Engineering and Computer

Science domains are clearly predominant, followed by Mathematics and Decision Sciences.

These statistical results agree with our final findings and contribute to higher confidence

in the defined search queries, which we used to retrieve the related works.

The statistical results show that investigating the combination of RL, heuristic, and

metaheuristic is more evident for addressing scheduling problems in manufacturing than in

cloud environments, as presented in Table 2.2. Scheduling problems in cloud environments

are predominantly addressed using heuristic methods. These findings agree largely with
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the presented analysis by (Pires and Barán, 2015). The authors stressed the adoption of

heuristic and metaheuristic methods, amounting to 81% of identified publications.

Table 2.2: Overview of the conducted breakdown analysis on RL and DRL.

RL (overall) DRL RL-multi-objective DRL-multi-objective

Cloud 1,436 699 111 51

Manufacturing 1,845 827 163 50

Intersections 57 34 2 1

Total 3,224 1,492 272 100

Furthermore, Omotehinwa (2022) presented a bibliometric analysis aiming at inves-

tigating the development of scheduling algorithms in cloud and manufacturing environ-

ments. While the analysis highlights a robust correlation between scheduling problems

and optimization methods like heuristic and metaheuristic, it also reveals a notably weak

connection between scheduling problems and the utilization of reinforcement learning or

even machine learning, for that matter. We conducted a breakdown analysis to study the

adoption of RL independently from DRL methods for addressing scheduling problems.

Table 2.2 provides a summary of the analysis. The terms Reinforcement Learning or Deep

Reinforcement Learning are often used interchangeably, especially in earlier publications.

In this table, the identified publications under DRL constitute a subset of all publications

under RL.

We split the process into sequential logical stages to ensure a systematic approach to

conducting literature analysis. The process is presented in the Figure 2.10 and Figure 2.11.

In the first stage, after defining the overall search string and applying the year range con-

straint, we extracted the initial list of publications from the Scopus database. The obtained

data is further classified into two categories depending on the type of method used, namely

RL or DRL. After the completion of the classification stage, the remaining publications are

subjected to the third stage, referred to as objective-based refinement. In this stage, we

filtered the publications based on the type of scheduling optimization problem and catego-

rized them into single-objective or multi-objective. To maintain consistency, we selected

publications with multi-objective problem formulation for each category. The obtained

sets of publications were further subjected to the domain-based classification carried out

during the last stage of our analysis. Within this stage, the articles were classified into two

distinct groups based on the application field. This stage comprises additional internal

filtration steps, which can be observed in more detail in the Figure 2.11.

The fifth stage of the analysis was dedicated to screening and in-depth analysis.

Furthermore, to examine the relevance of the collected publications, exclusion criteria

must be defined. An SLR necessitates clearly defined exclusion criteria to guarantee the

reviewer’s compliance with the research objective. The exclusion criteria are duplicates,

lack of relevance, missing implementation, inaccessible materials, unsuitable application

domain, and lack of clarity in the proposed concept.
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After all screening steps were completed, we obtained our final set of publications per

category. In the coming subsection, we will discuss the final findings and briefly discuss

the selected contributions. First, we start discussing selected publications that addressed

scheduling problems in a cloud environment. Then, we present a preview of the identified

publication that focused on scheduling problems in manufacturing environments.
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Original search 
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Retrieved
(3224)

Year constraint
(2010-2023)

Reinforcement
learning 
(1845) 

Deep 
reinforcement
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RL: Multi-
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DRL: Multi-
objective
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Intersections
(34)

Stage 1: Data retrieval
Stage 2: Approach-
based classification

Stage 3: Objective-
based refinement

Figure 2.10: SLR publication retrieval, classification, and refinement stages.
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Figure 2.11: SLR domain-based classification and examination stages.
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2.5.4 Scheduling problems in cloud environments

The results of the literature analysis reveal many contributions in which conventional

ML techniques are adopted in combination with heuristic or metaheuristic techniques for

addressing scheduling problems in cloud environments. For instance, Chen et al. (2021)

presented a multi-objective resource allocation approach based on the NSGA-II supported

by the Autoregressive Integrated Moving Average model (ARIMA) to predict future re-

source demand. The presented prediction method is based on conventional machine learn-

ing techniques relying on historical data to enhance the quality of the virtual machine

allocation process and balance the distribution of different workloads between available

machines.

A similar but rather more advanced approach is presented in (Jalalian and Sharifi,

2022). The authors proposed a hierarchical multi-objective task scheduling scheme is pre-

sented to address parallel machine scheduling problems. The proposed scheme combines

the K-means algorithm with the Differential Evolutionary algorithm (DE) for solving the

problem considering the minimization of the makespan, which results in optimizing the

balancing level. The authors approach the problem by clustering tasks based on their size

using the K-means algorithm and load balancing method in order to improve resource

efficiency. These clusters are later utilized as the starting population for DE, which is em-

ployed to shorten the makespan and balance the load. The results of the simulation suggest

the outperformance of the presented approach against two related works for minimizing

the makespan. The authors also reported a comparative analysis in terms of workflow

overhead and resource utilization. However, our findings indicate rather a marginal pres-

ence of RL- and DRL-based approaches in the literature. We found more publications

proposing to combine RL or DRL techniques with either heuristic or metaheuristic tech-

niques. Therefore, we discuss these findings in the coming subsections and highlight some

of the main learnings.

RL-based techniques

In 2021, an RL-based scheduling approach was presented by Qin et al. (2021) to solve work-

flow scheduling. The authors considered the minimization of the Execution Costs (EC)

and energy consumption while holding to deadline constraints. The presented approach

is based on a Q-learning algorithm and employs the Chebyshev scalarization function to

optimize the selection of weights. The definition of the action space is discrete, where

the agent selects an available virtual machine to execute a task. The authors propose an

enhanced version of the Partial Critical Path (PCP) strategy and develop an evaluation

metric to assess the quality of generated solutions. The conducted simulation experiments

demonstrate that the proposed algorithm outperforms three metaheuristics from related

works in terms of execution cost and power consumption.

One year later, Guevara et al. (2022) presented an adoption of RL for solving schedul-

ing problems in cloud environments. The authors proposed an RL scheduling algorithm

for scheduling tasks with the objective of minimizing the makespan and overall processing
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costs considering Quality of Service (QoS) constraints. The presented RL-based solutions

rely on the Q-Learning RL method. The author approaches the problem by comparing the

suggested algorithms in terms of scheduling efficiency and makespan, as well as evaluating

their performance across seven service classes. The authors use a discrete action space,

in which an RL agent decides the number of processing layers where the application is

processed. The presented approach is compared against two integer linear programming

heuristics, which are adopted from related works. The findings of the research indicate that

the RL-based algorithm outperforms heuristics algorithms, especially in intense workload

scenarios.

Almost parallel to previous research, Goudarzi et al. (2022) proposed an RL-based

approach to solve the resource allocation problem in the data center, taking into account

cloud provider and cloud user concerns. The authors relied on a multi-discrete actions

space in which an agent allocated virtualized resources to every cloud user. The simulation

results suggest that the agent derives appropriate policy to schedule virtualized resources

for cloud users, considering the concerns of cloud providers and cloud users. The authors

compared the performance of the presented approach against similar techniques in the

literature. They confirmed slight outperformance in terms of computational efficiency

while maintaining comparable performance in terms of the utility function. However,

relying on Q-Learning RL algorithms can be computationally very expensive if the number

of users increases.

The findings of the systematic literature analysis show that RL techniques are mainly

combined with metaheuristic techniques for designing new approaches. For instance, in

(Amer et al., 2022), the authors addressed a multi-objective task scheduling problem in

a cloud environment. The authors aimed to minimize the maximum completion time

and the execution cost while considering the maximization of resource utilization. The

presented approach combines the use of metaheuristic and RL techniques, namely a novel

metaheuristic called Harris Hawks Optimizer (HHO) presented originally by Ali Asghar

Heidari et al. (2019) and an Opposition-Based Learning (OBL) method that is based on

RL in (Tizhoosh, 2006). The presented approach is evaluated using simulation methods

and prototypically implemented in the CloudSim simulation package. The conducted

evaluation suggests that the presented approach outperforms other metaheuristics, such

as Genetic Algorithms or Ant Colony Optimization (ACO).

Similarly, Kruekaew and Kimpan (2022) presented an RL approach to optimize the

functionality of a metaheuristic method. The authors presented an Artificial Bee Colony

Algorithm (ABC) implementation for job scheduling in cloud environments. To accel-

erate the optimization and increase the computational efficiency of the algorithm, the

authors rely on Q-Learning to enhance the ABC algorithm’s computational efficiency.

The problem is solved with the objectives of maximizing resource utilization, maximizing

the throughput, and minimizing the makespan. The presented approach is compared to

some heuristics using a simulation environment. The reported results lack a comparison

between a conventional ABC metaheuristic and the presented technique.
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DRL-based techniques

In (Gao and Wang, 2022), the author presented a DRL approach for allocating compu-

tationally intensive jobs from mobile devices to edge servers. The presented approach is

based on DQN with a discrete formulation of actions space, in which an agent is trained

to decide whether and where to offload a job to a server. The problem is solved by mini-

mizing the total penalties, which are subject to violations of deadlines. The performance

of the presented approach is evaluated in a simulated environment against the baseline al-

gorithm from related works. Experiments show that the presented approach outperforms

other algorithms for solving the problem.

In Cheng and Xu (2019), the authors presented a two-phase optimization approach to

allocating jobs to computing resources considering the additional computational overhead

and energy consumption. The presented solutions combine the use of DQN and PSO as

a multi-objective metaheuristic. The first phase uses the DRL agent to find the optimal

virtual network mapping schema. After that, PSO is employed to allocate jobs to achieve

overall load balancing, energy conservation, and bandwidth minimization. The authors

show that the presented approach outperforms some heuristic algorithms such as FIFO,

SpeedOut, and Non-SpeedOut for allocating jobs in cloud environments. Although the

evaluation is conducted on a server with Spark, no evaluation of the training process of

the deployed DRL agent is presented.

Finally, Caviglione et al. (2021) presented a DRL-based virtual machine placement

method. They considered the minimization of software and hardware outages, co-location

interference, and power consumption to solve the allocation problem. Based on the pre-

sented notations in Section 2.1.2, we will refer to violations in this constraint by min(Mj).

The author relied on a discrete action space formulation to address the problem. To elab-

orate, the agent decides at every step which heuristic to use to allocate a new virtual

machine. Computational results suggest that the present approach outperforms conven-

tional heuristic methods such as First fit or some variations of the greedy algorithm.

Table 2.3 and Table 2.4 summarize the discussed papers in cloud envrionments. In

Table 2.3, we highlighted the considered objective values to solve the considered scheduling

problems, the performance, and whether parallelization methods were adopted in designing

the proposed methods. In terms of objective values, the makespan, followed by machine

utilization and finally by energy consumption, are the most prominent objective measures

in addressing scheduling concerns in cloud environments. Except for a single publication,

parallelization methods are not considered in the design of modern solution methods.

In Table 2.4, we recapped the design composition in terms of the adopted heuristic,

metaheuristic, and machine learning methods of the discussed approaches. The findings of

the analysis in cloud environments demonstrated that Q-learning methods under RL are

predominant and often adopted to address single-stage scheduling problems. We found

no publication that proposed the combined utilization of heuristic, metaheuristic, and

machine learning methods. Generally, RL and DRL methods are more integrated with

metaheuristic methods to address scheduling problems.
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Table 2.3: Summary of literature analysis in cloud environments (I).

Paper Objective values Superiority Parallelization

Chen et al. (2021) min(Mm), MLB ✓ ✓

Jalalian and Sharifi (2022) Cmax, MLB ✓ ✗

Guevara et al. (2022) Cmax, min(costs) ✓ ✗

Qin et al. (2021) min(costs), E ✓ ✗

Amer et al. (2022) Cmax, Mutilization ✓ ✗

Kruekaew and Kimpan (2022) Mutilization, Cmax ✓ ✗

Goudarzi et al. (2022) max(utility) ✗ ✗

Gao and Wang (2022) U ✓ ✗

Caviglione et al. (2021) E, min(Mj) ✓ ✗

Cheng and Xu (2019) MLB, E ✓ ✗

Table 2.4: Summary of literature analysis in cloud environments (II).

Paper
Solution composition and design

Heuristic Metaheuristic Machine Learning

Chen et al. (2021) – NSGA-II ARIMA

Jalalian and Sharifi (2022) Load Balancing DE K-means

Guevara et al. (2022) – – RL:Q-learning

Qin et al. (2021) PDRs – RL:Q-learning

Amer et al. (2022) – HHO RL:OBL

Kruekaew and Kimpan (2022) – ABC RL:Q-Learning

Goudarzi et al. (2022) – – RL:Q-Learning

Gao and Wang (2022) – – DRL:DQN

Caviglione et al. (2021) Greedy algorithm – DRL:Rainbow DQN

Cheng and Xu (2019) – PSO RL:Q-learning

2.5.5 Scheduling problems in manufacturing

RL-based techniques

For instance, Yan and Li (2017) adopted the adaptive heuristic critic method to address

small job shop scheduling problems. The presented approach mainly relies on the asso-

ciate search element and adaptive critic element following the principles of reinforcement

learning. The authors presented computational results to compare the performance of

the presented approach against related works for minimizing the makespan, maximum

tardiness, total tardiness, and number of penalties. The executed simulation experiments

show that the suggested algorithm is capable of discovering the best solution through

self-adaptation and learning. Two years later, Méndez-Hernández et al. (2019) proposed
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a multi-agent RL algorithm to address job shop scheduling problems, taking into account

the minimization of the makespan and the total tardiness. The authors rely on discrete

action space formulation, in which every agent is responsible for selecting the next opera-

tion on its machine. Based on a two-phase approach, the agents are first exposed only to

their local environment (single machine). In the second phase, all agents interact to find

a compromise solution. The performance of the presented approach is compared to some

metaheuristic techniques from related work. Experiments suggest that the X quality of

obtained solutions is superior to the compared algorithms.

During the same time, Govindaiah and Pey (2019) presented an RL approach to ad-

dress challenges of complex production operations like material handling to improve overall

efficiency, taking into account multi-objective concerns. Material handling problems are

usually formulated as job shop scheduling problems. The formulation of the Q-Learning

RL approach is based on discrete actions space, in which an agent makes a change to the

material handling plan. The experiments demonstrated that the proposed approach could

be very efficient in real-world scenarios and reduce overall costs.

Recently, Zhou et al. (2021) proposed an RL-based scheduler to address dynamic

scheduling problems under uncertainty in smart manufacturing. The presented scheduler

relies on the Q-Learning algorithm and a discrete action space formulation, in which an

agent decides whether to schedule a job or let it wait to solve a single-stage scheduling

problem. The authors propose a compositive reward for the presented approach to ad-

dress multi-objective optimization concerns, taking into account the minimization of the

makespan, the minimization of the energy consumption, and the maximization of machine

utilization. The conducted analysis demonstrates that the proposed approach increases

the system’s overall efficiency and somewhat handles unforeseen situations.

To address multi-stage scheduling problems in semiconductor manufacturing, Lee

et al. (2019) presented a hybrid technique that combines the use of a QL-based RL ap-

proach and standard PDRs. The scheduling problem is solved to minimize the total

production, total penalties of the due date, and the number of major setup times. The

computational results suggest better performance of the presented techniques compared

to commercial solutions.

To address problems of energy efficiency in flow-shop scheduling, a multi-objective

model is proposed by Yin et al. (2020). The presented approach is based on reinforcement

learning, which is adapted to optimize the update operation of the Grey Wolf Optimization

(GWO) Algorithm originally presented by Mirjalili et al. (2014). The authors address the

problem by enhancing the suggested algorithm by integrating the features of the Kalman

filter with the high efficiency of Reinforcement Learning. The simulation experiments

performed on six benchmark problems indicate that the proposed method outperforms

the original algorithm for solving flow shop scheduling problems.

Two years later, He et al. (2022) proposed an RL-based approach to address a pure

flow shop scheduling problem, which is subject to the minimization of the makespan.

Pure flow shop scheduling problems are significantly simpler than the HFS scheduling

problems. The authors combine Q-learning with the well-known Nawaz heuristic presented
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by Nawaz et al. (1983) to address the problem. The action space of the presented RL

learning agent is discrete, in which an agent is trained to select a job for dispatching before

relying on the Nawaz heuristic to find the best makespan in the sequence. The presented

computational results suggest that the presented approach independently outperforms the

pure Nawaz heuristic and Q-learning RL techniques. Another contribution to addressing

rather complex manufacturing problems, which involves the selection of manufacturing

plants considering various factors, is presented by Chen et al. (2022). The authors integrate

different conventional concepts such as domain ontology, the Analytical Hierarchy Process

(AHP), and Q-learning-based RL. The framework integrates different spatial and time

data of the supply chain network to decide the allocation and scheduling of orders to

different production plants. The improved RL technique is used to select the best decision

based on the domain ontology and the AHP table to minimize overall costs and maximize

efficiency.

DRL-based techniques

In (Leng et al., 2022), a DRL scheduling technique is presented to address a pure flow

shop scheduling problem with the objective of minimizing the number of major setup

times and total tardiness. The authors rely on a double DQN DRL algorithm to design

their solutions, which is evaluated in a case study from the automotive industry. The

results suggest that the DRL approach outperforms the NSGA II algorithm for solving

the problem. Parallel to previous work, Zhou et al. (2022) proposed a DRL technique

to address dynamic job shop scheduling problems in smart manufacturing. The authors

introduced a self-adaptive smart schedular that learns to allocate production resources in

real-time and enhance decision-making by implementing the DQN algorithm. The authors

relied on discrete action space, in which an agent decides to schedule an option or not.

The analysis demonstrates that the proposed approach is more efficient at handling real-

time jobs and unexpected events than conventional scheduling methods like SPT, FIFO,

GA, and RL-based methods. However, the evaluation is conducted on 20 jobs and six

machines.

Another example of applying DRL in conjunction with heuristic methods to address

scheduling problems is presented by Luo et al. (2022). The authors proposed a hierarchi-

cal multi-agent real-time scheduling method that uses the PPO to address the flexible job

shop scheduling problem. The investigated problem is solved to minimize the estimated

total weighted tardiness and the variance of machine workload in addition to maximizing

the average machine utilization rate. The authors approach the problem by implementing

three DRL-based agents (an objective agent, a job agent, and a machine agent) to deter-

mine temporary objectives, job selection, and machine assignment rules, respectively. The

authors relied on a discrete action space formulation. In essence, the agents are trained

to select appropriate dispatching rules for scheduling jobs over time. The conducted

simulation experiments demonstrate that the proposed method outperforms conventional

heuristics such as FIFO, EDD, MRT, SPT, and LPT in identifying achievable objectives
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and picking the most suitable rules.

A similar proposal is suggested by Chang et al. (2022), which also combines the

use of a hierarchical DRL architecture that controls the selection of different PDRs for

solving Flexible job shop scheduling problems. The authors also consider multi-objective

concerns by minimizing the total penalties for tardiness and earliness in addition to the

total machine load. The architecture of the presented framework comprises two DRL al-

gorithms that are independently responsible for the reward function and the selection of

the appropriate PDRs given the system state and objective function. The former DRL

agent is designed using Deep Q-Network, while the latter is trained using Dueling Deep

Q-Network. The presented experiments indicate that the proposed framework outper-

forms some heuristics, metaheuristics, and RL techniques in terms of effectiveness and

generalization. In (Wang et al., 2022a), a DRL-based scheduling framework is proposed

to handle flexible job-shop scheduling problems, which is subject to the minimization of

the makespan and overall carbon emission. The presented framework is based on the PPO

DRL algorithm. The authors relied on multi-discrete action space formulation, in which

an agent selects different dispatching rules that are used for jobs and machine selection.

The experiments demonstrate that the proposed model outperforms GA and scheduling

PDRs, which are used as a baseline.

Table 2.5 and Table 2.6 summarize the discussed papers in manufacturing envrion-

ments. In Table 2.5, we presented an overview of identified works in terms of considered

objective value in addressing the scheduling problem. The majority of problem formation

focused on system efficiency business objectives, such as the makespan, machine utiliza-

tion, and costs. Only two papers considered the minimization of the major setup times

and considered family setup or priority constraints. As for customer satisfaction business

objectives, six contributions addressed the minimization of the penalties or total tardiness.

In terms of design and efficiency, none of the presented works relied on nor reported on

adopting parallelization or scalability technologies. Hence, the efficiency and applicabil-

ity of the methods to address realistic scheduling problems were poorly discussed in the

analyzed papers. Unlike identified papers in cloud environments, we cannot establish the

superiority of 40 % of identified papers in manufacturing due to a lack of comparisons to

related works or other methods.

In Table 2.6, we similarly summarized the design composition of proposed meth-

ods in terms of the adopted heuristic, metaheuristic, and machine learning methods. The

findings of the analysis are strongly consistent with the identified contribution in cloud en-

vironments. Q-learning methods under RL are predominant and often adopted to address

scheduling problems in manufacturing. Metaheuristics were poorly adopted in the solu-

tion composition, with only two papers. In contrast, four contributions proposed methods

combining PDRs with RL or DRL methods. In summary, we did not identify any method

that proposed the combined utilization of heuristic and metaheuristic methods for address-

ing scheduling problems. Roughly 40 % of analyzed contributions proposed adopting pure

RL or DRL methods for solving scheduling problems. And finally, only seven publications

proposed DRL-based methods for addressing scheduling problems.
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Table 2.5: Summary of literature analysis in manufacturing environments (I).

Paper Objective function Superiority Parallelization

Yan and Li (2017) Cmax, Tmax, T , U ✓ ✗

Méndez-Hernández et al. (2019) T , U ✓ ✗

Govindaiah and Pey (2019) Mutilization, Costs ✗ ✗

Zhou et al. (2021) Cmax, E ✗ ✗

Lee et al. (2019)
∑
Cj , U , MS ✓ ✗

Yin et al. (2020) Cmax, E ✗ ✗

He et al. (2022) Cmax ✗ ✗

Chen et al. (2022) Cost, Mutilization ✗ ✗

Leng et al. (2022) MS, T ✓ ✗

Zhou et al. (2022) T , Cmax, Mutilization ✓ ✗

Luo et al. (2022) w ∗ T , MLB, Mutilization ✓ ✗

Chang et al. (2022) U , Uearliness ✓ ✗

Wang et al. (2022a) Cmax, E ✓ ✗

Table 2.6: Summary of literature analysis in manufacturing environments (II).

Paper
Solution composition and design

Heuristic Metaheuristic Machine Learning

Yan and Li (2017) – – RL:Adaptive critic method

Méndez-Hernández et al. (2019) – – RL:Q-Learning (multi-agent)

Govindaiah and Pey (2019) – – RL:Q-learning

Zhou et al. (2021) – – RL:Q-learning

Lee et al. (2019) PDRs – RL: Q-Learning

Yin et al. (2020) – GWO RL: Q-Learning

He et al. (2022) Nawaz – RL: Q-Learning

Chen et al. (2022) – – RL: Q-Learning

Leng et al. (2022) – DRL: DQN

Zhou et al. (2022) – PSO DRL: DQN

Luo et al. (2022) PDRs – DRL: PPO (Multi-agent)

Chang et al. (2022) PDRs – DRL: DQN (Multi-agent)

Wang et al. (2022a) PDRs – DRL: PPO

2.5.6 Summary of the related works

Based on the findings of the conducted literature analysis, we can observe that in both

application fields, the number of publications that address scheduling problems using RL

and DRL techniques is rather low, emphasizing a research gap in these research areas.

Table 2.3, Table 2.4, Table 2.5, and Table 2.6 demonstrated the overall summary of the

conducted literature review. None of the identified publications proposed an integra-
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tion heuristic, metaheuristic, and DRL methods. In fact, originally, we did not intend

to investigate the adoption of RL methods. However, we found a very limited number

of contributions that proposed the DRL method to address multi-objective scheduling

problems.

The majority of the authors combine RL/DRL methods with either a heuristic or

a metaheuristic. Most of the reviewed works investigated DRL and RL methods from

theoretical and conceptual perspectives and reported to known game-like benchmarks for

evaluation. It is worth noting that only one contribution discussed the adoption of and

integration of parallelization technologies. Scalability and parallelization are essential

features in the design of modern scheduling solution methods to support efficient and

accurate decision-making processes. Finally, none of the identified works evaluated the

presented methods to address real scheduling problems.

2.6 Summary of theoretical foundations and literature review

In this chapter, we presented the required theoretical foundations for designing the research

artifact. The section started with an overview of scheduling preliminaries to formulate

scheduling problems systematically. The presented methodology of this work combines

the utilization of simulation, heuristics, metaheuristic, and deep reinforcement learning

methods to address scheduling problems. The objective is to leverage their advantages

and avoid their potential disadvantages. Therefore, the second section of this chapter

briefly introduced simulation methods that are powerful for modeling complex scheduling

environments.

The third section was dedicated to discussing the conventional solution methods for

solving scheduling problems with a focus on heuristic and improvement methods. The

overview highlighted the adoption of these methods for addressing scheduling concerns in

cloud and manufacturing environments. In cloud environments, single-stage scheduling

solutions were often presented in the literature. In manufacturing environments, rather

complex multi-stage scheduling solutions are required. Based on the established overview

of conventional techniques, the preliminaries of deep reinforcement learning were discussed

in the fourth section. Since its breakthrough in 2015, marked by the debut of the DQN

algorithm (Mnih et al., 2015), DRL has emerged as a promising research field that at-

tempts to address the limitations of its predecessors and offers perspective to deal with

business problems exhibiting an optimization nature. DRL methods had been successfully

adopted to a wide range of application fields, including object recognition (Li et al., 2018),

gaming (Heinrich and Silver, 2016; Mnih et al., 2013), supply chain management (Alves

and Mateus, 2020), natural language processing (He et al., 2016; Li et al., 2016), robotics

(Duan et al., 2016), healthcare (Lakhan et al., 2023; Dai et al., 2022), or Industry 4.0 (del

Real Torres et al., 2022).

Despite its notable achievements in other fields, the adoption of DRL methods for

addressing scheduling concerns remains poorly researched. Therefore, the last section pre-

sented the findings of the structured literature review on the combination of heuristic,
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metaheuristic, and DRL methods for solving scheduling problems. The overall literature

analysis demonstrated a limited adoption of these methods for addressing practical and

real-world problems. The conducted literature analysis on conventional and advanced

scheduling solutions pointed to a gap between research efforts invested in scheduling so-

lutions and their application in the industry.

These findings are consistent with similar concerns that have been raised repeatedly by

many scholars over the past 25 years, (Reisman et al., 1997, p. 326), (Ruiz and Vázquez-

Rodŕıguez, 2010, p. 21), (Neufeld et al., 2016, p. 70), (Urquhart et al., 2019, p. 1345),

(Romero-Silva et al., 2022, p. 4), or (Swan et al., 2022, p. 400). We also observed that the

majority of proposed methods addressed single-objective scheduling problems. In addition,

except for a single work presented by Chen et al. (2021), none of the analyzed contributions

adopted parallelization and scalability technologies, which inherently limits their adoption

for addressing real scheduling concerns (Swan et al., 2022, p. 400). To address some of

these challenges, we presented a novel scheduling methodology that combines the use of

simulation, heuristic, improvement, and DRL methods for solving scheduling problems.

The design of this methodology will be thoroughly discussed in the next chapter.
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3 MESEAS: Methodology for
Self-Adaptively Solving Multi-Objective
Scheduling Problems

This chapter follows a similar flow to the previous one. It comprises six sections, which lay

out the design of the artifact presented in this thesis. Based on the identified challenges

in the previous chapters, the functional and non-functional requirements of the presented

methodology will be discussed in the first section. The detailed requirements and specifi-

cations are then summarized and grouped into functionality layers, which the artifact may

fulfill. The second section presents the initial blueprint of the methodology that generally

describes the rationale and the flow of information between various modules. The third

section details the presented abstract representation and presents the reader with the de-

sign of the presented methodology using UML component diagrams. Based on the overall

design of the presented methodology, every two components of the artifact are detailed in

an independent section. Following the same structure as the second chapter, the reader

is presented with the modeling, simulation, heuristic, improvement, and machine learning

components of the artifact in the remaining sections.

The fourth section details the design of the modeling and simulation components of

the presented artifact. The fifth section describes the rationale of the heuristic library

component. This section provides an overview of developed and adopted allocation and

sequencing heuristics. The sixth section is dedicated to outlining the overall design of the

optimization and machine learning components of the presented artifact.

3.1 Design requirements of the artifact

We may define requirements for the intended artifact based on the adopted research

methodology presented by von Hevner et al. (2004). A research artifact’s main functional-

ities must be derived carefully from the needs of application environments and supported

by scientific foundations from the knowledge base. The conducted analysis of conventional

solution methods shows that there is a gap between the results of research efforts in the

field of scheduling theory and their industrial adoption (cf. Section 2.3). Furthermore, our

findings in Section 2.5 are consistent with several issues that are raised by (Romero-Silva

et al., 2022, p. 4; Ross, 2005, pp. 530-531; Reisman et al., 1997; and Maccarthy and Liu,

1993).
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Current existing methods lack the flexibility to address the dynamic nature of schedul-

ing problems in various environments. One could also observe oversimplification of busi-

ness needs, resulting in, for instance, neglecting the consideration of conflicting objective

measures, lack of automation to address changes in real environments, or lack of scalabil-

ity in presented methods. In fact, the notion of the performance of an IT artifact is still

debatable since scholars and practitioners have yet to agree on which functional and non-

functional requirements are crucial for an accurate definition of performance. For instance,

scalability and efficiency requirements are not clearly defined from an IT system perspec-

tive. In collaboration with colleagues, different functional and non-functional requirements

models of performance in IT systems were systematically analyzed (Alwadi et al., 2018).

The objective was to construct a relevant numerical performance model which can be used

for optimization. We concluded the analysis with a proposal performance requirements

model of IT systems. However, the interdependencies between the identified performance

requirements remained an open issue, which was addressed in (Alwadi et al., 2019). In

this research, the importance of certain requirements, such as scalability, efficiency, and

resource utilization, was highlighted. The presented performance requirements model was

evaluated in a survey distributed to IT experts and practitioners. Based on the find-

ings of Chapter 2, we will present the functional and non-function requirements of the

intended research artifact. We will refer to a Functional Requirement by (F) and to a

Non-Functional requirement by (NF).

3.1.1 Functional requiments

The artifact addresses single-stage and multi-stage scheduling problems (F1). In the

analysis presented in Subsection 2.1.1, we discussed that many environments are subject

to single-stage or multi-stage scheduling practices. Given some operational constraints,

scheduling is sometimes carried out independently on different processing stages, espe-

cially in manufacturing environments. In other cloud environments, even a single process-

ing stage may be divided into groups, resulting in a federated environment. Eventually,

workload scheduling in every group is handled independently from the other. Therefore,

the artifact may address single- and multi-stage scheduling problems.

The artifact addresses scheduling problems with heterogeneous machines (F2). Based

on the discussed preliminaries of scheduling problems in Subsection 2.1.1, several variations

of machine types are typical in real systems. We may have parallel identical machines Pm

or parallel machines with different speeds Qm. Often, these details are overlooked while

formulating a scheduling problem, resulting in methods that are not well-suitable for real

systems (Romero-Silva et al., 2022, p. 2; Reisman et al., 1997, pp. 325-327). Therefore,

the intended artifact must allow modeling machines of a heterogeneous and homogeneous

nature.

The artifact supports the consideration of operational constraints in addressing schedul-

ing problems (F3). Due to the combinatorial nature of scheduling problems and their
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complexity, operational constraints are often abstracted to simplify a considered problem

(Romero-Silva et al., 2022, p. 2). For instance, ignoring constraints, machine differences,

and other problem abstraction practices leads to developing methods that are hard to

apply in real environments (Reisman et al., 1997, pp. 325-327). Therefore, the designed

artifact may allow consideration of several prominent constraints, such as family-dependent

constraint β = fg,h machine capacity constraint β = MC , machine breakdown constraint

β = brkdwn, or machine eligibility β =Mj .

The artifact addresses scheduling problems, considering objective measures to maximize

system efficiency (F4). In Subsection 2.1.3, we extensively discussed various objective

measures to evaluate scheduling solutions. The overwhelming majority of scheduling meth-

ods are developed considering system efficiency measures such as the makespan γ = Cmax

or average flow time γ = F (Ruiz and Vázquez-Rodŕıguez, 2010, p. 21, Neufeld et al., 2023,

p. 3). They have a significant impact on the performance of an investigated scheduling

environment. These findings have been reported by Ruiz and Vázquez-Rodŕıguez (2010,

p. 21) and reiterated again after over ten years by Neufeld et al. (2023, p. 3), Houssein

et al. (2021, p. 28), or Murad et al. (2023, p. 170). Therefore, the intended artifact may

support considering such objective measures and include other important measures. For

instance, minimizing the total number of family setup times substantially improves system

efficiency but is usually left out by most studies (Neufeld et al., 2016, pp. 70-71).

The artifact addresses scheduling problems, considering objective measures to maximize

customer satisfaction (F5). The popularity of the system efficiency objective measures

resulted in overlooking customer satisfaction concerns (Neufeld et al., 2016, p. 61). This

phenomenon is more evident in the manufacturing stream of research on scheduling prob-

lems where objective values such as total tardiness γ = T , and penalties γ = U are adopted

seldom (Neufeld et al., 2016, p. 70; Ruiz and Vázquez-Rodŕıguez, 2010, p. 21; Ribas et al.,

2010, p. 1451). In the cloud stream of research, the minimization of penalties over Ser-

vice Level Agreements (SLA) is often considered when developing scheduling methods.

Therefore, the pursued artifact may support various objective values that are designed to

maximize customer satisfaction.

The artifact supports addressing scheduling problems subject to multiple objective mea-

sures (F6). Most presented methods for solving scheduling problems in cloud and man-

ufacturing environments consider single-objective function (Neufeld et al., 2016, p. 61;

Pires and Barán, 2015, p. 161; Ruiz and Vázquez-Rodŕıguez, 2010, p. 21). Many of the

discussed objective measures in Subsection 2.1.3 are conflicting in nature. If we want to

minimize the makespan, we might have significant tardiness over a scheduling period. This

conflicting nature obviously increases the complexity of a considered scheduling problem

(Neufeld et al., 2023, p. 2; Senthil Kumar and Anandamurugan, 2023, p. 4416; Varasteh

and Goudarzi, 2017, p. 9). However, scheduling practices, in reality, are subject to many

objective measures. Many scholars have discussed the need to investigate further objective
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values and highlighted it to be a research gap as suggested, for instance, by Neufeld et al.

(2016, p. 70). Therefore, the artifact may support solving scheduling problems that are

subject to multiple optimization measures such as γ = T ∧ Cmax.

The artifact’s design combines the use of heuristic, metaheuristic, and machine learn-

ing methods (F7). Throughout our analysis in Chapter 2, we extensively discussed the

overwhelming adoption of constructive and improvement methods for solving scheduling

problems. Our findings are consistent with the findings presented by Ghafari et al. (2022,

p. 1045), Pires and Barán (2015, p. 164), Ruiz and Vázquez-Rodŕıguez (2010, p. 21), and

Ribas et al. (2010, p. 1452). We highlighted in Subsection 2.3.1 the popularity of heuristic

methods for solving single-objective scheduling problems. However, their performance in

solving complex problems with multiple objective measures is inherently limited by design.

The design of most constructive heuristic methods is based on ranking a set of jobs ac-

cording to some data indicating their significance. Resorting to improvement methods for

solving complex scheduling problems is evident in related works (Ross, 2005). However,

improvement methods can be quite expensive in terms of computational efforts to find

high-quality solutions (Ross, 2005, pp. 530-531).

It is very difficult to develop an algorithm that is suitable at all times over a scheduling

period, even within a single environment. The potential of machine learning techniques,

especially Deep Reinforcement Learning (DRL), for addressing scheduling problems re-

mains poorly explored. We investigated their adoption in combination with heuristic and

metaheuristic methods and summarized our findings in Section 2.5. We argued in our

second hypothesis that combining this technique may yield harnessing their advantages

and avoiding their disadvantages. Recently, hybridization in the design of modern solution

methods has been stressed by many known scholars in the field (Swan et al., 2022, p. 401;

Bhattacharyya, 2018; Dey et al., 2018). Combining several methods that are different from

a methodological point of view is called multimethodology (Ferreira, 2013, p. 874). The

notion ”hybrid” is actually a quite old one, which was first discussed by Crowston et al.

(1963, p. 83). Heuristic constructive methods allow us to obtain instant solutions for a

given problem. Metaheuristic methods, on the other hand, achieve high-quality solutions

for solving scheduling problems with multiple objective measures. Finally, adopting DRL

methods facilitates training a DRL agent, which can self-adapt to provide high-quality

solutions. Therefore, the intended artifact may support the combination of heuristic,

metaheuristic, and machine learning methods for solving scheduling problems.

3.1.2 Non-Functional requiments

The design of the artifact is scalable (NF1). The computational efficiency of improvement

methods is a well-known issue that many scholars have raised in the field. For instance,

Ross (2005, pp. 530-531) discussed the necessity of designing efficient scheduling methods

for business-related problems. The author highlighted, among other issues, that most ex-

isting improvement methods are computationally too expensive for real application. After
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ten years, (Pimminger et al., 2014) suggested parallelization techniques with the intro-

duction of the cloud computing model for improving the computational performance of

evolutionary metaheuristic methods for optimization problems (Pimminger et al., 2014,

pp. 350-351). Our investigation of related works in Subsection 2.5.4 and Subsection 2.5.5

shows that parallelization techniques are not well-established in developing modern solu-

tions for solving scheduling problems. Our findings are consistent with the parallelization

issue raised recently by Swan et al. (2022, p. 401), which looked into bridging the gap be-

tween research efforts in metaheuristics and empirical practice Swan et al. (2022, p. 400).

In fact, we found a single method that combines a conventional machine learning

method and a metaheuristic method for solving scheduling problems with acceptable com-

putational time using parallelization techniques (Chen et al., 2021). Based on our analysis

of several scheduling problems in cloud and manufacturing environments in (Nahhas et al.,

2021a,b, 2019a, 2018a), it is crucial to adopt proper parallelization techniques for devel-

oping modern scheduling methods. Therefore, the design of the intended artifact may be

composable following service-oriented architecture to support parallelization of solution

search (Swan et al., 2022, p. 401). Achieving parallelization on optimization and simu-

lation levels facilitates leveraging the elasticity characteristic of modern hardware. For

instance, the proposed method might be deployed on an in-house infrastructure but sup-

port relying on additional cloud infrastructure if we want to achieve a very high-quality

solution instantly.

The design of the artifact is well-maintainable (NF2). Modern solution methods for schedul-

ing problems must be easy to maintain and operate. Here, we want to distinguish between

maintainability in terms of the logical design of the solution and maintainability in terms

of the software architecture of the method. As for the former, every solution method

may contain errors or logical loopholes that are usually detected during operation, given

the specificity of every environment. For instance, we detected a special use case while

evaluating some heuristics for solving many problems, which required adjusting the algo-

rithm’s logic to mitigate the issue. Furthermore, we may want to extend the scheduling

data model to support further constraints or objective values to comply with new changes

in the operation of our environment. As for the latter, the modular design of a proposed

method facilitates the modification, update, or further development of various compo-

nents independently without significantly impacting the design or the utilization of other

components in the method. The modularity issue in designing optimization methods has

been recently discussed and identified as a challenge that must be mitigated to achieve

reproducible solution methods (Swan et al., 2022, p. 397). Therefore, the design of the

proposed method may be easily maintainable.

The artifact offers its functions flexibly (NF3). Flexibility in designing modern solution

methods for scheduling problems is crucial to address many of the concerns raised by

different scholars. For instance, many authors stressed that the obtained solutions through

improvement methods are often not intuitive for practitioners (Branke et al., 2015, pp. 21;
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Ross, 2005, pp. 530-531). For instance, Priority Dispatching Rules (PDRs) are more

intuitive in terms of functionality and expected solution than an improvement method

such as metaheuristic (Song et al., 2023, p. 1600). Similarly, Kim et al. (2023, p. 161)

even emphasized the importance of interpreting automatically generated PDRs to increase

transparency. A lack of intuitiveness may lead practitioners to mistrust obtained solutions

through improvement methods Urquhart et al. (2019, p. 1345). For instance, practitioners

in manufacturing environments are unfamiliar with complex improvement methods for

solving scheduling problems, which causes mistrust in the solutions they deliver Ross

(2005, pp. 530-531) and Romero-Silva et al. (2022, p. 4). Simulation methods are not only

significant in designing evaluation environments for complex improvement methods but

also provide a tool for users to analyze the obtained solution in detail to strengthen trust.

Offering various functionalities, starting with widely used simple rules, helps to establish

an accepted baseline for practitioners before applying advanced methods. Therefore, the

proposed scheduling method may flexibly offer its functionalities.

The artifact is adaptive (NF4). The previously discussed non-functional requirements some-

what contribute to the adaptivity of the proposed scheduling method. An Adaptive solu-

tion method necessitates a flexible design, a well-maintainable architecture, and adaptive

logical components that can detect changes in the investigated problems and the quality

of obtained solutions. Here, we also want to distinguish between adaptivity in terms of

logical design and adaptivity in terms of solution architecture. From a solution architec-

ture perspective, an adaptive solution method requires modular architecture, which allows

us to adapt new techniques and extend the components of the artifact without modifying

the entire solution architecture. From a logical design perspective, the pursued scheduling

method may self-adapt to changes in the investigated problem with minimal human inter-

vention. In a profound analysis of naturally inspired improvement methods, Yang (2021,

p. 223) emphasized the importance of developing adaptive and self-evolving improvement

methods and urged scholars to focus also on the scalability and efficiency of metaheuristic

methods.

For instance, one may rely on the simulation and heuristic library to obtain accept-

able solutions for a given scheduling problem. In the case of multi-objective concerns,

improvement techniques deliver much higher quality but require considerably more com-

putational effort to achieve them. Improvement methods also require change in the design

if the problem significantly changes. However, one may train a DRL method to solve a

given problem with minimal computational effort, which may self-adapt to changes in the

problem subject to further training. It is well-known that DRL methods are subject to

generalization issues. Therefore, to design an adaptive scheduling method, it is neces-

sary to rely on both improvement and DRL methods to solve scheduling problems. After

sufficient training, a DRL method can deliver high-quality solutions for solving schedul-

ing problems. Once their performance suffers due to a change in the problem, we may

rely on improvement methods until further training is completed and high performance is

achieved.
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Table 3.1: Overview of functional and non-functional requirements

Label Requirement summary

Functional requirements

F1 The artifact addresses single-stage and multi-stage scheduling problems

F2 The artifact addresses scheduling problems with heterogeneous machines

F3
The artifact supports the consideration of operational constraints in addressing
scheduling problems

F4
The artifact addresses scheduling problems, considering objective measures to
maximize system efficiency

F5
The artifact addresses scheduling problems, considering objective measures to
maximize customer satisfaction

F6
The artifact supports addressing scheduling problems subject to multiple ob-
jective measures

F7
The artifact’s design combines the use of heuristic, metaheuristic, and machine
learning methods

Non-Functional requirements

NF1 The design of the artifact is scalable

NF2 The design of the artifact is well-maintainable

NF3 The artifact offers its functions flexibly

NF4 The artifact is adaptive

In summary, we discussed seven functional and four non-functional requirements that

are relevant to developing the proposed artifact based on the design science research frame-

work (von Hevner et al., 2004). Table 3.1 gives an overview of all requirements divided

into functional and non-functional.

3.1.3 Functionality layers of MESEAS method

The functional and non-functional requirements of the artifact are mapped into function-

ality layers. MESEAS methodology can be divided into four distinct layers in terms of

functionality. As depicted in Figure 3.1, every layer depends on all underlying layers

to achieve their full functionality. The dependencies between layers and their associated

components are generally demonstrated by the gradient texture fill of their triangle. The

intensity of the gradient fill of a functionality layer increases in relation to the dependencies

of other layers on it. For instance, all layers depend on the modeling and simulation layer

of the proposed method. The improvement potential that could be achieved by solving a

given problem eventually increases by employing more advanced improvement methods.

The adaptivity and robustness in solving scheduling problems may also increase in relation

to the number of combined techniques in the proposed method.

The first layer: The ”modeling and simulation layers” rely on the meta-data model

for scheduling and the simulation component. After formulating and modeling a scheduling

problem, one may navigate what-if scenarios using simulation techniques. The design of

relevant components to this functionality layer will be thoroughly discussed in Section 3.4.
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MESEAS constructive heuristic layer
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Figure 3.1: Functionality layers of MESEAS methodology.

The second layer: The ”constructive heuristic library” is loosely coupled with the

components in the underlying layer, which allows the investigation of simple solutions for

scheduling problems using constructive allocation and sequencing heuristic methods. Both

layers partially satisfy the first four functional requirements of the proposed method (cf.

FR1 , FR2 , FR3 , FR4 ). Investigating what-if scenarios and receiving intuitive solutions

for scheduling problems may establish better transparency and increase the confidence of

practitioners in the obtained solutions. It is an issue raised by many scholars in the field

(Branke et al., 2015, pp. 21; Ross, 2005, pp. 530-531). These two layers may support inves-

tigating scheduling problems with a single objective and sometimes consider an additional

auxiliary objective value. The design of components relevant to this functionality layer,

along with some allocation and sequencing algorithms, will be presented in Section 3.5.

The third layer: After establishing confidence, one may rely on advanced function-

alities to address multi-objective values using the functionalities of the optimization layer.

The ”optimization layer” relies mainly on the optimization component of the proposed

method. It may provide access to a set of improvement methods and various encoding

models for solving complex scheduling problems. This layer’s functionality depends on

the method’s first and second functionality layers. It may offer modeling and formulation

of scheduling problems subject to operational constraints that significantly increase their

complexity. These problems can be solved by taking into consideration multiple optimality

measures using improvement methods. In conclusion, this layer may fulfill the first four

functional requirements fully (cf. FR1 , FR2 , FR3 , FR4 ) and further satisfy the fifth and
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sixth functional requirements (cf. FR5 , FR6 ). The design of this layer and the underlying

components will be discussed in detail in Section 3.6.

The fourth layer: The functionality of the ”machine learning layer” depends in the

first place on the machine learning component of the presented method. It also depends on

the first and second layers since they are crucial for modeling and evaluation. If we want

to achieve adaptive and improved solutions automatically, DRL agents may be trained

to learn from solutions to scheduling problems to deliver improved solutions. DRL-based

methods may also self-adapt their learned policy if the underlying problem changes with

minimal human intervention to deliver improved solutions that are adaptive to changes

in the problem. This layer may also depend on the optimization layer if we want to rely

on expert experiences for training. We may also rely on the optimization component

during further training after carrying out significant changes in the problem formulation,

which may lead to a drop in the DRL policy performance. This layer may satisfy the

seventh functional requirement (cf. FR7 ) and the fourth non-functional requirements (cf.

NF4 ). The design of MESEAS methodology must be modular to satisfy the discussed

requirements, especially (cf. NF1 , NF2 , NF3 ).

3.2 Conceptual representation of the proposed method

Based on the defined functional and non-functional requirements in the previous section,

we may identify various technologies and well-known solution methods to develop a con-

ceptual representation of the intended method. Following DSR, the design of the artifact

may rely on the appropriate foundations and applicable knowledge from the knowledge

base (von Hevner et al., 2004, p. 80). Based on the literature analysis in (Section 2.3: An

overview of conventional solutions methods), the majority of real-world scheduling prob-

lems are NP-Hard combinatorial optimization problems. Their complexity evidently moti-

vated scholars and practitioners to favor heuristic solutions to achieve acceptable solutions

with reasonable computational efforts. We rely on the heuristic solution methodologies for

conceptualizing, designing, and developing several components of the intended method.

We further discussed in (Section 2.5: State of the art and related research artifacts), the

adoption of Machine Learning (ML) methods, especially DRL methods, to develop self-

adaptive solution methods for addressing scheduling problems. Since DRL methods will

be utilized heuristically, we extend our overview of conventional methods in Section 2.3 for

solving scheduling problems to include DRL under heuristic methodologies as depicted in

Figure 3.2. We will revisit our discussion in Chapter 1 to recall a concise overview of the

research design of the thesis that investigates three main hypotheses. The first hypothesis

can be summarized as ”A DRL method may learn from solutions of scheduling problems.”.

The second hypothesis can be expressed shortly by ”scheduling problems may be addressed

by a self-adaptive scheduling method that combines the use of heuristic, metaheuristic,

and DRL methods.”. Finally, the third hypothesis states that ”scheduling environments

are too complex; therefore, applying multiple heuristic methods over a scheduling period

controlled by an improvement method would outperform custom heuristic methods.”.



88 Methodology for Self-Adaptively Solving Multi-Objective Scheduling Problems

Adopted solution methods for
scheduling problems

Exact methods
Heuristic solution 

methodologies

Branch and 
bound

Constructive 
methods

Improvement
methods

Priority-
Dispatching

-Rules

Local and 
global search 

methods

Population-
based methods

…

……
Custom 

heuristics

Neighborhood  
search

Evolutionary 
methods (GA)…

…

Simulated 
annealing

…

Machine 
learning-based 

methods

Dynamic 
programming

DRL-based
methods

…

…

Tabu search

Figure 3.2: Adopted solution methods to develop MESEAS methodology.

To validate the hypothesis of the thesis and comply with the needs of application

environments, the conceptual representation of the proposed scheduling methods relies on

methodologically diverse solution techniques that are highlighted in blue in Figure 3.2. As

depicted in the figure, we focus on heuristic solution methodologies. In the branch of con-

strictive heuristic methods, we develop and adopt custom heuristics and various PDRs,

respectively. As for the branch of improvement methods, we rely on population-based

methods, specifically evolutionary ones. Under Machine Learning (ML) methods, we focus

our analysis on DRL-based methods since they inherently have some optimization behav-

ior in their design. Validating the previously mentioned hypothesis yields the achievement

of the overall objective of this thesis and answers the main research question (cf. Sec-

tion 1.3). The thesis’s research objective incorporates most functional and non-functional

requirements. To comply with the discussed requirements, we follow a component-based

approach (Turowski, 2003) in designing the proposed scheduling methodology.

Figure 3.3 draw an abstract representation and an information flow diagram of sev-

eral key components of the intended artifact. The conceptual representation of MESEAS

methodology comprises seven main logical elements, four of which are core-functional

components. The core functional components of the proposed methods are the simu-

lation component, the heuristic library component, the optimization component, and the

machine learning component. Following a bottom-up perspective, we will start with the

meta-data model for the scheduling problem. It is required to model and formulate various

scheduling problems relying on the discussed preliminaries and objective values. Based on

the investigated environment and modeled problem, the simulation component may con-
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Figure 3.3: Abstract and information-flow representation of MESEAS method.

sume meta-data to build a digital representation of the considered system automatically.

We relied on discrete event simulation techniques to design and develop the simulation

component. Here, automation is crucial to minimize the modeling effort. Therefore, an

automated simulation model composer is necessary to develop the proposed method. In

Figure 3.3, we annotate the relationship between the simulation component of MESEAS

methodology and the meta-model for scheduling with ≪use≫. The heuristic library com-

ponent is loosely coupled with the simulation component and may provide access to a set

of allocation and a set of sequencing constructive heuristics. The simulation component

relies on the heuristic library component to either allocate jobs to machines or identify

the sequence by which jobs may be processed on machines.

The third core functional component of MESEAS methodology is the optimization

component. It may comprise an optimization model and an evaluation model. As we

discussed earlier, we intend to rely on evolutionary algorithms to design and develop the

optimization model. An evolutionary algorithm such as Genetic Algorithms (GA) depends

on an encoding model, which dictates how a GA is used to solve the problem. For instance,

a GA may be used to allocate families of jobs to a set of available machines with the objec-

tive of minimizing the makespan. Hence, the shape of the genome constituting a solution

individual would be the vector that dictates where every family of jobs must be processed.

Therefore, the optimization component may rely on various encoding models, which are

provided by the encoding models component of the intended methodology. Every evolu-

tionary algorithm requires a proper evaluation model to evaluate the quality of generated

solutions individuals subject to some objective function. Therefore, the evaluation com-
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ponent also relies on the encoding models and the meta-model for scheduling problems

to set up a proper evaluation environment for the simulation component. The evaluation

environment initializes simulation instances to evaluate the quality of suggested solutions

by the optimization model. As depicted in Figure 3.3, we annotate the optimization com-

ponent relationship with the simulation component and meta-data model by ≪use≫. Upon

request, the optimization process starts after initializing the optimization and evaluation

models using the meta-data model for scheduling and required encoding. Usually, the

first generation of solution candidates is randomly generated and sent to the evaluation

model. Given some objective functions, the evaluation model investigates the fitness of

the solution candidates and sends them back to the optimization model. This process is

repeated until some breaking criteria are met.

Finally, the machine learning component of the Meseas Methodology is the fourth

core-functional component. Similarly, it may consist of a machine learning model based

on DRL methods and a DRL environment. This component may also depend on the meta-

data model for scheduling problems, the encoding models, and the simulation component

to function properly. The meta-data model defines the shape of a DRL agent’s observation

space and reward function. Meanwhile, the encoding models characterize how the agent

interacts with the environment through the action space. Traning a DRL agent is an

iterative process that starts after defining the action space, observation space, and reward

function. The designated DRL agent takes action, which is processed by its environments

and passed further to the simulation component. Based on the action taken, the DRL

agent receives a reward and observations of the environment. The reward is usually based

on some objective values for solving the scheduling problem. This process is repeated until

some breaking criteria are met. As depicted in Figure 3.3, we annotate the relationship of

the machine learning component with the meta-data model and the simulation component

with ≪use≫. We may also rely on high-quality solutions obtained by the optimization

component to pre-train the agent. In this case, we need to preprocess the obtained solutions

and format them to correspond to the shape of the defined actions and observation spaces

before starting to train the agent. In essence, the agent is trained using experiences to

imitate how the optimization component would solve the problem.

The proposed scheduling method supports the parallelization of simulation, optimiza-

tion, and machine learning workload. For instance, GA optimization starts with a popu-

lation of solution candidates forming a generation. The evaluation of solution candidates

can be distributed to multiple simulation instances to accelerate the optimization process.

We can also start solving multiple problems, which requires the parallelization of the opti-

mization and machine learning components to accelerate decision-making processes. The

overall abstract representation of MESEAS method depicts a general concept to integrate

the utilization of heuristic, metaheuristic, and DRL methods for solving various types of

scheduling problems. These problems are subject to diverse operational constraints and

multiple objective values. The conceptual representation also highlights modularity in the

design of the proposed method to increase adaptability and efficiency.
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3.3 Component-based design of MESEAS method

Based on the functionality layers and the abstract representation of the proposed method-

ology, we rely on Unified Modeling Language (UML) to formalize the design of the artifact.

UML provides a set of well-established practices to model various aspects of software sys-

tems (Seidl et al., 2015, p. 1). It is a recognized molding language that is published by

the International Organization for Standardization in the (ISO/IEC 19505-2: 2012, In-

formation technology, 2012). We utilize UML component diagrams (ISO/IEC 19505-2:

2012, Information technology, 2012, pp. 155-164) to represent the overall architecture of

the MESEAS method and denominate the design of the core-functional components of

the method. Figure 3.4 depicts the overall architecture of MESEAS methodology using

UML component diagrams. The core-functional components of the presented methodology

may be grouped into three subsystems, namely, MESEAS Data Management, MESEAS

Simulation and Heuristic, and MESEAS Optimization and Machine Learning. The over-

all design includes some auxiliary management and user interface components such as a

front-end, MESEAS layers manager, and parallelization components. The front-end com-

ponent provides access to the main entry point of the methodology and connects directly

to the Data management Subsystem and experiment controller component. Given a re-

quest, the required data is extracted from the database and passed to the Layers Manager

to schedule a request by the Simulation and Heuristic Subsystem or the Optimization

and Machine Learning Subsystem. Parallelization techniques are integrated to execute

multiple instances of the simulation, optimization, or machine learning components to

accelerate solving a scheduling problem.

MESEAS Data Management Subsystem: As presented in Figure 3.4, this sub-

system encompasses two main components: a database and a logging system. These

components are responsible for managing data of scheduling problems and results from

various other components. The database is used to ensure the consistency of requests and

the associated results from various components such as machine learning, optimization,

or simulation. The logging system is dedicated to routing data between various compo-

nents and the front end, which allows monitoring the progress of certain requests before

receiving the final results.

MESEAS Simulation and Heuristic Subsystem: This subsystem includes the

logical modules of the simulation and heuristic library components as depicted in Fig-

ure 3.4. All solution variations of scheduling problems in the MESEAS method are dis-

crete event simulation-based approaches. Therefore, the components of this subsystem

are fundamental for the functionalities of all other components. The previous section

elaborated in a general sense on how these components interact with each other. Upon

request, the Simulation Environment Manager processes configuration and passes the re-

quired met-data for a scheduling problem to the simulation component, which builds a

simulation model of a given environment. Based on the intended analysis, it is integrated

with the Heuristic Library component to facilitate investigating constructive solutions for

a scheduling problem. The heuristic library component offers access to two sets of alloca-
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tion and sequencing algorithms. We developed some allocation and sequencing algorithms

for scheduling problems and adopted many other heuristics from the literature.
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Figure 3.4: High-level UML component diagram of MESEAS methodology.
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MESEAS Optimization and Machine Learning Subsystem: As shown in Fig-

ure 3.4, this subsystem contains the optimization and DRL logical modules. Both compo-

nents rely on the encoding models component of the method. Three main encoding models

were developed and adopted in the design of the proposed method. An encoding model

defines how an optimization or a DRL algorithm is adopted to solve a scheduling problem.

Every encoding model allows the investigation of a scheduling problem from a distinct

perspective. For instance, GA can be utilized to allocate families of jobs to machines and

then rely on some sequencing algorithm. We could also adopt a DRL encoding model to

select various allocation and sequencing algorithms over a scheduling period to solve a

scheduling problem. Such encoding would yield a hybrid approach, which combines the

utilization of constructive and DRL methods for solving the problem. Generated solutions

or actions taken from the optimization and ML components, respectively, are passed to the

Remote Procedure Call (RPC) scheduler. This scheduler passes generated solutions to the

Simulation and Heuristic subsystem to be evaluated using available simulation instances.

Figure 3.5 presents a UML sequence diagram for the overall architecture of the pre-

sented method. The figure is annotated with the functionality layers of the presented

artifact. It depicts how the simulation and heuristic subsystem, as well as the optimiza-

tion and machine learning subsystem, are triggered. The front end contains several views

for configuring requests to solve a scheduling problem and monitoring the progress of

optimization or machine learning components in searching for solutions. As shown in

Figure 3.5, the request is received through the experiment view of the front end. The

front end allows the user to model a scheduling problem based on the meta-data model for

the scheduling problem of the presented method. Based on the problem, the experiment

interacts with the database to provide access to a set of configurations for the available

functionalities provided by the various layers of the proposed methodology. Upon com-

pleting the configuration of the problem and desired functionality, the request is scheduled

for execution through the messaging system of the experiment controller. The request is

forwarded further to the layers manager, which initializes various components and routes

the request to the appropriate subsystem. The proposed methodology fulfills requests of

its underlying functionality layers using two core subsystems, namely, ≪MESEAS Sim-

ulation and Heuristic Subsystem≫ and ≪MESEAS Optimization and Machine Learning

Subsystem≫.

The core functional component of each subsystem of the presented method will be

discussed in the coming three subsections. We align the objective of the thesis and discuss

requirements with the design of the thesis artifact. Based on the component diagram of

MESEAS methodology, we will discuss in detail the design of the modeling and simulation

components in Section 3.4. Following, Section 3.5 discusses the most important allocation

and sequencing algorithms that are developed during the design of the methodology. Fi-

nally, Section 3.6, presents an overview of the developed optimization and machine learning

components of the proposed methodology.
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3.4 Modeling and simulation components

3.4.1 Meta-data model of MESEAS method for scheduling problems

The developed method relies on a data model, which is developed based on the presented

preliminaries of scheduling problems in Section 2.1. Figure 3.6 summarizes these elements

with some relevant examples for formulating single-stage or multi-stage scheduling prob-

lems. The data model describes the physical structure of a considered environment and

can be divided into structural and behavioral data. The upper part of Figure 3.6 depicts

the structural part of the data model, which expresses the machine environment and the

relevant operational constraints. For instance, given that our considered physical environ-

ment contains two processing stages, multiple machines are available in parallel at each

stage. The lower part of the figure describes how the modeled physical system should

behave during a scheduling period. For example, given that we have a set of jobs, we want

to process them to minimize the makespan and total tardiness. The MESEAS method

incorporates multiple variations of processing stages, machine type, and operational con-

straints, facilitating the modeling of a considered scheduling environment.
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and jobs data

Objective values

Single- and multi-
stage

Machine types:
Pm, Qm, HFSm

Number of
machines in every
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Figure 3.6: Meta-data model of MESEAS method.
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3.4.2 Data model of MESEAS method for scheduling problems

The presented data model relies on the triple notation ⟨α | β | γ⟩ presented by Graham

et al. (1979). The data model comprises data structure, machine environment, possible

constraints, and objective functions. In the coming subsections, we will discuss every

element of the data model in great detail. Based on Graham et al. (1979) notation, we

may define a Scheduling Problem (SP ) such that SP = ⟨α | β | γ⟩ . Given some structural

data that describe the machine environment α, the data structure is required to formalize

a Problem Instance (PI) of the scheduling environment.

Data structure of a problem instance

• Let the set T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , |T |} denote an arbitrary scheduling

period. Given a discrete change in time horizon ∆T1, we move from T1 to T2.

• Let the set J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} denote an n number of jobs, which

must be completed during a scheduling period T .

• Let prj ∈ R+ denote a positive integer number that indicates the priority of job Jj .

• Let the set f =
{
fg, . . . , f|f |

}
: ∀ g ∈ {1, . . . , |f |} denote an |f | number of families.

Every family fg comprises a subset of jobs Jj,g ⊂ J . Jobs within a family share the

same or similar requirements.

• Let the set D =
{
Dpr, . . . , D|D|

}
: ∀ pr ∈ {1, . . . , |D|} denote a |D| number of

families. Every family Dpr comprises a subset of jobs Jj,k ⊂ J . Jobs of a single

family share the same priority. In some scheduling environments, we might want to

group jobs into two different families according to their priorities and requirements.

• Let the set Oj =
{
Oo,j , . . . , O|O|,j

}
: ∀ o ∈ {1, . . . , |O|} denote an |O| number of

operations that compose a job Jj ∈ J . All operations must be completed to process

a job fully.

• Let the set S =
{
Ss, . . . , S|S|

}
: ∀ s ∈ {1, . . . , |S|} denote an |S| number of processing

stages. We may omit to define this set if we deal with a single-stage environment.

• Let the set M = {Mi,s, . . . ,Mm,s} : ∀ i ∈ {1, . . . ,m} denote an m number of

machines that are available at every stage Ss ∈ S.

• Let ps,i,j ∈ R+ denote the required processing time of a job Jj ∈ J to be completed

by a machine Mi ∈M on the processing stage Ss ∈ S. We may omit the s subscript

and refer to the processing time of a job by pi,j if we are dealing with a single-stage

problem. It is also usual to omit the i subscript of the processing time (pj) if all

machines are identical, resulting in a Pm scheduling environment.

• Let MS ∈ R+ denote the overall number of major setup times of all machines

M during a scheduling period T . We increase this number subject to the family-

dependent setup constraint discussed in Subsection 2.1.2.
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• Let msi ∈ R+ denote the required time to setup a machine Mi when switching

between two families.

Supported constraints

MESEAS method supports modeling multiple constraints based on the integrated data

model and a considered scheduling environment. One could also extend the available

constraints by properly extending the data structure behind the data model. The following

points briefly overview the included constraints:

• Release date β = rj

• Family dependent setup times β = fmls, fg,h.

• Machine breakdowns β = brkdwn.

• Machine eligibility restrictions β = Mj .

• Machine capacity constraint β = MC .

Supported objective measures

We will briefly discuss the most important objective values based on our analysis of ob-

jective measures for addressing scheduling concerns in Subsection 2.1.3.

• The makespan γ = Cmax and its possible variations.

• The mean flow time γ = F and its possible variations.

• The number of major setup times γ = MS.

• The total energy consumption γ = E.

• The total tardiness γ = T and its possible variations.

• The total number of penalties γ = U .

The previously mentioned objective measures can be investigated either indepen-

dently or combined based on a considered scheduling environment. Furthermore, we may

also investigate any variation of these main objective measures. For instance, we may

investigate the minimization of the maximum flow time γ = Fmax based on the average

flow time γ = F . After formulating an SP, we seek to formalize the solution of a problem

instance PI, which we will discuss in the coming subsection.

Scheduling solution

The scheduling data model expresses an SP that must be solved for some scheduling

period T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , |T |}. Let the set of all feasible solutions

for the scheduling problem during a scheduling period T be expressed by the set X.
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The scheduling data model can be instantiated to find a solution schedule X ∈ X,
where jobs in J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} are processed using the available

machines M = {Mi,s, . . . ,Mm,s} : ∀ i ∈ {1, . . . ,m} in the corresponding processing

stages S =
{
Ss, . . . , S|S|

}
: ∀ s ∈ {1, . . . , |S|}. The solution represents a schedule

X ∈ X that comprises a set of matrixes relative to the number of stages such that

X =
{
Xs, . . . , X|S|

}
∀ s ∈ {1, . . . , |S|}. Each matrix Xs ∈ X, of the size (n × m),

represents the mapping of n jobs to m machines on the stage Ss and the sequence in

which they are processed.

Equation 3.1 exemplifies the shape of the allocation and sequencing solution for the

first processing stage s = 1. The matrix columns represent the available m machines

in the first processing stage and the allocation map of n jobs to these machines. The

order of records in the matrix represents the sequence in which n jobs are processed. The

sequencing part of the problem may not be relevant if the problem is subject to machine

capacity constraints and/or does not involve a sequencing part. Such scheduling problems

are very common in cloud environments where a set of virtual machines must be scheduled

on a set of available machines with certain capacities.

Xs =


x111 x121 · · · x1m1

x112 x122 · · · x1m2

...
...

. . .
...

x11n x12n · · · x1mn

 , s = 1, 2, . . . , |S| (3.1)

The quality of the pursued solution for the scheduling problem using the presented

methodology is measured based on the selected objective measures and considering the

operational constraints. Let Γ =
{
γi, . . . , γ|Γ|

}
: ∀ i ∈ {1, . . . , |Γ|} denote the set of

objective measures that the solution X ∈ X must minimize. The objective function can

be formulated as depicted in Equation 3.2. Let ω =
{
ωi, . . . , ω|Γ|

}
: ∀ i ∈ {1, . . . , |Γ|}

denotes a set of weights and bounded by the number of selected objective values in Γ.

The objective function can be formulated as a mono-objective function using weights as

presented in Equation 3.3.

arg min
X∈X

Γ(X) = arg min
X∈X

[γi(X), . . . , γ|Γ|(X)] : ∀ i ∈ {1, . . . , |Γ|} (3.2)

arg min
X∈X

Γ(X) = arg min
X∈X

 |Γ|∑
i=1

ωi · γi(X)

 :

|Γ|∑
i=1

ωi = 1 (3.3)

3.4.3 Definition of MESEAS method to solve a scheduling problem

Based on the presented data structure for scheduling, presented constraints, discussed

objective measures of scheduling problem, and the shape of the perused solution, MESEAS

methodology can be defined for solving a scheduling problem as presented in Equation 3.4.

MESEAS(X, T ) = ⟨SP | PI | Γ | Sim | HL | Opt ∨ML⟩ (3.4)
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The six-tuple presentation formalizes the definition and later the instantiation of the

method. MESEAS(X, T ) is defined to find a solution schedule X ∈ X that minimizes

a formulated objective function Γ during a scheduling period T (cf. Equation 3.2 and

Equation 3.3). The instantiation of the method depends on the functional requirements

that must be satisfied by the functionality layers of the methodology. It means that some

elements of the tuple may not be needed. For instance, a simple scheduling solution

with a single objective measure can be obtained using the simulation and heuristic library

components. The following bullet points interpret the structure of Equation 3.4:

• SP = ⟨α | β | γ⟩ formalizes the scheduling envrionment that must be considered.

• PI: A problem instance that complies with the definition of the SP and relies on

the presented data structure in Section 3.4.2.

• Γ: A set of considered objective values, based on which we seek to find a solutionX ∈
X that minimizes these values. The considered SP , given the objective measures,

may be solved either subject to multi-objective optimization or weighted-sum mono-

objective optimization (cf. Section 3.4.2, Equation 3.2, and Equation 3.3).

• Sim: A simulation model that is built based on the structure of the considered

scheduling environment SP . It is used as a function to evaluate and construct the

final scheduling solution X during a scheduling period T . The simulation model/s

are instantiated based on the simulation component of MESEAS methodology, which

will be discussed in Subsection 3.4.4.

• HL: An instance of the Heuristic Libaray components (HL), which provides the

simulation Sim access to a set of selected allocation and sequencing constructive

heuristics during the scheduling period T . The design of HL components, along

with some constructive allocation and sequencing heuristics, will be discussed in

Section 3.5.

• Opt: An Optimization model (Opt), which utilizes the simulation Sim and the HL

components of MESEAS to solve a problem instance PI. The considered PI is

solved given a scheduling period T with the objective to minimize Γ . The opti-

mization component of the presented methodology will be thoroughly discussed in

Subsection 3.6.2.

• ML: A Machine Learning model (ML), which also relies on the simulation Sim

and the HL components of MESEAS to solve a problem instance PI. The ML

component of the presented methodology will be elaborated in Subsection 3.6.4.

3.4.4 Simulation component

In the previous section, we discussed the first three elements, SP , PI, and Γ, that are re-

quired to instantiate the presented methodologyMESEAS(X, T ) = ⟨SP | PI | Γ | Sim |
HL | Opt ∨ ML⟩. This section discusses the fourth component in the tuple, namely the
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simulation component (Sim). We rely on UML components and sequence diagrams to

elaborate on the design and execution of the component, respectively. Figure 3.7 depicts

the design of the simulation component in MESEAS methodology using a UML component

diagram. The final design of the component allows the modeling of various single-stage

and multi-stage scheduling problems in cloud and manufacturing environments.
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Figure 3.7: UML component diagram of the simulation component.
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With automation in mind, we developed the simulation component with automated

procedures for simulation building and execution that rely on a previously discussed meta-

model for scheduling problems. The simulation component consists of the simulation ele-

ments and simulation model sub-components as illustrated in Figure 3.7. The simulation

elements component encompasses the main logical modules required to create and ini-

tialize a simulation model automatically. The simulation environment manager processes

requests and passes the required data to the simulation elements sub-component of the

simulation component. Based on the received encoding model and scheduling data model

of a considered system, the required number of simulation instances is initialized. The

data model for scheduling problems and possibly encoding models includes queues data,

machines data, jobs-related data, and custom events in addition to the shape of solution

and objective values. These data represent the structural data of a considered scheduling

environment that is used by the simulation elements initializer to initialize simulation en-

tities, resources, and queues. After initialization, the simulation elements initializer passes

the behavioral data (problem instance) to the simulation execution module of the simula-

tion model component. The runner relies on the automated simulation model composer

to connect to the awaiting simulation entities, resources, and queues. The simulation

model utilizes a discrete event simulation engine. The execution module starts running

a simulation to investigate the possible outcomes of the consumed behavioral data of the

considered scheduling environment.

Based on the type of the request, the first two functionality layers of the proposed

methodology allow a user to utilize an allocation and/or sequencing constructive heuristic.

The execution module of the simulation model sub-component handles the communica-

tion between the simulation model component and the heuristic library component. As

for the upper functionality layers of the proposed methodology, solution individuals of

the optimization component or actions of the machine learning component are passed to

the execution module, which communicates with the heuristic library component during

a scheduling period. Section 3.5 discusses in length the design of the heuristic library

component and how it interacts with the simulation component.

We relied on discrete event simulation cores of the Salabim and CloudSim Plus simu-

lation packages to finalize the development of the simulation component of the presented

methodology. The employed simulation packages will be discussed in the implementation

overview (cf. Chapter 4). The selection of simulation packages is based on systematic

investigation. We collaborated with colleagues to analyze the utilization of open-source

simulation software as an alternative for commercial simulation packages in (Lang et al.,

2021a). We faced several challenges using propriety simulation packages, such as a lack

of parallelization and difficulty in integrating machine learning libraries. We will high-

light some issues in the next section (cf. Subsection 3.4.5). The simulation component

offers access to the mentioned simulation packages and is designed to integrate further

open-source simulation dependencies flexibly.

To fully harness the potential for scalability in modern hardware, we relied on par-

allelization technologies to process requests for simulation or distribute optimization and
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machine learning requests. Both optimization and machine learning components utilize

simulation techniques to evaluate the quality of solutions, which can be processed in paral-

lel using available physical resources. Unfortunately, many propriety simulation packages

either do not support parallelization or lack the flexibility to be integrated with open-

source machine learning techniques. The early prototype of the proposed methodology

relied on such a propriety simulation package. To achieve parallelization and scalability

objectives, we replicated the entire logical source code of the research artifact and ex-

tended it using open-source technologies. The decision to migrate the artifact is based on

a systematic analysis.

Figure 3.8 presents a UML sequence diagram that explains the roles, communica-

tions, and data exchange between the previously discussed components while executing

a simulation run. Based on the request, the simulation environment manager retrieves a

scheduling model and the required data to pass them to instantiate a simulation model.

The simulation component acknowledges receiving and initializes the simulation model

elements sub-component. After the initialization of required simulation elements, a sim-

ulation model is composed through the simulation model sub-component. To maintain

consistency, in this sequence diagram, it is assumed that the simulation model is always

used in conjunction with the heuristic library, which is initialized by the simulation model

sub-component (cf. Figure 3.8). After initializing the heuristic library component, an

allocation map is requested to map the jobs to available machines in the first processing

stage. Finally, simulation execution starts with entering the depicted loop to investigate

future scenarios of a considered scheduling environment.

After the allocation map is generated using some allocation algorithm, simulation

entities (jobs) are notified with the corresponding allocation to enter the appropriate

simulation queues (machine queues or final queues). Every simulation resource (machine)

has a set of queued jobs that must be processed considering the objective values. Given

the scheduling problem, simulation resources start dispatching simulation entities during

the scheduling period using some sequencing algorithm from the heuristic library. After

finishing a job Jj ∈ J , a machine Mi ∈ M retrieves job data in the simulation queue

i. After receiving the job data, a sequence is requested before dispatching the next job.

The heuristic library component initializes the requested sequencing heuristic and returns

a processing sequence to the requesting machine. Based on the sequence, the machine

dispatches the first job in the sequence and starts processing it.

After finishing processing the job, the job enters the next queuing stage if multiple

processing stages are required. Otherwise, it leaves the system. The recorded events of the

simulation are thereby used to update the intermediate schedule, including the starting

time and finishing time of the job Jj being completed by machine Mi. The simulation is

advanced after all simulation queues are updated and simulation resources are notified of

changes. Upon leaving a machine, the machine Mi is idle and available again to process

another job. The next job is dispatched and processed similarly. This process is repeated

during the simulation until all jobs on all processing stages are completed. Once the

simulation is finished, the results are passed back to the simulation environment manager.
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The obtained simulation result of the simulation is either pushed back to the user or to the

corresponding optimization or machine learning components (cf. Section 3.6). In the next

section, the design and development of the heuristic library component will be discussed.

The section presents some exemplarily developed allocation and sequencing heuristics,

which can be used in conjunction with the simulation component to investigate solutions

beyond investigating what-if scenarios.
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Figure 3.8: UML sequence diagram of the simulation component.
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3.4.5 Design evaluation of modeling and simulation components

In the design stage and early prototyping, we conducted multiple investigations on single-

stage and multiple-stage scheduling problems in cloud and manufacturing environments.

The objectives of the preliminary studies were to validate the designed components, en-

sure the integrity and flexibility of the data model, and adopt simulation techniques to

investigate solutions for scheduling concerns.

In Nahhas et al. (2017a), discrete event simulation methods are investigated to develop

an evaluation component for metaheuristics improvement methods to address multi-stage

scheduling problems in manufacturing. We relied on the presented mathematical and data

models for scheduling to solve a two-stage scheduling problem ⟨HFS2 (P4, P5) | fg,h |
Cmax,

∑
Tj⟩. The evaluation is conducted on four real scheduling problem instances.

The computational results show that the GA outperforms Simulated Anealing (SA) and

Tabu Search (SA) in solving the problems by minimizing the objective values. The

research showed that the simulation component is a powerful method for evaluating

what-if scenarios for scheduling problems. These findings stayed consistent with a fur-

ther study, in which we investigated further constraints such as machine breakdowns

⟨HFS2 (P4, P5) | fg,h, brkdwn | Cmax,
∑
Tj⟩ (Aurich et al., 2017). The investigation

also shows that adopting population-based improvement methods such as GA techniques

guarantees an edge in performance compared to other metaheuristics.

Similarly, we investigated the use of a simulation component and the discussed data

model for scheduling to address scheduling concerns in a cloud environment. In Nahhas

et al. (2018a), we developed a simulation model to act as an evaluation component for

what-if scenarios. Then, it was integrated with constructive heuristic methods and later

one with improvement methods (Nahhas et al., 2019a) to study load management of a real

cloud environment in which 290 SAP application instances are hosted. The considered

scheduling problem was subject to the minimization of energy consumption, taking into

account performance constraints ⟨Pm | Dpr,M
C | E,U⟩. The simulation experiments

showed that applied heuristic methods for scheduling virtual machines can achieve up

to 70 % energy-saving during a scheduling period of one week. We relied on workload

patterns that were obtained based on interviews with the partner.

However, the computational efforts of both prototypical implementations to achieve

a solution for scheduling problems could be improved. In both studies, we utilized pro-

priety discrete event simulation, which at the time did not support parallelization. That,

obviously, significantly impacts the required computational effort. In addition, automa-

tion of system modeling with a different number of processing stages and machines was

very challenging and always required additional manual effort to maintain the data model.

Therefore, as discussed in the design of the simulation component, we briefly discussed

the migration to an open-source discrete event simulation engine in the final design of the

simulation component (cf. Subsection 3.4.4). In addition to the adoption of discrete event

simulation methods to analyze the data model, we collected initial insights into the design

of the heuristic library components.
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3.5 Heuristics library components

In the previous section, we discussed the first four elements, SP, PI, Γ, and Sim that are re-

quired to instantiate the presented methodologyMESEAS(X, T ) = ⟨SP | PI | Γ | Sim |
HL | Opt ∨ ML⟩. Defining the first four elements in the tuple provides access to the func-

tionalities of the bottom layers of the presented methodology. It facilitates investigating

what-if scenarios in some considered scheduling environments. This section explains the

design of the fifth element in the discussed tuple presentation of the methodology, which

is the Heuristic Library components (HL). To sustain clarity in explaining the design of

the HL component, we utilize the pseudocode convention to discuss the rationale of some

of the developed construction allocation and sequencing heuristics. We also utilize UML

sequence diagrams to elaborate on the overall design and execution of the HL component.

We developed and adopted various constructive heuristics and PDRs while designing

the MESEAS heuristics library components, which fulfill the discussed requirements spec-

ification of the second functionality layer. Section 2.1 thoroughly discussed scheduling

problems. To reduce the complexity of a scheduling problem, it is a common practice

to deal with its underlying allocation part independently from its sequencing part of the

problem. Therefore, the heuristic layer of the presented methodology provides access to

developed allocation and sequencing heuristic algorithms. For consistency, some of the

developed allocation and sequencing algorithms will be discussed using pseudocode in

the coming subsections. The adopted constructive heuristics from related works will be

omitted and referenced in the corresponding papers.

3.5.1 Allocation constructive heuristics

Family-Increasing Workload-Increasing (FI-WI): Following a similar convention, we will

assume some parallel machine scheduling problem before describing an algorithm. Based

on the Shortest Processing Time (SPT) PDR and the First Fit Increasing (FFI), we

derived an allocation algorithm that combines the logic of both algorithms for family

group scheduling. Algorithm 7 presents the logical design of the allocation algorithm

for solving parallel machines scheduling problems Qm. The Family-Increasing Workload-

Increasing (FI −WI) constructs an allocation schedule following a combination of the

FFI and SPT algorithms. Let J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} be a set of jobs, which

must be scheduled on the set of machines M = {Mi, . . . ,Mm} : ∀ i ∈ {1, . . . ,m}. The

workload of the machines is denoted by a set l = {li, . . . , lm} : ∀ i ∈ {1, . . . ,m} such

that every machine Mi is associated with its current workload li. The considered problem

is subject to the family operation constraint (cf. Section 2.1.2). It implies that the set

f =
{
fg, . . . , f|f |

}
: ∀ g ∈ {1, . . . , |f |} denote an |f | number of families. Jobs are grouped

into these families. Every family fg is associated with the sum of the processing time

of all jobs p, resulting in fpg . The FI −WI heuristic starts with computing the overall

processing time of families fpg (cf. Algorithm 7, lines 4-9).

Based on the overall computed processing time, families are sorted in ascending order

(cf. Algorithm 7, line 10). Finally, the algorithm always starts with the shortest family
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in terms of processing time and schedules its jobs on the least loaded machine (cf. Al-

gorithm 7, lines 11-17). After scheduling all jobs within a family, the scheduled family

is removed, the workload of machines is updated, and the machines are sorted again in

terms of workload in ascending order (cf. Algorithm 7, lines 18-20). This process is re-

peated until all jobs are scheduled on the machine and an allocation solution is returned

(cf. Algorithm 7, lines 11-22). We developed this algorithm to favor system efficiency

objective values such as the minimization of the Cmax (Baker and Trietsch, 2009, p. 234),

F , or total number of major setup times MS ∈ R+.

In the description of all coming algorithms, we omit details of some functions to sus-

tain clarity. For instance, sorting functions such as (sortAscendingByAccumulated-

ProcessingTime) or (SortAscendingByWorkload) are invoked without discussing

their logic. Similarly, we do not detail simple functions such as (getFirstFamily),

(getFirstMachine), (constructAllocationMap), (removeScheduledFamily),

or (updateWorkload) and only invoke them in the pseudocode of Algorithm 7.

Algorithm 7 Family-Increasing Workload-Increasing (FI −WI) - Allocation

/* We sort ascending in terms of accumulated processing time of jobs in families fp.

Then we sort ascending in terms of machines workload li. */

1: procedure FI-WI (f , J , M)

2: Zallocation ← ∅
3: Msorted ← sortAscendingByWorkload (M, index = li)

4: for each fg ∈ f do

5: fpg ← NULL ▷ Initialization

6: for each Jj ∈ fg do

7: fpg ← fpg + pj ▷ Compute the overall processing time in families

8: end foreach

9: end foreach

10: fsorted ← sortAscendingByAccumulatedProcessingTime (f , index = fp)

11: while fsorted ̸= ∅ do
12: fg ← getFirstFamily (fsorted)

13: Mi ← getFirstMachine (Msorted)

14: for each Jj ∈ fg do

15: scheduleJobs (Jj , Mi)

16: Zallocation ← constructAllocationMap (Jj , Mi)

17: end foreach

18: fsorted ← removeScheduledFamily (fsorted, fg)

19: M ← updateWorkload (M, Mi, f
p
g )

20: Msorted ← SortAscendingByWorkload (M, index = li)

21: end while

22: return Zallocation

23: end procedure
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Family-Decreasing Workload-Increasing (FD-WI): Similarly, the Longest Processing Time

(LPT) PDR and the First Fit Increasing (FFI) are combined to derive the logic of the

FD − WI algorithm. It can also be utilized for group scheduling, considering family

constraints. Algorithm 8 depicts the logical structure of the allocation algorithm for solving

parallel machines scheduling problems Qm. The Family-Decreasing Workload-Increasing

(FD −WI) builds an allocation schedule following a combination of the LPT and FFI

algorithms. Given parallel machines scheduling problem where we must schedule a set

of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} on the set of machines M = {Mi, . . . ,Mm} :
∀ i ∈ {1, . . . ,m}. The workload of the machines is denoted by a set l = {li, . . . , lm} :

∀ i ∈ {1, . . . ,m} such that every machine Mi is associated with its current workload li.

This formulation also considers family constraint (cf. Section 2.1.2). Jobs are grouped

into families resulting in a set f =
{
fg, . . . , f|f |

}
: ∀ g ∈ {1, . . . , |f |}. Every family fg is

associated with the sum of the processing time of all jobs p and denoted by fpg .

Algorithm 8 Family-Decreasing Workload-Increasing (FD −WI) - Allocation

/* We sort descending in terms of accumulated processing time of jobs in families fp.

Then we sort ascending in terms of machines workload li. */

1: procedure FD-WI (f , J , M)

2: Zallocation ← ∅
3: Msorted ← sortAscendingByWorkload (M, index = li)

4: for each fg ∈ f do

5: fpg ← NULL ▷ Initialization

6: for each Jj ∈ fg do

7: fpg ← fpg + pj ▷ Compute the overall processing time in families

8: end foreach

9: end foreach

10: fsorted ← sortDescendingByAccumulatedProcessingTime (f , index = fp)

11: while fsorted ̸= ∅ do
12: fg ← getFirstFamily (fsorted)

13: Mi ← getFirstMachine (Msorted)

14: for each Jj ∈ fg do

15: scheduleJobs (Jj , Mi)

16: Zallocation ← constructAllocationMap (Jj , Mi)

17: end foreach

18: fsorted ← removeScheduledFamily (fsorted, fg)

19: M ← updateWorkload (M, Mi, f
p
g )

20: Msorted ← SortAscendingByWorkload (M, index = li)

21: end while

22: return Zallocation

23: end procedure
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The FD−WI heuristic starts with computing the overall processing time of families

fpg (cf. Algorithm 8, lines 4-9). Afterward, families are sorted in, however, descending order

by overall workload (cf. Algorithm 8, line 10). Based on the sorted list, the algorithm

starts with the longest family in terms of processing time and schedules its jobs on the

least loaded machine (cf. Algorithm 8, lines 11-17). Similarly, after scheduling jobs of

a family, the scheduled family is removed, the workloads of machines are updated, and

machines are sorted again in terms of workload in ascending order (cf. Algorithm 8,

lines 18-20). This process is repeated until all jobs are scheduled on the machine and

an allocation map is returned (cf. Algorithm 8, lines 11-22). This algorithm also favors

system efficiency objective values such as the minimization of the total number of major

setup times MS ∈ R+. However, it might lead to an inferior makespan Cmax.

Deadline-Aware Family Fit Increasing (DA-FFI): Based on the logical design of previous

algorithms, many additional algorithms are inferred. For instance, Algorithm 9 presents

the rational of the DA-FFI, which is largely based on the logical design of the FI-WI

in Algorithm 7. In this algorithm, we combined the SPT, the FI-WI, and the Earliest-

Due-Date (EDD) algorithm. The DA-FFI considers the deadlines of jobs within families

before constructing allocation solutions. Given an environment where parallel machines

are available to process jobs Qm. It is desired to allocate the set of jobs J = {Jj , . . . , Jn} :
∀ j ∈ {1, . . . , n} to be processed by the set of machines M = {Mi, . . . ,Mm} : ∀ i ∈
{1, . . . ,m}. The workloads of the machines are also computed given some scheduling

period and can be expressed by the set l = {li, . . . , lm} : ∀ i ∈ {1, . . . ,m}. Every machine

Mi is associated with its current workload li during the scheduling period.

Jobs are grouped into families that are denoted by the set f =
{
fg, . . . , f|f |

}
: ∀ g ∈

{1, . . . , |f |}. Every family fg is associated with the sum of the processing time of all

jobs p, and the earliest due date of a job in it dj . The overall processing time of a

family fg is expressed by fpg , and the earliest due date of a job is expressed by fdg . The

DA− FFI heuristic starts with computing the overall processing time of every family fpg

and identifying the earliest due date of a job in every family fdg (cf. Algorithm 9, lines

4-13). Based on the overall computed processing time, families are sorted in ascending

order (cf. Algorithm 9, line 14) and then sorted again in ascending order by the earliest

due date (cf. Algorithm 9, line 15). The algorithm starts with the family that contains the

job with the highest priority. In the case of multiple families with the highest priority, it

selects the family with the shortest overall processing time. Then, it schedules its jobs on

the least loaded machine (cf. Algorithm 9, lines 17-19). After scheduling all jobs within

a family, the scheduled family is removed, the workload of machines is updated, and the

machines are sorted again in terms of workload in ascending order (cf. Algorithm 7, lines

23-25). This process is repeated until all families with their associated jobs are scheduled

on the machine, and an allocation solution is returned (cf. Algorithm 7, lines 16-27).

We developed this algorithm to favor more system efficiency objective values such as the

minimization of the Cmax or total number of major setup timesMS ∈ R+. The algorithm

also considers customer satisfaction concerns, such as minimizing the total tardiness T .
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Algorithm 9 Deadline-Aware Family-Fit-Increasing (DA− FFI) - Allocation
/* We sort ascending in terms of accumulated processing time of jobs in families fp,

followed by the earliest deadline of jobs fd within families. Finally, we sort ascending

in terms of machines workload li. */

1: procedure DA-FFI (f , J , M)

2: Zallocation ← ∅
3: Msorted ← sortAscendingByWorkload (M, index = li)

4: for each fg ∈ f do

5: fpg ← NULL ▷ The superscript p denotes the processing time of all jobs in fg

6: fdg ←MAX ▷ The superscript d denotes the earliest due date in fg

7: for each Jj ∈ fg do

8: fpg ← fpg + pj ▷ Compute the overall processing time in families

9: if fdg > dj then

10: fdg ← dj ▷ Associate the family with the earliest due date of a job in it.

11: end if

12: end foreach

13: end foreach

14: fsorted ← sortAscendingByAccumulatedProcessingTime (f , index = fp)

15: fsorted ← sortAscendingByDueDate (fsorted, index = fd)

16: while fsorted ̸= ∅ do
17: fg ← getFirstFamily (fsorted)

18: Mi ← getFirstMachine (Msorted)

19: for each Jj ∈ fg do

20: scheduleJobs (Jj , Mi)

21: Zallocation ← constructAllocationMap (Jj , Mi)

22: end foreach

23: fsorted ← removeScheduledFamily (fsorted, fg)

24: M ← updateWorkload (M, Mi, f
p
g )

25: Msorted ← SortAscendingByWorkload (M, index = li)

26: end while

27: return Zallocation

28: end procedure

Deadline-Workload-Aware Family-Fit-Increasing (DWA-FFI): We developed the DWA-FFI

algorithm based on the rationale of the DA-FFI with a stronger focus on customer satis-

faction objective values such as the total number of penalties U and the total tardiness T .

Algorithm 10 depicts a pseudocode of the algorithm for solving parallel machine schedul-

ing problems Qm. Shortly, in this environment, the set of jobs J = {Jj , . . . , Jn} : ∀ j ∈
{1, . . . , n}must be processed by the set of machinesM = {Mi, . . . ,Mm} : ∀ i ∈ {1, . . . ,m}.
The workloads of the machines are denoted by the set l = {li, . . . , lm} : ∀ i ∈ {1, . . . ,m}.
Jobs are grouped into families, which are expressed by the set f =

{
fg, . . . , f|f |

}
: ∀ g ∈
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{1, . . . , |f |}. During a scheduling period, we designed the algorithm to distribute jobs with

the earliest due dates between the machines as uniformly as possible, given some critical

parts of the scheduling period. In essence, the algorithm relies on a Critical Horizon

(CH) parameter to achieve this objective. The CH parameter defines the critical part of

a scheduling period. Assuming that our scheduling period is a month with jobs that must

be completed within this scheduling period. The CH parameter can be set to a week. In

essence, all jobs with due dates falling within the first week of the scheduling period are

within the Critical Horizon parameter.

Algorithm 10 Deadline-Workload-Aware Family-Fit-Increasing (DWA− FFI)
/* We sort ascending in terms of accumulated processing time of prioritized jobs in

families f ch, followed by the earliest deadline of jobs within a family fd. */

1: procedure DWA-FFI (f , J , M , CH)

2: Zallocation ← ∅
3: Msorted ← sortAscendingByWorkload (M, index = li)

4: for each fg ∈ f do

5: fpg ← NULL

6: fdg ←MAX

7: for each Jj ∈ fg do

8: if dj ≤ CH then ▷ Workload within the critical horizon.

9: f chg ← f chg + pj

10: end if

11: if fdg > dj then

12: fdg ← dj ▷ Associate the family with the earliest due date of a job in it.

13: end if

14: end foreach

15: end foreach

16: fsorted ← sortAscendingByAccumulatedProcessingTime (f , index = f ch)

17: fsorted ← sortAscendingByDueDate (fsorted, index = fd)

18: while fsorted ̸= ∅ do
19: fg ← getFirstFamily (fsorted)

20: Mi ← getFirstMachine (Msorted)

21: for each Jj ∈ fg do

22: scheduleJobs (Jj , Mi)

23: Zallocation ← constructAllocationMap (Jj , Mi)

24: end foreach

25: fsorted ← removeScheduledFamily (fsorted, fg)

26: M ← updateWorkload (M, Mi, f
p
g )

27: Msorted ← SortAscendingByWorkload (M, index = li)

28: end while

29: return Zallocation

30: end procedure
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The DWA−FFI heuristic starts with computing the processing time of jobs, which

must be delivered within the critical horizon for every family fpg (cf. Algorithm 10, lines

4-10). Within the same sub-procedure, the algorithm identifies the earliest due date of

a job in every family fdg (cf. Algorithm 10, lines 11-15). Then, families are sorted in

ascending order first by the computed processing time of critical jobs and then the earliest

due date (cf. Algorithm 10, lines 16-17).

The algorithm starts with the family that contains the job with the highest priority.

In the case of multiple families with the highest priority, it selects the family with the

shortest accumulated processing time and schedules its jobs on the least loaded machine

(cf. Algorithm 10, lines 21-24). After scheduling, the selected family is removed, the

workload of machines is updated, and the machines are sorted again in terms of workload

in ascending order (cf. Algorithm 10, lines 25-27). This process is repeated until all

families with their associated jobs are scheduled on the machine, and an allocation solution

is returned (cf. Algorithm 10, lines 18-29). The CH makes the algorithm aware of the

criticality of the workload being distributed between machines. In turn, it strives for an

equal distribution of critical jobs in terms of due dates between machines. This rationale

contributes to minimizing the total tardiness T and the number of penalties U . It still

takes into account system efficiency since jobs are scheduled in groups to avoid excessive

reconfigurations of machines to minimize the total number of major setup timesMS ∈ R+.

Energy-Aware Family-Fit-Decreasing (EA-FFD): The last allocation algorithm is an exam-

ple of an energy-aware algorithm, which is developed to allocate jobs to machines subject

to capacity and priority constraints (cf. Subsection 2.1.2). Given some scheduling environ-

ment, a set of jobs (virtual machines, JR) must be scheduled on a set of machines (comput-

ing servers, MC). The set of jobs is denoted by JR =
{
JR
j , . . . , J

R
n

}
: ∀ j ∈ {1, . . . , n} and

set of available parallel machines is expressed byMC =
{
MC

i , . . . ,M
C
m

}
: ∀ i ∈ {1, . . . ,m}.

An arbitrary job JR
j ∈ JR can be allocated to a machine MC

i ∈ MC only if the machine

can satisfy all its resources requirements subject to the constraints discussed in (⊢ Υ,

Equation 2.1). In this use case, jobs are usually grouped into families in terms of their

priorities, which are expressed by the set DR =
{
DR

pr, . . . , D
R
|D|

}
: ∀ pr ∈ {1, . . . , |D|}.

Every family DR
pr comprises a subset of jobs JR

j,q ⊂ JR. In many scheduling environments

in the cloud and manufacturing, it is a common practice to prioritize jobs of certain types

of customers to avoid violation of Service Level Agreements (SLAs) or delivery dates.

Algorithm 11 depicts a pseudocode of the discussed energy-aware algorithm that takes

into account various priority classes while scheduling jobs to machines. The algorithm is

developed to minimize the overall energy consumption E during a scheduling period T

while minimizing the violation of priority classes U .

The rationale of the algorithm is designed to loop over multiple job- and machine-

related data with the objective of finding a suitable allocation. The algorithm starts by

sorting priority family groups in terms of their pr in ascending order (cf. Algorithm 11,

Line 3) before starting the first loop. Then, the family DR
(j,k) with the highest priority

is selected for scheduling (i.e., the family with the smallest pr). Jobs within a priority
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Algorithm 11 Energy-Aware Family-Fit-Decreasing (EA− FFD) - Allocation

/* Equation 2.1 - We sort according to the memory requirement in line 7 */
1: procedure EA-FFD (DR, JR, MC , Midle)
2: Zallocation ← ∅
3: DR

sorted ← sortAscendingByPriority (DR
pr, index = pr)

4: while DR
sorted ̸= ∅ do

5: DR
(j,k) ← getFirstFamily (DR

sorted)

6: R← getJobRequirments (DR
(j,k)) ▷ Extract the set of job requirements

7: JR
sorted (j,k) ← sortDescendingByRequirement (DR

(j,k), index = Rram)

8: while JR
sorted (j,k) ̸= ∅ do

9: E
min
j ←MAX ▷ The minimal energy consumption of a job as max

10: MC
i,j ← NULL ▷ The job is not scheduled on any machine yet

11: satisfied← False ▷ Boolean to check requirements are met
12: JR

j ← getFirstJob (JR
sorted (j,k))

13: R← getJobRequirments (JR
j ) ▷ Extract the set of job requirements

14: for each MC
i ∈MC do

15: C ← getMachineCapacities (MC
i )

16: for each (Rr ∈ R) and (Cc ∈ C) do
17: if Rr ≤ Cc then ▷ Machine capacity satisfies job’s requirement?
18: satisfied← True
19: else
20: satisfied← False
21: end if
22: end for
23: if satisfied == Ture then
24: Ej ← estimatePowerConsumption (JR

j , M
C
i )

25: if Ej < E
min
j then

26: MC
i,j ←MC

i ▷ Pick the machine with lower energy

27: E
min
j ← Ej ▷ update the lowest energy

28: end if
29: end if
30: end for
31: if MC

i,j ̸= NULL then

32: Zallocation ← constructSolution (JR
j , MC

i,j)

33: JR
sorted (j,k) ← remove (JR

sorted (j,k), J
R
j )

34: MC ← updateWorkload (MC , MC
i,j , J

R
j )

35: else ▷ Activate sleeping machine to satisfy the requirements of a job
36: MC

i,j ← activateIdelMachine (Midle)

37: Zallocation ← constructSolution (JR
j , MC

i,j)

38: JR
sorted (j,k) ← remove (JR

sorted (j,k), J
R
j )

39: MC ← updateWorkload (MC , MC
i,j , J

R
j )

40: end if
41: end while
42: DR

sorted ← removeFamily (DR
sorted, J

R
sorted (j,k)) ▷ Remove allocated family

43: end while
44: return Zallocation

45: end procedure



Abdulrahman Nahhas, M. Sc. 113

family have certain requirements denoted by the superscript R. Following the original

First-Fit-Decreasing algorithm, we sort the jobs within a single family in descending order

in terms of requirement. In the considered use case, we might tolerate oversubscription in

terms of CPU but not in terms of memory. The algorithm sorts jobs according to memory

requirements (cf. Algorithm 11, Line 7). After sorting jobs within the selected family,

the algorithm enters its first nested loop to schedule every job on available machines (cf.

Algorithm 11, Lines 8-41). The algorithm depends on some initialization steps every time

a job is selected (cf. Algorithm 11, Lines 9-13).

After selecting a job, the algorithm enters its second nested loop that is designed

to schedule jobs to machines with minimal energy consumption (cf. Algorithm 11, Lines

14-30). Here, we loop over every machine and check whether it satisfies the requirements

of the selected job (cf. Algorithm 11, Lines 16-22). If the machine satisfies the require-

ments of a selected job, the algorithm checks the incurred fraction of energy consumption

caused by scheduling the job to the machine (cf. Algorithm 11, Line 24). If the current

allocation incurs less energy, the allocation is updated, and the new machine is set to be

the destination of the job (cf. Algorithm 11, Lines 25-28). After looping over all ma-

chines, the algorithms check whether at least one machine is found to allocate the job (cf.

Algorithm 11, Lines 31-40). If a suitable machine is found, the algorithm schedules the

job, removes it from the current family, and updates the workload of the machines (cf.

Algorithm 11, Lines 31-34). Otherwise, the algorithm activates an idle machine, allocates

the job to this machine, updates the workload, and submits the activated machine to the

set of available machines (cf. Algorithm 11, Lines 35-40). Here, for the sack of readability,

another loop over the set of idle machines to find the machine, which incurs a minimal

fraction of energy consumption to process the job, is committed. After finding a proper al-

location of the selected job, the algorithm starts over with the next job (cf. Algorithm 11,

Line 8) until all jobs are already scheduled. After scheduling all jobs within the selected

family, the next family is selected back in the upper loop (cf. Algorithm 11, Line 4).

3.5.2 Sequencing constructive heuristics

Depending on the scheduling environment, finding an efficient solution may imply dealing

with only allocation, which is a very common case in managing workloads in cloud envi-

ronments. However, it may involve dealing with the allocation followed by the sequencing

part of the problem, which is often encountered in manufacturing. Therefore, the heuristic

constructive heuristic layer of the developed methodology also contains a set of developed

and adopted sequencing algorithms.

EDD-Family Shortest Processing Time (EDD-FSPT): The EDD−FSPT algorithm com-

bines the use of the EDD and SPT priority dispatching rules. It is also developed to func-

tion for group sequencing, considering family setup time constraints (cf. Section 2.1.2).

The algorithm is developed with a stronger emphasis on system efficiency to minimize

the total number of major setup times MS ∈ R+ while attempting somewhat to re-
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duce total tardiness T and penalties U . Given a scheduling problem in which jobs are

already allocated to machines. For every machine Mi ∈ M , a subset of jobs Ĵ ⊂ J

must be completed in some sequence to optimize relevant objective values. The set of

machines is denoted by M = {Mi, . . . ,Mm} : ∀ i ∈ {1, . . . ,m}, and the set of jobs by

J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n}.

Algorithm 12 EDD-Family Shortest Processing Time (EDD − FSPT ) - Sequencing
/* We sort ascending in terms of accumulated processing time of jobs in families fp,

followed by the earliest deadline of jobs dj within families. Then, we construct a

processing sequence.*/

1: procedure EDD-FSPT (f̂ , Ĵ , Mi)

2: Zsequence ← ∅
3: f(EDD−SPT ) ← ∅ ▷ The shortest family with the earliest due date of a job in it.

4: for each fg ∈ f̂ do ▷ f̂ is a set of the current families allocated to the machine Mi

5: fpg ← NULL ▷ Initialization.

6: fdg ←MAX ▷ Initialization.

7: for each Jj ∈ fg do

8: fpg ← fpg + pj ▷ Compute the overall processing time in families.

9: if fdg > dj then

10: fdg ← dj ▷ Associate the family with the earliest due date of a job in it.

11: end if

12: end foreach

13: end foreach

14: fsorted ← sortAscendingByAccumulatedProcessingTime (f̂ , index = fp)

15: fsorted ← sortAscendingByDueDate (fsorted, index = fd)

16: while fsorted ̸= ∅ do
17: fg ← getFirstFamily (fsorted)

18: fg ← sortAscendingByDueDate (fg, index = dj)

19: if f(EDD−SPT ) == ∅ then
20: f(EDD−SPT ) ← fg

21: end if

22: for each Jj ∈ fg do

23: scheduleJobs (Jj , Mi)

24: Zsequence ← constructSequenceMap (Jj , Mi)

25: end foreach

26: fsorted ← removeScheduledFamily (fsorted, fg)

27: end while

28: return Zsequence, f(EDD−SPT )

We will need the f(EDD−SPT ) in another algorithm.

29: end procedure
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Jobs may belong to different families in terms of their priority or their operational

nature. It implies that on every machine Mi, a subset of families f̂ ⊂ f with their

associated jobs are queued. Based on preliminaries, the set of families is expressed by f ={
fg, . . . , f|f |

}
: ∀ g ∈ {1, . . . , |f |}. Splitting the allocation part of the scheduling problem

from its sequencing part results in m number of single machine sequencing problems that

must be solved. For every machineMi, the algorithm starts with accumulating the overall

processing time of every family fg ∈ f̂ (cf. Algorithm 12, lines 4-13). Inside the same

loop, the algorithm associates every family with the earliest due date overall jobs (cf.

Algorithm 12, lines 9-11).

Then, the algorithm sorts prepared families ascending by the accumulated processing

time fp followed ascending by the earliest due date fd (cf. Algorithm 12, lines 14-15).

Finally, we start sequencing jobs by selecting the first family and then sorting its jobs by

the due date (cf. Algorithm 12, lines 17-18). This combination results by dispatching the

smallest family with the EDD job among all families and then sorting it by due dates of jobs

f(EDD−SPT ). This selection is returned in line 20 since it is needed in another algorithm

(cf. Algorithm 12, line 20). After sorting the family, the algorithm starts constructing the

processing sequence for every job in the family (cf. Algorithm 12, lines 22-25). Finally,

the sequenced family is removed before starting again with the next family back in line

16. This process is repeated until all families and their jobs are sequenced, and a sequence

map is returned (cf. Algorithm 12, lines 16-28).

EDD-Family Longest-Processing-Time (EDD-FLPT): The EDD-FLPT design combines

the utilization of the EDD and LPT to construct a scheduling sequence of jobs on a

machine Mi. Algorithm 13 depicts the pseudocode of this heuristic. The algorithm is

largely similar to Algorithm 12 in terms of initialization, preparation, and sequencing. The

soul and yet significant difference between these heuristics lies in the sorting mechanism.

The EDD-FLPT sorts families in descending order by the accumulated processing time

of jobs in them before selecting the next family (Algorithm 12, line 14). This, in turn,

results in completely different solutions. The algorithm yields a sequence whereMS = |f |.
The rationale of both algorithms starts by selecting a family and then keeps sequencing jobs

within the same family till all jobs are completed. As a result, machines are reconfigured |f |
times over the entire scheduling period, favoring significantly the minimization of the total

number of major setup times MS = |f |. The MS here would be the minimum possible

value. The selection of the shortest family among all families contributes significantly to

minimizing the makespan Cmax, especially in multi-stage environments.
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Algorithm 13 EDD-Family Longest-Processing-Time (EDD − FLPT ) - Sequencing
/* We sort descending in terms of accumulated processing time of jobs in families
fp, followed by the earliest due date of jobs dj within families. Then, we construct a
processing sequence.*/

1: procedure EDD-FLPT (f̂ , Ĵ , Mi)
2: Zsequence ← ∅
3: f(EDD−LPT ) ← ∅ ▷ The longest family with the earliest due date of a job in it.

4: for each fg ∈ f̂ do ▷ f̂ is a set of the current families allocated to the machine Mi

5: fpg ← NULL ▷ Initialization.
6: fdg ←MAX ▷ Initialization.

7: for each Jj ∈ fg do
8: fpg ← fpg + pj ▷ Compute the overall processing time in families.
9: if fdg > dj then

10: fdg ← dj ▷ Associate the family with the earliest due date of a job in it.

11: end if
12: end foreach
13: end foreach

14: fsorted ← sortDescendingByAccumulatedProcessingTime (f̂ , index = fp)
15: fsorted ← sortAscendingByDueDate (fsorted, index = fd) ▷ Consider deadline
16: while fsorted ̸= ∅ do
17: fg ← getFirstFamily (fsorted)
18: fg ← sortAscendingByDueDate (fg, index = dj)
19: if f(EDD−LPT ) == ∅ then
20: f(EDD−LPT ) ← fg

21: end if
22: for each Jj ∈ fg do
23: scheduleJobs (Jj , Mi)
24: Zsequence ← constructSequenceMap (Jj , Mi)
25: end foreach
26: fsorted ← removeScheduledFamily (fsorted, fg)
27: end while
28: return Zsequence, f(EDD−LPT )

We will need the f(EDD−LPT ) in another algorithm.
29: end procedure

Deadline-Aware Sequencing-Increasing (DA-SI): The logical design of the DA-SI con-

sists of two layers: family sequencing and job sequencing. The family sequencing part is

straightforward and utilizes the EDD-FSPT presented in Algorithm 12. The second layer

is rather more complex and involves up to three nested loops designed to avoid violating

job due dates. Algorithm 14 depicts the overall rationale of the developed algorithm using

pseudocode convention. The rationale of the algorithm relies on grouping jobs into fami-

lies subject to two dimensions in terms of their part type and priority, yielding two family

sets f̂ and D̂, respectively.

The algorithm is developed to underline customer satisfaction objective measures

to minimize the total tardiness T and penalties U while attempting to reduce the total
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number of major setup times MS and the makespan Cmax. The algorithm produces

a sequence for processing jobs that are allocated to a machine. After allocation, each

machineMi ∈M is utilized to process a subset of jobs Ĵ ⊂ J in some order considering the

minimization of objective values. The set of machines is denoted by M = {Mi, . . . ,Mm} :
∀ i ∈ {1, . . . ,m}, and the set of jobs by J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n}. Jobs

are grouped into families in terms of priority and part types, yielding two family types.

For every machine Mi, a subset of part-types families f̂ ⊂ f with their associated jobs

are queued. The set of families is denoted by f =
{
fg, . . . , f|f |

}
: ∀ g ∈ {1, . . . , |f |}.

Queued jobs in each machine also belong to another family type D̂ ⊂ D in terms of their

priorities pr. The priority families are expressed by the set D =
{
Dpr, . . . , D|D|

}
: ∀ pr ∈

{1, . . . , |D|} denote a |D| number of families.

The logical design of the algorithm can be divided into three logical blocks. The first

block starts in line 4 by selecting the smallest family that contains a job with the highest

priority using the EDD-FSPT (cf. Algorithm 14, line 4). The selected family is sorted

ascending by the due date of jobs dj . Then, the first job is scheduled in the sequence, a

machine setup time is added to the overall sequence, and the scheduled job is removed (cf.

Algorithm 14, lines 5-8). The second block starts in line 9 and goes until line 20. Before

scheduling a job Jj ∈ J , the algorithm is designed to iterate over all priority families D̂

on a machine Mi (cf. Algorithm 14, lines 12-20). If the priority prj of a job Jj is lower

than a family priority Dpr, the algorithm iterates overall jobs in this family to compute the

overall processing time of higher priority jobs, resulting in an inner loop (cf. Algorithm 14,

lines 16-18).

The third logical block is designed to decide to either schedule the selected job or

switch to another family to avoid due date violations and associated tardiness (cf. Al-

gorithm 14, lines 21-43). First, the algorithm sorts families with higher priorities in an

ascending order by priority. After initialization, it checks for every family whether schedul-

ing the job might cause a potential violation or not (cf. Algorithm 14, lines 27-38). Based

on the computed estimation, if the job does not cause potential tardiness, it is scheduled,

added to the sequence map, and removed from the associated sets (cf. Algorithm 14, lines

39-42). Otherwise, scheduling fails, and the algorithm starts over in line 4 to check the

next job in the family.

In essence, the algorithm is designed to keep scheduling jobs in the same family

while attempting to avoid violating the due dates of other jobs with higher priorities in

other families (cf. Algorithm 14, lines 9-43). After scheduling all possible jobs in the

selected family, the algorithm starts again in line 3 to select the next priority family. This

process is repeated until all jobs in Ĵ ⊂ J and their associated setup times are scheduled.

Finally, the procedure ends by returning a sequence of jobs Zsequence to be executed for

their completion on the machine Mi (Algorithm 14, line 45). The presented rationale in

Algorithm 14 is simplified for single-stage scheduling problems to maintain consistency.

Multi-stage sequencing is relatively more complicated since the processing times of jobs in

further stages must be considered. Usually, heuristic approximation is applied to estimate

the waiting times of jobs and possibly their processing time in further processing stages.
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Algorithm 14 Deadline-Aware Sequencing-Increasing (DA− SI) - Sequencing
/* This algorithm rely on various sorting of families D̂ and f̂ for sequencing jobs. */

1: procedure DA-SI (D̂, f̂ , Ĵ , Mi, msi)
2: Zsequence ← ∅
3: while Ĵ ̸= ∅ do
4: f(EDD−SPT ) ← EDD-FSPT(f̂ , Ĵ , Mi) ▷ Here we want to get f(EDD−SPT )

5: fsorted ← sortAscendingByDueDate (f(EDD−SPT ), index = dj)

6: Zsequence ← constructSequenceMap (Jj , Mi) ▷ Start with the first family.
7: Zsequence ← addSetupToSequenceMap (msi, Mi)

8: D̂, f̂ , Ĵ ← removeScheduledJob (D̂, f̂ , Ĵ , Jj)
9: for each Jj ∈ fsorted do

10: Dhigher ← ∅
11: violateDueDateHigherPriorityJobs← True

12: for each Dpr ∈ D̂ do ▷ Dpr denotes a family of jobs sharing priority.
13: if prj > Dpr then ▷ Dpr Smaller priority implies higher priority.
14: Dp

pr ← 0
15: Dhigher ← addHigherPriorityFamily(Dpr)
16: for each Jk ∈ Dpr do
17: Dp

pr ← Dp
pr + pk ▷ Compute the processing time of every family.

18: end foreach
19: end if
20: end foreach
21: if Dhigher == ∅ then
22: violateDueDateHigherPriorityJobs← False
23: else
24: Dhigher ← sortAscendingByPriority (Dhigher, index = Dpr)
25: numSetup = 0
26: overallProcessingT ime = 0
27: for each Dp

pr ∈ Dhigher do
28: overallProcessing = overallProcessing +Dp

pr

29: numSetup = numSetup+ 1
30: processingAndSetup = overallProcessing + (numSetup ∗msi)
31: Cj = C(Zsequence) + pj
32: if (Cj + processingAndSetup) < Dd

pr then

33: violateDueDateHigherPriorityJobs← False
34: else
35: violateDueDateHigherPriorityJobs← True
36: end if
37: end for
38: end if
39: if violateDueDateHigherPriorityJobs == False then
40: Zsequence ← constructSequenceMap (Jj , Mi)

41: D̂, f̂ , Ĵ ← removeScheduledJob (D̂, f̂ , Ĵ , Jj)
42: end if
43: end for
44: end while
45: return Zsequence

46: end procedure
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Simulation methods can be applied to utilize the previously discussed algorithms.

Combining simulation techniques with constructive allocation and sequencing heuristics

facilitates investigating simple, instant solutions for a given scheduling problem. Figure 3.9

depicts a UML sequence diagram that describes the main interactions and lifeline of the

major components in the simulation and heuristic library layers of MESEAS methodology.

sd MESEAS Simulation and Heuristics

rpc queue
:Msg Queue

:Simulation
Environment Manager

result queue[j]
:Temp Queue

loop

Pull for RPC

alt

RPC configuration

Instantiate requested simulation

Initialize simulation

Execute simulation

Retrieve results

Return results
Return results

ack

ack

Return allocation map
/ processing sequence

:Heuristic Library [j]

Request
allocation / sequencing

:Simulation [j]

[else]

MESEAS modeling and simulation layer

MESEAS constructive heuristic layer
Basic solutions

What-if analysis

Improvement potential

Ad
ap

tiv
ity

[has queued RPC]

[not shutting down]

Initialize 
Heuristic Library

Figure 3.9: UML sequence diagram of the simulation and heuristic layers.
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In conclusion, the first two functionality layers of MESEAS methodology are grouped

into a single subsystem ≪MESEAS Simulation and Heuristic Subsystem≫ as discussed

in Figure 3.4. In Figure 3.5, we discussed, using a sequence diagram, how the overall

structure of the proposed method functions using a UML sequence diagram. Figure 3.9

UML sequence diagram details how requests to the components of the first two layers of

the proposed method are processed. Incoming requests are first processed by the Simula-

tion Environment Manager. It is responsible for instantiating and initializing simulation

and heuristic library components for a given problem, as depicted in the figure. After

initialization, a simulated model is created to investigate what-if scenarios.

If heuristic solutions are also present in the request, corresponding configurations are

passed to the simulation component. The simulation component executes the simulation

model, which interacts with the heuristic library component. Based on the selected al-

location and sequencing heuristic, the simulation model requests a sequence and/or an

allocation map for a given set of jobs that must be scheduled. The appropriate algorithm

processes the request and returns the results to the simulation component. After simulat-

ing a scheduling period, the results of the simulation are pushed back to the user or other

components through the environment manager. Here, it is important to emphasize that

the optimization and the machine learning components also send requests to the simulation

layer and rely heavily on the first two functionality layers of the proposed methodology.

As can be noticed in the diagram, Simulation Environment Manager constantly awaits

requests from the remote call procedure, which we discussed in the MESEAS component

diagram and MESEAS sequence diagram.

3.5.3 Design evaluation of heuristic library components

Similarly to the modeling and simulation components, the design of the heuristic library

components is evaluated during the early prototyping and implementation stage. The algo-

rithms discussed in previous sections are exemplary allocation and sequencing algorithms,

which are presented for parallel machines scheduling problems to maintain consistency.

The components of the heuristic library are evaluated in our intermediate results that

were published during the research project of this thesis.

In Nahhas et al. (2018a), we investigated a single-stage parallel machine scheduling

problem with capacity constraint ⟨Pm | Dpr,M
C | E,U⟩. The objective was to minimize

the overall energy consumption while considering performance concerns. In that research,

we investigated, for instance, the rationale of Family-Decreasing Workload-Increasing (cf.

Algorithm 8) and the Family-Decreasing Workload-Increasing (cf. Algorithm 7) algo-

rithms. In Nahhas et al. (2019a), we further evaluated the design of the Energy-Aware

Family-Fit-Decreasing (cf. Algorithm 11) and studied the combination of constructive

heuristic methods and improvement methods for addressing scheduling problems in cloud

environments. In both studies, we relied on simulation techniques for evaluation and

investigation of what-if scenarios using heuristics.
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In Nahhas et al. (2017a), we evaluated various variations of the discussed sequencing

algorithms such as the EDD-Family Shortest Processing Time (cf. Algorithm 12), the

EDD-Family Longest Processing Time (cf. Algorithm 13), and other PDRs. The consid-

ered multi-stage scheduling problem was solved to minimize the makespan and the total

tardiness ⟨HFS4 (P4, P5) | fg,h | Cmax,
∑
Tj⟩. We further investigated various variations

of the allocation and sequencing algorithms, for instance, the Deadline-Aware Sequencing-

Increasing (cf. Algorithm 14) in Nahhas et al. (2018b). The investigated problem included

two additional processing stages of the same considered manufacturing environment in the

field of printed circuit board production ⟨HFS4 (P4, P5, 1, 1) | fg,h, brkdwn | Cmax,
∑
Tj⟩.

In this paper, we started the initial investigation of combining heuristic and improvement

methods in conjunction with simulation techniques for addressing scheduling problems

subject to machine breakdowns. The findings in this research and a follow-up research

on scheduling in cloud environments Nahhas et al. (2019b) highlighted the need for more

computationally efficient techniques to address scheduling concerns.

The results of these investigations, combined with analysis of related works, suggested

that combining constructive heuristics and improvement can deliver high-quality solutions

for scheduling concerns with acceptable computational effort. The hybrid combination can

mitigate, to some extent, the problem of computational efficiency. The remaining open

question was how to design the optimization component to seamlessly integrate it with

various allocation and sequencing heuristics for addressing scheduling problems. This

question was only partially answered due to the significant role of the simulation compo-

nent, which was developed using a propriety simulation package. As a result, integrating

and testing different improvement methods was challenging. In addition, we could not

achieve the required level of automation, which resulted in high manual effort to maintain

the integrated methods. Nonetheless, the initial observations and partial evaluation were

fundamental for finalizing the design of the optimization component, which we will discuss

in the coming subsection.

3.6 Optimization and machine learning components

Usually, if the desired solutions for scheduling problems are subject to multiple objective

values, constructive heuristics may not be sufficient. In addition, adaptivity requires au-

tomation of solution generation to adhere to changes in the considered environment and

facilitate rapid decision-making processes. Therefore, the upper functionality layers of

the proposed method facilitate obtaining improved solutions for scheduling concerns in

the considered environment using the optimization component. Adaptive solutions can

be achieved after sufficient training of Deep Reinforcement Learning (DRL) technique

using the machine learning component. The requests of the upper functionality layer of

the developed methodology are handled by the ≪MESEAS Optimization and Machine

Learning Subsystem≫. This subsystem encompasses two core functional components: Op-

timization and Machine Learning components. In Figure 3.5, we discussed how the overall

architecture of the MESEAS methodology functions and highlighted the layer managers,
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which forward requests to the optimization and machine learning subsystem of the pre-

sented methodology. Figure 3.10 depicts a UML sequence diagram that describes the

interactions between various components in this subsystem and how incoming requests

are processed in general before discussing in greater detail the main components.

Object
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rpc scheduler
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Figure 3.10: UML sequence diagram of the optimization and machine learning layers.
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Starting with the MESEAS layers manager, which keeps processing incoming requests

in its online state. Upon receiving corresponding requests, it instantiates and initializes

desired instances of optimization or a machine-learning component. Based on the received

request, the initialized component retrieves the corresponding scheduling data model from

the database. The data model includes structural and behavioral data, which are required

to initiate and initialize the optimization, machine learning, and simulation components.

Then, it starts execution modules to trigger optimization or machine learning runs. We

discussed earlier that the optimization and machine learning component depends on the

simulation and heuristic subsystem for solutions evaluation and/or generation. Depending

on the type of request, solutions, individuals, or actions are scheduled by the Remote

Procedure Call (RPC). It handles the communication and the synchronization of retrieved

results from the simulation and heuristic subsystem using the simulation environment

manager, which we discussed in the previous section. As long as the optimization is not

finished or the training is not finalized, simulation requests are queued and processed by

the simulation subsystem. After completion, the intermediate and aggregated results are

processed and stored in the database to be exposed to the user. If some intermediate

results are missing, requests are pushed again to the simulation and heuristic subsystem

to ensure the integrity of the optimization or machine learning training processes. For

instance, the fitness values of some individuals of the current generation are missing.

To meet the requirement specifications of the upper functionality layers of MESEAS,

we developed evolutionary optimization and DRL encoding models to adopt these methods

for solving scheduling problems. After defining the first five elements ofMESEAS(X, T ) =

⟨SP | PI | Γ | Sim | HL | Opt ∨ ML⟩, we introduce the adoption of evolutionary

optimization methods Opt in Subsection 3.6.1 and the adoption of DRL methods ML in

Subsection 3.6.3. The developed and adopted models are then integrated into the overall

architecture of MESEAS and detailed using UML component diagrams in Subsection 3.6.2

and Subsection 3.6.4. Finally, the functionality of every component is elaborated using

UML sequence diagrams in the mentioned subsections.

3.6.1 Optimization encoding models for scheduling problems

In genetics, a genotype is an abstract representation of a set of genes that are imprinted

in an individual of some population (Stansfield, 1991, pp. 24-25). The entire set of genes

represents a chromosome (Stansfield, 1991, pp. 1). The expression and translation of these

genes in a certain environment produce a set of distinctive and measurable characteris-

tics called in genetic phenotype (Stansfield, 1991, p. 24). In evolutionary optimization, the

translation of the genotype (problem encoding) to produce the characteristics (phenotype)

of a solution for an optimization problem is obviously simplified and abstracted from nat-

ural process (Ronald, 1997, p. 44). An optimization problem is usually represented using

a direct or indirect encoding (Talbi, 2009, pp. 41-42). In direct encoding, the genotype

is translated directly to the phenotype without a decoder. In contrast, indirect encoding

would require a decoder to translate the genotype and express the phenotype (Talbi, 2009,
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p. 41). In scheduling, it is more common to rely on an indirect encoding of the problem

due to complexity and applied constraints (Talbi, 2009, p. 41). For example, sequencing

and ordering problems can be encoded using integer values (Talbi, 2009, p. 35), resulting

in a ”permutation encoding” (Ronald, 1997, p. 44). To address allocation problems, a

linear representation of discrete values may be adapted to map jobs to machines (Talbi,

2009, p. 36).

Indirect discrete encoding based on attributes markers: In the proposed method, this

encoding model is adopted and used to deal with the allocation part of scheduling prob-

lems. The genotypes are represented using discrete integer values. Some attributes of jobs

can be used as markers to develop the encoding. For instance, we rely on the family-type

(e.g., fg, Dpr) features of jobs to encode the problem (cf. Subsection 3.4.1). The genotypes

are grouped into a vector of variable size to form the chromosome. The chromosome is

expressed by the vector Φattr as presented in Equation 3.5. The size of the vector corre-

sponds to the size of the used marker |f | in a considered problem instance. Each genotype

Φφ represents the allocation of a family fg that comprises a set of jobs Jj,g ⊂ J to a

machine Mi ∈M on the corresponding processing stage.

Φattr =
[
Φφ, · · · , Φ|f |

]
: (φ = 1, 2, . . . , |f |) ∧ (Φφ = 1, 2, . . . ,m) (3.5)

Indirect discrete encoding based on allocation heuristic markers: A scheduling problem

is solved subject to a scheduling period T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , |T |}. Based

on the design of the proposed methodology, we rely on the discrete event simulation

method to apply the scheduling data model and simulate the scheduling period. This

encoding is developed by dividing the scheduling period into decision points and applying

heuristic markers. In every decision point, the utilized constructive allocation heuristic

is changed, and a new allocation map is generated. This encoding model integrates the

optimization, the constructive heuristic, and the simulation functionality layers of the

proposed methodology (cf. Subsection 3.1.3 and Figure 3.1).

Let A =
{
Aa, . . . , A|A|

}
: ∀ a ∈ {1, . . . , |A|} denote a set of a number of construc-

tive allocation heuristics available in the heuristic library components of MESEAS. Every

element Aa denotes some allocation heuristics in the heuristic library component (cf. Sec-

tion 3.5). The genotypes are represented using discrete integer values and rely on the

allocation heuristics as markers for the encoding. The chromosome shape is represented

by a vector that combines the genotypes. Equation 3.6 presents the shape of a solution

individual ΦA using this encoding model. The size of the vector depends on the number

of decision points during a scheduling period T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , |T |}. Each

genotype Φφ indexes an allocation constructive algorithm Aa, which can be used at the

decision point Tφ.

ΦA =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , |T |) ∧ (Φφ = 1, 2, . . . , |A|) (3.6)
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Multi-population encoding based on allocation and sequencing heuristic markers: Fol-

lowing the same principles, this encoding model extends the previous one and depends

on the concept of decision points over a scheduling period T =
{
Tt, . . . , T|T |

}
: ∀ t ∈

{1, . . . , |T |}. At each decision point, we can utilize different constructive allocation and

sequencing heuristics. This encoding further incorporates the sequencing heuristic com-

ponent of MESEAS. It exposes the available sequencing heuristics to be utilized by the

simulation component to generate improved solutions for scheduling problems (cf. Sub-

section 3.1.3 and Figure 3.1).

Let B =
{
Bb, . . . , B|B|

}
: ∀ b ∈ {1, . . . , |B|} denotes a set of b number of construc-

tive sequencing heuristics available in the heuristic library components of the presented

methodology. Each Bb represents a sequencing heuristic, which is integrated into the

heuristic library component (cf. Section 3.5). An indirect discrete encoding is used to rep-

resent the genotypes that are grouped to shape the chromosome of a sequencing solution

individual. Equation 3.7 presents the shape of a sequencing solution individual ΦB using

this encoding model. The size of the vector depends on the number of decision points

during a scheduling period T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , |T |}. Each genotype Φφ

encodes a discrete integer value marking an available sequencing constructive algorithm,

which can be used at the decision point Tt.

ΦB =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , |T |) ∧ (Φφ = 1, 2, . . . , |B|) (3.7)

The overall encoding model combines the allocation ΦA and sequencing ΦB repre-

sentation. It relies on two interdependent populations to construct the final solution of a

scheduling problem. The evolutionary operators, including selection, crossover, and mu-

tation, are applied to two independent populations of solution individuals. This encoding

results in a cooperative coevolutionary implementation of multiple populations. To evalu-

ate the fitness of an allocation solution individual, the sequencing solution individual must

be evaluated at the same time. The decoding and evaluation of both solution individuals

yield the construction of the overall solution of a scheduling problem. The multi-population

encoding model can be expressed by the set Φ =
{
ΦA, ΦB

}
: subject to Equation 3.8.

ΦA =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , |T |) ∧ (Φφ = 1, 2, . . . , |A|) ∧ ΦA ∈ Φ

ΦB =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , |T |) ∧ (Φφ = 1, 2, . . . , |B|) ∧ ΦB ∈ Φ

(3.8)

3.6.2 Design of the optimization component

The discussed encoding optimization models are integrated into the overall architecture of

MESEAS following modular design. Figure 3.11 presents the structure of the optimization

component using a UML component diagram. The optimization component of MESEAS

consists of the optimization model and the evaluation model subcomponents. It orches-

trates multiple optimization instances based on the received configuration from MESEAS

layers manager. The optimization model subcomponent comprises several logical modules,
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such as the scheduling model, the optimization model initializer, the algorithm initializer,

and the execution module. The scheduling model is designed to pre-process relevant data

from the received scheduling data model, which is used to configure the optimization al-

gorithm appropriately. Based on the received scheduling problem, encoding model, and

pursued objective values, the optimization model initializer instantiates evolutionary al-

gorithm operators. Meanwhile, it also triggers the evaluation model subcomponent to

initialize and execute the evaluation model component. The evaluation model acts as a

logical interface between the optimization model and the simulation subsystem.

We developed the main components of MESEAS methodology following modular

design principles to achieve flexibility. For instance, we may utilize various simulation

engines, which rely on Java or Python dependencies for different scheduling problems.

As depicted in Figure 3.11, the optimization provides different evolutionary algorithms

such as classical GA originally discussed by Holland (1975) and Non-dominating Sorting

Genetic Algorithm three (NSGA III) originally presented by Deb and Jain (2014), and a

multi-population variation of the NSGA III. We previously discussed that it is common

to solve the allocation and the sequencing part of a scheduling problem independently

(Nahhas et al., 2022a). For instance, we adopted the NSGA III to deal with the allocation

and sequencing subproblems using two independent populations.

The modular design facilitates flexible integration and customization of additional

evolutionary algorithms by implementing reference algorithms and developing the desired

encoding model. The optimization model is developed to be utilized by users with dif-

ferent knowledge levels in optimization. Experts can, for instance, pass configuration to

customize the selection operator, cross-over function, and mutation function of the se-

lected evolutionary algorithm. If basic configurations are passed, the optimization model

relies on our default operators. After initializing the optimization model, an instance of

the selected algorithm is initialized with either weighted-sum or muti-objective modes.

The algorithm also defaults to multi-objective if the user does not supplement weights to

the selected objective values. After initializing the optimization model and desired opti-

mization algorithm, the optimization component relies on the execution module to start

executing optimization as presented in Figure 3.11.

The optimization layer of MESEAS methodology utilizes parallelization techniques

for multi-optimization experiments since evolutionary algorithms are eventually stochas-

tic optimization techniques. The adopted client-server architecture of the optimization

model and the evaluation model ensures the distribution of evaluating candidate solutions

between available physical resources, which are running simulation instances. This archi-

tecture is fundamental to achieving scalability of physical resources and possibly relying

on cloud resources, if necessary, for critical scheduling concerns.
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Figure 3.12 illustrates the rationale of the optimization component during execution

using a UML sequence diagram. The presented figure shows the lifeline, exchanged data,

and the overall logic of the most significant modules of the optimization component. As

long as the optimization instances are online, they await a request from the MESEAS

layers manager to start new optimization.
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Figure 3.12: UML sequence diagram of the optimization component.
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Upon receiving a request with the corresponding configurations, the layers manager

retrieves the corresponding scheduling model from the database and passes it to the opti-

mization component to initialize an optimization model. Based on the configurations, the

necessary encoding model is retrieved to initialize the requested improvement algorithm

with the requested encoding and start the client execution module. Then, the optimiza-

tion model signals the evaluation to initialize and prepare the server execution module to

be exposed to the optimization model.

Finally, the optimization process starts in the inner loop as depicted in Figure 3.12.

The requested evolutionary algorithm starts with randomly generated solution individu-

als to form the first population. Afterward, the solution individuals of a generation are

passed to the simulation environment manager, which distributes the evaluation of solu-

tion individuals among available simulation instances in the MEASEAS simulation and

heuristic subsystem. Once all solutions individuals of a generation are evaluated and as-

signed fitness values based on the objective function, the results are pushed back to the

optimization instance to execute evolutionary operators. After applying selection, cross-

over, and mutation functions, the next generation of solution individuals is ready to be

evaluated by the simulation and heuristic subsystem.

This process is repeated until the maximum number of generations is reached to

break the optimization process. Here, one could rely, for instance, on some convergence

functions to break the optimization process automatically. The developed encoding models

significantly influence the overall optimization process and define the shape of a solution

individual (Osaba et al., 2021, p. 8; Talbi, 2009, p. 76). In the presented methodology,

three encoding models are proposed and evaluated to solve scheduling problems.

3.6.3 DRL scheduling and evaluation models

To leverage the potential of DRL techniques for solving scheduling problems, we have

to formulate a DRL scheduling model. Since most of DRL applications are evaluated in

game-like environments, the objective is to transform the scheduling problem and develop

an environment in which the DRL technique can be trained. DRL methods build up on

the Markov Decision Process (MDP) to formalize a problem (Papadimitriou and Tsitsiklis,

1987a). An MDP model can be expressed using a tuple ⟨S | A | T | R ⟩. Where S denotes

the state of the environment that is perceived and observed by a DRL agent. It is often

referred to as observation space, which is exposed to a DRL agent. A represents the

shape of the action space that regulates how a DRL agent interacts with its surrounding

environment. At some state of the environment s ∈ S , the action taken by the agent

a ∈ A is translated by a transition function T such that T (st , at , s ′t+1). After taking

the action and applying the transition function s a−→ s ′, the agent receives the current

observation of the state s ′. Based on the observation space and taken action, the agent

gets some reward r , which is computed using the reward function R . Based on the MDP

notations and the presented data model for scheduling, the action space, observation space,

transition function, and reward function will be formalized in the coming subsections.
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The state and observation space ⟨S = (PI∪X∗ ∈ X) |A | T |R ⟩: The observation space of

a DRL agent is defined based on the shape of the problem instance PI, and the solution of

the scheduling problem X ∈ X as detailed in Section 3.4.2 and Section 3.4.2, respectively.

The problem instance and solution are obviously formalized to address scheduling concerns

of the considered scheduling environment SP (cf. Subsection 3.4.1). After initializing a

DRL agent using the presented methodology, the agent is exposed to the problem instances

before starting the training. Then, after every action a ∈ A , the constructed solution

X∗ ∈ X is passed to the agent based on the defined space of observation. The observation

space following the MDP notation is expressed as S = (PI ∪X∗ ∈ X).

Action space based on allocation heuristics ⟨S | A = HL (ΦA
φ ) | T | R ⟩: As discussed

earlier in the formulation of the encoding models for optimization, scheduling concerns

are addressed given some scheduling period T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , |T |}. To

integrate the functionality of the optimization component with the machine learning com-

ponent, the definition of the action space is crucial. The optimization component is

developed using evolutionary algorithms and relies on the developed encoding models to

search for high-quality solutions for solving scheduling problems. To utilize the obtained

historical solutions from the optimization component for training a DRL agent, a compat-

ible action space must be developed. Therefore, we rely on the discussed encoding models

for solving scheduling problems, which we discussed in Subsection 3.6.2.

The action space of the adopted DRL methods is defined using constructive allocation

heuristic markers. The HL component of the presented methodology encompasses the

logic of a set of allocation constructive heuristic A =
{
Aa, . . . , A|A|

}
: ∀ a ∈ {1, . . . , |A|}.

Given a selected set of allocation heuristics in HL, a DRL agent decides which allocation

algorithm should be used at every decision point Tφ ∈ T during a scheduling period. It

implies that the number of possible actions at a decision point Tφ ∈ T depends on the

number of selected allocation heuristics. An agent takes an action represented by a discrete

integer value ΦA
φ which is pounded by the selected set of allocation heuristics such that

∀ Φφ ∈ {1, . . . , |A|} (cf. Subsection 3.6.1 and Equation 3.6).

In conclusion, if we map the definition of the action space in MEASES to the MDP

notation, it can be expressed as A = HL (ΦA
φ ). Every action instantiates some allocation

heuristic from the selected set A, which must be used to allocate jobs to machines at

decision point Tφ. This formulation of the action space is sufficient if scheduling concerns

in the considered environment do not require sequencing. Otherwise, an extended encoding

that includes sequencing heuristics is discussed in the next subsection.

Action space based on allocation and sequencing ⟨S | A = HL (ΦA
φ , Φ

B
φ ) | T | R ⟩: Sup-

pose the operations of the considered environment are subject to sequencing. In that case,

we may either rely on a fixed sequencing algorithm or develop an extended encoding of

the action space, which facilitates the utilization of sequencing algorithms. This encoding

follows the same logical design as the second optimization encoding model. The objective

is to sustain a compatible shape of the action space, in case we want to rely on both com-
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ponents to address scheduling concerns in a considered environment. However, enlarging

the shape of the action space increases the complexity of the problem, which a DRL agent

will be trained to solve.

We previously defined the set of available sequencing heuristic in theHL component of

the MESEAS by B =
{
Bb, . . . , B|B|

}
: ∀ b ∈ {1, . . . , |B|}. To extend the previous definition

of the action space, a DRL agent must be exposed to two controllers, A and B, to interact

with the environment. At a decision point Tφ ∈ T , a DRL agent dictates which allocation

algorithm Aa ∈ A and which sequencing algorithm Bb ∈ B must be used to schedule jobs

on machines. Two discrete integer values represent the action a = (ΦA
φ , ΦB

φ ) that are

decoded by the HL to instantiate and utilize the corresponding allocation and sequencing

heuristics, Aa and Bb respectively. The action space definition using this encoding can be

summarized by mapping it to the MDP tuple notation such that: A = HL (ΦA
φ , ΦB

φ ).

According to the MDP model, the agent’s actions must be evaluated using the transition

function T , which we will discuss in the coming subsection.

Transition function and the DRL environment ⟨S | A | T = Sim (Aa, Bb, Tφ) | R ⟩: A DRL

agent depends on a transition function, which translates and applies its actions in the

corresponding scheduling environment. The presented methodology relies on simulation

techniques to provide a transition function and a training environment for a DRL agent.

Our objective was to integrate all functionality layers of the presented methodology and

combine the utilization of simulation, heuristic, and improvement methods for address-

ing scheduling concerns. To start training a DRL agent using MESEAS, the simulation

component instantiates a simulation model. This simulation model is a digital represen-

tation of a considered scheduling environment. It relies on the definition of the SP (cf.

Subsection 3.4.1).

Based on the defined action space and observation space, a DRL agent may take an

arbitrary actionHL (ΦA
φ , Φ

B
φ ) at Tφ. The actions of the agent dictate which allocation and

sequencing algorithm may be used to deal with scheduling concerns. The simulation model

of the considered environment decodes the received actions. After decoding the actions

at time Tφ, the obtained Aa and Bb are employed during the simulation to allocate and

sequence jobs to machines. The training of a DRL agent is an iterative process. Therefore,

this process is repeated until some breaking criterion is met. After sufficient training, a

DRL agent may drive an appropriate scheduling policy πθ that can be used to deal with

scheduling concerns. The quality of the achieved scheduling policy depends on the reward

value, which the agent seeks to maximize. This reward value is computed based on a

well-defined reward function, which we will elaborate on in the coming subsection.

Reward function ⟨S | A | T | R = −Γω ⟩: Finally, the last element in the MDP tuple

notation is the reward function. The reward function is used to estimate the quality

of actions taken by a DRL agent during the training. A DRL agent is aware of its

possible actions based on a well-defined action space A . The transition function T is

used to map the actions of the agent to its corresponding environment. Based on a
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scheduling environment SP , a simulation model is built to prepare an environment for

a DRL agent. This transition function generates an allocation and a sequencing map of

jobs to machines, which is subject to some selected objective measures Γ =
{
γi, . . . , γ|Γ|

}
:

∀ i ∈ {1, . . . , |Γ|}. At each step s ∈ S , the agent seeks to maximize its reward subject to

the reward function. Therefore, the reward function must be defined as a maximization

function of the normalized objective values. Thus, we can rely on the weighted sum

objective function discussed in Section 3.4.2 to formulate the reward function R = −Γω

as depicted in Equation 3.9.

argmax
X∈X

Γ(X) = argmax
X∈X

− |Γ|∑
i=1

ωi · γi(X)

 (3.9)

Subsection 3.4.3 detailed the definition of the presented methodology for solving

scheduling problems. Given the definitionMESEAS(X, T ) = ⟨SP | PI | Sim | HL |ML |
Γ⟩, we may summarize and map the elements in this definition to the MDP model as pre-

sented in Equation 3.10

⟨S = (PI ∪X∗ ∈ X) | A = HL (ΦA
φ , Φ

B
φ ) | T = Sim (Aa, Bb, Tφ) | R = −Γω ⟩ (3.10)

3.6.4 Design of the machine learning component

The machine learning component of the MESEAS methodology comprises two main sub-

components, namely, a DRL model and a DRL environment. The design and architecture

of these two subcomponents rely on the previously mapped MDP model to the core com-

ponents of the presented method (cf. Equation 3.10). Figure 3.13 depicts the main logical

modules of the ML component using a UML component diagram.

The modularity in the design of the component ensures further development and

maintenance of adopted DRL algorithms. It also facilitates the adoption and integration

of further state-of-the-art DRL methods without restructuring the entire architecture.

The component’s architecture is developed and implemented using client-server computing

architecture to facilitate the distribution of workload generated by training a DRL agent

and evaluation of actions between available physical computing resources. As illustrated

in Figure 3.13, the ML component is also managed by the MESEAS layers manager,

which routes requests and fetches required data for the initialization and execution of the

machine learning subcomponents.

The DRL environment subcomponent encompasses the DRL scheduling model, the

evaluation model initializer, and an environment server. The DRL scheduling model con-

sumes supplemented configuration from the layers managers and initializes the shape of

the observation space for a given scheduling problem based on the received data. As de-

picted in Figure 3.13, the evaluation model initializer pre-processes the retrieved encoding

model and the objective values of the received configuration. Then, it designates the step

of a DRL agent, the rest method to start a new training episode, the reward function used
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to evaluate the actions of an agent, and the action space used by the agent to interact with

the environment. After initialization is completed, the evaluation model initializer trig-

gers the DRL model subcomponent and executes the environment server to start awaiting

actions from the DRL Model subcomponent.

+ ML Component: instances [1..*] 

DRL    Model

:Training distribution

DRL Environment

Query scheduling model according to request

Schedule actions
to be simulated

Pull for results

A3C PPO MARWIL

:Evaluation
Model Initializer

:DRL Scheduling        
Model    

actions space

:Environment (server)

expose
step

expose
reset

Pass scheduling problem
and reward function

:MESEAS
DB

reward
function

expose
observation

:Econding
Models

:MESEAS
Layers Manager 

observation action

:Environment (client)

reward

Retrieve encoding
for action spaceCall model initializer

and pass configuration

Call DRL scheduling model
and pass problem

:RPC Scheduler

R
eq

ue
st

 e
va

lu
at

io
n 

of
 a

ct
io

ns

Pa
ss

 o
bs

er
va

tio
ns

 a
nd

 re
w

ar
d

C
al

l t
o 

in
iti

al
iz

e 
an

d 
ex

ec
ut

e 
re

qu
es

te
d 

D
R

L 
m

od
el

Initialize and exectue

Write results to DB

OrOr

Connect Connect Connect

Figure 3.13: UML Component diagram of the DRL component.



134 Methodology for Self-Adaptively Solving Multi-Objective Scheduling Problems

The DRL environment further acts as a logical interface between the DRL model

and the simulation and heuristic subsystem of MESEAS methodology. The DRL model

sub-component consists of several logical modules: The training distribution module,

the adopted Asynchronous Advantage Actor-Critic (A3C) execution module, the adopted

Proximal Policy Optimization (PPO) execution module, the adopted Monotonic Advan-

tage Re-Weighted Imitation Learning (MARWIL) execution module, and the environment

client module (cf. Figure 3.13). The DRL model is initialized and executed based on the

configuration passed on by the layers manager and the DRL environment subcomponent.

Based on the configurations received by the layers manager, the DRL environment subcom-

ponent triggers the initialization of a trainer instance/s of the desired algorithm. We rely

on a parallelization framework that instantiates multiple instances of the selected agent

and handles merging training results. Some implementation details will be discussed in

Chapter 4. Finally, an environment client is executed to start the training process. The

environment client relies on the exposed interface by the DRL environment to send actions

and receive observations and rewards. The DRL environment subcomponent pre-processes

and synchronizes the flow of actions, observations, and rewards between the DRL model,

the simulation, and the heuristic subsystem through an RPC scheduler.

Figure 3.14 depicts the execution of the machine learning component using a UML

sequence diagram. The sequence diagram highlights the interactions, the lifelines, and

the exchange of data between the central logical modules of the machine learning com-

ponent. Based on the configuration, the machine learning instance is online, awaiting

to start training agent/s. Upon receiving a request from MESEAS layers manager with

the required configurations, the ML component initializes a DRL environment. The DRL

environment subcomponent retrieves the requested encoding model to construct a DRL

scheduling model and an evaluation model. Then, a DRL model is initialized and sig-

nals its readiness to start training. The ML component of MESEAS methodology is also

designed to be used by users with different levels of expertise in the field of DRL.

Finally, the DRL training is initiated as illustrated in the loop in Figure 3.14. Actions

of the DRL agents are generated by the DRL model subcomponents and passed to the

DRL environment server. The DRL environment component schedules received actions for

evaluation by MESEAS simulation and heuristic subsystem through the RPC scheduler.

The actions are received by the simulation environment managers and processed by the

available simulation instances of this DRL environment. Upon completing the evaluation

of actions, the corresponding observations and rewards are passed to the DRL environment

component. The final results are processed and supplied to the DRL model subcomponent.

This rationale is repeated until the training is completed. Usually, the breaking creation

to stop training an agent can be defined based on the number of training steps or based

on the quality of achieved solutions.

The formulation of the DRL scheduling model plays a major role in successfully

training a DRL agent. DRL techniques are often evaluated and adopted to interact with

game-like environments (Kanervisto et al., 2020, p. 479). Therefore, we developed various

DRL encoding models with different levels of complexity to address scheduling problems.
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The DRL problem encoding must be compatible with the problem encoding used in the

optimization component. The compatibility facilitates combining the utilization of DRL

methods with evolutionary methods to address scheduling concerns. The developed DRL

encoding models expose the agent to a scheduling problem, like a game in which the agent

interacts with a simulation instance and selects allocation and/or sequencing heuristics

for scheduling during a scheduling period.
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3.6.5 Design evaluation of optimization and machine learning components

The designs of the optimization component and machine learning components are eval-

uated during the prototyping and implementation stage of MESEAS methodology. Our

initial investigations of scheduling problems show that constructive heuristic techniques

lose performance when the scheduling problems are solved considering multiple objective

values (Nahhas et al., 2017a; Nahhas et al., 2018a). The presented results in both research

largely agree with the findings presented by (Varasteh and Goudarzi, 2017).

In (Nahhas et al., 2018b), we explored combining the adoption of heuristic and im-

provement methods for solving scheduling problems in the manufacturing environment

⟨HFS4 (P4, P5, 1, 1) | fg,h, brkdwn | Cmax,
∑
Tj⟩ and investigated the impact of con-

straints on the computational effort required to solve scheduling problems. Shortly after,

we proposed the first prototype of the artifact to address scheduling problems in cloud

environments in (Nahhas et al., 2019a). In this research, we systematically analyzed

switching between different constructive heuristics during a scheduling period to achieve

better performance. The algorithm selection at each switching point was made using

a control strategy based on GA. The scheduling problem was considered to be subject

to the minimization of energy consumption while considering performance constraints

⟨Pm | Dpr,M
C | E,U⟩. The experimental results showed that utilizing different heuristics

during a scheduling period minimizes energy consumption while considering performance

constraints compared to the individual heuristics. We presented extended evaluations of

the design and the rationale of the optimization component in (Nahhas et al., 2021a) and

(Nahhas et al., 2021b). The former study investigated addressing large-scale single-stage

scheduling problems in cloud environments ⟨Qm | MC | E, U⟩. The problems are solved

to minimize the overall energy consumption while considering performance concerns. The

later study presented an extensive evaluation of combining constructive and improvement

methods with simulation techniques for solving scheduling problems with multiple objec-

tive values ⟨HFS4 (Q5, Q5, Q5, P2) | fg,h | Cmax, MS, T, U⟩. Detailed insights into

the computational results will be discussed in the next chapter (cf. Chapter 4).

The design of the machine learning component followed up after the optimization

component and the new implementation of the artifact using open-source technologies.

In (Nahhas et al., 2022b), the first prototypical implementation of the machine learning

component is presented. In this research, we aimed to investigate the adoption of DRL

methods for solving scheduling problems subject to multiple objective concerns. We devel-

oped a DRL scheduling model and adopted PPO, resented originally in (Schulman et al.,

2017b) and A3C, which is proposed by (Mnih et al., 2016). The design of the machine

learning component, which is based on DRL, is evaluated for solving multi-stage schedul-

ing problems in manufacturing ⟨HFS4 (Q5, Q5, Q5, P2) | fg,h | Cmax, MS, T, U⟩.
The DRL agent interacts with an environment, which is provided by the simulation com-

ponent, and selects allocation and sequencing heuristics to be used during the schedul-

ing period. The computational results show that the agents learn to solve the men-

tioned scheduling problems given the formulated DRL scheduling model, resulting in a
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successful scheduling policy. The performance of the ML component is compared to re-

lated works presented by Lang et al. (2021b) for solving a two-stage scheduling problem

⟨HFS2 (P5, P4) | fg,h | Cmax, MS, T ⟩. The presented research was awarded as the best

paper award by the international scientific committee of the conference in the analytic and

decision science track. Further insights into the results in terms of objective values will

be thoroughly discussed in Chapter 4.

3.7 Summary of MESEAS design

The problem statement and thesis objective of the presented artifact were derived based

on the analysis presented in the first and second chapters of the thesis. This chapter pre-

sented and discussed extensively the design of the artifact before implementation to achieve

the research objective of the thesis. First, the function and nonfunctional requirements

were detailed and grouped to construct the overall functional structure of the artifact.

The initial conceptual design of MESEAS to integrate simulation, heuristic, improvement,

and machine learning methods was presented using a UML information flow diagram.

This conceptual design was later detailed from an engineering perspective using UML

component diagrams to present the components grouped into subsystems of MESEAS.

Subsequently, the designs of components in MESEAS were thoroughly discussed and elab-

orated using mathematical models, pseudocode, UML component diagrams, and UML

sequence diagrams. Throughout the design phase of MESEAS components, preliminary

evaluations were conducted to verify intermediate designs and identify possible challenges.

Hence, the modeling and simulation components section, the heuristic library components

section, and the optimization and machine learning components sections were concluded

with design evaluations.
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4 Evaluation

The work at hand relies on the Design Science Research (DSR) framework presented by

von Hevner et al. (2004) to conduct the research systematically and conclude the final

artifact. von Hevner et al. (2004, p. 78) DSR framework relies on the suggested main

design activities by March and Smith (1995, p. 255) to produce IT artifacts. Later on,

this practice was well-established by the DSR research community and regarded as an

evaluation pattern (Build-Evaluate). This evaluation pattern was later detailed with eval-

uation activities, input, output, exemplary evaluation criteria, and exemplary evaluation

methods in the work presented by Sonnenberg and vom Brocke (2012, p. 393). This work

adopts the DSR framework by von Hevner et al. (2004) and relies on the detailed evalu-

ation pattern presented by (March and Smith, 1995). Table 4.1 displays the evaluation

activities suggested by Sonnenberg and vom Brocke (2012) with its corresponding input

and presumed output at each evaluation activity.

Table 4.1: DSR evaluation activities adapted based on Sonnenberg and vom Brocke (2012)

Activity Input Output

Eval 1 Problem statement, research need, de-

sign objectives, design theory, and ex-

isting solution.

Justified problem statement, research

gap, design, and objectives.

Eval 2 Design specification, design objectives,

design tool, and design methodology.

Validated design specification, justified

design tool/ methodology

Eval 3 Instance of an artifact (prototype) Validated artifact instance in an artifi-

cial setting (proof of applicability)

Eval 4 An instance of an artifact Validated artifact instance in a natural-

istic setting (proof of usefulness)

The first evaluation activity (Eval 1 ) requires a clearly defined problem statement

or an observation of a problem, which necessitates research and development effort to be

addressed. This problem must be associated with a design objective and theory. The

presumed outcomes of this evaluation activity include a justified problem statement, a

research gap, a design, and an objective. The first evaluation activity will be summarized

in Section 4.1. The second evaluation activity (Eval 2 ) necessitates a specification of the

designed artifact in the form of functional and non-functional requirements. These design
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specifications must be associated with design objectives that are incorporated in the body

of the proposed research artifact. The design specifications of the artifact are developed

using clearly stated design tools and a methodology. The results of this evaluation activity

demonstrate a validated design specification that is based on validated design tools and

methodology. The second evaluation activity will be concluded in Section 4.2.

The third evaluation activity (Eval 3 ) conditions an instance of the artifact during

development to ensure that the design specifications can be realized and the artifact can

be applied (proof of applicability). The fourth evaluation activity (Eval 4 ) conditions

an instance of the developed artifact to ensure that the design specifications are realized

and the artifact can be applied in the respected environment to address business concerns

(proof of usefulness). The third evaluation activity spans multiple sections to demonstrate

the instantiation and utilization of the presented methodology for addressing scheduling

concerns in the cloud and manufacturing environments. The fourth evaluation activity is

partially covered in the manufacturing application field.

The detailed evaluation pattern of Sonnenberg and vom Brocke (2012) largely builds

up on the DSR process model presented originally by (Peffers et al., 2007, p. 93). The

presented evaluation activities are also associated with certain evaluation criteria and

methods, which can be adopted during every step of the research and development pro-

cesses of the artifact (Sonnenberg and vom Brocke, 2012). Sonnenberg and vom Brocke

(2012) suggested the evaluation criteria for DSR artifacts based on analysis of related

works and evaluation patterns that rely on the work presented by (March and Smith,

1995, p 255). Sonnenberg and vom Brocke (2012) emphasized the nature of the evaluation

setup, which is applied to evaluate an artifact.

Here, the authors defined the nature of the evaluation activity following the concept

of the three realities originally discussed by Sun and Kantor (2006, p. 616). The three

realities to which a DSR research artifact is evaluated subject to are: ”real system”, ”real

problems”, and ”real users” Sun and Kantor (2006, p. 616). The concept detailed an

evaluation setup of a proposed research artifact in the IS discipline. The authors here

aimed to stress the naturalistic evaluation of an artifact (Venable, 2006, p. 186). Table 4.2

details the evaluation steps and activities that are conducted to evaluate the presented

methodology. Here, we want to stress the partial nature of the fourth evaluation activity.

Based on the adopted evaluation pattern by (Sonnenberg and vom Brocke, 2012) and

the concept of three realities, the fourth evaluation step does not meet the full integration

of the artifact in an organizational context
”
... artifact instances that are fully embedded

within the organizational context.“ (Sonnenberg and vom Brocke, 2012, p. 396). Despite

fulfilling the requirements of three realities, a proper evaluation in the context of the

fourth activity would require full integration of the artifact in an organization. Then,

systematically monitoring its impact on the daily operation of the organization would

conclude the fourth evaluation activity. The full integration of the artifact and monitoring

of its performance are future research and development activities. Hence, this constitutes

a limitation in the evaluation of the presented artifact.
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Table 4.2: Applied evaluation activities in this work

Activity Evaluation criteria Evaluation methods

Eval 1 Applicability, suitability, importance,

and novelty.

Literature analysis and descriptive in-

vestigation of existing methods.

Eval 2 Feasibility, accessibility, understand-

ability, clarity, and consistency.

Logical reasoning, descriptive analysis,

demonstration, and simulation.

Eval 3 Suitability, solution quality, effective-

ness, and efficiency.

Demonstration with a prototype, and

experiment with a prototype.

Eval 4 -

(partial)

Applicability, efficiency, and fidelity

with real-world phenomenon.

Case study

4.1 Summary of the first evaluation activity (Eval 1)

The first evaluation stage starts with a problem statement or consistent observation of

the problem that originated from the application environment. The problem statement

must reflect the business needs to derive appropriate requirement specifications in the

later stages. The problem statement is introduced and elaborated in Chapter 1. From

a research perspective, most scheduling problems are complex and NP-hard combinato-

rial optimization problems. From a practical perspective, scheduling activities are daily

decision-making tasks in the normal operation of cloud, manufacturing, or service environ-

ments. These two perspectives are thoroughly discussed throughout the first and second

chapters of the presented work (cf. Chapter 1 and Chapter 2). The main objective of

their extensive discussion and analysis is to demonstrate the importance and the relevance

of scheduling problems. Establishing the importance and relevance of the problem is the

first step in pursuing proper solution methods.

In the second chapter, we dedicated Section 2.3 to discuss the prominent conventional

solution methods of scheduling problems and highlight their potential and limitations.

Conventional solution methods are either computationally too expensive or lack the quality

of the solution for solving complex scheduling problems. Thus, their suitability and often

applicability in addressing complex scheduling concerns are limited. Therefore, we seek a

solution methodology that integrates the utilization of simulation, heuristic, improvement,

and machine learning methods for addressing scheduling concerns. To achieve this research

objective, we explored and studied the relevant foundations of the knowledge base to infer

proper design and rely on the corresponding theories.

Therefore, we conducted a descriptive investigation of prominent methods to analyze

their performance in solving scheduling problems (cf. Section 1.4) and validate the initial

observations. The obtained descriptive overview of the existing methods was simultane-

ously compared against the findings of the literature analysis. The concluded observations
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in Subsection 2.3.3 are consistent with many recent research endeavors, which justify the

problem statement and highlight the research gap. As a result, research and development

activities to realize the intended design and achieve the stated objectives are required.

The results of these analyses are published to receive and incorporate feedback from the

research communities. Based on the problem statement, research objective, and the inves-

tigation of conventional solution methods, a final analysis of the literature is conducted

to identify the most significant works related to the proposed design. Section 2.5 demon-

strated the adopted methodology and results of the literature review. The section discussed

identified related works and established the novelty of the intended design.

4.2 Summary of the second evaluation activity (Eval 2)

Based on the problem statement, the research objective of the thesis is formulated. To

accomplish the stated objective in DSR, research questions must be answered using proper

design methodology (cf. Subsection 2.5.1). Based on the formulated research questions,

the design specifications of the intended artifact are formulated. These specifications are

profoundly discussed by means of functional and non-functional requirements, which the

intended artifact must fulfill (cf. Subsection 3.1.1 and Subsection 3.1.2). To associate the

stated design specifications with the research objective, we grouped them into functionality

layers that define the overall functional structure of the intended methodology and dictate

the design objective of the thesis (cf. Subsection 3.1.3).

The intended artifact was developed with modularity in mind to ensure that functional

components are logically independent and easy to operate and maintain. To achieve the

artifact’s design objective, we utilized various design tools and methodologies to define

the overall structure and detail its components. First, we relied on Unified Modelling

Language (UML) as a design tool to sketch the initial blueprints of the artifact using

UML information flow diagrams and component diagrams (cf. Section 3.2 and Section 3.3,

respectively). Based on the abstract representation and the initial blueprint of the artifact,

we utilize mathematical modeling a design tool to develop the logical design and specify the

rationale of the artifact. Mathematical modeling is well suited to describe the necessary

data structures for integrating methodologically different techniques such as simulation,

heuristic method, evolutionary method, and DRL methods (cf. Section 3.4). Based on

the defined data structures of the artifact, we relied on mathematical modeling to detail

the rationale of the individual components of the artifact.

Based on the artifact’s overall data structures and the overall design blueprint, we

utilized UML component diagrams to infer the initial blueprints for the simulation, op-

timization, and machine learning components. The design of the heuristic library com-

ponent is presented using mathematical modeling and pseudocode convention to ensure a

sufficient level of detail and clarity. Finally, UML sequence diagrams are to explain the life-

lines and information flow between various components during executions (cf. Section 3.4,

Section 3.5, and Section 3.6).

The objective of Eval 2 activity is to validate the proposed design specification of
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the intended artifact and justify the design tools and methodology before starting the

development phase. In summary, a mathematical modeling design tool is fundamental to

formalizing the required data structures of the artifact design. We utilized UML design

tools to present information flow, component, and sequence diagrams for the intended

components of the artifact. That is to achieve understandability, clarity, and consis-

tency. Meanwhile, pseudocode and mathematical modeling are suitable for formalizing

data structures and the rationale of developed and adopted algorithms. Eval 2 activity

is also a bridge between the design and construction phases in the process of artifact’s

development (Sonnenberg and vom Brocke, 2012, p. 392). Therefore, during the design

phase of the research artifact, we evaluated its components and investigated their inte-

gration. We relied on simulation methods for evaluation and compared the initial design

of components against the existing conventional solution methods. We summarized the

conducted evaluations in Subsection 3.4.5, Subsection 3.5.3, and Subsection 3.6.5. The

collected evaluation results are published to communicate the findings with research com-

munities and integrate further feedback. The conducted intermediate evaluation ensures

the feasibility, accessibility, and understandability of the proposed approach.

4.3 Implementation and deployment overview of the artifact
(Eval 3.1)

The final prototype of the presented methodology is implemented using open-source and

cloud-native technologies. The overall objective is to facilitate the deployment of MESEAS

methodology using in-house infrastructures, cloud infrastructures, or hybrid infrastruc-

tures, where cloud resources are scaled down if they are not needed. Figure 4.1 depicts an

execution overview of the prototype. We developed the final prototype to support multi-

architecture infrastructure. It can be deployed and hosted on heterogeneous hardware in

terms of computer architecture.
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Figure 4.1: Execution overview of MESEAS methodology.
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Depending on the hardware and the deployment strategy, virtualization is recom-

mended but not mandatory to achieve scalability and full abstraction from the underlying

infrastructure. On top of the virtualization, we relied on Linux operating systems to

host and maintain the dependencies of MESEAS methodology. To achieve lightweight

integration and full isolation from hardware, we adopted containerization techniques to

incorporate the various independent modules of MESEAS subsystems. Containerization

facilitates efficient execution, maintenance, and further development of various Simulation

(Sim), Optimization (Opt), and Machine Learning (ML) dependencies and required tech-

nologies. Finally, the application level in the figure comprises the core logical modules

of the MESEAS methodology, which we extensively discussed in the design chapter (cf.

Chapter 3). They are managed independently from their underlying required technologies

to achieve efficiency in operation and maintenance Subsection 4.3.2.

4.3.1 Multi-architecture deployment

We will briefly discuss the two most significant computer architectures and their differ-

ences to elaborate on the potential of combining them. IBM introduced the computer ar-

chitecture of the IBM system/360, outlining distinct objectives to achieve general-purpose

computers in the mid-sixtieth (Amdahl et al., 1964, p. 87). The main idea was to rely on

standards in designing computer architecture so that computers of completely different

hardware characteristics could execute the same software (Waterman, 2016, p. 1). That,

in turn, established a new model in computer architecture that relies on the Instruction-

Set-Architecture (ISA) as a distinct abstract interface that resides between the hardware

and software. ISA dedicates how software interacts and utilizes a Central Processing Unit

(CPU) of computer devices. The early published works, which laid out the groundwork

for Instruction-Set-Architecture, were first presented in the late fortieth by (Burks et al.,

1947). The authors’ work was further summarized and presented in (Burks et al., 1982).

Currently, two general-purpose computer architectures are dominant, both of which

rely on ISA: Complex-Instruction-Set Computers (CISC) and Reduced-Instruction-Set

Computers (RISC) (Patterson, 2018, pp. 27-28). In the late seventieth, Intel introduced

the first 8086 ISA processors with a 20-bit address size register, which was further de-

veloped to a 32-bit address size, leading to what is known as (80x86) or (x86) architec-

ture. This architecture dominated the general-purpose computer world for at least 15

years (Patterson, 2018, p. 27). The x86 microprocessors belong to the family of CISC

general-purpose computer architecture, which dominated the personal computer market

for decades after introducing the 64-bit version by AMD (Patterson, 2018, p. 28). The

RISC-based microprocessors still significantly dominate the market of embedded devices

(Patterson, 2018, p. 27; Waterman, 2016, p. 11). Recently, the new 64-bit Advanced

RISC Machine (ARM64) or ARMv8-based architecture has introduced highly efficient and

power-conservative microprocessors. The popularity of ARM64 microprocessors is evident

in reaching out to the personal computer and server computing industries. Hence, the

presented artifact is developed with a heterogeneous multi-architecture hardware setup in
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mind. MESEAS is deployed in this example on 16 physical nodes as depicted in Figure 4.2.

Figure 4.2: Multi-architecture deployment of MESEAS methodology using Kubernetes.
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The physical setup consists of eight x86-64 physical nodes in addition to eight ARM64

physical nodes to leverage the potential of combining them. A multi-architecture deploy-

ment of the artifact facilitates flexible selection of the underlying infrastructure that is

used to host and run the artifact. For instance, we may rely on x86-64 computer archi-

tecture hardware to host and run optimization and machine learning components of the

presented artifact. Meanwhile, ARM64 computer architecture hardware is sufficient to

host and run simulation instances of the artifact. Since AMD corporation1 was the first

to introduce the 64-bit version of ISA, x86-64 or amd64 have been common terms to refer

to devices that rely on the 64-bit architecture.

The developed prototype of the artifact and its components is compiled for execution

on both x86-64 and ARM64 hardware. Despite the evident outperformance of x86-64

hardware architecture in terms of computing power, utilizing ARM64 hardware reduces

the overall power consumption required to host and use the artifact. The presented deploy-

ment relies on virtualization technologies to fully abstract available resources and facilitate

proper scalability. Incorporating a virtualization layer remains operational and strongly

depends on the hardware setup on which the artifact is deployed. In the prototypical

final deployment, we relied on Type2-virtualization to integrate some physical nodes and

installed the operating system directly without virtualization on other nodes. As demon-

strated in Figure 4.2, we relied on Kubernetes to manage and maintain the orchestration

of the artifact components.

4.3.2 Cluster implementation and deployment

Linux-based operating systems are the most suitable option for executing and maintaining

the components of MESEAS methodology. They are ideal for running container engines

and maintaining running applications efficiently. Linux operating systems provide various

essential features such as namespaces, control groups for isolation of running containers,

and other open-source technologies. For instance, Kubernetes can be easily integrated to

manage infrastructure and workload. A container is an isolated software environment that

encapsulates the source code and logical module of some application in addition to the

required dependencies to execute the application (Boettiger and Eddelbuettel, 2017).

Containerization: The containerization of MESEAS is implemented using the Docker con-

tainer engine. Docker2 is an open-source technology for applying containerization strate-

gies. It is often utilized to design, deploy, and manage software applications Engelmann

et al. (2024). The popularity of Docker can be explained by its simple design. For in-

stance, a Docker file and a Docker image are required fundamental container elements. A

Docker file contains a set of commands that define the operating system’s nature, required

dependencies, and the source code of some applications (Merkel, 2014). This file is then

executed to build a proper container image with the listed operating system, dependencies,

and source code. It also facilitates a multi-stage building of container images, which we

1https://www.amd.com/en.html[Last checked on 17.01.2024]
2https://www.docker.com/[Last checked on 01.02.2024]
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rely on to develop and maintain MESEAS individual components efficiently. A Docker

image can be executed to construct and run a container that hosts the source code of the

desired application. Containerization strategies enable quick deployment of the applica-

tions and facilitate distributed microservice architectures. It is ideal for facilitating flexible

scaling of applications and services. The Docker platform supports Linux, Windows, and

macOS operating systems. However, running on Windows requires a functional Linux

subsystem. At the time of writing, the latest stable version of Docker Engine is 24.0.

Cluster deployment using Kubernetes: To manage seamlessly the deployment, opera-

tion, and automation of container management, we relied on Kubernetes technologies.

Kubernetes is an open-source platform for the automated deployment, scalability, and

management of containerized applications and services 3. The core operational unit of

Kubernetes is a pod. Figure 4.4, depicts an example physical node from the deployment

of MESEAS. For instance, on this node, 16 containers (pods) are hosted and running.

Following Kubernetes terminology, containers are organized into pods that are hosted on

the Kubernetes nodes. Figure 4.3 demonstrate the deployment architecture of MESEAS

methodology using Kubernetes.

The platform is based on a master-slave architecture, which comprises at least one

master node and worker node/s. The master node hosts and maintains the so-called

”control plane”. The control plan manages the communication with the worker nodes

and ensures the efficient allocation of resources. It consists of an API-server, etcd, a

kube-scheduler, and a controller-manager. The API server, ”kube-apiserver”, handles the

communication of the control plane, which is the most significant component in a Kuber-

netes cluster. The ”etcd” is a distributed key-value store in the Kubernetes master node,

which is primarily used to store the most important data of a Kubernetes cluster. It stores

and maintains configuration data, running workload states, and metadata. Workload data

of Kubernetes cluster include the states and health of pods, services, or replication con-

trollers. The ”kube-scheduler” is responsible for scheduling unallocated pods to available

physical nodes that can meet its requested hardware requirements. Finally, the controller-

manager runs cluster control processes, which supervise and react to the state of worker

nodes, jobs, or service accounts. For instance, a node-controller process watches over the

health of worker nodes in a Kubernetes cluster and reacts when they go down. The master

node is the most fundamental component of the orchestration system in Kubernetes.

To successfully join a worker node to a Kubernetes cluster, three Kubernetes com-

ponents must be installed and configured appropriately: a kubelet, a kube-proxy, and

a container runtime interface. The ”kubelet” is a service that runs on every Kubernetes

node. It registers the node using apiserver and executes pod specifications from the master

node. It essentially manages containers that are spawned by the cluster. The ”kube-proxy”

is the second fundamental service on every node, which acts as a local control plane on

the worker nodes. It connects a node with the master node and maintains communication

with the underlying network interface on the node (Kaiser et al., 2022).

3https://kubernetes.io/[Last checked on 21.03.2024]
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Figure 4.3: Multi-architecture deployment of MESEAS methodology: Technology stack.

Finally, a ”Container Runtime Interface (CRI)” is essential for the kubelet to com-

municate with the underlying installed container runtime environment. CRI4 was de-

veloped by Kubernetes and released in 2016 as an abstraction layer between a kubelet

and a container runtime environment. A kubelet can communicate through the CRI

with any container runtime environment without recompiling any component of a Ku-

bernetes cluster. CRI implements the General-purpose Remote Procedure Call (gRPC)
5 framework to achieve this abstraction. The gRPC is an open-source RPC framework

for high-performance applications, which was originally developed by Google. In addition

to Kubernetes components, a container run time environment and a container network

interface must be installed and configured correctly on every worker node. As mentioned

earlier, we relied on the docker engine as a container runtime environment to deploy the

artifact on a Kubernetes cluster. Finally, we relied on Flannel 6 to automate the imple-

mentation of local container network interfaces on the nodes. Flannel is a third-party

open-source network configuration addon for Kubernetes 7. It creates subnets on every

node and facilitates communication between the running pods. Alongside the kubeproxy,

it handles the communication between worker nodes and the master node.

Cluster operations management: Kubernetes offers a command-line tool named kubectl,

which is used to control a Kubernetes cluster. It allows a user to communicate with a

cluster control plane through the Kubernetes API. It is the main tool used to deploy

applications, manage resources, inspect worker nodes, and monitor workload. To simplify

4https://kubernetes.io/docs/concepts/architecture/cri/ [Last checked 13.01.2024]
5https://grpc.io/ [Last checked 13.01.2024]
6https://github.com/flannel-io/flannel [Last checked 09.01.2024]
7https://kubernetes.io/docs/concepts/cluster-administration/addons/ [Last checked on 20.02.2024]
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resources management of MESEAS for users, a Kubernetes dashboard8 addon is deployed.

Kubernetes dashboard is also a third-party open-source User Interface (UI) addon for

Kubernetes 9. The dashboard offers the user an overview of resources and full control of

the deployment set of MESEAS components. It translates user decisions that are conveyed

through the web interface to kubectl commands. These commands are then executed by

kubectl and communicate with the cluster control plane.

Figure 4.4 depicts an example x86-64 physical node of MESEAS cluster using Ku-

bernetes. The deployed dashboard allows the user to manage physical resources easily. It

provides an overview of claimed resources in terms of CPU, main memory, and the number

of pods running on every node, as presented in the figure. For instance, 21 containers are

running on this node. It also provides information about network availability, memory

pressure, storage pressure, etc. The state ready implies that the node is healthy.

Figure 4.4: Example node of MESEAS composable deployment using Kubernetes.

8https://github.com/kubernetes/dashboard [Last checked on 20.02.2024]
9https://kubernetes.io/docs/concepts/cluster-administration/addons/ [Last checked on 20.02.2024]
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We adopted Kubernetes for the deployment of the artifact since automation is essen-

tial. Kubernetes facilitates automated service discovery, scheduling, cluster orchestration,

load balancing, storage management, and resource allocation. The physical resources re-

quired to host MESEAS components can be easily scaled up to reach high-quality solutions

for a scheduling problem. After finding a solution, they can be scaled down. The health

of physical resources can be monitored using the deployed dashboard to ensure quick re-

covery by restarting failed containers or replicating them automatically. This feature is

essential if the scheduling method is utilized to address scheduling concerns in real-time.

Kubernetes can be deployed on-premise, on the cloud, or on a hybrid infrastructure. The

control plane of Kubernetes is intended to run on Linux, but within a cluster, applica-

tions can run on both Linux and Windows. At the time of writing, the latest version of

Kubernetes is 1.29.

4.3.3 Component deployment and adopted frameworks

This section introduces the most significant open-source frameworks that are crucial for

the execution and proper operation of the discussed subsystems of MESEAS methodology

(cf. Section 3.3).

4.3.3.1 Simulation and heuristic subsystem

The first prototype of the artifact utilized the ExtendSim simulation package for modeling

and simulation. However, the integration of external libraries was complicated. In addi-

tion, ExendSim can not be executed in a container and would require a major modification

in the artifact’s design. Therefore, an architecture decision is made to move to open-source

simulation packages to develop the final prototype of the artifact. After the migration, the

final design of the heuristic and simulation subsystem of MESEAS relies mainly on the

Python runtime environment for the proper execution of the main components. It may

utilize the Java runtime environment if the method is instantiated to use the CloudSim

plus simulation package. We will shortly present the simulation packages that we employed

during the research and the development of the presented artifact. ExtendSim, CloudSim

Plus, and Salabim will be briefly discussed in chronological order in terms of their use.

Commercial simulation package: ExtendSim 10 is a propriety simulation software. It

provides an extensive collection of toolkits for creating, executing, and troubleshooting

various simulation models. The software also enables the development of custom models

and interfaces for both continuous and discrete event simulation models. ExtendSim

simulation package is often used to build simulation models for manufacturing and supply

chain environments. The hierarchical modeling capabilities allow an engineer to model very

complex environments, which may rely on custom simulation components. The package

supports advanced graphical interfaces and 2D/3D animations to enhance the presentation

10https://extendsim.com/[Last checked on 01.02.2024]
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quality. For developing custom logic or some algorithms, ExtendSim incorporates a built-

in, compiled language called ModL (Krahl, 2007). Although it offers users flexibility in

developing complex simulation models, it is tedious to integrate complex optimization or

machine learning algorithms. ExtendSim can only be installed on Windows operating

systems. At the time of writing, the latest stable version of ExtendSim is 10.1.0.

We relied mainly on the ExtendSim simulation package before migrating the artifact

and implementing it using open-source technologies. The early conducted investigations on

the potential of combining simulation, constructive heuristic, and improvement methods

are all conducted using ExtendSim to instantiate the simulation component of MESEAS

(Nahhas et al., 2017a; Nahhas et al., 2018a; Nahhas et al., 2018b; Nahhas et al., 2019a).

The simulation package offers powerful tools for modeling complex cloud and manufac-

turing scheduling environments. However, integrating complex machine-learning methods

was complicated. In addition, the package at the time of developing the early proto-

type did not support parallelization, which imposed a major drawback in computational

performance. We are aware that multi-threading was introduced in the latest edition of

ExtendSim 10.1.0, which we have not evaluated yet (cf. ExtendSim 10 11).

Java-based simulation package: We utilized the CloudSim Plus simulation package in

the development of the simulation component. CloudSim is a Java-based discrete event

simulator that was first proposed in 2009 by Buyya et al. (2009). CloudSim facilitates

modeling, simulation, and evaluation of heuristic methods for scheduling problems in

cloud environments. The official release of the CloudSim simulation toolkit was published

a couple of years later with extensions, which allowed scholars to model and simulate

virtualized environments in the cloud (Calheiros et al., 2011). The design of CloudSim is

based on the GridSim package, which is an earlier work of the author presented to simulate

Grid scheduling problems (Buyya and Murshed, 2002). Both simulation toolkits are based

on the core simulation engine of the SimJava discrete event simulator that was presented

by Howell and McNab (1998) in the late nineties.

To address some of the shortcomings of CloudSim, Silva Filho et al. (2017) pre-

sented the CloudSim Pluse simulation package. The CloudSim Plus is an extension of

the CloudSim simulation toolkit, which presented additional functionalities to allow in-

tegration of various energy power models of computing servers in cloud environments

(Silva Filho et al., 2017). CloudSim Plus 12 library includes various classes for defining

cloud environments, applications, virtual machines, customers, computing assets, network

infrastructure, and many others. The framework enables the advanced modeling of various

cloud computing services, including infrastructure as a Service (IaaS) and software as a

service (SaaS) models. It is widely utilized for evaluating and validating the performance

of scheduling algorithms in cloud environments (Silva Filho et al., 2017). CloudSim Plus

is an open-source package that is available on GitHub. To use the project, at least version

17 of the Java Development Kit (JDK) and Maven (3.8.6 or higher) must be installed. At

11https://extendsim.com/products/features/new [Last checked on 15.01.2024]
12https://cloudsimplus.org/[Last checked on 01.02.2024]
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the time of writing, the latest stable version of CloudSim Plus is 8.5.0.

Throughout the development process of the prototype, CloudSim plus simulation

toolkit has been utilized to model scheduling problems in cloud environments. For in-

stance, during the integration of the simulation, heuristic library, and optimization com-

ponents of MESEAS, we built simulation models using CloudSim Plus. We presented

computational results demonstrating combining these techniques yields improvement in

addressing scheduling concerns in cloud environments (Nahhas et al., 2021a). We further

investigated various optimization criteria for solving scheduling problems in cloud envi-

ronments using simulation models built in CloudSim Plus in (Remesh et al., 2022). We

followed up on the previous investigation and utilized two large scheduling benchmarks of

real workload in cloud environments using cloudSim Plus in (Remesh et al., 2023). The

objective was to investigate and demonstrate achieved improvement in addressing schedul-

ing concerns using the presented methodology (Remesh et al., 2023). The last two papers

originated from a master thesis, which we closely supervised to study the performance

of the integration for addressing large scheduling problems in cloud environments. The

results are later published in Remesh et al. (2022) and Remesh et al. (2023).

Python-based simulation package: We relied on Salabim simulation packages written

in Python to develop several modules in the simulation component. Salabim 13 is an

open-source discrete event simulation engine. It was first developed for modeling and sim-

ulating complex logistics and manufacturing environments. The source code of Salabim

is developed using Python programming language and thereby requires a Python runtime

environment for execution. It can be included as a Python dependency, which allows for

building and executing simulation models. The package provides queue handling, resource

modeling, statistical sampling, and some monitoring features. It can be utilized in a broad

spectrum of simulation applications, including warehouse simulation, manufacturing prob-

lems, or supply chain. It relies on some other Python dependencies and other visualization

tools for building custom graphical interfaces for simulation models. For instance, it in-

cludes a built-in animation engine, which enables complex real-time 2D and 3D animation

and advanced visual representations (Ham, 2018). Salabim is compatible with Linux, Mi-

crosoft Windows, and Mac OS X and runs on Python 2.6 or higher versions. At the time

of writing, the latest stable version of Salabim is 23.3.13.

Deplyoment overview: During the research and development of the research artifact,

we relied on Salabim simulation packages to develop the simulation component of the

presented artifact. We also investigated and evaluated the integration of simulation com-

ponent with different heuristic, optimization, and DRL methods (Nahhas et al., 2021b;

Nahhas et al., 2022a; Nahhas et al., 2022b; Nahhas et al., 2024a). Figure 4.5 depicts the

administration UI of MESEAS simulation and heuristic subsystem. MESEAS simulation

and heuristic subsystem are deployed using a deployment set in Kubernetes. It allows

users to scale up or down the number of running simulation instances by a few clicks.

13https://www.salabim.org/ [Last checked on 01.02.2024]
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Figure 4.5: Deployment of MESEAS simulation and heuristic subsystem.
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As shown in the upper part of Figure 4.5, the number of simulation workers can be

scaled up or down depending on the problem at hand. In this example, 78 containers run

simulation instances that evaluate suggested solutions by the optimization and machine

learning subsystem. In the upper part of the figure, an overview of ”Daemon Sets”,

”Deployments”, ”Pods”, and ”Replica Sets” is demonstrated. ”Daemon Sets” are used to

deploy and manage the operation of services that must be present on all physical nodes

in the cluster. For instance, the kube-proxy and the container network interface (Flannel)

services must be running on all nodes. Therefore, we rely on daemon sets to deploy them.

”Deployment Sets” are ideal for deploying containerized simulation and heuristic library

components using a YAML file into ”Pods”. YAML 14 abbreviation stood for (Yet Another

Markup Language) and later changed to (YAML Ain’t Markup Language). It is a data

serialization language that was developed with a strong emphasis on human readability15.

A YAML file in Kubernetes is a deployment manifest file that describes the type,

the metadata, the container specification, the number of desired application replicas, and

other deployment details. It is mainly used to roll out updates in the source code of

the MESEAS method. Deployment sets in Kubernetes rely on Replica sets to manage

deployment operations. ”Replica sets” ensure that instances of an application are available

in the system and automatically create new pods if some pods fail in the cluster. In this

example, 122 pods are running in the cluster (cf. Figure 4.5). This number includes

not only simulation instances but also optimization, database, messaging, and cluster

management services. The green color implies that all services are healthy and running.

Otherwise, a mix of green and red would be depicted, indicating the services that failed

for further inspection.

4.3.3.2 Optimization and machine learning subsystem

The final prototype of MESEAS is developed using open-source technologies. Relying on

open-source technologies facilitates easy integration of a state-of-the-art framework for

developing optimization and machine learning components. In this section, we will high-

light the most significant frameworks that we adopted to develop the final prototype of

the presented methodology. For instance, the optimization component of MESEAS relies

on the Distributed Evolutionary Algorithms in Python (DEAP) framework to adopt and

implement evolutionary optimization algorithms. Meanwhile, we relied on the OpenAI

Gymnasium framework to develop the DRL data structure required for training a DRL

model. Ray Rlib is utilized to parallelize the training of multiple DRL models and merge

their deep neural networks. To handle deep neural network training, we utilized Tensor-

Flow. All mentioned frameworks are developed in Python. Therefore, the optimization

and machine learning subsystem of MESEAS requires a Python runtime environment for

the proper execution of its underlying components.

14https://yaml.org/spec/history/2001-08-01.html [Last checked on 20.12.2023]
15https://yaml.org/spec/1.2.2/ [Last checked on 20.12.2023]
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Optimization framework: We utilized the Distributed Evolutionary Algorithms in Python

to develop some modules in the optimization component. The DEAP16 framework is a

Python-based framework that offers interfaces and reference components to develop and

adopt Evolutionary Algorithms (EA). As the name suggests, it focuses on evolutionary

optimization methods and facilitates the investigation of various optimization approaches

for solving combinatorial optimization problems. DEAP framework offers various libraries

and practical tools for quickly developing customized evolutionary improvement methods

(Fortin et al., 2012). DEAP’s architecture comprises two basic components: a creator

and a toolkit. The creator module allows the development and investigation of complex

genotypes and maintains populations created based on the data structure of investigated

genotypes. The toolkit offers data structure and required libraries to select and develop

evolutionary algorithms and customize evolutionary operators such as selection, crossover,

and mutation (Fortin et al., 2012). Finally, evolutionary methods require an evaluation

method, which is developed using simulation techniques (cf. Subsection 3.4.4 and Subsec-

tion 3.6.2).

DEAP module is developed with a strong emphasis on parallelizing evolutionary im-

provement methods. It can be integrated with several parallelization technologies, such

as Python-multiprocessing, which is adopted to develop the monolithic deployment of the

presented methodology. In the coming subsections, we will briefly discuss parallelization

technologies that have been adopted in various deployments. Since the module is devel-

oped in Python, it can be integrated with several machine-learning libraries like scikit-learn
17(Kim and Yoo, 2019, pp. 139–142). DEAP is compatible with Linux, Microsoft Win-

dows, and Mac OS X and requires Python 2.6 or later versions. At the time of writing,

the latest stable version of the DEAP is 1.0.2.

DRL application programming interface: To develop the DRL scheduling model, we uti-

lized the Gymnasium data structure of (cf. Subsection 3.6.3 and Subsection 3.6.4). Gym-

nasium (formerly known as OpenAI Gym) is a Python-based standard API for reinforce-

ment learning research and development. It supports a variety of reference DRL envi-

ronments18 that can be used to train DRL models. It offers many open-source imple-

mentations of reinforcement learning environments of different complexity. For instance,

the reference implementations of several Atari games and 2D/3D robot control simula-

tions have frequently been used to investigate new DRL approaches (Brockman et al.,

2016). OpenAI data structures map the MDP notations to reference interfaces to develop

observation and action spaces for custom RL and DRL methods. Relying on this frame-

work certainly reduces effort, which must be invested in developing and evaluating new

reinforcement learning approaches. It is a well-established framework in the research com-

munity for comparing the performance of new approaches against previous ones (Buduma

and Locascio, 2017, p.254). In MESEAS, Gymnasium is integrated with other Python-

16https://deap.readthedocs.io [Last checked on 01.02.2024]
17https://scikit-learn.org/stable/[Last checked on 01.02.2024]
18https://www.gymlibrary.dev/index.html [Last checked on 23.12.2023]
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based libraries like RLlib and TensorFlow to develop the machine learning component19.

OpenAI Gym is compatible with Linux and MacOS and supports Python 3.7 and higher

versions. At the time of writing, the latest stable version of Gymnasium is 0.29.0.

DRL training and distribution frameworks: To evaluate the developed DRL scheduling

models, we utilized RLlib to adopt and implement several prominent DRL methods (cf.

Subsection 3.6.3 and Subsection 3.6.4, respectively). RLlib 20 is an open-source Python-

based RL framework for the development and deployment of RL and DRL models (Liang

et al., 2018). The official documentation of RLib provides reference methods that are

essential for implementing and executing RL and DRL components. RLlib depends on

OpenAI Gymnasium APIs to define generic environment, action, state, and reward. The

project is also well-established in academia and industry, which motivates scholars and

practitioners to integrate libraries for several reference DRL algorithms such as DQN,

PG, DDPG, PPO, and A3C. In the presented artifact, A3C and PPO are adopted to solve

scheduling problems based on the presented DRL scheduling models.

Furthermore, RLlib facilitates the execution of distributed training and can be inte-

grated with several multi-processing APIs, like Python multiprocessing21 or RabbitMQ

that are utilized for parallelization in MESEAS. As for efficient training of DRL models,

it integrates with TensorFlow22, which we relied on for training DRL models. Tensor-

Flow offers a simple visualization tool called TensorBoard, which we utilized during the

prototyping and development phases of the artifact. Relying on TensorBoard can be very

beneficial to understanding the general behavior of machine learning models, which can

be quite complex (Abadi et al., 2016). RLlib and TensorFlow are compatible with Linux,

MacOS, and Windows (with beta version) and support Python 3.7 and higher versions. At

the time of writing, the latest stable version of Ray is 2.9.0, and the latest stable version

of TensorFlow is 2.15.0.

Deployment overview Figure 4.5 displays the administration UI of MESEAS optimiza-

tion and machine learning subsystem. Similarly, deployment sets are utilized to deploy the

optimization and machine learning components. These deployments are associated with

corresponding replica sets to ensure that the required number of instances are up and

running. For instance, in this example, we deployed 20 optimization instances to process

requests of multi-optimization run experiments to solve a scheduling problem. The opti-

mization instances are hosted on various physical nodes in the cluster and communicate

with a set of simulation instances to evaluate generated candidate solutions. This number

of available optimization instances can be scaled up or down based on the status of the

experiments and available physical resources. As depicted in the upper part of the figure,

the UI translates changes in the number of replicas to a command. This command is

executed using the kubectl command line tool, which we discussed in Subsection 4.3.2.

19https://www.tensorflow.org/ [Last checked on 01.02.2024]
20https://docs.ray.io/en/latest/rllib/index.html [Last checked on 01.02.2024]
21https://docs.python.org/3/library/multiprocessing.html [Last checked on 08.01.2024]
22https://www.tensorflow.org/[Last checked on 08.01.2024]
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Figure 4.6: Deployment of MESEAS machine learning and optimization subsystem.
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4.3.3.3 Data management and parallelization

To facilitate communication between the artifact’s independent components, we relied,

among other things, on MongoDB, RabbitMQ, and Kubernetes to implement the data

management subsystem. MongoDB is utilized to deploy a database that is used to store

data models and results. RabbitMQ is used to develop and implement several logging and

messaging components to establish and maintain connections between the subsystems.

Kubernetes scalability and workload distribution mechanisms are utilized to manage and

distribute the workload on the infrastructure level. Since the core logical modules of

MESEAS are developed in Python, we also developed the data management and paral-

lelization components in Python. In this section, we highlight the most important ones.

Database: We relied on MongoDB to implement the database of the presented artifact.

MongoDB 23 is a scalable open-source NoSQL database, which is well-suited for storing

document data. It organizes data as collections of loosely structured tree-shaped docu-

ments using the JavaScript Object Notation (JSON) format (Botoeva et al., 2017), which

we rely on for logging and results collection. The primary distinction between MongoDB

and traditional Relational databases is the data storage structure. MongoDB uses Collec-

tions instead of Tables, JSON documents instead of Rows, and Embedding and Linking

instead of Joins (Kanoje et al., 2015). Essentially, it operates like a file system. MongoDB

is compatible with the main operating systems, such as Microsoft Windows, Mac OS X,

and Linux. At the time of writing, the latest stable version of MongoDB is 7.0.

After several stress tests and storing a large number of detailed solutions during

optimization, we concluded that MongoDB should be used only for data models, logging

of key performance indicators, and best-found solutions. Detailed solutions may be stored

and processed more efficiently using a traditional SQL database.

Messaging and parallelization: In the presented artifact, RabbitMQ is implemented as a

round-and-robin load balancer between the subsystems. It acts as a parallelization layer

and a broker between them. RabbitMQ24 is an open-source message broker that facil-

itates asynchronous message-based communication across several applications, which is

ideal for managing the communication between the simulation and optimization. It relies

on the publish/subscribe (pub/sub) interaction architecture that enables the development

of scalable and loosely coupled applications (Dobbelaere and Esmaili, 2017). RabbitMQ’s

primary components are publisher, consumer, exchange, and queue. A publisher (pro-

ducer) is an application that generates a message with a certain topic and sends it via

a message broker, eventually delivering it to consumers (subscribers). An exchange is a

router that takes incoming messages from the publisher and routes them to queues based

on certain rules. A message queue maintains messages and transfers them to message

consumers (Sharvari and SowmyaNag, 2019).

23https://www.mongodb.com/[Last checked on 01.02.2024]
24https://rabbitmq.com/[Last checked on 01.02.2024]
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To deliver messages, RabbitMQ relies on the Advanced Message Queuing Protocol

(AMQP) - a standardized message brokering protocol. Pika25 Python library is utilized

to implement the AMQP protocol used by RabbitMQ to develop the logging and mes-

saging system of MESEAS. In addition to AMQP, RabbitMQ supports several messaging

protocols, including HTTP or WebSockets. Additionally, RabbitMQ offers a variety of

important features like message persistence or delivery acknowledgment. These features

are used to ensure the reliability of the combination of simulation and optimization sub-

systems. Missing results from simulation may comprise the validity of optimization or the

training of a DRL agent. It also enables clustering, which allows several nodes to serve as

a single message broker. That is essential for balancing workloads and scaling the system

to manage a high volume of messages in which multiple instances of optimization and/or

machine learning are running. It can be deployed on both cloud environments and on-

premises and supports integration with other applications like Kubernetes, which makes

it ideal for the deployment of the artifact. At the time of writing, the latest stable version

of RabbitMQ is 3.13.0.

Figure 4.7 shows a parallelization comparison between Python multiprocessing26,

Apache Kafka27, and RabbitMQ. The comparisons were conducted in a scientific stu-

dent project supervised by the author. The main objectives were to investigate whether

to keep the implementation of RabbitMQ or replace it with Apache Kafka and collect

further insight for hyperparameters tuning of the optimization component. The baseline

of the experiment was Python multiprocessing, depicted in red in the figure. We expected

that a monolithic deployment of the artifact would at least slightly outperform a cluster

or container-based deployment, assuming similar hardware characteristics. The optimiza-

tion experiments were conducted with 100 population size and 500 generations to solve

a scheduling problem. The same optimization experiment was executed using different

numbers of available physical cores, as shown in the horizontal axis of the figure.

As expected, parallelization significantly accelerates the optimization process. In this

example, the evaluation of 50000 solution individuals dropped from roughly 70 minutes

to less than seven minutes. The experiments also showed that RabbitMQ implementation

clearly outperformed Apache Kafka in our setup and sustained a marginal edge against

Python multiprocessing, contradicting our expectations. The collected results were also

used to decide on population size and number of generations hyperparameters of the

optimization component. Increasing the number of simulation instances to more than

24 yielded rather a marginal improvement. However, further experiments showed that

the utilization rate of the simulation instance can be significantly increased if we use a

larger population size and reduce the number of generations. Therefore, the conducted

experiments on the use case presented in the coming section are parameterized with 250

population size and 200 generations. The analysis included investigating several other

messaging systems, and the obtained results are being prepared for publication.

25https://pika.readthedocs.io/en/stable/ [Last checked on 01.02.2024]
26https://docs.python.org/3/library/multiprocessing.html [Last checked on 11.01.2024]
27https://kafka.apache.org/ [Last checked on 11.01.2024]
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Figure 4.7: Comparison between various parallelization techniques.

Workload management and scalability: The presented artifact is developed with an em-

phasis on modular design and scalability. In the previous chapter, we extensively discussed

the aspects of modularity in the design of MESEAS. Modularity is essential to meet func-

tional and non-functional requirements, including scalability (cf. Section 3.1, Section 3.3).

Scalability and parallelization of the presented methodology were implemented using open-

source technologies and frameworks, such as RabbitMQ, Python multi-processing, Ray

RLlib, or Kubernetes. To support a multi-architecture execution of the artifact, we relied

on virtualization and containerization techniques for abstracting the running modules of

MESEAS from the underlying hardware.

Kubernetes was a very suitable technology for deploying and operating the artifact in

a cluster. It facilitates the utilization and management of heterogeneous infrastructures

and offers easy integration of cloud resources to achieve scalability. Kubernetes technol-

ogy stack includes several fundamental features to automate the cluster’s scalability and

configuration management. It is utilized to distribute and manage the MESEAS workload

on an infrastructure level using deployment sets, replica sets, daemon sets, node labels,

taints, and priority groups. Node labels can be used to restrict scheduling containers that

do not match the stated label. Labels are expressed under container specifications us-

ing nodeSelector. The cluster scheduler allocates pods of some deployment only to those

nodes that match the defined label/s (e.g., arm64-sim for allocating only simulation in-
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stances to ARM64-nodes). Taints are used to refrain containers from being scheduled

on some nodes. Tainting a node with ”control plane” would require explicitly defining a

corresponding toleration for it, so a pod is allocated to the node with this taint.

For instance, Figure 4.8 depicts an example in which a user is notified that the avail-

able physical resources in the cluster cannot host all requested containers of the simulation,

optimization, and machine learning components.

Figure 4.8: Parallelization and workload management.



162 Methodology for Self-Adaptively Solving Multi-Objective Scheduling Problems

In this figure, 118 containers are running in the cluster, and three pods failed to be

scheduled, as shown in red. The administration UI also specifies which corresponding

deployment and replica sets are not fully operational. In MESEAS, priority groups are

defined to prioritize containers of different subsystems. For instance, network interfaces

and proxies have, by default, the highest priority. Data management services have the

second highest priority. The optimization and machine learning services are assigned

to the third priority group. Finally, simulation subsystem services belong to the fourth

priority group.

In the example presented in Figure 4.8, three simulation pods failed to be scheduled.

In turn, ”meseas-simulation” was depicted in red with its corresponding deployment and

replica sets. The message shows that 15 physical nodes did not satisfy the requested

hardware requirements of the service. It also demonstrates that there was a node that could

satisfy the hardware requirements by taint with ”control plan”. Without the toleration,

the containers could not be scheduled to this node. In MESEAS deployment, the master

node is tainted with ”control plan” to ensure that nothing impacts its operational stability.

It is used to host only cluster management-related services. Priority groups also enforce

the scheduling of higher-priority services in case of resource scarcity. For instance, if we

scale the number of required services by the optimization and machine learning subsystem

from four to five each, the scheduler will evict lower-priority services to secure hardware

resources. In this case, it will stop simulation containers and evict them.

4.3.4 Summary of the proof of concept (Eval 3.1)

In DSR, the implementation and instantiation of the artifact design are crucial to devel-

oping suitable and applicable IT artifacts that are relevant for organization (von Hevner

et al., 2004, p. 77). Sonnenberg and vom Brocke (2012, p. 393) detailed the third evaluation

activity and highlighted ”proof of applicability”, suggesting various methods for evaluation.

We relied on demonstration with a prototype and experiment with the prototype evaluation

methods (cf. Subsection 3.5.3, Subsection 3.4.5, and Subsection 3.6.5). This section pro-

vided a brief overview of the instantiation of the presented artifact as a proof of concept.

The presented prototype demonstrates that the presented design blueprints of MESEAS

components can be integrated to fulfill the requirement specifications (cf. Section 3.1 and

Section 3.3).

The developed artifact can be deployed and executed on multi-architecture and het-

erogeneous infrastructure as demonstrated by the prototypical instantiation (cf. Subsec-

tion 4.3.1). To achieve this objective, proper isolation and abstraction technologies are

adopted to virtualize and containerize the components of the artifact. The parallelization

and scalability of the presented prototype are achieved using cloud-native technologies

such as Kubernetes and RabbitMQ, both of which require a resilient and modular de-

sign of the artifact to be adequately adopted. Automation of configuration management

and cluster operation is accomplished by adopting various features of these technologies,

as demonstrated in the overview of the deployment of each subsystem of MESEAS. Fi-
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nally, we adopted open-source technologies and frameworks to develop and integrate the

discussed simulation, heuristic, improvement, and machine-learning methods. Thereby,

the researched and adopted set of technologies is suitable suitable for the development of

the prototype. The prototypical implementation demonstrated that the adopted paral-

lelization and cloud-native technologies yielded an effective and efficient operation of the

artifact.

4.4 Evaluation in cloud environments (Eval 3.2)

4.4.1 Use case overview

In cloud environments, we presented an overview of workload scheduling strategies in the

literature. We investigated the performance of heuristics methods in a use-case relying on

real-world workload patterns of 290 SAP applications (Nahhas et al., 2018a). The work-

load patterns of the virtualized SAP application systems are used to model the system’s

behavior. Jobs or Virtual Machines (VMs) were scheduled to machines using heuristics

to minimize energy consumption while considering performance concerns. We relied on

discrete event simulation methods to build a simulation model. Then, we extended the

analysis to investigate and evaluate the integration heuristic, simulation, and improvement

methods for addressing scheduling concerns in the investigated environment (Nahhas et al.,

2019a).

In cloud environments, switching idle machines to hibernation mode can significantly

reduce the system’s energy consumption (Beloglazov et al., 2012b, p. 759). An idle machine

can consume, on average, 70 % as much energy as a highly loaded machine (Beloglazov

et al., 2012b, p. 759). Scheduling and rescheduling heuristics must be applied to con-

solidate workload automatically. The included heuristics are combined with rescheduling

mechanisms based on thresholds (Beloglazov et al., 2012a, p. 1410). Scheduling in real-

time usually leads to partly satisfactory results. Hence, rescheduling mechanisms using

decision points or rescheduling triggers to adapt to changes in the considered environment

are suggested by scholars to achieve better results (Sun et al., 2024, p. 174). Rescheduling

implies that a subset of jobs may be rescheduled on different machines to minimize some

objective values. In cloud environments, rescheduling and live migration are interchange-

ably used terms to describe the reallocation of resources. However, rescheduling jobs leads

to a degradation in performance, which must be minimized (Beloglazov et al., 2012b,

p. 760). Finding a reasonable trade-off between these two conflicting objective values was

the core subject matter of this use case. Based on the characteristics of the environ-

ment under investigation, we will instantiate the methodology for addressing scheduling

concerns.

4.4.2 Methodology instantiation and problem formulation

Based on the formalization of the presented methodology in Subsection 3.4.3, MESEAS

was instantiated to address scheduling concerns of the discussed use case as presented in
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Equation 4.1. To address scheduling concerns in this environment, we utilized the first

three functionality layers of MESEAS. The scheduling data model, the simulation, the

heuristic library, and the optimization components are therefore instantiated. Given the

scheduling problem SPsingle, we utilize MESEAS(X, T ) to find a solution X ∈ X that

minimizes the objective function Γω during the scheduling period T . In the course of this

section, we will elaborate on the instantiation of the methodology.

MESEAS(X, T ) = ⟨SPsingle | PIsingle | Γω | Sim | HL | Opt⟩ (4.1)

The scheduling problem - SPsingle

The investigated cloud environment contained heterogeneous physical servers with various

resource capacities. We investigated a subset of the physical infrastructure. All physical

machines can process all types of jobs with no constraints. Jobs are released in the system

for processing and then leave the system after completion based on defined mathematical

distributions. Therefore, the investigated system was subject to release time constraints.

The system can be accordingly expressed as a single-stage scheduling system SPsingle.

Jobs can be processed or hosted by a physical machine only if the machine can fulfill

the computing requirements. Hence, the scheduling environment considered is subject to

machine capacity constraints. In summary, scheduling jobs to resources with respect to

several objective values and constraints listed in the following bullet points:

• Release date β1 = rj : Jobs are released for scheduling based on their associated

release time during the scheduling period T .

• Priority families β2 = Dpr: Jobs belong to various priority families that are based

on the defined Service Level Agreements (SLA).

• Machine capacity constraint β3 =MC : Jobs are scheduled on physical machines

only if a machine fulfills its requested computing requirements (cf. Section 2.1.2,

Equation 2.1).

• The total energy consumption γ1 = E: The energy consumption of computing re-

sources is a significant cost and sustainability driver in a cloud environment. There-

fore, scheduling problems in cloud environments are solved by minimizing overall

energy consumption. It can be minimized by reducing the total number of online

hours and maximizing the number of hibernation hours of machines.

• The total number of penalties γ2 = U : SLA violations cost loss of reputation and are

associated with financial penalties. Rescheduling jobs to reduce energy consumption

may lead to violations in SLAs. Therefore, solution methods for scheduling problems

in cloud environments must be designed to take into consideration the minimization

of total penalties by minimizing the number of migrated jobs.

Given the discussed description of the considered cloud environment, the scheduling

problem is expressed by SPsingle = ⟨Qm| rj , MC , Dpr | E, U⟩.
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Problem instance - PIsingle

The considered cloud environment was characterized by known workload patterns that

can be described using mathematical distributions. We utilized triangular mathematical

distribution to model the job release time for scheduling in the system and their processing

time. In this environment, 290 jobs belonging to several priority families may be released

for scheduling in the system. After a job is processed based on the workload pattern, it

leaves the system. During a scheduling period, many jobs sharing the discussed charac-

teristic may enter the system. Based on the data structure presented in Section 3.4.2, the

instantiation is summarized in the following bullet points:

• The set T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , 24} denote a day scheduling period divided

per hour. Given a discrete change in time horizon ∆T1 = 1, we move from T1 to T2.

• The set J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , 290} denote the number of jobs which are

released for scheduling during a day of operation T based on the workload pattern.

• The set MC =
{
MC

i , . . . ,M
C
m

}
: ∀ i ∈ {1, . . . , 8} denote the machines that are

available to process jobs in parallel.

• The pi,j ∈ R+ denote the required processing time of a job Jj ∈ J to be hosted and

processed by a machine MC
i ∈MC and is defined based on workload pattern.

Objective function - Γω

Based on the presented instantiation of the scheduling problem and the description of

the problem instance, the scheduling problems were solved subject to the minimization

of the objective function in Equation 4.2. The problem instances are solved by finding

a solution X ∈ X that minimizes the objective values. The persued solution X repsents

a map that schedule the jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , 270} to the machines

MC =
{
MC

i , . . . ,M
C
m

}
: ∀ i ∈ {1, . . . , 8}. The overall objective function is formulated

using a weighted sum approach such that the set Γ = {γ1, γ2} : subject to the set of

weights ω = {ω1 = 0.3, ω2 = 0.7} as presented in Equation 4.2.

arg min
X∈X

Γω(X) = arg min
X∈X

(
ω1 ·

(
m∑
i=1

γ1(X)

)
+ ω2 · γ2(X)

)
(4.2)

Simulation - (Sim)

For solving the scheduling problem, simulation methods are combined with heuristic and

optimization methods. We utilized the ExtendSim simulation package to build the simu-

lation model.

Heuristic Library - (HL)

We developed two simple constructive heuristics, namely, the Energy-Aware Family-Fit-

Decreasing (EA-FFD) and the Workload-Aware Family-Fit-Decreasing (WA-FFD) . The
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rationale of the EA-FFD was presented and thoroughly discussed in Algorithm 11. The

logical design of the WA-FFD is significantly similar except for taking the workload of

machines into account instead of their energy consumption. Available machines are sorted

in a decreasing order to consolidate the workload of active machines. Instead of scheduling

a job based on the minimum energy consumption, it is scheduled on a machine with the

maximum workload. Both algorithms are included with three rescheduling upper and

lower thresholds, resulting in six different allocation heuristics. The upper and lower

bounds of the algorithms trigger rescheduling processes in the considered system to adjust

scheduling. The following points summarize the utilized heuristics:

• A1: EA-FFD with 90 % upper threshold and 10 % lower threshold.

• A2: EA-FFD with 80 % upper threshold and 20 % lower threshold.

• A3: EA-FFD with 70 % upper threshold and 30 % lower threshold.

• A4: WA-FFD with 90 % upper threshold and 10 % lower threshold.

• A5: WA-FFD with 80 % upper threshold and 20 % lower threshold.

• A6: WA-FFD with 70 % upper threshold and 30 % lower threshold.

Optimization - (Opt)

The optimization component of MESEAS was instantiated using the indirect discrete

encoding model. The discussed allocation heuristics markers were utilized to define the

genotypes for the implemented Genetic Algorithms. Based on the instantiation of the HL,

the set A =
{
Aa, . . . , A|A|

}
: ∀ a ∈ {1, . . . , 6} denoted a set of six allocation heuristics. The

genotypes were grouped into a chromosome represented by a vector ΦA as presented in

Equation 4.3. Each genotype Φφ initialized an allocation constructive algorithm Aa, which

was used at the decision point Tφ. According to this encoding, the allocation algorithm

may be switched every hour based on the results of the optimization.

ΦA =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , 24) ∧ (Φφ = 1, 2, . . . , 6) (4.3)

4.4.3 Computational results

Component configuration

The experiments relied on the scheduling data model, the simulation component, the

heuristic library component, and the optimization component. The investigation instanti-

ated the single-population configuration of the optimization component. A weighted sum

approach was adopted to weight the objective values. Conventional GA was used in the

optimization. We utilized a two-point crossover operator with σ = 0.6 crossover proba-

bility to conduct the evaluation. The two-point crossover evolutionary operator is widely

adopted in the design of evolutionary methods. It is supported by a fundamental the-

oretical foundation presented by (Holland, 1975) and further empirically investigated to
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yield good performance by de Jong (1975, pp. 20-21). We used a shuffling index mutation

function with a probability δ = 0.5 to maintain diversity in the population. This mutation

function was first introduced by Eshelman et al. (1989, p. 15) to mitigate crossover per-

formance and diversity issues in evolutionary methods. We parameterized the GA with a

population size µ = 100. We used the number of generations as a breaking condition with

a value maxGen = 100.

Analysis of computational results

The overall scheduling period considered was 120 hours, which corresponds to five days.

To evaluate each solution individual of GA, we collected results from 10 simulation runs

before assigning normalized fitness values. Jobs in the considered environment are released

for scheduling using stochastic interarrival distribution. Hence, after the optimization was

completed, we conducted a simulation experiment to collect results from 200 simulation

runs using the final solution. The objective was to establish confidence in the quality of the

solutions using a 95 % confidence interval and measuring the margin of error for possible

deviations. In this use case, the set of heuristic indexes suggested by the optimization

component and the schedule after decoding are important parts of the solutions.

Figure 4.9 depicts the final results of the investigated heuristic and the optimiza-

tion component using the allocation encoding model (MESEAS-Single). The left part of

Figure 4.9 (A) displays the results of the individual heuristics and the optimization in

minimizing the total number of online hours of all machines. The central part of the

Figure 4.9 (B) demonstrates the total number of initiated rescheduling processes. The

total number of initiated rescheduling has an impact on the second objective value and

provides further insights into the operational stability of the considered environment. The

right part of Figure 4.9 (C) shows the results of the heuristics and the optimization in

minimizing the total number of rescheduled jobs.

The computational results showed that heuristic methods could, on average, achieve

up to 73 % energy saving compared to is-situation in the considered environment since

load consolidation strategies were not utilized. With 253 total online hours, the WA-FFD

reported a 73.6 % reduction in the overall online hours. The overall online hours of all

machines during the considered scheduling period is 960 hours. Every machine has 120

online hours during five days of operation. It slightly outperformed the other EA-FFD

and a combination of the algorithms using MESEAS-Single. Second, MESEAS-Single

minimized the total online hours to 272, amounting to a 71.7 % reduction. The EA-FFD

achieved solutions where 295 online hours of machines were required to process jobs using

69.3 % of the overall capacity. Looking into the central part of the figure, one could

assume, before looking into the total number of rescheduled jobs, that the EA-FFD with

22 initiated rescheduling processes impacts most the stability of the system. However, the

results in terms of total rescheduled jobs showed that the WA-FFD performed the worst,

with over 342 rescheduled jobs. The EA-FFD reported 275 rescheduled jobs during the

considered scheduling period with 19.6 % outperformance against the WA-FFD.
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Figure 4.9: Average of online hours and rescheduled jobs during the scheduling period
modified based on Nahhas et al., (2019a).

Finally, MESEAS-Single significantly outperformed both heuristics in minimizing the

total number of rescheduled jobs. It achieved 54.1 % better results than the WA-FFD

and 42.9 % than EA-FFD in minimizing the number of rescheduled jobs. With a 95

% confidence interval, the recorded margin of error in minimizing the total number of

rescheduled jobs of the investigated algorithms ranged between ±2.07 and ±5.56. Simi-

larly, the analysis of the results using the same confidence interval showed an error margin

ranging between ±1.82 and ± 4.29 in terms of the total online hours.

The previous results demonstrated that combining various allocation heuristics during

a scheduling period yields significant improvement in terms of minimizing the total number

of rescheduled jobs. The overall energy consumption is investigated by minimizing the

total number of online hours, which maximizes the total number of hibernation hours.

The recorded results emphasized the potential of scheduling techniques to reduce overall

energy consumption with an improvement that amounted to 73.6 %. In comparison to WA-

FFD, the results of MESEAS-single indicated that sacrificing 1.9 % minimization of online

hours can minimize up to 54.1 % of rescheduled jobs. In summary, the collected results

demonstrated that combining several heuristics over the scheduling period yields better

overall performance than their utilization individually. Hence, the proposed approach

demonstrated that it adapted to the workload of the system during the scheduling period.

It suggested switching between several heuristics to suit the workload pattern at every

decision point, which indicated better objective values.

To avoid repetition, we will summarize the preliminary evaluation of the presented

methodology to address single-stage scheduling problems in two further use cases. The

instantiation and utilization of the presented methodology were almost identical except

for a slight deviation in the number of used heuristics. The objective was to establish

comparability with related works using the same workload traces (Moges and Abebe, 2019;
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Beloglazov et al., 2012a; Beloglazov et al., 2012b). Further details of the instantiation and

collected results can be found in Appendix B.

4.4.4 Instantiation for further use cases

In the second use case in cloud environments, combining simulation, heuristic, and op-

timization methods was investigated for solving larger problems using the well-known

PlanetLab problem instances (Park and Pai, 2006, pp. 68-69). The academic community

widely utilizes these problem instances to evaluate the performance of scheduling methods.

For instance, several scheduling methods are evaluated using the setup of PlanetLab work-

load traces (Moges and Abebe, 2019, p. 6; Witanto et al., 2018, p. 39; Beloglazov et al.,

2012a, pp. 1414-1415). The PlanetLab problem instances were collected in the context

of the ConMon project, which was dedicated to monitoring the workload of PlanetLab

infrastructure (Park and Pai, 2006). The PlanetLab infrastructure contained servers lo-

cated in over 500 locations (Beloglazov et al., 2012a, p. 1415). The workload of thousands

of virtual machines running on these servers was monitored, and workload traces were

collected. The system is essentially a single-stage scheduling environment. Similar to the

discussed use case, the problem was solved using a weighted sum approach to minimize

the overall energy consumption, the SLA violations, and the total number of migrated

virtual machines. A weighted sum formulation of the objective function transformed the

problem into a mono-objective optimization problem. The initial results were published

in a master thesis (Cheyyanda, 2020), which the author of this thesis supervised. For

evaluation, ten problem instances from workload traces of the PlanetLab benchmark were

utilized.

CloudSim Plus was utilized to build a simulation model of the defined cloud environ-

ment. The conducted experiments were compared to the scheduling heuristic presented in

related works (Moges and Abebe, 2019; Beloglazov et al., 2012a; Beloglazov et al., 2012b).

Eight allocation heuristics presented in these works were utilized and integrated with the

optimization. The included allocation heuristics were used as a marker to define the geno-

types for the implemented GA. Therefore, the single-population encoding of MESEAS was

sufficient to investigate the problems. The experiments were subject to the same condi-

tions and problem formulation presented in (Beloglazov et al., 2012a) and (Moges and

Abebe, 2019) to ensure comparability. The performance of the scheduling methodology

was compared to well-established heuristic techniques in the literature (Beloglazov et al.,

2012a; Moges and Abebe, 2019). The collected results demonstrated that the presented

methodology achieves the best results in minimizing energy consumption with a minimum

30 % reduction and up to 47 % compared to other techniques. It also sustained an accept-

able level of SLA violations with a slight increase of 0.04 % since both objective values

are conflicting in nature (Nahhas et al., 2021a).

In the second use case, further evaluation of the proposed methodology for solving

single-stage job scheduling problems in cloud environments was conducted using the NASA

and KTH workload traces (Dror G. Feitelson et al., 2014, p. 2970). The NASA and KTH
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workload traces are often adopted to evaluate the performance of scheduling techniques

in cloud environments (Bandaranayake et al., 2020). The initial results were published in

a master thesis (Remesh, 2021), which the author of this work supervised. The study’s

second objective was to investigate the technique’s performance given various combinations

of objective values such as the makespan, the average waiting time, the throughput, and

the average flow time.

CloudSim Plus framework was also used to build a simulation model to investigate

the workload traces of the cloud environments. The computational results suggested

that combining heuristics with improvements methods performed best when the objective

function was to minimize the average flow time and the average waiting time (Remesh

et al., 2022). To conclude the evaluation, a focused evaluation of the presented scheduling

method using the identified combination of objective values was presented in (Remesh

et al., 2023). Based on the same experimental setup, the obtained computational results

suggest a complete dominance of the presented method compared to the baseline heuristic

techniques for solving the problems in terms of minimizing the makespan, the average

flow time, the average waiting time, and the maximization of the throughput. A detailed

analysis of the computational results shows a consistent increase in improvements achieved

with the presented scheduling methodology compared to other heuristics, with an increase

in the number of jobs that must be scheduled. Further details can be found in Appendix B.

4.4.5 Summary (Eval 3.2)

In conclusion, the conducted experiments in the first cloud environment showed that

MESEA-single leveraged the suitability of different heuristics under different workload

conditions in the considered environment to achieve better performance. The experimen-

tal results contribute to the evaluation of the discussed hypothesis and answer a research

question (cf. Hypothesis 2 and hypothesis 3). The investigation was conducted on a part

of the considered scheduling environment to focus on measuring the potential of combining

different heuristics to deal with scheduling concerns. Evidently, larger scheduling environ-

ments are more complex, resulting in more complicated optimization problems with higher

optimization potential. The computational effort becomes a tedious challenge when the

complexity of the considered problem increases. Our experiments in this use case were

conducted with no parallelization since we relied on a propriety simulation package at that

time. For proper deployment of the presented methodology and full integration with real

systems, migrating to open-source solutions was necessary to utilize proper parallelization

techniques.

The results of the conducted evaluation in the second use case using the PlantLab

benchmark are consistent with those of the first use case. Utilizing several allocation

heuristics over a scheduling period yielded better overall results in terms of minimizing

energy consumption while considering performance measures (Nahhas et al., 2021a). The

experimental results were also dedicated to establishing a comparison to related works

presented by Beloglazov et al. (2012a) and Moges and Abebe (2019). Finally, the findings
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of the third use case were also consistent with those of its predecessors (Remesh et al.,

2022; Remesh et al., 2023). The conducted experiments in the second and third use cases

lack statistical analysis and are experimental. Hence, the presented evaluation using the

PlanetLab, NASA, and KTH workload traces meets, at best, the requirements of the third

evaluation activity as suggested by (Sonnenberg and vom Brocke, 2012).

Scheduling environments are usually subject to changing workload conditions, which

makes it difficult to find or develop a single algorithm that always suits workload patterns.

The previously discussed results demonstrated significant potential improvement that can

be achieved through combining simulation, heuristic, and improvement methods for ad-

dressing single-stage scheduling problems. In general, single-stage scheduling problems are

essentially not as complex as multi-stage scheduling problems. Therefore, we will focus on

presenting and critically discussing the multi-stage evaluation of MESEAS components in

the next evaluation.

4.5 Evalution in manufacturing (Eval 3.3 - partial Eval 4)

4.5.1 Use case overview

The presented artifact was evaluated for solving multi-stage scheduling problems in a

Printed Circuit Board (PCB) manufacturing environment. PCB manufacturing environ-

ments are usually designed with similar features to assembly production environments

(Smed et al., 2003, pp. 3-4). A PCB is manufactured after several processes are com-

pleted. In the investigated manufacturing environment, the manufacturing of a PCB is

subject to completing at least the first two operations and may require up to four oper-

ations. In essence, it is a four-stage hybrid flow shop manufacturing system. In the first

processing stage, PCBs are mounted with parts using Surface Mounting Devices (SMD)

machines. The SMD processing stage is the most significant stage for the overall efficiency

of the production environment due to the characteristics of such systems (Csaszar et al.,

2000, p. 125). Machines in the SMD stage are configured according to the part types of

the processed PCBs. After completing the mounting operations, PCBs undergo a qual-

ity control process using Automated-Optical-Inspection (AOI) machines. Some PCBs may

undergo the Selective Soldering (SS) process, where some parts are mounted independently

on the boards. Finally, some PCBs are processed by Conformal Coating (CC) machines

before completion. Figure 4.10 depicts the structure of the manufacturing environments.

In this evaluation, we used real problem instances that were extracted from the en-

terprise resources planning of the manufacturing environment (Krist, 2022, p. 103). The

problem instances are described in (Krist, 2022, p. 104). The applied scheduling practices

were focused on system efficiency to reduce the total number of major setup times (Krist,

2022, p. 105). As a result, generated solutions may contain delays in delivery dates (Krist,

2022, pp. 105-106). Based on the description of the considered manufacturing environ-

ment, we will instantiate the presented artifact and evaluate its performance for solving

the discussed problem instances.
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SS 𝑀3, 4

SS 𝑀3, 5

…
Figure 4.10: The structure of the manufacturing environment (Nahhas et al., 2021b).

4.5.2 Methodology instantiation and problem formulation

In this section, MESEAS is instantiated to address scheduling concerns in manufacturing

environments based on the formalization discussed in the previous chapter (cf. Subsec-

tion 3.4.3). Equation 4.4 presents the tuple definition of the methodology, which we will

discuss in the course of this section. All functionality layers of MESEAS are utilized to

address scheduling concerns in this environment and present an overall evaluation of the

concept. Namely, the scheduling data model, the simulation, the heuristic library, the

optimization, and the machine learning components are therefore instantiated. Given the

scheduling problems SPmulti, the presented artifact MESEAS(X, T ) is utilized to find a

solutionX ∈ X for the considered scheduling period T (cf. Section 3.4.2 and Equation 3.1).

This solution must minimize the objective values in Γ to address system efficiency and cus-

tomer satisfaction concerns in manufacturing environments. In the course of this section,

we will detail the instantiation of the methodology for several scenarios.

MESEAS(X, T ) = ⟨SPmulti | PImulti | Γ | Sim | HL | Opt ∨ML⟩ (4.4)

The scheduling problem - SPmulti

Considering the structural overview of the discussed manufacturing environment presented

in Figure 4.10, the scheduling problem can be formulated by instantiating the schedul-

ing data model of the presented methodology. The scheduling data model of MESEAS

methodology follows the triple ⟨α | β | γ⟩ notation presented by Graham et al. (1979) to

formalize scheduling problems.

The investigated manufacturing environment consists of four processing stages with

heterogeneous machines. The first three processing stages contain five parallel machines

that can be utilized to process jobs with different speeds Q5. The fourth processing

stage processes jobs using two identical parallel machines P2. The structure of the

scheduling environment is denoted as Hybrid Flow Shop scheduling environment αα =

HFS4(Q5, Q5, Q5, P2). The manufacturing operations of the analyzed environment are
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characterized by family setup times and eligibility restrictions. The manufacturing oper-

ations of the analyzed environment are characterized by family setup times and eligibility

restrictions constraints. Jobs are also associated with priority families. The following

bullet points briefly summarize the operational constraints and objective measures of the

manufacturing environment:

• Family dependent setup times β1 = fg,h: Jobs are grouped into families based on

their required raw materials. The first and fourth processing stages are subject to

family major and minor setup time operational constraints (cf. Section 2.1.2).

• Priority families β2 = Dpr: Jobs are also classified under several priority families

that are associated with the type of customer. This practice is usually to maintain

customer relationships and avoid penalties.

• Machine eligibility restrictions β2 = Mj : Once the machine starts processing a job

Jj ∈ J of a family fg in the first stage, it blocks the equipment required for this

family. Thus, the rest of the jobs in this family can not be processed by other

machines at this stage until the job is completed and the resources are free.

• The makespan γ1 = Cmax: Scheduling practices in the considered environment are

oriented toward system efficiency. The makespan was presented in Equation 2.8:

• The total tardiness γ2 = T : Delays in delivery dates impact reputation and harm

customer relationships. Therefore, scheduling decisions must adhere to the delivery

dates of orders. The total tardiness was presented in Equation 2.10.

• The number of major setup times γ3 =MS: The configuration time of machines has

a significant impact on the efficiency of the considered manufacturing environment

and must be minimized. The total number of major setup times was presented in

Equation 2.11.

• The total number of penalties γ4 = U : To consider customer satisfaction, the min-

imization of the total penalties is an objective measure of scheduling policies. The

total number of penalties was presented in (cf. Equation 2.7).

Based on the description of the considered manufacturing environment, the scheduling

problem is expressed by SPmulti = ⟨HFSm | fg,h, Dpr, Mj | Cmax, T, U, MS⟩.

Problem instance - PImulti

The problem instances include hundreds of customer orders that are divided into monthly

backlogs. The customer orders are mapped to the data structure of MESEAS (cf. Sec-

tion 3.4.2). We further relied on problem instances from related works to investigate the

quality of obtained solutions. The following bullet points summarize the instantiation of

the scheduling data model:
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• The set T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , 30} denote a month scheduling period.

Given a discrete change in time horizon ∆T1, we move from T1 to T2.

• The set J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , 176} denote jobs in a problem instance,

which must be completed during a scheduling period T .

• The prj ∈ R+ denote a positive integer number associated with every job that

indicates the priority of job Jj .

• The set f =
{
fg, . . . , f|f |

}
: ∀ g ∈ {1, . . . , 45} denote part-type families of the

considered environment. Every family fg comprises a subset of jobs Jj,g ⊂ J .

• The set D =
{
Dpr, . . . , D|D|

}
: ∀ pr ∈ {1, . . . , 20} denote the priority families of

the considered scheduling environment. Every family Dpr comprises a subset of jobs

Jj,k ⊂ J . Jobs of a single family share the same priority.

• The setOj =
{
Oo,j , . . . , O|O|,j

}
: ∀ o ∈ {2, . . . , 4} denote the operations that compose

a job Jj ∈ J .

• The set S =
{
Ss, . . . , S|S|

}
: ∀ s ∈ {1, . . . , 4} denote four processing stages of the

considered environment.

• The set M = {Mi,s, . . . ,Mm,s} : ∀ i ∈ {1, . . . , 5} denote an m number of machines

that are available at every stage Ss ∈ S.

• The ps,i,j ∈ R+ denote the required processing time of a job Jj ∈ J to be completed

by a machine Mi ∈M on the processing stage Ss ∈ S.

• The MS ∈ R+ denotes the overall number of major setup times of all machines

M during a scheduling period T . We increase this number subject to the family-

dependent setup constraint discussed in Subsection 2.1.2.

• The msi ∈ [25, 65] denote the required time in minutes to setup a machine Mi when

switching between two families.

Objective function - Γ

Based on the instantiation of the scheduling data model, the methodology is utilized to

explore the solution space X of the scheduling problem to find a scheduling plan X ∈ X.
This schedule maps the set of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n} to the available

machines M = {Mi,s, . . . ,Mm,s} : ∀ i ∈ {1, . . . , 5} in the corresponding processing stages

S =
{
Ss, . . . , S|S|

}
: ∀ s ∈ {1, . . . , 4}. The production schedule X ∈ X is composed

of a set of matrixes, each detailing a manufacturing plan for a stage Ss such that X ={
Xs, . . . , X|S|

}
∀ s ∈ {1, . . . , 4}.

This production schedule is subject to the discussed constraints. Based on Equa-

tion 2.8, Equation 2.10, Equation 2.11, and Equation 2.7, the objective functions are

expressed in Equation 4.5. The quality of the investigated schedules during the search is



Abdulrahman Nahhas, M. Sc. 175

associated with minimizing the makespan, total tardiness, total number of penalties, and

total number of major setup times. Based on the objective functions in Equation 4.5, the

overall objective function, which is utilized to assign fitness values to solution individuals,

is presented in Equation 4.6.

γ1(X) = Cmax, γ2(X) =MS, γ3(X) = T, γ4(X) = U (4.5)

arg min
X∈X

Γ(X) = arg min
X∈X

[γi(X), . . . , γ|Γ|(X)] : ∀ i ∈ {1, . . . , 4} (4.6)

Simulation - (Sim)

For solving the scheduling problem, simulation methods are combined with heuristic, im-

provement, and/or DRL methods. The simulation component was initialized to create

simulation models using the Salabim simulation package (cf. Subsection 3.4.4). The opti-

mization and machine learning components then use the simulation models to construct

and evaluate solution candidates.

Heuristic Library - (HL)

The simulation model is loosely coupled with the HL component of MESEAS. It initializes

the component and invokes the appropriate allocation and sequencing algorithms during

the optimization to construct a solution (cf. Subsection 3.4.4 and Section 3.5). Scheduling

decisions in the considered environment deal with the allocation and sequencing of jobs

in every stage. Therefore, the methodology is instantiated to utilize a set of six allocation

algorithms: A =
{
Aa, . . . , A|A|

}
: ∀ a ∈ {1, . . . , 6}. It also utilized a set of six sequencing

algorithms: B =
{
Bb, . . . , B|B|

}
: ∀ b ∈ {1, . . . , 6} to constrcut solutions. The included

allocation and sequencing algorithms are:

• A1 : Family-Increasing Workload-Increasing (FI-WI, Algorithm 7).

• A2: Family-Decreasing Workload-Increasing (FD-WI, Algorithm 8).

• A3: Deadline-Aware Family Fit Increasing (DA-FFI, Algorithm 9).

• A4: Deadline-Workload-Aware Family-Fit-Increasing ((DWA− FFI)CH1 , based on

Algorithm 10).

• A5: Deadline-Workload-Aware Family-Fit-Increasing ((DWA− FFI)CH2 , based on

Algorithm 10).

• A6: Deadline-Workload-Aware Family-Fit-Decreasing (DWA-FFD based on Algo-

rithm 10).

• B1: Earliest Due Date (EDD for single-machine based on Algorithm 1).

• B2: Shortest Processing Time (SPT for single-machine based on Algorithm 2).
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• B3: EDD-Family Shortest Processing Time (EDD-FSPT, Algorithm 12).

• B4: EDD-Family Longest-Processing-Time (EDD-FLPT, Algorithm 13).

• B5: Deadline-Aware Sequencing-Increasing (DA-SI, Algorithm 14).

• B6: Deadline-Aware Sequencing-Increasing ((DA− SI)multi based on Algorithm 14).

Optimization - (Opt)

The optimization component of MESEAS can be instantiated using the presented encod-

ing models in Subsection 3.6.1 and the discussed adopted evolutionary method in Subsec-

tion 3.6.2. Based on the business needs, utilizing a single model and a single evolutionary

method may be sufficient to address scheduling concerns. For evaluation proposes, we

utilized the methodology using all models to systematically investigate their performance

and validate their integration with the simulation and heuristic library components. We

will elaborate on the instantiation of the presented models in the coming subsections.

Discrete encoding based on family markers (MESEAS-Attribute): Based on the problem

formulation, we relied on the family-types attribute to integrate the optimization with

the simulation and heuristic library components. Equation 4.7 presents the definition of a

solution candidate generated by the optimization model. Based on the conducted analysis

of the provided data, the problem instances contain, at most, 46 independent families in

the first processing stage. Jobs in the fourth processing stage are grouped into only three

families. Every genotype Φφ was used to allocate a family fφ to a machine Mi ∈M . The

solution candidate was decoded using the simulation component, and allocation maps were

generated for the family-dependent processing stages. To address the sequencing part of

the problem, the DA-SI algorithm was used to sequence jobs in every machine during the

simulation. For simplicity and consistent presentation of the computational results, we

called this instantiation MESEAS-Attribute.

Φattr =
[
Φφ, · · · , Φ|f |

]
: (φ = 1, 2, . . . , 46) ∧ (Φφ = 1, 2, . . . , 5) (4.7)

Discrete encoding based on allocation heuristic markers (MESEAS-Single): The included

allocation heuristics discussed in the previous section were used as a marker to define the

genotypes for the implemented Non-Dominated Sorting Genetic Algorithms three (NSGA

III). Based on the instantiation of the HL, the set A =
{
Aa, . . . , A|A|

}
: ∀ a ∈ {1, . . . , 6}

denoted a set of six allocation heuristics. The shape of a solution candidate is presented

in Equation 4.8. Each genotype Φφ initialized an allocation constructive algorithm Aa,

which was used at the decision point Tφ. The uncompleted jobs are rescheduled during the

simulation of the scheduling period T . For consistency, we utilized the DA-SI algorithm

to sequence jobs in every machine (cf. Algorithm 14).

ΦA =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , 30) ∧ (Φφ = 1, 2, . . . , 6) (4.8)
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Multi-population discrete encoding based on allocation and sequencing heuristic markers

(MESEAS-Multi): The multi-population encoding model was implemented using the al-

location and sequencing heuristics as markers. This encoding model also integrated the

rest of the sequencing algorithms to be used during the scheduling period. The multi-

population encoding model is denoted by the set Φ =
{
ΦA, ΦB

}
: subject toEquation 4.9.

Similarly, the NSGA III is implemented and initialized to maintain and control the

evolution process of the allocation and sequencing populations. It is important to em-

phasize that both populations coevolve simultaneously during the optimization process.

They depend on each other to construct the final solution and obtain the fitness of their

independent individuals. Recently, very few similar approaches can be found in the litera-

ture that were presented to deal with scheduling problems (Zeiträg et al., 2024; Liu et al.,

2023; Wang et al., 2021).

ΦA =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , 30) ∧ (Φφ = 1, 2, . . . , 6) ∧ ΦA ∈ Φ

ΦB =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , 30) ∧ (Φφ = 1, 2, . . . , 6) ∧ ΦB ∈ Φ

(4.9)

Machine Learning - (ML)

The machine learning component was instantiated based on the presented DRL scheduling

and evaluation models, which we discussed in Subsection 3.6.3. We adopted the Proxi-

mal Policy Optimization (PPO) and the Asynchronous Advantage Actor-Critic (A3C) to

address scheduling concerns of the considered manufacturing environment. We can sum-

marize the initialization by mapping our instantiation of the optimization component to

the machine learning component using the MDP notation.

Equation 4.10 presents the MDP instantiation of the DRL scheduling and evaluation

models using the allocation heuristic encoding. In this encoding, we exposed the DRL

agent to the set of allocation heuristics A to select which allocation algorithm must be

used at every decision point to schedule jobs. The adopted DRL agent takes an action ΦA
φ

at time Tφ, which is decoded and translated by the initialized HL and simulated by the

initialized Sim. Based on the simulation results, the computed reward and the obtained

observations are propagated back to the DRL agents. We also supplied the agents with a

matrix K∗ of key performance indicators for every job. For addressing the sequencing part

of the scheduling problem, we similarly relied on the DA-SI algorithm (cf. Algorithm 14).

⟨S = (PI ∪K∗ ∪X∗ ∈ X) | A = HL (ΦA
φ ) | T = Sim (Aa, Tφ) | R = −Γω ⟩ (4.10)

For every suggested solutionX∗ ∈ X, we computed a set of key performance indicators

for the set of jobs J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , n}. They are denoted by the set

K =
{
Kk, . . . ,K|K|

}
: ∀ k ∈ {1, . . . , |K|}. We computed them using the simulation model

as presented in Equation 4.11. Each matrix K∗ was of the size (n × |K|) as shown

in Equation 4.11. The utilized key performance indicators in the evaluation were the
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waiting time (cf. Equation 2.2), the completion time (cf. Equation 2.3), the flow time (cf.

Equation 2.4), and the tardiness (cf. Equation 2.6). In essence, the set was instantiated

such that K = {Wj , Cj , Fj , Tj}.

K∗ = Sim (X∗, K) =


k11 k12 · · · k1|K|

k21 k22 · · · k2|K|
...

...
. . .

...

kn1 kn2 · · · kn|K|

 (4.11)

The second encoding exposed the agents to a second controller using the sequencing

heuristic to interact with the DRL environment. Equation 4.10 presents the instantiation

of the ML component using the allocation and sequencing encodings. The training is

conducted in a manner identical to the first encoding to compare the performance of both

approaches systematically.

⟨S = (PI∪K∗∪X∗ ∈ X) |A = HL(ΦA
φ , Φ

B
φ ) | T = Sim(Aa, Bb, Tφ) |R = −Γω ⟩ (4.12)

The training of the adopted A3C and PPO using the instantiated DRL scheduling and

evaluation model was conducted using the same reward function −Γω. DRL agents take

action to maximize their reward value. Therefore, we transformed the minimization objec-

tive function to maximization weighted reward function −Γω as depicted in Equation 4.13.

The penalty function was multiplied by ten to incentivize agents to avoid penalties and

violations in delivery dates. In the discussed DRL approaches, we relied on multi-discrete

action space. Multi-discrete action allows a DRL agent to take multiple actions at the

same time and is usually adopted to train agents in complex environments (Delalleau

et al., 2019; Kanervisto et al., 2020). After the agent suggests multiple discrete actions,

the simulation model sequentially processes them to return the immediate reward.

argmax
X∈X

Γω(X) = − (γ1(X) + γ2(X) + γ3(X) + 10 ∗ γ4(X)) (4.13)

4.5.3 Computational results using optimization component

Component configuration

We conducted experiments that utilized all functionality layers of the presented artifact

with emphasis on the full integration of the presented components. Therefore, the pre-

sented analysis focuses on the instantiation of the multi-population configuration of the

optimization component. We finally compare the obtained results with other methods

from related works in Subsection 4.5.5. The optimization component was initialized us-

ing the NSGA III to solve the scheduling problems subject to multiple objective values

presented in Equation 4.6. The concept of reference points was adopted by Deb and Jain

(2014, p. 581) to guide the optimization in searching the objective space and ensuring

diversity. We relied on the uniform reference points that were adopted by Deb and Jain
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(2014, p. 581) based on the investigation of Das and Dennis (1998, p. 642) to parameterize

the NSGA III with P = 4. This parameterization results in ψ = 35 reference points (Deb

and Jain, 2014, p. 581 ;Das and Dennis, 1998, p. 642).

We adopted the two-point crossover operator with σ = 0.8 crossover probability to

conduct the evaluation. The two-point crossover evolutionary operator is often adopted in

the design of evolutionary methods due to its simple design. It has a rich theoretical back-

ground and proved to be efficient empirically (Holland, 1975; de Jong, 1975, pp. 20-21). A

shuffling index, introduced by Eshelman et al. (1989, p. 15), mutation function was utilized

with a probably δ = 0.7. The population size and the number of individuals were set with

µ = λ = 250, respectively. However, a larger population size reduces the stochastic be-

havior of an evolutionary method. It may yield better performance in the long run at the

expense of low quality at the early stage of the optimization (de Jong, 1975, pp. 191-192).

We finally set the max number of generations to maxGen = 200. We mentioned earlier

that the parameters of the optimization component were obtained empirically with empha-

sis on efficiency subsubsection 4.3.3.3. Evolutionary optimization methods are eventually

stochastic optimization techniques. Therefore, we conducted 50 optimization experiments

to solve every problem instance, amounting to 1500 experiments. The objective is to verify

the integration of the optimization component with the simulation and heuristic library

components. The used parameters are summarized in Table 4.3.

Table 4.3: Evolutionary operators and parameterization.

Operator Utilized Parameterization

Initialization Random population Population size µ = 250

Selection NSGA III Individuals λ = 250

Reference points Uniform normalized P = 4 , ψ = 35

Recombination Uniform two-point crossover function σ = 0.8

Mutation Shuffling index function δ = 0.7

Analysis of computational results

The experiment’s results for minimizing the makespan are presented in Figure 4.11. The

upper part of the figure, Makespan (A), depicts the results of the optimization component

for solving the first fifteen problem instances. The lower part of the figure, Makespan (B),

demonstrates the collected computational results for solving the second fifteen problem in-

stances. Every point in both parts of the graph represents the makespan of an investigated

solution during the optimization. The makespan data points represent the makespan from

the Pareto fronts of fifty optimization experiments per problem instance.

The boxplots depict the makespan of Pareto fronts solutions for every problem in-

stance using the Interquartile Range (IQR) . According to the IQR, every boxplot is

divided into four parts (quartiles), excluding outliers. Outlier data points are plotted out-

side the IQR range, as shown in the figure. The first quartile includes the values of the

makespan that are 25% greater than all values and 75% less than all found makespan in
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the Pareto fronts. It marks the IQR found minimum, excluding outliers. For instance,

in the first problem instance, the best-found solution for minimizing the makespan over

the fifty optimization experiments was 16,386. Also, 75 % of explored solutions are below

16805. The second quartile divides the dataset of the best makespans into two parts and

is located in the middle. For instance, the mean of the makespan for solving the first

problem instance was 17,122.1, and the median was 17058.
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Figure 4.11: Computional results for minimizing the makespan.
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The third quartile is opposite to the first one and includes makespan values that are

25 % less than all values and 75 % greater than all values. The fourth quartile encompasses

the rest of the makespan values until the IQR max. For instance, the worst-found IQR

makespan in solving the first problem instance was 18,097.8. The actual worst makespan,

including outliers, was 19,797 minutes.

It is noticeable that for several problem instances, such as 9, 21, and 25, many out-

liers were present in the Pareto fronts of the fifty optimization experiments. That implies

that the solution space was explored extensively and that the investigated objectives are

conflicting. Their business background can explain the conflicting nature of the objective

values. The makespan and the total tardiness are system efficiency business objectives,

while the total tardiness and the total number of penalties are customer satisfaction busi-

ness objectives.

In summary, the results of the experiments delivered solutions with an average min-

imum makespan amounting to 15,306 for solving problem instances. The average of the

best 25 % of all found makespan values for solving all problem instances was 15,685.44

with a 2.35 % deviation from the minimum average. The average of the best 75 % of

all found makespan values for solving all problem instances was 16,087.44 with a 4.855

% from the average minimum. In conclusion, 50 % of best-found solutions for solving all

problems deviated on average by 2.62 % from the average minimum. The median of all

experiments for solving all problems was 15,852.6.

The experiment’s results for minimizing the total major setup times are demonstrated

in Figure 4.12. Similarly, the upper part of the figure, Total major setup times (A), depicts

the results of the optimization component in minimizing the total major setup times

for solving fifteen problem instances. The lower part of the figure, Total major setup

times (B), demonstrates the computational results of the rest of the considered problem

instances. The results depicted in the figure were collected from the Pareto fronts of the

same experiments presented per problem instance. Each boxplot summarizes statistical

findings for solving a problem instance.

The average optimal lower bound of the major setup times for solving the problem

instances is 34. This lower bound was calculated by averaging the total number of families

in problem instances. It implies that once a machine starts processing a family, it must

process all the jobs within the family with no regard to any other objective value. The

collected optimization results from the optimization component showed that the average

minimum of 38 deviates by 10.5 % from the possible global minimum for solving the

problem instances. The minimization of the other objective values obviously explains this

deviation. The average of the best 25 % of all found major setup values for solving all

problem instances was 41,3, with a 7.9 % deviation from the minimum average. The

average of the best 75 % of all found solutions was 44,5, with a 7.1 % deviation from the

average minimum. In conclusion, the median of all experiments for solving all problems

to minimize the total major setup times was 42.7.
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Figure 4.12: Computional results for minimizing the total number of major setup times.

The experiment’s results for minimizing the total tardiness are presented in Fig-

ure 4.13. The upper part of the figure, Total tardiness (A), presents the results of the

optimization component for solving the first fifteen problem instances. The lower part of

the figure, Total tardiness (B), displays the computational results for solving the second

fifteen problem instances. Similar to the previous graph, every point in both parts of the

figure represents the total tardiness of a solution. The total tardiness data points in the

figure were collected from the Pareto fronts of fifty optimization experiments per problem

instance.
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Figure 4.13: Computional results for minimizing the total tardiness.

For instance, the best % 25 of collected best solutions from fifty optimization exper-

iments had 298.3 minutes of total tardiness. However, to solve the same problem, 200

unique solutions with zero total tardiness were found. Obviously, the minimum average

overall optimization runs is zero. It is evident that in solving all problem instances, many

outliers were present in the Pareto fronts of the optimization experiments. That points

to a proper exploration of optimization to investigate solutions in different regions. The

results of the total tardiness align with the makespan one, revealing the conflicting nature

of the objective values. The optimization component delivered solutions minimizing the
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total tardiness to zero for solving all problem instances, as displayed in the figure. Hence,

the average minimum of the total tardiness for solving all problem instances was zero.

The average of the best 25 % of all found total tardiness values for solving all problem

instances was 238.9 minutes. The average of the best 75 % of all found solutions had

roughly under a day of total tardiness.

In summary, the median total tardiness for solving all problem instances was 678.73.

The total tardiness and the number of penalties objective values have a strong correlation.

Both business objectives significantly conflict with minimizing the total number of major

setup times and somewhat conflict with minimizing the makespan.

The experiment’s results for minimizing the total number of penalties over a schedul-

ing period are presented in Figure 4.14 and Figure 4.15. Total penalties (A), depicts the

results of the optimization component in minimizing the total penalties for solving the

first fifteen problem instances. Total penalties (B), demonstrates the computational re-

sults for solving the second fifteen problem instances. The total penalty data points in the

figure were collected from the Pareto fronts of the same experiments and are presented

per problem instance. Every boxplot demonstrates the statistical analysis for solving a

problem instance. The presence of the outliers in solving all problem instances explains

the discussed outliers in the analysis of the total tardiness results. For instance, for solving

the first problem instance, the average minimum is zero, and the median is three penalties.

Nevertheless, 200 unique solutions with zero penalties were collected from the exper-

iments conducted to solve the problem. The statistical analysis of the collected solutions

for solving all problem instances showed that the best 25 % of solutions contained, on av-

erage, a 1.33 penalty. The median of the total number of penalties for solving all problem

instances was 2.57.
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Figure 4.14: Computional results for minimizing the total penalties (A).
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Figure 4.15: Computional results for minimizing the total penalties (B).

Detailed analysis of obtained results

The findings of the statistical analysis of the conducted experiments highlighted the con-

flicting nature of the objective values. The performance of the considered scheduling

environment is also influenced by the total number of major setup times in the fourth

processing stage. We excluded the minimization of this objective value in the statistical

analysis to sustain comparability to related works. Nonetheless, we evaluated the method-

ology’s performance for minimizing five objective values, including the major setup times

in the last stage.

For instance, Figure 4.16 depicts the investigated solutions for solving the first prob-

lem instance. The X-axis and the Y-axis demonstrate, in minutes, the makespan and the

average tardiness, respectively. For clarity, we accumulated the number of major setup

times in the first and fourth stages and used the Z-axis to represent their value. The

depicted data points in green represent investigated solution individuals during the opti-

mization. They are distributed in the three-dimensional figure based on objective values.

The small red triangles are a set of best solutions from the Pareto fronts of the conducted

optimization.

Since the problem is formulated as a minimization optimization problem, the best

solution instances are, to a large extent, concentrated in the lower part of the figure. Here,

we want to point out that objective values were normalized before assigning fitness values

to the investigated solution individual. In this presentation, we wanted to elaborate on

the business impact of the considered objective values. As shown in the figure, attempting

to minimize the total major setup times has a significant impact on the total tardiness

and a noticeable influence on the makespan.
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Figure 4.16: Example representation of explored solution candidates and their objective
values for solving the first problem instance (Nahhas et al., 2022a).

The results also showed that the presented methodology sufficiently explores the so-

lution space and maintains diversity in the population during the optimization despite

considering five objective values. We observed in the backside of the figure that a large

number of solution individuals yielded significant improvement in minimizing the total

number of major setup times while sustaining a very high makespan. Figure 4.17 depicts

the computational results for solving the problem using two-dimensional representation.

The upper part of the figure displays the quality of the best solutions in terms of min-

imizing the makespan and the average tardiness. The average tardiness was used here

to include the total tardiness and the total number of penalties. As shown in the figure,

a set of best-found solutions is concentrated in the lower-left part of the figure, leaning

toward the minimal makespan and the minimal average tardiness. The second set of the

best-found solutions is located to the right.
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Figure 4.17: Example representation of explored solution candidates -conflicting nature of
objective values in solving the first problem instance (Nahhas et al., 2022a).
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The central part of the figure compares the makespan against the accumulated major

setup times in the first and fourth processing stages (cf. Figure 4.17). The results showed

two sets of best-found solutions, designated in red. Comparing the presentation of the

results in the central part of the figure with the upper part confirmed the conflicting

nature of the makespan and the major setup times objectives. In the lower-left part of the

figure, the best solutions that minimized the makespan and the total setup times on both

stages were concentrated. The second set of best solutions was somewhat distributed

around makespan values amounting to roughly 17,900. This set of solutions delivers a

slightly better accumulated major setup, obviously, at the expense of the makespan.

Finally, the lower part of the figure displays the accumulated major setup times and

the average tardiness of collected solutions during the optimization. It is also evident

that the two sets of best solutions were identified. The first set is also concentrated in

the lower left part of the figure, minimizing the average tardiness and the major setup

times. In summary, integrating the optimization component with the rest of the compo-

nents in MESEAS showed robust performance even when we considered further objective

values in the optimization. In fact, the lowest makespan was found after considering the

fifth objective value: 16,661 minutes compared to 17,308 minutes, which we discussed in

the previous analysis. We selected solutions that also achieved zero total tardiness and

penalties.

Analysis from business perspective

The presented analysis builds up on and summarizes the evaluation results of the op-

timization and machine learning components published, for instance, in (Nahhas et al.,

2021b, Nahhas et al., 2022a, Nahhas et al., 2022b, Nahhas et al., 2024a). The first adop-

tion of GA using attribute markers is often found in related works for solving scheduling

problems. We combined GA with simulation and heuristic techniques to address the allo-

cation and sequencing part of the scheduling problem. The GA is adopted mainly to solve

the allocation part of the problem. To address the sequencing part of the problem, we

utilized one of the algorithms that had been developed in the heuristic library, namely, the

Deadline-Aware Family-Increasing (cf. Algorithm 14). We will call this combination (GA

& DA-FI). The multi-population setup of MESEAS that integrates the full functionalities

of all components except the ML component will be abbreviated by (MESEAS-Multi).

Table 4.4 presents selected solutions that yielded the best results to optimize the

objective values in solving the discussed thirty problem instances. Starting with the

makespan, computational results of MESEAS-Multi demonstrated an average of 15,926.83

minutes makespan compared to 17,957.40 minutes using the (GA & DA-FI). This differ-

ence amounted to a 10.97 % better performance in minimizing the makespan, which has

a significant impact on the overall system efficiency. The average of absolute found min-

imum makespans by MESEAS-Multi for solving the thirty problem instances was 15.2

%. The absolute minimum of solution, given the multi-objective nature of the problem,

implies that we disregard the importance of all other objective values.
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Table 4.4: Evaluation of MESEAS for solving thirty problem instances in a multi-stage
scheduling environment modified based on Nahhas et al., (2021b).

MESEAS - Multi Sim (GA & DA-SI) Sim (EDD)

PI Cmax MS T U Cmax MS T U Cmax MS T U

1 17,308 46 0 0 19,056 52 0 0 19,685 132 121 1

2 14,111 40 0 0 15,691 42 0 0 16,339 134 790 1

3 16,482 48 0 0 16,886 50 0 0 18,766 127 0 0

4 18,066 51 0 0 19,281 56 0 0 19,890 130 0 0

5 15,892 39 0 0 17,928 44 0 0 18,694 121 49 1

6 17,319 43 0 0 17,648 50 0 0 20,182 127 605 3

7 16,083 38 0 0 16,834 43 0 0 17,602 129 0 0

8 16,984 42 0 0 20,467 46 0 0 18,124 135 0 0

9 15,375 43 0 0 15,658 46 0 0 16,703 134 0 0

10 14,252 39 0 0 15,936 40 0 0 16,876 132 0 0

11 17,737 46 0 0 20,522 57 500 2 19,546 134 1,499 1

12 15,219 43 0 0 19,232 43 0 0 17,596 129 0 0

13 12,060 37 0 0 14,606 39 0 0 15,438 133 0 0

14 15,489 41 0 0 17,605 42 0 0 17,899 128 0 0

15 14,434 37 0 0 16,691 41 0 0 16,224 134 0 0

16 14,648 38 0 0 15,918 46 0 0 16,699 139 0 0

17 15,589 40 0 0 18,886 43 0 0 18,817 135 0 0

18 16,099 43 0 0 19,767 46 0 0 17,994 128 0 0

19 16,532 41 0 0 17,921 50 0 0 19,371 132 0 0

20 15,845 44 0 0 18,083 44 0 0 18,147 135 0 0

21 16,434 40 0 0 17,480 48 0 0 19,500 126 0 0

22 15,640 44 0 0 15,771 46 0 0 17,698 138 407 1

23 15,671 42 0 0 19,838 45 0 0 18,450 127 0 0

24 14,529 41 0 0 16,440 43 0 0 17,536 138 0 0

25 15,574 48 0 0 19,190 52 0 0 17,104 142 404 1

26 16,851 39 0 0 21,300 48 0 0 18,210 125 0 0

27 17,599 43 0 0 21,190 48 0 0 19,031 137 0 0

28 17,361 43 0 0 17,779 51 0 0 20,314 140 0 0

29 16,873 40 0 0 18,225 46 0 0 19,545 131 115 1

30 15,749 35 0 0 16,893 38 0 0 19,378 130 0 0
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Compared to the simulation-based EDD, MESEAS-Multi delivered solutions with a

12.72 % better makespan on average. To summarize the analysis of the makespan, the

best-found solutions using MESEAS-Multi deviate on average from the absolute found

minimum by only 2.3 %. To minimize the total major setup times, MESEAS-Multi also

dominated the conventional heuristic and genetic algorithms for solving the thirty problem

instances. On average, MESEAS-Multi’s best scheduling solutions are 9.2 % superior to

the ones found by the combination of GA and DA-SI. The simulation-based EDD best

solutions contained a significantly high number of major setup times, amounting to an

average of 132 overall problem instances. Statistically, MESEAS-Multi’s best solutions

minimized, on average, the total of major setup times by 68.32 % compared to simulation-

based EDD. This minimization amounted to a 218 % improvement in business objective

value. Priority rules suffer on performance if solving a scheduling problem is subject

to minimizing multiple objective values. Both (GA & DA-FI) and EDD failed to find

solutions that eliminated penalties and total tardiness. In fact, the combination of EDD

and simulation delivered solutions with penalties and total tardiness for solving eight

problem instances, which correspond to 26.7 %.

Since the majority of best solutions using MESEAS-Multi and (GA & DA-SI) min-

imized the total tardiness and penalties to zeros, we will summarize the analysis of the

computational results with an emphasis on system efficiency. Figure 4.18 depicts the

overall analysis of best solutions for solving the problem instance in terms of minimizing

the makespan. Figure 4.19 summarizes the overall analysis of best solutions in terms of

minimizing the total major setup times. In both figures, the best scheduling solutions

of MESEAS-Multi are presented using blue bars. The best GA scheduling solutions are

presented using red bars. The gray bars demonstrate the objective values of constructed

scheduling solutions using the simulation component combined with the EDD scheduling

rule. The green line with markers summarizes the comparison between the MESEAS and

conventional GA integrated into MESEAS in percentages from a business perspective.

The horizontal axis depicts the unique identifiers of the considered problem instances. We

used the primary vertical axis (left side) to represent the objective values of solutions while

using the secondary vertical axis (right side) to demonstrate the performance difference

between MESEAS and GA. For clarity, we sorted the raw results in an ascending order

by the difference in performance. As shown in Figure 4.18, MESEAS delivered better

solutions by at least 0.8 % for solving problem 22 and reached 21.0 % improvement for

solving problem 23 with an average of 10.97 % superior performance. As demonstrated

in Figure 4.19, MESEAS and GA found solutions with identical quality in minimizing the

major setup times for solving two problem instances. Then, MESEAS outperformance of

GA started at 2.4 % in solving problem 14 and increased the margin to 19.3 % for solving

problem 11 with an average of 9.17 %.

In summary, the evaluation showed that integrating simulation, heuristic, and meta-

heuristic for addressing multi-stage scheduling problems yielded significant improvement

in solving scheduling problems. The comparison to related works and used scheduling

practices in the considered environment will be summarized in Subsection 4.5.5.
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4.5.4 Computational results using machine learning component

Component configuration

Based on the instantiation of MESEAS for solving multi-stage scheduling problems, the

component was initialized using the adopted A3C and PPO DRL methods. Both algo-

rithms can be utilized in the presented artifact to deal with scheduling concerns. For

evaluation, we conducted independent DRL experiments on the A3C and PPO algorithms

using different formulations of the action space (cf. Section 4.5.2). We relied on a weighted

sum approach to include the considered objective values. We instantiated the reward func-

tion used for training as presented Equation 4.13. The presented experiments emphasize

the integration of all functionality layers of the presented artifact. Both DRL methods uti-

lized the presented scheduling data model, the simulation component, the heuristic library

component, and the encoding models. Based on the formulated actions space, each DRL

method is trained in an independent experiment to select among allocation and sequencing

heuristics over the scheduling period to solve the scheduling problems (cf. Section 4.5.2).

To establish confidence in the performance of the methods, we evaluated them to solve

problems from related works (cf. Subsection 4.5.5).

The hyperparameters of the DRL algorithms were selected based on preliminary

tuning and investigation of the suggested default configuration of the algorithms. All

adopted DRL methods in the presented artifact utilized fully connected Deep Neural

Networks (DNN). The main parameters of DNN are the number of hidden layers, the

number of neurons in each layer, and the type of activation function Koutsoukas et al.

(2017). All algorithms are trained using four hidden layers with this network configura-

tion DNNsize = [2048, 2048, 1024, 1024]. Every element in the vector denotes the number

of neurons in the corresponding hidden layer. We utilized the ReLU activation function

to train both algorithms to maintain comparability.

We configured the learning rate by every algorithm to ε = 0.0001. Finding the right

learning value is critical since a value that is too small can make the training process much

slower. On the other hand, a learning rate that is too high might prevent agents from

exploring new possible solutions. This behavior can result in either low accuracy or an

inability to explore better solutions (Wu et al., 2019). We configured the entropy coefficient

hyperparameter to ε = 0.4. The entropy parameter controls balancing the exploration and

exploitation of agent behaviors during training (Ahmed et al., 2018). Finally, the discount

factor parameter is set to γ = 0.05. Sometimes, the MDP formulation is extended to

include the discount factor γ ∈ [0, 1]. This parameter modulates the overall strategic

conduct of a DRL algorithm. Parameterizing γ with a value closer to zero motivates a

DRL algorithm to maximize its immediate reward at each step. That is ideal for our

formulated multi-discrete action space. Selecting a value closer to 1 compels the DRL

agent instead to strive for higher cumulative rewards. The critic’s networks in A3C and

PPO are activated during the training in all experiments. A summary of the most essential

hyperparameters is presented in Table 4.5.
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Table 4.5: Summary of selected hyperparameters of adopted algorithms.

Algorithm Parameter Parameter value

A3C

Learning rate lr = 0.0001

Discount factor γ = 0.05

Entropy coefficient ε = 0.4

Training batch size batch size = 400

Activation function ReLU

PPO

Learning rate lr = 0.0001

Discount factor γ = 0.05

Entropy coefficient ε = 0.4

Training batch size batch size = 100

Activation function ReLU

Analysis of computational results

Every adopted algorithm was evaluated by launching ten independent training experiments

since both techniques contain stochastic elements that may affect their performance. In

this training, the DRL methods decided which allocation algorithm was used at every

decision point during the scheduling period. The DA-SI sequencing algorithm was utilized

to sequence jobs on the machines in the first and fourth processing stages with family

setup times. Then, the EDD was used to sequence jobs on machines in the second and

third processing stages. Both DRL methods were trained on three problem instances

of distinct complexity. We trained agents to deal with problem instances with medium

complexity. Afterward, agents were exposed during the training to a simpler problem

instance to observe loss of performance. Finally, the most complicated problem instance

concluded the training of the agents. The complexity of the utilized problem instances

was empirically recognized using the optimization component. It strongly correlates with

the number of major setup times and the makespan (cf. Table 4.6). The objectives were

to investigate the performance of the adopted DRL methods in dealing with scheduling

problems of different natures and investigate their ability to adapt.

The collected computational results of the experiments are presented in Figure 4.20.

The performance of the algorithms is compared in terms of their ability to maximize their

reward value per episode during the optimization. The vertical axis in the figure is utilized

to depict the mean episode reward over ten experiments. The performance of the A3C

algorithm for solving the problem instances is depicted in blue. The orange line displays

the progress of the PPO in solving the considered problems. The agent starts interacting

with the simulation environment to solve the first problem instances for 25,000 steps. As

shown in the figure, the A3C algorithm started to find the correct trajectory after 6,000

steps and demonstrated a steady learning curve in dealing with the first problem instance.
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Figure 4.20: Computational results on the performance of MESEAS-A3C and MESEAS-
PPO using the allocation approach (Nahhas et al., 2022b).

The performance of the PPO similarly showed a steady increase in mean reward.

However, it struggled for almost 15,000 episodes to achieve a performance comparable to

A3C, with a mean reward amounting to roughly -5. Eventually, the mean reward of the

A3C reached a steady value of - 2.9 after 12,000. Meanwhile, the PPO continued aggres-

sively exploring around 20,000 episodes to reach a performance similar to that of A3C.

Between 20,000 and 25,000 steps, A3C and PPO algorithms sought rather conservative

changes in suggested solutions and achieved slightly better mean rewards.

By 25000 episodes, both algorithms were exposed to the second scheduling problem.

On average, the algorithm suffered considerable loss in mean reward over multiple experi-

ments, but not all of them. It is depicted as distortions in the figure. The lines depict the

mean rewards over multiple DRL experiments. Here, it was of particular importance to

investigate the loss of performance and duration of recovery by every algorithm. Based on

the analysis, the algorithms successfully recovered and achieved stable mean rewards after

roughly 35,000 episodes for solving the second problem instance. Finally, we exposed the

DRL agents to the most complex scheduling problem at the 50,000 episodes. Clearly, both

algorithms suffered significantly in performance, which can be observed by the steep dive

of blue and orange lines in the figure. On average, both algorithms successfully started

recovering and reporting higher mean rewards during the experiments. However, A3C

once again showed that it is able to recover and deliver high-quality solutions for solving

problems compared to PPO.

Similarly, we conducted ten DRL experiments using each algorithm to address the

same problem instances and investigate the second encoding. We have given DRL algo-

rithms full control over the heuristic library component. They selected allocation and

sequencing algorithms at every decision point during a scheduling period. The obtained

results of the experiments are depicted in Figure 4.21.
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Figure 4.21: Computational results on the performance of MESEAS-A3C and MESEAS-
PPO using the allocation and sequencing approach (Nahhas et al., 2022b).

The allocation and sequencing formulation of the DRL scheduling model is signif-

icantly more complex than the previous one. In simple terms, the number of possible

actions in the actions space was doubled. Following identical configuration, both algo-

rithms started searching for high-quality solutions for the first problem and kept doing

so for 25,000 episodes. Then, we provided the algorithm with the second problem, and

finally, by episode 50,000, they accessed and started solving the third problem instance.

As shown in the figure, the achieved mean reward by the A3C started steadily increasing

over training episodes. However, it was evident that the algorithm’s convergence took

considerably longer and started by episode 10,000. As for the second algorithm, the PPO

started similarly maximizing its mean reward for solving the first problem. However, the

results showed that further training is required to achieve a stable and high mean reward

compared to A3C. The behavior of the PPO using the second encoding was somewhat

similar to the first one. After changing the scheduling problems, we recorded worse mean

rewards by both algorithms after each change and a steady recovery afterward. Based on

our formulation of the DRL scheduling problem, A3C again outperformed PPO in terms

of maximizing the mean reward and, thereby, the objective values for solving the schedul-

ing problem. It also proved, on average, quicker training and more robust policy recovery

after changing the considered scheduling problems.

In summary, the computational results of both experiments demonstrated that the

developed DRL scheduling models and the adopted DRL methods are able to learn from

solutions to scheduling problems. Despite performance suffering when a considered prob-

lem was changed significantly, the presented solutions are able to recover and achieve high

mean reward. It implies that both algorithms, despite the demonstrated overall better

performance of A3C, can adjust their learned policies and adapt to significant changes

in the scheduling problem considered. Increasing the complexity of the actions space by



Abdulrahman Nahhas, M. Sc. 197

allowing DRL agents to control another set of heuristics required the algorithm to be

trained longer to achieve comparable performance to previous experiments. Usually, DRL

methods are trained to deal with very simple tasks formulated using a fairly simple action

space, unlike our presented setup. The loss in performance, though, hinted at insufficient

generalization in the behavior of the algorithms. Our observations largely agree with the

findings presented by Zhang et al. (2018). It is a well-recognized issue in DRL and requires

further investigation of them from fundamental and application perspectives.

4.5.5 Summary and comparison to related work (Eval 3.3 - partial Eval 4)

In this section, we started with a brief overview of the considered multi-stage scheduling

environment that manufactures PCBs with an HFS structure. Afterward, we instanti-

ated the presented methodology MESEASmulti to find solutions for a set of real problem

instances PImulti that minimizes a set of objective business values Γ. Throughout the in-

stantiation, we utilized the presented scheduling model SPmulti, the simulation component,

the optimization component, and the machine learning component. We conducted exten-

sive experimental evaluations to verify the full integration of these components and their

provided functionalities. The presented methodology achieved significant improvement in

solving the scheduling problems and suggested high-quality solutions that minimized the

considered objective values compared to conventional techniques.

Our investigation of conventional machine learning techniques showed that they are

suitable for addressing descriptive and predictive business problems (Kharitonov et al.,

2022). As for prescriptive business needs, such as scheduling problems, we adopted deep

reinforcement learning techniques to design and develop the machine learning component

of the artifact. To establish a comparison to related works, we instantiated MESEAS for

solving the two-stage scheduling problem discussed in Lang et al. (2020). The authors

investigated two stages with five identical machines in the first stage and four identical

machines in the second stage ⟨HFS2 (P5, P4) | fg,h, Dpr | T ⟩. The problems are solved

to minimize the total tardiness. In Lang et al. (2020), a novel adoption of Artificial Neural

Network-based (ANN) machine learning for solving scheduling problems was presented.

The authors adopted NeuroEvolution of Augmenting Topologies (NEAT) originally pro-

posed by Stanley and Miikkulainen (2002) and further described in Miikkulainen and

Stanley (2009). NEAT is a hybrid technique that combines the use of GA to optimize the

topologies and parameters of ANN to solve a given problem.

In Lang et al. (2020), NEAT was used to approximate the sequence of jobs to be

scheduled on a set of machines to minimize total tardiness. The computational results for

solving four problem instances suggested that the presented technique after training can

be used for job scheduling to minimize total tardiness. However, certain limitations in

terms of minimizing other objective values were open for further research. Two improved

variations of the presented NEAT and an extended evaluation were presented in (Lang

et al., 2021b). The improved variations of NEAT yielded better total tardiness in the first

and second problem instances at the expense of a relatively worse makespan.
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Table 4.6 presents the collected computational results of MESEAS-Multi and MESEAS-

Single for solving four problem instances from the considered scheduling environment. The

results are compared to NEAT in terms of minimizing the makespan, the total major setup

times, the total tardiness, and total penalties (Lang et al., 2020). The authors did not

report on the number of penalties, and therefore, we left these values unfilled. Both pro-

posed techniques in MESEAS outperformed NEAT in minimizing the total major setup

times and total tardiness. MESEA-Single, though, optimized the total major setup times

at the expense of the makespan objective compared to NEAT and somewhat MESEAS-

Multi. MESEAS-Multi dominated NEAT for minimizing all considered objective values,

as highlighted in the table in light gray. MESEASE-single delivered better results in terms

of minimizing the total major setup times.

Table 4.6: Evaluation results of optimization compared to NEAT presented in (Lang et
al., 2021b) for solving two-stage scheduling problems (Nahhas et al., 2022a).

MESEAS-Multi MESEAS-Single NEAT

PI Cmax MS T U Cmax MS T U Cmax MS T U

1 16,888 50 0 0 17,786 43 0 0 17,768 114 124 –

2 19,942 51 0 0 22,458 53 0 0 20,916 149 303 –

3 18,405 58 0 0 22,671 53 0 0 20,584 142 0 –

4 18,393 48 0 0 22,569 45 0 0 18,771 113 0 –

Table 4.7 presents the evaluation of the DRL agents MESEAS-A3C and MESEAS-

PPO for solving the two-stage problem instances. The results are also compared to NEAT

in terms of considered objective values. The best obtained objective values are high-

lighted in the table with light gray filling. Both proposed DRL methods in MESEAS

outperformed NEAT in minimizing the total major setup times and the makespan. The

results of MESEA-A3C fully dominated NEAT for solving the first three problem in-

stances. MESEAS-PPO outperformed MESEAS-A3C in terms of minimizing the total

major setup times. However, both methods were dominated by NEAT for solving the

fourth problem instance in terms of minimizing the makespan, the total tardiness, and

the total number of penalties. On average, MESEAS-A3C delivered the highest quality

solutions for solving the problem instances with a slight deviation in terms of total major

setup times compared to MESEAS-PPO.

We again observed that the performance of MESEAS-A3C and MESEAS-PPO may

decrease in minimizing some objective values. That is evident in their performance in solv-

ing the fourth problem instance. According to the author’s analysis, the fourth problem is,

in fact, the least complex problem, with only 143 jobs to be scheduled (Lang et al., 2020,

p. 1301). The first three problem instances had, on average, 170 jobs to be scheduled.

This change in the nature of the problem could explain the behavior of the algorithms.
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Table 4.7: Evaluation results of machine learning compared to NEAT presented in (Lang
et al., 2021b) for solving two-stage scheduling problems (Nahhas et al., 2022b).

MESEAS-A3C MESEAS-PPO NEAT

PI Cmax MS T U Cmax MS T U Cmax MS T U

1 17,081 58 0 0 18,609 54 0 0 17,768 114 124 –

2 17,669 55 0 0 17,874 55 0 0 20,916 149 303 –

3 17,690 56 0 0 18,228 54 0 0 20,584 142 0 –

4 19,767 52 1,627 4 19,970 52 2,245 4 18,771 113 0 –

4.6 Summary of MESEAS evaluation

This chapter started with an introduction to the adopted evaluation method (Sonnenberg

and vom Brocke, 2012). The first section summarized the first evaluation activity based

on Sonnenberg and vom Brocke (2012), in which the problem statement and research

objective of the research were outlined. Subsequently, the second evaluation activity was

recapped in the second section. This section highlighted the consistency and systematic

approach in selecting the design tools that are used to present the design blueprints of

the main components of MESEAS. The third evaluation stage comprised three evaluation

activities that are detailed in the third, fourth, and fifth sections of this chapter.

First, we evaluate the presented methodology by means of proof of concept (von

Hevner et al., 2004). The third section was dedicated to discussing the implementation

and deployment of the proof of concept. We concluded in this section that the adoption of

open-source and cloud-native technologies was decisive in meeting the functional and non-

function requirements of the artifact. Their adoption and utilization facilitated a scalable,

hybrid, and multi-architecture deployment of the artifact. Such deployment ensured the

efficient operation of MESEAS, taking into account energy consumption. The simulation

and heuristic subsystem, as well as the optimization and machine learning subsystem,

were developed and deployed with parallelization and scalability features. This section

concluded with a summary of the presented proof of concept and its operation, emphasizing

effectiveness and efficiency.

Then, we conducted evaluation experiments on multiple use cases to address single-

stage scheduling problems in cloud environments. The evaluation results were presented

in the fourth section, which detailed the instantiation of the presented methodology to

address scheduling concerns in a cloud environment. Finally, the section summarized the

findings of the MESEAS evaluation using three benchmarks from the literature. Subse-

quently, the fifth section discussed the performance evaluation of the presented method-

ology for solving real multi-stage scheduling problems in manufacturing. The section was

summarized with comparisons to related works focusing on the performance of MESEAS

optimization and machine learning components. On average, the scheduling solutions of

the optimization component were 32.6 % superior to those of the related work in terms
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of minimizing system efficiency-related objective measures. The achieved solutions by the

machine learning component similarly dominated the solutions of the related works with

a margin amounting to 31.9 %. Given the improvement in solving real problem instances,

the evaluation that was conducted verified the usefulness of MESEAS for addressing real

multi-objective scheduling problems.
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5 Conclusion and future research
perspectives

5.1 Summary and discussion

In the context of this work, a scheduling methodology was developed to integrate the

utilization of simulation, heuristic, improvement, and deep reinforcement learning methods

to address multi-objective scheduling problems. The objective of their integration is to

leverage their combined potential and mitigate their limitations. Following modular design

practices, MESEAS architecture incorporates simulation, heuristic library, optimization,

and machine learning components that are integrated to address single-stage and multi-

stage scheduling problems. The capabilities of MESEAS components can be accessed and

utilized through four distinct functionality layers.

The modeling and simulation layer allows decision-makers to investigate what-if sce-

narios and execute various analyses to make informed capacity planning decisions in the

context of scheduling. This layer integrates the presented scheduling model with an auto-

mated simulation model composer to build and execute simulation models automatically.

The artifact’s simulation component is based on the discrete event simulation paradigm

used to construct simulation models, which are executed using open-source simulation en-

gines. The presented scheduling model and the simulation component of MESEAS fulfill

the first , second , and third functional requirements of the artifact.

The constructive heuristic layer offers decision-makers further functionalities to ex-

plore basic solutions for a given scheduling problem, taking into account some business

objectives. This layer is fully integrated with the underlying modeling and simulation

layer and produces solutions for scheduling problems after selecting some allocation and/or

sequencing algorithms. In this work, we developed and adopted many allocation and se-

quencing heuristics and many other well-established heuristics from the literature. The

developed and adopted allocation and sequencing heuristics in the heuristic library com-

ponents alongside the scheduling model and the simulation component of MESEAS fulfill

the fourth and fifth functional requirements of the artifact.

The optimization layer facilitates the systematic examination of the solution space

of a scheduling problem. It offers decision-makers improved, high-quality solutions that

consider multiple business objectives, such as system efficiency and customer satisfaction.

The optimization layer integrates and harmonizes the combined utilization of simulation,

heuristic, and improvement methods. This integration was achieved by developing several

encoding models, which grant an improvement method full control over a set of selected
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allocation and sequencing heuristics to explore improved solutions for scheduling prob-

lems. The adopted evolutionary improvement methods alongside the presented encoding

models of the optimization component and their integration with underlying components

of MESEAS fulfill and improve the fourth, fifth, and sixth functional requirements of the

artifact.

Finally, the machine learning layer extends the available functionalities and grants

decision-makers access to deep reinforcement learning methods to investigate improved

and adaptive solutions for multi-objective scheduling problems. The machine learning

layer integrates the functionalities of all underlying layers and their components. It is

integrated through the presented DRL scheduling and evaluation models. The developed

DRL scheduling and evaluation models permit the adopted DRL algorithms to control

allocation and sequencing heuristics during a scheduling period to solve multi-objective

scheduling problems. The adopted DRL methods based on the developed DRL scheduling

and evaluation models of the machine learning component fulfill the sixth and finally the

seventh functional requirements of the artifact.

After designing and integrating the individual components in MESEAS, we imple-

mented the final artifact using cloud-native technologies. We relied on open-source tools

and frameworks to ensure efficient deployment and operation of MESEAS subsystems

and their underlying components. The artifact can be deployed and hosted on multi-

architecture hardware, including ARM-64 and x86-64 physical devices. Multi-architecture

deployment facilitates the flexible operation of MESEAS and allows an engineer to ei-

ther rely on power-conservative hardware for efficiency or powerful computing hardware

for instant decision-making. In addition to the layered architecture, this implementation

substantially contributes to the flexible and adaptive functionality of the artifact, which

fulfills the third , and partially fourth indicated non-functional requirements.

The component-based design and the adoption of cloud-native technologies were the

cornerstones in the design and implementation of the artifact to achieve scalable, dis-

tributed, flexible, and adaptive functionality of the artifact (cf. Chapter 3 and Section 4.3).

The workloads of simulation, optimization, and machine learning components are paral-

lelized and fully distributed to achieve high-quality solutions for scheduling concerns in a

reasonable time as demonstrated in Section 4.3. The artifact can be deployed on in-house

hardware and further scaled up or down using cloud infrastructure. The scalability feature

offers decision-makers the prospect of on-demand computing resources to operate the arti-

fact. The modular design of the presented methodology substantially simplifies adapting

and incorporating new heuristic, improvement, or DRL methods into the artifact. Despite

implementing the most significant operational constraints and business objective measures

in the presented scheduling model, it can be extended and customized with minimal effort

to address changes in business needs. In summary, the presented artifact fulfills the first ,

second , and fully the fourth indicated non-functional requirements.

The overreaching objective of this work is to present a novel scheduling methodology

that harmonizes the integrated utilization of simulation, heuristic, improvement, and deep

reinforcement learning methods to deal with multi-objective scheduling problems. This
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objective was based on three formulated hypotheses, presuming the conceptualization,

the design, and the potential of their integrated use for solving complex multi-objective

scheduling problems. We also argued that deep reinforcement learning methods can be

trained to learn from solutions to scheduling problems. To achieve this objective, fol-

lowing the DSR framework, we formulated an overarching research question: ”How to

conceptualize, design, and develop a scheduling methodology that integrates and facilitates

the combined utilization of simulation, heuristics, improvement, and deep reinforcement

learning methods to address multi-objective scheduling problems in cloud and manufactur-

ing environments?”. To systematically investigate this research question and accomplish

the overall objective, we decomposed the main research question and formulated four sub-

questions. Answering each of them yields answering the overall question, starting with

the first question:

First sub-research question - What are the key methods frequently adopted to address

multi-objective scheduling problems, and how do they perform in cloud and manufacturing

environments?. In this thesis, we conducted a literature analysis of conventional methods

that are popular for solving scheduling problems. The results suggested that heuristic

and improvement methods are dominant due to the complicated nature of the scheduling

problem. The majority of them are NP-Hard optimization problems. Based on the liter-

ature analysis, we investigated and evaluated the performance of some popular heuristics

and improvement methods in addressing single-stage and multi-stage problems.

After concluding the analysis of conventional methods, we conducted a structured

literature analysis to investigate the adoption of the DRL method and its combination

with other methods. The overall results of the investigations are thoroughly discussed

throughout the second and third chapters of this thesis (cf. Chapter 2 and Chapter 3). In

summary, the analysis demonstrated that conventional methods are either computationally

expensive or fall short in terms of solution quality in addressing complex multi-objective

scheduling problems. Advanced methods such as DRL are overwhelmingly adopted and

evaluated in game-like environments. The structured literature review on their adoption

to address scheduling problems yielded contributions dealing with simple scheduling prob-

lems. The identified related works were not integrated with heuristic and improvement

methods as presented in Subsection 2.5.4 and Subsection 2.5.5.

Second sub-research question - How do we efficiently combine heuristic and metaheuris-

tic methods for solving scheduling problems in cloud and manufacturing environments?.

Integrating methodologically different methods, such as heuristic and improvement meth-

ods, requires the development of flexible encoding and decoding optimization models for

scheduling. In the presented methodology, the optimization encoding models are founda-

tional constituents for efficiently integrating and utilizing these methods. We presented

and discussed three scheduling encodings. The computational results demonstrated that

multi-population encoding, in which two populations coevolve to solve scheduling prob-

lems, delivers superior results in terms of minimizing the objective values. The encoding
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scheduling models operate as interfaces between the components and facilitate accurate

and efficient logical integration. That, in turn, facilitates their collaborative utilization for

solving complex problems.

In addition, the simulation component of MESEAS is critical for improvement meth-

ods. It translates suggested solution individuals of improvement methods into actual

scheduling solutions for a given problem. In essence, the simulation component is crucial

for evaluation and solution construction. Overall, the component-based design and imple-

mentation are prerequisites for proper execution and efficient utilization. We discussed in

depth the design and development of the simulation, heuristic library, and optimization

components in Section 3.4, Section 3.5, and Subsection 3.6.2. The summaries of design

evaluation were discussed in Subsection 3.4.5, Subsection 3.5.3, and Subsection 3.6.5. We

consequently discussed the overall evaluation of the artifact in Chapter 4.

Third sub-research question - Will a scheduling methodology that facilitates the combined

utilization of heuristic and improvement methods outperform their individual use for solv-

ing multi-objective scheduling problems in cloud and manufacturing environments?. The

conducted evaluation of the presented methodology for addressing scheduling problems in

cloud and manufacturing environments demonstrated significant potential in utilizing dif-

ferent heuristics over a scheduling period. The presented methodology adapts to changes

in workload patterns and leverages the suitability of different heuristics to schedule jobs

under different circumstances.

Utilizing several heuristics controlled by an improvement method in cloud environ-

ments delivered solutions with improved objective values in three independent use cases

with different workload traces. The potential improvement in addressing single-stage

scheduling problems increased in correlation to an increase in problem complexity. In the

first use case in cloud environments, the instantiation of the methodology demonstrated

an overall improvement in minimizing objective values compared to heuristic methods,

amounting to over 50 %. In the second use case, a similar tendency was observed, starting

with improved operation by 30 % and reaching up to 47 % better objective values com-

pared to several heuristic methods. We discussed the results of the conducted evaluation

extensively in Section 4.4.

Similar improvement was achieved in addressing more complex multi-stage scheduling

problems in a manufacturing environment. The computational results indicated that the

multi-population of MESEAS achieved significant improvement in terms of minimizing all

objective values compared to heuristic and improvement methods. For instance, the EDD

heuristic method, combined with simulation, achieved the best results in minimizing the

considered objective values compared to other heuristic methods such as SPT or LPT.

Since SPT and LPT lack any consideration in their rationale, the minimization of total

tardiness or penalties, for that matter, the computational results of their performance, is

not discussed.

Hence, compared to a heuristic method using simulation-based EDD, MESEAS-multi

recorded, on average, a 116.4 % improvement in minimizing system efficiency objective
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values in solving thirty real problem instances. System efficiency business objectives in-

clude the minimization of the makespan and total major setup times. Regarding customer

satisfaction objective values, MESEAS-multi fully dominated the simulation-based EDD

and fully minimized the total tardiness and the number of penalties in solving all problem

instances. The simulation-based EDD heuristic method failed in 26.7 % of solved problem

instances to eliminate total tardiness and recorded violations in eight problem instances.

Compared to MESEAS-GA, using the attribute marker encoding model, MESEAS-Multi

found scheduling solutions that are, on average, 11.7 % superior in terms of minimizing the

makespan and the total major setup times. An instantiation of the methodology to solve

problems from related works confirmed the findings. MESEAS-multi achieved superior

performance compared to related works for solving other problem instances with an aver-

age margin that amounted to 41.3 %. The statistical analysis and computational results

of the conducted experiments for solving multi-stage problems are profoundly discussed

in Section 4.5.

Fourth sub-research question - How to adopt deep reinforcement learning methods to

learn from solutions to scheduling problems in cloud and manufacturing environments?.

To adopt DRL methods for addressing scheduling problems, scheduling environments are

exposed to agents in a game-like manner. We relied on our collected findings and obser-

vations to integrate heuristic and improvement methods and followed a similar strategy.

We developed and presented flexible DRL scheduling and evaluation models. These

models play a significant role in efficiently integrating DRL methods with simulation,

heuristic, and improvement methods. They coordinate logical communication between

DRL methods and the other integrated methods in MESEAS to solve scheduling problems.

Based on them, DRL methods fully control available selected allocation and sequencing

heuristics to solve scheduling problems. The simulation component was used to trans-

late actions taken by DRL agents to construct actual scheduling solutions that minimize

the considered objective values. Propagating back the constructed scheduling solution, in

addition to key performance indicators, demonstrated that DRL can be trained to learn

from solutions to scheduling problems. The DRL method’s successful and efficient adop-

tion was attributed to the artifact’s flexible and modular design. Furthermore, relying

on open-source frameworks eased the adoption of parallelization techniques for training.

The rationales of the DRL scheduling and evaluation models were thoroughly discussed

in Subsection 3.6.3.

To establish a baseline comparison to related works, we instantiated the methodology

using DRL methods to solve problem instances of a multi-stage scheduling environment

in the literature. The numerical results demonstrated that the proposed adoption of DRL

methods using several DRL algorithms achieved improved solutions in minimizing the ob-

jective values. On average, the attained solutions using the MESEAS-A3C DRL improved

objective values by 32,6 %. With a slight difference, MESEAS-PPO demonstrated a 30.8

% improvement compared to the published best results in the literature. A detailed anal-

ysis of the conducted evaluation into the performance of the machine learning component
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of MESEAS was presented in Section 4.5. A condensed summary of the evaluation and

the comparisons to related works were discussed in Subsection 4.5.5.

Contribution to answer the overarching research question

The scheduling methodology was conceptualized following component-based practices.

It was designed using UML information flow diagrams, UML component and sequence

diagrams, mathematical models and notations, and pseudocode to describe the ratio-

nale of developed algorithms. It was developed using cloud-native technologies and

open-source frameworks to ensure efficient and accurate deployment and operation

of the artifact. The combined utilization of simulation, heuristic, improvement, and

deep reinforcement learning methods was achieved by developing a scheduling data

model, several optimization encoding models for scheduling problems, DRL scheduling

models, and a DRL evaluation model. The developed scheduling data model facili-

tates flexible instantiation of the methodology to address single-stage or multi-stage

scheduling problems considering multiple objective measures. The problems can be

solved using either a pure or a weighted-sum multi-objective formulation.

Answering the research questions verified the articulated first , second , and third in-

vestigated hypotheses of this thesis. Verifying expressed presumptions and answering the

overarching research question yields meeting the overall objective of this research. In the

previous chapter, we highlighted the limited evaluation in the cloud environment, which

would meet the requirements of the third evaluation stage based on (Sonnenberg and

vom Brocke, 2012). In manufacturing, we conducted several evaluation activities in the

fourth stage to partially meet the concept of three realities conditioned by the adopted

evaluation method (Sonnenberg and vom Brocke, 2012). Full integration of the proposed

artifact in an organizational context is too time-consuming and, unfortunately, was not

fully achieved. Despite these shortcomings and other limitations, which we discussed in

previous chapters, this thesis presented several contributions; these are:

• A comprehensive review and analysis of conventional solutions to address scheduling

problems in cloud and manufacturing environments.

• A comprehensive review of modern solution methods to address scheduling problems

in cloud and manufacturing environments.

• The design and development of several allocations and sequencing heuristic methods

to address scheduling problems in cloud and manufacturing environments.

• The design and development of overarching mathematical and data models for

scheduling problems that include the most significant operational constraints and

objective measures. These models are flexible and extendable to address further

scheduling concerns.

• The design and development of several optimization encoding models for scheduling

problems, which include conventional (MESEAS−GA), hybrid (MESEAS− single),

and multi-population model (MESEAS−multi).
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• The adoption, integration, and evaluation of several single-objective and multi-

objective metaheuristics for solving scheduling problems (GA - NSGA III).

• The design and development of DRL scheduling and evaluation models, which encode

scheduling problems and decode scheduling solutions for adopting DRL methods to

address scheduling concerns.

• The adoption of the MDP mathematical framework to map and integrate the pre-

sented scheduling model, simulation component, and the heuristic library compo-

nents of the artifact with DRL methods.

• The adoption, integration, and evaluation of several prominent DRL methods for

solving multi-objective scheduling problems (A3C, PPO, MARWIL).

• The conceptualizing, design, development, and evaluation of an overarching schedul-

ing methodology that harmonizes and facilitates the combined utilization of simula-

tion, heuristic, metaheuristic, and DRL methods for solving multi-objective schedul-

ing problems.

• The development and deployment of the component-based design of the artifact,

which encompasses modeling, simulation, heuristic library, optimization, and ma-

chine learning components. Adopting cloud-native technologies and other open-

source frameworks facilitates an efficient multi-architecture deployment and execu-

tion of the artifact.

The artifact presented in this thesis was evaluated to address several variations of

scheduling problems, mainly in cloud and manufacturing environments. For instance, we

conducted initial experiments to address scheduling problems in the supply chain (Nahhas

et al., 2023b) and recently presented further insights in (Nahhas et al., 2024b). In this

thesis, we focused on two use cases in cloud environments and two use cases in manufactur-

ing environments. Table 5.1 and Table 5.2 summarizes the main findings of the discussed

use cases. In Table 5.1, we highlighted the nature of the considered problem, the used

baseline for comparison, and the utilized method in the presented methodology. Table 5.1

highlights the average achieved improvement using MESEAS compared to baselines in

terms of minimizing the objective values. The table also illustrates the evaluation stage,

which was covered in every use case. We rely on the evaluation stage metric to discuss

the methodology’s maturity for real-world use in the considered use cases.

To address scheduling concerns in the first use case in a cloud environment, we de-

veloped two scheduling heuristic methods with several rescheduling mechanisms and in-

tegrated them with a metaheuristic method. The EA-FFD and the WA-FFD heuristic

methods were used as baselines and compared to MESEAS-single. In the second use case

in a cloud environment, we adopted and integrated several heuristic methods from related

works. We compared them against MESEAS-single to address scheduling problems using

a known benchmark. The summary of these two use cases is presented in the first three

rows in Table 5.1.
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To address scheduling problems in the first use case in manufacturing, we developed

several allocation and sequencing heuristic methods and combined them with metaheuris-

tic and DRL methods. We compared the performance of the presented methodology in

minimizing multiple objective values against the simulation-based EDD method and the

GA method. In essence, we utilized heuristic and metaheuristic methods as baselines for

the comparison. To establish a comparison to related works, we instantiated the presented

methodology using MESEAS-Multi, MESEAS-A3C, and MESEAS-PPO to address multi-

objective scheduling problems in a second use case. In this use-case, we used the reported

results on the performance of NEAT presented by Lang et al. (2021b) as a baseline for

the comparison. The summary of these two use cases in manufacturing is presented in the

second part of Table 5.1.

The achieved improvements in minimizing the considered objectives compared to

the discussed baselines are presented in Table 5.2. In cloud environments, we considered

mainly the minimization of energy consumption (E) and the total penalties or violations in

SLAs (U). In the first use in cloud environments, the overall computational results demon-

strated that MESEAS-single fully dominates the EA-FFD in minimizing the considered

objective values. It outperformed the heuristic by 3.46 % and 42.91 % in minimizing the

energy consumption and total penalties, respectively. Compared to WA-FFD, MESEAS-

single lost in performance by -2.69 % in terms of minimizing energy consumption but

reduced the total number of penalties by 54.1 %. The detailed percentage calculations

and the comparison with the heuristic methods are presented in Section B.1

In the second use in cloud environments, the collected results showed that, on av-

erage, MESEAS-single minimized the overall energy consumption by 53 % while losing

performance by -1.0 % in terms of penalties compared to the baseline heuristic methods

in the literature. We computed these percentages by averaging the achieved improvement

compared to the baseline methods. The detailed achieved improvements compared to

every heuristic are presented in Subsection B.2.2.

The achieved improvements in manufacturing use cases are presented in the lower

part of Table 5.2. In manufacturing environments, we considered the minimization of

the makespan (Cmax), the number of major setup times (MS), the total tardiness (T),

and the total number of penalties (U). MESEAS-multi fully dominated heuristic and

metaheuristic methods in minimizing all objective values in the first use case. We weighted

system efficiency objective measures equally to compute the average improvement of the

makespan and the total number of major setup times. We similarly utilized equal weights

to compute the average of business objectives related to customer satisfaction. MESEAS-

multi found scheduling solutions that minimized, on average, the makespan and the total

number of major setup times by 40.5 % compared to simulation-based EDD. In terms of

minimizing the total tardiness and number of penalties, MESEAS-multi found solutions

were, on average, 26.7 % superior to those of simulation-based EDD. The improvement

margin narrows down compared to the metaheuristic method. MESEAS-multi nevertheless

fully dominated the GA in solving all problem instances by minimizing the considered

objective values. It delivered, on average, superior solutions amounting to 10.1 % in
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terms of minimizing the makespan and the major setup times. Regarding penalties and

total tardiness, MESEAS-multi achieved better solutions by 3.3 % on average for solving

all problem instances. Section C.2 comprises the detailed computations of the presented

averages.

In the second use case in manufacturing, MESEA-multi fully dominated NEAT for

solving all problem instances. It delivered scheduling solutions capable of minimizing the

makespan of the major setup times, on average, by 32.6 %. Similarly, it dominated NEAT

in solving 50 % of the considered problem instances in minimizing the total tardiness

and number of penalties. MESEAS-A3C and MESEAS-PPO outperformed NEAT in

minimizing the objective values, on average, by 31.9 % and 30.8 % in terms of minimizing

the makespan and the total number of major setup times, respectively. On average, they

achieved 25 % better solutions in terms of total tardiness and number of penalties.

Table 5.1: Evaluation summary of use cases (I).

Considered problem Base-line Utilized Method

Pm - Cloud Heuristic method (EA-FFD) MESEAS-Single

Pm - Cloud Heuristic method (WA-FFD) MESEAS-Single

Qm - Cloud Related works (Multiple) MESEAS-Single

HFS4 - Manufacturing Heuristic method (EDD) MESEAS-Multi

HFS4 - Manufacturing Metaheuristic (GA & DA-SI) MESEAS-Multi

HFS2 - Manufacturing Related works (NEAT) MESEAS-Multi

HFS2 - Manufacturing Related works (NEAT) MESEAS-A3C

HFS2 - Manufacturing Related works (NEAT) MESEAS-PPO

Table 5.2: Evaluation summary of use cases (II).

Method / objectives E (%) U (%) Evaluation stage

MESEAS-Single 3.46 42.91 Eval 3

MESEAS-Single -2.69 54.1 Eval 3

MESEAS-Single 53.1 -1.0 Eval 3

Method / objectives Cmax & MS (%) T & U (%) Evaluation stage

MESEAS-Multi 40.5 26.7 Eval 3 - Partial Eval 4

MESEAS-Multi 10.1 3.3 Eval 3 - Partial Eval 4

MESEAS-Multi 32.6 50.0 Eval 3 - Partial Eval 4

MESEAS-A3C 31.9 25.0 Eval 3 - Partial Eval 4

MESEAS-PPO 30.8 25.0 Eval 3 - Partial Eval 4
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5.2 Outlook and further research directions

With the introduction and adoption of new technologies, scheduling problems in cloud

and manufacturing environments become more complex. In this thesis, we presented

a scheduling methodology to solve multi-objective scheduling problems. We evaluated

its utility in addressing scheduling problems in manufacturing and cloud environments

over multiple use cases. Although the presented methodology outperformed heuristic,

metaheuristic, and machine learning-based methods, the individual methods of the artifact

are subject to certain limitations from a research and engineering perspective.

From an engineering perspective, security and data management are further aspects

that must be addressed. For instance, the artifact was deployed with no holistic security

concept in mind. Although relying on open-source technologies such as Kubernetes for

the deployment elevates some of the security issues, further aspects, such as access man-

agement, must be addressed. In addition, despite the immense flexibility of document

databases, in the MESEAS design, relying on a document database became inefficient for

dealing with large amounts of data in a single collection. Thus, the efficiency of post-

processing the results was slightly impacted. Hence, online analytics of the results in the

front end could be improved. Here, a relational database would offer better performance

for the user in conducting and executing complex online analyses of the best scheduling

solutions. Finally, the current deployment of the artifact may be vulnerable to the failure

of some critical components, such as messaging systems or other cluster and network-

ing components. Here, redundancy is required to secure a higher availability of artifact

services.

From a research perspective, we will independently outline limitations and some re-

search directions in the design of the optimization and machine learning components of

the artifact. The presented methodology was designed and developed with flexibility in

mind by splitting the core logical components and functionalities from each other. The

motivation behind this foundational design decision was the diverse expertise and skills

that are required to operate and maintain different types of solution methods. For many

decision-makers, relying on heuristics that are simple to follow and generate reproducible

scheduling solutions outweighs higher-quality solutions generated by advanced metaheuris-

tics or deep reinforcement learning methods.

Metaheuristics or deep reinforcement learning methods require engineering and do-

main skills to be properly parametrized and tuned to achieve efficient and accurate schedul-

ing solutions. Despite incorporating default configuration for tuning the optimization and

machine learning components, significant changes in the scheduling environment may im-

pact efficiency. That may lead to a higher computational effort to obtain high-quality

scheduling solutions.

Therefore, automating hyperparameter tuning of the optimization component is a

research direction that ensures robustness and increases the adaptivity of the presented

methodology. We conducted a preliminary investigation on the topic and explored the

potential of hyperparameter optimization methods in manufacturing environments in
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(Chernigovskaya et al., 2024). The optimization component may also benefit from fur-

ther investigations into the potential of the presented multi-population approach and its

applicability to address further use cases.

As for the machine learning component, the evaluation of MESEAS-A3C and MESEAS-

PPO demonstrated that agents may suffer performance loss if the scheduling problem sig-

nificantly changes before recovery. These findings point to an insufficient generalization

problem of the trained DRL agents. This generalization problem of DRL methods was

also discussed and thoroughly investigated by Zhang et al. (2018). Several research direc-

tions are promising for mitigating this issue. For instance, we recently investigated the

potential of imitation learning methods to achieve better performance. We trained a DRL

agent based on the Monotonic Advantage Re-Weighted Imitation Learning (MARWIL)

method (Wang et al., 2018). To train the agent with previous high-quality experiences,

we utilized MESEAS-Multi to generate high-quality scheduling solutions. Using the same

DRL scheduling and evaluation model, the computational results showed that the imita-

tion learning approach achieved a higher mean reward amounting to 10 % compared to

pure DRL.

Despite successfully training several DRL methods for solving multi-objective schedul-

ing problems, the presented DRL scheduling model, especially the observation space, can

be improved. The definition and the nature of the observation have a significant impact

on the performance and the generalization of DRL methods. We recently investigated

the potential of an image-based definition of the observation space to address schedul-

ing problems in a retailing supply chain in (Nahhas et al., 2024a). The collected results

demonstrated significant potential in addressing scheduling problems and may be further

explored to achieve conclusive results.
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A Graphical user interface

Figure A.1: User dashboard for results analysis: Best solutions and their makespan and
total tardiness objective values.
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Figure A.2: User dashboard for results analysis: Gantt chart for bottlenecks analysis.
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Figure A.3: User dashboard for results analysis: Best solutions and their makespan and
major setup times objective values.
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Figure A.4: User dashboard for results analysis: Best solutions and their total tardiness
and major setup times objective values.
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Figure A.5: User dashboard for results analysis: Best solutions and their major setup
times and penalties objective values.
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Figure A.6: User dashboard for results analysis: Example analysis of three objective val-
ues.
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Figure A.7: User dashboard for results analysis: Example three objective value analysis
view with the best solution.
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B Scheduling in cloud environments

B.1 First use case: Performance comparison in percentages

Table B.1: Computational results of online hours and job rescheduling.

Online hours1 Rescheduled jobs2 Initiated rescheduling

Is-situation 960 0 0

WA-FFD 253 342 22

EA-FFD 295 275 18

MESEAS-Single 272 157 18

Table B.2: Summary of computational results.

Decrease in online hours (%) Increase in rescheduled jobs (%)

Is-situation 0 0

WA-FFD 73.6 23.6

EA-FFD 69.3 19.0

MESEAS-Single 71.7 10.8

1The total available online hours overall physical machines during five days of operations.
2The number of jobs during the scheduling period is n = 1450.
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Table B.3: Overall performance comparison between MESEAS-Single and heuristic meth-
ods in terms of minimizing the objective values.

Performance comparison between MESEAS-Single and Is-situation.

Objective value Online hours (%) Rescheduled jobs (%)

Average improvement 71.7 -10.8

Overall improvement 60.9 %

Performance comparison between MESEAS-Single and WA-FFD.

Objective value Online hours (%) Rescheduled jobs (%)

Average improvements -2.69 54.1

Overall improvement 51.41 %

Performance comparison between MESEAS-Single and EA-FFD.

Objective value Online hours (%) Rescheduled jobs (%)

Average improvements 3.46 42.91

Overall improvement 46.37 %

B.2 Second use case

B.2.1 Methodology instantiation and problem formulation

The presented methodology was instantiated to address scheduling concerns of the dis-

cussed use case as presented in Equation B.1. To address scheduling concerns in this

environment, we utilized the first three functionality layers of MESEAS. The scheduling

data model, the simulation, the heuristic library, and the optimization components are

therefore instantiated. Given the scheduling problem SPsingle, we utilize MESEAS(X, T )

to find a solution X ∈ X that minimizes the objective function Γω during the schedul-

ing period T . In the course of this section, we will elaborate on the instantiation of the

methodology.

MESEAS(X, T ) = ⟨SPsingle | PIsingle | Γω | Sim | HL | Opt⟩ (B.1)
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The scheduling problem - SPsingle

The scheduling environment contains a set of heterogeneous physical servers with various

resource capacities. These machines are available in parallel to process jobs, forming a

single-stage scheduling system SPsingle. Jobs can be completed if machines can satisfy their

requested computing requirements. Thus, the structure of the scheduling environment can

be expressed as a parallel machine scheduling problem α = Qm. The following bullet points

summarize the constraints and objectives:

• Release date β1 = rj : Jobs are released for scheduling based on their associated

release time during the scheduling period T .

• Machine capacity constraint β2 =MC : Jobs are scheduled on physical machines

only if a machine fulfills its requested computing requirements (cf. Section 2.1.2,

Equation 2.1).

• The total energy consumption γ1 = E: The energy consumption of computing re-

sources is a significant cost and sustainability driver in a cloud environment. There-

fore, scheduling problems in cloud environments are solved by minimizing overall

energy consumption.

• The total number of penalties γ2 = U : SLA violations cost loss of reputation and

are associated with financial penalties. Therefore, solution methods for scheduling

problems in cloud environments must be designed to take into consideration the

minimization of total penalties and/or violations in SLAs.

Given the discussed cloud environment description, the scheduling problem is ex-

pressed by SPsingle = ⟨Qm | rj , MC | E, U⟩.

Problem instance - PIsingle

For evaluation, we utilized ten problem instances from workload traces of the PlanetLab

benchmark. To ensure comparability, we used the same workload traces that the authors

utilize in (Moges and Abebe, 2019; Beloglazov et al., 2012a). Based on the data structure

presented in Section 3.4.2, the instantiation is summarized in the following bullet points:

• Let the set T =
{
Tt, . . . , T|T |

}
: ∀ t ∈ {1, . . . , 24} denote a day scheduling period

divided per hour. Given a discrete change in time horizon ∆T1, we move from T1 to

T2.

• Let the set J = {Jj , . . . , Jn} : ∀ j ∈ {1, . . . , 1516} denote the number of jobs, which

must be allocated during the scheduling period T .

• Let the set MC =
{
MC

i , . . . ,M
C
m

}
: ∀ i ∈ {1, . . . , 560} denote the number of ma-

chines that are available to process jobs in parallel.

• Let pi,j ∈ R+ denote the required processing time of a job Jj ∈ J to be hosted and

processed by a machine MC
i ∈MC .
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Objective function - Γω:

Based on the presented instantiation of the scheduling problem and the description of the

problem instance, the scheduling problems are solved subject to the minimization of the

objective function in Equation B.2. The problem instances are solved by finding a solution

X ∈ X that minimizes the objective values. The overall objective function is formulated

using a weighted sum approach such that the set Γ =
{
γi, . . . , γ|Γ|

}
: ∀ i ∈ {1, . . . , 3}

is associated with the set of weights ω = {ω1 = 0.6, ω1 = 0.2, ω3 = 0.2} as presented in

Equation B.2.

arg min
X∈X

Γω(X) = arg min
X∈X

(ω1 · γ1(X) + ω2 · γ2(X) + ω3 · γ3(X)) (B.2)

Simulation - (Sim)

CloudSim Plus was utilized to build a simulation model for modeling the defined cloud

environment. The simulation model is crucial for evaluation and solution construction in

the presented methodology.

Heuristic Library - (HL)

We will independently summarize the developed and adopted heuristics in the first and

second use cases. The created simulation environment accesses a predefined set of schedul-

ing allocation heuristics. These allocation heuristics are used during the scheduling period

T to manage the scheduling and rescheduling of jobs to machines. The conducted exper-

iments are compared to the scheduling heuristic presented in related works (Moges and

Abebe, 2019; Beloglazov et al., 2012a; Beloglazov et al., 2012b). Nine allocation heuristics

presented in these works were utilized and integrated with the optimization component.

The adopted algorithms are summarized in the coming bullet points:

• Power Efficient First-Fit Decreasing (PEFFD) based on Moges and Abebe (2019).

• Power Efficient Best-Fit Decreasing (PEBFD) based on Moges and Abebe (2019).

• Medium-Fit Power Efficient Decreasing (MFPED) based on Moges and Abebe (2019).

• Modified Best-Fit Decreasing (MBFD) based on Beloglazov et al. (2012a).

• Best-Fit Static Threshold (BFTHR) based on Beloglazov et al. (2012b).

• Power-Aware Best-Fit Decreasing (PABFD) based on Beloglazov et al. (2012b).

• Median Absolute Deviation (MAD) based on Beloglazov et al. (2012b).

• Static threshold-based scheduling policy (THR) based on Beloglazov et al. (2012b).
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Optimization - (Opt)

The optimization component of MESEAS was instantiated using the indirect discrete

encoding model. The included allocation heuristics were used as a marker to define the

genotypes for the implemented Genetic Algorithms (GA). The genotypes were grouped

into a chromosome represented by a vector ΦA as presented in Equation B.3.

ΦA =
[
Φφ, · · · , Φ|T |

]
: (φ = 1, 2, . . . , 24) ∧ (Φφ = 1, 2, . . . , 8) (B.3)

B.2.2 Computational results

Table B.4: Achieved improvement compared to heuristic methods in terms of minimizing
energy consumption.

Heuristic method Energy consumption (kWh) MESEAS improvement (%)

MAD 912.83 65.0

THR 912.75 65.0

MBFD 902.62 64.7

BFTHR 833.97 61.7

PEBFD 610.5 47.7

MFPED 584.26 45.4

PEFFD 573.56 44.4

PABFD 460.89 30.8

MESEAS-Single 319,06 –

Average improvement 53.1 %
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Figure B.1: Average energy consumption and SLA in percentage (Nahhas et al., 2021a).
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C Scheduling in manufacturing
environments

C.1 First use case: Imitation learning
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Figure C.1: Comparison between MARWIL trained with NSGA III solutions (MARWIL
IL) and pure MARWIL without previous experiences (Nahhas et al., 2024a).
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C.2 First use case: Performance comparison in percentages

Table C.1: Achieved improvement compared to heuristic and metheuristic methods in
terms of minimizing the makespan in percentage.

PI Multi vs. Sim (EDD) (%) Multi vs. (GA & DA-SI) (%) Multi vs. Single (%)

1 12.1 9.2 1.6

2 13.6 10.1 1.0

3 12.2 2.4 1.2

4 9.2 6.3 0.9

5 15.0 11.4 5.1

6 14.2 1.9 0.5

7 8.6 4.5 2.4

8 6.3 17.0 0.1

9 8.0 1.8 6.0

10 15.5 10.6 0.3

11 9.3 13.6 2.3

12 13.5 20.9 2.6

13 21.9 17.4 2.4

14 13.5 12.0 3.8

15 11.0 13.5 4.4

16 12.3 8.0 5.0

17 17.2 17.5 4.5

18 10.5 18.6 2.5

19 14.7 7.8 3.1

20 12.7 12.4 1.1

21 15.7 6.0 2.0

22 11.6 0.8 2.3

23 15.1 21.0 6.3

24 17.1 11.6 6.1

25 8.9 18.8 0.9

26 7.5 20.9 1.3

27 7.5 16.9 1.8

28 14.5 2.4 0.9

29 13.7 7.4 2.7

30 18.7 6.8 4.6

Ave 12.72 10.97 2.66



Abdulrahman Nahhas, M. Sc. 229

Table C.2: Achieved improvement compared to heuristic and metheuristic methods in
terms of minimizing major setup times in percentage.

PI Multi vs. Sim (EDD) (%) Multi vs. (GA & DA-SI) (%) Multi vs. Single (%)

1 65.2 11.5 9.8

2 70.1 4.8 0.0

3 62.2 4.0 0.0

4 60.8 8.9 -6.3

5 67.8 11.4 7.1

6 66.1 14.0 15.7

7 70.5 11.6 9.5

8 68.9 8.7 8.7

9 67.9 6.5 6.5

10 70.5 2.5 2.5

11 65.7 19.3 9.8

12 66.7 0.0 0.0

13 72.2 5.1 5.1

14 68.0 2.4 4.7

15 72.4 9.8 2.6

16 72.7 17.4 5.0

17 70.4 7.0 0.0

18 66.4 6.5 8.5

19 68.9 18.0 12.8

20 67.4 0.0 2.2

21 68.3 16.7 16.7

22 68.1 4.3 0.0

23 66.9 6.7 2.3

24 70.3 4.7 8.9

25 66.2 7.7 2.0

26 68.8 18.8 11.4

27 68.6 10.4 8.5

28 69.3 15.7 6.5

29 69.5 13.0 7.0

30 73.1 7.9 5.4

Ave 68.32 9.17 5.77
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C.3 Second use case: Performance comparison to related
works in percentages

Table C.3: MESEAS-Multi vs. NEAT %

Improvement Makespan (%) Major setup (%) Tardiness (%) Penalties (%)

PI-1 5.0 56.1 100 100

PI-2 4.7 65.8 100 100

PI-3 10.6 59.2 0 0

PI-4 2.0 57.5 0 0

Average 5.6 59.6 50 50

Importance 0.5 0.5 0.5 0.5

Average improvement 32.6 % 50 %

Table C.4: MESEAS-A3C vs. NEAT %

Improvement Makespan (%) Major setup (%) Tardiness (%) Penalties (%)

PI-1 3.9 49.1 100 100

PI-2 15.5 63.1 100 100

PI-3 14.1 60.6 0 0

PI-4 -5.3 54.0 -100 -100

Average 7.0 56.7 25 25

Importance 0.5 0.5 0.5 0.5

Average improvement 31.9 % 25 %

Table C.5: MESEAS-PPO vs. NEAT %

Improvement Makespan (%) Major setup (%) Tardiness (%) Penalties (%)

PI-1 -4.7 52.6 100 100

PI-2 14.5 63.1 100 100

PI-3 11.4 62.0 0 0

PI-4 -6.4 54.0 -100 -100

Average 3.7 57.9 25 25

Importance 0.5 0.5 0.5 0.5

Average improvement 30.8 % 25 %
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Almeida, D., Ferreira, L. P., Sá, J. C., Lopes, M., da Silva, F. J. G., and Pereira, M. (2022).

Performance evaluation of dispatching rules and simulated annealing in a scheduling

problem from a quality-functionality perspective. In Moldovan (ed.), 15th Interna-

tional Conference Interdisciplinarity in Engineering, pages 258–267. Springer Interna-

tional Publishing, [S.l.]. 38, 39

Alves, J. C. and Mateus, G. R. (2020). Deep reinforcement learning and optimization

approach for multi-echelon supply chain with uncertain demands. In International

Conference on Computational Logistics. 57, 58, 62, 76



232 Methodology for Self-Adaptively Solving Multi-Objective Scheduling Problems

Alwadi, A., Nahhas, A., Bosse, S., Jamous, N., and Turowski, K. (2018). Toward a

performance requirements model for the early design phase of it systems. In Sixth

International Conference on Enterprise Systems (ES), Piscataway, NJ. 16, 80

Alwadi, A., Nahhas, A., Bosse, S., Jamous, N., and Turowski, K. (2019). A modernized

model for performance requirements and their interdependencies. In 2019 IEEE/ACS

16th International Conference on Computer Systems and Applications (AICCSA). 16,

80

Amdahl, G. M., Blaauw, G. A., and Brooks, F. P. (1964). Architecture of the ibm sys-

tem/360. IBM Journal of Research and Development, 8(2):87–101. 144

Amer, D. A., Attiya, G., Zeidan, I., and Nasr, A. A. (2022). Elite learning harris hawks

optimizer for multi-objective task scheduling in cloud computing. Journal of Super-

computing, 78(2):2793–2818. 69, 71

Amoretti, M., Zanichelli, F., and Conte, G. (2013). Efficient autonomic cloud computing

using online discrete event simulation. Journal of Parallel and Distributed Computing,

73(6):767–776. 3

Andersson, M., Ng, A. H. C., and Grimm, H. (2008). Simulation optimization for industrial

scheduling using hybrid genetic representation. In Proceedings of the 40th Conference

on Winter Simulation, pages 2004–2011. 50

Angerhofer, B. J. and Angelides, M. C. (2000). System dynamics modelling in supply

chain management: research review. In Simulation conference, 2000. proceedings.

winter, pages 342–351. 31

Anuradha, V. P. and Sumathi, D. (2014). A survey on resource allocation strategies in

cloud computing. In International Conference on Information Communication and

Embedded Systems (ICICES2014), pages 1–7. 52

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep

reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38.

57, 58

Arunarani, A., Manjula, D., and Sugumaran, V. (2019). Task scheduling techniques in

cloud computing: A literature survey. Future Generation Computer Systems, 91:407–

415. 1, 2

Ashwin, S., Shankaranarayanan, V., lamy, D., Anbuudayasankar, S. P., and Thenarasu,

M. (2022). Development and analysis of efficient dispatching rules for minimizing flow

time and tardiness-based performance measures in a job shop scheduling. In Reddy

(ed.), Intelligent Manufacturing and Energy Sustainability, pages 337–345. Springer

Singapore, [S.l.]. 39



Abdulrahman Nahhas, M. Sc. 233

Aurich, P., Nahhas, A., Reggelin, T., Krist, M., Bruzzone, AG, de Felice, F., Frydman,

C., Longo, F., and Massei, M. (2017). Simulation based optimization of a four stage

hybrid flow shop with sequence-dependent setup times and availability constraints. In

Bruzzone, A., Solis, A., Massei, M., De Felice, F., Longo, F., and Frydman, C. (eds.),

16th International Conference on Modeling and Applied Simulation, MAS 2017, Held

at the International Multidisciplinary Modeling and Simulation Multiconference, I3M

2017, pages 144–152. CAL-TEK S.r.l. 11, 17, 104

Aurich, P., Nahhas, A., Reggelin, T., and Tolujew, J. (2016). Simulation-based optimiza-

tion for solving a hybrid flow shop scheduling problem. In Proceedings of the 2016

Winter Simulation Conference, pages 2809–2819. 10, 48, 49
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Szepesvári, C. (2022). Algorithms for reinforcement learning. Springer, Cham. 58

Szita, I. and Lörincz, A. (2006). Learning tetris using the noisy cross-entropy method.

Neural Comput., 18(12):2936–2941. 58

Szita, I. and Lörincz, A. (2006). Learning tetris using the noisy cross-entropy method.

Neural Computation, 18(12):2936–2941. 58

Talbi, E.-G. (2009). Metaheuristics: From design to implementation. John Wiley & Sons,

Hoboken, NJ. 123, 124, 129

Tesauro, G. (1995). Temporal difference learning and td-gammon. Commun. ACM,

38(3):58–68. 57

Tizhoosh, H. R. (2006). Opposition-based learning: A new scheme for machine intelligence.

In Mohammadian, M. (ed.), CIMCA 2005 jointly with IAWTIC 2005, Los Alamitos

Calif., pages 695–701. 69

Turowski, K. (2001). Spezifikation und standardisierung von fachkomponenten.

Wirtschaftsinformatik, 43(3):269–281. 8, 10

Turowski, K. (2003). Fachkomponenten: Komponentenbasierte betriebliche anwen-

dungssysteme. Shaker, Aachen. 8, 10, 88

Urquhart, N., Guckert, M., and Powers, S. (2019). Increasing trust in meta-heuristics by
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